| id question solution final_answer context image modality difficulty is_multiple_answer unit answer_type error question_type subfield subject language | |
| 0 "$已知函数f(x)=e^{x}-2a\sqrt{x} (a>0).$ | |
| $若x_1,x_2是函数f(x)的两个不同的零点,证明:1<x_1 + x_2<2\ln a + \ln 2.$" "[""$证明:因为x_1,x_2是函数f(x)的两个不同的零点,所以e^{x_1}=2a\\sqrt{x_1},e^{x_2}=2a\\sqrt{x_2},$\n$显然x_1>0,x_2>0,则有x_1=\\ln 2+\\ln a+\\frac{1}{2}\\ln x_1,x_2=\\ln 2+\\ln a+\\frac{1}{2}\\ln x_2,所以x_1-x_2=\\frac{1}{2}\\ln x_1-\\frac{1}{2}\\ln x_2.$\n$不妨令x_1>x_2>0,设t=\\frac{x_1}{x_2},则t>1,$\n$所以x_1=\\frac{t\\ln t}{2(t-1)}, x_2=\\frac{\\ln t}{2(t-1)}。$\n$所以要证x_1+x_2=\\frac{(t+1)\\ln t}{2(t-1)}>1,只要证 \\ln t>\\frac{2(t-1)}{t+1},即证 \\ln t-\\frac{2(t-1)}{t+1}>0,$\n$令g(t)=\\ln t-\\frac{2(t-1)}{t+1}(t>1),则g'(t)=\\frac{1}{t}-\\frac{4}{{(t+1)}^2}=\\frac{{(t-1)}^2}{t(t+1)^2}>0,$\n$所以g(t)在(1,+\\infty )上单调递增,所以g(t)>g(1)=0,所以x_1+x_2>1.$\n$因为x_1=\\ln 2+\\ln a+\\frac{1}{2}\\ln x_1,x_2=\\ln 2+\\ln a+\\frac{1}{2}\\ln x_2,$\n$所以x_1+x_2=2\\ln 2+2\\ln a+\\frac{1}{2}\\ln(x_1x_2).$\n$要证x_1+x_2<2\\ln a+\\ln 2,只要证\\frac{1}{2}\\ln(x_1x_2)<-\\ln 2,即x_1x_2<\\frac{1}{4}.$\n$因为x_1x_2=\\frac{t(\\ln t)^2}{4(t-1)^2},所以只要证\\frac{t(\\ln t)^2}{4(t-1)^2}<\\frac{1}{4},$\n$即\\ln t< \\sqrt{t}-\\frac{1}{\\sqrt{t}},即\\ln t- \\sqrt{t}+\\frac{1}{\\sqrt{t}}<0,$\n$令h(t)=\\ln t- \\sqrt{t}+\\frac{1}{\\sqrt{t}}, t>1,$\n$则h'(t)=\\frac{1}{t}-\\frac{1}{2 \\sqrt{t}}- \\frac{1}{2t \\sqrt{t}}=-\\frac{{(\\sqrt{t}-1)}^2}{2t \\sqrt{t}}<0,$\n$所以h(t)在(1,+\\infty )上单调递减,所以h(t)<h(1)=0,所以x_1+x_2<2\\ln a+\\ln 2.$\n$综上,1<x_1+x_2<2\\ln a+\\ln 2.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 1 "$已知函数f(x)=a\ln(x-a)-\frac{1}{2}x^2+x(a<0).$ | |
| $若-1<a<2(\ln 2 -1), 求证:函数f(x) 只有一个零点x_0,且a+1<x_0<a+2;$" ['证明:当-1 < a < 2(ln 2-1)时,\n$由(1)知,f(x)的极小值为f(0),极大值为f(a+1)$\n$因为f(0)=aln(-a) >0 ,f(a+1)= -\\frac{1}{2}(a+1)^2 + (a+1) = \\frac{1}{2}(1-a^2) >0$,\n$且f(x)在(a+1,+\\infty )上是减函数,$\n所以$f(x)$至多有一个零点.\n$又f(a+2)=aln 2 - \\frac{1}{2}a^2 - a = -\\frac{1}{2}a [a - 2(ln 2-1)] <0,$\n$所以函数f(x)只有一个零点x_0,\n且a+1 < x_0 < a+2.$'] [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 2 "$已知函数 f(x)=\sqrt{3}\cos\left(2x-\frac{\pi }{3}\right)-2\sin x\cos x.$ | |
| $求证:当x \in \left[-\frac{\pi }{4},\frac{\pi }{4}\right]时, f(x) \geq -\frac{1}{2}.$" ['$证明:因为-\\frac{\\pi }{4} \\leq x \\leq \\frac{\\pi }{4},所以 -\\frac{\\pi }{6} \\leq 2x + \\frac{\\pi }{3} \\leq \\frac{5\\pi }{6}.$\n\n$所以 \\sin (2x+\\frac{\\pi }{3}) \\geq \\sin (-\\frac{\\pi }{6}) = -frac{1}{2}.$\n\n$所以当 x \\in [-\\frac{\\pi }{4},\\frac{\\pi }{4}] 时, f(x) \\geq -\\frac{1}{2}.$'] [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 3 "$已知函数 f(x)=ax^{2}-x\ln x.$ | |
| $当a>0时,设M=\{y|y=f'(x),x\in (\frac{1}{2a},\frac{3}{4a})\},N=\{y|y=f'(x),x\in (\frac{1}{4a},\frac{1}{2a})\},求证:M\subsetneq N.$" "[""$证明:已知a>0,由(2)可知当x\\in \\left(\\frac{1}{2a},\\frac{3}{4a}\\right)时,f'(x)单调递增,$\n$又f'\\left(\\frac{1}{2a}\\right)=\\ln 2a, f'\\left(\\frac{3}{4a}\\right)=\\frac{1}{2}-\\ln\\frac{3}{4a}=\\frac{1}{2}+\\ln 4a-\\ln 3,$\n$所以M=y|y=f'(x),x\\in \\left(\\frac{1}{2a},\\frac{3}{4a}\\right)=\\left(\\ln 2a,\\frac{1}{2}+\\ln 4a-\\ln 3\\right),$\n\n$由(2)可知当x\\in \\left(\\frac{1}{4a},\\frac{1}{2a}\\right)时, f'(x)单调递减,$\n$又f'\\left(\\frac{1}{4a}\\right)=\\frac{1}{2}-\\ln\\frac{1}{4a}-1=-\\frac{1}{2}+\\ln 4a,$\n$故N=y|y=f'(x),x\\in \\left(\\frac{1}{4a},\\frac{1}{2a}\\right)=\\left(\\ln 2a,-\\frac{1}{2}+\\ln 4a\\right),$\n\n$因为\\ln 3>1,即\\frac{1}{2}-\\ln 3<-\\frac{1}{2},所以\\frac{1}{2}+\\ln 4a-\\ln 3<-\\frac{1}{2}+\\ln 4a.$\n\n$所以M\\subsetneq N.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 4 "$已知函数f(x)=\frac{ax^2+x-1}{e^x}, a\geq 0.$ | |
| 讨论函数f(x)的单调性;" "[""函数f(x)的定义域为R.\n\n$\\f\\ '(x)=\\frac{(2ax+1)\\mathrm{e}^x-(ax^2+x-1)\\mathrm{e}^x}{{(\\mathrm{e}^x)}^2}=\\frac{-ax^2+(2a-1)x+2}{\\mathrm{e}^x}=\\frac{-(ax+1)(x-2)}{\\mathrm{e}^x}. $\n\n$①当a=0时, f\\ '(x)=\\frac{-x+2}{\\mathrm{e}^x},$\n\n$当x<2时, f\\ '(x)>0, f(x)在区间(-\\infty ,2)上单调递增;$\n\n$当x>2时, f\\ '(x)<0, f(x)在区间(2,+\\infty )上单调递减.$\n\n$②当a>0时,-\\frac{1}{a}<2.$\n\n$令f\\ '(x)<0,解得x<-\\frac{1}{a}或x>2,故f(x)在区间\\left(-\\infty ,-\\frac{1}{a}\\right)和(2,+\\infty )上单调递减;$\n\n$令f\\ '(x)>0,解得-\\frac{1}{a}<x<2,故f(x)在区间\\left(-\\frac{1}{a},2\\right)上单调递增.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 5 "$已知椭圆 C : \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0) 的离心率为 \frac{\sqrt{2}}{2} ,且过点 A (2,1)。$ | |
| $点M, N在C上,且AM\perp AN,AD\perp MN,D为垂足.证明:存在定点Q,使得|DQ|为定值.$" ['$证明:设M(x_1,y_1),N(x_2,y_2).$\n$若直线MN与x轴不垂直,设直线MN的方程为y=kx+m,代入\\frac{x^2}{6}+\\frac{y^2}{3}=1得(1+2k^2)x^2+4kmx+2m^2-6=0.$\n$于是x_1+x_2=-\\frac{4km}{1+2k^2},x_1x_2=\\frac{2m^2-6}{1+2k^2}.①$\n$由AM\\perp AN知\\overrightarrow{AM}\\cdot \\overrightarrow{AN}=0,故(x_1-2)(x_2-2)+(y_1-1)\\cdot (y_2-1)=0,可得(k^2+1)x_1x_2+(km-k-2)(x_1+x_2)+(m-1)^2+4=0.$\n$将①代入上式可得(k^2+1)\\frac{2m^2-6}{1+2k^2}-(km-k-2)\\cdot \\frac{4km}{1+2k^2}+(m-1)^2+4=0.$\n$整理得(2k+3m+1)(2k+m-1)=0.$\n$因为A(2,1)不在直线MN上,所以2k+m-1\\neq 0,故2k+3m+1=0,k\\neq 1.$\n$于是MN的方程为y=k(x-\\frac{2}{3})-\\frac{1}{3}(k\\neq 1).$\n$所以直线MN过点P(\\frac{2}{3},-\\frac{1}{3}).$\n$若直线MN与x轴垂直,可得N(x_1,-y_1).$\n$由\\overrightarrow{AM}\\cdot \\overrightarrow{AN}=0得(x_1-2)(x_1-2)+(y_1-1)(-y_1-1)=0.$\n$又\\frac{x_1^2}{6}+\\frac{y_1^2}{3}=1,可得3x_1^2-8x_1+4=0.$\n$解得x_1=2(舍去)或x_1=\\frac{2}{3}.$\n$此时直线MN过点P(\\frac{2}{3},-\\frac{1}{3}).$\n$令Q为AP的中点,即Q(\\frac{4}{3},\\frac{1}{3}).$\n$若D与P不重合,则由题设知AP是Rt\\triangle ADP的斜边,故|DQ|=\\frac{1}{2}|AP|=\\frac{2\\sqrt{2}}{3}.$\n$若D与P重合,则|DQ|=\\frac{1}{2}|AP|.$\n$综上,存在点Q(\\frac{4}{3},\\frac{1}{3}),使得|DQ|为定值.$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 6 "$已知抛物线C:x^{2}=-2py经过点(2,-1)。$ | |
| $设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=-1分别交直线OM,ON于点A和点B.$ | |
| $求证:以AB为直径的圆经过y轴上的两个定点.$" ['证明:$抛物线C的焦点为F(0,-1).设直线l的方程为y=kx-1(k\\neq 0).由$\n$$\n\\left\\{\\begin{matrix}y=kx-1,\\\\ x^2=-4y\\end{matrix}\\right.\n$$\n$得x^2+4kx-4=0.设M(x1,y1),N(x2,y2),则x1x2=-4,直线OM的方程为y= \\frac{y_1}{x_1} x.令y=-1,得点A的横坐标xA=- \\frac{x_1}{y_1}.同理得点B的横坐标xB=- \\frac{x_2}{y_2}.设点D(0,n),则$\n$\\overrightarrow{DA}= \\left(-\\frac{x_1}{y_1},-1-n\\right) ,$\n$\\overrightarrow{DB}= \\left(-\\frac{x_2}{y_2},-1-n\\right) ,所以$\n$\\overrightarrow{DA}\\cdot \\overrightarrow{DB}=$\n$\\frac{x_1x_2}{y_1y_2}+(n+1)^2=$\n$\\frac{x_1x_2}{\\left(-\\frac{x^2_1}{4}\\right)\\left(-\\frac{x^2_2}{4}\\right)}+(n+1)^2=$\n$\\frac{16}{x_1x_2}+(n+1)^2=-4+(n+1)^2.令$\n$\\overrightarrow{DA}\\cdot \\overrightarrow{DB}=0,即-4+(n+1)^2=0,得n=1或n=-3.$\n\n综上,$以AB为直径的圆经过y轴上的两个定点(0,1)和(0,-3).$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 7 "$已知椭圆 C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0) 的离心率为 \frac{\sqrt{2}}{2} ,且过点 A (2,1)。$ | |
| 点M,N在C上,且M垂直于N,AD垂直于MN,D为垂足.证明:存在定点Q,使得|DQ|为定值." ['$证明:设M(x_1, y_1), N(x_2, y_2). 若直线MN与x轴不垂直,设直线MN的方程为y=kx+m,代入\\frac{x^2}{6}+\\frac{y^2}{3}=1得(1+2k^2)x^2+4kmx+2m^2-6=0. 于是x_1+x_2=-\\frac{4km}{1+2k^2},x_1x_2=\\frac{2m^2-6}{1+2k^2}①. 由AM\\perp AN知\\overrightarrow{AM} \\cdot \\overrightarrow{AN}=0,故(x_1-2)(x_2-2)+(y_1-1)(y_2-1)=0,可得(k^2+1)x_1x_2+(km-k-2)(x_1+x_2)+(m-1)^2+4=0. 将①代入上式可得(k^2+1)\\frac{2m^2-6}{1+2k^2}- (km-k-2)\\frac{4km}{1+2k^2}+(m-1)^2+4=0. 整理得(2k+3m+1)(2k+m-1)=0. 因为A(2, 1)不在直线MN上,所以2k+m-1\\neq 0,故2k+3m+1=0,k\\neq 1. 于是MN的方程为y=k\\left(x-\\frac{2}{3}\\right)-\\frac{1}{3}(k\\neq 1). 所以直线MN过点P\\left(\\frac{2}{3},-\\frac{1}{3}\\right). 若直线MN与x轴垂直,可得N(x_1, -y_1). 由\\overrightarrow{AM} \\cdot \\overrightarrow{AN}=0得(x_1-2)(x_1-2)+(y_1-1)(-y_1-1)=0. 又\\frac{x^2_1}{6}+\\frac{y^2_1}{3}=1,可得3x_1^2-8x_1+4=0. 解得x_1=2(舍去)或x_1=\\frac{2}{3}. 此时直线MN过点P\\left(\\frac{2}{3},-\\frac{1}{3}\\right). 令Q为AP的中点,即Q\\left(\\frac{4}{3},\\frac{1}{3}\\right). 若D与P不重合,则由题设知AP是Rt\\triangle ADP的斜边,故|DQ|=\\frac{1}{2}|AP|=\\frac{2\\sqrt{2}}{3}. 若D与P重合,则|DQ|=\\frac{1}{2}|AP|. 综上,存在点Q\\left(\\frac{4}{3},\\frac{1}{3}\\right),使得|DQ|为定值.$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 8 "$已知焦点为F的抛物线C: y^{2}=2px(p>0)经过点M(1,2).$ | |
| $设斜率为k(k\neq 0)的直线l与抛物线C交于不同的两点A,B,若以AB为直径的圆与抛物线C的准线相切,求证:直线l过定点,并求出该定点的坐标.$" ['$证明:设直线l的方程为y=kx+m(k\\neq 0).$\n由\n$$\n\\left\\{\n\\begin{matrix}\ny^2=4x, \\\\\ny=kx+m\n\\end{matrix}\n\\right.\n$$\n$消去y得k^2x^2+(2km-4)x+m^2=0.$\n$由\\Delta >0得1-km>0.$\n$设A(x_1,y_1),B(x_2,y_2),则x_1+x_2=\\frac{4-2km}{k^2},x_1x_2=\\frac{m^2}{k^2}.$\n$设AB的中点为N(x_0,y_0),则x_0=\\frac{x_1+x_2}{2}=\\frac{2-km}{k^2}.$\n$点N到准线的距离d=x_0+1=\\frac{k^2-km+2}{k^2},$\n$|AB|=\\sqrt{1+k^2}|x_1-x_2|=\\sqrt{1+k^2}\\sqrt{{(x_1+x_2)}^2-4x_1x_2}=\\frac{4\\sqrt{1+k^2}}{k^2}\\sqrt{1-km},$\n$因为以AB为直径的圆与准线x=-1相切,所以\\frac{|AB|}{2}=d,$\n$所以\\frac{2\\sqrt{1+k^2}}{k^2}\\sqrt{1-km}=\\frac{k^2-km+2}{k^2},$\n$整理得k^2+2km+m^2=0,解得k+m=0,满足\\Delta >0.$\n$所以直线y=kx+m=k(x-1)(k\\neq 0)过定点(1,0).$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 9 "$已知A,B分别为椭圆E:\frac{x^2}{a^2}+y^2=1(a>1)的左、右顶点,G为E的上顶点,\overrightarrow{AG}\cdot \overrightarrow{GB}=8.P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D。$ | |
| 证明:直线CD过定点." ['$证明:设C(x_1, y_1), D(x_2, y_2), P(6, t). 若t\\neq 0,设直线CD的方程为x=my+n,由题意可知-3<n<3.$\n$由于直线PA的方程为y=\\frac{t}{9}(x+3),所以y_1=\\frac{t}{9}(x_1+3).$\n$直线PB的方程为y= \\frac{t}{3}(x-3),所以y_2=\\frac{t}{3}(x_2-3).$\n$可得3y_1(x_2-3)=y_2(x_1+3).$\n$由于\\frac{x^2_2}{9} + y^2_2 =1,故y^2_2=-\\frac{(x_2+3)(x_2-3)}{9},$\n$可得27y_1y_2=-(x_1+3)(x_2+3),即$\n$(27+m^2)y_1y_2+m(n+3)(y_1+y_2)+(n+3)^2=0.①$\n$将x=my+n代入\\frac{x^2}{9}+ y^2=1得$\n$(m^2+9) y^2+2mn+y +n^2-9=0.$\n$所以y_1+y_2=-\\frac{2mn}{m^2+9},y_1y_2=\\frac{n^2-9}{m^2+9}.$\n$代入①式得(27+m^2)(n^2-9)-2m(n+3)mn+(n+3)^2(m^2+9)=0.$\n$解得n_1=-3(舍去),n_2=\\frac{3}{2}.$\n$故直线CD的方程为x=my+\\frac{3}{2},即直线CD过定点\\left(\\frac{3}{2},0\\right).$\n$若t=0,则直线CD的方程为y=0,过点\\left(\\frac{3}{2},0\\right).$\n$综上,直线CD过定点\\left(\\frac{3}{2},0\\right).$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 10 "$已知各项均为正数的等差数列{a_n},a_2=5,2a_1,a_3,a_5+2成等比数列.$ | |
| $设数列b_n满足a_n(3^{b_n}-1)=1,T_n为数列b_n的前n项和,n\in N^,求证:T_n < \log_3 \frac{a_{n+1}}{a_1}。$" ['证明: \n$因为 a_n(3^{b_n}-1)=1,a_n=3^n-1, $\n$所以 b_n=\\log_3\\left(\\frac{1}{a_n}+1\\right)=\\log_3\\frac{3n}{3n-1}<\\log_3\\frac{3n+2}{3n-1}=\\log_3\\frac{a_{n+1}}{a_n}, $\n$所以 T_n=b_1+b_2+\\ldots +b_n=\\log_3\\left(\\frac{1}{a_1}+1\\right)+\\log_3\\left(\\frac{1}{a_2}+1\\right)+\\ldots +\\log_3\\left(\\frac{1}{a_n}+1\\right)<\\log_3\\frac{a_2}{a_1}+\\log_3\\frac{a_3}{a_2}+\\ldots +\\log_3\\frac{a_{n+1}}{a_n}=\\log_3\\left(\\frac{a_2}{a_1} \\cdot \\frac{a_3}{a_2} \\cdot \\cdots \\cdot \\frac{a_n}{a_{n-1}} \\cdot \\frac{a_{n+1}}{a_n}\\right)=\\log_3\\frac{a_{n+1}}{a_1},原式得证.$'] [] Text-only Chinese College Entrance Exam Theorem proof Sequence Math Chinese | |
| 11 "$已知函数f(x)=e^{x}(e^{x}-a)-a^{2}x.$ | |
| $讨论f(x)的单调性;$" "[""$函数f(x)的定义域为(-\\infty ,+\\infty ),f'(x)=2e^{2x}-ae^{x}-a^{2}=(2e^{x}+a)(e^{x}-a).$\n\n$①若a=0,则f(x)=e^{2x},其在(-\\infty ,+\\infty )上单调递增.$\n\n$②若a>0,则由f'(x)=0得x>=ln a.$\n$当x\\in (-\\infty ,ln a)时,f'(x)<0;$\n$当x\\in (ln a,+\\infty )时,f'(x)>0.$\n$故f(x)在(-\\infty ,ln a)上单调递减,在(ln a,+\\infty )上单调递增.$\n\n$③若a<0,则由f'(x)=0得x=ln \\left(-\\frac{a}{2}\\right).$\n$当x\\in \\left(-\\infty ,\\mathrm{ln}\\left(-\\frac{a}{2}\\right)\\right)时,f'(x)<0;$\n$当x\\in \\left(\\mathrm{ln}\\left(-\\frac{a}{2}\\right),+\\infty \\right)时,f'(x)>0.$\n$故f(x)在\\left(-\\infty ,\\mathrm{ln}\\left(-\\frac{a}{2}\\right)\\right)上单调递减,在\\left(\\mathrm{ln}\\left(-\\frac{a}{2}\\right),+\\infty \\right)上单调递增.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 12 "$已知函数f(x)=e^{x}ln(1+x).$ | |
| $证明:对任意的s,t\in (0,+\infty ),有f(s+t)>f(s)+f(t).$" "[""$证明:令h(s) = f(s+t) - f(s) - f(t), s \\in (0,+\\infty ), $\n$(将变量s看作未知数,对任意的t \\in (0,+\\infty ),移项构造关于s的函数h(s)) $\n$则h'(s) = f '(s+t) - f '(s) = g(s+t) - g(s), $\n$由(2)知函数g(x)在(0,+\\infty )上单调递增, $\n$又对任意的t \\in (0,+\\infty ),s+t > s, $\n$\\therefore g(s+t) > g(s), $\n$\\therefore h'(s) > 0, $\n$\\therefore h(s)在(0,+\\infty )上单调递增, $\n$又h(0) = f(t) - f(0) - f(t) = 0, $\n$\\therefore 对任意的s \\in (0,+\\infty ), h(s) > 0, $\n$即f(s+t) - f(s) - f(t) > 0, $\n$即f(s+t) > f(s) + f(t). $\n$综上,对任意的s,t \\in (0,+\\infty ), f(s+t) > f(s) + f(t).$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 13 "$已知函数f(x)=e^{x}(1+a\ln x).$ | |
| $若a\geq \frac{3}{2},且函数f(x)的零点为x_1,证明:导函数f'(x)存在极小值点,记为x_2,且x_1>x_2。$" "[""$证明:因为x_1是函数f(x)的零点,所以1+alnx_1=0,因此x_1=e^(-\\frac{1}{a}),设h(x)=f'(x),则h'(x)=e^x \\left(1+a\\mathrm{ln} x+\\frac{2a}{x}-\\frac{a}{x^2}\\right),设l(x)=1+alnx+\\frac{2a}{x}-\\frac{a}{x^2}(x>0),则l'(x)=\\frac{a}{x}-\\frac{2a}{x^2}+\\frac{2a}{x^3}=\\frac{a(x^2-2x+2)}{x^3}(x>0),所以当a\\geq \\frac{3}{2}时,l'(x)>0,l(x)在(0,+\\infty )上单调递增,因为a\\geq \\frac{3}{2},所以\\frac{1}{a}\\leq \\frac{2}{3},所以e^(\\frac{1}{a})\\leq e^(\\frac{2}{3})=\\sqrt[3]{\\mathrm{e}^2}<\\sqrt[3]{8}=2,所以l(x_1)=l(e^-\\frac{1}{a})=ae^(\\frac{1}{a})(2-e^(\\frac{1}{a}))>0,因为l\\left(\\frac{1}{2}\\right)=1-aln 2\\leq 1-ln 2\\sqrt{2}<0,所以存在x_2\\in \\left(\\frac{1}{2},x_1\\right),使得l(x_2)=0,所以当0<x<x_2时,l(x)<0,即h'(x)<0,函数h(x)单调递减,当x>x_2时,l(x)>0,即h'(x)>0,函数h(x)单调递增,所以x_2是函数h(x)=f'(x)的极小值点,且x_1>x_2。$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 14 "$已知函数f(x)=\frac{1}{x}-x+a\ln x.$ | |
| $讨论f(x)的单调性;$" "[""$f(x)的定义域为(0,+\\infty ), f'(x)=-\\frac{1}{x^2}-1+\\frac{a}{x}=-\\frac{x^2-ax+1}{x^2}.$\n\n$(i) 若a\\leq 2,则f'(x)\\leq 0,当且仅当a=2,x=1时, f'(x)=0,所以f(x)在(0,+\\infty )上单调递减.$\n\n$(ii) 若a>2,令f'(x)=0,得x=\\frac{a-\\sqrt{a^2-4}}{2}或x=\\frac{a+\\sqrt{a^2-4}}{2}.$\n\n$当x\\in \\left(0,\\frac{a-\\sqrt{a^2-4}}{2}\\right) \\cup \\left(\\frac{a+\\sqrt{a^2-4}}{2},+\\infty \\right)时, f'(x)<0;$\n\n$当x\\in \\left(\\frac{a-\\sqrt{a^2-4}}{2},\\frac{a+\\sqrt{a^2-4}}{2}\\right)时, f'(x)>0.$\n\n$所以f(x)在\\left(0,\\frac{a-\\sqrt{a^2-4}}{2}\\right),\\left(\\frac{a+\\sqrt{a^2-4}}{2},+\\infty \\right)上单调递减,在\\left(\\frac{a-\\sqrt{a^2-4}}{2},\\frac{a+\\sqrt{a^2-4}}{2}\\right)上单调递增.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 15 "$已知函数f(x)=\frac{1}{x}-x+a\ln x.$ | |
| $若f(x)存在两个极值点x_1,x_2,证明:\frac{f(x_1)-f(x_2)}{x_1-x_2}<a-2.$" ['$证明:由(1)知, 若f(x)存在两个极值点,则a>2。$\n$由于f(x)的两个极值点x_1,x_2满足x^2-ax+1=0,$\n$所以x_1x_2=1,不妨设x_1<x_2,则x_2>1,$\n$由于 \\frac{f(x_1)-f(x_2)}{x_1-x_2}=-\\frac{1}{x_1x_2}-1+a\\frac{\\mathrm{ln} x_1-\\mathrm{ln} x_2}{x_1-x_2}=-2+a\\frac{-2\\mathrm{ln} x_2}{\\frac{1}{x_2}-x_2},$\n$所以\\frac{f(x_1)-f(x_2)}{x_1-x_2}<a-2等价于\\frac{1}{x_2}-x_2+2ln x_2<0$\n$设函数g(x)=\\frac{1}{x}-x+2ln\\ x,$\n$由(1)知,g(x)在(0,+\\infty )上单调递减,$\n$又g(1)=0,所以当x\\in (1,+\\infty )时,g(x)<0,$\n$所以\\frac{1}{x_2}-x_2+2lnx_2<0,即 \\frac{f(x_1)-f(x_2)}{x_1-x_2}<a-2.$'] [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 16 "$已知函数f(x)=aln(x+1)+\frac{x^2}{2}-x,其中a为非零实数.$ | |
| $讨论f(x)的单调性;$" "[""$函数f(x)的定义域为(-1,+\\infty ),f'(x)=\\frac{a}{x+1}+x-1=\\frac{x^2+(a-1)}{x+1},$\n$当a-1\\geq 0,即a\\geq 1时,f'(x)\\geq 0,函数f(x)在(-1,+\\infty )上单调递增.$\n$当-1<a-1<0,即0<a<1时,令f'(x)=0,得x_1=-\\sqrt{1-a},x_2=\\sqrt{1-a},$\n$若0<a<1,则当x\\in (-1,-\\sqrt{1-a})\\cup (\\sqrt{1-a},+\\infty )时,f'(x)>0,$\n$当x\\in (-\\sqrt{1-a},\\sqrt{1-a})时,f'(x)<0,$\n$故f(x)在(-1,-\\sqrt{1-a})和(\\sqrt{1-a},+\\infty )上单调递增,在(-\\sqrt{1-a},\\sqrt{1-a})上单调递减;$\n$若a<0,则x_1=-\\sqrt{1-a}<-1,舍去,所以f(x)在(-1,\\sqrt{1-a})上单调递减,在(\\sqrt{1-a},+\\infty )上单调递增.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 17 "$已知函数f(x)=aln(x+1)+\frac{x^2}{2}-x,其中a为非零实数.$ | |
| $若f(x)有两个极值点x_1,x_2,且x_1 < x_2,求证:f(-x_1)+f(x_2) > x_1.$" "[""$证明:因为f(x)有两个极值点x_1, x_2,所以由(2)可知0 < a < 1,x_1 = -\\sqrt{1-a},x_2 = \\sqrt{1-a}, $\n$所以x_1 + x_2 = 0,x_1 x_2 = a - 1且x_2 \\in (0,1), $\n$则f(-x_1) + f(x_2) > x_1 \\Leftrightarrow 2f(x_2) - x_1 > 0 \\Leftrightarrow f(x_2) + \\frac{x_2}{2} > 0 \\Leftrightarrow aln(x_2 + 1) + \\frac{x^2_2}{2} - \\frac{x_2}{2} > 0 \\Leftrightarrow (1 - x^2_2)ln(x_2 + 1) + \\frac{x^2_2}{2} - \\frac{x_2}{2} > 0 \\Leftrightarrow (1 + x_2)ln(x_2 + 1) - \\frac{x_2}{2} > 0. $\n$令g(x) = (1 + x)ln(x + 1) - \\frac{x}{2} (0 < x < 1), $\n$则g'x = ln(x + 1) + \\frac{1}{2} > ln 1 + \\frac{1}{2} > 0, $\n$所以g(x)在(0,1)上单调递增,且g(0) = 0,$\n$故g(x) > g(0) = 0,即f(-x_1) + f(x_2) > x_1.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 18 "$设函数f(x)=e^{mx}+x^2-mx$ | |
| $证明:f(x)在(-\infty ,0)单调递减,在(0,+\infty )单调递增;$" "[""$证明:f'(x)=m(e^{mx}-1)+2x.$\n\n$若m\\geq 0,则当x\\in (-\\infty ,0)时,e^{mx}-1\\leq 0,f'(x)<0;当x\\in (0,+\\infty )时,e^{mx}-1\\geq 0,f'(x)>0.$\n\n$若m<0,则当x\\in (-\\infty ,0)时,e^{mx}-1>0,f'(x)<0;当x\\in (0,+\\infty )时,e^{mx}-1<0,f'(x)>0.$\n\n$所以f(x)在(-\\infty ,0)单调递减,在(0,+\\infty )单调递增.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 19 "$已知a>0,函数f(x)=ax-xe^{x}。$ | |
| $证明f(x)存在唯一的极值点;$" "[""$证明:令f'(x)=a-(x+1)e^{x}=0,得a=(x+1)e^{x},$\n\n$令g(x)=(x+1)e^{x},则g'(x)=(x+2)e^{x},$\n\n$令g'(x)=0,得x=-2,$\n\n$当x\\in (-\\infty ,-2)时,g'(x)<0,g(x)单调递减,$\n\n$当x\\in (-2,+\\infty )时,g'(x)>0,g(x)单调递增,$\n\n$\\therefore g(x)_{min}=g(-2)=-\\frac{1}{\\mathrm{e}^2}<0,当x\\rightarrow -\\infty 时,g(x)<0,当x\\rightarrow +\\infty 时,g(x)>0,$\n\n$由函数零点存在定理可知g(x)存在唯一零点,$\n\n$易知g(-1)=0,$\n\n$\\therefore 当a>0时,直线y=a与y=g(x)的图象仅有一个交点,令g(m)=a,$\n\n$则m>-1且f'(m)=a-g(m)=0,$\n\n$当x\\in (-\\infty ,m)时,a>g(x),\\therefore f'(x)>0, f(x)单调递增,$\n\n$当x\\in (m,+\\infty )时,a<g(x),\\therefore f'(x)<0, f(x)单调递减,$\n\n$\\therefore f(x)存在唯一的极值点.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 20 "$设函数f(x) = \ln(a-x),已知x=0是函数y=xf(x)的极值点.$ | |
| $设函数 g(x)=\frac{x+f(x)}{xf(x)}.证明:g(x)<1.$" "[""$证明:由(1)得 g(x)=\\frac{x+\\mathrm{ln}(1-x)}{x\\mathrm{ln}(1-x)},其定义域为(-\\infty ,0)\\cup (0,1).$\n\n$因为当 x \\in (-\\infty ,0)\\cup (0,1)时,xln(1-x)< 0,所以 g(x)<1 等价于 xln(1-x)-x-ln(1-x)< 0.$\n\n$设函数 h(x)=xln(1-x)-x-ln(1-x),则 h(0)=0,$\n\n$h'(x)=ln(1-x) -\\frac{x}{1-x} -1 + \\frac{1}{1-x} =ln(1-x).$\n\n$当 x < 0时,h'(x) > 0,h(x) 在(-\\infty ,0)单调递增.$\n\n$当 0 < x < 1时,h'(x) < 0,h(x) 在(0,1)单调递减.$\n\n$故当 x \\in (-\\infty ,0)\\cup (0,1)时,h(x) < h(0),即 xln(1-x)-x-ln(1-x)< 0.$\n\n$所以 g(x) < 1.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 21 "$已知函数f(x) = \\sin ^2x\\sin 2x.$ | |
| $设n \in N^{},证明:sin^{2}xsin^{2}2xsin^{2}4x\ldots sin^{2}2^{n}x \leq \frac{3^n}{4^n}.$" ['证明:\n$由于 (sin^2x sin^2 2x sin^2 4x...sin^2 2^n x)^{3/2} $\n\n$= |sin^3x sin^3 2x sin^3 4x ... sin^3 2^n x | $\n\n$= |sin x| |sin^2 x sin^3 2x sin^3 4x ... sin^3 2^{n-1} x sin 2^n x | |sin^2 2^n x|$\n\n$= |\\sin x| |f(x) f(2x) f(4x)...f(2^{n-1}x) | |\\sin ^2 2^n x| $\n\n$\\leq |f(x) f(2x) f(4x)...f(2^{n-1}x)|,$\n\n$所以 \\sin ^2 x \\sin ^2 2x \\sin ^2 4x ... \\sin ^2 2^n x \\leq \\left(\\frac{3\\sqrt{3}}{8}\\right)^\\frac{2n}{3} = \\frac{3^n}{4^n}.$'] [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 22 "$设函数f(x)=x^3+bx+c,曲线y=f(x)在点(\frac{1}{2}, f \left(\frac{1}{2}\right))处的切线与y轴垂直.$ | |
| $若f(x)有一个绝对值不大于1的零点,证明: f(x)所有零点的绝对值都不大于1.$" "[""$证明:由(1)知f(x) = x^3 - \\frac{3}{4}x + c, f'(x) = 3x^2 - \\frac{3}{4}.$\n\n$令f'(x) = 0,解得x = -\\frac{1}{2}或x = \\frac{1}{2}。$\n\n$f'(x)与f(x)的变化情况如下:$\n\n| x | $(-\\infty ,-\\frac{1}{2})$ | $-\\frac{1}{2}$ | $(-\\frac{1}{2},\\frac{1}{2})$ | $\\frac{1}{2}$ | $(\\frac{1}{2},+\\infty) $|\n| ------------ |---|--------------|----|----------|-----------------|\n$| f'(x) | + | 0 | - | 0 | + |$\n$| f(x) | 单调递增 | $c+\\frac{1}{4} $ | 单调递减 | $c-\\frac{1}{4}$ | 单调递增 |$\n\n$因为f(1) = f(-\\frac{1}{2}) = c + \\frac{1}{4},所以当c < -\\frac{1}{4}时, f(x)只有大于1的零点.$\n\n$因为f(-1) = f(\\frac{1}{2}) = c - \\frac{1}{4},所以当c > \\frac{1}{4}时, f(x)只有小于-1的零点.$\n\n$由题设可知-\\frac{1}{4} \\leq c \\leq \\frac{1}{4}.$\n\n$当c = -\\frac{1}{4}时, f(x)只有两个零点-\\frac{1}{2}和1.$\n\n$当c = \\frac{1}{4}时, f(x)只有两个零点-1和\\frac{1}{2}.$\n\n$当-\\frac{1}{4} < c < \\frac{1}{4}时, f(x)有三个零点x_1,x_2,x_3,且x_1 \\in (-1,-\\frac{1}{2}),x_2 \\in (-\\frac{1}{2},\\frac{1}{2}),x_3 \\in (\\frac{1}{2},1).$\n\n$综上,若f(x)有一个绝对值不大于1的零点,则f(x)所有零点的绝对值都不大于1.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 23 "$已知函数f(x)=ln x -\frac{x+1}{x-1}.$ | |
| $设x_0是f(x)的一个零点,证明曲线y=\ln x在点A(x_0,\ln x_0)处的切线也是曲线y=e^x的切线.$" ['$证明:因为 \\frac{1}{x_0}=e^-ln x_0,故点B \\left(-\\mathrm{ln} x_0,\\frac{1}{x_0}\\right) 在曲线y=e^x上.$\n\n$由题设知f(x_0)=0,即ln x_0=\\frac{x_0+1}{x_0-1},$\n\n$故直线AB的斜率k=\\frac{\\frac{1}{x_0}-\\mathrm{ln} x_0}{-\\mathrm{ln} x_0-x_0}=\\frac{\\frac{1}{x_0}-\\frac{x_0+1}{x_0-1}}{-\\frac{x_0+1}{x_0-1}-x_0}=\\frac{1}{x_0}. $\n\n$曲线y=e^x 在点B \\left(-\\mathrm{ln} x_0,\\frac{1}{x_0}\\right) 处切线的斜率是 \\frac{1}{x_0},曲线 y=ln x 在点A(x_0,ln x_0)处切线的斜率也是 \\frac{1}{x_0},所以曲线 y=ln x 在点A(x_0,ln x_0)处的切线也是曲线 y=e^x 的切线.$'] [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 24 "$设函数f(x)=e^{x}cos x,g(x)为f(x)的导函数.$ | |
| $当x\in \left[\frac{\pi }{4},\frac{\pi }{2}\right]时,证明f(x)+g(x)\left(\frac{\pi }{2}-x\right)\geq 0;$" "[""$证明:记h(x)=f(x)+g(x)(\\frac{\\pi }{2}-x). 依题意及(1),有g(x)=e^{x}(\\cos x-\\sin x),从而g'(x)=-2e^{x}\\sin x. 当x\\in (\\frac{\\pi }{4},\\frac{\\pi }{2})时,g'(x)<0,故h'(x)=f'(x)+g'(x)(\\frac{\\pi }{2}-x)+g(x)\\cdot (-1)=g'(x)(\\frac{\\pi }{2}-x)<0,因此h(x)在区间[\\frac{\\pi }{4},\\frac{\\pi }{2}]上单调递减,进而h(x)\\geq h(\\frac{\\pi }{2})=f(\\frac{\\pi }{2})=0. 所以当x\\in [\\frac{\\pi }{4},\\frac{\\pi }{2}]时, f(x)+g(x)(\\frac{\\pi }{2}-x)\\geq 0.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 25 "$设函数f(x)=e^{x}cos x,g(x)为f(x)的导函数.$ | |
| $设x_n为函数u(x)=f(x)-1在区间(2n\pi +\frac{\pi }{4},2n\pi +\frac{\pi }{2})内的零点,其中n\in N,证明2n\pi+\frac{\pi }{2}-x_n<\frac{e^{-2n\pi}}{\\sin x_0-\\cos x_0}.$" "[""$证明:依题意,u(x_n)=f(x_n)-1=0,即e^{x_n}\\\\cos x_n=1。$\n\n$记y_n=x_n-2n\\pi,则y_n \\in (\\frac{\\pi}{4},\\frac{\\pi}{2}),且f(y_n)=e^{y_n}\\\\cos y_n=e^{x_n-2n\\pi}\\\\cos (x_n-2n\\pi)=e^{-2n\\pi}(n \\in N)。$\n\n$由f(y_n)=e^{-2n\\pi}\\leq1=f(y_0)及(1),得y_n \\geq y_0。$\n\n$由(2)知,当x \\in (\\frac{\\pi}{4},\\frac{\\pi}{2})时,g'(x)<0,所以g(x)在[\\frac{\\pi}{4},\\frac{\\pi}{2}]上为减函数,因此g(y_n) \\leq g(y_0)<g(\\frac{\\pi }{4})=0。$\n\n$又由(2)知, f(y_n)+g(y_n)(\\frac{\\pi}{2}-y_n)\\geq0,$\n\n$故\\frac{\\pi }{2}-y_n\\leq-\\frac{f(y_n)}{g(y_n)}=-\\frac{e^{-2n\\pi }}{g(y_n)}\\leq-\\frac{e^{-2n\\pi }}{g(y_0)}=\\frac{e^{-2n\\pi }}{e^{y_0}(\\\\sin y_0-\\\\cos y_0)}<\\frac{e^{-2n\\pi }}{\\\\sin x_0-\\\\cos x_0}。$\n\n$所以2n\\pi+\\frac{\\pi}{2}-x_n<\\frac{e^{-2n\\pi }}{\\\\sin x_0-\\\\cos x_0}.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 26 "$已知函数f(x)=(x-m)\ln x的图象在x=e处的切线与直线2x-y+2=0平行.$ | |
| $证明:f(x) < e^{x} + \cos (x) - 1$" "[""$证明:要证f(x)<e^{x}+\\cos x-1,即证xlnx<e^{x}+\\cos x-1$\n\n$1. 当x\\in (0,1]时,xlnx\\leq 0,e^{x}-1>0,\\cos x>0,\\therefore xlnx<e^{x}+\\cos x-1$\n\n$2. 当x\\in (1,+\\infty )时,令g(x)=e^{x}+\\cos x-1-xlnx,\\therefore g'(x)=e^{x}-\\sin x-lnx-1,令h(x)=e^{x}-\\sin x-lnx-1,$\n$则h'(x)=e^{x}-\\cos x-\\frac{1}{x},当x>1时,e^{x}>e, -1\\leq \\cos x\\leq 1,0<\\frac{1}{x}<1,\\therefore e^{x}-\\cos x-\\frac{1}{x}>0,即h'(x)>0,\\therefore g'(x)在(1,+\\infty )上单调递增,\\therefore g'(x)>g'(1)=e-\\sin 1-1>0,\\therefore g(x)在(1,+\\infty )上单调递增,\\therefore g(x)>g(1)=e+\\cos 1-1>0,即xlnx<e^{x}+\\cos x-1在(1,+\\infty )上恒成立。$\n\n$综上所述,f(x)<e^{x}+\\cos x-1.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 27 "$已知函数 f(x) = -2ln x + \frac{a}{x^2} + 1.$ | |
| $若f(x)有两个不同的零点x_1, x_2,x_0为其极值点,证明:\frac{1}{x^2_1} + \frac{1}{x^2_2} > 2f(x_0).$" "[""$证明:由(1)可知a < 0,且当x = \\sqrt{-a}时,f(x)取得极大值,也是最大值,为f(\\sqrt{-a}) = -ln(-a), $\n$从而x_0 = \\sqrt{-a}。 $\n$由题意得f(\\sqrt{-a}) = -ln(-a) > 0,即-1 < a < 0。 $\n$设h(x) = ln x - x,则h'(x) = \\frac{1}{x} - 1 = \\frac{1-x}{x}, $\n$当x \\in (0,1)时,h'(x) > 0,\\therefore h(x)在(0,1)上单调递增; $\n$当x \\in (1, +\\infty )时,h'(x) < 0,\\therefore h(x)在(1, +\\infty )上单调递减, $\n$\\therefore h(x)_{max} = h(1) = -1 < 0,从而lnx < x, $\n$\\therefore 2f(x_0) = -4ln(\\sqrt{-a}) = 2ln\\left(-\\frac{1}{a}\\right) < -\\frac{2}{a}. $\n$\\because x_1, x_2是函数f(x)的两个不同的零点, $\n$\\therefore f(x_1) = -2ln x_1 + \\frac{a}{x^2_1} +1 = 0,f(x_2) = -2ln x_2 + \\frac{a}{x^2_2} +1 = 0, $\n$两式相减得-\\frac{1}{a} = \\frac{x^2_2 - x^2_1}{2x^2_1x^2_2ln\\frac{x_2}{x_1}}. $\n$不妨设x_2 > x_1 > 0,则要证明\\frac{1}{x^2_1} + \\frac{1}{x^2_2} > 2f(x_0), $\n$只需要证明\\frac{1}{x^2_1} + \\frac{1}{x^2_2} > 2\\times \\frac{x^2_2 - x^2_1}{2x^2_1x^2_2ln\\frac{x_2}{x_1}}. $\n$即证明ln\\frac{x^2_2}{x^2_1} > \\frac{2(x^2_2 - x^2_1)}{x^2_1 + x^2_2},也就是证明ln\\frac{x^2_2}{x^2_1} > \\frac{2\\left(\\frac{x^2_2}{x^2_1} -1\\right)}{\\frac{x^2_2}{x^2_1} +1}, $\n$设\\frac{x^2_2}{x^2_1} = t, t \\in (1, +\\infty ),则只需证明ln t > \\frac{2(t - 1)}{t + 1} (t > 1), $\n$设g(t) = ln t - \\frac{2(t - 1)}{t + 1} (t > 1),则g'(t) = \\frac{1}{t} - \\frac{4}{{(t+1)}^2} = \\frac{{(t - 1)}^2}{t(t + 1)^2} > 0, $\n$\\therefore g(t)在(1,+\\infty )上为增函数,从而g(t) > g(1) = 0, $\n$\\therefore ln t > \\frac{2(t - 1)}{t + 1}成立,从而\\frac{1}{x^2_1} + \\frac{1}{x^2_2} > 2f(x_0).$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 28 "$已知函数f(x)=2lnx-x+\frac{a}{x}.$ | |
