id question solution final_answer context image modality difficulty is_multiple_answer unit answer_type error question_type subfield subject language 0 "Three circular arcs $\gamma_{1}, \gamma_{2}$, and $\gamma_{3}$ connect the points $A$ and $C$. These arcs lie in the same half-plane defined by line $A C$ in such a way that $\operatorname{arc} \gamma_{2}$ lies between the $\operatorname{arcs} \gamma_{1}$ and $\gamma_{3}$. Point $B$ lies on the segment $A C$. Let $h_{1}, h_{2}$, and $h_{3}$ be three rays starting at $B$, lying in the same half-plane, $h_{2}$ being between $h_{1}$ and $h_{3}$. For $i, j=1,2,3$, denote by $V_{i j}$ the point of intersection of $h_{i}$ and $\gamma_{j}$ (see the Figure below). Denote by $\overparen{V_{i j} V_{k j}} \overparen{k_{k \ell} V_{i \ell}}$ the curved quadrilateral, whose sides are the segments $V_{i j} V_{i \ell}, V_{k j} V_{k \ell}$ and $\operatorname{arcs} V_{i j} V_{k j}$ and $V_{i \ell} V_{k \ell}$. We say that this quadrilateral is circumscribed if there exists a circle touching these two segments and two arcs. Prove that if the curved quadrilaterals $\sqrt{V_{11} V_{21}} \sqrt{V_{22} V_{12}}, \sqrt{V_{12} V_{22}} \sqrt{V_{23} V_{13}}, \sqrt{V_{21} V_{31}} \sqrt{V_{32} V_{22}}$ are circumscribed, then the curved quadrilateral $\overparen{V_{22} V_{32}} \overparen{V_{33} V_{23}}$ is circumscribed, too. Fig. 1" ['Denote by $O_{i}$ and $R_{i}$ the center and the radius of $\\gamma_{i}$, respectively. Denote also by $H$ the half-plane defined by $A C$ which contains the whole configuration. For every point $P$ in the half-plane $H$, denote by $d(P)$ the distance between $P$ and line $A C$. Furthermore, for any $r>0$, denote by $\\Omega(P, r)$ the circle with center $P$ and radius $r$.\n\nLemma 1. For every $1 \\leq iR_{i}$ and $O_{j} P0$; then the\n\n\n\n\n\nFig. 2\n\n\n\nFig. 3\n\ncircle $\\Omega(P, r)$ touches $\\gamma_{i}$ externally and touches $\\gamma_{j}$ internally, so $P$ belongs to the locus under investigation.\n\n(b) Let $\\vec{\\rho}=\\overrightarrow{A P}, \\vec{\\rho}_{i}=\\overrightarrow{A O_{i}}$, and $\\vec{\\rho}_{j}=\\overrightarrow{A O_{j}}$; let $d_{i j}=O_{i} O_{j}$, and let $\\vec{v}$ be a unit vector orthogonal to $A C$ and directed toward $H$. Then we have $\\left|\\vec{\\rho}_{i}\\right|=R_{i},\\left|\\vec{\\rho}_{j}\\right|=R_{j},\\left|\\overrightarrow{O_{i} P}\\right|=$ $\\left|\\vec{\\rho}-\\vec{\\rho}_{i}\\right|=R_{i}+r,\\left|\\overrightarrow{O_{j} P}\\right|=\\left|\\vec{\\rho}-\\vec{\\rho}_{j}\\right|=R_{j}-r$, hence\n\n$$\n\\begin{gathered}\n\\left(\\vec{\\rho}-\\vec{\\rho}_{i}\\right)^{2}-\\left(\\vec{\\rho}-\\vec{\\rho}_{j}\\right)^{2}=\\left(R_{i}+r\\right)^{2}-\\left(R_{j}-r\\right)^{2} \\\\\n\\left(\\vec{\\rho}_{i}^{2}-\\vec{\\rho}_{j}^{2}\\right)+2 \\vec{\\rho} \\cdot\\left(\\vec{\\rho}_{j}-\\vec{\\rho}_{i}\\right)=\\left(R_{i}^{2}-R_{j}^{2}\\right)+2 r\\left(R_{i}+R_{j}\\right) \\\\\nd_{i j} \\cdot d(P)=d_{i j} \\vec{v} \\cdot \\vec{\\rho}=\\left(\\vec{\\rho}_{j}-\\vec{\\rho}_{i}\\right) \\cdot \\vec{\\rho}=r\\left(R_{i}+R_{j}\\right)\n\\end{gathered}\n$$\n\nTherefore,\n\n$$\nr=\\frac{d_{i j}}{R_{i}+R_{j}} \\cdot d(P)\n$$\n\nand the value $v_{i j}=\\frac{d_{i j}}{R_{i}+R_{j}}$ does not depend on $P$.\n\nLemma 3. The curved quadrilateral $\\mathcal{Q}_{i j}=\\overparen{V_{i, j} V_{i+1}, j} \\overparen{V_{i+1, j+1} V_{i, j+1}}$ is circumscribed if and only if $u_{i, i+1}=v_{j, j+1}$.\n\nProof. First suppose that the curved quadrilateral $\\mathcal{Q}_{i j}$ is circumscribed and $\\Omega(P, r)$ is its inscribed circle. By Lemma 1 and Lemma 2 we have $r=u_{i, i+1} \\cdot d(P)$ and $r=v_{j, j+1} \\cdot d(P)$ as well. Hence, $u_{i, i+1}=v_{j, j+1}$.\n\nTo prove the opposite direction, suppose $u_{i, i+1}=v_{j, j+1}$. Let $P$ be the intersection of the angle bisector $\\beta_{i, i+1}$ and the ellipse arc $\\varepsilon_{j, j+1}$. Choose $r=u_{i, i+1} \\cdot d(P)=v_{j, j+1} \\cdot d(P)$. Then the circle $\\Omega(P, r)$ is tangent to the half lines $h_{i}$ and $h_{i+1}$ by Lemma 1 , and it is tangent to the $\\operatorname{arcs} \\gamma_{j}$ and $\\gamma_{j+1}$ by Lemma 2. Hence, the curved quadrilateral $\\mathcal{Q}_{i j}$ is circumscribed.\n\nBy Lemma 3, the statement of the problem can be reformulated to an obvious fact: If the equalities $u_{12}=v_{12}, u_{12}=v_{23}$, and $u_{23}=v_{12}$ hold, then $u_{23}=v_{23}$ holds as well.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAe4DLgMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACkx16UtFADdpp3aiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKxfEvia18Laa2oXtpfTWyAtI9rD5nlgY5bkYHNXNH1WHWtGs9Ut45Y4LuFZ41lADBWAIyASOh9aAL1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTSD7fQ06igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikyKAFopNwzQW4PBP0oAWikyM4paACiikLAdaAPOvjLcu3gyLRrdx9o1q+gsE55G58n8PlAP1rp7XxDoFolnYw3YWFtltbSeU4hkOMKqS42MeOADXG+LbOHxX8YvDugTqZbPTLSXUrqPqrZOxVP4hcg9Qx9asfF0m50rQtAt8fa9U1aCOHHWNVOWcemPlzjsaAPSNw/8A1UZ4rD8Qa2mjjT4fNjin1G7WzglljZ1V2DHJC4znbjqBkjJrKudc1HQPGWkaTfzRXtlrHmpbzCIJJBKi7sNjhlIPGADn1oA7KigdBRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXnHxl0pX8B6lrFs88Oo2ixmOaGZ0IXzFDDAOOjN2r0eue8dWf9oeAtftQMs9hNtH+0EJX9QKAK3w+s7OPwVpF5arIGvLKGaVnmeQlygLcsT3z0pPHFpHq2kJoimQXt++y2aORkMOB80uVIOEUk4PBO0fxCsr4R6pE/wAIdIuriZI0toZUldzgIsbsMk+gUA1u6QPOa48SahiA3CYhEvH2e1ByoOehb77emQv8IoAteH/DVj4asvs9ibh2YKJJbid5HkIzySxOOp6YFbPasGTxbpttPax3a3VrFdOI4Li4gZI3Y9AWP3Se27Ge1aN5qcNnLHAUkluZQTHBEoLMBjJ5IAHI5JA5oAu1zXh7WrvV9f8AEsEhh+yafeJa25UYbIiVn3HPPzNWlpevWGsSXcNrIwurOTyrm2lUrJCxGRuHoRyCMg9jwa5r4YqJdG1jUlZmXUtavblSxJ48zYP0QUAJ4X0LUYviD4s8Q6nbGIXTxW1jlgcwovJGDwCQp5703XtI1BviZpOv/YZr7T7HT5o4IoWTMdyxwSdzDhk4z2KjpXc4oCkd80AZllAbDS2k1OdGlDSXM0jPlIySWIUnoqDgHjgVhQ6e2ueKbXxLqeYLOyVotJtpPlZmkGGmcHkFhwq9QOTgnA2PEfhxfEmmixk1LULFPNWRnsZFRm28gEsrcZweO4rK0vwENN1a2v5fFHiPUfs7Fkt769WSIkqy5ZQgzgMSOetAHX0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRUF5e2un2sl1eXEdvbxjLyysFVfqTWPrfjXw94cmji1bUVtnlxsHlO27OcfdB64NAG/RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAmaNwqC9g+02c0Imlh3qR5kLbXX3B7GuA+ENzfaloGp6peale3sFzqEq2TXUpkYQKdq89M5znA7UAej9aKTIFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVFPClxBJDIMpIpRvoeP61LSEZoA8M+DEV1qnhibw7cRMlhp+pSPduw+WXG0pED3+cMzeygHO/j2LWtMXWtHu9Nknnt1uYzGZYGxImR1U461Lp+lWWkwPBp9tHbxvI8zKg+87ElmPuSaXUJri2sLia0tHvLlEJjt0dUMjdhuYgD6k0AcT8SbKTU/Ctt4Ps2kudT1F4kjeQ5aKON1Z53btjAGepLADriurvNMtBqEGsiwkutStYmghaNgrbHxuGCQvbPPpx6HibTUfHMMdy/8AwgDjUrwYkvZNWtmCnkLhefkXPCj36kknqbuHULPxUupma+udMayEBtIQrKkgct5jLwSSMDjJ4NAHP+GJYLbWfGeu3koi1iQo93YEHNrFFGfK5/iyuSWGRngdK1PhdZ/YPhn4fi7vaick9SZCZM/+PVxviuyubSDxz4w1CNrK3vNK/syzglYeZKGAUswBwpLHAHXHUA16fpkVtouhWFjJNFElrbRwjcwUAKoA/lQBp0Vmy+IdEgcJLrGnxsez3KA/zqpL428KQyGOXxNo0bjqrX8QI/8AHqAN2iuf/wCE78If9DVof/gxh/8AiqsReLfDdxGZIfEGlSoOrJexsPzBoA2KKpQaxplyFNvqFpKG+6Y5lbP0wauKysAVIIPcc0ALRSbhS5oAKKTIpc0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSbhnHNJuAPQ/lXB+MtUvNd1dPA+gzGK5uE8zVbxOfsdseoH+2/QD0OfcAFVgfiV4pIGH8JaNPnnldRul/Ro0/In1HSP4iY1fxt4K8OD5ke9bUbjI6LCuVz9csK77StLs9F0y307T4VgtLaMRxRr2A9+5759STXm9lpsXi/4169e3JaSx0S1hsRFn5ZXbLkH1AO7I7nGeOCAek2mradfu8dnfW1w8Y+dYZlcr9cHirma848SMJPjH4Ms7EbJra2u57kp8u2AqFUH2LKfxrs9Q1qGx1Cz0xNkmoXiu0ELSBNyoAWOTzxkcAE+2ASADVzRWHpHiSDU9W1HR5YXttS04p58LEMGR1yrow6qfwORyBW52oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDl/iJrH9hfD/XL8NsdbVkjbPR3+RT+BYVi+DND1nTPh3psDX39k/Z7PekKRIxDEFmMpcMCCxJIUAj1NV/iuf7UufCnhZcn+1dVR5lHeGL5n/8AQgfwrW+KWsS6R4A1AWqlry+22Nsq9WeX5fzxuP4CgC94B8RXHivwRpmtXUKQ3FyjeYiZC7ldkJA5wDtz+NdGJU3iPcN+M7c849a5/wANWdvoWl2HheAFzY2EZklXhcnIz65Yh246YrD06yhsPjRdQ24fb/wj0bEySNIxJuHGSzEk8AdT2oA78cjNFHQUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUhOOxoAWikLAAk8AckniuZ1f4heFtFnFtc6tFJeFti2tqDPMW9NiZIP1xQB09JkVwv/CW+LNYONA8GT28LZAu9bmFsFPr5S7nI/Kl/wCEX8Z6uudb8ZfYo3XD22iWwiwfaZ9z/oKAO0uby2s4GnuriKCFRlpJXCqPqTXK3fxS8G2twLePWor24b7sVgjXLMfQeWCKZb/C3wolwt1e2Uuq3YGDPqlxJcs31DHb+ldVZ6fZ6dAILK0gtogMCOGMIo/ACgDjv+E91a9WQaN4E1+4Knhr5Uskb6GRs4/Cg3fxLv8AY9tpXh3SkP3lvLqS5fGO3lqo6+9dzigDFAHE/wDCN+OrqRXufHUVsn8UVlpUY9P4nZj29O9I3w5muJFkvPG3iuYjqkd8IEbjuI1H1613FFAHjnxE+Hnh+20jTkJ1Ce8vtVtrOOa5vpZmHmP83DNj7obnHeuxt/hT4GtkCp4bsmGAP3gL9P8AeJqDxsyXfjHwNpTjPmalLeAY7wQswP5sK7ntQBza/D/weuMeF9G49bKM/wBKk/4QTwj38K6Gf+4dF/8AE10FJmgDA/4QTwh/0Kuh/wDgvi/+JpreBfB7DafCuide1hEP/Za6AsAcVzsnihb6aS30C0bVZUYo86SCO2ib0aXv7hA7A8ECgCGX4d+C5cF/DGlcZ+7aqufyHNYOqfDz4X6U8c2oWdlp0h4jb7fJAWJ7DDjJ9q6b+wtT1EE6zrMojbra6bm2THvID5hI6ZDKD6VoaboOlaQXbT9PtrZ3+/JHGA7/AO83VvxNAHnreGdDkV4dEuPHUJA4FlcXMKn0w0+EP5mlTQfGiRAaVrPim1Ofvas9jcY+uCT+teo7SOhpcUAeZxD4v2YKrJoOoAdGuojGx/CN8D9avReJ/H9owGoeAUuI1HzTWGqRnPuI2wT+dd9ijHvQBwp+Kmk2asdb0jX9ERTgyX2nPsJ9mTcCPet7SvGfhnXCi6brthcyP0iSdfM/74PzfpW2FwMVgaz4F8MeIA/9p6HYzu/3pfKCy/8Afa4YfnQB0G4UZrzG5+FeoaP+98G+K9U03YDtsJ5zJbkY4UZzt+pDVWt/EnxC0K5hstVXS9Qmf5YxdqbJ7l+wjlXdCSf7p2t/sigD1fNLXCL8TLTTmEfifRNX0FgQGmubcy2+49AJY8g/jj8K63S9a0zWrYXGl6hbXsP9+3lVwPrg8H60AXqKM0maAFooooAKKKKACiiigAooooAKKKKACkz168UtZ2s6xZaFpN1qmoTrBaWqb5JG7ew9SSQAO5IHWgDK8ZeJz4c0+KOzh+16zfyeRp1mOssp7n0VQcsTwBjpml8G+FR4a0p/tE4u9VvH+0ahenrPMfT0UZwB0x2yTWN4M0m+1bUpfGviCAx6heR+VYWjj/jytSeAR/fbqxPPOOORXfDpQAxyEVmwSAOgGTXBfCTT7uHw1e6tqVtLb3+sahPeyxyoVZQzYUEHp0z+Nd/gnNIFwc/zoA81sor60+JfizVrqxmkv5YYbTSR5TGMw7ckl8YC7gCx7YI6kA9z9gMVvaytHBe6jaxhI7i4ARiSAHO4A7c4yQBWjtOc55rn9Q0adPFUHiG1RriWO0a0a3M5QBS27co+6Tngg47c8YIBieEjBD458Qx6k23xLcLFNKi/6r7MBtj8k9SoPDEgHd26V3tcho/hq8Pjq/8AFupCOGea1WytbWN92yINuJdscsSBwOAO561144AoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACk3ClppB596AMu40LTb3X7LXJYPMv7KOSO3k3thA/DYAOOnGfeptY0Wy13TzZahF5sJdXGGKlWU5VgRyCCAa5HwKzaDrWt+CpidtlL9t07cc77SUk7RkknY5YEn1Fd8OQDQBSsrC202OQRbjvYySyyyF3duMlmYkngAegAAGABjg4fEWin403Ew1ewMTaDFEJPtCbS/wBoc7Qc4JwQcV6OVz3796Nv4/XvQA6iiigAooooAKKKKACiiigAopNwHXgUbhQAZFG6uP1T4jaPa37aZpMdxrmrcg2emqJNh/23ztQA9cnI9KojSPHHifnWNWj8OWLc/YtJbzLkjH8VwRhSD3QUAdFr3jLw94ZQHV9Ugt5GxshzvlfPTai5Y/lXPHxR4v8AEBI8NeGDY2zfdv8AXWMQ+ogXLkehOBW7oPgnw/4bfztO06Nbtsl7uUmWdyepMjZbk8nBAre7ZznPpQBw/wDwru51j5/FniXUtUDAhrO3f7Ja4PYonzNj1Lc102j+HNH8PwmLSNMtLJSBu8iMKWx/ePVvxrUz0oByM0AGKUdBRRQAUUUUAFFFFABRRRQBw186Xnxp0u1YZOn6LcXQPoZJUj/kprua4fQ3F98W/FkxX/jxs7KzU9vmDykf+PCu2LAUALuGcVmatrVppCR+bvluZmK29rAu+WdsdFX+ZOAOpIHNRazrEtmyWWnQrd6rcAtDbltqqo6ySH+FB3PU8AAk0ukaEunyPeXMxvNTmXEt264OM52IvRIx2UfU7iSSAUV0O+14CXxG6ranldKgcmLHbzm/5an1X7nbDY3V0UUSQwpFEipGihVRRgKB0A9qkooAKKKKACiiigAooooAKKKKAExUNzaQXlvJb3UMc8Eo2yRSKGVx6EHrU9FAHLNpupaACdHZ7/TBw+mTyAug7+RI3v8AwOdvYFAAKzV8HeDPFKnU9PtDYXquyNc2Ba0uIJO6uFxhueQw9+4ruSpLZ7Vh6vocstyNU0iVLTWI12iRgTHcAA4jmUcsvJwc5UnI6kEAwBo/jzQDu0zW7XX7QHi21WPyp1UDosycFvdhUkHxKsrOZLXxVpl94dumIUNeJut2Y9lnXK/icV0eka1FqiTRPE1tf2xCXVpJy0THoQejKcZVh19iCBoTW0VzA0M8ccsTjDJIoZSPcHtQAWt3b3trHc2s8U8EgDJLE4ZGHqCODUuRXD3Pw0srWd7zwtqF34cvWJY/Y33QOccb4G+Qj2GPrUH/AAk/izwy2zxRoP8AaNip/wCQnowL4HrJAfmHqSuR6UAegUVk6F4m0XxLZC60fUbe8jwN3lt8yZ6BlPKn2IBrVyOPegBaKKKACiiigAooppcDrn8qAFLAHFebQf8AFzPFP2ljv8JaPORCv8OoXS9X9406D1PryBb8Y3914l1Y+BtEnMbSoH1i8Tn7LbH+AdvMccAdhn1yOz07TbXSdNt7CwhSG1t4xHFGv8IHv/X60AWsZGf5U4dKBwKKACiiigApMUtFACYx0xS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBwXxCR9EvNJ8awKSdJm8q+CAkvZykK/AHO07XA+td1HIrxqyNuVhkMO49ahvbGDUbG4srpBJb3EbRSIf4lYEEfkTXH/AA2vJ4NLvPDF/KZNQ8PT/YmOMGSDG6CTHYMnA5/hoA7mijtRQAUUUUAFFFFABRRSZFABuFAYHpk1zPibxzo/hh0tpnlvNUl/499Ns4zLcSnHQKOg9zjv1rBHh7xV40JfxTeHRtJbH/Em0+XMki/9Np++ehVeCPQ0AWvEHxP0vTbt9M0aCbxBrI6WenKZNv8AvuAQuO/U+oFc6fDfxA8ayeZ4lkg07TGyP7MhuWRMdBv8vLSqR1BdOa9J0bw/pnh6xFlpFhb2duOqxJgscYyx6sfcnNaQXFAHKaT4Nn0uyjtbbWPsEC8mDSbKG3jY+p3iR8++7NXpPCVlPzcX2tStzkjV7mLOfaN1H6Vv0UAc+3g3SWgWHzNU2qcgjVroN/315macnhW2gBNtqWsxMf4m1KabH4Ss4/St6igDn/7I162H+ieIzcc/d1KzjkGPQGLyz+JzTW1bXLBv+JjoRuIv+e+mTCXj1aNwrD6LvP1roqQrmgDO0zXtL1cyJZXiSTRAebA4McsWem+NgGT8QK0dw9/yrO1PQdO1fY17apJJHzFMpMcsR/2JFw6H3BFZWNf8Pg4Z9d09ezBUvIh+GFlH/fLe7GgDpxyM0VR07V7HVrP7VZXAliDFG4KsjDqrqcFWHdSAR6VezQAUUUUAFJmlprEKCx6DkmgDifh85vNS8Zaiy4aXXpoAfVYUSMH9DXQ65q/9l20aQRG41C6cxWdtnb5j4zyeygAlm7AHqSAeY+F91HB8MoNXvXSBbiS6v53Y4Cq0rsWJ/wB0A1t6Daz3txL4h1GJo7q5TbbQSDDWttnIXHZ24ZvfC9EBoAuaLon9mQSyXE5utQumEl3cngu2OAo/hReir2+pJOuOlFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSYzmlooAw9b0me6eK/02VbfVrXPkyHhJlPWKT1RvzU4YcjBt6PrEGsWIuI0eORWMU8Dj54ZBwyN7g/gQQRwQa0CK5nXI/7Bvz4kgUC3KrHqsagndEOBNgdWjzz6pnqVUAA6ccjNJg+3WkSRXRXU7lIyCDkH3p1AHK658P8ARNavP7RjSbTdXGduo6e/kzg+5HDenzA8Vktq3jHwiCut2f8AwkWmKf8Aj/06IJcxr3MkHRh7oeO9egU3Bz9aAMrQfE2jeJtPF7o+oQ3cOdrFDhkPoynBU+xFa2a5PX/h/pmsX/8AatnLNpGtqPk1GxbZIfZx0kHAyD2GM1lDxZr3hB1h8a2QuLAHC67p8ZMYHrNEBuj9yMjJ4oA9CByM0VWstQtNRs47uxuYrm3lXdHLC4ZXHsR1qxuFABmuY8a+Jn0CwgttPh+1a5qLmDTrX+++OXP+wg5J9PrWrrmtWPh/R7vVtRmEVpbJukb15wAPckgD3Nct4L0a+v7+bxj4ih8vVb5NlrasDixtc/KnP8bdWPvjjmgCjb6jo3wq0ZV1v7fLc3UglvdUFszpcXDgn7w9OQB2A9a7rSNXj1izF1HaXlshOFW7hMTEYznB5xzXFfG+y+1/CvVJMfNbvDKP+/iqf0Y11nhe8Go+EtGvyc/aLGGQ/igJoAPEniax8LaW2pahHdG1RgJHghMnl57tjoM8fjU2ia5Drtl9rgtL63iJG37XbtEXB5BAPOPes69H9va3/ZwG7T7BllvOOJZuGjj9wOHb/gA6Fq6HIyPz+v8AjQA+im7gMDv6Uu4Hpz9KAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiqGq61p2h2v2nUrlbaDON7g46Z7UAX6KxNI8X6Br85g0nU4byQAk+Tkj88YrVubqG0tpLidtkUal2bGcADJ47/AEoAmrgPE/8AxTXj/RvE6nbZah/xKdR9BuyYZD0Aw+VLHoGFdBpPjXw5rt39l0rVoLybBYrDlsAdSSBx+NT+JtCg8TeGtQ0e5A8u7hKAsM7W6qfwYA/hQBr7uOaWuU8Aa7ca74Uha/41Sykax1BWPKzxna2fqMN/wKurHQUAFFFFABSbgDRuGcd65PxP42tdDuU0uxt5dW16f/U6bbH5wD/FI3SNO+T/ACzgA6PUNSstKsZb3ULmK2tYhueWVgqqPqa8uu/GviPx5qB0jwRA+n2LYM+sXMeGWM/xIh6ZGCufmOeAoBYPufDeq6zrFuniC7g1LX3XzY7VU3WOkRcjzDGf9ZIeQu7qe2EJHo+kaNa6LYra2oYgsZJZZG3STSHq7t3Y/wD1hgACgDJ8KeBtK8JQO1qr3GoXGWutRuTvnnYnJJY9s9vzycmulwR049KdRQAdKKKKACiiigAooooAKKKKACm7cfnmnUUAYep6B510dS0yYWOrBQPPVcpOo6JMvG9fQ8MvO0jJzJo+t/bpJbO8gNnqduAZrYnIIPR42/jQno3HoQDxWvisvWdEj1aKKQSNb3ts3mWt0gy0TdwR/EpHDKeCPQgEAGpnilrF0TWJL8T2l7EtvqloQtzACSOfuuh7owBIP1BwQQNqgArE8X3rab4N1y9RgHgsJ5EP+0EOP1rbrh/i5O8Pw01aOJwstz5Vsu7ofMkVT+hP5UAVdAsjdaF4X8Msv7i0061vNRAPDEKPLiPqGdXY+0ZBGHr0HH0xXPeEbN4tG+3yxmO41J/tTqy7TGpAEaEc4KxqikeoJ710VABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFMeMOGVgrKwwQeQR6Yp9FAHN+G2/sqe58NSuSLICSzZj961bhRnuUYGP6KhP3q6QdK53xQRp/2PxAv/ADDZT9oOcf6M+Flz/srhZP8AtkK6HOBigBaKKKACo2j3ZB2lTwQRwQetSUUAcFfeA7jRryXVPA16mlXTtum06QE2VyfQoP8AVk4A3L6dOSataP8AEC0mun0zxFA2gazEhd7e8cCORQMmSKT7rrwfcYPHGa7E8dTgV5p47t4PHuu2/ge1gjdLZkutUvtgY2Uf8MaEj5ZH/l2IzgAks/8Ai5PiiPUnVm8J6NMfsS/w390pwZfeNOQvqcnJ5WvRwOOMY6jFeYWEerfCezWxmhfVvCETMyXcMf8ApVgGJJMiDiRASTuXkc5GMCvRdO1Sy1bT4b/T7mO6tZl3JLE25WHf8u4oAx/iBZi/+HniG3xknT5mUf7SqWH6gVy3w91+RPg94fa2VZdRlRrO1hY8NIrsoJ9FVVLE+gPfAr0a6gW6tZraQZSVGRh7EYP8683+Dvg7UtA8ORTa4rLdKZEtbdv+XeNmyx+rkAn2AHrQB2Wy38JeFridzJOtpDJczyBcvM4yztj+8xz+Y7Vlal4vudGs9H1S7ggn03U7iKHNvvEkHm/cb5h849RhSPQ11VxcW9tbST3M0UUCDLySsFVR7k8Vwnj+UaRJpviDW2W+0WwvUf7NGhjMLsSqTNyfMKluny9c+1AHTXets3iRPD9oY1vDZ/bDJMjMnl79ny7cAnPUbhjIPPaHwz4mbXLnVrC4thBfaVc/Z5wjFkfIyrqTg4I7Hp79a1LqZp/MtbK+tY7wKHPmL5hVTnDbAw7jg+3euU8BXNraap4h0B4iNZtLsXF9cbtwvDKAyyj+7kYG0cLjFAHdDpRQOgx0ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACobq3S6tpreQZSVCjD1BGD/OpqKAPKPgBM3/AAgl3ZSACWz1KWJh36Kf5k16DrmoyafZolqqvf3TiC0jbozkE5bH8KgFj7Ka85+ExGm+MviFpTsEjg1LzkBOMKzSc/TAWu60RDrF6/iGZT5cimLT0YfcgJBL49ZCA3+6EHXNAF3Q9EtNB0uOytFXaCXkkIG6aQ8s7e5JJ/HitPkisG88VWtnr+maQ1reGW+neFJWhKxgohc8tjP3eCM5q9q+s2mjWkU104HnTJbxLuCmSVvuqCSBzQByTgeF/isHxt03xPFsb+6l5EOM9hvjzx1JFd/XnXji4fWrf/hG5IGs9fdDqOizI4kV54PnAU8YYdCCMYYkE11nhXX4fE3hfT9YhXYLmIM6f3HHDr+DAj8KANmmtIqKzMwVVBJJPAA9aqapq9hounT6hqVyltaQLuklk6D/ABPsOp4rgUt9W+JzLPqEVzpHhEkNHZ5KXOojsZcfcj7hRyc5z0IAJ7zxRq3jK9n0rwQ6xWcT+Xd69Im6KP1SAf8ALR/foPX5ga07XSNK+H2iyf2bbSXepXkixh5pN1xfXDZ273PvlieigMcda6eysbbTrSK0s4I4LeJQkcUahVVR2A9Kw9MxrviC41liHs7MvZ6f6MwOJpf++hsHsjY4egDQ0LRv7Js3MsouL+5bzry5K482QgA4HZQAFVf4VAFa1A6c9aKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDB8QaZPI8OraYoGq2efLXdtFzGT80LE8Ybsf4WCnkZB0tM1O21fTYL61ZjDMuRuXaynoVIPIIIII7EEdqtFTng1zcanQfFPk5xpusszIO0V2BlgPaRAW9mRjyXoA6YHIzXnvxVtRqtr4b0IgvFqOtwJcRg4LQqGd/0Ar0IdK4DxA4vfjH4Rslb/AI8bW8vpV7EMoiUn6HdQB3wGAAO3pS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAQXVtDeWs9rcRrLDNGY5I26OpGCD9QTWV4TuJpvDltFcyNJdWheznkYcu8TGMuf97bu+jCtyuf0jFr4q8QWQYnzWt78LjhRIhiIH427H8TQB0A6UUUUAFJnnFLWZrut2Ph7RrrVdQl8u2t03MR1Y9Aq+rE4AHqaAMbxt4nm0Ozt7HSoxc6/qb+Rp9sT/F3kb0RByfy9xb8JeFofC2jC2SQ3F5O5uL27f71xM33mPoPQdh+NZHgrRL+e9ufF/iGLZrOoJthtzyLG26rEP9o9WPc/jnuB0oAYVJz0545rg9T8GX+g6hJrngeSK2nc77vSJTi1vPUgD/VyY6MOD7ZOe/ppXPp+NAHOeF/GFj4ljlgWOSy1S1O270244mgb6fxL0ww4PseK6P8AM1zXijwXa+IXgv7e4k03XLUf6LqVv/rE/wBlh/Gnqp9T0yaz/D/jC7i1ZPDfi6COx1wj9xKp/wBHv1HG6Jj39U4PNAHS67otr4h0a50u9XdbzqMjGcEEMpx3wQDisLW/CV74ms7XStVuLOPSYZklmitImU3IQ/KmCf3a9M4LHgYIrrd49DTqAMGXQGttfudc01bUXl3CkNx5ysN6rnBDDkdeeDnA6Y5i8O+FjpGpatq93crc6pqsqvcSImxEVBhEQcnAHcnJ710dFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHjtv4Z1K6+N3imNInj0O8t4GvZMEeapVD5YP8AtFWB/wBksOuK9gVQoAAAA6D0oKk5xx706gDiPF5H/Cd+BfUX1x/6TvXW3Nrb3cYW5t4ZwjCRFlQMA45BGc4IPftXL+ItF8Ral4n0PUrO20v7PpVxJKBNeyK8odCmMCIheD6mtHXdFuNXTSbpsLdaddLdfZ0uHWORgCNpcLkgZyMrzjBHPABgTssfxQ0q48RBYLqW2lh0YQPvhVsAy7mIB8wqRgY24Hc1j/8ACT6b8MvGeu6RqEj/AGHUANV0+GCMyOZXyskIUdNzrleg681N43uXh17Qtd1a2Maaa8g07S4H8y51C7cABQBwFXAOQT1554rM17whrn9nP8QNWcTeJtPkjvIrCMgw21vGdzQDrubaWJb+8Bj1IB0eleGNR8VapD4g8YxbFhbzNP0UHMVtycSSj+OXH4DnjsO/VSB29qrafqFtqmm21/ZuHtrqJZomxjKsARx+NXKAMPxNeT2ejvFZPsvruRbS0I5Ku5xuAPXYNzn2Q1o6fp8GmafbWNqu23t41ijX/ZAwMnvWTcBdQ8cW0J+ZNLtTclSP+WspMaNn1CJMMf7ddCOlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZfiDTH1bRri2hkWK6GJbWUjPlzIQ0bEdwGVcjuMjvWpSYoAo6Nqaavo1pqCIY/PjDNGxyY26Mh9wcg+4ri9PH274761c4+XTdFhsz9ZH83+hrotExZa3rmk5CoJVvoFA+7HMCW/8ipM3/AqxvB0Yn8feO9TXO2W8trX2zDAAf1Y0Ad1RQOlFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWBKRD49t0A+a70yUsfaGWPH/o8/nW/WHfRKfGekSkfOLK7QH2LwE/+gj8qANyiikzQAjOq5yQAOpPavOtOVviN4pTWpcnwvpM2dNj7XtwvBnPqq9F/PjkVL4pvJ/GGvN4H0mV47VFD65eRn/VRHkQKf779/Rc9ecdzZ2UFhZwWdpEkNtBGI4o16Ko6CgCxj8qWiigAooooAKx/EfhrTPFOkyadqkAkhY7kZTh4m7MjdVP09wcgmtiigDzvT/EOp+DdRg0HxjP51lK3l6frp4STriOc9FkwOD0b6gmvQgwIzVPU9JstZ0+fT9Rtorm0nXbJFIuQw4I/EHkHqDgjFcFbalffDS9i03XLqS98LyuI7HVJOXsz0EM5H8PTDn054xtAPS6Karqygggg9COh+lOoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKTOM+1ABmsDxV4ps/C9gssyPcXlw4is7KEZluZTwFUfzPQflUnijxNZeFdGfULss7lhHb28YzJcSnhUQdyT/AI1i+E/C96dSl8VeJtkuu3K7YYAcx6fCf+WUf+1zhm79BxkkAf4V8J3ceot4n8Sulx4gnTaiLzFYRHpFEPXnlu/PqSewZAyFWVSpGMHp9KfRQBwHgAtoGp614Jmc406X7RpzN1a0lJKj32NuUn6V3w6cVwXxBQ6FqWj+NoEP/EtlFtqGM5ezlO1iccnY21gPrXdq4ZQ6ncpAII7jtQBh+Hwbi+1y/wB4dZ9QaOM/3ViRYiv4Okh/4FW/WD4QRB4at5YzlbmWe63evmyvIT+O+t6gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDBvVNv4z0q4DBUurae1cY+842SJ+QSX/AL6Nct8JbkXNv4nugWK3euXN0npsZtox/wB8EV0HjO4TT7fTNVkZVXT70zEs2AcwSx/+z1zPwosf7J03TYScLfaHb3KA92EsryH/AMjx0AemjpRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVz94zt490lRny1029djjjPmWwHP8A31XQVgQBp/HV8xX5LXT4ERsD70kkhcevRI/zoA3s1yfjbxNcaNb2+m6RGtx4h1R/JsID0U/xSv6Ig5J74A6ZI1/EOvWPhrQ7vVtRfbbW6ZwPvSMeAi+pJwB9a5/wVoN+bm68V+IowNd1IACEniyt+qQr6erep/MgGt4U8L2/hfRFsopDPcyMZrq6f79xM3LO3v2HoMV0FA6UUAFFFFABRRRQAUUUUAFVr2xt9QtJrS7hjnt5l2vHIoZWHuDVmigDza3ubj4YX0dhfTST+Dp3EdpeSMWbTWPSKQnrFnhW/h6HjmvR1dWQMpBUjII5yKr31hbalZT2d5Ak9tOpSWJxlXU9Qa4DT7u5+G2qW+g6tcPN4YuW2aZqEp5tHPS3lPdf7rHp0PA+UA9JopobjoelOoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArM1zW7Dw9pFzqmpTrDa267nY9/QD1JOBj3q/PcQ20Ek88ixQxqXeRyAqqBkkk9Bjua880aGX4ia/F4lv0ZPDthNu0e0cEfaZBx9qcfgQgPueO4BZ8LaLqOt6wnjLxPC0V3tK6Xp7nIsIm4yR/z0bueuOPYd6OgpAvHYfSndqACiiigCrqGn2+qabdafdpvtrqJ4ZUz1VgQefoa5P4b3s66LdeG9QfdqWgTmxlPQyRYzDJ14DJjGeflNdtXAeIv+KX+IekeJU+Wy1TGk6hjOFcnMEhA/wBrKlj0BFAHS+E8nwjpHr9kjzn/AHRW1WD4QK/8I1BEuALeWa2xknHlSvHjn/dreHSgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDgfjNIsXws1hmxkhFUn1LgcfrWlJYroMnhJkUCO2T+y5G7LG8Yx+ckUS/jWV8XVFzoOi6awBTUdctLVh6gsSf/Qa6zxDp8uqaFd2sDBLlkD27sMiOZCHjfHfDhT+FAGrRVHSNSj1fR7PUI0ZFuIlk2N1QkcqfcHII9QavUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAISBXPeG5I3j1nWHcLHd38r7nOAscQEIPP8JEW/wCjZq34l1CXTNAuprXBvHAgtQehmkYJGD7bmGfQZNcPqcB1y5tfhxok0kWk6dDGus3kZwRGF+W3Df33xknjAz15FAFjSVf4ieJY/EVwGHhvSpj/AGTCw4upl4Nyw9F6J+J45B9GA4qC0s4LG0htrWFIYIUWOONBgIoGAAOwAqxQAUUUUAFFFFABRRRQAUUUUAFFFFABVLVdKs9a0y407UbdLmzuF2SRP0I/xB5B7HB7VdooA898Oane+Etcj8HeILl57eXP9jalKR/pCDGYXP8Az0XOAf4h+GfQA3bmsjxL4bs/FOizaZfAhGIeKVOHhkH3XU9iD/hWF4O8QX/2yfwr4kO3XrFdyzHhb6Dosye/QMOx/EAA7aikzxntS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIWC9aXNcV431y8SS28MaDJjXtUyFkH/LnB/HOfpyF9T06UAZusyP8Q/EU3hy1eQeG9OlH9sXEZIF1KDkWykdhj5yPpwcV6FDAlvCkMMaRxRqEREXaFAGAAB0FZvh3w7Y+GdEtdL09dsEC43H70jHq7HuSck/XtgVr0AHaiiigAooooAKxvFOgw+J/DOoaNcYCXURQN/cfqrfgwU/hWzSEc+1AHn/AMJtZudT8OX9vfxeVf2V/LDdIcZ8wgNIxx0zIZDXoNeebR4U+L5kxs0/xTBtOBwt5CMjJ6DchPuTXodABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFGaAPO/G0wvPiX4C0fIK/abi+kX0MUeUP5lvyr0IjNeWWNwmtfH+a4Kfu9P0uZIZOSGVZFjY+gPmGdf+AV6pn1oA5zTT/ZHiO+0hzi3vS2oWZPZiwE6D6Owf380+ldJWN4i0uXULJJrMquo2cguLRm6FwCCjf7LqWQ+zEjkCrWkatb6xpcF9BuVZAQyPw0bg4ZG7blYEH3FAF+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQnFLXP+MfFNr4Q8N3Wq3I3sg2QQg4M0p+6gHvjnHYE9qAOQ8deJbqXxTY6JoarcarE3+jIeVS4dceY/osUTMx45Msfoa7Pwt4ZtfC+hxafbu0shYy3Nw/37iZuWkb3J/Lj0rm/ht4Nu9Ht5tf11jL4i1T57gtz5CElvLHpyct2z9M16AOBQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcr408LSa9aQX2mTC017TXM+n3WON3eN/VH6H65weQeqpMUAc94Q8UReJ9IM7xG11C3cwX1m/DQTL95cencHuPxroq8/8Y2F14a1geOdHgaQIoj1m0jH/AB824/5agf8APSPqDxkDGex7exvrXUbC3vbKVZraeNZIpE5DKRkGgCzRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFIWAOKAMnxHr9n4Z0K71W9J8qBflRRlpHJwqqO5JIH41ieBvD95aRXXiHWxnX9YIluVPIt4x/q4V9lHX3z1wKzLUnx945OoH5/Dnh+crarjK3V6OGkx3WPOAcfeOQT29EHSgBaKKKACiiigAooooAKKKKAOS+I2h3GueEbj7BldUsZFv7BwMlZojuGPcjcv8AwKtbwvr8Hibwzp2s24wl3CHKjnY/Rl/BgR+FaxBrz7w1t8J+P9W8LN8lhqIOq6YOwJOJox9D8wUds0AehUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWVr+pnSNHuLuOIS3AAjt4ScebM5Cxp/wJio9s5rULAda5oY17xXvBDaforEDuJLtlwfwjRiP96Q90oA5jwnp81p448S21oY5brS9PsbNbicYWaVw8sjtjnLM24+5qXwx428S6/4w1fQJNP0u3OkSKlzL50jGRS2MoCPQHrjqKv8Aw+kN3qHjHUWUgy67NApPdYkSMfhwa5zQ/wDiXftJeI7c/LHf6ckyj1ZRFz+j0AetZA4zXlh1jxNpHjTWrmLTrAaCs8aX9ysrlVYqMyhcAhgmwPjI4B7Ma73XdQlsrWOGzCvqN2/2e0R+RuIyWYf3VAZj6hcDkirGmaXb6Zpcdkm541B8x5eTKxyXdvUsxJP1oAurIrIGU7gRkEd6fXJo58Ft5UzsfDrsBDIef7PJOAjf9Mcnhv4Oh+XBXqgwxkcjHbmgB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFRzTxW8Mk0zrHFGpd3Y4Cgckn8KAEuLqC0tpbm5lSGCFC8kkjbVRQMkkngACvNvD1vL8RfFK+L7+IroWnMyaHbSLjzWz81ywPuPl+g9MnN1S/ufix4p/4R7T2li8K2DrNqVypKm6I5SMd8Hrj0+bqFFetW9rFaW8NvbRRxQQqEjjRdoVQMAADgDHagCXH50tFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANZA6srAFSMEHoa870dW8AeLv+Edl+Xw7q0jSaU7fdtrg8vb+wbll6DqOTmvRqxPFHh238T6BdaXcFkMg3wzLw8MoOUdT2IP07+tAG0Dx05pa5HwN4judX0240/VwE17SpRa6hGONx/hlAwPlccjj1xXWg5ANAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJmuK8faxeJBa+GtGkC61rbtDE/8Az7wgfvZj9F6e54ziuuvLuCws57u5kWK3gjaWV2OAqqMkn2AFcT4CtJ9aur3x1qCMlzqg8uwjcc29ipyi47Fz855I5FAHW6Jotn4f0a00qwj8u1tYxGo7n3PuTkn3JrRpAMACloAKKKKACiiigAooooAKKKKACuA+K2lXUvh2HxBpbFNW0Cb7dA6jqg/1ikdwV5I77cd67+mPGHVkYBlbhgehHpigDG8LeJLbxPocF/CvlyFVE0OcmNioPXupBBB7gg8dK3Oorybwtpt74f1rVNF04/8AEw0eTfbxSNhb7TpGLLGSf40YuFfsePusa9L0vVbXV7Fbq1L7c7XR1KPGw6q6nlWHcGgC9RR1ooAKKKKACiiigAooooAKKKKACiiigApCwBxRuGcd6ydb1mPS4UVI2ub64Oy0s42CyTt3AP8ACB1LHhQM0ARa9qdxbmHTNMKnVb3PkkjIgQY3zOP7q5/FmVe+Rc03TLbRtKhsbcMIYExvc5ZyeWZj3YnJJ7kmquhaNLYrNe38yT6rd7TczIDtUDO2OPPRFycDuSSeWNJ4vvW03wZrd4hw8FhO6H/aEZx+tAGH8JvMm+HdjezJtmvpri6fPcyTO2fyxXM+KJF0n9ojwvqEjCOC60+WGVzwOBLyT+K133gmyaw8C6Basux49PgDj0bYM/rmsvxh4Bg8X+I/D2oXUqi20x5Wnhwczhtu1c+mV59QTQBpaJG+qXkviGdWUTL5VjGw+5b5+8R6uQGP+yEHY5iE9xrPiLVdMlOp2MFikQikjTy0n3ru3rJjLFT8pA4BBznOB0gAAHAwOntWVrGoXECiz06JZtSnB8pX+5GOhkf/AGR6dWPA65AByOl+KNSGi+L7O9hfVrnQpnhRlhDNdRlcruRQAWAOGAxkDoM1keJF174faBb+I9E1G4n0eAxNcaZfgAxo5VSijHyj5gAoxs7Ej5R3nhrSLLw9bzabBM892W+13txIMNNLITlz2ySp4HQAVm6paw+KJo7u/fZ4b01/tIUji8dOQ5/6ZLgkf3zz0ALAHT6dqVnqtlHeWNwlxbyDh0PfuD6EHgg8g8HFWtwPSsK+8OLNdNqWl3LaZqL4MkiIGjnx0E0ZwH9M/KwHAYVCPEk2lv5PiOyaxUf8v8JMlo3uX6xf8DAXsGagDpKKihuIbiFJoJUlicAo8bAqwPcHuMc1JuGKAFoozn6UUAFFFFABRRmk3D19qAFpNwqC7vrWwtXury4jt7eMZeWZgiqPcngVgNr1/q7GPw9YZiPB1K+Ro4F90Th5fw2qf79AG1qWrWWkWv2i9m8tS2xFALPI56IijJZj2UAk15v4y1HV9Xks9J8gRajqT4sNJfa4iQdbm7xlSEHKxjI3YzvIwvSaodL8FabceI9Znm1HUUXy45pcGR3bgRQoOEyccKO2WJwTSeCfDl9bfavEWv7W8RaqA0wHS1i6rAnoB3x1Pc4BoA1/C3hm08K6FFploWkwTJNO/wB+eU8tIxOckn8hgdq26QcAUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSYpaKAOA8bwTeHdYtPHWnozfZF+zatAg5nsyclgO7Rk7uMcZycDFdzbXUF3bRXFvKssMqB45FOQykZBHsRzTpYI545IpY0eORSrowyGB6gjuOelcF4Jlk8Ma7feBbt28m3Bu9Hlc532rMcp7lGJHJyRzgACgD0GigDAxRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSZGcUtUtT1G20jTLvUbt9lvaxPNKw/uqMn6nigDjPG7v4k1/TvA1sx8i5xe6s6n7lqjcJn1dxj6Dpiu8ijSKJI40VEVQqqBgKB2FcX8OdOun0678TaohXVdelF06t1ig6QxfRVwex5OeldxQAUUUUAFFFFABRRRQAUUUUAFFJmjNAC0UUmaAOC8fA+H9W0bxtEMLYSi01Egfes5Tgk9zsfawA9Tmt3UtHnF7/bWhyxRagyjzo5CRDeIOgfHRh/DIASOhyOK1tS0631bTLrT7tN9tdRNFKvTKsMH8eetcp8OL+6/sS40HU3DanoM5sJj08xFGYpMdQGTGCeuDQB0Gka/baqZIDHJa38GPtFlcACWL3x0ZT2ZcqexrVLAVmapoVnqyxNL5kVzBkwXUDmOaEnrtYdj3U5U9wRxWeuo6zojMmrWzajaL92+sYiZAP+msIyc+8e7PXaooA6TrRVTT9TsdVthcWF3DdQ5wXhcMAR1Bx0PtVrINAC0UmaWgAooooAKKTNG4Zxnn0oAWkLAHB4rO1fXtL0KATaleR24bhFY5eQ+iKOWPsATXn1/wDFLTtSuvsdnqRtYW+6tlEbu9n9lVAyRfVyW5wVUigDttV177Ldf2bp9v8Ab9WdQy2yvtESn+OVudiZHXBJwdoY5w7SdB+xXEuo39x9s1W4QLLcsu1VTORHGucIg9Op6kk81yWl63rUVuLbwv8AD6/hgkcs9zrFytszOesjglpHY4GSeT3q9/ZnxI1NP9K8QaLowJz/AMS+ya4fHoTKQM/hQB3OeO9cB8ZdWgsPhrqcDXEcU135dvGHbBYM43YHU4QMeB2qwPhwbqXzNX8WeJL/ACMNCL3yIm/4BGF/nXK+MPht4W0+48NWWn6REJb/AFqFLh5HeV5IVV3kG5mJ528nPegDtLj4leB9Nt13+JtOZFUACCUTH8kyarj4p+HrhN+nW+s6kOo+yaVO2fzUV09jpOmabGEsNPtLVAPuwQKg/IAVBquuWmlNFCVkuL24JW3s4ADLKe+AcAKO7EgDuRQBzqfEO7uQTa+BfFTdcGe1jgH/AI89efeLL601fXLi4vfhrqGo6phFkhi10+YqYwMxQsxQf8BHfJ5NeqJoup6z+8168MVu2CNMspCsYHpJKMPIfYFV7EN1ras9Os9OtVtrG1gtYF+7HBGEUfgAKAPKdGtfENlo13pGnfC42enX2TP5niIhnJAByx/eDgAYGO/qazh8Ob5HDx/DvTAByI38RXDH+eD/AIcV7jjnrRigDzifxP8AE22b5vAtk0YHMkeohsf8BA3H8Aajs/Hnii6kFuPD2lC+fO21m1KS2mfH91JYgW+vSvSwPpVW+02z1O1a1v7SC6t3+9FPGHU/gaAPMp4fF9vN5+neAH0+4lJMkula/CgyTyxidPLZj6lSeOoqxF4t+IunZ+2+B5r+Mn5fLliRwPVijsGPsFWurk0bUtHHmaFcmeBef7NvpSyHHaOU5aM+gO5RgABetaOk67a6r5sKrJb3sGBcWcy7ZYiemQM5U4OGBKnBwTg0ActF8TtjBL7wb4stWGN7nTS8a/8AAlJz+VSf8Le8ExyLFc6rLaSn+C6sp4yPzTH612/0pGQOu1gGUjkMM5oA5q2+I3g+8YLb+ILKVj0VGJP5Yq03jDSAAYxqE4LbQbfTbiUE/VUI/GlvvBnhjUmZr3w9pc7t1ke0Qt/31jNYv/Cp/C0DvJpcd/pE7dZdOv5om/LcR+lAGw2v307bLLw5qUgbpLOY4Ix9dz7x+CGmGDxRfKFmvLDSkOQwtEa5l68bXkCqD9Y29qyB4L8T6eEGjePdREadY9Tto7vf7FsK345zTTe/EnTN5m0nQdbjX7os7l7WQj3EgZc/Q0Ab9t4V02G7jvLlZdQvUOUub5/NZD6oD8sZ/wBwKK1ppYraCSeeRI4o0LO7nCqo5JJ7Ad64s/Eu304sviPw/rmiiMZaeW0M0H0EkW4foK5+98Uad8U/EEfhTR79RocQFxqU27ynu1BG2GMHDEE/eOBwMZ5G4A1fD8U3j3xIni29Rl0SxZk0W2cf609GuWHqeienXHc+ijoKhigjt4UihjWOONQiIgwFUcAADtUuR/8AqoAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK434haRd3GmW2u6QgOtaHKbu1H/PVcYliPs65H1ArsqQigDP0TWbPXtFstUsJPMtrqISIfT1B9wcgj1FaNeeeF/wDikfHOp+EX+XT78tqelZ6Lk/voR9D8wA7EmvQx0oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBM1wHjln8R+IdH8ExMDBcN/aGqYPItYmGEI/wBt8DI6Y713c88dvBLNM6pFErO7scBQBkkn0rifhzDLqi6p4yu1ZZ9bnzbq+QYrSPKxL7ZGWOODnNAHchQFAAAA6AcU6gdBRQAUUUUAFFFFABRRRQAUUUUARyu6RO0ab3AJVNwG4+mTXB2vxGu7zxddeFovDFyNUtIhNMrXUWxEO35t2eeHXpzzXf4PrXkt1/xLP2mbEjganpBHHTK7uP8AyEP0oA9aB/OuQvfGOpQeK5NAtvC13dyrEJ/PS4jWPyixUMxJ+Ukq2AeTg10WqajDpWmzXk4ZkjHCLy0jE4VV9SxIAHqaq6Hp01layT3hDajeP590y8gMRgIP9lQAo9cZPJNAGupJUEjBIrgtfH/CMfEjSfECjbY6yBpV/wAcCXJaCQgdTnchJ4AxXegjpWL4r8Pw+KfDGoaNMQv2mIhHIJ2SDlG49GAP4UAbQPA7mkxk5z1rmvAmvzeIfCdtcXg2alblrW+jOMpcRna+QPUjPHZhXT0AZGoeGtM1C5N20LW96Rj7XaSGGb2y64LD2OR7VVFl4msARbapa6pGBxHfxeTKx95YxtA/7ZV0NJkZxQBgjW9VgdEvPDV7z96WznimjH/fTI5/BKB4v04SiKS11iJz/f0m5x0z94Rlf1rdz6VxfiD4o+GNCn+xJcyalqJYItjpyedIWPReOAc9ic+1AG3/AMJZpO9owb0uvVRp9wSPw2VSvfiBoWnwNNdHUIIlODJcadPAmc4+/Iir39axYz8RfFKAgWfhKwYZG4C6vCPpwi5H4ipbX4R+GTcLeaub7Xb0HP2jUrp5CO+AAQuPbBoAz4vi1NrRZPCng/V9VYOU86UpBBnOP9bll/lVoaX8StfH+n61pvhy1P8Ayx06Hz5sHszvwpHqtdF/wgnhLv4Y0ZvUvYxMT9SVzTl8E+GotxttEs7Nm6vZR/Z2/wC+o9p/WgDnrH4QeFobn7ZqaXut3p5a41S5aUt9Rwp69wa7Sw02x0u3W306zt7SEf8ALOCIIPyGKym8PahZjdpGvXkRX7sF+TeRH/eLnzfykGPQ00+Ip9JITxHaLaR5AF9C/mWxyeNxIDRf8CG3tuNAHRAUtNWRWQOGBQjIYdCPWnUAFcN4hVr34reD7dT8tpDe3cq/8AWNT+bmu5rz25u4Lb4tatq1zKRaaT4fjjkA5w0kzPgDHLERgAdT+NAHT65q89kIrKwiFxqt3lbaI/cUDGZJP7qLkZPckAAkgVLo+hRaX51xJKbrULrBubuRcNIR0UD+FB0CjgD1JJMHh/TLiNZtW1EAarf4eVevkIPuQr7KCc46sWPfA3RwMUAFFFFABRRRQAUUUUAIRWTrWhR6oIp4pntdQtsm3u4x8yeqkfxIcDKng9RggEa9FAGNousSX7T2d7ALbU7UgTw9VYH7sqHvG2GweuVYdVNbNYPiLT7hxHq2mIW1SwDNGgOPtEZwXgP+8AME9GCn1zqafqFtqmn299aSb7e4jEkbYxwfUdj2x1BoAtUUUUAFNJA9adWH4r8R2nhXQptTugzkERwwJ9+eVuFRQOck+nQA0AZHjbxFeWhtvDvh8iTxBquVg7i1i6PO/oBzjPU9AcYrjtZ0P4beC9Mh0vX9AuZ95C/2i1q7NcylQTiVTkE4ztBAznHWu08E+GbywS413XSsviPVMPdOOlun8MCY4CqMZx1Izk8Vzfx8tWl+HAulHz2d9DMG9PvJ/NhQBe0zwlqa2guvDPijX9JUtxZ6xELmMADoEkwyg/72faotU8c+KvBUUUvivw/b39iz7TfaM7HbkgKGjkHBJI/ixmvQbC6W9062u1PyzxLKOexAP9axZAPEGv8AlsN2maXKC2eVnuh0HuIxz/vkd0oAqaF8TPDGuzm1F41hfBgv2TUV8iUk+gJ5/A1127jv+VZuraDpGvQfZ9W021vYwOBPCGK/QnkH6c1yo+H97oe1vB/iW90uNcYsbsm7tcD+EK53Jn1DUAd5uFLXAjxlr/h4+X4u8NyiBeupaPuuIOmSzJ/rIx7kHNdVoniPR/EVp9p0fUra9iGNxicEqT2Zeqn2IFAGpRSbh7/lSg5ANABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHGfEbSLi70SHWNNTdq+iTC+tAOr4+/Gcc4ZcjHfArpNI1a11rRbPVLRt1vdwLNGeM4Izg+46EetXiM5HGCO9cD4IH/AAjfiTW/Bb/JBC51LSx2+zSsdygdgkmR77qAO/ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKTNAHDfEy5mudKs/C9lIVvvEFwLPcp5jgHzTPjuAgIP+9XZ2tpDY2cFpbRiOCBFjjQdFUAAD8hXE6Kw8SfFDWdYLb7PQ0Gl2nIK+cfmnb2YfKn0zXejoKACiiigAooooAKKKKACiiigAooooAK8k+JA/s74ufD3VBwZrh7Rm+rKoH/kU163XBfEvwZfeMRoC2E4t5LPUVlknBw0UeDll9WBC4HvQBsQ48Q+IDc5zpumSlIOOJrkAhn+iAlR/tFj2Wp/Fcuo2nh6/vdOvI7Zra0mmJaHzGJVMrtycDkc5DfhWpY2MGn2EFlaoI4IYwiKOw/x96zvFx/4ovXf+wdcf+i2oAr6HqV1J8PtM1SdZLu6bSoriQD70rmIMRwOpNYGr3eqw/D9/FVpqV/b6jDai8MF5GqocDc0TRYIXIyBg7unzGui8FHHgLw7/wBgu2/9FLVTWbFvGEh0ssV0KKQfbJAebsqc+Sp/uAgb2742jndgA5/RL8aX49tLtYzDpnjGyS7jQ9IrxEBZe2N0ZznqStekhhgD+VcZ470+PXPATXmmypFPYpHqenzMNojeMb1POMZXI56buay7L4rL4ksbZPCei3Oq6pJGrTo4MMFmxHIklYY454XO7HFAHok1xFbxPLNIsccYLO7nAUDqST0rirr4iR6hdyWPg/S5/EN2h2vPEfLtIW/2pm4PHOFzn1pkfw/utenS88caq2qMCHTTbbdDZRH/AHc7pCD3Y/hXTahc2fhrQi8VqqwwAR29rbIF3uTtSNB0BZiFHpnsM0Aef61oeuao0Fr4o1d9QvLzPk6DpTta2oQY3tNJy7RjjJPcgAEkCuv8K+BtK8LRmW3t4GvnXDzJEEVR/dRR9xeB6scDcWIzV7QNInsYpbzUJEm1W9Ie6lTO1cfdiTPOxASAO+Sx5Y1tDpQAgGOmMfSloooAKKKKACmOgcEEAggggjg0+igDlZ9PuvC7Nd6HC8+m5LT6Sn8OerW/ZT1Jj+63bDZ3dDYaha6nYQ3tnMJraZA8ci/xD+noQeQetTbPmJwK5q5X/hGdaN/HxpWoTKl4pPEE7HaswHYMdqv2yVbj5iQDqM15Po8f9vfFvxQmS9pDd28lwM8f6PGvlIfQeY7P9Yq9W6fXrXnnwntEktPEeuYDNq2tXMqv3aJXKqPwO/8AOgD0UdKKB0ooAKKKKACiiigAooooAKKKKAGleT0wa5/Sh/ZfiTUdIJxBcf8AEwtAf9psTKPo+1/+21dFWB4gH2bU9D1EEARXn2aU9zHMpQAfWTyT+FAG+OgooHSkLAUAR3FzDaW0tzcSLFBCheSR2CqqgZJJPQV5/wCHbebx14iTxnfxsmk2hZNCtXXGRnDXLg92xhQeg564ak12ST4g+JZPDFox/wCEe06RW1i4Q/8AHxKOVtVI+mXI6dOD19BihSKJY4kRI1ACqgwAAMAAemAKAJR0ri/izZ/bvhb4gixkpbib/vhg/wD7LXaVmeILE6n4c1SwC7jc2ksIHruQj+tAHJeFtdmm+GPhmKwZf7TvLOO2gyMhCi7XkI7hQpY+pIH8Qrob0nwr4SlOl2M95JaRfu4I18ySVieWIGNxJJYnuc1zXwl8K32geEbNtZz/AGh5LRxxMP8Aj3hLl9n1LMST/uj+EV2er6zp+hWDX2qXcdrbKyq0knTJOAPzoA5vWtd1Tw7qvh5ZZRewateLZywtEFkiLKSHTb/CuOQ2761oHVZNX8Qapo9hqCWsumiIzr5G92Mi7lOT8u3HHc5z0wCcHxpN/wAIpq+jeJJmk1FTerYmG4AJt1lzl4doADcAHIORxkGuu1bURpsJMFv9ovp/lt7deGmfHGT2UdSx6D8qAMrwh4hutZfVtO1GOJdS0m6NtM0AISUEZSQAklcjPGTj1NJrXw90LWLr7ekUum6r/DqGmyeRMD6kjhv+BA1P4T0BPD9tdJPcpc6teTG81CVRgM7n+EdQgAKqPQfWukoA4A3HjrwoT9phi8VaYuf3tuBBexr7p92THsQTW94d8a6F4mLxWF2UvIuJrK4UxXEJHUMh546EjI966DBz1rA8QeDdE8S7Xv7NRdR4MV5CfLuIiOhWQcjHXuPagDf3DGTxS15658beDWIBPirRU5PSPUIVA/BZsf8AfRJrpvDvi7RfFETnTLsGeE7ZrWVTHNCR1DoeRzxnp70AblFJuFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcF8RFOjXOjeM4VOdHuQl5sHLWkuEkyB1K/Kw9OTXe1T1LT4NV0y70+6Uvb3ULwyLnkqwIOPwNAFpXVlDKcgjII6GnVxXw1vriTwqdJvW3ahokz6bcHBG7y+EIz2KFTmu1oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKyPEutReHfDepaxNjZaQNKATjewHyr+JwPxrXrg/iCP7Y1bwz4WXcUv777VdDblTb243srexbYKANXwBoU2g+C9PtbzJvpVNzeM33mmkO98+pBO38K6ekDDpRuHPtQAtFFFABRRRQAUUUUAFFFFABRRRQAUhGc9/rS0UAHas3V9EtNctWtr77Q0DKyMkV1LCGVuCG2MMjHr6n1rRLAdap6nq+n6Lp8t/qV3Fa2kQy8srYA9vc+gHJoAqad4f07SdOawshdJaeUIRG95M4RACAELMSgAP8ADjoPQV5r4i8MfDXQ7qPSodDvNU1mUfutMsr64eQ+7fvMIvqTjjPWtz+1fE3j5tuhibQPD7ZzqcyYurpcf8sUP3FP9889COmK6nw54R0fwtatDpVsqPKd09xIS8s7c/M7nljkk+nJwBQBy1t4L1rxPBCPF92LPTFQLFoOnSFYwoHAml+9Jj0GFyMik8HWkHgzxrrXhGKJYLC9A1XTQueAQEljyeu0qpA9OtejAHHvXE/EmzuINLs/E9hHvvvD8/2wKODJBjEyfQpk/wDAaAO2HQVzrj+1/GQQ/Na6MofHZrqRTjPoUjOf+2wPatqzvYNQ0+C9tZBLBcRLLE44DqwyD+RrI8IATaD/AGiSGbU5pL4uB95HbMf5ReWv/AaAOg7UUUUAFFFFABRRRQAUUUUAFV7yygv7Oe0uo1lt50MckbDhlIwQfwqxRQBzGkarNaeGL5dQm8290bzYbmRjkv5a7kdvdoyjn3as/wCEdqbT4V6DGTuLQvKT3+eRn/8AZqy/iTeJolj4lZz+71XQnQL2EiP5RP1IuUH0QeldN4DUReDrK1G0fZHmtMKMAGKV48f+O0AdLRRRQAUUUUAFFFFABRRRQAUUUUAFYPi6IyeHpDgHybi2nGTjlJ0fP/jtb1YXi2TZoLJnHnXNtB0znfOif+zUAbm4e9cZ418QXsVxaeGfDzr/AG9qgJSTG4WkI4advpyAO5+mDreK/Edr4W0SXULlWlkYiK3t4/8AWXErcLGgHJJPp2FUPBXhm70qG51fWpBN4h1NhLeSA8Rj+GFf9lBx9fUYoA1/D/h6x8NaJBpdgmIohlnflpHPJdj3YnnNa1FFABSYpaKAG4PbFVNS02DVLJrW4HyFldWHVWUhlYduGAODkfyq7RQBzl34TGrXtjPrF/Jew2Ewnt7cxqieaBhXfA+ZhzjoOelVNa8CDWtZfU/+Em8QWEjRiIRWN0kUaKOwGwnk85Jzn2AA66igDD8O+Gk8Ow3CDVNS1KSdw7T6jP5sgAGAoYAYUcnHqT61uUUUAFFFFADdv4fSub8ReBdG8RTJeSxyWeqRD9zqNk/lXEZ7fOOo9myOa6aigDzr/hIPE3gpvL8V2x1fSE4Gt6fCQ8Q65nhXOB1yy5GAOpNdxpurWGsWMd7p13DdW0g+SWFgyn2z6+3arZTJOcEehrh9T8ByWOoS6x4MvF0fUXOZrUoTZ3ftJH/CT/eXB5Pc0AdyGBGRS1xmg+O0utSTQ/ENm2ia8R8lvM2Y7nnG6GTo3069ucGuxDjHt0oAdRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSYpaKAOBb/infjCDkLaeJbMgjBP+lW/OfbMbfiRXfDpXEfFG2kXwqmtWqsbvQ7qPUogpwSEbEgPsUL5HfArsbW6hvLSG6t3DwzRrJG46MpGQfyoAmooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBM15rHqiN8QfE/iOSGS4j0uKHRbGKJstPMx3yIoJGG3Mi56YBJOAa9CvryGwsbm8uG2w28TSyMeyqCSfyFch8MtM2+B7DULyKNr3UZpNVlfb/HMWII99jAfTNAGZP8A8LWtpG1dm0S4hQ730eENvKf3Fkxy+O+cZ9uK6+fWludP0uXTGDvqhjNuWHSMjezkeyZ/4EVHetoj1rjvBkEk13qNzIm2GxurmwtAeioJ3diPb/VL/wBsqAOguPEOk2bMtxfRRqjiN5GyI0bOArP91TnsTmtMHIyK868V2VvofgG98N2hupvtavELq/LGG3ErHLSTEbVVc5A5OQOOa7jSLT+zdEsLHzjP9mt44fNPWTaoG78cZoAu0UUUAFFFFABRRRQAUUUUAFN3gE9eKGkVVZieB1Nef3ninVvF95LpPghkjtEfZd6/Iu6KL1WFf+Wj+/3R+OQAa3iXxrbaLdrpOn20mq6/MMw6bbsAwH96Ruka8g5NZ+l+BbrVL+HW/G11HqeoRndb2UYIs7P/AHUP32/2m9vQGt7w14R0zwrayR2KO9xO2+5vJ33z3DerueTzk+gycCt7pQA1U2jA4A6U6iigAqOSFZo2jkVXRwQysMgg9iKkooA858Gzy6BZ+IvB8sjCXRd8ti7HJa0kBaMjP3ipyp9MCu08P2yWnhzS7aMDZDZxRrgY4CACuM+I9udH1HTPF8J2pBnTtRYd7WY7Qx9kkKtj3rr/AAxefbvCej3RUgzWUMhUjBBKA4x2oA1qKKKACiiigAooooAKKKKACiiigDzX4v2wu7Xw9asBtvtWgsn45KvIjH/0WPyrqtCb7Lquu6a2B5VyLqIZ6xzLuz7fvRMPwrC8bH7X4+8BaYwJR724uz7GGLI/Vq2daY6X4g0zWQMQyf6BeEdldgYnP+7J8vsJmPagDpKKTNLQAUUUUAFFFFABRRRQAUUUUAFc14ou4I73Sbe4njhgSdr65aQ4CwwKW3H0AkaLn/Guk3DOK8glhm+J/wAQ9St1Lf8ACLaYVtbmRSR9qZG3GFT/AHS+C+Oqxx4IzkgG54Ytp/Gmvr411OF00+DdHoVpIMFUPDXDD+++OPQfga9EHSo44kijVI0VUAAVVXaAMY6ewqSgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKTBz1paKAMnXvDmmeJtNfT9XtY7m3bkBuGQ9mVuqsOeR9K443niL4d8am9xr/hhTxfBd15ZL/01A/1qD+8OQM5GABXo9NZM5x1NAFXTdUsdXsIb3T7qK6tpVyksTBg3/1/arnWuA1Lwff+H9Ql1vwMY4J5G33ejucWt56kD/llJxww4yBkcnO54W8Zad4nilijWW01O1+W70+5G2aBvcd19GHBz2PFAHR0UmaWgAooooAKKKKACiiigAooooAKKKKAILu1ivbOe1nQSQzo0ciH+JSMEflXIfC65mPhD+ybqTzLrRbqXS5W24z5TEJ+GwpzXa4rhdKB0j4va7p/zeRq9jFqMYJwqvGfKkA9z8hNAHdjpRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHF/FO5lTwLc2Fs6rearNFpsG7u0zhWH/AHxuP4V11rbRWdpDawKEhhjWNFHZQMAfkK43xTu1L4ieD9ICq8MEk+pzjuvlpsjb/vuQ/lXcUAVb68i0+wub2c4htonlkb0VRk/yrG8Iw3cXgiwaUKl9cQm6kDDgTSkyEH6M5rcu7SG+tJ7S5jEkE6NHIh/iUjBH6mpQm0AKAoAwMdhQBwF9ql23w6vNM1gSXviGezltntorRlaWV1IAC45UZGWBxgE5ro/Bml3ujeDdH07UJN93bWqJJ82dpx93PfHTPtW5t7Hp6U6gAHAFFFFABRRRQAUUUhOOxoAM1V1HU7LSLCa+1C4S2tYV3ySyHCqP89u9U/EXiLTfC+ky6nqlwIoUOEUDLyseiIO7H0+p6Akclpvh7U/GeoQa94whMFpA4k07QmPyx9cSTj+J/QdF57k0AQCPVPig3mXK3OleDTysGTHcamvq56pEfQckfUY9Cs7G2sLKK0s4Y7e3iXbHHGoVVHoAOlTqu0ADp6Yp3agA7UUUUAFFFFABRRRQBS1TTYNY0u7067Xdb3ULxSKOuGGDj/PWuO+FV1NF4cuPDl+7NqOhXUllNuJy6bi0bgHnaVPBPXFd9XnfiB18I/EnTfEW4R6brYGl6geyzDJgkPqeChPQAUAeiUUgPHqelLQAUUUUAFFFFABRRRQAUm4ZxS1m63qkej6TcXzxtKUAWOFPvTSMQqRr7sxVR9aAOHW+XV/j+LdGZodG0d9w28JNI6ZwenKMv5H0r0G+sbfUbGeyu4llt7iMxyxt0ZSMEV554DsJYfiB4m+1MJby0tbSGecDh5pfMnl29wNz8DsMDtXpg6UAc94e1CeOWbQdTlL6nYqpEr9bqHokw9ScYb0YHsVJ6AHgVk63ov8AaaR3FvKLbU7Ql7O6C58tj1Vh/EjdGX06YIBDdH11b64k068jFpq9uoae0LZyv/PSM8b4yejduhCnIABs0UgPFLQAUUUUAFFFFABSbhz7UFgM+1cl438dWXhGzRBG97q1yRHZ2EIy8zscLkdQpPfvjAzQBV8ca5fvPB4T8OvjXNSQl5gcCxt84eZscjrhehz0OQAei8O+HbDwvoVrpGmx7LaBNuT9527u3qxPJ/8A1VkeB/C1xolpcalq0oufEGqMJtQuM5AP8MaeiKOB+PsB1vagAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAZsy2Tgiua8U+C7fX5IdRtLl9N120GbXUYB86/7Lj+ND3U+p9TXUUUAcX4b8Y3Lat/wjfim3j0/X1XMRT/UXyD+OEnr6leo/A47MMMVjeJPC+meKtLax1OHcud0UqHbJC/Zkbsf/wBXSuY0rxFqXhjVIPDnjKbzFlbZp2tAbUuh2SU9El4/4F256gHoNFNDDA+lKDkA+tAC0UUUAFFFFABRRRQAUUUUAFcL44/4lvijwdr/AM22HUG0+UDpsuEKgn2DKhruq5D4n2EmofDnWlhdkmt4ftcbr1VoiJBj3+TH40AdfRVPStQj1XR7LUYh+7u7dJ1x6MoYfzq5QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFJmgDhtJC6l8Y/EV7z/AMSvTrawU9syM0rf+y13VcR8OhJdf8JPqspDfbdcufKb1ijxEn/oBrt6ACiiigAooooAKKKKACiijNACZrE8T+KNN8K6b9rv3dnkby7e2hUtLcSHoiKOSScD05pPFPiiy8KaQb67EkkruIra2iXdJcSn7qIo6k1i+GfCl3dakPFfinZNrkiEW1upzFp0Tf8ALNPV8fef6gcckAj8PeFtQ1TVofFPi/Y+pKM2OnLzFpynnj+9JwuX9sDoDXcgccUoHFLQAUUUUAFFFFABRRRQAUUUUAFYXjDw7F4r8Kalo0u0G5iIic5+SQcoePRgM+2R3rdpCM0AeefDLxfcaroltp2tsyanDvhEkhA85ouHU8nEi8ZB5K4cdSB6GCK80vNItNN+JM2mXcZGmeJB9stZEO1rfUIR8zRkD5GZMPuzkkEetdFHrV34fb7P4kYNbLhYtYVdsbAnA84f8sm6fN9xv9n7tAHVUUxJEdVKEEMMgg8Ee1OzQAtFFFABRSZFUtS1mw0i3E19cCJWO1FwWeRv7qKMl29lBJoAtySpEjPIwVFBLMTgADqSe1c1p+7xLqkWtyo66Zak/wBmxuMecxBBuCPQqSqexZv4hhr6feeJ3WbWYfsmjKdyabJgtcejXHbb3EYyO7E/dFu/8Y+GdLDC71/TIHGTsa6Td+C5yaAMX4eO15e+L9RZeZtdmhVv7yxIkYP0+U13GQK8c+G3xK8O2ng+K3nmuZdWknuLi4tbaymmZWkldhkqmDxjvXWD4jSXEjR2PgvxXOQMhnsBCjfQuw/lQB2+c1m6totprMca3IdZYW3wXETFJYWxjKMP1HII4IIOK5l/FPjaWTFr8PZBHgnfdatDH+i7qV734kz58jR/DVoc8fab2aTH/fKCgDSGpazohCarbSanarhRfWMOZVH/AE1hHJPvHnPXYorY0zWNN1eFpNOvYLlUO1/KcEofRh/CfY81y0Nt8TpQPtOoeFLfIIPk21xJj/vpxVDUvAvivWpYbi98RaNHdxgqtxDo371Af7shk3D8CKAPRQwNLXm9p4D8c2I22/xMuBHx8sumLMf++pZGP61onwr41PB+I1zj20m2H9KAO23AVS1HWdN0mNX1C9gtw5wgkcAufRR1Y+w5ri7vwD4qvYyk3xI1VVI5MFrHEfwKYIqpafDfxDpTtNpvjjyLpuJLmXRbeSRwP7zn5j+JoA6C/wBb1G6tZbm2jOi6VEplm1LUI9smwDJMcJ5Bx3kxjH3GrmvAPhqPV9VbxrfW8ojYH+y0ufmlKHrcSnvI4xjsqgAcAY5e+0Xxz471W40CLxbFqOi6dcIl7ey2KwRyygkmMImfN28ZBKrnGegNdwZPF9sSsXjHwvNsXaFmszGAemDtl46f/WoA9BB4FAIPSuEST4oELJG/g67t2QFWQ3MZb3/iGKju/FnjTTGMd14c0SeVQW2Ra0ImI9QJEGM9s0AegUVwsHjnXvs6TXngLVfLYZ3WN1b3QP02uM06P4oaWke/UdF8SaYo6m80mUD80DD/APWKAO4orkLL4peB9Q/1XiSyj5xi5JgOfpIFrpLLVNP1KMSWF9bXUZGQ0EquCPqDQBbopMilzQAUUZo6igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKz9X0aw17TZ9O1O1jubOcYeNx19D7EdiOenpWhRQB5zYarqHw/1KDRPEly1zoM7eVpusSH5oj/DDcH1x0fpxz32+ibsDJzVXUtMtNXsJ7C/t47i0nXZJG4yCP8QeQex57VwOm3998OdYh0PXrp7nw1dNs0vU5j81q3aCZvTHRz6enCAHpVFNDDsPyp1ABRRRQAUUUUAFFFFABUNzAlzbS28i7o5UKMPUEYNTUmOaAOM+Fc8r/DzT7a4ObnT2lsZR6GKRkA/75C12lcL4F8ux8S+N9HVvmi1YXuCeguI1f+Yau6oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACq97cJZ2VxdSfchjaRj6ADJ/SrFcz8Q7n7J8OvEUudp/s+ZAc45ZCo/nQBS+Flo1p8MtDWQlnmgNy7HqTKxk/8AZ67Os3w9YjTfDWlWA6W1nFD/AN8oB/StKgAooooAKKKKACiiigArH8R+IbDwvo02qalIViTCpGg3PK56Ig7sfT+gzVvVdVstF0y41HULhLe0t0LySOeAP6nOAAOSTgVxXhrSbzxbrUXjPxDbvFDHn+xtMl4+zIf+Wzj/AJ6t177RjvjABP4Y8O6hqOpjxZ4sjH9qsrCxsjzHp0R7Ad5D/E34dK7um44p1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFJuHrRuFAHJ/EPRLjWPC0s2nj/AImunSLf2DYyfOi5A687huXH+1mtbw/rNt4k8O2GrW3MF5CJNmc7D0ZTjuDlT7g1Lquu6TokPn6pqVrZxEZDTyhc/QE8/hXj/hX4hQ6V4n1jw74Z0q71yxu7lr3SxCfKC7wDIuXwFjDhsHp19aAPT18KRWLNJoF9PpO7k28QD2zH3hbhffyyhPrTxdeJ7Nttxp+n38YXPm2twYXY9/3Tggf9/Kw/J+JGtMS1zo/hy3cDHlIb24X1BJCp+NP/AOFY2V+CfEWt61rm7BaG5vGjgz6iOPaB9OaAIdQ+Leh6M8kOqWl1azR4Bi+0Wsrk+yxzM35io4PibdavGf7B8D+IrxjyklzEltCw9RIzEfpXW6V4X0LQhjStIsbMkYLQwKrN9TjJrVxzmgDz6eT4o60mLe30Lw7DJwfNla6uI/XGAEP+eaq2Xws1Y3c95qnjjUpbuYENPZwJBKqn+FZDvZVz2Uge1el496WgDhz8J/DFxtbU11DVpV/5aahfzSk/UbgP0o8R+GPDXhzwZrl/YeH9Lgmg0+d0cWiZyEOPmxnriu4riPi1JKPhvqdtAQJrx4bVPcySopH5E0AX/B+hJY/DvSNMTdaMbGLzWt/kYSMoLsDjqWJOcVxPgybWL34oeJND1PxFqksGkuklrEZVAdCc/PhQW4K+nU165GgjjVFGAoAFeS2f/Es/aa1AHhdT0lWHuQEGf/IRoA9aJGRxg5rg9F0fU9V1+/1UeJ9VOiC4xZW6yKBLt++ScZ2btwUdwPTBO9r1xLeTxaDZyMk92pa4kTrBbg4ZgezMfkXvyT/AauT32maJDDbSyx26IgEUSryqLgZAHOAMCgDUoqvZX1pqNpHdWVxHc28gyksTBlb8RTINUsLq9ns4LuGW5gCtLGjglAc4z6dD+VAFuiiigBC2Oxrh/G2t31xfW3hDw9Ls1jUVLzXK/wDLjbdGlOP4jyF6c9xxnX8YeJ4fC2jfajC1zezSC3srSM/PcTscKg9u5Pp6nANfwZ4Xn0Ozub7VJlute1NxPqFz2LY4jX/YQfKB+PHQAGtoOhWfhzRLXSdNjCWtsoVc9W9WPqxOST715X8QdH0yy+MPgi6fT7QwX0jwTRmFdsjAgAsMYJzJ3z0r2ivJfjn/AKDB4T1zobDWIzn0B+b/ANpigD1aNI4Y0ijRURQAqqMAAdhXGXvh3RvGPixb+/0+2uLTSGaFHkjU+fOcbgf7yp0weNxbutbmvX88UcOn6e4XUb4lIWxnyUAG+UjvtBBA7sVHemT3WneFtO06wQhfMlS0tImcAySEEgFmIGSASSeT7kjIBsxQxQRLDBGkcaABURQAo9AB0p+MmsK18TRnxI3h6+t2tdR+zfaohv8AMjmj3bSVbg5B6ggevIpNS8V2um6tYadJa3jS3tz9mjkMJWMNtLdTjcMKeVzQBrXWm2V/H5d5Z29yhGCs0SuD+BFc3ffC/wAE6gP3vhuxjIIIa2QwEEehjwa64dKKAOHPw0itnD6T4o8SaaFBCxR35liH/AZA2fzpP7G+ImnBzZ+KdL1X+7Hqen+Vgem+Ej88V3NFAHDf8JL4101sap4KF3Cq5e40m+WTP0ikCsf1p0XxV8NRvHDq39oaHO/CxarZSQH/AL6wV/Wu3qOSGOWNo5EV42+8jKCD9RQBW07WNM1iDz9M1G0vYs4L20yyAH0yCauZBrk9R+GfhDUZluDosFrcqSyz2JNs4Y98xkZP1qiPBfiXScHQfG980YO77NrES3in238Oo+hNAHdZFLXCf8JF430Y7da8Jw6jABl7rQ7ncfwhkwxP0Jq5pnxN8K39wLObUDpl/gbrTU4zbSKT2+fgn2BNAHX0U1XV1DKwKkZBByKXcKAFooooAKKKKACiiigAooooAKKKKACqepaZaavYXFhf28dxaXC7JInGQw/xB5B7de1XKKAPOtG1C88B6zb+F9cuHn0e6cpo+pSN9z0tpT/eH8JPXoOmB6HvGM88Vn65odh4i0i50vUoVmtLhNrKRyPQg9iDgg+1cn4Y1q/0HWh4M8STtLdbS2l6i/8Ay/RDqCf+eijAPr19yAd9RSZ4paACiiigAooooAKKKKAOGs3Fl8atVtVUgajosF0xx95opXj/AJMK7muH15/sfxb8JSqDm+s760dgOyqkgH/jpruKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArhvi2huPh3fWasQ13cW1uMHB+adBj8s13NcN8TJMWvhq3wx+0+IrGMgDPAcuc+2FNAHcjoKKBwKKACiiigAooooAKa8iRqzOwVVGSzHAA70pYA4rzvxJcT+OfEUng3TJnj0u22vrt5GeSO1sh/vNj5vQfiCARWaP8TNfTVLgH/hEdNnzYwsONQnU485vWNTkKO569xXoN1eWljbme7uIreEYBkmcKo9MseKW1tIbK0itbSNIbeFBHHGgwqKOAB6DFcne+CbTxXqk194pga6iilaOxsGlIihjBxvIU/M743ZPQEDGRQB10F1Bc26T28yTQv92SNgyt7gjipFkViQCMqcEdxXDabo+nfDzWJ47JpLfQb23luWgZiyW80QBbbnsyEkj/AKZ/hV6xvJ7KS3sibdNd1USX0yTyAeWPlGMDlyilEGOyEkjuAdZmlrmNK8Szy+KLvw1qlqkGoQ263cLwuTHcQFtpYZAKkNwR+prpx0FABRRRQAUUUmaAFpCQOtG4VyGrfEfQdPvG0+ykn1jU+gstLj898/7RHyrjvkg+1AHX7hjOcD3qlqms6bolp9q1S/t7ODOA88gQE+gz1PtXIeX8QfEud8ln4UsW42pi7vCPduI1z7ZIqe3+GGiWpe7/AHl9rBAC6lqp+1yKQcghW+UY9gKAID8RpNZynhDw7qWtBvu3jr9ltf8Av5JgnHoBQfDvjfXx/wATzxPFpFuwINpoURV8Z4zO+WB+gFZXgfxD4p13xl4g0fUNVtY4dDuVj2xWYDXCF2Gc7vl4QdB/F7V6f0AHTsPyoA5bTPh14V0u4a7GmJeXjYLXV+xuZCR33SZwfpiqHxIsZLSxsfFdjDuvfD832hlUDMlsRiZPpsyfbHrTtFPi7Utfv5n1y0Og29z5duy2Q8y424EgBzgANuXdzkqeAK7WWFJo3jlRXjdSrKwyCD1BFAEdndQX1lBd20iy288ayxyL0ZSMg/kasVwnw7lk0h9V8GXTlpdGmzaM3WS0kO6M5745U+m0Cu7oAKKKKACiiigArh/iKr3Nx4S0+JsG41+3dxjO6ONXkP8A6CK7iuG8Qo158VvB9ur/ACWkF9dyL65RY1J/FzQB3PavG/iFeReHvjZ4Q16ff5LWstu4QElgN4wB3OZRgeuK9krI1Pw3pur6zpWq3sJkudLaR7XJ+VWfAJI7kbRj0NADdB064ghlv78AalfMJbgDkRjosQ9kHHudx70WWmXdn4g1jUp9QWW0uxD5UBhAMGxMN8/VgTzjsScdTWzXA+MfEvl6o2izaD4iutPCBrqXT9OeRZwefKDjA24PzEZz93jmgBnw6tjcP4qvUiH9iajqckllGw+SRMbXkUdNrnOPXH0qXw5bw2vxU8VQQQxxRLY2ICRoFXpJ2FbPhvXTq9tczLo2o6XZWwWKGC9szDIcKSSqc5XBUDHcGsDRL8L8T/EF89jqiWl7b2cUEz6bcKjsu4NyU4xuHJwKAPQqrX9/a6ZY3F9ezJDbW8ZkkkfgKoGSanDjpXnF7u+JHil9PQlvCmkTD7Ww+7f3S8iL3jTgnPBPHoQAWPCVjdeKtbPjrWYnijKmLRbOQc28DdZWHaRx6dBxk9vQR0pAMDgUtABXmvx2sjd/C29kC7jbTwyj8XCf+z16VUU1vFcRmOaOOSM9VddwP4H6UAc94TtLy4tF1vWIvL1G8hjURHrbxAZVPYkks3ucchRW3d2sFwI3ktoZpYW8yESgYRx0IODt+uOKtAfnWDruiy3uqaTqtuWkn0yR2S3M5jSQOu05IByR2yMcn1yADnrNo4viqJdexFq9zYGPTFhJaDyVbMihiATLnBOQOMAZ5qx44I/4SPwTz/zFz/6Jepj4dvtY8e6d4k1GNLWDS4JI7S3V98jySAhncjgDHAAz657UvijRfEGr63otzZW+mfZ9LvftIM95Iry/IVxgREL949zQB2GaWooDO0CG5jjSUj51jcuoPsSBn8hUtABRRRQAUUUUAFFFFACYqnqWkadrFsbbU7G2vIOvl3ESyLn6EH86u0UAcKfhjZ6c5l8L6xqegS5LCK2mMtuSepaKTIP4YprX/wAQPD5xe6VY+JLReDPYP9muNo6lonyrE+ikV3lJj6YoA5HS/iX4a1C6Fjc3UmlajxustUjNtKCTgD5uCfoTXXBgQCO9UdT0XTtatDa6pY217CeQk8QYA+oz0P61yJ+HVzop8zwb4ivdJA6WNwxurQj02Ocrn1BoA7zcKWuBXxl4i8Pv5fi7w1L9nXGdT0Ym4gxjlmjP7xFHrg11WieI9G8R2n2nRtRt72IAbvKfJT2Zeqn2IFAGpRSZ+tLQAUUUUAFFFFABRRRQAVheK/DFr4q0VrG4keCaNxNa3UXElvMvKyKfUfyzW7RQBx/gzxNd30l1oGvKkPiLTQBcKOFuI+izx+qt34GCcECuwrkPG3hm61UW+s6Iy2/iPTCZLOU8LMv8UL+qNyPY85650/Cvie08VaGmoW6NFIrGK5tpPv28y/ejb3H6gg0AblFA5GaKACiiigAooooA4jxyVtvEHgq9PBXWhb5wP+WsMi4/Su3HSuH+Jsa/2ZoN02P9E1+xnye37zb/AOzV3A6UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXE+OwsuteDIC+D/biSY9dsMh/w/Ou2ri/F/lP4z8EQuRuOoTuB/u28nP5kUAdoOlFFFABRRRQAUmcUtZeu65ZeHdFvNW1GTy7W1jLse57AD3JwB70AYfjfxFeabFa6JoRWTxDqzGK0VhkQL/HO/8AsoOe+T2IBFavhfw1a+F9Cg022YyFcvNM/wB+eVvvyMe7E/4dAKw/A+i3zy3fizXlxrOqqCsLDP2O2HKQjPQ929T7jJ7egAppU9qdRQByviu0XU9X8NaeX25v2uZFH8UUcT7lPsWaMH2NbV5babFcDV7yK3WazjYLdSKN0SHlsN2GBzWcLC5n8fvqM0bC0tNNEFux6M8shaTH0EUX51F4q8P61rr2n9ma/FpcUDeYyPYi48xwcqTucDA6gYPOD1AwAUtB0ifUPF154w1CJrdpbUWWn2sgw6WwbcXcdmdjnGMqODySB2fauX0Hw/4hsdWN7rfiddWVYGiiiXT0tghYqS3yscn5cfia6cEY+lAC0mRUVzd29lbSXF1PHBBGNzySuFVR6kk4FcRJ48u9elltvA+lHVCrFG1K5Jhs4j/vEbpCD2UenNAHcXFzBaW8lxcypDDGu55JGCqo9STwK4if4i/2pM9r4N0i51+dSQ1wP3NnGQcHdK3XHXCg59aWD4dHVbpb7xnqsuu3CtujtceVZw+yxA/MR0y+cjqK7W3tobWCOC3ijhhjAVI41CqoHAAA6DFAHDf8ILrXiMl/GniB57dvvaTpZa3tccgq7f6yQdDyRzXX6Voem6HaC00qwt7OAc7IIwuT6nHU+5rQooAbjjBx+VOoooA8k8N/8S39ovxVZ9I72xjuE9yBHn9S1d9r93OzQaRYSmO+vs/vV628K48yX6jIC/7TL2BrzrxVeQeHv2g9E1S5kENnc6VIkzn/AGRKf6JXo2gWVwfP1bUEK399hmjbrBEP9XF9VySf9pm6jFAGjbW9rpdhHbwKkFtbxhVUnAVVHqf5/jVodK8/+MNhC/w71i8cyGWOKMKPNbYP3q87M7c8kZxnHGa76SPzY2RydrDB2sVP5jkUAcB44kXw74l0XxlGwWK3cWOqDOD9klbCyN7JJg++TXoIYEV5rYaDY3vjzxtokkbG0uNNtI3DOWY7llydxOc89c5ra+HGpXNx4cbSdRfdqmizNp9znq+z7j884Zdpz35oA7GigdKKACiiigArh7dPtXxrv7lWJFhoUUBXPAaSZn/kgruM1w3g5BceO/HWpglg97b2g9B5MIBA/FzQB3NFFFABTBHgnnvmn0UAN2n14pMdj9Kdmud8YeJ4vDGkCaOI3Wo3LiCws0PzTzMeF+meSew/AEAyfGWsXt/qMHg3w/MY9UvV33l0n/LhbfxP7O3Rfc544NdPouiWfh/RrXSdNhWK0towiL39ST6knJJ7k1leDfC76BYTXF/MLnW9Qfz9Quuu+Qj7o/2F6AeldPQAUUUUAFFFFABSYNLRQAmKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAbt9cYrltb+Hmga1dG/WCTTtU5K6hp0hgmBPcleG/4EDXV0UAefmXx74Vb98kPivTVOS8QW3vY1z3X7kmBjpgmt3w9450HxHK1raXZh1GPiWwu0MNxGQMkFG5OO5GQPWuix9aw/EHg/Q/FEaDVrCOaSP/VTglJYj1G11ww55xnFAG5nmlrz1rDxx4PJbTLr/hKdKUk/ZL6Ty7xB/szdJPX5hn0rd8PeOtF8RXDWMMk1pqkf+t069jMNwnGT8h6jHORkc0AdLRSFsdjS0AFFFFABRRRQA0ruyDgg+teeeJ7WbwV4h/4TXTY3fT5yseu2sYzuQcLcKB/Eufm9R6cmvRaimt0nieKSNHjkBV0cZDA9QQeDQAlvdQXdrFcW0izQSqHjkQ5DKeQQfSpq878OyP4H8VHwddOzaRfF59Emck+X3e2J6/L95c9j1zivQ9wxQAtFFFABRRRQBxHxYYxfD+5nUhTDd2km49v9Ij5/Wu3rhPjJCZ/hPrybtuEifP8AuzI39K7sdBQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcN4v8A+Sh+A/8Ar5u//RBrua4rxbED458DTlsFb25TH+9buf5qKAO1ooooAKKKKAEzzjFeePj4g+OvLB3+G/Ds+X/u3d8Og91jz+LHuOmp491670+xttG0Y513WJDbWfP+qXGZJj/sovOfXFbXh3QbTw1oNppNkP3MCYLHrIx5Zj7kkn8aANQA4/xp1FFABRRRQAmDz0/xozRvUDJNcx4j8caXoF0mnIs2o6zN/qdNs13yt6E9kX3bFAHTF1UbicAdSelcPffEJb++k0vwdYPrt+nEs6NttLfPd5eh45wuc4qsPCWveMT5/jS8+y6exyuhafKVQjsJpRhnPsMDIyOtdxY6fbaZZRWdhbw21tEMJFEgVV+gAx1yfxoA461+H0+r3Ed/441NtanB3pYIDHYwH0Ef8ZHI3P1B5FdvDbx28CQwRpFHGoVERQqqB2AHQVKOlFAABgAUUUUAFFFFABRRRQBzWt+CtP1/xTouuXpLPpXmNHDj5Xc7SrH/AHSpIHrj8elA4oooA89+MmpWMHw51eylvIEu5o4zHA0gDuPNXkL1I4P5V21rq2nX1o13aX1tcWyZ3TRSqyLgZOWBwOKtbeT70beaAPONB8QaK/xZ8Tuur2DLPa2SQkXKYkYB8hTnkjI4HrVrWD/wi3xN07WF+XT/ABAq6be8gKtyvMDnuSRuT8q70qTWH4v8PjxN4Uv9L37JpU3QSgkGOVTujYEcjDAdO2aAN3NLXO+CPED+JfClnfzp5d6oMF5FjBSdPlcY7cjOPQiuioAKKKKAGnIP4/0riPheqSaFq2pxncNS1m9ug2eCPNKD9EFddqd2un6VeXrkBbeB5iT0G1Sf6Vzfwvshp/wy8PQqMBrRZvqZP3h/9CNAHX0UUUAFFFJmgCpqepWmkabcahfTLDa28ZklkY4AA/z+NcZ4P0+88Sau3jnWomjklQpo9nIP+PS2P8ZH/PR+p9BxnsK05PxK8UG2Xnwlo8/74kfLqN0v8PvGhxnsT6jkejhQBwBigAHQYpaKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBuDnOaxvEPhLRfFFssWq2Mczx8wzj5ZYTnOUcYI5weDz3rbooA89aLxp4Kx5Ej+KtEj5KSsF1CFf97hZsdecMc4rpPD3jDRPE8Mjabd5mh4ntZVKTQn0dDyPT0POM4rc2nPt1rm/EngXSfEcyXriWy1aEfuNTsn8q4j/4EPvDthsjBOMZoA6TcOOOtOrzs+JPEfgjMfi23OqaUOF1uwh+aMdf9IhH3e/zLkdOCa7nT9TstVsYr3T7mK6tpVzHLEwZW/GgC3RSBgelLQAUUUUAc/4v8NReKdCksGlaC5R1ntLpfvW86n5JFx6H8weoqr4I8Sza/ozpqKLb6zp8ptdRt8Y2Sr/EM/wsOR259q6kgmvP/GMT+EvEVv45s0Y2pC2utxID80BOEnwOrRkjPcrxwMmgD0EdBRUcU0c0SSRuHR1DK6nIYHoQehFSUAFFFFAHFfFv/klev/8AXBf/AENa7UdBXDfGGZYfhRr7vnBijTj1MqAfqa7kdKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArifHWyPxB4KndsY1kRjju0MgH64rtq4X4l70XwpOjBfJ8SWRYnn5SWQ/wDoVAHdUUUUAFRXFxFbQSzzyLFDEpeSRzhUUckknoBipM1wPjyaXxBqun+BbOR1/tD/AEjU5IzhobNDyM9jI3yD8cjBoAb4HtpfEer33ju+jYfbVNtpUTjBhs1bhsHoznLHrxjnBwPQRwKigt47aCOCCNI4YlCIiDaFUDAAHoPSpaACiikLAde3WgAyM471T1TV9P0TT5b/AFO7itbSIZeWVsAe3uT0AHJPSuc8ReOYtO1EaHolo2seIHGRZQMAIR/flc8IvI68nI9aq6X4GmvtQi1vxndx6vqcZ3Q2qAizs/aND94/7Tc8DpjNAFQ6p4o8ePs0NZtA0Fuup3EeLq5X/pjGfuAj+M88gjpiuo8OeEdH8LWrRaZbASS8z3Mp3zzt3LueW5ycdBngCtsL2NOoATFLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhBOaWigDgLM/wDCK/FS6sD8um+JUN3bjsl3GAJVA/21w5J7iu/rkfiLo1zqnhd7rTh/xNdKlXUbE4z+9j5247hl3LjpzW5oGtWviHQbHVrM/uLqFZVBIJXI5U+4OQfcGgDSooooA5P4m3i2Hwz8RTMQA1lJDn3kGwfqwroNJsl03R7GxRQq21vHCoHYKoH9K5L4pvHN4csNLkAK6nq9nabSM7szKxH5Ia7kdKACiikzQAZH9K4Txnq97quqReCvD9wYtRvE8zULtBn7Da92/wB9vuqPfPHBrX8ZeKB4Z0pDbxfadVvJPs+n2YPzTzHoP90ZyT0HHqKPB3hdvDmmSvdz/a9Yvn+0ahdnrLKewPZVHAHYduTQBq6Po1loWk2umafCsNrbIEjQc4A7n1PUk9zWgOlA4GKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBhTORwQexrh9R8BSaffS6v4LvV0fUJGzPaspazuz6PH/CT03LgjJ7mu7pMHPWgDjND8exT6iuieIrN9E1z+CCdt0dwM4DRSAYYe3BB47Guy3ANtwaztb8P6X4j057DV7KK6t2OQrg5U4xlSMFT15BBrjWk8SfD3AmN14k8MqMeaBuvrNf9rH+tQevBGfbkA9ForP0fW9N1/TotQ0q8iu7WQfLJGc8+h9D6g4I9Kv5+tAC1Bc2sV5bTW1xGskEylJI2GQykYII9DU9FAHA+BZ5dB1O+8C6hIzvp6CfTZZDkz2THAH1Q/IfwxxXfVxPxD0y5FnaeJ9Kj3atoMjXMaDjz4cfvouh+8mSOCcjiup0nU7XWdItNSspPMtbqJZY274I7+9AF2iiigDhvi7Gs/wAN9Qt2Qss09rGQPQ3Eddz2riviY2/QtMtct/pWtWMPy98zKefyrtaACiiigAooooAKKKKACiiigAooooAKKKKACiiigArh/ivILbwNJfsSBZXtpOSDjGJ05/I13Ga5D4jRRap8MvEaxukiLZSvkHIzH8x/EFKAOvHTmiqek3g1DR7G9U5Fxbxyg+u5Qf61coAq315Bp1lcXt1II4LeNpZHPZVGSa5D4d2VzdWt74u1FCuoa84mRG6wWw4hT/vk7j659qh8fFvEWsaT4Hgc7L1vtuqbTgrZxsPl9RvfCgj0Nd4qBUVQAoAwAO1ADx0FIWA60Z7YrE8S+KdM8LWK3OoSsZJW2W9tCu6a4fsqIOSSSB7Z5xQBrXN3b2VtLc3U8cEES7pJZXCqg7kk8AfWvPn1zXfiFIYPDEkuk+HslZdakjImuBnBFsp5A6jecY7cjl9n4Z1fxndRan40UQWEbCS08PxvmNT2ec/8tG/2eg/EivQFhVIxGiqiKMKFHAGMdKAPMLaXUdBWbSvhx4Whura3crealez7BcTAndhiQ0jA5BboDkDjFdh4U8Rz67ps51KxbTNSs5PJvLR3B8tsAhlboVIOQenX0rasrC30+zgtLWJYreBQkaAnhR79fx7965PxHEW8WWmmRA/8TyzaC4I7QwuGbP1SV0B7FxQB0uk376lpsV6YvLSbLwjuYyTsYg9CVwSO2a0K5fx3FPH4L1m7tr+6tGtdOuJEW2cICyxsQcgbhgjsRWp4aZn8LaQ7sWZrKElmOSTsHJoA1KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikyKADFcD4QB8M+Mtc8IP8tpJ/xNNLGeBFIcSxjsAsnQdcNmu+LAflmuG+JNvLY2en+LbKNnvNAn890T70tsw2zp/wB8857baAO6oqG2uoby1hubeQSwTIskci9GUjII9iKmoA4bxnIlz428DaW3PmahNeYxn/UwMQfzYV3I6Vw94wvPjTptsykrYaHPc57Ayyqn54U13FABVHVtUtNE0u61K/nWG1t0Mkjt2A/qTx9TV3cM45rzkg/EnxVkEN4T0W4B45XUbtf5xp09CfXsAWvB+l3et6q/jjXImjuriPy9MtHH/HnbHoSOzuOSeoBx04rvR0FIBS9qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmlc06igDh9Y8ET2mpS694Ouk0vV35ngIza33fEqDoeThxgjJ9c1a8NeN4NYvZNH1O1fSPEEAzLYXBGWGPvxN0dODyPTpiutxnvWH4k8JaX4ptY4tQjdZ4TvtruB9k9s+c7o36qcgH04HFAG3uA4/CnA5Ga86tfFGq+DbyLSfG8iS2UjeXaa/Gm2OQ9knXpG+O/3Tz6E16GrqygqQQRwRyDQAFck5xg1wHhQ/8ACJ+MdR8GvhLCdW1HR+yqjN+9hX/db5gPQ16DXFfEbTrqTR4Nf0yPfq2gzfbLdR/y1Qf62L3DJngckgUAdrRVLStUttZ0m01KzYvbXUKzRseuGGRn39qu0AcP8QYhd6n4Ls+MnX4p8c9I45H/AJgV3FcL4kD3PxU8FW6n5IEvrqRfpGqKfzc13OfagBaKTIpvnR7ygYFh1UHkUAPopu9d23POM4p1ABRRRQAUUUUAFFFFABRRRQAUUVHLPFBE8ssipHGpdnY4AA6k+woAxfE19dR2Y07TGC6pfBo7dv8AnkoGXlPso6f7RUd64L4OD+3fg5d6fOxfzJLq2kLHJO8ZOf8Avuus0HWNLvZp9eutTs0kuwFt43nQGG3BOwEZ4LffP1A/hBrkvgO6Qad4n02NlKW2ryFSpyMEBeD6fJQB1/wyvVv/AIZ+Hpl/gs0hPsY/kI/8drqJZkgieWRgiRqWZmOAABkknsK4v4YnyNI1nSNmxdM1q7tkX/YL+Yp+hElHxLuZ7nSbPwvYuUvvEFwLPcvWODG6Z/cBRj/gVADfh1E+rHVfGVyrCXWpv9FVhgx2keViGO2eWOOuQa7ncF4qG0toLGzhtbaMJBBGscca/wAKqMAfpXFa14q1DWtYn8M+DCj3kJ23+quu6CwB7Ds8noo4B69GwAXvE/jMabfJoeiWx1TxHOMpZxthYFI/1kzdEUce5yPXNHhvwUdPv313XLsar4imXDXTriO3Xn93Cv8AAoyRnqcnPWtDwx4S07wrZPFZh5bmdvMuryc7priT+87dT346DJ963x0oAbg07pRRQAVzNrL9v+Ieo4GY9LsYrcMf+ekzGRx/3ykJ/GumqlZ6Zb2NxezwKRJeT+fMxOSzbVQfhtUCgDJ8esP+Fe+JAeP+JXc/rE2Ku+GGB8J6Ngj/AI8YP/Ra1PqGi6ZqyoupadaXipnaLiFZNucZxuB9B+VO0/SNO0mIxadYWtnGeq20Kxg/goFAF2iiigAooooAKKKKACiiigAooooAKKKKACiiigArL16Gwl0a6bVEL2cKGaQbyuAg3ZyCOwrUrgPjLqraX8M9SWNiJr4pZxgfxb2+Yf8AfAagDn/hF4XtNW8DR6rrCTXE99cSSRb7iX93GDtVR83T5Sf+BUnxUtU8EaBa6zoNxPbym6W3lsnuJJILyNlbKNGzEE8dRzgn2x2nh/TvEGheGNO0mCx0r/RLZIgzXcnJA5JHl9zk9a5a1ig1T4m21h43cvrVtH9p0uzjGLLbzlo/4ncbTneB93IHAoA1vhncy6db6j4QvN4uNFlAg8w5ZrWT54j7kAlTjptxXf1wHjQ/8I74o0XxmgK28Tf2bqZH/PvKQUc+ySYP/Aq74EYH9KAOI0KQ3vxZ8XTlWxY2tlZox6HKvKwH/fQrttwHHPHtXEfD12ur7xhqLrgza9NCrZ+8kSpGD/46a0vGXic+HNOijs4ftes38nkadZjrLKe59EUHLE8AYzjNAGR4y1S813V08D6DMYrm4TzNVvE5+x2x6gf7b9APQ59x2OlaVZ6Lpltp2nwrDaW8YjijUdAPfue+e5JNY/g3wqPDWlP9onF3qt4/2jUL09Z5j6eijOAOmO2Sa6WgA7UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBWvLK31C0mtLyCKe2mBWSORQyuPQivPntdX+GDSTWCz6r4QB3SWhy9xpo7tGTy8Q7r1A56Ak+lU0rnvQBU0vVrDWtNg1DTbqO5tJl3Ryocg/wCB7YPINWyoZfUHsa4DVvC+peGNSm8Q+Co0zKS9/ohO2G74+/H/AHJeO3B/MHp/DfinTPFGmm70+RwY2Mc9vMu2aCQdUdezDn19s0Ac14Fz4c8Q634Jf5YbZvt+mDPW1lY5UDrhJMjPvXf9q4L4io2j3GjeNIFJbR7jZebVJLWkvySZA5bbwwHQcmu7R1dFZSGVhkEHINAHEoHu/jZM4bMNhoKoVxnDyzk/+gxiuo1jV7LQdIutU1CcQ2lsm+Rz6dMD3JwB6k4rlvBmL3xv451ZXLK19DYr6DyIhkD/AIE7VzHxgeXXPFHhLwWrlba/uvOuwD95AQB+Q3n6gGgDa0Sz1X4hW661r01zY6HP81lpMErRmWM8B53Uhmz1Cg46da6JvAvhtYNtnpNpYSrkx3NjCsM0bY6q6gHPTrkHvkV0KRpEipGqqigKqgYAA6ClyBQB578Mv7avrvxLquvTia8+3nT1KKVTZb5GUXoAWZifU/SvRB0qrZ2FvYRyR2sSxJJLJOwHd3Yux/Ek1aoAKKKKACiiigAopMiloAKKKKAEzXJ6lqun+IfESeFre8hlEai51FFcE+WD8sR92bG4f3QQfvA11MkUc0bxyokkbgqyuAQR6EHrWTaeEfDdhdR3VloGlW1xHnZLDZxo6ZGDhguRxx+JoAmGg6LjP9lWAHXJt1H58V5n8K5LWy+JfxB063eLy3u1miSMjaBukyBjgY3AV6xdWdtfW8ltdwQ3EEow8cqBlYe4PBrKi8GeF4JUmi8OaPHLGwdHWxiBRh0IO3IPT8qAMLw+WsPip4usGcBL2C11GBAMfwmNz+aLUehY8R/EzW9cOGstGj/smz5+XzfvTt7EEqufQVl/EbWV8F+MNL8UeXu83TLyxZjwpdQJYVJ93BFYngvTb/xd4WstCt5bm08NRAtqd+GxLqk7EtJHG3aLcSGf+IAAd6AOmvda1H4gX82keFrp7XQoXMWoa3GeZCM5it+xPTL9Bnjtu7XRNC07w7pUOm6Vax21pEPlRfXuSTySe5PNT2On22m2UNnZQxwW0KBI4kXCqB2A/wA96t0AA6UUUUAFFFFABRRmkzQAtFGaM0AFFGaM0AFFGaM0AFFGaM0AFFGaM0AFFGaM0AFFGaM0AFFGaM0AJu9jXlXxEmi1/wCJHgrwskiOiXTahdR5BwIxuXP1CuPxr1J41lRkkVXRgVZWAIIPUYrCPgXwif8AmVtD/wDBfD/8TQBr3mo2en2z3N7cxW8KDLSSuFUfia8r02O5+IHxbtPFVpDJF4d0eForW5kQp9sc7slAcHbluvoo9eO/TwR4UikDx+GNFR1OQy2EQI/HbW2iBAFXAUDAUdBQBT1rSrfXNEvtKu13QXcDwv6gEYyPcdRXO/D3WZ7vww9jqb51TRpWsL3PUmPhX9SGTac9+a7GvJ/iFdSeCdevvEMJ22et6ZNZ3BzgLdxxs0Dk+pAKUAafw+1a30X4RxeINYkW2ikNxfXDk5+/M5AHuQVwOpJAqx4M0m91fUpfG2vwGO/vI/KsLRx/x5WpPAx/fbqx68445Fcz4H0+TxvZ6HDOmPC/h+CGNY/4b+9RAGY+saNkD1PryB7Fjjt9RQA4dKKQHilzQAUUZozQAUUZozQAUUZozQAUUZozQAUUZozQAUUZozQAUUZozQAUUmaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAG7T61xnifwfctqg8TeFp0sPEMS7XBH7m+Qf8s5R3z2bqPwBHa0nfrQByWi+INP8AHGkajpN/avaX6I1tqWmTt+8h3DB57qQeGHBzVf4bahMfC0mkahIDfaFM+nXDEYDLH9xvoU2nP1qz4s8HnWJYdX0i6GmeI7T/AI9r5VzvH/PKUfxIffp27g+Sa148fRtc183lo+m6vqmjvZ31oEYhLyMFYpkboUZGOMc/L+JAPUPhUpl8FDVWiaOXV7251B1br+8lbB/75C1i/E6yl0nxV4Y8crC81ppUpivxGpYxwtxvx3Ay35iu+8O6WNF8N6Xpmcm0tIoGPclVAJ/E5rRZA6lWAKkYIPIPtQBFaXtrfWkVzaXEU8Eqho5Y3DKwPcEcGsbV7kayZtDsZS2/5L2eNuIIz95dw6SMOAOoB3cYGWr4E8NRzvLBpUUG8kulu7xI31RSFP4itu1s7extktrOCG3hQYSOJAir9AOKAJ1UKoVRgAYApaBwKKACikyKXrQAUUUUActqvgybVNTmvF8V+I7JZSD9ntLqNI0wMfKDGSPXqec1T/4V7P8A9Dz4u/8AA2L/AONV2tFAHFf8K9n/AOh58X/+BsX/AMao/wCFez/9Dz4v/wDA2L/41Xa0UAcV/wAK9n/6Hnxf/wCBsX/xqj/hXs//AEPPi/8A8DYv/jVdrRQBxX/CvZ/+h58X/wDgbF/8ao/4V7P/ANDz4v8A/A2L/wCNV2tFAHmHiL4OL4igtYLrxh4gnihnWV0vJkmDLyCFAVdr4PDHOOeDmtWH4am1to7e38ZeKooYlCRxpdxKqKBgAARcDHpXdUUAcV/wr2f/AKHnxd/4Gxf/ABqj/hXs/wD0PPi//wADYv8A41Xa0UAcV/wr2f8A6Hnxf/4Gxf8Axqj/AIV7P/0PPi//AMDYv/jVdrRQBxX/AAr2f/oefF//AIGxf/GqP+Fez/8AQ8+L/wDwNi/+NV2tFAHEt8PLgjjx14uB97yI/wDtOmf8K8vf+h88V/8AgVH/APEV3NFAHDf8K8vf+h88V/8AgVH/APEUf8K8vf8AofPFf/gVH/8AEV3NFAHDf8K8vf8AofPFf/gVH/8AEUf8K8vf+h88V/8AgVH/APEV3NFAHDf8K8vf+h88V/8AgVH/APEUf8K8vf8AofPFf/gVH/8AEV3NFAHDf8K8vf8AofPFf/gVH/8AEUf8K8vf+h88V/8AgVH/APEV3NFAHDf8K8vf+h88V/8AgVH/APEUf8K8vf8AofPFf/gVH/8AEV3NFAHDf8K8vf8AofPFf/gVH/8AEUf8K8vf+h88V/8AgVH/APEV3NFAHDf8K8vf+h88V/8AgVH/APEUf8K8vf8AofPFf/gVH/8AEV3NFAHDf8K8vf8AofPFf/gVH/8AEUf8K8vf+h88V/8AgVH/APEV3NFAHDf8K8vf+h88V/8AgVH/APEUf8K8vf8AofPFf/gVH/8AEV3NFAHDf8K8vf8AofPFf/gVH/8AEUf8K8vf+h88V/8AgVH/APEV3NFAHDf8K8vf+h88V/8AgVH/APEVl+IvhFPr+jy2M3jTXptxDKt5Ikse4HglQqk8Z7989q9NooA8+sfhdJptjBZ2njTxNDBCgVI47mNVX6DZx/8Arqx/wry9/wCh88V/+BUf/wARXc0UAcN/wry9/wCh88V/+BUf/wARR/wry9/6HzxX/wCBUf8A8RXc0UAcN/wry9/6HzxX/wCBUf8A8RR/wry9/wCh88V/+BUf/wARXc0UAcN/wry9/wCh88V/+BUf/wARR/wry9/6HzxX/wCBUf8A8RXc0UAcN/wry9/6HzxX/wCBUf8A8RR/wry9/wCh88V/+BUf/wARXc0UAcN/wry9/wCh88V/+BUf/wARR/wry9/6HzxX/wCBUf8A8RXc0UAcN/wry9/6HzxX/wCBUf8A8RR/wry9/wCh88V/+BUf/wARXc0UAcN/wry9/wCh88V/+BUf/wARR/wry9/6HzxX/wCBUf8A8RXc0UAcN/wry9/6HzxX/wCBUf8A8RR/wry9/wCh88V/+BUf/wARXc0UAcN/wry9/wCh88V/+BUf/wARVlfBOpKoUeOvEeAMctAf1MVdhRQByH/CFan/AND14j/O3/8AjVH/AAhWp/8AQ9eI/wA7f/41XX0UAch/whWp/wDQ9eI/zt//AI1R/wAIVqf/AEPXiP8AO3/+NV19FAHIf8IVqf8A0PXiP87f/wCNUf8ACFan/wBD14j/ADt//jVdfRQByH/CFan/AND14j/O3/8AjVH/AAhWp/8AQ9eI/wA7f/41XX0UAch/whWp/wDQ9eI/zt//AI1R/wAIVqf/AEPXiP8AO3/+NV19FAHIf8IVqf8A0PXiP87f/wCNUf8ACFan/wBD14j/ADt//jVdfRQByH/CFan/AND14j/O3/8AjVH/AAhWp/8AQ9eI/wA7f/41XX0UAch/whWp/wDQ9eI/zt//AI1R/wAIVqf/AEPXiP8AO3/+NV19FAHIf8IVqf8A0PXiP87f/wCNUf8ACFan/wBD14j/ADt//jVdfRQByH/CFan/AND14j/O3/8AjVH/AAhWp/8AQ9eI/wA7f/41XX0UAch/whWp/wDQ9eI/zt//AI1R/wAIVqf/AEPXiP8AO3/+NV19FAHIf8IVqf8A0PXiP87f/wCNUf8ACFan/wBD14j/ADt//jVdfRQByH/CFan/AND14j/O3/8AjVH/AAhWp/8AQ9eI/wA7f/41XX0UAch/whWp/wDQ9eI/zt//AI1R/wAIVqf/AEPXiP8AO3/+NV19FAHIf8IVqf8A0PXiP87f/wCNUf8ACFan/wBD14j/ADt//jVdfRQBx/8AwhWp5/5HnxF+dv8A/Gq57xN8Gl8Sy2lxdeKdUlubd1xLcRwswTOSqlEUj1GcgHtzXqNFAHE/8IRrnbx/roHbKQH/ANko/wCEI13/AKKBrn/fuD/4iu2ooA4n/hCNd/6KBrn/AH7g/wDiKP8AhCNd/wCiga5/37g/+IrtqKAOJ/4QjXf+iga5/wB+4P8A4ij/AIQjXf8AooGuf9+4P/iK7aigDntB8PalpFzNLeeJtQ1VXTasd0sYCH1G1RzXQ0UUAf/Z'] Multimodal Competition True Theorem proof Geometry Math English 1 "Construct a tetromino by attaching two $2 \times 1$ dominoes along their longer sides such that the midpoint of the longer side of one domino is a corner of the other domino. This construction yields two kinds of tetrominoes with opposite orientations. Let us call them Sand Z-tetrominoes, respectively. S-tetrominoes Z-tetrominoes Assume that a lattice polygon $P$ can be tiled with $S$-tetrominoes. Prove than no matter how we tile $P$ using only $\mathrm{S}$ - and Z-tetrominoes, we always use an even number of Z-tetrominoes." "['We may assume that polygon $P$ is the union of some squares of an infinite chessboard. Colour the squares of the chessboard with two colours as the figure below illustrates.\n\n\n\nObserve that no matter how we tile $P$, any S-tetromino covers an even number of black squares, whereas any Z-tetromino covers an odd number of them. As $P$ can be tiled exclusively by S-tetrominoes, it contains an even number of black squares. But if some S-tetrominoes and some Z-tetrominoes cover an even number of black squares, then the number of Z-tetrominoes must be even.' 'Let us assign coordinates to the squares of the infinite chessboard in such a way that the squares of $P$ have nonnegative coordinates only, and that the first coordinate increases as one moves to the right, while the second coordinate increases as one moves upwards. Write the integer $3^{i} \\cdot(-3)^{j}$ into the square with coordinates $(i, j)$, as in the following figure:\n\n| $\\vdots$ | | | | | |\n| :---: | :---: | :---: | :---: | :---: | :---: |\n| 81 | $\\vdots$ | | | | |\n| -27 | -81 | $\\vdots$ | | | |\n| 9 | 27 | 81 | $\\cdots$ | | |\n| -3 | -9 | -27 | -81 | $\\ldots$ | |\n| 1 | 3 | 9 | 27 | 81 | $\\ldots$ |\n\nThe sum of the numbers written into four squares that can be covered by an $S$-tetromino is either of the form\n\n$$\n3^{i} \\cdot(-3)^{j} \\cdot\\left(1+3+3 \\cdot(-3)+3^{2} \\cdot(-3)\\right)=-32 \\cdot 3^{i} \\cdot(-3)^{j}\n$$\n\n(for the first type of $S$-tetrominoes), or of the form\n\n$$\n3^{i} \\cdot(-3)^{j} \\cdot\\left(3+3 \\cdot(-3)+(-3)+(-3)^{2}\\right)=0\n$$\n\nand thus divisible by 32. For this reason, the sum of the numbers written into the squares of $P$, and thus also the sum of the numbers covered by $Z$-tetrominoes in the second covering, is likewise divisible by 32 . Now the sum of the entries of a $Z$-tetromino is either of the form\n\n$$\n3^{i} \\cdot(-3)^{j} \\cdot\\left(3+3^{2}+(-3)+3 \\cdot(-3)\\right)=0\n$$\n\n(for the first type of $Z$-tetrominoes), or of the form\n\n$$\n3^{i} \\cdot(-3)^{j} \\cdot\\left(1+(-3)+3 \\cdot(-3)+3 \\cdot(-3)^{2}\\right)=16 \\cdot 3^{i} \\cdot(-3)^{j}\n$$\n\ni.e., 16 times an odd number. Thus in order to obtain a total that is divisible by 32, an even number of the latter kind of $Z$-tetrominoes needs to be used. Rotating everything by $90^{\\circ}$, we find that the number of $Z$-tetrominoes of the first kind is even as well. So we have even proven slightly more than necessary.']" ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAKMBOAMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAK5/xJ4y0HwjDbza5qS2iXDFYQUZy+BzgICcDjnGOR6iugrxb44QxXHi/4eQzRpJFJfyI6OoKspktwQQeoIoA6n/hdnw8/6GD/AMkrj/43R/wuz4ef9DB/5JXH/wAbqn/wiHhn/oXdI/8AAKP/AOJo/wCEQ8M/9C7pH/gFH/8AE0AXP+F2fDz/AKGD/wAkrj/43R/wuz4ef9DB/wCSVx/8bqn/AMIh4Z/6F3SP/AKP/wCJo/4RDwz/ANC7pH/gFH/8TQBc/wCF2fDz/oYP/JK4/wDjdH/C7Ph5/wBDB/5JXH/xuqf/AAiHhn/oXdI/8Ao//ia87+MehaPpfhG0n0/SrG0la/RDJb26RsV8uQ4yAOMgflQB6h/wuz4ef9DB/wCSVx/8bo/4XZ8PP+hg/wDJK4/+N1T/AOEQ8M/9C7pH/gFH/wDE0f8ACIeGf+hd0j/wCj/+JoAuf8Ls+Hn/AEMH/klcf/G6P+F2fDz/AKGD/wAkrj/43VP/AIRDwz/0Lukf+AUf/wATR/wiHhn/AKF3SP8AwCj/APiaALn/AAuz4ef9DB/5JXH/AMbo/wCF2fDz/oYP/JK4/wDjdU/+EQ8M/wDQu6R/4BR//E1yXxM8OaFYfD7VLmz0XTra4TytksNqiMuZUBwQMjgkUAe1aTqtlremQajp10tzaTrujlToeSP0IxjqMc1frz74J/8AJItC/wC3j/0okr0GgAooooAKKKKAOBn+M3gGCV4m8QqWRipKW0zqcHnDBCCPcEj3pv8Awuz4ef8AQwf+SVx/8brzD4OaFpGqeEbubUNKsbuVb90D3FukjBfLjOMkHjJPHvXof/CIeGf+hd0j/wAAo/8A4mgC5/wuz4ef9DB/5JXH/wAbo/4XZ8PP+hg/8krj/wCN1T/4RDwz/wBC7pH/AIBR/wDxNH/CIeGf+hd0j/wCj/8AiaALn/C7Ph5/0MH/AJJXH/xuj/hdnw8/6GD/AMkrj/43VP8A4RDwz/0Lukf+AUf/AMTR/wAIh4Z/6F3SP/AKP/4mgDrfDnjDQvFttPcaHqKXccDBZMKyMpI4yrAEA4ODjHB54Nb9eLfA+GK38X/EOCGNI4o7+NEjRQFVRJcAAAdAB2r2mgAooooAKKKKACiiigAooooAKKKKACiiigArxn41f8jr8Of+wi//AKMt69mrxn41f8jr8Of+wi//AKMt6AOzooooAKKKKACvMvjl/wAiVZ/9hFP/AEXJXpteZfHL/kSrP/sIp/6LkoA9NooooAKKKKACuM+K/wDyTTV/+2P/AKOSuzrjPiv/AMk01f8A7Y/+jkoA6b4J/wDJItC/7eP/AEokr0CvP/gn/wAki0L/ALeP/SiSvQKACiiigAooooA+f/gb/wAiVef9hF//AEXHXpteZfA3/kSrz/sIv/6Ljr02gAooooAKKKKAOM+Cv/I6/Ef/ALCKf+jLivZq8Z+Cv/I6/Ef/ALCKf+jLivZqACiiigAooooAKKKKACiiigAooooAKKKKACvGfjV/yOvw5/7CL/8Aoy3r2avGfjV/yOvw5/7CL/8Aoy3oA7OiiigAooooAK8y+OX/ACJVn/2EU/8ARclem15l8cv+RKs/+win/ouSgD02iiigAooooAK4z4r/APJNNX/7Y/8Ao5K7OuM+K/8AyTTV/wDtj/6OSgDpvgn/AMki0L/t4/8ASiSvQK8/+Cf/ACSLQv8At4/9KJK9AoAKKKKACiiigD5/+Bv/ACJV5/2EX/8ARcdem15l8Df+RKvP+wi//ouOvTaACiiigAooooA4z4K/8jr8R/8AsIp/6MuK9mrxn4K/8jr8R/8AsIp/6MuK9moAKKKKACiiigAooooAKy9T8QaPo0sceq6vY2DSAtGt1cpEXHfAY81qV4B8VtEtvEfxv0HSL2SZLe40r5mhYKw2tO3GQR/D6UAev/8ACd+EP+hq0P8A8GMP/wAVR/wnfhD/AKGrQ/8AwYw//FV5B/wo3wz/AM/2rf8Af2P/AON0f8KN8M/8/wBq3/f2P/43QB6//wAJ34Q/6GrQ/wDwYw//ABVH/Cd+EP8AoatD/wDBjD/8VXkH/CjfDP8Az/at/wB/Y/8A43R/wo3wz/z/AGrf9/Y//jdAHr//AAnfhD/oatD/APBjD/8AFV5N8W/EWian4u8BT2Os6fdRW1+zXEkF0kixDzIDliCQBgHrjoah/wCFG+Gf+f7Vv+/sf/xuuR8X/DnR/D/iHwxp9rc3zw6rdGGdppFLKu+NflIUAH529e1AHsP/AAl/hn/oYtJ/8DY//iqP+Ev8M/8AQxaT/wCBsf8A8VXGf8KN8M/8/wBq3/f2P/43R/wo3wz/AM/2rf8Af2P/AON0Adn/AMJf4Z/6GLSf/A2P/wCKo/4S/wAM/wDQxaT/AOBsf/xVcZ/wo3wz/wA/2rf9/Y//AI3R/wAKN8M/8/2rf9/Y/wD43QB2f/CX+Gf+hi0n/wADY/8A4qvPfjFrmj6p4RtIdP1Wxu5Rfo5jt7hJGA2SAnAJ4yQKv/8ACjfDP/P9q3/f2P8A+N1yPxG+HOj+D/D0F/p9zeyTSXSwMtxIhXaUZugUHPy0Aew/8Jf4Z/6GLSf/AANj/wDiqP8AhL/DP/QxaT/4Gx//ABVZf/DOPhD/AKCOuf8Af+L/AONUf8M4+EP+gjrn/f8Ai/8AjVAGp/wl/hn/AKGLSf8AwNj/APiqP+Ev8M/9DFpP/gbH/wDFVl/8M4+EP+gjrn/f+L/41R/wzj4Q/wCgjrn/AH/i/wDjVAGp/wAJf4Z/6GLSf/A2P/4quT+JXiLQ9Q+H2qW1prOnXM7+Vsihukd2xMhPAOeme1bH/DOPhD/oI65/3/i/+NUf8M5eEP8AoJa5/wB/4v8A41QB0HwT/wCSRaF/28f+lElegVk+H9DsvDWhWuj6ajpa2ylUDtkkkkkn3ySTj1rWoAKKKKACkJx16dc0tMkQSIyMMqwwaAPnT4O65o+l+EbuHUNVsbSU37uI7i4SNiNkYBwSOMgivQv+Ev8ADP8A0MWk/wDgbH/8VXj3w5+HOj+MPD09/qFzexzR3TQKtvIgXaEVuhUnPzV13/CjfDP/AD/at/39j/8AjdAHZ/8ACX+Gf+hi0n/wNj/+Ko/4S/wz/wBDFpP/AIGx/wDxVcZ/wo3wz/z/AGrf9/Y//jdH/CjfDP8Az/at/wB/Y/8A43QB2f8Awl/hn/oYtJ/8DY//AIqj/hL/AAz/ANDFpP8A4Gx//FVxn/CjfDP/AD/at/39j/8AjdH/AAo3wz/z/at/39j/APjdAE3wk8RaJpni7x7Pfazp9rFc36tbyT3SRrKPMnOVJIDDBHTPUV6z/wAJ34Q/6GrQ/wDwYw//ABVfOXhD4c6Pr/iHxPp91c3yQ6VdeTA0MihmXdIvzEqQT8i+neuu/wCFG+Gf+f7Vv+/sf/xugD1//hO/CH/Q1aH/AODGH/4qj/hO/CH/AENWh/8Agxh/+KryD/hRvhn/AJ/tW/7+x/8Axuj/AIUb4Z/5/tW/7+x//G6APX/+E78If9DVof8A4MYf/iqP+E78If8AQ1aH/wCDGH/4qvIP+FG+Gf8An+1b/v7H/wDG6P8AhRvhn/n+1b/v7H/8boA9r0zxBo+syyR6Vq9jftGA0i2tykpQdshTxWllv7rfpXgXwp0S28OfG/XtIspJnt7fSvlaZgzHc0Dc4AH8XpXvuT6n8v8A61ADq8T8bcftG+Gf+wU38rmvbK8T8b/8nHeGf+wU38rmgDuaKKKACiiigArzL4l8eNPAP/YRP/oyCvTa8y+Jn/I6eAf+wif/AEZBQB6bRRRQAUUUUAFeZfHH/kSrP/sIp/6Lkr02vMvjl/yJVn/2EU/9FyUAfQFFFFABRRRQAUUUUAGB6UUUUAFFFFABRRRQB8//AAO/5Eq8/wCwi/8A6Ljr02vMvgb/AMiVef8AYRf/ANFx16bQAUUUUAFFFFAHmXw0/wCR08ff9hEf+jJ69NrzL4Z/8jp4+/7CI/8ARk9em0AFFFFABRRRQBw3gnn9o3xN/wBgpf5W1e14HoK8U8Ef8nHeJv8AsFL/ACtq9soAK8T8b/8AJx3hn/sFN/K5r2yvE/G//Jx3hn/sFN/K5oA7miiigAooooAK8y+Jn/I6eAf+wif/AEZBXpteZfEz/kdPAP8A2ET/AOjIKAPTaKKKACiiigArzL45f8iVZ/8AYRT/ANFyV6bXmXxy/wCRKs/+win/AKLkoA+gKKKKACiiigAooooAKKKKACiiigAooooA+f8A4G/8iVef9hF//Rcdem15l8Df+RKvP+wi/wD6Ljr02gAooooAKKKKAPMvhn/yOnj7/sIj/wBGT16bXmXwz/5HTx9/2ER/6Mnr02gAooooAKKKKAOG8Ef8nHeJv+wUv8ravbK8T8Ef8nHeJv8AsFL/ACtq9soAK8T8b/8AJx3hn/sFN/K5r2yvOPHnwwk8Y+IrLW7LxBc6Rf21v9n8yKIsduWIwQ6lT87g8nPtzkA1KK4z/hSvib/oqGrf9+pf/j9H/ClfE3/RUNW/79S//H6AOzorjP8AhSvib/oqGrf9+pf/AI/R/wAKV8Tf9FQ1b/v1L/8AH6AOzrzL4mf8jp4B/wCwif8A0ZBW1/wpXxN/0VDVv+/Uv/x+q1z8A9YvZ7ea7+Id9PLbNvgeW1dmibg5Umb5TwOnoKAO8orjP+FK+Jv+ioat/wB+pf8A4/R/wpXxN/0VDVv+/Uv/AMfoA7OiuM/4Ur4m/wCioat/36l/+P0f8KV8Tf8ARUNW/wC/Uv8A8foA7OvMvjl/yJVn/wBhFP8A0XJW1/wpXxN/0VDVv+/Uv/x+oZvgPqOomGPWfHuo39mkgdoZIWOccEjdKwBwSM4PXpQB7ZRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHz/APA3/kSrz/sIv/6Ljr02uGh+A+o6cZo9G8e6jYWbyF1hjhYYzwCdsqgnAAzgdOlTf8KV8Tf9FQ1b/v1L/wDH6AOzorjP+FK+Jv8AoqGrf9+pf/j9H/ClfE3/AEVDVv8Av1L/APH6AOzorjP+FK+Jv+ioat/36l/+P0f8KV8Tf9FQ1b/v1L/8foAxfhn/AMjp4+/7CI/9GT16bXhHhXwZq+oeJ/FVhaeLL+xm0+8MM9xEr7rtt8i72w4I+6TyT9411X/CtPE3/RR9X/KT/wCPUAem0V5l/wAK08Tf9FH1f8pP/j1H/CtPE3/RR9X/ACk/+PUAem0V5l/wrTxN/wBFH1f8pP8A49R/wrTxN/0UfV/yk/8Aj1AGp4I/5OO8Tf8AYKX+VtXtleAfCrTLnR/jjrthd6lNqVxFpXzXU2d8mTbkZySeAQOvavfOfQ/n/wDXoAfRiiigAooooAKKKKACiiigAooooAKKKKACjAoooAKKKKACiiigAooooAKKKKACiiigAooooAMCiiigAooooAKKKKAPBvh//wAlC+I3/YVP/o2evRq85+H/APyUP4jf9hU/+jZ69GoAKKKKACiiigDhvBH/ACcb4mHb+yl/lbV7XgegrxTwR/ycd4m/7BS/ytq9soAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPBvh/wD8lD+I3/YVP/o2evRq85+H/wDyUP4jf9hU/wDo2evRqACiiigAooooA4bwR/ycd4m/7BS/ytq9srxPwR/ycd4m/wCwUv8AK2r2ygAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8G+H/wDyUP4jf9hU/wDo2evRq4S8+GHjvTvFmvan4Y8QaXb22q3TXDfaFO/JZm2kGNhwXYDB568dKX/hCfjL/wBDZof/AH7H/wAj0Ad1RXC/8IT8Zf8AobND/wC/Y/8Akej/AIQn4y/9DZof/fsf/I9AHdUVwv8AwhPxl/6GzQ/+/Y/+R6P+EJ+Mv/Q2aH/37H/yPQAvgj/k47xN/wBgpf5W1e2V5X8PPh74k0DxrqXiXxLqlld3l3aC3AtQeeU+Y/KoGBGo4BznnHf1Dn++36f4UASUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAGB6UUUUAFFFFABRRRQAUUUUAf//Z', '/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAKMBQwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6ztX1iw0LS59S1O6W2soV3SSvnAGccepPQAZJJGBWjXn3xs4+EWu/9u//AKUR0AL/AMLs+Hn/AEMH/klcf/G6P+F2fDz/AKGD/wAkrj/43XO+FvC3h648IaLPPoOlyyyWEDvI9nGzMxjUkkkck1rf8Ih4Z/6F3SP/AACj/wDiaALn/C7Ph5/0MH/klcf/ABuj/hdnw8/6GD/ySuP/AI3VP/hEPDP/AELukf8AgFH/APE0f8Ih4Z/6F3SP/AKP/wCJoAuf8Ls+Hn/Qwf8Aklcf/G6P+F2fDz/oYP8AySuP/jdU/wDhEPDP/Qu6R/4BR/8AxNZPinwt4et/CGtTwaDpcUsdhO6SJZxqysI2IIIHBFAHRf8AC7Ph5/0MH/klcf8Axuj/AIXZ8PP+hg/8krj/AON1w3wz8OaFf/D7S7m80XTrm4fzd8s1qjs2JXAySMngAV1v/CIeGf8AoXdI/wDAKP8A+JoAuf8AC7Ph5/0MH/klcf8Axuj/AIXZ8PP+hg/8krj/AON1T/4RDwz/ANC7pH/gFH/8TR/wiHhn/oXdI/8AAKP/AOJoAuf8Ls+Hn/Qwf+SVx/8AG6P+F2fDz/oYP/JK4/8AjdU/+EQ8M/8AQu6R/wCAUf8A8TR/wiHhn/oXdI/8Ao//AImgDrfDnjDQvFttPcaHqKXccDBZMKyMpI4yrAEA4ODjHB54Nb9eLfA+GK38X/EOCGNI4o7+NEjRQFVRJcAAAdAB2r2mgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOf8AEnjLQfCMNvNrmpLaJcMVhBRnL4HOAgJwOOcY5HqK5/8A4XZ8PP8AoYP/ACSuP/jdct8cIYrjxf8ADyGaNJIpL+RHR1BVlMluCCD1BFbv/CIeGf8AoXdI/wDAKP8A+JoAuf8AC7Ph5/0MH/klcf8Axuj/AIXZ8PP+hg/8krj/AON1T/4RDwz/ANC7pH/gFH/8TR/wiHhn/oXdI/8AAKP/AOJoAuf8Ls+Hn/Qwf+SVx/8AG6P+F2fDz/oYP/JK4/8AjdU/+EQ8M/8AQu6R/wCAUf8A8TR/wiHhn/oXdI/8Ao//AImgDQt/jJ4CubiOCPxCgeRgqmS3mReTxlmQAD3JArvK+cPjHoWj6X4RtJ9P0qxtJjfohkt7dI2K+XIcZAHGQPyr6PoAKKKKACvP/jZ/ySLXf+3f/wBKI69Arz/42f8AJItd/wC3f/0ojoAp+EP+RK0H/sHW/wD6LWtmsbwh/wAiVoP/AGDrf/0WtbNABRRRQAVjeL/+RK17/sHXH/otq2axvF//ACJWvf8AYOuP/RbUAYvwo/5JppH/AG2/9HPXZ1xnwo/5JppH/bb/ANHPXZ0AFFFFABRRRQBxnwV/5HX4j/8AYRT/ANGXFezV4z8Ff+R1+I//AGEU/wDRlxXs1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeM/Gr/kdfhz/wBhF/8A0Zb12dcZ8av+R1+HP/YRf/0Zb12dABRRRQAUUUUAeZfHL/kSrP8A7CKf+i5K+gK+f/jl/wAiVZ/9hFP/AEXJX0BQAUUUUAFef/Gz/kkWu/8Abv8A+lEdegV5/wDGz/kkWu/9u/8A6UR0AU/CH/IlaD/2Drf/ANFrWzWN4Q/5ErQf+wdb/wDota2aACiiigArG8X/APIla9/2Drj/ANFtWzWN4v8A+RK17/sHXH/otqAMX4Uf8k00j/tt/wCjnrs64z4Uf8k00j/tt/6OeuzoAKKKKACiiigDjPgr/wAjr8R/+win/oy4r2avGfgr/wAjr8R/+win/oy4r2agAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPGfjV/wAjr8Of+wi//oy3rs64z41f8jr8Of8AsIv/AOjLeuzoAKKKKACiiigDzL45f8iVZ/8AYRT/ANFyV9AV8/8Axy/5Eqz/AOwin/ouSvoCgAooooAK8/8AjZ/ySLXf+3f/ANKI69ArI8RaHZeJtBvNI1FWe1uk2uEbaRg5DA9MggEZ4yOaAPNfC/ijw9b+EtFhl13S4pY7CBHje7jDIQgyCC3ByK1f+Ev8M/8AQxaT/wCBsf8A8VWX/wAM5eEP+glrn/f+L/41R/wzj4Q/6COuf9/4v/jVAGp/wl/hn/oYtJ/8DY//AIqj/hL/AAz/ANDFpP8A4Gx//FVl/wDDOPhD/oI65/3/AIv/AI1R/wAM4+EP+gjrn/f+L/41QBqf8Jf4Z/6GLSf/AANj/wDiqyvFHijw9ceEtahi13S5ZZLCdEjS7jLOShwAA3JyaX/hnHwh/wBBHXP+/wDF/wDGqzPEfwG8LaN4X1bU7e+1h57OymuI1eaIqWRGYZxHnGR2oAi+GviLQ9P+H2l213rOnW06ebvimukR1zM5HBOemO1dZ/wl/hn/AKGLSf8AwNj/APiq8u8FfCvQvEfhCx1a8utRS4ufM3LDKioNsjIOCh/ujvW9/wAKN8M/8/2rf9/Y/wD43QB2f/CX+Gf+hi0n/wADY/8A4qj/AIS/wz/0MWk/+Bsf/wAVXGf8KN8M/wDP9q3/AH9j/wDjdH/CjfDP/P8Aat/39j/+N0Adn/wl/hn/AKGLSf8AwNj/APiqP+Ev8M/9DFpP/gbH/wDFVxn/AAo3wz/z/at/39j/APjdH/CjfDP/AD/at/39j/8AjdAE3wk8RaJpni7x7Pfazp9rFc36tbyT3SRrKPMnOVJIDDBHTPUV6z/wnfhD/oatD/8ABjD/APFV85eEPhzo+v8AiHxPp91c3yQ6VdeTA0MihmXdIvzEqQT8i+neuu/4Ub4Z/wCf7Vv+/sf/AMboA9f/AOE78If9DVof/gxh/wDiqP8AhO/CH/Q1aH/4MYf/AIqvIP8AhRvhn/n+1b/v7H/8bo/4Ub4Z/wCf7Vv+/sf/AMboA9f/AOE78If9DVof/gxh/wDiqP8AhO/CH/Q1aH/4MYf/AIqvIP8AhRvhn/n+1b/v7H/8bo/4Ub4Z/wCf7Vv+/sf/AMboA9r0zxBo+sySR6Xq9jfNGAXW1uUlKDtnaeOlaleAfCnRLbw38b9e0iykme3t9K+VpmDMdzQNzgAfxele/wBABRRRQAUUUUAZep+INH0aWOPVdXsbBpAWjW6uUiLjvgMeap/8J34Q/wChq0P/AMGMP/xVeQfFbRLbxH8b9B0i9kmS3uNK+ZoWCsNrTtxkEfw+lH/CjfDP/P8Aat/39j/+N0Aev/8ACd+EP+hq0P8A8GMP/wAVR/wnfhD/AKGrQ/8AwYw//FV5B/wo3wz/AM/2rf8Af2P/AON0f8KN8M/8/wBq3/f2P/43QB6//wAJ34Q/6GrQ/wDwYw//ABVH/Cd+EP8AoatD/wDBjD/8VXkH/CjfDP8Az/at/wB/Y/8A43R/wo3wz/z/AGrf9/Y//jdAE3xb8RaJqfi7wFPY6zp91FbX7NcSQXSSLEPMgOWIJAGAeuOhrrf+Ev8ADP8A0MWk/wDgbH/8VXj3i/4c6P4f8Q+GNPtbm+eHVbowztNIpZV3xr8pCgA/O3r2rrv+FG+Gf+f7Vv8Av7H/APG6AOz/AOEv8M/9DFpP/gbH/wDFUf8ACX+Gf+hi0n/wNj/+KrjP+FG+Gf8An+1b/v7H/wDG6P8AhRvhn/n+1b/v7H/8boA7P/hL/DP/AEMWk/8AgbH/APFUf8Jf4Z/6GLSf/A2P/wCKrjP+FG+Gf+f7Vv8Av7H/APG6P+FG+Gf+f7Vv+/sf/wAboAofGLXNH1TwjaQ6fqtjdyi/RzHb3CSMBskBOATxkgV9G5yAQcg18p/Eb4c6P4P8PQX+n3N7JNJdLAy3EiFdpRm6BQc/LX1TFGkMSRICFUYA9qAJKKKKACjA9KKKACiiigAooooAK57x3/yT3xL/ANgq6/8ARTV0Nc/47/5J74l/7BV1/wCimoA85+FH/JNNI/7bf+jnrs64z4Uf8k00j/tt/wCjnrs6ACiiigAooooA8y+Gn/I6ePv+wiP/AEZPXpteZfDP/kdPH3/YRH/oyevTaACiiigAooooA4bwTz+0b4m/7BS/ytq9srxPwR/ycd4m/wCwUv8AK2r2ygAooooAKKKKAPE/G3H7Rvhn/sFN/K5rua4bxv8A8nHeGf8AsFN/K5ruaACiiigAooooA8y+JfHjTwD/ANhE/wDoyCvTa8y+Jn/I6eAf+wif/RkFem0AFFFFABRRRQB5l8cf+RKs/wDsIp/6Lkr6Ar5/+OX/ACJVn/2EU/8ARclfQFABRRRQAUUUUAFFFFABRRRQAVz/AI7/AOSe+Jf+wVdf+imroK5/x3/yT3xL/wBgq6/9FNQB5z8KP+SaaR/22/8ARz12dcZ8KP8Akmmkf9tv/Rz12dABRRRQAUUUUAeZfDP/AJHTx9/2ER/6Mnr02vMvhn/yOnj7/sIj/wBGT16bQAUUUUAFFFFAHDeCP+TjvE3/AGCl/lbV7ZXifgj/AJOO8Tf9gpf5W1e2UAFFFFABRRRQB4n43/5OO8M/9gpv5XNdzXDeN/8Ak47wz/2Cm/lc13NABRRRQAUUUUAeZfEz/kdPAP8A2ET/AOjIK9NrzL4mf8jp4B/7CJ/9GQV6bQAUUUUAFFFFAHmXxy/5Eqz/AOwin/ouSvoCvn/45f8AIlWf/YRT/wBFyV9AUAFFFFABRRRQAUUUUAFFFFABXP8Ajv8A5J74l/7BV1/6Kaugqhq+nxavo19pk7OsN5bvbyMhAYK6lTjPGcGgDyj4Uf8AJNNI/wC23/o567OuFtfgVrlhbJbWXxH1G2t0zsiht3RVycnAE2BySan/AOFK+Jv+ioat/wB+pf8A4/QB2dFcZ/wpXxN/0VDVv+/Uv/x+j/hSvib/AKKhq3/fqX/4/QB2dFcZ/wAKV8Tf9FQ1b/v1L/8AH6P+FK+Jv+ioat/36l/+P0AYvwz/AOR08ff9hEf+jJ69Nrg7b4B6xZT3E1p8Q76CW5bfO8Vq6tK3JyxE3zHk9fU1Z/4Ur4m/6Khq3/fqX/4/QB2dFcZ/wpXxN/0VDVv+/Uv/AMfo/wCFK+Jv+ioat/36l/8Aj9AHZ0Vxn/ClfE3/AEVDVv8Av1L/APH6P+FK+Jv+ioat/wB+pf8A4/QBD4I/5OO8Tf8AYKX+VtXtleceA/hhJ4O8RXut3viC51e/ubf7P5ksRU7cqTkl2LH5EA5GPfjHo9ABRRRQAUUUUAeJ+N/+TjvDP/YKb+VzXc15n8VdMudY+OOhWFpqU2m3EulfLdQ53x4NwTjBB5AI696T/hWnib/oo+r/AJSf/HqAPTaK8y/4Vp4m/wCij6v+Un/x6j/hWnib/oo+r/lJ/wDHqAPTaK8y/wCFaeJv+ij6v+Un/wAeo/4Vp4m/6KPq/wCUn/x6gA+Jn/I6eAf+wif/AEZBXpteEeKvBmr6f4n8K2F34sv76XULwQwXEofdatvjXeuXJ/iB4I+6K9E/4Ur4m/6Khq3/AH6l/wDj9AHZ0Vxn/ClfE3/RUNW/79S//H6P+FK+Jv8AoqGrf9+pf/j9AHZ0Vxn/AApXxN/0VDVv+/Uv/wAfo/4Ur4m/6Khq3/fqX/4/QBi/HL/kSrP/ALCKf+i5K+gK8Tm+A+o6iYY9Z8e6jf2aSB2hkhY5xwSN0rAHBIzg9ele2UAFFFFABRRRQAUUUUAFFFFABRiiigAooooAKKKKACiiigAooooAKKKKACiiigAxRRRQAUUUUAFFFFAHifjf/k43wyO39lN/K5rua4bxv/ycd4Z/7BTfyua7mgAooooAKKKKAPOfiB/yUP4df9hUf+jYK95rwb4gf8lD+HP/AGFR/wCjYK95oAKKKKACiiigAwKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8T8b/8nHeGf+wU38rmu5rhvG//ACcd4Z/7BTfyua7mgAooooAKKKKAPOfiB/yUP4c/9hUf+jYK95rwb4gf8lD+HP8A2FR/6Ngr3mgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPE/G//ACcd4Z/7BTfyua7mue+Ifw98Sa/4103xL4a1SytLy0tDbkXQPHL/ADD5WByJGHIGMcZ7Y3/CE/GX/obND/79j/5HoA7qiuF/4Qn4y/8AQ2aH/wB+x/8AI9H/AAhPxl/6GzQ/+/Y/+R6AO6orhf8AhCfjL/0Nmh/9+x/8j0f8IT8Zf+hs0P8A79j/AOR6AKfxA/5KH8Of+wqP/RsFe814jZ/DDx3qPizQdT8T+INLuLbSrpbhfs6nfkMrbQBGo5KKDk8deele3UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAYHpRRRQAUUUUAFFFFABRRRQAUUUUAf/9k='] Multimodal Competition True Theorem proof Combinatorics Math English 2 "An anti-Pascal pyramid is a finite set of numbers, placed in a triangle-shaped array so that the first row of the array contains one number, the second row contains two numbers, the third row contains three numbers and so on; and, except for the numbers in the bottom row, each number equals the absolute value of the difference of the two numbers below it. For instance, the triangle below is an anti-Pascal pyramid with four rows, in which every integer from 1 to $1+2+3+4=10$ occurs exactly once: Prove that it is impossible to form an anti-Pascal pyramid with 2018 rows, using every integer from 1 to $1+2+\cdots+2018$ exactly once." "[""Let $T$ be an anti-Pascal pyramid with $n$ rows, containing every integer from 1 to $1+2+\\cdots+n$, and let $a_{1}$ be the topmost number in $T$ (Figure 1). The two numbers below $a_{1}$ are some $a_{2}$ and $b_{2}=a_{1}+a_{2}$, the two numbers below $b_{2}$ are some $a_{3}$ and $b_{3}=a_{1}+a_{2}+a_{3}$, and so on and so forth all the way down to the bottom row, where some $a_{n}$ and $b_{n}=a_{1}+a_{2}+\\cdots+a_{n}$ are the two neighbours below $b_{n-1}=a_{1}+a_{2}+\\cdots+a_{n-1}$. Since the $a_{k}$ are $n$ pairwise distinct positive integers whose sum does not exceed the largest number in $T$, which is $1+2+\\cdots+n$, it follows that they form a permutation of $1,2, \\ldots, n$.\n\n\n\nFigure 1\n\n\n\nFigure 2\n\nConsider now (Figure 2) the two 'equilateral' subtriangles of $T$ whose bottom rows contain the numbers to the left, respectively right, of the pair $a_{n}, b_{n}$. (One of these subtriangles may very well be empty.) At least one of these subtriangles, say $T^{\\prime}$, has side length $\\ell \\geqslant\\lceil(n-2) / 2\\rceil$. Since $T^{\\prime}$ obeys the anti-Pascal rule, it contains $\\ell$ pairwise distinct positive integers $a_{1}^{\\prime}, a_{2}^{\\prime}, \\ldots, a_{\\ell}^{\\prime}$, where $a_{1}^{\\prime}$ is at the apex, and $a_{k}^{\\prime}$ and $b_{k}^{\\prime}=a_{1}^{\\prime}+a_{2}^{\\prime}+\\cdots+a_{k}^{\\prime}$ are the two neighbours below $b_{k-1}^{\\prime}$ for each $k=2,3 \\ldots, \\ell$. Since the $a_{k}$ all lie outside $T^{\\prime}$, and they form a permutation of $1,2, \\ldots, n$, the $a_{k}^{\\prime}$ are all greater than $n$. Consequently,\n\n$$\n\\begin{array}{r}\nb_{\\ell}^{\\prime} \\geqslant(n+1)+(n+2)+\\cdots+(n+\\ell)=\\frac{\\ell(2 n+\\ell+1)}{2} \\\\\n\\geqslant \\frac{1}{2} \\cdot \\frac{n-2}{2}\\left(2 n+\\frac{n-2}{2}+1\\right)=\\frac{5 n(n-2)}{8},\n\\end{array}\n$$\n\nwhich is greater than $1+2+\\cdots+n=n(n+1) / 2$ for $n=2018$. A contradiction.\n\nSo it is not possible.""]" ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIANABEgMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiijNABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAGR615h8VvG1zokmmaPpcrpc3d3CLieMkGCMt8oz2L7WH+6D6iu/1fURplhJceW00hZYoYVbBlkYhUUHtliBnsOegryP4tWEmm6T4XE8vmXc+uJcXEuSQ0hHOP8AZUAKo7BQO1AHtg6dMUUg6CloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOQ1G41f/hLTNL4Yvr6wslH2J7aS2IaRl+eQ+ZKpBAOwDHdzkhgB5/8ZdUvby18NCfw/qNkY9VjZTO9uwkOPurslbn64HvXt9eZ/EPwl4s8ZyafFawaNawafe/aYpJL2VmlA4Xcohwhxz1b8aAO8068nvbd5LjTbqwcPt8m5aJmIwOR5buMc9znI9K0B0rP059TltWbVLS0t7gNgJa3LTIVwOdzIhBznjHpyavjOBnrQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUZFJkeooAWijI9aKACiiigAooooAKKMjOM80UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFDVNTttItGurneVyESONSzyOeioo+8xPauU1Lxl4k0mJ9QuvA9x/ZMQLyyR30T3EUY6sYRwT3IDnHrUXxI0Pxhqlxol14Su7aGaymkeQT44LAKrDKkcDeD3w5xmu2RZPsaLdNG0nl/vWH3Sccnnt14NAFHw/wCIdM8UaRFqek3Cz2svBx1Vu6sOoYccVr14t8Byh1HxobIEaT9vT7IMgjGZOBjj7vl9PavaR0oAKKKKACjNFNzzxQBh+IfFWm+G1hW7aSW8uX2WtlbrvnuG9ETv25JAHqKwrjxzq2iRR33iXw3HpWlNIEa4OpxyyR5+6WjwM9OQrMw7Bq5DwRrFv4h+JHifxlqM+21smGm6av3sgliQgHzFiEzgAk729K7LWbbwf8QxDpGqJK08L+bDb3Uc1nMeOSquFZlxwSARQB2yMrxq6MGVgCGByCPWnU2NFjiSNAFVVAAHYCnUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAGR61wnja+1PWZJvCPhvK308am/vs4SxgckdQcmRgDhRzjJ461d8feJNT8O6MraPo2o6lqFw2yMWlq8wiAxudtoIHB4B6n1ANcPo/wAQNW0Wz+z2vwx8TEs7STTSQSGSaRvvO58sZJ+nTAGAAKAPR/Cnhaw8H+H4tH05fkj+aSUqA8rkcufc4H4ADtW/XH+CdX1TxFLqWralol7o6lo7eG1u1ZXKoCxfBA6mQjOP4a7CgAooooAKaf8APvTqT1oA8D/Z40UpLrl/dZMtpILaKMniNjzIfqdqDP19a7P412ap4Bk1qFjFqOkXENxaTocNGxkVDj8+nT5R6VT0+z/4Vt8RddvLqBo/DevFZ1vgpdLWZSSUkx9xSXYgnj7o7HB8Q9T/AOE70lPCPhKWLUXvpUN3ewN5lvaxIQ/zyLkbiyjgHPB9RkA9E8Pai2r+GtK1N1CteWcNwVHYugbH61pVU0uwi0rSLLToCTDaQJAmf7qKFH6CrdABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUZHrRQAUUZooAKKKKACiiigAooyBRQAUUUUAIaQA/UU6igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGHqT6e1YWl+NPDWsWi3NhrljLGRnHnKrL7MpOQfYjNb5rx3wv8F/BmqeF9D1S6srlprmwt55kW4cKzmNS3fIBJzgH6Y6UAenaV4g0nXDOdJ1CC9jgcI8kDb0DEZwHHBOOwJxkVq1R07TbLSLGKysLaK1tYhhIohtUc56fzPU1eHQUAFFFFABRRRQBk3niDSNP1SLTb3Ube2u5ozJHHM+zeo6kE8E+3XjNTDXtHx/yFbEYGT/pCcfrXGeIfhzp3jnxXeX2vRXQt7SKK0s1jkKBuC7v78yBf+AGsXVfgx8PdG06S9vIr8RJgAC4JZnYgKqgDkkkAD1NAHqttfWd6XFrdQTlMb/KkDbc9M46VYrjPh54HtPBeizRxW/l3V4/mzrv37P7se7uFBIz3JJ712dABRRRQAUUUUAQ3E0dtBJPM6xxRqWd2OAqgZJJ9BUWm6ha6tp1vf2UoltrhA8UgBG5T0PNef8AxN8JaLD4I8Rar9lkkuzC8oae5llVHLZJRHYqnU/dAx2rofhqc/DXw6f+nGP+VAHVUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAw8n36E1yXh/wRFZeG7DT9ZuZdRubW3SHcZGRECqFURqpAXCgDd949Seas+P5tWt/A+rTaHOLbUI4gyTH+BAw3noeibzmr3haDVLbwzp8Ot3cd3qSQgTzxnIc9iD34xz3oA5LwHr18ni/xH4M1S8lvJdMcTWlxMcyvbuAQHbuV3pz3zXow6V5F4Oi/tP4/eNdagO60ggSxZsceaBGpH4GFvzr12gAooooAKKKKADIrirbUX8R/Ea+tVx/Znh5EyMcS3bgnOehCJkY7M+TnjHV6hdrYaddXj52wRPI30VSf6V5V+z6Wu/CesajOTJd3WrO00pPLEJG2fzdj+NAHr46CikHAApaACiiigAooooA474qf8kw8Q/9eh/mKm+Gf/JNPDn/AF4x/wAqh+Kn/JL/ABD/ANep/mKm+GnHw08OZ/58Y/5UAdXRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEUkYkVkZQUYEMpGQRXOf8ACHJDA1pY6zq9hp5BH2O3kj8tQecKzI0iDnojgDoMdK6iigDJ0Pw/pvhvS007SrRYLdckgHLOx6sxPLH3Na1FFABRRRQAUUUUAV720jvrG4tJgfKnjaNsdcMCDj35rE8G+DdN8EaNJpmltcNBJO07GdwzbiAOwHGFA/rXR0UAA6c0UUUAFFFFABRRRQBzes+CNE18XCanHqFzFOwZ4G1O5EJPX/ViTaBx2FO0TwZo/h5oBpa38EUG7yof7RuGhUHOR5bSFO5PTqc9ea6KigAooooAKKKKACiiigAooooAKKKKACiiigAooooAMj1oyPWvPtSkPiz4i3nhe5uJY9J06ySee2hmaJrqSQ8B2X5jGB1APUjOelZ/i7SLb4baUnijwyr2MFpNGL+wjYmG5hdwp+QnCuCwIYY75oA9Roo7UUAFFFFABRkUVieLNTutG8KarqVlAZ7u3tneFFUnLY4yB1APP4UAbeaTI9RXl3g/w/4c8f8AheHxBq+i3M13dGRfMvrt5ZMA7cow2hQcZGwKB2rP+F/iXVY/H3iTwVeX0l/aacZns5pZfMeNEkC7C3U8OOucbcCgD2KigdKKACiiigAoyPWisjWbPWrpof7I1a3sAu4S+dZ+eXzjGPnXbjn160Aa+R60ZHrXj3hibUf+Ghtdsb/U7jUDZ6OEjeUKmNxt3ICqAAMse3TGSTzXrxx19PWgB+aK8u8Iyx/E691bXdW/0vRLe8a10zT5kxDtUKTK6Y/eE5GN2cfMAKk1q4Hw58WaHLYGSDw/q9ybO6sRzFBKQPLeJf4Oc7gCAQOhPQA9NooHSigAooooAKKK4L4peNJ/COgxRacqPq+pS/Z7NX2kKf4nIPBAyBzxlhnigDvcj1pMgdxXC2vwu0SSwR9YW4v9aeICfVGuZPO8zHLRtn5ACTgAAY4IPev8OPEeoXlzrXhjWrj7Vqeh3Hk/aiuDPCThWb/a456dR1OTQB6HRQOlFABRRRQAUUUUAFFFFAHkHxT0DUtM8R2HjHwvqAg1xgLVrHIzeqOgVf4zjAK+gBGCOaGgeNbT4na1YaN4iMWkTadcLO2mNn/TbhNwwdwG1VIz5ZySfpXXeDZTr3jDxVrd67PPYX8mk2kDNxbxR7SzKPV2wSf9nHQVS+LPgbTNW8P6j4jhjFnrenQG6jvYiVZvLG7DY6nAwD1Bx2FAHpo6UVk+F7yfUfCWjXt1n7RcWME0ueu9o1J/UmtagAooooAKb3p1cp498a2vgPQU1S6tJroSziCOOJgp3FWbJJ6DCnpntQBP4g1rW9Oimj0fwvd6jKqApL58EcP45fecegTmuU+EelaPbxazqVvqv9o65eXGdULQGFreTJJj2N8y/MW5P3iPau78P6xFr+gWOrwQywQ3cSypHKuGUHp0/OvI4j/Zf7Ufkad+7iv7ZmvY0PyljCz5I+qqfqfegD3CigdBRQAUUUUAFFFFAHj/AIe/5Og8Wf8AYKT/ANBtq9D8ZTyWvgjxBcQttmi024kRvRhGxB/OvPPD3/J0Hiz/ALBSf+g2tel+I9PbVvDOrabH9+7s5oFI7F0K/wBaAOE+AmB8MIMd7qY+meRVL9oiR4PAemTRsVkj1aJlYdQRFKRVn4Ayq/w3MADCSC+milVhjDYVsfkwqD4+Rm/8OaBpKBjPeaxEsagdfkdf5uKAPW6KQdBS0AFFFFABXj3x40yd7bw7r6o72mk3h+07FJKo5jO/6Apj/gQr2GszXptHi0mZdems4tOlHlym8kVIznoCW45oAvwTRXMEc8MiyRSKHR1OQykZBB9K8a8EarHqf7RPi+S3INu9mV45DGMwpuB9DyfTmvQLLwnBbWkVvp+uapHpO0COyjmjMXlkcBZCnmhcdNsgwOmK4b4a2VtqHxX8Y69p1vFFpluqaZbGAAREIEUhMcYAiU8f3h60AewjoKWiigAooJAGScCigAooooAKKKKAOPu/C+pab4lvNf8ADVxaxy3wQXthdqRDOy9HDr80b44JwwOeRTdT0TxF4pjGn6y9jp2juf8ASrexmeaW5Xj5DIypsU98AkjgEZNdlRQAyGJIIY4o0CRooVVXooAwAKfRRQAUUUUAFZeu6La69pr2V2mVLrLG4AJjkUhkcZ4JBA4PB6HgmtSigDmUbxpbQmHyNCvnAIW5M81r9CY9kmT9H59qyvCPw9Oga5qPiTVL7+0df1DcJJVUpFErEHYgJJxwBk84AHHOe7ooAB0ooooAKKKKACqGpQ6rKif2Xe2ds4PzG5tHnBHsFkTH61fooA80svhz4hsPHd74vj8VWb6heR+TNG+kExFMKAuBMDgBEwc5+XnOTn0CyjvI7NFv5oJ7rJ3yW8JiRueMKWYjjH8R6Z9qt0UAcZY+E77w34l1XVdBkgmttXk8+6sruRowk2cl0dVYjOWJBU9uRilPhO91fxnZ+Itelg26arrp9jbMzrGzAbpHkIUsTgcBQBgdcV2VFAAOlFFFABRRRQAVyvj3wbB428PrpszhWiuEuYi2dhZcjawBBwVZhwQeQa6qigDin0vxc+iQ6JZR6No1rHCLb7VDcS3LpGF2jZGyJg4GBl2x79a3PDfhzT/CmhwaRpkbrbRZOZDuZ2PJZj6k1s0UAIOAKqanZnUNLvLITSwG4heITQnDpuBG5T2IzkVcooA5TwF4OPgfw62k/wBoy3+bh5vMdNgXdj5QMnA4z9STXV0UUAFFFFAH/9k='] Multimodal Competition True Theorem proof Combinatorics Math English 3 "Let $A B C D$ be a cyclic quadrilateral, and let diagonals $A C$ and $B D$ intersect at $X$. Let $C_{1}, D_{1}$ and $M$ be the midpoints of segments $C X$, $D X$ and $C D$, respectively. Lines $A D_{1}$ and $B C_{1}$ intersect at $Y$, and line $M Y$ intersects diagonals $A C$ and $B D$ at different points $E$ and $F$, respectively. Prove that line $X Y$ is tangent to the circle through $E, F$ and $X$. " ['We are to prove that $\\angle E X Y=\\angle E F X$; alternatively, but equivalently, $\\angle A Y X+\\angle X A Y=\\angle B Y F+\\angle X B Y$.\n\nSince the quadrangle $A B C D$ is cyclic, the triangles $X A D$ and $X B C$ are similar, and since $A D_{1}$ and $B C_{1}$ are corresponding medians in these triangles, it follows that $\\angle X A Y=\\angle X A D_{1}=\\angle X B C_{1}=\\angle X B Y$.