# PDEInvBench ## Adding a New Model The PDEInvBench framework is designed to be modular, allowing you to easily add new model architectures. This section describes how to add a new encoder architecture to the repository. ## Table of Contents - [Model Architecture Components](#model-architecture-components) - [Adding a new model](#adding-a-new-model) - [Step 1: Create a New Encoder Class](#step-1-create-a-new-encoder-class) - [Step 2: Import and Register Your Model](#step-2-import-and-register-your-model) - [Step 3: Create a Configuration File](#step-3-create-a-configuration-file) - [Step 4: Run Experiments with Your Model](#step-4-run-experiments-with-your-model) ## Model Architecture Components The inverse model architecture in PDEInvBench consists of three main components: ``` Input Solution Field → Encoder → Downsampler → Parameter Network → PDE Parameters ``` 1. **Encoder**: Extracts features from the input solution field (e.g., FNO, ResNet, ScOT) 2. **Downsampler**: Reduces the spatial dimensions of the features (e.g., ConvDownsampler) 3. **Parameter Network**: Predicts PDE parameters from the downsampled features ## Adding a new model When creating a new model, you typically only need to modify one of these components while keeping the others the same. ### Step 1: Create a New Encoder Class First, create a new encoder class in `pdeinvbench/models/encoder.py`. Your new encoder should follow the interface of existing encoders like `FNOEncoder`, `ResnetEncoder`, or `SwinEncoder`: ```python import torch import torch.nn as nn from pdeinvbench.utils.types import PDE from pdeinvbench.models.encoder import resolve_number_input_channels class YourEncoder(nn.Module): """ Your custom encoder for PDE inverse problems. """ def __init__( self, n_modes: int, # Or equivalent parameter for your architecture n_layers: int, n_past: int, n_future: int, pde: PDE, data_channels: int, hidden_channels: int, use_partials: bool, mode: str, batch_size: int # Add any architecture-specific parameters ): super(YourEncoder, self).__init__() # Store essential parameters self.n_past = n_past self.n_future = n_future self.pde = pde self.data_channels = data_channels self.hidden_channels = hidden_channels self.use_partials = use_partials self.mode = mode self.batch_size = batch_size # Calculate input channels similar to existing encoders in_channels = resolve_number_input_channels( n_past=n_past, data_channels=data_channels, use_partials=use_partials, pde=pde, ) # Define your model architecture # Example: Custom neural network layers self.encoder_layers = nn.ModuleList([ # Your custom layers here nn.Conv2d(in_channels, hidden_channels, kernel_size=3, padding=1), nn.ReLU(), # Add more layers as needed ]) # Output layer to match expected output dimensions self.output_layer = nn.Conv2d(hidden_channels, hidden_channels, kernel_size=1) def forward(self, x, **kwargs): """ Forward pass of your encoder. Args: x: Input tensor of shape [batch, channels, height, width] **kwargs: Additional arguments (may include 't' for time-dependent models) Returns: Output tensor of shape [batch, hidden_channels, height, width] """ # Implement your forward pass for layer in self.encoder_layers: x = layer(x) x = self.output_layer(x) return x ``` #### Creating Custom Downsamplers If you need a custom downsampler, create it in `pdeinvbench/models/downsampler.py`: ```python import torch import torch.nn as nn class YourDownsampler(nn.Module): """ Your custom downsampler for reducing spatial dimensions. """ def __init__( self, input_dimension: int, n_layers: int, in_channels: int, out_channels: int, kernel_size: int, stride: int, padding: int, dropout: float, ): super(YourDownsampler, self).__init__() # Define your downsampling layers self.layers = nn.ModuleList([ # Your custom downsampling layers here nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding), nn.ReLU(), nn.Dropout(dropout), ]) def forward(self, x): """ Forward pass of your downsampler. Args: x: Input tensor of shape [batch, channels, height, width] Returns: Downsampled tensor """ for layer in self.layers: x = layer(x) return x ``` #### Creating Custom MLPs If you need a custom MLP, create it in `pdeinvbench/models/mlp.py`: ```python import torch import torch.nn as nn class YourMLP(nn.Module): """ Your custom MLP for parameter prediction. """ def __init__( self, in_dim: int, hidden_size: int, dropout: float, out_dim: int, num_layers: int, activation: str, ): super(YourMLP, self).