| $若f(x)有两个极值点x_1,x_2,且x_1<x_2 ,证明 \frac{f(x_2)-f(x_1)}{x_2-x_1}<\frac{2}{\sqrt{a}}-2;$" "[""$由题意知,x_1,x_2是x^2-2x+a=0的两个实数根,则x_1+x_2=2,x_1x_2=a,$\n\n$\\frac{f(x_2)-f(x_1)}{x_2-x_1}=\\frac{2(\\mathrm{ln} x_2-\\mathrm{ln} x_1)-(x_2-x_1)+\\frac{a(x_1-x_2)}{x_1x_2}}{x_2-x_1},$\n\n$将x_1x_2=a代入,得 $\n\n$\\frac{f(x_2)-f(x_1)}{x_2-x_1}=\\frac{2(\\mathrm{ln} x_2-\\mathrm{ln} x_1)}{x_2-x_1}-2,$\n\n$要证明\\frac{f(x_2)-f(x_1)}{x_2-x_1}<\\frac{2}{\\sqrt{a}}-2,只需证明\\frac{2(\\mathrm{ln} x_2-\\mathrm{ln} x_1)}{x_2-x_1}-2<\\frac{2}{\\sqrt{a}}-2,即\\frac{\\mathrm{ln} x_2-\\mathrm{ln} x_1}{x_2-x_1}<\\frac{1}{\\sqrt{a}}=\\frac{1}{\\sqrt{x_1x_2}},因为0<x_1<x_2,所以x_2-x_1>0,$\n\n$只需证明ln\\frac{x_2}{x_1}<\\frac{x_2-x_1}{\\sqrt{x_1x_2}}=\\sqrt{\\frac{x_2}{x_1}}-\\sqrt{\\frac{x_1}{x_2}},$\n\n$令\\sqrt{\\frac{x_2}{x_1}}=t,则t>1,$\n\n$只需证明ln t^2<t-\\frac{1}{t},即2ln t-t+\\frac{1}{t}<0(t>1),$\n\n$令h(t)=2ln t-t+\\frac{1}{t},t>1,$\n\n$则h'(t)=\\frac{2}{t}-1-\\frac{1}{t^2}=-{(t-1)}^2/t^2<0,$\n\n$所以h(t)在(1,+\\infty )上单调递减,可得h(t)<h(1)=0,所以2ln t-t+\\frac{1}{t}<0(t>1),$\n\n$所以\\frac{f(x_2)-f(x_1)}{x_2-x_1}<\\frac{2}{\\sqrt{a}}-2。$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 29 "$已知函数f(x)=2lnx-x+\frac{a}{x}.$ | |
| $若f(x)有两个极值点x_1,x_2,且x_1<x_2 ,证明 f(x_2)<\frac{2}{3}a+2ln 2-2. $" "[""$f '(x)=\\frac{-x^2+2x-a}{x^2}(x>0)。$\n\n$设g(x)=-x^2+2x-a。$\n\n$因为f(x)有两个极值点,所以\\left\\{\\begin{matrix}\\Delta =4-4a>0,\\\\ g(0)<0,\\end{matrix}\\right. 解得0<a<1。$\n\n$因为g(2)=-a<0,g(1)=1-a>0,所以1<x_2<2,$\n\n$由题意可知-x^2_2+2x_2-a=0,$\n\n$可得a=-x^2_2+2x_2,所以f(x_2)-\\frac{2}{3}a=2ln x_2-x_2+\\frac{a}{x_2}-\\frac{2}{3}a=2ln x_2+\\frac{2}{3}x^2_2-\\frac{10}{3}x_2+2,$\n\n$令h(x)=2ln x+\\frac{2}{3}x^2-\\frac{10}{3}x+2(1<x<2),$\n\n$则 h'(x)=\\frac{2}{x}+\\frac{4}{3}x-\\frac{10}{3}=\\frac{2(x-1)(2x-3)}{3x}。$\n\n$当x\\in \\left(1,\\frac{3}{2}\\right)时,h'(x)<0,所以h(x)在\\left(1,\\frac{3}{2}\\right)上单调递减,$\n\n$当x\\in \\left(\\frac{3}{2},2\\right)时,h'(x)>0,所以h(x)在\\left(\\frac{3}{2},2\\right)上单调递增.$\n\n$因为1<x_2<2,所以h(x_2)<\\max{h(1),h(2)},$\n\n$又h(1)=-\\frac{2}{3},h(2)=2ln 2-2,$\n\n$可得h(2)-h(1)=\\frac{2(\\mathrm{ln} 8-\\mathrm{ln} \\mathrm{e}^2)}{3} > 0,所以h(2)>h(1),所以h(x_2)<h(2),$\n\n$所以f(x_2)-\\frac{2}{3}a<2ln 2-2,即f(x_2)<\\frac{2}{3}a+2ln 2-2。$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 30 "$已知函数f(x) = \frac{1+\mathrm{ln} x}{x}。$ | |
| $证明:\frac{\mathrm{ln} 2}{2^2} + \frac{\mathrm{ln} 3}{3^2} + \ldots + \frac{\mathrm{ln} n}{n^2} < \frac{2n^2-n-1}{4(n+1)}(n\in N^,n\geq2)。$" ['$证明:由(1)知 f(x) \\leq 1,当且仅当 x=1 时取等号,因此当 x>1 时, ln x < x - 1,$\n\n$即当 n \\geq 2 时,ln n^2 < n^2 -1$\n\n$因此:\\frac{\\ln n}{n^2} =\\frac{1}{2} \\cdot \\frac{\\ln n^2}{n^2} < \\frac{1}{2} \\times \\frac{n^2-1}{n^2} = \\frac{1}{2} \\left(1-\\frac{1}{n^2}\\right) < \\frac{1}{2} \\left[1-\\frac{1}{n(n+1)}\\right] = \\frac{1}{2} \\left[1-\\left(\\frac{1}{n}-\\frac{1}{n+1}\\right)\\right]$\n\n$所以 \\frac{\\ln 2}{2^2} + \\frac{\\ln 3}{3^2} +\\ldots + \\frac{\\ln n}{n^2} < \\frac{1}{2} \\left[1-\\left(\\frac{1}{2}-\\frac{1}{3}\\right)+1-\\left(\\frac{1}{3}-\\frac{1}{4}\\right)+ \\cdots \\right]$\n\n$这可以等价于:\\frac{1}{2} \\left[(n-1)-\\left(\\frac{1}{2}-\\frac{1}{n+1}\\right)\\right] = \\frac{2n^2-n-1}{4(n+1)}$'] [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 31 "某芯片制造企业使用新技术对某款芯片进行试生产.在试产初期,该款芯片生产有四道工序,前三道工序的生产互不影响,第四道是检测评估工序,包括智能自动检测与人工抽检. | |
| $附: \chi^2 = \frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$ | |
| | $\alpha$ | 0.10 |0.05 | 0.010 | 0.005 | 0.001 | | |
| |------|-------|------|-------|-------|-------| | |
| | $x_\alpha$ | 2.706 |3.841| 6.635 | 7.879 | 10.828| | |
| 该企业改进生产工艺后生产了批次N的芯片.某手机生产厂商获得批次M与批次N的芯片,并在某款新型手机上使用.现对使用这款手机的用户回访,对开机速度进行满意度调查.据统计,回访的100名用户中,安装批次M的有40人,其中对开机速度满意的有30人;安装批次N的有60人,其中对开机速度满意的有58人.依据\alpha =0.005的独立性检验,证明:能认为芯片批次与用户对开机速度满意度有关。" ['证明\n\n$零假设为H_0:芯片批次与用户对开机速度满意度无关.由数据可建立2\\times 2列联表如下:(单位:人)$\n\n| 开机速度满意度 | 芯片批次 | | 合计 |\n| -------------- | -------- | - | ---- |\n| | M | N | |\n| 不满意 | 10 | 2 | 12 |\n| 满意 | 30 | 58| 88 |\n| 合计 | 40 | 60| 100 |\n\n根据列联表得\n\n$\\chi^2=\\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$\n\n$=\\frac{100 \\times {(10 \\times 58-2 \\times 30)}^2}{40 \\times 60 \\times 12 \\times 88}$\n\n$\\approx 10.67>7.879.$\n\n$因此,依据\\alpha=0.005的独立性检验,我们推断H_0不成立,即能认为芯片批次与用户对开机速度满意度有关.此推断犯错误的概率不大于0.005.$\n\n'] [] Text-only Chinese College Entrance Exam Theorem proof Probability and Statistics Math Chinese | |
| 32 "暑假期间,某学校建议学生保持晨读的习惯,开学后,该校对高二、高三随机抽取200名学生(该学校学生总数较多),调查日均晨读时间,数据如表: | |
| |日均晨读时间/分钟 |[0,10)|[10,20)|[20,30)|[30,40)|[40,50)|[50,60]| | |
| |----------------|-------|--------|--------|--------|--------|------| | |
| |人数 |5 |10 |25 |50 |50 |60 | | |
| 将学生日均晨读时间在[30,60]上的学生评价为“晨读合格”。 | |
| $参考公式:\chi^2=\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)},其中n=a+b+c+d.$ | |
| 临界值表: | |
| |\alpha |0.1 |0.05 |0.01 |0.005 |0.001 | | |
| |------|------|------|------|------|------| | |
| |x_\alpha |2.706 |3.841 |6.635 |7.879 |10.828| | |
| $请根据上述表格中的统计数据填写下面2\times 2列联表,依据\alpha=0.05的独立性检验,证明:不能认为“晨读合格”与年级有关。$ | |
| | | 晨读不合格 | 晨读合格 | 合计 | | |
| |-------|--------|-------|----| | |
| | 高二 | | | | | |
| | 高三 | 15 | | 100 | | |
| | 合计 | | | |" ['证明\n\n列联表如下:\n\n| | 晨读不合格 | 晨读合格 | 合计 |\n| ---- | -------- | ------- | ---- |\n| 高二 | 25 | 75 | 100 |\n| 高三 | 15 | 85 | 100 |\n| 合计 | 40 | 160 | 200 |\n\n\\chi ^2=\\frac{200 \\times (25 \\times 85-15 \\times 75)^2}{100 \\times 100 \\times 40 \\times 160}=3.125 < 3.841=x_{0.05}\n所以依据\\alpha =0.05的独立性检验,不能认为“晨读合格”与年级有关.\n\n'] [] Text-only Chinese College Entrance Exam Theorem proof Probability and Statistics Math Chinese | |
| 33 "足球是一项大众喜爱的运动.2022卡塔尔世界杯揭幕战在2022年11月21日打响,决赛于12月18日晚进行,全程为期28天. | |
| $校足球队中的甲、乙、丙、丁四名球员将进行传球训练,第1次由甲将球传出,每次传球时,传球者都等可能地将球传给另外三个人中的任何一人,如此不停地传下去,且假定每次传球都能被接到.记开始传球的人为第1次触球者,第n次触球者是甲的概率记为P_n,即P_1=1.$ | |
| $证明:数列\left\{P_n-\frac{1}{4}\right\}为等比数列,并比较第19次与第20次触球者是甲的概率的大小.$ | |
| $ 附:\chi^2 = \frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$ | |
| | $\alpha $ | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 | | |
| |---|------|------|------|------|-------| | |
| | $x_\alpha $| 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |" ['$第n次触球者是甲的概率为P_n,则当n\\geq 2时,第n-1次触球者是甲的概率为P_{n-1},第n-1次触球者不是甲的概率为1-P_{n-1},$\n$则P_n=P_{n-1}\\cdot 0+(1-P_{n-1})\\cdot \\frac{1}{3}=\\frac{1}{3}(1-P_{n-1}),$\n$从而P_n-\\frac{1}{4}=-\\frac{1}{3}(P_{n-1}<-\\frac{1}{4}),$\n$又P_1-\\frac{1}{4}=\\frac{3}{4},\\therefore \\{P_n-\\frac{1}{4}\\}是以\\frac{3}{4}为首项,-\\frac{1}{3}为公比的等比数列.则P_n=\\frac{3}{4}\\times \\left(-\\frac{1}{3}\\right)^{n-1}+\\frac{1}{4},$\n$\\therefore P_{19}=\\frac{3}{4}\\times \\left(-\\frac{1}{3}\\right)^{18}+\\frac{1}{4}>\\frac{1}{4},P_{20}=\\frac{3}{4}\\times \\left(-\\frac{1}{3}\\right)^{19}+\\frac{1}{4}<\\frac{1}{4},$\n$则P_{19}>P_{20},故第19次触球者是甲的概率大.$'] [] Text-only Chinese College Entrance Exam Theorem proof Probability and Statistics Math Chinese | |
| 34 "$一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代\ldots \ldots 该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X表示1个微生物个体繁殖下一代的个数,P(X=i)=p_{i}(i=0,1,2,3).$ | |
| $设p表示该种微生物经过多代繁殖后临近灭绝的概率,p是关于x的方程:p_{0}+p_{1}x+p_{2}x^{2}+p_{3}x^{3}=x的一个最小正实根,求证:当E(X)\leq 1时,p=1,当E(X)>1时,p<1;$" "[""$证明:设f(x)=p_3x^3+p_2x^2+(p_1-1)x+p0, $\n$由题意知p_3+p_2+p_1+p_0=1, $\n$故f(x)=p_3x^3+p_2x^2-(p_2+p_0+p_3)x+p_0, $\n$f'(x)=3p_3x^2+2p_2x-(p_2+p_0+p_3), $\n$若E(X)\\leq 1,则p_1+2p_2+3p_3\\leq 1,故p_2+2p_3\\leq p_0, $\n$因为f'(0)=-(p_2+p_0+p_3)<0, f'(1)=p_2+2p_3-p_0\\leq 0, $\n$f'(x)有两个不同零点x_1,x_2,且x_1<0<1\\leq x_2,$\n$当x\\in (-\\infty ,x_1)\\cup (x_2,+\\infty )时, f'(x)>0, $\n$当x\\in (x_1,x_2) 时, f'(x)<0,$\n$f(x)在(-\\infty ,x_1),(x_2,+\\infty )上为增函数,$\n$在(x_1,x_2)上为减函数,$\n$若x_2=1,因为f(x)在(x_2,+\\infty )上为增函数,在(x_1,x_2)上为减函数,且f(1)=0, $\n$故f(x)>f(x_2)=f(1)=0, $\n$1为关于x的方程:p_0+p_1x+p_2x^2+p_3x^3=x的一个最小正实根,即p=1,故当E(x)\\leq 1时,p=1. $\n$若x_2>1, 因为f(1)=0且f(x)在(0,x_2)上为减函数, $\n$故1为关于x的方程:p_0+p_1x+p_2x^2+p_3x^3=x的一个最小正实根. $\n$若E(X)>1,则p_1+2p_2+3p_3>1,则p_2+2p_3>p_0, $\n$此时f'(0)=-(p_2+p_0+p_3)<0, f'(1)=p_2+2p_3-p_0>0,$\n$f'(x)有两个不同零点x_3,x_4且x_3<0<x_4<1,$\n$故f(x)在(-\\infty ,x_3),(x_4,+\\infty )上为增函数,在(x_3,x_4)上为减函数,而f(1)=0,故f(x_4)<0, $\n$又f(0)=p_0>0,所以f(x)在(0,x_4)上存在一个零点x_0,且x_0<1, $\n$所以x_0为关于x的方程:p_0+p_1x+p_2x^2+p_3x^3=x的一个最小正根,即p<1, $\n$故当E(X)>1时,p<1.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Probability and Statistics Math Chinese | |
| 35 "$已知椭圆E: \frac{x^2}{a^2} + \frac{y^2}{b^2} =1 (a>b>0)的左、右顶点分别为A、B,点F是椭圆E的右焦点,点Q在椭圆E上,且|QF|的最大值为3,椭圆E的离心率为 \frac{1}{2}.$ | |
| $若过点A的直线与椭圆E交于另一点P(异于点B),与直线x=2交于点M,\angle PFB的平分线与直线x=2交于点N,求证:点N是线段BM的中点.$" ['证明:由对称性,不妨设点P在x轴上方.\n\n①当直线PF的斜率存在时,因为FN平分\\angle PFB,所以\\angle PFB = 2\\angle NFB,\n\n$所以tan\\angle PFB = \\frac{2\\tan \\angle NFB}{1-{\\tan }^2\\angle NFB},即k_PF_ = \\frac{2k_{NF}}{1-k^2_{NF}}.$\n\n设直线AP的方程为y = k(x + 2),其中k > 0,\n\n$联立 \\left\\{\\begin{matrix}y=k(x+2),\\\\ 3x^2+4y^2=12,\\end{matrix}\\right. 消y可得(4k^2 + 3)x^2 + 16k^2x + 16k^2 - 12 = 0,$\n\n$设点P(x1, y1),则 -2 x1 = \\frac{16k^2-12}{4k^2+3},所以x1 = \\frac{6-8k^2}{4k^2+3},$\n\n$则y1 = k(x1 + 2) = \\frac{12k}{4k^2+3},即点P \\left(\\frac{6-8k^2}{4k^2+3},\\frac{12k}{4k^2+3}\\right),$\n\n$所以k_PF_ = \\frac{y_1}{x_1-1} = \\frac{\\frac{12k}{3+4k^2}}{\\frac{6-8k^2}{3+4k^2}-1} = \\frac{4k}{1-4k^2},$\n\n设直线FN的方程为y = m(x - 1),则点N(2, m),把x = 2代入 y = k(x + 2)得 y = 4 k, 即M(2, 4 k),\n\n$因为k_PF_ = \\frac{2k_{NF}}{1-k^2_{NF}},所以 \\frac{4k}{1-4k^2} = \\frac{2m}{1-m^2},$\n\n整理可得(2k - m)(2 km + 1)= 0,\n\n$因为 km > 0,所以 m = 2 k,所以 \\frac{y_N}{y_M} = \\frac{m}{4k} = \\frac{1}{2},$\n\n所以点N为线段BM的中点.\n\n$②当直线PF的斜率不存在时,不妨设点P \\left(1,\\frac{3}{2}\\right),$\n\n$则直线AP的方程为 y = \\frac{1}{2}(x + 2),所以点M(2,2),$\n\n又因为直线FN的方程为 y = x - 1,所以点N(2,1),\n\n所以点N为线段BM的中点.\n\n综上可知,点N为线段BM的中点.'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 36 "$已知双曲线C与双曲线 x^2 / 12 - y^2/3 = 1 有相同的渐近线,且过点 A (2\sqrt 2, -1)。$ | |
| $已知D(2,0),E,F是双曲线C上不同于D的两点,且\overrightarrow{DE}\cdot \overrightarrow{DF}=0,DG\perp EF于G,证明:存在定点H,使得|GH|为定值.$" ['$证明:(i)当直线EF的斜率存在时,设EF:y=kx+m,E(x_1,y_1),F(x_2,y_2),联立$\n\n$\\left\\{\\begin{matrix}y=kx+m,\\\\ \\frac{x^2}{4}-y^2=1,\\end{matrix}\\right.$\n\n$消y整理得(4k^2-1)x^2+8kmx+4(m^2+1)=0, $\n$由\\Delta =(8km)^2-4(4m^2+4)(4k^2-1)>0,得4k^2-m^2-1<0,$\n由根与系数的关系得\n\n$\\left\\{\\begin{matrix}x_1+x_2=-\\frac{8km}{4k^2-1},\\\\ x_1x_2=\\frac{4m^2+4}{4k^2-1},\\end{matrix}\\right.$\n\n$因为y_1y_2=(kx_1+m)(kx_2+m)=k^2x_1x_2+km(x_1+x_2)+m^2,$\n$\\overrightarrow{DE}\\cdot \\overrightarrow{DF}=(x_1-2)(x_2-2)+y_1y_2=0,$\n$所以(k^2+1)\\cdot x_1x_2+(km-2)\\cdot (x_1+x_2)+m^2+4=0,$\n$所以(k^2+1)\\cdot $\n\n$\\frac{4m^2+4}{4k^2-1}+ (km-2)\\cdot \\frac{-8km}{4k^2-1}+m^2+4=0,$\n$化简,得3m^2+16km+20k^2=0,即(3m+10k)(m+2k)=0,$\n$所以m_1=-2k, m_2=-\\frac{10}{3}k,均满足4k^2-m^2-1<0,$\n$当m=-2k时,直线l的方程为y=k(x-2),直线过定点(2,0),与已知矛盾,$\n$当m=-\\frac{10}{3}k时,直线l的方程为y=k\\left(x-\\frac{10}{3}\\right),过定点M\\left(\\frac{10}{3},0\\right).$\n$(ii)当直线EF的斜率不存在时,由对称性不妨设直线DE:y=x-2,$\n联立\n\n$\\left\\{\\begin{matrix}y=x-2,\\\\ \\frac{x^2}{4}-y^2=1,\\end{matrix}\\right.$\n\n$解得x_E=x_F=\\frac{10}{3},此时直线EF也过点M\\left(\\frac{10}{3},0\\right).$\n$综上,直线EF过定点M\\left(\\frac{10}{3},0\\right).$\n$因为DG\\perp EF,所以点G在以DM为直径的圆上,H为该圆圆心,|GH|为该圆半径,所以存在定点H\\left(\\frac{8}{3},0\\right),使得|GH|为定值\\frac{2}{3}.$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 37 "$设O为坐标原点,动点M在椭圆C:\frac{x^2}{2}+y^2=1上,过M作x轴的垂线,垂足为N,点P满足\overrightarrow{NP}=\sqrt{2} \overrightarrow{NM}.$ | |
| $设点Q在直线x=-3上,且\overrightarrow{OP}\cdot \overrightarrow{PQ}=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.$" ['$证明:由题意知 F (-1,0).设 Q (-3, t ), P ( m ,n ),则 \\overrightarrow{OQ} =(-3, t ), \\overrightarrow{PF} =(-1- m ,- n ), \\overrightarrow{OQ} \\cdot \\overrightarrow{PF} =3+3 m - tn , \\overrightarrow{OP} =( m ,n ), \\overrightarrow{PQ} =(-3- m , t - n ).$\n\n$由 \\overrightarrow{OP} \\cdot \\overrightarrow{PQ} =1得-3 m - m^2 + tn - n^2 =1,$\n$又由(1)知 m^2 + n^2 =2,故3+3 m - tn =0.$\n\n$所以 \\overrightarrow{OQ} \\cdot \\overrightarrow{PF} =0,即 \\overrightarrow{OQ} \\perp \\overrightarrow{PF} .$\n\n$又过点 P 存在唯一直线垂直于 OQ ,所以过点 P 且垂直于 OQ 的直线 l 过 C 的左焦点 F .$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 38 "$已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过A(0,-2),B \left(\frac{3}{2},-1\right)两点.$ | |
| $设过点P(1,-2)的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足\overrightarrow{MT}=\overrightarrow{TH}.证明:直线HN过定点.$" ['$由A(0,-2),B (\\frac{3}{2},-1) 可得直线 AB 的方程为 y = \\frac{2}{3} x -2.$\n\n$①若过点 P (1,-2) 的直线的斜率不存在,则其方程为 x =1,与方程 \\frac{x^2}{3} + \\frac{y^2}{4} =1 联立,可得 y = \\pm \\frac{2\\sqrt{6}}{3},结合题意可知 N (1,\\frac{2\\sqrt{6}}{3}), M (1,- \\frac{2\\sqrt{6}}{3}),由 \\left\\{\\begin{matrix}y=\\frac{2}{3}x-2,\\\\ y=- \\frac{2\\sqrt{6}}{3},\\end{matrix}\\right. 得 \\left\\{\\begin{matrix}x=-\\sqrt{6}+3,\\\\ y=-\\frac{2\\sqrt{6}}{3},\\end{matrix}\\right. $\n\n$则 T (\\sqrt{6}+3,-\\frac{2\\sqrt{6}}{3}),由 \\overrightarrow{MT} = \\overrightarrow{TH},得 \\left\\{\\begin{matrix}-\\sqrt{6}+3-1=x_H-(-\\sqrt{6}+3),\\\\ y_H=-\\frac{2\\sqrt{6}}{3},\\end{matrix}\\right. 则 H \\left(-2\\sqrt{6}+5,-\\frac{2\\sqrt{6}}{3}\\right), $\n\n$所以直线 HN 的方程为 y = \\left(2+\\frac{2\\sqrt{6}}{3}\\right) x -2,易知直线 HN 过点(0,-2); $\n\n②若过点 P(1,-2)的直线的斜率存在,设其方程为 y +2 = k( x -1), M( x_1,y_1), N( x_2,y_2)。\n\n$联立 \\left\\{\\begin{matrix}y+2=k(x-1),\\\\ \\frac{x^2}{3}+\\frac{y^2}{4}=1,\\end{matrix}\\right. 得(3k^2+4) x^2 -6k(2+ k) x +3k(k+4)=0,则 x_1+ x_2= \\frac{6k(2+k)}{3k^2+4},x_1x_2= \\frac{3k(k+4)}{3k^2+4},y_1+ y_2=\\frac{-8(2+k)}{3k^2+4},y_1 y_2=\\frac{4(4+4k-2k^2)}{3k^2+4},x_1 y_2 + x_2 y_1=\\frac{-24k}{3k^2+4}。$\n\n$联立 \\left\\{\\begin{matrix}y=y_1,\\\\ y=\\frac{2}{3}x-2,\\end{matrix}\\right. 可得 T \\left(\\frac{3y_1}{2}+3,y_1\\right),由 \\overrightarrow{MT} = \\overrightarrow{TH},可得 H (3 y_1+6- x_1,y_1),故此时直线 HN 的方程为 y - y_2 = \\frac{y_1-y_2}{3y_1+6-x_1-x_2} (x - x_2),将(0,-2)代入并整理得 2(x_1+ x_2) -6(y_1+ y_2) + x_1 y_2+ x_2 y_1-3 y_1 y_2 -12=0,即 2\\times \\frac{6k(2+k)}{3k^2+4}- 6\\times \\frac{-8(2+k)}{3k^2+4}+ \\frac{-24k}{3k^2+4} -3\\times \\frac{4(4+4k-2k^2)}{3k^2+4} -12=0 恒成立,则直线 HN 过定点(0,-2)。$\n\n综上,直线 HN 过定点(0,-2).'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 39 "$已知抛物线C:y^{2}=2px (p>0) 上的点P(1, y_{0}) (y_{0}>0) 到焦点的距离为2.$ | |
| $若点M、N在抛物线C上,且k_{PM}\cdot k_{PN}=-\frac{1}{2},求证:直线MN过定点.$" ['$证明:由题意知直线MN的斜率不为0,设直线MN的方程为x=my+n, M \\left(\\frac{1}{4}y^2_1,y_1\\right), N \\left(\\frac{1}{4}y^2_2,y_2\\right),联立 \\left\\{\\begin{matrix}x=my+n,\\\\ y^2=4x,\\end{matrix}\\right. 得 y^2-4my-4n=0,\\Delta =16m^2+4\\times 4n>0,y_1+y_2=4m,y_1y_2=-4n,因为 k_PM= \\frac{y_1-2}{\\frac{1}{4}y^2_1-1} = \\frac{4}{y_1+2} , k_PN= \\frac{y_2-2}{\\frac{1}{4}y^2_2-1} = \\frac{4}{y_2+2} , k_PM\\cdot k_PN=-\\frac{1}{2} ,所以 \\frac{16}{(y_1+2)(y_2+2)} =-\\frac{1}{2} , 即 y_1y_2+2(y_1+y_2)+36=0, 所以-4n+8m+36=0,即 n=2m+9,满足\\Delta >0, 所以直线MN的方程为 x=my+2m+9=m(y+2)+9, 所以直线MN过定点(9,-2)。$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 40 "$已知点P(1,1)在椭圆C: \frac{x^2}{a^2} + \frac{y^2}{b^2} =1 (a>b>0)上,椭圆C的左、右焦点分别为F_1,F_2,\triangle PF_1F_2的面积为 \frac{\sqrt{6}}{2}$ | |
| $设点A,B在椭圆C上,直线PA,PB均与圆O: x^2+y^2=r^2 (0<r<1)相切,直线PA,PB的斜率分别为k_1,k_2.证明:k_1 k_2=1;$" ['$易知直线PA的方程为y=k_1x-k_1+1,$\n$直线PB的方程为y=k_2x-k_2+1,$\n$由题知 \\frac{|1-k_1|}{\\sqrt{1+k^2_1}}=r,所以(1-k_1)^2=r^2(1+k^2_1),$\n$所以(1-r^2)k^2_1-2k_1+1-r^2=0,$\n$同理,(1-r^2)k^2_2-2k_2+1-r^2=0,$\n$所以k_1,k_2是方程(1-r^2)x^2-2x+1-r^2=0的两根,$\n$所以k_1k_2=1.$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 41 "$已知点P(1,1)在椭圆C: \frac{x^2}{a^2} + \frac{y^2}{b^2} =1 (a>b>0)上,椭圆C的左、右焦点分别为F_1,F_2,\triangle PF_1F_2的面积为 \frac{\sqrt{6}}{2}$ | |
| $设点A,B在椭圆C上,直线PA,PB均与圆O: x^2+y^2=r^2 (0<r<1)相切,直线PA,PB的斜率分别为k_1,k_2.证明:直线AB过定点.$" ['$设A(x_1,y_1),B(x_2,y_2),直线AB的方程为y=kx+m,$\n$将y=kx+m代入\\frac{x^2}{3}+\\frac{2y^2}{3}=1得(1+2k^2)x^2+4kmx+2m^2-3=0,所以x_1+x_2=-\\frac{4km}{1+2k^2}①,x_1x_2=\\frac{2m^2-3}{1+2k^2}②,$\n$所以y_1+y_2=k(x_1+x_2)+2m=\\frac{2m}{1+2k^2}③,$\n$y_1y_2=(kx_1+m)(kx_2+m)=k^2x_1x_2+km(x_1+x_2)+m^2=\\frac{m^2-3k^2}{1+2k^2}④,$\n$因为k_1k_2=\\frac{y_1-1}{x_1-1}\\times \\frac{y_2-1}{x_2-1}=\\frac{(y_1-1)(y_2-1)}{(x_1-1)(x_2-1)}=\\frac{y_1y_2-(y_1+y_2)+1}{x_1x_2-(x_1+x_2)+1}=1,⑤$\n所以将①②③④代入⑤,化简得3k^2+4km+m^2+2m-3=0,\\\n所以3k^2+4km+(m+3)(m-1)=0,\\\n所以(m+3k+3)(m+k-1)=0,\\\n若m+k-1=0,则直线AB:y=kx+1-k=k(x-1)+1,此时AB过点P,舍去.\\\n若m+3k+3=0,则直线AB:y=kx-3-3k=k(x-3)-3,此时AB恒过点(3,-3)。\\\n所以直线AB过定点(3,-3).'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 42 "$抛物线C的顶点为坐标原点O,焦点在x轴上,直线l:x=1交C于P,Q两点,且OP\perp OQ.已知点M(2,0),且\odot M与l相切.$ | |
| $设A_1,A_2,A_3是C上的三个点,直线A_1A_2,A_1A_3均与\odot M相切. 请证明直线A_2A_3与\odot M相切.$" "[""$直线 A_2A_3 与\\odot M 相切。理由如下:$\n\n$设 A_1 (y^2_0, y_0), A_2 (y^2_1, y_1), A_3 (y^2_2, y_2)$\n\n$\\because 直线 A_1A_2,A_1A_3 均与\\odot M 相切,$\n\n$\\therefore y_0 \\neq \\pm 1,y_1 \\neq \\pm 1,y_2 \\neq \\pm 1,$\n\n$由 A_1,A_2 的坐标可得直线 A_1A_2 的方程为 y-y_0 = \\frac{y_0-y_1}{y^2_0-y^2_1} (x-y^2_0),整理,得 x-(y_0+y_1)y+y_0y_1=0,由于直线 A_1A_2 与\\odot M 相切,\\therefore M 到直线 A_1A_2 的距离 d = \\frac{|2+y_0y_1|}{\\sqrt{1+(y_0+y_1)^2}} =1,整理得(y^2_0-1)y^2_1+2y_0y_1+3-y^2_0=0,①$\n\n$同理可得,(y^2_0-1)y^2_2+2y_0y_2+3-y^2_0=0,②$\n\n$观察①②,得 y_1,y_2 是关于 x 的一元二次方程(y^2_0-1)x^2+2y_0x+3-y^2_0=0的两根,$\n\n$\\therefore \\left\\{\\begin{matrix}y_1+y_2=-\\frac{2y_0}{y^2_0-1},\\\\ y_1y_2=\\frac{3-y^2_0}{y^2_0-1}.\\end{matrix}\\right. (1) $\n\n$同理,得直线 A_2A_3 的方程为 x-(y_1+y_2)y+y_1y_2=0,$\n\n$则点 M (2,0)到直线 A_2A_3 的距离 d' = \\frac{|2+y_1y_2|}{\\sqrt{1+(y_1+y_2)^2}},把(1)代入,得 d' = \\frac{\\left|2+\\frac{3-y^2_0}{y^2_0-1}\\right|}{\\sqrt{1+\\left(-\\frac{2y_0}{y^2_0-1}\\right)^2}} = \\frac{|2(y^2_0-1)+3-y^2_0|}{\\sqrt{(y^2_0-1)^2+(-2y_0)^2}} = \\frac{|y^2_0+1|}{\\sqrt{y^4_0+2y^2_0+1}} = \\frac{|y^2_0+1|}{|y^2_0+1|} =1. $\n\n$\\therefore 直线 A_2A_3 与\\odot M 相切.$\n\n""]" [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 43 "$已知函数f(x)=(x+a)\ln x-x+1.$ | |
| $当a=0时,求证:f(x) \geq 0;$" "[""$证明:当a=0时, f(x)=xln x-x+1,$\n$所以f'(x)=ln x.$\n$当x\\in (1,+\\infty )时, f'(x)>0, f(x)在区间(1,+\\infty )上单调递增;$\n$当x\\in (0,1)时, f'(x)<0, f(x)在区间(0,1)上单调递减;$\n$所以f(x)在区间(0,+\\infty )上的最小值是f(1)=0.$\n$所以f(x)\\geq 0.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 44 "$已知函数f(x) = \frac{1}{2}x^{2} + (a - 1)x - aln(x) (a \neq 0).$ | |
| $当a\geq \frac{1}{2}时,证明:f(x)\geq 0;$" "[""$证明:f(x)的定义域为(0,+\\infty ),$\n\n$f' (x) = x+(a-1)-\\frac{a}{x} = \\frac{(x+a)(x-1)}{x},$\n\n$因为a\\geq\\frac{1}{2} > 0,令f' (x) = 0,得x=1。$\n\n$x变化时,f' (x) ,f(x)的变化情况见表:$\n\n|$x$| (0,1) | 1 | $(1,+\\infty)$ |\n|--|--|--|--|\n|$f'(x)$| - | 0 | + |\n|$f(x)$|单调递减|极小值|单调递增|\n\n$所以当x=1时,f(x)取得极小值,也是最小值,即f_{min}= f(1) = a- \\frac{1}{2} \\geq 0。$\n\n$所以当a \\geq \\frac{1}{2}时,f(x) \\geq 0。$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 45 "$已知函数f(x)=\frac{lnx-1}{x}-ax (a\in R).$ | |
| $若1<a<2,求证:f(x)<-1.$" "[""$证明:当 1<a<2 时,要证明 f(x)=\\frac{lnx-1}{x}-ax<-1 (x>0),即证$\n$\\frac{ax^2-x+1-lnx}{x}>0 ,等价于证明 ax^2-x+1-lnx>0。$\n$令 h(x)=ax^2-x+1-ln x (x>0),$\n$则 h'(x)=2ax-1-\\frac{1}{x}=\\frac{2ax^2-x-1}{x},$\n$由 h'(x)=0 得 2ax^2-x-1=0,易知方程 2ax^2-x-1=0 有一正一负两个根,因为 x>0,所以负根不符合题意,舍去。$\n$令其正根为 x_0,则 2ax^2_0-x_0-1=0,$\n$当 x\\in (0,x_0) 时 h'(x)<0;当 x\\in (x_0,+\\infty ) 时 h'(x)>0,$\n$所以 h(x) 在 (0,x_0) 上单调递减,在 (x_0,+\\infty ) 上单调递增,$\n$所以 h_{min}=h(x_0)=ax^2_0-x_0+1-ln x_0=\\frac{1+x_0}{2}-x_0+1-ln x_0=\\frac{3-x_0}{2}-ln x_0,$\n$因为 h'(1)=2a-2>0, h'\\left(\\frac{1}{2}\\right)=a-3<0,所以 \\frac{1}{2}<x_0<1,$\n$所以 \\frac{3-x_0}{2}>0, ln x_0<0,可得 h_{min}=\\frac{3-x_0}{2}-ln x_0>0,$\n$所以 h(x)>0,即 f(x)<-1.$\n\n疑难突破\n$要证明的不等式可转化为 ax^2-x+1-ln x>0,令 h(x)=ax^2-x+1-ln x,利用导数判断 h(x) 的单调性,证明 h_{min}>0 即可.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 46 "$已知函数f(x)=(2+x+ax^2)\cdot \ln(1+x)-2x.$ | |
| $若a=0,证明:当-1<x<0时, f(x)<0;当x>0时, f(x)>0;$" "[""$证明:当a=0时, f(x)=(2+x)\\cdot ln(1+x)-2x, f'(x)=ln(1+x)-\\frac{x}{1+x}. 设函数g(x)=f'(x)=ln(1+x)-\\frac{x}{1+x},则g'(x)=\\frac{x}{(1+x)^2}. $\n\n$当-1<x<0时,g'(x)<0;当x>0时,g'(x)>0 . $\n\n$故当x>-1时,g(x)\\geq g(0)=0,当且仅当x=0时,g(x)=0,从而f'(x)\\geq 0,当且仅当x=0时, f'(x)=0 . $\n\n$所以f(x)在(-1,+\\infty )单调递增. 又f(0)=0,故当-1<x<0时, f(x)<0;当x>0时, f(x)>0.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 47 "$设函数f(x)=x^3+ax^2+bx+c.$ | |
| $求证:a^2-3b>0是f(x)有三个不同零点的必要而不充分条件.$" "[""$证明:当\\Delta=4a^2-12b<0时,<br>f'(x)=3x^2+2ax+b>0,x\\in (-\\infty ,+\\infty ),<br>此时函数f(x)在区间(-\\infty ,+\\infty )上单调递增,所以 f(x)不可能有三个不同零点.<br>当\\Delta=4a^2-12b=0时, f'(x)=3x^2+2ax+b只有一个零点,记作x_0.<br>当x\\in (-\\infty ,x_0)时, f'(x)>0, f(x)单调递增;<br>当x\\in (x_0,+\\infty )时, f'(x)>0, f(x)单调递增.<br>所以f(x)不可能有三个不同零点.<br>综上所述,若函数f(x)有三个不同零点,则必有\\Delta=4a^2-12b>0.<br>故a^2-3b>0是f(x)有三个不同零点的必要条件.<br>当a=b=4,c=0时,a^2-3b>0, f(x)=x^3+4x^2+4x=x(x+2)^2只有两个不同零点,所以a^2-3b>0不是f(x)有三个不同零点的充分条件.<br>因此a^2-3b>0是f(x)有三个不同零点的必要而不充分条件.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 48 "$已知函数f(x)=e^{x}-a\sin x.$ | |
| $当a=1时,证明:函数y=f(x)-2在(0,\pi )上有且仅有一个零点;$" "[""$证明:当a=1时,记g(x)=f(x)-2=e^{x}-\\sin x-2, $\n$则g'(x)=e^{x}-\\cos x. $\n$当x\\in (0,\\pi )时,e^{x}>e^{0}=1,\\cos x<1, 故g'(x)>0, g(x)在(0,\\pi )上单调递增, $\n$又因为g(0)=-1<0, g(\\pi )=e^{\\pi }-2>0, 所以函数y=f(x)-2在(0,\\pi )上有且仅有一个零点,$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 49 "$已知函数f(x)=xln(2x+1)-ax^2.$ | |
| $当a<0时,求证:函数f(x)存在极小值;$" "[""$证明:函数f(x)的定义域为\\left(-\\frac{1}{2},+\\infty \\right), $\n$由(1)知,f '(x)=ln(2x+1)+\\frac{2x}{2x+1}-2ax, $\n$因为a<0,则当-\\frac{1}{2}<x<0时,ln(2x+1)<0,\\frac{2x}{2x+1}<0,-2ax<0,则有f '(x)<0,函数f(x)在\\left(-\\frac{1}{2},0\\right)上单调递减, $\n$当x>0时,ln(2x+1)>0,\\frac{2x}{2x+1}>0,-2ax>0,则有f '(x)>0,函数f(x)在(0,+\\infty )上单调递增, $\n于是得当x=0时,函数f(x)取得极小值, \n所以当a<0时,函数f(x)存在极小值.""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 50 "$设函数f(x)=x^2+m\ln(x+1)(m \in R)$ | |
| $若m=-1, 当x\in (1,+\infty )时,求证:f(x)<x^3;$" "[""$因为m = -1,所以f(x) = x^2 - \\ln(x+1).$\n\n$证明:令F(x) = f(x) - x^3 = x^2 - \\ln(x+1) - x^3,$\n\n$F'(x) = 2x - \\frac{1}{x+1} - 3x^2 = \\frac{-3x^3 - x^2 + 2x - 1}{x+1} = \\frac{-3x^3 - (x-1)^2}{x+1},v$\n\n$x \\in (1, +\\infty )时,F'(x) < 0,F(x)在(1, +\\infty )上单调递减,所以F(x) < F(1) = -\\ln2 < 0,$\n\n$所以当x \\in (1, +\\infty )时,f(x) < x^3.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 51 "$已知a, b, c均为正数,且a^2+b^2+4c^2=3,证明:$ | |
| $若b=2c,则\frac{1}{a} + \frac{1}{c} \geq 3.$" ['$证法一:由于三个正数的算术平均数不小于它们的调和平均数,因此 \\frac{a+b+2c}{3} \\geq \\frac{3}{\\frac{1}{a}+\\frac{1}{b}+\\frac{1}{2c}}, 当且仅当 a=b=2c 时, 等号成立。$\n\n$由(1)得 a+b+2c\\leq 3,则 \\frac{3}{\\frac{1}{a}+\\frac{1}{b}+\\frac{1}{2c}} \\leq \\frac{a+b+2c}{3} \\leq 1。因此 \\frac{1}{a} + \\frac{1}{b} + \\frac{1}{2c} \\geq 3,又因为 b=2c,则 \\frac{1}{a} + \\frac{1}{c} \\geq 3。$\n\n$证法二:由 b=2c 及(1)知 0<a+4c\\leq 3$\n\n$而 \\left(\\frac{1}{a}+\\frac{1}{c}\\right)\\cdot (a+4c)=5+\\frac{4c}{a}+\\frac{a}{c} \\geq 5+4=9,$\n\n$当且仅当 a^2=4c^2, 即 c= \\frac{1}{2}, a=b=1 时,等号成立。$\n\n$因此, \\frac{1}{a} +\\frac{1}{c} \\geq 3。$'] [] Text-only Chinese College Entrance Exam Theorem proof Inequality Math Chinese | |
| 52 "$已知a, b, c为正数,且满足abc=1.证明:$ | |
| $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \leq a^2 + b^2 + c^2;$" ['证法一:(从不等式右边出发)\n\n$因为 a^2+b^2 \\geq 2ab, b^2 + c^2 \\geq 2bc, c^2 + a^2 \\geq 2ac,$\n\n$故有 a^2+b^2+c^2 \\geq ab+bc+ca(当且仅当a=b=c时取等号).$\n\n$又 abc = 1,\\frac{ab+bc+ca}{abc} = \\frac{1}{a} + \\frac{1}{b} + \\frac{1}{c}.$\n\n$所以 \\frac{1}{a} + \\frac{1}{b} + \\frac{1}{c} \\leq a^2+b^2+c^2.$\n\n证法二:(从不等式左边出发)\n\n$因为 abc=1,a, b, c \\in R^+,$\n\n$所以 \\frac{1}{a} + \\frac{1}{b} + \\frac{1}{c} = \\frac{abc}{a} + \\frac{abc}{b} + \\frac{abc}{c} = bc + ac + ab.$\n\n$(利用重要不等式 a^2 + b^2 \\geq 2ab 转化)$\n\n$又 bc + ac + ab \\leq \\frac{b^2+c^2}{2} + \\frac{a^2+c^2}{2} + \\frac{a^2+b^2}{2} = a^2 + b^2 + c^2(当且仅当 a = b = c时取等号).即 \\frac{1}{a} + \\frac{1}{b} + \\frac{1}{c} \\leq a^2 + b^2 + c^2.$'] [] Text-only Chinese College Entrance Exam Theorem proof Inequality Math Chinese | |
| 53 "$已知a, b, c为正数,且满足abc=1.证明:$ | |
| $(a+b)^{3}+(b+c)^{3}+(c+a)^{3} \geq 24$" ['$证法一:因为a, b, c\\in R_+, abc=1,$\n$(a + b)^3+(b + c)^3+(c + a)^3 \\geq 3 \\sqrt[3]{(a+b)^3(b+c)^3(a+c)^3} =3(a + b)(b + c)(a + c) (当且仅当a + b = b + c = a + c时取等号).(利用三元均值不等式)$\n$3(a + b)(b + c)(a + c) \\geq 3\\times (2\\sqrt{ab})(2\\sqrt{bc})(2\\sqrt{ac})=24.(当且仅当a=b=c时取等号)(利用基本不等式)$\n\n证法二:(利用基本不等式将“和”转化为“积”)\n$(a + b)^3+(b + c)^3+(c + a)^3 \\geq (2\\sqrt{ab})^3+(2\\sqrt{bc})^3+(2\\sqrt{ac})^3 =8[(ab)^\\frac{3}{2}+(bc)^\\frac{3}{2}+(ca)^\\frac{3}{2}] \\geq 8\\times 3\\sqrt[3]{(abc)^3} =24abc=24.(当且仅当a=b=c时取等号)(利用基本不等式及三元均值不等式)$'] [] Text-only Chinese College Entrance Exam Theorem proof Inequality Math Chinese | |
| 54 "$设a, b, c\in R,a+b+c=0,abc=1.$ | |