\n\nFinally, $\\angle A Y X=\\angle B Y F$, since $X$ and $M$ are corresponding points in the similar triangles $A B Y$ and $C_{1} D_{1} Y$ : indeed, $\\angle X A B=\\angle X D C=\\angle M C_{1} D_{1}$, and $\\angle X B A=\\angle X C D=\\angle M D_{1} C_{1}$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAi0CLAMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKQnBoAWim55ozz1oAdRTQT0pw6UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV598UPB9rq3hnU9UtI3j1eCITJNHIwJCYyCM4Pygj8q9BprKrAhgCCMEHvQBwnwkl0678CWd3ZQiOdh5d4NzMWlTgk7ieow3407xVo1r471OHSo9629hLuvL2JypU4B8hMcFiCCT/CMdzXE+BotX0Hxn4o8FaThYDMJkuSci0j7sB0ZirIoHqMngGvZtM0620rT4rO0QrFGOCTlmJOSzHqSSSST1JJoAraNoOnaBatbadb+VGxBYFy5Y+pJ5rUHSjHGO1FACd+tICcHn8q87+KWr6jHP4f8ADum302nSaxeCKS8jbaUjBUEA5HJLg8HPGO9cx4j8PyfCdNO1/RdZ1OWB75Ir2znmDLcAgliBgDOFPXJ5znigD20UUiHKg0tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRWR4g8R6Z4asTeanc+VGTtRFBZ5W7KigZY/SgDXorlbbV/FmqIJ7Tw/aWVueUGpXbLK49Skatt/E59qqXnj37BqVlol3p0kWu3dzHElqH3IYyfmmWTAygGc8ZyMY70AdrRSDp1zS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZWs+INJ0CNZNV1G2s1cEoZnA3Y64HU/h61q0UAeN/CHWtN1DXvEepXF7AmpavfN5Fs7YkMa5cYB6jDY/wCA17GvKilxRQAUUUUAc74w8KWXi3S0tbyaa3aCUTw3MDYeJxxkfgTXzJZ+IvFGr6tpV9eTXWpCyuoTbw3shKSOcvGo9S/lsN2OoGTjgfUni68/s7wdrd8MboLCeRc+oQkD88V47YeFTfPH4dRDDPqPg+0u4pAduy7hkypyOQQXHPoaAPZPDfiKw8UaJb6pp0hMUo+ZG4eNx95GHYg5Fa46V4tpWtXGjWNt8QLG3Y6bfER+JdORSDb3CnY9yijod33h3ByfUex2lzBe2kN1bSpLBMgeORGBDKRkEEdaAJqKKKACiiigAooooAKKKKACiiigAopKTdxnPFADqKqTajZWoP2i8t4gOSZJQv8AOs2bxn4Xt3CTeJNHiY9A99GD/wChUAbtFc4fH/g9Tg+KdGJ9r6M/1oXx94PYkDxVov430Q/m1AHR0Vhw+MvDFySIPEekSkdfLvomx+TVpwX1rcj9xcwy/wC5IG/lQBZopOfWlHIoAKKKKACiiigCOeZLeGSaVwkUal3Y9AByT+leS+ARL8QPF+oeNNTVmtLKQ2+lwSDKx8ZLY9QCOfVvYV6H4wgmuvBmuQW6lppLCZEA6klDwK5f4K+T/wAK0s/LI8zz5vO9Q+89ffbtoA9CHQf1rm9U8OnUPHOha0VTytOhuAxPUu4UIMewLmuiPA9BWbpGpyar9ruFRRaJO0VtIDzKqgBn+m/cB7AGgDVHSikHSloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA4j4uXMtv8MtaEA3TTpHbop7+ZIqEfkxqrrcQ0r4neBzEuIpre7sHbpgCNXQe/KnpU/xNLTQ+GNPRd32zxBaJIv8A0zUl2/8AQRSfEcvazeEdRRf+PfX7ZJGP8McgZGP/AI8KAKtjGnhn4n6jo0qKdK8TRNe26MMqLlRiZMd9y4Y+vSq+myyfDDxFHot3If8AhEtTmP8AZ1w5JFjMxJMDHsjclT2PXua2/iRpNzfeGhqOmrnVdGmXULT/AGmj5ZDjkhlLDHQnGavsmj+P/BkfnRCfTdSt1cqfvLnp06MD+RWgDohyKWuA8Hazf6Rqp8EeI7hnv7ePfp16/H2+3APP/XRQMEZJPXnBNd8OgoAWiiqeo6nY6TbNc6je29pbjrLPKEX8yetAFykNcFJ8TotTZ4fCOhan4hlGV86KPyLYMOoM0mAD9AaT+yviFrzZ1LXbHw/bMT/o+lxedMVPZpX4Vh6qKAO2vL610+3a5vbqG2gX70k0gRR9STiuSuvir4Vile3sbufV7pRnyNLt3uGI9io2/rTbP4VeF4p0udShutbvEGPtGrXDXBP1Unb+ldjaWdrZW6wWltDbwr92OJAij6AcUAcUPGHi/U2U6R4DuooHH+u1W8S3K/WMbmoFh8TdRRhc69oGj5Pymws3uWx7+awGfwrvMD0ooA4M/D/Vb1R/a3j/AMRytnJ+wyR2in6hVP8AOlf4SeFbpMakup6l73epTuf0YV3dFAHH23wt8D2oxH4ZsG/66oZP/QiavJ4C8HqCB4V0Tn1sIj/7LXRUUAZEfhTw5DGI4tA0tEXoq2cYA/DFJL4S8Nzpsm8P6VIv917KMj9RWxRQBzr+AvB78Hwrov4WEY/ktZ9z8KfAt2CJfDVkuR/yyDRn/wAdIrsqKAOEX4S+GrePbpsur6Yexs9TmUj/AL6Y0g8Ba5YxbdJ+IOvxMOhvxHeD8mUH9a7yigDgza/E7T9og1Tw7q6D7xuraW3kb6eWSoNIfGvinTVY634B1LYvAk0q4ju93vsBDCu9ooA4uz+KfhC5uPss+qHTrsDLW+pRPbMv1LgD8jTvE3xI0Xw6baFPO1K9u4/Mt7axHmGRc4DZHGMgjjJ9q3de/sUaZM+vrYmwjAMn21UMYzwMhuOvHvXheg+JvC/hb4nXOt2un3Fr4d1C3MdlMLQxqCNgZ41PJQkHnGctjHWgD1rwp8QNM8VXc+npb3djqtuu6ayu4ijqBgE56YyR1wfaoIfB1/4e1S6u/Cl/bwWt2/mT6ZdxloN56shU7kyAOMEfhxXCya1qHjD4nQeI/BWmG7t9LtDFJJOWt0u8k5jDYIBw+QGAPyknoK7OD4oafaTJbeJ9N1Hw5cMQga9iLQO3okygqR7nFAGydM1vVEMWsX9vDbEDzLfT1ZWkHo0jHOD6KFPuQa6CCGK3gjhhjSOKNQqIi4VQOAAOwqKzvbXULZLmzuYbiBhuSWJw6kexBqyOlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBwnirfdfE/wAD2a4McZvbuUem2IKp/N6d8XY5T8NNUuLcfv7RobqM+hSVGJ/IGm/Pd/HMn70FhoAH+7JLP/8AEpW94zs21HwRrtmi7pJtPnRAR/FsbH64oA2EdZYldTlXUEH1zXA+Bv8AimvE2ueCpPlgjY6lpantbSt8yADsj5H/AAKuj8EXZ1DwHoF07b3k0+Auc5y2wA/rmuS+KuqWPhq90DxR9qhTUdOucG2DjzLm1f5ZVVc846gngYPryAdP4y8KReKdKVEm+yalav59her9+3lHIP8AunABH9QMYGm/FXTrXSni8UE6f4gs5Ps11pyozySy4yGiUDLKwwQRwMjkjBLI7jxt47hjls2HhbQZVDJKQJL6dD3H8MQI6dx15BqrqPw2TwzHbeIPBwnfXbBmlm+0zNI2pxn/AFiOT0YjkEDGew6gA0Rqnj3xWP8AiVWEfhfTn5F3qKCa7YdisOdq/Riataf8MdDhuxf60114g1HvcarJ5wX2WM/KBnoMHHY1veGfEdh4q0O31TT5CY5Bh43GHiccMjDsQcj+XFbA6UANjjSONVRFVVHAAwBT6KKACiiigAooooAKKKKACiiigAooooAKKKKACijvXP8Aibxho3hS3WTU7sCaXiC1iG+eY9AETvzxk4GSMkUAbxJzXFax8Qol1N9E8MWb69rQ4aOBsQW/vLL0XHp1OMcVmnTfFnj479Ylm8OaAf8AmHW7/wCmXK9hLJ/yzB4+Uc8kHsa7bR9D0vQNPSx0myhtLVc/JGuMn1J6sfc5NAHCXfhmCzs5/FXxJ1NNWks1Mq2iKRZWx6BUjPDsT8oLdcqMZ5rQ8D6DcXzXnivxFap/aerpsjtZBuFpZ8bIcH8GbgZJ5GapSH/hY/jYwgh/C/h6fMmOVvbxRkL6FEzz6k8gggj0lcFRxQB5/wCFI4/DnxH8S+HEjjitb1I9YtI0GAN2I5v/AB9QQOwNd5NBDcwNBPDHLE42vG6hlPsQeorh/HqnSPEnhTxSgIS1vfsN2QcAQzjbub2Vtp/Gu9GOtAHC3fwy0uCdrzw1e3fhy+J3b9Pf9y56DfCfkYewAqufEPjbwtx4h0Ua5YLx/aGjr+9UerwHnJ6kqcDFeh0UAYmgeK9E8UW3naNqUNzgZeMHEif7yHlfxFbY6VyviH4f6H4gu/t7wy2WqKMx6jYSGGdT67hw3/As1inVfGvgxiNXtT4l0Zel7YxhbyIf7cXAf6r2BJoA9EorI0HxLpHiawF7o2oRXcPRghwyH0ZTyp+uK1h0oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApCef6UtIetAHC+FQ118TfHN6xDRI9naRcdNkRZh+b12N7cW9raTT3k8UFqiEySTMFRV7lieAK8o8NeNLDw7b+IJ5PM1DVdV167ex0+1XdNOikIvA+6vyHk+hxk1uWvgvU/FNzHqvj6WOVIyJLbQoH/0aA9jIR/rX7eg56g4ABynw51vxbq3gjTtA8OWsdtFaeZDPrt2AUUb2IEMf8bBSvJ4GDnsa77RvhzoenR3Ml7HLq2o3kRiur6/bzJZFYEFQTwi44wO2OTVP4bQrYXPi7SV2qttrs0iRqMBI5FR1H0613vBFAHB/DO7ntLHUPCV/Iz33h+f7Orv1ktm+aF/xXjHbaK7wV5/4vH/CMeOtD8Wx/Ja3Z/sjUz22OcxOfTa45PoQK9BHIzQB5t4jtbnwB4gl8XaVE8mi3bD+3LKMZ2dhcoB3H8XqOT3I9DtLqC9s4bq2mSaCZA8ckbZV1PIINLLGkqvG6hkcbWVhkEehFeb6dK/wx8Qx6NdO3/CJ6pMf7PmYkrp87EnyGJ/gbkqe3cdTQB6bRSA5FLQAUUUUAFFFFABRRRQAUUUUAFFFNZsGgB1V7y8t9PtpLq8uI7e3iG55ZXCoo9STwK5TXPiDa2d+2i6Hay65r3T7HaEbYuxMsn3YwPfJ6euao2ngO/8AEFxFqXj69TUZkO+LSrcFbKA/7p5kPu3qRzQBFL4w17xi72vgW1ENiCVl16+TEQ9fJQ8yH3I28c9Qa3PDXgTS/D9y2ou82pazIP32p3reZMx6YU/wDHGB2GOa6eNESJURFRFGFUDAAHQAU/FACcEdq4nx7rl95lr4T0B8a7q4KiUH/jztxw8zY6cZC+p6cjB3/EniGz8L6Hd6tfuVgt0yFHV2P3VHuTxWD4E0C8t1uvE2vKf7e1fEkqN/y6wj7kKg9AoxnuT1yRmgDo/D+hWPhvQrPSdOi2W1tGEXOMsepY46kkkn3NadA6UUAYPjPQV8TeD9W0cqGa5t2EW7oJB8yH8GCmovA2vHxJ4J0nVHbM0sAWf/AK6r8rjHb5ga6I/lXBeCQdG8Y+K/DTYEYuRqloDxmKf74Udgrgj8aAO9HSlpB0FLQAUmB6ClooA47xB4A0/Ur9tX0ueXRNdHK6hZDBY/9NU+7IPXPPHWs218car4ZuItP8eWaW6uwjg1q0Ba1mPYOOsTfXgnJ4Ar0PAqC7tbe+tZbW7gjnt5VKSRSIGV1PUEHrQA+GWOeFJYZFkicBldWDBgehBHUVJXnE3hjXPA0zX3gtje6XndcaBcycAdSbdz9w8k7TxyfYV03hjxfpfiq1d7KR47mE7LmznUpNbt0IdTyOe/9aAOhopFOVyaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKjlkSJGkkkCIgyzMcAD3oAcTzivPvEPjq9vby70PwbGlze26Mb3UpObawA689HkAzhemeucEVVudV1T4lXMun+H7iXT/C6MUu9XUFZLvHBjgz24wX+vpzs+JtP03wj8KNbtNKto7O2g06ZI1T+8UIBJ6liSOTzQBlfBvwtYaT4KsNYNsrarqURmuLpgS7hmJABPQY29OuM16QKyfCtidN8IaNYsPmt7GGJvqEAP61r0AcJoCfY/i74wtmbi9tbK7jTsAqNE36qK7sdK4O9QWfxv025LHGoaHNbBexaOVZM/XDGu8FAGT4l0S38SeHdQ0e54iu4THuxnYf4W/A4P4VjfDvXbjWvCkceoMf7W06RrC/UnJWaI7ST9RhvxNdfXntx/wAUr8W4pwdmm+KIfKl/upeRD5T7bkyOOp5oA9Bx3xWdrekWOv6TdaVqMAmtLlNrr/Ij0IOMHsRWkOlGAaAOA8H6zf6Nqp8EeIrjzL6CPfpl65/4/wC3HT/tooHzDJJ684ye+HQVzfjLwrF4p0sRpKbXUrRxPp96n37eUcg/7p6Edx7gYr+CfFU2v2s9jqkItPEGmsIdQtPRu0i+qN1BGR7nqQDraKQdKWgAooooAKKKKACiobm4htIZJ7iVIoY13PI7bVUDqSTwPxrgrnxvq/ii4ew8BWSzxKxSbW7xStrEeh8sdZT16cDjqDmgDqPEXirR/C1p9p1a9SANxFEPmkmb0RRyx6fTPNck0Pi7x9zdG48K+Hm/5YrgX9yh/vHpCD6ctwQcgg1s+HvAWn6Pf/2vqFxNrGusBv1K9wWHtGvIjXk4A5GcZrrhjHSgDL0Dw5pHhnTlsdHsIrSAcsEHzOfVmPLH3JNauKKKACmM2GPOPxp9cF491W81G8tvBGhTNHqeppuu7lBn7HaZw7/7zfdX69QcUAUrTPxG8aDUny3hjQJ8WY/hvbwdZf8AcToD3Pc8ivSQMqMiqWj6TZaHpFrpmnQiG0tkEcaDsPf1J6k9zV6gAooooAK4DxhjQ/iD4U8RgBYrmR9Hu2A5ZZfmi/ASLn8a7+uX+IejPr3gXVrKHcLoQ+fblPvCWM70x7krj8aAOoHSisfwrrSeIvCumauhXN1brI4H8L4+Yfg2R+FbFABRRRQAUUUUAFcj4p8D2+uXaavp1zJpPiCAfuNRth8x/wBiRejr04Pp6ZB66igDiPD3jW4/tUeG/Fdsmm6+P9Uyt/o98o/ihY9z/dPPP1A7Zc4GetY3iTw3pfinSpNN1S3EsZ+aNlO14n7OjdVYevfoeCRXJ6f4i1XwTqNvoPjCc3GnzOItO108BzziKfP3XwPvdD+ZoA9GopFIZQQcg96WgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiop5o7eGSWWRY441Lu7EAKAMkkngAUANubmK0gluLiVIoIVLySSMFVFAySSegFebH7b8WLkkmaz8DwyYAGUl1VlPfoVhz7An6/dTbefFfUQ0oltvA9rLlUOUfVnU8E9CsQI4Hf6/d9Nghit7eOGGNI4o1CIiABVUcAADoMUANtLaCztIra2gjhgiUJHFGoVUUdAAOAK4v4uKZ/h/PpqOUk1G7tbNMHHLTJkfkDXddK4T4hqL3WPBWmBiGk1yO6Kj+JYUdyPp0oA7pQFUAdBxS0DoKKAOE8bKtr458CaqxwI7+azPofOiIA/Na7sVwnxVVIfD2mapJwul6zZXhPoBKFP/odd0Ogz1oAWuU8eQWFxo8a6jY6lcxQzLdJJp6AyW7x/Mr5J479j3rq65/xm7Hw1cWcbbZb9ksUx1/esEJH0VifwoAZ4T8Y6b4xtrmfTfPUW8nlSJOmxgcZ6fn+VdF3rzLwFGml/E/xxpAUIjyQ3SIOgDAnj/vsV3esXk0EMdrZ7ft103lwZGQvGWcj0Uc+5wO4oAw9R+Iek2PiU+H4rbUL3UQu4paW+8D8cjp37D1rP8WaJfXq2XjPw7by2/iGxiybWZdpu4OrW8gBPPcdefzGL8PrKG++J/inU4gTbaeq6dAXO4sc/OxPckoWJ77z616wOQOPzoAx/DPiSx8VaHBqlgzbJBh434eFx1Vh2IORWyORXm/iO1ufAPiGXxhpUDy6NdMBrljEv3f+nlAO4/i9ep7sPQbO7t76yhurSZJreZA8ciHIZSMgj8KAJ6KKyPEHiPSvDOnm+1i/itIM4Usfmc+iqOWPsB0oA1uc1yHiPx9Y6Pe/2Vp0M2s664zHp1lyy+8jdI15GSeec4rHM3i/x+MRLceFfDzj/WuAL+5U+i9Ih78npjINdd4d8MaP4XsjbaTZpArndJITuklb1Zjyx69aAOUg8Ear4pniv/Hl6s8asJIdFtGK2sR7GQ9ZW79cdeo4r0C3t4bW2jt4Io4oY1CJHGu1VA4AAHQVLRQAYooooAKKKYzYJBP/ANagDG8V+JbXwnoFzqt0pkMY2wwKfmnlPCoo9SfyGT2rK8C+HLzSrW51bW2WXxDqzie+kHSPj5Yl9FQYHXr+FY2ig/EPxiviWZd3h3SZGi0mM8i5nBw1wR6AjC+4yMEGvSQBj1oAF6CloooAKKKKACk4zS0UAcB8OW/si/8AEvhNjhdLvjPagDAFtOPMQD1wS2frXfjpXA+IP+JD8VvD2sgEW2rQSaTctn5Q4/eRHHqTuGa70dKAFooooAKKKKACiiigAqlqemWWsafPp2oW6XFpOuySJ1yCP6YxkH1q7RQB5jZ3998L7+30rWLmS78IzER2OoyctYsekUx7p2Vu3APHT0xGV0DKwZSOCDnNQX1lbahaS2l5bxXFtKpWSKVQysD6g9a88s7y8+F+pRaVqcslx4QuJNlhfOSzaexPEMp7x9lY9O/HQA9MopF+6MHI+tLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU0nBoAQkhic8V5ndSyfFPWpdMtZGHg2xlC3lxGxH9pSqc+UjD/lmDglh17dQRc8WaleeK9cfwRoM7xRhA2tX8Yz9niP8AyxU9PMcfkM++O30rTLLR9LttO0+BILS3QJFGvQAfzJ657nmgCe2t4bW2it7eJIoYkCRxooVUUDAAA6ACpaKKACuE1xFvvjF4Vgzzp9jeXhXP9/bED+pru64OxRbz43axdDltP0W3tOD08yRpP/ZRQB3g6UUg6UtAHIfFGxGofDPxDCRwto03/fv95/7LXRaPerqWiWF8hytzbxzA+zKD/WjWLFdT0W+sHAKXNvJC2RnhlK/1rnvhdfDUPhj4emB4W0WH/v2TH/7LQB11c9q/+m+LdDsByluJr+Uf7qiNAfxlJH+57Vs3b3CW0zWiRyXAU+WkrlULY4yQCQPwNcfpth42j8XTarqMWhPb3EcVuY4Z5d8MSMxO0lMMxLk84zgcigDHeVNH+P8APLLIscV/ovmMzthfkPUn2EZ+grqftZtNL1LxTexsGS2d4YnGDHCo3AY7MxG4j3UH7oqrrngmPXfHGka3NMBb2MDxywg8ynPyqf8AZ+Zsjv07mofHWkeKvEmkX2jaWukw2dyqr9onuZPM28FhsWMgcgjqePyoApfBnT5LXwDHez5a41K4lupGI5bJ2g/jtz+NehjpXP8AhKx1XStDtdL1K3sYVs4I4YmtLh5A4UYJbci46e/Wt7J96AEljSVHjdQysNrKehHcGvNrKZvhh4gTTLqTHhDU5SbKd2+XT5zkmJj2jY5IPAHPua6HxL470zw9cLp8azalrU3EOm2S75mOM5YD7i4OcntkjOKwW8Fa544j87xzfG3sG5i0TT5sRpnkGWQcyMOOny5AI7igCxd+Pb/xBdy6Z4DsV1CRG2T6rcZWztz7HrI3svqDyKvaD4AtLDUV1vWrubXNfPP226A2w9eIo+iD6ZPXB5rO8D6hceGb9fAOtMiz20ZfS7sKEW8tx2x0Ei9xz3POMn0RR8oBFAAANo44paKKACiiigAooooAQ15943v7jxFrEPgPSJikl0nm6vcJ/wAu1r0K/wC8/THoeeDXQeMvE8XhTQZb4xme6dlhs7ZfvXE7cIg79eT7A1W8DeGJfD+lTT6lMLnXNSk+06jcj+KQ9EX0VB8oHTrgDOKAOh06wttM022sLOFYbW3jWKKMdFUDAFWqB0ooAKKKKACiiigAooooA474n6VLqXga9ntOL/TSuoWrgZKyQndx743D8a6PRdTh1rQ7DVLc/ubu3Sdc9QGUHB9+atuquCrKCrDBBGQRXCfDBm06x1jwrK2JNC1CSGIM2Wa3c+ZEx+oYj8KAO+ooooAKKKKACiiigAooooAMVS1LT7XVLGewvoEntLhDHJGw4ZT1H/1xz9DV2igDzbQb688A63B4T1md59Fujt0XUZGzsPJ+zSN/eH8J7jAHYD0gdKyvEOg6f4l0a50rU4hJazLjrhkYchlPYg8g/wA65nwZr9/ZanL4N8Szs+sWqb7S7cYGoW/OJBn+MdGHXgnnBNAHeUUi8qKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuQ8eeJrnRrW30zRkE3iDVGMNjF2T+9K/oqjn647Zxva3rFnoGkXeq6hN5VpbRmSRvYdh6kkgAdyQK5TwHo9/eXNx401+Ly9X1RAIIG/5crXqkY9zwT05PPNAG34R8LW3hPQ0sYpHuJ3YzXVzJ9+4mb7zt+P14A610A6UDpS0AFFFFACGuE8EIl34y8daqvPm6lHZEj/AKYQqD+rV3eK4X4UBLjwvfatGONV1a8vM+uZSv8AJKAO6HSloFFACHvXC/Cp0i8OalpUf3dL1i8swo4AAlLj9HrujXC+CnW08ceO9KUECO/hvcf9doVJ/VTQB3fvSYB7UtFABXBfEnxXP4Pm0HUkvQtt9sKXdjhc3EJXDMMjOUJBwCM7ua7p2CAszAAckk4wK8P8SeMvD0vxh0rUrm8F7o1hA0DSrGzwwXB398YY8rkjpx3WgDtdP+Lvg+/s55ptQbT3t1LSW96myTA44AyGP+yCTx0qv/aXi3x4CmkRzeGtAc4OoXEf+mXC/wDTJP8AlmDz8x55BHcVx/jjxHouu+PPDl14ftJdXm06Qz3rWNoZWeIMpAAIG/ADcjpng5r1bw94y0HxQjHSNShnkTPmQMdksZHB3IcMPTOMfWgBfDXhDRvCts8el2uJZeZ7mU75p27l3PJ5yfTngVvAYAFA5FLQBzfjLwtD4q0oQLK1rqNs4nsL2Ph7eYdGBHY9CPT3wareCfFU+u20+natELXxBpreVf23qe0i+qN1GK62uI8beGr2S6g8VeHAqeIdOTAj/hvYerQP9f4T2Pp1AB2y9OaWsTwx4lsfFWiQanYsypJ8skT8PDIPvIw7MD/jW0OlAC0UUUAFRTSpDG8ssgjjRSzMxwFA6knsKexweteeeL7qXxj4iTwJp0rpahRNrlxERmOE8rCD2Z+M+i+vIoAZ4Yil8c+KX8Z3iMNKtN1voUMg+8M/PckHueQvt24Br0cYI7c1Fa20NpaQ21vEkcMSCNEQYCqBgAe1TUAFFFFABRRRQAUUUUAFFFFABiuAvh/YPxlsLsDba+IbF7STaMD7RD86Mx9ShKj6V39cN8VbOZ/B51e0TdfaJcxanAM4H7tvmz7bC/5CgDuQcjNFV7C8g1HT7a9tn3wXESyxt/eVhkH8jVigAooooAKKKKACiiigAooooATAznArmPG3hY+JNNils5ha6zYP5+nXY6xSDsfVWxhh0xzg4FdRQQD1FAHM+DPFQ8TaU32mH7Lqtm5g1C0J5hlHB/4CeoPpXTDpXnnjW0uPC+tx+PNKhZ0hQRa1axjBuLbtIB/fj657jIyAOe7sby31Gwt720mWa3njWSORejKRkGgCxRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1jg9adXJeP/EdxoWiLb6YBJrepSi006LqfMbjf9FBySeBxnrQBh3pHxC8dDTiN3hzw9MJLzIyt1efwx+hVOp9zgjkGvSF+7+lYvhLw5beFPDVppNsd5iXM0x+9NKeXc9+T69Bgdq2+gwKACiiigAooooAz9avhpmiajfscLbW0kxPsqFv6VhfDCxXT/hj4dgUYDWaTHjvJ+8P6tTPilfDT/hl4hmJI32hg/GQiP8A9nrpNJsl07RrGxUALbW8cIA9FUD+lAFyiiigAwDXCWjiz+N+p2oUhdQ0OG6J7Fo5Wj/PDCu7rznxlqtn4b+JnhjV7+ZLa0ntLy1nuJDhVVVSRQf+BA4HcnpQB6JnrXM+J/HOkeGHS2meW71SYYg02zXzJ5T7KOg68n0NYDa94o8d/J4ZifQ9Db72sXkf76Yf9MIj0H+02OvGCK6Pwx4M0bwrFI9lE0t7N/x8X9y/mTzNxks556joMDPagDmZPD2veL42vfG94ulaIgMn9i2s20FQM5uZhjPGcgYAwDkYqn4Q0Kw8Xal/wkE2nQReGrNZLTQtOaICMoeJJ2QjBLYIGe2cjgGtDxhPN4x8RL4E0+R0s0VbjXLmM4McOcrAp7M+Py9eRXoNvbw2ttFbwRJFDEgjjRFwqKOAAOwAAoA84v8ATrLwB490XU9OtYbTR9XH9l3kcKBUSY5aCTA7kllJ7D6103iHwJoHiWRbi8tTDfpjy7+1fyriM9iHXrjsDke1WPGPh+PxT4V1DRpCFNxFiKQ5+SQco3HowB+mareAvEEniXwjaXdyCmoQ5tr2M4ys8Z2vkDpkjcB6EUAYfk+P/CXNvNF4s0pf+WcxEN6ijsG+7IRyTnkn0rY0H4gaDrlyLETy2GqD72n6ghgnB9Arfe/4DmurrG8QeF9E8T2pt9Z0y3u0AwrOuHT/AHWGCv4EUAbC/dFLXnZ8OeMPChL+GNb/ALXsF5/svWGLOB/djmHI44Abge9XNP8AiZphu007xFbXHhzU2OBDqOBFJ7xzD5GHbPGaAKHiSzn8Ca/L4y0qF5NKuONcsolycdrlB/eH8XqOT3I9As7y3v7KG7tJkmt5kDxyIcqykZBFKfLuITyrxuvPQhlP8wRXnVnI/wAMPEUemTsf+ER1SU/YpWJxp9weTET2jbkjsDnpyaAPS6KQcgVBeXcFlbTXV1MsMECGWSRzgIqjJJ9gKAMHxt4o/wCEY0YSW0X2nVbxxbafaDrNM3T/AICOpP4Z5FJ4L8LnwxoZiuJftGp3bm51C6PJmnbljn0HQfyFYPg62n8W+IJPHWppIsAVoNCtpRgxQHhpiP78n8vUEV31xNFbW8k88qxQxKXkdiAqqBkk56CgCbPGeaTr/hXnem63rXxDu530q5l0nw1BIY/tcSAXN4w6hN3+rX3wT098bw8FadFCTa3mqQXYHyXf9oTO+7HUh3Kt9CCKAOnz7/rS15/8P9Q17Wtb8Q3uuSr/AKHONOijhBWINHnzGAJPLEqcnkDivQBQAUUUUAFFFFABRRRQAVBdQRXdtNbXCB4ZUKOrdGUggj8qnooA4T4V3M0fhe40G6ctdaDey6c5bguqnMbY9CrAD/drux0rgEx4f+NEiYC23iXTw68/eubfggDt+7IP4V3y8LQAtFFFABRRRQAUUUUAFFFFABRRRQBHIqujI6hkYYYHkEd81574WMngfxZJ4MnY/wBk3wkvNDc/wc7pbfP+zncPYnJ5Ar0bFcz458NHxNoDQW8nk6naut1p846xTocqfoTwfY56gUAdMOlFc74M8TDxT4cgv3j8i8QmC8tjwYZ1OHUg8jnp7EV0I6UALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADGPJ56dq898Lg+MPG2oeMJiX02x36fow7MAcSzj/AHiCoPoCD0q/8StTuYtFh0HTJAmr69L9htj3jQ/62Q45wqZ5HIJBrp9F0m00LRLPSrKPZbWsSxoD1OO59STyT3JoAvKcqO/vS0UUAFFFFABRRRQBwnxWdJfDum6W/I1TWLO0I9QZAx/RK7odK4Txs63XjrwJpTAkSX814R6eTESD+bV3fbrQAtNY4zziue8S+M9H8LCMX08k15Nxb2Fqvm3Ex9FQfzOB79K5r+xPFHjtvM8TTvomhnldIs5f304/6bSjoD/dXsecEZIBe1P4hfadQl0bwdZf29qqfLLIjhbW1J6GSTpng/KOTgjqMVyHibwpf2Go+Fte8Tamda1CTXLe3miKAWtvFICMRxkdmCnJGTgdK9c0nSdP0TT47HTLOG0to/uxxIFHufqfWuS+Lyunw31C7hQvLZS290gH+xMhP6ZoA7hMbVIx04Nc3428TnwzooNpD9p1a7cW2nWi8mWY9OP7o6k+g7ZFblxe21rZSXs9wkVtFEZpJGOFVAMkn2xXCeDbefxbr0vjzVIWjhZWg0S2kGDDb5wZSP7z/wAu5BFAG/4L8Lf8Itof2eWY3Go3Lm4vrpjkzTN94k+g6CulGMDHSgdB3paAEOK8/tf+KT+K81mPk03xPEbiEdlvIh849tyYbJ5JFeg1yHxH0S41nwrJNp+BqumSJf2LYyRLGd2Bj+8Mj6kHtQB1w6UtZfh3XLbxJ4esNYtP9TdxLIFzkoT1U+4OQfcVqUAGKqajpljq9m9nqNnBd2z/AHopkDKfwNW6KAPPW8A6p4dkM3gfXJLFeW/su/zPZufRcndH1ySuap6l4vt5tPn0D4j+HptLguh5LXiZns5PRhIozGc8jI44JIr07FQXYt2tpRdCP7PtPmebjbtxznPGKAPK9D+Ilr4Mhl0HxJqIvYbaJZdK1K3/AH3262PCglcjeMYJOAccnuVvPENp8WtVsvDmkTSJoioLzV3kBjeRVI224B5OWKliOAMc9jyvh7VfA2lfGPVLyNrGPSJU2WU0cRFvFNhN2OMDkPhhheeOtdHpd/p2ufHeG98LyRG3i09xqU0S7UmOTgdBuO4xnd32+xoA9eiijhhSKONERAFVVXAUAYwB2GK8u+OOrXNt4dstGsyRNq1wIzjjKpg7fxZkH516mv3R/OvNfjDot1d6ZpmuWULXEui3IuJIVGSYsgsR9Cq/hn0oA7rQ9It9C0Ky0q2UCG1hWIcfex1P1Jyfxq+Rz0zVHSNXstb0uDUNPuFntplDK6n9D6H1HY1m61qD3zS6Fpcpa9mXZPNGeLOM9XJ6BsZ2r1JwcYyQAaenaba6YlwLRCv2meS5lJOSzuck/wCe2Kug5PHbiq5tImsBaLvjiCBB5cjIwA6YYHIrkvA0Qh8Q+MIg8jqmoqoMkjO2PKXuxJNAHbiigdKKACiiigAooooAKKKKAOD+KcT2mjaf4kgVjPoV9Fdny1y7Qk7JVHsVbJ/3a7mGVJoUlicPG6hlZTkEHoarapp8OraXeadcDMF1C8EgH91lIP8AOuW+F2oTXPgi3sLtl+3aPLJpdyAeA0J2j/x3bQB2tFIOlLQAUUUUAFFFFABRRRQAUUUUAFJ3paKAPOr8DwR8SYNQB2aL4lZba4XHyxXo/wBW/sHGVOOpGTXog5UGsPxd4dg8VeGb/R5mCG4j/dSHP7uQco4x6HH8qofD/wAQ3HiHwtG9/mPVbKR7K/jJBKzx8NnHrw34kUAdZRQOlFABRRRQAUUUUAFFFFABRRRQAU05zTq5jx/r8nh3wde3Vqpe/mAtrONeS88nyqAO+M5x7UAYfhzHiv4h6v4mfD2OlE6Vp2ehYYM0g9ySFBHavQh0rG8JaBF4Y8K6do8eGNtCFkcfxyElnb8WLH8a2qACiiigAooooAKKaSc1xWtfEKJNQfRfC9m+va0Pvx27fubf3lk6L0PHXjHFAFHXdTsrb4w2Mmo3EVta6XoU1200zbUUySrH19cDpTW8UeIvGp8nwbD/AGdpJO19dv4vvDOD9niP3v8AebjqODg1z3hnws/ib4meILnxuLfVbzS47VEREItkd1Z9ir/GEBA+buxJGSDXsyKAgG0DHYdBQBzXhnwRpHhp5LuJZbvVJf8AX6lev5k8nb7x6DAAwMcAV0w/WlxRQAVz/jizN/4E1+1VdzyafOEH+15Z2/riugrkfH/iOTRdITT9PjE+t6qTa2FvwcsRhnIPG1QcknjoDxQBxVpqEvxNttB8NQyM2k21la3evSr0dyislsD7sMt7DrkYr1+KKOKFIo41SNAFVVGAABgAD0xXAfBiwi034cWtv5KR3S3Nyt1tH3pVlZee+dqqOecAV6HQAUUUUAFIcZ6dqWigDz3wf/xTPjXW/CLYS0nP9qaWM8CNziWMDoAr8gDsxNegg5UGuE+JdrLY2uneL7KNmvNAnE8ip96S1bCzJ6fd556YOK7a0uYb2zgu7eRZIJ41kjdejKwyCPwNAE1NJwe9Z2t69pfh2we+1e+itLZTjfI2MnBOFHVjwTgc1xh1Hxb48IXSUl8N6A/W/uE/0y5X1iT/AJZqefmPOCCPSgDa8SeO9N8P3a6bEs2p61N/qdNshvlPu2OEXvk84z1xXOXnh/U9ds5ta+I+opZ6RbL5/wDYtnKRCijn9845kb2HGRx1xXYeG/COjeFLZ4dMtsSy8z3Up3zTt3Z3PJyecdB2ArlNYJ+IfjH/AIR2ElvDujSrLq0gPy3U45SAdiAeW/LggGgCv4O8KWniiObxLrmk262d5CLfSdNeABLSzByp29A7/eJHQdDzWj4j8DDTorXW/BVlbWOtaWCY4Ik2x3kWctDJjru5IJ79x1HfooVFAUAAYAHanYHpQBh+GfE1l4q0SHU7ElVYlJon4eGQfejYdmH6jBFbY6c9a858T2dx4F8QTeNdIt3l024AGu2MS5JUdLlB/eXPzeoyTjlh39jeW2oWMF3ZypNbzIHjkQ5VlIyCKAMabwR4amu5Lj+yII5ZDmQw5jDn/aCEA/jWxY6fZ6dbLb2VrDbQryEhQKM+uBVmigCG4uIrWF5p5khiQZaSRgqge5PSuC8EazpknivxXHHqFozXOoq0KiZcygRqCV55GQRxmvQsA5yOtLgelAAOlFFFABRRRQAUUUUAFFFFACGuB0lToPxf1nTiWFrrlnHqMA6Kssf7uQD1Yjaxrv64H4mj+yv7A8Wrx/YuoJ9of+7bTYjl47nlfyoA77tRSKcgEciloAKKKKACiiigAooooAKKKKACiiigAwK89uT/AMIn8Wobj7mmeKIhDLn7qXkQ+Q+g3pwB1LCvQq5b4g6BL4g8I3cNnldStit3YuuNyzxncmCe55X6MaAOoX7g+lLWN4V16HxN4X07WYMBbuEOyqchH6Mv4MCPwrZoAKKKKACiiigAorO1fVDpNsLj7Fe3gLYMdpHvYDBOcZHHH6iub0f4kWGv2z3Ol6Prd1CjmNpI7VdobHI+97igDtaK5a38d6U2pw6dfRX2l3c5xCl/btEJTwMK/Kk89M11AORQAtcBrY/4SL4r6NpAG6z0OA6pcjGVadspCp9GXLOPY13juEBZmCqBkk1wnwxVtTtNZ8WSnMmu37yREjBFtGTHEp+gVvzoA74dOKKQdKWgAooqvd3dvYW0t1d3EcFvEu55ZXCqg7kk8CgCx3rB8S+L9G8K2yy6ndlZZOILaJd807dAqIOSc8dhzya5iTxhrvi+Z7TwNaiKxBKSa9eoRCvr5KHmRvc/Lkc8HNbPhrwHpfh+6bUpHm1LWpeJdTvW3zHtheyDHGB24oAwzp3i3x7ubWHl8OaA3Sxt3BvLlf8AppIOI1P90c8kHsa7bRdC0vw7pyWGk2MNpbKc7IxjcfUnqTwOTk1ojoKRyFBZjgDkk9qAOF+HTfbNT8Z6myYaTXZbZW/vJCiov4da7scCuF+ERef4d2l/IhSa/uLm7cH1eZ8H8sV3dABRRTGJz1x70AVtT1G10nTrjUL2ZYba3jMkjt2UDP4n0HfpXF+CNPutd1Sfx3rMJS5vY/K0y2k5NpadQfTc/wB4n0OOASKqaszfEXxh/YEW5vDejSCTVXBwt1cDlLf/AGlXq3bPodpr0lVAUAAYAxigDhfhsrW0vizTpGGbbX7hkA7RyBXX+ZrvBXCeHFaz+LHjO2Zvlu4bK7iXH+w0bH81Fd3QAUUUUAFFNJwetcz4m8b6V4adLSRpbzVZ+LfTLNfMnl+ij7o68nsDjnigDoLqGG5t5oLlVeCRCkiPyrIRyD7EZFeNeDfGGsW1lc+CvC9pFrV3p1zJFbajJODax2pOY3kZeWIyV2rjpx0rpx4Y8ReN8TeM7j+z9KJ3LoVjKfmGePPlGC3+6OOh4xUXifTrTwPr/h7xRp1tHZ6db/8AEr1GOFAqLbyN8jkeiyEE45OaANTRPh9DHqUet+Jr19e1xeUmuFxFb9wIo+i49euRnjNdsAMUADFUNY1ez0LSrrVNQmENpax+ZI59OwA7kngD1IoA57x74kutLtrbR9FCv4g1d/s9kuM+UMfPM3oEBz+XXmtfwr4btPCvh+30u0JfZl5Zn+/NKeWdj3JP5DA6Cub8C6Te393deNtciMeqaogW2t25+xWnVI/qeGbpkkcDmu9X7oz+tAC0UUUANdVdWRlDKwwVIyCPSvNLV3+F3iJNPmc/8IhqkpFpI3TTrluTGfSNuSOwOegya9NrP1jSbHXNKutM1KBJ7O5QpIjfoR6EHkHqCARQBfHSlrz7wfq994f1k+BvEE7STRIX0m+k4+224H3T/wBNEA5HUjnHGT6ApyKAFooooAKKKKACiiigAooooAKKKKACsvxDpEev+H9R0mU4S8t3hLY+6SDg/UHB/CtSkI5zQByfw21ibWfAOly3QYXtuhtLpWPzLJEdjbvc4B/GutHSvP8Awx/xIvib4n0AjbDqCprVqo9W+SbPvvANegDpQAUUUUAFFFFABRRRQAUUUUAFFFFABTWHOcc/zp1FAHn/AIK/4kHjTxN4Tc4iMo1WwB7wynEgHoqyAj6sa79eB1z71wXjof2J4p8L+KUBEcdz/Zt6VA5hn4DMf7quAfxrvR0oAWiiigAooooA5vx7q39ieBtZvw+10tmSM+jv8in82BrP+Fek/wBkfDnSI2TEk8ZuX46+YSw/8dKj8KwvjXPJd6XonhuBsT6tqCJgd1HH/oTIfwr0y3gjtraKCJQscSBFX0AGBQBxfxasre7+GuqNOq77dVnic9UkDAAj0JBI/E1seBNSn1fwLo19cktPLbLvY9WI4z+OM/jXI/GC9n1Cx0/wfpg83UtWuFzED92NTuy3oMgHnsrV6DoumRaLoljpkBJitIEhViMFtoxk+56/jQBz3xN1ObTPAOp/Zcm8u1Wyt1BwTJKQgx7gMT+FdBomlw6LoVhpcHMVpbpApx1CqBn8cZrkfGCDWPiD4O0LaHihml1a4GeU8pcRH6F2x+Fd7QAU0nDZz7Vj+IvFOj+FbL7Vq94kCniOP70kp44RRyx5H071yJh8X+P0/wBJNx4V8Pvx5S8X90p/vHpCD6cngg5BoA1Ne+INrp+oHRtFs5td14j/AI8rNhti95ZPuxj9enY5qlbeA77xFcRal49vk1GRG3xaVbApZQH3HWQ+7epHNdZ4f8O6T4a01bLSLGK1hzltoy0h/vMx5Y+55rVwKAGRIkcSpGgRFGFUDAAHYCn0UUAFYni69OneD9bvFI3QWE8ij3CEj9a264j4uTyw/DLWI7cZnuBFboPUySKhH5E0Aa3gO0+w/D/w/bldrLp8BYejFAT+pNdDUdvCtvbRQIMJGgRR7AYqSgArjvHniO7023tNE0Ta/iHWJDb2ankQjHzzNj+FF5+vYgGuh1rWLPQNIu9U1CURWlrH5kjH9APUk4AHckVyfgXSL28urrxprsRj1bVEC29u/JsrQcpH7E8M3A5PQHNAHR+FvDlp4W8PW2k2mWWIEySsPmmkPLO3qSf6DtWzSL0FLQBwlyhtPjjZTk4jv9BkgA9XjmDfyeu7HSuE8ZKbb4geBNTLlUW7ubNueGM0J2g/ildyTjJzxQA6qGravYaJYy32p3kVpaxj5pJX2j6D1PsOTXJar8QzcX8ukeDrE67qcfyyyo+20tfeWXpnr8o64IzmjSvh8bi/i1rxje/27qyHdEjgra2ue0UfTj+8wycA8GgCn/bvinx5+68NRPomhPw2sXkf7+dfWCI9AR0Y465GCMV0vhjwZo3hSORrCF5LyY5uL65bzJ5j6s5/PAwM9q6FR8ozg07AoAQDgZ7etZuv6Nba/od7pN2P3F3C0TccrkcEe4OD+FadZutava6Jps97dSKqxoWRCwDSsBwi56sTgAdzQBgfDjWbjUPC4sdRb/iaaTO+nXgPd4+Aw9QV2nPuaxbo/wDCx/Gv2IDf4W0GbN0T9y9vB0jz3RM5PqTggjBrl/CPw/i8e6XL4v1XWL6LVb6Z3ja0dV8kodi54zwBgdPlP411PwWu2bwfc6WY4j/Zd7LbefDgxzc7iQR1PzdfTFAHpIAwB1xS1xUEvxIa+h8+28Lx2YmUzMs1wzmLPzbRtA3Y6Z4zWz4hvPEFlBC+g6Xa6g2T5qXF15BAA4wcEEmgDcorE8PanrOpWsr61oR0eeOQqsX2tLgOuAdwZf61S0n4heFdZvWsbXWrdbxH8s28+YpC3oofG78M0AdRRgZz3oooA5zxj4Vt/FekC1aZrW9gcXFlex/ftpl5DD+vt6HBqn4K8VXGswXGmaxCLTxDppEV7bDox7Sp6qw546fkT1+B6VxXjjw1fXNxbeJvDpWPxDpq/Ip+7eQ9Wgf68lfQ+mcgA7RTlQaWsLwx4msvFWhxanZFlBJjmibh4ZR96Nh2YfqMEVuDpzQAtFFFABRRRQAUUUUAFFFFABRiiigDgPH4/sfxF4V8UrlUtL37DdsDgCGcbdzeyttP413ygBRjp2rC8Z6Evibwdq2jlQWubdhFu6CQfMh/BgpqLwLrx8SeCdJ1R2zNLAFn/wCuq/K4x2+YGgDo6KQdKWgAooooAKKKKACiiigAooooAKKKKAOe8c6J/wAJH4J1fSgm6Wa3YwjOP3q/Mh/76C1J4M1seIvBmk6tvDSXFspmI7SgbXH4MGFbbda4P4b/APEtuvFHhkkAaZqjyQRgYEdvOPMjH6tQB31FIOgpaACopmlETmFUaTadgdtoLY4BODgZ74P0qWjFAHmOq+FvGeseN9I8RXMWg+XpikR2gvJsFjn5t3leu3t/DXTSt43mj8uODQbMngzG5mnK/RPLTJ+p5rqKMUAc14e8I2+i3txqd1dS6jrN0Ns9/OAGI4+VV6InA4HpWtqmr6folmbvU72C0txx5k0gUE8nAz1OAeBzV+vKvi35aa94Rl1cZ8OLekXYwNvmcbN+eq43cem/2oAj8MeLtA174p67rf8AaNvHDBp8NnZSXDiMyxgtJKQGIOAQO3TB9a1p/G+q+J7iSw8B2iTRIxjm1u9UraxY6+WMZlbr04HGcg5rifivN4QuYNGXQY9MutSS5UslkiyKbdQSVcJ1GduB1wDjvXrfhnxD4f13TIz4dvLSa2iQAQwDaYl6AFMAp9MCgDN8O+ArDR786tqFxNrOvPw+o3vzMvqI16RrzwBzzjOK68cgZoHSloAKKKKACiiigArhPiZvuF8LacgBF34gtRIvrGu52/8AQRXd1wninzLr4peCLRTmGH7bdyr6bYgiH83oA7odKRs54zTq4nx7rt8htfC3h9wNe1cFUkB/49IOjztjkYGQvqenIwQDLuD/AMLG8bC0GJPDGgThpiOVvb1eiehRM89iTznIx6SuNox0xxWZ4d0Gx8M6DaaRp0ey3t49oJ+856lm9SSST9a1KACkPWqmoajaaVaTXuoXMVtaxAF5ZXCqo9yffj8q4T/hKfEfjgmLwdAdN0hjh9dvouXHT9xEeW+rcdRwQKAIPjFrenaXY6DLNcg31nq9texWkbAyzKhIYAemGPJwM4FTnQfE/jwLL4nnfQ9EbldHs5f30y+k8o6D/ZX15wRWb4s+HWkaR8MfEjRLLd6m9qZp9Ru3Ms8pjKvyx6D5AMDHQdTXp2mXSX+lWd6mClxAkqn1DAEfzoAbpOlWGjadFY6bZw2ltGPlihUKB7/U9zV3A9KKKADpVPUtStNJspb6/uY7a0hXdJLI2AO34k9APXA71m+KvFNn4V05bm4SW4uJnEVpZwLuluJD0VR/M9vyo0u3vda8Nxx+LdL083Ep3y2ijzYkAbcgO7ILABcnpkZHagCt4Y8Wt4qkubi10m9g0lAv2a+uF2C765KIfmC9CGI5z0FYeteGPCfhiPUPF/iH7Vqk8BaZZNQmM/l5OViiU4UfNgLxkcZNegHgemB0zivN4CPiN41+1H5/C/h+f9yO17eAff8AdY84Hv65IABzOk/DPxZ/wjM9zYa/caHJfrLcto0W7ZHu5SPduG042qTjP1xg918J009Phxpf2BHXIf7Ssn31nDESA/RgQPbFdoOmR3/KvP8ARgfCnxR1HRG+TTvEKHUrLPQXK4E6D1JGH9hQB6EBS4pFOVBpaACqF9oul6pNDLf6daXUkDh4nmhV2jYd1JHH4VfooA5vxPb+Ki8F54av7MGBW8ywu4vkuc4/5aA5QjBxxjJ54rQ0S/vr/R4LnU9NbTLxtwltXlWTyyCR95eCDjIPoa1KzNc0e08QaVcaVfrIbacAMY5CjAggggjnII/xBBoA0h0pa5fwnpviHRhdafq2ppqdjCVFhdOCLkpzlZuxI4AbvyT1rp1YMoZSCCMgjvQB514ntLnwNr8vjTR7d5dNnKjXrGJckoOlyg/vLzu9RknHLV3tje22o2EF5ZTJNbTIHikQ8MpHBqd1DAqVBBHIPevM7Yt8LfESWMr/APFHarNi2kbpptw3Ow+kbnJHYHPTkkA9OopF+6P8aWgAooooAKKKKACiiigAooooAafyrgvBOdF8Z+LPDLDEf2karZg/885vvhR2VXBH4mu/rgPGGND+IHhTxIMJDcSPo94wHJWUbosnsA6k/jQB34ooHSigAooooAKKKKACiiigAooooAKKKKACuDbOlfG1cbUg1vSCCOheeB+v/fD13lcF8QVFj4h8Fa4FJa31cWZI6KlwhQk/iF/OgDvR0ooHSigAooooAKKKKACsLxl9kTwdrE97axXMNvZyz+XLGHBKoSODxmt2uJ+Ll09p8LtdaJSzyRJCAO/mSKmP/HqAOK+GOjW3hrxdpsD2ib9W8OQ3sc0g3Okw4kRCeRkPkgeg9K9A1/4e6Br12L8wyWGqA7l1HT38mcH1LD734g1keNraPQtT8Ea1Gh2adqC2D4OFWGdPLLH2BCV6CKAPPfP8f+EuJY4fFmlr/wAtIQIL6Md8r9yTA9PmJ9K3PD3jzQPEszW1pemC/TiTT7tPJuIz3BRuTj1GRXT1heIvCOg+KI1TV9OimkTmOcZWWP8A3XXDCgDcHSlrz0aN458J4Oh6mniPTUHGn6o+y4Udwk4GCT/tjgcVf0n4k6NeXg07UxPoeqcf6Jqa+VuPT5H+64J6YOT6UAdnRSDpS0AFcIA938c5GBBhsPD4U/7Mkk+f/QUrujmuE8Kh7j4leOr9mDRK9paRn+7si3MPzegDpvEOv2fhnQ7zV9QkK21um4gH5nboFA9SePT9cc94C0K9jW68T6+n/E/1fDuh/wCXWD+CFQemBgn1PXJGazLbd8RvGv2xvm8MeH7jFsP4b29XrJ7qnQe/rkgdT4l8YaL4UtUl1O6All4t7WEb5pj2CJ354ycDJGSKAN/PPtXFax8Qol1N9E8MWb69rQ4aOBsQW/vLL0XHp1OMcVmtpni3x982ryzeG9Abpp9s/wDplwvYSv0jB4+Uc8kH1ruNF0LS/D+nJYaVYwWlsvRIl6n1JPJPucmgDkdP8Az6nex6t44v01q+Rt0NkoK2Vqf9mP8AiPUbmz24yM13iKpRRtGB0GOlPxRQBn65YjU9A1LT2Hy3VrJCf+BKV/rWJ8M71b/4Z+HZlOQtjHCfrGNh/Va6o1wnwnCW3hO80mPgaVqt5Z4HbEpYf+higDvKxPFPiWz8KaJLqd5vfBEcMEf355T92NB3Y/yBPatd22gknAHU56VgaTd6H43tLHXIrRbhLW4k+yTTwgEMrFC6deDjIP0PBFAGlo73t7o9hc6xZQ22olBJJCj+YIXIIwGIHODg+mSMnqdHFIOgyc1jeKPEdp4V0K41W7yyxACOJfvTSH7qKO5Y8e3X1oA57x7rF7dXdr4M0KUpquqIWnuFz/oVr0eU46E/dXpznkcVj+Jda1X4Y6TpWn6JZ6XJp7yLaWluwfzc4yWYggHLZyQOS1b/AID8PXmnW9zrmuYfxDq7Ce7bORAuPkhXk/Kg4+vc4Fch481G3u/jF4a0+5Mps9LT7ZKIoXlIbO4fKoJP3I+g70Ad6q+NtgJk0ANjkeXN/PdXn/jK48ZXOp+Tdafpy32iW/8AbVjc2ZkIlEbqrx884KswK8ZwK7EeObXVvFWm6Fo73Hms7T3bS2rxBIVU8YkUHLMUGQOOea6Y6dC+sDUWLGYW5twvYKW3H+VADtH1W21zRrPVLN91tdwrNGe4BGcH3HQjsRV2vPfAbN4c8Qa54IlbEVq5v9LB72spJKgeiPkf8Cr0IdKACiiigAooooAguraG8tZ7WdA8M0ZjkQ9GUjBH5Vyfg/Q9a8Lahd6K84u/DiIJNOmlkzNBknMBHVlHUMexA57dniq17Cbm0nt1nlgaWNkEkLYdMjG5eDyM5+uKALA5AzVHWNKsdb0m60zUYEntLiMpLG/Qg989iCMgjkHBFc74D1DWGs7zQteWZ9T0eUQNeMh23kR5jlB6ElRyMkgjnriuwHT3oA898IarfeHdZHgfxBO0kqKX0i/f/l8gH8Df9NFHUdwPoT6Ev3Rmuf8AGHhe38VaP9keQ295CwnsruP79vMvIcf1HcfhVLwX4ouNXhuNJ1qMW3iHTCI72EcB/SVPVG68dDQB11FIOlLQAUUUUAFFFFABRRRQAVy/xD0V9e8C6tZw7xdCHz7cx/e82M70x9SoH411FIcZ5oAyPCmtJ4i8KaXq6FSbq3SRwvRXx8w/Bsj8K2K8/wDhyx0jUPE3hNj8ul3xntQBgC2nHmIB64O7P1r0AdKACiiigAooooAKKKKACiiigAooooAK4f4txSn4calc24H2iyeG7jJ7GOVWJ/IGu4rE8YWbah4M120UZebT54147mNsfrQBrwSrPBHKhyrqGBHcEZqSuf8AAt0b3wD4fuGbc76dBuPqwQA/qDXQUAFFFFABRRRQAVwvxTZX0HSbI/8AL9rdlbY9cyBsf+O13VcJ8R41nvvBcLAkf8JFbyYHXKJIR+GetAGj8SNKbWfh5rdpGGMy25ni2fe3xkSLj3yo/Otfw5qg1vwzpeqDj7XaxzEehZQSPwORWiyqwKsAQRgg9xXCfCkvZ+HL/wAPvu36HqVxZKXOWaMNvRvoVfj6UAd7RRRQAYHpWdrGiaXr1mbTVrCC8gPOyZA2DjqO4PPUc1cni8+CSHe6b1K70bay5GMg9jXkmgQahrXxO17Sk8R62dG0xFTH207jKQAQT9Q/5UAbo8Fa/wCGPn8F6+62qYxpGrFprfA/hR/vxj2Gck81Na/EuKwuI7LxjpVz4dunbYs0/wC8tJG9FnX5fcg4x61dv/CWox2zSaR4p1iC9QZi+0zieJm7BlYdPoe/fpUfgbxJH458MzJqllB9st5Da31syhoyw77TkbT6c9D1oA3b/wAR6LpmmpqN9qtrDZyKWjlaUYkHX5Mfe/DOa8T0/wAU/btO13SdK1Fbe517Wrq5uL+T5F0+w+VfMYnGCVGFHByexwTe1vwt4Y8NfFrSI9Qs4bTw5cwSSxxSyH7N9owwYEMcKPuHA9V7Zqr8RR4JtfHfh+Szg054Ipd+rR28O+FYQy8usYOSBvOPpkGgDq9L1vUNU0qDQvhppy2ejWqeT/bd9HiIAdTEh5kbOSWIxnORzmuq8NeBNL8P3LajI82pa1J/rtTvT5kzHoQp/gGOMDsMc1s6RqemarpsVxpN1bXFngBGt3DKMduOn0rQFACiiiigAooooATvXCeBylp4w8d6SvBj1KO8IHH+viVv5qa7yuDsXWx+NmtWqgD+0NGt7xvrHI0WT+BFAHR+KdGl8ReGr/R4r97E3cRia4RA5VT94Y4yCMjr3q/p2n2ul6ZbafZxCK2tolhiQc4VRgD9K5PRrO/v/ifr+tXcNxDa2dvFp1iJFZVlH+skcAjB+YgBh2FdrQAjHAJ54GeDXm+k7viH4yHiCXLeG9FmMelrj5bu4HDXHPVV6L155yMEVZ8c6jda7qkHgPRpWW5vo/M1O5Q/8elpnDf8Df7oHvz1BrttM0600nTLbT7GBIbW3jEcUa9Ao6f59aALI5HavKfh1/xPvib4x8Sn5o0lFnA3YqDjj8I0/OvQ9Y0qXU41SPV9Q05VzuNkY1L/AFLIx/LFc5oXw3g8NW0ttpHiPXLaCSUyyKGt23NjGcmI+lAHTS6dbJrS6zI+JIrVrcFiAqoWDMc/8BH5VV8OalNrNtc6m0mbG4mb7Eu0D9yuFDe+4hmHsRWNqvw9Gt2jWuo+K/Ec1u4w8X2iFFkHowWMZHeuutLWGzs4LWBAkMCLHGoGNqgYH6UAcN8R45NGuNH8bWysW0efZeBBkvaSkLJx/EVJDAdBya7yCRJYI5InV43UMrKcgg9MGor6zg1GxubG6jElvcRtFKh/iVgQR+INcZ8M724g0m88LX8ha/8ADs/2Ni3BeAjML+wKcD/d96AO8opAciloAKKKKACkwD2paKAOc8aeIJ/C2gf2vDZrcwQTx/axuIKQFgHYAA5IyOPx7V0EUiTQpJGwZHAZWByCD0NQX9lb6lY3Njdx+ZbXETRSoeNysMEfkTVXRE06z09NK0ydHh01VtfLWbzGi2qMKx6g4x1oA08A9hXGeN/DN7dTWviTw8Vj8Q6YCYlPC3cX8UD+x5x6H0zkdmOlGAe1AGH4X8T2XivRY9Tst6ZJSaCTh4JB95GHYj+Vbg6CvOvFVhc+C9fk8a6NA8ljNga7ZRDPmRjpcKOzJySe4yTjk13mn6ha6pp8F9ZTrNbXCCSKRDkMpGRQBaooooAKKKKACiiigAooooA4DxD/AMSH4q+HtZGVttWgk0m5bOFD/wCshOPUncM1346Vx3xO0uXUfA17PacX+nFdQtXAyVkhO/j3wGH410ei6nDrWh2GqW5/dXduk6+wZQcH35oAvUUUUAFFFFABRRRQAUUUUAFFFFABTJUWSN0YAqwIP4in0hA9KAOH+D80kvwr0QTAiSJZYWBPTZK6j9AK7muH+FYEfhS6tQf+PbVLyEr/AHcTMf613AoAKKKKACiiigArifG//I0+CP8AsKv/AOiJK7auJ8b/API0+B/+wq3/AKJkoA7auD00jSfjNrdl83l6zp0F+mfuh4iYmA98FWNd52rgvHY/s3xZ4M8QDIWHUG0+YDoUuE2gt7BlH50Ad6OlFA6UhPPWgCC9uorGyuLuY7YoI2lc+iqMn9BXm/wUtZZvD2p6/cjFxq99JKx9QCef++i9aXxb16HSvh9qcaTxi6ulFsiBxuIY4bj/AHd1bHg63tNA8E6RYvcQIYbVDIS4A3kbmP8A30TQB0M0scEMk0rBI41LszdAAMkn8q8p+B6S3UPiTWmQrFfX+Uz6jcx/9GCtXxTrs/jCGbwv4SlFwZ/3d/qScwWsR+8u7ozkcbR2J/DXu/DNhofgGXTrM3EcVjZTbDHO8e9tpYs2wjdk5OD60AR/E2206X4e61c31rBM1vZyvbSSICY5Cu1SpPQ5I5HX3qXwT4M0bw3olmbbToY757ZFuJ2XdI7bRuBY8gEj7owPauS8QKbn4CaHpu8h9Sj06zUg8ks8ZP6A160oAAwABjigDitT+GukTX7anoc9x4f1Y8/adNbYrnt5kX3GXPJ4BPc1S/4SDxn4UwviLSP7b09OP7S0hf3oA7yQHHPqVOBivQ8CigDE0DxXonim1M+jalDdBR86A7ZEP+0h5XoeorbFct4g8A+H/EN19tmtntNTX5k1CyfybhSOh3Dr+OaxTJ4+8I4yIvFulr3XEF9Gvfj7smB6fMT6UAeh0Vy2gePtA8RTGzgu2tNSU4k0++TybiNv7pRup/3Sa6gdKAFrz7xTeR6L8VPDWoSZ2XOnX8DnsFjVZf6GvQa83+LNhDef8IyLgyLDcaoNPlePAZI7iJ4mIJ6dRyeOnB6UAdh4W1iTxD4W03V57UWz3kCzeSH37QeRzgdsHp3qDxh4mh8KaDLqMiGadiIbS3XlridvuRqBycn06AE4NaGn2Vtoei2thC5W1sbdYUaVuiIoALH6DrXC+HI5PHvio+MLxD/YunloNDiYf6xs4e5I9TjC5/IEAkA3PAvhm40PTJ73VpBPr2qMJ9QnOD8/8MYI/hQfKAOODjFdaKReRmloAMZoxRRQAUUUUAFee+Kf+KY+IeieKF4s9QxpGo/7O4kwyH6NkEnoMV6FWN4p0GHxP4a1HRbggJdwlFYjOx+qtjvhgD+FAGyKK5L4e+IJ9e8JQtf5XU7J2sb9Ccss8Rw2fqMN/wACxXW0AFFFFABRRRQAEZrkNH0W/wBK+I3iK9EJOl6pBbzLKGGFnQFGULnPIwxbHPrxXX1zGs+IbnTvHXhvRFWH7Nq0d0XZlJcNEqsMHOBwT1BoA6ZelLSLyM0tADXVXVlZQwIwQe9eZws/wt8RraSMf+EP1WbEDkcadcsc7D6RsckdgfQZJ9Oqjq2mWetaXc6bqECT2lzGY5I26Ef0PfPUYyKALo6cdKWvPPCOq3nhnWV8Da9PJK4Uvo9/J/y9QD+Bv+miDt3Hpxn0IdKAFooooAKKKKACiiigBrqrgqwBVhggjIIrg/hezabYax4UkOH0LUJIYgWyzW7nzImP1DEfhXfYrgL4f2D8ZbC7A22viGxe0k2jA+0Q/OjMfUoSo+lAHf0UA5GaKACiiigAooooAKKKKACiiigApDS0hoA4f4Zf8g/xEO//AAkN9n/v5Xc1wvwyX/RfFEgZiJPEl+wBP3fnAwPbjP413Q6UAFFFFABRRRQAVw/jw+V4g8Ezt90ayIvxeKQCu4rgvieHVfCVwh2+T4ks2c99hLKf/QhQB3o6VyHxO02TVPh3rMcDMs8EP2qJl+8GiIkGPf5CPxrrh0psiLLG8bqGVgVYHuKAKeh6kms6Bp2pxjCXltHOB6blBx+tX8VwnwpmaHwnPoru7y6Jf3Gnsz9SEclT9NrAD6V3dAGRc+FPDl7cvc3WgaVPPIdzyy2cbMx9SSMmol8GeFlOV8NaMD6iwi/+JrcooAjhghtoVhgiSKJeFRFCgfQCsbxbf2dj4a1Fbu7gt/NtZUjErhS7bDwuSMn2FbtGB6UAeNJeWes6B8MdItryGWZLy2nliilDMhhhZyGA6YPY17IuCox07Vwmtot98ZfC8I+9p2n3l2R/v7Yh/M13Y6UALRRRQAUhxn3pa4X4jeC7fX9A1C7tInj1iOLfDNHIwLFRnbjODkAjn2oA3vEHhPQvFEAi1jTobkr/AKuUjbIn+64+Yfga5n+wvG3hPnw/q417TkxjTtXbE4UdRHOByew3jAFUvhXq+iWvw2/tUkW7wkx37l2dmkB+XGSSSQy4A6k4FWNJ+G+mXupXOuatazx/a38yHTPtDhIFx/FhuXPUjO1ckDOM0AaWl/EvSLi7XTtZjm8P6r/z66mPLD/7kn3XB6Ag5PpWP8cjaS/DO9hlmiFy0kL26M6hnIkUHaDycKWPHbP491faHpWqaYunXun211ZqAqRTRhlXAwMZ6HHQjmvHNN8LeHNJ+MF3o+tRxrpsVmh0i3vp/MiIYg4G8/3vMwuMZ3ccCgDo9b1yL4hT2PhLw7el9PuYln1e8gJHlW4/5Yg9Q7ngjsOoPNemWdpb2FnDaWsKQ28CCOKNBgKo4AFeJya34X8HfGqBtKvLOz0q6tTDqPlf6hJDuKgY4ByEz0C89MkV7Za3UF5bJc2s8c9vIN0csThlcHuCODQBPRQOlFABRRRQAUUUUAFJgelLRQB56x/4RP4tgk7dN8URAeyXkI6+g3IR9SPavQV+6Ov41y3xB0GfX/Ck6WOV1Szdb3T3HVZ4juXHueV/GtDwrr8Hijwvp2s25AW6iDsgOdj9HTPswI/CgDaopB0paACiiigArhPFM0afFbwFE1tFI8g1HbK5YNFiBSduCByODkH8DXd1j3Nvot14os5JpIG1qygeSCPz8SJDIQrNszypKgZIwOxBoA11ztGetLSKcqKWgAooooA57xd4Wt/FekGzkka3uYmE1ndx8SW0y/ddT/Mf/rFHwX4nudXiudH1tFtfEWmkR3kI4EoPCzR+qN7dDxxxXX4rjPG/hm8vZLbxH4fdYfEemAmEnhbmP+KCT1U9s9D0xnNAHZDOBnrS1g+FfFFn4s0OLUbQPE4Yxz28nD28y/ejb3GfxGDW6OgoAWiiigAooooAK4b4q2cz+Dzq9om6+0S5i1OAZwP3bfNn22F/yFdzUF1BFd201tcIHhlQo6t0ZSCCPyoASwvINR0+2vbZ98FxEssbf3lYZB/I1YrhPhXczR+F7jQbpy11oN7LpzluC6qcxtj0KsAP92u7HSgAooooAKKKKACiiigAooooAKTvS0hoA4f4YKW0bWpsfLNrl9In08wj+ldyOlcL8IpFufh7bXq/8vd1dT59czyV3VABRRRQAUUUUAFcJ8XpPs3w+ub/AASbK6tbgYGeVnT+hNd3XL/EazF98OfEUJGT9glkAHcopYfqKAOnHIoIz1AP+FZnhu//ALV8L6TqH/P1ZxTH6sgP9a1KAOC0QDSPi/4j00ltmrWcGpwrj5QU/dSfiTtJrvB0FcF42xpXjjwbr24rGbt9LnA/jE6HZn2Drn8a74dKACiiigAoopDQBwtgqXvxs1u6HL6fo1vZ8Hp5jtJ/QV3dcH4GCXnjDx1qq4PmapHZk/8AXCFV/mxrvKACiiigAqveXUFjbTXd1MkMESF3kc4CqOSc1S1rxFpPh6FZtW1CG0R87PMblyOoUDkn2HNcn4e8R6Z8RtXnmjn3WGmzDybF+GmcYInkX+6CflU9CCTzjABw/hKKDQ/jA9ne2U1rYaruvdMhuCVCOc7GKdN2N4APK5HeveBXj3xxmsbW30jUob6K31ywnWWCPOHeMnk4x2ZR14HPTNegeFvGOkeKtPhlsLyGS58pXmtlb54SeoI9j3/KgDburiK0t5bieVIYIY2klkc4VFAyST2AxXl+meG7b4pX934q8QWkv9lSx/ZdItizRsIVYkzNgg5Zs49vXg1oeKZ5PHHiZfBNjIw0y12z69cRkjA6pbhuxYjJ9h9RXoVvDFBbxRQxokUaBERVACqBgAAdBjtQBzHhbwZ4b8O6XPpVjFBdvzFeSTLHJLJu+YLJgAYwwwCOmOvWsy4+G8em3L3vg7Vrnw9dMcvBFiW1lPX5oWOAcd1xjnAq3Z6ZfaR8U9SuYLeR9J1mzSaaQD5YrmL5Me25CD7ke1dmo+X9KAPPR4417wyRF420J44FHOraUGntj/tMn30A+h5rs9J1nTtctFu9Lv7e8tz/ABwSBwD6HHQ+x5rQri9W+GujXV82p6RJcaDqvX7Xpj+UG9nT7rjPJGMn1oA7MdKWvPP7c8beEvk17Sx4h05OP7R0pAs4Hq9uep90OAPeul8P+L9C8UQl9I1KG4ZRl4M7ZY+3zIfmHOeSKAN6ikHSloAKKKKAEPWvPvC//FL/ABC1rwu522Wo51bTfRSxxNH7YbDBR0BJ716FgelcP8S7K4h0uz8UafGX1Hw/OLtFXrJCRtmjz6FMn/gNAHcDpRVbT7231LTba+tHD21zEssTDurDIP5GrNABRRRQAlclpGkaivxF8Ra5fwKtu9vbWlgwcMWjUFnyAcj5z3A6VreJ9dg8NeG9R1m4I2WkJcKT99jwq/ixA/Gn+G5dTuPDWmz6ysa6lLbo9wsabQrEZ24yeRnB56g9OlAGoMAYHQUtFFABRRRQAUUUUAec+KrC58F+IJPHGiW7y2kqhddsYh/rYx0nUdN6ZOfUE9OTXd6dqFpqmnwX1jOk9rOgeKRDwynp9PoeRVllByCAQRjmvNEL/C7xH5LPjwbqk2I2I+XTLhv4faJzn2U/3eSwB6bRSDoKWgAooooAKKKKAOATHh/40SJgLbeJdPDrz965t+CAO37sg/hXfLwtcJ8U4ntNG0/xJArGfQr6K7Plrl2hJ2SqPYq2T/u13MMqTQpLE4eN1DKynIIPQ0APooooAKKKKACiiigAooooAKp6tdiw0i9vScC3t5JSfQKpP9KuVynxLvFsPht4imY43WMkQ+rjYP1YUAM+F1oLL4YeHogAA1msvT+/l/8A2auurP0GwGl+HdM08dLW0ig/75QL/StCgAooooAKKKKACobq3S7tZraUAxzI0bA9wRg/zqakPWgDivhPcyz/AA20qK44uLTzLSVc/dMcjJg/gBXbDpXBeAtth4l8a6EWJaDVftqA9AlwgfA9gQ1d6KAON+KVlNefD3VZLZtt1ZIl9C+MlWiYSZHvhWH4102kahFq2jWOowHMV3Ak6fRlDD+dT3EEd1BLBKoaOVDG6nupGCPyri/hPcOPBI0qeXzLnRrufTpm943O3/x0rQB3NFFFABSHGaWs/XL5dM0HUdQY4FrbSTE/7qk/0oA5L4TbLjwnd6qgGNV1S8vM+uZSv/std6Olcn8MrJbD4Z+HoFUANZJKQBjl/nP6sa6ygAooooAMA0YHpRRQAVy3jjxPN4d0uOLT4Vuda1CT7Np1r3klP8RH91Qck8DoCRnNb9/ewadZz3t3OsNtAhkkdugUDJP5CuF8E2dx4m1qfx7q9u8bXCeTpFtIObe15w+OgZ+ST6dDg0AdD4M8MR+FNASzMxub2VzcXt0TlriZuWc+2ensBXRDpQOlLQBm67LqMOiX0ukRQy6jHC7W0cx+RnAyAcEfzH9areFfEUHinw5a6pADGZV2zQnIaKVeHQ55BBz/ADraPWub1PUNB8CWD3clsLS1u70G4lgi+VZJDgySEdBwAW+lAHSiimoQyBgQQRkEdDTqADFcx4h8B+H/ABJOt1dWbQajGd0V/ZuYbhGHQh1647ZyK6eigDzsL8QPCX+qaHxbpa9FkYQXqL9fuyYHryTW14f+IGgeIJ/scVzJZ6mPvaffxmC4U/7rdf8AgOa6kgHqBWN4g8K6H4otvI1jTYboD7rsMOn+6wIK/gaANodKK89Ph7xl4TGfDWs/21p69NN1l8yKPSOcfkA3AFWtN+JelS3q6br8Fx4d1Qj/AI99R+RJO37uX7rDPQ5GaAO4pksaTRvFKivG6lXVhkEHqCKVWBUEHOe9OoA8/wDhxJJotzrHgq5di2kT+ZZM5zvtJSWj577TlT6cCvQBXn3j/PhzX9D8bxDbFaSCw1Mj+K0lbAJ9kfDY9TXoCkMoIOQRwR3oAWmscHOadVea4jSZYDNGk8isY1LDcQMZYDOSBkZ+tAGPNf6F4h1S/wDDs8cd7NYiKa5hki3IhJ3ICem75Qcfz5rfT7ornfCHhaPwrpMlubpry9uZWuLy9dcNPKx5YjnAHQDNdEOlAC0UUUAFFFFABRRRQAVR1XTLPWNMudO1CBJ7W5jMckT9GH17HvkcjqKvUUAed+EdUvPC+tL4F12d5SEL6Nfyf8vUA/5Zt/00Tp7j04z6GOlYHi7wta+LNHaxlle3uI2E1pdx/ftpl5V16H2PI49OtZ3grxVc6otzomuqtv4j03CXcQOFmXos0fqrcdOh9MjIB2NFA5FFABRRRQBT1TT4dW0u8064GYLqF4JAP7rKQf51y3wu1Ca58EW9hdsv27R5ZNLuQDwGhO0f+O7a7Q1wOkqdB+L+s6cSwtdcs49RgHRVlj/dyAerEbWNAHfDpS0dqKACiiigAooooAKKKKACuD+K+268O6ZorIWGr6vaWZA/u795P0ASu8rg/Eh/tL4q+EdMUgrZxXOpTp9FEcZ/76ZvyoA7sdKWgdKKACiiigAooooAKMCiigDgrhv7I+Nlq5YLDrmlNEF/vTwNuz/37Yiu8HSuD+KAOnWOjeJ04OialFNMwXLfZ3PlyAfUMPyrvFOVBHegBD1964Pw9nSPit4p0lnCxahDBqtvGO3Bjlb6llFd9XBeMG/sj4h+DtayqQ3Esuk3Bxy3mrmIZ/30/WgDvB0paQdKWgArjvipfDT/AIY+IZj/AB2hg/7+ER/+zV2NcJ8VWWXQdJ0xvu6nrVnaEeoMm85/74oA7DS7NdP0iyskGEt4EiUeyqB/SrdA6UUAFFFFABSHNLXIePfEt1o1jb6ZoyiXxBqzm3sI/wC4cfNK3+ygOfrjjGaAMXXpD8QfFx8LW7FtA0tkn1mRWx9ok+9Hbg+mRub6YyCOfR0REQKigKBgADGBWL4U8NWvhXQIdMt2MjgmS4uGHzTyty8jZySSfUngAZ4rcoAKKKKACqt/ZW2o2U9leQpNbToUkjcZDKRyKtUUAcrZDSfh34YtbO/1iX7BHMILea8bOwO3yR7gOFA4BPAA5IA46lTlRzn39aq6jp9pqllNY31tHcWsy7ZIpF3Kw+n9fWsPRdJh8CeG7uL7dfXmnWu+eGOQea8EIUHy0wMsBg4+uO1AHT0VlaH4h0rxJpq3+kX8V1bsOqHlT6MDyp9jg1qDpQAtFFFABVLU9K0/WbJ7LUrKC8tm5MM8YdcjocHofertFAHnreBNV8OOZfBGvSWadRpWoEz2hPXC5+ePJJPy55p8PxHfSJltfGujXOhSs2xbvmazkJOBiVR8ueuGAwOprv6inghuInhniSWJxhkdQykehB7UAZ93b6d4n8PXNr50d1p9/A0RlhcMrKwIyrDjvwRXO/DbVbibw82i6nJ/xNdEnbTrjP8Ay0Cf6txnqCmDnvg1T1b4eQ6Qt1q/hDULzQbxUMjwWaiW3nIGcGBvlyQMDGK43wZ8P7T4g6XceLNc1S6bVL2d8NaSBfI2EKOoJyNvH+ztx60Ae5ZIPHJHbNcZ4X8LajHrdz4n8TTRT63PmKCOFi0NlB2SPPUnqW6/rnmvg/A9ze69fahqF7qWp2lw2nrdTXDSRmFeQEBJ6sMnr2weTn1penbNAAOVGR+FLR0ooAKKKKACiiigAooooAKKKKACuN8b+GLy/ktvEPh9kh8SaZzbseFuI/4oJPVT29Ce2c12VFAGD4U8T2fivRU1C1V4pFYx3FtJw9vMv3o2HqM/yreHSvOvFdhc+Ddel8caJbyS27hV1yxi/wCW0YzidR/fQdexGenJru9P1C11XT7e/sbhZ7WdA8Uq9GB6e9AFqiiigArgfiaP7K/sDxavH9i6gn2h/wC7bTYjl47nlfyrvqy/EOkR6/4f1HSZThLy3eEtj7pIOD9QcH8KANNTkAjkUtcl8NtYm1nwDpct0GF7bobS6Vj8yyRHY273OAfxrrR0oAKKKKACiiigAooooAQ9a4Tw6P7W+KnivVmVWisIoNJt5B7AySj8GZRXaX13Dp9lcXlw4SG3jaWRz0VVBJP6VyHwptJovA8Oo3SBLvWLibU58d2lYkH/AL4C0AdsOQKWgdKKACiiigAooooAKKKKAMzxDpMeu+H9R0qY4S8t3hLYztyCAfqDz+FY3w31aTV/AOlvcB1vLeP7Hco5+ZZYjsbd7nGfxrqj161wXhv/AIp/4neI9BZSlrqiLrNpxxvOEnBPruCnHpQB346VxfxUtJp/AF9d2oH2zTWj1G3YjO1oWDk/98hq7Nc4GetQXlrFfWc9pcIHgnjaKRT0ZWGCPyoATTr2HUtNtb62bdBcwpNG3qrAEH8jVmuI+FN1M/gO10+6cNeaVNLp0+OitE5UD/vnbXbjpQAVwnjRxc+PPAulkEh72e8OO3kwkjP4vXd1wl24vPjjp1sRkWGhTXIPYNJKqY/JTQB3dFAGBiigAooprHrzQBS1fVbTRNMutSv5lhtLaMySO3YD+Z6ADuSBXIeBtMu9Uv7jxzrcRS+1FNllbvybO0HKL9WzuP19zVO/3fEXxp/ZafN4a0KYNfHGVvLteRD6FUzlhyCTjHQ16SMYGKAAYwAKWiigAooooAKKKKACjA9KKKAMO28KaJY+Iptds9Pit9QmjMcskOUEgJySyjgtkfexnmsbVvE/ibQNVuDc+FZtR0XcPJuNKk8ydF4GHhOCTnccrwBiu1oxQBRutUstPtori/u4bOOUhFa5kEeWIyFyTjPXirKSrKA0Tq6sAQQ2QR9f89KranpGm61a/ZdUsLW9gDBxHcRB1DYwCARwcE8+9Z2geD9A8LT3c2iaclk93t84IzFW25xgE4HU9AKAN4Zx/jSZrjrv4eWt5fXF23iHxNE00jSbItUdEQkk4VR0UZ4HYVta74csPEenxWOo/aTbo4cpDcvEW4IwxUgkc55oA1fMUyFNw3DkgHkZ71xt98RbNNRn0vRtI1bW9QglMEyWlsyxwuOoeV8KB781r+G/Bvh/wksw0TTltDPjzW8x3Z8ZxksST1PfvW8FGOg/KgDnvE/h2fxLBb239uX+m2anNylkwR5weil8ZUdc44Oee1cjJ8IDYzPF4c8Uaro+nzNmazjcuCMfwnII4AGTuPuelenHrXA6l8QtT0zxRZeHpPDBe9vRugCXyYK5IyeOBgE/hQBHH8H/AA/Y2cH9k3WpaZqMClV1G2uSsrjJOHGNrjJ6YGQAKX+2PHXhLjW9PTxLpy/8v2mRhLlR6tB0P/ATW2+s+KEQkeE0cgdF1NPy5WpPCPieXxPaX0s+ly6dLZ3bWskMkgY7lCk9B/tUASeHvGWg+KYy2k6lFNKgJe3Y7Jo8ddyNgj0zjHvW+pyPxrm/EPgXQPEri4vbMRXyY8u/tmMNwhHQhxzx2zke1YIg8feEifss8XizTF/5ZXDCC+QdsPykmOpLck8cUAeh0VymhfELQdduvsJnl07VF4fT9RjME4P+6eD68E9a6sUAFFFFABRRRQAUUUUAFFFFADSMnkA/WvNE3fC3xF5TMB4N1WbEZI+XTLluce0TnPsp/u9W9N75qjqumWesabc6dqECT2lyhjliboy/XsfccjqOaALo6UtedeE9Uu/Cutp4G124eVdhbRb+T/l5gH/LNj08xOnuMdOM+iDp1zQAtIRzmloxQB5/4Y/4kXxN8T6ARth1BU1q1UerfJNn33gGvQB0rgPH4/sfxF4V8UrlUtL37DdsDgCGcbdzeyttP413ygBRjp2oAWiiigAooooAKKKQnrQBw/xVuph4QGj2jlLzXLqLTIWHOPMb5yfbYGz9a7K0tYbKygtIECwwRrFGo7KowB+QrhpmHiL4xwQq2618M2Zmkwx/4+pxhQw6HEYJz1BNd+OlAC0UUUAFFFFABRRRQAUUUUAFcB8TIzpX9i+MYUJk0K8DXG0ZLWsuI5QB3PKn2wa7+qmpWNtqenXen3ab7e5haKVM43KwIP6UAWY3WSNXRgysAQwOQR60HkmuJ+GN9croNx4d1F92o6BO1jKcY8yMcxOB6FMY+ldxQBwXhf8A4lHxM8XaKSqRXnk6tbKOp3rslP8A32orva4PxOf7I+KHhLWAAkN6k+k3Mn+8BJEP++1Nd4OlACGuF8Pv9t+LvjC4KkiytrKzRj0+ZWkYD8SK7o1wnw6Y3d/4y1J1wZdemgU/3kiVUU/oaAO8FFA4GKKACuL8feILy0jtvDuguD4h1c+VARn/AEaL+OdsdAozg+vQHBFdDr2t2Xh3RbzV9RlMdpaoXc9z6KPUkkAe5xXM+A9FvpJLnxdr8W3W9WAxC3/Lnb9UhHocct0568igDo/DXh+x8L6Ba6TYIRDAuC7fekY8s7e5OTWtSLwAKWgAooooAKKKKACiiigAooooAKKKKADrRRRQAUYHpRRQAUUUUAIa8h0u8tdW+PesaldXMMdvpFt9mhaRwvz42kc/WWvVr67isLG4vJziG3jaVz6KoJP6CvLPg9oFpq/h7Ude1iwtrq41K+kkDTwq/wAoPOMjj5i35UAd/p3iS11fX7yw0+aG5t7OGNpp4n3ASOW2oCODgKSfqKt6Vpi6a9++/eby7a5bjGNyqMfkoql4c8N2vh641Z7WGCFL6789Y4F2rGuxVC4HHUMf+BVvAcDIoAAKXA9KKKAMfXvDOieJbY2+s6Zb3cYGFZ1w6f7rDBX8CK5M+GfGHhY7vC+unVbFf+YXrLFiF9I5xyPQA8D3r0SigDhtP+Jemi7TTfEltc+G9UJx5WoYEUnvHMPkYZ78V2yOroGVgykZBByDVfUdMsdXs3s9RtILu2f70UyB1P4GuKPgDUfDxabwRrkunrnJ0y9JuLR++Bk7o+SSSp/CgD0CivP4/iLcaLKLXxto1xosmcLfRA3FnJzgHeoymT2YcdzXb2d7bX9qlzZ3UNzbvyksLhlYeoI4NAFmigUUAFFFFABRRRQBz/i/wra+LNGaxmke3uEYTWl1H9+2mX7si9+vXkcdx1rN8EeKLvVFutD1xVt/Eel4W7jX7s6fwzJ0yrcdOh9MiuyrjPG/he71KS11/QCkPiPTPmt3bhbiPq0Enqp7ehPBGSaAOyByM0tYPhTxRa+LNFS/tleGVWMVzbSDElvMv3kYeo/lW6vQf45oAwvGehL4m8Hato5UFrm3YRbugkHzIfwYKai8C68fEngnSdUdszSwBZ/+uq/K4x2+YGuhP5VwXgnOi+M/FnhlhiP7SNVswf8AnnN98KOyq4I/E0Ad8OlLQKKACiiigAqpqN9b6Zp91qF2+y3tommkb0VRk/yNW64D4kSPq82j+C7dmEmtXG67KnBS0i+aTkdCcAD15FAE/wAMLG5HhiTXL9Nmoa7cNqMy9div/q1HfAQDH1ruAMAAUyONI4kjRVVEAVQowAB6Cn0AFFFFABRRRQAUUUUAFFFFABRiiigDz3xMR4R+IOl+KFJTT9VC6XqeOiv1hlP0OVJPQfWvQVIKgjGPasrxHodr4l8P32jXg/c3cRQkDJRuqsPcHB/AVi/DvXrzVtAey1cka3pMpsr9T/E69JPcMuDnoecUAQfFa1kk8DT6jbR77vSLiHU4PZonBJ/753V2NpcRXdlBcwOHiljV0YdGUjINRajZQ6npl3YXABhuYXhkH+yylT/M1y3wrvJrn4e6dbXWBd6cX0+dAfuNCxQD/vkL+dAHYuyorM5CqoySe1cR8It83w6sb6Zds19PcXTg9y8z4P5Yrf8AF16dP8Ga3erw8GnzSL9Qhx+tReBbM2PgHw/bOpV00+DeD2YoCf1JoA6AdKaTz/PmnVw3j7Wr6We18I6BNs1nVAfMmU82dsOHmOOQey+pzjkUAZ3PxH8bZID+F/D8/wAufu3t6O/ukf8AM9wcD0nGRzz+FZ2g6JY+HdDtNI06LZa2ybFBAy3qxx1JOST6mtLGBgUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcv4t8P614js7rTrXXYLCwuYfKkX7CZZMH73z+YAMj/ZqPwh4Z1bwtp9rpjaza3enW6sqRjTzG+SS2d/mEdSe1dZgUUAIOlLRRQAUUUUAFFFFABRRRQBHNFHPG0csavGwwysAQfqK4e7+Gdra3L33hLUbnw3esdzLafPbSH/bhPyn8MV3lFAHnv8AwmPiXwv+78YaEZ7NeDq+jgyx49ZIvvpx1PIzwK67Rdf0rxFYreaRqMF5AcZaFs7TjOGHVT7HBrTwPQVx2tfDjQ9SvzqViJ9F1YZxf6W/kuSeTuA4bJ65GSO9AHYg5FLXnf8Aanjzwkduq2C+KNNH/L3pyCK7Ue8OcOfQJ2HNdH4e8baB4pBXS9Rje4X79rJmOZMdco3PHTOMe9AHQ0Ug6UtABRiiigDzvxXp114R15/HGhwNLCwVdbsIh/roh/y2Uf30H5j8c9zp2o2mradb39hOs9rOgkjkXoQf61ZYAknAP1rzTn4W+IQuceDtVmwvHGmXDHp7RN+Sn0/iAPTa4DxhjQ/iB4U8SDCQ3Ej6PeMByVlG6LJ7AOpP413ynKg1zHxD0V9e8C6tZw7xdCHz7cx/e82M70x9SoH40AdQOlFY/hTWk8ReFNL1dCpN1bpI4Xor4+Yfg2R+FbFABRRRQAx2CBmZgqgZJJwBXAeAg3iTX9Z8dTKfKu2Nhpme1pG3LD2d8t+FWPiTqNxPaWXhLTZCupeIJDb7x/yxtwMzSfguR+PHSuw07T7XS9MtdPs4xHbWsSwxJ6KowP5UAWh0ooooAKKKKACiiigAooooAKKKKACiiigBMA9hXnfi4f8ACG+M7LxnEuNNuwthrQXoqniKY/7pwpPocAc16LVPU9PtdW0+5069iEttdRNFIh/iUjB6c9+vbigCypBUEEEHoc1wvhH/AIlXxB8ZaGVCRTTxarAM8v5q4lP0DoB+NN8AahdafNeeCNXlZr/SADaSv1urInEcg914U+nHU5pdeUaV8WPC2rAfu9Rtp9KnkPAH/LWMfUsGFAE3xdllT4ZatFAR59z5Nsgz1LyopH5E12sMSwQRxIAFRQoA9BxXD/ErfP8A8Inp8ZB+0+ILXzFPeNNzt/6CK7gnaM7sDHc0AZXibxDZ+FtAu9XvmPkwLkIv3pGPCovuTge3U8Vh+A/D17Zrd+INdCt4g1hhLcgc/Zo/+WcK+yjr6nucZrJ08H4h+NRrUm4+GdCmK6epPy3d0PvTf7qdF9+c9RXpKjAGRyKAAdKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAMDOcc1zfiLwRoHidxLqFiBdpzHd258qdD2Icc8e/FdJRQB56LPx94TGbC6j8VaavSC8cQ3ij0EuNr+pLDJ6CtLQviLoetXQ0+WSfS9V6NYalH5Mv/Ac8N+BJx2rsMCsjXvDmi+JbQ2mtadb3kPRfNX5kz/dYYKn3BBoA1l5Az170tee/wDCKeK/Cx3eFNeN9YL/AMwrWWLhR6RzD5l4wADkDvViw+JdhHdx6d4ns7jw3qT8LHfY8lz/ALEw+Vh7nFAHdVS1PT7XVtPuNOvoFntLiMpJE44YH3/z6jkVZSRJUV0cMjDKkEEEHkYIp49fWgDzzwpqN34Q1pPA+u3EksTAtol/J/y8RD/lix/56J+ox04z6FwcVheLvC9r4s0V7CdzBOjCa0uk+/bzL911+h68jjjjrWX4J8T3motc6FryrD4i0zC3KdFuE/hnT1VuM46E44yKAKXw5Y6RqHibwmx+XS74z2oAwBbTjzEA9cHdn616AOlef+IP+JF8VPD2tcrbatBJpNy2cKH/ANZCcepO4V6AOlABUF1cxWdvLc3EqxQQoXkdzhVUDJJPYACpjXnnjeeXxXr1r4EsJCIZAt1rUyEgxWwIIjyP4nPbrgdCCaAHeAoJvEGq6j49v0ZTfj7NpkcnBhslPBx2Lkbj+GODXoK9BUdvDHb20UMSIkcaBEVBgKoGAB7VLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUYB7UUUAcV4+0G+uI7XxHoS/8T7RyZYEUf8fMR/1kJ9cjp79MZzWL411e28T/AAts/F2kgytp1zBqcSA/MjRviRT7qC+fpXppHP8AnivKvEemx+DNV1GRlI8I+JQ0GoL/AA2Ny67RNx/A+cN6HnPQUAbPiCX+0fib4EigdZLdI7y+fHII8oKjfm9J461W71fUrbwLokxS/wBQQvf3C8/ZLTozZ/vNnaB784yDXmnhXx3BZ31jqt4wln0rw2NOjs0bMk1ybjaqp/eJVUJxnAOea9d8C+GrrRrC51HVysuv6q/2m/lX+Fv4YlPPyoOAM444oA6HStLs9G0q102wgWG1toxHEg7AfzPqe5q50GBQKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAwPSquoafZ6paPaahaQ3Vs/DxTxh0P1Bq1RQB58/w+u9AZp/BGuTaUM7jp11mezckk/dY7o8k8lfyoT4iXmhMLfxvoc+k/wjUbbNxZOegyygsmT2YV6DgelMkRJEZJEVkYYZWGQR6UAQWN/Z6napdWVzBcwOMrLC4dT+INcx428MXWqG11vQnWDxFpZL2rnhZ0P3oX6fK36eoyaq3vw0sbe8a/8AC2oXPhu/Y5zZYNvIf9uE/K34Yqs3i3xV4WOzxboX22yTj+1tGUyKB6yQn5l45J6elAFPxDqsPj34V3eraar2+q6WwuxAy/vbS6gO4qR13YDAexr0LRdTh1rQ7DVLf/U3kCToCckBgDg+4zivNtRvrGK8f4g+DLmLU7R0Eeu2Fu2TPFj/AFm3qsiDnDYyv45j+GPjTw9pWiXHh+51q1iis7yVbGSaUIJrZj5kbZOAD85GD6Y7YoA7zxf4mg8KaHLqEqNNMzCK1tkGWnnbIRAOpJP6A8VR8B+GZ9B0eW51NxNrmpyfadRm6kueiA/3UHygDjrjrWJ4aim8eeKf+EyvomXR7Jmi0K3kyN/ZrllPdui56DtwDXoy8rz+tADh0ooooAKKKKACiiigAooooAKKKKACiiigAooooAKaevWnVyXjvUr2PSZdL0iTbqV1BK4kH/LCJFy7+x6KPdh6UAdPbXEN3brNbzRzRNnbJGwZTg46j6V518bJLhfBkUS71sJr2FL6RFyUiySOP94L+PHerHwUuPO+Gdkmc+RNNH+blv8A2au41DTrPVbGWxv7eO5tZhtkikXcrDr0+uDmgDx74keHPBWk+Aor/RltLa+Rozp81tLueb5xuOQcvgZOecY7d/RLK+8aSWNu8+haKJjGpcNq0ikNjnIFsQPoCfqetc7dfBTwk0F4tpHc2lzKu63mW4dvszjoyjPPPUHPXAI4xreDfFV5ezXHh3xEqW/iTTwPOC8JdR5+WaP1U8ZHGCcYHQAGp9s8Yf8AQD0P/wAHMv8A8i0fbPGH/QD0P/wcy/8AyLW+OlLQBz/2zxh/0A9D/wDBzL/8i0fbPGH/AEA9D/8ABzL/APItdBRQBz/2zxh/0A9D/wDBzL/8i0fbPGH/AEA9D/8ABzL/APItdBRQBz/2zxh/0A9D/wDBzL/8i0fbPGH/AEA9D/8ABzL/APItdBRQBz/2zxh/0A9D/wDBzL/8i0fbPGH/AEA9D/8ABzL/APItdBRQBz/2zxh/0A9D/wDBzL/8i0fbPGH/AEA9D/8ABzL/APItdBRQBz/2zxh/0A9D/wDBzL/8i0fbPGH/AEA9D/8ABzL/APItdBRQBz/2zxh/0A9D/wDBzL/8i0fbPGH/AEA9D/8ABzL/APItdBRQBz/2zxh/0A9D/wDBzL/8i0fbPGH/AEA9D/8ABzL/APItdBRQBz/2zxh/0A9D/wDBzL/8i0fbPGH/AEA9D/8ABzL/APItdBRQBz/2zxh/0A9D/wDBzL/8i0fbPGH/AEA9D/8ABzL/APItdBRQBz/2zxh/0A9D/wDBzL/8i0fbPGH/AEA9D/8ABzL/APItdBRQBz/2zxh/0A9D/wDBzL/8i0fbPGH/AEA9D/8ABzL/APItdBRQBz/2zxh/0A9D/wDBzL/8i0fbPGH/AEA9D/8ABzL/APItdBRQBz/2zxh/0A9D/wDBzL/8i0fbPGH/AEA9D/8ABzL/APItdBRQBz/2zxh/0A9D/wDBzL/8i0fbPGH/AEA9D/8ABzL/APItdBRQBz/2zxh/0A9D/wDBzL/8i0fbPGH/AEA9D/8ABzL/APItdBRQBz/2zxh/0A9D/wDBzL/8i0fbPGH/AEA9D/8ABzL/APItdBRQBz/2zxh/0A9D/wDBzL/8i0fbPGH/AEA9D/8ABzL/APItdBRQBz/2zxh/0A9D/wDBzL/8i0fbPGH/AEA9D/8ABzL/APItdBRQBz/2zxh/0A9D/wDBzL/8i0fbPGH/AEA9D/8ABzL/APItdBRQBz/2zxh/0A9D/wDBzL/8i0fa/F//AEA9D/8ABzL/APItdBRQBz/2vxh/0A9D/wDBzL/8i0n2vxf/ANAPQ/8Awcy//ItdDTScHknFAHkfjbwjqU9lfa7b+HNM03VbeB5ftuk6xKkzADLZUW6iQ4HOSCRxmqfhzwx8P7n4TfbrwWjubcvd3jOPOimwSQOcjB4C9GwMg5yes8Y+IL7UNUTwX4ZlH9sXKbry6HK6fAcZc4/jIPyjOec8ZFQW/wAFfBcMtrK1ncTGGMKyvcNtmYfxsAevsML7UAW/hHcX1x8NdLN+pygdIGPV4lYhT/QewFdvnHFMtbaCztYra3hSKCJQkcaDCqo4AArzf41Q2EHg+W/eDOpyPFa2syswZctuIGDjoG/OgD0zOOp+tLn3rj9H+HugWui2MN5pyTXSQos0jSOS74G4/e7nNcrZXVz4b+NUHhrSLmebR7u2MtxaSSmRbZtrHKkklfuqcf7ePSgD1uikX7opaACiiigAooooAKKKKACiiigAooqKaZIEeSWRY40BZ2Y4CjuT/jQBHe3kGn2c95dSiK3gjMksjdFUDJP5Vwuh+JvDdzFearqXiDSo7zUl2mGS7TdBbjIji5PXBLN/tMaiu/HHhzxR4ssPDsGpwyWisJ5nz8lxIrDy4QehyxDHsdoHOSK7bUL3TNIsXvNRmtrW0QjdLLhVHpyaAPOfgFPu8G6hbFgTDqDYwc/KUTH6g16wOleI/B/xDpFlrviSwfUbeNbvUFNiGbHngs4G31P3fzFe2ryOaAFxXJ+NPCTeIYoL3Tbn7Br9gS9hfL/C2OUf1Ru4578HkHrKMCgDlPB/i4+IYp7HULU6fr1jhL6xY/cPZ0P8SHsQT9T1PVDpXI+MfCM2rz2+taJcrYeIrAf6Nc4+WVe8Uo7of0zn2qTwl4yh8QCewvIG07XbIAXunS8NGem5T0ZDxgjPUeoyAdXRSDpS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSE4PWgAJrjvGPiy60+4g0Dw9Cl54kvVJhiJyltH0M0voo7ep4GaPFvjKTTLhND0GBdR8SXQxDag5WBe8sxH3VGR7n9Ra8H+EI/DUM9zdXDX+tXxD31/KPmlb0X+6g4AXoABQBJ4Q8J23hTS3hSZ7q+uW829vpTmS4lPView9B2+uSejAGOlA6UtABXlPxLEuu/EDwh4Zt3jDiVr6QSLuXC8gkZBIwjjr3r0nUtUsdHtHvNSu4bW2UgGSZ9q89OTXkWheK9B1D4x65r17rFnDZW9qtpZtPKED9ASM9RkN/31QB6LfW3i97SRbPVNIScr8p+wyDn0BMjAfUq30rm/hbPot5/as8Ntcrr8c3l6m93KJZWbJxhwANmVIGAPu9OBWxqXxG0KC1k/sq4Os3zKfJtNPUzO7Y4ztBCj3Pv16VnfDHwfqOgxapq2tlRq+sTedPGpBEQyzYyOCdzHP4UAegr05paByKKACiiigAooooAKKKKACiiigAooooATA9BS4oooAMD0ooooAKKKKACuS8YeDhrrw6rplydN8RWKk2d+g/8hyDnchz0IOMnGckHraMUAcd4W8atqd5LoOuW39meJLUZltCflnUf8tYSfvIcE46j3612A6dc1z3ivwjp/iu0jjuGltr23bzLO+t22zW0nYqw5+o6H6gEYGk+MtR0PU4fD3jcRwXkh2WeqxjFvejtntHJ6qe/TAIyAeg0Ug6UtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFRvIE3FmAUckk8Ad6AHnr1riPE/jG7OqHwx4ThjvfEDrmWRuYbBD/AByn154XqePYGjqHifVfGd7LovgqQRWKMYr3X2XMcXqkA/jfB69B68g11nhrwvpnhTTBZaZERuO6aeQ7pZ36l3b+Ikk/TtgcUAU/CPg+18LWs7edJe6ndt5l7fz8yTv/AEUdl7fWulHSjHqKWgAooooAKMD0oooAKAABgCiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKz9Z0fT9e02bTtUtI7q0lHzxyDP4juCPUVoUUAeaK/iH4ZjbL9p13wkoOHA33enqPUf8ALSMD8QPQDnvNJ1nT9d06LUNMvIrq1lGVkjbI+hHUH1B6VeIGegzXB6v4FuNP1KXW/BN6uk6pId09pICbO79d6D7rdPmX+ZzQB3o6UVxWg/ECC81FdE16zk0PX+gtblsxzn1hkHyuORx1+uM12inKg0ALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRTScNyevauG1b4gtPqEmieDrL+3NXT5ZXVttrae8snTP+yOTgjINAHS6/wCIdL8M6c+oateJbW6nA3H5nb+6oHJPsK4n+z9f+JLK+sJc6J4WzkacCVur5e3nEH92n+yOevsRq6D4DEWpx694ovTrWvryksi4htfaGPooH94jJPPGa7YDAoAr2FjaabYw2dlbxW9tEu2OKJQqqPYCrOMUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFGBRRQBk6/wCHdJ8Tae9hrFjFd27dA45Q+qkcg+4rjvsPjPwMc6XK/ifQlBJs7qQLeW6j+5IeJAPQ88AD1r0eigDm/DfjbRPFO6OxuTHex5E1jcjyriEjqGQ88eoyM966NeQK5zxL4H0HxSUlv7UpeRf6m9tmMU8J7FXHP0ByPaufX/hPfBwx8vi3SU4HSK+iX/0GXA/4ET6UAeiUVy/h/wAfeH/EM32S3vGttSU7ZNPvV8m4RvTY2M49s1046UALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFNJ7Zrk9b+Iug6Nef2fHPLqerHhNP05DNKT7gcL+JHFAHWk81y3iPx7ovhydbOSWW+1R+I9NsF824f/gIPy+vJHA4rEax8deMeNSul8K6Qw+a2spBLeyL6NJjbHn2yexrpvDfhDQ/CkDR6TYpFJJ/rZ2O+aU+rueTzk+n0oA5j+wfFXjj5vFNwdD0dv8AmD2E26WUek0w7f7K9jzg12+j6Rp+h6bHYaZZQ2dtHnEUS7RnuT6k+pq8OQM9aWgAwKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDD8Q+EtB8UQ+XrOmQXWBhJGXbIn+64ww/A1zX/CK+MPDgB8L+Jft1on3dO1wGQY9FmX5xgcAdK9BoxQB5+vxLfRz5fjDw9qOiYODdqv2m19v3iAkE9cEV1+la5pWuQefpWpWt7F1JglD7fqByPoa0GUMCGAIIwQa5DVvhp4T1K4+1jTBY3oJK3WnObaRSe+UwCfqDQB146c0tcAPDHjfRRjQvGQ1CJBhLXXbfzMn3mTD/AKGlPi/xhpAP9t+CJ7mNBzc6LcLcBz7RHDigDvqK4i3+LHhF51tr2+n0u6IyYNStpIGX6kjb+tdPp2t6Vq8e/TNTs71fW3nWT+RNAGhRSZ5xS0AFFFFABRRRQAUUUUAFFFJnrQAtFZmo+IdG0f8A5Cer2FnnoLi5SMn8zzXMS/FnwtJJJDpcl/rNyn/LDTLKWZj7g4Cn86AO6pO9cGfE/jnVgRo3gxbCNlylzrV2EAP+1EmX/Wk/4RHxdrQJ1/xrNbxMBm10OEW4U+0py5H5UAdRrHiXRfD0Jl1jVbSyXGQJpQGb6L1P4CuVPxD1DWzs8HeGL/UkIGL67BtbbB7gv8z+4ABrV0X4d+FdCuPtNrpMMt5u3faromeXd6hnzg/TFdUAMDjp7UAeff8ACF+JPEWW8YeJ5Ps7fe03RgbeA+oaQ/O6kdjj611uh+G9G8N2f2XR9Nt7OLjd5SfM+OhZurH3JJrVwPSigAxRgelFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAGKMD0oooAiuLaC7haG5hjmibqkihgfwNcrqPww8Eapnz/DljGePmtk8gg9c5jxXX0UAcI3wusIiv9l+IvE+lovSK01R9n5PupG8IeMIgP7P+I14iA9LvToJ8j68Gu8ooA4c6b8SLcYi8R6Fd4OM3OnPGT7/ACP19qhU/FmN+R4MmQHoDcozfzArvqKAOF+0/FH/AJ8PCn43U/8A8RR9p+KB/wCYf4V/8CZ//ia7qigDggPizJJy3gyGI9wLp2X+QNSnS/iRcqRN4n0WyJ72umtJj/vt67iigDhE8G+LJ026l8RNRkHf7HYw2/5EAnpSL8K9KnRl1XW/EmrITyl7qkhX8k213mKKAOU074beC9LA+zeGtPJXkNND5zA/V8muoihihjEcUaIg6KigAflT8D0ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9k='] Multimodal Competition True Theorem proof Geometry Math English 4 "Let $H$ be the orthocenter and $G$ be the centroid of acute-angled triangle $\triangle A B C$ with $A B \neq A C$. The line $A G$ intersects the circumcircle of $\triangle A B C$ at $A$ and $P$. Let $P^{\prime}$ be the reflection of $P$ in the line $B C$. Prove that $\angle C A B=60^{\circ}$ if and only if $H G=G P^{\prime}$. " "[""Let $\\omega$ be the circumcircle of $\\triangle A B C$. Reflecting $\\omega$ in line $B C$, we obtain circle $\\omega^{\\prime}$ which, obviously, contains points $H$ and $P^{\\prime}$. Let $M$ be the midpoint of $B C$. As triangle $\\triangle A B C$ is acute-angled, then $H$ and $O$ lie inside this triangle.