__init__() # Define your MLP layers layers = [] current_dim = in_dim for i in range(num_layers): layers.append(nn.Linear(current_dim, hidden_size)) layers.append(nn.ReLU() if activation == "relu" else nn.Tanh()) layers.append(nn.Dropout(dropout)) current_dim = hidden_size layers.append(nn.Linear(current_dim, out_dim)) self.layers = nn.Sequential(*layers) def forward(self, x): """ Forward pass of your MLP. Args: x: Input tensor of shape [batch, features] Returns: Output tensor of shape [batch, out_dim] """ return self.layers(x) ``` ### Step 2: Import and Register Your Model Make sure your encoder is imported in `pdeinvbench/models/__init__.py`: ```python from .encoder import FNOEncoder, ResnetEncoder, ScOTEncoder, YourEncoder ``` This makes your encoder available for use in configuration files. ### Step 3: Create a Configuration File The configuration system has three levels: #### 3.1: Create Model Architecture Config Create `configs/model/yourmodel.yaml`: ```yaml # configs/model/yourmodel.yaml name: "${system_params.name}_yourmodel" dropout: ${system_params.yourmodel_dropout} predict_variance: False hidden_channels: ${system_params.yourmodel_hidden_channels} encoder_layers: ${system_params.yourmodel_encoder_layers} downsampler_layers: ${system_params.yourmodel_downsampler_layers} mlp_layers: ${system_params.yourmodel_mlp_layers} model_config: _target_: pdeinvbench.models.inverse_model.InverseModel paramnet: _target_: pdeinvbench.models.inverse_model.ParameterNet pde: ${data.pde} normalize: ${system_params.normalize} logspace: ${system_params.logspace} params_to_predict: ${system_params.params_to_predict} predict_variance: ${model.predict_variance} mlp_type: ${system_params.mlp_type} encoder: _target_: pdeinvbench.models.encoder.YourEncoder n_modes: ${system_params.yourmodel_n_modes} n_past: ${n_past} n_future: ${n_future} n_layers: ${model.encoder_layers} data_channels: ${data.num_channels} hidden_channels: ${model.hidden_channels} use_partials: True pde: ${data.pde} mode: ${mode} batch_size: ${data.batch_size} use_cn: false task: inverse downsampler: ${system_params.yourmodel_downsampler} mlp_hidden_size: ${model.hidden_channels} mlp_layers: ${model.mlp_layers} mlp_activation: "relu" mlp_dropout: ${model.dropout} downsample_factor: ${data.downsample_factor} ``` #### 3.2: Add Defaults to `configs/system_params/base.yaml` Add architecture defaults that work across all PDE systems: ```yaml # configs/system_params/base.yaml # ============ YourModel Architecture ============ yourmodel_hidden_channels: 64 yourmodel_encoder_layers: 4 yourmodel_downsampler_layers: 4 yourmodel_dropout: 0 yourmodel_mlp_layers: 1 yourmodel_n_modes: 16 yourmodel_downsampler: _target_: pdeinvbench.models.downsampler.ConvDownsampler input_dimension: ${system_params.downsampler_input_dim} n_layers: ${model.downsampler_layers} in_channels: ${model.hidden_channels} out_channels: ${model.hidden_channels} kernel_size: 3 stride: 1 padding: 2 dropout: ${model.dropout} ``` #### 3.3: (Optional) Add System-Specific Overrides Override defaults for specific systems in `configs/system_params/{system}.yaml`: ```yaml # configs/system_params/2dtf.yaml defaults: - base # ... existing system config ... # Override architecture for this system yourmodel_hidden_channels: 128 # Needs larger model yourmodel_encoder_layers: 6 ``` **That's it!** Your model now works with all PDE systems: ```bash python train_inverse.py --config-name=1dkdv model=yourmodel python train_inverse.py --config-name=2dtf model=yourmodel ``` #### Important Notes - **System-specific parameters** (like `params_to_predict`, `normalize`, `downsampler_input_dim`) go in `configs/system_params/{system}.yaml` - **Architecture defaults** go in `configs/system_params/base.yaml` - **Model structure** goes in `configs/model/{architecture}.yaml` - For special cases like Darcy Flow, override the downsampler in the system_params file: ```yaml # configs/system_params/2ddf.yaml yourmodel_downsampler: _target_: pdeinvbench.models.downsampler.IdentityMap ``` ### Step 4: Run Experiments with Your Model You can now run experiments with your custom model on **any** PDE system: ```bash # Use your model with different PDE systems python train_inverse.py --config-name=1dkdv model=yourmodel python train_inverse.py --config-name=2dtf model=yourmodel python train_inverse.py --config-name=2dns model=yourmodel # Use model variants if you created them python train_inverse.py --config-name=2drdk model=yourmodel_large # Override parameters from command line python train_inverse.py --config-name=2dtf model=yourmodel model.hidden_channels=96 # Combine multiple overrides python train_inverse.py --config-name=2ddf model=yourmodel data.batch_size=16 model.encoder_layers=6 ```