| $证明:ab + bc + ca < 0;$" "['利用三项和的平方的展开公式,结合非零平方和为正数证出\n\n$\\because (a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc = 0,$\n\n$\\therefore ab + bc + ca = -\\frac{1}{2}(a^2 + b^2 + c^2),$\n\n$\\because abc = 1, $\n\n$\\therefore a, b, c 均不为0,则 a^2 + b^2 + c^2 > 0,$\n\n$\\therefore ab + bc + ca = -\\frac{1}{2}(a^2 + b^2 + c^2) < 0。$' | |
| '利用消元法结合一元二次函数的性质证出\n\n$由 a+b+c=0 得 b = -(a + c),$\n\n$则 ab + bc + ca = b(a + c) + ca = -(a + c)^2 + ac = -(a^2 + ac + c^2) = -\\left(a+\\frac{c}{2}\\right)^2 -\\frac{3}{4}c^2 \\leq 0,$\n\n$当且仅当 a = b = c = 0 时取等号,又 abc = 1,即等号不能成立,$\n\n$\\therefore ab + bc + ca < 0。$' | |
| '利用不等式性质证出\n\n$\\because a+b+c=0, abc=1,$\n\n$\\therefore a,b,c 必有两个负数和一个正数,$\n\n$不妨设 a \\leq b < 0 < c,$\n\n$则 a = -(b + c),$\n\n$\\therefore ab + bc + ca = bc + a(c + b) = bc - a^2 < 0。$']" [] Text-only Chinese College Entrance Exam Theorem proof Inequality Math Chinese | |
| 55 "$设a, b, c\in R,a+b+c=0,abc=1.$ | |
| $用max\{a,b,c\}`表示a,b,c的最大值,证明:max\{a,b,c\}\geq \sqrt[3]{4}.$" "['利用基本不等式直接证出.\n$不妨设max\\{a,b,c\\}=a,\\because abc=1,a=-(b+c),$\n$\\therefore a>0,b<0,c<0.由bc \\leq \\frac{(b+c)^2}{4},可得abc \\leq \\frac{a^3}{4},$\n$故a \\geq \\sqrt[3]{4},\\therefore max{a,b,c} \\geq \\sqrt[3]{4}.$' | |
| '利用一元二次方程根与系数的关系以及方程有解的条件证出.\n$不妨设max{a,b,c}=a,\\because a+b+c=0,abc=1,$\n$\\therefore a>0,且\\begin{matrix}b+c=-a,\\\\ bc=\\frac{1}{a},\\end{matrix}$\n$则b,c是关于x的方程x^2+ax+\\frac{1}{a}=0的两根,其判别式\\Delta=a^2-\\frac{4}{a} \\geq 0,即a \\geq \\sqrt[3]{4}。故max{a,b,c} \\geq \\sqrt[3]{4}成立.$']" [] Text-only Chinese College Entrance Exam Theorem proof Inequality Math Chinese | |
| 56 "$已知函数f(x)=x^{2}+\cos x.$ | |
| $设 g(x)=f'(x),证明:对任意的 s>t,有 g(s)- g(t)< 3s - 3t。$" "[""$证明:设G(x)=g(x)-3x,则G'(x)=g'(x)-3=-1-\\cos x,因为G'(x)\\leq 0,所以G(x)在R上单调递减,$\n\n$又s>t,所以G(s)<G(t),即g(s)-3s<g(t)-3t,$\n\n$所以g(s)-g(t)<3s-3t.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 57 "$已知f(x)=\frac{1}{2}x^{2}-\ln(x+1)+ax(a\in R).$ | |
| $求证:\frac{1}{2}x^2+x \geq \ln(x+1)$" "[""$证明:设 g(x)=\\frac{1}{2}x^2+x-\\ln(x+1), x>-1,$\n\n$\\therefore g'(x)=x+1-\\frac{1}{x+1}=\\frac{x(x+2)}{x+1},$\n\n$当 x\\in (-1,0) 时,g'(x)<0,g(x) 在 (-1,0) 上单调递减,$\n\n$当 x\\in (0, +\\infty ) 时,g'(x)>0,g(x) 在 (0, +\\infty ) 上单调递增,$\n\n$\\therefore g_{min}=g(0)=0,所以 g(x)\\geq g(0)=0,$\n\n$则 \\frac{1}{2}x^2+x-\\ln(x+1)\\geq 0,即 \\frac{1}{2}x^2+x\\geq \\ln(x+1).$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 58 "$已知函数f(x)=\ln x - e^{x}。$ | |
| $求证:方程x\ln x = e^{x} + x无解.$" "[""$证明:设h(x)=x \\ln x-e^{x}-x,$\n$则h '(x)=\\ln x-e^{x},$\n$当x\\in(0,1)时,\\ln x<0,-e^{x}<0,所以h '(x)<0,$\n$当x=1时,h '(1)=-e<0,$\n$由(2)知,h '(x)在[1,+\\infty )上单调递减,$\n$所以当x\\in(1,+\\infty )时,h '(x)<0,$\n$当x\\in(0,+\\infty )时,h '(x)<0,$\n$所以h(x)在(0,+\\infty )上单调递减,$\n$又当x\\in(0,1)时,x \\ln x<0,-e^{x}-x<0,所以h(x)<0,$\n$当x=1时,h(1)=-e-1<0,$\n$所以当x\\in(1,+\\infty )时,h(x)<h(1)<0,$\n$所以h(x)无零点,$\n$所以方程x \\ln x=e^{x}+x无解.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 59 "$已知函数f(x)=e^x-1-msin x(m\in R).$ | |
| $当m=1时,求证:\forall x\in\left(0,\frac{\pi }{2}\right),f(x)>0。$" "[""$当m=1时, f(x)=e^{x}-1-\\sin{x},则f'(x)=e^{x}-\\cos{x}。$\n\n$证明:因为x\\in (0,\\frac{\\pi }{2}),所以e^{x}>1,-\\cos{x}>-1,$\n\n$所以e^{x}-\\cos{x}>0,即f'(x)>0,$\n\n$所以f (x)在(0,\\frac{\\pi }{2})上单调递增,所以f(x)>f(0)=0.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 60 "$已知函数 f(x)=\ln x+2a\sqrt{x} (a\in R).$ | |
| $当a=1时,证明:f(x) \leq 2x。$" "[""$证明:当a=1时, f(x)=ln x+2\\sqrt{x},x>0,$\n$令h(x)=ln x+2\\sqrt{x}-2x,$\n$则h'(x)=\\frac{1}{x}+\\frac{1}{\\sqrt{x}}-2=\\frac{-(2\\sqrt{x}+1)(\\sqrt{x}-1)}{x}.$\n$当x\\in (0,1)时,h'(x)>0,h(x)单调递增,$\n$当x\\in (1,+\\infty )时,h'(x)<0,h(x)单调递减.$\n$所以h(x)_{max}=g(1)=0.所以h(x)\\leq 0.$\n$故f(x)\\leq 2x.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 61 "$已知函数 f(x)=xsinx.$ | |
| $求证:函数f(x)在(\frac{\pi }{2},\pi )内有且只有一个极值点;$" "[""$证明:设h(x)=f '(x),则h'(x)=2cos x-xsin x.$\n\n$当x\\in \\left(\\frac{\\pi }{2},\\pi \\right)时,h'(x)<0.$\n\n$所以h(x)即f '(x)在\\left(\\frac{\\pi }{2},\\pi \\right)内单调递减.$\n\n$又因为f '\\left(\\frac{\\pi }{2}\\right)=1>0, f '(\\pi)=-\\pi<0,$\n\n$所以存在唯一x_0\\in \\left(\\frac{\\pi }{2},\\pi \\right),使得f '(x_0)=0.$\n\n$f(x)与f '(x)在区间\\left(\\frac{\\pi }{2},\\pi \\right)上的情况如下:$\n\n| $x$ | $\\left(\\frac{\\pi }{2},x_0\\right)$ | $x_0$ | $(x_0,\\pi )$ |\n| ------------ | ---------------- | ----- | ---------- |\n| $f '(x)$ | + | 0 | - |\n| $f(x)$ | $\\text{单调递增}$ | 极大值 | $\\text{单调递减}$ |\n\n$所以f(x)在\\left(\\frac{\\pi }{2},\\pi \\right)内有且只有一个极值点.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 62 "$已知函数f(x)=\frac{ax}{e^x+a}-1,a\neq 0。$ | |
| $当a=1时,求证:f(x)在(0,+\infty )上有唯一极大值点.$" "[""$当a=1时, f(x)=\\frac{x}{e^x+1}-1,f'(x)=\\frac{e^x+1-xe^x}{(e^x+1)^2}.$\n\n$证明:令g(x)=e^{x}+1-xe^{x},则g'(x)=-xe^x,在区间(0,+\\infty )上,g'(x)<0,则g(x)在区间(0,+\\infty )上是减函数. 同时,g(1)=1>0,g(2)=-e^2+1<0,所以g(1)∙g(2)<0,所以g(x)在(0,+\\infty )上有唯一零点x__0,当x变化时,f'(x), f(x)变化情况如下:$\n\n| $x$ | $(0,x_0)$ | $x_0$ | $(x_0,+\\infty )$ |\n| ---- | ---------- | -------- | --------------- |\n| $f'(x)$ | + | 0 | - |\n| $f(x)$ | $\\text{单调递增}$ | 极大值 | $\\text{单调递减}$ |\n\n$所以f(x)在(0,+\\infty )上有唯一极大值点x_0.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 63 "$已知函数f(x) = \frac{1}{4}x^3 - x^2 + x.$ | |
| $当x\in [-2,4]时,求证:x-6\leq f(x)\leq x;$" "[""证明:令$g(x)=f(x)-x,x\\in [-2,4]$.\n$由g(x)=\\frac{1}{4}x^3-x^2得g'(x)=\\frac{3}{4}x^2-2x.$\n$令g'(x)=0,得x=0或x=\\frac{8}{3}.$\ng'(x),g(x)的情况如下:\n\n| $x$ | -2 | (-2,0) | 0 | $(0,\\frac{8}{3})$ | $\\frac{8}{3}$ | $(\\frac{8}{3},4)$ | 4 |\n|:-----:|:-------:|:-------:|:-----:|::|:--------:|::|:-----:|\n| $g'(x)$ | | + | | - | | + | |\n| $g(x)$ | -6 | $\\text{单调递增}$ | 0 | $\\text{单调递减}$ | $-\\frac{64}{27}$ | $\\text{单调递增}$ | 0 |\n\n所以$g(x)的最小值为-6,最大值为0$.\n故$-6\\leq g(x)\\leq 0,即x-6\\leq f(x)\\leq x$.""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 64 "$设函数f(x) = \frac{x^2}{2} - k \ln x,k > 0。$ | |
| $证明:若f(x)存在零点,则f(x)在区间(1,\sqrt{e}]上仅有一个零点.$" ['$证明:由(1)知, f(x)在区间(0,+\\infty )上的最小值为f(\\sqrt{k})=\\frac{k(1- \\mathrm{ln} k)}{2}.$\n$因为f(x)存在零点,所以\\frac{k(1- \\mathrm{ln} k)}{2} \\leq 0,从而k \\geq e.$\n$当k=e时, f(x)在区间(1,\\sqrt{\\mathrm{e}})上单调递减,且f(\\sqrt{\\mathrm{e}})=0,所以x=\\sqrt{\\mathrm{e}}是f(x)在区间(1,\\sqrt{\\mathrm{e}})上的唯一零点.$\n$当k>e时, f(x)在区间(0,\\sqrt{\\mathrm{e}})上单调递减,且f(1)=\\frac{1}{2}>0, f(\\sqrt{\\mathrm{e}})=\\frac{\\mathrm{e}-k}{2}<0,所以f(x)在区间(1,\\sqrt{\\mathrm{e}})上仅有一个零点.$\n$综上可知,若f(x)存在零点,则f(x)在区间(1,\\sqrt{\\mathrm{e}})上仅有一个零点.$'] [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 65 "$已知点A(-2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为-\frac{1}{2}.记M的轨迹为曲线C.$ | |
| 过坐标原点的直线交C于P, Q两点,点P在第一象限,PE\perp x轴,垂足为E,连接QE并延长交C于点G.证明:\triangle PQG是直角三角形;" ['$证明:设直线PQ的斜率为k,则其方程为y=kx (k>0).$\n\n$由 y=kx,\\frac{x^2}{4}+\\frac{y^2}{2}=1 得 x=\\pm \\frac{2}{\\sqrt{1+2k^2}}.$\n\n$记u=\\frac{2}{\\sqrt{1+2k^2}},则P(u,uk),Q(-u,-uk),E(u,0).$\n\n$于是直线QG的斜率为\\frac{k}{2},方程为y=\\frac{k}{2}(x-u).$\n\n$由 y=\\frac{k}{2}(x-u),\\frac{x^2}{4}+\\frac{y^2}{2}=1 得 (2+k^2)x^2-2uk^2x+k^2u^2-8=0. ①$\n\n$设G(x_G,y_G),则-u和x_G是方程①的解,故x_G=\\frac{u(3k^2+2)}{2+k^2},由此得y_G=\\frac{uk^3}{2+k^2}.$\n\n$从而直线PG的斜率为\\frac{\\frac{uk^3}{2+k^2}-uk}{\\frac{u(3k^2+2)}{2+k^2}-u}=-\\frac{1}{k}.$\n\n$所以PQ \\perp PG,即\\triangle PQG是直角三角形.$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 66 "$已知椭圆 C :\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0) 过点 A\left(1, \frac{3}{2}\right) 和点 B (2,0).$ | |
| $斜率为\frac{1}{2}的直线与椭圆C交于M,N两点(M,N不与A重合),直线AM,AN与x轴分别交于P,Q两点,证明:|AP|=|AQ|.$" ['$证明:设斜率为\\frac{1}{2}的直线方程为y = \\frac{1}{2}x + m ,M(x_1, y_1),N(x_2, y_2),$\n$由\\left\\{\\begin{matrix}y=\\frac{1}{2}x+m,\\\\ \\frac{x^2}{4}+\\frac{y^2}{3}=1\\end{matrix}\\right.可得4x^2 + 4mx + 4m^2-12=0,$\n所以x_1 + x_2 = -m,x_1 x_2 = m^2-3,\n$所以直线AM的方程为y - \\frac{3}{2} = \\frac{y_1-\\frac{3}{2}}{x_1-1}(x - 1),$\n$又y_1 = \\frac{1}{2}x_1 + m,$\n$所以y - \\frac{3}{2} = \\frac{\\frac{1}{2}x_1+m-\\frac{3}{2}}{x_1-1}(x - 1),$\n$令y = 0,得x = \\frac{-2x_1+2m}{x_1+2m-3},所以P\\left(\\frac{-2x_1+2m}{x_1+2m-3},0\\right),$\n$同理可得Q\\left(\\frac{-2x_2+2m}{x_2+2m-3},0\\right),$\n$设PQ的中点为G,所以点G的横坐标为\\frac{1}{2}\\cdot \\left(\\frac{-2x_1+2m}{x_1+2m-3}+\\frac{-2x_2+2m}{x_2+2m-3}\\right) = -\\left(\\frac{x_1-m}{x_1+2m-3}+\\frac{x_2-m}{x_2+2m-3}\\right)$\n$= -\\frac{(x_1-m)(x_2+2m-3)+(x_2-m)(x_1+2m-3)}{(x_1+2m-3)(x_2+2m-3)}$\n$= -\\frac{2x_1x_2+(m-3)(x_1+x_2)-2m(2m-3)}{x_1x_2+(2m-3)(x_1+x_2)+(2m-3)^2}$\n$= -\\frac{2m^2-6-m(m-3)-2m(2m-3)}{m^2-3-m(2m-3)+(2m-3)^2} = -\\frac{-3m^2+9m-6}{3m^2-9m+6} = 1,又因为A \\left(1,\\frac{3}{2}\\right), 所以直线AG为线段PQ的垂直平分线,$\n所以 $|AP| = |AQ|$.'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 67 "$过椭圆W:x^2/2+y^2=1的右焦点F的直线l_1交椭圆于A,B两点,其中A(0,1),另一条过F的直线l_2交椭圆于C,D两点(不与A,B重合),且D点不与点(0,-1)重合,过F作x轴的垂线分别交直线AD,BC于E,G.$ | |
| $求证:E,G两点关于x轴对称.$" ['$证明:当l_2斜率不存在时,C,D两点分别与G,E重合,$\n$由椭圆的对称性知,E,G两点关于x轴对称;$\n$当l_2斜率存在时,设l_2的方程为y=k(x-1)(k\\neq -1),C(x_1,y_1) (x_1 \\ne 0且x_1 \\ne \\frac{4}{3}),D(x_2,y_2) (x_2\\neq 0),$\n$所以y_1=k(x_1-1),y_2=k(x_2-1),$\n$所以直线BC的方程为y+\\frac{1}{3}=\\frac{y_1+\\frac{1}{3}}{x_1-\\frac{4}{3}}\\left(x-\\frac{4}{3}\\right),$\n$直线AD的方程为y-1=\\frac{y_2-1}{x_2}x,$\n$将x=1代入y+\\frac{1}{3}=\\frac{y_1+\\frac{1}{3}}{x_1-\\frac{4}{3}}\\left(x-\\frac{4}{3}\\right),得y=\\frac{-y_1-x_1+1}{3x_1-4}=\\frac{(k+1)(x_1-1)}{4-3x_1},所以G\\left(1,\\frac{(k+1)(x_1-1)}{4-3x_1}\\right),将x=1代入y-1=\\frac{y_2-1}{x_2}x,得y=\\frac{x_2+y_2-1}{x_2}=\\frac{(k+1)(x_2-1)}{x_2},所以E\\left(1,\\frac{(k+1)(x_2-1)}{x_2}\\right),$\n$所以y_{G}+y_{E}=\\frac{(k+1)(x_1-1)}{4-3x_1}+\\frac{(k+1)(x_2-1)}{x_2}=\\frac{(1+k)[-2x_1x_2+3(x_1+x_2)-4]}{4x_2-3x_1x_2},$\n$联立\\left\\{\\begin{matrix}\\frac{x^2}{2}+y^2=1,\\\\ y=k(x-1),\\end{matrix}\\right.得(2k^2+1)x^2-4k^2x+2k^2-2=0,$\n$所以x_1+x_2=\\frac{4k^2}{2k^2+1},x_1x_2=\\frac{2k^2-2}{2k^2+1},所以y_{G}+y_{E}=\\frac{(1+k)\\left(-2 \\cdot \\frac{2k^2-2}{2k^2+1}+3 \\cdot \\frac{4k^2}{2k^2+1}-4\\right)}{4x_2-3x_1x_2}=0,$\n$所以y_{G}=-y_{E},即E,G两点关于x轴对称.$\n$综上所述,E,G两点关于x轴对称.$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 68 "$已知F为椭圆C: x^2/2+y^2=1 的左焦点,直线l: y=k(x-2) 与椭圆C交于不同的两点M, N.$ | |
| $设直线FM, FN分别与直线x=1交于两点P, Q,线段MN, PQ的中点分别为G, H,点A\left(\frac{1}{5},0\right).当k变化时,证明A, G, H三点共线.$" ['$证明:设M(x_1, y_1),N(x_2, y_2).由$\n\n$$\n\\left\\{\\begin{matrix}\\frac{x^2}{2}+y^2=1,\\\\ y=k(x-2)\\end{matrix}\\right.\n$$\n\n$得 (1+2k^2)x^2-8k^2x+8k^2-2=0. 由 \\Delta=(-8k^2)^2-4(1+2k^2)(8k^2-2)>0,解得 k^2 < \\frac{1}{2}. 所以 x_1 + x_2=\\frac{8k^2}{1+2k^2},x_1x_2=\\frac{8k^2-2}{1+2k^2},y_1 + y_2=k(x_1+x_2-4)=\\frac{-4k}{1+2k^2}. 所以点 G 的坐标为 \\left(\\frac{4k^2}{1+2k^2},\\frac{-2k}{1+2k^2}\\right). 直线 AG 的斜率 k_{AG}=\\frac{\\frac{-2k}{1+2k^2}-0}{\\frac{4k^2}{1+2k^2}-\\frac{1}{5}}=\\frac{-10k}{18k^2-1},直线 FM 的方程为 y=\\frac{y_1}{x_1+1}(x+1),则点 P 的坐标为 \\left(1,\\frac{2y_1}{x_1+1}\\right). 同理点 Q 的坐标为 \\left(1,\\frac{2y_2}{x_2+1}\\right).$\n\n$因为 \\frac{2y_1}{x_1+1} + \\frac{2y_2}{x_2+1} = \\frac{2k[(x_1-2)(x_2+1)+(x_2-2)(x_1+1)]}{(x_1+1)(x_2+1)} = \\frac{2k[2x_1x_2-(x_1+x_2)-4]}{x_1x_2+(x_1+x_2)+1} = \\frac{2k\\left(2 \\times \\frac{8k^2-2}{1+2k^2}-\\frac{8k^2}{1+2k^2}-4\\right)}{\\frac{8k^2-2}{1+2k^2}+\\frac{8k^2}{1+2k^2}+1} = \\frac{-16k}{18k^2-1},所以点 H \\left(1,\\frac{-8k}{18k^2-1}\\right),所以直线 AH 的斜率 k_{AH}=\\frac{\\frac{-8k}{18k^2-1}-0}{1-\\frac{1}{5}}=\\frac{-10k}{18k^2-1}. 因为 k_{AG}=k_{AH},所以 A,G,H 三点共线.$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 69 "$已知椭圆 C 的方程为 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0),若右焦点为 F(\sqrt{2},0),且离心率为 \frac{\sqrt{6}}{3}。$ | |
| $设M,N是C上的两点,直线MN与曲线x^2+y^2=b^2(x>0)相切,证明:M,N,F三点共线的充要条件是|MN|=\sqrt{3}.$" ['$证明:①先证必要性.因为 M,N,F 三点共线,所以设直线 MN:$\n$x=my+\\sqrt{2}$\n$.由题意知 O(0,0)到直线 MN 的距离 d = \\frac{\\sqrt{2}}{\\sqrt{m^2+1}} =1,解得 m^2 =1,故 m =\\pm 1,所以直线 MN : x \\pm y - \\sqrt{2} =0,根据对称性,不妨设直线 MN : y = x - \\sqrt{2}$\n$.联立 \\left\\{\\begin{matrix}y=x-\\sqrt{2},\\\\ x^2+3y^2=3,\\end{matrix}\\right.$\n$消 y 整理得4 x^2 -6\\sqrt{2}x +3=0.$\n$设 M( x_1 , y_1 ), N ( x_2 ,y_2 ).故 x_1 + x_2 = \\frac{3\\sqrt{2}}{2} , x_1x_2 = \\frac{3}{4},所以 | MN | = \\sqrt{1+1^2} \\cdot | x_1 - x_2 | = \\sqrt{2} \\times \\sqrt{(x_1+x_2)^2-4x_1x_2} = \\sqrt{3},即必要性成立.$\n\n$②再证充分性.因为直线 MN 与曲线 x^2+y^2=1 ( x >0 )相切,所以设切点为 P ( x_0 , y_0 )( x_0 >0 ), M( x_1 , y_1 ), N ( x_2 ,y_2 ).则直线 MN : x_0x + y_0y =1 且 x_0^2 + y_0^2 =1 .联立 \\left\\{\\begin{matrix}x_0x+y_0y=1,\\\\ x^2+3y^2=3,\\end{matrix}\\right.$\n$得 \\left\\{\\begin{matrix}(y_0y)^2=(1-x_0x)^2,\\\\ y^2_0x^2+3(y_0y)^2=3y^2_0.\\end{matrix}\\right.$\n$则 y^2_0x^2 +3(1- x_0x )^2 =3y^2_0 ,即(3 x^2_0 + y^2_0)x^2-6x_0x+3-3y^2_0 =0,即(2 x^2_0 +1)x^2 -6x_0x +3x^2_0 =0,所以 x_1 + x_2=int\\frac{6x_0}{2x^2_0+1} , x_1x_2 = \\frac{3x^2_0}{2x^2_0+1},所以| x_1 - x_2 | = \\sqrt{(x_1+x_2)^2-4x_1x_2} = \\frac{\\sqrt{24x^2_0-24x^4_0}}{2x^2_0+1} = \\frac{2\\sqrt{6}x_0\\sqrt{1-x^2_0}}{2x^2_0+1} = \\frac{2\\sqrt{6}x_0|y_0|}{2x^2_0+1} .又 k_{MN} = -\\frac{x_0}{y_0} ,故 | MN | = \\sqrt{1+\\left(-\\frac{x_0}{y_0}\\right)^2} | x_1 - x_2 | = \\frac{1}{|y_0|} \\cdot | x_1 - x_2 | = \\frac{2\\sqrt{6}x_0}{2x^2_0+1} = \\sqrt{3} ,即2x^2_0 -2\\sqrt{2}x_0 +1=0 ,即( \\sqrt{2} x_0 -1)^2 =0 ,所以 x_0 = \\frac{\\sqrt{2}}{2} .故y_0 = \\pm\\sqrt{1-x^2_0} = \\pm\\frac{\\sqrt{2}}{2}.在此 MN : x_0x + y_0y =1 ,即 MN : x \\pm y = \\sqrt{2} ,故直线 MN 过 F ( \\sqrt{2} ,0),即 M 、 N 、 F 三点共线.故充分性成立.故 M, N , F 三点共线的充要条件是 | MN | = \\sqrt{3}。$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 70 "$已知椭圆C: x^2 / a^2 + y^2 / b^2 = 1 (a> b > 0)经过点P (1, \sqrt{2} / 2),离心率 e = \sqrt{2}/2.$ | |
| $设AB是经过椭圆右焦点F的一条弦(不经过点P且A在B的上方),直线AB与直线x=2相交于点M,记PA,PB,PM的斜率分别为k_1,k_2,k_3,将k_1、k_2、k_3如何排列能构成一个等差数列?证明你的结论.$" ['$k_1、k_3、k_2或k_2、k_3、k_1能构成一个等差数列. 椭圆右焦点坐标F(1,0),显然直线AB斜率存在,设直线AB的斜率为k,则直线AB的方程为y=k(x-1)③,代入椭圆方程\\frac{x^2}{2} + y^2=1,整理得(2k^2 + 1)x^2 - 4k^2x + 2(k^2 - 1)=0,易知\\Delta >0。设A(x_1, y_1),B(x_2, y_2),则有x_1 + x_2=\\frac{4k^2}{2k^2+1},x_1x_2=\\frac{2(k^2-1)}{2k^2+1}。在方程③中,令x=2,得M(2,k),从而k_1=\\frac{y_1-\\frac{\\sqrt{2}}{2}}{x_1-1},k_2=\\frac{y_2-\\frac{\\sqrt{2}}{2}}{x_{2}-1},k_3=\\frac{k-\\frac{\\sqrt{2}}{2}}{2-1}=k - \\frac{\\sqrt{2}}{2},因为k_1 + k_2=\\frac{y_1-\\frac{\\sqrt{2}}{2}}{x_1-1} + \\frac{y_2-\\frac{\\sqrt{2}}{2}}{x_{2}-1}=\\frac{\\left(kx_1-k-\\frac{\\sqrt{2}}{2}\\right)(x_2-1)+\\left(kx_2-k-\\frac{\\sqrt{2}}{2}\\right)(x_1-1)}{(x_1-1)(x_2-1)}$\n$=\\frac{2kx_1x_2-\\left(2k+\\frac{\\sqrt{2}}{2}\\right)(x_1+x_2)+2k+\\sqrt{2}}{x_1x_2-(x_1+x_2)+1}=\\frac{2k(2k^2-2)-\\left(2k+\\frac{\\sqrt{2}}{2}\\right)4k^2+(2k+\\sqrt{2})(2k^2+1)}{2k^2-2-4k^2+2k^2+1}=2k - \\sqrt{2}。而2k_3=2\\left(k-\\frac{\\sqrt{2}}{2}\\right)=2k - \\sqrt{2},所以k_1 + k_2=2k_3,即k_3为k_1、k_2的等差中项,所以k_1、k_3、k_2或k_2、k_3、k_1为等差数列.$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 71 "$已知椭圆C: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 (a>b>0)过点(0,\sqrt{3}),且离心率为\frac{1}{2}.设A,B为椭圆C的左、右顶点,P为椭圆上异于A,B的一点,直线AP,BP分别与直线l: x=4相交于M,N两点,且直线MB与椭圆C交于另一点H.$ | |
| 判断A,H,N三点是否共线,并证明你的结论." ['A,H,N三点共线,证明如下:\n$设直线AP:y=k(x+2),则直线BP:y=-\\frac{3}{4k}(x-2),$\n$将x=4代入直线AP,BP得M(4,6k),N\\left(4,-\\frac{3}{2k}\\right),$\n$k_{BM}=\\frac{6k}{4-2}=3k,设直线MB:y=3k(x-2),$\n$联立\\left\\{\\begin{matrix}\\frac{x^2}{4}+\\frac{y^2}{3}=1,\\\\ y=3k(x-2),\\end{matrix}\\right.得(1+12k^2)x^2-48k^2x+48k^2-4=0,$\n$设H(x_{1},y_{1}),则2x_{1}=\\frac{48k^2-4}{12k^2+1},解得x_{1}=\\frac{24k^2-2}{12k^2+1},$\n$所以y_{1}=3k(x_{1}-2)=\\frac{-12k}{12k^2+1},$\n$即H\\left(\\frac{24k^2-2}{12k^2+1},\\frac{-12k}{12k^2+1}\\right),$\n$所以k_{AH}=\\frac{\\frac{-12k}{12k^2+1}}{\\frac{24k^2-2}{12k^2+1}+2}=-\\frac{1}{4k},k_{AN}=\\frac{-\\frac{3}{2k}}{6}=-\\frac{1}{4k},$\n所以k_{AN}=k_{AH},A为公共点,所以A,H,N三点共线.'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 72 "$已知椭圆M:\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a>b>0)过A(-2,0),B(0,1)两点.$ | |
| 设椭圆M的右顶点为C,点P在椭圆M上(P不与椭圆M的顶点重合),直线AB与直线CP交于点Q,直线BP交x轴于点S,求证:直线QS过定点." ['$由(1)知椭圆M的方程为\\frac{x^2}{4} + y^2=1,C(2,0)。由题意知:直线AB的方程为x=2y-2。设P(x_0,y_0)(y_0\\neq 0,y_0\\neq \\pm 1),Q(2y_Q-2,y_Q),S(x_S,0)。因为C,P,Q三点共线,所以有\\overrightarrow{CP}\\parallel \\overrightarrow{CQ}。所以(x_0-2)y_Q=y_0(2y_Q-4)。所以y_Q=\\frac{4y_0}{2y_0-x_0+2}。所以Q \\left(\\frac{4y_0+2x_0-4}{2y_0-x_0+2},\\frac{4y_0}{2y_0-x_0+2}\\right)。因为B,S,P三点共线,所以\\frac{1}{-x_S}=\\frac{y_0-1}{x_0},即x_S=\\frac{x_0}{1-y_0}。所以S \\left(\\frac{x_0}{1-y_0},0\\right)。所以直线QS的方程为x=\\frac{\\frac{4y_0+2x_0-4}{2y_0-x_0+2}-\\frac{x_0}{1-y_0}}{\\frac{4y_0}{2y_0-x_0+2}}y+\\frac{x_0}{1-y_0},即x=\\frac{x^2_0-4y^2_0-4x_0y_0+8y_0-4}{4y_0(1-y_0)}y+\\frac{x_0}{1-y_0}。又因为点P在椭圆M上,所以x_0^2=4-4y_0^2。所以直线QS的方程为x=\\frac{2-2y_0-x_0}{1-y_0}(y-1)+2。所以直线QS过定点(2,1).$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 73 "$已知椭圆 C : \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a>b>0) 的离心率 e = \frac{\sqrt{3}}{2},且圆 x^2 + y ^2 =2 过椭圆 C 的上、下顶点.$ | |
| $若直线l的斜率为\frac{1}{2},且直线l与椭圆C相交于P,Q两点,点P关于原点的对称点为E,点A(-2,1)是椭圆C上一点,若直线AE与AQ的斜率分别为k_{AE},k_{AQ},证明:k_{AE}+k_{AQ}=0.$" ['$证明:设直线l的方程为y=\\frac{1}{2}x+m,$\n$代入椭圆方程x^2+4y^2=8,可得x^2+2mx+2m^2-4=0,$\n$因为直线l交椭圆C于P,Q两点,$\n$所以\\Delta=4m^2-4(2m^2-4) > 0,解得-2 < m < 2,$\n$设点P(x_1,y_1),Q(x_2,y_2),由于点P与点E关于原点对称,故E(-x_1,-y_1),$\n$x_1+x_2=-2m,x_1x_2=2m^2-4,$\n$因为A(-2,1),所以k_{AE}+k_{AQ}=\\frac{-y_1-1}{-x_1+2}+\\frac{y_2-1}{x_2+2}$\n$=\\frac{(2-x_1)(y_2-1)-(2+x_2)(y_1+1)}{(2+x_2)(2-x_1)},$\n$又y_1=\\frac{1}{2}x_1+m,y_2=\\frac{1}{2}x_2+m,$\n$所以(2-x_1)(y_2-1)-(2+x_2)(y_1+1)=2(y_2-y_1)-(x_1y_2+x_2y_1)+x_1-x_2-4=x_2-x_1-(x_1x_2+mx_1+mx_2)+x_1-x_2-4=-x_1x_2-m(x_1+x_2)-4=-(2m^2-4)-m(-2m)-4=0,故k_{AE}+k_{AQ}=0,结论得证。$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 74 "$已知椭圆 C:\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a>b>0)经过点 P(2,1),P到椭圆 C 的两个焦点的距离和为 4\sqrt{2}.$ | |
| $设Q(4,0),R为PQ的中点,作PQ的平行线l与椭圆C交于不同的两点A,B,直线AQ与椭圆C交于另一点M,直线BQ与椭圆C交于另一点N,求证:M,N,R三点共线.$" ['$因为P(2,1),Q(4,0),且R为PQ的中点,$\n\n$所以k_{PQ}=-\\frac{1}{2},R(3,\\frac{1}{2}).$\n\n$依题意,设直线l的方程为y=-\\frac{1}{2}x+m(m\\neq 2),A(x_1,y_1),B(x_2,y_2),M(x_3,y_3),N(x_4,y_4),$\n\n$所以直线AQ的方程为y=\\frac{y_1}{x_1-4}(x-4).$\n\n$由\\left\\{\\begin{matrix}y=\\frac{y_1}{x_1-4}(x-4),\\\\ \\frac{x^2}{8}+\\frac{y^2}{2}=1\\end{matrix}\\right.得x^2+\\frac{4y^2_1(x-4)^2}{(x_1-4)^2}=8,$\n\n$即(x_1^2+4y^2_1+16-8x_1)x^2-32y^2_1x+64y^2_1-8(x_1-4)^2=0.$\n\n$因为点A在椭圆C上,所以x^2_1+4y^2_1=8,$\n\n$由此得(24-8x_1)x^2-32y^2_1x+64y^2_1-8(x_1-4)^2=0,$\n\n$即(3-x_1)x^2-4y^2_1x+8y^2_1-(x_1-4)^2=0,$\n\n$所以x_1+x_3=\\frac{4y^2_1}{3-x_1},$\n\n$于是x_3=\\frac{4y^2_1}{3-x_1}-x_1=\\frac{x^2_1+4y^2_1-3x_1}{3-x_1}=\\frac{8-3x_1}{3-x_1},$\n\n$所以y_3=\\frac{y_1}{x_1-4}(x_3-4)=\\frac{y_1}{x_1-4}\\left(\\frac{8-3x_1}{3-x_1}-4\\right)=\\frac{y_1}{3-x_1},即M\\left(\\frac{8-3x_1}{3-x_1},\\frac{y_1}{3-x_1}\\right),$\n\n$由此得k_{MR}=\\frac{\\frac{y_1}{3-x_1}-\\frac{1}{2}}{\\frac{8-3x_1}{3-x_1}-3}=-\\left(\\frac{1}{2}x_1+y_1\\right)+\\frac{3}{2}.$\n\n$因为点A在l上,$\n\n$所以\\frac{1}{2}x_1+y_1=m,即k_{MR}=\\frac{3}{2}-m.$\n\n$同理,k_{NR}=\\frac{3}{2}-m,$\n\n$所以k_{MR}=k_{NR},$\n\n$故M,N,R三点共线.$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 75 "$已知函数f(x) = \ln x + \frac{a}{2}x^2 - (a+1)x, a \in R.$ | |
| $设x_1,x_2 (0 < x_1 < x_2) 是函数 g(x) = f(x) + x 的两个极值点,证明: g(x_1) - g(x_2) < \frac{a}{2} - \ln a 恒成立.$" "[""证明:\n$g(x) = f(x) + x = \\ln x + \\frac{a}{2}x^2 - ax,$\n$则g(x)的定义域为(0,+\\infty ),$\n$且g'(x) = \\frac{1}{x} + ax - a = \\frac{ax^2 - ax + 1}{x}。$\n$若g(x)有两个极值点x_1,x_2 (0 < x_1 < x_2),$\n$则方程ax^2 - ax + 1 = 0的判别式\\Delta = a^2 - 4a > 0,$\n$且x_1 + x_2 = 1,x_1x_2 = \\frac{1}{a} > 0,解得a > 4,$\n$又0 < x_1 < x_2,所以x^2_1 < x_1 x_2 = \\frac{1}{a} ,即 0 < x_1 < \\frac{1}{\\sqrt{a}},$\n$所以g(x_1) - g(x_2) = \\ln x_1 + \\frac{a}{2}x^2_1 - ax_1 - \\ln x_2 - \\frac{a}{2}x^2_2 + ax_2 $\n$= \\ln x_1 - \\ln \\frac{1}{ax_1} + \\frac{a}{2}(x_1 + x_2)(x_1 - x_2) - a(x_1 - x_2)$\n$= \\ln x_1 + \\ln(ax_1) + \\frac{a}{2}(2x_1 - 1) = \\ln x_1 + \\ln(ax_1) + \\frac{a}{2}- ax_1,$\n$设h(t) = \\ln t + \\ln(at) + \\frac{a}{2} - at,其中t = x_1 \\in \\left(0, \\frac{1}{\\sqrt{a}}\\right),a > 4,$\n$由h'(t) = \\frac{2}{t} - a = 0得t = \\frac{2}{a},$\n$又\\frac{2}{a} - \\frac{1}{\\sqrt{a}} = \\frac{2 - \\sqrt{a}}{a} < 0,$\n$所以h(t)在区间\\left(0, \\frac{2}{a}\\right)内单调递增,在区间\\left(\\frac{2}{a}, \\frac{1}{\\sqrt{a}}\\right)内单调递减,$\n$即h(t)的最大值为h\\left(\\frac{2}{a}\\right) = 2\\ln 2 - \\ln a + \\frac{a}{2} - 2 < \\frac{a}{2} - \\ln a,$\n$从而g(x_1) - g(x_2) < \\frac{a}{2} - \\ln a恒成立。$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 76 "$记S_n为数列{a_n}的前n项和,已知S_n=na_n-n^2+n.$ | |
| $证明:a_n是等差数列;$" ['$证明:\\because S_n=na_n-n^2+n①,$\n\n$\\therefore 当n\\geq 2时,S_{n-1}=(n-1)a_{n-1}-(n-1)^2+n-1(n\\geq 2)②,$\n\n$由①-②,得a_n=na_n-(n-1)a_{n-1}-2(n-1),$\n\n$即(n-1)a_n-(n-1)a_{n-1}=2(n-1),\\therefore a_n-a_{n-1}=2,n\\geq 2,$\n\n$\\therefore {a_n}是以2为公差的等差数列.$'] [] Text-only Chinese College Entrance Exam Theorem proof Sequence Math Chinese | |
| 77 "$已知正项数列{a_n},其前n项和S_n满足a_n(2S_n-a_n)=1(n\in N^).$ | |
| $数列{a_n}中是否存在连续三项a_k,a_{k+1},a_{k+2},使得\frac{1}{a_k},\frac{1}{a_{k+1}},\frac{1}{a_{k+2}}构成等差数列?请说明理由.$" ['$不存在.理由如下:当n\\geq 2时,a_n=S_n-S_{n-1}=\\sqrt{n}-\\sqrt{n-1},又a_1=1,即∀n\\in N^{},都有a_n=\\sqrt{n}-\\sqrt{n-1},则\\frac{1}{a_n}=\\frac{1}{\\sqrt{n}-\\sqrt{n-1}}=\\sqrt{n}+\\sqrt{n-1}.假设存在满足要求的连续三项a_k,a_{k+1},a_{k+2},使得\\frac{1}{a_k},\\frac{1}{a_{k+1}},\\frac{1}{a_{k+2}}构成等差数列,则2(\\sqrt{k+1}+\\sqrt{k})=\\sqrt{k}+\\sqrt{k-1}+\\sqrt{k+2}+\\sqrt{k+1},即\\sqrt{k+1}+\\sqrt{k}=\\sqrt{k-1}+\\sqrt{k+2},两边同时平方,得k+1+k+2\\sqrt{k+1}\\sqrt{k}=k-1+k+2+2\\sqrt{k-1}\\sqrt{k+2},即(k+1)k=(k-1)(k+2),整理得k^2+k=k^2+k-2,即0=-2,显然不成立,因此假设是错误的,所以数列{a_n}中不存在满足要求的连续三项.$\n\n'] ['不存在'] [] Text-only Chinese College Entrance Exam Theorem proof Sequence Math Chinese | |
| 78 "$已知函数f(x) = (x-1)e^x - ax^2 + b$ | |
| $讨论函数f(x)的单调性;$" "["":\n\n$由于 f(x)=(x-1)e^x-ax^2+b,$\n\n$所以 f'(x)=xe^x-2ax=x(e^x-2a)。$\n\n$1. 当a\\leq0时,e^x-2a>0 对任意x\\in R恒成立,$\n$ - 当x\\in(-\\infty,0)时, f'(x)<0, $\n$ - 当x\\in(0,+\\infty)时, f'(x)>0. $\n\n$ 因此 y=f(x)在 (-\\infty,0) 上单调递减,在 (0,+\\infty) 上单调递增.$\n\n$2. 当a>0 时,令e^x-2a=0 \\Rightarrow x=\\ln(2a),$\n$ - 当0<a<\\frac{1}{2}时,\\ln(2a)<0.$\n\n$ y=f'(x)的大致图象如图1所示.$\n\n<img_333>\n\n$ 因此当x\\in(-\\infty,\\ln(2a))\\cup(0,+\\infty)时, f'(x)>0,$\n \n$ 当x\\in(\\ln(2a),0)时, f'(x)<0,$\n \n$ 所以f(x)在 (-\\infty,\\ln(2a)) 和 (0,+\\infty) 上单调递增,在 (\\ln(2a),0) 上单调递减.$\n \n$ - 当a=\\frac{1}{2}时,\\ln(2a)=0,此时f'(x)\\geq 0对任意x\\in R恒成立,故f(x)在R上单调递增.$\n\n$ - 当a>\\frac{1}{2}时,\\ln(2a)>0,$\n\n$ y=f'(x)的大致图象如图2所示.$\n \n\n<img_323>\n\n$ 因此,当 x\\in(-\\infty,0)\\cup(\\ln(2a),+\\infty) 时, f'(x)>0,当 x\\in(0,\\ln(2a)) 时, f'(x)<0,$\n \n$ 所以f(x)在 (-\\infty,0) 和 (\\ln(2a),+\\infty) 上单调递增,在 (0,\\ln(2a)) 上单调递减.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 79 "$已知函数f(x) = (x-1)e^x - ax^2 + b$ | |
| \frac{1}{2} < a \leq \frac{e^2}{2}, b > 2a; | |
| $证明:f(x)有一个零点.$" ['$证明:由(1)知, f(x)在(-\\infty ,0)上单调递增,在(0,ln(2a))上单调递减,在(ln(2a),+\\infty )上单调递增,又f(0)=b-1>0,f \\left(-\\sqrt{\\frac{b}{a}}\\right)=\\left(-\\sqrt{\\frac{b}{a}}-1\\right) \\mathrm{e^{-\\sqrt{\\frac{\\mathit{b} }{\\mathit{a} }}} } <0,$\n$所以f(x)在(-\\infty ,0]上有唯一零点.$\n$当x\\in (0,+\\infty )时, $\n$f(x)\\geq f(ln(2a))=[ln(2a)-1]\\cdot 2a-a[ln(2a)]^2+b$\n$=aln(2a)[2-ln(2a)]+b-2a>aln(2a)[2-ln(2a)].$\n$因为\\frac{1}{2}<a\\leq \\frac{\\mathrm{e}^2}{2},所以0<ln(2a)\\leq 2,$\n$所以f(x)>0对任意x>0恒成立.$\n$综上, f(x)在R上有唯一零点.$\n\n'] [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 80 "$记\triangle ABC的内角A,B,C的对边分别为a,b,c,已知\sin C \cdot \sin(A-B) = \sin B \cdot \sin(C-A).$ | |
| $证明:2a^2 = b^2 + c^2;$" ['$(1)证法一: $\n$\\because \\sin C\\sin (A-B)=\\sin B\\sin (C-A), \\therefore \\sin C(\\sin A\\cos B-\\cos A\\sin B)=\\sin B(\\sin C\\cos A-\\cos C\\sin A),(利用两角差的正弦公式化简) $\n$由正弦定理得ac\\cos B-bc\\cos A=bc\\cos A-ab\\cos C, $\n$\\therefore ac\\cos B=2bc\\cos A-ab\\cos C, $\n$由余弦定理的推论得ac\\cdot \\frac{a^2+c^2-b^2}{2ac}=2bc\\cdot \\frac{b^2+c^2-a^2}{2bc}-ab\\cdot \\frac{a^2+b^2-c^2}{2ab},化简得2a^2=b^2+c^2. $\n证法二: \n$\\because \\sin C\\sin (A-B)=\\sin B\\sin (C-A), $\n$\\therefore \\sin C(\\sin A\\cos B-\\cos A\\sin B) $\n$=\\sin B(\\sin C\\cos A-\\cos C\\sin A), $\n$\\therefore \\sin C\\sin A\\cos B+\\sin B\\sin A\\cos C=2\\sin B\\sin C\\cos A, $\n$\\therefore \\sin A(\\sin C\\cos B+\\cos C\\sin B)=2\\sin B\\sin C\\cos A, $\n$\\therefore \\sin A\\cdot \\sin (B+C)=2\\sin B\\sin C\\cos A, $\n$\\therefore \\sin ^2A=2sin Bsin Ccos A, $\n$由正弦定理得a^2=2bccos A, $\n$又由余弦定理得a^2=b^2+c^2-a^2,\\therefore 2a^2=b^2+c^2.$'] [] Text-only Chinese College Entrance Exam Theorem proof Trigonometric Functions Math Chinese | |
| 81 "$记S_n为数列{a_n}的前n项和,b_n为数列{S_n}的前n项积,已知 \frac{2}{S_n} + \frac{1}{b_n} = 2.$ | |