\n\nLet us assume that $\\angle C A B=60^{\\circ}$. Since\n\n$$\n\\angle C O B=2 \\angle C A B=120^{\\circ}=180^{\\circ}-60^{\\circ}=180^{\\circ}-\\angle C A B=\\angle C H B,\n$$\n\nhence $O$ lies on $\\omega^{\\prime}$. Reflecting $O$ in line $B C$, we obtain point $O^{\\prime}$ which lies on $\\omega$ and this point is the center of $\\omega^{\\prime}$. Then $O O^{\\prime}=2 O M=2 R \\cos \\angle C A B=A H$, so $A H=O O^{\\prime}=H O^{\\prime}=A O=R$, where $R$ is the radius of $\\omega$ and, naturally, of $\\omega^{\\prime}$. Then quadrilateral $A H O^{\\prime} O$ is a rhombus, so $A$ and $O^{\\prime}$ are symmetric to each other with respect to $H O$. As $H, G$ and $O$ are collinear (Euler line), then $\\angle G A H=\\angle H O^{\\prime} G$. Diagonals of quadrilateral $G O P O^{\\prime}$ intersects at $M$. Since $\\angle B O M=60^{\\circ}$, so\n\n$$\nO M=M O^{\\prime}=\\operatorname{ctg} 60^{\\circ} \\cdot M B=\\frac{M B}{\\sqrt{3}}\n$$\n\nAs $3 M O \\cdot M O^{\\prime}=M B^{2}=M B \\cdot M C=M P \\cdot M A=3 M G \\cdot M P$, then $G O P O^{\\prime}$ is a cyclic. Since $B C$ is a perpendicular bisector of $O O^{\\prime}$, so the circumcircle of quadrilateral $G O P O^{\\prime}$ is symmetrical with respect to $B C$. Thus $P^{\\prime}$ also belongs to the circumcircle of $G O P O^{\\prime}$, hence $\\angle G O^{\\prime} P^{\\prime}=\\angle G P P^{\\prime}$. Note that $\\angle G P P^{\\prime}=\\angle G A H$ since $A H \\| P P^{\\prime}$. And as it was proved $\\angle G A H=\\angle H O^{\\prime} G$, then $\\angle H O^{\\prime} G=\\angle G O^{\\prime} P^{\\prime}$. Thus triangles $\\triangle H O^{\\prime} G$ and $\\triangle G O^{\\prime} P^{\\prime}$ are equal and hence $H G=G P^{\\prime}$.\n\nNow we will prove that if $H G=G P^{\\prime}$ then $\\angle C A B=60^{\\circ}$. Reflecting $A$ with respect to $M$, we get $A^{\\prime}$. Then, as it was said in the first part of solution, points $B, C, H$ and $P^{\\prime}$ belong to $\\omega^{\\prime}$. Also it is clear that $A^{\\prime}$ belongs to $\\omega^{\\prime}$. Note that $H C \\perp C A^{\\prime}$ since $A B \\| C A^{\\prime}$ and hence $H A^{\\prime}$ is a diameter of $\\omega^{\\prime}$. Obviously, the center $O^{\\prime}$ of circle $\\omega^{\\prime}$ is midpoint of $H A^{\\prime}$. From $H G=G P^{\\prime}$ it follows that $\\triangle H G O^{\\prime}$ is equal to $\\triangle P^{\\prime} G O^{\\prime}$. Therefore $H$ and $P^{\\prime}$ are symmetric with respect to $G O^{\\prime}$. Hence $G O^{\\prime} \\perp H P^{\\prime}$ and $G O^{\\prime} \\| A^{\\prime} P^{\\prime}$. Let $H G$ intersect $A^{\\prime} P^{\\prime}$ at $K$ and $K \\not \\equiv O$ since $A B \\neq A C$. We conclude that $H G=G K$, because line $G O^{\\prime}$ is midline of the triangle $\\triangle H K A^{\\prime}$. Note that $2 G O=H G$. since $H O$ is Euler line of triangle $A B C$. So $O$ is midpoint of segment $G K$. Because of $\\angle C M P=\\angle C M P^{\\prime}$, then $\\angle G M O=\\angle O M P^{\\prime}$. Line $O M$, that passes through $O^{\\prime}$, is an external angle bisector of $\\angle P^{\\prime} M A^{\\prime}$. Also we know that $P^{\\prime} O^{\\prime}=O^{\\prime} A^{\\prime}$, then $O^{\\prime}$ is the midpoint of arc $P^{\\prime} M A^{\\prime}$ of the circumcircle of triangle $\\triangle P^{\\prime} M A^{\\prime}$. It\n\n\n\n\n\nfollows that quadrilateral $P^{\\prime} M O^{\\prime} A^{\\prime}$ is cyclic, then $\\angle O^{\\prime} M A^{\\prime}=\\angle O^{\\prime} P^{\\prime} A^{\\prime}=\\angle O^{\\prime} A^{\\prime} P^{\\prime}$. Let $O M$ and $P^{\\prime} A^{\\prime}$ intersect at $T$. Triangles $\\triangle T O^{\\prime} A^{\\prime}$ and $\\triangle A^{\\prime} O^{\\prime} M$ are similar, hence $O^{\\prime} A^{\\prime} / O^{\\prime} M=O^{\\prime} T / O^{\\prime} A^{\\prime}$. In the other words, $O^{\\prime} M \\cdot O^{\\prime} T=O^{\\prime} A^{\\prime 2}$. Using Menelaus' theorem for triangle $\\triangle H K A^{\\prime}$ and line $T O^{\\prime}$, we obtain that\n\n$$\n\\frac{A^{\\prime} O^{\\prime}}{O^{\\prime} H} \\cdot \\frac{H O}{O K} \\cdot \\frac{K T}{T A^{\\prime}}=3 \\cdot \\frac{K T}{T A^{\\prime}}=1\n$$\n\nIt follows that $K T / T A^{\\prime}=1 / 3$ and $K A^{\\prime}=2 K T$. Using Menelaus' theorem for triangle $T O^{\\prime} A^{\\prime}$ and line $H K$ we get that\n\n$$\n1=\\frac{O^{\\prime} H}{H A^{\\prime}} \\cdot \\frac{A^{\\prime} K}{K T} \\cdot \\frac{T O}{O O^{\\prime}}=\\frac{1}{2} \\cdot 2 \\cdot \\frac{T O}{O O^{\\prime}}=\\frac{T O}{O O^{\\prime}}\n$$\n\nIt means that $T O=O O^{\\prime}$, so $O^{\\prime} A^{\\prime 2}=O^{\\prime} M \\cdot O^{\\prime} T=O O^{\\prime 2}$. Hence $O^{\\prime} A^{\\prime}=O O^{\\prime}$ and, consequently, $O \\in \\omega^{\\prime}$. Finally we conclude that $2 \\angle C A B=\\angle B O C=180^{\\circ}-\\angle C A B$, so $\\angle C A B=60^{\\circ}$.\n"" 'Let $O^{\\prime}$ and $G^{\\prime}$ denote the reflection of $O$ and $G$, respectively, with respect to the line $B C$. We then need to show $\\angle C A B=60^{\\circ}$ iff $G^{\\prime} H^{\\prime}=G^{\\prime} P$. Note that $\\triangle H^{\\prime} O P$ is isosceles and hence\n\n\n\n$G^{\\prime} H^{\\prime}=G^{\\prime} P$ is equivalent to $G^{\\prime}$ lying on the bisector $\\angle H^{\\prime} O P$. Let $\\angle H^{\\prime} A P=\\varepsilon$. By the assumption $A B \\neq A C$, we have $\\varepsilon \\neq 0$. Then $\\angle H^{\\prime} O P=2 \\angle H^{\\prime} A P=2 \\varepsilon$, hence $G^{\\prime} H^{\\prime}=G^{\\prime} P$ iff $\\angle G^{\\prime} O H^{\\prime}=\\varepsilon$. But $\\angle G O^{\\prime} H=\\angle G^{\\prime} O H^{\\prime}$. Let $D$ be the midpoint of $O O^{\\prime}$. It is known that $\\angle G D O=\\angle G A H=\\varepsilon$. Let $F$ be the midpoint of $H G$. Then $H G=F O$ (Euler line). Let $\\angle G O^{\\prime} H=\\delta$. We then have to show $\\delta=\\varepsilon$ iff $\\angle C A B=60^{\\circ}$. But by similarity $\\left(\\triangle G D O \\sim \\triangle F O^{\\prime} O\\right.$ ) we have $\\angle F O^{\\prime} O=\\varepsilon$. Consider the circumcircles of the triangles $F O^{\\prime} O$ and $G O^{\\prime} H$. By the sine law and since the segments $H G$ and $F O$ are of equal length we deduce that the circumcircles of the triangles $F O^{\\prime} O$ and $G O^{\\prime} H$ are symmetric with respect to the perpendicular bisector of the segment $F G$ iff $\\delta=\\varepsilon$. Obviously, $O^{\\prime}$ is the common point of these two circles. Hence $O^{\\prime}$ must be fixed after the symmetry about the perpendicular bisector of the segment $F G$ iff $\\delta=\\varepsilon$ so we have $\\varepsilon=\\delta$ iff $\\triangle H O O^{\\prime}$ is isosceles. But $H O^{\\prime}=H^{\\prime} O=R$, and so\n\n$$\n\\varepsilon=\\delta \\Longleftrightarrow O O^{\\prime}=R \\Longleftrightarrow O D=\\frac{R}{2} \\Longleftrightarrow \\cos \\angle C A B=\\frac{1}{2} \\Longleftrightarrow \\angle C A B=60^{\\circ} \\text {. }\n$$']" ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIArMD8AMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopM84oAWikzRnigBaKTNGRQAtFMeaOIEyOq4GTuOMVTk1vSoULy6lZog6s06gD9aAL9FZX/CT6B/0G9N/8C4/8aB4m0AkAa3ppJ/6e0/xoA1aKqJqdhIQEvbZiegWVTn9aspIsgyjBh0yDQA6ikzRmgBaKTd+FGaAFooooAKKKKACiiigAooooAKKKKACkJAxnvS1zfjXxjp/gvw/Jqd6DI5PlwWynDTyHoo9Pc9vfpQB0LSIiF3YKqjJJOABVa11bTr6ZorS/tbiReWSKZXI+oBrh9C8H3/ieGPWfHrm6mmxJFpAJFrar1AZP439S2fSulv/AAdoV5Z/Z1023tmU5hntYhFLA/ZkZcFSPbr0ORxQBuedH5vlb18zbu2Z5x64p4Oa8x+E0Or3l54n1jXrprq/N9/ZwkK4AWDI+Qfwglj07g55zn00CgBaKKKACiiigAooooAKKKKACiijNABRSZH40ZoAWik3CjcO9AC0UgIJI9Kiuru3soDPdTxwQggGSVwqjPAyT78UATUVkjxR4fP/ADHNN/8AAuP/ABpyeJNCkkVE1rTmdjtVRdIST6DmgDUoozTQ6sSAQSOoz0oAdRSZFAIPSgBaKM4pMj1oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo6UAFFITijIoAWkzXO69478MeHG8vU9Ytop+MW6kySnPT5Fy36Vif8ACa+I9ZYDw54LvWhJx9r1dxaRj0YIcuw/AUAd7nFRXN1b2cDTXU8cES/eeVwqj8TxXDr4b8d60FOs+MIdNhIw9todtj8ppMsD+FT2nwn8KxTJc6hb3Os3a/8ALfVbl7hj9VPy/wDjtAE198U/BllOtuNchurhjhYrJGuGY+g8sEVT/wCFg6rfhhofgTX7lgcBr1Uskb3Bc5x+FdjYaVp+lQCDTrG1s4v7lvCsa/kBire2gDhPtnxOvwjW2keHNKU9VvLqS4dR/wBswFP50v8Awjfj67kD3PjqC0XvFZaTGR+DSEmu6xS0AcI3w3uLlla+8c+K5SOqw3ywIfwRRT5PhP4ZuVC3x1W//wCvrU52z69GHWu4ooA4e3+D/gK2AEfh2A4Of3kskn/oTGr8fw28FxsGXwxpeR/et1Yfka6migDmv+Fe+Dev/CLaN/4BR/4Uv/CvvB3/AEK2j/hZR/4V0lFAHJP8MfBMisD4Z00Buu2IA/h6VSk+DngKSQSf2CsbqMBormZMf98uK7qigDhn+FejIm2x1PX9P44Nrqswx/30TSJ4A1ezTGneP/ESH1vGiuv/AEJK7qigDhF0b4k6fGfs/izSNUfsL/TDCD+MTf0pDrXxH09VF14R0vVDkbn03UvKH1Cyrn9a7sijHOaAOD/4WdBYsRrnhjxFpYUZeeSy82Ef8DjJz+Va2lfETwhrWwWPiGxd3OFjkk8pyfTa+D+ldNg+tZWqeGNB1s51TRrC8b+/PbqzD6MRkUAaoYEAjoeaNwPTn6VwZ+FGk2TB/D2p6zoDA7tljet5TN/tI+4H6cUfY/iTog/canpHiOBckrdwm0nI/uqyZT8SKAO9orgR8TV0r5PFnhvV9DI+9P5X2m2H0ljzn8q6vSfEOj67CZdJ1O1vVH3vIlDlf94DkfQ0AadFIWx2NAOaAFooooAQ14brrN4y/aM07RZstp2iIJmjzlS4USE/ixjU/Svcm+leOPAPCX7RR1K9IjsNftDFBO3CCXCfKT2JMY/76FAHsY6mkbqDSg9a57xDetfufDunTML26XFxJEebWA/ecn+FiMqvck56KSADW07TrXTIZYrSHyklmkuHGSd0kjl3bJJ6kk+1XKag2rgdB0p1ABRRRnFABRSEgUbhQApOKTPsaTIbBBBGa5zxFqXia2uYLbQNAgvvMQs11c3YijhPbcMFm/CgDpM0bgBnn8q4JPDXjnWdra14yj0+FlxJa6HbBefUTSZYflW34c8F6b4almuLaa+uby4ULNc3t080kgGcZycdz0AoA2NS1CHTNPnvZ1laKFdzCKMux+ijk1xp+IGrX6N/YngLXrk9jfBLNGHYguSSPwrvMUbeSfWgDhRd/E6+aNotK8OaXGSN8d1cyzyKPqgC5ruQOOaUCloA5HWfAh1rWJr+XxR4ktY5MYtLK/8AJhXCgcADPOM9epqo3wm8MToVvv7Uvve51Odvr0YV3NFAGJ4a8I6H4RtZrbQ7EWkMzh5F813ycY6uSa0dR02y1ayez1C0hurVyN8M6B1bByMg+4q1RQBzZ+H3g4nJ8LaN/wCAUf8AhTovAfhKCeOaHw1pEcsbBkdbNAVIOQRx1roqKAG7T61yWsfDHwlr+ryarqWltLfyY3TpdSxk4GBwrAdB6V19FAHDN8LNHRdtjqviGwX/AKddWmH/AKETXQeHNBfw/ZS2z6xqeqb5N4l1GfzZFGANoOBx3/GtmigDN10a02mP/YD2K6hkbDfBzFjvnbzXKnXPiLp6qt34Q03U8nDSadqXlj6hZVz+td4aTFAHGaf8QRNqUGn6h4X8RabPNIsavNZb4dzHA/eISMe5rs93sfypCv0x6Ubev9KAFDZzjNAOa4q8+G1m19Nf6RrWtaNdTStPJ9kvGMbuxyS0b7geSTgYHNV/svxK0ML5V/o/iSAfeW5iNnOw9AVyn4kUAd9RWdod7fX+kQXOp6a2m3jA+baNKshjIJH3l4OcZ+hrQLANtJ5xn8KAFopN31pc0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSE4oAWjPNJnFc74j8b6D4ZKxX96GvHx5VlAvmTyE/dAjHPPQZwKAOizWdrPiDSPD9p9q1fUbeyh5w0z7S30HUn6VyC3Pj7xbza28XhTTG5Et0onvXHtH92Pv8Ae5FaWj/Dfw/pd2NQuIpdV1Q4LX+pyefLkdNueFxk9AKAM0+PNZ1/KeDfDN1dRHhdT1LNtbYPR1B+eQdeABTk8EeINdbzPFfiu7eM4J0/Sf8ARYAMcqXHzuPqRXe7R6Djp7UoGKAMPQvBvh7wygGjaRa2r4wZVTMhHoXOWI/GtzFLRQAYxRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhHINLRQA0ruBB5B6g1ymr/DbwvrE4um01bO+UlkvbBjbzK397cmMn6g11tFAHnx0Tx74bO7SNeg1+zUj/AETWF2TY9BMv3m92GKltvidZWU8dp4r0u+8OXch2g3Sb7d29EmXg/jiu7NQ3VpBe27wXUEU8LjDxyoGVh6EHINAC291BeW6XFtMk0MgykkbBlYeoI4IqXcK4S4+GdrYTveeEdTu/Dt2xLNHbnzLaU/7cDfL7cYxUB8YeJfC3yeMdD82zXrq+jgyxgeskR+ZPc8jmgD0Lr0rP1nQtN8Qac1hqtnFdWzHJSQdD6gjkH3FJo2vaV4gsRe6Tfw3lu38cT52n0I6qfY81o7hnFAHLW3geO1QRR+IPEAtgMCA35IUegbG8D/gVbmnaRZaTbeRY26wx7i7YJLOx6szHlmPcnJPrV7OaKAEUYHb8BS0hIHWub8Q+OtB8NyLb3d0Zr9+I7C1XzbiQnoAi88++B70AdJuFJuB+tcHbXXj3xPcRzQ29v4X0sOrf6UouLyZcg4KfdQEZBB+YV3pGR1oA4e/8WeJL/ULjTvDPhS4doJXhbUNVJt7YMONyj70i9emKgHgPXNexJ4t8WXdxGRk6fpY+y24yOVZh88g+pBrvgp7/AIYpQMUAU9K0qz0TS7fTdPi8m0t02RR72baPqxJP4mrmPpS0UAAGKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkIzS0UAIBisDxL4N0nxS1vLfC5iurXd9murW4eKWEtjJUqcZ4HUHpXQUUAef8A9j+PvDeW0zW7bxDZr0tdVXy5wozwJl4Zvdx+Xfc8M+JrrWpLi21Dw/qOkXtsqmVbhQ0TZz/q5AcOOO1dGRn8PejFABkZozWbrtnqV9pMtvpGpjTb1ipjuTAJduGBI2ngggEfjXH/APCaeIvC42+NdC/0RRg6vpIaaAe8iH50A45wRzQB6Hmis/Sda03XLBb7S72C7tnPEkLhgDjofQ+x5q+DkZHSgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACjOKQkDjvVTU9VsNHsJb7UbuG1tYhl5ZWCgf4n270AW93OKwfEvjDRfC0KNqV1i4l4gtYlLzTHsEQcnJ47DPeuXPiPxP45ynhO3/sjRmyDrd9Dl5V9YIT1B9W4+hFdB4c8C6P4bmku4Elu9Ulx5+pXzma4k6dXPQdOBjoM5oAwdvjrxrySfCWjN2GHv5V/lFn/voH1ro/DngjQfCu59MslF1JnzbuYmSeQnrlzzg4zgYGe1dCBgUtACAYpaKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEIzSFc56c9RTqKAON1n4daXeXzappE0+hayeftmnnZv5z+8j+64zgkEZOOTWZ/wlnibwcTH4x0wXmmqcDW9MjLKB6zQjlfcjjsBXojVXvLqCytJ7y6kEdvBG0srkZCqoyTx7DP4UAcvdfFLwPYx27y+JLJluMeX5JMpAP8AeCA7P+BYxWt/wl/h0zadCusWjyakf9EWOQN53XkY7cEZPfivjXxReWmoeLNWvNOINlPdyyQHyxHhCxK/L2xn/wDVXsvweudK8F2SL4o0t9LvdSl8yy1O8t9sckRUARiQ/cOVZsHHBB9KAPe5oluIXjYsAylcqSrDIxweoPvWH4b8FaF4UjYaXYokzj97dSHfNLzk7nPJyecdOelbyEBc7sg859acDmgAAxS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIRmkwc5FOooA56DwVodn4kXX7OzFpqGCJGtnaJJs5++gO1jyTyOuD2Fa99e2uk6fcX15KIra3jaWWQgnaqgknjk8fiatU10DqQRmgCrp2q2Gr2MV7p13Dd2sv3JYXDKfbI7+3WrYIOa4XU/hzHbX0mreD75tA1N+ZUiXda3GO0kXTnplcYyTgmpdC8bXo1iHw/wCKtIl0zV5iVt5YQZLW6wCT5bjocZJVug6ntQB21FJnjODS5oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKM0AGcUm4dc8etV76+tdOs5by8uIre2hXdJLK4VVHqSeleff2v4g+I7+V4fe40Tw0Ww+rMu25ul7iBT9wf7Z554HBFAGv4i8ewWV+dD0GzfW/EBHNnbthIB03TSdIwPfnp0zmqul+AJtRv49Z8bXq6xqaHdFahcWdqT2SP+I9tzc8DjIzXSeHPDGk+FtMWx0m0SGPhnc8vI39526sf8jA4rYUY9PoKAECkfTtSgYpaKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKTcPWkdgo5z+AzXnEmoeIviK5i0h7nQPDIbbJqDLsu7xfSIEfu1P9488jjgigDorjxzpQ8UQeHrJZ9Qvy2LkWihks1/vStnC89uvtyM+a/Ejx5f+KdX/AOEC8FB57idjHe3MZ+XH8UYPZR/Efw5yRVTxd4jg0Jovhx8M7QDUJ38q6nt+XVu6hz1frucn5B3GDt9D+HHw5sfAujjhJ9WuEH2u5xnJ/uL6KD+Jxk+gAPK/iX4DsPAfwi061h2y382qRNeXePmlbypunoo6Afj1Jr23R9NtNV8DaXZahbQ3NtLYQB4pUDKf3a9j/OvP/wBo0Y+Hlh/2FY//AEVNXpfhn/kVNH/68YP/AEAUAcZJ4d8SeAcz+E5G1bRFOW0K6l/eQj/p3lPPH91s9+pNdR4X8YaR4qt5G0+Z1uITtuLOddk9u3Qq6dQcgjPIyDzW+wzXKeKPA1nr11HqlncSaVr8I/canbD5x/suOA68dD2yO5oA6sEHpS1wWj+N7zStSi0HxvBHYahIdtrqMZ/0W+9NrfwP/snHPTqBXebvx+lAC0UgOaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQjPemlAduQCV6Z/L+tPooAp6ndS6fpdzdw2k13JDGzrbwAF5CBnAyRyfSs3wx4v0bxZZPcaZcEyRnbPbSjbNA3911PIPX24OCcVusCehrkvE3gS01m7XVtOuZNI8QRD91qVqAGP+zIvSReBweeMZxkUAdaDmlrjfDHifV31Q+HfE+lta6uiF47m2Uta3SDqyt/CRkZU+vvgdkDmgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQnFAASB1rC8T+K9L8K2KXOoSsWlby4LaJd81w54CRqOpz+H51Q8XeNE0OaDSdLtW1PxFeA/ZdPjI4H/PSQ5+VBjqcZx6ZIi8L+CnstRPiLxDdLqniOVdpuCCI7VCP9XAp+6OSM4BOTnqcgGVYeE9V8aXcOs+OESO0jfzLPw+jboovRpz/AMtH6cHgenJWvRVQIoVQAoGAMdKFGPT8KdQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSE4NAATjHvWH4l8XaV4VtYZb95JJ7h/LtrO3TzJ7h/7qIOp5HtyPWs7xZ41GjXMWjaPbf2n4juR+4skbiMcfvJT/CoBz6noPUR+FvBR0y8fXNeul1TxJMP3l0V+S3XH+rhU/dUZIzgE55xnFAHXhg6grn154NeRfFH4l3drdL4Q8J77jXLo+XLLActBn+FfR/U/wj3+7Y+KXxNfQ2Hhjw5vuPEd2Vj/AHQybff0wO7tkYHbOfQG/wDC34Zr4PtDqeqFbjxBdDM0pO7yQf4FbuT3bv8ATkgFj4YfDS18C6c09wVuNauVAuJx0QddiZ7Z6nuRnsMegKu0YzQowMe3aloA8g/aO/5J7Yf9hWP/ANFTV6V4Z/5FTR/+vGD/ANAFea/tHf8AJPbD/sKx/wDoqavSvDP/ACKmj/8AXjB/6AKANWkIzS0UAZ+r6Jp+v6bNp2q2kV1aTD545Bn6EHsR2I5rgvP1r4X4S9e41nwgpwtzgvc6cvo+OXjHr1GMcDAr02mugcYIBBGCD3oArWOoWmo2UN5Zzx3FtMm+OWNgysPUGrYOa83v/DeqeBL6bWvB0RuNMlcy3+gZ+Ujq0lv/AHX/ANgcHoOgFdj4d8R6Z4n0dNS0u482FiVZSMPE46o69Qw9PxGQQaANeikBBz7UtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhGaWigBu09c8+9ZPiPxHZ+FdL/tLUY7l7USKkj28Jk8oHq7AdFHc89ehrYpskayoyOoZGBDKwyCD2NAENpfWt/ZxXdnPHPbTKGjljYMrg9CDU4IOfavOL3w/qvgC8m1bwjbtd6LK5kvtCTqvrJb+jf7HQ9B2x2fh3X9N8S6RFqelXInt5OD2ZGHVWHUEeh/ligDVooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiignFACE4FcV4q8Y3UWojwz4WhS98RygF93MVjGf+WkpHt0XqcjjkBl8U+Kb2TVB4W8LeXLrsihridxui0+I/wDLR/Vucqv4njg6nhTwlY+FNNktrZpLi5ncyXl5O26W5kPJZj+JwO2e5JNAEPhPwbaeGYJpjO9/q12Q95qM4/eTt+u1RjhR0x6810yjHWhVC596WgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikJxQAE4xUayxz7vLdW2NtbB+6fQ+h9q4rxT4qv7vVf8AhE/CJSTWnUNd3bANFp0R/jbsX9F/E++54U8MWPhLRxYWheWR3MtxcynMlxKfvO57k0AaUWnWdtfXF9FaQR3dwFE06oA8gXhdxxk4rz34o/EweFoV0bRNtz4juiqpGi7zb7uAxHdzkbVI5yCRjAaz8UviVB4K09LSxKT65dL+4i6iIdPMcemeg7n2zWR8LPhnPp1wfFvicvP4guiZFSbk2+7qW/2yD/wEHHWgC18LPhk3h2M+IPEGbnxHdbnZpG3m33dee7n+JvfHqT6iBj8etCrtGKWgAooooA8g/aO/5J7Yf9hWP/0VNXpXhn/kVNH/AOvGD/0AV5r+0d/yT2w/7Csf/oqavSvDP/IqaP8A9eMH/oAoA1aKKKACiiigBCM49q4TxF4QvtP1Z/FPg4pBq7Y+2WTHbDqKA5Ib+7J6P+fXNd5SMu4YoAwPCni2w8V6dJc2wkhuYHMV3ZzjbLbSDqrD+X/68b4IPSuJ8W+Eb2S+HibwtKln4jhUb1P+qvkH/LOX1PQBj09uCNPwj4ws/FWnSSJE9pqFq3lXthMcSW0g7HPUejd/Y5AAOkopFbd6/jS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhGarWmn2WntO1paQW7XEhmmMUYXzHPVmx1PuatUhGaAGLPE8rxLIhkTBZQwyuemR2zinhs+o+tcP4t8J341IeK/CsiQeIYV2zRE7YtQiH/LOTn7391u2AM8ArseEvF1j4s0s3Nuj291C3lXdlKMS20o6qw/A4Pf88AHQ0UA5ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooozQAE4rifF/iq9GoR+FvC3lzeIrlQ0jvyljCessnBGfRfcHBGA0/jXxbLowtdJ0aAXniPUcrZ23ZB0Msn91F5Oe+PTJFrwf4Sg8MafJuna81S6fzr+/k+/cSnqfZRyAvbnuSaAJvCfhe08K6R9kgd7i5lcy3d5NzJcyn7zsf5DsK3gD3oAIzz9KWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikJxQAEgVm6/bane6JdW+jXkNnqDrtiuJo96xknk49cZx744NZHijxa2kahp+jaZZ/2jrd84MdqHKCOLOHlkYA7VAyM45PTODXUKeuev1oAw/C/hTT/CelfYrPfJJI5lubmY7pLiU9Xc9ya5/4l/Emy8CaXsUJPrFwh+zWpPAGcb3x0UY+pPA6Eiz8RfiFp/gTRfNcpNqcwP2S0z989Nzeijv69BXE/DL4f3+taq3jrxpvuNQncTWkE4+7/dkZegwMbV6KOfTABY+GHw2vjqJ8aeMi9zrdw3nQw3A5hJ6Ow7NjovRB6HG32IDFIq7RTqACiiigAooooA8g/aO/5J7Yf9hWP/0VNXpXhn/kVNH/AOvGD/0AV5r+0d/yT2w/7Csf/oqavSvDP/IqaP8A9eMH/oAoA1aKKKACiiigAooooARgSODXFeLvCt2b6PxT4XMcHiK0TaY2O2O/hHWKTHt91uxA5HBHbUjDOB2oAwfCnimz8U6V9rgR7e5icw3dnLxJbSjO5GHrkH6it/Oa4Hxb4d1DS9WHjPwvCH1WJAt/YjhdRhGOPaRQMqevAHPArp/DniDTvEuh2+q6bLvgmX7rDDxsOqMOxB4I/UigDXopFbdyAfxpaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAay7hXJ6v4LabxPZ+JdEuxp2qI6peHbmO8gyAyyKMZYAfK3bH0I66igBoG38aUGsfxTqWo6RoE9/penDUbiDa5tg+1nQEb9vqwXJA9u/Qy6Br2n+I9Et9W06bzLWdcrx8ynupHZgeCKANSikBBzjtS0AFFFFABRRRQAUUhOKAck8Hj1oAWiiigAooooAKKKKACiiigApCcUtYviq7ubbRHisXEd9dyJaW7/3HkO3f/wEbn/4DQBrxyxzJvidXXJG5SCMg4I/MU4nFZFvDp3hDwuUXdHYadbs7H7zbVBZmPqTySe5NW9Ov4tW0mz1GFJI4rqFJ0SRQHVWUMAwBODz69aALFvdW92jPbzxzKrFGMbBgGHBBx3FS1wXww8OR+GYfEdnbSM1n/a8n2fJz8oRB+YOVP8Au13vSgArn/F3im28K6R9slie4upWENnZx/6y5mb7qLjP4nHH6HT1XUrPR9NuNS1CdYLS2QySyN2A/memAOSeBXE+EdNvPFOr/wDCca5AYyQU0eyk/wCXaA/8tCP+ejj06Dv6AGj4K8KXOmG613XXSfxLqfzXco+7CvaGP0VcAdecd8CuxUEdTkmgDBNLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSE47UALnFc74w8VweFtIEwha61C4cQWNkn37iZuFUD07k+nvgHoCwqjcaTp91qlrqc9pHJe2iusEzLlow+A2PqBj/APXQBgeC/CsujRXGraxMt54i1L95fXJ6IO0SeiL0Hr+QDvHvjnTvAugvfXZE1zJ8traBsNM39FHc/wBSAZ/GnjPTfBGhyalqLFnztt7dT80z+g9B6noPrxXlXgXwbqvxI8Qf8J14zG6xL5srFx8rqM4GO0Y7D+MjJyDyAT/DzwLqPjXXP+E/8agyNK4ksrR1wrAfcYqf+WY42jv1OR973JVx6UqjFLQAUUUUAFFFFABRRRQB5B+0d/yT2w/7Csf/AKKmr0rwz/yKmj/9eMH/AKAK81/aO/5J7Yf9hWP/ANFTV6V4Z/5FTR/+vGD/ANAFAGrRRRQAUUUUAFFFFABRRRQAhGR2/GvN/ENlc+ANfn8X6VA0ui3TZ1uxjGSv/Tyg/vDJ3DuOe5I9JpkqLKhR1DK3BDDII7/pQBFZXdvf2UN5aTJNbzoJI5IzlXUjIIqxXmdhI3w08Tx6RMzf8Inq0p+wSNkrYXBOTET2RiSV9Dx6k+lL9Me1ADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQjJHNeba3aTfDnX5vFGmxM/h++kDazZxqT5Dk/8fKD8fmA+v09Kpk0STwtFIivG4KsrDIIPUEUAR2lzDeW0dzbSpLBKoeORDlWUjIIP41PVPTNNstF02DTtPt0t7SBdkUSdFH4/n6mrYIP/wBegBaKKoHWbP8AtwaOHdr025uWVUJCR7toLHoCTnA77T6UAX6KTcKwdR8YaRpfifTPD13LIt/qKloAIyV4z1PbODj6c4oA5j4r+ItY02HQtG8OXLW+r6tfCJHVQ2I1+8eR6sv4Zr0OMEIAxBbHJAxk1wdppz698X7/AFedD9k0G0SytN3RppF3uw+isFz7+1d8BigBaKKKACiiigAooooAKKKKACuL+JV/Po2k6VrkVvJcQ6XqcdzdRxjLeTskjYge28H8K7SmsocYIyO4PQ0AeQ6/48l+IugajofgfTrm6aa3cXV3PEUjiTaT5Y7l3+6B71Ys/jJYanp1vpuh6Pey+I3AhTTjFtSGQcHe3QIpH1wOQK9Tjt44U2RRoif3VUAflSLbRJI0iRIsjfedVAJ+poAo+HtLOjaJb2LzGeZAWnlI5klYl5H/ABZmNaZPIpPu5JPWuJ8fa7es9l4U0CXZrer5HnDn7Hbj78xH4EL75wcgAgGZc/8AFyvF72CHd4U0Sf8A0ojlb67HIj9CiZBPY5HB4I9JRQo4GB6Vn6Foll4d0S00nTo/LtbZNiA8knOSxPckkk+5NaVABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSNRnBrhvHmsX13PaeDdBlaPVtWUma4Uf8edqOHlPoT91enJ6g4oAj0vV9Q8YeOGuNNu3h8M6OzQtJHjbqFwRggeqJzz0J9eo6DxX4q0vwfokuqarNtiB2xxr9+V+oRR6/y6mq11daD8OPBa+YVttNsYtkacF5WwTgDjc7HJP1JJxk15D4e0PV/jb4oPiXxIr23hy1YpbWqEgSDOdinjjgb37ngY/hAJPCPhnV/i54kPi/xapTRoiVtLTJCSAH7qjug/ib+I8djj36ONIY1jjRURQFVVGAAOgFNt4IraCOCCNIoYlCRxoMKqjgADsMdqloAKKKKACiiigAooooAKKKKAPIP2jv8Aknth/wBhWP8A9FTV6V4Z/wCRU0f/AK8YP/QBXmv7R3/JPbD/ALCsf/oqavSvDP8AyKmj/wDXjB/6AKANWiiigAooooAKKKKACiiigApCM0tFAGZr+h2PiPRLrSdRj8y1uU2uB1HcEe4OCD6gVzHgXW761vLnwb4hmMms6agaC5Y/8fttnCyDvuHRvwOSSa7k1x/jzw1dapZW+r6Kwi8Q6SxnsJOgfj5oW9VcZHJHOOQM0AdgCD0paw/CniS18VeH7fVbUMnmZWaFj88Mo4dG9wfpxg1uA5oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAgvYGurKa3WeWAyxsgmiIDxkjG5cgjIzkZBrjvA3iC9W4u/CfiCXdrmlrkTNx9tt84Wce/QN798mu3IJxXG+O/Dl5fQ2mu6HsTxFpDGa0J4E6/wAcLeoYZHbnuM0AdiSD74rm/CUUdxa3uuEFp9UunlL458pGKRAe2xQfqxq74a1+28S+HbPV7VXSO4TLROCGjcHDIc9wQRnv1rzqx/4Wb4ZM3hrS9Bsb2ySeT7Fqc8oCxxsxYb1zk4z0/DmgDvNM1u7v/GGu6X9mQWWmJbqJudzyupdl9MBSnHv3zxS8Sabaap4w8KqyK95aXE15uxyIVjKn6AyPF+Vcaul/EDwDqtxNpFsPE9tqgWe7M0gidLrGGI5GFPGBzgADjHPa+ENG1mKS71vxLJC2tXoVPKhOY7SFclYl5OeSWJ7k+woA6tQMn9aWkFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSHtQBm6/rdl4e0K71fUJNlraxl3I6t2Cj3JIA9zXNfD/Qr0R3finXYwNd1kiSRD/y6wf8ALOEDtgYJ7565IrOvyfHnxCXS1bf4f8OyCa8IwVubz+CM+oTqR68EdCPR1GCc9aAFFLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTWOP/AK1ACMwGM8Dvms3XNZ07w9o91q+qS+Ta265dyMnk4Cj3JwAPWuH1PXYdX8a3F7c6g1n4Z8Ikvc3CyFVuLxlxsyvJCBiCvdjtKnNcGiaz8dvF/myiax8H6fNwD8u7jp6GVhj1CA98/MAGm6frHxz8VNq2piW08LWEmyOAN97oSox/GQRubtkY6V9BWlrBZWsdraxJDbwqEjjQYVQOgAqLTdNs9J06Cw0+3jt7W3XZFFGuAo/x9T3PNWwMUALRRRQAUUUUAFFFFABRRRQAUUUUAeQftHf8k9sP+wrH/wCipq9K8M/8ipo//XjB/wCgCvNf2jv+Se2H/YVj/wDRU1eleGf+RU0f/rxg/wDQBQBq0UUUAFFFFABRRRQAUUUUAFFFFABSEZpaKAPN9WB+H/jhddTKeHNckWLUlH3LW5PCT+gVujH8STwK9HXvVHWtKtNc0i60u/iEtrdRtHIvfBHUHsR1B9a5X4e6tdwreeEdZkL6vopEayH/AJebY/6qYfUcHrgjk5NAHc0UgIPSloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApCM0tFADcBB7ewpAAeORiq2q6fHq2lXenTPIkV1C8LNG2GUMMEg+vNcp8PNbu2tLvwzrUhbWtDdbeZz/y3iP8AqpR/vKBnknI55NAHbYNAGKUHNFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAATiuX8d+I38O+HWks0EuqXjraafDj/WTvwv4DqfpXTtzxXnmi48a/EW88QEltK0EvY6d3WS4IxNKPXAwo7Hr2oA6Xwd4bj8LeHLfTVcSz8y3Vwes8zcu5PfJ6Z5wAO1bwGKAMUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFITgUABOK5H4keK28J+D7i7tyBfXB+zWm44CyMD85PQBQGbJ44x3rqLm6htbWW5nlSOCFS7yOcKqjkkn0r5/1jVNV+OPiv8AsTRWktfDFkwea4cH5+uJCOMnghV+pPsAYfhzRtR+J1xZeHNPea08J6U3mXF1s+aeY5LynOcyOScDJCKe/f6S0bRrHQNKg0zTLdLezt12xxr+ZyT1JPJPcmo/D2g6f4b0eDStMgWK2gGB3LnuzHuSc5rUFAABiloooAKKKKACiiigAooooAKKKKACiiigDyD9o7/knth/2FY//RU1eleGf+RU0f8A68YP/QBXmv7R3/JPbD/sKx/+ipq9K8M/8ipo/wD14wf+gCgDVooooAKKKKACiiigAooooAKKKKACiiigBCM1wPxDsrjSJrHxxpsbSXekAreRIcG4s2P7xT2yv3x6EE9q7+mSxpKjRyKrRuCrKwyGB6g+1AENheW+o2EF7aSiW3uI1likHRlYZB/EVZrz3wI7+GNf1XwLdOTBb5vtJZjndauxymf9h+PfPoK9BBzQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIQTXn/xAtJ9B1Cw8eadGzz6b+41GJOs9kx+YcdSh+YfiTnAr0GkYblIwCDwQaAIraWOe3SWJt0bqGRsYyD0+lTU37oGT14pQc9KAFooooAKKKKACiiigAooooAKKKKACkJwKWkPp60Acl8RNdutH8MmDS8nWNSlWxsFBwRLJxuB7bRk59hWt4W0C28L+GrHRrTmK1iCFsfffqzfUsSfxrldNX/hLfinfaqfn03w0rWNp6NduP3zfVVwn4g16CBigBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooJxQAZqK4njggeaZ1jhRSzu7YVVAyST2FPZ1UbicAdT6fWvAvGfi3VPil4lHgnwi2dKDj7Zer92RR1JP/ADzB6f3jjHbIBifEPx9f/EbxDB4V8NtJ/ZUtwkG7lftUhOAzdxGMZA9ix5xj37wt4X03wnoEGlaZEFjjGZJT96aTGGdj6n9Og4Arzz4a+EdMg8XXs9hHu07w/nT7eVx8092QPtEx9wMIO2MY6c+vKMDrQAAYz7mloooAKKKKACiiigAooooAKKKKACiiigAooooA8g/aO/5J7Yf9hWP/ANFTV6V4Z/5FTR/+vGD/ANAFea/tHf8AJPbD/sKx/wDoqavSvDP/ACKmj/8AXjB/6AKANWiiigAooooAKKKKACiiigAooooAKKKKACg0UUAcL8SLC4trKz8WadHu1HQJTc7QcGa3IxNHn0K8/wDAfeuv0y/t9U022v7SQS21zEssT/3lIyKsSossbI6qysCpDDIIPXPtXBfD528P6trXgecnbp0n2vTc/wAVnKSQoPU7GJUn3FAHoFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHFfEh9T03SrPxJpcs7Po0/2m4tI3IW5tyMShl6EhcsCemDjrXXWV3Bf2UF5ayiW3njWWKRejKwyCPqKfPEk8LwyorxupV0YZDA9Qa4T4cyPodzq/gi6Yl9Jm82yY8mS0lJZD7lSSp7DgUAd/RSA5paACiiigAooooAKKKKACiiigArnvG3iE+GPCOoaqg3Txx7bdNuS8rHagx3+Yjj0zXQHtXn/iAf8JL8TNC0Ac2WkL/a95kHmT7sC57HJZsHtQBv+BvD58MeEbHTJSGuVTzLp853TOSznPcZJA9gK6KmrwMdhTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAM01jSsa8N+I3j3UfFOsDwJ4JLT3EzGO8uojgYH3lDdlH8Te2OQTkAh8eeNdS+IWvf8IF4LPmQu5W8vQ5COo+8Nw6RDPJ/iIAGc4b1HwR4K07wPoCabY4kmYhrm5ZQrTv6n0A6Advc5Jr+AfAOn+BdCS1twst9IA13d7eZW9B6KOw/HqSae+vX138TY9BsGT7FY2RuNSYqD87nESZ6g4Bb3B9qAOjsbG00638iytYLaDcWEcMYQZJyTgADJJJq1QKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDyD9o7/knth/2FY/8A0VNXpXhn/kVNH/68YP8A0AV5r+0d/wAk9sP+wrH/AOipq9K8M/8AIqaP/wBeMH/oAoA1aKKKACiiigAooooAKKKKACiiigAooooAKKKKAEIzXAfENDoOp6J43iGBpk4ttQ25+a0lO1icddrEMB7mvQKpavptvrOk3emXa7re7heGQZwcMCOPQ+9AFtGDLkEEHnI7+9OrivhhqVzc+Ev7M1Bs6jos76bc8Hkx8K3PJypXnvXa0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIRmqxsLT7d9uNvCLvy/K87YN+zOdueuM81apkocxsI2CuQQrEZwfWgBy0tcp8PvEF3r3htv7UKf2tY3EtlfBBgCWNiMj6rtP411YOaACiiigAooooAKKKKACiignFADJXSOJnkYLGoJYscAADnNcJ8MYm1G21jxdOmJ9evGliLLgrbR/JCp/AE/jVr4pahPa+CprCzYC+1eaPTLYHoWmO0/wDjm+uo0rT4NJ0m0062XbBawpDGCc/KqgD+VAFyiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQnFBOK8g+KPxLuobweDfCIkuNdumEMssPWDd/Ch7P6t/CPQ9ACt8TviNf3mqL4G8FhrnVbljBczQnmP1jU9AcZ3N0UZ7529j8OfhzYeBNIwNs+q3Cj7VdEdf9hfRR+p59AK3wx+Glv4E01pp3S41m5QC4nAyEHXy0z/Dnk+p+gr0BRtGM8dqAIppUt4XmlcJFGpd2J4VRyT+VcT8L4JL3SNQ8U3SMt14gu3usOMMsAJSFD7BRkf71dXrmkRa9ol7pU800MN3C0MjwkBtrDBxkEdParFhZQ6bp9vY2yBILeJYo1HZVGAP0oAsCloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPIP2jv+Se2H/YVj/8ARU1eleGf+RU0f/rxg/8AQBXmv7R3/JPbD/sKx/8AoqavSvDP/IqaP/14wf8AoAoA1aKKKACiiigAooooAKKKKACiiigAooooAKKKKACmsM4FOpCKAPP+PDnxkVhlbPxPZ4PcG6gHH0zGfxIr0BelcR8U7Sf/AIREazZpvvdCuYtThAONwjPzg+xQvn6V2Fjdw39jb3lu++C4jWWNvVWGQfyNAFiiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkbtS0hFAHAW+PDfxhuLbIWz8TWnnxgnpcwDDAD3QgnuSK78ck1ka34dtNcudLuZpJoZ9NuxdQSQsASQCCpyD8rA4I/WtZRgk0AOooooAKKKKACiiigApDS0h6UAcDqudd+MGiacCxtdEs5NSnHVWlk/dxg+4GWFd8vSuD+Hi/2nq3izxMRn+0NTNvC2choLceWpH1O6u8AxQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSEgDJpa8x+KfxO/wCEWiTRdDAuvEdzhUjRd5tw3Rivdzn5V98kEYDAFb4qfEx9HYeF/DRe58RXREZ8kbjb7sYAx1c5GB26ntm98L/hlH4Qs21LVNlz4hugWmlY7/JDdUU+pOct36dOarfCz4ZHw4ja/r+bjxJdFndpTvNvv5YZ7ucnc3vj1z6iBjPvQAAY60GlpG6GgDHt/EVrceLLvw9FFM9xaWqXM0wA8tN5ICE5zuIGcYxjvWznNcF8NV/tN/EfihgCdX1OQQSA/et4f3Uf8mrvBQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5B+0d/yT2w/wCwrH/6Kmr0rwz/AMipo/8A14wf+gCvNf2jv+Se2H/YVj/9FTV6V4Z/5FTR/wDrxg/9AFAGrRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAQ3VtFeWs1rOgeGZGjkU/xKRgj9a4z4VXMyeEpdGunZ7rQ7ybTZGb+II2UI9tjKB9K7dhXB6cDo3xn1azORBrenRXqE/d82E+Wyj3KkE0Ad9RSDvS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAITisfw94itfEUN+9vHLE9ley2U0coAZZIzz0J45BH1rYP61wWjH+xvi/wCIdMBPk6vZw6nCuMKrofKkH1J2saAO+60Ug55paACiiigAooooAKxvFusf2B4R1bVgVD2trJJHu6F9vyj8WwPxrZrgviqftuhaVoG0sNa1a2tJAOoj373P4BBQBs+ANI/sLwFomnFCjx2iNKp7SON7/wDjzGukpF9KWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApCQKUnFcD8TPiTZ+BtJ8uErPrNwh+zW4Odo6CR8fwg9v4ug7kAFf4o/EyDwVYLZ2QE+uXS/uYuoiU8b2H16Dufasv4V/DS40qY+KvEzNceILrLqk3zNb7upbPWQg8+gOPWq3wv+G16NQbxn4zDT63cMJoIZ+Wgz0dh0DYwAv8AHY8L7CMD8aAFUEfTtS0mfrTIpo51LRurqDjKkEZ/CgCSszX2vz4e1H+yVD6ibaQWq7gMy7Tt5Jx1rSNeNa1+0HpGmeIJdPtdIuby2glaKW6EyrkqcZRcHcMjuVzQB6V4N0b/hHvB2kaSUCSWtqiShTkeZjLnPf5ia3KztE1ez13RrTVbFi1tdRLLGWABAPY+4OQR65rQzxmgBaKQEGlzQAUUZozQAUUZozQAUUZozQAUUZozQAUUZozQAUUZozQAUUZozQB5B+0d/yT2w/7Csf/AKKmr0rwz/yKmj/9eMH/AKAK81/aN5+H2ngdf7Vj/wDRUteleGT/AMUpo/8A14wf+gCgDVoozRmgAoozRmgAoozRmgAoozRmgAoozRmgAoozSZ+tAC0UmaM/WgBaKM0ZoAQjNcH8QR/ZuveDvEIBzaap9jlIOAIrhSjE+wIWu8yK8p+OnivS9L8IvoNws732oqHg8kgeV5bqwdjnjkYGM9DQB6spBpa4P4cfE6w8fwXEaW0lpf2qK00LkFWBz8yHqRnrkDGRXeUAFFFITjrQAtFICD+FBOKAFopAQelLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhGfp3rlPEWiX1x4x8La5YR+YbGaaG7G8L+4ljILHPXawUgD1rrKa3OP0+tACqc0tNQqfmUgg9x6U6gAooooAKKKKAENcJrg/tL4weFrIPxptndahInruCxKT+Jau8rg9C/4mHxf8V3ZT/kHWVpYRP6hg0rD8ytAHdjpS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUEgUhOK5Tx74707wJoRvrr97dS5S1tVbDTN/RR3Pb3JAoArfEb4g2PgXRfNby59TnBFraE/ePTc2Oijv69B6jgPAfw31bxNLJ418V3s8er3LLLZbokYxAEESFHBXpwq4wo564wfDrwHqHjLWv8AhP8AxoDKZmElnZuMKwH3WKn/AJZjjaO/BOR971zxRqo0Dwrquq5Aa1tZJEz3YA7R+Jx+dAHmvgPVvF/jDXvEcDeLJo9N0y5MEE0djb7piWfn7mOig/8AAhXS+JYfF/hvQr3WrHxKuoCyia4ktb6yiCyRqMsA0YUg4BPf8K5j4Kav4b8PfD6MX2v6Xb3t5cSXEsU17GrrzsGQTnogP41seOfEb+LNBuPDXg1G1S7vwIpruEH7NbxE/MWl+6SRkYBPf0wQC4PiHbX/AMI7vxhAnkOlq48pzuEc/wB0LnuNxGPYjPPFTfCPw3L4a+H1lDc7/td4TeThicqzgYHPTChc++azT8OJLTwh4b8JQMs2nw3y3GqzE7fNC7pCoX0Z9o9gBXpajHFAARkYr498WfDi90T4hxeGbaWCX7e6mzYucLG7sqByRw3y84z0r7CPavC/FiG+8e6rrcoBh0jXNGghf0C5Lj85RQBYT4EanbaVbQ2HjfULSZIx5kS7jDvx82zDKQM57VCnw88Y6QhNzZ/26B0Nn4gubWRvc7ztz9DXuQzzRigDxD7NotnIE1zw74+08gZedbua5hX/AIHG5z+VXtNh+FuqgfZ/F98jFtuy51ieBs+mJCpr2HFZ+paDpOsKF1PS7K9A6fabdZMfTI4oA5WL4aeHJ4xJFqGsyIejJq8xB/ENUn/CrtB/5/Nc/wDBrN/8VSS/Cbwqssk+mwXmkXL8mbTb2WFh9ADt/Smf8IZ4q03Z/Y3j6+aNf+WWq2sd1u9i/wArUASf8Ku0D/n81z8NVn/+Kpf+FW6D/wA/muf+DWb/AOKqA33xN0xXa50XQtaUH5RY3b2r49/MBGfoacPiQ9lIE1vwj4i044y862ouIV/4HGTn8qAJf+FW6D/z+a5/4NZv/iqP+FW6D/z+a5/4NZv/AIqrWm/EzwXqoH2fxFYoxbbsuX8hs+mJNprqIriKeMSRSJIh6MjAg/iKAON/4VboP/P5rn/g1m/+Ko/4VboP/P5rn/g1m/8Aiq7XIo3D/wDVQBxX/CrdB/5/Nc/8Gs3/AMVR/wAKt0H/AJ/Nc/8ABrN/8VXbUUAcT/wq3Qf+fzXP/BrN/wDFUf8ACrdB/wCfzXP/AAazf/FV21FAHE/8Kt0H/n81z/wazf8AxVH/AAq3Qf8An81z/wAGs3/xVdtRQB8//G7wZpnhzwXZ3dncalI76gkRFzeyTLgxyH7rEjPyjn613Wg/DTRbvw7plxLd6yHltInYJqkwAJQEgDdwMk1jftHf8k9sP+wrH/6Kmr0rwz/yKmj/APXjB/6AKAOe/wCFW6D/AM/muf8Ag1m/+Ko/4VboP/P5rn/g1m/+KrtqKAOJ/wCFW6D/AM/muf8Ag1m/+Ko/4VboP/P5rn/g1m/+KrtqKAOJ/wCFW6D/AM/muf8Ag1m/+Ko/4VboP/P5rn/g1m/+KrtqKAOJ/wCFW6D/AM/muf8Ag1m/+Ko/4VboP/P5rn/g1m/+KrtqKAOJ/wCFW6D/AM/muf8Ag1m/+Ko/4VboP/P5rn/g1m/+KrtqKAOJ/wCFW6D/AM/muf8Ag1m/+KpD8LdCHS81zP8A2FZv/iq7ekJoA8fj8F6aPipP4dfUNZ+xDR0vo4/7Smzv80ox3bvTbXUj4XaD3vdcP/cVm/8Aiqi8UOdH+JfhHWCVS2vBNpNw5OOXAeIe+XU10Ov+LdB8MRCTWdUgtS3KRE7pH/3UGWP4CgDE/wCFXaD/AM/muf8Ag1m/+KqOf4a+G7WF5p9R1mKJFLPI+rzKqgdSSW4qL/hKfF3iUlPDHh3+z7Rumo63mPj1SEfMfYnA9afB8M4NRlS58X6ve+IrhWDCKdjFbRkdCsKHH55zQBxl2nhG4uZLHwtH4n8SXq/KwsdTmFuh7B5y20A+o3Dg1zXiL4KeMdViOqp9ka4+6lgb2SaRI+oHmScE5JyAQPTrX0ba2VvY26W1pBFbwRjCRQoEVR7AcCpiv1oA8O+APgqfS5tV169eNblWfThArZaJlYGQP2zlVxgnvXuYrg/AhjsfGHjrR0yBFqaX3P8A08RBj+qmu8oAKzNdsre80x/tV3d2sMOZnltLl4HAUH+JSDjvjpxWnXE/FvWP7G+GWsyqcS3EX2VPrIdp/JSx/CgDi/hDp2o+LtAvtX1nX/EEkZuzDaoNTmQBFAJPykZ5bHX+Gtvx5p+p+DPC914j0LxFqgmsmRntr+4+0wzIWClSHyQeeoP64Il+HGq6b4e+Hujae9rrHmrB5suzRrtwXclzhliIPLYyDjiovF9lrnxLt4dCs7K50rQmlWS9v71PKeQKchEiPzdcH5gvQUAdn4Q15PE/hTTtZWIxG7iDvGTnY2SGA9gQa3Ko6Rpdrouk2umWMfl21rEsUa5yQAO57n1NXqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACoLy2jvLSa2lGY5kaNh6gjBqekNAHFfCa4ml+HOmwXWBc2XmWcqj+ExSMgH5AV21cJ8PwLLxB420jcS0OsG8AJ6LcRq4H04Nd3QAUUUUAFFFFACH9a4b4bb7mbxdqUijNzr9wiN6xxhY1/wDQTXcSMEUsegBJ+lcR8IPMf4aabdTDE13JPcSY7l5nP8sUAdzRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFISBSk4rB8W+LNM8H6FLqupy4VeIoh96aTHCKPX+XU0AQeNfGml+CdCbUtQfMhyLe3U4eZ/QfnyT0/IV5V4G8Gar8R/EH/Cc+NEElkzZsrJwQsgB+X5e0Y7A/fPJyDzD4R8Mat8XPER8X+LVZdGhbbZ2nRJAD91f9gdz/Ecjsce+xRJDEsUaqkaAKqqMBQOgHtQAoAQV5Z8fNVNr8P002L5ptSu44Qg5JCnef1VR+NepSKzIdjKrYO0sMgHscZGa848SfDTXfFOraXqGo+LLYPpkolt4otKIj3blbLAzEnOxe/agDtvD+lJonh7TtLTBFnbRw5x94qoBP44rSKnHBqtpsV/DZqmpXUF1c5OZYLcwqR2+Us2Pzq3QA0r04FKBilooAQ1558V9Ogs/hnr9zYWsMU5lgvJGRQu91ljJYkdTgV39zMLe2lmb7saF2+gGa4HVNUm8V/AzUNVubdYJLrSZp2jQ5C7VYjBP+7mgD0FHDqGHQgEU6srw1d/b/C2kXmc+fZQy59dyA/1rVoAKKKKACiiigBMUYpaKAM7UtB0nWFC6npdlegdPtNusmPpkcVzEvwm8KrLJPpsF5pFy/Jm029lhYfQA7f0ruKKAOE/4QzxVpuz+xvH180a/wDLLVbWO63exf5Wppvvibpiu1zouha0oPyixu3tXx7+YCM/Q13tJigDhR8SHspAmt+EfEWnHGXnW1FxCv8AwOMnP5Vf034meC9VA+z+IrFGLbdly/kNn0xJtNdUR6/jWfqWhaRrChdT0uyvQOn2m3WTH0yKAL0VxFPGJIpEkQ9GRgQfxFPyK4iT4T+FBLJPpsF5pFy/Jm029lhI+gB2/pUf/CG+KtNKf2P4+vmjX/llqtrHdbvYyfK1AHd7h/8Aqpa4EX/xM01Ga40XQtaXPyixu3tXI9/MBXP0NPHxIaycJrfhHxFp3GXnW0+0Qr/wOMnP5UAc3+0d/wAk9sP+wrH/AOipq9K8M/8AIqaP/wBeMH/oArxX42eOPDfivwDZw6LqsVzPHqaO8BVkkVRFKCSjAHAJAzjvXtHheVH8JaOyOrr9ihGVII4QUAa9FJkUbh/+qgBaKKKACiiigAopCcUbvrQAE4ozWVrniTRvDlp9p1jUbezj52+a3zP7Ko5Y+wBNcmPG/iHxIdvg7w1Mbdvu6pq+YIMdmVPvuPpjpQB6A0iojO52qoySeMCuL1L4maMl02n6HFdeINSU4+z6ZH5ioexaT7ij1OTj0qsnw3l1uRZ/GmvXetEEH7FETb2ikdP3anLEepP4V2en6XY6TZraadZ29pbr0ihjCL+Q/nQB59feF/GPj6KBfEdzaaBpscyXCWdh++uldScEzH5UYdioPU10+geAfDvhyc3VnYLLfMcve3RM07Hud7dM+2K6UAjqc0tACbaAMUtFABSGloNAHCWzfY/jjf24UhL/AEKK4J7M8UxT88MK7sVwniB/sfxe8GygHF5bX1qzDp8qLIAfyNd0DmgBScV458cJG1nUfCXhGFjnUb4SSgHooIQE+3zuf+A167dQNc20sKzPCzoVEsYBZMjqNwIz9QR7GuGu/hTZ32v2+u3PiTX5dUtlCw3DSwZQDPQeVjue3egDu0iREVFACqAAPQDoKeRke/rUFlbPaWccEl1NdMgwZp9u9/c7QB+QqxQAetFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSEZpaQ0AVoLCztry5vIbWGO6utvnzIgDy7Rhdx6nAOBnpVqud1PxFJp3jXQtDMKGLVIrlhIT8waJVbAHuCfyroRnvQAtFFFABRRRQBk+KLr7D4T1i7J/1FjPL0z91Cf6Vn/DuEQfDrw6gHXToH/76QN/Wk+Isvk/DjxG3POnTrx7oR/WtXw9ALXw3pduMYitIk46cIBQBpUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFITignFZuu69p3h3Rp9V1S4EFpCuSx6knoAO5J6CgCHxP4k03wtoVxqupy7LeEY2gZZ2PRVHcn/wDXivE/D2g6t8bPFB8UeI1e38OWzlLa0VjiQA/cU8cf337ngYx8rNN03WPjj4sGsaoktr4TspNsUG4/OB1RSOrHjc3boOlfQNnaQWNrHa2sKQ28KhI44xhUUDAAHYUAPggjtoEhhjSOKNQiIigKqjgAAdBjtUlFFABRRRQAUUgINAIPSgBaKKKAMLxpctZ+B9euEOHi064dfqI2x+tZmhaaZfhDYac6fNLoaRMvu0ABH6mtbxdpN1rvhHVdJs5Io7i8tnhRpSQoLDHJAJx+FX7G1+x6ZaWZC4hhWIgcj5VA/pQBgfDW5F18NvD0gOcWMUef91dv9K6quF+D6NB8NrC0di0lrNcwNu6grPJx+WK7qgAooooAKKKKACiiigAooooAKKKKAEPSvGvjB4X027inlsrGOG/hsrjU7i4iGHITYqgkeu5j/wABNeynpXGvZDXrrxk5GUktxpMfuFiZmI/4FOR/wCgC78Pb/wDtD4d+H7kkuxsIlY+rKoU/qDWvqt/9gtPMjj825dhFbRE48yRug9h1JPZQx7VwnwMvPtfwrsIm5a1mmgP/AH2Wx+TVtajqyxaRqvi6Uj7NY2sraeh/iAXJkz/tkAL/ALOP7xFAHnPgHw1Y+MPiH4w1TWEGpW9pOLaNps7JHyQzAZ4GEGF6APivcLe2itreOCFFSKNQiIo4VQMAfTAFeefAzSTp3w1t7mQHztRnkunLdeuwfogP416TQB45+0ZBEPAthceUnnf2mieZtG7aYpeM9ccD8hW1onwt8NT6Dp19aR3ul309nC8lzp17LCxYoDnAO3ue1ZP7R3/JPbD/ALCsf/oqavSvDP8AyKmj/wDXjB/6AKAOZ/4QzxVpuz+xvH180a/8stVtY7rd7F/lamm++JumK7XOi6FrSg/KLG7e1fHv5gIz9DXe008ECgDhh8SHspAmt+EfEWnHGXnW1FxCv/A4yc/lV/TfiZ4L1UD7N4iskYnbsuH8hs+mJNprquD/AI1g+J4/C0dibjxRFpRtxwGv442GfRdw5P05oA3Ip4p4xJDIkiHoyHcD+VOLheteEzaVo2vTSP8ADjwrqsMsvH9sx3cthagYPzLk5fB6qFBrUn+Eni7VtBgtNX+IF1Oy8vbPG7wuP7rNvVm+pH4CgDstW+Jfh/T7z7BYyT6zqeSBZaXH578cHJHyrg9cnI9KoCH4ieJz++ltPCenkf6uLFzeMPQt9xMjuBkGqulWfjjwdZG2svCnhm9tgeI9KuGs3bjq3mAgt755rQHxIeykCa54R8RadgZeZbUXEK/8DjJz+VAF7RPhx4e0W6+3NbyajqZILX+ov585I7hm+6f90Cus21ymm/EzwXqoH2fxFYoxbbsuX8hs+mJNprqIriKeMSRSJIh6MjAg/iKAJBRSZFG4f/qoAWiiigAooooAKKKKAOG8eEW3iTwPfY+ZdXNuOcf62Jx/Su4FcL8UYw1l4ZnOf9H8R2Mn/j5Xn/vqu6HegBaKKKACikJA60Z/KgBaKTNBbjoT9KAFopAck0tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHC+NEEPjjwHfnGY7+e3BP/TWBhjP/Aa7kVzXi/w/e67L4flsZLdG07V4b2bz2IDRKGDBcA5b5uM4HvXSgYoAWiiigAooooA4z4suyfC3Xypwfs4H4FlBrrrVQtrEqjACAAfhXC/Gt2T4R66VYg4gHHoZ4wf513wGBxQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIWC9aU8VU1HULTTLCa+vZ0gtrdS8krnCqo6k/55oAZq2q2OjaVc6jqNwlvaW6F5ZH6AfzJ9AOSeBXgkces/Hbxf50qzWPg+wlxjOC3H5GRhj2QHv/EXFzrHx48WJZ23m2HhTTn3tIRyx6Z9DIR0HRQSec4PvOj6RZaFpNvpmnW629pbLsijXsPc9yTyT3JoAk03TbPSdPgsNPto7e0t12RRRjhR/j3J7k81bAxQBiloAKKKKAEJxXH6j41e512Xw74Zs11LVIRm7ld9ttZDp+8YZJbj7i8+4xVT4ueMZfB3gmWe0fZqF2/2e1bujEEl/wAADj3Iq58NPCyeFvBdlbuM31youbyQj5mlfkg+uBhfw96ALTaV4oeHePEsC3QGdg09fJz6Ebi2P+BVV8IeMpNY1PUdA1e2Sz1/TSPPijYmOZD0ljJ52nI4PTIrrsEAdDj8K8WmuT/w1NbR2pwBZGO5C/xfuGYA/wDjn5CgD2sHNGaQY7UE460ARXN3b2cDT3M8cMK4DSSOFUZOBkn3p+7PTp796+dvjH8VnvpdU8G2VlC1nHMsVzcu5LM8bqxVQMbcMuCeehr1bwd8SdF8UeHYdRnu7PT7olo5baW5XcrA9s4JBGCOO+O1AEXwuci08T2hUqLTxFexKD/d3BgcdvvV3deb+DNf0az8VeNYH1axSF9SS5jdrhAr74l3bSTzgrzXZ/8ACT6B/wBBzTf/AALj/wAaANWisr/hJ9A/6Dmmf+Bcf+NH/CT6B/0HNM/8C4/8aANWisr/AISfQP8AoOaZ/wCBcf8AjR/wk+gf9BzTP/AuP/GgDVorK/4SfQP+g5pn/gXH/jR/wk+gf9BzTP8AwLj/AMaANWisr/hJ9A/6Dmmf+Bcf+NH/AAk+gf8AQc0z/wAC4/8AGgDVoJxWV/wk+gf9BzTP/AuP/GkPibQD/wAxzTP/AALj/wAaANC5uobS2luZ5FjhhQu7ucBVAySfYAE/hWH4JU/8IjY3bg+bfh79/wDemYy4/Dfj6Cs3X7TwN4nKjV9Vs7hANvlDVmjjIznlEkCk57kVPoJ8GeGbZ7fStXsoYHx+7k1QyqoGcbQ7nb17YoA8++FsM4bxT4NiWRYIdZmNzMoICQ/dKKf7z7APZdx6gVufHPUDZfDtdJtVHnandRWscaAA7QdxAHplQP8AgVddY33hLTXu3s9U0mF7udrmdkuo8ySHqxOfaufv/DHw11SdZ7+/t7qVCSjz67M5Uk5+XMvy8gdPSgDtND02PR9CsNMi+5aW8cAPrtUDP6VoZrndL1LwvpFoba0120MW4t+/1Qztn/ekdiBx0zirp8TaB/0G9N/8Co/8aAPNf2jefh7YY/6Csf8A6Kmr0nwwf+KU0f0+ww/+gCvnr42fEeDxLcN4YsII5LSxuxKb1ZN3muEZSFxxtG8885I9OvY+HfjNFd+G9P07SdHM+qw26xzC6u44LeHb8oYyORuyADgDvQB7TmuV1z4ieHNEuvsLXb32pklU0/T0NxOzf3dq9D7MRXKfYZvEfz+MPiBp6W7ddM0a7WCEjuGkJ3uCMccdOK6nRB4G8N2v2fR7rRLNDjcY7mPe/uzE7mP1NAGWLj4heKRm2gtfCent0luQLm8Ze2E+4nfIPIq9pXwy0CyvBqGorca3qfe91WUzuO/yqflUA9MDI9a3R4m0AD/kOaZ/4Fx/40v/AAk+gf8AQc0z/wAC4/8AGgDTCcAcYHpSgYrL/wCEn0D/AKDmmf8AgXH/AI0f8JPoH/Qc0z/wLj/xoA1MUYrL/wCEn0D/AKDmmf8AgXH/AI0f8JPoH/Qc0z/wLj/xoAk1LQdJ1hQup6XZXoHT7TbrJj6ZHFcxL8JvCqyyT6bBeaRcvyZtNvZYWH0AO39K6P8A4SfQP+g5pn/gXH/jR/wk+gf9BzTP/AuP/GgDmf8AhDPFWm7P7G8fXzRr/wAstVtY7rd7F/lamm++JumK7XOi6FrSg/KLG7e1fHv5gIz9DXUf8JPoH/Qc0z/wLj/xpP8AhJtA/wCg5pn/AIFx/wCNAHND4kPZSBNb8I+ItOOMvOtqLiFf+Bxk5/Kr+m/E3wXquBb+IrJWLbdlw/kNn02yYNa3/CS+H/8AoOaZ/wCBcf8AjWTrt94L1GxlfUZtAvzGjMq3EkMnQcYz0oA6iOeKaMPFIkiEZDKwIP40/Irw/wACeEfAz+CNLu5Na/s7WJ4A89zZ6s1vKGJJwV3bQRnHTtXQ/Y7zTtn9j/FmMxp/yy1U290W9i+VagD0/cP/ANVGa8u/4TXxdpgY3LeD9aXOFFjqwtXx7+ZkZ/Gnf8Lu0OymWHW9Nv8AT5COZUMdxDn0Dxsc/lQBtfFIhfCMMxOEh1Kzkc9cAToM/rXag5r5t+J/xmi12OXQ9EtoZtM8yKQ3kocNIVZXAVTjbyMHIPfp1r2vwB4xg8ceF49Xih8iTzGhng3bvLde2cDPBU9O9AHUUhIFLXmPxh8XX2lWNh4b0Ryus63III3U4MaEhcj0LEgA9uT1AoA6K48aLeavNo/hyxbVb23OLmXzPKtrY+jyYOW/2VDHg9KdfXnjDT7c3g0/TNSVF3PaWzyRSkdTsZgQx9iFzV7wr4Zs/Cnh210iyUBIVG98YMshHzOfcn8hgdq2sHHOD+FAGP4Z8Tab4t0OHVtLlLwSHayPw8bjqjDsRn+XauH0671HxH8dtQe3vJ00bQbQW8kaMRHLK4PykeuS3/fsVj/Cm/e3+IHxEtrdWkskvJJ0ROfmEsgwB6kcfgK7n4b6Dc6N4YNxqMZTVtTne/vd3USSHO0/QYGPXNAHYL3paQDFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBFPcw2qB55UiQsFDOwAJJwBz3JqQHNcT8U/wDkVbT/ALCtl/6OWu2FAC0UUUAFFFFAHAfGtWf4R64FBJxAf/I8dd8ORXG/FlGf4W6+FUsfs4JHsGUn9Oa662YPaxMrBgUUhh34oAlooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkJxS5qKeaOCB5pZFjiRSzu7YCqBkkn6UAMuruC0s5bu4lSK3hQySSuwVVUckk9hXgGsapq3xx8V/2Lojy2vhaycNPOwI8zk/OR3Jwdqn6nB6O8SeINY+MXif8A4Rfww0kPh2Bw13dkELIAfvt0+X+7H1JGT/s+1eGfDGmeE9Dh0rSoBHBHy7H78r4wXYjqxx19gBxigCxoGg6f4b0aDStMgWG2hXAHUse7E9yTzmtIDFAGKWgAooooAKKKKAPEP2gIvM1Lwb5+fsRupUlPYZaL9cBv1r23cB/hXP8AjbwfY+N/Dsuk3zNHlhJDMoyYnHRgO/Ugj0JrP0e78YaVpsdhq2jJqs8ChEvbO6RVmA4DOshBVvXGeaAOl1bVLPRtKudSvpRHbW0ZkkbqQBzwO59B3ryf4P6Nea14j1r4h6pEyNqMjpZK3/PMkZYewACg98Gup1Hwlq3jS4iHiqeG20eFxIukWUrN5xHIM0vGQP7qgeueK6q+1DSvDekG5vZ7ew0+3UIC2ERQOAqj8MBR+FAGgD/kVyXiTx5aaXejRtLtpdZ1+QfJp9owyn+1K/SNenXnnp3rG/tLxR8Qxt0XzvD/AIdY86jKuLu6X/pkv8CkfxHB5GOhFdb4b8KaP4VsPsuk2ixBuZJWO6WU/wB52PJP+PFAHz58Q/hZrdlpeoeM9RvNOjllmE95ZwK4WJpJAPkY53cvk5x3xmvSvhT4L8K3Pw40u8l0jT9RnuQ0k093Zo779xDLlgThSCPwz3r0q+sLPUrR7O/tbe6tpMF4J4w6Ng5GVPBwQDXGeAj/AGR4j8WeGGJCW18L61BwB5M43bVHorBh+NAGVo3g/wANJ8U/E1hN4f0mS3eztLiCF7OMpF99W2qRhckAnHWuy/4QXwgf+ZV0P/wXRf8AxNYR3w/HdWyvlXPhz83S4/wau8FAGB/wgnhD/oVdD/8ABdF/8TR/wgnhD/oVdD/8F0X/AMTXQUUAc/8A8IJ4Q/6FXQ//AAXRf/E0f8IJ4Q/6FXQ//BdF/wDE10FFAHP/APCCeEP+hV0P/wAF0X/xNH/CCeEP+hV0P/wXRf8AxNdBRQBz/wDwgnhD/oVdD/8ABdF/8TR/wgnhD/oVdD/8F0X/AMTXQUUAc/8A8IJ4Q/6FXQ//AAXRf/E0f8IJ4Q/6FXQ//BdF/wDE10FITigDA/4QTwh/0Kuh/wDgui/+Jo/4QTwh/wBCrof/AILov/ia39wziobm8t7O2kubqeOCCNd0ksrhVQdySeAKAMU+BfCA6+FdD/8ABdF/8TQPAvhA/wDMqaH/AOC6L/4msW4+JtrfzvaeEdKvfEd0h2mS2Xy7VG9Gnb5RxzxmoR4X8Y+Jst4l8RDTLN+unaJ8pIzwGnYbj6EAAGgBniA/C7w1ILe/0XQGvWICWVvpsUs7k9AEVSRn1OB71hDw3feKCBpHgDw74asHGfteqabDJckHusAGFIx0c85FeiaB4O0DwvGV0fTILd2GHm27pX/3nOWP51uBcdhzQB8r/FT4UjwRp0GtQ6oLqG5nWCSM26xFZGVmLKF+UL8h4AGMgc17J4C+GvhvT/BemreaTp2pXM8S3ElzdWaOxLgNtBIJAAOBz2z3rE/aN/5J7Yf9hWP/ANFTV6X4Z/5FTR/+vGD/ANAFAFT/AIQXwif+ZV0P/wAF8X/xNH/CCeEP+hV0P/wXRf8AxNdBRQBz/wDwgnhD/oVdD/8ABdF/8TR/wgnhD/oVdD/8F0X/AMTXQUUAc/8A8IJ4Q/6FXQ//AAXRf/E0f8IJ4Q/6FXQ//BdF/wDE10FJmgDA/wCEE8If9Crof/gui/8AiaP+EE8If9Crof8A4Lov/ia38j16UFgBk0AYH/CCeEP+hV0P/wAF0X/xNJ/wgnhD/oVdD/8ABfF/8TUupeMvDWjsV1DXtOt3HWN7lN//AHznP6Vz7/Fjw/cj/iS2ms64wOANO06Rxn6sFH45oA2/+EF8If8AQq6H/wCC6L/4mj/hBfCH/Qq6H/4L4v8A4msP/hJ/HOoybdN8DC0iZfkudV1BEx/vRoCwoGj/ABJ1NP8ATPFGj6R83K6ZYGfI9N0p/pQBuf8ACC+EP+hU0P8A8F0X/wATWPrmifDnTLWWK90/wtYSyIyxmaC3jbdjjGQDnNN/4VjBeFjrfiXxDqquMNDLfGKE/RIwuPzrntL8GeGPDXxVfSf7EtHstT05Z7EXKedsmiYiRVL5OSrBj9KAMLwVr3w4bwbpltP4Zg1TWYoAtxBbaJ9pmLAkZLbMEnGetbvkR6gUOj/BayEbf8tNUgtbXb7lNrN+FesRxxwoEjRURRgKoAAH0qnq+sadoOnSX+qXkVraR/ekkbA+g7k+gGSe1AHmf/Cude1MOs2k+AtFjP3WtNGW5lX6+YAprlNd8A+F7TVY9MaW88R+JSM/2dpVvb2US+8xjTEa/U56cYNd/wDb/FHxD2jSfP8ADvhxzzfyLi8uk/6ZL/yzUj+I88gjvXXeHfC2keFtPFnpNmkKHmSTkvIfVmPJP+RigD5w8VfBbVPD+gLrkt9YqTKiz2cQfEJkcKoRmzuA3DOcdDya+gvAPg6DwN4Xj0eKYTyeY0s0wTb5jt3xk9AAPwrO+KgDeD4oGHyTalZo49jOma7delAAa8P11Ptv7UeiQ3X+qitg0IP+zHI4/wDHgfyr3A15/wCPvBWoanq+k+KfDzRLr2lMNscpwtzHknyyex5YA+jHpQB36nA5rE8X+JLbwp4Wv9YuWX/R4j5aN/y0kP3U/E4/DJ7VTg8XyG1XzvDeuxXgHzWwtd2G7gS58s/Ut+VYlx4Q1Txzq9tfeL40tdJtH32uio4kLt2edxwT/