Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
natural-language-inference
Size:
1M - 10M
ArXiv:
License:
Delete loading script
Browse files- indicxnli.py +0 -149
indicxnli.py
DELETED
|
@@ -1,149 +0,0 @@
|
|
| 1 |
-
# coding=utf-8
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
# Lint as: python3
|
| 5 |
-
"""IndicXNLI: The Cross-Lingual NLI Corpus for Indic Languages."""
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
import os
|
| 9 |
-
import json
|
| 10 |
-
|
| 11 |
-
import datasets
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
_CITATION = """\
|
| 15 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
| 16 |
-
doi = {10.48550/ARXIV.2204.08776},
|
| 17 |
-
|
| 18 |
-
url = {https://arxiv.org/abs/2204.08776},
|
| 19 |
-
|
| 20 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
| 21 |
-
|
| 22 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
| 23 |
-
|
| 24 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
| 25 |
-
|
| 26 |
-
publisher = {arXiv},
|
| 27 |
-
|
| 28 |
-
year = {2022},
|
| 29 |
-
|
| 30 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
| 31 |
-
}
|
| 32 |
-
}"""
|
| 33 |
-
|
| 34 |
-
_DESCRIPTION = """\
|
| 35 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
| 36 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
| 37 |
-
B) and is a classification task (given two sentences, predict one of three
|
| 38 |
-
labels).
|
| 39 |
-
"""
|
| 40 |
-
|
| 41 |
-
_LANGUAGES = (
|
| 42 |
-
'hi',
|
| 43 |
-
'bn',
|
| 44 |
-
'mr',
|
| 45 |
-
'as',
|
| 46 |
-
'ta',
|
| 47 |
-
'te',
|
| 48 |
-
'or',
|
| 49 |
-
'ml',
|
| 50 |
-
'pa',
|
| 51 |
-
'gu',
|
| 52 |
-
'kn'
|
| 53 |
-
)
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
_URL = "https://huggingface.co/datasets/Divyanshu/indicxnli/resolve/main/forward"
|
| 57 |
-
|
| 58 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
| 59 |
-
"""BuilderConfig for XNLI."""
|
| 60 |
-
|
| 61 |
-
def __init__(self, language: str, **kwargs):
|
| 62 |
-
"""BuilderConfig for XNLI.
|
| 63 |
-
|
| 64 |
-
Args:
|
| 65 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
| 66 |
-
**kwargs: keyword arguments forwarded to super.
|
| 67 |
-
"""
|
| 68 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
| 69 |
-
|
| 70 |
-
self.language = language
|
| 71 |
-
self.languages = _LANGUAGES
|
| 72 |
-
|
| 73 |
-
self._URLS = {
|
| 74 |
-
"train": os.path.join(_URL, "train", f"xnli_{self.language}.json"),
|
| 75 |
-
"test": os.path.join(_URL, "test", f"xnli_{self.language}.json"),
|
| 76 |
-
"dev": os.path.join(_URL, "dev", f"xnli_{self.language}.json")
|
| 77 |
-
}
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
| 81 |
-
"""IndicXNLI: The Cross-Lingual NLI Corpus for Indic Languages. Version 1.0."""
|
| 82 |
-
|
| 83 |
-
VERSION = datasets.Version("1.0.0", "")
|
| 84 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
| 85 |
-
BUILDER_CONFIGS = [
|
| 86 |
-
IndicxnliConfig(
|
| 87 |
-
name=lang,
|
| 88 |
-
language=lang,
|
| 89 |
-
version=datasets.Version("1.0.0", ""),
|
| 90 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
| 91 |
-
)
|
| 92 |
-
for lang in _LANGUAGES
|
| 93 |
-
]
|
| 94 |
-
|
| 95 |
-
def _info(self):
|
| 96 |
-
features = datasets.Features(
|
| 97 |
-
{
|
| 98 |
-
"premise": datasets.Value("string"),
|
| 99 |
-
"hypothesis": datasets.Value("string"),
|
| 100 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
| 101 |
-
}
|
| 102 |
-
)
|
| 103 |
-
return datasets.DatasetInfo(
|
| 104 |
-
description=_DESCRIPTION,
|
| 105 |
-
features=features,
|
| 106 |
-
# No default supervised_keys (as we have to pass both premise
|
| 107 |
-
# and hypothesis as input).
|
| 108 |
-
supervised_keys=None,
|
| 109 |
-
homepage="https://github.com/divyanshuaggarwal/IndicXNLI",
|
| 110 |
-
citation=_CITATION,
|
| 111 |
-
)
|
| 112 |
-
|
| 113 |
-
def _split_generators(self, dl_manager):
|
| 114 |
-
urls_to_download = self.config._URLS
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
downloaded_files = dl_manager.download(urls_to_download)
|
| 118 |
-
|
| 119 |
-
return [
|
| 120 |
-
datasets.SplitGenerator(
|
| 121 |
-
name=datasets.Split.TRAIN,
|
| 122 |
-
gen_kwargs={
|
| 123 |
-
"filepath": downloaded_files["train"],
|
| 124 |
-
"data_format": "IndicXNLI",
|
| 125 |
-
},
|
| 126 |
-
),
|
| 127 |
-
datasets.SplitGenerator(
|
| 128 |
-
name=datasets.Split.TEST,
|
| 129 |
-
gen_kwargs={"filepath": downloaded_files["test"], "data_format": "IndicXNLI"},
|
| 130 |
-
),
|
| 131 |
-
datasets.SplitGenerator(
|
| 132 |
-
name=datasets.Split.VALIDATION,
|
| 133 |
-
gen_kwargs={"filepath": downloaded_files["dev"], "data_format": "IndicXNLI"},
|
| 134 |
-
),
|
| 135 |
-
]
|
| 136 |
-
|
| 137 |
-
def _generate_examples(self, data_format, filepath):
|
| 138 |
-
"""This function returns the examples in the raw (text) form."""
|
| 139 |
-
|
| 140 |
-
with open(filepath, "r") as f:
|
| 141 |
-
data = json.load(f)
|
| 142 |
-
data = data[list(data.keys())[0]]
|
| 143 |
-
|
| 144 |
-
for idx, row in enumerate(data):
|
| 145 |
-
yield idx, {
|
| 146 |
-
"premise": row["premise"],
|
| 147 |
-
"hypothesis": row["hypothesis"],
|
| 148 |
-
"label": row["label"],
|
| 149 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|