| $证明:数列{b_n}是等差数列;$" ['证明:第一步:利用 $b_n与 S_n的关系消去 S_n,找到 b_n与 b_{n-1}的关系式$.\n$由\\frac{2}{S_n}+\\frac{1}{b_n}=2知,$\n$当n=1时,\\frac{2}{S_1}+\\frac{1}{b_1}=2,即\\frac{2}{b_1}+\\frac{1}{b_1}=2,所以 b_1=S_1=\\frac{3}{2},$\n当$n\\geq 2时,b_n=S_1\\cdot S_2\\ldots \\cdot S_n,\nb_{n-1}=S_1\\cdot S_2\\ldots \\cdot S_{n-1}$,\n$所以S_n=\\frac{b_n}{b_{n-1}}(注意理解“b_n是{S_n}的前n项积”)$\n$故\\frac{2}{\\frac{b_n}{b_{n-1}}}+\\frac{1}{b_n}=2,即2b_n=2b_{n-1}+1.$\n\n第二步:整理$ b_n与 b_{n-1}$的关系式,定义法证明等差数列.\n$所以b_n-b_{n-1}=\\frac{1}{2},n\\geq 2,$\n$故数列{b_n}是首项为\\frac{3}{2},公差为\\frac{1}{2}的等差数列.$'] [] Text-only Chinese College Entrance Exam Theorem proof Sequence Math Chinese | |
| 82 "$已知数列a_n的各项均为正数,记S_n为a_n的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.$ | |
| $①数列a_n是等差数列;$ | |
| $②数列\sqrt{S_n}是等差数列;$ | |
| $③a_2=3a_1.$ | |
| 注:若选择不同的组合分别解答,则按第一个解答计分." ['选①②作为条件,证明③.\n$证明:设等差数列{a_n}的公差为d,因为{\\sqrt{S_n}}是等差数列,所以2\\sqrt{S_2}=\\sqrt{S_1}+\\sqrt{S_3},即2\\sqrt{2a_1+d}=\\sqrt{a_1}+\\sqrt{3a_1+3d},两边平方,得4(2a_1+d)=a_1+3a_1+3d+2\\sqrt{a_1(3a_1+3d)},整理得4a_1+d=2\\sqrt{a_1(3a_1+3d)},两边平方,得16a_1^2+8a_1d+d^2=4(3a_1^2+3a_1d),化简得4a_1^2-4a_1d+d^2=0,即(2a_1-d)^2=0,所以d=2a_1,则a_2=a_1+d=3a_1.$\n选①③作为条件,证明②.\n$证明:设等差数列{a_n}的公差为d.$\n$因为a_2=3a_1,即a_1+d=3a_1,所以d=2a_1.$\n$所以等差数列{a_n}的前n项和S_n=na_1+\\frac{n(n-1)}{2}d=na_1+\\frac{n(n-1)}{2}\\cdot 2a_1=n^2a_1。又a_1>0,所以\\sqrt{S_n}=n\\sqrt{a_1}。$\n$则\\sqrt{S_{n+1}}-\\sqrt{S_n}=(n+1)\\sqrt{a_1}-n\\sqrt{a_1}=\\sqrt{a_1},所以数列{\\sqrt{S_n}}是公差为\\sqrt{a_1}的等差数列.$\n选②③作为条件,证明①.\n$证明:设等差数列{\\sqrt{S_n}}的公差为d,因为\\sqrt{S_1}=\\sqrt{a_1},\\sqrt{S_2}=\\sqrt{a_1+a_2}=\\sqrt{a_1+3a_1}=2\\sqrt{a_1},所以d=\\sqrt{S_2}-\\sqrt{S_1}=2\\sqrt{a_1}-\\sqrt{a_1}=\\sqrt{a_1},则等差数列{\\sqrt{S_n}}的通项公式为\\sqrt{S_n}=\\sqrt{a_1}+(n-1)\\sqrt{a_1}=n\\sqrt{a_1},所以S_n=n^2a_1,当n\\geq 2时,a_n=S_n-S_{n-1}=n^2a_1-(n-1)^2a_1=(2n-1)a_1,且当n=1时,上式也成立,所以数列{a_n}的通项公式为a_n=(2n-1)a_1,则a_{n+1}-a_n=(2n+1)a_1-(2n-1)a_1=2a_1,所以数列{a_n}是公差为2a_1的等差数列.$\n\n'] [] Text-only Chinese College Entrance Exam Theorem proof Sequence Math Chinese | |
| 83 "$记 S_n 为数列 {a_n} 的前 n 项和,已知 a_1 =1, \left\{\frac{S_n}{a_n}\right\} 是公差为 \frac{1}{3} 的等差数列.$ | |
| $证明:\frac{1}{a_1} + \frac{1}{a_2} +\ldots + \frac{1}{a_n} < 2.$" ['证明:由(1)知\n$\\frac{1}{a_n} = \\frac{2}{n(n+1)} = 2\\left(\\frac{1}{n}-\\frac{1}{n+1}\\right),$\n$\\therefore $\n$\\frac{1}{a_1} + \\frac{1}{a_2} + \\ldots + \\frac{1}{a_n} = 2\\left(\\frac{1}{1}-\\frac{1}{2}\\right) + 2\\left(\\frac{1}{2}-\\frac{1}{3}\\right) + \\ldots + 2\\left(\\frac{1}{n}-\\frac{1}{n+1}\\right) = 2\\left(1-\\frac{1}{n+1}\\right) = 2 - \\frac{2}{n+1} < 2.$\n(应用裂项相消法)\n\n'] [] Text-only Chinese College Entrance Exam Theorem proof Sequence Math Chinese | |
| 84 "$设a_n是首项为1的等比数列,数列b_n满足b_n=\frac{na_n}{3}。已知 a_1, 3a_2, 9a_3 成等差数列。$ | |
| $记 S_n 和 T_n 分别为{a_n}和{b_n}的前n项和.证明:T_n < \frac{S_n}{2}.$" ['证明:\n\n第一步:用等比数列前_n_项和公式计算$S_n$.\n\n由等比数列$\\{a_n\\}$的首项和公比知,前_n_项和为\n\n$S_n= \\frac{a_1(1-q^n)}{1-q}= \\frac{3}{2}\\left[1-\\left(\\frac{1}{3}\\right)^n\\right].$\n\n第二步:用错位相减法求$T_n$.\n\n$\\because b_n=n\\cdot \\left(\\frac{1}{3}\\right)^n,$\n\n$\\therefore T_n=b_1+b_2+\\ldots +b_n$\n\n$=1\\times \\left(\\frac{1}{3}\\right)^1+2\\times \\left(\\frac{1}{3}\\right)^2+\\ldots +n\\cdot \\left(\\frac{1}{3}\\right)^n, (1)$\n\n$\\frac{1}{3}T_n=1\\times \\left(\\frac{1}{3}\\right)^2+2\\times \\left(\\frac{1}{3}\\right)^3+\\ldots +n\\cdot \\left(\\frac{1}{3}\\right)^{n+1}.(2)$\n\n$(1)-(2)可得\\frac{2}{3}T_n=\\frac{1}{3}+\\left(\\frac{1}{3}\\right)^2+\\ldots +\\left(\\frac{1}{3}\\right)^n-n\\cdot \\left(\\frac{1}{3}\\right)^{n+1}$\n\n$=\\frac{\\frac{1}{3}\\left[1-\\left(\\frac{1}{3}\\right)^n\\right]}{1-\\frac{1}{3}}-n\\cdot \\left(\\frac{1}{3}\\right)^{n+1}=-\\left(\\frac{1}{3}n+\\frac{1}{2}\\right)\\left(\\frac{1}{3}\\right)^n+\\frac{1}{2},$\n\n$\\therefore T_n=-\\left(\\frac{1}{2}n+\\frac{3}{4}\\right)\\left(\\frac{1}{3}\\right)^n+\\frac{3}{4}.$\n\n$第三步:表示\\frac{S_n}{2},并利用作差法证得结论.$\n\n$\\because \\frac{S_n}{2}=\\frac{3}{4}-\\frac{3}{4}\\times \\left(\\frac{1}{3}\\right)^n,$\n\n$\\therefore T_n-\\frac{S_n}{2}=-\\frac{1}{2}n\\cdot \\left(\\frac{1}{3}\\right)^n<0,\\therefore T_n<\\frac{S_n}{2}.$'] [] Text-only Chinese College Entrance Exam Theorem proof Sequence Math Chinese | |
| 85 "$已知a_n是等差数列,b_n是公比为2的等比数列,且a_2 - b_2 = a_3 - b_3 = b_4 - a_4.$ | |
| $证明:a_{1}=b_{1};$" ['$证明:设等差数列{a_n}的公差为d.$\n\n$由a_2-b_2=a_3-b_3得a_1+d-2b_1=a_1+2d-4b_1,故d=2b_1,①$\n\n$由a_3-b_3=b_4-a_4得a_1+2d-4b_1=8b_1-a_1-3d,故2a_1+5d=12b_1,②$\n\n$由①②得2a_1+10b_1=12b_1,即a_1=b_1。$'] [] Text-only Chinese College Entrance Exam Theorem proof Sequence Math Chinese | |
| 86 "$已知数列{a_n}, {b_n}的项数均为m (m>2),且a_n, b_n \in {1,2,\ldots , m}, {a_n}, {b_n}的前n项和分别为A_n,B_n并规定A_0=B_0=0对于k \in {0,1,2,\ldots ,m},定义r_k=max{i|B_i\leq A_k,i\in {0,1,2,\ldots ,m}},其中, max M表示数集M中最大的数.$ | |
| $证明:存在p,q,s,t\in {0,1,2,\ldots ,m},满足p>q,s>t,使得A_{p}+B_{t}=A_{q}+B_{s}.$" "[""$证明:设A_m \\leq B_m.记S_k =A_k -B_{r_k} (1\\leq k \\leq m),则S_k \\geq 0.$\n\n$另一方面,一定有S_k \\leq m -1;否则S_k >m -1,而由r_k的定义可知A_k -B_{r_k} +1 <0,$\n\n$则b_{r_k +1} =B_{r_k +1} -B_{r_k} =S_k -(A_k -B_{r_k} +1)> m (A_k -B_{r_k} +1的最大值为-1),$\n\n$但b_{r_k+1} \\in {1,2,\\ldots ,m},矛盾.$\n\n$若存在k使得S_k =0,则取t =q =0,p =k,s =r_k即满足题目要求.$\n\n$若这样的k不存在,则S_k \\in {1,2,\\ldots ,m -1},$\n\n$因此一定存在1\\leq q <p \\leq m使得S_q =S_p (抽屉原理,将m个数放入(m -1)个抽屉),且由定义可知r_q <r_p,$\n\n$从而A_q -B_{r_q} =A_p -B_{r_p},令t =r_q ,s =r_p,即A_p +B_t =A_q +B_s.$\n\n$若A_m \\geq B_m,$\n\n$则可定义c_k =max{i |A_i \\leq B_k ,i \\in {0,1,\\ldots ,m}},并记S_k ^{'} =B_k -A_{c_k} (1\\leq k \\leq m),$\n\n同上述过程可得结论成立.""]" [] Text-only Chinese College Entrance Exam Theorem proof Sequence Math Chinese | |
| 87 "$已知Q:a_{1},a_{2},\ldots ,a_{k}为有穷整数数列.给定正整数m,若对任意的n\in {1,2,\ldots ,m},在Q中存在a_{i},a_{i+1},a_{i+2},\ldots ,a_{i+j}(j\geq 0),使得a_{i}+a_{i+1}+a_{i+2}+\ldots +a_{i+j}=n,则称Q为m-连续可表数列.$ | |
| $若Q:a_1,a_2,...,a_k为8-连续可表数列,求证:k的最小值为4;$" ['$证明:若k=1,则Q:a_1只能表示1个数字,不能表示8个数字,故k\\neq 1;$\n$若k=2,则Q:a_1,a_2最多能表示出a_1,a_2,a_1+a_2,共3个数字,与Q为8-连续可表数列相矛盾;$\n$若k=3,则a_1,a_2,a_3最多能表示a_1,a_2,a_3,a_1+a_2,a_2+a_3,a_1+a_2+a_3,共6个数字,与Q为8-连续可表数列矛盾,故k\\geq 4.$\n$现构造Q:1,2,4,1,可以表示出1,2,3,4,5,6,7,8这8个数字,即存在k=4满足题意,$\n$故k的最小值为4(或构造出Q:3,1,4,2等数列也可以).$'] [] Text-only Chinese College Entrance Exam Theorem proof Sequence Math Chinese | |
| 88 "$已知Q:a_{1},a_{2},\ldots ,a_{k}为有穷整数数列.给定正整数m,若对任意的n\in {1,2,\ldots ,m},在Q中存在a_{i},a_{i+1},a_{i+2},\ldots ,a_{i+j}(j\geq 0),使得a_{i}+a_{i+1}+a_{i+2}+\ldots +a_{i+j}=n,则称Q为m-连续可表数列.$ | |
| $若Q:a_1,a_2,\ldots ,a_k为20-连续可表数列,且a_1 + a_2 + \ldots + a_k < 20 ,求证:k \geq 7。$" ['证明:从5个正整数中取1个数字只能表示自身,此方式最多可表示5个数字;取连续2个数字并求和最多能表示4个数字,取连续3个数字并求和最多能表示3个数字,取连续4个数字并求和最多能表示2个数字,取连续5个数字并求和最多能表示1个数字,\n\n$所以对任意给定的5个整数,最多可以表示5+4+3+2+1=15个正整数,不能表示20个正整数,即k\\geq 6.$\n\n$若k=6,则最多可以表示6+5+4+3+2+1=21个正整数,$\n\n$由于Q为20-连续可表数列,且a_1+a_2+a_3+\\ldots +a_k<20,$\n\n$所以有一项必为负数,设这一项为a_i, i\\in {1,2,3,4,5,6}.$\n\n$若a_i<0, i\\in {2,3,4,5},则a_i+a_{i+1}>0且a_{i-1}+a_i>0,$\n\n$那么从a_1,a_2,\\ldots ,a_6中选择连续j(1\\leq j\\leq 6)项求和,其和均小于20,这与题意不符,所以a_1<0或a_6<0.$\n\n$不妨设a_1<0,那么a_2+a_3+\\ldots +a_6=20,$\n\n$因为a_2,a_3,\\ldots ,a_6\\in N^,所以{a_2,a_3,\\ldots ,a_6}={2,3,4,5,6},$\n\n$从集合{2,3,4,5,6}中选取j(1\\leq j\\leq 5)个连续数字并求和,其和不可能为19,$\n\n$但Q为20-连续可表数列,那么a_1+a_2+a_3+\\ldots +a_6=19,所以a_1=-1,$\n\n$所以a_2=2,若不然,假设a_2=p(3\\leq p\\leq 6),那么a_1+a_2=p-1\\in {2,3,4,5}与数列中的项重复,$\n\n$所以a_3=6,若不然,假设a_3=q(3\\leq q\\leq 5),那么a_1+a_2+a_3=q+1\\in {4,5,6}与数列中的项重复,$\n\n因此该数列只可能为以下6种,下面逐一写出:\n\n$①a_1=-1,a_2=2,a_3=6,a_4=3,a_5=4,a_6=5,但是a_1+a_2+a_3=a_4+a_5(舍去);$\n\n$②a_1=-1,a_2=2,a_3=6,a_4=3,a_5=5,a_6=4,但是a_2+a_3=a_4+a_5(舍去);$\n\n$③a_1=-1,a_2=2,a_3=6,a_4=4,a_5=3,a_6=5,但是a_2+a_3=a_5+a_6(舍去);$\n\n$④a_1=-1,a_2=2,a_3=6,a_4=4,a_5=5,a_6=3,但是a_2+a_3=a_5+a_6(舍去);$\n\n$⑤a_1=-1,a_2=2,a_3=6,a_4=5,a_5=3,a_6=4,但是a_1+a_2+a_3=a_5+a_6(舍去);$\n\n$⑥a_1=-1,a_2=2,a_3=6,a_4=5,a_5=4,a_6=3,但是a_1+a_2+a_3=a_5+a_6(舍去).$\n\n$因此,k=6不满足题意.$\n\n$综上,Q中至少含6个不同的正整数和一个负数才能满足题意,故k\\geq 7.$'] [] Text-only Chinese College Entrance Exam Theorem proof Sequence Math Chinese | |
| 89 "$已知数列{a_n},从中选取第i_1项、第i_2项、...、第i_m项(i_1<i_2<...<i_m),若a_{i_1}<a_{i_2}<...<a_{i_m},则称新数列a_{i_1},a_{i_2},...,a_{i_m}为{a_n}的长度为m的递增子列.规定:数列{a_n}的任意一项都是{a_n}的长度为1的递增子列.$ | |
| $已知数列a_n的长度为p的递增子列的末项的最小值为a_{m0},长度为q的递增子列的末项的最小值为a_{n0}.若p<q,求证:a_{m0}<a_{n0};$" ['$设长度为q,末项为a_{n_0}的一个递增子列为a_{r_1},a_{r_2},\\ldots ,a_{r_{q-1}},a_{n_0}.由p<q,得a_{r_p} \\leq a_{r_{q-1}}<a_{n_0}.因为{a_n}的长度为p的递增子列末项的最小值为a_{m_0},又a_{r_1},a_{r_2},\\ldots ,a_{r_p}是{a_n}的长度为p的递增子列,所以a_{m_0} \\leq a_{r_p}.所以a_{m_0}<a_{n_0}.$'] [] Text-only Chinese College Entrance Exam Theorem proof Trigonometric Functions Math Chinese | |
| 90 "$已知定义域为R的函数f(x)=\frac{-2^x+a}{2^x+1}是奇函数.$ | |
| $用定义证明函数f(x)在R上为减函数;$" ['$任取x_1,x_2\\in R且x_1<x_2,所以f(x_1)-f(x_2)=\\frac{1-2^{x_1}}{1+2^{x_1}}-\\frac{1-2^{x_2}}{1+2^{x_2}}=\\frac{(1-2^{x_1})(1+2^{x_2})-(1-2^{x_2})(1+2^{x_1})}{(1+2^{x_1})(1+2^{x_2})}=\\frac{2(2^{x_2}-2^{x_1})}{(1+2^{x_1})(1+2^{x_2})},因为x_1<x_2,所以2^{x_2}-2^{x_1}>0,$\n$又(1+2^{x_1})(1+2^{x_2})>0,$\n$所以f(x_1)-f(x_2)=\\frac{2(2^{x_2}-2^{x_1})}{(1+2^{x_1})(1+2^{x_2})}>0,$\n$所以f(x_1)>f(x_2),所以函数f(x)在R上为减函数.$\n\n'] [] Text-only Chinese College Entrance Exam Theorem proof Elementary Functions Math Chinese | |
| 91 "$已知函数f(x) = ln x - \frac{a}{x}.$ | |
| $若a>0,证明:f(x)在定义域内是增函数;$" "[""$证明:由题意知f(x)的定义域为(0,+\\infty ),f'(x)=\\frac{1}{x}+\\frac{a}{x^2}=\\frac{x+a}{x^2}.\\because a\\gt 0,\\therefore f'(x)\\gt 0,$\n$故f(x)在(0,+\\infty )上是增函数.$\n\n""]" [] Text-only Chinese College Entrance Exam Theorem proof Elementary Functions Math Chinese | |
| 92 "$已知函数f(x)=a\ln x-\sqrt{x}+1(x>0),a \in R。$ | |
| $假设某篮球运动员每次投篮命中的概率均为0.81,若其10次投篮全部命中的概率为p,证明:p < e^{-2}。$" ['$由题意可得p=0.81^{10},由(2)可知,当a=\\frac{1}{2}时,\\frac{\\mathrm{ln} x}{2}-\\sqrt{x}+1\\leq 0,即ln x\\leq 2(\\sqrt{x}-1),所以ln 0.81^{10}=10ln 0.81<20(\\sqrt{0.81}-1)=-2,因此,p<e^{-2}。$\n\n'] [] Text-only Chinese College Entrance Exam Theorem proof Probability and Statistics Math Chinese | |
| 93 "$已知函数f(x)=e^{x}-ax和g(x)=ax-ln x有相同的最小值。$ | |
| $证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.$" ['证明:由(1)知, \n$f(x)=e^{x}-x, g(x)=x-ln x$\n$当x<0时, f(x)单调递减,当x>0时, f(x)单调递增;$\n$当0<x<1时,g(x)单调递减,当x>1时,g(x)单调递增.$\n\n$不妨设直线y=b与y=f(x)的图象的两交点的横坐标分别为x_{1},x_{2},与y=g(x)的图象的两交点的横坐标分别为x_{2},x_{3},且x_{1}<x_{2}<x_{3}.则e^{x_{1}}-x_{1}=e^{x_{2}}-x_{2}=x_{2}-ln x_{2}=x_{3}-ln x_{3},$\n\n由此有\n$e^{x_{1}}-x_{1}=x_{2}-ln x_{2}=e^{ln x_{2}}-ln x_{2}.$\n$易知x_{1}\\in(-\\infty,0),x_{2}\\in(0,1),则ln x_{2}\\in(-\\infty,0),$\n\n$又f(x)在(-\\infty,0)上单调递减,$\n故有\n$x_{1}=ln x_{2},同理x_{2}=ln x_{3},x_{3}=e^{x_{2}}.$\n\n$又e^{x_{2}}-x_{2}=x_{2}-ln x_{2},由此得$\n$ln x_{2}+e^{x_{2}}=2x_{2}.$\n综合上述推理,我们有\n$x_{1}+x_{3}=ln x_{2}+e^{x_{2}}=2x_{2}.$\n$所以x_{1},x_{2},x_{3}成等差数列.$'] [] Text-only Chinese College Entrance Exam Theorem proof Elementary Functions Math Chinese | |
| 94 "$已知函数f(x)=\frac{e^x}{x}-lnx+x-a.$ | |
| $证明:若f(x)有两个零点x_1, x_2,则x_1x_2 < 1.$" "[""$f(x)=\\frac{\\mathrm{e}^x}{x}-ln x+x-a=e^{x-ln x}+x-ln x-a,$\n$设t=x-ln x,则y=e^t+t-a, y'=e^t+1.$\n$\\because f(x)有两个零点x_1,x_2,\\therefore 由(1)知a>e+1.$\n$\\because y'=e^t+1>0,\\therefore y=e^t+t-a为增函数,$\n$\\therefore x_1-ln x_1=x_2-ln x_2.$\n$由t=x-ln x得t'_{ }=1-\\frac{1}{x}=\\frac{x-1}{x}, 令t'=0,得x=1,$\n$t,t'的变化情况如下:$\n\n| x | (0,1) | 1 | $(1,+\\infty )$ |\n|---|-------|---|--------|\n| t' | - | 0 | + |\n| t | $\\text{单调递减}$ | 1 | $\\text{单调递增}$ |\n\n$证法一:不妨设0<x_1<1< x_2,$\n$\\therefore x_2-x_1=ln x_2-ln x_1.$\n$可以证明:\\frac{x_2-x_1}{\\mathrm{ln} x_2-\\mathrm{ln} x_1}>\\sqrt{x_1x_2}, 则有\\sqrt{x_1x_2}<1, 所以x_1x_2<1.$\n$证明如下:\\because \\frac{x_2-x_1}{\\mathrm{ln} x_2-\\mathrm{ln} x_1}>\\sqrt{x_1x_2} 等价于\\frac{x_2-x_1}{\\sqrt{x_1x_2}}>ln \\frac{x_2}{x_1},$\n$\\therefore 只需证\\frac{\\frac{x_2}{x_1}-1}{\\sqrt{\\frac{x_2}{x_1}}}>ln \\frac{x_2}{x_1}.$\n$设m=\\frac{x_2}{x_1}(m>1), 从而只要证\\frac{m-1}{\\sqrt{m}}>ln m(m>1).$\n$设g(m)=\\frac{m-1}{\\sqrt{m}}-ln m(m>1),$\n$则g'(m)=\\frac{2m-m+1}{2m\\sqrt{m}}-\\frac{1}{m}=\\frac{(\\sqrt{m}-1)^2}{2m\\sqrt{m}},$\n$\\because g'(m)>0,\\therefore g(m)在(1,+\\infty )上单调递增,$\n$\\therefore g(m)>g(1)=0,$\n$\\therefore \\frac{x_2-x_1}{\\mathrm{ln} x_2-\\mathrm{ln} x_1}>\\sqrt{x_1x_2}成立.$\n$故x_1x_2<1.$\n$证法二:不妨设0<x_1<1<x_2, F(x)=f(x)-f(\\frac{1}{x}), 0<x<1,$\n$则F'(x)=f' (x)+\\frac{1}{x^2} f'(\\frac{1}{x})=\\frac{x-1}{x^2}(e^x+x)+\\frac{1}{x^2}\\cdot \\frac{\\frac{1}{x}-1}{\\frac{1}{x^2}}\\cdot (\\mathrm{e}^\\frac{1}{x}+\\frac{1}{x})=\\frac{x-1}{x^2}(e^x+x-1-x \\mathrm{e} ^{\\frac{1}{x}}).$\n$设\\phi (x)=e^x+x-1-x \\mathrm{e} ^{\\frac{1}{x}}, x\\in (0,1),$\n$则\\phi '(x)=e^x+1-(\\mathrm{e}^\\frac{1}{x}-\\frac{1}{x}\\mathrm{e}^\\frac{1}{x})=e^x+1- \\mathrm{e} ^{\\frac{1}{x}}(1-\\frac{1}{x})=e^x+1+ \\mathrm{e} ^{\\frac{1}{x}}\\cdot \\frac{1-x}{x}.$\n$\\because 0<x<1, \\therefore \\phi '(x)>0, \\therefore \\phi (x)在(0,1)上单调递增,$\n$\\therefore \\phi (x)<\\phi (1)=0, 又\\frac{x-1}{x^2}<0, \\therefore F'(x)>0,$\n$\\therefore F(x)在(0,1)上单调递增.$\n$\\therefore F(x)<F(1)=0, \\therefore f(x)<f(\\frac{1}{x}).$\n$\\therefore f(x_2)=f(x_1)<f(\\frac{1}{x_1}).$\n$由(1)可知, f(x)在(1,+\\infty )上单调递增,$\n$\\because x_2>1, \\frac{1}{x_1}>1, \\therefore x_2<\\frac{1}{x_1},$\n$\\therefore x_1x_2<1.$\n\n""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 95 "$已知函数f(x)=a\ln(x+2)+\frac{x^2}{2}-2x,其中a为非零实数.$ | |
| $若f(x)有两个极值点x_1,x_2,且x_1 < x_2,证明:f(-x_1)+f(x_2) > 2x_1.$" "[""$证明:因为 f(x) 有两个极值点 x_1,x_2,由(1)知 0<a<4,x_1=-\\sqrt{4-a}, x_2=\\sqrt{4-a},$\n$所以 x_1+x_2=0,x_1x_2=a-4, 且 x_2 \\in (0,2),a=x_1x_2+4,$\n$因为 x_1+x_2=0,所以 x_2=-x_1,所以 f(-x_1)=f(x_2),a=x_1x_2+4=4-x_2^2,$\n$要证 f(-x_1)+f(x_2)>2x_1 \\Leftrightarrow 2f(x_2)-2x_1>0 \\Leftrightarrow f(x_2)+x_2>0$\n$\\Leftrightarrow aln(x_2+2)+\\frac{x_2^2}{2}-x_2>0 \\Leftrightarrow (4-x_2^2)ln(x_2+2)+\\frac{x_2^2}{2}-x_2>0$\n$\\Leftrightarrow (2+x_2)ln(x_2+2)-\\frac{x_2}{2}>0,$\n$令 g(x)=(2+x)ln(x+2)-\\frac{x}{2} (0<x<2),$\n$则 g'(x)=ln(x+2)+\\frac{1}{2}>ln 2+\\frac{1}{2}>0,$\n$所以 g(x) 在(0,2)上单调递增,且 g(0)=2ln 2>0,$\n$故 g(x)>g(0)>0,即 f(-x_1)+f(x_2)>2x_1.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 96 "$已知函数f(x)=ae^{x}-\ln{x}-1.$ | |
| $证明:当a\geq \frac{1}{\mathrm{e}}时, f(x)\geq 0.$" "[""$证明:当a\\geq \\frac{1}{e}时,f(x)\\geq \\frac{e^x}{e}-ln x-1. $\n\n$设g(x)=\\frac{e^x}{e}-ln x-1,则g'x=\\frac{e^x}{e}-\\frac{1}{x}.$\n\n$当0<x<1时,g'(x)<0;当x>1时,g'(x)>0.$\n\n$所以x=1是g(x)的最小值点.$\n\n$故当x>0时,g(x)\\geq g(1)=0.$\n\n$因此,当a\\geq \\frac{1}{e}时, f(x)\\geq 0.$\n\n""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 97 "$已知函数 f(x)=(x+1)ln(x+1)-\lambda x.$ | |
| $设n\in\mathbb{N}^,证明:1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots +\frac{1}{2n-1}-\frac{1}{2n}<\ln 2.$" ['$证明:由(1)可知,当x>0时,有(x+1)ln(x+1)-x>0,即\\frac{1}{1+\\frac{1}{x}}<ln(x+1),令x=\\frac{1}{n},n\\in N^,$\n$则\\frac{1}{1+n}<ln\\left(\\frac{1}{n}+1\\right)=ln \\frac{n+1}{n}=ln(n+1)-ln n,$\n$所以\\frac{1}{n+1}<ln(n+1)-ln n,\\frac{1}{n+2}<ln(n+2)-ln(n+1),\\ldots \\ldots ,\\frac{1}{2n}<ln(2n)-ln(2n-1),$\n$将以上不等式左、右两边分别相加,得\\frac{1}{n+1}+\\frac{1}{n+2}+\\ldots +\\frac{1}{2n}<ln(2n)-ln n=ln 2,$\n$所以1-\\frac{1}{2}+\\frac{1}{3}-\\frac{1}{4}+\\ldots +\\frac{1}{2n-1}-\\frac{1}{2n}$\n$=\\left(1+\\frac{1}{2}+\\frac{1}{3}+\\frac{1}{4}+\\cdots +\\frac{1}{2n-1}+\\frac{1}{2n}\\right)-2\\left(\\frac{1}{2}+\\frac{1}{4}+\\cdots +\\frac{1}{2n}\\right)$\n$=\\left(1+\\frac{1}{2}+\\frac{1}{3}+\\frac{1}{4}+\\cdots +\\frac{1}{2n-1}+\\frac{1}{2n}\\right)-\\left(\\frac{1}{1}+\\frac{1}{2}+\\cdots +\\frac{1}{n}\\right)$\n$=\\frac{1}{n+1}+\\frac{1}{n+2}+\\ldots +\\frac{1}{2n}<ln 2.$'] [] Text-only Chinese College Entrance Exam Theorem proof Inequality Math Chinese | |
| 98 "$已知函数f(x)=xe^{ax}-e^{x}.$ | |
| $设n \in N^,证明:$ | |
| $\frac{1}{\sqrt{1^2+1}}+\frac{1}{\sqrt{2^2+2}}+\ldots +\frac{1}{\sqrt{n^2+n}} > \ln(n+1)$" "[""解析:\n\n$证明:构造函数 h(x)=x-\\frac{1}{x}-2lnx(x>1), 则 h'(x)=1+\\frac{1}{x^2}-\\frac{2}{x}=\\frac{x^2-2x+1}{x^2}=\\frac{(x-1)^2}{x^2},$\n\n$易知 h'(x)>0, 故 h(x) 在 (1,+\\infty ) 上单调递增,所以 h(x)>h(1)=0, 故 x-\\frac{1}{x}>2lnx,$\n\n$令 x=\\sqrt{1+\\frac{1}{n}}, 则有 \\sqrt{1+\\frac{1}{n}}-\\frac{1}{\\sqrt{1+\\frac{1}{n}}}>2ln\\sqrt{1+\\frac{1}{n}},$\n\n$所以 \\frac{1}{\\sqrt{n^2+n}} > ln \\frac{n+1}{n},$\n\n$所以 \\frac{1}{\\sqrt{1^2+1}}+\\frac{1}{\\sqrt{2^2+2}}+\\ldots +\\frac{1}{\\sqrt{n^2+n}} > ln \\frac{2}{1}+ln \\frac{3}{2}+\\ldots +ln \\frac{n+1}{n}=ln(n+1). 原式得证.$\n\n""]" [] Text-only Chinese College Entrance Exam Theorem proof Sequence Math Chinese | |
| 99 "$函数f(x) = \frac{1}{4}(x+1)^2$ | |
| $证明: f(x)+|f(x)-2| \geq 2;$" ['$证明:因为f(x) = \\frac{1}{4}(x+1)^2 \\geq 0,$\n$所以f(x) + |f(x) - 2| = |f(x)| + |2 - f(x)| \\geq |f(x) + 2 - f(x)| =2.$'] [] Text-only Chinese College Entrance Exam Theorem proof Inequality Math Chinese | |
| 100 "$已知数列a_n,b_n,c_n满足a_1=b_1=c_1=1,c_n=a_{n+1}-a_n,c_{n+1}=\frac{b_n}{b_{n+2}}c_n,n属于正整数集N^.$ | |
| $若b_n为等差数列,公差d>0,证明:c_1+c_2+c_3+\ldots +c_n<1+\frac{1}{d},n \in N^.$" ['$由c_{n+1} = \\frac{b_n}{b_{n+2}} \\cdot c_n 得 c_n = \\frac{b_1b_2c_1}{b_nb_{n+1}} = \\frac{1+d}{d} \\left(\\frac{1}{b_n}-\\frac{1}{b_{n+1}}\\right),$\n\n$所以 c_1 + c_2 + c_3 + \\ldots + c_n = \\frac{1+d}{d} \\left(1-\\frac{1}{b_{n+1}}\\right).$\n\n$由b_1 = 1, d > 0 得 b_{n+1} > 0, 因此 c_1 + c_2 + c_3 + \\ldots + c_n < 1+ \\frac{1}{d},n \\in \\mathbb{N}^.$'] [] Text-only Chinese College Entrance Exam Theorem proof Sequence Math Chinese | |
| 101 "$已知公差不为零的等差数列a_n的前n项和为S_n,S_3=6,a_2,a_4,a_8成等比数列,数列b_n满足b_1=1,b_{n+1}=2b_n+1.$ | |
| $证明:\sum \limits^{n}_{{k=1}} \frac{b_{k+1}}{b_k} <2n+2 (n \in N^).$" ['证明:\n\n$\\frac{b_{n+1}}{b_n} = \\frac{2^{n+1}-1}{2^n-1} = \\frac{2^{n+1}-2+1}{2^n-1} = 2+ \\frac{1}{2^n-1} \\leq 2+ \\frac{1}{2^{n-1}}$\n\n因此,\n\n$\\sum \\limits^{n}_{{k=1}} \\frac{b_{k+1}}{b_k} \\leq 2n + \\frac{1-\\frac{1}{2^n}}{1-\\frac{1}{2}} = 2n + 2\\left(1-\\frac{1}{2^n}\\right) = 2n + 2- \\frac{1}{2^{n-1}}$\n\n$当 n 属于 N^ 时, $\n\n$\\frac{1}{2^{n-1}} > 0$\n\n因此,\n\n$\\sum \\limits^{n}_{{k=1}} \\frac{b_{k+1}}{b_k} < 2n + 2$'] [] Text-only Chinese College Entrance Exam Theorem proof Sequence Math Chinese | |
| 102 "$已知函数f(x)=cos x+\frac{a}{2} x^2+ln x.$ | |
| $当a\geq \frac{1}{4}时,证明:f(x)在定义域上是增函数;$" "[""$证明: f'(x)=-sin x + ax + \\frac{1}{x} (x>0).$\n$当a \\geq \\frac{1}{4}时, ax+ \\frac{1}{x} \\geq 2\\sqrt{a} \\geq 1,所以f'(x) \\geq 0.$\n$所以f(x)在定义域上是增函数.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 103 "$已知函数f(x)=a(x+2)e^{x}-(x+3)^{2}(a\in R, e为自然对数的底数)。$ | |
| $当a > \frac{1}{e}时,证明:f(x-2) > \ln x - x^2 - x -3.$" "[""$证明:当a > \\frac{1}{e}时,要证f(x-2) > ln x - x^2 - x -3, $\n$即要证axe^{x-2} > ln x + x -2,也即证a > \\frac{ln x + x -2 }{x e^{x-2}} (x > 0). $\n$令g(x) = \\frac{ln x + x -2 }{x e^{x-2}} (x > 0), $\n$则g'(x) = \\frac{(x+1)(3-ln x -x)}{x^2 e^{x-2}} . $\n$设\\phi(x) = 3- ln x - x ,\\phi(x) 在(0,+\\infty )上单调递减,\\phi(1) > 0,\\phi(3) < 0,\\therefore ∃x_0 \\in (1,3),使得\\phi(x_0) = 3-ln x_0 - x_0 = 0()。 $\n$当x \\in (0,x_0)时,g'(x) > 0;当x \\in (x_0,+\\infty )时,g'(x) < 0. $\n$\\therefore g(x) \\leq g(x_0) = \\frac{ln x_0 + x_0 -2}{x_0 e^{x_0-2}}= \\frac{1}{x_0 e^{x_0-2}}. $\n$由()知3- ln x_0 -x_0 = 0,即ln x_0 = 3 - x_0,\\therefore e^{3-x_0} = x_0, $\n$\\therefore g(x_0) = \\frac{1}{e^{3-x_0}e^{x_0-2}}= \\frac{1}{e},\\therefore g(x) \\leq \\frac{1}{e} < a, $\n$\\therefore 当a > \\frac{1}{e}时,f(x-2) > ln x - x^2 - x -3.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 104 "$已知函数f(x) = a(e^{x} + a) - x.$ | |
| $证明:当a>0时, f(x)>2ln a+\frac{3}{2}.$" "[""$证明:由(1)知,当a>0时, f(x)在(-\\infty ,\\mathrm{ln} \\frac{1}{a})上单调递减,在(\\mathrm{ln} \\frac{1}{a},+\\infty)上单调递增,则f(x)_{min}=f\\left(\\mathrm{ln} \\frac{1}{a}\\right)=a\\left(\\frac{1}{a}+a\\right)-\\ln \\frac{1}{a}=1+a^2+\\ln a。$\n\n$要证明f(x)>2\\ln a +\\frac{3}{2},只需证明1+a^2+\\ln a > 2\\ln a +\\frac{3}{2},$\n$即证a^2-\\ln a -\\frac{1}{2}>0.$\n\n$令g(x)=x^2-\\ln x-\\frac{1}{2}(x>0),则g'(x)=2x-\\frac{1}{x}=\\frac{2x^2-1}{x}。$\n\n$当0 < x < \\frac{\\sqrt{2}}{2}时,g'(x)<0, g(x)单调递减;$\n\n$当x > \\frac{\\sqrt{2}}{2}时,g'(x)>0, g(x)单调递增,$\n\n$\\therefore g(x)_{min}=g\\left(\\frac{\\sqrt{2}}{2}\\right)=\\frac{1}{2}- ln \\frac{\\sqrt{2}}{2}-\\frac{1}{2}=-\\ln \\frac{\\sqrt{2}}{2} =\\ln \\sqrt{2} > 0,$\n\n$\\therefore g(x)>0在(0,+\\infty )上恒成立,即a^2-\\ln a -\\frac{1}{2}>0,$\n\n$\\therefore f(x)>2\\ln a +\\frac{3}{2}。$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 105 "$已知函数f(x)=\sin x - \ln(1+x), f'(x)为f(x)的导数. 证明:$ | |
| $f'(x)在区间(-1, \frac{\pi}{2})存在唯一极大值点;$" "[""$设 g(x)=f'(x),$\n$则 g(x)=cosx-\\frac{1}{1+x},g'(x)=-sinx+\\frac{1}{(1+x)^2}。$\n$(研究 g(x)=f' (x) 的极值点,即 g'(x) 的变号零点)$\n$当 x\\in \\left(-1,\\frac{\\pi }{2}\\right) 时,g'(x) 单调递减,$\n$而 g'(0) > 0,g'\\left(\\frac{\\pi }{2}\\right) < 0,可得 g'(x) 在 \\left(-1,\\frac{\\pi }{2}\\right) 有唯一零点,设为 \\alpha 。(零点存在性定理)$\n$则当 x\\in (-1,\\alpha ) 时,g'(x) > 0;当 x\\in \\left(\\alpha ,\\frac{\\pi }{2}\\right) 时,g'(x) < 0。$\n$所以 g(x) 在 (-1,\\alpha ) 单调递增,在 \\left(\\alpha ,\\frac{\\pi }{2}\\right) 单调递减,故 g(x) 在 \\left(-1,\\frac{\\pi }{2}\\right) 存在唯一极大值点,即 f' (x) 在 \\left(-1,\\frac{\\pi }{2}\\right) 存在唯一极大值点。$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 106 "$已知函数f(x)=\sin x - \ln(1+x), f'(x)为f(x)的导数. 证明:$ | |
| $f(x)有且仅有2个零点.$" "[""$f(x)的定义域为(-1,+\\infty ).$\n\n$(根据(1)知f(x)在不同区间上的单调性不一样,所以需要分区间研究函数f(x)的零点个数)$\n\n$(i)当x\\in (-1,0]时,由(1)知, f'(x)在(-1,0)单调递增,而f'(0)=0,所以当x\\in (-1,0)时, f'(x)<0,故f(x)在(-1,0)单调递减.又f(0)=0,从而x=0是f(x)在(-1,0]的唯一零点.(研究f'(x)的正负情况及f(x)的单调性,观察到f(0)=0)$\n\n$(ii)当x\\in (0,\\frac{\\pi }{2})时,由(1)知, f'(x)在(0,\\alpha )单调递增,在(\\alpha ,\\frac{\\pi }{2})单调递减,而f'(0)=0, f'\\left(\\frac{\\pi }{2}\\right)<0,所以存在\\beta \\in (\\alpha ,\\frac{\\pi }{2}),使得f'(\\beta )=0,且当x\\in (0,\\beta )时,f'(x)>0;当x\\in \\left(\\beta ,\\frac{\\pi }{2}\\right)时, f'(x)<0.(零点存在性定理说明f'(x)存在零点,并说明f'(x)在零点两侧的正负情况)$\n\n$故f(x)在(0,\\beta )单调递增,在\\left(\\beta ,\\frac{\\pi }{2}\\right)单调递减.$\n\n$又f(0)=0, f\\left(\\frac{\\pi }{2}\\right)=1-ln\\left(1+\\frac{\\pi }{2}\\right)>0,所以当x\\in \\left(0,\\frac{\\pi }{2}\\right)时,f(x)>0.从而, f(x)在\\left(0,\\frac{\\pi }{2}\\right)没有零点.$\n\n$(f(x)先增后减,且函数值都为正,故这个区间中没有零点)$\n\n$(iii)当x\\in \\left(\\frac{\\pi }{2},\\pi \\right)时, f'(x)<0,所以f(x)在\\left(\\frac{\\pi }{2},\\pi \\right)单调递减.而f\\left(\\frac{\\pi }{2}\\right)>0, f(\\pi )<0,所以f(x)在\\left(\\frac{\\pi }{2},\\pi \\right)有唯一零点.(利用函数的单调性及零点存在性定理说明f(x)在这个区间上有唯一零点)$\n\n$(iv)当x\\in (\\pi ,+\\infty )时,ln(x+1)>1,所以f(x)<0,从而f(x)在(\\pi ,+\\infty )没有零点.(函数值恒负,没有零点)$\n\n$综上, f(x)有且仅有2个零点.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 107 "$已知动点P(m,n)在椭圆C: \frac{x^2}{2} + y^2=1之外,作直线l: \frac{mx}{2} + ny=1.$ | |
| $证明:直线l与椭圆C有两个不同的公共点;$" ['证明:由\n$\\left\\{\\begin{matrix}\\frac{x^2}{2}+y^2=1,\\\\ \\frac{mx}{2}+ny=1,\\end{matrix}\\right.$\n消去$y$,整理得\n\n$(m^2+2n^2)x^2-4mx+4-4n^2=0 (*)$,\n\n$则\\Delta =16m^2-4(m^2+2n^2)(4-4n^2)=16n^2(m^2+2n^2-2)$\n\n因为$P(m,n)$在椭圆外部,\n\n所以\n$\\frac{m^2}{2} + n^2 > 1, $\n即$m^2+2n^2-2 > 0$,\n\n$所以\\Delta > 0,方程(*)有两个不等的实根,$\n\n即直线l与椭圆C有两个不同的公共点.'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 108 "$设函数f(x)=ae^{x}\ln x+\frac{be^{x-1}}{x},曲线y=f(x)在点(1, f(1))处的切线为y=e(x-1)+2.$ | |
| $证明: f(x)>1.$" "[""$证明:由(1)可得 f(x)=e^{x}lnx + \\frac{2}{x}e^{x-1},从而f(x)>1 等价于 xlnx > xe^{-x} - \\frac{2}{e}.$\n$设函数 g(x)=xlnx,则 g'(x)=lnx+1,$\n$当 x\\in (0,\\frac{1}{e})时,g'(x)<0;当 x\\in (\\frac{1}{e},+\\infty)时,g'(x)>0.$\n$故 g(x) 在 (0,\\frac{1}{e}) 上单调递减,在 (\\frac{1}{e},+\\infty) 上单调递增,$\n$从而 g(x) 在 (0,+\\infty ) 上的最小值为 g(\\frac{1}{e})=-\\frac{1}{e}.$\n$设函数 h(x)=xe^{-x}-\\frac{2}{e},则 h'(x)=e^{-x}(1-x),$\n$当 x\\in (0,1)时,h'(x)>0;当 x\\in (1,+\\infty )时,h'(x)<0.故 h(x) 在 (0,1) 上单调递增,在 (1,+\\infty ) 上单调递减,从而 h(x) 在 (0,+\\infty ) 上的最大值为 h(1)=-\\frac{1}{e}.$\n$综上,当 x>0 时,g(x)>h(x) 恒成立,即 f(x)>1.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 109 "$已知函数f(x)=|x-a-1|+|x-2a|.$ | |
| $证明:存在a\in (0,+\infty ),使得f(x)\geq 1恒成立;$" ['$证明:∀x\\in R, f(x)=|x-a-1|+|x-2a|\\geq |x-a-1-(x-2a)|=|a-1|,当且仅当(x-a-1)(x-2a)\\leq 0时取等号,$\n$因此f(x)_{min}=|a-1|,由|a-1|\\geq 1,且a>0,解得a\\geq 2,则当a\\geq 2时, f(x)\\geq 1恒成立,$\n$所以存在a\\in (0,+\\infty ),使得f(x)\\geq 1恒成立.$'] [] Text-only Chinese College Entrance Exam Theorem proof Inequality Math Chinese | |
| 110 "$设函数f(x)=|2x-3|+|2x+1|.$ | |