sjI9+TkAzPgV4YutK8MXet6gCL3WZRL8/XyxnaT9SzN9CK9WAx3pFUIoVVCqOgAwBTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDifikCfC1oB/0FbL/0ctdqDmoLyytb6NYru2huI1cSBJYw4DA5DAEdQeQanFAC0UUUAFFFFAHMfEaLzvhx4jXnjTpm4/2UJ/pWr4enF14b0u4AGJbSJ+PdAf60zxPafb/Ces2f/Pexni/76jYf1rP+Hswn+HPhtx0GmwJ+KoF/pQB0tFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQTiimk0ADOqruJwByT6V4F4y8Van8VfEn/AAhHhNsaWr4u74cpIFPLEj/lmCOP7xxUnjzxpqXxE13/AIQXwSTLbsSL2+VsJIo+8Nw6Rjuf4jgDII3ep+CfBGm+B9ATTbAB5m+a5umXDTv6n0HYDsPU5NAE/hDwjpng3Qo9L0xDtB3TTN9+Z8YLN+WMduldAowMZoAIzk5paACiiigAooooAKKKQnHrQAE4pMj1yemazde1/SvDmmSahq97FaWqcFpD94/3VA5Y98DniuLVvFfxDJCfafDPhphgucC+vF9hz5Kn16/UGgDS8QeP4bXUG0Pw5Zya5r/RraA4jt+2ZpOiY9OvGOMg1DpPgGS91FNb8aXsetaohzFbhMWlpntHGfvHp8zDJwpxkZPTaD4b0rwzpq2GkWcdrADubaMs5/vMx5Y+5zWqowMUAIFPOTmnCiigDG8WatPoPhTVNVtoklms7Z5lR87TtGecdq5HU7j+z/iF4R8SZUQazaNpVzIGIUMw82HA9S24V1XjW2a78Da/boMvJp1wq/7xjbH61xer20+r/AbS9QgZTqGn6da6lBIy5xLCiuSB6kBh+NAGrr8q2vxe8HN3vLS/t+mfuqj4/Q13YOa878Q6jDqGq/DrxDAf3Nxe7Yyf7s9u3WvRFz3oAWiiigAooooAKKKTcKAFpCQOtNkmjijaSR1SNRlmYgAD3zXE3vxP0mS5ey8N2t14j1BDgx6cmYkJ6F5j8irweeaAO43Vg+IPGfh7wwo/tbVIYJGAKQDLyvnphFyx546Vz39ieO/FGG1nWYvDtg3JstIO64K+jTnhT7oMVu+H/Avh3wyzS6dp0YumyXu5yZZnJ6ku2Tz1wMCgDAbxH418TceHfD66NZMcfb9cO2T3KwLk57gtwantvhlZXdxFeeKtSu/Ed3GdyreHbboenyQL8g/HNdzt9+aUDFAEUFtDaQpDbwxwxIAESNQoUegAqUDHWlzSZFAC0UmajuLqC1haW4mjhjUZZ5GCgfiaAPJf2jv+Se2H/YVj/wDRU1eleGTjwpo//XjB/wCgCvHfj54r0DWfB1lp+maxZXt0mopK0dtMJNqCOQEkrkDlgPxrq9C+IFzJoGm2mkeD/EN/LFZxJ5rW6wQMQgHEjnkcdcUAemZozXBfb/ibqW1rXQ9B0YE4Zb+8e5cD1HlADP1NOHg/xfqDP/a3j66SF/8AljpdlHbFfpIdzUAdy8iRKWkdVUdSxwK5vU/iH4P0cP8AbfEenoyfejjmEjj/AICmT+lZafCXwzKyPqp1LWZUORJqV/LKc/QEL+ldHpfhfQdFO7TNG0+zf+/BborH8QM0Ac0fijYXhT+w9A8Q6yj/AHJrXT2WE/V5NuKT+3PiLqW5bLwnpul8/LJqeo+Zx6lIhkfnXeYNJtOc5oA4b/hHPHuosrah41t7FP44dM05f0eQlh9aQfCfRrpGTW9U13XFY52ahqUhUH2VCoxXeAUUAc/pvgfwvo5RrDQNOhdBhZPs6tIP+BkFv1reChQAMADgDHanUUAIBigDFLSFsY96ABjiuK+I+mXUuk2mv6VEZNW0Gf7bAi9ZUAxLF9GTPA54FdDr/iDSvDemNqGsXsdparxufOWPZVA5Y+w54+tcWB4r+IgPzXXhjw24xnhb+7X1HURKfxP1BoAsXPxPs9SitbTwhaPrmr3UKyrDGdsdsGHWd+i47r1yMcZBqbSPAL3WpprfjG9XWtVQ5ihK4tLT2ij7np8zDPAPXmum0Hw7pfhnTE0/SLKK1t152oOWPqx6sfc5Naart9KAFAxS0UUAcJ8UZALLwzAc/wCk+I7GLHY/OWwfb5a7oVw/jwLc+IvBFl1Lax9oA/65ROf613APWgBaQjJzS0UAJigDFLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHOeLPEFzoU2gRW0EUzalqsNlIJMjbGwYsw9wF4rol6c1w3jZhP428CWB/5aX89wAT/wA8oWOcf8C/Cu5FAC0UUUAFFFFADJFV42RvusCCPauJ+EDSj4Z6Zbzn9/avPbyexSZxj8sV3DDOK4b4bb7aTxZpshGbXX7kxr/djk2yL/6EaAO6ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopCcUAI3uOK8P8AiL491HxVrX/CCeCWM80pMV7dQnA/2kD9lHO5vw9QbPxO+Id9f6p/wgfg1WuNUuW8i5uIjny8/eRT0yBnc3RRnvkr2Pw4+HVj4E0cxqVuNSuFH2u5K/e9FUHoo/M9T2AALHgDwDp3gbRVtbYLJeyANd3WPmlb0HooOcD+vNdeoIGOMdqAMUtABRRRQAUUUUAFISARnvQTisjxF4m0jwvpzXurXsdvH0RTy8jf3UUcsfYfXpQBr5rh9a8fGbUZND8I2Q1vWU4kYNi1tT0zLJ045+Uc8EcGs8WXir4igNqIn8N+Gn/5c0bF7dr/ANNG/wCWan+71657Gu30bQtN8P6bHp+lWcNpaxjiOMdT3JPVj7nJoA5rQvAAXUU13xRenW9dXmOSUfuLXviGPouOPmxkkZ4JNdsBgk0CloAKKKKACiiigCK5hFxbSwt0kQqfxGKxPCWgz6H4M07Q9QkiuZLaDyJGQfIy84HOO2BW+SB1qvBfWl486W11DM1vJ5UwjcMY3wDtbHQ8jigDxNN9p4S0rSLh3EvhXxhBAzM3zND5h2N9CsgAHote6CvCPi6zeHdd1W4QBY9as7a5T1a5tZ0zj0/dtnPXivdlbKg9iKAHUUhYLjPekLqoJZgMDJyegoAdSbh61xmqfEzQra8bTtKW517Ux/y66VF523tlnHyqAevPHpVL7J8QPFAze3lt4U09utvaEXF2w6YaQ/InqCoyKAOp17xTofhm1+0azqdvaIQSqu3zv/uqPmb8Aa5b/hL/ABT4kYx+E/DT29semqa3mGPHqkQ+ds9jwPWtbQvh74d0G4+2RWbXepEgvqF85nuHb+9vbof93Fa+o6/o2j86nq1jZ/8AXedI+fxNAHKRfDUaq4n8Z63e6/JkN9mLGC0QjpiJDyR0yTyO1drZWNpp1qlrY2sFtBGPligjCKv0A4Fcg/xZ8KPNJBptxeavcp1h02ylmJ+hC7f1qP8A4TTxTqO1tH+H+peWT/rNUuI7Tb7lPmagDuxx3zS5rhfsvxN1PeJdT8PaLGfum1t5LqVfrvIX9KP+Fd398UfW/HHiG8cffS1mW0if2KRj+tAHYX2qafpcJm1C+trSIdXuJVjX8yRXL3XxW8GW9wLaLWFvblvuxWEL3Jb6FAR+tOsPhX4KsJTKugW1xKxyz3ha4JP/AG0JrqbSxtbCEQ2dtBbxDokMYQD8BQBxX/Cf61fq39heAdduGBwDf+XZKR6guST+VLv+J2pvlIvDmjW7DkO8t1Mn5bUNd3tz16UooA4P/hA/EGoKRrfj/WJQTnbpscdkB7ZUEkfjU1v8JvB8dyt1daY+o3QGDNqFxJOW+oZtv6V21FAHiXx80bTNI+HNhHpunWlnH/akfy20Cxj/AFUvZQK9X8MjPhXRyf8AnxhOP+ACvNv2jv8Aknth/wBhWP8A9FTV6V4Z/wCRU0f/AK8YP/QBQBqY5paKKACiiigAooooAKKKKACkJA60EgHFY/iPxRpHhbTzeateJAp+WNMbpJW/uoo5Y9On40AbGa4bWPH7XOoy6H4NshrWrp8s0oOLS0P/AE1k7nr8o54IyCKo/wBneKPiJhtV87w94abn7BG2Lu7X0lYf6tT/AHRzyQexruNI0PTdB06Ow0qzhtLWMcRxLgfU9yfc5NAHNaF4BSLUU13xLenW9fHKTSjENt32wx9Fwf4sZOM8ZNdoAR160UtABRRRQAUhpaQ9qAOF8Qqbv4ueDIVY7bS3vrl17YZFjBI/4Ea7oVwtuv2v44XsyNuTT9BjgYf3XkmL/wDoKCu6FAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAc1qnhy41Hxz4e1zzIRbaVDcgqxO8vKqqCBjGMBs8+ldIBioIb60uLq4tYbmGS4ttvnxI4Lxbhldw6jI5GetWKACiiigAooooAQ88VwugA2Hxd8W2jPxf2tnfRp6BVaJj+YFd2a4LW9umfGPwxe7T/wATOxutPdgOBs2yrn6ndQB3gpaRT7dKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEJxXkHxQ+JV0l4PBfhDzJ9dumEUs0J5gzj5VPZ8dT/CPflbPxU+JkmjsPC/hkvc+IroiNvJXcbcN0Ax/wAtDkYHbqe2b/wu+GUXhCzOpaoEuPEN0uZ5S2/ygf4VPr6nv9OoBP8ADD4a23gXS2lnZJ9ZuV/0i4A+4Ovlpn+HPX1PPYV6ABigDHeloAKKKKACiikJANAC0hYAEntzWH4l8W6P4VtEm1O5KySHbBbRqXmnbgbUQck5IGegyMmuVGieJPiEPM8SGXRPD7HK6RA+Li5X0nkH3QRjKDnnkgigCzqfj241a/k0bwNaJqt/G22e+ckWdr/vOPvtjsv59queHvAVvp+of23rV3JrXiBv+X25UbYRn7sKdIx16c8n1xXS6ZpVlo9hFY6dbRW1tEMJHEoUD8PU9z3PPergFAABjrj60tFFABRRRQAUUUUAFFFISAP8KABhmuF8M77L4n+M9PbAjuBaX0I7ndGUc/8AfSCu5JFeTeIvF2laL8X7S/sml1eebSpLCez0wCeVXWQOnyg4zy3XoM0AU/2iZNLfwnp0c06pqQuTJaoFJZ0xhwCBgDlTz1wK6fwx8V/CWp+GlvJtXis3tYkW4jujsZWI/hz9/O0/dya8t+Knhfxz4yu4PEZ8My29vDB5C2aXKzzKoZm3sg6E7sYGTxzUHwd+Fdt4jOoal4ksnaygf7PFbmUxsZgfn3BSGXbwMHGd3tQB3mpfG6yvGkg8NR2bAfKL/VrlbeEf7Qjz5kg68AAj8awhq2m+J8ya3q3iPxeN3/IN0PT5YbNeehHylwD/ABM1es6Z4G8LaQVaw8P6bDIgwsn2dWcf8COT+tb5AUAfwjigDznTNR8S21sLLw18OLbSbIjKyXt3HAoPq0UYLfjmrX9k/EjU4x9s8T6Po/PK6Zp5nyP96U/ritHxh44tfC5tbG3tn1DW71tlnp8P3nPqx/hUev8AgcQ2fh3xLqq/aPEHiSe1kbn7DpAWKKLPYyEF3PTnIHoKAK3/AArSG8cvrfifxFqm4fPC96YoT/wCMLj860dN+G3gzS1X7J4c08sp4eeITMD67nyf1rA8bazrnw10KXVba4k1mxf9yEvSPMtpD91t4ALp2IPzZx81dt4cjvovDmmrqczzX/2aM3MjgAtIVBbgAY5J4oA0Y4kijCRoqIOAqjAFOx9KWigBAKWiigAooooAKKKKACiiigDyD9o7/knth/2FY/8A0VNXpXhn/kVNH/68YP8A0AV5r+0d/wAk9sP+wrH/AOipq9K8M/8AIqaP/wBeMH/oAoA1aKKKACiiigAoopCcUALmmlgFyeAOtYXifxdpHha2STUbhvOlO2C1hUvNO3TaiDknJAzwAT1rll0LxJ8QMTeJ2fRtAYgro1vJ++uF/wCm8g6A/wBxfXnBFAFnUfHtzrOoPo/gW0j1S8jO2fUJCRZWv1cffb/ZX9cEVe8O+AbXTdQ/tnWLqTWvEDfevrpeIvaFOkY+nPJ7HFdLp+mWelWMVlp9tFa20QwkUKBVX3wO9W1GKABRjPSloooAKKKKACiiigApD296WmTSJFE8khARAWYnsBQBw3gcLe+M/HesIxIk1GKxHoPs8QB/VzXeYrh/hNG7+BItSmj8u41W6uL+UHuZJWwfxULXcUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIaWobu4jtLSa5lOI4kMjn0AGT+lAHFfD9lv/ABD421kLgzav9j3Y+8tvGqDn05P613dcT8JreaP4d6fdXQH2q/aW9lI/iMkjMD/3yVrtqACiiigAooooAK4P4qH7Do2ka/u2Lo+rW11KwHPlFvLcfiHH5V3lYnjDSDr/AIP1bSlUM9zayJHnpv2nb/49g0AbS9KWud8B6x/b3gXRdTMnmSTWiCV/WRRtf/x5TXRUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFITigBScV5h8VPiePCsSaJogFz4husBUUb/s4PQle7nI2qR7kYwDY+KPxNt/BdkLCxxPr1yn7mLGREpOA7Dvz0Hf6VmfCv4ZXGkTP4p8TFrjxBdZdVmO42+7kknu5zgnsMj1oAs/Cz4Y/8I1Gdf10m58R3WXdpDu+z7vvDPdzk7m98DjJPqAGM+9CjFLQAUUUUAFITigsB1rnfFPjPSPCsUQvZJJbyY4t7G2XfcTn/ZQc4z3OB79qAOheRI0LuwVVBJLHAA9a4C98c3/iS6l0vwFbJdvG2yfWLgH7Jbn/AGf+erY5GOOQeQahj8M+IPHZFx4ydtO0c4aPQbSU5k75uJRgt/urgDjoQa72zsLbT7SK0s4IoLaIYjiiQKqj2A4FAHOeG/AVjol42rXlxLq2vSjEup3nzP0xhB0jXk8L24zXWAEdaAMUtABRRRQAUUUUAFFITjrRkUALmkyK5jX/AIgeHfD9wLOe9+06ix2pYWSGedmxnGxeh/3sCsUX3xB8Uj/iX2Vt4W09zxc32Li7K9mWIfKp6jDHNAHbajq2n6PaNd6le29nbrwZJ5Ai/TJPX2ri2+I1zrriHwToF3q4JIOoXANtaJ64dhlyO4A79at6b8MtEgul1DWHudf1Nf8Al61SQzbfZUPyqPTjj1rshGFUKvygcADtQBwP/CC654j+fxl4jkmgYAtpelZt7b3Vn+/IPqRXV6R4b0bw/bJb6TplpaRr3jjAY9slupPuTWqKz9ee+j0DUH0vb/aC20jWwYZBkCkqCPrQBf8A0rgvDGNE+J3inQeFgvxHrNsgHUt+7mP13qtdH4R1g+IfB+k6sWVpbq1SSUr0EmMOPwYGud8cg6P4v8I+JlyES8bTbrb3inGFLH0VwD+NAHeiq+o3sOm6dc31y22C2heaQ+iqpJP5CrArB8cWc+oeBddtLVS081jMiKvViUPH49PxoA82+DNvc+Ktb1zx/qo33U8xtrTdyIUxlgv0BRR9G9a9nHHH5V5r8CJoH+FlkkRBkjnmWbH98uWGf+Alf0rvtSs21CzNul7c2TMQRNblQ4wc8bgR+lAFPxRoEPijQ30q4YLDJNDI5KbshJVcr+IUjPbNbC14x4Uu/EXiP4leIdHXxZqjaLpB2CQLD5jSbtu0ny8YysnbsK9mUY7596AHUUUUAFFFFABRRRQAUUUUAFFFFAHkH7R3/JPbD/sKx/8AoqavSvDP/IqaP/14wf8AoArzX9o7/knth/2FY/8A0VNXpXhn/kVNH/68YP8A0AUAatFFBOKACkJxQWArnPFPjTSfC8ccd08k99Pxb2FqN88x/wBlRzj3OBQB0LyJHGzyMERRlmY4AHrn0rgL3xvqXia4l0vwFbLdbG2Ta1cKRaQHvs/56sPQcdDyDUUPhbXfHMi3XjN/sOkg7otAtZThu4NxIMFjz91cAYHuD39rY21jaxWtpBFBbxLtjiiQKqD2A4FAHN+GfAlhoV02qXU8ura7KP32p3nzSH2QdEXtgdsDJxXVqME+9AGKWgAooooAKKKKACiiigAooooAK5P4mamdJ+HGuXK7t72xt029d0hEYx+LV1lcH8Qz/aOseEPDqsc3uqi5mXs0NuvmOD7Z2UAdX4f00aN4d03Swc/Y7WKDPrtUD+laNIKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAprgMu0gFSMEHoRTicVy3iLXby08WeGNEsSobUJppLksm7EMceT9MsygGgDpokWNAiKqoowqqMADsKfSDPeloAKKKKACiiigAprdqdSEZ6UAcF8OD/Zd/4p8MOedN1NpoFAwFgnHmIB+O+u+rgNUzoXxi0i/wAlbbXbKTT5R0UTRnzI2J9SCVH0rvl6dc8UALRRRQAUUUUAFFFFABRRRQAUUUUAFFFITigBa4H4m/Em08C6V5cBSfWblD9mtjztGceY4z90EdOpPHYkWPiP8QrHwJoplYJPqU4ItbQn7x/vNjkIP16Vxfwy+H17rGqf8J74zLz6ncOJ7WCUfc/uyMOxAxtXooweuMAFj4YfDe8N43jLxgHuNduX82GK45MGejsMcP6D+EYxg/d9hAIzn8KAMCloAKKKbuFADs4qKe4itoJJ55EihjUs8jsFVQOpJPQe9c54p8c6Z4ZaO0IlvtWmH+j6baLvmlP0H3R3yfQ4zWFD4P1rxjNHf+OLhYrVDvh0G0f9yh6gzOP9Yw9B8oI44JFABP4y1jxfcy2HgOBBao5SbXrtD5EZHURKf9Y3X/Z475Brd8MeBtM8NyPe5kv9YmH+kaleHfNJ7A/wr04HYDOcZro4LeK2gSCCKOKGNQqRxqFVQOgAHAqQUAIq7c9KdRRQAUUUZxQAUUma5/xD438O+GSI9T1OJLlsbLSPMkzk9MRrlufpigDoNw/GoLy+tNPtZLq9uYba3jGXlmkCIo9SScCuFOueOfFHy6HoqaBYt/y/awMz49UgHQ/73BqzZfDHTZbqO/8AEt7d+I79eQ2oN+4Q452QD5FHsc0ART/E2PU5Ht/Bui33iGdSVNwi+TaIR1DTPgZ6HABz600eEvFniUFvFXiNrO1brpuiZiX6PMfnYdiBgehru4YI7eFIoUSONAFVEGFUDoAB0FSAYoAxtC8J6F4ZhMWjaXbWgI2s6LmRh1wznLN+JrZAPelooAKKKKACkJpaQjNAHBfDJl0xfEHhZtqHR9TkWCIH7tvL+9j/APQm/Ktrx9op8ReBtX02NWaZ7cyQbTg+anzpj/gSirNv4bhtfF194hhnkWS9to7eaAYCMUJ2ue+cHH0rZ6UAY/hHWx4j8JaXq4K7rq3R5ApyA+MOB9GBH4VskHtXBfDg/wBk33ifwqxCjTNRaW2RRgLbzjzEA+h3V31AHBjwLqGga1dap4O1G3s0vW33WmXkTPbSP/fUqQUP0zn8AK1DY+L9Qi8i7v8ATdMibiR9PR5ZSO+xnwqH3Kt+HWuoooA5fwj4F03wZLqraa0hS/nWUrISSgC4C7iSW5LHJ/ve2T04GKWigAooooAKKKKACiiigAooooAKKKKAPIP2jv8Aknth/wBhWP8A9FTV6V4Z/wCRU0f/AK8YP/QBXmv7R3/JPbD/ALCsf/oqWvSfDJA8KaP/ANeMP/oAoA1s84qG5uIbW2kuLiaOGCJS8kkjBVRR1JJ4AFc54p8daV4aeKzIlv8AV5/+PfTbQb5pD2OP4RweT6HGcViQeDdZ8XzxX/jq4QW0bb4dAtW/cI3Yyv8A8tWH5deoJBAEm8X614ynksfAsKx2SsUm1+6TMSdj5KH/AFjdefu8c9c1veGPBGmeGme7XzL3V5xm51K7O+eU/U/dX0UdgM5xmuigt47aFIYI0jijG1EQBVUdgB2+gqQDFACKu30/CnUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhrgbAnWvjRqtxktb6HpsdmqkcedMfMZgf8AdAU13VzPFa28k87hIYkLyO3RVAySa4v4VwzS+FZ9cuY2S51y+m1F0fqqu2EH02KpH1oA7gd6WiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBDxXB6QP7Z+MOvaj83k6NYw6bGc/KzyEyyEe4+VTXemsTw54bg8OR6j5czzyX99LezSOOdznp9AAAKANoUtFFABRRRQAUUUUAFFFFAHFfFOxnn8GPqVmub7Rp49Tt+e8Ry3/AI5urq9Mv4NU0y11C2bdBdQpNGcdVYAj+dTTRJPE0UihkcFWBGQQRg1w/wAMJ5LCw1TwpcsxuNBvGgj3Nlmtn+eFj9VJ/AUAd5RRRQAUUUUAFFFFABRRRQAUUUhIFACk4rkvH3jzTfAuh/bbr97dS5W1tQcNKw9fRRxk/wAzxVjxr410vwTobajfuWkbK29spw8z+g9Bzye31wK8q8CeDNU+I+vf8Jz42XzLNubGyYEI4H3flPSIdgfvnk5GdwBP8OvAepeLda/4T7xofNac+bZ2kg+Uj+Fip6IP4V74BPv7kAR1oUYHb8KUnFABSE4o3DOK5TxN46sNDuk0u0t5dW12UZi0y05f6ueiLz1PY9DQB0l3eW1layXV3PHBbxKWkllYKqr3JJ6V5/L4n8QeOWa28GRNYaUTtk1+7iPzDPP2eM4LHqNx44I4ODUtp4G1PxPdpqfj65juQjB4NFt2ItICOhfvI3145I5BwPQEiWJFSNVRFGFVRgAegHagDA8MeC9J8LLK9oss99Oc3F/dP5k8x6/M/p7DAroVBBOaAMUtABRSE4oLACgAJxRkVi+IPF2g+GIQ+sapBaseUiY5kf8A3UGWb8BXNf8ACU+LfEpKeGPDv9n2h6ajrZMfHqkI+Y+2cD1oA7ue5htYXmuJUiiRdzu7BVUDqST0rirz4m6dc3L2PhfT7vxLfIcH7EuLdG7b5m+UA88jPSmQfDODUZUuvF+r3viK5UhxFOxitY2HQrChx+ec12trZW1jbpb2lvFbwRjCRQoEVR6ADgUAcMvh7xr4n3Nr+vJoli2R9g0U/vSP9uduc9jtGDXQ6B4J8PeGBnSdMghmOd1yw3zNnrmRssfpnFb4FLQAm2gDFLRQAUUUUAFFFFABRRRQAUUUUAUda1WHQ9FvdVuY5ZILSFppFiALFVGTgEgdPep7O7g1CxgvLZxJb3EayxuOjKwyD+Rp1zbx3dtLbzIHilRkdGGQykYII9Oa4n4XXE1pod94ZvHLXfh+7eyLN954c7onx2BU4HstADNXzofxf0PUeRb63Zy6bPjhRLH+8jJ9z8yj6V3orivirZzy+CZdTs1BvNFni1ODJwMxNlv/ABzfXXWF5DqOn217bsHguYkmjYfxKwyD+RFAFiiiigAooooAKKKKACiiigAooooAKKKQnFAC0hOMe9G4VyfiXx3Y6LeR6VY20+r67KMxabact9ZG6RryDk9ucd6AON/aLw3w9sMdtVjz9PKlqfRde8S+L9B07T/C8L6XpsNrHFPrl3HyxVAGFvGfvHPG48de+K4r4xaT4lHhC013xPqm66lv44otMtDi2tkMcjf8Dfj73bJHIIx7t4XTb4S0YDHFjABj/rmtAFTwv4M0nwrFKbJJJr2Zs3N/dN5lxOf9pzzj2GB+Oc9Cq7c0AYpaACiiigAooooAKKKKACiiigAooooAKKKKACgnFFNbpQBxfxTvpo/B50mzbbe63cR6ZBxnHmnDk+2zdzXW6fZQabp9vY2ybILaJYY1HZVAAH5CuHmJ8R/GOKMHdZeGbMyMQeBdTjCgjocRgn2Jrv1GOOntQA6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikY0AZer+ILLRbjTILrzDLqN0tpAsa7jvIJyeeFGOT2yK1AcjOK4FAPEfxjeUfNaeGbPy1OCP9JuBk4PQ4jGD6E13woAWiiigAooooAKKKKACiiigBD7V5/rwbw18UdF10HbZa0n9k3g7CX70DH1JOVz2Feg1zvjnw8fE/g/UNMiO25ZPMtnzjbMh3Ic9vmAH0JoA6FaWuf8FeIR4n8JWGqt8s8ke24TbtKTL8sg29R8wP4YroM5oAKKKKACiiigAoopC2OtAATisHxf4s0zwdoUuq6nLhVGIYgfmmk7Ko9f5Dk9Kl8T+JdN8K6Dcatqk3l28PAUDLSOeiqO5P8A9ckAGvFfDugat8aPFJ8UeIla28O20hjtrQE4kAP3F6ZGQN79zwMY+UAk8IeF9V+LfiNvGPi1WTSI222dmMhJAD91f9gdz/Ecjsce/IixqFVQqgYAAwAKbDDFbwpDDGkcSKFVEGAoAwAB6Yp5YAcmgAJA61U1HU7LSbGS91C6itbaMZaWVwqj8a5rxH49tdNv/wCxdGtn1nxC33bG2PER9ZX6Rjvzz+eao6b4EutZv4tY8cXkep3kfzQadGuLK1z6If8AWN/tN/QGgCs2ueJPiCDF4ZSTRdAY7W1m4T99OvfyIzyAf75x14wQcdT4Z8H6R4VtGh023/fSndcXUx3zTt1LO55JJycdOTxW6ExwAABwKXpQAAYoJxQWA61l674k0bw3afadZ1G3s48Er5rfM+OyqOWPsAaANTNIZFVSzHaoGSTxxXn/APwm3iHxIdvg7w3KbduF1TV8wQEY4ZUHzup9RjpT0+G82tOJvGmvXmtNnP2KMm3tF9P3anLEepPPpQBZ1H4m6Mt01hoUV14h1IH/AI99MTzFT3eT7ij8TiqY0vx94qAbU9Tg8M2D8m10w+bdEf3WmPCH3UGu2sNLsdKtFtNOs7e1tl6RQxhF/Ifzq2AR1OaAOa0DwD4d8OTG5s7BZL5uXvrljNOx7ne2SM+2BXSbfenUUAIBiloooAKKKKACiiigAooooAKKKKACiiigAooooAQjNci+hahY/E9NbsYVbT9RsTBqPzhdksZBifHViQSvHQD6V19NYgEE4/GgCK4t4ru2ltp0DxTI0ciN0ZSMEH86434VXEsfhGTRbl2e60O8m02ViMbgjZQj22FcfSuwtru2vojLa3EU0YZk3xOGUMCQw47g5BHsa4qxH9h/GTUrZiRbeILBLuPcePPh+RlUeuwhjQB3oOaWkHeloAKKKKACiiigAooooAKKQnFJvFACkgdap6nqthpFhJfajdxWtrGMtLK+1fp7k9gOtc14j8e2+n350PQ7OTXPEBH/AB42zfLCP70z9EXkdeeR0zmqmmeArnU9Qi1nxvex6tqEfzQWUa4srUn+6h++3+03PT0FAFM6z4l+IX7vw4smieHmOG1edMT3Kd/IQ/dH+23PPHIIrq/DfhHR/Ctm8Ol222SXme6kO+aduu53PJOST6DJwBW6FwMAAelLQB4/+0YMfD2wz31WP/0TNXpfhn/kVNH/AOvGD/0AV5r+0d/yT2w/7Csf/oqavSvDP/IqaP8A9eMH/oAoA1aKKKACiiigAooooAKKKKACiiigAooooAKKKKACqmqahb6Tpd1qN2+y3tYXmkYDJCqMnH4CrROPxrgPiM7a7d6N4It2J/tafzr/AGnBSziIZuRyCzBQD7EUAW/hjYXKeFTrN+oGoa5O+pTjOdok+4o9ggXjtzXaDPemxqEUKqhVUAAAYwPSn0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFRzs6xMyIXYKSEBxk46Zp5OKgN3btdm086P7SEEhh3jfsJxu29cZBGfagDmvh5oN7ovhySXVo1TWNRuZb6/CtkLLIxO0Y4wF2jA4zmutFNTp9KdQAUUUUAFFFFABRRRQAUUUUAFI3NLSEZoA890k/8Ip8UdQ0UsV0/wARBtRsvRblf9eo+ow1ehLyOOlch8RtFu9S8NC90sf8TnSplvrFsdZE5KfRl3DHQnFbXhrXLXxJ4csdZsz+5u4g4XqUPRlPurAj8KANaiiigAoopGYKMmgAJxWbr2vad4c0efVNUuRBawjJbqWPZVHcn0qXVtUstG0u41HUbhLe0gXdJI/QD+vpgck8CvBLeLWPjv4r+0XCzWHhLT5OFHVjxxnoZWHfoox1z8wAulaZrPxw8Wf2xq6S23hOykKwwAld6j+FcdWPG5u3QYwMfQFrbW9hax2ttFHBbxKEjjjUKqKBwAPSotO0+z0nToLCwt0gtbdAkUSDhR+Pf3PXqetcrrvj9ItTfQ/DNk+t68oIaKFsQ23bM0nRef4evGOMigDqNY1rTdA02TUNVvIrS1jHzSSn9AOpPoBkmuH+3eKfiHtGlm58N+HG5N864vLpf+man/Vqf7x55BGRmrmkeATc6lFrfjC8GtavGcxRMuLW09ooz3HHzMM8A9ea7kEY4OaAMjw54Y0jwrp4stIs0gjJy7/eklb+87Hlj/kY6Vr52iqWq61pmh2hutUv7ezgH8c8gUE+gz1PsK40/ELUfEGY/BPh251CMnC6lfZtrQD+8CfmfB6gAGgD0DcM45rj9W+Jfh+wvP7PsZJ9Z1TnFlpUf2iTjg7iPlXB65OR6Vnj4f6p4iAk8a+I7i9ibltL0/NtaAf3Tj55BnuSDXY6VoemaHZi00qwtrKDukEYUE+px1PuaAONEHxE8Uf66a08J6ef+WcWLq8cehb7iZ9RyK1dE+HPh3RboXxtpNQ1MkFtQ1GT7ROx9dzcKf8AdArrAMZpaAG4PtSgYpaKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkOeMUtIc0Aef6CT4V+JOq+HXONP1oNqlhnoJeBPGPXs+OwzT/iXjS00DxWuAdG1FDPJjJW2m/dS/zX8qt/EbRbm+0KHVtMQNq+iTC+sxgnft+/GcckMuRgdTitPULSPxh4HubZ4pbdNUsSAk8e14i6cbgf4lOPyoA316Utcr8ONYfW/AOk3M+77VFD9muQ/wB4Sxko2fclc/jXVUAFFFFABRRSEgUALSE4x70bgBk8VxeuePVXUpNC8MWLa3rq/LJHG22C1PTM0nQY5+UcnGOKAOk1nW9M0DTZNQ1W8itLWP70kh/QDqT7AEmuHFz4p+IRH2A3Hhvw2/8Ay9MuL27X/pmD/qlI6MeeQRkZrQ0bwAZtSi13xfejW9ZXmNGXFraZ7RR9OOPmPJwDwa7gDHfNAGR4e8L6T4X00WGk2iW8Wcuw5eRv7zMeSfc/hitdRgUtFABRRRQB5B+0d/yT2w/7Csf/AKKmr0rwz/yKmj/9eMH/AKAK81/aO/5J7Yf9hWP/ANFTV6V4Z/5FTR/+vGD/ANAFAGrRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRnFADJGVVyxAXuScACuB8AK3iPXda8cTAmK7f7Dpm7+G0iONw7je+5iPUVa+JGo3EumWnhjTHxqevym0RgM+XBjM0h9ghx+PFdXpWn22k6Va6dZx+XbWsSxRL6KowKALY4paKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGSuscbSOwVFBLE9AO9cF8PI21+/1jxxODjU5fs+nBhylpEdqnnkb2BYj6Va+JUmo3mk2fhvSo5vtGuT/AGWS4RCVggxmVmPQfLkY4JycdK63T7O306wt7G0jEdtbxrFEg/hVRgD8hQBYAxS0UUAFFFFABRRRQAUUUUAFFFFABRRRQA1hnFeeaBjwZ8Qr3wy2V0zWy+o6XkcRzf8ALaIH8mA6AH1NeiGuW8feHJ/EHh0Gwfy9XsJVvNPm/uzJyAfZuR6cgnpQB1K8jjp2pawvCPiSDxV4btdUiQxyONk8DfehlXh0P0PrjjB71uZ+tACk4qpqOoWel6fPf306wWtshklkboqgcn3+nU9qfeXdvZWct3dTJDbwqXkkkYKqqOpJ7CvANY1PWPjh4r/sbRXktfCtm4aa4cEB+fvsO5PO1O3U45wAMuJtX+PHi0W9sZdP8J6dICz/AMTE98dDIRnGeFGeucH2e4u/Dnw+8MxLcS2+maXbL5cakfe74C9WY8k45PJ9TXKQ+IbLRoE8H/DjTI9Tvbddskm7/RbUnq80v8THklRycEcEYq/YeEtN0Wc+J/Gmrxalq0eD9svWEcFp32xIflX1z178ZoAqgeKviGPmW58MeGnyCAQL+7XP4+Up/E/UGu00Lw/pXhrTV0/R7KK0t15wg5c/3mbqx9yT0rirr4tW1/qVtpXhLTJ9ZvrousM0jfZrZigy5Dvy20ckAdOhqyPBfiTxJ8/i/wASstseDpmjboISO4aQ/O4Ppx7UAamufETw5oVz9hN299qZyqafpyfaJ2Yfw7V6H2Yisvz/AIheKR/o0Fr4U09z/rbgC5vGX2T7id8g8iuq0Pwxo3hu1+zaPptvZxn7xjXDN7s33mP1NawGKAOO0r4Z6DZXg1DUVn1vUwMfbNVlM7Dv8qn5VAPTA49a7AJgY4p1FACAYpaKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEIz9aQjBp1cr4/0S91nw55mlSvHq+nzLfWJU8NLHztIyAQwLLg8c0AZXg0jRPHni3w6V2RTTJq9qC3LLMNsuB6B1x+Nd8DnNeUy+Iba/1rwP46tD5cGoM+j3yYyytIMohPbbKh575B6Yr1ZT1GOlAC0UE4ppcAZoAUnFZXiDxFpHhrTGv9XvI7aAcDJ+Zz/dQDlj7Cua1bx9LfahJongq0TWdUTiW4L4tLQ/8ATSQfeP8AsrzwfTFT+H/AMVrqC654hvH1vxBji6nXEdvznbDH0Qe+M5yeMkUAZQi8V/EMZm+0eGPDT/8ALNGAvrtfc9IlPp1+oNdtofh7SvDempp+kWUVpap/Ag5Y+rE8sfc5NaQGKWgBAMUtFFABRRRQAUUUUAeQftHf8k9sP+wrH/6Kmr0rwz/yKmj/APXjB/6AK81/aO/5J7Yf9hWP/wBFTV6V4Z/5FTR/+vGD/wBAFAGrRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTJGCKWYhVAySTwB604nGPeuE+Imo3Goiy8F6VIUv9ayLiRefs9mP9a5+o+UeuTzQBB4GEnirxHqfjmdCLV82GkK3/PsjfNJ/wN+emRgjpXoQGKradYW2l6db2FnEIra2jWKJB/CqjAH6VaoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQnFBOMZ71wXxBvp9Yu9P8DaXM0d3q3z30qcNb2Sn529i33R68jigDvD8x46ilAxTII0ihSNM7VUAbmLHA4HJ5P1NSUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNZc49qdRQB5xdhvAfxES8zs8P8AiWURz8/LbX2PlfHYSDg+/JIwK9Ammjgt5JZnWKKNSzu52qqjqSewx3rzr47amdP+Gk8S24m+23EdvlgCI+r7vb7mM9s1823PjTxPfaZNpl1rl/cWk7BpIppmfJHQZOTjPYHHT0oA9D+IvxFPjvWDodjfGz8MwyDz7kKWa5IPBCDBbkfKg6kbiRjK68E1nYaTBod9cy+HNCJwuh2n7zVtSY97jYMx7v7vHHy8ACuK8E6V4RjlivNY8X3UFxt/49tMs5jIucf8tdnHAwdo6dD1z7JoPiv4YeGI8aRbzWzkYaUaZcGRx/tOyFj+dAE2kL4tvNNi07wr4ftPB+iKP3c+oJ5lzg/xCEcBsjnzCc5zWxYfDHR/tK32vz3XiLUByJtTkLomeoSL7irnnGDimD4t+D/+fy9P/cNuP/iKUfFzwf8A8/l7/wCC24/+IoAg+KEUel6RoviKNVi/sPU4JWZQBiB2EciD0BDL+Qrvl+ua8l8e/EPwv4h8CaxpVpLeT3NxBthjOnzrlwQV5KY4Iz+Fbtn8W/Ci2UAuLy+87y18z/iXXB+bHPRMdaAO/orhv+Fu+D/+fy9/8Ftx/wDEUf8AC3fB/wDz+Xv/AILbj/4igDuaK4b/AIW74P8A+fy9/wDBbcf/ABFH/C3fB/8Az+Xv/gtuP/iKAO5orhv+Fu+D/wDn8vf/AAW3H/xFH/C3fB//AD+Xv/gtuP8A4igDuaK4b/hbvg//AJ/L3/wW3H/xFH/C3fB//P5e/wDgtuP/AIigDuaK4b/hbvg//n8vf/Bbcf8AxFH/AAt3wf8A8/l7/wCC24/+IoA7miuG/wCFu+D/APn8vf8AwW3H/wARR/wt3wf/AM/l7/4Lbj/4igDuaK4b/hbvg/8A5/L3/wAFtx/8RR/wt3wf/wA/l7/4Lbj/AOIoA7miuG/4W74P/wCfy9/8Ftx/8RR/wt3wf/z+Xv8A4Lbj/wCIoA7miuG/4W74P/5/L3/wW3H/AMRR/wALd8H/APP5e/8AgtuP/iKAO5orhv8Ahbvg/wD5/L3/AMFtx/8AEUf8Ld8H/wDP5e/+C24/+IoA7miuG/4W74P/AOfy9/8ABbcf/EUf8Ld8H/8AP5e/+C24/wDiKAO5orhv+Fu+D/8An8vf/Bbcf/EUf8Ld8H/8/l7/AOC24/8AiKAO5orhv+Fu+D/+fy9/8Ftx/wDEUf8AC3fB/wDz+Xv/AILbj/4igDuaK4b/AIW74P8A+fy9/wDBbcf/ABFH/C3fB/8Az+Xv/gtuP/iKAO5orhv+Fu+D/wDn8vf/AAW3H/xFH/C3fB//AD+Xv/gtuP8A4igDuaawJxiuI/4W74P/AOfy9/8ABbcf/EUH4ueD/wDn8vf/AAW3H/xFAHGfELQrnQrrV7Wyjm/svxCDdwGJSfsupRDzcj0EoQ5PqD0Ar1jw7q8eu+HdO1WNdq3lukxTOdhZQSv1ByPwrzH4gfGOwg8KTDwvcXP9pyusaySWUiCJTyzfvEAPAxj1I9K8j+HnjjxfpesWOiaNqAaK7lFvFbXIMkMTOcbgOqgE7jtx0Oe9AH1H4k8V6P4VsVu9VuvLDnbDEi75Jm7KijljyPYZ5xXI/wBleJ/iGN+tNP4f8OueNNhbF1dL6TP/AAKf7g55OexrZ8N+ArTSL46zqV1JrPiGRRv1G7AJTjpEo4ReuMc8kZxwOvAI64oAo6Xo+n6HYRWGmWkNpaxj5YolwPr7n3PNXQRmq2pLfvZONMltorrjY1zGzoOechWU9PevM/CXjjxn4t1/W9Ntk0GKHSZjDJdGGZlkO5gNo3/7B7+lAHq24Ubh19Kxdel1i00g3Nhc6dHJAjSXBu4XZCoUk42sCOnfNcb8O/F3jHx3pZ1Z4tFsrJbjytvkys8gGCxX58DrgdeQaAPTAc0tIBiloAKKKKACiiigDyD9o7/knth/2FY//RU1eleGf+RU0f8A68YP/QBXmv7R3/JPbD/sKx/+ipq9K8M/8ipo/wD14wf+gCgDVooooAKKKKACiiigAooooAKKKKACiimscds5oAp6tqdpo+lXOpX0whtraNpJHPYAdvU9gO5OO9cl8PtNu743njLV49mp61taKFjn7LaDmKMe5HzHpyemRVHXG/4T/wAar4ZjbfoOjutxq7Lys8+cx2+e4HVh7YOCK9HTIJHGO2KAFUYz70tFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFITigCnq2oQaVpN3qN1v+z2sLzSBBklVUkgDvwK5T4eaPeNFe+K9ZiKaxrjCVozx9mtx/qoh9FwTwCSeeRXan5xgdOhzTgMUAKKKKKACiiigAooooAKKKKACiiigAooooAKKKQkAZPSgAJxQDmuD+JHxDj8GLpltAkU19e3CDZITtSHcNzHB69h75POMHu1zznHtQBn67oWn+JNHn0rVIBPZzgB03FehBBBHIIIFeQeI/gnpHh3S21nRYLjVJrSbz5rC8cMtxBjDxrtUbTjJDcnjucV7jSEUAeLx/BXwH4t0a21fw/dX9lBcx74vLl8xAehDK+TkEEEbuuap/8Ku+JPhhlPhjxr58SD5YZ2aMewEbb0/lXUyKPhn4tMgIj8J63cfOOiWF238Xosb/AJAjsAK9KHPSgDw1fHXxd8MbU13wkNThTJeaCEliB3LxFlH4rWlpH7Q/hy5KxatpuoadMTtYhRNGp9yMN/47XsG2s7VPDuja2u3VNKsr3HANxArkfQkZFAGVpPxD8Ia8FGn+ILF3Y4Ecr+U5P+4+D+ldKjLjI5BGQe2PrXmmrfAXwTqPzW1vd6a/XNrcEg/g+4fliuYb4LeL/DuW8JeNpYkDblt5WeFfx2llJ+oFAHumcdqM14U3iL41eF/+QlocOtW6tgyRQrIxHsIiCPqVq5Y/tD6fDKbfxB4d1DT7hThliIkx7kNtI+nNAHtNLXG6T8VfBGs4+z+ILWJzxtuswHPp84AJ+hrr45o5o1kidXjYZDKcgj2NAD6KTcM470bhQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGdruhaf4k0ifStVtxPZzY3puK9DkEEcgggV5Tf/Cm0+HrQeLvC4vL670uVp5rS5dX82AqQ6oQowwUkg8n6nAr2emsM4oAp6Pqtnrek22p6fOJrW5jEkbj09COxB4I7EVe61wGj6XqHg3xs2n2NtJN4Y1hnnjWNcrp9wBuYe0b9RjoeMDqe+FAGZ4j1VdD8N6lqrY/0S2kmGe5VSQPxOK8m+COs+HdB8ETS6p4g0u2v7+7kmkS4u445ABhRkE57Mfxrd+POrGx+HD2UZPm6lcR26qOpAO84/74A/Gu18M6LDofhjS9MMUe61tY43IHVgoDH8Tk0AcX8TfH/h8fDvWYdK17Tbu9uIfISK2u0kchyFY4U54Usa6L4Y6R/Yfw30OzK7ZDbCeQdw0mXIP03Y/CuF+Nirq+teEfCUCgG+vhLMFGMLkID9MM5/CvZI0VECoMKBgAdBQA+iiigAooooAKKKKAPIP2jv8Aknth/wBhWP8A9FTV6V4Z/wCRU0f/AK8YP/QBXmv7R3/JPbD/ALCsf/oqavSvDP8AyKmj/wDXjB/6AKANWiiigAooooAKKKKACiiigAooozQAhOK5Lx34nuNG06Cw0hPO1/VX+zafD6MfvSH0VBySR254ya3da1mx0LSLnVNQlEVpbIZHc/oB6knAA7k4rk/A2kXup30/jbXIjFqOoRhLK2b/AJcrTOUT/ebO4/8A6xQBv+EfDVv4V8PQaZCxlkBMlxcN96eZuXkPfJ/lgdq3QMUAYJpaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEJxXIePPEt1pdpa6RogEniHVnMFlH/zyGMvM3oqDnn/ABrqL64NpZzXIikm8qNn8qJdzvgZ2qO5Pb3rjPBGhX9xfXXjHX4jHrOpKFgtnJ/0G1zlIvZj1bpz2znIB0nhjQovDXh600mKaScW6YaaVizSOTuZjk9yScdq16QDH1paACiiigAooooAKKKKACiiigAooooAKKKKACqmo6hbaZp897dyGO3gjMkj4PCj09/QdT2q0xAGTXEeIJ9T1vX4rDSdPt7+z0qVZr5Z7kwo8+N0ceQjZ2/K5GOpTnqKAPOPjJpFz/wr+31/UI9mrXmpxySoSM28XlyCOIH/AGRjOOrMx717vY3Au7G3uF5EsayA+uRmvI/jE/iO++HF9/aOh2VrbQSRStNFqJmYfOFHy+UufveteieBbn7X4B8Pz5yW06DJ9/LAP60AdBRRRQBS1fSrLW9JudM1CBZ7S5QxyRnuPY9iOoPY1xfgzVrzw/q58C6/MZLmFC+k3r/8vtuOik/89EHBHoM9sn0AjOP1rnfGHhWHxRo4t/Oe1vrdxPZXsQ+e3mHRh7dMjuPTrQB0QIPSlrkPBHiyXWY7jSdYiFr4j04+Xe23QOOgmj9Ubg+2fTBPXBgc9aAFooooAbt5zmqt/pWn6rB5Oo2NteRf3LiJZF/IirlFAHnmsfBLwNq/mMumPYyuc+ZZSlMfRTlR/wB81yE/wG1bRpZLjwj4yurNz92OTdGT9ZIzz/3zXuVBoA8KNx8cfCm7fBba9bRj72Flz+AKSE/hUtv+0BNp1wlt4p8J31hLj5miJ3E+0cgX/wBCNe3gYPaori1gu4GguYY5omGDHKoZT9QetAHE6R8Y/A2rlUGsraSn/lneo0WPqx+X9a7SzvrTUbZbmyuYbmBvuywyB1P4g4rjtX+EHgfWMtJoUNs+MBrNjAB77Vwufwri7v8AZ7isp/tXhrxRf6fOoO0yrub6b02kfkaAPbM0ua8KXTPjf4VKi21C3123XOUeVZMj3aQK/wCAalT46a/obJF4u8F3FqxODNFuhB/3UkBz/wB9UAe6UV5vpHxy8DamVWW/n0+VzjZeQEYPuy7lH4kV3Ona3pWsRGXTNStL2MdWtplkA/75JoAv0Umfx+lG4UALRRnNFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADT14qncarZwX8OnG5gXULhHeC3eTa0gUc478ZGcZ45xxV01zfjLwqnibTI1inNpqdo4nsL1RlreVeR25U4wR3H0FAHGeMPBfjbxjrWiXtwvh+C30qYTi0+1zOJTuUkMfKHBCAdO5616LG+tnRi8tpYDVBnbCt05hPPGZPL3dOfu9axvBXix9et7jT9UgFn4g08+Vf2ee/aRPVG6g+/cYJ6sEGgDym68FeNr34l2fjO4Xw+7WcJhhs/tc20LtYff8rrl2PSvUbU3BtYjdJElwUHmrExZQ2OQGIBIz3IFTUUAFFFFABRRRQAUUUUAeQftHf8k9sP+wrH/wCipq9K8M/8ipo//XjB/wCgCvNf2jv+Se2H/YVj/wDRU1eleGf+RU0f/rxg/wDQBQBq0UUUAFFFFABRRRQAUUUUAFMkYKpJOABnk04nGK848S39x4516XwXotw8Wn25H9uX8R+6v/Puh/vtzu7ADHPK0AR2yH4n+J1vnBbwhpE5Nsp+7qNyvHmY7xoeB2J9ckD0tRiq2n2NrplhBY2UCQW1vGI4o0HCqBgVaoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAM0x5EjQu7BVAJJJwABzTm7Z6V5vr97c+P9em8I6VM0ejWpA1y+jJG4/8APtGfU/xEdBxnqCAd9ZX1pq1jDe2FzHcWsw3RyxNlWHsR+Iq0q7c+/JqCxs4NPs4rS1iSG2hQRxxoMBFHAA9qsUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFBOKKQjPp+NAHOeKNW8RWVs0fh3w9JqV08Z2StcxRRRtz97cwYkYzgDHvUXgOHULTwxDb6tpk1jqCsWuTJNHL58rfM8oKE8MxJ5xjp0Arp8H1/Gjb9KAOG+JttrWteF77QNI0C4v2u4lH2n7RDFGhDg4O5wxI2+mORzT/AIaxa5pHhfT9C1vQ7izks4Sn2kzwyRv8x2gbXLA4I6jHB5rtwOaCMkH0oAAc0tIBiloAKQilooA47xp4TutTlttd0KZLXxHpwJtpWztnTqYZOeVb9Dn1NX/CPiu18U6ZJMsT2t/bv5N9ZTYEltKOqt6j0Pf2OQOgZScEcH1rh/F3hi/h1RfFvhVY016BNlxbk7U1CEf8s3/2x/C3sBnpgA7kHNLWH4V8TWPinR1v7MPE6sYp7aQYkt5V+8jjsR/hW2CD0oAWiiigAooooAKKKKACiiigBMZNNeNZFKuoZSMEHkGn0UAcjq3ww8Ga0G+1+HrJHY5MlsvkMT6kpjP41w2pfs76OZRcaHrd/pswbcvmASqv0xtYfma9nooA8Kbwn8ZvDG5tK8Rx6vAp+WKWYO7D0xMOPwag/GDx14bLDxX4IbykODPCskSj/gR3qfwIr3QjNGOMGgDy3SPj94Lv/lvJLzTX7+fBuXPsU3fqBXeaT4q0DXTjStYsbx8ZMcM6s4Huucj8RVTWPAfhXXt51LQbCWRxhpViCSH/AIGuG/WuD1f9nnwveF30y8v9NkPKqHE0an6N8x/76oA9dzS5rws/Dj4qeF8t4d8ZC9gRcLFcSMPwEcgdB+Ypv/CyPij4X+XxH4N+2QouXmgjYZ9zJGWQflQB7tRXkOj/ALQ3hW8KpqVrf6a5HzMyCWNT9VO4/wDfNd7o/jvwrr2wabr1jNI/3YjKEkP/AABsN+lAHQ0UgOaMigBaKQHNLQAUUUUAFFFFABRRRQAUUUUAFFFFABSEZpaKAOT8T+EZ9T1XT9d0W8j0/XLNgnnuhZJ4CRvikAILL1IHr0IJyOrAx3pazPEF3qVholzd6RYLf30S7o7VpNnmc8gHB5xnHqaANMHNFYnhfxTpvivSE1DT5GAzslhk4kgkHVHHYitoHPYj60ALRRRQAUUUUAFFFFAHkH7R3/JPbD/sKx/+ipq9K8M/8ipo/wD14wf+gCvNf2jv+Se2H/YVj/8ARU1eleGf+RU0f/rxg/8AQBQBq0UUUAFFFFABRRRQAUhOKUnFcX4w8WXNteQ+GvDax3HiW8XKK4zHaR95pfQAdBzk9j0IBD4v8SX15qkfhDwtIP7bnXddXQ5XToDjLt6uQflXr344z0Xhrw3p/hXQ4dK06MiKP5nkfl5XP3nc92J/LoMAAVV8I+E7XwrpbwJM93fTuZr2+m5kuZT1ZvbOcDsPU5J6EDFAABiloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApCQKCcda5bW/GK2fiWx8N6VaHUdWnZXniV9qWkGRmSRsHbx0HfIHcZANHxRY6tqmgXFlomoJYXkxVPtLKSY0LAOVx/Ftzj37jqH+HfDth4X0S30rTYgkEI5Y/ekY/edj3JPP6dBWqvPaloAQDFLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSMCRwcUtFAHEeJfDN9Y6q3ivwqI11cKBeWTNsi1GMfwt/dkH8L/AIHjpteFvFWn+K9LN5ZGSOSNzFcWsy7ZbeQdUdexrcIz3riPFHhG+j1P/hKPCUsdrr6ACeF+IdQjH/LOQf3vRu3TIGCoB24OaWuc8JeMLLxVazeXHJaahbNsvNPnGJbZ/QjuPQjg+xyB0QORQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACEcg0Y96WigDG1bwpoOug/wBq6PY3jEY8yWBS4+jYyPzrhdW+AHgy/wAtZre6a+OlvOWUn3Em4/kRXqdFAHhQ+EPjzwztPhXxuWjTJW3mZ4U+mz50P4gUf8Jf8ZPDBC6x4aTVoFOGlhhDsR65hJA+pWvdCM0m38B7UAeN6Z+0RorP5Gt6JqGnThtriPEqp9c7WH02mu70j4l+DNb2iz8Q2W9jgRzv5LE+wfBNbepaHpWsR+XqWm2d4npcQLJ/6EDXDav8C/A+qbmhsrjT5GOS9pOR+StuUfgKAPRllR0Do6sp5DA5FOzXhsvwO8R6EXk8I+Nrm1BORDK7wj/gTISG/wC+aY2q/G/wsG+16bBrlsvG9I1lJHsIyr/iRQB7rkUua8StP2hIbO5Nr4l8MX+nTqAGETbmHuUcKR+ZrtdI+LvgbWMLFr0FtJgZS8Bgx/wJgFP4E0AdxRUUF1BdQrNbzRzRMMrJGwZWHsR1qTPOOaAFopM0tABRRRQAUUUUAFIwzS0UAcF4m8M6jpGrSeLvB6L/AGmR/p+ndI9RjHP/AAGQdm79D1wei8K+JdO8V6Mmo6c7bc7JYZBiSCQdUdexFbTDPFQwW0FqZDDDHGZnMkhRAu9yOWOOpOBzQBPRVeK/tJrue0iuYZLmDb50KuC8e4ZG4dRntVgHNABRRRQAUUUUAeQftHf8k9sP+wrH/wCipq9K8M/8ipo//XjB/wCgCvNf2jv+Se2H/YVj/wDRU1eleGf+RU0f/rxg/wDQBQBq0UUUAFFFFABSFgOtGfauH8T+MLybUz4Y8JRx3WusA0878w6fH/fkPdvROvc8cEAl8XeMLi0vE8OeGoUvvE1wPlj6pZocfvZj/CACCAeuRxyM3fB/g+28MWc0jzPe6reN5l9fzf6yd/6KOcL2+tSeEfCFl4TsJI4ZZLq+uX829vpzmW5kOTlj6cnA7Z7kk10Krtz0/CgAVdufenUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRQTigAoJxSZ9jUEF5bXhmW2uIpWgkMUojcNscYO046HkcGgDkfF/i67g1CLwz4YiS78R3SbstzFZR/89ZT29h3OOuQDpeEPCFn4U06SOOR7q/uW8y9v5v8AW3Mh6sT2HXA7e5yTuR2kMdxNcJDEk02BJIqgM+Bgbj1OB/OpkBUYoAVV2jFLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIRkg+lLRQByHizwX/a11FrWi3f9l+JLZcQXqD5ZF/55yj+JPrnHv0KeFfGw1S8fRNbtP7J8SQLmWyc/LKo/wCWkLdHTr7jkc4yevYZrn/E/hDTvFNoiXnmQ3du2+0vrc7J7d+oZG7c9unHrzQB0OaK8803xfqXhW/h0Px0yKJG8uz1xF229z/sydo5MfgeemOfQQ4IGKAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUABpMcmlooArXmn2eo25t761guYT1jmjDqfwPFcVq3wZ8DauXc6MtpKw+/ZOYgPcKPl/Su+ooA8QuPgBc6XM1z4U8X31hNjhZMqSfeSMrj/vk1EIvjj4VwEktdetkUnlkl/U7JCfxNe6Gm7ffn1oA8Pg+POp6RMkHi3wddWTnh3j3Rk/SOQD/ANCrsNG+NPgbVtiHVGsZX/5Z3sRj2/VuUH/fVd9LBHPG0UqJJGwwyONwI9xXIat8KPBGscz+HrSFx0e1BgOfXCEA/jQB1FhqlhqkAn0+9truE9JLeVZF/MGrW4V4tffs8WMNx9q8PeJNQ06dSSpkAcj6MpUj9aqf8I/8bfCwH9n61DrVup/1bzLIzD3MwB/JqAPdM0teFD41+LPD52+LvBMkShtpmhEkK/huDBv++q6fR/jv4I1EAXN1dadKxxtuoDj/AL6TcMfXFAHp1FZul+IdG1tC2l6rZXoAyRbzq5H1AORWjnnHNAC0hGRjtRn2oBzQBx3irwZJqF/Hrug3Q03xHACI7kD93cLx+7mGPmUgYzzjGfapPCXjWPWbibR9WtjpXiO2H+kWMp++P+ekR/jQ4PTOPpgnrSM1z/ifwbpniqGD7YJYLu1fzLW+tn8ueBvVHHT6dPbIGADoAc59qWmj5AMnPbNG8EZFADqKQHNLQB5B+0d/yT2w/wCwrH/6Kmr0rwz/AMipo/8A14wf+gCvNf2jv+Se2H/YVj/9FTV6V4Z/5FTR/wDrxg/9AFAGrRRSFgvWgBScU0sMZzx61T1TVLDSNOmv9Suo7W0hGZJZWwB/ifYck8VwAGt/FHtcaL4QbnPKXOpr2/65xHr6kH34ALGp+J9T8Y6hNoPgqUR28TeXf69jMcHqkP8Afkx36Ad+QR1fhrwxpvhXSl0/TIiFLb5ppG3STyHq7t3Y/wD6sCr2m6XZ6Pp1vYadbR21pAmyOKMYCjr+ecknuTmrYoAAMUtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUhO0ZoAWmsQMEnAFKGB+tY/iXw9B4p0n+zLu6vILV5FaZbWXyzMg6xscZ2nuBj60AcjqHiXVPG99Pongy5EFhETHf+IAMrH6pB/ec/3hwByDkgjsPDfhvTfCukrpulwCKEHc7Hl5XPVnbuT6/yGBV3T9OtNKsIbGwtora1hG2OGJdqqPp+v41ZAxQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBU1HTbPVtPmsL+2iubSZdskUi5Vh9PY4IPYgVwD2PiD4a/PpcdxrvhVetjndd2K/8ATI/8tEH93qAB2BNelUhGSD6UAZegeIdK8TaZHqGk3kd1A/BKHlD/AHWH8J9jWoDnPXiuJ17wCJNSbXvDF7/Ymv4y8kY/cXXfbNH0YH+9jIznnApujeP/ACdQi0PxfZjRNZf5Y3Zv9Fuz6xSHjn+6eeQOTQB3NFJuFLnNABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAAaQj3xS0UANK5BBAIPrXMat8OPCGt7zfeH7FpHOWliTynJ9SyYJNdTRQB45qv7O/h+cmTSNUv8ATps5TdtmRT7Dhv8Ax6s5/A3xe8L720LxWupwD7sU8uXI/wB2YMq/99V7pRQB4Ufit8RvDOR4o8EmaGMfPPBG8a/UyDen5Vu6N+0D4PvyEvo7/TW25LSQ+YmfQFMn/wAdFerkZrC1fwZ4b17cdT0OwuZGGDK8KiT/AL7A3frQA/SPGHhzXwv9la1Y3TEZ8uOYbx9U+8PxFbWRjNeT6v8As+eEb4s+ny3+myY+URy+YgPqQ4Lf+PCsP/hV3xK8MYbwz42NxDGDtgnkdB9BG29PzxQB7m6h1KknBGODg15w8Xib4dytLB9q8R+GSdzQsxkvbId9pPMqe3UD0AJrlE8d/F3wwVTXvCP9pwqCWmt4iWI9S8RZB/3zWjpX7Q/h26Kx6rpuoadNnazBRNGh9yMN/wCO0AeoaHr2l+ItMj1HSLyO7tZOA6HkH0YHlTyODg1pA5ry7S7jwDq/iq31/wANeKIdOvpJM3VvBKIRer6SRSAZOSTkDPJ5yQR6epA5zkEcGgDyP9o7/knth/2FY/8A0VNXpXhk48KaP/14wf8AoArzX9o3n4e2GO2qx/8AoqWvQtFvLWw8E6Xd3lxFb20WnwtJLK4VVGwcknigDc3CuX8U+ONP8OPFZRxS6jrNx/x7abajdLIfU/3F9WPbOM4rBk8U6/44drXwXC1npedsuv3cXykd/IjPLntk4HHbg10fhjwXpXhaOR7QSXF/Mc3N/dN5k8577mPb2HH480AYWm+CdQ8Q38Wt+O5YrqeM7rXR4mza2npuH/LR/UnI69RjHfqCBycn2FKq7RjORS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUhYKOaTcPQ59KAFJxXLeKPHNh4fni063hm1PXJ/9RplpzK3+056In+0e3ODit3VLWe/0u5trS9eynljZEuUUM0RIwCAetZnhnwbpPhWCQWEckl1Oc3N7cP5k857l3PJ+gwPagDN8MaBr76o3iDxRqZfUHjMUenWjFbW1Q8lcfxseCWP6jFdiBihRiloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAA1n6vomna9p0mn6rZw3drIPmjlXIHuO4I9Rg1oUUAec/wBi+K/AZ3eHppNf0JOf7Ku5P9It19IZT94DsrdgAM810XhrxxonicPHZ3DQ30XE9hdL5VxCe4ZD9QMjI966Jl3d8Vz3iTwVo3icpPeQvDfxf6i/tXMVxCe21xzx6HI74oA6LcPWlzXnRu/HHgr5b22bxXo6dLm2UJfRL/tJ0kx6jk4JNdP4c8Y6F4pgZ9J1CKd0/wBZAfllj7fMh5HPHTHHU0Ab1FJn2NAIOcdqAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkIzS0UAIVz6fjWbqnh3RtbULqmlWV6OxuIFcj6EjIrTzTS4Bxz0zQB5jq/wG8E6gM21vd6c5Od1tcEgn6Sbh+WK5W6+B3inSbWe28NeMpPskysj2k7SQqykYIO0sG4z/CPwr0zXviDpGk339mWfn6trB6afpyebIP8AfI4jAJGdx4B6Gsj/AIRvxb4z3N4pvxo+kv8A8wfTZMyOPSWbv34Xg57UAfMHiC51uO9k0nVtRuLs6c7W6q1yZUjxxhDnGPpXsvwi0+x8eaTGfFOry6o+ly+XaaTPODGsYVSJWQcvyzLlsjAx06emXPwn8D3UNtE/hy0Vbf7nl7o2I/2mUgv/AMCJrUHgrw2t5p95Ho1pDc6ec2skCeUU4Ix8uMjk8HI5oA2oohGuxFVY1G1UUYCj0HoKkAxUU8y2ttLPLnZEhc7FJOAMnAHJPsKyfD3i/QfFVsZ9H1GK42/6yLlZI/8AeQ4I574xQBuUUhYDrS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFISAQPWjIoAWkJwKxF8YaDL4jTw/BqEdxqbBi0MAMnl4BJ3sOFPHQnNaWo2Fvqun3FhdpvtriNopV3FSVYEHBHI4PWgDktY+IluL6TR/DFlJ4g1lCVeK2bEMB/6ay/dXkHjk8Y4o0Twhq1xq8Ov+LNYa91GAlraztC0Vpakgg7V6u2Cw3N2bGDgGun0nRNO0KwSx0qygs7ZOkcK4zxjJ9T7nJq+oIGDj8KABQQDn1paKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBGBPTqK5nxB4B0LxFOLyeB7XU0/1Wo2TmG4jOMAhxySBx82RXT0UAee/8V/4SIBWHxbpa8ZGLe+jX3/gkwB/vE+lbGg/ELw9rtz9iS6ey1MYD6fqEZguEPptbqfoTXUsCehrI1zwroniW28jWdNt7xcEK0ifOmf7rD5l6DkGgDXyOnf0pc5rz/8A4QrxJ4dBbwl4okMAGV03Wc3EI9Arj50UegzQPiFqWhsY/GHhe+09F631iPtdtj+8SvzJ7Agn8qAPQKKyNE8U6D4ji8zR9WtLzAyUikBdR7r94fiK1t2exoAWikJA60tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSZoAWkzijcD/OuZ1z4geF9Ak8m81aF7vO1bS2PnTM3YbEyQfrigDpsjNMkmjhiaWV1SNRlmY4AHuTXB/8JL428QnHh/wyukWrcC915ije+IF+bPpk4pyfDKPVZUuPGGtX3iCYYPkSN5FqhHQrEmBn3JOaAJL74nabNcvYeGLK68S6gDt2WC/uFJ6b5z8ig4PIz0qr/wAIt4t8W/P4p1tdN09+TpejMVLD0kmPJ9CF4Pau7s9PtNOtktrK1gtbdPuxQRhFX6AAAVYAxQBlaF4Z0bw1Yiz0fT4LSH+Ly1+aT3Zjyx+pNaoGM0tRXExgt5JRFJKUQsI4wNzYGcDJAyenWgCWiuD/AOFp2P8AwkTaB/wjuv8A9qqnmG2EMJYLjOc+bjGPfvWjc+N2sYHuLzwt4hhgQEvJ9nikCgckkJIxxj2oA6pgT0Ncxr3gDQtfuRfSQPZaovKajYOYLhD67h1/4FmtbQtf0vxLpcepaRdpdWjnAdQRgjqCDyD7GtKgDgrdfH/hm6hglFr4o0xnCefkW13EpPVh9xwPUcnFd2D1zSkZpNtAChgelAOa4e+8M+LdNv7m/wDDXigzCeR5m07WI/NhDM2cJIuGjUZwFGRUI+It7omU8Y+GL/S0HW+tB9rtcD+IsnzJ7Ag0Ad/RVTTdTs9Y06DUNPnE9pOoeKRQQGH48j8atZ/P0oAWikyKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoozSEgUALRSA5GawfEnjHRPCogXVbl0muSVggiiaSSUjGQqqD6j86AN7Io3AdeK4EeIvG/iID+wvDiaNaNjF5rrESY74gQ5B9Nxwc1ueGvDup6Q891qviO91e8uFUP5irHCmM/cjUfL15OTnA9KANDXr6+0/SZrnTdLk1O7XAjtUlWPeSQOWbgAZyfpXIf8In4q8VfN4t1z7DYMOdK0YlAw9JJj8zZHBA49MV6Dg+1AGBjtQBmaL4d0nw7Yiy0iwgtIB1WJcFj0yx6scdyTWmBilooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBCM0AYpaKAOW1r4d+F9em+0Xekwpdhty3VtmCUN67kIJP1rKPhHxfojBvD3jOW6hXJW012IXAY/9dlw4HsM131IRmgDgf+Et8Y6Pka/4KnuYkHN1oc63Ab6RNhwPrmrlh8VPB93ObafVRp10Bl4NSja2ZfqXAX8jXY7ec96r32m2WpwGC/s7e7hPWOeJZFP4HIoAfa3trfQCe0uIriFuRJC4dT+IqbIri7j4UeEJLk3Vppz6bdY4m064ktyv0CkKPyqA+BfEdgoXRfiDq8YBzt1KGO9z7ZYA4/GgDu80ua4TZ8ULGQYfwxqkC92E1vK35blFCeLfGlrIw1D4ezmMdJLHUoZt3/ATtNAHd0VwkfxNhjkZb3wl4ss8dZJNLLJ+aE0r/GHwTCypd6nPaOxwFuLCdDnuPuY4oA7qiuSh+KHgicfJ4m08c4/eS7P/AELFWl8f+DmOB4p0b8b6MfzNAHR0Vz//AAnfhD/oatD/APBhF/8AFUf8J54Q/wChq0P/AMGMP/xVAHQUVzTfEPwYilj4p0fA9LxCfyzVK4+LHgW1BMniSzOBn91uk4/4CDQB2VFcMnxc8J3KbrCXUb/PQWumztn80FNHxHnumZLHwP4slI6NLYrAhz6F2HvQB3eaTPauETxF8QL1ilv4FtrJeNst9qyMD9VjBIoGm/E3UEZbnXtA0nPRrGye4YD/ALaED9KAO7yKoajruk6PHv1PU7OyXsbidY8/mRXKH4c3d8yPrfjXxFfMPvRwTraxN9UjH9avab8MfBulP5kHh+zklzuMl0puGz65kLHNAFGX4seHp5Gi0W31XXp0bayaZYvIFPuzALj3zTP7W+IusnGn+HtM0OHPE2qXXnuVPcJFwD7E13UcSQoEjRUQcBVGAKfjnNAHBf8ACuLzV8HxX4t1XVV5za2zCztmB7FI+Tj1zXS6J4U0Hw3Ht0fSbSzJGC8cY3sPdj8x/E1s0UANC49B9BTgMUUUAFFFFABSN2/lS1keKtWGheFdV1UkA2trJKuT1YKdo/E4H40AebfDgf8ACQfFjxt4nb5ooZBYW7Hoyg4yPwiX/vqvSvEOvaf4b0W41TU7hYraFSeSMyHHCqO7HsK87+Dng+1Hw6s726kv47i/kkuH8i/ngBG7apIRwDkKDnrzUvxG8Ow+GtCfxfpUssmoaWyOq6jM17G6l1UgeczFDyDlCp4x6YAG/Anw/qeleH9S1LUbdrRNUuBNBasMFEGfmx1AOeM9lB7ivV6xPCGvr4o8KadrQi8o3cW5o852sCQwHtkGtugAooooAQjOKTbwR1z196dRQAwRhVCqqhR2AxXOeI7DxZLdQ3Ph3WbCBY4yrWV9a745mz94yA7l44wBXTUhGaAOCHi/xdpB26/4IuZ4l4+1aJOtwGPtE2GA+ua3fDnjTRfFEtxBp0s4urYKbi3uLZ4niznGQwHoema6DFG2gA3CgsBVTU9PXVNOnsnnngWZdpkt5DHIvurDoa4//hBvElgiLovxB1aNVPK6nBFe7h6biFI/OgDu80oOa4RV+KFnMgd/C+o244LYnglJ9eMrXcg4zn/9VADqK5PVfH1ro2sXGn3OheIWSDb/AKXDpzSQSZUH5WXOcZweOtUG+MXgiKRY7nVJrV2OAtxYzp+pTFAHd0VlaF4l0fxNbSXGjX8d5FG2x2QEbT6HIq5f6hZaXaPd6hdwWlsmN808gjRcnAyxIA5IFAFmiuf/AOE78If9DVof/gxh/wDiqdF428KTypFD4m0aSR2CoiX8TMxPQABuTQBvUUm4Vy+tfEfwj4evprHVdbht7qEAyQ7HdlyMjhQexFAHU0VwyfFrwrcrmwfUr/IyPsumztn80FdB4d8Qp4jtJrhNM1TTxFL5ezUbYws/AO5QTyOcfhQBsk4pMis7XJNXi05m0O3tZ73cAqXUhRMdySAT+FcqNM+JmoxkXPiHQdIJPB0+xe4I/wC/rAZ/CgDu84OKNwxntXG2PgS+j1G2v9U8Za/fzQOJPJWZYLdyDn5o0Xke2a7HBznIoA4u/wDibo0V9c2Gm2Wraze20phmh06xeTy3BwQzEBfxzVc6n8R9ax9h0LS9CgJ/1upXJuJCuOqpHwD7E13ioF6DH40uOcnFAFDRbXULLSYYNU1FdRvVB8y5EAhEmWJHyDgYBA/DNXWiRnDlV3gEBscgH3p9FADcH6UopaKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQijFLRQAmKTYCMHoeo9adRQBUl02xnBEtlbyAjBDxKePyqjL4S8OTxlJdA0qRD1V7OMg/pWzRQBz/APwgnhD/AKFXQ/8AwXxf/E0DwL4RBBHhbQ8j/qHxf/E10FFAGWnhvQ4nV49G09GXoVtUBH6Vdhs7eAYigiQZzhUAqeigBNtAGKWigBNvOaWiigAooooAKKKKACiiigAooooAKKKKAEJxivJvjDrV9rHhK68P6HoeuXdzNcLHO6aXP5YRGySH24bLKvTIIr1lgTSbaAOM0bxNpmjaFYaZFpniAraW0cCj+xLrPyqF/wCeft+tc34rtfE3xQ8rRLTTbvRPDnmK93eX6hJZwOQqxdcAjPOOQOmK9Xwcjmlx70AU9I0y10XSbXTbKPy7a2iWKNe4AGOfertIBiloAKKKKACiiigAooooAKKKKACiiigBCKMUtFACYpCmQQcEHse9OooAZHEkW7YiruOTtGMmob/TrPVLVrS/tILu2YgvDPGJEbByMgjHXB/CrNFAHPDwJ4Rxz4V0P/wXxf8AxNPj8EeFIZkli8MaKkiEMrLYRAqQcgg7eDW9RQA3bTFgjVi4jQO3JIHU9P5AflUtFADSuQMUoGKWigBCM0ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9k='] Multimodal Competition True Theorem proof Geometry Math English 5 "In the diagram, two circles are tangent to each other at point $B$. A straight line is drawn through $B$ cutting the two circles at $A$ and $C$, as shown. Tangent lines are drawn to the circles at $A$ and $C$. Prove that these two tangent lines are parallel. " "['Let the centres of the two circles be $O_{1}$ and $O_{2}$.\n\nJoin $A$ and $B$ to $O_{1}$ and $B$ and $C$ to $O_{2}$.\n\nDesignate two points $W$ and $X$ on either side of $A$ on one tangent line, and two points $Y$ and $Z$ on either side of $C$ on the other tangent line.\n\n\n\nLet $\\angle X A B=\\theta$.\n\nSince $W X$ is tangent to the circle with centre $O_{1}$ at $A$, then $O_{1} A$ is perpendicular to $W X$, so $\\angle O_{1} A B=90^{\\circ}-\\theta$.\n\nSince $O_{1} A=O_{1} B$ because both are radii, then $\\triangle A O_{1} B$ is isosceles, so $\\angle O_{1} B A=$ $\\angle O_{1} A B=90^{\\circ}-\\theta$.\n\nSince the two circles are tangent at $B$, then the line segment joining $O_{1}$ and $O_{2}$ passes through $B$, ie. $O_{1} B O_{2}$ is a straight line segment.\n\nThus, $\\angle O_{2} B C=\\angle O_{1} B A=90^{\\circ}-\\theta$, by opposite angles.\n\nSince $O_{2} B=O_{2} C$, then similarly to above, $\\angle O_{2} C B=\\angle O_{2} B C=90^{\\circ}-\\theta$.\n\nSince $Y Z$ is tangent to the circle with centre $O_{2}$ at $C$, then $O_{2} C$ is perpendicular to $Y Z$. Thus, $\\angle Y C B=90^{\\circ}-\\angle O_{2} C B=\\theta$.\n\nSince $\\angle X A B=\\angle Y C B$, then $W X$ is parallel to $Y Z$, by alternate angles, as required.' 'Let the centres of the two circles be $O_{1}$ and $O_{2}$.\n\nJoin $A$ and $B$ to $O_{1}$ and $B$ and $C$ to $O_{2}$.\n\nSince $A O_{1}$ and $B O_{1}$ are radii of the same circle, $A O_{1}=B O_{1}$ so $\\triangle A O_{1} B$ is isosceles, so $\\angle O_{1} A B=\\angle O_{1} B A$.\n\n\n\nSince $\\mathrm{BO}_{2}$ and $\\mathrm{CO}_{2}$ are radii of the same circle, $B O_{2}=C_{2}$ so $\\triangle B O_{2} C$ is isosceles, so $\\angle O_{2} B C=\\angle O_{2} C B$.\n\nSince the two circles are tangent at $B$, then $O_{1} B O_{2}$ is a line segment (ie. the line segment joining $O_{1}$ and $O_{2}$ passes through the point of tangency of the two circles).\n\nSince $O_{1} B O_{2}$ is straight, then $\\angle O_{1} B A=\\angle O_{2} B C$, by opposite angles.\n\nThus, $\\angle O_{1} A B=\\angle O_{1} B A=\\angle O_{2} B C=\\angle O_{2} C B$.\n\nThis tells us that $\\triangle A O_{1} B$ is similar to $\\triangle B O_{2} C$, so $\\angle A O_{1} B=\\angle B O_{2} C$ or $\\angle A O_{1} O_{2}=$ $\\angle C O_{2} O_{1}$.\n\nTherefore, $A O_{1}$ is parallel to $C_{2}$, by alternate angles.\n\nBut $A$ and $C$ are points of tangency, $A O_{1}$ is perpendicular to the tangent line at $A$ and $\\mathrm{CO}_{2}$ is perpendicular to the tangent line at $C$.\n\nSince $A O_{1}$ and $C O_{2}$ are parallel, then the two tangent lines must be parallel.']" ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAW4CEwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ8UALmiuWvPGun2/j/AE/weq+ZfXMLyuwYYhwpYAjHJIBOPTHrXUD2oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKyvEeu23hzQbrVbkF1gX5I15aVycKij1LEAVqMcc15druvvq/j+FE0XVtU0bQZCW+wQLIsl9gYDEso/dg5wMncfagDzrUbHUvCnxr8Kanq05kv9TaOe8YH5Ukldo2Rf9lVKj8K+lh1NfOHxv1mfUn0DVF0LWNMks5JFEl9bqiuTsZQuGPI2k9utfRNlcpe2UF1Fjy5o1kXHoRn+tAE9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUZA70AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSHPGKAOE+J/wAQbTwVoEyw3MR1mdCtrBkFlJ/5aMOyjn6kYrV+H9pptj4L0+DTL2G9jCb5bmKQP5szfM7EjuWJ47dO1dIBg8D6UyWaKHLSypGoHJZgP50AeRftCX+lS+DIdPa+tjqMd7HKlsJAZMbWBJXqBg9fpXV/CrxJY674B0eOK8hkvLW1SCeESAyIUGwFl6jO3Oe9dU2r6agLPqNooyBkzL19OtPXUbB3CJeWxbsFlUn+dAFuikUggEEEHpiloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooyDRQAUUUUAFY3irw3aeLfDt1ol9LPFbXOze8BAcbXVhgkEdVx071s0UAeP/8ADOXhE/8AMS1z/v8ARf8Axqj/AIZx8If9BLXP+/0P/wAar2CigDx//hnHwh/0Etc/7/Q//GqP+GcfCH/QS1z/AL/Q/wDxqvYKKAPH/wDhnHwh/wBBLXP+/wBD/wDGqP8AhnHwh/0Etc/7/Q//ABqvYKKAPH/+GcfCH/QS1z/v9D/8ao/4Zx8If9BLXP8Av9D/APGq9gooA8f/AOGcfCH/AEEtc/7/AEP/AMao/wCGcfCH/QS1z/v9D/8AGq9go6UAeP8A/DOPhD/oJa5/3+h/+NUf8M5eEP8AoJa5/wB/4f8A41Xr5I/KvPPGfxf8NeEXe2Ep1LUkyptrZgRG3+23RfoASPSgDD/4Zy8H/wDQS1z/AL/xf/Gq5vxD8MPhR4Xyuq+KtTimHWBbiKSX/vhYiw+pGKnVviz8T8PG3/CN6LJyCN0JZfqP3j5H0U10/hz4C+F9JKy6qZtYuRyTMdkWfZFP8yaAPCb6y8JahP8AZPCWkeKtRnIOGmmizn2jjiYkfiK0NJ+CnjnVgjf2SLKJufMvJlTH1Xlh+VfWFhptlpVsttp9nBawL0jgiWNfyAAq2KAPnOw/Zs1WRAdR8QWdu3cW8DTAfiSlbDfs22EdhLt1+6lvfLPlEwqkZfHG4cnGfevdaQ0AfKnw28AeH/E+s6n4f8RT6lYa1ZudsVvKih1U4ZcMjfMCM9eQfavR3/Zx8LsD5eq6wpPQl4jj6/IKq/GTw7e6BrNh8RtBBS6tZEW8Cj73ZXI9CPkb22+9ereFfENl4p8OWmtWJ/dXKbmU9UccMp9wQR+HpQB4/d/s1WrHNl4mmiH92azEmfxDj+Vc5qP7Ovii23tY6hp14gGVBZo3P4EY/WvpyigD4zvPhx4m8Pz+ZrfhfU5bRQSxs5FbGO5dVcAfUVp6FafCbUWWLVLzxPpU/wDEZZIpYs+m5Ys/mor64PWuf1/wR4b8TKw1fRrW4dh/rtmyX/vtcN+tAHmmmfAj4f6zaC60zX9TvLcnAkgu4HX6ZEZ59quf8M5eD/8AoJa3/wB/4f8A41VDU/gVeaPdf2l4G8Q3Nhdj7sM7kZHXHmKM49mU57mq1l8W/Fvgq9TTPiFocrJ91b2FArNjuMHy5Oo6EY96ANgfs5eED01LXP8Av/D/APGqP+GcfCH/AEEtc/7/AEP/AMar0bw54p0XxVY/a9G1CG6jGAwU4dD6Mp5H4itqgDx//hnHwh/0Etc/7/Q//GqP+GcfCH/QS1z/AL/Q/wDxqvYKKAPH/wDhnHwh/wBBLXP+/wBD/wDGqP8AhnHwh/0Etc/7/Q//ABqvYKKAPH/+GcfCH/QS1z/v9D/8ao/4Zx8If9BLXP8Av9D/APGq9gooA8f/AOGcfCH/AEEtc/7/AEP/AMao/wCGcfCH/QS1z/v9D/8AGq9gooA8f/4Zx8If9BLXP+/0P/xqj/hnHwh/0Etc/wC/0P8A8ar2CigDx/8A4Zx8If8AQS1z/v8AQ/8Axqj/AIZx8If9BLXP+/0P/wAar2CigDx//hnHwh/0Etc/7/Q//GqP+GcfCH/QS1z/AL/Q/wDxqvYKKAPH/wDhnHwh/wBBLXP+/wBD/wDGqP8AhnHwh/0Etc/7/Q//ABqvYKKAPH/+GcfCH/QS1z/v9D/8ao/4Zx8If9BLXP8Av9D/APGq9gooA8f/AOGcfCH/AEEtc/7/AEP/AMao/wCGcfCH/QS1z/v9D/8AGq9gooA8f/4Zx8If9BLXP+/0P/xqj/hnHwh/0Etc/wC/0P8A8ar2CigDx/8A4Zx8If8AQS1z/v8AQ/8Axqj/AIZx8If9BLXP+/0P/wAar2CigDx//hnHwh/0Etc/7/Q//GqP+GcfCH/QS1z/AL/Q/wDxqvYKKAPH/wDhnHwh/wBBLXP+/wBD/wDGqP8AhnHwh/0Etc/7/Q//ABqvYKKAPH/+GcfCH/QS1z/v9D/8ao/4Zx8If9BLXP8Av9D/APGq9gooA8f/AOGcfCH/AEEtc/7/AEP/AMao/wCGcfCH/QS1z/v9D/8AGq9gooA8f/4Zx8If9BLXP+/0P/xqg/s5eER01LXOf+m0X/xqvYKKAMbwr4btPCXh210SxlnltbbfsecgudzsxyQAOrY6dq2aKKACiiigAooooAKKKKACiiigAooooAKKKMj1oAKxvEvifSPCmltqGr3iW8I4UHlpG/uqvVjXPfET4maZ4DstjFLrVpVzBZh8Ej+8+Pur/PBA7kef+G/hxr3xD1NfFPj+edbZ8Nb6eCUJTqBj/lmnsPmPJJyckAr3Pinx18Xrx7DwvbSaR4fBKTXbMQXXP8Ug56Y+RPXkkcjv/Bnwe8OeERFcvD/aepJg/arlQQp9UTkL+p967uxsbbTrOO0s7eK3tohtjiiUKqj0AFWKAEUYpaKKACiiigAooooArX9nb6jYT2N3Cs1vcRtFLG3R1IwQfzrwfwVe3Pwp+Jt14N1SZjo+pSK9nM/Tc3CP+ONje4B6Cvf27V578XfAp8ZeFjLaRZ1ewzNalesg/ij/ABxke4HTJoA9DXpx0pa87+D/AI5HjHwosN3Lu1awCxXO4/NIP4ZOeTkDk/3gexFeiUAFFFFAAap6jp1lqlm9nf2kN3bScPFNGGU/UGrlFAHiXiP4LXej3x174fajcWF7Hz9kMpG71COT0/2WyD69qseEPjMyagNB8dWn9k6pH8n2lkKRsf8AbX+AnjkfKfavZGrlfGXgLRfG9gYNStylyo/cXkQAkiPse49j/hQB1COroHVgVYZBByCPWn1886f4g8U/BTVotH8Qxyal4akYi2uIx9xf+meeh9Yyfoccn3jSNWsda0yHUNOuY7i0mXdHLGeCP6EdCDgjuBQBeooyDnB6daKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEJrzz4n/ABMg8E2KWdkI7nXboYhgPIjB/jYDnrwB3P0NaXxG8e2fgTw99rby5tQnylnblsb27scc7Vzk/gO9cT8LPh7eXN+3jrxbvuNVvD59tFKOYwekjDoGx91eijHQ4CgEvw5+F1w98PGHjTdd63cN50dvOARCezMP747Dog7ZA2+wqMZoUY7Yp1ABRRRQAUUUUAFFFFABRRRQAUjUtFAHz/43srn4VfE608ZabE39j6lIUvIlHAJOZF/HG9f9oHsK930+9g1CxgvbWVZLe4jWSJ1OQykZB/Ks/wAVeHbPxX4du9GveIrhCFcDJjccq49wQD79K8n+DviG88P63ffDnXvkubWR2ss5wcfMyKT2P31Ppu9RQB7jnPSikX1paACiiigAooooAoazo9hr2lzadqdrHdWkww8cgyD6Eeh9xgj1rwaS1174D+JTcw+bqPg++lwy919AR0WQDoejgdv4foiqWraVZa5pk+m6jbR3NncIUliccEdsHqCDggjkEZHNAEei6zp2vaTBqmmXKXFpcLvSRT+YI7EHgjsa0a+dreXU/gT42+x3DS3XhLUn3JIRkp0G7j/loo4OPvLjpxj6CtLmC8torm3lSWGZFeORDkMpGQQe4oAnoo60UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAASB1NZ+t6vZaDo91quozCG0tUMkjn9AB3JOAB3JFXycEfWvB/ibql38QfHlh8PdEmItYZN9/MvzBWHXPqEU9M8scdQKAK/gbRLz4seN7jxv4ghI0m0k8uztSdysV5VPdVyCePmY/UV7+gwOmKpaLpNpoWj2ul2MQjtbWMRxqPQdz6k9Se5JNX6ACiiigAooooAKKKKACiiigAooooAKKKKAEPSvHfjd4RuWt7bxtooaLU9KKtMYxyYwdwf3KHk+xPpXsdRzRpNE0UqK8bgqysMgg8EEdxQBzvgLxbbeNPClrq8O1ZmHl3UQP+qmH3h9DkEexFdNXz1YyS/Bf4ryWEzMnhfWSDG7Z2xDPBye6E4b/ZIPcV9Bp60AOooooAKKKKACiiigDD8WeGdP8AF3h+40jUUzHKMxyAZMUgHyuPcfqMg9a8n+FviS/8HeKbj4ceJXxskIsJSflyeQoJ/hYcj3yO+K9zavLPjP4Gk17QV17TlZNX0lTIpi4aSIfMVGOcjG5fx9aAPUl6e/rTq4r4XeNF8a+DobyZ1/tG3PkXijj5wOGx6MMH0zkdq7WgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopDQBzHxB8VReDfB97qxKm5C+Vaof45m+6PcDBJ9lNcX8C/CL6b4fm8TaiGk1LWD5iu/LCHOQcnu5yx55G2sH4myS+PfixovgW3dxZ2hEl4V4wWAdz+EYAHu1e628MdvBHBCipFGoRFUYCgDAA9hQBIoxS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFBoooA4z4meCY/G/hGezRUGoQfvrKRh0kH8JPow49uD2rnPgp41fWtDk8O6ozLq+kjyyJeGkiBwCR1yvCn/gOeTXqrDPr+FeD/FLR7zwH40sfiJocWIpJQl9Ev3S54Jb2dcgns2D1NAHvA6UtZ2h6xZ6/otpq1hL5lrdRiRD3HqD7g5BHYg1o5z0oAKKKKACiiigApr54wP/AK1OoNAHz6FHwj+NoAAi8O64MeiRhm/IbHP4I3vX0CPfrXnXxp8Kr4k8A3M8UYa90wG7hOOSoH7xfoVyceqir3wl8TnxT8P7G4mk3XlqPslySckugGCfcqVP40AdxRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVXUb2HTNNub+4YLBbQvNIfRVG4/oDVqvNvjnrX9lfDO6hjkKy6hKlqhXrgnc34FUI/GgDl/gVYTazqviLxxerm4vLhoYz/dyRJJjPblFH0Ne4Ada5P4ZaIPD/w60WyK7ZTbieXIwd8nzkH6bsfhXW0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVQ1rSbPXdIudLv4RLbXUZjdfY9wexBwQexA71fpD2oA8H+GOqXfw/8dX3w91yT/Rp5N9hM3Csx6bc9nA6f3hjqTXvA715b8afBMuv6AmvaWjjWNJzKpiO15IhywHfcuNw+hA5Ire+GHjePxv4Tju5GUajb4hvEGB84H3wPRhyPxHagDtaKKKACiiigAooooAbIodSpAIIwQehrwn4YE+Cfi/4h8FyORa3OZLUM2fujegHv5bHP+6PSvdzXhXxiU+F/iT4T8ZRl1jDiK4Kr2Rsn8WR2H0WgD3YUU1SCuRyO1OoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBDXhnx0P9teLvB3hZJCBczZkVf+mkiorfhh/1r3MmvDdYYav+1LpVsV3Jp9uobPYiJ5QfzdaAPcUAVQqgADgAdqdSDv7UtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADX6dMjvXz7rMMvwZ+K0Or2yOvhnVyRLGi5EYz8ygeqkhl9uPWvoSuc8ceFLbxn4VutIuMJI4328pGfKlA+Vvp2PsTQBvwSxzQJLE6vE6hkZTkEEcEHvUmc1418FPFlzF9r8Ca7mLU9MZlgWRslkBw0Y9dp5H+yeOBXsgoAWiiigAooooAK8u+P2mLffDOW7JAawuopwcdcny8f+RB+Veo1zPxEsxffDrxDBsLn7BK6qBkkqpYY/FRQA/wDqZ1jwDoV8zl5JLOMSMe7qNrH/voGujrzP4C3q3XwttYQRm0uZoSB2Jbf/wCzivTKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQ/SvEfDY+1/tQeI5mGDDakjPskSf1r2414Z4ALH9o7xiWOSLecDPp5sOP0oA9zFLQKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPalooA8R+Mvhu80TVbL4h6CDHe2kird7RncOiucdsfI3qCo9a9T8J+JbLxb4btNZsTiO4X5oyfmjccMh9wfzGDWne2sF9ZzWl1EktvPG0csbjIZSMEEe4rwfwhd3Hwl+KN34S1GZjomqSB7SZzkAscRv8AX+BvcA9BQB9AUUgNLQAUUUUAFVNUgF1pN5bnGJYHQ56cqRVuorj/AI95f9w/yoA8f/ZwlDeCtUi5yuos/tzGn+Fey14p+zb/AMiprH/X8P8A0Ba9roAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigANeIeF8237TviWN8AyWjYA9CIWH44Ar2414beodJ/aqs5icR6jbhj7jyGQf+PRigD3IUtIKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARu1ef/FnwN/wmPhRmtYgdVsczWpGMv8A3o8/7QHH+0F6V6DSGgDzn4OeOv8AhLvCotbyXdq2mgQ3G4ndIv8ADJz1JAwfcE8ZFej18/8Aj2wufhd8SrPxtpcTnSb+QpexIONx5dfT5sbx/tA9hXuunX1tqdhBf2koltriNZYnB4KsMj+dAFuiiigAqtqMwt9NupjjEcLuc+gBNWa53x5dmx8AeILhW2sunzBT6MUIH6kUAed/s3xFfBmqy5+9qBXH0jQ/+zV7NXl/wCsfsnwxinx/x+Xc0+fXBEf/ALTr1CgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAENeGfGjbofxG8F+Jm3KiShJWHTbHKrYz7h2r3SvLfj7o51L4bvdouZNOuY5+Bk7T8jf+hg/wDAaAPUVxjilrm/AGtf8JD4D0bUy++SW2VZT/00X5X/APHlNdJQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGR4n8P2fijw7eaNfITDcpt3DqjDlWHuCAf/rV5J8IPEN74a8QX3w415gtxbSs1kTnBONzKuezD514HU+or3E14/8AG3whcTWlv400cNFqukEPK0Y+ZolOQ/1Q8/Qn0oA9fXpTq5bwB4vtvGvhS21WIqtxjy7qIf8ALOUAbh9DwR7Ee9dTnNABXmnx31NbD4X3cG4h76eK3TB/2t5/RCPxr0pvavDfjjK2v+LvCfg2F2BuJhLMFGcb3CK34ASH8aAPSfhrpo0n4b6BabSh+xpKynqGk/eN+rGuqpkSLFGEQBUQABR0AFPyKACiuc1nx54U0Euupa/YQyJ96ISh5B/wBct+lclefHzwNbEiK5vbsY/5Y2rD/wBD20AeoUZryGP9orwe7hWsdajH957eIgflJmtmy+N/gK8ZVbV5LZmOAJ7aQfqAQPzoA9ForO0vXtI1uMyaXqdneoOpt5lfH1wePxrRyPWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqGt6ZFrWh32lz/6q8t3gY46BlIz+Gc1fpGzxigDxX4A6vLa22t+EL/5LzTblpVjY5IGdkigeisoP1evah1PtXgvjRm+HHxw03xQoK6Xqy7brA47JJx7fJJ7mveUIIyOh6UAOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ57UALkDvUcqJLGUkRXRgVZWGQQeCDXnvxV8Va/4J0SPWNNurBonuFtxbXFsSSSrHIcOP7vTFHhq++IWv+E7TWxf6DFPdxGWK0lsZdu0/dJcSZGR6KeD3oA8/tZJPgt8WGtZWdfC+s8hjnbGM8HPrGTg/wCyc9SK+g0OR6j19a8Ql1eP4x6Hq3hXUNOTTvFOlbpYQJMp5iEq2D1AydpBJ6gjOBW18E/Gcuq6RN4Y1YtHrGkfu9kvDtEDjBHXKH5T6fLnk0AernqK8H8DP/wnXx41rxOPnsdKQx27ZBHQxx/mokb616D8V/FI8K+Ab64jfbd3Q+yW2Dgh3ByR7hct9QK+ffAsHivxNpcnhLwyjWlpPIZdTvclQc8BXcDIXAwEHJJbORwoB7P4y+Nei6BMdP0aL+2tT3bAkLfukY9iwzuPP3V9CCRxnlU8L/FX4kjztf1Q6FpUv/LoFK5Ujp5QOWHtI2a9H8D/AAx0HwRAsltALnUioEl9Mo3k99o6IPYfiTiu1XOeaAPK9H+APg3T0BvkvNUlwMmeYoufYJtOPYk12Fr4A8IWaqsPhjSRt+6zWiOw/FgTXS0UAY0vhTw7OhSXQNLZD1VrOMj8iKydQ+F/gnUYyk3hmwQdc2yeQfzTbXX0UAeMat+z7p6zLe+GNavdKvI2LRh2Miqe21hhl+uTWOfFPxP+GEijxLZjXNHUgfaQxfaPaUDcv/bQH2r3+myIsilGUMrAggjII9xQBy/g34geH/G1sX0u6C3KrultJfllT8O49xkdK6qvHvG3wYjkuP7e8Eyf2VrELeYsEbbI3P8AsH/lm3XgfKenGSasfDn4rvqt3/wjXiuP7D4ghfyg0ibBOemCD91+nHfPHpQB6zRSDGKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA4v4peEf8AhMfBF1ZQpuvrc/abTHUyKD8v/AgSv1IPasb4JeMR4k8GJYXMmdR0oLbyAnlo8fu2/IFfqvvXpbDIxXgPjK1uPhP8UrbxhYROdF1Nyt3Ei8BicyJ6AnG9fcHsDQB9AZzRVexu7e+soby1mSa3nRZIpEPDqRkEfgasA56UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIfalpCcUAfP/7Q+qC91vQPDSTpEvNxKzsAql22IWPbGGP0NeiyfEbwbommQWGl6lFqU0UawWtjp2Z5JSowqqF47dyBXm2gKPGv7SGo37qJbLTPMKhuVIjXylx9WO786774u+F9Hv8AwDql9JZ28V5ZRefBcqgV1YEHGR2PT/6+CADF+FHgbWrHxPrHjLxBB9jutRMvlWhOWXzJN7M3pyAAOvX2rJ+K+i3ngjxfYfEXQoiF80LfRrwpY8ZbH8LrlSfXHc11fwN8Q6h4g8As+pSvPNaXbWyTOcs6hVYZJ6kbsZ9AKqfHPxWNM8NR+HLSNZ9R1k+UI9oYrHkZIHPJOAv4kcigDz3xFqF58cfH9jpmiB4dJtIQTNKv+qDYMjsPXOEC9yoORkkfQHhjw1pnhTRYdK0q3WKCIfM2BvkbAy7kdWOOv4DAAFeJfCa9u/h547u/BviG3htpdREbRS8f6zHyLv8A4gdxAGcBuByTX0KPSgBaKKKACiiigAooooAKKKKAEPUV5v8AFD4ZQ+L7Iajpirb6/agGGUNt80A52MR39D2PcCvSaRu3FAHl/wAJPiJL4ks5tC1zdH4g0/KyeYAGnUHGcdnB4YfQ9yB6gK8O+MPh278Ma9YfEXQFEdxbzKL3aOCT8ocgdmB2N65Hqa9d8Oa5a+JfD1lrNk2be7iDgE8qejKfcEFT7igDVooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKxvFXhyx8V+HbvRr8fubhcK4+9G45Vh7gjPvjB4zWzTWGRQB4X8LPFF74O8S3Hw48TSBDHMVsJm+6WJzsB/uvncvucdwB7ovTrXnfxT+HK+NNIW8sVSPXLJc2zltvmKDkxk+ncHsT1AJqj8KPiS3iGE+HdeLweIrLdGwlXYbhU4Jx1Eg6MvtkdwAD1TNFNUj25p2aACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKx/El5qlnpMzaNpU2o37IwhRJI0VXxwWLsOM+melbFFAHg/ws8M+NPAV3qs2oeDp7s3yIBJFfW25Cu4kEGTkHcOc54roPFej+P/iHajRpdPtfDmjO6tcPLdC4mkwcgYTjGcHGRyBzxXrGcVDdTQ21vJcXEqRQwoXeRyAFUckkngAdaAOb0+y0P4Z+B2jMpi06xjMks0hBeVieT7sx4A+grx/4dG5+J/xevPFWpR4tNMUSQwnlYyciFPww7k/3l96xviT4xv8A4iz3/wDZQkj8MaKvmPKQQsjk7FZvdiQFHpk+uPU/gJo4034bx3jA+bqNxJOSwwdoOxR9PkyP96gA+M/gh/Enh1dZ01GGs6UDLGUB3yRjllGOSR94e4IHWtj4WeN08a+Eo55pQdTtcQ3iZHLdnA9GAz9dwHSu2bOOK+fdegl+DfxVh1y0if8A4RvVyVniVfljycuoHTKn5l9sr2NAH0ICD0oqK2nhubeOeCRJIZVDxujZDKRkEH0NS0AFFFFABRRRQAUUUUAFFFFAFLV9Mtta0i70y8TfbXUTRSD2YY49+4PY1438DtQudC13xD4E1CQ+baTNNACOODtfGex+Rh+Jr3A9q8K8bRnwr+0H4a12JQsOp+XFM2cAsT5Lk/RWQ0Ae6ilpq9KdQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANYZGMZryj4pfDO41mePxP4ZJt/ENrhyIztNxtAxz/AHxjg9xwe1es01hntkdxQB5n8M/ilD4pjXRtZxaeIoMo8TKUFxt6so7PwSV9iRx09MGBnoK8x+JHwoh8USjW9FcWHiGHa6yqxRZyvI3EchhgYcc9j0BGP4J+L01nf/8ACM+Po207VLc+Wt3MNquf+mnYH0YfKevHGQD2iimIQVyCNuBjmn5z0oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACijNZHiPxJpPhfS31DWLxLeBemeWc/3VXqx9qANC7uYLS2e5uZo4YIlLvJIwVVA7kngCvA/EXibWPjLrx8LeFVkg8PxODd3rpgSAHhmHHy8ZVOCxGTj+GK4u/Ffx01U2ljHJpXhKCXEjt/Hg5+Y/xv0O0cLxnsT7Z4W8LaX4R0aPTNKt/KiXl3bl5W7ux7k/l6cUAeW/FXQtM8C/BddE0uIpHcXkUckjcvM/Ll3Pcny/0AGBivTvAtr9i8A+H7faFZdPg3AdNxQFv1Jrz/8AaN/5J5Yf9hWP/wBFTV6X4YIPhPRiCCDYwcj/AHBQBq1z3jbwra+MvC13o9zhWdd8EuMmKUfdb+h9QSO9dDSGgDxj4KeKrq2kvfAWu5i1HTXf7MsjZJQH5o899p5HJyDxwK9nBzXinxn8MXmlahZfELQcx31jIgu9ozkDhHI7jojDupHYGvT/AAh4mtPF3hmz1mzICzr88ecmJxwyH6H8xg0AbtFFFABRRRQAUUUUAFFFFABXiP7R1sY9I8P6pGSsttdvGrDtuUN/7TFe3V43+0ewPgbTFyMnUlIHr+6koA9ft5BNBHKpyrqGB9jzUtVNLBXSbNWBBECAg9vlFW6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAawJxj9K5Xxl8P9E8b2Pk6lBtuUGILuIYkh9ge49jxz+I6yigD56j1Dx58FZY7fUYjrXhcNiOQE4jHQAMcmI9PlOV5IB7j13wj498PeM7cyaTfAzhQ0lpN8k0Y917jnqMj3rpJokniaKVFkjcFWRhkMD2IrybxV8DdPvbo6p4Vu20PUkO9EjJEO71XHzR/VePagD13I9aK8Di+IfxB+HMiWvjXRX1GwBCLfJgEjoMSKNrHjOGw3qa9F8OfFfwf4l2Lb6tHa3DY/wBGvf3T5PYEnaT7KTQB29FICDznrS5HrQAUUUUAFFFFABRRRQAUUZqrf6jY6XbG5v7y3tYF6yTyBFH4mgC1mmSOFUliAAMkk8D/AAryfxF8evDmmsbbQ4J9avCdqGIGOLd0xuI3E/QEH1rnP+Ec+J3xUOdfuP7B0R2z9m2FNy/9cs7m6D75A7igDpvGfxt0rSHOm+HIxrOqsdieVloUb0JHLn2X8xWDoPws8QeONUTxD8Rryfa3zR6cG2sFzwpxxGvsvzHPJBzXo3g/4b+HPBUQbTbMy3hGGvbjDTHPXB4Cj2XHvmuvXigCvYWNrptnHZ2VtFbW0ShUiiQKqgegFWaKKAPN/jrZfa/hXfyAEm1lhmAAz/GFP6MT+Fbvwzvo9R+Gvh6eMghbKOA/WMeWf1U1r+JNJXXfDOp6SxA+2WskIY/wllIB/A4P4V5h+z5rLP4c1Pw7dbku9Mui3lPwVR+ox7Or59NwoA9jooooAgvLWC+tJrS5iWWCaNo5Y2GQ6MMFT7EHFeCeFbuf4RfFK68MajK39g6o4e2mkOQuciNs9Af4GPsD0Ar6BNcB8WfAq+NPCbi1iB1WyzNZnAy/HzR5/wBofqFoA75e/wBadXmvwb8df8JX4YNjfzZ1fTAIp95O6VOiyHPJPGD7jJxkV6VmgAooooAKKo6rq+n6JZNe6new2lsnBkmcKMnoPc+1cvD8TNLvIxPpmk+INRtT0ubTS5Gjb6EgZ/AUAdtRXHaR8TfC2vava6Tpt7LNfzu6/ZzbSRtHtUs27cABjaR9a69ORnFACntzXh37QLSanf8AhPw/A37y7uXyMdCxRF/9CavcWrwiUjxv+0tEiAPZ6BHhj/tRHP5iVwPoKAPd1ACgAYAGBS0gOaWgAooooAKKKKACiiigAooooAKKKKACiiigAooozQAUUUUAFFAORkUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADJI0lQpIodGBDKwyCPQjvXnviH4KeDdfJkSwbTLg9ZbFggP/ACCv5AGvRaKAPCB8LPiL4R58IeLjPboDttpXMf5I26Mn34p3/Cw/it4bdU1/wZ9uiUfNLbwtnA9XjLIPyr3WkIoA8UtP2jtH+5qvh/UrWUcMkLpLj/AL62Vu2nx78C3Cgy3V5bE/wy2rEj/vnd/OvRrqwtL2Mx3dpb3CHqssYcfkRWJL8P/B8+fM8L6Pk9StlGp/QUAYK/G34et114qfQ2U/8A8RTX+OHw/UEjWnfHZbOb+qVqTfC3wRKoVvDVgADnCqV/kalX4a+ClYEeF9MOPWAGgDkbz9oXwbAcQw6rcn1jt1A/8ecVjN8f77VJHh8OeDL29f8AhYuzn8URT/OvV7Xwf4ZsHD2fh3SYHH8UdnGp/MCthUWNQqIFUcAKMYoA8MF/8cPFZTyLKDQraTguUWLA995aQfgKnsvgHc6ncreeMfFN5qNwV5SFi2D6eZJkke20V7cKWgDm/Dvgbw34UQf2NpEEEoBHnkF5Tnr87c/hmujAxn60tFABRRRQAUUUUAI1eBeIS3wu+OMGu42aJru7z/7qliPMz9G2yfQ4r36uR+I/g2Lxt4Tn07agvE/e2kjfwSgcAn0b7p+ueoFAHWKQ3zKQQehFOzXkPwZ8cyXlm3g7W98OtaWDFGJeGkjU42/7ydCOuB7GvXV70ALSHtS0UAeA/EHTrr4Y/Eez8daRCf7NvZCl7CowoY/fU/74yw/2gfavc9Mv7TVNNt7+ylEtrcRrJHIM/MpGQeec/WqviTQbPxPoF3o9+m63uUKkjqjdVYe4OD+FeP8Awh1698K+Jb/4ca+wSWGVmsnJ4J+8VXPZgQ6/j3NAHutZniHWrPw7oV3q9+xFtaxmRgOrHoFGeMk4Az3NaQ714x+0dqMsHhPSrBGKpdXZd8dwi9PzYflQBQ8A6XefFfxJceMfFKiXTLSQxWFgRmHd1PB+8FyM5HzE88DFe6BQECqMKAAB7Vyvww0+PTPhr4fgjQKHs0nb3aQbz/6FXW0AccfBcKfFKLxZHEig6e8MuOpl3LtbH+5uX8BXYDvmjI45HPSmyMqqWZgFAySTxj/CgDnvHfiiHwh4Pv8AV3dBMkZS2Vv45WGEGO/PJx2BPauG+A/huay8N3fiO/3te6zJvBk+95ak4P1Zix9xtrl9au5/jR8S7fRdPaT/AIRjSm3TzKcB+fmbPq33V74y3rj360t4bS1itreJYoIkCRoowqqBgAD0AoAmHeloooAKKKKACiiigAoozRmgAoqnf6tpulx+bqF/aWiD+K4mWMfmSK5LUfi/4E0tisniCGduwtUebP4qCP1FAHc0V4xqP7Rnh6IMmm6TqV5JnC+YEiVvxyx/8dqn/wALS+JWuOq6B4DaCN1+V7mGV1x/vnYtAHudIzBQSxAA7k14adG+OfiBXFzq1rpETdE8yNCB7GJWb8zQPgLq+rMkniXxtd3h6mMK8uD7O7f+y0Aeo6l478J6UWW98RabE6/ejFyrOP8AgIJP6Vx+pfHzwRYjFvNe35/6d7Yr/wCjCtJpvwB8FWeDcxX9+Tz/AKRc7QP+/YX+tddp3w/8I6SE+x+HNNRkOVkeAO4/4E2T+tAHmTfH6/1SWSLw34MvL1xwrF2c/iiIf/QqZ/b3xx8QIPseh2+lRv8AxmJI2Ue4mYn9O9e5JGsahUUKg6AdqcKAMvw+mqw+H7CPW3STU1hUXLxnKs/cjAA5+laefY/rTqKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAprduDTqKAPIfix8Ory8uE8Y+FvMi12zAeVIeGnVRwy+rqBjH8SjHJAB2vht8ULLxraCyu1W112Bf39uRgSY6snt7dR+RPoTZyMfzryz4g/CKLXbxvEHhyc6b4gVvM3KxRJmHfI5V/9ofiOd1AHqg/yaWvD/Dvxlv8AQL8aB8Q9Pms7uPA+2+XjI7F1A5H+0mc+nU17Jpmp2Or2SXunXcF1bv8AdlhcOp/EHr7UAWyM44ryH42eDp7zT4PGGj74tW0jDu8XDNEDu3D3Q/N9N3oK9fpkiLIhR1DKwIKkZBFAHL/D3xhb+NvClvqibEuh+6u4V/5Zyjr+BzuHsfXNYXxp8IXPizwYG0+My32nyfaI41GTImMOo9+h99uO9cChk+CvxX8t2K+F9a6ZB2xrn+cZb6lW9TX0EG3KCvIIBBHNAHmfwf8AHGm6n4RstGu7mG21bToxavbSsEdgnCsAeTwBnHQg+ors9Y8WaPpDJC9ytzfSHENja4lnlbsFQHj6nAHciq+s+AvCuvXBudU0KynmPLS7NjN9WXBP4msq+v8AwF8LbRn8qw06R14ht4w1xMPTH3iPcnA9RQB1WmyX7acs2qx29vdMC7xxtuWIZyFLHqQMAngEjjFeLePfHt/481YeBvA26UStsu71DhHX+IBh0jGfmbuRgZB+ald6540+NNy+naHayaR4ZD7Li4c8OO4Zh944/wCWa+oye9epeGfDfhf4Z6KYRdW1sz83N5eSqjTEepJ6DPA6DPrmgC74G8Faf4G8PR6dZ5lmbD3Nyww00mOT7D0Hb3OSemHpXD6j8XfA2lkiXxDbzP6WqNNn8UBX9a5HUf2jPDsW9dN0nUruXou8JErfjlj+lAHs9FeGf8LU+JGuMBoHgJ4Y3GVe4ilkXH++di0HR/jn4gDi51S10eJuiCSNMD2MSs35mgD3IsFBLEADqTXPal478J6UWW98R6bE6ctGLlWcf8BGT+leXD4Cavq5STxL42urtgclAjy/k7t/7LXQab8AfBdnzcx39/k5xcXG0fT92FoAdqHx88D2Q/0e4vb8+ltbFf8A0YVrnm+P17qcrw+G/Bl5esB8rF2Y/iiIf/Qq9N074feEdJCCz8OacrJyrvAJHH/Amyf1roUjWMBUUKoGAoGAKAPD/wC3vjj4gQfYtDt9JjbGHMSRso9xMxP/AI7Tj8Mvijrrltd8dG3jccx200jA+xRQi17iKWgDxax/Zy0JPn1TWtSvJScsYQkQb6ghj+tddpvwd8CaawdNBinkH8VzI8oP1Vjt/Su7ooAoafoul6THs03TbSzQdraBYx+gq8PpS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUZoAKQ9sfpVW+1TT9Mi82/vrW0jH8c8qxj8ya5LUvi74F0tisviG3mfHAtVacH8UBH60Ab3iDwvo3iizFprOnw3cS/dLgh0PqrDBX8DXk998E9e8O3b3/gPxNPasTn7NPIUJAzxvXhvoy/iat6l+0Z4dhDJp2laleSjhd4SFG+hyx/8dql/wtb4j64yjQPAbwxOAQ88Msq4/wB75FoAavxC+K3hfbF4i8InUYkGWnhiOSPUvFuQf98irNr+0fo4G3UfD+o28o4ZInSTB/Hb/KoP7I+Omvhhc6pbaRGei+ZGn5GIM35mgfAXWdXdZPEnjW6ujnLIFeU/g7t/7LQBjfEP4s+DvHPhSXTTp2rR3inzbWaSKMCOQepEhO0jIP1z6VR8L/Hu98OeFbTSJ9J/tG4tlMcdzJc7P3Y+4CNpzgcdRwBXpGm/AHwXZHNyt/qGeouLjaP/ACGF/rXXad8PvCOkhBZ+HNOVk5V3gEjj/gTZP60AfPV/8WviL4vLW+lJLbqcgx6Tasz4P+18zA9eQRWZp3wv+IWrXX25tBuHlkbe0uosinOc7mWRssfYg9TxX1ykaxKFRQqgYCgYA+lPFAHhVv8ACv4l6jEkGp+Mo9PtFUKsFjI4VR6eWgRAPpV2x/Zz0UHzNV1vUr2YnLGIJEG+uQx/WvaaKAOD034OeBNMZXTQo7iRf4rqR5c/VWO39K6zT9F0vSYwmm6baWa+lvAsY/QVoUUAIKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKM0AFFFVL/AFTT9Mi83UL61tI/79xKsY/MmgC3miuH1L4u+BdLJWXxDbzN2FqrTg/igI/WuR1H9ozw5AGXTtL1K7kHC7wsSN+OWP8A47QB7NRkV4Wfiv8AEbXCi+H/AAG8Ub8iSeGWVcf7+EWl/sr46eIN4uNTtdHibonmRpgexjDN+tAHuRYKCSQAOpNc/qXjjwrpJZb7xDpkUiDJjNypcf8AAQSf0ry0fAfW9XKP4l8b3V4QctHh5fyd2/8AZa39N+AHguy5uV1C/PpPcbR/5DC/zoAl1H49+B7If6PdXl+R2trZh/6M21zr/H+61KeSHw34Nvb5v4WLszD6oin/ANCr0rTfh54Q0lUFp4c05SnKu8CyOD/vPk/rXRpGkSBI1CIBgBRgCgDw4eIvjfr8Y+w+H7fSkY8O0Kxso9xMxP8A47T/APhWvxU1yXdrfjn7LG33ltp5D/44oRf1r3KigDxWy/Zz0YN5mra7qV7MTlmiVIgx9928/rXW6b8G/AumsjpoSXDr1a5leUH6qTt/Su9ooAz9P0PStIXbpumWdmvpbQLGP0FXxS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIaWmscDJ6UAeVeMPizqmgeKbvw9pPhK51K5gCkTI7ENuUMCEVCSOSOvY1hDxH8bvEEQ+weHrfSo2PDvCsTKPcTOT/47XuWOc0oPJFAHh3/AArf4q664bW/HH2WJgdyW08nf1RAin86nsf2ctH3eZq2vajeSk5ZoVSLd9d24/rXtdFAHA6d8G/AumlGXQ0uJF/juZXkz9VJ2/pXXadoWk6Qu3TdLs7IelvAsf8AIVoUUAIPpS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//Z'] Multimodal Competition True Theorem proof Geometry Math English 6 "A school has a row of $n$ open lockers, numbered 1 through $n$. After arriving at school one day, Josephine starts at the beginning of the row and closes every second locker until reaching the end of the row, as shown in the example below. Then on her way back, she closes every second locker that is still open. She continues in this manner along the row, until only one locker remains open. Define $f(n)$ to be the number of the last open locker. For example, if there are 15 lockers, then $f(15)=11$ as shown below: Prove that there is no positive integer $n$ such that $f(n)=2005$ and there are infinitely many positive integers $n$ such that $f(n)=f(2005)$." ['First, we calculate $f(n)$ for $n$ from 1 to 32 , to get a feeling for what happens. We obtain $1,1,3,3,1,1,3,3,9,9,11,11,9,9,11,11,1,1,3,3,1,1,3,3,9,9,11,11,9,9,11,11$. This will help us to establish some patterns.\n\nNext, we establish two recursive formulas for $f(n)$.\n\nFirst, from our pattern, it looks like $f(2 m)=f(2 m-1)$.\n\nWhy is this true in general?\n\nConsider a row of $2 m$ lockers.\n\nOn the first pass through, Josephine shuts all of the even numbered lockers, leaving open lockers $1,3, \\ldots, 2 m-1$.\n\nThese are exactly the same open lockers as if she had started with $2 m-1$ lockers in total. Thus, as she starts her second pass from right to left, the process will be the same now whether she started with $2 m$ lockers or $2 m-1$ lockers.\n\nTherefore, $f(2 m)=f(2 m-1)$.\n\nThis tells us that we need only focus on the values of $f(n)$ where $n$ is odd.\n\nSecondly, we show that $f(2 m-1)=2 m+1-2 f(m)$.\n\n(It is helpful to connect $n=2 m-1$ to a smaller case.)\n\nWhy is this formula true?\n\nStarting with $2 m-1$ lockers, the lockers left open after the first pass are $1,3, \\ldots, 2 m-1$, ie. $m$ lockers in total.\n\nSuppose $f(m)=p$. As Josephine begins her second pass, which is from right to left, we can think of this as being like the first pass through a row of $m$ lockers.\n\nThus, the last open locker will be the $p$ th locker, counting from the right hand end, from the list $1,3, \\ldots, 2 m-1$.\n\nThe first locker from the right is $2 m-1=2 m+1-2(1)$, the second is $2 m-3=2 m+1-2(2)$, and so on, so the $p$ th locker is $2 m+1-2 p$.\n\nTherefore, the final open locker is $2 m+1-2 p$, ie. $f(2 m-1)=2 m+1-2 p=2 m+1-2 f(m)$.\n\nUsing these two formulae repeatedly,\n\n$$\n\\begin{aligned}\nf(4 k+1) & =f(2(2 k+1)-1) \\\\\n& =2(2 k+1)+1-2 f(2 k+1) \\\\\n& =4 k+3-2 f(2(k+1)-1) \\\\\n& =4 k+3-2(2(k+1)+1-2 f(k+1)) \\\\\n& =4 k+3-2(2 k+3-2 f(k+1)) \\\\\n& =4 f(k+1)-3\n\\end{aligned}\n$$\n\n\n\nand\n\n$$\n\\begin{aligned}\nf(4 k+3) & =f(2(2 k+2)-1) \\\\\n& =2(2 k+2)+1-2 f(2 k+2) \\\\\n& =4 k+5-2 f(2 k+1) \\\\\n& =4 k+5-2 f(2(k+1)-1) \\\\\n& =4 k+5-2(2(k+1)+1-2 f(k+1)) \\\\\n& =4 k+5-2(2 k+3-2 f(k+1)) \\\\\n& =4 f(k+1)-1\n\\end{aligned}\n$$\n\nFrom our initial list of values of $f(n)$, it appears as if $f(n)$ cannot leave a remainder of 5 or 7 when divided by 8 . So we use these recursive relations once more to try to establish this:\n\n$$\n\\begin{aligned}\nf(8 l+1) & =4 f(2 l+1)-3 \\quad(\\text { since } 8 l+1=4(2 l)+1) \\\\\n& =4(2 l+3-2 f(l+1))-3 \\\\\n& =8 l+9-8 f(l+1) \\\\\n& =8(l-f(l+1))+9 \\\\\nf(8 l+3) & =4 f(2 l+1)-1 \\quad(\\text { since } 8 l+3=4(2 l)+3) \\\\\n& =4(2 l+3-2 f(l+1))-1 \\\\\n& =8 l+11-8 f(l+1) \\\\\n& =8(l-f(l+1))+11\n\\end{aligned}\n$$\n\nSimilarly, $f(8 l+5)=8 l+9-8 f(l+1)$ and $f(8 l+7)=8 l+11-8 f(l+1)$.\n\nTherefore, since any odd positive integer $n$ can be written as $8 l+1,8 l+3,8 l+5$ or $8 l+7$, then for any odd positive integer $n, f(n)$ is either 9 more or 11 more than a multiple of 8 . Therefore, for any odd positive integer $n, f(n)$ cannot be 2005, since 2005 is not 9 more or 11 more than a multiple of 8 .\n\nThus, for every positive integer $n, f(n) \\neq 2005$, since we only need to consider odd values of $n$.\n\nNext, we show that there are infinitely many positive integers $n$ such that $f(n)=f(2005)$. We do this by looking at the pattern we initially created and conjecturing that\n\n$$\nf(2005)=f\\left(2005+2^{2 a}\\right)\n$$\n\nif $2^{2 a}>2005$. (We might guess this by looking at the connection between $f(1)$ and $f(3)$ with $f(5)$ and $f(7)$ and then $f(1)$ through $f(15)$ with $f(17)$ through $f(31)$. In fact, it appears to be true that $f\\left(m+2^{2 a}\\right)=f(m)$ if $2^{2 a}>m$.)\n\n\n\nUsing our formulae from above,\n\n$$\n\\begin{aligned}\n& f\\left(2005+2^{2 a}\\right)=4 f\\left(502+2^{2 a-2}\\right)-3 \\quad\\left(2005+2^{2 a}=4\\left(501+2^{2 a-2}\\right)+1\\right) \\\\\n& =4 f\\left(501+2^{2 a-2}\\right)-3 \\\\\n& =4\\left(4 f\\left(126+2^{2 a-4}\\right)-3\\right)-3 \\quad\\left(501+2^{2 a-2}=4\\left(125+2^{2 a-4}\\right)+1\\right) \\\\\n& =16 f\\left(126+2^{2 a-4}\\right)-15 \\\\\n& =16 f\\left(125+2^{2 a-4}\\right)-15 \\\\\n& =16\\left(4 f\\left(32+2^{2 a-6}\\right)-3\\right)-15 \\\\\n& =64 f\\left(32+2^{2 a-6}\\right)-63 \\\\\n& =64 f\\left(31+2^{2 a-6}\\right)-63 \\\\\n& =64\\left(4 f\\left(8+2^{2 a-8}\\right)-1\\right)-63 \\\\\n& =256 f\\left(8+2^{2 a-8}\\right)-127 \\\\\n& =256 f\\left(7+2^{2 a-8}\\right)-127 \\\\\n& =256\\left(4 f\\left(2+2^{2 a-10}\\right)-1\\right)-127 \\quad\\left(7+2^{2 a-8}=4\\left(1+2^{2 a-10}\\right)+3\\right) \\\\\n& =1024 f\\left(2+2^{2 a-10}\\right)-383 \\\\\n& =1024 f\\left(1+2^{2 a-10}\\right)-383 \\\\\n& \\left(125+2^{2 a-4}=4\\left(31+2^{2 a-6}\\right)+1\\right) \\\\\n& \\left(31+2^{2 a-6}=4\\left(7+2^{2 a-8}\\right)+3\\right)\n\\end{aligned}\n$$\n\n(Notice that we could have removed the powers of 2 from inside the functions and used this same approach to show that $f(2005)=1024 f(1)-383=641$.)\n\nBut, $f\\left(2^{2 b}+1\\right)=1$ for every positive integer $b$.\n\nWhy is this true? We can prove this quickly by induction.\n\nFor $b=1$, we know $f(5)=1$.\n\nAssume that the result is true for $b=B-1$, for some positive integer $B \\geq 2$.\n\nThen $f\\left(2^{2 B}+1\\right)=f\\left(4\\left(2^{2 B-2}\\right)+1\\right)=4 f\\left(2^{2 B-2}+1\\right)-3=4(1)-3=1$ by our induction hypothesis.\n\nTherefore, if $a \\geq 6$, then $f\\left(1+2^{2 a-10}\\right)=f\\left(1+2^{2(a-5)}\\right)=1$ so\n\n$$\nf\\left(2005+2^{2 a}\\right)=1024(1)-383=641=f(2005)\n$$\n\nso there are infinitely many integers $n$ for which $f(n)=f(2005)$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAcEFAwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoriviNq+qaVb+HY9Lv5LJ9Q1y2sZpY443bypN4YDzFYA8A5x2+tag8Pap38Y65+ENl/wDI9AHQ0Vz3/CPap/0OWuf9+bL/AOR6P+Ee1T/octc/782X/wAj0AdDRXPf8I9qn/Q5a7/35sv/AJHo/wCEe1T/AKHLXP8AvzZf/I9AHQ0Vz3/CPap/0OWuf9+bL/5Ho/4R7VP+hy1z/vzZf/I9AHQ0Vz3/AAj2qf8AQ5a5/wB+bL/5Ho/4R7VP+hy1z/vzZf8AyPQB0NFc9/wj2qf9Dlrn/fmy/wDkej/hHtU/6HLXP+/Nl/8AI9AHQ0Vz3/CPap/0OWuf9+bL/wCR6P8AhHtU/wChy13/AL82X/yPQB0NFc9/wj2qf9Dlrn/fmy/+R6P+Ee1T/octc/782X/yPQB0NFc9/wAI9qn/AEOWuf8Afmy/+R6P+Ee1T/octc/782X/AMj0AdDRXPf8I9qn/Q5a5/35sv8A5Ho/4R7VP+hy1z/vzZf/ACPQB0NFc9/wj2qf9Dlrn/fmy/8Akej/AIR7VP8Aoctc/wC/Nl/8j0AdDRXPf8I9qn/Q5a5/35sv/kej/hHtU/6HLXP+/Nl/8j0AdDRXPf8ACPap/wBDlrn/AH5sv/kej/hHtU/6HLXP+/Nl/wDI9AHQ0Vz3/CPap/0OWuf9+bL/AOR6P+Ee1T/octc/782X/wAj0AdDRXPf8I9qn/Q5a5/35sv/AJHo/wCEe1T/AKHLXP8AvzZf/I9AHQ0Vz3/CPap/0OWuf9+bL/5Ho/4R7VP+hy1z/vzZf/I9AHQ0Vz3/AAj2qf8AQ5a5/wB+bL/5Ho/4R7VP+hy1z/vzZf8AyPQB0NFc9/wj2qf9Dlrn/fmy/wDkej/hHtU/6HLXP+/Nl/8AI9AHQ0Vz3/CPap/0OWuf9+bL/wCR6P8AhHtU/wChy1z/AL82X/yPQB0NFc9/wj2qf9Dlrn/fmy/+R6P+Ee1T/octc/782X/yPQB0NFc9/wAI9qn/AEOWuf8Afmy/+R6P+Ee1T/octc/782X/AMj0AdDRXPf8I9qn/Q5a5/35sv8A5Ho/4R7VP+hy1z/vzZf/ACPQB0NFc9/wj2qf9Dlrn/fmy/8Akej/AIR7VP8Aoctc/wC/Nl/8j0AdDRXPf8I9qn/Q5a5/35sv/kej/hHtU/6HLXP+/Nl/8j0AdDRXPf8ACPap/wBDlrv/AH5sv/kej/hHtU/6HLXP+/Nl/wDI9AHQ0Vz3/CPap/0OWuf9+bL/AOR6P+Ee1T/octc/782X/wAj0AdDRXPf8I9qn/Q5a5/35sv/AJHo/wCEe1T/AKHLXP8AvzZf/I9AHQ0Vz3/CPap/0OWuf9+bL/5Ho/4R7VP+hy1z/vzZf/I9AHQ0Vz3/AAj2qf8AQ5a5/wB+bL/5Ho/4R7VP+hy1z/vzZf8AyPQB0NFc9/wj2qf9Dlrn/fmy/wDkej/hHtU/6HLXP+/Nl/8AI9AHQ0Vz3/CPap/0OWuf9+bL/wCR6P8AhHtU/wChy1z/AL82X/yPQB0NFc9/wj2qf9Dlrn/fmy/+R6P+Ee1T/octc/782X/yPQB0NFc9/wAI9qn/AEOWuf8Afmy/+R6P+Ee1T/octc/782X/AMj0AdDRXPf8I9qmf+Ry1z/vzZf/ACPR/wAI9qn/AEOWuf8Afmy/+R6AOhornv8AhHtU/wChy1z/AL82X/yPR/wj2qf9Dlrn/fmy/wDkegDoaK57/hHtU/6HLXP+/Nl/8j0f8I9qn/Q5a5/35sv/AJHoA6Giue/4R7VP+hy1z/vzZf8AyPR/wj2qf9Dlrn/fmy/+R6AOhornv+Ee1T/octc/782X/wAj0f8ACPap/wBDlrv/AH5sv/kegDoaK57/AIR7VP8Aoctc/wC/Nl/8j0f8I9qn/Q5a5/35sv8A5HoA6Giue/4R7VP+hy1z/vzZf/I9H/CPap/0OWuf9+bL/wCR6AOhornv+Ee1T/octc/782X/AMj0f8I9qn/Q5a5/35sv/kegDoaK57/hHtU/6HLXP+/Nl/8AI9H/AAj2qf8AQ5a5/wB+bL/5HoA6Giue/wCEe1T/AKHLXf8AvzZf/I9H/CPap/0OWuf9+bL/AOR6AOhornv+Ee1T/octc/782X/yPR/wj2qf9Dlrn/fmy/8AkegDoaK57/hHtU/6HLXP+/Nl/wDI9H/CPap/0OWuf9+bL/5HoA6Giue/4R7VP+hy1z/vzZf/ACPR/wAI9qn/AEOWuf8Afmy/+R6AOhornv8AhHtU/wChy1z/AL82X/yPR/wj2qf9Dlrv/fmy/wDkegDoaK57/hHtU/6HLXP+/Nl/8j0f8I9qn/Q5a7/35sv/AJHoA6Giue/4R7VP+hy1z/vzZf8AyPR/wj2qf9Dlrn/fmy/+R6AOhornv+Ee1T/octc/782X/wAj0f8ACPap/wBDlrn/AH5sv/kegDoaK57/AIR7VP8Aoctc/wC/Nl/8j0f8I9qn/Q5a5/35sv8A5HoA6Giue/4R7VP+hy1z/vzZf/I9H/CPap/0OWu/9+bL/wCR6AOhorn/APhHtU/6HLXf+/Nl/wDI9J/wj2qf9Dlrn/fmy/8AkegDoaK57/hHtU/6HLXP+/Nl/wDI9H/CPap/0OWuf9+bL/5HoA6Giue/4R7VP+hy1z/vzZf/ACPR/wAI9qn/AEOWuf8Afmy/+R6AOhornv8AhHtU/wChy13/AL82X/yPR/wj2qf9Dlrn/fmy/wDkegDoaK57/hHtU/6HLXP+/Nl/8j0v/CPap/0OWu/9+bL/AOR6AOgornv+Ee1T/octc/782X/yPR/wj2qf9Dlrn/fmy/8AkegDoaK57/hHtU/6HLXP+/Nl/wDI9H/CPap/0OWuf9+bL/5HoA6Giue/4R7VP+hy1z/vzZf/ACPR/wAI9qn/AEOWu/8Afmy/+R6AOhornv8AhHtU/wChy1z/AL82X/yPR/wj2qf9Dlrn/fmy/wDkegDoaK57/hHtU/6HLXP+/Nl/8j0f8I9qn/Q5a5/35sv/AJHoA6Giue/4R7VP+hy1z/vzZf8AyPR/wj2qf9Dlrn/fmy/+R6AOhornv+Ee1T/octc/782X/wAj0f8ACPap/wBDlrn/AH5sv/kegDoaK57/AIR7VP8Aoctd/wC/Nl/8j0f8I9qn/Q5a5/35sv8A5HoA6Giue/4R7VP+hy1z/vzZf/I9H/CPap/0OWuf9+bL/wCR6AOhornv+Ee1T/octc/782X/AMj0h8P6p0/4TLXP+/Nl/wDI9AHRUVx/wu1vUPEXw60vVdVuDcXs5m8yQoq52yuo4UAdAO1dhQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAef8AxT/5kr/sarH/ANnrvx0rgPin18Ff9jVY/wDs9egDoKACq17NNb2kktvavdTAfJCrqhc+mWIAqzRQB4nrviHxpa/FXwppuq31va2l7Osn2LT5G27dxGJHIBf6Yx6V7YK8Z+In/JdfAn4f+hmvZqACiiigAooooAKKKKAOR8aaZresX2iWOmahfWFlJPJ9vuLNwjqgQlee2WAHHrXOeL/C2p+GvC95rmg+LPEC3thEbgpeXzXEUqrywKuCM4yf0x6eo15/8XdY+yeDptGtENxq2s/6FaWycs+4jecDsFzz7igDY+Hvih/GHgqw1maNY7iUMkyL0DqSpI9jjOO2cV1Fc34C8N/8Il4K03RmYPNAhaZh0MjEs2PYEkfhXSUAFFFFABRRRQAVxXijRNa1/wAW6faw6rqem6IlnJJcSWE3lM8u9QqbhyOCT+FdrUF3JLFaTyW8PnzpGWjh3hPMbHC7jwMnjNAHlHj3TNY8BeHj4k8P+Jtake1lQT22oXTXUUiMQvRs4OWXkV6T4a1ca/4a03Vtnlm8tkmKZztLKCR+deSfEXVfEGt6dDpnifRJvDPh150N1fRuL0tg/KD5fCDOOT3x759f0GPTovD+nxaRIkmnR26JbOjbgYwAFIPfgdaANGiiigAooooAKKKQ9aAEPXrgYrwzxZ4/1bU/iR4VtdIubi20FtWS286KQot86yosvT70Y3beeCc16B4w1G61a/h8HaNM8V5eR+ZqFzH1s7XoTns7fdUe5PauE+JWnWuk+PPhbp9jCsNrb3qRxxr0CiaHH1+vvQB7eOlLQOBRQAUUUUAFFFFACGvItS0HxN4t+Inie307xtqOjWunvbIkEIZkO+BWOAJFxzk9O9eumvP20zxhpnjXxJqGj6fpc9rqjW7JJd3TJjy4Qh+VUY9c0AVdF+HXivTNbs767+I2pX9vBKHktZYnCygfwnMp/lXpS9K83u/iPqfhfWbOx8Z6JDY2145WLUbK586HPH3gQGHUc/8A169IFAC0UUUAFFFFABSH2pagvJWgsp5lGWjjZwPUgZoA8xXXNV+IfjfU9I0vVLnTPDmjkR3FzZnbNcy5I2q/VVyG5H93/aGNceDtV0bxHo97pfiDXLqzFwVv7W+1AzJ5WxsMN/Od20Y56+1ed/BCfxKPCOptoWmWM8s1+fMvL66KICET5dqgs3XPbr1rtD8Qtf8ADPivTtF8a6Zp8UWpnZbX+nSu0W7IGCH5wCRk9sg0AemjpS01Dlc06gAooooAKKKKAKWrmYaRem23+f8AZ5PK8vO7dtOMY75xXkukfDjx3qOjWV7c/ErWLOeeBJZLdonJhJUEqT5o5GcdB0r2eqWq6hbaPpd1qV3J5dtaxNLIw9AM8e/86APIdL8PeKdO+J+maO3jzVdWigjN9fo26NY4wcIhy7Bi7dsDABNe1L0rh/htYXEmlXXifUk26lr8v2t1brFDjEUf0C4/76ruBQAtFFFABRRRQAVg+M9ePhfwjqetKgke1gLIjHAZyQFz7ZIrerF8W22l3nhXU7fWplh02S3YTys23yxj7wPqDjHvQBwfgrw7e+LvCNvr+veJtea/1ANKBaX7W8cA3EAIqYXoM8ipPhl4p1ebxP4i8Ia1dyX0ukyt9nvJAPMeMPt+f1PKnPuax/h7rXjTTvBq2mjeGBrOlQNIunX01ylo00e4kExNk4yTjkcetX/g3DZSX/iHU7yc/wDCUXNyzalaSRGM2uWJ2qCTlST19gKAPWh05paQdKWgAooooAKKKKAPP/i142u/BvhuL+zAv9qX8vkW5YA7OMl8dyOB9WFNHw91RtF3N4z1/wDt0x7jcfbm8gS4zjyvu7M9sZxWd8cfDOo634e0/UtKt3ubrSrgzNCg3M0ZxkgDk4Krx6ZrU074v+D9QtYSb6aO8dQGsfssrzI+OU2qpyQcjjigB3wq8a3XjDw7OuqBV1fTpvs93gAbz2bA4BOCDjjKnHFd4OleI/BefzPiB49EaSRwy3XmBJEKsv72XAIPIOCa9vHFABRRRQAUUUUAFUNWub61sy+nWH225J2pE0qxrn1Zj0H0BPtV+kPQ0AeNaTrvi1vjrBomu6pEYUtHk+y2RK265TIHPLkerfpXrl7dw6fZT3tw5SG3iaWQ/wCyoJP6CvIz/wAnS/8AcO/9pV3PxPkaL4Z+IWTOTZuvHoeD+hoA5PwZDqXxKsbrxLrOr6pZ2cs7x2FhYXb26RxrxuYpgu2eMn0PHPFjwl4g1TRPiNf+A9a1GXUI/K+0aZd3B/eMhG4ox6sQN3J5+Q+oA1PguoX4SaFjnKzE/UzSVyXjFjb/ALSnhF4/vPZKrY7gtOp/Q0Ae0jpS0gpaACiiigDK1y51e3tlXRrCG6upDjdcT+VFF/tORliPZRz6ivNfhxrniS/+KnibTNf1Q3ZsoAgjiBSBCHHKJ+PU8n1r149a8Z+Hf/Jd/Hf/AAL/ANGLQB7HK7JG7JG0hCkhFwCx9Bk4ya8U+J/iPxzps2jNJcQaTY3t4sa2tlKWnIBH+skGMZz0Tj3Ne34rxn4+9PCXvqJz/wCO0AeyjmlpB0paACiiigArD1+fxCNlt4fsrUyyDLXd7JiKL/gC/Mze3A6c1uUhoA8p+C2va1rzeJZNa1KW9mivERSxwicNkIvRRx0ArsPHNtrV5o1taaFcXFtcTXsEc09uQHjhLYdgT0wOfwrz/wCAPXxb/wBhEf8As1ez0Aee6n8P7yHSZ5dK8X+Jo9SijLwy3GotLGzgZAdD8uD7Cn/CPxreeNvCLXOpBft9rMYJnQYEvAIfA4BOeQOMjt0Gz488RweGPCV7eO3+kyRmG1iXlpZmGEUDqeTn6Csf4ReD5/B/giK3vV2X13IbmdD/AMsyQAEPuAoz75oA70c0tIOlLQAU1s9hmnUUAch4vv8AxVDZ3o0G3s7WO3t3mfULx93RScRxrnJ92wPY1k/BXV9R1zwG19ql7PeXT3suZJnLHHBAHoOeAOK7LxH/AMixq3/XlN/6Aa8//Z+/5Jkv/X7L/wCy0AdL4103WtXu9EsdMv76wtJbh/t9xZSBHWMRkjntlgBx61zvi3wnqHh3wvfa1oPizxCl7p8JuAt3ftcRSheTuR8joD7fhXpx615D8QNf8YXnh+70688Ly6NpM6lLvU0nW8McP8Z8tMEcdSe2fqADt/h14nm8X+B9P1i5RUuZAyTBPul1YqSPrjOO2cV1Ncz8PrbRLPwPplv4eu1u9NSM7Jx1diSWLDqDuJyD06V01ABRRRQA1s5Arzr4j614wsPD2qXmkx2umWdnHlrqVxJPMMgfu0HyqOerHPoBXo9cZ8WQP+FW+IOP+XYf+hLQBN8Mry61D4b6Jd3txLcXMsBZ5ZnLM53Hkk8murIyetcb8JuPhZ4f/wCvc/8AobVZ8Z6/d2Mdroui7X1/VCY7UHkQIB887/7Kjp6nA5oA82+NHj/VIIjYeHbq4tra0uFivb63cofOZSwhVgQeACTj1Uete5jpzXg3xs0K08N/C7Q9Ms9zJFqILyucvM5jcs7HuxJJNe9DpQAUUUUAFNbI5FOooA8d+LPiLxvpnhme+tTb6LY+csAEcnmXcm7PO5RtjHHYk+/avUPD0sk3hvTJZXaSR7SJndySWJQEkk9TXn37QH/JMW/6/Iv/AGau/wDDf/IraR/15Q/+gCgDgPGOl+IPEnxPTRtJ8V32hwRaMl0wt9zK7GaRT8oZecY59qZb/DDxlBcxSv8AFHVJUR1YxtE4DDOSD+9PWt3WtL8TQfEQa7olhYXUMmlJZMbu6MQRhK754ViRgis7WfiB4j8GGC48V+Hbb+zJHWN77TLoyiInpuRlVscH/wDWaAPSR05pags7mG9s4bq2kEsEyCSN16MpGQR9RzU5oA8/+CX/ACSHQv8At4/9KJK9Arz/AOCX/JIdC/7eP/SiSvQKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDz/wCKfXwV/wBjVY/+z16AOgrz/wCKfXwV/wBjVY/+z16AOgoAKKKrX1pHf2kltM0yxyDBMMzxN+DIQw/A0AeQ/ETj45+BSfb/ANDNezDpXGTfCvwfd3cd3cWF3Ncx/wCrmk1O6Z178MZciuh0rRLPQ4nisWvCjkErcXk1xjHp5jNt/CgDTopFOc85paACiiigAooooA5bxp40sfCFtB5pjl1C7JS0tWlEYdvVmPCoM8senuawPDcvhuyv5Nf17xbol/4huF2NML2MR2yH/llCu75VGevVs5PWuk8TeBvDni+a3k13T/tTwKViPnyR7c8n7jDPSsP/AIUp8PT/AMy+f/A24/8AjlAHbWGo2OqQNPp95b3cIbaZLeVZFB44ypIzyPzq1WR4c8MaP4T01tP0S0+y2rymVk813y5ABOWJPRRWvQAUUUUAFFFFACGsdNegl8W3Hh0xstxDZR3gcnh0Z3Q8exUf99e1bNc34g8C+HvEupQ6jqVnK19DGI47iG4kidVBJAyjDuT+dAFX4l3dnZ/DjX3vXjVJLKWJA5HzSMpCAe+7H5e1Z3wXtLyz+FulJeB1LmSWJX6iNnJX8CDuHsauJ8MPDBuori9t7rUpIjmMaheS3Cqf912IP4iuxRQq4AAA6AUAOooooAKKKKACkNLRQB5GPAHxCs9b1e/0jxjZ2o1G6adw1qsjYz8gLMpOFXAA6Dt1rhPHujeNrPxp4Pg1jxNb31/PdqthcJbKotn8yMBiAoyMlTznpX0vWJrPhXRtd1PTdR1Gy8+70yTzbSTzXXy33K2cKQG5VeuenvQA7wvZ61YaHHB4g1KPUdRDMXuY4wgYE8DAAHA9q2aanIz606gAooooAKKKKAEb9ccVj6Fr0GutqkcSGN9Pv5LKQE9WTB3fQhhWwTz7VyN78N/Dd5q1xqqwXdpf3Lbp57O9mhMh99rAUAcV+0JIt7oGiaHbgTand6irwwLy7AIy/wA3X/Ir12yiaCyghd97xxqjN6kDGa5/RvAfhzQtRbUbWxaTUCMG7upnnlH0ZycfhXTDpQAtFFFABRRRQAUyUBkZWAKkYIPQ0+igDxv4Lo3hjWPE/gu9Jjura6+0Qq/BmjIC7h+AQ/8AAvaofjjC2ra54O0WzO+/mu3ZVUZKKSihj6DIP/fJr0zXfCGieIriG5v7VvtkA/c3VvK0MyD2dCDj26VDovgjQNC1B9StbWSXUHXab26neebGMYDuTjjjigDpBRSCloAKKKKACiiigBDXnHj6Q+KfE+keA7diYJmF/qxU/dtozkIfTe2B/wB8+tejnGayrPw/plhrV/q9vbbb++Ci4maR2LhR8oG4kKPYYoA1EVUQKoAUDAAGAB6CnUi9O/40tABRRRQAUUUUAFecfHKG5n+F1+LfcQkkUkwXvGHGfyJU/hXo9RzRRzxPFMivG6lWRhkMDwQfagDn/Atzb3XgDw/JbOpiGnwLlcYBVACD9CMGvOvDh+2/tLeIrvTzm1isxHO6fdLBYgVPbO4f+Omu1Hwx8Nws62SahYRSsS9vZahNDEx/3FYD8q3fD/hnRvDFi1pounxWkLHL7clnPqzHJJ+poA1hS0UUAFFFFABRRRQBnatrFnpBsvtjsv2y6S0hIXOZHztB9M46/Sk1bVbDQtLutUv5Uit7eMySPkZIA6D1PYD1IqLxD4b0vxRYLYaxbG4tlkWVVEjIVcZwwKkHPNYS/C/ww7xm9hvtQjibckV9fTTxqf8AdZiPzFAHL/AvSbwabrXii+iaKXXLrzY1bqUBY7vxZ2+uAa9bFNiRI41RFVUUAKqjAAHQCn0AFFFFABRRRQAUhpao6pplvq1qbW5a5WIkMfs9zJA3/fUZBx7ZoA8mPH7UgPb+zv8A2lXp/inSTr3hXVtJQjzLu1kiQnoGKnb+uKwv+FVeDvt327+z7s3uMef/AGndeZjGPveZnpxXUabplvpNp9mtmuGjznNxcyTt9N0jMce2cUAef/A6/Evw6i0t8pd6ZcSwTxNwyEuXGR1/i/8AHTWOE/4Sr9pBbu2xLaaBZ+VNID8vmENhc+oaQ8eqGu81PwD4f1PVJNSa3ntb6YbZprK6kt2lHo2wjd+PNamg+HdJ8N2JtNIsY7WItubblmdsYyzHJY+5NAGoOlLRRQAUUUUAIeteM/DzH/C9fHR9c/8AowV6prGiWetxpFetdhEyQLe8mgyT6+W67vxrnYPhX4QtbuS8t7C8huZTmSaPU7pXbvyRLk0AdoOn1rxr4+HP/CJ+2on/ANlr1m3sIbfTxYo9x5CqUy9zI8mD/wBNCxfPvnNcze/C3wjqjI9/Y3l2yHKNcapdSFT6jMpoA7IHIFLWPpHhvTtCkdrE3wDLgrPfzzqPosjsAfcVrigBaKKKACkJxS1kax4b0/XJEe+N8dgwFgv54FP1WN1BPPXGaAPMPgHwfFnbOoj/ANmr0jxX4r03who7ajqMhwT5cMK/emkOcKv5dTwOprJsvhb4R0xnbT7K8tGc5drfVLpCx7E4k9zWrr3g/QvFFhb2Gt2bXlvbndGrXEgYHGMlgwYnHqT1oA47RLnRNR1iPxN4r8S6JPqaDNlYpfxPDp6n0+b5pD3f244Ar0DTtY0zVt503U7S9EeN5t51kC56Z2k+h/KuP/4Un8PD/wAy/n/t9uP/AI5W/wCG/Bnh/wAHi5Gg2H2QXO0zZmkk37c7eXY46npQB0A6UtIvSloAKKKaTzj26UAZviQ48Mat/wBeU30+4a8//Z//AOSZr2/02X/2Wu11fwdo+vyvJqQvpd67WRNRuI48Yx9xHC/pWfp3w08LaNtGmWt7ZgNuCwapdIpb6CTB6elAGte69BZeKNM0SSNvM1CGeWKTdxmLaSuPcNn/AIDVrVLu0sNJu7rUGRLOGJmmMn3doHOf896z/Efg7Q/Fgtv7ZsjcNaljA4meNoy2MkFSD2H5Vkt8LvDNw6/bY9Qv4kYMkN5qM8qKR/sl8H8aAOU/Z3tLy38DXs04dLae+ZoA3cBVBYe2Rj8K9fHSorW2gtLaO2toY4YIlCJFGoVUA6AAdBU1ABRRRQAVxnxYI/4Vbr44/wCPf/2YV2RODXM6r4B8P668zanDfXKzH5431O5EZ9ggkCgewFAFH4Tf8kt0D/r3P/oTVh634F8bTeNtR8QaJ4ptLFbpEiRZLYSNHGoHyAspCgtk8dSa6rSfAPh7QXhbTIb62WI5SNNTuTH9Chk2kexGK6YDjnmgD5p+L+jeNtO8N2MvibxPb6raNdhY4ordYyr7GO7IUZ4BH417n4Q07xLptlPH4n1uLVbh5cxSRQiPYuBwQAO+as+JfCui+LLKKz1yz+1W8UnmonmvHtbBGcqR2J61tKcjPWgAHIpaKKACkNLTW+uBQB5d8f8A/kmbD/p8i/8AZq77w2T/AMIvpB/6coeP+ACsbUfhp4X1kMNTtb67Vm37Z9UunUH6GXA69qv6P4P0fQJ0k01L6MRptWN9RuJI8dPuO5XjtxQBNY6/Df8AiPVtFETJPpohZmJGHWRSQR9MEflXG/HO+toPhhfWsrJ9ou5IY4Ezy7CRWOPwUmui1j4f+Htc1f8Ate6tZ01LaF+1W11LC5A6D5WFR6f8OvDdhqcepNaTXt9EQY57+5kuGjI5G3eSAffrQBc8B2FzpngLQrK8BFxDZRLIp6qdoO38M4/CuhNIKU0Aef8AwS/5JDoX/bx/6USV6BXn/wAEv+SQ6F/28f8ApRJXoFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5/8U+vgr/sarH/2evQB0FUdU0qx1e3WC/tkmRHEkZI+aJwCA6MOUcZOGUgjPBrMHg7TP+frXP8Awe3v/wAeoA6Giuf/AOEN0v8A5+tc/wDB7e//AB6j/hDdL/5+tc/8Ht7/APHqAOgoxmuf/wCEN0v/AJ+tc/8AB7e//HqP+EN0v/n61z/we3v/AMeoA6Ciuf8A+EN0v/n61z/we3v/AMeo/wCEN0v/AJ+tc/8AB7e//HqAOgorn/8AhDdL/wCfrXP/AAe3v/x6j/hDdL/5+tc/8Ht7/wDHqAOgorn/APhDdL/5+tc/8Ht7/wDHqP8AhDdL/wCfrXP/AAe3v/x6gDoKMAdBXP8A/CG6X/z9a5/4Pb3/AOPUf8Ibpf8Az9a5/wCD29/+PUAdBRXP/wDCG6X/AM/Wuf8Ag9vf/j1H/CG6X/z9a5/4Pb3/AOPUAdBRXP8A/CG6X/z9a5/4Pb3/AOPUf8Ibpf8Az9a5/wCD29/+PUAdBRXP/wDCG6X/AM/Wuf8Ag9vf/j1H/CG6X/z9a5/4Pb3/AOPUAdBRXP8A/CG6X/z9a5/4Pb3/AOPUf8Ibpf8Az9a5/wCD29/+PUAdBiiuf/4Q3S/+frXP/B7e/wDx6j/hDdL/AOfrXP8Awe3v/wAeoA6Ciuf/AOEN0v8A5+tc/wDB7e//AB6j/hDdL/5+tc/8Ht7/APHqAOgorn/+EN0v/n61z/we3v8A8eo/4Q3S/wDn61z/AMHt7/8AHqAOgorn/wDhDdL/AOfrXP8Awe3v/wAeo/4Q3S/+frXP/B7e/wDx6gDoKK5//hDdL/5+tc/8Ht7/APHqP+EN0v8A5+tc/wDB7e//AB6gDoKK5/8A4Q3S/wDn61z/AMHt7/8AHqP+EN0v/n61z/we3v8A8eoA6Ciuf/4Q3S/+frXP/B7e/wDx6j/hDdL/AOfrXP8Awe3v/wAeoA6Ciuf/AOEN0v8A5+tc/wDB7e//AB6j/hDdL/5+tc/8Ht7/APHqAOgorn/+EN0v/n61z/we3v8A8eo/4Q3S/wDn61z/AMHt7/8AHqAOgorn/wDhDdL/AOfrXP8Awe3v/wAeo/4Q3S/+frXP/B7e/wDx6gDoKK5//hDdL/5+tc/8Ht7/APHqP+EN0v8A5+tc/wDB7e//AB6gDoKK5/8A4Q3S/wDn61z/AMHt7/8AHqP+EN0v/n61z/we3v8A8eoA6Ciuf/4Q3S/+frXP/B7e/wDx6j/hDdL/AOfrXP8Awe3v/wAeoA6Ciuf/AOEN0v8A5+tc/wDB7e//AB6j/hDdL/5+tc/8Ht7/APHqAOgorn/+EN0v/n61z/we3v8A8eo/4Q3S/wDn61z/AMHt7/8AHqAOgorn/wDhDdL/AOfrXP8Awe3v/wAeo/4Q3S/+frXP/B7e/wDx6gDoKK5//hDdL/5+tc/8Ht7/APHqP+EN0v8A5+tc/wDB7e//AB6gDoKMCuf/AOEN0v8A5+tc/wDB7e//AB6j/hDdL/5+tc/8Ht7/APHqAOgorn/+EN0v/n61z/we3v8A8eo/4Q3S/wDn61z/AMHt7/8AHqAOgorn/wDhDdL/AOfrXP8Awe3v/wAeo/4Q3S/+frXP/B7e/wDx6gDoKK5//hDdL/5+tc/8Ht7/APHqP+EN0v8A5+tc/wDB7e//AB6gDoKK5/8A4Q3S/wDn61z/AMHt7/8AHqP+EN0v/n61z/we3v8A8eoA6Ciuf/4Q3S/+frXP/B7e/wDx6j/hDdL/AOfrXP8Awe3v/wAeoA6Ciuf/AOEN0v8A5+tc/wDB7e//AB6j/hDdL/5+tc/8Ht7/APHqAOgorn/+EN0v/n61z/we3v8A8eo/4Q3S/wDn61z/AMHt7/8AHqAOgorn/wDhDdL/AOfrXP8Awe3v/wAeo/4Q3S/+frXP/B7e/wDx6gDoKK5//hDdL/5+tc/8Ht7/APHqP+EN0v8A5+tc/wDB7e//AB6gDoKK5/8A4Q3S/wDn61z/AMHt7/8AHqP+EN0v/n61z/we3v8A8eoA6Ciuf/4Q3S/+frXP/B7e/wDx6j/hDdL/AOfrXP8Awe3v/wAeoA6Ciuf/AOEN0v8A5+tc/wDB7e//AB6j/hDdL/5+tc/8Ht7/APHqAOgoxnrXP/8ACG6X/wA/Wuf+D29/+PUf8Ibpf/P1rn/g9vf/AI9QB0FFc/8A8Ibpf/P1rn/g9vf/AI9R/wAIbpf/AD9a5/4Pb3/49QB0FFc//wAIbpf/AD9a5/4Pb3/49R/whul/8/Wuf+D29/8Aj1AHQUVz/wDwhul/8/Wuf+D29/8Aj1H/AAhul/8AP1rn/g9vf/j1AHQUVz//AAhul/8AP1rn/g9vf/j1H/CG6X/z9a5/4Pb3/wCPUAdBSYHoKwP+EN0v/n61z/we3v8A8eo/4Q3S/wDn61z/AMHt7/8AHqAOgorn/wDhDdL/AOfrXP8Awe3v/wAeo/4Q3S/+frXP/B7e/wDx6gDoKK5//hDdL/5+tc/8Ht7/APHqP+EN0v8A5+tc/wDB7e//AB6gDoKK5/8A4Q3S/wDn61z/AMHt7/8AHqP+EN0v/n61z/we3v8A8eoA6Ciuf/4Q3S/+frXP/B7e/wDx6j/hDdL/AOfrXP8Awe3v/wAeoA6DHGKK5/8A4Q3S/wDn61z/AMHt7/8AHqP+EN0v/n61z/we3v8A8eoA6Ciuf/4Q3S/+frXP/B7e/wDx6j/hDdL/AOfrXP8Awe3v/wAeoA6Ciuf/AOEN0v8A5+tc/wDB7e//AB6j/hDdL/5+tc/8Ht7/APHqAOgoxmuf/wCEN0v/AJ+tc/8AB7e//HqP+EN0v/n61z/we3v/AMeoA6Ciuf8A+EN0v/n61z/we3v/AMeo/wCEN0v/AJ+tc/8AB7e//HqAOgxRiuf/AOEN0v8A5+tc/wDB7e//AB6j/hDdL/5+tc/8Ht7/APHqAOgorn/+EN0v/n61z/we3v8A8eo/4Q3S/wDn61z/AMHt7/8AHqAOgorn/wDhDdL/AOfrXP8Awe3v/wAeo/4Q3S/+frXP/B7e/wDx6gDoKK5//hDdL/5+tc/8Ht7/APHqP+EN0v8A5+tc/wDB7e//AB6gDoKK5/8A4Q3S/wDn61z/AMHt7/8AHqP+EN0v/n61z/we3v8A8eoA6Ciuf/4Q3S/+frXP/B7e/wDx6j/hDdL/AOfrXP8Awe3v/wAeoA6Ciuf/AOEN0v8A5+tc/wDB7e//AB6j/hDdL/5+tc/8Ht7/APHqAOgorn/+EN0v/n61z/we3v8A8eo/4Q3S/wDn61z/AMHt7/8AHqAOgorn/wDhDdL/AOfrXP8Awe3v/wAeo/4Q3S/+frXP/B7e/wDx6gDoMCiuf/4Q3S/+frXP/B7e/wDx6j/hDdL/AOfrXP8Awe3v/wAeoA6Cg1z/APwhul/8/Wuf+D29/wDj1IfB2mdrrXP/AAe3v/x2gDA+CX/JIdC/7eP/AEokr0Cs3QdE0/w7o8GlaVb/AGeygLeXFvZ9u5ix5YknknrWlQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFcV8RtX1TSrfw7Hpd/JZPqGuW1jNLHHG7eVJvDAeYrAHgHOO31rUHh7VO/jHXPwhsv/AJHoA6Giue/4R7VP+hy1z/vzZf8AyPR/wj2qf9Dlrn/fmy/+R6AOhornv+Ee1T/octd/782X/wAj0f8ACPap/wBDlrn/AH5sv/kegDoaK57/AIR7VP8Aoctc/wC/Nl/8j0f8I9qn/Q5a5/35sv8A5HoA6Giue/4R7VP+hy1z/vzZf/I9H/CPap/0OWuf9+bL/wCR6AOhornv+Ee1T/octc/782X/AMj0f8I9qn/Q5a5/35sv/kegDoaK57/hHtU/6HLXP+/Nl/8AI9H/AAj2qf8AQ5a7/wB+bL/5HoA6Giue/wCEe1T/AKHLXP8AvzZf/I9H/CPap/0OWuf9+bL/AOR6AOhornv+Ee1T/octc/782X/yPR/wj2qf9Dlrn/fmy/8AkegDoaK57/hHtU/6HLXP+/Nl/wDI9H/CPap/0OWuf9+bL/5HoA6Giue/4R7VP+hy1z/vzZf/ACPR/wAI9qn/AEOWuf8Afmy/+R6AOhornv8AhHtU/wChy1z/AL82X/yPR/wj2qf9Dlrn/fmy/wDkegDoaK57/hHtU/6HLXP+/Nl/8j0f8I9qn/Q5a5/35sv/AJHoA6Giue/4R7VP+hy1z/vzZf8AyPR/wj2qf9Dlrn/fmy/+R6AOhornv+Ee1T/octc/782X/wAj0f8ACPap/wBDlrn/AH5sv/kegDoaK57/AIR7VP8Aoctc/wC/Nl/8j0f8I9qn/Q5a5/35sv8A5HoA6Giue/4R7VP+hy1z/vzZf/I9H/CPap/0OWuf9+bL/wCR6AOhornv+Ee1T/octc/782X/AMj0f8I9qn/Q5a5/35sv/kegDoaK57/hHtU/6HLXP+/Nl/8AI9H/AAj2qf8AQ5a5/wB+bL/5HoA6Giue/wCEe1T/AKHLXP8AvzZf/I9H/CPap/0OWuf9+bL/AOR6AOhornv+Ee1T/octc/782X/yPR/wj2qf9Dlrn/fmy/8AkegDoaK57/hHtU/6HLXP+/Nl/wDI9H/CPap/0OWuf9+bL/5HoA6Giue/4R7VP+hy1z/vzZf/ACPR/wAI9qn/AEOWuf8Afmy/+R6AOhornv8AhHtU/wChy1z/AL82X/yPR/wj2qf9Dlrn/fmy/wDkegDoaK57/hHtU/6HLXf+/Nl/8j0f8I9qn/Q5a5/35sv/AJHoA6Giue/4R7VP+hy1z/vzZf8AyPR/wj2qf9Dlrn/fmy/+R6AOhornv+Ee1T/octc/782X/wAj0f8ACPap/wBDlrn/AH5sv/kegDoaK57/AIR7VP8Aoctc/wC/Nl/8j0f8I9qn/Q5a5/35sv8A5HoA6Giue/4R7VP+hy1z/vzZf/I9H/CPap/0OWuf9+bL/wCR6AOhornv+Ee1T/octc/782X/AMj0f8I9qn/Q5a5/35sv/kegDoaK57/hHtU/6HLXP+/Nl/8AI9H/AAj2qf8AQ5a5/wB+bL/5HoA6Giue/wCEe1T/AKHLXP8AvzZf/I9H/CPap/0OWuf9+bL/AOR6AOhornv+Ee1T/octc/782X/yPR/wj2qf9Dlrn/fmy/8AkegDoaK57/hHtUz/AMjlrn/fmy/+R6P+Ee1T/octc/782X/yPQB0NFc9/wAI9qn/AEOWuf8Afmy/+R6P+Ee1T/octc/782X/AMj0AdDRXPf8I9qn/Q5a5/35sv8A5Ho/4R7VP+hy1z/vzZf/ACPQB0NFc9/wj2qf9Dlrn/fmy/8Akej/AIR7VP8Aoctc/wC/Nl/8j0AdDRXPf8I9qn/Q5a5/35sv/kej/hHtU/6HLXf+/Nl/8j0AdDRXPf8ACPap/wBDlrn/AH5sv/kej/hHtU/6HLXP+/Nl/wDI9AHQ0Vz3/CPap/0OWuf9+bL/AOR6P+Ee1T/octc/782X/wAj0AdDRXPf8I9qn/Q5a5/35sv/AJHo/wCEe1T/AKHLXP8AvzZf/I9AHQ0Vz3/CPap/0OWuf9+bL/5Ho/4R7VP+hy1z/vzZf/I9AHQ0Vz3/AAj2qf8AQ5a7/wB+bL/5Ho/4R7VP+hy1z/vzZf8AyPQB0NFc9/wj2qf9Dlrn/fmy/wDkej/hHtU/6HLXP+/Nl/8AI9AHQ0Vz3/CPap/0OWuf9+bL/wCR6P8AhHtU/wChy1z/AL82X/yPQB0NFc9/wj2qf9Dlrn/fmy/+R6P+Ee1T/octc/782X/yPQB0NFc9/wAI9qn/AEOWuf8Afmy/+R6P+Ee1T/octd/782X/AMj0AdDRXPf8I9qn/Q5a5/35sv8A5Ho/4R7VP+hy13/vzZf/ACPQB0NFc9/wj2qf9Dlrn/fmy/8Akej/AIR7VP8Aoctc/wC/Nl/8j0AdDRXPf8I9qn/Q5a5/35sv/kej/hHtU/6HLXP+/Nl/8j0AdDRXPf8ACPap/wBDlrn/AH5sv/kej/hHtU/6HLXP+/Nl/wDI9AHQ0Vz3/CPap/0OWuf9+bL/AOR6P+Ee1T/octd/782X/wAj0AdDRXP/APCPap/0OWu/9+bL/wCR6T/hHtU/6HLXP+/Nl/8AI9AHQ0Vz3/CPap/0OWuf9+bL/wCR6P8AhHtU/wChy1z/AL82X/yPQB0NFc9/wj2qf9Dlrn/fmy/+R6P+Ee1T/octc/782X/yPQB0NFc9/wAI9qn/AEOWu/8Afmy/+R6P+Ee1T/octc/782X/AMj0AdDRXPf8I9qn/Q5a5/35sv8A5Hpf+Ee1T/octd/782X/AMj0AdBRXPf8I9qn/Q5a5/35sv8A5Ho/4R7VP+hy1z/vzZf/ACPQB0NFc9/wj2qf9Dlrn/fmy/8Akej/AIR7VP8Aoctc/wC/Nl/8j0AdDRXPf8I9qn/Q5a5/35sv/kej/hHtU/6HLXf+/Nl/8j0AdDRXPf8ACPap/wBDlrn/AH5sv/kej/hHtU/6HLXP+/Nl/wDI9AHQ0Vz3/CPap/0OWuf9+bL/AOR6P+Ee1T/octc/782X/wAj0AdDRXPf8I9qn/Q5a5/35sv/AJHo/wCEe1T/AKHLXP8AvzZf/I9AHQ0Vz3/CPap/0OWuf9+bL/5Ho/4R7VP+hy1z/vzZf/I9AHQ0Vz3/AAj2qf8AQ5a7/wB+bL/5Ho/4R7VP+hy1z/vzZf8AyPQB0NFc9/wj2qf9Dlrn/fmy/wDkej/hHtU/6HLXP+/Nl/8AI9AHQ0Vz3/CPap/0OWuf9+bL/wCR6Q+H9U6f8Jlrn/fmy/8AkegDoqK4/wCF2t6h4i+HWl6rqtwbi9nM3mSFFXO2V1HCgDoB2rsKACiiigAooooAKKKKACiiigAooooAKKKQ9aAFoqBru3jYq9xErDqC4BFJ9utf+fqD/v4KALFFV/t1r/z9Qf8AfwUfbrX/AJ+oP+/goAsUVX+3Wv8Az9Qf9/BSG+tf+fqD/v4KALNFconiI6T4kmsNVvY2sr2QPp1xlQqtgBoGI6NkZUn724j+GuqXOOaAFooooAKKKKACiiigDz/4p/8AMlf9jVY/+z1346VwHxT6+Cv+xqsf/Z69AHQUAFVr2aa3tJJbe1e6mA+SFXVC59MsQBVmigDxPXfEPjS1+KvhTTdVvre1tL2dZPsWnyNt27iMSOQC/wBMY9K9sFeM/ET/AJLr4E/D/wBDNezUAFFFFABRRRQAUUUhoA80+L93rKL4d07SNVuNN/tC+MM80EhRljxktuHICjLH6V5Hfax4itNLbVbHxVr0PlwNfbbm+kkAjknEUERUnG4oHk56jFdz8Sb6XWvGNzYWsgBtYo9Jt2J4S4u+ZX+iwKwPoWrzXxVqUD6akVtESupytcW8GORbxj7NaIfcKJW/759aAO08C+IPEPim80WBtW1FftVzEJFF45xb2kQMrE56zSOAT7EdK+hBXkPwW8Ntp8+p3cxD/YVGkwv/ALSt5k+D3HmvgHuFr14YxxQAtFFFABRRRQAVxXijRNa1/wAW6faw6rqem6IlnJJcSWE3lM8u9QqbhyOCT+FdrUF3JLFaTyW8PnzpGWjh3hPMbHC7jwMnjNAHlHj3TNY8BeHj4k8P+Jtake1lQT22oXTXUUiMQvRs4OWXkV6T4a1ca/4a03Vtnlm8tkmKZztLKCR+deSfEXVfEGt6dDpnifRJvDPh150N1fRuL0tg/KD5fCDOOT3x759f0GPTovD+nxaRIkmnR26JbOjbgYwAFIPfgdaANGiiigAooooAKQilpkjKilnYKoBLEnAAoA8q+JnijULPXls9LuriI6fYtNIkEhXzridvJt4zg8kEtJg/3a8q1fx3r+m+KrGYa9qc2i2tzFB8l64+1rb7RK/XJDtuOe+cdqXxbqt3rr3V9ZM3nX9zJqkjryyQKfs1qo/2sl8f9dFNZPiG2tdP8Q6HHejzNI06ddOkRf4lhZGuGHqGkklwf8KAPbPhjNrmoa1M+p6nezpp1jHHOkkzssl3OfOfgnGY0Kpjt+Neqj3rkfhnps9l4Kt7u9UC/wBUkfUro+skx3fou0fhXX0AFFFFABRRRQAhryLUtB8TeLfiJ4nt9O8bajo1rp72yJBCGZDvgVjgCRcc5PTvXrprz9tM8YaZ418Saho+n6XPa6o1uySXd0yY8uEIflVGPXNAFXRfh14r0zW7O+u/iNqV/bwSh5LWWJwsoH8JzKf5V6UvSvN7v4j6n4X1mzsfGeiQ2NteOVi1GyufOhzx94EBh1HP/wBevSBQAtFFFABRRRQAUh60tc7461w+HPBeqanGf36QlLcAcmV/lTHr8zCgDwrXPHWs6/8AEjWYrLW9Rs9AtCzy/ZLhkxHboc7SOm9hjI67l9KqrL4uW+sLaHxbrUZd7a0vDPfyMFkljaWUjJ4ESbdx6g1yXhaK4XSroQ28EiXbt5kk8pCiC2AnlRlUFsMfJ57kADJPGv8A2tqv9sx6XqEcKXupCQJcIxCxT3piMjvn+IRPsx2yPegD6E+G019qPhuXWr24upP7TupLm2iuJS3kW5O2NQCePlUN77s12Qqvp9nBp2nW1jbJtt7aJYo19FUAAflVmgAooooAKKKKAKWrmYaRem23+f8AZ5PK8vO7dtOMY75xXkukfDjx3qOjWV7c/ErWLOeeBJZLdonJhJUEqT5o5GcdB0r2eqWq6hbaPpd1qV3J5dtaxNLIw9AM8e/86APIdL8PeKdO+J+maO3jzVdWigjN9fo26NY4wcIhy7Bi7dsDABNe1L0rh/htYXEmlXXifUk26lr8v2t1brFDjEUf0C4/76ruBQAtFFFABRRRQAVg+M/EH/CLeEdS1pUWR7WEtGjdGckKgOO24jNb1eZfGW/t5NIsNAuZ2htr6Rri8dSMi2gHmMBnux2KPcge1AHkeiaj4h1u3Wa68V62Jrm4t7aN1vpFSJ3YySuAG+6kSjI7F/QCm+HvHfiadr6Fta1Ob7JHJLbGW5fzLiSURwQIQTjClxJjuQSawvD9xrUmiraWWnLIvz2NrJ5nlkT3agM3P3v3UbLngAEEnpnqfhDpdpr3jGxcYMsMsmpXcW3CRLGAtuinv8zlvoFHUUAfSGi2cun6JZWdxcS3M8ECRyTyuXaRwAGYk8nJyav0g6UtABRRRQAUUUUAef8Axa8bXfg3w3F/ZgX+1L+XyLcsAdnGS+O5HA+rCmj4e6o2i7m8Z6//AG6Y9xuPtzeQJcZx5X3dme2M4rO+OPhnUdb8PafqWlW73N1pVwZmhQbmaM4yQBycFV49M1qad8X/AAfqFrCTfTR3jqA1j9lleZHxym1VOSDkccUAO+FXjW68YeHZ11QKur6dN9nu8ADeezYHAJwQccZU44rvB0rxH4Lz+Z8QPHojSSOGW68wJIhVl/ey4BB5BwTXt44oAKKKKACiiigArh/ilq97p/hmKw0qdodS1O4W2hlSXyzEvLu+4fdAVTk9s967c14j8Sb6XWvGVxY20gU2kMek27k8Jc3ZzK/0WBWB9M0AefQ+PPFzeJHuJ9X1A/aLeSa2sYrmQIHlXZCAM8gbkcA/XqTXWHxLqtpcMW1zUZrS2nJZ/tb/AL22sY/3rZz/AMt5mC59sVwA1GMfEB9biiYRQwtLp0OPmUIvlWo98ERH6CtTxBC1noF7YQOCUQaYjjoYrYedctn0e4dMHvjFADvD+t+KfEtq8l94n1eMzXkVnbFLx41RnYySyHB5EcanrwNw9Kk03xx4lt76a1k1nVHV4pLjTI57mRpbhpQsVurHOMAMJMdCQSetVfDI+2eHLW0sjsl2GwRz0W6u3YSSfRbaMKfTIrN1W9Nn43sdet48pNGZ9Nhxlo0jLw2wI9f3UZ+hoA+g/ho+oXTavfXWp3d5ZwyJp9qZpmdX8hdskwyTku5bn29MV6CKxvCOhL4b8J6ZpAA320CrIw/ikPLn8WLH8a2qACiiigDK1y51e3tlXRrCG6upDjdcT+VFF/tORliPZRz6ivNfhxrniS/+KnibTNf1Q3ZsoAgjiBSBCHHKJ+PU8n1r149a8Z+Hf/Jd/Hf/AAL/ANGLQB7HK7JG7JG0hCkhFwCx9Bk4ya8U+J/iPxzps2jNJcQaTY3t4sa2tlKWnIBH+skGMZz0Tj3Ne34rxn4+9PCXvqJz/wCO0AeyjmlpB0paACiiigAry/4ueJdV0w6dpujzNbSqr6lcXPmlV8mEEmMhfm+Zio7A9M88enk182/EjXTqWr6zdxfvBcXS6XaLjduhtsPIPo87Rj3waAMrwh428QzNcvqOvapNsuPttwTdvhYLdHd0UZwokZo04+la9xqviq5jtbBfEmpwXBNvZTSi4f5Zp91xM/B4EUe1PYZxiuN8HQWsB1C0vMOklwv2sjnNnbhpp1/4EyQgeprpvLu7tfKdwuo3SiJ3PRbzUTvlc+yWyhT6E0AQvqPiAWH2u18UeI1l8hruNZL93Y+bMIrWIqTtywDOTjkHjHSp/DPjrW72xhuL3W79jDKJZ0W5kGLa0i3tkk/emd0UnvjHtVW/1a1tojfxny45DJqFrGfvBI1NrYKPdSHkI/ujNReAfCs0t1DpFzEVm1XURa3EZH3be2xLOD9X8pc+qkUAfRHgO31CDwVph1a6nudQni+0TvO5Zg0nz7eegUELj2ro6ReVpaACmtnsM06igDkPF9/4qhs70aDb2drHb27zPqF4+7opOI41zk+7YHsayfgrq+o654Da+1S9nvLp72XMkzljjggD0HPAHFdl4j/5FjVv+vKb/wBANef/ALP3/JMl/wCv2X/2WgDpfGum61q93oljpl/fWFpLcP8Ab7iykCOsYjJHPbLADj1rnfFvhPUPDvhe+1rQfFniFL3T4TcBbu/a4ilC8ncj5HQH2/CvTj1ryH4ga/4wvPD93p154Xl0bSZ1KXeppOt4Y4f4z5aYI46k9s/UAHb/AA68TzeL/A+n6xcoqXMgZJgn3S6sVJH1xnHbOK6muZ+H1toln4H0y38PXa3empGdk46uxJLFh1B3E5B6dK6agAooooAY/AyDivn34p+NvEcWu6qdJv5rCysQmmEJcENJKwMryKFOAVUBcnkbhgZb5feNX1GDR9Ju9TuTiG0heZ+ccKCcfXivlzX5H/4R27uLz5rtYRI+B1vb1vOc/wDAbaMKfQmgCzp/iPxNe6f4e0xfE2rLdahI09xcm7kJiRmMahjngKkUsn/Ageorek8X69JDJfQajqQMkc99FbfaHJBuG+z2cOM87QDLj+LOa4fwjazXlpPMjqLm4SPS7Zz/AAPP8jH6LAkhPp5laOt661kbW402FvOu7hr21QLkxwxD7NZ5HYrh3HqSvrQBF4s8feIrW7utOsdf1QQwSx2ouUu5P3hgTY7K2f43ZmJ7/IO1dfbar4nvGg0v+3NSW9uBbacWW5fK3Fwxnmcc/wDLGLCf7OeK8/8AGWm2umaWkCqC0F0LCBgc7zAhNw+e4aWbg+iEdq9c+GGnT6n4rXULz5pNPtmvbhiOt7eneT/wGEIpHY0AezxLsjC5JCjGS2Tx70+kFLQAU1sjkU6igDx34s+IvG+meGZ761Nvotj5ywARyeZdybs87lG2McdiT79q9Q8PSyTeG9MlldpJHtImd3JJYlASST1NefftAf8AJMW/6/Iv/Zq7/wAN/wDIraR/15Q/+gCgDgPGOl+IPEnxPTRtJ8V32hwRaMl0wt9zK7GaRT8oZecY59qZb/DDxlBcxSv8UdUlRHVjG0TgMM5IP709a3da0vxNB8RBruiWFhdQyaUlkxu7oxBGErvnhWJGCKztZ+IHiPwYYLjxX4dtv7MkdY3vtMujKIiem5GVWxwf/wBZoA9JHTmlqCzuYb2zhuraQSwTIJI3XoykZBH1HNTmgDz/AOCX/JIdC/7eP/SiSvQK8/8Agl/ySHQv+3j/ANKJK9AoAKKKKACiiigAooooAKKKKACiiigApD1paKAOcvPAXhPULuW7vPD2nTXErbnkeBSzH1JqD/hWvgr/AKFfS/8AwHWuqooA5X/hWvgr/oV9L/8AAcUf8K18Ff8AQr6X/wCA611VFAHK/wDCtfBX/Qr6X/4DrSH4b+Cx/wAyxpf/AIDrXV0UAeYL8NfDeteIpi/h21stI06TYiJAI2vJsAkk4z5Sg7cD7zZzwOfS4I1hhSNFVUQBVVRgADoAKkwKKACiiigAooooAKKKKAPP/in18Ff9jVY/+z16AOgrz/4p9fBX/Y1WP/s9egDoKACiiq19aR39pJbTNMscgwTDM8TfgyEMPwNAHkPxE4+OfgUn2/8AQzXsw6Vxk3wr8H3d3Hd3FhdzXMf+rmk1O6Z178MZciuh0rRLPQ4nisWvCjkErcXk1xjHp5jNt/CgDTopFOc85paACiiigAqtqF7Bpun3N9cttt7aJpZG9FUZP6CrNZ+t6Raa9o9zpd8JDa3KbJBG5ViuckZH0oA+ZNR1p4zvmlQaveQy3ao7hALq+IAJJICqluFOTwpYdM1U026sLaS01W8vbOe8tGkuU2uNqxWyiO1iQHnDy4Yg8lUDHua961L4ReD9Wnknu7CV3kkeQ4uHXBYKuBg9BsGB0FUx8DvAQORpMvBBwbyXBx1H3u/egDd+HFpZWHgTTLO0u7e7aGP/AEmWCVZB57fPICwJ53Mf0rq6x/DnhnR/Cmmvp+iWf2W1aUymPzHfLEAE5Yk9APyrYoAKKKKACiiigBDWOmvQS+Lbjw6Y2W4hso7wOTw6M7oePYqP++vatmub8QeBfD3iXUodR1Kzla+hjEcdxDcSROqgkgZRh3J/OgCr8S7uzs/hxr73rxqkllLEgcj5pGUhAPfdj8vas74L2l5Z/C3SkvA6lzJLEr9RGzkr+BB3D2NXE+GHhg3UVxe291qUkRzGNQvJbhVP+67EH8RXYooVcAAAdAKAHUUUUAFFFFABXH/EzUprLwZcWlm2L7VXTTbXn+OU7SfbC7j+FdhWNrnhvTtfns5b9ZGa08ww7JCoVnXaW47gHg9jQB8svYalYyXN9peqrHZIW1GHfGHbyraUwWxOQc5ZtoXpxkjgVRvvD2r3PiDSdEu72OTN7/ZkUpX5Y5S6mQHj5sPMQT3IPYCvpyL4aeGYliAtJdkX2YKpmONsGSikdwSSxHc8mmxfDDwtFf6ffGzmluLCUzQO9w/EpkMhc4PJ3HvngD0oA2fC1jrGnaDFba7qMWoXys2Z4ohGpXPygKAOgrapF6dc0tABRRRQAUUUUAI3644rH0LXoNdbVI4kMb6ffyWUgJ6smDu+hDCtgnn2rkb34b+G7zVrjVVgu7S/uW3Tz2d7NCZD77WAoA4r9oSRb3QNE0O3Am1O71FXhgXl2ARl/m6/5Feu2UTQWUELvveONUZvUgYzXP6N4D8OaFqLaja2LSagRg3d1M88o+jOTj8K6YdKAFooooAKKKKAENeUfFzW44r3T7FgHi06GTWLmMjhiv7u3Q+oaVxke1erkd65vUfBGh6pqs2pXsEsk8skEj5lIU+SSUXH93JyR0Jx6UAfMfhiySx1LVvD+pMUuDcC3ugp+VLWItJdEH1xBGMjqCan1j7ZrniDw7pkUeNRvbj+0Z1QH5JLl1ZQP9lYVhPtk173e/CDwffIontLgyKjqJVuWD/O7OxJ7klmHzZ4Nanhz4feHPDF9Lf2Fm730nW7uJDNIBjGAzdBj8aAOqXpS0i8CloAKKKKACiiigBDXnHj6Q+KfE+keA7diYJmF/qxU/dtozkIfTe2B/3z616OcZrKs/D+mWGtX+r29ttv74KLiZpHYuFHygbiQo9higDURVRAqgBQMAAYAHoKdSL07/jS0AFFFFABRRRQA0k54r5p+L+qtq2p6zcRM8ipMmk26qM5jhHnXLfhIYhn0FfSzCuOf4YeGngeF4LhleGWBmNw24iWTfIc/wB5jwT1xx0oA8F0dG/sO0t7GVHufs/lxkNwLy9PlKuf9i3Qn2NdF8I3+3fGbVLnTEK6ZbWTWysq4DRR7I48+5CBvrmvR5Pgz4PaVnghvrVWkaUx2946IGIxkLnAwCQMdiR0rq/DfhfRvCunfYtFsI7WInLkZLSEd2Y8k0AbA6UtFFABRRRQAUUUUAZ2raxZ6QbL7Y7L9suktISFzmR87QfTOOv0pNW1Ww0LS7rVL+VIre3jMkj5GSAOg9T2A9SKi8Q+G9L8UWC2GsWxuLZZFlVRIyFXGcMCpBzzWEvwv8MO8ZvYb7UI4m3JFfX008an/dZiPzFAHL/AvSbwabrXii+iaKXXLrzY1bqUBY7vxZ2+uAa9bFNiRI41RFVUUAKqjAAHQCn0AFFFFABRRRQBW1C9g03T7m+uW229tE0sjeiqMn9BXzW0t7ehpf8AmJXatKAT/wAvuonag/4BbDcP7pzX0brekWmvaPc6XfCQ2tymyQRuVYrnJGR9K5y6+GXhq8Z3eG6UvcPc/urp4yJCgQEFSDhVGFHQZPFAHzgb+1i+IbatGM6fYRGSxUj/AFiwL5dsCP8AaeOPP+8a3L/TpP7OuNJWULIsQ0vzZDwBCv2u+kz6iXYue44r2IfBPwMJFkGnXIZdmP8ATZuAvYfN0P8A+rFXF+FfhdLaWBYLtklikhYtduxIkcO+CTwWKgE9wDnqcgHz74VlkuNAS1skK3UO+2i3cFry8PkqfosCMQexrU8FabD4w+Ndu1spk0nSyHjPZYbcBIT/AMCKoSP9o17Pe/CHwle6hLfG3u4bmWRpWkt7p0yWGMDBwABnGPU9q2PC/gPw/wCD5559FszBJPGkUhLliQvpn1JyfWgDpl6fjS0g6UtABRRRQAh614z8PMf8L18dH1z/AOjBXqmsaJZ63GkV612ETJAt7yaDJPr5bru/Gudg+FfhC1u5Ly3sLyG5lOZJo9Tuldu/JEuTQB2g6fWvGvj4c/8ACJ+2on/2WvWbewht9PFij3HkKpTL3MjyYP8A00LF8++c1zN78LfCOqMj39jeXbIco1xql1IVPqMymgDsgcgUtY+keG9O0KR2sTfAMuCs9/POo+iyOwB9xWuKAFooooAwvGOujw14T1PV+r28DGIesh+VB+LFRXzecWPiJFkIkTw1Z75cnO+4Q72yOjbrqVV9wntX01rWiWOvW8FtqCPJDDcR3IQMQGZDkBvUZ7GuTPwg8IO0jvb3rmWQPITfSjedxfnDDPzMT6jsRQB8+eDrSAHUbS9chrq4W3uDu5W1jzNctnscRRj/AIER3ra1HVJLbTZ9Qnwl68D3O0DG27v+FAH+xarkf3SRXskfwV8ExBvLsbpC6FHK3soyCec/NzxxjoR1yeatXvwl8JalCYrqzuJEMrTYNy+d5RUGWzkhVUADtz1zQB4Ba3VgNQs9fvJrZbizR54bUTKyxR2yCO2j/wBpmkAJ9VG7ua9X+EFhbS6xfXSXMVx/ZVpFpyOkgfdK5M1w/HUGRiA2eQv5bQ+B3gEMCNJm6rx9rl7dvvd+/wCmK6Twr4J0HwZFcJolo0H2gqZi0rvv252/eJAxuPT9aAOjFLSL0paACiimk849ulAGb4kOPDGrf9eU30+4a8//AGf/APkma9v9Nl/9lrtdX8HaPr8ryakL6Xeu1kTUbiOPGMfcRwv6Vn6d8NPC2jbRplre2YDbgsGqXSKW+gkwenpQBrXuvQWXijTNEkjbzNQhnlik3cZi2krj3DZ/4DVrVLu0sNJu7rUGRLOGJmmMn3doHOf896z/ABH4O0PxYLb+2bI3DWpYwOJnjaMtjJBUg9h+VZLfC7wzcOv22PUL+JGDJDeajPKikf7JfB/GgDlP2d7S8t/A17NOHS2nvmaAN3AVQWHtkY/CvXx0qK1toLS2jtraGOGCJQiRRqFVAOgAHQVNQAUUUUAeefFm/iOlafoMjlY9TuC13tOCtnCPNnYfgoH4mvEvEExn8P3l5eYWZo/t0iDp9qvGBRfotqmR6E+9fR2v+DNH8SXTT6lHM7taNaZWUqFjZgzYx0JwAT6ZFYeofCHwhqdxNLdWt2xmmMzqL2QKWxgALnAAAwMdAcelAHhnh+Nj4etLayObsRGJOf8Al9vWMSD/AIDbxlh6E9qr6lbXx1GXWNLvoobKCL7TaAwhmFvbSCC3PI/jkH3ehIyc4Br3u1+EHg+xkR7W0vItrs6hb2XCsV2ggbuoGcZ/GrsXw08MxCMfZZSsX2YKpmJG2DmNSO4yckdzzQB8ueJtK1KwtEGpX8dwlpcyWMaqBneP3k2Djna8uCx6k46Cvo/4P6Tq1j4Vl1LWLhJbnWZ/7QwqbWXeoxngdgOBwM4FWL74ReENRihhvLO4mEPmFSbl87ncuznB5JPGT2AHau6hiSGFIo1CoihVUDgADAFADh0FLRRQAUhpaa31wKAPLvj/AP8AJM2H/T5F/wCzV33hsn/hF9IP/TlDx/wAVjaj8NPC+shhqdrfXas2/bPql06g/Qy4HXtV/R/B+j6BOkmmpfRiNNqxvqNxJHjp9x3K8duKAJrHX4b/AMR6tooiZJ9NELMxIw6yKSCPpgj8q434531tB8ML61lZPtF3JDHAmeXYSKxx+Ck10WsfD/w9rmr/ANr3VrOmpbQv2q2upYXIHQfKwqPT/h14bsNTj1JrSa9voiDHPf3Mlw0ZHI27yQD79aALngOwudM8BaFZXgIuIbKJZFPVTtB2/hnH4V0JpBSmgDz/AOCX/JIdC/7eP/SiSvQK8/8Agl/ySHQv+3j/ANKJK9AoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPP/in18Ff9jVY/+z16AOgqjqmlWOr26wX9skyI4kjJHzROAQHRhyjjJwykEZ4NZg8HaYf+XrXP/B7e/wDx6gDoaK5//hDdL/5+tc/8Ht7/APHqP+EN0v8A5+tc/wDB7e//AB6gDoKMZrn/APhDdL/5+tc/8Ht7/wDHqP8AhDdL/wCfrXP/AAe3v/x6gDoKK5//AIQ3S/8An61z/wAHt7/8eo/4Q3S/+frXP/B7e/8Ax6gDoKK5/wD4Q3S/+frXP/B7e/8Ax6j/AIQ3S/8An61z/wAHt7/8eoA6CjrXP/8ACG6X/wA/Wuf+D29/+PUf8Ibpf/P1rn/g9vf/AI9QB0GKMVz/APwhul/8/Wuf+D29/wDj1H/CG6X/AM/Wuf8Ag9vf/j1AHQUVz/8Awhul/wDP1rn/AIPb3/49R/whul/8/Wuf+D29/wDj1AHQUVz/APwhul/8/Wuf+D29/wDj1H/CG6X/AM/Wuf8Ag9vf/j1AHQUVz/8Awhul/wDP1rn/AIPb3/49R/whul/8/Wuf+D29/wDj1AHQUVz/APwhul/8/Wuf+D29/wDj1H/CG6X/AM/Wuf8Ag9vf/j1AHQYorn/+EN0v/n61z/we3v8A8eo/4Q3S/wDn61z/AMHt7/8AHqAOgorn/wDhDdL/AOfrXP8Awe3v/wAeo/4Q3S/+frXP/B7e/wDx6gDoKK5//hDdL/5+tc/8Ht7/APHqP+EN0v8A5+tc/wDB7e//AB6gDoKK5/8A4Q3S/wDn61z/AMHt7/8AHqP+EN0v/n61z/we3v8A8eoA6DFGK5//AIQ3S/8An61z/wAHt7/8eo/4Q3S/+frXP/B7e/8Ax6gDoKK5/wD4Q3S/+frXP/B7e/8Ax6j/AIQ3S/8An61z/wAHt7/8eoA6Ciuf/wCEN0v/AJ+tc/8AB7e//HqP+EN0v/n61z/we3v/AMeoA6Ciuf8A+EN0v/n61z/we3v/AMeo/wCEN0v/AJ+tc/8AB7e//HqAOgorn/8AhDdL/wCfrXP/AAe3v/x6j/hDdL/5+tc/8Ht7/wDHqAOgorn/APhDdL/5+tc/8Ht7/wDHqP8AhDdL/wCfrXP/AAe3v/x6gDoKK5//AIQ3S/8An61z/wAHt7/8eo/4Q3S/+frXP/B7e/8Ax6gDoKK5/wD4Q3S/+frXP/B7e/8Ax6j/AIQ3S/8An61z/wAHt7/8eoA6CjA9K5//AIQ3S/8An61z/wAHt7/8eo/4Q3S/+frXP/B7e/8Ax6gDoMUmB6Vgf8Ibpf8Az9a5/wCD29/+PUf8Ibpf/P1rn/g9vf8A49QB0FFc/wD8Ibpf/P1rn/g9vf8A49R/whul/wDP1rn/AIPb3/49QB0FFc//AMIbpf8Az9a5/wCD29/+PUf8Ibpf/P1rn/g9vf8A49QB0FFc/wD8Ibpf/P1rn/g9vf8A49R/whul/wDP1rn/AIPb3/49QB0FGBXP/wDCG6X/AM/Wuf8Ag9vf/j1H/CG6X/z9a5/4Pb3/AOPUAdBRXP8A/CG6X/z9a5/4Pb3/AOPUf8Ibpf8Az9a5/wCD29/+PUAdBRXP/wDCG6X/AM/Wuf8Ag9vf/j1H/CG6X/z9a5/4Pb3/AOPUAdBRXP8A/CG6X/z9a5/4Pb3/AOPUf8Ibpf8Az9a5/wCD29/+PUAdBRgelc//AMIbpf8Az9a5/wCD29/+PUf8Ibpf/P1rn/g9vf8A49QBv4HoKWuf/wCEN0v/AJ+tc/8AB7e//HqP+EN0v/n61z/we3v/AMeoA6Ciuf8A+EN0v/n61z/we3v/AMeo/wCEN0v/AJ+tc/8AB7e//HqAOgorn/8AhDdL/wCfrXP/AAe3v/x6j/hDdL/5+tc/8Ht7/wDHqAOgorn/APhDdL/5+tc/8Ht7/wDHqP8AhDdL/wCfrXP/AAe3v/x6gDoKK5//AIQ3S/8An61z/wAHt7/8eo/4Q3S/+frXP/B7e/8Ax6gDoKK5/wD4Q3S/+frXP/B7e/8Ax6j/AIQ3S/8An61z/wAHt7/8eoA6Ciuf/wCEN0v/AJ+tc/8AB7e//HqP+EN0v/n61z/we3v/AMeoA6Ciuf8A+EN0v/n61z/we3v/AMeo/wCEN0v/AJ+tc/8AB7e//HqAOg60Yrn/APhDdL/5+tc/8Ht7/wDHqP8AhDdL/wCfrXP/AAe3v/x6gDoMUVz/APwhul/8/Wuf+D29/wDj1H/CG6X/AM/Wuf8Ag9vf/j1AHQYorn/+EN0v/n61z/we3v8A8eo/4Q3S/wDn61z/AMHt7/8AHqAOgorn/wDhDdL/AOfrXP8Awe3v/wAeo/4Q3S/+frXP/B7e/wDx6gDoKK5//hDdL/5+tc/8Ht7/APHqP+EN0v8A5+tc/wDB7e//AB6gDoKTA9BWB/whul/8/Wuf+D29/wDj1H/CG6X/AM/Wuf8Ag9vf/j1AHQUVz/8Awhul/wDP1rn/AIPb3/49R/whul/8/Wuf+D29/wDj1AHQUVz/APwhul/8/Wuf+D29/wDj1H/CG6X/AM/Wuf8Ag9vf/j1AHQUVz/8Awhul/wDP1rn/AIPb3/49R/whul/8/Wuf+D29/wDj1AHQYorn/wDhDdL/AOfrXP8Awe3v/wAeo/4Q3S/+frXP/B7e/wDx6gDoMUYHpXP/APCG6X/z9a5/4Pb3/wCPUf8ACG6X/wA/Wuf+D29/+PUAdBRXP/8ACG6X/wA/Wuf+D29/+PUf8Ibpf/P1rn/g9vf/AI9QB0FFc/8A8Ibpf/P1rn/g9vf/AI9R/wAIbpf/AD9a5/4Pb3/49QB0FGM1z/8Awhul/wDP1rn/AIPb3/49R/whul/8/Wuf+D29/wDj1AHQUVz/APwhul/8/Wuf+D29/wDj1H/CG6X/AM/Wuf8Ag9vf/j1AHQYoxXP/APCG6X/z9a5/4Pb3/wCPUf8ACG6X/wA/Wuf+D29/+PUAdBRXP/8ACG6X/wA/Wuf+D29/+PUf8Ibpf/P1rn/g9vf/AI9QB0FFc/8A8Ibpf/P1rn/g9vf/AI9R/wAIbpf/AD9a5/4Pb3/49QB0FGK5/wD4Q3S/+frXP/B7e/8Ax6j/AIQ3S/8An61z/wAHt7/8eoA6DA9KK5//AIQ3S/8An61z/wAHt7/8eo/4Q3S/+frXP/B7e/8Ax6gDoKK5/wD4Q3S/+frXP/B7e/8Ax6j/AIQ3S/8An61z/wAHt7/8eoA6Ciuf/wCEN0v/AJ+tc/8AB7e//HqP+EN0v/n61z/we3v/AMeoA6Ciuf8A+EN0v/n61z/we3v/AMeo/wCEN0v/AJ+tc/8AB7e//HqAOgorn/8AhDdL/wCfrXP/AAe3v/x6j/hDdL/5+tc/8Ht7/wDHqAOgwKK5/wD4Q3S/+frXP/B7e/8Ax6j/AIQ3S/8An61z/wAHt7/8eoA6Cg1z/wDwhul/8/Wuf+D29/8Aj1IfB2mdrrXP/B7e/wDx2gDA+CX/ACSHQv8At4/9KJK9ArN0HRNP8O6PBpWlW/2eygLeXFvZ9u5ix5YknknrWlQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAGKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK4f4m6rrOmWGgw6Jqf9nXOo6zb2DT+Qk21JA/O1xg8gHt061WHhP4hn/mp2P+4Bb/APxVAHoNFef/APCJfEP/AKKf/wCUC3/+Ko/4RL4h/wDRT/8AygW//wAVQB6BRXn/APwiXxD/AOin/wDlAt//AIqj/hEviH/0U/8A8oFv/wDFUAegUV5//wAIl8Q/+in/APlAt/8A4qj/AIRL4h/9FP8A/KBb/wDxVAHoFFef/wDCJfEP/op//lAt/wD4qj/hEviH/wBFP/8AKBb/APxVAHoFFef/APCJfEP/AKKf/wCUC3/+Ko/4RL4h/wDRT/8AygW//wAVQB6BRXn/APwiXxD/AOin/wDlAt//AIqj/hEviH/0U/8A8oFv/wDFUAegUV5//wAIl8Q/+in/APlAt/8A4qj/AIRL4h/9FP8A/KBb/wDxVAHoFFef/wDCJfEP/op//lAt/wD4qj/hEviH/wBFP/8AKBb/APxVAHoFFef/APCJfEP/AKKf/wCUC3/+Ko/4RL4h/wDRT/8AygW//wAVQB6BRXn/APwiXxD/AOin/wDlAt//AIqj/hEviH/0U/8A8oFv/wDFUAegUV5//wAIl8Q/+in/APlAt/8A4qj/AIRL4h/9FP8A/KBb/wDxVAHoFFef/wDCJfEP/op//lAt/wD4qj/hEviH/wBFP/8AKBb/APxVAHoFFef/APCJfEP/AKKf/wCUC3/+Ko/4RL4h/wDRT/8AygW//wAVQB6BRXn/APwiXxD/AOin/wDlAt//AIqj/hEviH/0U/8A8oFv/wDFUAegUV5//wAIl8Q/+in/APlAt/8A4qj/AIRL4h/9FP8A/KBb/wDxVAHoFFef/wDCJfEP/op//lAt/wD4qj/hEviH/wBFP/8AKBb/APxVAHoFFef/APCJfEP/AKKf/wCUC3/+Ko/4RL4h/wDRT/8AygW//wAVQB6BRXn/APwiXxD/AOin/wDlAt//AIqj/hEviH/0U/8A8oFv/wDFUAegUV5//wAIl8Q/+in/APlAt/8A4qj/AIRL4h/9FP8A/KBb/wDxVAHoFFef/wDCJfEP/op//lAt/wD4qj/hEviH/wBFP/8AKBb/APxVAHoFFef/APCJfEP/AKKf/wCUC3/+Ko/4RL4h/wDRT/8AygW//wAVQB6BRXn/APwiXxD/AOin/wDlAt//AIqj/hEviH/0U/8A8oFv/wDFUAegUV5//wAIl8Q/+in/APlAt/8A4qj/AIRL4h/9FP8A/KBb/wDxVAHoFFef/wDCJfEP/op//lAt/wD4qj/hEviH/wBFP/8AKBb/APxVAHoFFef/APCJfEP/AKKf/wCUC3/+Ko/4RL4h/wDRT/8AygW//wAVQB6BRXn/APwiXxD/AOin/wDlAt//AIqj/hEviH/0U/8A8oFv/wDFUAegUV5//wAIl8Q/+in/APlAt/8A4qj/AIRL4h/9FP8A/KBb/wDxVAHoFFef/wDCJfEP/op//lAt/wD4qj/hEviH/wBFP/8AKBb/APxVAHoFFef/APCJfEP/AKKf/wCUC3/+Ko/4RL4h/wDRT/8AygW//wAVQB6BRXn/APwiXxD/AOin/wDlAt//AIqj/hEviH/0U/8A8oFv/wDFUAegUV5//wAIl8Q/+in/APlAt/8A4qj/AIRL4h/9FP8A/KBb/wDxVAHoFFef/wDCJfEP/op//lAt/wD4qj/hEviH/wBFP/8AKBb/APxVAHoFFef/APCJfEP/AKKf/wCUC3/+Ko/4RL4h/wDRT/8AygW//wAVQB6BRXn/APwiXxD/AOin/wDlAt//AIqj/hEviH/0U/8A8oFv/wDFUAegUV5//wAIl8Q/+in/APlAt/8A4qj/AIRL4h/9FP8A/KBb/wDxVAHoFFef/wDCJfEP/op//lAt/wD4qj/hEviH/wBFP/8AKBb/APxVAHoFFef/APCJfEP/AKKf/wCUC3/+Ko/4RL4h/wDRT/8AygW//wAVQB6BRXn/APwiXxD/AOin/wDlAt//AIqj/hEviH/0U/8A8oFv/wDFUAegUV5//wAIl8Q/+in/APlAt/8A4qj/AIRL4h/9FP8A/KBb/wDxVAHoFFef/wDCJfEP/op//lAt/wD4qj/hEviH/wBFP/8AKBb/APxVAHoFFef/APCJfEP/AKKf/wCUC3/+Ko/4RL4h/wDRT/8AygW//wAVQB6BRXn/APwiXxD/AOin/wDlAt//AIqj/hEviH/0U/8A8oFv/wDFUAegUV5//wAIl8Q/+in/APlAt/8A4qj/AIRL4h/9FP8A/KBb/wDxVAHoFFef/wDCJfEP/op//lAt/wD4qj/hEviH/wBFP/8AKBb/APxVAHoFFef/APCJfEP/AKKf/wCUC3/+Ko/4RL4h/wDRT/8AygW//wAVQB6BRXn/APwiXxD/AOin/wDlAt//AIqj/hEviH/0U/8A8oFv/wDFUAegUV5//wAIl8Q/+in/APlAt/8A4qj/AIRL4h/9FP8A/KBb/wDxVAHoFFef/wDCJfEP/op//lAt/wD4qj/hEviH/wBFP/8AKBb/APxVAHoFFef/APCJfEP/AKKf/wCUC3/+Ko/4RL4h/wDRT/8AygW//wAVQB6BRXn/APwiXxD/AOin/wDlAt//AIqj/hEviH/0U/8A8oFv/wDFUAegUV5//wAIl8Q/+in/APlAt/8A4qj/AIRL4h/9FP8A/KBb/wDxVAHoFFef/wDCJfEP/op//lAt/wD4qj/hEviH/wBFP/8AKBb/APxVAHoFFef/APCJfEP/AKKf/wCUC3/+Ko/4RL4h/wDRT/8AygW//wAVQB6BRXn/APwiXxD/AOin/wDlAt//AIqj/hEviH/0U/8A8oFv/wDFUAegUV5//wAIl8Q/+in/APlAt/8A4qj/AIRL4h/9FP8A/KBb/wDxVAHoFFef/wDCJfEP/op//lAt/wD4qj/hEviH/wBFP/8AKBb/APxVAHoFFef/APCJfEP/AKKf/wCUC3/+Ko/4RL4h/wDRT/8AygW//wAVQB6BRXn/APwiXxD/AOin/wDlAt//AIqj/hEviH/0U/8A8oFv/wDFUAegUV5//wAIl8Q/+in/APlAt/8A4qj/AIRL4h/9FP8A/KBb/wDxVAHoFFef/wDCJfEP/op//lAt/wD4qj/hEviH/wBFP/8AKBb/APxVAHoFFef/APCJfEP/AKKf/wCUC3/+Ko/4RL4h/wDRT/8AygW//wAVQB6BRXn/APwiXxD/AOin/wDlAt//AIqj/hEviH/0U/8A8oFv/wDFUAegUV5//wAIl8Q/+in/APlAt/8A4qj/AIRL4h/9FP8A/KBb/wDxVAHoFFef/wDCJfEP/op//lAt/wD4qj/hEviH/wBFP/8AKBb/APxVAHoFFef/APCJfEP/AKKf/wCUC3/+Ko/4RL4h/wDRT/8AygW//wAVQB6BRXn/APwiXxD/AOin/wDlAt//AIqkPhT4hA8/E7P/AHAbf/GgD0GiuQ+F+t6h4i+HWlarqtx9ovZ/N8yXYqbtsrqOFAHQAcDtXX0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHn/AMU+vgr/ALGqx/8AZ678AYFcB8U+vgr/ALGqx/8AZ69AHQUAFc/4214+GfCGp6qgJnhhIgAXO6ViFQY7/My1vmvLPi1rqW99plkcNHp8b6zdIec+X8kCn/ZaZlBHtQB583xa8ZweI7K2vr9rSxilSK8zDA0jeUB55yFwMndwOmAByCTvRePPGdzBFbpqIF/PFbW6r9njwt1dyGRB93pHAOfc815prNojeLtG0m+kKWtnttL2fPzF93mXTH1IaWQfRRXqXw3sZda8Y21/cR7fs0curzrjhbi6+WFPosCqQO26gD22IFYwrOXIGCzDBPvT6QdKWgAooooAKKKKACiiigAooooAKKKKACiiigArivFEnim98W6do2hamul2j2klxc3Zs1mIKuqhBu+XJ3fzrtagvJxa2k1x5UkpijZ/LiXc74GcKO5PpQB5h4yv/G3w+0dfECeIk1yyhkVLq1u7KOIhWOAytGAepA5z1HXpXo+iapDrmh2Oq24IhvIEmRW6qGGcH3HSvHviN4vbxdp0XhYadeeH4byZPOv9ehNtHhTuAXrkkgc8dPfNev6Bplvovh/T9MtXMlvawJFG56sAAAT9etAGjRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA1uK8M8a+L/AB6nxB1TS/DusQW1lBc2lnDFJBGxMs8YYYJQk42uSSeAK9svryDT7Ke9uX2QW8TSyN/dVRkn8q+Tkuddn8QanqD2E0t7qLbrcIwws94mIhyeoiaTA6gjsBmgDo7b4h/EmKMX8+vWk9qtq95sW2j+dPNMCDiMH5pPu4OccnFeufD/AFTXdWuNXfVL77RbWLRWCERIu+4jQG4fKgZBc4GOMD614TF4nsra7gkuLWa1hDrc23mAOksNpEyW6KRkMGmV9x6Ejqa+j/AuiN4f8GaZYSg/aRF5tySckzP875Pf5mIoA6Ed/rS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAUtXuJLTSL64hbbLFbyOhxnBCkg4/CvJtJt/jTrGj2Wpw+I9DiivIEnjSWEBlVlBGQISM4I7mvZqr3dxBY2k11cyLFbwxtJI5OAqgZJ/KgDyXTbz4n2fxB0fQtY8QaXcxzK11dR2kCkpAp5LExrt3H5Rjua9hHI6Vwfw4t59U/tLxpfRslzrcubZHHMNonEa+2eWPrkGu8HSgBaKKKACiiigAooooAKKKKACiiigAooooAKKKQ0AcX8TvHA8DeFmu4YxLf3L+RaIegcg/MfYdcd+B715QfGfxEiil3eKI2uoppY/LNlAI8W8BkuCSFyQG2oCOCc47VqftDXbPdaHBbxmV7BJL25XtHGXjRWPsW4rjLS/0u4sLe3l1KJbaSKCwlmeQBvLb/AEq9kx1zvKxj+9nAoA6XQ/ij4u1/T8W2obLxjHYpm3jwbuedthHy/cSFG69+T2r6DiVljVWcuwGCxGCT6180fA+zOvfEvUNVkTy7e1El4sK/dWVyVUY9leTH0FfTI6UALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBl63qs+lWyG00u81K6lO2KC2UAE+rOxCoPcn6A1wHgHxp4k8Q/EXX9I1tLe2j0+HC2kGGVGDgEl+rHBx6e1epHrXjPw8/5Lt47Hbn/0YtAHsUkvlRPIQxVVyQilm/IAkn2FeQ+PviP4t0qXSxYaT/ZNhe3QiS4u9jzyAEZxHyEBGfvZP0r2PFeM/H4ZHhIHodRIP/jtAHsincM06gdBRQAUUUUAFFFFABRRRQAUUUUAFFFFABTW474FOprA9qAPKPih8QtZ8OapHZ6Ch/0O1a5v2kRQuHIjiALDn52zheuMdN2OL0D4reLLnRDdXOqGeaCK4uZgLaIblwkVugwg6zOxPfC8Vj+PNaOtz3t1EQ7azfNJAAcf6NBmCAj2aQyOR/sZ7Vk+DZ4rHQhcuA7QTPqc6nn5LcBbdT7PPNg/QUAd7qPjrxol2LOLXlgVJWtpbk2kTbfssIe7lA24PzNgD/Zx1OayL74gfEHTdJkvG8SlpYra3aWF7CA4mmVpAq4X+GJQ5JzgnBFQLYohGl3cjBV2aXcS552ofteoSZ9QSEz6Vz2qeIZryFt9hPBLctNcTPOhSOOW6wqc4+4LcDZ06sRwKAO9tPir4lutL/tI3qqPIub17dIo22ICsFvFnbklpizE9SBxxXuOix30WiWUep3H2i/WFBcS7Qu6TA3cAADnNfPfw38Nxz6vpOmpKLm3kvX1CWReVe2tSUiIz/C8zSHHoor6TFABRRRQAUUUUAFFFFABRRRQAUUUUAFNY49fwp1FAHlHxJ+IXiXQdCuLzRtFktLRZBD/AGhfgBixzjy4Tz2+84A9jXpGh3Et3oOn3Nw2+aW2jd2wBlioJPHHftXnf7QHHwyb/r8i/wDZq9A8N/8AIraR/wBeUP8A6AKAOG8Y3vjq8+ICaF4R1Wxso00tLyUXcYIJMrocHYx6AcVVt9H+NC3MLXHiXQWhDjeqx8lc8/8ALEds1ra02saX8Ujq9l4fvtUtpdFS0DW7RqFkEztgl2A6Y/OlufifFol1BD4o8P6nokdw4RLqXy5YN3ozoxx+vrQB3w5FBHSmxOskYdHDqeQynINPNAHn/wAEv+SQ6F/28f8Ao+SvQK8/+CX/ACSHQv8At4/9KJK9AoAKKQ5zxWDrOtyw6jZaPpmyXUriRWkUgsILcH55HAPAwCq5IyzD0NAG/RTQepwaXNAC0UmaM0ALRSZozQAtFJz6/pRz6/pQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5/8AFPr4K/7Gqx/9nr0AdBXn/wAU+vgr/sarH/2evQB0FACHrXzv4g1iLVPEuoaxNiSza7e4x1Bs7EfIv+7LcMB9Vr6CvIWuLSaCOVoXkjZFlXqhIxke46154fg9pRsBaDU71YhBb22UVMiOJi5AyCPnkO85B57UAeC6xZtc+KtF0e6mMLKqQ39weollbzbgt7qJtp/3K+ifhZYkeGp9beHyZtZuXu1jI5jh+5Cn0CKuP96udufgPpV7K9xc+IdYkncyOz/uxueRiXYgJ3zgj+nA9E0DRG0CwWxXVL28giVY4RdCLMSKMADYi8YHfNAGyKKReh+tLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhrPTWLSXX59GDN9sht0uWU9CjMygj8UP5itGuU1/wNBrPiGLXoNZ1XStRjtxbeZYyqqvGGLAMrKQeT+goAT4lxWcvw28QC9VGjWxkZd2MCQKSh+u7FZXwUlvJfhXpRuyxwZFhLdfLDkL+A5A9gKlu/hsNYMaeIvEus6vao4f7JI8cULkdN4jQFq7a0toLK0itbaJIoIVCRxoMKqgYAFAE1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHB/Fa9H/CO22hJN5UmtXK2zuDzHAPnmf6BFIP8AvV4rbawNUW4v7CNhcCSS4jiA+7czn7PaRD3jjDOPxr3nxZ4Gg8VXgubjUbi3K2MtnEsYBEfmkeY4z3KAr9DXLS/BSyTUpLzTfEGpWJa4+0rEio0cbKCIiAR1TcwH14xigDxfxmlsmmQQWqiZ5LpbSxZByYLVDHvUf9NJXkb6qa+t7NZUsoFnOZhGokPq2Of1rz/wz8H9E0DU7bULm6utUuLSNUtBd42W5BLZVQAPvEnnuc9TmvRh0oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigBDXnnxJupdZvNJ8C2UjJNrEm+9ZDgxWacufYtjA9cEV6E3X3rBsvC1lZeK9R8RGW5nv7yJIT5zKUhjX+FAFBAJ5Oc80AbVrbxWlrFbwIscMShERRwqgYAH5VN0pFAA4paACiiigAooooAKKKKACiiigAooooAKKKKACkPWlqC8ha4tJoI5WheSNkWVeqEjGR7jrQB88eJvENneeJrvVryRDaXF87oj8rJa2QOxfpLOT+K1hHRbGKI291DBDOVhsLi4Ma7kkfNzdy/WKPEfsDgV6xd/BHRbyygtm1K9UQRQQxOgTKJHvJxwfvO5c+9VJ/gVa3qFL/AMUapOC0sv3EXMsjAu54y27Azn0HYYoAq/AHTZpLfxB4llgEEWp3QWBFHAClmbb7ZfH/AAE17OOlVdN0+00vTrewsoVhtrdBHHGvRVA4FW6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigBD1rxn4ef8AJd/Hf/Av/Ri16rq+mz6lEkcGr3+nbTlmsxFuf2JdG/TFchp/wqtNL1q71ez8TeIYtQu/+PicSwEyc9wYiP0oA9Brxn4+/wDMo/8AYRP/ALLXrMNtNFYLbPqFzLKEK/apBH5hP97AUJn/AIDiuN134V2viV7dtY8T+ILo20nmQhpLdQjeoCwigDvx0FFY+j6Nc6Wz+br+qaihGAl75JC+4KRq35mtcfWgBaKKKACiiigAooooAKKKKACiiigArlfiJq0uj+Cr6S0yb+5C2dmo+800p2Lj3GSfwrqq5/xL4Yj8Rzac8t7NbiwleeNYwCDKUKo5z3QncPegD5suWhF/q1xb4ls9KshYWOOVlkINvGw/2ixuJfwzUHg0w2uiJcT/ADoLh7y4Q9re0G9UP+zJNKq/VK9hj+BOlxWpt017VEjLrIQixD51TYjfdJyMsev8Rxg5NFn8CNHsVaOLXNWML+WskZ8oh0V9+05TpvAOB6c5oA80CM17DoV08q3M8As5p8cRySMtxfSMf7yIVjPtmi9uUutPub2S3RfPikv/ACHxtWS5P2e0jPbCQhpB7GvU7/4NWGpwpu13Uo5lNy7TRbVMkk7HzWbA53JhMcDA5z0qpL8DbO7SVLzxHqc1vIysYgka8pGY48kDnapIx6E+tAGV+zjpjDR9X1aQMQ8qWkDN/Cq5dgPbL5OO9e4jpWV4b0G08MeHrPR7EHyLWMIGYDc57scdycn8a1aACiiigAooooAKKKKACiiigAooooAKKKawJPBxQB5d+0D/AMkxb/r9h/8AZq77w5/yK+kf9eUP/oArm/EPw2i8V2r2mseJtfntS/mCAPbooPb7sI6Vr6H4Zn0MxRp4i1e8tYU8tLe7MDIBjA5WMNx9aANC01m1vNX1DTI2b7Tp/lmdSOzrlSK4n45PAvwr1JZ9vmNJAIdx53+avI/4DurY1TwGl74jn1+w17VtKv50SOb7LInlyBBhdyMpz1NVm+GlnqN7BdeJNY1TXjbtuit7x1WBT6+WigE/WgDU+HsdxF8PPD6XYYTCxiyG6gbRgH6DArpTSLgDilNAHn/wS/5JDoX/AG8f+lElegV5/wDBL/kkOhf9vH/pRJXoFADW6ivKtS8BadoPid9Ulu9VfTNVuFjuXTUJUe2mY4RiysNyEsF+blSRzivV6QqrDBAP1FAHHD4b6Oet/rufbWLj/wCLpf8AhW2jf8/+vf8Ag4uP/i67GigDjv8AhW2jf8/+vf8Ag4uP/iqQfDbRh/y/69/4OLj/AOKrsqKAOO/4Vto3/P8A69/4OLj/AOLqW18AaVZXcNzFe62zwuHVZNVuGUkHoQWwR6g11lFADfwB/Gj/AICv507A9KTA9BQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5/wDFPr4K/wCxqsf/AGevQB0FZut6NZ65YNaXierQzKB5lvJggSxsQdki5JVhyD0rkf8AhVuf+Z88cf8Ag3/+woA9Aorz/wD4VZ/1Pnjj/wAHH/2FH/CrP+p88cf+Dj/7CgDv8D0FLgV5/wD8Ks/6nzxx/wCDj/7Cj/hVn/U+eOP/AAcf/YUAegUV5/8A8Ks/6nzxx/4OP/sKP+FWf9T544/8HH/2FAHoFFef/wDCrP8AqfPHH/g4/wDsKP8AhVn/AFPnjj/wcf8A2FAHoFFef/8ACrP+p88cf+Dj/wCwo/4VZ/1Pnjj/AMHH/wBhQB6BRXn/APwqz/qfPHH/AIOP/sKP+FWf9T544/8ABx/9hQB6BRXn/wDwqz/qfPHH/g4/+wo/4VZ/1Pnjj/wcf/YUAegUV5//AMKs/wCp88cf+Dj/AOwo/wCFWf8AU+eOP/Bx/wDYUAegUV5//wAKs/6nzxx/4OP/ALCj/hVn/U+eOP8Awcf/AGFAHoFFef8A/CrP+p88cf8Ag4/+wo/4VZ/1Pnjj/wAHH/2FAHoFFef/APCrP+p88cf+Dj/7Cj/hVn/U+eOP/Bx/9hQB6BRXn/8Awqz/AKnzxx/4OP8A7Cj/AIVZ/wBT544/8HH/ANhQB6BRXn//AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAegUV5/wD8Ks/6nzxx/wCDj/7Cj/hVn/U+eOP/AAcf/YUAegUV5/8A8Ks/6nzxx/4OP/sKP+FWf9T544/8HH/2FAHoFFef/wDCrP8AqfPHH/g4/wDsKP8AhVn/AFPnjj/wcf8A2FAHoFFef/8ACrP+p88cf+Dj/wCwo/4VZ/1Pnjj/AMHH/wBhQB6BRXn/APwqz/qfPHH/AIOP/sKP+FWf9T544/8ABx/9hQB6BRivP/8AhVn/AFPnjj/wcf8A2FH/AAqz/qfPHH/g4/8AsKAPQMD0orz/AP4VZ/1Pnjj/AMHH/wBhR/wqz/qfPHH/AIOP/sKAPQKK8/8A+FWf9T544/8ABx/9hR/wqz/qfPHH/g4/+woA9Aorz/8A4VZ/1Pnjj/wcf/YUf8Ks/wCp88cf+Dj/AOwoA9Aorz//AIVZ/wBT544/8HH/ANhR/wAKs/6nzxx/4OP/ALCgD0CivP8A/hVn/U+eOP8Awcf/AGFH/CrP+p88cf8Ag4/+woA9Aorz/wD4VZ/1Pnjj/wAHH/2FH/CrP+p88cf+Dj/7CgD0CivP/wDhVn/U+eOP/Bx/9hR/wqz/AKnzxx/4OP8A7CgD0CivP/8AhVn/AFPnjj/wcf8A2FH/AAqz/qfPHH/g4/8AsKAPQKMD0rz/AP4VZ/1Pnjj/AMHH/wBhR/wqz/qfPHH/AIOP/sKAPQKK8/8A+FWf9T544/8ABx/9hR/wqz/qfPHH/g4/+woA9Aorz/8A4VZ/1Pnjj/wcf/YUf8Ks/wCp88cf+Dj/AOwoA9Aorz//AIVZ/wBT544/8HH/ANhR/wAKs/6nzxx/4OP/ALCgD0CivP8A/hVn/U+eOP8Awcf/AGFH/CrP+p88cf8Ag4/+woA9Aorz/wD4VZ/1Pnjj/wAHH/2FH/CrP+p88cf+Dj/7CgD0CivP/wDhVn/U+eOP/Bx/9hR/wqz/AKnzxx/4OP8A7CgD0CivP/8AhVn/AFPnjj/wcf8A2FH/AAqz/qfPHH/g4/8AsKAPQKK8/wD+FWf9T544/wDBx/8AYUf8Ks/6nzxx/wCDj/7CgD0DAowB2rz/AP4VZ/1Pnjj/AMHH/wBhR/wqz/qfPHH/AIOP/sKAPQKK8/8A+FWf9T544/8ABx/9hR/wqz/qfPHH/g4/+woA9Aorz/8A4VZ/1Pnjj/wcf/YUf8Ks/wCp88cf+Dj/AOwoA9Aorz//AIVZ/wBT544/8HH/ANhR/wAKs/6nzxx/4OP/ALCgD0CivP8A/hVn/U+eOP8Awcf/AGFH/CrP+p88cf8Ag4/+woA9Aorz/wD4VZ/1Pnjj/wAHH/2FH/CrP+p88cf+Dj/7CgD0CivP/wDhVn/U+eOP/Bx/9hR/wqz/AKnzxx/4OP8A7CgD0CivP/8AhVn/AFPnjj/wcf8A2FH/AAqz/qfPHH/g4/8AsKAPQKK8/wD+FWf9T544/wDBx/8AYUf8Ks/6nzxx/wCDj/7CgD0CivP/APhVn/U+eOP/AAcf/YUf8Ks/6nzxx/4OP/sKAPQKK8//AOFWf9T544/8HH/2FH/CrP8AqfPHH/g4/wDsKAPQKK8//wCFWf8AU+eOP/Bx/wDYUf8ACrP+p88cf+Dj/wCwoA9Aorz/AP4VZ/1Pnjj/AMHH/wBhR/wqz/qfPHH/AIOP/sKAPQKK8/8A+FWf9T544/8ABx/9hR/wqz/qfPHH/g4/+woA9Aorz/8A4VZ/1Pnjj/wcf/YUf8Ks/wCp88cf+Dj/AOwoA9Aorz//AIVZ/wBT544/8HH/ANhR/wAKs/6nzxx/4OP/ALCgD0CivP8A/hVn/U+eOP8Awcf/AGFH/CrP+p88cf8Ag4/+woA9Aorz/wD4VZ/1Pnjj/wAHH/2FH/CrP+p88cf+Dj/7CgD0CkwPQVwH/CrP+p88cf8Ag4/+wo/4VZ/1Pnjj/wAHH/2FAHoGAaMD0rz/AP4VZ/1Pnjj/AMHH/wBhR/wqz/qfPHH/AIOP/sKAPQKK8/8A+FWf9T544/8ABx/9hR/wqz/qfPHH/g4/+woA9Aorz/8A4VZ/1Pnjj/wcf/YUf8Ks/wCp88cf+Dj/AOwoA9Aorz//AIVZ/wBT544/8HH/ANhR/wAKs/6nzxx/4OP/ALCgD0CivP8A/hVn/U+eOP8Awcf/AGFH/CrP+p88cf8Ag4/+woA9Aorz/wD4VZ/1Pnjj/wAHH/2FH/CrP+p88cf+Dj/7CgD0CivP/wDhVn/U+eOP/Bx/9hR/wqz/AKnzxx/4OP8A7CgD0CivP/8AhVn/AFPnjj/wcf8A2FH/AAqz/qfPHH/g4/8AsKAPQKK8/wD+FWf9T544/wDBx/8AYUf8Ks/6nzxx/wCDj/7CgD0DHGKK8/8A+FWf9T544/8ABx/9hR/wqz/qfPHH/g4/+woA9AoNef8A/CrP+p88cf8Ag4/+wo/4Vdj/AJnzxx/4N/8A7CgA+CX/ACSHQv8At4/9KJK9ArG8K+HbTwn4ctdDsJJ5LW1L7GnYFzuYuckADqx7Vs0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRXJeO/EWpeH4dCGmfZRNqWrwacz3MTSKiyBvm2qykkEDvVwWnjDH/Ic0P/AME83/yVQB0NFc/9j8Yf9BzQ/wDwTy//ACTR9j8Yf9BzQ/8AwTy//JNAHQUVz/2Pxh/0HND/APBPL/8AJNH2Pxh/0HND/wDBPL/8k0AdBRXP/Y/GH/Qc0P8A8E8v/wAk0fY/GH/Qc0P/AME8v/yTQB0FFc/9j8Yf9BzQ/wDwTy//ACTR9j8Yf9BzQ/8AwTy//JNAHQUVz/2Pxh/0HND/APBPL/8AJNH2Pxh/0HND/wDBPL/8k0AdBRXP/Y/GH/Qc0P8A8E8v/wAk0fY/GH/Qc0P/AME8v/yTQB0FFc/9j8Yf9BzQ/wDwTy//ACTR9j8Yf9BzQ/8AwTy//JNAHQUVz/2Pxh/0HND/APBPL/8AJNH2Pxh/0HND/wDBPL/8k0AdBRXP/Y/GH/Qc0P8A8E8v/wAk0fY/GH/Qc0P/AME8v/yTQB0FFc/9j8Yf9BzQ/wDwTy//ACTR9j8Yf9BzQ/8AwTy//JNAHQUVz/2Pxh/0HND/APBPL/8AJNH2Pxh/0HND/wDBPL/8k0AdBRXP/Y/GH/Qc0P8A8E8v/wAk0fY/GH/Qc0P/AME8v/yTQB0FFc/9j8Yf9BzQ/wDwTy//ACTR9j8Yf9BzQ/8AwTy//JNAHQUVz/2Pxh/0HND/APBPL/8AJNH2Pxh/0HND/wDBPL/8k0AdBRXP/Y/GH/Qc0P8A8E8v/wAk0fY/GH/Qc0P/AME8v/yTQB0FFc/9j8Yf9BzQ/wDwTy//ACTR9j8Yf9BzQ/8AwTy//JNAHQUVz/2Pxh/0HND/APBPL/8AJNH2Pxh/0HND/wDBPL/8k0AdBRXP/Y/GH/Qc0P8A8E8v/wAk0fY/GH/Qc0P/AME8v/yTQB0FFc/9j8Yf9BzQ/wDwTy//ACTR9j8Yf9BzQ/8AwTy//JNAHQUVz/2Pxh/0HND/APBPL/8AJNH2Pxh/0HND/wDBPL/8k0AdBRXP/Y/GH/Qc0P8A8E8v/wAk0fY/GH/Qc0P/AME8v/yTQB0FFc/9j8Yf9BzQ/wDwTy//ACTR9j8Yf9BzQ/8AwTy//JNAHQUVz/2Pxh/0HND/APBPL/8AJNH2Pxh/0HND/wDBPL/8k0AdBRXP/Y/GH/Qc0P8A8E8v/wAk0fY/GH/Qc0P/AME8v/yTQB0FFc/9j8Yf9BzQ/wDwTy//ACTR9j8Yf9BzQ/8AwTy//JNAHQUVz/2Pxh/0HND/APBPL/8AJNH2Pxh/0HND/wDBPL/8k0AdBRXP/Y/GH/Qc0P8A8E8v/wAk0fY/GH/Qc0P/AME8v/yTQB0FFc/9j8Yf9BzQ/wDwTy//ACTR9j8Yf9BzQ/8AwTy//JNAHQUVz/2Pxh/0HND/APBPL/8AJNH2Pxh/0HND/wDBPL/8k0AdBRXP/Y/GH/Qc0P8A8E8v/wAk0fY/GH/Qc0P/AME8v/yTQB0FFc/9j8Yf9BzQ/wDwTy//ACTR9j8Yf9BzQ/8AwTy//JNAHQUVz/2Pxh/0HND/APBPL/8AJNH2Pxh/0HND/wDBPL/8k0AdBRXP/Y/GH/Qc0P8A8E8v/wAk0fY/GH/Qc0P/AME8v/yTQB0FFc/9j8Yf9BzQ/wDwTy//ACTR9j8Yf9BzQ/8AwTy//JNAHQUVz/2Pxh/0HND/APBPL/8AJNH2Pxh/0HND/wDBPL/8k0AdBRXP/Y/GH/Qc0P8A8E8v/wAk0fY/GH/Qc0P/AME8v/yTQB0FFc/9j8Yf9BzQ/wDwTy//ACTR9j8Yf9BzQ/8AwTy//JNAHQUVz/2Pxh/0HND/APBPL/8AJNH2Pxh/0HND/wDBPL/8k0AdBRXP/Y/GH/Qc0P8A8E8v/wAk0fY/GH/Qc0P/AME8v/yTQB0FFc/9j8Yf9BzQ/wDwTy//ACTR9j8Yf9BzQ/8AwTy//JNAHQUVz/2Pxh/0HND/APBPL/8AJNH2Pxh/0HND/wDBPL/8k0AdBRXP/Y/GH/Qc0P8A8E8v/wAk0fY/GH/Qc0P/AME8v/yTQB0FFc/9j8Yf9BzQ/wDwTy//ACTR9j8Yf9BzQ/8AwTy//JNAHQUVz/2Pxh/0HND/APBPL/8AJNH2Pxh/0HND/wDBPL/8k0AdBRXP/Y/GH/Qc0P8A8E8v/wAk0fY/GH/Qc0P/AME8v/yTQB0FFc/9j8Yf9BzQ/wDwTy//ACTR9j8Yf9BzQ/8AwTy//JNAHQUVz/2Pxh/0HND/APBPL/8AJNH2Pxh/0HND/wDBPL/8k0AdBRXP/Y/GH/Qc0P8A8E8v/wAk0fY/GH/Qc0P/AME8v/yTQB0FFc/9j8Yf9BzQ/wDwTy//ACTR9j8Yf9BzQ/8AwTy//JNAHQUVz/2Pxh/0HND/APBPL/8AJNH2Pxh/0HND/wDBPL/8k0AdBRXP/Y/GH/Qc0P8A8E8v/wAk0fY/GH/Qc0P/AME8v/yTQB0FFc/9j8Yf9BzQ/wDwTy//ACTR9j8Yf9BzQ/8AwTy//JNAHQUVz/2Pxh/0HND/APBPL/8AJNH2Pxh/0HND/wDBPL/8k0AdBRXP/Y/GH/Qc0P8A8E8v/wAk0fY/GH/Qc0P/AME8v/yTQB0FFc/9j8Yf9BzQ/wDwTy//ACTR9j8Yf9BzQ/8AwTy//JNAHQUVz/2Pxh/0HND/APBPL/8AJNH2Pxh/0HND/wDBPL/8k0AdBRXP/Y/GH/Qc0P8A8E8v/wAk0fY/GH/Qc0P/AME8v/yTQB0FFc/9j8Yf9BzQ/wDwTy//ACTR9j8Yf9BzQ/8AwTy//JNAHQUVz/2Pxh/0HND/APBPL/8AJNH2Pxh/0HND/wDBPL/8k0AdBRXP/Y/GH/Qc0P8A8E8v/wAk0fY/GH/Qc0P/AME8v/yTQB0FFc/9j8Yf9BzQ/wDwTy//ACTR9j8Yf9BzQ/8AwTy//JNAHQUVz/2Pxh/0HND/APBPL/8AJNH2Pxh/0HND/wDBPL/8k0AdBRXP/Y/GH/Qc0P8A8E8v/wAk0fY/GH/Qc0P/AME8v/yTQB0FFc/9j8Yf9BzQ/wDwTy//ACTR9j8Yf9BzQ/8AwTy//JNAHQUVz/2Pxh/0HND/APBPL/8AJNH2Pxh/0HND/wDBPL/8k0AdBRXP/Y/GH/Qc0P8A8E8v/wAk0htPGH/Qc0P8NHl/+SaAOhorl/h34jvPFngXTtbv44I7m583esCkINsjIMZJPRR3rqKACiiigAooooAKKKKACiiigAooooAKKKQ0ALRSZozQAtFJmjNAC0UmaQmgB1Fc/a65NH4kutG1IRxyOfN0+RchbiLA3Dnq6NnIHYqa3x060ALRRRQAUUUUAFFFFAHn/wAU+vgr/sarH/2eu/HQVwHxT6+Cv+xqsf8A2evQB0FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXFeKJPFN74t07RtC1NdLtHtJLi5uzZrMQVdVCDd8uTu/nXa1BeTi1tJrjypJTFGz+XEu53wM4UdyfSgDzDxlf8Ajb4faOviBPESa5ZQyKl1a3dlHEQrHAZWjAPUgc56jr0r0fRNUh1zQ7HVbcEQ3kCTIrdVDDOD7jpXj3xG8Xt4u06LwsNOvPD8N5MnnX+vQm2jwp3AL1ySQOeOnvmvX9A0y30Xw/p+mWrmS3tYEijc9WAAAJ+vWgDRooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooApavcPaaPfXMR2yQ27yK2OAQpIPPHavm5PiF8UJNOW+Gv26xvaG9CG0i3bPN8lRjy+rP90enevb/AIlanPp/gy5t7I/8TDUnTTrQeskp2/hhdx/CvEzd2to7X0W02MDm9j3dGtbIeRag/wDXSdjkeoBoAs2HxC+IEHitNP1PxJbSW1tPKb0QW8ORFAN8pB8scEBlB7kECvcfA1zqt94O06+1uXzL+7j+0ONgTYrksi4AHRSor5r8C6TNrmIZmkabWryPTVYk7hAp8+6Ye/Cf99sK+s41VIwiKFVRgADAFADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMvW9Vn0q2Q2ml3mpXUp2xQWygAn1Z2IVB7k/QGuA8A+NPEniH4i6/pGtpb20enw4W0gwyowcAkv1Y4OPT2r1I9a8Z+Hn/JdvHY7c/wDoxaAPYpJfKieQhiqrkhFLN+QBJPsK8h8ffEfxbpUuliw0n+ybC9uhElxd7HnkAIziPkICM/eyfpXseK8Z+PwyPCQPQ6iQf/HaAPZFO4Zp1A6CigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmOcdPSn1i+LdcXw14V1LV2621uzRg9GkPCD8WKj8aAPEfHfxd8U2Wo6i+iSG1003X2W0llhTeGhA847GUnlnUZbgDgDdnElt8SvFp1PRrS41kKq2a3upsLaLiMgzsB8vBEIjXHXdJzziuI8X24stAMMzFprV49NVic75gDNdsT6iV40z6Cp/DcAv7Sae7kIXU51tXkDfct0AuLlx6bY0hTHoT0oA6S++IvxAuNV0zS9P1yGG/uIIfOiktosCWdyyKCUJG2No85/usTzVT/AIWD8Tltvtg8RWUkItjeBRax5ePzvJUD931Z87R1xycVjTrdnXW1W3sZpdT1OzAVI8BILm8ZxCmSRj/RyCvfOOwJp3/CT29jdW01xYTwW7SpcWwbEiyR2kTR2yDHUGZW3noTzzigD0zS/Fviy/8AENnpA1fe8moR2TyCCLkW8Qe9fhccuyovb05zXsgA+v1ryP4R6PnVru9dhKulWqaaj7twa4c+fcnPc73C59BXrooA4D4Jf8kh0L/t4/8ASiSvQK8/+CX/ACSHQv8At4/9KJK9AoAKKKKACiiigAooooAKKKKACiiigApDS0UActfeBNK1G9lvJrzWUklbcVi1SdFH0UNgfQVX/wCFbaN/z/69/wCDi4/+LrsaKAOO/wCFbaN/z/69/wCDi4/+Lo/4Vto3/P8A69/4OLj/AOLrsaKAOO/4Vto3/P8A69/4OLj/AOLpD8N9G6fb9e9/+Jxcf/F12VGM0AeSz/D7TvEXiQ2dte6umnaTOrXE8mpTSNJcAbhHHuY7dqspLjn5gBjk16vCgjhSMbsKoA3MWOPcnk/XNOCqoICgZOTgdaWgAooooAKKKKACiiigDz/4p9fBX/Y1WP8A7PXoA6CvP/in18Ff9jVY/wDs9egDoKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAENZ6axaS6/PowZvtkNulyynoUZmUEfih/MVo1ymv+BoNZ8Qxa9BrOq6VqMduLbzLGVVV4wxYBlZSDyf0FACfEuKzl+G3iAXqo0a2MjLuxgSBSUP13YrK+Ckt5L8K9KN2WODIsJbr5YchfwHIHsBUt38NhrBjTxF4l1nV7VHD/AGSR44oXI6bxGgLV21pbQWVpFa20SRQQqEjjQYVVAwAKAJqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQ9RS01vx6UAeO/FXWJZ/EkVlaEu+lWheNR/Fe3J8mBfZlUvIPpXmWvNbi0l063kBtWYRFxxmysl27gemJZvMYD+8oHGa93uvhva3WsTarJqd0biW9N8TtU4cR+XD26Rglh7msq1+C2iWjEfb72RCtvEyPtIMUTB2TGOjuoY+/1NAGR8JNB8vW5JZY8DRrJLXkYBup/wB9P+KgpH9FFeyr0rG8M+HYPDemS2sU0lxJPcy3U88oG6WSRssTj8B+FbVABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAh614z8PP8Aku/jv/gX/oxa9V1fTZ9SiSODV7/TtpyzWYi3P7EujfpiuQ0/4VWml61d6vZ+JvEMWoXf/HxOJYCZOe4MRH6UAeg14z8ff+ZR/wCwif8A2WvWYbaaKwW2fULmWUIV+1SCPzCf72AoTP8AwHFcbrvwrtfEr27ax4n8QXRtpPMhDSW6hG9QFhFAHfjoKKx9H0a50tn83X9U1FCMBL3ySF9wUjVvzNa4+tAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXmHxb1mKGTSdMkw0EJfV71OzRW4yiN7PIUUe4r04/pXGa78PbLxBrNxqN7e3DfaPs0bQYG3yYnLmL12s+GP0+tAHzv4vieLQMXb7ri2aO2fP/AC0upc3Fyx/2kJijNbFhZxy6daacsmxHhh05ph/C0/8ApN5J9UjAjPt+npV/8DNM1Qr9u8Q6vMvnSXEgxGN8kjAuwwnBOF9elTQfBWwtrdoU1/VGUxTxgEREKZsLKR8ucsoC8nt6cUAeYx6nLeNcXdvbyR3e57uKHGMz3QWCzjX/AHIsuPx61keMGht9BmgtirxPOttbvx/x62g8reP+uksjt/wE17PefBmxn1dtTtdf1K0n8xXjWPYUjEaBIcKR/ABgHryelVYvgNoxms3v9Wv72OzMaxROqBBGrFimAOjFif8AgR6k5oA6n4U6P/Yvw00WBk2yzQ/aZPUmQl+ffBA/Cuy6Uifd/SnGgDz/AOCX/JIdC/7eP/SiSvQK8/8Agl/ySHQv+3j/ANKJK9AoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPP/in18Ff9jVY/+z16AOgrJ13QLLxDDbRXiybrS4W7tpY3w0M6g7JAOhIyThgV9QRVQeH9Ux/yOWuf9+bL/wCR6AOhornv+Ee1T/octc/782X/AMj0f8I9qn/Q5a5/35sv/kegDoaK57/hHtU/6HLXP+/Nl/8AI9H/AAj2qf8AQ5a5/wB+bL/5HoA6Giue/wCEe1T/AKHLXP8AvzZf/I9H/CPap/0OWuf9+bL/AOR6AOhornv+Ee1T/octc/782X/yPR/wj2qf9Dlrn/fmy/8AkegDoaK57/hHtU/6HLXP+/Nl/wDI9H/CPap/0OWuf9+bL/5HoA6Giue/4R7VP+hy1z/vzZf/ACPR/wAI9qn/AEOWuf8Afmy/+R6AOhornv8AhHtU/wChy1z/AL82X/yPR/wj2qf9Dlrn/fmy/wDkegDoaK57/hHtU/6HLXP+/Nl/8j0f8I9qn/Q5a5/35sv/AJHoA6Giue/4R7VP+hy1z/vzZf8AyPR/wj2qf9Dlrn/fmy/+R6AOhornv+Ee1T/octc/782X/wAj0f8ACPap/wBDlrn/AH5sv/kegDoaK57/AIR7VP8Aoctc/wC/Nl/8j0f8I9qn/Q5a5/35sv8A5HoA6Giue/4R7VP+hy1z/vzZf/I9H/CPap/0OWuf9+bL/wCR6AOhornv+Ee1T/octc/782X/AMj0f8I9qn/Q5a5/35sv/kegDoaK57/hHtU/6HLXP+/Nl/8AI9H/AAj2qf8AQ5a5/wB+bL/5HoA6Giue/wCEe1T/AKHLXP8AvzZf/I9H/CPap/0OWuf9+bL/AOR6AOhornv+Ee1T/octc/782X/yPR/wj2qf9Dlrn/fmy/8AkegDoaK57/hHtU/6HLXP+/Nl/wDI9H/CPap/0OWuf9+bL/5HoA6Giue/4R7VP+hy1z/vzZf/ACPR/wAI9qn/AEOWuf8Afmy/+R6AOhornv8AhHtU/wChy1z/AL82X/yPR/wj2qf9Dlrn/fmy/wDkegDoaK57/hHtU/6HLXP+/Nl/8j0f8I9qn/Q5a5/35sv/AJHoA6Giue/4R7VP+hy1z/vzZf8AyPR/wj2qf9Dlrn/fmy/+R6AOhornv+Ee1T/octc/782X/wAj0f8ACPap/wBDlrn/AH5sv/kegDoaK57/AIR7VP8Aoctc/wC/Nl/8j0f8I9qn/Q5a5/35sv8A5HoA6Giue/4R7VP+hy1z/vzZf/I9H/CPap/0OWuf9+bL/wCR6AOhornv+Ee1T/octc/782X/AMj0f8I9qn/Q5a5/35sv/kegDoaK57/hHtU/6HLXP+/Nl/8AI9H/AAj2qf8AQ5a5/wB+bL/5HoA6GjFc9/wj2qf9Dlrn/fmy/wDkej/hHtU/6HLXP+/Nl/8AI9AHQ4FGK57/AIR7VP8Aoctc/wC/Nl/8j0f8I9qn/Q5a5/35sv8A5HoA6Giue/4R7VP+hy1z/vzZf/I9H/CPap/0OWuf9+bL/wCR6AOhornv+Ee1T/octc/782X/AMj0f8I9qn/Q5a5/35sv/kegDoaK57/hHtU/6HLXP+/Nl/8AI9H/AAj2qf8AQ5a5/wB+bL/5HoA6Giue/wCEe1T/AKHLXP8AvzZf/I9H/CPap/0OWuf9+bL/AOR6AOhornv+Ee1T/octc/782X/yPR/wj2qf9Dlrn/fmy/8AkegDoaK57/hHtU/6HLXP+/Nl/wDI9H/CPap/0OWuf9+bL/5HoA6Giue/4R7VP+hy1z/vzZf/ACPR/wAI9qn/AEOWuf8Afmy/+R6AOhornv8AhHtU/wChy1z/AL82X/yPR/wj2qf9Dlrn/fmy/wDkegDoaK57/hHtU/6HLXP+/Nl/8j0f8I9qn/Q5a5/35sv/AJHoA6Giue/4R7VP+hy1z/vzZf8AyPR/wj2qf9Dlrn/fmy/+R6AOhornv+Ee1T/octc/782X/wAj0f8ACPap/wBDlrn/AH5sv/kegDoaK57/AIR7VP8Aoctc/wC/Nl/8j0f8I9qn/Q5a5/35sv8A5HoA6Giue/4R7VP+hy1z/vzZf/I9H/CPap/0OWuf9+bL/wCR6AOhornv+Ee1T/octc/782X/AMj0f8I9qn/Q5a5/35sv/kegDoaK57/hHtU/6HLXP+/Nl/8AI9H/AAj2qf8AQ5a5/wB+bL/5HoA6Giue/wCEe1T/AKHLXP8AvzZf/I9H/CPap/0OWuf9+bL/AOR6AOhornv+Ee1T/octc/782X/yPR/wj2qf9Dlrn/fmy/8AkegDoaK57/hHtU/6HLXP+/Nl/wDI9H/CPap/0OWuf9+bL/5HoA6Giue/4R7VP+hy1z/vzZf/ACPR/wAI9qn/AEOWuf8Afmy/+R6AOhornv8AhHtU/wChy1z/AL82X/yPR/wj2qf9Dlrn/fmy/wDkegDoaK57/hHtU/6HLXP+/Nl/8j0f8I9qn/Q5a5/35sv/AJHoA6Giue/4R7VP+hy1z/vzZf8AyPR/wj2qf9Dlrn/fmy/+R6AOhornv+Ee1T/octc/782X/wAj0f8ACPap/wBDlrn/AH5sv/kegDoaK57/AIR7VP8Aoctc/wC/Nl/8j0f8I9qn/Q5a5/35sv8A5HoA6Giue/4R7VP+hy1z/vzZf/I9H/CPap/0OWuf9+bL/wCR6AOhornv+Ee1T/octc/782X/AMj0f8I9qn/Q5a5/35sv/kegDoaK57/hHtU/6HLXP+/Nl/8AI9H/AAj2qf8AQ5a5/wB+bL/5HoA6Giue/wCEe1T/AKHLXP8AvzZf/I9H/CPap/0OWuf9+bL/AOR6AOhornv+Ee1T/octc/782X/yPR/wj2qf9Dlrn/fmy/8AkegDoaK57/hHtU/6HLXP+/Nl/wDI9H/CPap/0OWuf9+bL/5HoA6Giue/4R7VP+hy1z/vzZf/ACPR/wAI9qn/AEOWuf8Afmy/+R6AOhornv8AhHtU/wChy1z/AL82X/yPR/wj2qf9Dlrn/fmy/wDkegDoaK57/hHtU/6HLXP+/Nl/8j0f8I9qn/Q5a5/35sv/AJHoA6Giue/4R7VP+hy1z/vzZf8AyPR/wj2qf9Dlrn/fmy/+R6AOgIB6ilrnv+Ee1T/octc/782X/wAj0f8ACPap/wBDlrn/AH5sv/kegDocCjArnv8AhHtU/wChy1z/AL82X/yPR/wj2qf9Dlrn/fmy/wDkegDocDPSjFc9/wAI9qn/AEOWuf8Afmy/+R6P+Ee1T/octc/782X/AMj0AdDQa57/AIR7VP8Aoctc/wC/Nl/8j0h8P6pn/kctc/782X/yPQBg/BL/AJJDoX/bx/6USV6BWN4V8OWnhLw5a6JYSTyW1tv2NOQX+Zy5yQAOrHtWzQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUABAPUUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVyXjvxFqXh+HQhpn2UTalq8GnM9zE0iosgb5tqspJBA71cFp4wx/wAhzQ//AATzf/JVAHQ0Vz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0fY/GH/AEHND/8ABPL/APJNAHQUVz/2Pxh/0HND/wDBPL/8k0htPGH/AEHND/DR5f8A5JoA6GiuX+HfiO88WeBdO1u/jgjubnzd6wKQg2yMgxkk9FHeuooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPP/AIp9fBX/AGNVj/7PXfjoK4D4p9fBX/Y1WP8A7PXoA6CgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAry34n+KPEWkeJNH0zRtRXT7Wa2nuru5+zpKyRxDcx+cEfdB/EivUG4OefoO9eB+PtSTWvFuqly7Wiuukjyz8wghH2m9YZ43DCL2znqKAMTUfiN8Q9I0wXZ8QpNthtxOk1lCDHLOjyoF2ryVjVSc8Atg13fgvxr4h8UeI9Oj+2lLG4+06hJE0UYK2akQwoSFzlpAzE9cdOK8W8Q6nPrccFs9s1nJcXT3lwboeWgluCvl4P8AcEKrgnAwXI9T718H9Ihg03UtWiJkgnlWzspCMb7a3Xy1cehZt7H3NAHpg96WkAwKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDL1vVZ9KtkNppd5qV1KdsUFsoAJ9WdiFQe5P0BrgPAPjTxJ4h+Iuv6RraW9tHp8OFtIMMqMHAJL9WODj09q9SPWvGfh5/yXbx2O3P/AKMWgD2KSXyonkIYqq5IRSzfkAST7CvIfH3xH8W6VLpYsNJ/smwvboRJcXex55ACM4j5CAjP3sn6V7HivGfj8MjwkD0OokH/AMdoA9kU7hmnUDoKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQgZ6UtBoA8/wDgl/ySHQv+3j/0okr0CvP/AIJf8kh0L/t4/wDSiSvQKACikOc8Vg6zrcsOo2Wj6Zsl1K4kVpFILCC3B+eRwDwMAquSMsw9DQBv0U0HqcGlzQAtFJmjNAC0UmaM0ALRSc+v6Uc+v6UALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAef/FPr4K/7Gqx/wDZ69AHQV5/8U+vgr/sarH/ANnr0AdBQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBleJNYi8P8AhzUNWmwUtIHl2k43EDhfqTgfjXzghSe9Ogz3LC/MMNpcufvI1wzXF7N9VRPLPtX0V4m8PQ+J9Oi0+5mkjtRcxTTIgB85UYMEOexIB/CuCvfgfpl3dPeLrmpQ3kkcyzXEW0GUyO7OWyOcrIVxxwBnNAHletT293ol7e3cIWN4ZdSMOeFkuD5NpF/wCJWkHtXtHwRNyfhTpX2gHAabys9dnmNj9c/hWZF8ENMlu1fVNb1C/t/MR5LVgsaSCNPLjDbQPurwMY4z6mvULW2hs7WK2tokhgiUJHGgwqqBgAD6UATUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIeteM/Dz/ku/jv8A4F/6MWvVdX02fUokjg1e/wBO2nLNZiLc/sS6N+mK5DT/AIVWml61d6vZ+JvEMWoXf/HxOJYCZOe4MRH6UAeg14z8ff8AmUf+wif/AGWvWYbaaKwW2fULmWUIV+1SCPzCf72AoTP/AAHFcbrvwrtfEr27ax4n8QXRtpPMhDSW6hG9QFhFAHfjoKKx9H0a50tn83X9U1FCMBL3ySF9wUjVvzNa4+tAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQaKDQB5/8Ev+SQ6F/wBvH/pRJXoFef8AwS/5JDoX/bx/6USV6BQA1uoryrUvAWnaD4nfVJbvVX0zVbhY7l01CVHtpmOEYsrDchLBfm5Ukc4r1ekKqwwQD9RQBxw+G+jnrf67n21i4/8Ai6X/AIVto3/P/r3/AIOLj/4uuxooA47/AIVto3/P/r3/AIOLj/4qkHw20Yf8v+vf+Di4/wDiq7KigDjv+FbaN/z/AOvf+Di4/wDi6ltfAGlWV3DcxXuts8Lh1WTVbhlJB6EFsEeoNdZRQA38Afxo/wCAr+dOwPSkwPQUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAef8AxT6+Cv8AsarH/wBnr0AdBWTrugWXiGG2ivFk3Wlwt3bSxvhoZ1B2SAdCRknDAr6giqg8P6pj/kctc/782X/yPQB0NFc9/wAI9qn/AEOWuf8Afmy/+R6P+Ee1T/octc/782X/AMj0AdDRXPf8I9qn/Q5a5/35sv8A5Ho/4R7VP+hy1z/vzZf/ACPQB0NFc9/wj2qf9Dlrn/fmy/8Akej/AIR7VP8Aoctc/wC/Nl/8j0AdDRXPf8I9qn/Q5a5/35sv/kej/hHtU/6HLXP+/Nl/8j0AdDRXPf8ACPap/wBDlrn/AH5sv/kej/hHtU/6HLXP+/Nl/wDI9AHQ0Vz3/CPap/0OWuf9+bL/AOR6P+Ee1T/octc/782X/wAj0AdDRXPf8I9qn/Q5a5/35sv/AJHo/wCEe1T/AKHLXP8AvzZf/I9AHQ0Vz3/CPap/0OWuf9+bL/5Ho/4R7VP+hy1z/vzZf/I9AHQ0Vz3/AAj2qf8AQ5a5/wB+bL/5Ho/4R7VP+hy1z/vzZf8AyPQB0NGB6Vz3/CPap/0OWuf9+bL/AOR6P+Ee1T/octc/782X/wAj0AdDijGOlc9/wj2qf9Dlrn/fmy/+R6P+Ee1T/octc/782X/yPQB0NFc9/wAI9qn/AEOWuf8Afmy/+R6P+Ee1T/octc/782X/AMj0AdDRXPf8I9qn/Q5a5/35sv8A5Ho/4R7VP+hy1z/vzZf/ACPQB0NFc9/wj2qf9Dlrn/fmy/8Akej/AIR7VP8Aoctc/wC/Nl/8j0AdDRXPf8I9qn/Q5a5/35sv/kej/hHtU/6HLXP+/Nl/8j0AdDRXPf8ACPap/wBDlrn/AH5sv/kej/hHtU/6HLXP+/Nl/wDI9AHQ0Vz3/CPap/0OWuf9+bL/AOR6P+Ee1T/octc/782X/wAj0AdDRXPf8I9qn/Q5a5/35sv/AJHo/wCEe1T/AKHLXP8AvzZf/I9AHQ0Vz3/CPap/0OWuf9+bL/5Ho/4R7VP+hy1z/vzZf/I9AHQ0Vz3/AAj2qf8AQ5a5/wB+bL/5Ho/4R7VP+hy1z/vzZf8AyPQB0NFc9/wj2qf9Dlrn/fmy/wDkej/hHtU/6HLXP+/Nl/8AI9AHQ0Vz3/CPap/0OWuf9+bL/wCR6P8AhHtU/wChy1z/AL82X/yPQB0NFc9/wj2qf9Dlrn/fmy/+R6P+Ee1T/octc/782X/yPQB0NFc9/wAI9qn/AEOWuf8Afmy/+R6P+Ee1T/octc/782X/AMj0AdDRXPf8I9qn/Q5a5/35sv8A5Ho/4R7VP+hy1z/vzZf/ACPQB0NFc9/wj2qf9Dlrn/fmy/8Akej/AIR7VP8Aoctc/wC/Nl/8j0AdDRXPf8I9qn/Q5a5/35sv/kej/hHtU/6HLXP+/Nl/8j0AdDRXPf8ACPap/wBDlrn/AH5sv/kej/hHtU/6HLXP+/Nl/wDI9AHQ0Vz3/CPap/0OWuf9+bL/AOR6P+Ee1T/octc/782X/wAj0AdDRXPf8I9qn/Q5a5/35sv/AJHo/wCEe1T/AKHLXP8AvzZf/I9AHQ0Vz3/CPap/0OWuf9+bL/5Ho/4R7VP+hy1z/vzZf/I9AHQ0Vz3/AAj2qf8AQ5a5/wB+bL/5Ho/4R7VP+hy1z/vzZf8AyPQB0NFc9/wj2qf9Dlrn/fmy/wDkej/hHtU/6HLXP+/Nl/8AI9AHQ0Vz3/CPap/0OWuf9+bL/wCR6P8AhHtU/wChy1z/AL82X/yPQB0NFc9/wj2qf9Dlrn/fmy/+R6P+Ee1T/octc/782X/yPQB0NFc9/wAI9qn/AEOWuf8Afmy/+R6P+Ee1T/octc/782X/AMj0AdDRXPf8I9qn/Q5a5/35sv8A5Ho/4R7VP+hy1z/vzZf/ACPQB0NFc9/wj2qf9Dlrn/fmy/8Akej/AIR7VP8Aoctc/wC/Nl/8j0AdDRXPf8I9qn/Q5a5/35sv/kej/hHtU/6HLXP+/Nl/8j0AdDRXPf8ACPap/wBDlrn/AH5sv/kej/hHtU/6HLXP+/Nl/wDI9AHQ0Vz3/CPap/0OWuf9+bL/AOR6P+Ee1T/octc/782X/wAj0AdDRXPf8I9qn/Q5a5/35sv/AJHo/wCEe1T/AKHLXP8AvzZf/I9AHQ0Vz3/CPap/0OWuf9+bL/5Ho/4R7VP+hy1z/vzZf/I9AHQ0Vz3/AAj2qf8AQ5a5/wB+bL/5Ho/4R7VP+hy1z/vzZf8AyPQB0NFc9/wj2qf9Dlrn/fmy/wDkej/hHtU/6HLXP+/Nl/8AI9AHQ0Vz3/CPap/0OWuf9+bL/wCR6P8AhHtU/wChy1z/AL82X/yPQB0NFc9/wj2qf9Dlrn/fmy/+R6P+Ee1T/octc/782X/yPQB0NFc9/wAI9qn/AEOWuf8Afmy/+R6P+Ee1T/octc/782X/AMj0AdDRXPf8I9qn/Q5a5/35sv8A5Ho/4R7VP+hy1z/vzZf/ACPQB0NFc9/wj2qf9Dlrn/fmy/8Akej/AIR7VP8Aoctc/wC/Nl/8j0AdDRXPf8I9qn/Q5a5/35sv/kej/hHtU/6HLXP+/Nl/8j0AdDRXPf8ACPap/wBDlrn/AH5sv/kej/hHtU/6HLXP+/Nl/wDI9AHQ0Vz3/CPap/0OWuf9+bL/AOR6P+Ee1T/octc/782X/wAj0AdDRXPf8I9qn/Q5a5/35sv/AJHo/wCEe1T/AKHLXP8AvzZf/I9AHQ0Vz3/CPap/0OWuf9+bL/5Ho/4R7VP+hy1z/vzZf/I9AHQ0Vz3/AAj2qf8AQ5a5/wB+bL/5Ho/4R7VP+hy1z/vzZf8AyPQB0NFc9/wj2qf9Dlrn/fmy/wDkej/hHtU/6HLXP+/Nl/8AI9AHQ0Vz3/CPap/0OWuf9+bL/wCR6P8AhHtU/wChy1z/AL82X/yPQB0NFc9/wj2qf9Dlrn/fmy/+R6P+Ee1T/octc/782X/yPQB0NFc9/wAI9qn/AEOWuf8Afmy/+R6P+Ee1T/octc/782X/AMj0AdDRXPf8I9qn/Q5a5/35sv8A5Ho/4R7VP+hy1z/vzZf/ACPQB0NFc9/wj2qf9Dlrn/fmy/8Akej/AIR7VP8Aoctc/wC/Nl/8j0AdDRXPf8I9qn/Q5a5/35sv/kej/hHtU/6HLXP+/Nl/8j0AdDRXPf8ACPap/wBDlrn/AH5sv/kej/hHtU/6HLXP+/Nl/wDI9AHQ0Vz3/CPap/0OWuf9+bL/AOR6P+Ee1T/octc/782X/wAj0AdDQa57/hHtU/6HLXP+/Nl/8j0h8P6pn/kctc/782X/AMj0AYPwS/5JDoX/AG8f+lElegVjeFfDlp4S8OWuiWEk8ltbb9jTkF/mcuckADqx7Vs0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADJeg/3h/MU7tTZeg/3h/MU7tQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSN90/SlpG+6fpQAq9KWkXpS0AFFFFABRRRQAUUUUAFFFFABRRRQB//9k='] Multimodal Competition True Theorem proof Combinatorics Math English 7 "In the diagram, $C$ lies on $B D$. Also, $\triangle A B C$ and $\triangle E C D$ are equilateral triangles. If $M$ is the midpoint of $B E$ and $N$ is the midpoint of $A D$, prove that $\triangle M N C$ is equilateral. " "['Consider $\\triangle B C E$ and $\\triangle A C D$.\n\n\n\nSince $\\triangle A B C$ is equilateral, then $B C=A C$.\n\nSince $\\triangle E C D$ is equilateral, then $C E=C D$.\n\nSince $B C D$ is a straight line and $\\angle E C D=60^{\\circ}$, then $\\angle B C E=180^{\\circ}-\\angle E C D=120^{\\circ}$.\n\nSince $B C D$ is a straight line and $\\angle B C A=60^{\\circ}$, then $\\angle A C D=180^{\\circ}-\\angle B C A=120^{\\circ}$.\n\nTherefore, $\\triangle B C E$ is congruent to $\\triangle A C D$ (""side-angle-side"").\n\nSince $\\triangle B C E$ and $\\triangle A C D$ are congruent and $C M$ and $C N$ are line segments drawn from the corresponding vertex ( $C$ in both triangles) to the midpoint of the opposite side, then $C M=C N$.\n\nSince $\\angle E C D=60^{\\circ}$, then $\\triangle A C D$ can be obtained by rotating $\\triangle B C E$ through an angle of $60^{\\circ}$ clockwise about $C$.\n\nThis means that after this $60^{\\circ}$ rotation, $C M$ coincides with $C N$.\n\nIn other words, $\\angle M C N=60^{\\circ}$.\n\nBut since $C M=C N$ and $\\angle M C N=60^{\\circ}$, then\n\n$$\n\\angle C M N=\\angle C N M=\\frac{1}{2}\\left(180^{\\circ}-\\angle M C N\\right)=60^{\\circ}\n$$\n\nTherefore, $\\triangle M N C$ is equilateral, as required.' 'We prove that $\\triangle M N C$ is equilateral by introducing a coordinate system.\n\nSuppose that $C$ is at the origin $(0,0)$ with $B C D$ along the $x$-axis, with $B$ having coordinates $(-4 b, 0)$ and $D$ having coordinates $(4 d, 0)$ for some real numbers $b, d>0$.\n\nDrop a perpendicular from $E$ to $P$ on $C D$.\n\n\n\nSince $\\triangle E C D$ is equilateral, then $P$ is the midpoint of $C D$.\n\nSince $C$ has coordinates $(0,0)$ and $D$ has coordinates $(4 d, 0)$, then the coordinates of $P$ are $(2 d, 0)$.\n\nSince $\\triangle E C D$ is equilateral, then $\\angle E C D=60^{\\circ}$ and so $\\triangle E P C$ is a $30^{\\circ}-60^{\\circ}-90^{\\circ}$ triangle and so $E P=\\sqrt{3} C P=2 \\sqrt{3} d$.\n\nTherefore, the coordinates of $E$ are $(2 d, 2 \\sqrt{3} d)$.\n\nIn a similar way, we can show that the coordinates of $A$ are $(-2 b, 2 \\sqrt{3} b)$.\n\nNow $M$ is the midpoint of $B(-4 b, 0)$ and $E(2 d, 2 \\sqrt{3} d)$, so the coordinates of $M$ are $\\left(\\frac{1}{2}(-4 b+2 d), \\frac{1}{2}(0+2 \\sqrt{3} d)\\right)$ or $(-2 b+d, \\sqrt{3} d)$.\n\nAlso, $N$ is the midpoint of $A(-2 b, 2 \\sqrt{3} b)$ and $D(4 d, 0)$, so the coordinates of $N$ are $\\left(\\frac{1}{2}(-2 b+4 d), \\frac{1}{2}(2 \\sqrt{3} b+0)\\right)$ or $(-b+2 d, \\sqrt{3} b)$.\n\nTo show that $\\triangle M N C$ is equilateral, we show that $C M=C N=M N$ or equivalently that $C M^{2}=C N^{2}=M N^{2}$ :\n\n$$\n\\begin{aligned}\nC M^{2} & =(-2 b+d-0)^{2}+(\\sqrt{3} d-0)^{2} \\\\\n& =(-2 b+d)^{2}+(\\sqrt{3} d)^{2} \\\\\n& =4 b^{2}-4 b d+d^{2}+3 d^{2} \\\\\n& =4 b^{2}-4 b d+4 d^{2} \\\\\nC N^{2} & =(-b+2 d-0)^{2}+(\\sqrt{3} b-0)^{2} \\\\\n& =(-b+2 d)^{2}+(\\sqrt{3} b)^{2} \\\\\n& =b^{2}-4 b d+4 d^{2}+3 b^{2} \\\\\n& =4 b^{2}-4 b d+4 d^{2} \\\\\nM N^{2} & =((-2 b+d)-(-b+2 d))^{2}+(\\sqrt{3} d-\\sqrt{3} b)^{2} \\\\\n& =(-b-d)^{2}+3(d-b)^{2} \\\\\n& =b^{2}+2 b d+d^{2}+3 d^{2}-6 b d+3 b^{2} \\\\\n& =4 b^{2}-4 b d+4 d^{2}\n\\end{aligned}\n$$\n\nTherefore, $C M^{2}=C N^{2}=M N^{2}$ and so $\\triangle M N C$ is equilateral, as required.