| $令f(x)的最小值为T,正数x,y,z满足x+y+2z=T,证明:\frac{1}{x+1} + \frac{1}{y+1} + \frac{2}{z+2} \geq \frac{8}{5}.$" ['$证明:因为|2x-3|+|2x+1|\\geq |2x-3-(2x+1)|=4,$\n$当且仅当(2x-3)(2x+1)\\leq 0,即-\\frac{1}{2}\\leq x\\leq \\frac{3}{2}时取“等号”,所以f(x)的最小值T=4,即x+y+2z=4,$\n$则(x+1)+(y+1)+2(z+2)=10,$\n$\\frac{1}{x+1}+\\frac{1}{y+1}+\\frac{2}{z+2}=\\frac{1}{10}[(x+1)+(y+1)+2(z+2)]\\cdot \\left(\\frac{1}{x+1}+\\frac{1}{y+1}+\\frac{2}{z+2}\\right)=\\frac{1}{10}\\left[6+\\frac{y+1}{x+1}+\\frac{x+1}{y+1}+\\frac{2(z+2)}{x+1}+\\frac{2(x+1)}{z+2}+\\frac{2(z+2)}{y+1}+\\frac{2(y+1)}{z+2}\\right]\\geq \\frac{1}{10}\\left[6+2\\sqrt{\\frac{y+1}{x+1}\\cdot \\frac{x+1}{y+1}}+2\\sqrt{\\frac{2(z+2)}{x+1}\\cdot \\frac{2(x+1)}{z+2}}+2\\sqrt{\\frac{2(z+2)}{y+1}\\cdot \\frac{2(y+1)}{z+2}}\\right]=\\frac{8}{5},$\n$当且仅当\\left\\{\\begin{matrix}\\frac{y+1}{x+1}=\\frac{x+1}{y+1},\\\\ \\frac{2(z+2)}{x+1}=\\frac{2(x+1)}{z+2},\\\\ \\frac{2(z+2)}{y+1}=\\frac{2(y+1)}{z+2},\\end{matrix}\\right.,即x=y=\\frac{3}{2},z=\\frac{1}{2}时取等号,$\n$所以\\frac{1}{x+1}+\\frac{1}{y+1}+\\frac{2}{z+2}\\geq \\frac{8}{5}.$'] [] Text-only Chinese College Entrance Exam Theorem proof Inequality Math Chinese | |
| 111 "$已知f(x)=|a^{2}x+1|,g(x)=\left|2-\frac{2}{a}x\right|.$ | |
| $若a>0, f(1)\leq E,g(1)\leq F,证明:E+F\geq 2.$" ['$证明:E + F \\geq f(1) + g(1) = |a^2 + 1| + \\left|2 - \\frac{2}{a}\\right| $\n$\\geq \\left|(a^2 + 1) - \\left(2 - \\frac{2}{a}\\right)\\right| =\\left|a^2 + \\frac{2}{a} - 1\\right| $\n$(\\text{当且仅当} 2 - \\frac{2}{a} \\leq 0 \\text{时,即} 0 < a \\leq 1 \\text{时等号成立} ) $\n$= \\left|a^2 + \\frac{1}{a} + \\frac{1}{a} - 1\\right| \\geq \\left|3\\sqrt[3]{a^2 \\cdot \\frac{1}{a} \\cdot \\frac{1}{a}} - 1\\right| = 2 \\text{(当且仅当} a^2 = \\frac{1}{a} \\text{,即} a = 1 \\text{时等号成立}.$'] [] Text-only Chinese College Entrance Exam Theorem proof Inequality Math Chinese | |
| 112 "$若关于x的不等式|x-1|+|2x-3|<m的解集为(n,2).$ | |
| $若正实数a,b,c满足a+b+c=m,证明:4ab+bc+ac \geq 8abc。$" ['$证明:因为a,b,c均为正实数,故要证4ab+bc+ac\\geq 8abc,即证\\frac{4ab+bc+ac}{abc}\\geq 8,即证\\frac{1}{a}+\\frac{1}{b}+\\frac{4}{c}\\geq 8.$\n$由(1)可知a+b+c=2,则(a+b+c)\\left(\\frac{1}{a}+\\frac{1}{b}+\\frac{4}{c}\\right)$\n$=1+\\frac{a}{b}+\\frac{4a}{c}+\\frac{b}{a}+1+\\frac{4b}{c}+\\frac{c}{a}+\\frac{c}{b}+4$\n$=6+\\left(\\frac{a}{b}+\\frac{b}{a}\\right)+\\left(\\frac{4a}{c}+\\frac{c}{a}\\right)+\\left(\\frac{4b}{c}+\\frac{c}{b}\\right)$\n$\\geq 6+2\\sqrt{\\frac{a}{b}\\cdot \\frac{b}{a}}+2\\sqrt{\\frac{4a}{c}\\cdot \\frac{c}{a}}+2\\sqrt{\\frac{4b}{c}\\cdot \\frac{c}{b}}=16,$\n$当且仅当a=\\frac{1}{2},b=\\frac{1}{2},c=1时等号成立,$\n$所以\\frac{1}{a}+\\frac{1}{b}+\\frac{4}{c}\\geq 8,即4ab+bc+ac\\geq 8abc.$'] [] Text-only Chinese College Entrance Exam Theorem proof Inequality Math Chinese | |
| 113 "$已知函数f(x)=e^{x}-\ln{x}+\ln{a}.$ | |
| $证明: f(x) \geq 1+\frac{1+\ln a}{a}$" "[""$证明: 令 g(x)=x-1-\\ln x (x>0), 则 g'(x)=1 - \\frac{1}{x} = \\frac{x-1}{x}, 令 g'(x) > 0, 得 x > 1, 令 g'(x) < 0, 得 0 < x < 1, 因此,g(x) 在 (0,1) 上单调递减,在 (1,+\\infty) 上单调递增. 所以 g(x) \\ge g(1) = 0, 即 x - \\ln x \\ge 1,则 \\frac{x}{a} - \\ln \\frac{x}{a} \\ge 1.$\n\n$令 h(x)=e^x - \\frac{x}{a}, 则 h'(x) = e^x - \\frac{1}{a}, 易知 h(x) 在 (-\\infty, -\\ln a) 上单调递减,在 (-\\ln a,+\\infty) 上单调递增, 所以 h(x) \\ge h(-\\ln a)=\\frac{1+\\ln a}{a},即 e^x - \\frac{x}{a} \\ge \\frac{1+\\ln a}{a}.$\n\n$综上,得 e^x - \\ln \\frac{x}{a} \\ge 1+ \\frac{1+\\ln a}{a}, 即 f(x) \\ge 1+\\frac{1+\\ln a}{a}.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 114 "$已知函数f(x) = ae^{x} - x - a (a\neq 0).$ | |
| $证明:对任意a\in (0,1).存在正数b使得ae^b=a+b.且2\ln a+b<0.$" "[""$证明:由(1)知当0<a<1时,-ln a>0,且f(x)在(-\\infty ,-ln a)上单调递减,在(-ln a,+\\infty )上单调递增,$\n\n$因为f(0)=0,所以f(-ln a)<0.$\n\n$因为f(-2ln a)=\\frac{1}{a}+2ln a-a(由2ln a+b<0,考虑到代入-2ln a),$\n\n$设h(x)=\\frac{1}{x}+2ln x-x(0<x\\leq 1)$\n\n$h'(x)=-\\frac{1}{x^2}+\\frac{2}{x}-1=-\\left(\\frac{1}{x}-1\\right)^2\\leq 0,$\n\n$所以h(x)在(0,1)上单调递减,所以h(x)>h(1)=0,即f(-2ln a)>0,$\n\n$由零点存在性定理知存在x_0\\in (-ln a,-2ln a),使得f(x_0)=0,$\n\n$取b=x_0,则ae^b=a+b,且2ln a+b<0.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 115 "$已知椭圆 C: \frac{y^2}{a^2} + \frac{x^2}{b^2} =1 (a>b>0) 的离心率为 \frac{\sqrt{5}}{3},点 A (-2,0) 在 C 上.$ | |
| $过点(-2,3)的直线交C于P,Q两点,直线AP,AQ与y轴的交点分别为M,N,证明:线段MN的中点为定点.$" ['证明:由题意知,过P、Q两点的直线的斜率存在且不为零,记直线为l,设l:y=k(x+2)+3=kx+2k+3,令t=2k+3,则l:y=kx+t①,\n\n联立\n$$\n\\left\\{\n\\begin{matrix}\ny=kx+t,\\\\ \n\\frac{y^2}{9}+\\frac{x^2}{4}=1,\n\\end{matrix}\n\\right.\n$$\n$消去y得(4k^2+9)x^2+8ktx+4t^2-36=0,$\n\n$由\\Delta =(8kt)^2-4(4k^2+9)(4t^2-36)=144\\times (4k^2+9-t^2)>0得4k^2+9>t^2.$\n\n$设P(x1,y1),Q(x2,y2),则x1+x2=\\frac{-8kt}{4k^2+9},$\n\n$x1x2=\\frac{4t^2-36}{4k^2+9},易知直线AP的方程为y=\\frac{y_1}{x_1+2}(x+2).$\n\n$令x=0,得yM=\\frac{2y_1}{x_1+2},同理可得yN=\\frac{2y_2}{x_2+2},$\n\n$则\\frac{y_M+y_N}{2}=\\frac{y_1}{x_1+2}+\\frac{y_2}{x_2+2}=\\frac{kx_1+t}{x_1+2}+\\frac{kx_2+t}{x_2+2}$\n\n$=\\frac{(kx_1+t)(x_2+2)+(kx_2+t)(x_1+2)}{(x_1+2)(x_2+2)}$\n\n$=\\frac{2kx_1x_2+(2k+t)(x_1+x_2)+4t}{2(x_1+x_2)+x_1x_2+4}$\n\n$=\\frac{2k(4t^2-36)-8kt(2k+t)+4t(4k^2+9)}{-16kt+4t^2-36+4(4k^2+9)}$\n\n$=\\frac{36(t-2k)}{4(t-2k)^2}=\\frac{9}{t-2k}=\\frac{9}{3}=3.$\n\n$\\therefore 线段MN的中点为定点(0,3).$\n\n解题技巧\n\n解决直线l过坐标系内定点问题时,可采取换元法将点斜式方程变为斜截式方程,减少项数,从而有效降低后续的计算量.'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 116 "$记S_n为数列{a_n}的前n项和.已知\frac{2S_n}{n}+n=2a_n+1.$ | |
| $证明:{a_n}是等差数列;$" ['$证明:由已知条件 \\frac{2S_n}{n} + n = 2a_{n} + 1 可得, $\n$2S_{n}=2na_{n}+n-n^{2} (①),当 n\\geq 2 时,由①可得 2S_{n-1}=2(n-1)a_{n-1}+(n-1)-(n-1)^{2} (②), $\n$由 a_{n}=S_{n}-S_{n-1} 及①-②可得,(2n-2)a_{n}-(2n-2)a_{n-1}=2n-2, n\\geq 2 ,且 n \\in N^{} , $\n$即 a_{n}-a_{n-1}=1 ,因此 {a_{n}} 是等差数列,公差为1.$'] [] Text-only Chinese College Entrance Exam Theorem proof Sequence Math Chinese | |
| 117 "$已知数列a_n的首项a_1=\frac{4}{5},且满足a_{n+1}=\frac{4a_n}{a_n+3},设b_n=\frac{1}{a_n} - 1.$ | |
| $证明:数列{b_n}为等比数列;$" ['$证明:由题意得a_n=1, 因为$\n\n$\\frac{b_{n+1}}{b_n}= \\frac{\\frac{1}{a_{n+1}}-1}{\\frac{1}{a_n}-1} = \\frac{\\frac{a_n+3}{4a_n}-1}{\\frac{1}{a_n}-1} = \\frac{3(1-a_n)}{4(1-a_n)} = \\frac{3}{4}$\n\n$且b_1= \\frac{1}{a_1} - 1= \\frac{1}{4},$\n\n$所以数列{b_n}是首项为\\frac{1}{4},公比为\\frac{3}{4}的等比数列.$'] [] Text-only Chinese College Entrance Exam Theorem proof Sequence Math Chinese | |
| 118 "$已知a_n为等差数列, b_n = $ | |
| $$ | |
| \begin{cases} | |
| a_n - 6, &\text{当} n \text{为奇数},\\ | |
| 2a_n, &\text{当} n \text{为偶数}. | |
| \end{cases} | |
| $$ | |
| $记S_n,T_n分别为数列a_n,b_n的前n项和,S_4=32,T_3=16.$ | |
| $证明:当n > 5时,T_n > S_n。$" ['证明:\n\n$\\because a_n为等差数列,$\n\n$\\therefore S_n = na_1 + \\frac{n(n-1)}{2}d = 5n + n^2-n = n^2 + 4n,$\n\n$①当n(n\\geq 6)为偶数时,T_n = b_1 + b_2 +\\ldots + b_n$\n\n$= (b_1 + b_3 +\\ldots + b_{n-1} )+( b_2 + b_4 +\\ldots + b_{n})$\n\n$= (a_1-6 + a_3-6 +\\ldots + a_{n-1}-6)+(2a_2+2a_4+\\ldots +2a_n)$\n\n$= \\frac{a_1 + a_{n-1}}{2} \\cdot \\frac{n}{2} -6 \\cdot \\frac{n}{2} + 2\\cdot\\frac{a_2 + a_n}{2} \\cdot \\frac{n}{2}$\n\n$= \\frac{5+2(n-1)+3}{2} \\cdot \\frac{n}{2} -3n + \\frac{7+2n+3}{2} \\cdot n = \\frac{3n^2+7n}{2}.$\n\n$\\therefore T_n- S_n = \\frac{3n^2+7n}{2} -n^2 -4n= \\frac{3n^2 +7n-2n^2-8n}{2}=\\frac{n^2-n}{2}=\\frac{n(n-1)}{2}>0(n\\geq 6),$\n\n$\\therefore 当n(n\\geq 6)为偶数时,T_n>S_n.$\n\n$②当n(n\\geq 7)为奇数时,T_n = b_1 + b_2 +\\ldots + b_n$\n\n$= (b_1 + b_3 +\\ldots + b_n )+( b_2 + b_4 +\\ldots + b_{n-1})$\n\n$= (a_1-6 + a_3-6 +\\ldots + a_n -6)+(2a_2+2a_4+\\ldots +2a_{n-1})$\n\n$= \\frac{a_1+a_n}{2} \\cdot \\frac{n+1}{2}-6 \\cdot \\frac{n+1}{2} +2\\cdot\\frac{a_2 + a_{n-1}}{2} \\cdot \\frac{n-1}{2}$\n\n$= \\frac{5+2n+3}{2} \\cdot \\frac{n+1}{2} -3(n+1) +(n-1)\\cdot\\frac{7+2(n-1)+3}{2} = \\frac{3n^2+5n-10}{2},$\n\n$\\therefore T_n - S_n = \\frac{3n^2+5n-10}{2} -(n^2+4n) = \\frac{n^2-3n-10}{2}=\\frac{(n-5)(n+2)}{2}>0(n\\geq 7),$\n\n$\\therefore n(n\\geq 7)为奇数时,T_n > S_n.$\n\n$综上可知,当n>5时, T_n > S_n.$'] [] Text-only Chinese College Entrance Exam Theorem proof Sequence Math Chinese | |
| 119 "$某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):$ | |
| | 锻炼人次\空气质量等级 | [0,200] | (200,400] | (400,600] | | |
| |-----|---------|----------|----------| | |
| | 1(优) | 2 | 16 | 25 | | |
| | 2(良) | 5 | 10 | 12 | | |
| | 3(轻度污染) | 6 | 7 | 8 | | |
| | 4(中度污染) | 7 | 2 | 0 | | |
| $附:K^2=\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$ | |
| $$ | |
| \begin{array}{c|ccc} | |
| P\left(K^{2} \geqslant k\right) & 0.050 & 0.010 & 0.001 \\ | |
| \hline k & 3.841 & 6.635 & 10.828 | |
| \end{array} | |
| $$ | |
| $若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好"".根据所给数据,完成下面的2\times 2列联表,并根据列联表,证明:有95\%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.$" ['证明:\n$根据所给数据,可得2\\times 2列联表:$\n\n| | 人次 $\\leq$ 400 | 人次>400 |\n|-------|---------|---------|\n| 空气质量好 | 33 | 37 |\n| 空气质量不好 | 22 | 8 |\n\n$根据列联表得K^2=\\frac{100 \\times (33 \\times 8-37 \\times 22)^2}{70 \\times 30 \\times 55 \\times 45}\\approx 5.820.$\n\n由于5.820>3.841,故有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.\n\n'] [] Text-only Chinese College Entrance Exam Theorem proof Probability and Statistics Math Chinese | |
| 120 "规定抽球试验规则如下:盒子中初始装有白球和红球各一个,每次有放回地任取一个,连续取两次,将以上过程记为一轮.如果每一轮取到的两个球都是白球,则记该轮为成功,否则记为失败.在抽取过程中,如果某一轮成功,则停止;否则,在盒子中再放入一个红球,然后接着进行下一轮抽球,如此不断继续下去,直至成功. | |
| $附:线性回归方程\hat{y}=\hat{b}x+\hat{a}中,\hat{b}=\frac{\sum \limits^{n}_{{i=1}}x_iy_i-n\overline{x} \cdot \overline{y}}{\sum \limits^{n}_{{i=1}}x^2_i-n{\overline{x}}^2},\hat{a}=\overline{y}-\hat{b}\overline{x};$ | |
| $参考数据:\sum \limits^{5}_{{i=1}}x^2_i=1.46,\overline{x}=0.46,\overline{x}^2=0.212 \left(\begin{matrix}\text{其中}x_i=\frac{1}{t_i},\overline{x}=\frac{1}{5}\sum \limits^{5}_{{i=1}}x_i\end{matrix}\right).$ | |
| $证明:\frac{1}{2^2} + \frac{1}{3^2}\left(1-\frac{1}{2^2}\right) + \frac{1}{4^2}\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right) + \ldots + \frac{1}{(n+1)^2}\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right) \times \ldots \times \left(1-\frac{1}{n^2}\right) < \frac{1}{2}.$" ['$证明:由题知,在前n轮就成功的概率P=\\frac{1}{2^2}+\\frac{1}{3^2}\\times\\left(1-\\frac{1}{2^2}\\right)+\\frac{1}{4^2}\\left(1-\\frac{1}{2^2}\\right)\\left(1-\\frac{1}{3^2}\\right)+\\ldots +\\frac{1}{(n+1)^2}\\left(1-\\frac{1}{2^2}\\right)\\left(1-\\frac{1}{3^2}\\right)\\times\\ldots \\times\\left(1-\\frac{1}{n^2}\\right).$\n$在前n轮没有成功的概率为$\n$1-P=\\left(1-\\frac{1}{2^2}\\right)\\left(1-\\frac{1}{3^2}\\right)\\times\\ldots \\times\\left[1-\\frac{1}{(n+1)^2}\\right]$\n$=\\left(1-\\frac{1}{2}\\right)\\left(1+\\frac{1}{2}\\right)\\times\\left(1-\\frac{1}{3}\\right)\\left(1+\\frac{1}{3}\\right)\\times\\ldots \\times\\left(1-\\frac{1}{n}\\right)\\left(1+\\frac{1}{n}\\right)\\times\\left(1-\\frac{1}{n+1}\\right)\\times\\left(1+\\frac{1}{n+1}\\right)$\n$=\\frac{1}{2}\\times\\frac{3}{2}\\times\\frac{2}{3}\\times\\frac{4}{3}\\times\\ldots \\times\\frac{n-1}{n}\\times\\frac{n+1}{n}\\times\\frac{n}{n+1}\\times\\frac{n+2}{n+1}$\n$=\\frac{n+2}{2n+2}=\\frac{1}{2}+\\frac{1}{2n+2}>\\frac{1}{2},所以P<\\frac{1}{2},$\n$即\\frac{1}{2^2}+\\frac{1}{3^2}\\left(1-\\frac{1}{2^2}\\right)+\\frac{1}{4^2}\\left(1-\\frac{1}{2^2}\\right)\\left(1-\\frac{1}{3^2}\\right)+\\ldots +\\frac{1}{(n+1)^2}\\times\\left(1-\\frac{1}{2^2}\\right)\\left(1-\\frac{1}{3^2}\\right)\\times\\ldots \\times\\left(1-\\frac{1}{n^2}\\right)<\\frac{1}{2}.$'] [] Text-only Chinese College Entrance Exam Theorem proof Probability and Statistics Math Chinese | |
| 121 "$某商场为促销商品举行抽奖活动,设置了A,B两种抽奖方案.方案A的中奖率为\frac{2}{3},中奖可得2分;方案B的中奖率为\frac{2}{5},中奖可得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,活动后顾客凭分数兑换相应奖品.$ | |
| $顾客甲、乙决定选择同一种方案抽奖(即都选择方案A或都选择方案B进行抽奖).如果从累计得分的角度考虑,证明:选择方案A更好。$" ['证明:\n若顾客甲、乙决定选择同一种方案抽奖,则\n当选方案A时,X的可能值有0,2,4,\n$P(X=0)=\\left(1-\\frac{2}{3}\\right)\\times \\left(1-\\frac{2}{3}\\right)=\\frac{1}{9},$\n$P(X=2)=2\\times \\frac{2}{3}\\times \\left(1-\\frac{2}{3}\\right)=\\frac{4}{9},$\n$P(X=4)=\\frac{2}{3}\\times \\frac{2}{3}=\\frac{4}{9}.$\n$\\therefore 期望E_1(X)=0\\times \\frac{1}{9}+2\\times \\frac{4}{9}+4\\times \\frac{4}{9}=\\frac{8}{3}.$\n当选方案B时,$X的可能值有0,3,6$,\n$P(X=0)=\\left(1-\\frac{2}{5}\\right)\\times \\left(1-\\frac{2}{5}\\right)=\\frac{9}{25},$\n$P(X=3)=2\\times \\frac{2}{5}\\times \\left(1-\\frac{2}{5}\\right)=\\frac{12}{25},$\n$P(X=6)=\\frac{2}{5}\\times \\frac{2}{5}=\\frac{4}{25},$\n$\\therefore 期望E_2(X)=0\\times \\frac{9}{25}+3\\times \\frac{12}{25}+6\\times \\frac{4}{25}=\\frac{12}{5}.$\n$\\because E_1(X) > E_2(X),$\n$\\therefore 他们选择方案A比较好.$\n\n'] [] Text-only Chinese College Entrance Exam Theorem proof Probability and Statistics Math Chinese | |
| 122 "$已知数列a_n的首项为1,对任意的n \in N^,定义b_n = a_{n+1} - a_n.$ | |
| $若b_{n+1}b_{n-1}=b_{n} (n\geq 2),且b_{1}=a,b_{2}=b (ab\neq 0).$ | |
| $当a=1时,求证:数列{a_{n}}中任意一项的值均不会在该数列中出现无数次.$" ['$证明:由①知:对任意的n\\in N^{}有b_{n+6}=b_{n},$\n\n$又数列{b_{n}}的前6项分别为1,b,b,1,\\frac{1}{b},\\frac{1}{b},且这6个数的和为2b+\\frac{2}{b}+2.$\n\n$设c_{n}=a_{6n+i}(n\\in N),其中i为常数且i\\in {1,2,3,4,5,6},$\n\n$所以c_{n+1}-c_{n}=a_{6n+6+i}-a_{6n+i}=b_{6n+i}+b_{6n+i+1}+b_{6n+i+2}+b_{6n+i+3}+b_{6n+i+4}+b_{6n+i+5}=2b+\\frac{2}{b}+2.$\n\n$所以,数列{a_{6n+i}}均为以2b+\\frac{2}{b}+2为公差的等差数列.$\n\n$因为b>0时,2b+\\frac{2}{b}+2>0,b<0时,2b+\\frac{2}{b}+2\\leq -2<0,$\n\n$所以{a_{6n+i}}均为公差不为零的等差数列,其中任意一项的值最多在该数列中出现一次.$\n\n$所以数列{a_{n}}中任意一项的值最多在此数列中出现6次,$\n\n即任意一项的值均不会在此数列中重复出现无数次.'] [] Text-only Chinese College Entrance Exam Theorem proof Sequence Math Chinese | |
| 123 "$已知函数f(x)=\cos x + \frac{1}{2}x^2 -1$ | |
| $证明: sin\frac{1}{2} + sin\frac{2}{4} + sin\frac{3}{8} + ... + sin\frac{2023}{2^{2023}} < 2.$" "[""$由(1)可知,当x >0时,f'(x)=-\\sin x +x >0, 即x >\\sin x.$\n$所以 \\sin\\frac{1}{2}+\\sin\\frac{2}{4}+\\sin\\frac{3}{8}+\\ldots+\\sin\\frac{2023}{2^{2023}}< \\frac{1}{2}+\\frac{2}{4}+\\frac{3}{8}+\\ldots+\\frac{2023}{2^{2023}}.$\n$令 S=\\frac{1}{2}+\\frac{2}{4}+\\frac{3}{8}+\\ldots+\\frac{2023}{2^{2023}},$\n$则 \\frac{1}{2}S=\\frac{1}{4}+\\frac{2}{8}+\\frac{3}{16}+\\ldots+\\frac{2023}{2^{2024}},$\n$两式相减得 \\frac{1}{2}S=\\frac{1}{2}+\\frac{1}{4}+\\frac{1}{8}+\\ldots+\\frac{1}{2^{2023}}-\\frac{2023}{2^{2024}},$\n$化简可得 S=2\\left[1-\\left(\\frac{1}{2}\\right)^{2023}-\\frac{2023}{2^{2024}}\\right] <2,$\n$故 \\sin\\frac{1}{2}+\\sin\\frac{2}{4}+\\sin\\frac{3}{8}+\\ldots+\\sin\\frac{2023}{2^{2023}}<2.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 124 "$已知函数f(x)=e^{x-1}+ax.$ | |
| $当m\geq 1时,证明ln x+ \frac{m\mathrm{e}^x}{x} -\sin x>1恒成立.$" "[""$令 g(m) = \\frac{\\mathrm{e}^x}{x} \\cdot m + lnx - \\sin x - 1, 易知 g(m) 单调递增.$\n\n$当 m \\geq 1 时, g(m) \\geq g(1), 所以若证原不等式成立,即证 \\frac{\\mathrm{e}^x}{x} + ln x - \\sin x - 1 > 0,$\n\n$因为 \\frac{\\mathrm{e}^x}{x} = e^{x-ln x}, \\frac{\\mathrm{e}^x}{x} + ln x - \\sin x - 1 = e^{x-ln x} - x + ln x - 1 + x - \\sin x,$\n\n$由(1)知 e^{x-1} - x \\geq 0,$\n\n$把 x 换成 x - ln x + 1 易得 e^{x-ln x} - (x - ln x + 1) \\geq 0,$\n\n$不妨设 h(x) = x - \\sin x, h'(x) = 1 - \\cos x \\geq 0, 所以 h(x) 单调递增,$\n\n$又 x > 0, 故 h(x) > h(0) = 0, 所以 e^{x-ln x} - x + ln x - 1 + x - \\sin x > 0, 即 \\frac{\\mathrm{e}^x}{x} + ln x - \\sin x - 1 > 0, 故原不等式得证.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 125 "$\triangle ABC的内角A,B,C的对边分别为a,b,c,已知 \cos ^2(\frac{\pi }{2}+A) + \cos A=\frac{5}{4}.$ | |
| $若b-c=\frac{\sqrt{3}}{3}a,证明:\triangle ABC是直角三角形.$" ['$由已知得 \\sin ^2 A + \\cos A = \\frac{5}{4},$\n$即 \\cos ^2 A - \\cos A + \\frac{1}{4} = 0.$\n$所以 (\\cos A - \\frac{1}{2})^2 = 0, \\cos A = \\frac{1}{2}. 由于 0 < A < \\pi, 故 A = \\frac{\\pi}{3}.$\n\n$证明:由正弦定理及已知条件可得sin B-sin C=\\frac{\\sqrt{3}}{3} sin A.$\n$由上知B+C=\\frac{2\\pi }{3},所以sin B-sin \\left(\\frac{2\\pi }{3}-B\\right)=\\frac{\\sqrt{3}}{3} sin \\frac{\\pi }{3}.$\n$即 \\frac{1}{2} sin B-\\frac{\\sqrt{3}}{2} cos B=\\frac{1}{2},sin \\left(B-\\frac{\\pi }{3}\\right)=\\frac{1}{2}.$\n$由于0<B<\\frac{2\\pi }{3},故B=\\frac{\\pi }{2}.从而\\triangle ABC是直角三角形.$'] [] Text-only Chinese College Entrance Exam Theorem proof Trigonometric Functions Math Chinese | |
| 126 "$已知首项为3的数列{a_n}的前n项和为S_n,且S_{n+1} + a_n = S_n + 5 \cdot 4^n.$ | |
| $求证:数列{a_n-4^n}为等比数列;$" ['$证明:由题意得,S_{n+1}-S_n+a_n=5 \\cdot 4^n,即a_{n+1}+a_n=4^{n+1}+4^n,$\n$故a_{n+1}-4^{n+1}=-(a_n-4^n),即\\frac{a_{n+1}-4^{n+1}}{a_n-4^n}=-1,$\n$又a_1-4=-1,故数列{a_n-4^n}是以-1为首项,-1为公比的等比数列.$'] [] Text-only Chinese College Entrance Exam Theorem proof Sequence Math Chinese | |
| 127 "已知直三棱柱ABC-A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC和CC1的中点,D为棱A1B1上的点,BF\perp A1B1. | |
| $证明:BF \perp DE;$" ['$\\because BF \\perp A_1B_1,B_1B \\perp A_1B_1,BF \\cap B_1B = B,$\n\n$\\therefore A_1B_1 \\perp 平面 B_1C_1CB,$\n\n$\\because AB \\parallel A_1B_1,\\therefore AB \\perp 平面 B_1C_1CB,$\n\n$又\\because BC \\subset 平面 B_1C_1CB,\\therefore AB \\perp BC.$\n\n$以 B 为坐标原点,BA,BC,BB_1 所在直线分别为 x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则 B (0,0,0),F (0,2,1),E (1,1,0),\\therefore \\overrightarrow{BF} =(0,2,1),设 B_1D =a (0 \\leq a \\leq 2),则 D (a ,0,2),则\\overrightarrow{DE} =(1-a ,1,-2).$\n\n<img_286>\n\n$证明:\\because \\overrightarrow{BF} \\cdot \\overrightarrow{DE} =(0,2,1)\\cdot (1-a ,1,-2)=0\\times (1-a )+2\\times 1+1\\times (-2)=0,\\therefore BF \\perp DE.$'] [] Text-only Chinese College Entrance Exam Theorem proof Solid Geometry Math Chinese | |
| 128 "$已知函数f(x)=|x-a|+2|x+1|(a>0)。$ | |
| $若函数 g(x)=f(x)-|x+1|的最小值为M,实数 b>0, c>-1,且 b+c=M-a,证明: \frac{1}{b} + \frac{1}{c+1} \geq 2.$" ['$证明:由题意 g(x)=|x-a|+2|x+1|-|x+1|=|x-a|+|x+1| \\geq |(x-a)-(x+1)|=|a+1|,$\n\n$\\because a>0,\\therefore g(x)_{min}=a+1=M,$\n\n$又 \\because b+c=M-a.\\therefore b+c=1 ,则 b+c+1=2 ,由 b\\gt 0, c\\gt -1, 得 c+1>0,$\n\n$\\therefore \\frac{1}{b}+\\frac{1}{c+1}=\\frac{1}{2}\\left(\\frac{b+c+1}{b}+\\frac{b+c+1}{c+1}\\right)=\\frac{1}{2}\\left(1+\\frac{c+1}{b}+\\frac{b}{c+1}+1\\right) \\geq \\frac{1}{2}\\left(2+2\\sqrt{\\frac{c+1}{b}\\cdot \\frac{b}{c+1}}\\right)=2,$\n\n$当且仅当 b=c+1,即 b=1, c=0 时取等号,$\n\n$\\therefore \\frac{1}{b}+\\frac{1}{c+1} \\geq 2 成立.$'] [] Text-only Chinese College Entrance Exam Theorem proof Inequality Math Chinese | |
| 129 "$已知定义在R上的函数f(x)=|x-2|+|x+4|的最小值为p.$ | |
| $设a, b, c\in R,a^2+2b^2+3c^2=2p,求证:|a+2b+3c|\leq 6 \sqrt{2}.$" ['$证明:由(1)知a^2+2b^2+3c^2=12. 应用柯西不等式,得(a+2b+3c)^2 = (1\\cdot a+ \\sqrt{2}\\cdot \\sqrt{2}\\cdot b+ \\sqrt{3}\\cdot \\sqrt{3}\\cdot c)^2 $\n\n$\\leq [1^2+(\\sqrt{2})^2+(\\sqrt{3})^2][a^2+(\\sqrt{2}\\cdot b)^2+(\\sqrt{3}\\cdot c)^2]$\n\n$=6(a^2+2b^2+3c^2)=72,$\n\n$所以|a+2b+3c|\\leq 6\\sqrt{2}.$\n\n$当且仅当a=b=c=\\pm \\sqrt{2}时,等号成立.$'] [] Text-only Chinese College Entrance Exam Theorem proof Inequality Math Chinese | |
| 130 "$已知函数f(x)=|2x+4|+|x-1|.$ | |
| $设函数f(x)的最小值为m,正实数a,b满足a^2+9b^2=m,求证:a+3b \geq 2\sqrt{6}ab.$" ['证明: \n$f(x)=|2x+4|+|x-1|=\\begin{cases} 3x+3, & x\\geq 1,\\\\ x+5, &-2<x<1,\\\\ -3x-3, &x\\leq -2, \\end{cases}$\n$所以当x >= -2时,函数f(x)取最小值,最小值m=3,$\n$于是a^2+9b^2=3,$\n$则3=a^2+9b^2 \\geq 2a \\times 3b=6ab,即ab \\leq \\frac{1}{2},$\n$又\\because a > 0, b > 0,于是0 < ab \\leq \\frac{1}{2}.$\n$\\therefore \\frac{a+3b}{ab} = \\frac{1}{b}+\\frac{3}{a} \\geq 2\\sqrt{\\frac{3}{ab}} \\geq 2\\sqrt{6},$\n$\\therefore a+3b \\geq 2\\sqrt{6}ab, 原不等式得证.$'] [] Text-only Chinese College Entrance Exam Theorem proof Inequality Math Chinese | |
| 131 "$已知a_n为等差数列,b_n为等比数列,a_1=b_1=1,a_5=5(a_4-a_3),b_5=4(b_4-b_3)。$ | |
| $记a_n的前n项和为S_n,求证:S_nS_{n+2} < S^2_{n+1}(n\in N);$" ['$证明:由(1)可得 S_n=\\frac{n(n+1)}{2},故 S_nS_{n+2}=\\frac{1}{4}n(n+1)(n+2)(n+3),S^2_{n+1}=\\frac{1}{4}(n+1)^2(n+2)^2,从而 S_nS_{n+2}-S^2_{n+1}=-\\frac{1}{2}(n+1)(n+2)<0 (比较大小可利用作差法),所以 S_nS_{n+2}<S^2_{n+1}.$'] [] Text-only Chinese College Entrance Exam Theorem proof Sequence Math Chinese | |
| 132 "$已知抛物线C:y^{2}=2px(p>0)的焦点为F,其准线与x轴交于点P,过点P作直线l与C交于A,B两点,点D与点A关于x轴对称.$ | |
| $证明:直线BD过点F;$" ['$证明:设点A(x_1,y_1), B(x_2,y_2), D(x_1,-y_1),由题可知直线l的斜率存在且不为0,设为k,$\n$则直线l的方程为y = k(x+\\frac{p}{2}),$\n$由\\{\\begin{matrix}y = k(x+\\frac{p}{2}),\\\\ y^2 = 2px,\\end{matrix}.得ky^2-2py+kp^2=0,\\Delta = 4p^2-4k^2p^2>0,$\n$y_1+y_2=\\frac{2p}{k},y_1y_2=p^2,$\n$\\therefore k_BD=\\frac{y_2+y_1}{x_2-x_1}=\\frac{y_2+y_1}{\\frac{1}{2p}(y^2_2-y^2_1)}=\\frac{2p}{y_2-y_1},$\n$\\therefore 直线BD的方程为y+y_1=\\frac{2p}{y_2-y_1}(x-\\frac{y^2_1}{2p}),即y=\\frac{2p}{y_2-y_1}(x-\\frac{p}{2}),故直线BD过定点(\\frac{p}{2},0),即直线BD过点F.$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 133 "$设抛物线C: y^2=2x, 点A(2,0),B(-2,0),过点A的直线l与C交于M,N两点.$ | |
| $证明:\angle ABM=\angle ABN.$" ['$证明:当l与x轴垂直时,AB为MN的垂直平分线,所以\\angle ABM=\\angle ABN.$\n$当l与x轴不垂直时,设l的方程为y=k(x-2)(k\\neq0),M(x_1,y_1),N(x_2,y_2),则x_1>0,x_2>0.$\n$由$\n$\\left\\{\n\\begin{matrix}\ny=k(x-2),\\\\ \ny^2=2x\n\\end{matrix}\n\\right.$\n$,得ky^2y-2y-4k=0,可知y_1+y_2=\\frac{2}{k},y_1y_2=-4.直线BM,BN的斜率之和为$\n$k_{BM}+k_{BN}=\\frac{y_1}{x_1+2}+\\frac{y_2}{x_2+2}=\\frac{x_2y_1+x_1y_2+2(y_1+y_2)}{(x_1+2)(x_2+2)}.记为方程①$\n$将x_1=\\frac{y_1}{k}+2,x_2=\\frac{y_2}{k}+2及y_1+y_2,y_1y_2的表达式代入①式分子,可得x_2y_1+x_1y_2+2(y_1+y_2)=\\frac{2y_1y_2+4k(y_1+y_2)}{k}=\\frac{-8+8}{k}=0. 所以k_{BM}+k_{BN}=0,可知BM,BN的倾斜角互补,所以\\angle ABM=\\angle ABN.综上,\\angle ABM=\\angle ABN.$\n\n$失分警示:由于不能将“\\angle ABM=\\angle ABN”正确转化为“k_{BM}+k_{BN}=0”进行证明,从而思路受阻,无法完成后续内容.$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 134 "$已知双曲线C:\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a>0,b>0)的右焦点为F(2,0),渐近线方程为y=\pm \sqrt{3}x.$ | |
| $过F的直线与C的两条渐近线分别交于A,B两点,点P(x_{1},y_{1}),Q(x_{2},y_{2})在C上,且x_{1}>x_{2}>0,y_{1}>0.过P且斜率为-\sqrt{3}的直线与过Q且斜率为\sqrt{3}的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立.$ | |
| $①M在AB上;4$ | |
| $②PQ\parallel AB;$ | |
| $③|MA|=|MB|.$ | |
| 注:若选择不同的组合分别解答,则按第一个解答计分." ['$易知直线PQ的斜率存在,$\n$设其方程为y=kx+b(k>\\sqrt{3}),$\n由\n$$\n\\left\\{\n\\begin{matrix}\ny=kx+b,\\\\ \n3x^2-y^2-3=0,\n\\end{matrix}\n\\right.\n$$\n$得(3-k^2)x^2-2kbx-b^2-3=0,$\n$由\\Delta >0,得b^2+3-k^2>0,\\therefore x_1+x_2=\\frac{2kb}{3-k^2},x_1x_2=\\frac{-b^2-3}{3-k^2},$\n$\\therefore x_1-x_2=\\sqrt{(x_1+x_2)^2-4x_1x_2}=\\frac{2\\sqrt{3(b^2+3-k^2)}}{3-k^2},$\n$设点M的坐标为(x_0,y_0),则直线PM、QM的方程分别为y-y_0=-\\sqrt{3}(x-x_0),y-y_0=\\sqrt{3}(x-x_0),$\n故\n$$\n\\left\\{\n\\begin{matrix}\ny_1-y_0=-\\sqrt{3}(x_1-x_0),()\\\\ \ny_2-y_0=\\sqrt{3}(x_2-x_0),()\n\\end{matrix}\n\\right.\n$$\n\n\nNote: The text provided was converted up to a certain point due to its large size. Same conversion would be followed for the rest.'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 135 "$已知椭圆E: \frac{x^2}{a^2} + \frac{y^2}{b^2} =1 (a>b>0)的右顶点为A(2,0),离心率为\frac{1}{2}.过点P(6,0)与x轴不重合的直线l交椭圆E于不同的两点B,C,直线AB,AC分别交直线x=6于点M,N.$ | |
| $设O为原点,求证:\angle PAN + \angle POM = 90^\circ .$" ['$证明:由题设知直线l的斜率存在,设直线l的方程为y=k(x-6)(k\\neq 0)。$\n\n$由 \\left\\{\\begin{matrix}y=k(x-6),\\\\ \\frac{x^2}{4}+\\frac{y^2}{3}=1\\end{matrix}\\right. 消去y,得 (4k^2+3)x^2-48k^2x+144k^2-12=0。$\n\n$由\\Delta=(-48k^2)^2-4(4k^2+3)(144k^2-12)>0及k\\neq 0,$\n\n$解得-\\frac{\\sqrt{6}}{8}<k<0 或 0<k<\\frac{\\sqrt{6}}{8}。$\n\n$设B(x_1,y_1),C(x_2,y_2),$\n\n$则x_1+x_2=\\frac{48k^2}{4k^2+3},x_1x_2=\\frac{144k^2-12}{4k^2+3}。$\n\n$直线AB:y=\\frac{y_1}{x_1-2}(x-2),令x=6,得y=\\frac{4y_1}{x_1-2},$\n\n$所以点M\\left(6,\\frac{4y_1}{x_1-2}\\right).同理,点N\\left(6,\\frac{4y_2}{x_2-2}\\right)。$\n\n$由题设知,\\tan\\angle PMO=\\frac{6}{\\left|\\frac{4y_1}{x_1-2}\\right|},\\tan\\angle PAN=\\frac{\\left|\\frac{4y_2}{x_2-2}\\right|}{4},$\n\n$因为\\frac{4y_1}{x_1-2}\\cdot \\frac{4y_2}{x_2-2}=\\frac{16k^2(x_1-6)(x_2-6)}{(x_1-2)(x_2-2)}=\\frac{16k^2[x_1x_2-6(x_1+x_2)+36]}{x_1x_2-2(x_1+x_2)+4}=\\frac{16k^2\\left(\\frac{144k^2-12}{4k^2+3}-6\\times \\frac{48k^2}{4k^2+3}+36\\right)}{\\frac{144k^2-12}{4k^2+3}-2\\times \\frac{48k^2}{4k^2+3}+4}=24,$\n\n$所以\\tan\\angle PAN=\\tan\\angle PMO,且\\frac{4y_1}{x_1-2}与\\frac{4y_2}{x_2-2}同号。$\n\n$依题意,得\\angle PAN=\\angle PMO,且点M,N位于x轴同侧。$\n\n$因为\\angle PMO+\\angle POM=90^\\circ ,所以\\angle PAN+\\angle POM=90^\\circ 。$\n\n#### 名师点睛\n$要证明\\angle PAN+\\angle POM=90^\\circ ,因为\\triangle PAN与\\triangle POM都是直角三角形,所以只需证明\\angle PAN=\\angle PMO,即证\\tan\\angle PAN=\\tan\\angle PMO。由题设知直线l斜率存在,设其方程为y=k(x-6)(k\\neq 0),与椭圆方程联立,由\\Delta>0得k的范围,设B(x_1,y_1),C(x_2,y_2),写出直线AB方程,得点N坐标,同理得点M坐标,运用锐角三角函数的定义及根与系数的关系即可证明\\tan\\angle PAN=\\tan\\angle PMO,从而\\angle PAN+\\angle POM=90^\\circ 得证。$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 136 "$已知椭圆C的两个顶点分别为A(-2,0),B(2,0),焦点在x轴上,离心率为 \frac{\sqrt{3}}{2} .$ | |
| $点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:\triangle BDE与\triangle BDN的面积之比为4:5.$" ['$证明:设M(m,n),则D(m,0),N(m,-n).$\n$由题设知m\\neq \\pm 2,且n\\neq 0.$\n$直线AM的斜率k_{AM}=\\frac{n}{m+2},$\n$故直线DE的斜率k_{DE}=-\\frac{m+2}{n}.$\n$所以直线DE的方程为y=-\\frac{m+2}{n}(x-m).$\n$直线BN的方程为y=\\frac{n}{2-m}(x-2).$\n$联立得\\left\\{\\begin{matrix}y=-\\frac{m+2}{n}(x-m),\\\\ y=\\frac{n}{2-m}(x-2),\\end{matrix}\\right.$\n$解得点E的纵坐标y_{E}=-\\frac{n(4-m^2)}{4-m^2+n^2}.$\n$由点M在椭圆C上,得4-m^2=4n^2.$\n$所以y_{E}=-\\frac{4}{5}n.$\n$又S_{\\triangle BDE}=\\frac{1}{2}|BD|\\cdot |y_{E}|=\\frac{2}{5}|BD|\\cdot |n|,$\n$S_{\\triangle BDN}=\\frac{1}{2}|BD|\\cdot |n|,$\n$所以\\triangle BDE与\\triangle BDN的面积之比为4:5.$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 137 "$已知椭圆C:x^{2}+3y^{2}=3. 过点D(1,0)且不过点E(2,1)的直线与椭圆C交于A,B两点,直线AE与直线x=3交于点M.$ | |
| 请证明直线BM与直线DE平行." ['$直线BM与直线DE平行.理由如下:$\n\n$当直线AB的斜率不存在时,由(2)可知k_{BM}=1.$\n\n$又因为直线DE的斜率k_{DE}=\\frac{1-0}{2-1}=1,所以BM\\parallel DE.$\n\n$当直线AB的斜率存在时,设其方程为y=k(x-1)(k\\neq 1).设A(x_1,y_1),B(x_2,y_2),$\n\n$则直线AE的方程为y-1=\\frac{y_1-1}{x_1-2}(x-2).$\n\n$令x=3,得点M\\left(3,\\frac{y_1+x_1-3}{x_1-2}\\right).$\n\n$由\\left\\{\\begin{matrix}x^2+3y^2=3,\\\\ y=k(x-1)\\end{matrix}\\right.得(1+3k^2)x^2-6k^2x+3k^2-3=0.$\n\n$所以x_1+x_2=\\frac{6k^2}{1+3k^2},x_1x_2=\\frac{3k^2-3}{1+3k^2}.$\n\n$直线BM的斜率k_{BM}=\\frac{\\frac{y_1+x_1-3}{x_1-2}-y_2}{3-x_2}.$\n\n$因为k_{BM}-1=\\frac{k(x_1-1)+x_1-3-k(x_2-1)(x_1-2)-(3-x_2)(x_1-2)}{(3-x_2)(x_1-2)}=\\frac{(k-1)[-x_1x_2+2(x_1+x_2)-3]}{(3-x_2)(x_1-2)}=\\frac{(k-1)\\left(\\frac{-3k^2+3}{1+3k^2}+\\frac{12k^2}{1+3k^2}-3\\right)}{(3-x_2)(x_1-2)}=0, $\n\n$所以k_{BM}=1=k_{DE}.所以BM\\parallel DE.$\n\n$综上可知,直线BM与直线DE平行.$\n\n'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 138 "$已知椭圆E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a>b>0)的离心率为 \frac{\sqrt{5}}{3} ,A,C分别是E的上、下顶点,B,D分别是E的左、右顶点,|AC|=4.$ | |
| $设P为第一象限内E上的动点,直线PD与直线BC交于点M,直线PA与直线y=-2交于点N.求证:MN\parallel CD.$" ['$证明:设点 P(x_0,y_0),则 \\frac{{x_0}^2}{9} + \\frac{{y_0}^2}{4} = 1,即 4x^2_0=36-9y^2_0.$\n\n$直线 PD :y=\\frac{y_0}{x_0-3}(x-3),直线 BC:y=-\\frac{2}{3}x-2,联立直线 PD 与直线 BC 的方程,得点 (\\frac{3(3y_0-2x_0+6)}{3y_0+2x_0-6}, \\frac{-12y_0}{3y_0+2x_0-6}).$\n\n$直线 PA 的方程为 y=\\frac{y_0-2}{x_0}x+2,令 y=-2,得点 (\\frac{-4x_0}{y_0-2},-2)$\n\n$因为 k_{MN}=\\frac{\\frac{-12y_0}{3y_0+2x_0-6}+2}{\\frac{3(3y_0-2x_0+6)}{3y_0+2x_0-6}+\\frac{4x_0}{y_0-2}}$\n\n$=\\frac{-12y_0+6y_0+4x_0-12}{9y_0-6x_0+18+\\frac{12x_0y_0+8x^2_0-24x_0}{y_0-2}}$\n\n$=\\frac{(-6y_0+4x_0-12)(y_0-2)}{9y^2_0-6x_0y_0+18y_0-18y_0+12x_0-36+12x_0y_0+8x^2_0-24x_0}$\n\n$=\\frac{-6y^2_0+4x_0y_0-12y_0+12y_0-8x_0+24}{9y^2_0+72-18y^2_0+6x_0y_0-12x_0-36}$\n\n$=\\frac{2}{3} \\cdot \\frac{-3y^2_0+2x_0y_0-4x_0+12}{-3y^2_0+2x_0y_0-4x_0+12}=\\frac{2}{3}$\n\n$又因为 k_{CD}=\\frac{2}{3},所以 k_{MN}=k_{CD}$\n\n$又 MN 与 CD 无公共点,所以 MN \\parallel CD.$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 139 "$已知A, B, C是椭圆W:\frac{x^2}{4} + y^2 = 1 上的三个点,O是坐标原点.$ | |
| 当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由." ['$假设四边形OABC为菱形.因为点B不是W的顶点,且直线AC不过原点,所以可设AC的方程为y=kx+m(k\\neq 0, m\\neq 0). $\n由 \n$$\n\\begin{matrix}\nx^2+4y^2=4,\\\\ \ny=kx+m\n\\end{matrix}\n$$\n$消y并整理得(1+4k^2)x^2+8kmx+4m^2-4=0. $\n设A(x_1,y_1),C(x_2,y_2),则 \n$\\frac{x_1+x_2}{2}=-\\frac{4km}{1+4k^2}, $\n$\\frac{y_1+y_2}{2}=k\\cdot \\frac{x_1+x_2}{2}+m,=\\frac{m}{1+4k^2}. $\n所以AC的中点为M \n$\\left(-\\frac{4km}{1+4k^2},\\frac{m}{1+4k^2}\\right). $\n$因为M为AC和OB的交点,所以直线OB的斜率为-\\frac{1}{4k}. $\n$因为k\\cdot \\left(-\\frac{1}{4k}\\right)\\neq -1,所以AC与OB不垂直. $\n所以OABC不是菱形,与假设矛盾. \n所以当点B不是W的顶点时,四边形OABC不可能是菱形.'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 140 "$已知椭圆 C:x^2+2y^2=4.$ | |
| $设O为原点.若点A在椭圆C上,点B在直线y=2上,且OA \perp OB,试判断直线AB与圆x^2+y^2=2的位置关系,并证明你的结论.$" ['直线AB与圆x^2^+y^2^=2相切.证明如下:\n$设点A,B的坐标分别为(x_0,y_0),(t,2),其中x_0\\neq 0.$\n$因为OA\\perp OB,所以\\overrightarrow{OA}\\cdot \\overrightarrow{OB}=0,即tx_0+2y_0=0,解得t=-\\frac{2y_0}{x_0}.$\n$当x_0=t时,y_0=-\\frac{t^2}{2},代入椭圆C的方程,得t=\\pm \\sqrt{2},$\n$故直线AB的方程为x=\\pm \\sqrt{2}.$\n$圆心O到直线AB的距离d=\\sqrt{2}.$\n$此时直线AB与圆x^2+y^2=2相切.$\n$当x_0\\neq t时,直线AB的方程为y-2=\\frac{y_0-2}{x_0-t}(x-t),$\n$即(y_0-2)x-(x_0-t)y+2x_0-ty_0=0.$\n$圆心O到直线AB的距离d=\\frac{|2x_0-ty_0|}{\\sqrt{(y_0-2)^2+(x_0-t)^2}}.$\n$又x^2_0+2y^2_0=4,t=-\\frac{2y_0}{x_0},$\n$故d=\\frac{\\left|2x_0+\\frac{2y^2_0}{x_0}\\right|}{\\sqrt{x^2_0+y^2_0+\\frac{4y^2_0}{x^2_0}+4}}=\\frac{\\left|\\frac{4+x^2_0}{x_0}\\right|}{\\sqrt{\\frac{x^4_0+8x^2_0+16}{2x^2_0}}}=\\sqrt{2}.$\n$此时直线AB与圆x^2+y^2=2相切.$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 141 "$已知椭圆E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a>b>0)经过A(-2,0),B \left(-1,\frac{3}{2}\right)两点,设过点P(-2,1)的直线交椭圆E于M,N两点,过M且平行于y轴的直线与线段AB交于点T,点H满足 \overrightarrow{MT} = \overrightarrow{TH}.$ | |
| 证明:直线HN过定点." ['$证明:由题意得直线AB的方程为y=\\frac{3}{2}(x+2),$\n$(i)若过点P(-2,1)的直线过原点,则直线MN的方程为y=-\\frac{x}{2},与\\frac{x^2}{4}+\\frac{y^2}{3}=1联立,可得M\\left(-\\sqrt{3},\\frac{\\sqrt{3}}{2}\\right),N\\left(\\sqrt{3},-\\frac{\\sqrt{3}}{2}\\right),$\n$此时过M且平行于y轴的直线方程为x=-\\sqrt{3},$\n$代入直线AB方程可得T\\left(-\\sqrt{3},\\frac{3(2-\\sqrt{3})}{2}\\right),$\n$由\\overrightarrow{MT}=\\overrightarrow{TH}得到H\\left(-\\sqrt{3},-\\frac{7\\sqrt{3}}{2}+6\\right),所以直线HN方程为y= \\frac{3-2\\sqrt{3}}{2}(x+2),过点(-2,0).$\n$(ii)分析知过点P(-2,1)与椭圆E交于两点的直线斜率一定存在,设y-1=k(x+2),M(x_1,y_1),N(x_2,y_2).$\n$联立\\left\\{\\begin{matrix}y-1=k(x+2),\\\\ \\frac{x^2}{4}+\\frac{y^2}{3}=1,\\end{matrix}\\right.消去y得(4k_2+3)x_2+(16k_2+8k)x+4(4k_2+4k-2)=0,$\n$所以x_1+x_2=-\\frac{16k^2+8k}{4k^2+3}①,x_1x_2=\\frac{4(4k^2+4k-2)}{4k^2+3}②,$\n$因为点H满足\\overrightarrow{MT}=\\overrightarrow{TH},所以T为MH的中点,$\n$联立\\left\\{\\begin{matrix}x=x_1,\\\\ y=\\frac{3}{2}(x+2),\\end{matrix}\\right.可得T\\left(x_1,\\frac{3}{2}(x_1+2)\\right),$\n$所以H(x_1,3(x_1+2)-y_1).$\n$可求得此时HN:y-y_2=\\frac{3x_1+6-y_1-y_2}{x_1-x_2}(x-x_2),$\n$假设直线HN过定点(-2,0),将(-2,0)代入直线HN的方程整理得-6(x_1+x_2)+2(y_1+y_2)+x_1y_2+x_2y_1-3x_1x_2-12=0,$\n$由①②得y_1+y_2=k(x_1+x_2)+4k+2=\\frac{12k+6}{4k^2+3}③,$\n$且x_1y_2+x_2y_1 = x_1(kx_2+2k+1)+x_2(kx_1+2k+1)=2kx_1x_2+(2k+1)(x_1+x_2)=\\frac{-24k}{4k^2+3}④,$\n$将①②③④代入,得96k_2+48k+24k+12-24k-48k_2-48k+24-48k_2-36=0,显然成立,所以直线HN过定点(-2,0).$\n综上,可得直线HN过定点(-2,0).'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 142 "$已知椭圆M: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)经过点C(0,1),离心率为 \frac{\sqrt{2}}{2} ,M与x轴交于两点A(a,0),B(-a,0),过点C的直线l与M交于另一点D,并与x轴交于点P,直线AC与直线BD交于点Q。$ | |
| $设O为原点,当点P异于点B时,求证:\overrightarrow{OP} \cdot \overrightarrow{OQ}为定值.$" ['$证法一: 由(1)得A(\\sqrt{2},0),B(-\\sqrt{2},0)。$\n\n$若l的斜率不存在,则D(0,-1),$\n\n$此时k_{AC}=k_{BD}=-\\frac{\\sqrt{2}}{2},AC \\parallel BD,不符合题意,$\n\n$所以l的斜率存在,设l的方程为y=kx+1,易知k \\neq \\frac{\\sqrt{2}}{2}.$\n\n$由\\left\\{\\begin{matrix}\\frac{x^2}{2}+y^2=1,\\\\ y=kx+1\\end{matrix}\\right.消去y得(1+2k^2)x^2+4kx=0,$\n\n$解得x=0或x=\\frac{-4k}{1+2k^2},$\n\n$将x=\\frac{-4k}{1+2k^2}代入y=kx+1得y=\\frac{-4k^2}{1+2k^2}+1=\\frac{1-2k^2}{1+2k^2},$\n\n$所以D\\left(\\frac{-4k}{1+2k^2},\\frac{1-2k^2}{1+2k^2}\\right),$\n\n$则k_{BD}=\\frac{\\frac{1-2k^2}{1+2k^2}}{\\frac{-4k}{1+2k^2}+\\sqrt{2}}=\\frac{1-2k^2}{2\\sqrt{2}k^2-4k+\\sqrt{2}}=\\frac{(1-\\sqrt{2}k)(1+\\sqrt{2}k)}{\\sqrt{2}(1-\\sqrt{2}k)^2}=\\frac{1+\\sqrt{2}k}{\\sqrt{2}(1-\\sqrt{2}k)},$\n\n$所以直线BD的方程为y=\\frac{1+\\sqrt{2}k}{\\sqrt{2}(1-\\sqrt{2}k)}(x+\\sqrt{2}),$\n\n$又k_{AC}=-\\frac{\\sqrt{2}}{2},所以直线AC的方程为y=-\\frac{\\sqrt{2}}{2}x+1,$\n\n$联立AC,BD的方程,解得x=-2k ,y=\\sqrt{2}k+1,$\n\n$所以Q点坐标为(-2k,\\sqrt{2}k+1)$\n\n$对于直线l:y=kx+1,令y=0,解得x=-\\frac{1}{k},$\n\n$所以P\\left(-\\frac{1}{k},0\\right),$\n\n$所以\\overrightarrow{OP}.\\overrightarrow{OQ}=\\left(-\\frac{1}{k}\\right)\\cdot (-2k)+0\\cdot (\\sqrt{2}k+1)=2,为定值.$\n\n$证法二: 若D在y轴上,则D(0,-1),$\n\n$此时k_{AC}=k_{BD}=-\\frac{\\sqrt{2}}{2},AC \\parallel BD,不符合题意,$\n\n$设D(x_1,y_1),则\\frac{x^2_1}{2}+y^2_1=1$\n\n$且x_1\\neq 0,x_1\\neq -\\sqrt{2},$\n\n$因为B(-\\sqrt{2},0),所以k_{BD}=\\frac{y_1}{x_1+\\sqrt{2}},$\n\n$所以直线BD的方程为y=\\frac{y_1}{x_1+\\sqrt{2}}(x+\\sqrt{2}),$\n\n$又k_{AC}=-\\frac{\\sqrt{2}}{2},所以直线AC的方程为y=-\\frac{\\sqrt{2}}{2}x+1,$\n\n$直线BD与AC方程联立,消去y得\\frac{y_1}{x_1+\\sqrt{2}}(x+\\sqrt{2})=-\\frac{\\sqrt{2}}{2}\\cdot x+1,$\n\n$解得x_{Q}=\\frac{2x_1-2\\sqrt{2}y_1+2\\sqrt{2}}{2y_1+\\sqrt{2}x_1+2},$\n\n$因为k_{CD}=\\frac{y_1-1}{x_1},所以直线CD的方程为y=\\frac{y_1-1}{x_1}x+1,$\n\n$令y=0,解得x_{P}=\\frac{x_1}{1-y_1},$\n\n$所以P\\left(\\frac{x_1}{1-y_1},0\\right),$\n\n$所以\\overrightarrow{OP}.\\overrightarrow{OQ}=\\frac{x_1}{1-y_1}.\\frac{2x_1-2\\sqrt{2}y_1+2\\sqrt{2}}{2y_1+\\sqrt{2}x_1+2}$\n\n$=\\frac{2x^2_1-2\\sqrt{2}x_1y_1+2\\sqrt{2}x_1}{2(y_1+1)(1-y_1)+\\sqrt{2}x_1(1-y_1)}$\n\n$=\\frac{2x^2_1-2\\sqrt{2}x_1y_1+2\\sqrt{2}x_1}{2(1-y^2_1)+\\sqrt{2}x_1-\\sqrt{2}x_1y_1}$\n\n$=\\frac{2x^2_1-2\\sqrt{2}x_1y_1+2\\sqrt{2}x_1}{x^2_1+\\sqrt{2}x_1-\\sqrt{2}x_1y_1}=2,$\n\n$所以\\overrightarrow{OP}.\\overrightarrow{OQ}为定值.$\n\n$证法三: 若D在y轴上,则D(0,-1),$\n\n$此时k_{AC}=k_{BD}=-\\frac{\\sqrt{2}}{2},AC \\parallel BD,不符合题意,$\n\n$设D(x_1,y_1),则\\frac{x^2_1}{2}+y^2_1=1,且x_1\\neq 0,x_1\\neq -\\sqrt{2},$\n\n$因为B(-\\sqrt{2},0),所以k_{BD}=\\frac{y_1}{x_1+\\sqrt{2}},$\n\n$所以直线BD的方程为y=\\frac{y_1}{x_1+\\sqrt{2}}(x+\\sqrt{2}),$\n\n$又k_{AC}=-\\frac{\\sqrt{2}}{2},所以直线AC的方程为y=-\\frac{\\sqrt{2}}{2}x+1,$\n\n$直线BD与AC方程联立,消去y得\\frac{y_1}{x_1+\\sqrt{2}}(x+\\sqrt{2})=-\\frac{\\sqrt{2}}{2}\\cdot x+1,$\n\n$解得x_{Q}=\\frac{2x_1-2\\sqrt{2}y_1+2\\sqrt{2}}{2y_1+\\sqrt{2}x_1+2},$\n\n$因为k_{CD}=\\frac{y_1-1}{x_1},所以直线CD的方程为y=\\frac{y_1-1}{x_1}x+1,$\n\n$令y=0,解得x_{P}=\\frac{x_1}{1-y_1},$\n\n$所以P\\left(\\frac{x_1}{1-y_1},0\\right),$\n\n$所以\\overrightarrow{OP}.\\overrightarrow{OQ}=\\frac{x_1}{1-y_1}.\\frac{2x_1-2\\sqrt{2}y_1+2\\sqrt{2}}{2y_1+\\sqrt{2}x_1+2},$\n\n$特别地,当l过点A时,P(\\sqrt{2},0),Q(\\sqrt{2},0),此时\\overrightarrow{OP}.\\overrightarrow{OQ}=\\sqrt{2}\\times \\sqrt{2}=2,$\n\n$要证\\overrightarrow{OP}.\\overrightarrow{OQ}=2恒成立,$\n\n$即证\\frac{x_1}{1-y_1}\\frac{2x_1-2\\sqrt{2}y_1+2\\sqrt{2}}{2y_1+\\sqrt{2}x_1+2}=2恒成立,$\n\n$只需证(2x_1-2\\sqrt{2}y_1+2\\sqrt{2})x_1=2(1-y_1)(2y_1+\\sqrt{2}x_1+2),$\n\n$即证2x^2_1-2\\sqrt{2}x_1y_1+2\\sqrt{2}x_1=4y_1+2\\sqrt{2}x_1+4-4y^2_1-2\\sqrt{2}x_1y_1-4y_1,$\n\n$即证2x^2_1+4y^2_1=4,$\n\n$即\\frac{x^2_1}{2}+y^2_1=1,显然成立,$\n\n$所以\\overrightarrow{OP}.\\overrightarrow{OQ}=2,为定值.$\n\n<img_232>'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 143 "$已知椭圆C: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 (a>b>0) 经过两点 A (-2,0),B (\sqrt{3},\frac{1}{2})。$ | |
| $设P,Q为椭圆C上不同的两个点,直线AP与y轴交于点E,直线AQ与y轴交于点F,若点M(1,0)满足MF\perp ME,求证:P,O,Q三点共线.$" ['$证法一:设点P (x_1, y_1),Q (x_2,y_2) (x_1 \\neq \\pm 2,x_2 \\neq \\pm 2)$\n\n<img_371>\n\n$所以直线PA的方程为 y=\\frac{y_1}{x_1+2}(x+2),直线AQ的方程为 y=\\frac{y_2}{x_2+2}(x+2)。 $\n\n$令x=0, 可得点E\\left(0,\\frac{2y_1}{x_1+2}\\right),F\\left(0,\\frac{2y_2}{x_2+2}\\right)。$\n\n$所以\\overrightarrow{ME}=\\left(-1,\\frac{2y_1}{x_1+2}\\right),\\overrightarrow{MF}=\\left(-1,\\frac{2y_2}{x_2+2}\\right)。 $\n\n$因为ME \\perp MF,$\n\n$所以 \\overrightarrow{ME}.\\overrightarrow{MF}=1+\\frac{4y_1y_2}{(x_1+2)(x_2+2)}=0。$\n\n$当直线PQ斜率不存在时,设 x_1=x_2=m $\n\n$则 y_1y_2= y_1^2=\\frac{m^2}{4} -1$\n\n$代入1得 1+\\frac{4\\left(\\frac{m^2}{4}-1\\right)}{m^2+4m+4}=0,解得 m=0 或 m=-2(舍)。$\n\n$此时P,Q均在y轴上,所以P,O,Q三点共线.$\n\n$当直线PQ斜率存在时,设y=kx+n(k \\neq 0),$\n\n$由 \\left\\{\\begin{matrix}y=kx+n,\\\\ \\frac{x^2}{4}+y^2=1\\end{matrix}\\right.$\n\n$消去y得 (1+4k^2)x^2+8knx+4n^2-4=0,$\n\n$所以 \\Delta =64k^2n^2-4(1+4k^2)(4n^2-4)>0,$\n\n$x_1+x_2= -\\frac{8kn}{1+4k^2} ,$\n\n$x_1x_2=\\frac{4n^2-4}{1+4k^2} ,$\n\n$所以 y_1y_2 = (kx_1+n)(kx_2+n)=k^2x_1x_2 +kn(x_1+x_2) +n^2$\n\n$=\\frac{k^2(4n^2-4)}{1+4k^2}-\\frac{8k^2n^2}{1+4k^2} +n^2=\\frac{n^2-4k^2}{1+4k^2}$\n\n$代入1得 \\frac{4n^2-4}{1+4k^2}-\\frac{16kn}{1+4k^2}+4+\\frac{4n^2-16k^2}{1+4k^2}=0,$\n\n$解得 n=0或n=2k。$\n\n$当 n=2k时,直线PQ的方程为 y=k(x+2),不符合题意,故 n=0,$\n\n$此时直线PQ的方程为y=kx(k \\neq 0),所以P,O,Q三点共线.$\n\n综上,P,O,Q三点共线.\n\n$证法二:设点P (x_0,y_0) (x_0 \\neq \\pm 2),点F(0,n_0),$\n\n$所以直线PA的方程为 y=\\frac{y_0}{x_0+2}(x+2),$\n\n$令 x=0,可得点 E\\left(0,\\frac{2y_0}{x_0+2}\\right) ,$\n\n$所以 \\overrightarrow{ME}=\\left(-1,\\frac{2y_0}{x_0+2}\\right) , \\overrightarrow{MF}=(-1,n_0), $\n\n$因为 ME \\bot MF,$\n\n$所以 \\overrightarrow{ME}.\\overrightarrow{MF}=1+\\frac{2y_0n_0}{x_0+2}=0,即 n_0=-\\frac{x_0+2}{2y_0},$\n\n$所以直线AF的方程为 y=-\\frac{x_0+2}{4y_0}(x+2),$\n\n$要证P,O,Q三点共线,由椭圆的对称性知,只需证Q(- x_0,-y_0)在直线AF上.$\n\n$又因为 \\frac{x^2_0}{4}+y^2_0=1,所以 x_0^2-4=-4y_0^2,$\n\n$所以 -\\frac{x_0+2}{4y_0}(-x_0+2)=\\frac{x^2_0-4}{4y_0}=-y_0,$\n\n$所以Q(- x_0,-y_0)在直线AF上,所以P,O,Q三点共线.$\n\n证法三:由题意得 A(-2,0),不妨令E点在x轴上方,\n\n$因为 MF \\bot ME , 所以 \\angle EMO+\\angle FMO=90^\\circ ,$\n\n$又因为 \\angle EMO+\\angle MEO=90^\\circ , 所以 \\angle FMO=\\angle MEO,$\n\n$所以 Rt\\triangle EOM ∽ Rt\\triangle MOF , 所以 \\frac{|EO|}{|MO|}=\\frac{|MO|}{|OF|}, 即 |OE|\\cdot |OF|=1,$\n\n$设 |OE|=t ( t>0), 则 |OF|=\\frac{1}{t}, 所以 E(0,t),F \\left(0,-\\frac{1}{t}\\right),$\n\n$由A、E的坐标可得直线AE方程为 y=\\frac{t}{2}x + t,$\n\n$由 \\left\\{\\begin{matrix} y=\\frac{t}{2}x + t,\\\\ \\frac{x^2}{4}+y^2=1\\end{matrix}\\right.$\n\n$消去y得 (1+t^2)x^2+4t^2x+4t^2-4=0, 则 -2x_P = \\frac{4t^2-4}{1+t^2}(运用根与系数的关系中的两根之积),解得 x_P= \\frac{2-2t^2}{1+t^2}, 则 y_P=\\frac{t}{2}\\cdot \\frac{2-2t^2}{1+t^2}+t=\\frac{2t}{1+t^2} (点P的坐标满足直线AE的方程)$\n\n$由A、F的坐标可得直线AF方程为 y=-\\frac{1}{2t}x-\\frac{1}{t},$\n\n$由 \\left\\{\\begin{matrix}y=-\\frac{1}{2t}x-\\frac{1}{t},\\\\ \\frac{x^2}{4}+y^2=1\\end{matrix}\\right.$\n\n$消去y得 (t^2+1)x^2+4x+4-4t^2=0,$\n\n$则 -2x_Q=\\frac{4-4t^2}{t^2+1}(运用根与系数的关系中的两根之积),解得 x_Q=\\frac{2t^2-2}{t^2+1}, 则 y_Q=-\\frac{1}{2t}\\cdot \\frac{2t^2-2}{t^2+1}-\\frac{1}{t}=\\frac{-2t}{t^2+1} (点Q的坐标满足直线AF的方程)$\n\n$故 x_P+x_Q=0,y_P+y_Q=0,$\n\n所以P,Q关于原点对称,即P,O,Q三点共线.'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 144 "$已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)经过点P(2,1),P到椭圆C的两个焦点的距离和为4\sqrt{2}.$ | |
| $设Q(4,0),R为PQ的中点,作PQ的平行线l与椭圆C交于不同的两点A,B,直线AQ与椭圆C交于另一点M,直线BQ与椭圆C交于另一点N,求证:M,N,R三点共线.$" ['证明:因为P(2,1),Q(4,0),且R为PQ的中点,\n$所以k_{PQ}=-\\frac{1}{2},R \\left(3,\\frac{1}{2}\\right).$\n$依题意,设直线l的方程为y=-\\frac{1}{2}x+m(m\\neq 2),A(x_1,y_1),B(x_2,y_2),M(x_3,y_3),N(x_4,y_4),$\n$所以直线AQ的方程为y= \\frac{y_1}{x_1-4}(x-4).$\n$由 \\left\\{\\begin{matrix}y=\\frac{y_1}{x_1-4}(x-4),\\\\ \\frac{x^2}{8}+\\frac{y^2}{2}=1\\end{matrix}\\right. 得x^2+\\frac{4y^2_1(x-4)^2}{(x_1-4)^2}=8,$\n$即(x_1+4y_1+16-8x_1)x^2-32y_1^2x+64y_1^2-8(x_1-4)^2=0.$\n因为点A在椭圆C上,所以x_1^2+4y_1^2=8,\n$由此得(24-8x_1)x^2-32y_1^2x+64y_1^2-8(x_1-4)^2=0,$\n$即(3-x_1)x^2-4y_1^2x+8y_1^2-(x_1-4)^2=0,$\n$所以x_1+x_3=\\frac{4y^2_1}{3-x_1},$\n$于是x_3=\\frac{4y^2_1}{3-x_1}-x_1=\\frac{x^2_1+4y^2_1-3x_1}{3-x_1}=\\frac{8-3x_1}{3-x_1},$\n$所以y_3=\\frac{y_1}{x_1-4}(x_3-4)=\\frac{y_1}{x_1-4}\\left(\\frac{8-3x_1}{3-x_1}-4\\right)=\\frac{y_1}{3-x_1},即M \\left(\\frac{8-3x_1}{3-x_1},\\frac{y_1}{3-x_1}\\right),$\n$由此得k_{MR}=\\frac{\\frac{y_1}{3-x_1}-\\frac{1}{2}}{\\frac{8-3x_1}{3-x_1}-3}=-\\left(\\frac{1}{2}x_1+y_1\\right)+\\frac{3}{2}.$\n$因为点A在l上,所以 \\frac{1}{2}x_1+y_1=m,即k_{MR}=\\frac{3}{2}-m.$\n$同理,k_{NR}=\\frac{3}{2}-m,所以k_{MR}=k_{NR},故M,N,R三点共线.$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 145 "$已知椭圆C : \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0) 的一个顶点为P(0,1),离心率为\frac{\sqrt{2}}{2}.$ | |
| $过点P作斜率为k_1的直线l_1,交椭圆C于另一点A,过点P作斜率为k_2(k_2\neq k_1)的直线l_2交椭圆C于另一点B.若k_1k_2=1,求证:直线AB经过定点.$" ['$证明:设A(x_1,y_1),B(x_2,y_2), x_1 \\neq 0, x_2 \\neq 0,$\n\n$则 k_1 = \\frac{y_1-1}{x_1}, k_2 = \\frac{y_2-1}{x_2}.$\n\n$若x_1=x_2,则y_1=y_2或y_1=-y_2. $\n\n$当x_1=x_2, y_1=y_2时,k_1=k_2,不合题意。$\n\n$当x_1=x_2, y_1=-y_2时,k_1 k_2=\\frac{1}{2} \\neq 1, 不合题意.$\n\n$所以直线AB的斜率存在,设直线AB的方程为y=kx+m.$\n\n$由\\left\\{\\begin{matrix}y=kx+m,\\\\ x^2+2y^2-2=0\\end{matrix}\\right. 得(1+2k^2)x^2+4kmx+2m^2-2 = 0,$\n\n$\\Delta = 16k^2 m^2 - 4(1+2k^2)(2m^2 - 2) = 8(2k^2 - m^2 + 1) > 0.$\n\n$则x_1+x_2= -\\frac{4km}{1+2k^2}, x_1x_2 = \\frac{2m^2-2}{1+2k^2}, 且m^2 \\neq 1.$\n\n$因为k_1k_2=1,$\n\n$所以\\frac{y_1-1}{x_1} \\cdot \\frac{y_2-1}{x_2} = 1,即\\frac{(kx_1+m-1)(kx_2+m-1)}{x_1x_2} = 1,$\n\n$所以(k^2-1)x_1x_2 + k(m-1)(x_1+x_2) + (m-1)^2= 0,$\n\n$所以(k^2-1) \\cdot \\frac{2m^2-2}{1+2k^2} + k(m-1) \\left(-\\frac{4km}{1+2k^2}\\right) + (m-1)^2= 0,$\n\n$所以(m-1)(m+3) = 0, 所以m=-3或m=1(舍).$\n\n$所以直线AB经过定点(0,-3).$\n\n名师点睛\n\n$设A(x_1,y_1),B(x_2,y_2), x_1 \\neq 0, x_2 \\neq 0,$\n\n$则k_1=\\frac{y_1-1}{x_1}, k_2=\\frac{y_2-1}{x_2}.$\n\n$首先讨论x_1=x_2时斜率k_1、k_2不合题意,所以直线AB斜率存在,设直线AB的方程为y=kx+m,将直线AB的方程与椭圆方程联立消元后用韦达定理,再由k_1k_2=1求得m=-3得直线AB经过定点的坐标.$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 146 "$已知a_n是无穷数列。给出两个性质:$ | |
| $① 对于a_n中任意两项a_i,a_j(i > j),在a_n中都存在一项a_m,使得\frac{a^{2}_i}{a_j} = a_m;$ | |
| $② 对于a_n中任意一项a_n(n \geq 3),在a_n中都存在两项a_k,a_l(k > l),使得a_n = \frac{a^{2}_k}{a_l}。$ | |
| $若a_n是递增数列,且同时满足性质①和性质②,证明:a_n为等比数列.$" ['证明:\n\n$- (i)当n=3时,由性质②可知存在两项a_k,a_l,使a_3 = \\frac{a^2_k}{a_l}(k>l),又因为{a_n}是递增数列,所以a_3 > a_k > a_l,即3>k>l,所以k=2,l=1,此时\\frac{a^2_2}{a_1}=a_3,满足a_1,a_2,a_3为等比数列,即n=3时命题成立.$\n\n$- (ii)假设n=k (k \\in N,k>=3)时,命题成立,即{a_n}是以q = \\frac{a_2}{a_1}为公比的各项为正数的等比数列,由性质①,可取数列中的两项a_k,a_{k-1},则数列中存在一项a_m=\\frac{a^2_k}{a_{k-1}}=\\frac{a_k}{a_{k-1}} \\cdot a_k,所以a_m=qa_k,下面用反证法证明当n=k+1时命题也成立,即a_m=a_{k+1}.$\n$假设a_{k+1} \\neq a_m,因为{a_n}是递增数列,所以a_m=\\frac{a^2_k}{a_{k-1}} = qa_k > a_{k+1},即有a_k < a_{k+1} < qa_k,则a_1q^{k-1} < a_{k+1} < a_1q^k,由性质②,a_{k+1}可以表示为\\frac{a^2_s}{a_t}(s>t),$\n$即a_{k+1} = \\frac{a^2_s}{a_t} > a_s > a_t,所以k+1>s>t,符合条件,所以a_s=a_1q^{s-1},a_t=a_1q^{t-1},$\n$所以\\frac{a^2_s}{a_t}=a_1q^{2s-t-1},所以a_1q^{k-1} < a_1q^{2s-t-1} < a_1q^k,$\n$所以k-1<2s-t-1<k,而k,s,t \\in N,所以不存在这样的一组数k,s,t,所以a_m=a_{k+1},即n=k+1时,命题也成立.$\n\n$由(i)(ii)可知,{a_n}是等比数列.$'] [] Text-only Chinese College Entrance Exam Theorem proof Sequence Math Chinese | |
| 147 "$设等差数列a_n的前n项和为S_n,a_3=4,a_4=S_3.数列b_n满足:对每个n\in N^,S_n+b_n,S_{n+1}+b_n,S_{n+2}+b_n成等比数列.$ | |
| $记c_n=\sqrt{\frac{a_n}{2b_n}}, n \in N^, 证明:c_1+c_2+\ldots +c_n < 2\sqrt{n}, n \in N^.$" ['$证明:c_n=\\sqrt{\\frac{a_n}{2b_n}}=\\sqrt{\\frac{2n-2}{2n(n+1)}}=\\sqrt{\\frac{n-1}{n(n+1)}}, n\\in N^{}.$\n用数学归纳法证明.\n$①当n=1时,c_1=0<2,不等式成立;$\n$②假设n=k (k\\in N^{})时不等式成立,即c_1+c_2+\\ldots +c_k<2\\sqrt{k},那么,当n=k+1时,c_1+c_2+\\ldots +c_k+c_{k+1}<2\\sqrt{k}+\\sqrt{\\frac{k}{(k+1)(k+2)}}<2\\sqrt{k}+\\sqrt{\\frac{1}{k+1}}<2\\sqrt{k}+\\frac{2}{\\sqrt{k+1}+\\sqrt{k}}=2\\sqrt{k}+2(\\sqrt{k+1}-\\sqrt{k})=2\\sqrt{k+1},即当n=k+1时不等式也成立.$\n$根据①和②,得不等式c_1+c_2+\\ldots +c_n<2\\sqrt{n}对任意n\\in N^{}成立.$'] [] Text-only Chinese College Entrance Exam Theorem proof Sequence Math Chinese | |
| 148 "在直角坐标系中,曲线C的参数方程为 | |
| $$ | |
| \begin{matrix} | |
| x=\mathrm{e}^2\cdot t-t\cdot \mathrm{e}^t,\\ | |
| y=t\mathrm{ln} t-\mathrm{ln} t, | |
| \end{matrix} | |
| $$ | |
| t为参数且t>0.曲线C与x轴交于点A,与y轴交于点B. | |
| $求证: |AB| > 2.$" ['$证明:令x=0,可得t=2,所以B(0,ln 2),$\n$令y=0,可得t=1,所以A(e^2-e,0),$\n$所以|AB|=\\sqrt{(\\mathrm{ln} 2)^2+(\\mathrm{e}^2-\\mathrm{e})^2}>\\sqrt{(\\mathrm{e}^2-\\mathrm{e})^2}=e^2-e=e(e-1),因为e>2,所以|AB|>2.$'] [] Text-only Chinese College Entrance Exam Theorem proof Polar Coordinates and Parametric Equations Math Chinese | |
| 149 "$已知椭圆C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)的离心率为\frac{\sqrt{3}}{2},A(a,0),B(0,b),O(0,0),\triangle OAB的面积为1.$ | |
| $设P是椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N.$ | |
| $求证:|AN|\cdot |BM|为定值.$" ['$证明:由(1)知,A(2,0),B(0,1),设P(x_0,y_0),则x_0^2+4y_0^2=4. $\n\n$当x_0\\neq 0时,直线PA的方程为y=\\frac{y_0}{x_0-2}(x-2).$\n\n$令x=0,得y_M=-\\frac{2y_0}{x_0-2}.从而|BM|=|1-y_M|=|1+\\frac{2y_0}{x_0-2}|.$\n\n$直线PB的方程为y=\\frac{y_0-1}{x_0}x+1.$\n\n$令y=0,得x_N=-\\frac{x_0}{y_0-1}.$\n\n$从而|AN|=|2-x_N|=|2+\\frac{x_0}{y_0-1}|.$\n\n$所以|AN|\\cdot |BM|=|2+\\frac{x_0}{y_0-1}|\\cdot |1+\\frac{2y_0}{x_0-2}|$\n\n$=|x^2_0+4y^2_0+4x_0y_0-4x_0-8y_0+4|/x_0y_0-x_0-2y_0+2$\n\n$=|4x_0y_0-4x_0-8y_0+8|/x_0y_0-x_0-2y_0+2=4.$\n\n$当x_0=0时,y_0=-1,|BM|=2,|AN|=2,$\n\n$所以|AN|\\cdot |BM|=4.$\n\n$综上,|AN|\\cdot |BM|为定值.$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 150 "$已知椭圆C:9x^2+y^2=m^2 (m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M。$ | |
| $证明:直线OM的斜率与l的斜率的乘积为定值;$" ['$证明:设直线l:y=kx+b(k\\neq 0,b\\neq 0),A(x_1,y_1),B(x_2, y_2),M(x_M,y_M).$\n$将y=kx+b代入9x^2+y^2=m^2得(k^2+9)x^2+2kbx+b^2-m^2=0,$\n$故x_M=\\frac{x_1+x_2}{2}=-\\frac{kb}{k^2+9},y_M=kx_M+b=\\frac{9b}{k^2+9}.$\n$于是直线OM的斜率k_{OM}=\\frac{y_M}{x_M}=-\\frac{9}{k},即k_{OM}\\cdot k=-9.$\n$所以直线OM的斜率与l的斜率的乘积为定值.$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 151 "$已知椭圆E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)的左、右焦点分别为F_1,F_2,离心率e=\frac{\sqrt{2}}{2},P为椭圆上一动点,\triangle PF_1F_2面积的最大值为2.$ | |
| $若C,D分别是椭圆E长轴的左、右端点,动点M满足MD\perp CD,连接CM交椭圆于点N,O为坐标原点.证明:\overrightarrow{OM}\cdot \overrightarrow{ON}为定值;$" ['$证明:由(1)知,C(-2,0),D(2,0),设直线CM:y=k(x+2),N(x_1,y_1),$\n$\\because MD\\perp CD,\\therefore M(2,4k),联立$\n$\\left\\{\\begin{matrix}\\frac{x^2}{4}+\\frac{y^2}{2}=1,\\\\ y=k(x+2),\\end{matrix}\\right. $\n$整理得(2k^2+1)x^2+8k^2x+8k^2-4=0,$\n$由-2x_1=\\frac{8k^2-4}{2k^2+1}得x_1=\\frac{2-4k^2}{2k^2+1},y_1=k(x_1+2)=\\frac{4k}{2k^2+1},$\n$\\therefore N(\\frac{2-4k^2}{2k^2+1},\\frac{4k}{2k^2+1}),$\n$\\therefore \\overrightarrow{OM}\\cdot \\overrightarrow{ON}=2\\times \\frac{2-4k^2}{2k^2+1}+4k\\times \\frac{4k}{2k^2+1}=4,$\n$故\\overrightarrow{OM}\\cdot \\overrightarrow{ON}为定值4.$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 152 "$已知椭圆C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1的右焦点为(1,0),且经过点A(0,1)。$ | |
| $设O为原点,直线l:y=kx+t(t \neq \pm 1)与椭圆C交于两个不同点P,Q,直线AP与x轴交于点M,直线AQ与x轴交于点N.若|OM|\cdot |ON|=2,求证:直线l经过定点.$" ['$证明:设P(x_1, y_1), Q(x_2,y_2),则直线AP的方程为y = \\frac{y_1-1}{x_1}x+1. 令y=0,得点M的横坐标x_M=-\\frac{x_1}{y_1-1}. 又y_1=kx_1+t,从而|OM|=|x_M|=\\left|\\frac{x_1}{kx_1+t-1}\\right|. 同理,|ON|=\\left|\\frac{x_2}{kx_2+t-1}\\right|. 由\\left\\{\\begin{matrix}y=kx+t,\\\\ \\frac{x^2}{2}+y^2=1\\end{matrix}\\right.得\\left(1+2k^2\\right)x^2+4ktx+2t^2-2=0.$\n$则x_1+x_2=-\\frac{4kt}{1+2k^2}, x_1x_2=\\frac{2t^2-2}{1+2k^2}.$\n$所以|OM|\\cdot|ON|=\\left|\\frac{x_1}{kx_1+t-1}\\right|\\cdot\\left|\\frac{x_2}{kx_2+t-1}\\right|=\\left|\\frac{x_1x_2}{k^2x_1x_2+k(t-1)(x_1+x_2)+(t-1)^2}\\right|=$\n$\\left|\\frac{\\frac{2t^2-2}{1+2k^2}}{k^2 \\cdot \\frac{2t^2-2}{1+2k^2}+k(t-1) \\cdot \\left(-\\frac{4kt}{1+2k^2}\\right)+(t-1)^2}\\right| = 2\\left|\\frac{1+t}{1-t}\\right|. 又|OM|\\cdot|ON|=2,所以2\\left|\\frac{1+t}{1-t}\\right|=2.$\n$解得t=0,所以直线l经过定点(0,0).$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 153 "$已知函数 f(x)=e^x cos x ,g(x)=a\cos x+x (a<0),曲线 y=g(x) 在 x=\frac{\pi }{6} 处的切线的斜率为 \frac{3}{2}.$ | |
| $设方程f(x)=g'(x)在区间 (\left(2n\pi +\frac{\pi}{3},2n\pi +\frac{\pi}{2}\right) (n \in N_+) 内的根从小到大依次为x_1,x_2,\ldots ,x_n,\ldots ,求证:x_{n+1}-x_n > 2\pi $" "[""$证明:由f(x) = g'(x) 可得 e^{x}\\cos x = 1 + \\sin x,$\n$令\\phi(x) = e^{x}\\cos x - \\sin x -1,$\n$则\\phi'(x) = e^{x}(\\cos x - \\sin x) - \\cos x,$\n$因为x\\in (\\left(2n\\pi +\\frac{\\pi }{3},2n\\pi +\\frac{\\pi }{2}\\right))(n\\in N_{+}),$\n$所以sinx > cosx >0,$\n$所以\\phi'(x) < 0,所以函数\\phi(x) 在(\\left(2n\\pi +\\frac{\\pi }{3},2n\\pi +\\frac{\\pi }{2}\\right)) ( n\\in N_{+})上单调递减,$\n$因为 \\phi \\left(2n\\pi +\\frac{\\pi }{3}\\right) = e^{2n\\pi +\\frac{\\pi }{3}} cos\\left(2n\\pi +\\frac{\\pi }{3}\\right) -sin\\left(2n\\pi +\\frac{\\pi }{3}\\right)-1= \\frac{1}{2} e^{2n\\pi +\\frac{\\pi }{3}} - \\frac{\\sqrt{3}}{2} -1 \\geq \\frac{e^{2\\pi +\\frac{\\pi }{3}}}{2} - \\frac{\\sqrt{3}}{2} -1 > 0,$\n$\\phi \\left(2n\\pi +\\frac{\\pi }{2}\\right) =-2 < 0,$\n$所以在 \\phi(x) 的每一个单调区间内存在唯一的x_0,使得\\phi(x_0) = 0,$\n$所以当 x_{n} \\in (\\left(2n\\pi +\\frac{\\pi }{3},2n\\pi +\\frac{\\pi }{2}\\right))(n\\in N_{+})时,x_{n+1} -2\\pi \\in (\\left(2n\\pi +\\frac{\\pi }{3},2n\\pi +\\frac{\\pi }{2}\\right))(n\\in N_{+}),即x_{n} 与x_{n+1} -2\\pi 在同一个单调区间内,$\n$又\\phi(x_{n+1} -2\\pi ) =e^{x_{n+1} -2\\pi } \\cos (x_{n+1} -2\\pi ) -\\sin (x_{n+1} -2\\pi ) -1 = e^{x_{n+1} -2\\pi } \\cos x_{n+1} -e^{x_{n+1}} \\cos x_{n+1} = (e^{x_{n+1} -2\\pi } -e^{x_{n+1}}) \\cos x_{n+1} <0 = \\phi(x_{n}),且函数 \\phi(x) 在 (\\left(2n\\pi +\\frac{\\pi }{3},2n\\pi +\\frac{\\pi }{2}\\right)) (n \\in N_{+}) 上单调递减,故x_{n+1} -2\\pi > x_{n},即x_{n+1} - x_{n} > 2\\pi.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 154 "$已知函数f(x)=\frac{1}{2}ax^2-x-lnx(a\in R).$ | |
| $证明:\sum \limits^{n}_{{k=2}}\frac{1}{\mathrm{ln} k} > 1-\frac{1}{n}.$" ['$证明:由(2)知,当a=2时,对任意x\\in (1,+\\infty ),有f(x)>f(1)=0,即x^2-x>ln x.$\n$又当x>1时,x^2-x>0,ln x>0,所以$\n$\\frac{1}{\\mathrm{ln} x}>\\frac{1}{x^2-x}.$\n$令x=k(k\\geq 2),得$\n$\\frac{1}{\\mathrm{ln} k}>\\frac{1}{k^2-k}=\\frac{1}{k(k-1)}=\\frac{1}{k-1}-\\frac{1}{k}.$\n所以\n$\\frac{1}{\\mathrm{ln} 2}>1-\\frac{1}{2},\\frac{1}{\\mathrm{ln} 3}>\\frac{1}{2}-\\frac{1}{3},\\frac{1}{\\mathrm{ln} 4}>\\frac{1}{3}-\\frac{1}{4},\\ldots \\ldots ,\\frac{1}{\\mathrm{ln} n}>\\frac{1}{n-1}-\\frac{1}{n}.$\n故\n$\\sum \\limits^{n}_{{k=2}}\\frac{1}{\\mathrm{ln} k}>1-\\frac{1}{n}$\n即\n$\\sum \\limits^{n}_{{k=2}}\\frac{1}{\\mathrm{ln} k}>1-\\frac{1}{n}$'] [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 155 "$记\triangle ABC的内角A,B,C的对边分别为a,b,c. 已知b^2=ac,点D在边AC上,BD\sin \angle ABC=a\sin C.$ | |
| $证明:BD=b;$" ['$证明:由BD \\sin \\angle ABC = a \\sin C 及正弦定理可得BD \\cdot b = a\\cdot c$\n\n$(3分)$\n\n$又 b^2 = ac,所以 BD \\cdot b = b^2,故 BD =b.$'] [] Text-only Chinese College Entrance Exam Theorem proof Trigonometric Functions Math Chinese | |
| 156 "$已知f(x)=\frac{\sin x+\cos x}{\mathrm{e}^x}.$ | |
| $求证:曲线 y=f(x) 在 (0,\frac{\pi}{2}) 上不存在斜率为-2的切线.$" "[""$证明:原命题等价于在区间 (0,\\frac{\\pi }{2}) 上,方程 \\frac{-2\\\\sin x}{\\mathrm{e}^x} =-2无解,即 \\frac{\\\\sin x}{\\mathrm{e}^x} =1无解.$\n$令 g(x)=\\frac{\\\\sin x}{\\mathrm{e}^x}, x\\in (0,\\frac{\\pi }{2}),则 g'(x)=\\frac{\\\\cos x-\\\\sin x}{\\mathrm{e}^x} =\\frac{\\sqrt{2}\\\\sin \\left(\\frac{\\pi }{4}-x\\right)}{\\mathrm{e}^x},$\n$当 x\\in (0,\\frac{\\pi }{4}) 时,g'(x)>0,g(x)在 (0,\\frac{\\pi }{4}) 上单调递增;$\n$当 x\\in \\left(\\frac{\\pi }{4},\\frac{\\pi }{2}\\right) 时,g'(x)<0,g(x)在 \\left(\\frac{\\pi }{4},\\frac{\\pi }{2}\\right) 上单调递减.$\n$所以 g(x)在 \\left(0,\\frac{\\pi }{2}\\right) 上的最大值是 g\\left(\\frac{\\pi }{4}\\right) =\\frac{\\sqrt{2}}{2}e^{- \\frac{\\pi }{4}}<1,所以方程 \\frac{\\\\sin x}{\\mathrm{e}^x} =1无解,即曲线 y=f(x)在 \\left(0,\\frac{\\pi }{2}\\right) 上不存在斜率为-2的切线.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Elementary Functions Math Chinese | |
| 157 "$已知函数f(x)=x^3-x^2+ax+1.$ | |
| $讨论f(x)的单调性;$" "[""$由题意可得f'(x) = 3x^2-2x+a, $\n\n$对于3x^2-2x+a=0, \\Delta=4-12a.$\n\n$①当a\\geq\\frac{1}{3}时,\\Delta\\leq0,即f'(x)\\geq0在R上恒成立,此时f(x)在R上单调递增. $\n\n$②当a<\\frac{1}{3}时,\\Delta>0, 方程3x^2-2x+a=0的两个根为x_1=\\frac{1-\\sqrt{1-3a}}{3},x_2=\\frac{1+\\sqrt{1-3a}}{3},故当x\\in\\left(-\\infty ,\\frac{1-\\sqrt{1-3a}}{3}\\right) \\cup \\left(\\frac{1+\\sqrt{1-3a}}{3},+\\infty \\right)时, f'(x)>0, 当x\\in\\left(\\frac{1-\\sqrt{1-3a}}{3},\\frac{1+\\sqrt{1-3a}}{3}\\right)时, f'(x)<0,所以f(x)在\\left(-\\infty ,\\frac{1-\\sqrt{1-3a}}{3}\\right) 和 \\left(\\frac{1+\\sqrt{1-3a}}{3},+\\infty \\right)上单调递增,在\\left(\\right.\\frac{1-\\sqrt{1-3a}}{3},\\frac{1+\\sqrt{1-3a}}{3}\\left)\\right.上单调递减.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Elementary Functions Math Chinese | |
| 158 "$已知函数f(x)=\frac{ax^2+x-1}{e^x}, a\geq 0.$ | |
| $当a > 0时, 求证:函数f(x)在区间(0, 1)上有且仅有一个零点.$" ['$证明:由(1)可知:当a>0时, f(x)在区间(-\\frac{1}{a},2)上单调递增,故函数f(x)在区间(0,1)上单调递增,且f(0)=-1<0, f(1)=\\frac{a}{e}>0.$\n$所以函数f(x)在区间(0,1)上有且仅有一个零点.$'] [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 159 "$已知函数f(x)=x^3+klnx(k\in R), f'(x)为f(x)的导函数.$ | |
| $当k\geq -3时,求证:对任意的x_1,x_2\in [1,+\infty ),且x_1>x_2,有 $ | |
| $\frac{f '(x_1)+f '(x_2)}{2}>\frac{f(x_1)-f(x_2)}{x_1-x_2}.$" "[""$证明:由题意得f '(x)=3x^2+\\frac{k}{x}.$\n\n$对任意的x_1,x_2\\in [1,+\\infty ),且x_1 > x_2,令\\frac{x_1}{x_2}=t(t > 1),则(x_1-x_2)[f '(x_1)+f '(x_2)]-2[f(x_1)-f(x_2)]=(x_1-x_2)\\cdot(3x^2_1+\\frac{k}{x_1}+3x^2_2+\\frac{k}{x_2}]-2[x^3_1-x^3_2+k\\mathrm{ln}\\frac{x_1}{x_2}]=x^3_1-x^3_2-3x^2_1x_2+3x_1x^2_2+k(\\frac{x_1}{x_2}-\\frac{x_2}{x_1})-2kln\\frac{x_1}{x_2}=x^3_2(t^3-3t^2+3t-1)+k(t-\\frac{1}{t}-2\\mathrm{ln} t).①$\n\n$令h(x)=x-\\frac{1}{x}-2ln x,x\\in [1,+\\infty ).当x > 1时,h'(x)=1+\\frac{1}{x^2}-\\frac{2}{x} =(1-\\frac{1}{x})^2 > 0,由此可得h(x)在[1,+\\infty )单调递增,所以当t > 1时,h(t) > h(1),即t-\\frac{1}{t}-2ln t > 0.$\n\n$因为x_2 \\geq 1,t^3-3t^2+3t-1=(t-1)^3 > 0,k \\geq -3,所以x^3_2(t^3-3t^2+3t-1)+k(t-\\frac{1}{t}-2\\mathrm{ln} t) > (t^3-3t^2+6ln t+\\frac{3}{t}-1). ②$\n\n由(1)(ii)可知,当t > 1时,g(t) > g(1),即t^3-3t^2+6ln t+\\frac{3}{t}> 1,故t^3-3t^2+6ln t+\\frac{3}{t}-1 > 0 . ③\n\n由①②③可得$(x_1-x_2)[f '(x_1)+f '(x_2)]-2[f(x_1)-f(x_2)] > 0 . 所以,当k \\geq -3时,对任意的x_1,x_2\\in [1,+\\infty ),且x_1 > x_2,有\\frac{f '(x_1)+f '(x_2)}{2} > \\frac{f(x_1)-f(x_2)}{x_1-x_2} .$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 160 "$已知函数f(x)=2e^{x}\\sin x - ax。 (e是自然对数的底数)$ | |
| $若0<a<6,试讨论f(x)在(0,\pi )上的零点个数.(参考数据:e^{\frac{\pi }{2}}\approx 4.8)$" "[""$\\because f(x)=2e^{x}\\\\sin {x}-ax,\\therefore f'(x)=2e^{x}(\\\\sin {x}+\\\\cos {x})-a,$\n$令h(x)=f'(x),则h'(x)=4e^{x}\\\\cos {x},$\n\n$当x \\in \\left(0,\\frac{\\pi}{2}\\right)时,h'(x)>0;当x \\in \\left(\\frac{\\pi}{2},\\pi\\right)时,h'(x)<0,$\n\n$\\therefore h(x)在\\left(0,\\frac{\\pi}{2}\\right)上单调递增,在\\left(\\frac{\\pi}{2},\\pi\\right)上单调递减,$\n$即f'(x)在\\left(0,\\frac{\\pi}{2}\\right)上单调递增,在\\left(\\frac{\\pi}{2},\\pi\\right)上单调递减.$\n\n$显然f'(0)=2-a,f'\\left(\\frac{\\pi}{2}\\right)=2e^{\\frac{\\pi}{2}}-a>0,f'(\\pi)=-2e^{\\pi}-a<0.$\n\n$①当2-a\\geq0,即0<a\\leq2时,f'(0)\\geq0,$\n\n$\\therefore \\exists x_{0}\\in \\left(\\frac{\\pi}{2},\\pi\\right),使得f'(x_{0})=0,$\n\n$\\therefore 当x \\in (0,x_{0})时,f'(x)>0;当x \\in (x_{0},\\pi)时,f'(x)<0,$\n\n$\\therefore f(x)在(0,x_{0})上单调递增,在(x_{0},\\pi)上单调递减.$\n\n$\\because f(0)=0,\\therefore f(x_{0})>0,又f(\\pi)=-a\\pi<0,$\n\n$\\therefore 由函数零点存在定理可得,f(x)在(0,\\pi)上仅有一个零点.$\n\n$②当2<a<6时,f'(0)=2-a<0,$\n\n$\\because f'(x)在\\left(0,\\frac{\\pi}{2}\\right)上单调递增,在\\left(\\frac{\\pi}{2},\\pi\\right)上单调递减,$\n$而f'\\left(\\frac{\\pi}{2}\\right)=2e^{\\frac{\\pi}{2}}-a>0,$\n\n$\\therefore \\exists x_{1}\\in \\left(0,\\frac{\\pi}{2}\\right),x_{2}\\in \\left(\\frac{\\pi}{2},\\pi\\right),$\n$使得f'(x_{1})=0,f'(x_{2})=0,且当x \\in (0,x_{1}) \\cup (x_{2},\\pi)时,f'(x)<0;当x \\in (x_{1},x_{2})时,f'(x)>0,$\n\n$\\therefore f(x)在(0,x_{1})和(x_{2},\\pi)上单调递减,在(x_{1},x_{2})上单调递增.$\n\n$\\because f(0)=0,\\therefore f(x_{1})<0,\\because f\\left(\\frac{\\pi}{2}\\right)=2e^{\\frac{\\pi}{2}}-\\frac{\\pi}{2}a>2e^{\\frac{\\pi}{2}}-3\\pi>0,$\n$\\therefore f(x_{2})>0,$\n\n$又\\because f(\\pi)=-a\\pi<0,\\therefore 由函数零点存在定理可得,f(x)在(x_{1},x_{2})和(x_{2},\\pi)内各有一个零点,即此时f(x)在(0,\\pi)上有两个零点.$\n\n$综上所述,当0<a \\leq 2时,f(x)在(0,\\pi)上仅有一个零点;当2<a<6时,f(x)在(0,\\pi)上有两个零点.$\n\n""]" ['$当0<a \\leq 2时,f(x)在(0,\\pi)上仅有一个零点;当2<a<6时,f(x)在(0,\\pi)上有两个零点.$'] [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 161 "$已知\triangle ABC的内角A、B、C的对边分别为a、b、c,且a-b=c(\cos B -\cos A)。$ | |
| $判断\triangle ABC的形状并给出证明;$" ['$\\triangle ABC为等腰三角形或直角三角形.证明如下:由a-b=c (\\cos B - \\cos A) 及正弦定理得 \\sin A - \\sin B= \\sin C (\\cos B - \\cos A) ,即 \\sin (B + C) - \\sin (A + C) = \\sin C \\cdot (\\cos B - \\cos A) ,即 \\sin B \\cos C + \\cos B \\sin C - \\sin A \\cos C - \\cos A \\sin C = \\sin C \\cos B - \\sin C \\cos A ,整理得 \\sin B \\cos C - \\sin A \\cos C = 0,所以 \\cos C (\\sin B - \\sin A) = 0,故 \\sin A = \\sin B 或 \\cos C = 0,又 A 、 B 、 C 为\\triangle ABC 的内角,所以 a = b 或 C = \\frac{\\pi }{2},因此\\triangle ABC为等腰三角形或直角三角形.$'] ['等腰三角形或直角三角形'] [] Text-only Chinese College Entrance Exam Theorem proof Trigonometric Functions Math Chinese | |
| 162 "某商家为了促销,规定每位消费者均可免费参加一次抽奖活动,活动规则如下:在一不透明纸箱中有8张相同的卡片,其中4张卡片上印有“幸”字,另外4张卡片上印有“运”字.消费者从该纸箱中不放回地随机抽取4张卡片,若抽到的4张卡片上都印有同一个字,则获得一张10元代金券;若抽到的4张卡片中恰有3张卡片上印有同一个字,则获得一张5元代金券;若抽到的4张卡片是其他情况,则不获得任何奖励. | |
| 该商家规定,消费者若想再次参加该项抽奖活动,则每抽奖一次需支付3元.若你是消费者,是否愿意再次参加该项抽奖活动?请说明理由." ['①我不愿意再次参加该项抽奖活动.\n\n$理由1:记随机变量Y为消费者在一次抽奖活动中的收益,则E(Y)=E(X)-3=-\\frac{3}{7}<0. 因此我不愿意再次参加该项抽奖活动.$\n\n$理由2:记“某位消费者在一次抽奖活动中能获得奖券”为事件B,则P(B)=\\frac{1}{35}+\\frac{16}{35}=\\frac{17}{35}. 因为中奖概率不足\\frac{1}{2},所以我不愿意再次参加该项抽奖活动.$\n\n②我愿意再次参加该项抽奖活动.\n\n$理由:记“某位消费者在一次抽奖活动中能获得奖券”为事件B,则P(B)=\\frac{1}{35}+\\frac{16}{35}=\\frac{17}{35}. 因为中奖概率接近\\frac{1}{2},所以我愿意再次参加该项抽奖活动.$'] [] Text-only Chinese College Entrance Exam Theorem proof Probability and Statistics Math Chinese | |
| 163 "$已知椭圆E:x^2/a^2 + y^2/b^2 =1 (a>b>0)的离心率e=\sqrt{2}/2,四个顶点组成的菱形的面积为8\sqrt{2},O为坐标原点.$ | |
| $过\odot O:x^2+y^2=\frac{8}{3}上任意点P作\odot O的切线l与椭圆E交于点M,N,求证:\overrightarrow{PM}\cdot \overrightarrow{PN}为定值.$" ['$证明:当切线l的斜率不存在时,其方程为x=\\pm\\frac{2\\sqrt{6}}{3},$\n$当x=\\frac{2\\sqrt{6}}{3}时,将x=\\frac{2\\sqrt{6}}{3}代入椭圆方程\\frac{x^2}{8}+\\frac{y^2}{4}=1,得y=\\pm\\frac{2\\sqrt{6}}{3},不妨令M=\\left(\\frac{2\\sqrt{6}}{3},\\frac{2\\sqrt{6}}{3}\\right),N=\\left(\\frac{2\\sqrt{6}}{3},-\\frac{2\\sqrt{6}}{3}\\right),$\n$\\because P=\\left(\\frac{2\\sqrt{6}}{3},0\\right),\\therefore \\overrightarrow{PM}=\\left(0,\\frac{2\\sqrt{6}}{3}\\right),\\overrightarrow{PN}=\\left(0,-\\frac{2\\sqrt{6}}{3}\\right),$\n$\\therefore \\overrightarrow{PM}\\cdot \\overrightarrow{PN}=-\\frac{8}{3};$\n$当x=-\\frac{2\\sqrt{6}}{3}时,同理可得\\overrightarrow{PM}\\cdot \\overrightarrow{PN}=-\\frac{8}{3}.$\n$当切线l的斜率存在时,设l的方程为y=kx+m,M(x_1,y_1),N(x_2,y_2),$\n$因为l与\\odot O相切,所以\\frac{|m|}{\\sqrt{k^2+1}}=\\frac{2\\sqrt{6}}{3},所以3m^2=8k^2+8,$\n$由\\left\\{\\begin{matrix}y=kx+m,\\\\ \\frac{x^2}{8}+\\frac{y^2}{4}=1\\end{matrix}\\right.得(1+2k^2)x^2+4kmx+2m^2-8=0,$\n$\\therefore x_1+x_2=-\\frac{4km}{1+2k^2},x_1x_2=\\frac{2m^2-8}{1+2k^2},$\n$由\\Delta =(4km)^2-4(1+2k^2)(2m^2-8)>0,得8k^2-m^2+4>0.$\n$\\overrightarrow{PM}\\cdot \\overrightarrow{PN}=(\\overrightarrow{OM}-\\overrightarrow{OP})\\cdot (\\overrightarrow{ON}-\\overrightarrow{OP})=\\overrightarrow{OP}^2-\\overrightarrow{OP}\\cdot \\overrightarrow{OM}-\\overrightarrow{OP}\\cdot \\overrightarrow{ON}+\\overrightarrow{OM}\\cdot \\overrightarrow{ON}=\\overrightarrow{OP}^2-\\overrightarrow{OP}^2-\\overrightarrow{OP}^2+\\overrightarrow{OM}\\cdot \\overrightarrow{ON}=-\\frac{8}{3}+\\overrightarrow{OM}\\cdot \\overrightarrow{ON},$\n$\\because \\overrightarrow{OM}\\cdot \\overrightarrow{ON}=x_1x_2+y_1y_2=x_1x_2+(kx_1+m)(kx_2+m)$\n$=(1+k^2)x_1x_2+km(x_1+x_2)+m^2$\n$=(1+k^2)\\frac{2m^2-8}{1+2k^2}+km(-\\frac{4km}{1+2k^2})+m^2=\\frac{3m^2-8k^2-8}{1+2k^2}=0,$\n$\\therefore \\overrightarrow{PM}\\cdot \\overrightarrow{PN}=-\\frac{8}{3}.$\n$综上,\\overrightarrow{PM}\\cdot \\overrightarrow{PN}为定值-\\frac{8}{3}.$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 164 "$已知函数f(x)=x^3-x,g(x)=2x-3.$ | |
| $求证:存在唯一的x_0,使得f(x_0)=g(x_0).$" "[""$证明:设h(x)=f(x)-g(x)=x^3-3x+3,$\n\n$则h'(x)=3x^2-3=3(x-1)(x+1),$\n\n$令h'(x)=0,得x=\\pm1.$\n\n$h(x)与h'(x)随x的变化情况如下:$\n\n| $ x $ | $(-\\infty ,-1)$ | -1 |$ (-1,1)$ | 1 | $(1,+\\infty )$ |\n| ---- | ---- | ---- | ---- | ---- | ---- |\n| $h'(x)$ | + | 0 | - | 0 | + |\n| $h(x)$ | $\\text{单调递增}$ | 极大值 | $\\text{单调递减}$ | 极小值 | $\\text{单调递增}$ |\n\n$则h(x)的单调增区间为(-\\infty ,-1),(1,+\\infty ),单调减区间为(-1,1).$\n\n$又h(1)=1>0,h(-1)>h(1)>0,所以函数h(x)在(-1,+\\infty )上没有零点,又h(-3)=-15<0,$\n\n$所以函数h(x)在(-\\infty ,-1)上有唯一零点x_0.$\n\n$综上,存在唯一的x_0,使得f(x_0)=g(x_0).$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 165 "$已知椭圆C:\frac{x^2}{a^2} + \frac{y^2}{b^2} =1 (a>b>0)的离心率为\frac{\sqrt{2}}{2},且椭圆 C 经过点(1,\frac{\sqrt{6}}{2}).$ | |
| $已知过点P(4,0)的直线l与椭圆C交于不同的两点A,B,与直线x=1交于点Q,设\overrightarrow{AP}=\lambda\overrightarrow{PB},\overrightarrow{AQ}=\mu\overrightarrow{QB}(\lambda,\mu\in R),求证:\lambda+\mu为定值.$" ['证明:易知$直线l不与x轴垂直,设直线l的方程为x=my+4(m\\neq 0),设A(x_{1},y_{1}),B(x_{2},y_{2})$,\n由\n$$\n\\left\\{\n\\begin{matrix}\n\\frac{x^2}{4}+\\frac{y^2}{2}=1,\\\\ \nx=my+4,\n\\end{matrix}\n\\right.\n$$\n得($m^{2}+2)y^{2}+8my+12=0$,\n$\\therefore y_{1}+y_{2}=-\\frac{8m}{m^2+2},y_{1}y_{2}=\\frac{12}{m^2+2},把x=1代入x=my+4,得y=-\\frac{3}{m},即Q\\left(1,-\\frac{3}{m}\\right),$\n$由\\overrightarrow{AP}=\\lambda \\overrightarrow{PB},得0-y_{1}=\\lambda (y_{2}-0),\\lambda =-\\frac{y_1}{y_2},$\n$由\\overrightarrow{AQ}=\\mu \\overrightarrow{QB},得-\\frac{3}{m}-y_{1}=\\mu \\left(y_2+\\frac{3}{m}\\right),\\mu =-\\frac{3+my_1}{3+my_2},$\n$\\therefore \\lambda +\\mu =-\\frac{y_1}{y_2}-\\frac{3+my_1}{3+my_2}=-\\frac{3(y_1+y_2)+2my_1y_2}{y_2(3+my_2)}=-\\frac{3\\left(-\\frac{8m}{m^2+2}\\right)+2m \\cdot \\frac{12}{m^2+2}}{y_2(3+my_2)}=0,$\n$\\therefore \\lambda +\\mu $为定值.'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 166 "$已知椭圆iC:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)的离心率为\frac{\sqrt{2}}{2},右焦点为F,点B(0,1)在椭圆iC上.$ | |
| $过点F的直线交椭圆C于M,N两点,交直线x=2于点P,设\overrightarrow{PM}=\lambda\overrightarrow{MF},\overrightarrow{PN}=\mu\overrightarrow{NF},求证:\lambda+\mu为定值.$" ['$证明:由题意得F(1,0),直线MN的斜率存在.$\n\n$设直线MN的方程为y=k(x-1),M(x_1,y_1),N(x_2,y_2),则P(2,k).$\n\n$由\\overrightarrow{PM}=\\lambda \\overrightarrow{MF},\\overrightarrow{PN}=\\mu \\overrightarrow{NF},得\\lambda =\\frac{2-x_1}{x_1-1}, \\mu =\\frac{2-x_2}{x_2-1},$\n\n$所以\\lambda +\\mu =\\frac{2-x_1}{x_1-1}+\\frac{2-x_2}{x_2-1}=\\frac{3(x_1+x_2)-2x_1x_2-4}{x_1x_2-(x_1+x_2)+1},$\n\n$联立\\left\\{\\begin{matrix}y=k(x-1),\\\\ \\frac{x^2}{2}+y^2=1,\\end{matrix}\\right.得(1+2k^2)x^2-4k^2x+2k^2-2=0,$\n\n$所以x_1+x_2=\\frac{4k^2}{1+2k^2},x_1x_2=\\frac{2k^2-2}{1+2k^2}.$\n\n$因为3(x_1+x_2)-2x_1x_2-4=3\\cdot \\frac{4k^2}{1+2k^2}-2\\cdot \\frac{2k^2-2}{1+2k^2}-4=\\frac{12k^2-4k^2+4-4-8k^2}{1+2k^2}=0,$\n\n$所以\\lambda +\\mu =0,为定值.$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 167 "$已知抛物线C:y^2=2px 经过点P(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.$ | |
| $设O为原点,\overrightarrow{QM} = \lambda \overrightarrow{QO},\overrightarrow{QN} = \mu \overrightarrow{QO},求证:\frac{1}{\lambda } + \frac{1}{\mu }为定值.$" ['$证明:由(1)知y_1+y_2=\\frac{4}{k},y_1y_2=\\frac{4}{k}. 而点A(x_1,y_1),B(x_2,y_2)均在抛物线上,所以x_1=\\frac{y^2_1}{4},x_2=\\frac{y^2_2}{4}. 因为直线PA与直线PB均与y轴相交,则直线PA与直线PB的斜率均存在,即y_1\\neq -2,y_2\\neq -2.因为k_{PA}=\\frac{y_1-2}{x_1-1}=\\frac{y_1-2}{\\frac{y^2_1}{4}-1}=\\frac{4(y_1-2)}{y^2_1-4}=\\frac{4}{y_1+2},所以直线PA的方程为y-2=\\frac{4}{y_1+2}(x-1),令x=0,可得y_M=2-\\frac{4}{y_1+2}=\\frac{2y_1}{y_1+2},即M\\left(0,\\frac{2y_1}{y_1+2}\\right),同理可得N\\left(0,\\frac{2y_2}{y_2+2}\\right),而由\\overrightarrow{QM}=\\lambda \\overrightarrow{QO}可得,\\frac{2y_1}{y_1+2}-1=-\\lambda,所以\\frac{1}{\\lambda }=\\frac{2+y_1}{2-y_1}.同理由\\overrightarrow{QN}=\\mu \\overrightarrow{QO}可得,\\frac{2y_2}{y_2+2}-1=-\\mu,所以\\frac{1}{\\mu }=\\frac{2+y_2}{2-y_2}.所以\\frac{1}{\\lambda }+\\frac{1}{\\mu }=\\frac{2+y_1}{2-y_1}+\\frac{2+y_2}{2-y_2}=\\frac{(2+y_1)(2-y_2)+(2+y_2)(2-y_1)}{(2-y_1)(2-y_2)}=\\frac{8-2y_1y_2}{4+y_1y_2-2(y_1+y_2)}=\\frac{8-\\frac{8}{k}}{4+\\frac{4}{k}-2 \\cdot \\frac{4}{k}}=\\frac{8-\\frac{8}{k}}{4-\\frac{4}{k}}=2.故\\frac{1}{\\lambda }+\\frac{1}{\\mu }为定值.$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 168 "$在直角坐标系xOy中,点P到x轴的距离等于点P到点(0,\frac{1}{2})的距离,记动点P的轨迹为W。$ | |
| $已知矩形ABCD有三个顶点在W上,证明:矩形ABCD的周长大于3\sqrt{3}.$" "[""$证明:不妨设A,B,C三点在W上,如图所示.$\n\n<img_267>\n\n$设B(x_0,x^2_0+\\frac{1}{4}),A(x_1,x^2_1+\\frac{1}{4}),C(x_2,x^2_2+\\frac{1}{4}),AB的斜率为k,则直线BC的斜率为-\\frac{1}{k}(k\\neq 0),$\n$直线AB,BC的方程分别为y-(x^2_0+\\frac{1}{4})=k(x-x_0),y-(x^2_0+\\frac{1}{4})=-\\frac{1}{k}(x-x_0),即直线AB,BC的方程分别为y=kx-kx_0+x^2_0+\\frac{1}{4},y=-\\frac{x}{k}+\\frac{x_0}{k}+x^2_0+\\frac{1}{4},$\n$联立直线AB与抛物线W的方程可得$\n$$\n\\left\\{\n\\begin{matrix}\ny=x^2+\\frac{1}{4},\\\\ \ny=kx-kx_0+x^2_0+\\frac{1}{4},\n\\end{matrix}\n\\right.\n$$\n$消去y得x^2-kx+kx_0-x^2_0=0,$\n$则\\Delta =k^2-4kx_0+4x^2_0=(k-2x_0)^2>0,k\\neq 2x_0.$\n$由根与系数的关系得x_0+x_1=k,x_0\\cdot x_1=kx_0-x^2_0,$\n$\\therefore |AB|=\\sqrt{1+k^2}\\cdot |x_1-x_0|=\\sqrt{1+k^2}\\cdot \\sqrt{(x_0+x_1)^2-4x_0x_1}=\\sqrt{1+k^2}|k-2x_0|.$\n$同理,联立直线BC与抛物线W的方程,并消去y得x^2+\\frac{1}{k}x-\\frac{1}{k}x_0-x^2_0=0,且|BC|=\\sqrt{1+\\left(-\\frac{1}{k}\\right)^2}\\cdot |x_2-x_0|=\\sqrt{1+\\left(-\\frac{1}{k}\\right)^2}\\cdot \\left|-\\frac{1}{k}-2x_0\\right|=\\sqrt{1+\\frac{1}{k^2}}\\left|\\frac{1}{k}+2x_0\\right|,$\n$\\therefore |AB|+|BC|=\\sqrt{1+k^2}|k-2x_0|+\\sqrt{1+\\frac{1}{k^2}}\\left|\\frac{1}{k}+2x_0\\right|.$\n$由对称性不妨设0<|k|\\leq 1,$\n$则\\sqrt{1+\\frac{1}{k^2}}=\\frac{\\sqrt{1+k^2}}{|k|}\\geq \\sqrt{1+k^2}(当|k|=1时取“=”),$\n$\\therefore |AB|+|BC|\\geq \\sqrt{1+k^2}\\left(|k-2x_0|+\\left|\\frac{1}{k}+2x_0\\right|\\right)>\\sqrt{1+k^2}\\left|k+\\frac{1}{k}\\right|=\\sqrt{\\frac{(k^2+1)^3}{k^2}},$\n$令t=k^2,则t\\in (0,1],$\n$则\\sqrt{\\frac{(k^2+1)^3}{k^2}}=\\sqrt{\\frac{(t+1)^3}{t}},$\n$令g(t)=\\frac{(t+1)^3}{t},t\\in 0,1,$\n$则g'(t)=\\frac{3(t+1)^2t-(t+1)^3}{t^2}=\\frac{(t+1)^2\\cdot (2t-1)}{t^2},$\n$当0<t<\\frac{1}{2}时,g'(t)<0,g(t)单调递减;当\\frac{1}{2}<t\\leq 1时,g'(t)>0,g(t)单调递增,$\n$\\therefore g(t)在t=\\frac{1}{2}处取得极小值,即最小值,为g\\left(\\frac{1}{2}\\right)=\\frac{27}{4},$\n$\\therefore |AB|+|BC|>\\sqrt{g(t)}\\geq \\sqrt{g\\left(\\frac{1}{2}\\right)}=\\frac{3\\sqrt{3}}{2}.$\n$\\therefore 矩形的周长=2(|AB|+|BC|)>3\\sqrt{3}.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 169 "$已知点A,B是椭圆E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0) 的左,右顶点,椭圆E的短轴长为2,离心率为 \frac{\sqrt{3}}{2}.$ | |
| $点O是坐标原点,直线l经过点P(-2,2),并且与椭圆E交于点M,N,直线BM与直线OP交于点T,设直线AT,AN的斜率分别为k_1,k_2,求证:k_1k_2为定值.$" ['$证明:显然直线l的斜率存在,不妨设直线l:y=kx+m,因为l过点P(-2,2),所以-2k+m=2,则m=2k+2,$\n\n$所以直线l:y=kx+2k+2,$\n\n联立\n$$\n\\left\\{\n\\begin{matrix}\ny=kx+m,\\\\ \n\\frac{x^2}{4}+y^2=1,\n\\end{matrix}\n\\right.\n$$\n$消去y得(4k^2+1)x^2+8kmx+4m^2-4=0,$\n\n$\\Delta =16(4k^2-m^2+1) > 0,$\n\n$设点M(x_1,y_1),N(x_2,y_2),易知x_1, x_2 \\neq 2,所以x_1+x_2 = -\\frac{8km}{4k^2+1} = -\\frac{16k(k+1)}{4k^2+1},$\n\n$x_1x_2 = \\frac{4m^2-4}{4k^2+1} = \\frac{4(2k+3)(2k+1)}{4k^2+1},$\n\n$所以y_1y_2 = k^2x_1x_2+km(x_1+x_2)+m^2 = \\frac{m^2-4k^2}{4k^2+1} = \\frac{4(2k+1)}{4k^2+1},$\n\n$直线BM: y = \\frac{y_1}{x_1-2}(x-2),直线OP: y =-x,$\n\n联立\n$$\n\\left\\{\n\\begin{matrix}\ny=\\frac{y_1}{x_1-2}(x-2),\\\\ \ny=-x,\n\\end{matrix}\n\\right.\n$$\n解得\n$$\n\\left\\{\n\\begin{matrix}\nx=\\frac{2y_1}{x_1+y_1-2},\\\\ \ny=-\\frac{2y_1}{x_1+y_1-2},\n\\end{matrix}\n\\right.\n$$\n$即T\\left(\\frac{2y_1}{x_1+y_1-2}, -\\frac{2y_1}{x_1+y_1-2}\\right),又因为直线l:y=kx+2k+2,$\n\n$所以y_1=kx_1+2k+2,$\n\n$所以k_1=-\\frac{2y_1}{x_1+y_1-2 +2} = -\\frac{y_1}{x_1+2y_1-2} = -\\frac{y_1}{x_1+2(kx_1+2k+2)-2} = -\\frac{y_1}{(2k+1)(x_1+2)},$\n\n$k_2 = \\frac{y_2}{x_2+2},$\n\n$所以k_1k_2=-\\frac{y_1}{(2k+1)(x_1+2)}\\cdot \\frac{y_2}{x_2+2} = -\\frac{y_1y_2}{(2k+1)(x_1+2)(x_2+2)} =-\\frac{y_1y_2}{(2k+1)[x_1x_2+2(x_1+x_2)+4]} =-\\frac{\\frac{4(2k+1)}{4k^2+1}}{(2k+1)\\left[\\frac{4(2k+3)(2k+1)}{4k^2+1}+2\\times \\frac{-16k(k+1)}{4k^2+1}+4\\right]} =-\\frac{4}{4(2k+3)(2k+1)-32k(k+1)+4(4k^2+1)} =-\\frac{4}{16} =-\\frac{1}{4}.$\n\n$故k_1k_2为定值.$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 170 "$已知椭圆C:\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)经过点 \left(1,\frac{\sqrt{2}}{2}\right),离心率为 \frac{\sqrt{2}}{2}.$ | |
| $设直线l: y = kx + t (t \neq 0)与椭圆C相交于A,B两点,O为坐标原点.若以OA,OB为邻边的平行四边形OAPB的顶点P在椭圆C上,求证:平行四边形OAPB的面积是定值.$" ['$证明:把y=kx+t代入椭圆方程x^2/2 + y^2 = 1, $\n$消去y得(2k^2 + 1)x^2 + 4kt x + 2t^2 - 2 = 0, $\n$所以\\Delta = 16k^2 - 8t^2 + 8 > 0,即t^2 < 2k^2 + 1, $\n$设A(x_1, y_1),B(x_2, y_2),则x_1 + x_2 = - \\frac{4kt}{2k^2 + 1},x_1x_2 = \\frac{2t^2 - 2}{2k^2 + 1}, $\n$所以y_1 + y_2 = k(x_1 + x_2) + 2t = \\frac{2t}{2k^2 + 1}, $\n$因为四边形OAPB是平行四边形, $\n$所以\\overrightarrow{OP} = \\overrightarrow{OA} + \\overrightarrow{OB} = (x_1 + x_2, y_1 + y_2) = \\left(- \\frac{4kt}{2k^2 + 1}, \\frac{2t}{2k^2 + 1}\\right), $\n$所以P点坐标为\\left(-\\frac{4kt}{2k^2 + 1}, \\frac{2t}{2k^2 + 1}\\right)。 $\n$因为点P在椭圆上,$\n$所以\\frac{8k^2t^2}{(2k^2 + 1)^2} + \\frac{4t^2}{(2k^2 + 1)^2} = 1,即t^2 = \\frac{2k^2 + 1}{4}。 $\n$因为|AB| = \\sqrt{1 + k^2} \\cdot |x_1 - x_2 | = \\sqrt{1 + k^2} \\cdot \\sqrt{ (x_1 + x_2)^2 - 4x_1x_2} = \\sqrt{1 + k^2} \\cdot \\sqrt{\\frac{16k^2t^2}{(2k^2 + 1)^2} - \\frac{4(2t^2 - 2)}{2k^2 + 1}} = \\frac{\\sqrt{6} \\sqrt{1 + k^2}}{\\sqrt{2k^2 + 1}}. $\n$又点O到直线l的距离 d=\\frac{|t|}{\\sqrt{1 + k^2}}, $\n$所以平行四边形OAPB的面积S_{OAPB} = 2S_{OAB} = |AB| \\cdot d = \\frac{\\sqrt{6}|t|}{\\sqrt{2k^2 + 1}} = \\frac{\\sqrt{6} \\sqrt{\\frac{2k^2 + 1}{4}}}{\\sqrt{2k^2 + 1}} = \\frac{\\sqrt{6}}{2}, $\n$即平行四边形OAPB的面积是定值.$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 171 "$已知数列a_n满足a_1=2,a_{n+1}=2a_n-n+1 (n\in N^).$ | |
| $证明:数列{a_n - n}是等比数列,并求出数列{a_n}的通项公式;$" ['$因为数列{a_n}满足a_1=2,a_{n+1}=2a_{n}-n+1,所以a_{n+1}-(n+1)=2(a_{n}-n),而a_1-1=1,于是数列{a_n-n}是首项为1,公比为2的等比数列,a_n-n=1\\cdot 2^{n-1},即a_{n}=2^{n-1}+n.$'] [] Text-only Chinese College Entrance Exam Theorem proof Sequence Math Chinese | |
| 172 "$已知椭圆C: \frac{x^2}{a^2} + \frac{y^2}{b^2} =1 (a>b>0) 的离心率为 \frac{\sqrt{2}}{2},短轴长为2.$ | |
| 在$圆O:x^2+y^2=3$上取一动点$P,$过$P作$椭圆$C$的两条切线,切点分别记为$M,N$,若直线$PM与PN$的斜率均存在,且分别为$k_{1},k_{2}. 求证:k_{1}k_{2}=-1$;" ['$设 P(x_0,y_0).$\n\n$证明:设过 P 点且与椭圆 C 相切的直线方程为 y=k(x-x_0)+y_0.$\n联立\n$$\n\\left\\{\n\\begin{matrix}\ny=k(x-x_0)+y_0,\\\\ \n\\frac{x^2}{2}+y^2=1,\n\\end{matrix}\n\\right.\n$$\n\n$消去 y,得 (1+2k^2)x^2+4k(y_0-kx_0)\\cdot x+2(kx_0-y_0)^2-2=0,$\n$令 \\Delta=0,得 (x_0^2-2)k^2-2x_0y_0k+y_0^2-1=0,故 k_1k_2=\\frac{y^2_0-1}{x^2_0-2},$\n$又 x^2_0+y^2_0=3,\\therefore k_1k_2=\\frac{y^2_0-1}{x^2_0-2}=\\frac{3-x^2_0-1}{x^2_0-2}=-1.$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 173 "$已知圆M与圆F_1:(x+2)^2+y^2=1外切,同时与圆F_2:(x-2)^2+y^2=49内切.$ | |
| $设动点M的轨迹是曲线C,直线l_1:3x-2y=0与曲线C交于A,B两点,点P是线段AB上任意一点(不包含端点),直线l_2过点P,且与曲线C交于E,F两点,若\frac{|EF|^2}{|PA| \cdot |PB|}为定值,证明:|PE|=|PF|.$" ['$证明:设P(2m,3m),$\n由\n$$\n\\left\\{\\begin{matrix}\n\\frac{x^2}{16}+\\frac{y^2}{12}=1,\\\\ \n3x-2y=0\n\\end{matrix}\\right.\n$$\n得\n$$\n\\left\\{\\begin{matrix}\nx=2,\\\\ \ny=3\n\\end{matrix}\\right.\n$$\n或\n$$\n\\left\\{\\begin{matrix}\nx=-2,\\\\ \ny=-3,\n\\end{matrix}\\right.\n$$\n$不妨令A(2,3),B(-2,-3),则-1<m<1,$\n$则|PA|\\cdot |PB|=\\sqrt{(2m-2)^2+(3m-3)^2}\\cdot \\sqrt{(2m+2)^2+(3m+3)^2}=13(1-m^2)。$\n$当直线l_2的斜率不存在时,可得|EF|=2\\sqrt{12-3m^2},$\n$此时\\frac{|EF|^2}{|PA| \\cdot |PB|}=\\frac{12(4-m^2)}{13(1-m^2)},不为定值,故不合题意;$\n$当直线l_2的斜率存在时,设斜率为k,$\n$则l_2:y-3m=k(x-2m),即y=kx+m(3-2k),$\n$设E(x_1,y_1),F(x_2,y_2),由$\n$$\n\\left\\{\\begin{matrix}\n\\frac{x^2}{16}+\\frac{y^2}{12}=1,\\\\ \ny=kx+m(3-2k)\n\\end{matrix}\\right.\n$$\n$得(3+4k^2)x^2+8mk(3-2k)x+4m^2(3-2k)^2-48=0,$\n$则x_1+x_2=\\frac{8mk(2k-3)}{3+4k^2},x_1x_2=\\frac{4m^2(3-2k)^2-48}{3+4k^2},$\n$所以|EF|^2=(1+k^2)|x_1-x_2|^2=(1+k^2)[(x_1+x_2)^2-4x_1x_2]=\\frac{48(1+k^2)[(12+16k^2)-(3-2k)^2m^2]}{(3+4k^2)^2},$\n$故\\frac{|EF|^2}{|PA| \\cdot |PB|}=\\frac{48(1+k^2)[(12+16k^2)-(3-2k)^2m^2]}{13(3+4k^2)^2(1-m^2)},$\n$若\\frac{|EF|^2}{|PA| \\cdot |PB|}为定值,则12+16k^2=(3-2k)^2,解得k=-\\frac{1}{2},$\n$此时\\frac{x_1+x_2}{2}=\\frac{1}{2}\\times \\frac{8mk(2k-3)}{3+4k^2}=2m,代入y=kx+m(3-2k)得y=3m,$\n$故P是EF的中点,因此|PE|=|PF|.$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 174 "$已知函数f(x)=ln x -\frac{x+1}{x-1}.$ | |
| $讨论f(x)的单调性,并证明f(x)有且仅有两个零点;$" "[""$f(x)的定义域为(0,1)\\cup (1,+\\infty ).$\n\n$因为f'(x) = \\frac{1}{x}+\\frac{2}{(x-1)^2}>0,$\n\n$所以f(x)在(0,1),(1,+\\infty )单调递增.$\n\n$证明:因为f(e)=1-\\frac{e+1}{e-1}<0, f(e^2)=2-\\frac{e^2+1}{e^2-1}=\\frac{e^2-3}{e^2-1}>0,$\n\n$所以f(x)在(1,+\\infty )有唯一零点x_1,即f(x_1)=0.$\n\n$又0<\\frac{1}{x_1}<1,f\\left(\\frac{1}{x_1}\\right)=-ln x_1 +\\frac{x_1+1}{x_1-1}=-f(x_1)=0,$\n\n$故f(x)在(0,1)有唯一零点\\frac{1}{x_1}.$\n\n$综上, f(x) 有且仅有两个零点.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 175 "$已知a,b,c都是正数,且a^{\frac{3}{2}}+b^{\frac{3}{2}}+c^{\frac{3}{2}}=1,证明:$ | |
| $abc \leq \frac{1}{9}$" ['$因为a, b, c都是正数,所以1=a^\\frac{3}{2}+b^\\frac{3}{2}+c^\\frac{3}{2}\\geq 3\\sqrt[3]{a^\\frac{3}{2}b^\\frac{3}{2}c^\\frac{3}{2}}=3\\sqrt{abc},当且仅当a=b=c=3^{-\\frac{2}{3}}时取等号,所以3\\sqrt{abc}\\leq 1,即abc\\leq \\frac{1}{9}。$\n\n'] [] Text-only Chinese College Entrance Exam Theorem proof Inequality Math Chinese | |
| 176 "$已知函数f(x)=e^{x},g(x)=\ln(x+a)(a \in \mathbb{R}).$ | |
| $设\phi(x)=f(x)g(x),请判断\phi(x)是否存在极值?若存在,求出极值;若不存在,说明理由;$" "[""$\\phi(x) = f(x)g(x) = e^x \\cdot ln(x+a), x > -a,$\n\n$则 \\phi'(x) = e^x \\cdot ln(x+a) + e^x \\cdot \\frac{1}{x+a} = e^x \\cdot \\left[ln(x+a) + \\frac{1}{x+a}\\right], x > -a,$\n\n$令 m(x) = ln(x+a) + \\frac{1}{x+a}, x > -a,$\n\n$则 m'(x) = \\frac{1}{x+a} - \\frac{1}{(x+a)^2} = \\frac{x+a-1}{(x+a)^2}, x > -a,$\n\n$当 0<x+a<1,即 -a<x<1-a 时, m'(x)<0,此时 m(x) 单调递减;$\n\n$当 x+a>1,即 x>1-a 时, m'(x)>0,此时 m(x) 单调递增,$\n\n$所以 m_{min}=m(1-a)=1>0,$\n\n$所以对任意 x>-a,都有 \\phi'(x)>0,$\n\n$所以 \\phi(x) 在 (-a,+\\infty) 上单调递增,即 \\phi(x) 不存在极值.$\n\n""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 177 "$设圆x^{2}+y^{2}+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C, D两点,过B作AC的平行线交AD于点E。$ | |
| $证明|EA|+|EB|为定值,并写出点E的轨迹方程;$" ['$因为 |AD|=|AC|,EB\\parallel AC, 故 \\angle EBD=\\angle ACD=\\angle ADC.$\n$所以 |EB|=|ED|, 故 |EA|+|EB|=|EA|+|ED|=|AD|.$\n$又圆 A 的标准方程为 (x+1)^2+y^2=16,$\n$从而 |AD|=4, 所以 |EA|+|EB|=4.$\n$由题设得 A(-1,0),B(1,0),|AB|=2, 由椭圆的定义可得点 E 的轨迹方程为 {x^2}/{4}+{y^2}/{3}=1(y\\neq 0).$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 178 "$已知抛物线G:y^2=2px,其中p>0.点M(2,0)在G的焦点F的右侧,且点M到G的准线的距离是点M与点F距离的3倍.经过点M的直线与抛物线G交于不同的两点A,B,直线OA与直线x=-2交于点P,经过点B且与直线OA垂直的直线l交x轴于点Q.$ | |
| 请证明直线PQ与直线AB平行." ['$①当直线AB的斜率不存在时,根据对称性,不妨令A(2,-2\\sqrt{2}),B(2,2\\sqrt{2}),$\n$所以直线AO的方程为y=-\\sqrt{2}x,则P(-2,2\\sqrt{2}),$\n$所以直线BQ的方程为y-2\\sqrt{2}=\\frac{\\sqrt{2}}{2}(x-2),即y=\\frac{\\sqrt{2}}{2}x+\\sqrt{2},$\n$令y=0,得x=-2,即Q(-2,0),故直线PQ的斜率不存在,因此PQ\\parallel AB.$\n\n②当直线AB的斜率存在时,$设直线AB的方程为y=k(x-2),k\\neq 0,A(x_1,y_1),B(x_2,y_2)$,\n$联立\\left\\{\\begin{matrix}y^2=4x,\\\\ y=k(x-2),\\end{matrix}\\right.消去y得k^2x^2-(4k^2+4)x+4k^2=0,$\n$所以x_1+x_2=\\frac{4k^2+4}{k^2},x_1x_2=4,所以y^2_1y_2^2=16x_1x_2=64,$\n因为y<sub>1</sub>y<sub>2</sub><0,所以y<sub>1</sub>y<sub>2</sub>=-8.\n\n$直线OA的方程为y=\\frac{y_1}{x_1}x,$\n$令x=-2,则y=\\frac{-2y_1}{x_1},$\n$则P\\left(-2,\\frac{-2y_1}{x_1}\\right),$\n$因为OA\\perp BQ,所以k_{BQ}=-\\frac{x_1}{y_1},$\n$直线BQ的方程为y-y_2=-\\frac{x_1}{y_1}(x-x_2),$\n$令y=0,则x=\\frac{y_1y_2}{x_1}+x_2=\\frac{y_1y_2+x_1x_2}{x_1}=-\\frac{4}{x_1},即Q\\left(-\\frac{4}{x_1},0\\right),$\n$所以k_{PQ}=\\frac{\\frac{2y_1}{x_1}}{-\\frac{4}{x_1}+2}=\\frac{2y_1}{-4+2x_1}=\\frac{2k(x_1-2)}{2x_1-4}=k,所以PQ\\parallel AB.$\n\n综上所述,$PQ\\parallel AB$.\n\n'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 179 "$已知函数f(x)=2\ln x+1$。 | |
| $设a>0, 证明:函数 g(x)=\frac{f(x)-f(a)}{x-a} 在x \in (a, +\infty)上单调递减.$" "[""证明:\n$g(x)=\\frac{f(x)-f(a)}{x-a}=\\frac{2(\\mathrm{ln} x-\\mathrm{ln} a)}{x-a}, x\\in (0,a)\\cup (a,+\\infty ).$\n\n$g'(x)=\\frac{2\\left(\\frac{x-a}{x}+\\mathrm{ln} a-\\mathrm{ln} x\\right)}{(x-a)^2}=\\frac{2\\left(1-\\frac{a}{x}+\\mathrm{ln} \\frac{a}{x}\\right)}{(x-a)^2}.$\n\n$取c=-1得h(x)=2ln x-2x+2, h(1)=0,则由(1)知,当x \\neq 1时,h(x) < 0,即 1-x+ln x < 0。故当 x\\in (0,a)\\cup (a,+\\infty )时, 1-\\frac{a}{x}+ln \\frac{a}{x} < 0,从而 g'(x) < 0。所以 g(x)在区间(0,a),(a,+\\infty )上单调递减。$\n\n""]" [] Text-only Chinese College Entrance Exam Theorem proof Elementary Functions Math Chinese | |
| 180 "$已知函数f(x)=x(1-ln x).$ | |
| $设a,b为两个不相等的正数,且b\ln a-a\ln b=a-b,证明:2<\frac{1}{a}+\frac{1}{b}<e。$" "[""$证明:由b\\ln a-aln b=a-b得\\frac{1}{a}(1+ln a)=\\frac{1}{b}(1+ln b),即\\frac{1}{a}\\left(1-\\mathrm{ln} \\frac{1}{a}\\right)=\\frac{1}{b}\\left(1-\\mathrm{ln} \\frac{1}{b}\\right).$\n$令x_1=\\frac{1}{a},x_2=\\frac{1}{b},则x_1,x_2为f(x)=k的两个实根,当x \\rightarrow 0^{+}时,f(x) \\rightarrow 0^{+},当x \\rightarrow +\\infty 时,f(x) \\rightarrow -\\infty ,且f(1)=1,故k\\in (0,1).$\n$不妨令x_{1}\\in (0,1),x_{2}\\in (1,e),则2-x_{1}>1,e-x_{1}>1.$\n$先证明x_{1}+x_{2}>2,即证x_{2}>2-x_{1},即证f(x_{2})=f(x_{1})<f(2-x_{1}).$\n$令h(x)=f(x)-f(2-x),x\\in (0,1),则h'(x)=-ln x-ln(2-x)=-ln[x(2-x)]=ln\\frac{1}{x(2-x)}.$\n$\\becausex\\in (0,1),\\therefore x(2-x)\\in (0,1),\\therefore h'(x)>0恒成立,\\therefore h(x)为增函数,\\therefore h(x)<h(1)=0.$\n$\\therefore f(x_{2})<f(2-x_{1}),\\therefore x_{2}>2-x_{1},\\therefore x_{1}+x_{2}>2.$\n$再证x_{1}+x_{2}<e,即证x_{2}<e-x_{1},即证f(x_{2})=f(x_{1})>f(e-x_{1}).$\n$令\\phi (x)=f(x)-f(e-x),x\\in (0,1),则\\phi '(x)=-ln[x(e-x)],\\because x \\rightarrow 0^{+}时,\\phi '(x) \\rightarrow +\\infty ,\\phi '(1)=-ln(e-1)<0,\\phi '(x)在(0,1)上单调递减,$\n$\\therefore 在(0,1)上必存在唯一x_{0},使\\phi '(x_{0})=0,$\n$且当x\\in (0,x_{0})时,\\phi '(x)>0,\\phi (x)单调递增,$\n$当x\\in (x_{0},1)时,\\phi '(x)<0,\\phi (x)单调递减,$\n$又x\\rightarrow 0^{+}时,f(x)\\rightarrow 0^{+},且f(e)=0,$\n$\\therefore x\\rightarrow 0^{+}时,\\phi (x)\\rightarrow 0^{+},又\\phi (1)=f(1)-f(e-1)>0,$\n$\\therefore \\phi (x)>0恒成立,\\therefore f(x_{2})>f(e-x_{1}),$\n$\\therefore x_{2}<e-x_{1},\\therefore x_{1}+x_{2}<e.$\n$综上,2<\\frac{1}{a}+\\frac{1}{b}<e成立.$\n\n""]" [] Text-only Chinese College Entrance Exam Theorem proof Elementary Functions Math Chinese | |
| 181 "$设x, y, z\in R,且x+y+z=1.$ | |
| $若(x-2)^2+(y-1)^2+(z-a)^2 \geq \frac{1}{3} 成立,证明:a \leq -3或a \geq -1.$" "['$证明:由于 [(x-2)+(y-1)+(z-a)]^2 = (x-2)^2+(y-1)^2+(z-a)^2+2[(x-2)(y-1)+(y-1)(z-a)+(z-a)(x-2)] \\leq 3[(x-2)^2+(y-1)^2+(z-a)^2], $\n$故由已知得 (x-2)^2+(y-1)^2+(z-a)^2 \\geq \\frac{(2+a)^2}{3},当且仅当 x=\\frac{4-a}{3}, y=\\frac{1-a}{3}, z=\\frac{2a-2}{3} 时等号成立. $\n$因此 (x-2)^2+(y-1)^2+(z-a)^2 的最小值为 \\frac{(2+a)^2}{3}. $\n$由题设知 \\frac{(2+a)^2}{3} \\geq \\frac{1}{3},解得 a \\leq -3 或 a \\geq -1. $' | |
| '解法:\n$1. 由柯西不等式得 [(x-1)^2+(y+1)^2+(z+1)^2] (1^2 + 1^2 + 1^2) \\geq [(x-1)+(y+1)+(z+1)]^2 = (x+y+z+1)^2 = 4,故 (x-1)^2+(y+1)^2+(z+1)^2 \\geq \\frac{4}{3}(当且仅当 x-1=y+1=z+1,即 x=\\frac{5}{3}, y=z=-\\frac{1}{3} 时等号成立). $\n$所以 (x-1)^2+(y+1)^2+(z+1)^2 的最小值为 \\frac{4}{3}.$\n$2. 证明:由柯西不等式得 [(x-2)^2+(y-1)^2+(z-a)^2] (1^2+1^2+1^2) \\geq (x-2+y-1+z-a)^2 = (a+2)^2 (当且仅当 x-2=y-1=z-a ,即 x=\\frac{4-a}{3}, y=\\frac{1-a}{3}, z=\\frac{2a-2}{3} 时等号成立), $\n$即 (x-2)^2+(y-1)^2+(z-a)^2 的最小值为 \\frac{(a+2)^2}{3}. $\n$因为 (x-2)^2+(y-1)^2+(z-a)^2 \\geq \\frac{1}{3} 成立,则 \\frac{(a+2)^2}{3} \\geq \\frac{1}{3}.即 (a+2)^2 \\geq 1,则 a \\leq -3 或 a \\geq -1.$']" [] Text-only Chinese College Entrance Exam Theorem proof Inequality Math Chinese | |
| 182 "$已知双曲线C的中心为坐标原点,左焦点为(-2\sqrt{5},0),离心率为\sqrt{5}.$ | |
| $记C的左、右顶点分别为A_1,A_2,过点(-4,0)的直线与C的左支交于M,N两点,M在第二象限,直线MA_1与NA_2交于点P,证明:点P在定直线上.$" "['$由题意知直线MN的斜率不为0,所以可设直线MN的方程为x=my-4,M(x_1,y_1),N(x_2,y_2),由(1)知,A_1(-2,0),A_2(2,0).$\n\n联立 \n$$\n\\left\\{\\begin{matrix}x=my-4,\\\\ \\frac{x^2}{4}-\\frac{y^2}{16}=1,\\end{matrix}\\right.\n$$\n$消去x,得(4m^2-1)y^2-32my+48=0,$\n\n$\\therefore y_1+y_2=\\frac{32m}{4m^2-1},$\n\n$y_1y_2=\\frac{48}{4m^2-1},$\n\n$\\therefore my_1y_2=\\frac{3}{2}(y_1+y_2).$\n\n$易知直线MA_1的方程为y=\\frac{y_1}{x_1+2}(x+2)=\\frac{y_1}{my_1-2}(x+2),$\n\n$直线NA_2的方程为y=\\frac{y_2}{x_2-2}(x-2)=\\frac{y_2}{my_2-6}(x-2),$\n\n$联立可得,\\frac{y_1}{my_1-2}(x+2)=\\frac{y_2}{my_2-6}(x-2),$\n\n$\\therefore \\frac{x+2}{x-2}=\\frac{my_1y_2-2y_2}{my_1y_2-6y_1}=\\frac{\\frac{3}{2}(y_1+y_2)-2y_2}{\\frac{3}{2}(y_1+y_2)-6y_1}=-\\frac{1}{3},$\n\n$\\therefore x=-1,$\n\n$\\therefore 点P在定直线x=-1上.$' | |
| '$由(1)知A_1(-2,0),A_2(2,0).$\n\n$由题意知直线MN的斜率不为0,所以可设直线MN的方程为x=my-4,M(x_1,y_1),N(x_2,y_2),$\n\n由\n$$\n\\left\\{\\begin{matrix}\\frac{x^2}{4}-\\frac{y^2}{16}=1,\\\\ x=my-4,\\end{matrix}\\right.\n$$\n$得(4m^2-1)y^2-32my+48=0,$\n\n$由根与系数的关系知,y_1+y_2=\\frac{32m}{4m^2-1}, y_1y_2=\\frac{48}{4m^2-1}.$\n\n$易知直线MA_1的方程为y=\\frac{y_1}{x_1+2}(x+2),$\n\n$直线NA_2的方程为y=\\frac{y_2}{x_2-2}(x-2),$\n\n$由得\\frac{y_1}{x_1+2}(x+2)=\\frac{y_2}{x_2-2}(x-2),$\n\n$两边同时乘y_2得,\\frac{y_1y_2}{x_1+2}(x+2)=\\frac{y^2_2}{x_2-2}(x-2),$\n\n$又点N(x_2,y_2)在双曲线\\frac{x^2}{4}-\\frac{y^2}{16}=1上,\\therefore y^2_2=4(x^2_2-4).$\n\n$\\therefore \\frac{y_1y_2}{x_1+2}(x+2)=\\frac{4(x^2_2-4)}{x_2-2}(x-2),$\n\n$即y_1y_2(x+2)=4(x_1+2)(x_2+2)(x-2),$\n\n$又\\because x=my-4,\\therefore (x_1+2)(x_2+2)=(my_1-2)(my_2-2)=m^2y_1y_2-2m(y_1+y_2)+4,$\n\n$\\therefore 式可化为\\frac{48}{4m^2-1}(x+2)=4\\left(\\right.\\frac{48m^2}{4m^2-1}-2m\\cdot \\frac{32m}{4m^2-1}+4\\left)\\right.(x-2),$\n\n$即-3(x+2)=x-2,$\n\n$解得x=-1.$\n\n$\\therefore 点P在定直线x=-1上.$']" [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 183 "$已知椭圆C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)的下顶点A和右顶点B都在直线l_1:y=\frac{1}{2}(x-2)上.$ | |
| $不经过点B的直线l_2:y=kx+m交椭圆C于P,Q两点,过点P作x轴的垂线交l_1于点D,点P关于点D的对称点为E.若E,B,Q三点共线,求证:直线l_2经过定点.$" ['$证明:设P(x_1, y_1), Q(x_2, y_2),则 x_1 \\neq 2, x_2 \\neq 2.$\n\n$则 D(x_1,\\frac{1}{2}(x_1-2)),故 E(x_1, x_1 - y_1 - 2)。$\n\n$因为 E, B, Q 三点共线,故 \\frac{y_2}{x_2-2} = \\frac{x_1 - y_1 - 2}{x_1 - 2},整理得$\n\n$x_1y_2 + x_2y_1 = 2(y_1 + y_2) + x_1x_2 - 2(x_1 + x_2) +4,即 (2k - 1)x_1x_2 + (m - 2k + 2)(x_1 + x_2) - 4m - 4 = 0.$\n\n$由 \\begin{cases}\\frac{x^2}{4} + y^2 = 1,\\\\ y = kx + m\\end{cases} 可得 (1 + 4k^2) x^2 +8kmx + 4m^2 - 4 = 0,故 \\Delta = 16(4k^2 +1 - m^2) > 0,且 x_1 + x_2 = -\\frac{8km}{1 + 4k^2},x_1x_2 = \\frac{4m^2 - 4}{1 + 4k^2},$\n\n$故 (2k - 1) \\cdot \\frac{4m^2 - 4}{1 + 4k^2} - (m - 2k +2) \\cdot \\frac{8km}{1 + 4k^2} - 4m - 4 = 0,$\n\n$整理得 (m + 2k)(m + 2k + 1) = 0,$\n\n$若 m = -2k,则 l_2: y=kx - 2k,故 l_2 过 B,与题设矛盾;$\n\n$若 m = -2k - 1,则 l_2: y = kx - 2k - 1 = k(x-2) - 1,故 l_2 过定点 (2, -1)。$\n\n$故直线 l_2 经过定点。$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 184 "$已知a_n是无穷数列。给出两个性质:$ | |
| $① 对于a_n中任意两项a_i,a_j(i > j),在a_n中都存在一项a_m,使得\frac{a^{2}_i}{a_j} = a_m;$ | |
| $② 对于a_n中任意一项a_n(n \geq 3),在a_n中都存在两项a_k,a_l(k > l),使得a_n = \frac{a^{2}_k}{a_l}。$ | |
| $若a_n=n (n=1,2, \ldots), 判断数列{a_n}是否满足性质①,说明理由。$" ['$若a_n=n(n=1,2,\\ldots ),则数列{a_n}不满足性质①,可以举反例验证.\\frac{a^2_3}{a_2}=\\frac{3^2}{2}=\\frac{9}{2}∉N,在数列{a_n}中不能找到一项a_m(m\\in N),使得a_m=\\frac{9}{2}.$\n\n'] ['$数列{a_n}不满足性质①$'] [] Text-only Chinese College Entrance Exam Theorem proof Sequence Math Chinese | |
| 185 "$已知a_n是无穷数列。给出两个性质:$ | |
| $① 对于a_n中任意两项a_i,a_j(i > j),在a_n中都存在一项a_m,使得\frac{a^{2}_i}{a_j} = a_m;$ | |
| $② 对于a_n中任意一项a_n(n \geq 3),在a_n中都存在两项a_k,a_l(k > l),使得a_n = \frac{a^{2}_k}{a_l}。$ | |
| $若a_n=2^n-1 (n=1,2,\ldots ),判断数列{a_n}是否同时满足性质①和性质②,说明理由;$" ['$若a_n=2^{n-1}(n=1,2,\\ldots ),则数列{a_n}能同时满足性质①和性质②.$\n\n$对于{a_n}中任意两项a_i,a_j(i>j),$\n\n$\\frac{a^2_i}{a_j}=$\n\n$\\frac{(2^{i-1})^2}{2^{j-1}}=$\n\n$\\frac{2^{2i-2}}{2^{j-1}}=2^{2i-j-1}=a_{2i-j}.$\n\n$令m=2i-j即可,所以对于{a_n}中任意两项a_i,a_j(i>j),在{a_n}中存在一项a_m(m=2i-j),使得$\n\n$\\frac{a^2_i}{a_j}=a_m,故满足性质①.$\n\n$对于{a_n}中任意一项a_n=2^{n-1},下面寻求{a_n}中另外两项a_k,a_l(k>l),使得a_n=$\n\n$\\frac{a^2_k}{a_l},即2^{n-1}=$\n\n$\\frac{(2^{k-1})^2}{2^{l-1}}=2^{2k-l-1},$\n\n$即n=2k-l,可令l=n-2,k=n-1(n\\geq 3),$\n\n$则此时a_n=2^{n-1}=$\n\n$\\frac{2^{2n-4}}{2^{n-2-1}}=$\n\n$\\frac{a^2_k}{a_l},故满足性质②.$\n\n$故数列{a_n}能同时满足性质①和性质②.$\n\n'] ['$数列{a_n}能同时满足性质①和性质②.$'] [] Text-only Chinese College Entrance Exam Theorem proof Sequence Math Chinese | |
| 186 "$为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈,则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈,则乙药得1分,甲药得-1分;若都治愈或都未治愈,则两种药均得0分.甲、乙两种药的治愈率分别记为\alpha和\beta,一轮试验中甲药的得分记为X。$ | |
| $若甲药、乙药在试验开始时都赋予4分,p_i(i=0,1,\ldots ,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p_0=0,p_8=1,p_i=ap_{i-1}+bp_i+cp_{i+1}(i=1,2,\ldots ,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设\alpha =0.5,\beta =0.8.$ | |
| $证明:{p_{i+1}-p_i}(i=0,1,2,\ldots ,7)为等比数列;$" ['$证明:由(1)得a=0.4,b=0.5,c=0.1.$\n$因此p_{i}=0.4p_{i-1}+0.5p_{i}+0.1p_{i+1},$\n$故0.1(p_{i+1}-p_{i})=0.4(p_{i}-p_{i-1}),即p_{i+1}-p_{i}=4(p_{i}-p_{i-1}).$\n$又因为p_{1}-p_{0}=p_{1}\\neq 0,$\n$所以{p_{i+1}-p_{i}}(i=0,1,2,\\ldots ,7)是公比为4,首项为p_{1}的等比数列.$'] [] Text-only Chinese College Entrance Exam Theorem proof Probability and Statistics Math Chinese | |
| 187 "$已知函数 f(x) = \sin x - x\cos x.$ | |
| $求证:当x\in (0,\frac{\pi }{2})时, f(x) < \frac{1}{3}x^3;$" "[""$证明:令 g(x)=f(x)-\\frac{1}{3}x^3=sin x-xcos x-\\frac{1}{3}x^3,$\n$则 g'(x)=xsin x-x^2=x(sin x-x),$\n$当 x\\in (0,\\frac{\\pi }{2}) 时,设 t(x)=sin x-x,$\n$则 t'(x)=cos x-1<0,$\n$所以 t(x) 在 x\\in (0,\\frac{\\pi }{2}) 上单调递减,t(x)=sin x-x<t(0)=0,所以 g'(x)<0,$\n$所以 g(x) 在 (0,\\frac{\\pi }{2}) 上单调递减,所以 g(x)<g(0)=0,$\n$所以 f(x)< \\frac{1}{3}x^{3}.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 188 "$已知函数f(x) = \tan x - kx^3 - x,k \in R.$ | |
| $当k=\frac{1}{3}, x\in \left(0,\frac{\pi }{2}\right)时,求证:f(x)>0;$" "[""$证明:当k=1/3时, f'(x)= (1-\\cos ^2x-x^2\\cos ^2x)/\\cos ^2x = (\\sin x+x\\cos x)(\\sin x-x\\cos x)/\\cos ^2x.$\n\n$因为x\\in (0,\\pi /2),所以\\sin x+x\\cos x>0. $\n\n$设h(x)=\\sin x-x\\cos x,则h'(x)=x\\sin x. $\n\n$当x\\in (0,\\pi /2)时,h'(x)>0,$\n\n$所以h(x)在区间(0,\\pi /2)上单调递增. $\n\n$所以当x\\in (0,\\pi /2)时,h(x)>h(0)=0. $\n\n$即\\sin x-x\\cos x>0得证. $\n\n$所以当x\\in (0,\\pi /2)时, f'(x)>0. $\n\n$所以f(x)在区间(0,\\pi /2)上单调递增. $\n\n$又f(0)=0,所以当x\\in (0,\\pi /2)时, f(x)>f(0)=0.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 189 "$已知函数f(x) = \frac{x+1}{e^x}.$ | |
| $求证:当x\in (0,+\infty )时, f(x) > -\frac{1}{2}x^2 + 1;$" "[""$证明:令 g(x)=f(x)+\\frac{1}{2}x^{2}-1=\\frac{x+1}{e^{x}}+\\frac{1}{2}x^{2}-1\\ (x>0), 则 g'(x)=-\\frac{x}{e^{x}}+x=x(1-\\frac{1}{e^{x}})=x\\cdot\\frac{e^{x}-1}{e^{x}}. 由 x>0 得 e^{x}-1>0, 所以,g'(x)>0, 故函数 g(x) 是 (0,+\\infty ) 上的增函数. 所以 g(x)>g(0)=0,即 f(x)>-\\frac{1}{2}x^{2}+1.$\n\n解后反思\n\n$令 g(x)=f(x)+\\frac{1}{2}x^{2}-1,求导,根据函数 g(x) 的单调性和最值证明。$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 190 "$已知函数f(x)=\frac{1}{3}x^3-a(x^2+x+1).$ | |
| $证明:f(x)只有一个零点.$" "[""$证明:由于x^2+x+1>0,所以f(x)=0等价于\\frac{x^3}{x^2+x+1}-3a=0。$\n\n$设g(x)=\\frac{x^3}{x^2+x+1}-3a,则g'(x)=\\frac{x^2(x^2+2x+3)}{(x^2+x+1)^2}\\geq 0,仅当x=0时g'(x)=0,所以g(x)在(-\\infty ,+\\infty )上单调递增。故g(x)至多有一个零点,从而f(x)至多有一个零点。$\n\n$又f(3a-1)=-6a^2+2a-\\frac{1}{3}=-6\\left(a-\\frac{1}{6}\\right)^2-\\frac{1}{6}<0, f(3a+1)=\\frac{1}{3}>0,故f(x)有一个零点。$\n\n$综上, f(x)只有一个零点.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 191 "$已知函数f(x)=\frac{x+2}{x^2+2x-3}.$ | |
| $判断方程f(x)=\ln x的解的个数,并证明你的结论;$" "[""$方程f(x)=ln x的解的个数为2,证明如下.$\n$由f(x)=ln x,得\\frac{x+2}{x^2+2x-3}=ln x,$\n$设g(x)=\\frac{x+2}{x^2+2x-3}-ln x,定义域为(0,1)\\cup (1,+\\infty ),$\n$则 g'(x)=\\frac{-x^2-4x-7}{(x^2+2x-3)^2}-\\frac{1}{x}=\\frac{-{(x+2)}^2-3}{{(x^2+2x-3)}^2}-\\frac{1}{x}<0,$\n$所以函数g(x)的单调减区间为(0,1),(1,+\\infty ).$\n$又g \\left(\\frac{1}{10}\\right)=\\frac{0.1+2}{{0.1}^2+0.2-3}-ln \\frac{1}{10}=\\frac{2.1}{-2.79}+ln 10>0,$\n$g \\left(\\frac{1}{2}\\right)=\\frac{0.5+2}{{0.5}^2+1-3}-ln \\frac{1}{2}=\\frac{2.5}{-1.75}+ln 2<-1+ln 2<0,$\n$所以g(x)在区间(0,1)上存在一个零点.$\n$g\\left(\\frac{3}{2}\\right)=\\frac{1.5+2}{{1.5}^2+3-3}-ln\\frac{3}{2}=\\frac{3.5}{2.25}-ln \\frac{3}{2}>0,$\n$g(3)=\\frac{3+2}{3^2+6-3}-ln 3=\\frac{5}{12}-ln 3<0,$\n$所以g(x)在区间(1,+\\infty )上存在一个零点,$\n$所以方程f(x)=ln x的解有2个.$\n\n疑难突破\n$引入新函数g(x)=\\frac{x+2}{x^2+2x-3}-ln x,由导数得出g(x)的单调性,利用函数零点存在定理进行判断;$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 192 "$已知数列a_n和b_n满足a_1=1, b_1=0, 4a_{n+1}=3a_n-b_n+4, 4b_{n+1}=3b_n-a_n-4.$ | |
| $证明:{a_n+b_n}是等比数列,{a_n-b_n}是等差数列;$" ['$证明:由题设得4(a_{n+1}+b_{n+1})=2(a_n+b_n),即a_{n+1}+b_{n+1}=\\frac{1}{2}(a_n+b_n)。(通常以所证数列的结构为目标,对已知递推数列变形)$\n\n$又因为a_1+b_1=1,所以{a_n+b_n}是首项为1,公比为\\frac{1}{2}的等比数列。$\n\n$由题设得4(a_{n+1}-b_{n+1})=4(a_n-b_n)+8,即a_{n+1}-b_{n+1}=a_n-b_n+2。$\n\n$又因为a_1-b_1=1,所以{a_n-b_n}是首项为1,公差为2的等差数列。$'] [] Text-only Chinese College Entrance Exam Theorem proof Sequence Math Chinese | |
| 193 "$已知a, b, c均为正数,且a^2+b^2+4c^2=3,证明:$ | |
| $a + b + 2c \leq 3;$" ['$证法一(柯西不等式):由柯西不等式可得a^{2}+b^{2}+(2c)^{2} \\ge (a+b+2c)^{2},当且仅当 a = b =2c时,取“=”。$\n$\\because a^{2}+b^{2}+4c^{2}=3,\\therefore (a+b+2c)^{2}\\leq 9$\n$\\because a, b, c均为正数,\\therefore a+b+2c\\leq 3。$\n\n证法二(基本不等式):\n$\\because a^{2}+b^{2}\\geq 2ab,a^{2}+4c^{2}\\geq 4ac,b^{2}+4c^{2}\\geq 4bc,\\therefore a^{2}+b^{2}+(2c)^{2} \\ge ab+2ac+2bc,当且仅当 a = b =2c时,取“=”。$\n$\\because a^{2}+b^{2}+4c^{2}=3,\\therefore ab+2ac+2bc\\leq 3,$\n$\\therefore (a+b+2c)^{2}=a^{2}+b^{2}+4c^{2}+2(ab+2ac+2bc)=3+2(ab+2ac+2bc)\\leq 9。$\n$\\because a, b, c均为正数,\\therefore a+b+2c\\leq 3.$'] [] Text-only Chinese College Entrance Exam Theorem proof Inequality Math Chinese | |
| 194 "$已知a,b,c都是正数,且a^{\frac{3}{2}}+b^{\frac{3}{2}}+c^{\frac{3}{2}}=1,证明:$ | |
| $\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b} \leq \frac{1}{2\sqrt{abc}}$" ['证法一(分析法):\n$要证\\frac{a}{b+c}+\\frac{b}{a+c}+\\frac{c}{a+b}\\leq \\frac{1}{2\\sqrt{abc}}成立,只需证\\frac{a^\\frac{3}{2}\\sqrt{bc}}{b+c}+\\frac{b^\\frac{3}{2}\\sqrt{ac}}{a+c}+\\frac{c^\\frac{3}{2}\\sqrt{ab}}{a+b}\\leq \\frac{1}{2},因为b+c\\geq 2\\sqrt{bc},a+c\\geq 2\\sqrt{ac},a+b\\geq 2\\sqrt{ab},当且仅当a=b=c=3^{-\\frac{2}{3}}时取等号,所以\\frac{a^\\frac{3}{2}\\sqrt{bc}}{b+c}+\\frac{b^\\frac{3}{2}\\sqrt{ac}}{a+c}+\\frac{c^\\frac{3}{2}\\sqrt{ab}}{a+b}\\leq \\frac{a^\\frac{3}{2}\\sqrt{bc}}{2\\sqrt{bc}}+\\frac{b^\\frac{3}{2}\\sqrt{ac}}{2\\sqrt{ac}}+\\frac{c^\\frac{3}{2}\\sqrt{ab}}{2\\sqrt{ab}}=\\frac{a^\\frac{3}{2}+b^\\frac{3}{2}+c^\\frac{3}{2}}{2}=\\frac{1}{2}.$\n\n证法二(综合法):\n$因为b+c\\geq 2\\sqrt{bc},$\n$所以\\frac{a}{b+c}\\leq \\frac{a}{2\\sqrt{bc}}=\\frac{a\\sqrt{a}}{2\\sqrt{abc}}=\\frac{a^{\\frac{3}{2}}}{2\\sqrt{abc}}$\n(当且仅当b=c时取等号),\n$同理\\frac{b}{a+c}\\leq \\frac{b^\\frac{3}{2}}{2\\sqrt{abc}}(当且仅当a=c时取等号),$\n$\\frac{c}{a+b}\\leq \\frac{c^{\\frac{3}{2}}}{2\\sqrt{abc}}(当且仅当a=b时取等号),$\n$所以\\frac{a}{b+c}+\\frac{b}{a+c}+\\frac{c}{a+b}\\leq \\frac{a^{\\frac{3}{2}}+b^{\\frac{3}{2}}+c^{\\frac{3}{2}}}{2\\sqrt{abc}}=\\frac{1}{2\\sqrt{abc}},$\n$当且仅当a=b=c=3^{-\\frac{2}{3}}时取等号.$'] [] Text-only Chinese College Entrance Exam Theorem proof Inequality Math Chinese | |
| 195 "$已知函数f(x)=\ln x - e^{x}。$ | |
| $求证:f(x)有且只有一个极值点;$" "[""$证明:f(x)的定义域为(0,+\\infty),$\n$因为y=\\frac{1}{x}在区间(0,+\\infty)上单调递减,y=-e^{x}在区间(0,+\\infty)上也单调递减,$\n$所以f'(x)=\\frac{1}{x}-e^{x}在(0,+\\infty)上单调递减,$\n$因为f'(1)=1-e<0, f'(\\frac{1}{2})=2-\\sqrt{e}>0,$\n$所以存在x_0\\in(\\frac{1}{2},1), 使得f'(x_0)=0,$\n$所以当x\\in(0,x_0)时, f(x)单调递增,当x\\in(x_0,+\\infty)时, f(x)单调递减,$\n$所以f(x)有且只有一个极值点x_0。$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 196 "已知函数$f(x)=\sqrt{x}lnx$. | |
| $求证:f(x)<x;$" "[""$因为x >0,所以\\sqrt{x} >0. 由此可知,要证\\sqrt{x}ln x < x,只需证ln x < \\sqrt{x},即证ln x - \\sqrt{x} <0.$\n\n$令h(x) =ln x - \\sqrt{x}, 则h'(x) = \\frac{1}{x} - \\frac{1}{2\\sqrt{x}} = \\frac{2-\\sqrt{x}}{2x}.$\n\n$令h'(x) = 0, 解得x = 4.$\n\n$x,h'(x)与h(x)的变化情况如下表:$\n\n|$x$|$(0,4)$|4|$(4,+\\infty )$|\n|---|---|---|---|\n|$h'(x)$|+|0|-|\n|$h(x)$|$\\text{单调递增}$|极大值|$\\text{单调递减}$|\n\n$所以h(x) \\leq h(4) = ln4 - 2 < 0.$\n\n$所以ln x - \\sqrt{x} < 0,所以原不等式成立.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 197 "$已知函数f(x)=\frac{\ln x+a}{x+1}.$ | |
| $当a>2时,$ | |
| $1. 求证:f(x)有唯一的极值点x_{1};$ | |
| $2. 记f(x)的零点为x_{0},是否存在a,使得\frac{x_1}{x_0}\leq e^2?说明理由.$" "[""$①证明:f(x)的定义域是(0,+\\infty ), f'(x) = \\frac{1+\\frac{1}{x}-\\mathrm{ln} x - a}{(x+1)^2},设g(x) = 1+ \\frac{1}{x} - \\mathrm{ln} x - a, $\n\n$因为y = \\frac{1}{x}, y = -\\mathrm{ln} x 在(0,+\\infty )上单调递减,$\n\n$所以g(x)在(0,+\\infty )上单调递减. $\n\n$因为g(e^{-a}) = 1+ e^a > 0, g(1) = 2-a < 0, 所以g(x)在(0,+\\infty )上有唯一的零点,$\n\n$所以f'(x) = 0在区间(0,+\\infty )上有唯一解,不妨设为x_1,x_1 \\in (e^{-a},1).$\n\n$当x变化时, f'(x), f(x)变化情况如下:$\n\n$| x | (0,x_1) | x_1 | (x_1,+\\infty ) |$\n|------|-----|-----|------|\n$| f'(x) | + | 0 | - |$\n$| f(x) | \\text{单调递增} | 极大值 | \\text{单调递减} |$\n\n$所以f(x)有唯一的极值点x_1.$\n\n$②由题意,ln x_0= -a,则x_0=e^{-a},$\n\n$若存在a,使得\\frac{x_1}{x_0} \\leq e^2,则x_1 \\leq e^{2-a} < 1,$\n\n$又x_1 \\in (e^{-a}, 1), 所以e^{-a} < x_1 \\leq e^{2-a},$\n\n$因为g(x)在(0,+\\infty )上单调递减,g(e^{-a}) = 1+ e^a > 0,$\n\n$则需g(e^{2-a}) = e^{a-2} -1 \\leq 0,即a \\leq 2,与已知矛盾.$\n\n$所以,不存在a > 2,使得\\frac{x_1}{x_0} \\leq e^2.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 198 "$在平面直角坐标系中,O为坐标原点,抛物线C:x^2 = 2py(p>0)的焦点为F,抛物线C上不同的两点M,N同时满足下列三个条件中的两个:$ | |
| 1. |FM| + |FN| = |MN|; | |
| $2. |OM| = |ON| = |MN| = 8\sqrt{6};$ | |
| 3. 直线MN的方程为 y=6p. | |
| $若直线l与抛物线C相切于点P,l与椭圆D: \frac{x^2}{4} + \frac{y^2}{2} =1 相交于A,B两点,l与直线y= -\sqrt{2} 交于点Q,以PQ为直径的圆与直线y= -\sqrt{2} 交于Q,Z两点,求证:直线OZ经过线段AB的中点.$" "[""$证明:设P(t,\\frac{t^2}{4\\sqrt{2}}),$\n\n$因为抛物线C:x^2=4\\sqrt{2}y,则y'=\\frac{x}{2\\sqrt{2}},$\n\n$故直线AB的斜率k_{AB}=\\frac{t}{2\\sqrt{2}},设A(x_1,y_1),B(x_2,y_2),$\n\n则有\n$\\begin{cases}\n\\frac{x^2_1}{4}+\\frac{y^2_1}{2}=1,\\\\\n\\frac{x^2_2}{4}+\\frac{y^2_2}{2}=1,\n\\end{cases}$\n$两式相减可得\\frac{y_1+y_2}{x_1+x_2}=-\\frac{2(x_1-x_2)}{4(y_1-y_2)}=-\\frac{1}{2k_{AB}}=-\\frac{\\sqrt{2}}{t},$\n\n$设AB的中点为G,则k_{OG}=-\\frac{\\sqrt{2}}{t},$\n\n$因为PQ为直径,所以QZ\\perp PZ,故Z(t,-\\sqrt{2}),$\n\n$直线OZ的斜率k_{OZ}=-\\frac{\\sqrt{2}}{t},$\n\n$则k_{OG}=k_{OZ},所以点O,G,Z三点共线,故直线OZ经过线段AB的中点.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 199 "$已知椭圆E: x^2/a^2 + y^2/b^2 = 1(a>b>0) 的右顶点为 A(2,0),离心率为 1/2. 过点 P(6,0)与x轴不重合的直线 l 交椭圆 E 于不同的两点 B, C,直线 AB, AC 分别交直线 x=6 于点 M, N.$ | |
| $设O为原点,求证:\angle PAN+\angle POM=90^\circ .$" ['证明:由题设知直线l的斜率存在,设直线l的方程为y=k(x-6)(k\\neq 0).\n\n由\n$$\n\\left\\{\n\\begin{matrix}\ny=k(x-6),\\\\ \n\\frac{x^2}{4}+\\frac{y^2}{3}=1\n\\end{matrix}\n\\right.\n$$\n$消去y,得(4k^2+3)x^2-48k^2x+144k^2-12=0.$\n\n$由 \\Delta=(-48k^2)^2-4(4k^2+3)(144k^2-12)>0及k\\neq 0,$\n\n$解得-\\frac{\\sqrt{6}}{8}<k<0或0<k<\\frac{\\sqrt{6}}{8}.$\n\n设B(x1,y1),C(x2,y2),\n\n$则x1+x2=\\frac{48k^2}{4k^2+3}, x1x2=\\frac{144k^2-12}{4k^2+3}.$\n\n$直线AB:y=\\frac{y1}{x1-2}(x-2),令x=6,得y=\\frac{4y1}{x1-2},$\n\n$所以点M \\left(6,\\frac{4y1}{x1-2}\\right).$\n\n$同理,点N \\left(6,\\frac{4y2}{x2-2}\\right).$\n\n$由题设知,tan\\angle PMO=\\frac{6}{\\left|\\frac{4y1}{x1-2}\\right|},tan\\angle PAN=\\frac{\\left|\\frac{4y2}{x2-2}\\right|}{4},$\n\n$因为\\frac{4y1}{x1-2}\\cdot \\frac{4y2}{x2-2}=\\frac{16k^2(x1-6)(x2-6)}{(x1-2)(x2-2)}$\n\n$=\\frac{16k^2[x1x2-6(x1+x2)+36]}{x1x2-2(x1+x2)+4}$\n\n$=\\frac{16k^2\\left(\\frac{144k^2-12}{4k^2+3}-6 \\times \\frac{48k^2}{4k^2+3}+36\\right)}{\\frac{144k^2-12}{4k^2+3}-2 \\times \\frac{48k^2}{4k^2+3}+4}$\n\n=24,\n\n$所以tan\\angle PAN=tan\\angle PMO,且\\frac{4y1}{x1-2}与\\frac{4y2}{x2-2}同号.$\n\n依题意,得$\\angle PAN=\\angle PMO$,且$点M,N位于x轴同侧$.\n\n因为$\\angle PMO+\\angle POM=90^\\circ ,$\n\n所以$\\angle PAN+\\angle POM=90^\\circ .$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 200 "$设a_n为等差数列,a_2+a_5=16, a_5-a_3=4.$ | |
| $已知b_n为等比数列,对于任意k \in N,若2^{k-1}\leq n\leq 2^k-1,则b_k < a_n < b_{k+1}.当k\geq 2时,求证:2^k-1 < b_k < 2^k+1;$" ['$证明: 2^{k-1} \\leq n \\leq 2^k -1 \\Rightarrow 2^k \\leq 2n \\leq 2^{k+1} - 2 \\Rightarrow 2^k + 1 \\leq 2n+1 \\leq 2^{k+1} -1,即 2^k + 1 \\leq a_n \\leq 2^{k+1} -1 。$\n$因为 b_{k} < a_n < b_{k+1} 成立,$\n$所以 \\begin{cases}b_k < (a_n)_{min}, \\\\ b_{k+1} > (a_n)_{max},\\end{cases} $\n$所以 b_{k} < 2^k + 1且b_{k+1} > 2^{k+1} -1 ,则 b_{k} > 2^k - 1。$\n$综上,2^k -1 < b_k < 2^k +1,证毕。$'] [] Text-only Chinese College Entrance Exam Theorem proof Sequence Math Chinese | |
| 201 "$已知函数f(x)=x^{2}-a\ln x(a\in R)。$ | |
| $若函数f(x)存在两个不同的零点x_1, x_2,证明:x_1 x_2 > e。$" "[""$由(1)可知a>2e时,f(x)有两个零点,令x_2>x_1>0,由f(x_1)=f(x_2)=0\\Rightarrow $\n\n$$\n\\left\\{\n\\begin{matrix}\nx^2_1-aln x_1=0,\\\\ \nx^2_2-aln x_2=0,\n\\end{matrix}\n\\right.\n$$\n\n即\n\n$$\n\\left\\{\n\\begin{matrix}\nx^2_1=aln x_1,\\\\ \nx^2_2=aln x_2,\n\\end{matrix}\n\\right.\n$$\n\n$所以x^2_1+x^2_2=a(ln x_1+ln x_2), x^2_2-x^2_1=a(ln x_2-ln x_1),$\n\n$即lnx_2+ln x_1=\\frac{ln x_2-ln x_1}{x^2_2-x^2_1}(x^2_1+x^2_2),要证明x_1x_2>e,即证ln x_1+ln x_2>1,需证\\frac{ln x_2-ln x_1}{x^2_2-x^2_1}(x^2_1+x^2_2)>1,$\n\n$即证ln x_2-ln x_1>\\frac{x^2_2-x^2_1}{x^2_2+x^2_1},即证ln \\frac{x_2}{x_1}-\\frac{{\\left(\\frac{x_2}{x_1}\\right)}^2-1}{{\\left(\\frac{x_2}{x_1}\\right)}^2+1}>0,$\n\n$设\\frac{x_2}{x_1}=x,则x>1,即证ln x-\\frac{x^2-1}{x^2+1}>0,即证ln x+\\frac{2}{x^2+1}-1>0,令h(x)=ln x+\\frac{2}{x^2+1}-1(x>1),$\n\n$则h'x=\\frac{1}{x}-\\frac{4x}{{(x^2+1)}^2}=\\frac{{(x^2+1)}^2-4x^2}{x(x^2+1)^2}=\\frac{{(x^2-1)}^2}{x(x^2+1)^2}>0,$\n\n$故函数h(x)在(1,+\\infty )上单调递增,所以h(x)>h(1)=0,即有ln x+\\frac{2}{x^2+1}-1>0,所以x_1x_2>e.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Elementary Functions Math Chinese | |
| 202 "$已知函数f(x)=a(x+2)e^{x}-(x+3)^{2}(a\in R, e为自然对数的底数)。$ | |
| $讨论函数f(x)的单调性;$" "[""$因为f'(x)=a(x+3)e^{x}-2(x+3)=(x+3)\\cdot (ae^{x}-2),若a\\leq 0,则ae^{x}-2<0。$\n\n$当x\\in (-\\infty ,-3)时,f'(x)>0;当x\\in (-3,+\\infty )时,f'(x)<0。\\therefore 当a\\leq 0时,函数f(x)在(-3,+\\infty )上单调递减,在(-\\infty ,-3)上单调递增。$\n\n$若a>0,由f'(x)=0解得x_{1}=-3,x_{2}=\\ln\\frac{2}{a}。$\n\n$①若0<a<2e^{3},则\\ln\\frac{2}{a}>-3。$\n\n$当x\\in (-\\infty ,-3)\\cup \\left(\\ln\\frac{2}{a},+\\infty \\right)时,f'(x)>0;当x\\in \\left(-3,\\ln\\frac{2}{a}\\right)时,f'(x)<0。$\n\n$\\therefore 当0<a<2e^{3}时,函数f(x)在(-\\infty ,-3),\\left(\\ln\\frac{2}{a},+\\infty \\right)上单调递增,在\\left(-3,\\ln\\frac{2}{a}\\right)上单调递减。$\n\n$②若a=2e^{3},则\\ln\\frac{2}{a}=-3。$\n\n$当x\\in R时,f'(x)\\geq 0,\\therefore 函数f(x)在R上单调递增。$\n\n$③若a>2e^{3},则\\ln\\frac{2}{a}<-3。$\n\n$当x\\in \\left(-\\infty ,\\ln\\frac{2}{a}\\right)\\cup (-3,+\\infty )时,f'(x)>0;当x\\in \\left(\\ln\\frac{2}{a},-3\\right)时,f'(x)<0。$\n\n$\\therefore 当a>2e^{3}时,函数f(x)在\\left(-\\infty ,\\ln\\frac{2}{a}\\right),(-3,+\\infty )上单调递增,在\\left(\\ln\\frac{2}{a},-3\\right)上单调递减.$""]" [] Text-only Chinese College Entrance Exam Theorem proof Derivative Math Chinese | |
| 203 "$设椭圆C:\frac{x^2}{2}+y^2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).$ | |
| $设O为坐标原点,证明:\angle OMA=\angle OMB.$" ['$当l与x轴重合时,\\angle OMA=\\angle OMB=0^\\circ ,$\n$当l与x轴垂直时,直线OM为AB的垂直平分线,$\n$所以\\angle OMA=\\angle OMB.$\n$当l与x轴不重合也不垂直时,$\n$设l的方程为y=k(x-1)(k\\neq 0), A(x_1,y_1), B(x_2,y_2),$\n$则x_1<\\sqrt{2}, x_2<\\sqrt{2}, 直线MA,MB的斜率之和为k_{MA}+k_{MB}= \\frac {y_1}{x_1-2} + \\frac {y_2}{x_2-2} ,$\n$由y_1=kx_1-k, y_2=kx_2-k得k_{MA}+k_{MB}= \\frac {2kx_1x_2-3k(x_1+x_2)+4k}{(x_1-2)(x_2-2)} .$\n$将y=k(x-1)代入\\frac {x^2}{2} + y^2=1,$\n$得(2k^2+1)x^2-4k^2x+2k^2-2=0,$\n$所以,x_1+x_2= \\frac {4k^2}{2k^2+1} , x_1x_2= \\frac {2k^2-2}{2k^2+1} .$\n$则2kx_1x_2-3k(x_1+x_2)+4k= \\frac {4k^3-4k-12k^3+8k^3+4k}{2k^2+1} =0,$\n$从而k_{MA}+k_{MB}=0,故MA,MB的倾斜角互补,$\n$所以\\angle OMA=\\angle OMB.$\n$综上,\\angle OMA=\\angle OMB.$'] [] Text-only Chinese College Entrance Exam Theorem proof Conic Sections Math Chinese | |
| 204 "$记S_n为数列{a_n}的前n项和, \frac{2S_n}{n}=a_n+2.$ | |
| $证明a_n是等差数列;$" ['$证明:由 \\frac{2S_n}{n} = a_n + 2, 得 2 S_n = na_n + 2n ①,$\n\n$所以 2 S_{n+1} = (n + 1) a_{n+1} + 2(n + 1) ②,$\n\n$② - ① 得 (n - 1) a_{n+1} - na_n + 2 = 0 ③,$\n\n$当 n \\geq 2 时, (n - 2) a_n - (n - 1) a_{n-1} + 2 = 0 ④,$\n\n$③ - ④ 得 (n - 1) a_{n+1} - 2(n - 1) a_n + (n - 1) a_{n-1} = 0,$\n\n$即 a_{n+1} + a_{n-1} = 2 a_n , 所以 {a_n} 是等差数列.$'] [] Text-only Chinese College Entrance Exam Theorem proof Sequence Math Chinese | |
| 205 "$已知a+b+c=3.$ | |
| $若a、b、c均为正数,证明:\sqrt{ab} + \sqrt{bc} + \sqrt{ca} \leq 3,并且写出等号成立的条件;$" ['$证明:\\because a>0,b>0,c>0,\\therefore a+b\\geq 2\\sqrt{ab},b+c\\geq 2\\sqrt{bc},a+c\\geq 2\\sqrt{ac},三式相加可得,\\therefore 2a+2b+2c\\geq 2\\sqrt{ab}+2\\sqrt{bc}+2\\sqrt{ac},当且仅当a=b=c时取等号.\\because a+b+c=3,\\therefore \\sqrt{ab}+\\sqrt{bc}+\\sqrt{ca}\\leq 3,当且仅当a=b=c时取等号.$'] [] Text-only Chinese College Entrance Exam Theorem proof Inequality Math Chinese | |
| 206 $已知C(-1,0),直线l的斜率小于0,且l经过点(4,7),l与坐标轴交于M,N两点,试问\triangle CMN的面积是否存在最值?若存在,求出相应的最值;若不存在,请说明理由.$ ['$设直线l:y-7=k(x-4)(k<0),求得\\triangle CMN的面积S的表达式,结合基本不等式求得S的取值范围,由此确定正确结论.$\n\n'] ['$\\triangle CMN的面积不存在最值$'] [] Text-only Chinese College Entrance Exam Theorem proof Plane Geometry Math Chinese | |