\n\n\n\n#']" ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAUMB/gMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAopCcDpms7Rddsdft57jTpDLBDcPb+bj5XZDhip7jPGe+KANKiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKQHNLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUjHaM4JoJxWD4t8RN4e0dpbe1e91KcmOys41LPPJjPQfwgAknsB64oA5n4oeIb1dB1fSdFl8q4gsXub+6H/LvFg7UB/vyEYHcAE+lP8AglbfZ/hRo7YwZTNIR9ZXx+gFcd4v1ZdL+FGsWL6Rrq398Ve71C8s/LSWZpF3MTk4GBhRzgACvSPhpbi1+Gvh2PGCbGOT/vsbs/rQB1dFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAgpaQdaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigClqmoxaVYtdTQ3UyqcCO1t3nkY9gFQE/j0ri/A99c+Itd1PXNZ0nUdPvkYwWNveWkkaxWvByrMoUszElsHPyqOg59AIyOuKTGD0zmgDyn423N7qfhJtB0nSNWvruS5jaT7Pp8zoqDLE7wu0844BNdt4Iu0m8KaZbC0vbWS0s4YZIru0kgKMqAEDeoz06jIqzY+JtE1LWb7SLPUIJdQsDi4gU4ZOnTPXGQDjODwcGtdB7UAOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEAx3paKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEJxXJfEbxjH4L8I3OoAK17J+5s4mGd8rA4/AAEn6Y6kV1rdK8b0rPxR+K8mrsS3hzw22y0H8NxcZzu/MA/RU9TQB534m8BeIfAmlaH4wj1CePU5X3X8u8lreZySCx5JBB2tnILZ6hsV6x4G+Kgv7uHQfFkKabrrKvlSEjybwEfKyMOMt2wdrfwnnA9A1vRrPXdFu9Kv03211GY3Xv7Ee4PI+grxbwtoVlr9vqXwy8XIDqmjMx029QYk8k4IKMeoGVOD/CwGPloA94DAkjuKdXjGneLvEHwt1CHRPG4kv9Ddglnrcalii9g46ngcg/MMHG4Yr2C1vIL21jurWWOa3lUPHLGwZXU9CCOCKAJ6KQGloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKQHPaloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApGOBmlPFV769t9PsLi9u5RFbW8bSyyHoqqMk/kKAPP8A4ueKLnTtFt/DmkAvrmuv9mgWM/MkZ4Zs9s52g+5Paup8GeGbXwj4WstGtcN5KZllA/1sh5Z/xPT0AA7VwHw0srnxr4s1H4j6rEVhdmtdIhcf6uJcqW9M8lcjuZPavXQMGgAIyMHpXlvxb0K7sW07x7oiE6rojgzgZ/e2/O4HHYZbOP4Wb0Fep0yWNJomilRXjcFWVhkEHqCO4oAw7G50bx34ShuGgju9M1GEF4pOR7qfRlIxkcgj2rzS60XxJ8ILqbUvDol1fwmzmS505zmS2B6sp68evp1z94T+DJX+G3xEvPBF07HR9UY3WkOScI3OY8nvgY69VX+/XsI5x6+tAGL4X8V6P4u0pNQ0e6E0ZAEkZ4eJu6uvUH9D2JFbeecV5X4p+Gt7pWpv4p+H0w0/Vly09gOILodSNp4BPp0zgjaRmtnwJ8SrHxUz6bewtpniCAlLjT5/lYsOpTPJHseRg5yMEgHeUUgbNLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADV/pTqQAg8+lLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACN0ryT4oahdeKfEOnfDjSJSr3bCfVJlwfJgByAfw+bHH8H96vQfFXiS08K+Gr7WbzmO2TKoDzI54VR9TxXG/CLw9dpp134v1obtZ15jOWYf6uE8oo9Aev02jtQB6Fpmn22ladbafZR+Xa20SwxJnO1VGAM96t0gBHeloAKQjIxS0UAcL8U/CEnijwv51huXWdNf7VYyJw24clAffHH+0Fq98O/GEXjTwlbalgLeL+6u4xxslXrx2B6j611bcivG9QUfC34rpqi/u/DPiRtlz/AHYLjru9hkls8cM392gD2M4YYri/HXw403xhGl2kjWGtwYNvqMIw6kcgPj7wGOO47Gu1X657UEZFAHkvhz4kal4b1RPDHxFiFrefdttU4ENyueCzdB9eOvzBTmvWQwYAqQQehrJ8R+GtJ8UaTJp2r2qzwOcqc4eNuzK3VT9PpyDXlkN/4m+DNwlrqQn1vwazBYrpR+9swTgKe2O2DgdMEfdIB7XRWfpGs6frmmQajpd1HdWky5SVD+hHUEdwQCO4q+DntQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACAYpaKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApD2pa4r4neMv8AhEPCUs1tzql4fs9igGT5h/ix/sjnp1wO9AHHeISfif8AFS38NRfP4e8PuJ9SdT8s03QIT+aY6/6yvY0G0YA4HAx0Fcf8M/Bw8HeEobWYZ1K5P2i9kJyTKw+7n/ZHH5nvXZAYNAC0UUUAFFFFAAa57xp4WtvF/hW80e4IVpVzDJj/AFco+6359u4JHeuhpGOBQB5z8JPFFzqmjXGgavldc0OT7LcK55dAcK3v02n6A969GBzXkPxIsp/BXi/TfiLpkTNCGW11iJB/rImwAx/DC59VT3r1eyvLfULSC8tZVlt541kikU8OpGQR+BFAE5GRio57eK4gkgnjSWGVSrxuoZWB6gg9QfSpaCM0AeN6t4K174d6nN4g+H++4sHO680N8sHA6mMdT7AcjtkcV3Hgnx7o3jfTvtGnSGO6jH7+ylI8yI+v+0D/AHh+ODkDqtvGK878afDIalqI8SeFrs6P4liO4TRfLHcHuJAO59cHPIIPYA9FBz2pa818E/E37dqJ8NeK7U6R4liIjMTjbHcHsUPYnjjODwVJ6D0lW3duMZzQAtFFFABRRRQAUUhOKwtS8aeG9HujbalrNnaTjjZNJtP60Ab1FMWRXQMpBUjIIOax9T8YeHtGuvsupaxaWk/9yeQIT9M9eo6UAbdFQWl5BfW6XFu4kicEqw6HBxU9ABRRRQAVBeXQs7V52imlC4+SGMux57Acmp6oa5qUWjaFf6pNgxWdu87A/wAW1ScfpQBytl8WPDWpSzxWEerXUlucTJBpk8hjP+1tU45yOfSi++LXhjTHjTUF1W0eTiNbjTJoy/03KM1zvwB0p7fwdd63c83GrXbPvP8AEiEqP/Hi/wCdd3d2eneM9HhwQ9qt5HPHIUB3NDMCcezbCM9wxPQ8gG+DntS0gGKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQnAzQAkjKqEsQAOSSeleOeGVPxQ+KFz4qmBbw/oTfZ9MBGBLL134/JufVPQ1r/ABf8RXYsLTwbonz6zrzeTgH7kGcMT6A8j6bvSu28LeHrTwr4dstFs+YraPaXPWRics59ycn8aANcDHeloooAKKKKACiiigApCM0tFAFLVNMtdW0q5029iEttcxtFInTII5wex9D2rzL4WajdeF9d1L4caxIWms3abTJnGPOgPOB+e7GT1cfw16yRkV5n8XfDl21jZ+MNFG3WdBcTggcyQg5ZT6gcnHoW9aAPTAcilrG8K+IrTxX4cstasyPLuY8lM8xuOGX8CCP/ANdbNABRRRQBy3jPwFo3jbTfs+px7blAfIvIx+8hPse6/wCz0/HmuE0vxtr/AMNtSj0Dx8ZLvTXO2z1yMFwR6Sdz75+Yf7QINeyEZqjqukafrWnS6fqdrHdWsw2vFIOD6HPUEdcjkdaALMFzDdW8dxbypNBKgeOSNgyupGQQR1BHepAc14pNp/iT4OXMl5pAm1nwaWMk1mxzLZqeSy+g6nI49cHmvUvDXinSfFekR6lpN0s0LYDL0eNv7rr1B/n2JBBoA2qKQHJx3paAEbpz615p8X9Jm8U2Om+GbNYze3BnvFZlztWGJuPbc7xrn3NelngVyWj41P4ha9qX/LLT4YtMhbtuP76X/wBCjH/AaAMz4OeJT4i+H1mJnY3en/6HNk8/KPlJ+q4/EGretWsOt/E7QbGSNXi0i1l1GQEZG9yI4vxyJG/4DXGaCf8AhAvjxqWit8ml+Ik+02/91ZMkge3zeYuO+VrufBo/tHV/EmvsMrd3xtIG6gw248vj2MnmmgDrlGKdRRQAUUUUAFeWfHrWmsPh+umwnNxqlykCqOpUHe2PxCj/AIFXqEriOF5GDFVUkhVLHA9AOSfYV4Z46u9Q8RfFHw7cjw7r83h/SJFkaRdKn+d9wZiFK5I+VB07GgDpL34X/Zvh5LY2eq68t7FYHbBDqEvlPMEyV8vO3DNnI969B0LTIdF0Sx0uH7lnbpADjrtUDP1OM/jXP3XxBtYIGeLw94oumHRItFnBP/fSgVU8B3uueI9V1PxDrml3Olov+h6fZXEbI8cfDO53AZLHZyOPkx2oA7yiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKpatqdro+k3epXsnlWtrE0sj+wGePU+g9auN0ryH4kXlx418Y6b8OtMldYdy3eryp/yzjGGC/XBB+pSgCT4V6ZdeJdb1L4j6whW5vmaHTom5EMA4yPy254zhj/FXrQGKgsrSDT7OGztYlht4I1jjjToigYAH4CrFABRRRQAUUUUAFFFFABRRRQAU1wCpBAIPBBp1FAHjfhpj8MPijceFZSV8P663n6YWPyxSnjZn8l/BPWvYwc9q4v4neDv+Ev8IzQ24xqdoftFi44PmD+HP+0OOvXB7U74Z+MR4w8JxXE5xqdqfs99GeGEij72P9rr7HI7UAdnRSA5NLQAUGiigBhQEY/nXlXiT4cal4f1Z/FHw7mFnf53XGmE4guh1IAzgd+OB6FSOfWKQjI64oA4fwJ8SNO8XrJZTRNp+u25K3Gnz/K4YdSucZHHTqMc9ie3DZ7VxHjr4a2HiwrqVpO2ma/b4a31CH5WJHQPjkjgYPUdvQ4Phr4lX2j6qPC3xDhWw1JMCDUT8sF0vZi3QE+vTqCFIxQB6FrfiPSPD1i13quoW9rGFLKJJADJjqFBPzH2Fc38K9Ss9U8ILdwXcE15dTzXl6kcgZo5JJGOGHUYGAM9QtdsAG9qcFwSfWgDyr456HcS+HrDxNpu5dR0S5WVHQfMEZhz7kMEP513nhLSDoPhXTNMfmW3t1WVv70h5c/ixY/jWvJGk0ZjkRXRuCrDINOAxQAtFFFABRQaQsFBJ6CgAOMc9Kbjk88+46VwviT4v+EfDsht/tp1G8yALewAlOc4wWyFB9s59q5HVvFfxI1vSLrU4bK38IaHbxmSS6vfnuCo6hQRnJ7DaMnGDQB7RnJwM8UqgA8DHHH0r5j8Fa34m8HT6V4z1u7vLjQNYuHtrnzpXcgcBZWBJ5ypI9kYD7wr6bjkWQBkYMpGQynINAD6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACgnAzRSNwM0Ac/418VW3g/wreaxcAM0S7YIi2PNlPCr9M8n0AJ7VzXwk8LXOlaHPrur5bXdbkN1cs4+ZFJyqn0PJYjjBOP4awL8f8LS+KyaaMSeGfDTB7jgFLi4/unsRkYxzwrf3q9jUc9P/AK1ACgYpaKKACiiigAooooAKKKKACiiigAooooARq8b8Qh/hl8UoPE8K7PD2vOINTVfuwzE5EhHbu+ev+s9a9kIyMVi+KfDdp4p8N3uj3vEdwmFcDmNxyrD6Hn9KANhCGAZTkHkY6U+vMvhF4iunsLzwhrR261oLGFgT/rIRwrD1A4H0KnvXpgOe1AC0UUUAFFFIWAxnj60AB7fWsPxL4V0fxbpLafrFqJoyDskHDxMf4kbqD09j3yKZ4p8Z6D4PsRc6zfJCWGYoF5ll/wB1ep+vQZ5Irzg3/j74o8aWjeFvDMvS6k/4+bhOoIAwcdOmBgkbmoAyNP8AHV38JPEg8K6xqkWt6EnEM0Lhp7NeyuPb+7npgg/w17jpmq2Os6dDqGnXMdzaTDMcsbZDf/X9R1B4OK8O+Ifw48PeE/DPh+z0233XF1rMEM93P88kilXGCegH+yMDgfWtjU/CHiD4Y6hNrfgYPfaM7b7zRJGLY/2o+5wMcj5hgZ3CgD2UHNKeBXLeDfHWieNNJN7ptwBJGP8ASLaUgSQn/aHcejDg/UEVk+IvjD4S0Kc2kd42p32QottPAlJYnAG7hc57ZyPSgDvd3sazda8SaN4ctRc6xqVtZRkfL5rgFv8AdHVj9BXmg1D4qeNz/oFlB4S0x+DLcfNcMOQcZGffovsa1dE+C3h60uv7Q12a68Q6k2C89+5ZC3rszyPZi1AFC4+MN5r88ll4B8MXmsTAlTdzr5cCHsT7f7xSo1+G3i/xiRL468UyR2p5/svTMKnrhjjBx7hvrXq8FrBawJBbRJDCgwkcahVUegA4qQDaOuaAOe8O+BvDfhOMLo+kwQSdDORvlPrl2yfwzj2rgviHcz+OvGmnfDzTpWWzjZbvWJkPCoMEIcfUdf4mT0rvfHHiu28G+FLzV7ja0iLst4Sf9bKR8q/1PsCa574S+FLjRtBl1nViX13Wm+1XcjD5lByVU+h+bcR6sR2FAHT614X07W/CM/h2SIRWT24hjVFH7naBsK+6kAj6Vxnwh1+7S1vfBetHGsaCfKXLf62DOFK+oHAz/dK16cFxXk/xV0y78O6tp3xG0aPdcacyxahEpx50BOOfpnGcHgg/w0Aes59qWqOkaraa3pdtqVjKJbW5jEkbjuD6+h9R2OR2q9QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjHaM1wnxU8Yy+F/DH2fT9zazqT/ZbGNOX3HALge2Rj3Za7maVIIHmldY40UszscBQBySa8e8FQSfEf4h3nji6UjSNMY2ukRsOGbvJg98Enp1Yf3KAO4+HfhCLwZ4RttN+Vrx/wB9eSDnfMfvc9wOAPpXVgUAYpaACiiigAooooAKKKDQAUUmfagHNAC0UE4GaTNAC0UUUAFI3T8aWg0AeSfFHTrrwxr+nfEfR4i0tmywanCvAmhJxk/gduef4T/DXp+l6lbavpttqNnL5ltcxLLG3TKkZHHY1Je2UGoWM9ndxiW3njaKWNujKwwR+Rryj4aXlx4K8W6j8OdUlLQqWu9IlY8yRHJK+meC2AOCJOvFAHr9ITgZppkVQSxCqOpJ4rzTxH8XrRb46J4Osn8Q603C/ZxugjPqWH3gOOnHqwoA9C1LVLHSLCS91G7htbWMfPLM4VR6c+p7Dqa8svPiR4h8a3cumfDnTW8lTtl1q8TZFH7qCOvIxkE9fl7iXTvhbqfia/j1f4jaq2oTKd8Wl27FbeH2OMZ7dMZxyzV6fb29pptkkNrDDbWkCYRI1CJGo9AOAP8A69AHB+F/hHpel3n9r+ILh9f1tiGa4uxuRCP7qtn8znoMYr0TABzzXAa/8YvCWiyC3tbp9XvjwttpwEuSenzA7evYEn2rCN18VvG5xbW9v4R0x+PMm+a5Ze/UZB/BPrQBN8cNQtLKw8MfaJ1Qx61DcMvVhGobcwA5wMjt3ps/xd1LxDO9l4B8L3WquDsN5dAxwKfzHH+8y1yHjb4Z2Hhm48MzS3t3q+o6jq8MF1cXjbhIvcAc8H3LH3r6Et7aG1gS3t4khhjG1I41Cqo9ABwKAPANS+B/irXEv9c1LVdNi1m5zIbS2h2RSHqQzrgAn1wcnktzmug+FGs+F9Ou28OXXh+30DxTARFIkoy1x0OUkYlueDtzg5BXIyR7Jj3Ncn43+H2jeN7EJfIYb6If6PexDEkZ6491z2PuRg80AdWOT34p2MV49o3jvW/AGqReHPiErSWrnbZa4gJSRfR/6nqOMgg7q9chuIriJJYXWSJ1DI6HcGB6EEdRQBLSMcDpn8M0Zrgvir4vn8OeGlstMy2t6q/2SxjQ/OC2AXA9RkAe5WgDlrkf8LV+LP2b/WeGPDLZk7pcXGeh7EZBHfIQ9N3HsqjB61zHw/8ACMPgvwnaaWm03BHm3Ui/8tJT97n0HCj2ArqaACoLu1gvbOa1uolmt5kMckbjIdSMEH2IOKnoNAHkHw5up/AvjLUPh3qcztauxutHmkP30OSU+pwTgYG5X9a9eDZOMYrzz4teFLnWNBh1vSSya5oj/arV0HzMq8svv0BA9RjvXReCPFNv4x8KWerwbVeRds8Sn/VSjhl+meR7EUAdFRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFITgZPSlNZ2uaxZ6Bot5qt/II7a1jMjtn8AB7k4A9zQB578W9cu79tP8AAOiORqmtti4YH/U2wzuJx2ODn/ZVvUV6B4e0S08OaFZaRYrtt7SIRrwAWPUsccZJySfUmvO/hNo11q93qPxA1uLbqGsMfsiEf6i3GAMZ9doA/wBlR/er1bHOaAFooooAKKKKACiiigApGztO04PYmlpsjKiFnICryST0xQB5HcfEHXtL+Mdj4QuLyxu7GZ1WSRLYxuhdCQud55HynPvXro/zmvm7xKrQat4F8XurB9U1ma9kJHPlGWLyh/36Va+gdZ1i00HSbjUr5ysEIzhRlnJOFVR3YkgAepoA5X4ofEGLwL4fEkAjl1W5O21hbkD+87D+6M/iSBWj4Hn8SaloNjquv3dr5l3AJhbW9uUEYbBXLFiScckY4J9q8c8e6Xe654r8NaRqY/4nOuXC3N5EDu+yW4JEcS+yKZSfVsn0r6KjRY0VEUKigBQOgFAD6KKKACgnFITjtmsbxF4r0XwrYm71m+itoz9xScvIfRVHJ/CgDYYnFeK/HHVdFg/syey1NY/Fmm3CyWscCl3CkglXx05wRnr0xyTUsniTxx8TEf8A4R2FvDPhsg+Zqt1xNIncpjp3+6cDH3x0qjp2s/DT4byiPSTN4k8RSHBntgJ5HY5+6/3Vz0O3LeuaAHaPZeKvjRZjUtY1iLSvDJkZPsOnt88uOCGJ/wDZs+oUAg16HG3gr4YaOIfNstJgK7juOZpsdT3eQ8++PpXhdi3jDRvEa6dC9z4L0rxRdF4lkHmeUem1eAynLKvRT93JwM167oXwY8MaddG91UT67qTHfJcag5dWbudnQ/8AAt31oAy5vi1rHiSVrXwB4VutRIbab+8BjgXke46+7KfY02P4W+JPFciz+PvFc88RIb+zdPOyIYORk4AOP93P+1XrMUEUESRRRrHEgwqIoAA9AKeABQBheHvBfh7wtFs0bSre1YjDShd0jfVzlj9M4rc24xTqQ8igDzD4vFRqPgZcjJ8QQHGevIr08V5P8YQW8SfD7HU60gx/wOOvWKAFpCM45xS0UAZ2s6Lp2vaZLp+qWkd3ayjDRyD8iD1BHqORXkbweJfgvO0toJ9c8FM5Z4mOZrLJ5I9B15GFJ67Scn2wjNNZAVIbByMHdQBj6N4o0bxBoTazp99HLYopMkhODHtGSGB5Ugc4PsehBrzjwNby/EP4gX3j28VhpdixtdHiccHHWTH45/3mIz8tcd8TfDEWi+Lk0TwM11Fe63bO19pNq2I9g+YYGcDO1/l7AcYBwfT/AIVeLdA1Lw/BoOnwtp1/psXlzadOcSKQfmYZALfNnJxkE8jnkA9DAwetLSA5JFLQAUUUUAIwyK8atSPhZ8WmtPueGfEzbosfct7jPT2GTj6Ov92vZSMjGcVyvxB8Hw+NPCN3pTbRc48y0kPHlyqDt59Dyp9mPtQB1KnPY06uC+FPi6bxL4ae11Lemt6U/wBkv45Bhty5Ac+5wQf9pWrvAaAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopCcDNAA3Arx7x7NL8QfH9j4BspHXTbI/a9YlQ8HGCEz7ZHryw4+Wu68f8Ai6HwZ4SutVfa1x/q7SJv+WkrD5R64HJPsprI+FHhKfw54be+1Lc+t6u/2u+kc5bJyVUn1GST7saAO6t4YraCOCCNYoY1CJGoACKBgAAdBUtIBiloAKKKKACiiigAooooADXL/EC7li8H3dpavtvNRZNPt+x3zMI8j6Bi30FdQRmuM1/wlr+t6zpt6niOztrfTrn7TBa/2WXDNgqC7GbJIUkcY60AcV8e9Ojsfh9ojWSbE0+9jiiHdE8tgP8A0Fa67SZR461iHXWyNA0586ehHFzcDhpz/spyqe+W9K1fFfhGLxj4bj0fU7kAedFLLJDHt37TlgoLErkZHU4z3q7e6XfR6ZFZaBeWmmLFF5SF7MzCMYwu1Q6gY565zxQB5d4VH/CV/tAeINbYbrTRYvskBA4V8GPj2OJj+Ne0Dqa878AfDfUfAEt35XiG3vbe7dXnWXTyshIyPlfzeM57g/hzn0CSaOCJpZXVEQZZ2bAA7kmgCQnFV72/tdOtJbu9uIre2iG55pXCoo9yeK838V/GzQ9MkGneH4n17VZDtjjtctED/vgHd9Ez0PIrhJPAHxJ+J17HeeJ7tdLsch44ZRxGDn7sIPB/3yD70AbXi748RSPLYeEhEMZDapefLGmOCUTqx544z/smuK0KHUvEWotqVhoV74t1ljtbUtXGyzhI7KhIDYB43MMcfIK9e8NfBLwhoJSW5tm1a6XHz3uGQH2j+7j65xXoscKQxLHGqoiAKqqMAAcAAfSgDyiL4Va/4olS48e+Kbi6jyGGnWB8uFcHjnAH5KD713+geD9A8LQ+Voul29pxhpFXMjD/AGnOWP4mtsDBpaAOS+Ing5PGfhC505dq3qfvrOVuNkyjjnsDyp9N2ccVR+Fni6TxT4ZMd/uXWdNb7Jfo/DblyA59zg59w1d0eleO+M43+G/xIs/G1qrf2PqrC11eNRwrHneAO+Bn6g8/NwAexZpajikWVFkjZXRgGVlOQQehH4VJQAUhpaDQB5V8WT/xVfw6H/Udj/8ARkdeqCvIfi8T/wALB+GYycf2qSR9Jbf/AOvXrwoAWiiigArN1/WrPw9oN5q9+xW2tYjI+Oreij3JwB9a0T0rx3xvM/xG+Ill4EtJG/snTyLvV5Yz1IxhPwDAd+W6fLyAX/hJot3qD6h491pT/aWtOTbqekNvnAC57HAA/wBlV9TWv45+Gdp4lnTWNLuDpPiKDDQ38OV3EDAD49uMjke44ruYYkgiSKJFSNFCqijAUAcAfhTyMjGcUAeW+E/iVd2Oqjwt49txputoAIro/LDdDsQRwCe2OCeBg/LXqQOTisDxZ4P0bxhpJsdYthKFyYpV+WSEn+JG7Hpx0OBkV5tYeIPEfwivYtK8U+bqvhd28u11WNSz247K45OB/dJ6Z2k4xQB7TRVWw1G01SxhvbG4iubWZd0csTBlYexFWQc0ALSNytLRQB4744ik+HnxCsPHdorHS79haavGg6ZxiT8Qo/FcZ+avXYJo7iJJomDxuoZHU5BBAINUtd0Wz8Q6FeaRfoWtrqMxvjqPQj3B5H0rzz4Sa3eaZNqHgDXGB1HR2P2V/wDntb8YIz2G5SP9lh6GgD1WikBzS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUjfdOelBOK89+LXiy40Tw/Fo+khn13WX+y2aIfmUE7WcY6HkAH1YHsaAOdhx8Uvi0ZwfN8M+GWGwjlLm49fQjI7ZGFH96vZFGK5vwN4Ut/BvhSz0iHa0qLvuJR/wAtJT95vp2HsBXS0AFFFFABRRRQAUUUUAFFFITigBaKjlnjgjaWZ1jiQEs7tgAepPavPNd+M/hnT7gWGki417UXO2O305N6lvTf0P8AwHdQB6Lu5xWL4g8YeH/C0Pma1qttaEjKxs26Rh6qgyx/AV559n+K3jkfv5rfwhpb/wAMeXuivr6g/in0rb8PfBrwro032u8hk1jUGO57jUG8zLdzs6e/OT70AY8nxU8R+KXMHgHwpcXEWcf2jqA2QjnnAyAf++s/7Ncj45+HHxG1HT4dR1XVm10od1xp9m5QRqM8xrjDHGRkLnOOGr6HSJIkVI1VEUYVVGABTtvOe9AHlfwn1jwELY6foVkul6wAY57e9A+0yMOo3nl+RnAxj+6tepDk5/HrXIeMvhp4f8YKZ7qBrbUhgR39t8sqkdM/3h068jsR1rjE8R+Ofhi/leJ7aTxF4eU4TVLYZmjT1fPXj+8ep++aAPZKWsfw94o0fxTp4vtGvo7qH+IKcPGfRlPKn6jnqOK1wcnFAC0UUUAB5FZfiLQ7TxJ4fvdHvlzb3cZRiByp6hhnupAI9wK1KQjIoA8s+Eeu3ll9v8Ca4xGraGxWHJ4lt+NpUnqBlcdPlZfevUwc59q8p+LOj3mj3um/ELRY919pLBLyMcCa3Oc5/wC+iD7Nn+EV6Pomr2evaNaarYPvtrqISIe/PUH3ByD7g0AaFFFIaAPK/ib/AMlL+Guf+f6f+cNeqCvKPiYf+LpfDcE8C8m/nFXq4oAWkJxS0jdKAOV+IXi+Lwb4RutSODdN+6s4yM75SDt47gcsfZazvhV4Rl8M+GGudQLvrWqP9qvpJDl9xyQjHuRk5z/EzVy1ko+KXxZbUCPM8NeG22wf3Li44+b35Gfoif3q9kUY75oAXGKKKKAAjNVr2xtdQspbS9gjuLaUFZIpVDKwPYg1ZooA8XvvC/iL4U382r+DfN1Hw9I5e80d2JeL/aTqTwMZ+9jGd2Mj0bwj400bxppX27SZ9xTAmt3wJYSezD88HocHniuh28da8y8W/DKZNWPinwRcDSvECEs8S4EN16gjoCep7HuMndQB6aDntS1594G+Jlvr902ha1bHSfEsHyS2co2iUgcmPPXjnHpyMjmvQA2aAFryr4uaJd6bJp/j/RFzqWjMPtK/89rc8ENjqBkg/wCy7egr1Wo54o54JIpo1kidSrowyGBGCCPegCloWs2niDRbTVrF99tdRCRc9V9VPoQcg+4NaNePeBZpPh58Qr7wHdux0u/Ju9HldsgZ6x59cDH1T/ar2AHPagBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikJwM0ARXVzDaWstzcSLFBChkkdjgKoGST7DrXkvw9tJfHnje/+IeoI32KFja6PC4+6gyC+PXk/wDAmb0FWPitqt3rup6d8O9FlK3mpsJL6ReRDAOfm+uCfouP4q9J0fS7TQ9JtdLsY/LtbWIRRqeuB3J7k9T9aALwGO+aWiigAoooPFABRSZ9qinuYbWF5riWOKJBl3kbaqj1JPAoAmPFJuHPtXm+u/Gjw7ZXH2DRIrnxBqTHakFghZS3+/jn6qGrJ+x/Fbxx815dweEdMfpHBlrkj6g7gf8AgSfSgD0DxD418OeFYi+s6tbWz4yId26Vvogyx+uMVwL/ABO8UeLGMHgPwpNJbtkDUtRwkXXBwMgHH+8T/s1ueHfg74T0OQXNxbPq1/nc1xqDeZ8x77Pu/iQT713wjVRtAAUDAUDjFAHk0Hwj1bxHKl14+8VXeokEMLG0PlwKfyH6Kp9zXomheFtE8NW/kaNplvZqRhmjX53Hbc5+ZvxJrXAxS0AJt755pcUUUAFFFFACEZprRq6lXwynqCMg0+igDzDxD8Irdb8654Lvn8Pa0MkeRxBL7Ff4QTjp8v8Asmqmk/FS/wDD1/HovxF0ttMu2+WLUYlzbzD1OM47cjIGeQteskZqlq2kafrenvYapZw3lrJ96KVAw+o9COxHIoAntru3vLaO5tpo5oJFDRyRuGVlPcEdRUwbPTpXj914A8U+Arp9Q+HmomexJLS6JevlG/3CSPbup46npXQeEvivpHiC7/srUopdG11G2PY3g2bm9EY4yfY4PsaAPQaKQHrxQDmgCO5giubaS3njWSKVSjowyGBGCCK8j8A3M3gDx5f/AA/vpCdPu2N3o8rn+E9Uz9Af+BK396vYCMiuA+K/hO41/wAOx6lpe9dd0iT7VZPGPnODlkGOvQED1UepoA78HNLXMeAfFsHjTwlaatFtWYjyrmJSP3cq43D6dx7EV03WgDy/x+qyfFv4dKwBAmum/EBCP1FeoAYryzx3IT8Zfh9Gega4P5qB/SvUwaAAnAzXnXxa8WXOkaDDoekbm1zW5PstskZ+ZAThm9jyFHu2exrv7y7t7Gymu7qVYbeFGkkkfoiqMkn6AV5N8OLS48c+MtQ+IuqRutuhNro8Mn/LOMZBbHr1HBxuZ/agDvvBPhe28HeF7TRrfazRrvmlUY82Q43N+fA9AAO1dFSBcEmloAKKKKACiiigApCMjFLRQBx3jj4d6P41tle4H2XU4f8Aj3v4hiSM5yAcY3L7Hp2IPNcnofj/AFjwXq0Phn4iJsV8pZ62P9VOo6bz0zyAT1GRuA+8fXCCRgHFZmu6BpniPS5NO1e0juraTGVYYKnsQeoPuKANGOVJY1eNldGAIZSCCDyD+tKcMMV4qP8AhJPgtPj9/rngln69ZrHJP4AfkpP90nn1jQte0zxHpcepaTdpdWsnG9Ox7gjqD6g8igDlvir4Pl8TeGRd6duXWtLf7VZSJneSMFkGO5wMe6r71pfD3xfH408I2mqDYLkDyruNf4Jl+9j2OQw9j611J5GCK8bu/wDi1vxZF6Mp4Z8Sttn/ALtvcZ+8fQZJPbhm/u0Aeyg57UtNHX8KdQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhOBWV4k8QWfhnw/e6xfEi3tYy5APLtnAUe5JA/GtVuleOeLS/xL+Jlr4NtyTomjsLrVZFPDv0EeR3wdv4t/doA0/hDoF5PBe+ONbAOr663mRnH+qg/hC56A4B/wB1U969QAwc96ZGojUKigIBhVHAAxxT88ZoAWiobm7t7O3kuLqaOCCMZeSVgqqPUk8AV51rfxp0C2ujp2gW914i1M5CQWEZZCR234OfqoagD0rcK5/xF448OeFYy2sarb28gGRCDvlP0Rct+OMe9cEdN+K3jXJ1DUIPCemN/wAsbX57gjjnIOc9R95fpXQeHPhB4S0CQXElmdUvslmudQPmnOc5C/dB98Z96AMA/Evxb4vPleBPCsi2zcf2nqnyR9wSozg446Fvdafb/CHUvENwl34/8UXmqsMEWVs3lQKe/Ycf7qr9a9YCBcY4AGABS45zQBlaJ4Z0Xw3bfZ9G022soyMMYkAZ/wDebq34k1q7cDApaKAEAxS0UUAFFFFABRRRQAUUUUAFFFFABSEZ74paKAExxgcVzPi7wFoHjS1MerWgM4GIrqLCzRfRu456HI9q6ekIzQB415vj74Vgecr+KPDEf8a5+0Wye/U4A+o4HK16H4U8b6D4ytPP0e+WR1UGW3fCyxf7y9fxGRXRFQa878W/CXStYuzrGi3Emha6rb0vLPKq7erqMcn1XB55zQB6IGBOPbNDDcpHrXkNl8R/Efgi8TTPiNprGBm2xazZoWif/eAH16ANjHynrXqenarY6vYx3unXUN3ayDKSwuGU+2fX260AeSuT8LPiyX+54Z8TPzxhLe5z+gyT6DD9PkFeyKSexH1rm/HPhSDxn4Tu9ImwsrDfbSkf6uUfdP0PQ+xNYfwm8WXGveHX0zVAya3o7fZLyN/vHbkKx9zggn1U+1AFDxkiyfHDwCrdNl0fyQn+lenjp68V5b4tmDfHvwLCFPyW9y+fXcjj/wBlrvPEviG08L+HL7WLw/urWMsFzgu3RVHoScCgDz34qand+I9Z074daNKVuL9hLqMqj/UwKc4P1xnHHQD+KvTdK0210fTLbTrKPy7a2jWKNPRQMfn79688+EPh+8a1vPGmtgHWNePnDjiKAnKqPQHg4/uha9PAoAWiiigAooooAKKKKACiiigAooooAjlhjlRkkUOjAqysMhgeoI9K8l1vwDrPgnVpvE3w7bCNhr3RGOY5gM52D19B1GTg/wAJ9epCuRgk0Ach4I+IOk+NbZkt82upwD/SbCbiSMjgkf3lzxntkZAJxVzxr4XtvGXhW90e42q7jfDKf+WcoHyt9M8H1BIrB8cfDGDX7tNe0O5OkeJYCGjvIflEp6YfH5buuOCCOKpeEfiXcDVh4Y8bW39l+IFwscjYWG67DaegLY4wdpPQgnbQBa+Eviu41jQZtF1bKa5oj/ZLqNz8zAHCsfU8YPuM969EBzXj/wARbWfwP4z074h6ZE7WjstrrEKD76EgK+PXgDJ/iRPU161aXUF7aw3VtKssE8YkikU5DqQCCPYgigCeiiigAooooAKKKKACiiigBCcCjNDDIxXhv9ljXPjzc6FZ3upJoun2olvLeO/mVXfaOAQ2Ry6ZwexoA9x3Ypcn05rxf4ky33wwGl654e1bUPIkuPIn068u5LiKQbSwx5hJXoRkHuPx9gtZxdWUFwqlRMiuFbggEZx9cUAc18R/GCeDfCNzfIQb6X9xZRnktKw4OPQck/THcVV+F/hF/CfhRGvAW1fUG+1X8j8tvbkL/wABB/PPrXjvjT4jWknxce+1Gxmu7Pw/I8NlZh9ivcK2C7k5wNwznB+4nHWkf4oan4yLLq3jO28LacTgwWNpPJMwz3dVPbjhx/u0Ae7+I/HXhvwoh/tfVYYZR0t1O+Vv+ALk/j0rhf8AhY3jLxkdngbwu0Nm3A1TU8KmOmVGcZHHQv8ASsHw5ffA7w64n/tI6heZybjULOeVs5zkL5e0HPfGfeu6Hxr+HgAH/CQ9B2srj/43QBk2vwfvdduI73x74lu9YlU7hZwMYoEOORxjjn+EJXomjeHdH8PWv2bSNOtrKM4z5MYBb3Y9Sfc1yQ+Nnw8Bz/wkPX/pyuP/AI3S/wDC7fh5/wBDD/5JXH/xugDv8UAYrgP+F2/Dz/oYf/JK4/8AjdH/AAu34ef9DD/5JXH/AMboA9Aorz//AIXb8PP+hh/8krj/AON0f8Lt+Hn/AEMP/klcf/G6APQKK8//AOF2/Dz/AKGH/wAkrj/43R/wu34ef9DD/wCSVx/8boA9Aorz/wD4Xb8PP+hh/wDJK4/+N0f8Lt+Hn/Qw/wDklcf/ABugD0CivP8A/hdvw8/6GH/ySuP/AI3R/wALt+Hn/Qw/+SVx/wDG6APQKK8//wCF2/Dz/oYf/JK4/wDjdH/C7fh5/wBDD/5JXH/xugD0CivP/wDhdvw8/wChh/8AJK4/+N0f8Lt+Hn/Qw/8Aklcf/G6APQKK8/8A+F2/Dz/oYf8AySuP/jdH/C7fh5/0MP8A5JXH/wAboA9Aorz/AP4Xb8PP+hh/8krj/wCN0f8AC7fh5/0MP/klcf8AxugD0CivP/8Ahdvw8/6GH/ySuP8A43R/wu34ef8AQw/+SVx/8boA9AoIzXn/APwu34ef9DD/AOSVx/8AG6P+F2/Dz/oYf/JK4/8AjdAHcXVjbX1rJa3kEVxbygq8UqBkYehB4ryzUvhdq3ha+k1j4cao9lKfmk0u4fdBN7Ln+TevDLW3/wALt+Hn/Qw/+SVx/wDG6Q/Gv4dsMHxAPX/jyuP/AI3QBT8N/FuzudQGh+LLOXw9ri4Qx3GRDIfVWPTPOM8HjDNWT4/t5PAfjnT/AIhadGzadclbTWIoxkMhwA+PoB6Dcq/3qseJPH/wh8W2H2TWNSjuVGfLk+x3CyRk91YR5Hb2PfNeX3vjCz8M2c+i6T4iHijwtdoYX068hlimgUjqjsmFIxwRxnnb3AB6fr8sV78e/A08EqyQy2E0qSKch18uUgj2IxVbxOW+JvxRt/CkJL6BoZ+0ao6niSXkCPI+u3HB5k9K8T0jxxqGj6npN3Exnk0mC5t7J3GCFkVwpI5+6XLAfh0FevfDPx18PvBvhSOC78QBtVuj9ovpDazsTI38OdhztHH1ye9AHuCKqAKqgADACjin158PjX8PB/zMPbH/AB5XH/xul/4Xb8PP+hh/8krj/wCN0AegUV5//wALt+Hn/Qw/+SVx/wDG6P8Ahdvw8/6GH/ySuP8A43QB6BRXn/8Awu34ef8AQw/+SVx/8bo/4Xb8PP8AoYf/ACSuP/jdAHoFFef/APC7fh5/0MP/AJJXH/xuj/hdvw8/6GH/AMkrj/43QB6BRXn/APwu34ef9DD/AOSVx/8AG6P+F2/Dz/oYf/JK4/8AjdAHoFFef/8AC7fh5/0MP/klcf8Axuj/AIXb8PP+hh/8krj/AON0AegUV5//AMLt+Hn/AEMP/klcf/G6P+F2/Dz/AKGH/wAkrj/43QB35GRiud8YeC9G8aaV9j1a33sufInTAkhY91b8sg8HAzWF/wALt+Hn/Qw/+SVx/wDG6D8bPh4R/wAjD/5JXH/xugDjJtU1fwJby+FPiDE+r+Fb1Wt4NWjBLRqf4Wzzx1HcY4LADGl8HdebS7y98CX10lybTNxpdyjZS5tm5yp6Ec7hyfvMP4a17/4t/DHVLCWxvtZjuLaZdjxSWE5Vh9DHXg+vXGgeGvFVnrfgTxEbuKGbzYraWGVXg6krudQGTqOuee/JoA+wQc0tYfhPxNZeLvD1trFhuEcy4dHBBjcfeU+uD3HBrQ1WK0k0y4+3EraoheRg5QqoGScggigC3mkLYI968L+DWgt4t0rVNW1m+1aW3+1eTZoNSnTYAMt91xnh1HPoa6HxppmveAdLfxJ4a1zULm0tGU3WmajO1xG0WcEozEsuOO/TJzxggHqgOaWsXwp4itvFfhuy1q0BWO5TLRnrG4JDKfoQR+tbVABRRSE4GaAIby5isrKe6uG2QwxtJIx7KAST+Qrwr4Vy+KZIvEHi7T9CtNQk1i7Zg0995LDazEhRsIIy2Oo+77V2/wAbNeGi/DW+iR8T6gws4wDyQ3L/APjoYfjW94O0uHwn4A0qyuJEt1tbVXuHdgFVz8znPTG5moA8v0Ux/E/xybXxtcNaX2ku3leHlhKRnGCW3knf0GRx7cGvdQoIxxjtivAfDgPjb9oi68R6QpbSbD/WXKrhXxD5Q5HXJyR7CvfxnPNAHEX3wg8DalqFzf3miebc3MrzSv8Aa5xudjljgPgZJPTFQf8ACk/h730DPv8AbJ//AIuu/ooA8/8A+FJfDz/oX/8AycuP/jlH/Ckvh5/0L3/k7cf/AByvQKKAPP8A/hSXw8/6F7/yduP/AI5R/wAKS+Hn/Qvf+Ttx/wDHK9AooA8//wCFJfDz/oXv/J24/wDjlH/Ckvh5/wBC9/5O3H/xyvQKKAPP/wDhSXw8/wChe/8AJ24/+OUf8KS+Hn/Qvf8Ak7cf/HK9AooA8/8A+FJfDz/oXv8AyduP/jlH/Ckvh5/0L3/k7cf/AByvQKKAPP8A/hSXw8/6F7/yduP/AI5R/wAKS+Hn/Qvf+Ttx/wDHK9AooA8//wCFJfDz/oXv/J24/wDjlH/Ckvh5/wBC9/5O3H/xyvQKKAPP/wDhSXw8/wChe/8AJ24/+OUf8KS+Hn/Qvf8Ak7cf/HK9AooA8/8A+FJfDz/oXv8AyduP/jlH/Ckvh5/0L3/k7cf/AByvQKKAPP8A/hSXw8/6F7/yduP/AI5R/wAKS+Hn/Qvf+Ttx/wDHK9AooA8//wCFJfDz/oXv/J24/wDjlH/Ckvh5/wBC9/5O3H/xyvQKKAPP/wDhSXw8/wChe/8AJ24/+OUf8KS+Hn/Qvf8Ak7cf/HK9AooA8/8A+FJfDz/oXv8AyduP/jlH/Ckvh5/0L3/k7cf/AByvQKKAPP8A/hSXw8/6F7/yduP/AI5R/wAKS+Hn/Qvf+Ttx/wDHK9AooA8//wCFJ/DwdPD/AD/1+z//AByk/wCFKfDz/oXuP+vy4/8Ai69AbpXll94z1bxn4un8L+DLhba1tP8AkIayFD+XzjbHnjPUA98EjpyAah+Cvw9/6F/r/wBPtxz/AORKQ/BX4ecA+H856f6bcf8AxytSH4c+HPLBvLefUbgj5rm+uZJZG98k8fQYFYejeG77Tfiy8S6pqFxodtpv2q2t7i5eRYJZHKYBYnOFV8ZzjOKALI+Cfw8P/Mvf+Ttx/wDHKP8AhSXw8/6F7/yduP8A45XfgYpaAPP/APhSXw8/6F7/AMnbj/45R/wpL4ef9C9/5O3H/wAcr0CigDz/AP4Ul8PP+he/8nbj/wCOUf8ACkvh5/0L3/k7cf8AxyvQKKAPP/8AhSXw8/6F7/yduP8A45R/wpL4ef8AQvf+Ttx/8cr0CigDz/8A4Ul8PP8AoXv/ACduP/jlH/Ckvh5/0L3/AJO3H/xyvQKKAPP/APhSXw8/6F7/AMnbj/45R/wpL4ef9C9/5O3H/wAcr0CigDz/AP4Ul8PP+he/8nbj/wCOUf8ACkvh5/0L3/k7cf8AxyvQKKAPP/8AhSXw8/6F7/yduP8A45R/wpL4ef8AQvf+Ttx/8cr0CigDz/8A4Ul8PP8AoX//ACcuP/jlH/Ck/h7/ANC//wCTlx/8cr0CigDO0TRNP8OaRBpWlW/kWUG7y4t7Nt3MWPLEnqSfxrkfjLrv9h/DPUyj7Zr0Czj99/3v/HA9d8xwM14r8WXHib4j+EPBindF5wubtM8bSe/uER/++hQB3/w20M+Hfh7o1gU2y/ZxLKD13ud5B+m7H4VJ8R5oofht4jeYgIdPmUZ/vMpVf1Iro3dIYi7YWNRkknAAHf2FeRePdSu/iXOvg7wjIJ7ISq+qamvNvEAchNw4Y5wcD0HvgAu/s+wTRfDYySghJr6V4s/3cKvH/AlavVazdB0a08P6LZ6TYqVtrWIRoD1PufcnJPvWlQAUhGRilooA5bXfh34Z8TXIn1qzubxlJKrJf3GxM9dqhwq9B0AqtJ8LPCE6qtxp1xcIpyEn1C5kXP8AutIRXZUUAU9O0qx0izSz020gtLZORFDGFUH1wO9W8UtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHH/ABS12bw78OdWvrZylyYxDE6nBVnIXcPcAk/hWH8C9Ei0v4cW15sAuNSke4lbHJAJVR9MLn/gRra+Knh+58TfDvVLCzQvdqqzwoOrlGDbR6kgED3IrE+CXiWz1PwJaaSJFXUdMBimgJw4G4lWwecYIH1BoA9MxSBAGLYG4jGcdqgvb+206zlu7uZIYIl3O8jYAFN028kv7JLmS1ktvMyyRy/f2ZO0sOxIwcdRnB5oAt0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBHNCs8LxOXCupUlHKMARjhgQQfcHNcfN8KvCFxqZ1ObT7mS/LBzctqNyZN3ru8zNdpRQBycnw18KTsDc6fNdgEELd308449nciuks7C10+1S2s7eK3gjGEihQIqj2A6VYooAQDHeloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQjNcjrHwz8Maxqf9qPZy2mo5ybqxneByfU7SAT74zXX0UAczp3gTRtPuYrqQ3uoXUJ3RTajdvcmM+qhyQp9wAfeulAxS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9k='] Multimodal Competition True Theorem proof Geometry Math English 8 "In parallelogram $A B C D, A B=a$ and $B C=b$, where $a>b$. The points of intersection of the angle bisectors are the vertices of quadrilateral $P Q R S$. Prove that $P Q R S$ is a rectangle." ['In a parallelogram opposite angles are equal.\n\nSince $D F$ and $B E$ bisect the two angles, let $\\angle A D F=\\angle C D F=\\angle A B E=\\angle C B E$\n\n$$\n=x \\text { (in degrees) }\n$$\n\nAlso $\\angle C D F=\\angle A F D=x$ (alternate angles)\n\nLet $\\angle D A M=\\angle B A M=\\angle D C N=\\angle B C N=y$ (in degrees)\n\n\n\nFor any parallelogram, any two consecutive angles add to $180^{\\circ}, \\therefore 2 x+2 y=180$ or, $x+y=90$.\n\n\n\nTherefore in $\\triangle P A F, \\angle A P F=90^{\\circ}$.\n\n\n\nUsing similar reasoning and properties of parallel lines we get right angles at $Q, R$ and $S$.\n\nThus $P Q R S$ is a rectangle.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAQwCVwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKQ1z954u0618Z6d4XJZr+9hkmG08RqoJGfrhsf7tAHQ0Ug6UtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVHKSqlgpYgHCr1Pt/kigCSiuK074k6Ze+NW8JT6dqOn6qqlgl0ke1sLuwpR2z8vP4Guru55Le2eWK1muXXpDCVDN9NxC/maALVFcx4R8ZQ+MrWS8stJ1K2tUcoJrtY1V2HDBdrsTj1xj3rph3+tAC0UUUAFFFFABRRRQAUUUUAFFMckDIBY4zgd64G7+KljZeKh4Yfw/rkmrMBtgjSBt2V3ZDCXH3cmgD0GiuN1Hx3PpNlJeXvg7xGkESl5GRLeTao6k7Zjx/gfSum0nUI9W0ez1KGOSOK7hSdElADhWUMAQCQDg+tAFyiiigAooooAKKKKACiiigAooooAKKKKACiua8Y+MLfwZpp1K+06/uLJSqvNa+WQhY4AIZ1PXuAetZVv8SYZ/D6a8PDOvrpTJ5n2oxQsAgPLFVlL46nO3pk9qAO6orO0PW9N8RaTDqelXSXNpNnY65HTggg8gj0NaNABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNbqPWgCjrer22haPdald7jDAhYqoyznoqqO7MSAB6mvCta0+/8NfFvwT4g1R2OoavKRd85VHZtmxfZUkRffbnvXoWsLqHjHxWLHSL23trPw/Mss0s1uZo5bsj5UwGX7ikNnP3iOOK4f426d4gsNE0bWdR1WzvTZXwEQt7BoGRmG7JJlbI/djjAoA96HSlqG0uEu7SG5iOY5UWRD7EAipqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApDS1znj3Vn0TwRq15CSLjyDDb7evmyEImP+BMKAPFfF9jdnT4/itp+WuU1p5QecG1VhFFn2/d/j5ley6v4qt4fh1deJ7STMZsDcW5yOWZfkB99xAPvmpovCtofAsfhadQbb7ALRyB0+TaWHvnn614t4Jvr25htvhfqCk3FlrgaYYyptYy0rLn08xBj2cUAe3eDNF/4R7wbpOlEYe3tlEv/AF0PzOf++ia3aQdKWgAooooAKKKKACiiigAooooAQnFeB+CNY0vVvjV4p8UalqNnbwW263tWuJ0j3ZOxSNxH8EZ/76r17xvrX/CO+CdY1UNtkgtm8o/9ND8qf+PEVwnwS8KWMPw6gvL+wt559Qme4HnRK5CDCqOR0+Xd/wACoA7jTNd0zxeNVtrCRbvTosW0l1E4ZJHZSXVSOu1WT5v9rHat23hjt7eOCJdscahFA7ADArL8M6Ba+G9MlsrSNEjkup7grGu1R5khYAD0AIUey1s0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUhoA8Z/aG1QjQtI0CJ1WXULrzGLNgBUGOfQbnBz/s10mo+K/DmjeD/AOwtFvYNXvUsfstpY6ewuZJCE2jKpnA7knt69K5G+VfGX7SdvaMiy2WhW+XUjIJUZ/SSRR+FaHxy0fStO8JW+t2cMdjq9tdoLa5tQIpDnORle2Bn2I+uQDd+DfhLUvCPgp7bVVEd1dXLXJgDZ8oFVUA+/wAue/WvQ8ewrC8E6hear4J0bUL8H7XcWkckpIxuJUfNj36/jW9QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVLVIb24sJYtOu47S7ZcJPJD5oT327lyfTn8+lXaKAOU8D+Fbvwho8mnXGqRagrTPOZ/sxikZ3OSXJdt36dO9VfiD4LvvHOkrpY1iCwtPMWRv9DMrlhnHzeYoA5/u/jXX3VxDaW0tzcSJFDChkkkc4CKBkknsABXntt8cvAU+/wA3VZrfacAS2kh3e42qeKAOu8MaVe6JoFnpl7fxX32SFYY5UtzESigAbgWbJ468fStqvPv+F2fD0f8AMw/+SVx/8bpf+F2/D3/oYf8AySuP/jdAHoFFef8A/C7fh7/0MP8A5JXH/wAbo/4Xb8Pf+hh/8krj/wCN0AegUV5//wALt+Hv/Qw/+SVx/wDG6P8Ahdvw9/6GH/ySuP8A43QB6BRXn/8Awu34e/8AQw/+SVx/8bo/4Xb8Pf8AoYf/ACSuP/jdAHoFFef/APC7fh7/ANDD/wCSVx/8bo/4Xb8Pf+hh/wDJK4/+N0AegUV5/wD8Lt+Hv/Qw/wDklcf/ABuj/hdvw9/6GH/ySuP/AI3QB6BRXn//AAu34e/9DD/5JXH/AMbo/wCF2/D3/oYf/JK4/wDjdAHoFFef/wDC7fh7/wBDD/5JXH/xuj/hdvw9/wChh/8AJK4/+N0AegUV5/8A8Lt+Hv8A0MP/AJJXH/xuj/hdvw9/6GH/AMkrj/43QB6BRXn/APwu34e/9DD/AOSVx/8AG6P+F2/D3/oYf/JK4/8AjdAHoFFef/8AC7fh7/0MP/klcf8Axuj/AIXb8Pf+hh/8krj/AON0Ad+a5Dxn4T1TxRLp62+uQWFpZXMd2IWsTMZJEOV3HzF+X2x+Ppn/APC7fh7/ANDD/wCSVx/8bo/4Xb8Pf+hh/wDJK4/+N0AdzbCZLdFuZI5JgMO8aFFJ9QpJx9MmuctfBdpa/EW98WxkCW6s1t2jx/GGGX/FVUfhWT/wu34e/wDQw/8Aklcf/G6P+F2/D3/oYf8AySuP/jdAHoApMjOM81wH/C7fh7/0MP8A5JXH/wAbrI8Q/Ez4beItPNu/iea1uEy1veW9rcJLA/8AeVgg/EdDQB6vRXzbofx61XQ72Sx1ZoPEFjG21L6FDBK69mwwAPHYgHOck9a9MtPjl4BuLWOWXV5bV2GTDNaSlk9jsVh+RNAHo1Fef/8AC7fh7/0MP/klcf8Axuj/AIXb8Pf+hh/8krj/AON0AegUV5//AMLt+Hv/AEMP/klcf/G6P+F2/D3/AKGH/wAkrj/43QB6BRXn/wDwu34e/wDQw/8Aklcf/G6P+F2/D3/oYf8AySuP/jdAFz4heDNQ8c6UNJj1uLTrEsryqLMyvIQcgbvMUAdDjHUda1/C2jXnh/QLPSbq9hu0s4kgikitjCSqjALAu2T69M+lc5/wu34e/wDQw/8Aklcf/G6ib44+AFmVBrMjKR/rBZzbR7cqD+lAHog6Utef/wDC7Ph6P+Zh/wDJK4/+N0f8Lt+Hv/Qw/wDklcf/ABugD0CivP8A/hdvw9/6GH/ySuP/AI3R/wALt+Hv/Qw/+SVx/wDG6APQKK8//wCF2/D3/oYf/JK4/wDjdH/C7fh7/wBDD/5JXH/xugD0CivP/wDhdvw9/wChh/8AJK4/+N0f8Lt+Hv8A0MP/AJJXH/xugD0CivP/APhdvw9/6GH/AMkrj/43R/wu34e/9DD/AOSVx/8AG6APQKK8/wD+F2/D3/oYf/JK4/8AjdH/AAu34e/9DD/5JXH/AMboA9AqvdpcPA62ssUU5HyPLEZFB9wGXP5iuH/4Xb8Pf+hh/wDJK4/+N0f8Lt+Hv/Qw/wDklcf/ABugDN8N/C7XfDXiXUNetfFlrNe3+43H2jSSysWbccYmBHPvWpf/AA4/4SLU7e78W61Nq8Vsd0NjFCLe3UnrlQSx6Dq3403/AIXX8PWH/Iwf+Sdx/wDEV1+ha1p/iLSIdV0q4+0WU5bypdjJuwxU8MARyCOaAL0SLHEqIoVFGFUDAA7ADtT6KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQ9aWuL+JnjiHwN4YkvFKPqFxmKyhbnc/diP7qjk/gOM0Aee/G7xpc6hdw+A9BLS3Nw6LeCPqzEjZCPrwT07D1rhNf8GT/AAm8S6DqGo2ttq+nzKpnjlhEkZfGJY8MMZwcqSP5Gu/+CHgeZ3l8ca2rSXl2WazMpy2GzvmJ9WyQPbJ716Z468K2/jTwneaPNhZXHmW0pH+rlH3W+nY+xPrQBHp3hTwPqunW+oWfhrQpra5jEsUg06L5lIyDytWv+EE8If8AQqaH/wCC6H/4mvJ/gV4qnsL298B6zmK6tpJDapI3KkH95F+Byw+rV7uOlAGB/wAIJ4Q/6FTQ/wDwXQ//ABNH/CCeEP8AoVND/wDBdD/8TXQUUAc//wAIJ4Q/6FTQ/wDwXQ//ABNH/CCeEP8AoVND/wDBdD/8TXQUUAc//wAIJ4Q/6FTQ/wDwXQ//ABNH/CCeEP8AoVND/wDBdD/8TXQUUAc//wAIJ4Q/6FTQ/wDwXQ//ABNH/CCeEP8AoVND/wDBdD/8TXQUUAc//wAIJ4Q/6FTQ/wDwXQ//ABNH/CCeEP8AoVND/wDBdD/8TXQUUAc//wAIJ4Q/6FTQ/wDwXQ//ABNH/CCeEP8AoVND/wDBdD/8TXQUUAc//wAIJ4Q/6FTQ/wDwXQ//ABNH/CCeEP8AoVND/wDBdD/8TXQUUAc//wAIJ4Q/6FTQ/wDwXQ//ABNH/CCeEP8AoVND/wDBdD/8TXQUUAc//wAIJ4Q/6FTQ/wDwXQ//ABNH/CCeEP8AoVND/wDBdD/8TXQUUAc//wAIJ4Q/6FTQ/wDwXQ//ABNH/CCeEP8AoVND/wDBdD/8TXQUUAc//wAIJ4Q/6FTQ/wDwXQ//ABNH/CCeEP8AoVND/wDBdD/8TW3PNHBE8krqkaKWZ3OFUDqST2rzXS/Emq/EvWbuLRLqfTfC9lJ5ct9EMXF5J/djJHyL0JON2COhOAAdBrPw58MX+jX1na+H9GtLie3kiinSwiBiZlIDjC5yCQeMdK8Z+EK6Pa+J9Q8F+K9A02a+81vIkurRJGEijDR7iCSMDI57H1Feo+LPCEekeGb/AFfw9qOp2Gq2MD3KT/bpphLsBYo6yMysCAevTjsMV5H4u+0+KfCmk/FDTF+zapaSrBqXkfwyxkCOYe/3fplR2JoA9/HgTwhjnwroZ/7h8P8A8TWZr2g+APDmkzanqfh3QoLaIck6dDlieiqNvLHsKu+APF0HjTwjaatFtWcjy7qIf8s5hjcPochh7MK3p7K1uLiC4mt4pJYCTE7oGMZPUqT0P0oA+a7j4e+JfiRrZ1Cz8N2PhjRukAe3W3OzPUqo3OxBzyAPQ4r0vwt8C/C2hbJtRV9Zu16tcqBED7Rjg/8AAi1eor3paAOeHgTwhz/xSuh/+C+H/wCJpf8AhBPCH/QqaH/4Lof/AImugpkjKilmYKoGST0AoAwv+EE8If8AQqaH/wCC6H/4mj/hBfCH/QqaH/4Lof8A4muY8T/Gnwj4d3Rw3h1S8AwIbEhlB95Pu9vc+1efHxr8UviU5j8Nae2laaxx58XyDHvM3XH+wAfagD0vxDafDHwrD5us6V4btcjIjNhE0jf7qBdx/AV5Hq/xA0DVrw6d4J+G+lXFw+Qks+lxyOfUiJF/HJP1FdX4e/Z9sxN9t8V6rJqNw/zPDASqFu+5z8zfhtNetaNoGkeHrT7LpGnW9nD3WKMKW9yepPueaAPn7RPgT4j8Q3Jv/Ec9npEchy0FvBGHP/AI8Rp+f4V61oHwi8F6Db7Bo0N/LjDTaggnZvwYbR+Ciu6HNLQBzw8CeEMf8ipon/gvi/8AiaX/AIQTwh/0Kmh/+C6H/wCJroKKAOf/AOEE8If9Cpof/guh/wDiaP8AhBPCH/QqaH/4Lof/AImugooA5/8A4QTwh/0Kmh/+C6H/AOJo/wCEE8If9Cpof/guh/8Aia6CigDn/wDhBPCH/QqaH/4Lof8A4mj/AIQTwh/0Kmh/+C6H/wCJroKKAOf/AOEE8If9Cpof/guh/wDiaP8AhBPCH/QqaH/4Lof/AImugpDQBgf8IJ4Q/wChU0P/AMF0P/xNH/CCeEP+hU0P/wAF0P8A8TTPEfjjw54VQ/2vqsEEuMiAHfK30QZP44x715Nqvx11rX7w6b4G8PzSTN0mljM0mPURrwuPUkj1AoA9UvPCHgewtnubzw74et4Ixl5ZbKFFUe5IxXl3ij4g/CrRt0OkeEtI1i5HePT4o4cj1cpk/wDAQR71WtPg/wCNfGl0l/451+SBM7lt94lkX1AUfJH+GfpXZXnh3wR8IfDM2tppsc13AAsE10fMmlmP3QpPCE9yoGAM0AfPfizW7/VJ40ufDumaNHIBJFb2empAxB6NuI3kH64OOPb6e+FHhu/8LfD+y0/Uji6ZmneLn9zvOQn1Hf3J+teYfCTwre+MvFNz4/8AEmZVE++2Eg4lmHGQD/CmAB6ED+7X0IowKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiimt/nvQBX1G+ttNsZ728lWG2t4zJLIx4VRyTXzhpcF38cPijLe3ayR6DYgZQnGyLJ2x8fxuQSfbdjoK2PjJ4vvPEuvW/gDw7mZzMEu/LORJLkYjz6J1Y9iO201674G8I2ngrwvbaRbYeRfnuJgMebKcbm+nQD2AoA6CCKOGFIoUVIkUKiKAAoAwAB6U89aUUUAeCfG/wxdaFrNl4+0TMU0cqC6ZB9yQfckPsfunPH3R3r13wb4ntfF/hez1m1+XzlxLHnJjkH3l/A9PUYPetDWNLtNb0u60y/iEtrdRNHIh7g9wexHUHtjIr5/wDh1qd38L/iZe+DdYlIsb2ZUSVshd5/1cg7AOCAfQ4z900AfR1FNT7tOoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8p+Puvz6R4DWxtmKPqc4gdgcfuwCzD8cKD7E11/w80JPDngPSNOVNsgt1kmyOTI43Pn8SR9AK5n43+Eb7xR4Pil0yBri80+bzhCn3njIwwX1PQ474IHJwd7RPiB4bv/D1vqEms2FowiHnwzzrG0Lgcoyk5GDx+WOtAEPxY1pNE+GuszFgJLiE2sQ7s0ny8e4BY/gawfg34bWL4SJa6lB5kOrNLM8TDrG4CD81XP41V1bR7/4t+IbJriC5svBunv5i+epjk1B/VVOCq4yAx7E468es28ccMCRRIEjjAVVUYAAHAHtQB84eFr2f4O/Fe68P6jMf7GviqiWQ4Xaf9VL+Byrf8CPavpJegxXmvxo8DjxX4Va9tIt2qaYpmiAHMsfV4+OvAyPcADqa5XwR8cdH0/wLFD4inuZNVsgIESGMu9wg+62T8oIHB3HPGe9AHutZmteINI8PWn2rV9Rt7OLBIM0mC2Oyjqx9gCa8Nn+KnxA8ezyWfgnRGtYN2w3CL5jL/vSNiNcj2z6Gruj/AAEvdUvP7R8ba9PdzuQWigkLufZpXH4YA+hoAteIP2gbY3AsfCOkTalcudkcsyMqs3bbGPnb6HaaxU8D/FD4kOJvE+pyaXpz8+RJ8ox7QIQMj/bw3Heva/D3hDQPC0Jj0bS7e1yMNIi7pHHu5JY/QmtwUAed+GPgx4Q8ObZZLM6ndLz518A4B9kxt/ME+9ehxgKgVQFA4AHanUUAFFFFABRRRQAUUUUAFFFFABRRWL4g8VaH4Yt/P1nUre0UjKq5y7/7qD5m/AUAbVRTzR28TSzOkcSDLO7AAD3Jrw/Wvj9PfXf9n+DNCmvbhuI5J0LFvXbEnJ/FvwrOj+GvxH+IMqXPjDWXsbM4IgkYMw9CIUwgPucH1oA7jxP8cfCmgF4bKZtYul6LaEeUD7yHjHuu6uFHiT4sfE5tmi2h0bSpP+W8ZMK47HzT8ze+z8q9M8MfCLwj4ZCSx6eL67Xn7TfYlI9Cqn5V+oGfeu7UYHTFAHi/hv8AZ90u2f7X4mv5dUuWO9oYSY4snrls72PfOV69K9a0rRtN0SzFppdjb2cA/wCWcEYQfU46n3q/TW60AMmkSGN5JXVI0UszMcBR3Jr5r1u8vfjb8S4tK095U0GxJHm44WMH5pf95uij/dz3rqfjh47lGzwRohkkvrvat35PLbW+7CMclmyM+xA53V3Pwz8Cw+BvDCW7hG1K5xJeSjkb8cIP9lenucnvQB1ml6daaTplvp9hAsFpboI4o16BR/P69+tW6RelLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXBfFbx4ngfwyXt2U6teBorROu04+aQj0XI/Ej3rrtY1W00TSrnVL+YRWlrGZJH9h2A7k9APU187+GNLvPjR8SrnX9WRl0WyZf3RPy7QSUhH15LEe/TcKAOv+B/gN9PtD4u1dGbUb8FrbzeWSJuS5P95/X+7/vGvZx0pIwFQKFCgcADoKdQAUUUUAFeSfHXwR/b/h1desoi2o6WhLheskHUj/gJyw9t3c163TJArAqwBBBBB5BFAHA/CTxt/wAJl4QT7TKG1WxIhu8nl/7sn/AgD/wINXoC8Cvmu/im+C3xhS7iVh4f1HJIC5HkM3zKB3MZwQBzjHrX0jbyx3FvHNE6yRyKGV1OQwIyCD3FAElFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU08HNAGZr02rxWW3RLOC4vXyqtdS+XDF/tPjLEeyjn2615LBofxU8Malc6oul6B4gurqTzZ58/veOAAX2bQOgC8e2c16N4m+IXhjwkpXVdUiW4HS1iO+U/wDAV6fU4HvXlWofGvxP4qu307wHoEoYnb58kfmyqD0bb9xP+BZHFAHaR+MvGclo0mqeHdN8NW6cSajqWoq0af7sYwWPoCw5xzWBrfx50TRbZLHQ1uddvEGw3Uo8uNmPU9ASc9goHocYrJ0/4KeJ/FN2mo+PPEEoJ58iOTzpVB6ruPyJz/dDCvVfDPw98MeE1VtK0uJLgdbmUeZKe33j06dsD2oA8hOl/Fv4n5N/M2iaVJwYn3W6FehGzmR/X5uD2rlvFPgYfCrxXot5fRRa3pMjB3EsIVZCpw6FckA4IIySD6HBr6wAwK5vx34TtvGnhW70efCSuN9vKR/qpRna307H2JoA1tFuNPu9Gs7jShELCWJXtxCoVdhGRgDp9O1X68G+Bviu406/vPAWtForiCST7Ksh5VgT5kX82H/Aq94HSgBaKKKACiiigAooooAKKKKACis3Wte0nw9afatX1C2s4exmkC7vYDqT7CvJPEX7QVmJfsXhPSptSunbZHLMjKjN22oPnb6fKaAPa3YKCzHAAySe1efeJvjN4Q8OFolvTqV4vHk2OHAPu+Qo6epI9K87Hg/4p/ErEniO/bSdMfn7PLlAQfSBeSRj/loQea77wx8E/CPh4JNcWzareLz5t7hkB/2Y/u+/OfrQBwD+Pvib8RmaLwrpTabpznabiIdB3zM+BkdfkAP1rX0H9n6Oa4+3+MdYmv7p/meGBjhj/tSN8zfhj617dEixoERQqDhVUYAHoKfQBkaJ4a0Xw3bfZtH0y3s48YPlINz/AO8x5b8Sa1hS0UAFFFFABXIfEbxrb+B/DEuoMUe9lzFZwN/HIR1IHJVep/AcEiumv72306ynvbuVYbeCMySyMeFUckn8BXzfaQ3vxx+KD3E8ckXh+wwCuSPLhycL7O5Bz6DP90UAdD8FPBVxfX0vjzXw81zcO5szLyzMSd8x9+oH4+1e7r0qO2gitbaOCCNI4Y1CIiKAqqBgAAdAB2qWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmnk06vN/jD8QB4N8OfZLKUDWL9WSDBw0KdGk+ozge5zzg0Aef8AxX8T3vjvxfa+AvDrGSJJwk5Q/LLMOu7/AGYwCT75PYV7Z4Q8MWXhDw1a6PZKCsQzJJjBlkP3nP19OwwOgrz/AOCXw/bw7o39valBt1XUEyiuPmghPIB924Y+gwOoNetjv9aAFooooAKKKKACiiigDivif4MTxr4Rnso0U6hADPZueMSD+HPowyPTOD2ri/gR40e+0ubwnqLsL7TgWtt+dzQ55XB7oT09CB/DXtB/+vXzv8WdEvPAXjux8eaGmyOefdOP4RNj5gfaRd2ffd7UAfRC9KWszw9rln4k0Cz1ixbdb3Ue9c9VPQqfcEEH3FadABRRRQAUUUUAFFFFABRRRQAUUUUAFFFYfiHxdoHheDzta1S3tMjKxscu/wBEGWI+goA3KhubmC0gee5mSGGNSzySMFVQO5J4FeG6z8erzU7r+zvBOgzXVy+QktxGzuR/sxJyexyT9RVKH4WeP/Hk8d5421trWDO9bdmEjL/uxqQiEjvnPqKAOx8UfHfwtoYeHTWfWLpeMQHbED7yEYP/AAENXFf2r8W/icB/Z0TaJpMnAkUtboV9fMP7x+uPl4OOleo+F/hT4R8K+XLa6aLq7X/l6vP3rg+oGNqn6AV24+lAHjnhn9n/AELTyLjX7ubVbjO4xjMUIPvg7m575GfSvWdN02x0mzW006zgtLdDxFBGEUfgAPzq3RQAUUUUAFIRmlooA8F+OPhW50jVbPx/ohaK4iljF06fwOCBHIfY8Kc/7Pqa9Y8D+Krbxn4UtNYt9qu42XEQOfKlH3l/qPYitbVNOtdX025069j821uo2ilT1UjH4fWvnvwRqVz8JvileeFNVmxpV7IqpK/C8/6qX2yDtbsO/wB2gD6QopqdD9adQAUUVT1LVLDSLVrvUby3tLdess8gRc/Un9KALlIa8c8S/tBaHp5a30Czl1W4zgSNmKLPtkbm57YGc8GuaOk/Fv4nc6jM2i6RL1jbMCFT1HljLv8A8C496APUvE/xV8JeFvMiu9TW6u14+y2n718+hI+VfoxFeZTfFbx/47nez8E6E9rBu2m4VfMZT1w0jYjTI7EfQ12Hhn4E+FtECS6mr6xdrzmddsQPtGDj8GJFen21vBaW6QW0McMKDCRxqFVR6ADpQB4XpHwF1DVrz+0vG+vz3Nw/3ooJDI5HYNK/5YAPsa9b8PeDvD/hWHy9G0q3tTt2tKF3SN9XOWP51vUUAIKWiigAooooAKKKKACkPWlrz/4sePU8E+GiLWRf7XvQY7VeDs9ZSPRe3uR15oA8++MnjC78S63D8P8Aw6Gnd5lW68ts+ZLnIj+i8Fs9CO201634F8H2fgrwxBpdvh5uXuZ9uDLIep9h0AHoBXn3wQ8BPp1mfFurozahfKTbCTlo4m6uSf4n659P9417MOlAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTW+8OuKAM3xDrll4c0O71bUJPLtraMuxHVj2UepJwAPevAfAOiXnxZ+IN54u16LOmW0oKxNyrMMFIR6qowW9cj+8ad8Rtfvvih48tfBXh6RXsbeYhpQco8gzvkJ/uKMgepzjORXvfhvQLLwxoFpo+nx7be2XaCR8znuze5OTQBqL0paKKACiiigAooooAKKKKACsjxNoFp4o8PXujXy/uLqMruxzG3VXHuDg/hWvSNzQB8+fB7X7vwZ4z1DwDrreV5kx8jJ+VZwOgPo64I+g9a+g16d/xrxP48+DpJbW38ZaUHS9sCq3LRZDeXn5ZBjurd/Q542133w48ZR+NvCNvqLMovY/3N4i8bZVAyQPQ5DfjjtQB19eY/HHUH0fwSL61v76z1Bp44beS1vJIeSSWyFYA/Kp65xmvTCf8AGvDvjG1x4l+IXhfwjZJHM4zcyRO+1GJJ4YgHGFjbsfvdKAOq0fwXeTeArKa58ReIINce0Ez3R1SYhZCN2GjZihUEgEYHA6jrSfBjxpqfjHwvcNq5Et3Zz+UbgKF81SARkDjcMkce1XdZg+IGuWM2nQQaJosFwhjluFuZLmVVPBKARqAfr68VteCvB9h4I8OxaTYM0nzGSad/vSyEDLY7dAAPQDqeaAOiHSloHSigAorN1rXtJ8PWn2rV9QtrOHsZpAu72A6k+wryXxD+0FZCX7F4T0ubUrl22JLOrKjHttQfO2fQ7aAPaXZUBZjtUDJJ7V574m+M/hDw7uiW9Op3Y/5Y2OHAP+0+Qo59yR6V54PBXxS+JRWTxLqL6VpjkH7PJ8ox7QLjJH+2Qfc16D4Y+C3hHw6Elms/7Uu1/wCW16Ayj6R/dHryCR60AefP44+J/wASGMPhfTW0rTmJBni444zmd8dOvyAH2NbXh79n62af7d4u1aXUbp23SRQMwRj/ALUjfO3/AI6fevbI1VI1VFCqBgADGBTqAMrRfD+keHrMWuj6db2cIHKxJgt7sepPucmtQUtFABRRRQAUUUUAFFFFABRRRQAV5X8cPA48S+GP7Xs486lpaNJ8o5lh6uv1GNw/Ed69NvLu2sbZrm7uIreCMZaWVwiqPck4ry7xP8efDGjb4NJWXWLocZiOyFf+Bkc/8BBHvQBf+DnjgeLvCi2l5Nu1XTgIZ8kkyJ/BJ7kgYPfIJ7it3xN8RvC3hIMmqarH9qH/AC6wfvJendR936tgV8pXz6/pF3LrEVne6Ba6u0giEPmQo0RIYop6sgyv14r3Pwf8C/C8VnbanqN6+uGZVmjI/dQMD8ykAHcevc4PpQBi3/xo8V+LbyTT/Anh6ZckD7Q0fmyqOxI+5H/wLcPenad8EPEfia7TUfHXiGbceTBHIZpAO43H5U5/uhhXuthp9npdolpYWkFrbp92KCMIo+gAAqzQBy3hrwB4Z8Jop0rS4o5wMG5k+eY/8DPT6DArqAMClooAKKKKACiiigAooooAKKKKACiimN94cUAUtb1ez0DR7rVdQl8q0tYzJI3f2A9STgAdyRXz14R0m9+MfxGuvEmtRk6NZuB5JOVIGTHCPUAct65P96rPxO8Q3/xG8aWvgbw63mWsE+2RwcLJKM73J/uIM/r14r3Pwr4bsfCXh210fT1IhgHLt96Rj9529yfyGB2oA2FACgAAAcACloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiio5pBFG0jBiFUnCqWP4AAkn2oAc3WvIvjJ8Trfw/pU2g6Pdq+sXIKTNE2Taxkc5I6Oc4A6gc8cZj+JvibxqNBvLmxgTw5o0S4a8upgLq5zwFjRMlCe2cHuSozXgfhbT5NR8Y6FBNE7x3l/CjMykhwZAG57jk5oA+j/g58Pv+ER0H+09QhC6zqCgybhgwxHkR88g9C3vgdq9PFC9KWgAooooAKKKKACiiigAooooAKKKKAILu2hvLaW1uYllgmQxyIwyGUjBB+oOK+cdFuJ/gx8XJ9Lu5GGg6gVHmN08pifLk+qHIb23e1fStec/GPwR/wl/hJ5rSEvqmnBprYKOZB/HH75AyPcD1NAHe3N3b2Vs9zdTRwQRjLySuFVR7k9K8K8C61pviX4+a5rk97AqLG0OnCR1Bk5WNSmeuVBOB/erqPgj43/4SPwwNHvJg2paWoTLHmWDoje+Pun0wCeTXpV9qFlpdq93f3cFrbp96WeQIo+pJoAtjpQetePeJv2gPD+ml4NCtpdWuOgkBMUQPTqRk/TGDnrXMGx+LnxP5u3bRNIk6xkNboy/7gzI+ffj3FAHqfij4peE/CpeK81Nbi8Tj7LaASSZ9D2U+zEV5jcfFjx746uJLPwPoL20OdpuAvmOO/wA0jYjTI9eR2Ndd4Y+AvhbRhHNqhl1e6HP775IQfZB1+jE16jbW0Fnbpb20McEEYwkcahVUegA4FAHhekfAbUNWu/7S8b+IJ7m4b70UEhdyPRpX/kAfY1634e8H+H/CsPl6NpVvakrtaVV3SN9XOWP0zW9RQAgpaKKACiiigAooooAKKKKACiio5pUgiaWV1SNRlmYgAD3JoAkpDXmXij43+EtADw2lw+r3Y4CWZ/dg+8h4x7rurhf+Eo+K3xMfy9Dsm0fS3/5bxZhUj185hlv+AD8KAPZvEfjfw54VQnWNWgt5MZEAO+VvTCDJ/HGPevJ9U+O2r67ef2Z4H8PzSzPwJpozLJj1Ea8DHqSR6itDw7+z5pkEgu/E+pTapcsdzwxMUjJ75b77fXK/SvWtJ0XTdDsxa6VY29nAP4IIwoPucdT7nk0AeGWvwj8b+NrpL/x1r0lumdwt9wldfXaq/u0/DPuK9R8MfDHwp4U2SWGlpLdpjF3dHzZcjuCeFPP8IFdRexxTWsqXDyJCV+Zo5WiYAcnDKQR07GvEfhBaX/jGTXdR1PXNfl02KcQ2UX9q3CY6sckPkkKU/M0Aem/EDwhB418JXOlyYS5H720kPHlzDO0/Q8g+xPevN/gV4vmhe58D6wTFd2kjm0WQ/MME+ZF9QcsB/vf3av6R4h1nw38a/wDhCpdUudU0m6QvH9rbzJof3Rf733jyCOe3NYnxp8M3XhvxFY/EDQy0UomT7SUHCSj7r/7rAbT2+u6gD34UtYfhDxNaeL/DFnrNmRtmXEkYOTFIOGQ9+D69Rg9CK3KACiiigAooooAKKKKACiiigAooooAK8s+NHxCHhTQv7J0+bbrGoIQpU/NBFyGf2J5A9wT2ruPFfiSx8JeH7nWb9sRwL8qZwZH/AIUHuT/j0FeG/DDw3ffEXxpdeOPES+Zawz7okIOySUfdUD+4gxx3IA55oA7n4M/D7/hE9B/tbUIsavqCAsrDmGLqE9ieC34DtXqY6UL0paACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKaxABJOBjrQevfpXkHxw8fNo2lr4Y0pidT1FMTmMZMUJOMf7zcj6Z9qAOM8ZatffGD4j2vhjQpyNHs3b96PmQ44ec46jsv14xur1C/8C2Vn4g8BNptuEs9HmmhIA/hMLMGb1O9Mk9y5NHwj8BL4M8MrLdx41e+Akus9Yx/DH+Hf3Jr0MUAA6UtFFABRRRQAUUUUAFFFFABRRRQAUVDc3ENrC89xKkUMa7nkkYKqgdyTwK8z8T/AB18K6EJINOeTWLteNtucRA+8h4I/wB0NQB6ia5jxN4+8M+E0YatqkUc4GRbRnzJT6fIOnTqcDNePf218WviaMaXbtoukS4xMpMCY9fMOXb0+Tr6V0nhv9n7Q7F1ufEN7Lqs55MSkxxZ75wdzHOecjPcUAeM3/jH+zvH9/4l8HLPpscrt5aSKp27x82V5XGcsFOQDj0r0PQfhNr/AMQIrTxD4u8TPJbXKLLFHE/mybGGcDPyR9uAGx6CvWfE3gLSNb8E3Ph20sraxiK+ZbGKIIsUoHytgD8D3IJrzb4GeKrnTtQvfAWslori3kdrVZDyrKf3kX82H/AqAPTPDPw68L+EwraXpUYuQObqb95KfcMfu/8AAcD2rqxQOlLQAUUUUAFFFFABRRRQAUUUUAFFNdgoJJAAGSTXn/ib4x+EfDYaL7d/aN0vHkWOJMH3fIUc++fagD0KsbX/ABRonhi38/WdSgs1IyodvnfH91B8zfgDXiMnxB+JnxFZ4PCekNp1gx2meIcgd8zPhQf93B+taug/s/rPcHUfGOtT6hdOQ0kUDt8x/wBqRvmbj0A+tACa38fnu7v+zvBuiTX1y52xyzoW3H/ZiTk/iR9KzY/hr8R/iFIlx4w1l7C0zuWCQhip7EQphB35JB+te26H4Z0Xw1bfZ9G0y3s48YbykG5/95jy34mtcdKAOC8MfCHwj4ZCSLp/2+7X/l4vsSEH2X7o9sDPvXer90cYpaKACiikPWgDi/izrf8AYXw11mdWxLPD9mi7HMnynH0Uk/hXldlrXir4V/DTQpoLfSzYapJ5rzPDI0sLSAMCw3AE7Rx/u1d+PPiGw1W/0PwvDqEBT7V5l66yAiDkIu4joQGckHpgV6X408P2ni34bXumae0cyG3D2TQsGUunKBSOMEjb+JoAg8I+ArHR9Vm8TXWoSavrV8oLX8qBVCkD7ijoMADqeK6fVtJs9d0e60u/i8y1uozHIvse49COCD7cVwPwV8Y22ueC7TSp7pP7U08G3aJmAdo1+4wHUjbhf+AmvTlORQB85/DnVbv4YfEi98Ga1IRYXkwSOVuEEh/1cg9A4wD74z9019GL05ryX46+Bzr/AIeXX7GPOo6WhLheskHUj6qfmHtu9RWz8I/HA8ZeEkW5lDatY7Ybrnl/7sn/AAIZz7g0AehUUi9OKWgAooooAKKKKACiiigApsjBVJJAAGSScAfj2pTXifxv+JMFjpsvhbR7pHvbkFL6SNs+TGeCmR/E3cdhn1FAHL+LtWvfjH8SLfw3ospGj2bnEoGV2j/WTnH/AHyo75HTdX0NomkWWg6PbaVp0IhtLVNkaD07knuScknuSa474T+A08E+GEe4j/4m16qy3bHHyf3Yx/u55989sV344GKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmSMqKzuwVVGSScAD1p9U9StLK+spINRhhmtMbpI5wDGwHPzA8EfXigDyPx98c7TSkmsfC6pfXSnZJekFoISfT++evtx35Fea/CdLrxV8Y7LUNUla9mRpLuaSY5JZUIU59mKY7DHHFaurSz/GH4jwaFoyi18O6eWVDGgREiB+eXHYscBRjuM45r0LwZ4Lh8N/GzXnsoBBp6aXD9njH8IkKj+cL0AetDpS0g/SloAKKKKACiiigAooprsFBZjgAZJPagB1FeeeJfjN4Q8Ololvv7Suxx5NjhwD7vkKOR6kj0rzt/HvxO+I7mDwtpTaZpzHH2iMdu4aZgBnP90A/WgD2zxD4s0LwvB52tanb2qkZVGbMj/7qD5m/AV5Hrfx9udRu/7N8FaDNd3MnEctwhdm9dsScnsck/UVP4f/AGfYZLj7f4v1mbULpzueKBjtZv8Aakb5m/DafevW9E8OaP4ctPs2j6db2cXcRJgt7s3Vj7kk0AeHwfC/4g+PpY7vxnrT2dsTuFszb3X6RqQi59Sc+1el+GfhN4R8LFJLfTVvLtcEXN7iVgR3AI2qfcAGu5FLQAi9KWiigBCM14L8cPDF1ousWXj/AETMc0csYumUZ2SKR5ch9jgKc+ijua97qlqumWus6bc6bexCW1uYmilQ91Ixx6Hvn2oAzPBfie18YeFbPWLYgGVds0ecmOQcMv59PUEHvXQV84/D7Urv4XfE+98H6vKf7PvZQiSngFz/AKqQegYHB9/92vo1en+FAC0UUUAFFFIaAForifE/xT8J+FjJFd6mtxdpx9ltMSyZ9D/Cp9mIrzG4+LHj3xzcPZ+B9Ce2iztM4USOO/zO2I0yPXkdjQB7nrGu6V4ftDd6tqFvZwjo00gXd7AdSfYV5J4i/aCslmNl4T0ubU7pztSaZWRCe21B87fT5TVLSPgNqWr3Y1Lxv4gnubhvvRQSGRyPRpX6fQA+xr1rw74N8PeFYdmjaVb2rEYaUDdK31c5Y/TNAHiw8I/FT4l4k8Q37aTpcnP2eTMYKn0hXkkEf8tCDXe+GPgn4S0Dy5rm2bVbtest5hkB74j+7j67q9KFLQAyJFiiWNEVEUYVVGAB6Cn0UUAFFFFABRRRQAUUUUAFFFFABRRRQAyRQ3ysAVIwQe4r5t1SGf4K/FyK/tlf+wNRJPlgZHkkjeg9TGcEe231NfStcf8AEnwdD428KT6cAovov31nIeNso6An0OSD9c9qAOqtbiG7tIrm2lSWCVA8bocqykZBB7gipq8S+A/jOWa2m8Gaq7pe2BY2yy8MUB+aMg91OePQ/wCzXti9KAFooooAKKKKACmSNsUsQSAM8Ak/kOtPqC6nhtbeW4uJVihiQySSOcKijkkn0AFAHjnxa8UeMLTQZbiDyfD+mFxEhknDXt2T2QJkIO5+YHA6/wAJ8K0Xw9d3OseHReWzpaavepDC7dJR5io2PxOK9GuZL344/FFYIjLF4esejY+5CDy3pvkIwPQY67TXsmveELa51XwXLaWqxw6PeMERPuxRCFiP/Ho4x+NAHaDkZpaBRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADW6+9eK/HHx3LFEngvRi0l/fbVu/KyWVG+7EMfxPxkenrur0L4geMrbwP4Yn1SXa9y37u1gP/LSQjj8B1PsPcV5Z8FfB1zrOqT+Ptf3TTSzO1p5n8chJ3Sn6HIHuD6CgD0T4YeBIvA3hhIZEQ6pdbZL2Qc/N2Qf7K5I9zk967BLWBLyS7VAJ5I0iZ+5VSxUfmzH8asL0paAEAwMUtFFABRSHrXGeKPij4T8KGSK91NZrxODa2mJZAfQ9lP+8RQB2lZ2s63pWg2ZutW1G3soOzTSBd3sAep9hzXhtx8WvHXji4ksvA+gvbR7sGfaJXH+87YjTI7HPsataV8B9T1m8GpeN/EE9xM2N0UMhlkI9DK/T6AH2NAF3xF+0FYpL9i8J6ZPqV07bY5plZUJ7YQfO30O2sNPB/xT+JWH8R6g2k6Y/Igk+QYPpCuCcY/jINe0eHvBnh7wrHs0XSre2bGDNt3SN9XOW/DpW+OlAHm3hj4KeEvD2ya4tW1S8Xnzb3DID/sxj5ffnP1r0eJFjQIihUHCqowAPQU+igAooooAKKKKACiiigAooooA8l+Ovgf/AISDw6Nds4/+JhpaFnwOZIOrD/gP3h/wL1rY+EPjf/hMvCSC6l3arYYhu89X/uyf8CAOfcGvQHAYFSMgjkV8yX90nwc+MklxYypNpFz80ttC6llhc/MhHYoRlc4yAOeTQB9OAYHHSqmpanY6Tatd6jeQWlsvWWeQIv5k14XqHxp8VeKrt9O8C+H5VPA894/OlUHoSMbE/wCBbh70un/BTxN4ovF1Lx54gl3f88I5PNlA7ruPyJz/AHQwoA3PEv7QOhaeTBoFrNqtznaJWBjhB9iRubn2GfWuaOm/F34m830zaJpT/wDLNt1uhHQjYMyP6/Nxz2r1PTvCXgv4daW+oJaWtmkC5kv7k7pOePvnkEnjC45NSH4jaFHZrfXKapaae+Nl5cabMkLAng7tvAPYnGaAOa8M/AXwvo22bUzJrF2vP74bIQfaMHn/AIESK9RtraCzt0t7WCOCCMYSKNAqqPQAcCq+kapba3pNtqdkzNa3KeZEzKVLKehweeau0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1qdRQB89/GDw7eeD/F1j4+0EGPzJgbgKOEm9SP7rrkEdzn+8K9s8LeIbPxV4cs9Zsm/dXKbiucmNujIfcHI/DPSptf0az8Q6Jd6RfpvtrqMowHUehHuDyPcV4P8Ldau/h58Qr7wLrcmLe5n2xP0UTEDYw9pF2j67aAPoqikXpS0AFFFZmua/pXhyxN9q9/DaW44DStyx64VerH2AJoA0j1rwj42eNrnUL2LwHoO6W5ndFu/LIy7EjbD+J2k9Ow9RVT4hfGXxELZYdD0q80eynJWO+vYSks4HXyweAPU84yPumsP4B6TLrPxDutaui8/wBhhaVpnYkmaQ7QSTySQZDz6UAe3/DvwTb+BvC8NioR76XEt3MM4eT0B/ujoPpnvXXjpQOlLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUNzcRWlvLcXEqRQRIZJHc4CqBkkn0GKlPWvC/jb42uL67i8B6GWlurh0F4I8ZYkjZCD2JOCenGB3NAHN3D3vxx+KAijMsfh/T+jYxsh3DLf78hHHoMdlr6Ss7SCxsobS1hWG3gQRxRqMBVAwAPwrlvh34Jt/A3heGwXY99JiS8nGf3knoCf4R0H0z3rrqAHUVzXiTx54a8Jqf7X1WGKYDIt0JeU/8AAFyfxOB715Nqnxv8Q+JLttN8CeH5mdv+W0kXnSqP721cqmPUlhQB7pf39nplq91f3UNtboPmlmkCKPqSQK8q8TfH/wAPaYWg0OCXV7gcBxmKEH6kZP4DB9a5yy+DPi3xddpqHjvX5Yx/zwV/NkUHqB/An4Z+leq+GPhz4X8JBH0zSo/tS9bqf95LnpkMfu/8BwKAPI/snxc+J/8Ax8O2i6RKOVbdbxsp6jbzI4I9fl+ldl4Y+AvhjRwk2rGXWLpcf675IQfZAef+BEivVl6UtAENpa29lapbWkEUEEYwkUSBFUegA4FTUUUAFFFFABRRRQAUUUUAFFFIaAFornvEXjXw74VjLaxqtvbvjcsOd0rfRBkn8se9eT6p8d9W1y7/ALN8D+H55pn6TTRmWTHqI14GPUsR6igD3K7u7axt3ubu4it4Ixl5ZXCKo9SScV5f4n+PPhnRWaHSll1m5HGYTshB93I5/wCAgj3rkrb4R+OfGtwl94416SCInd9n3+a6+u1F/dpx6Z9xXqHhj4X+E/CmySx0xZrpf+Xu7xLJn1GeFP8AugUAeV/bfi38T1/0VG0XSJRw6g26MvruOZHBGPu8H2q/N+zxa2/hu9I1We81wxFoMKI4d4wduDknOMZLDrnHFe8DpzSN1oA8V+AXisSaZdeEL2MQ3tgzSwgptZlJ+ZSOpZW9exA7V7WK+ePi1od34E8c6f490NAkc0+ZwBwJ8HcD7SLuz77vUV7p4e12z8TeH7LWLF91vdxBwOpQ9GU+4OQfcUAeb/H+K+/4RbTLyCEz2NpfLLdR9uhClvbJIz6kV2+n6jpXxA8FSyWMqyWd/bvAykcxFlwyMOxGf5HvWqs1lrVncwbEuLcvJbTI65BKnaykfnXilnpt38Jfi9pun6dNJJ4f8QyiNbd2zsJbbz7qWHPdWweaAPbtH09NJ0Wx02P7lpbxwL9FUL/SrtIpyKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBDXj3x28Etq2ip4o09CNQ0xczFOrQAk5+qHJ+hb0FexVFNGkisjqGRlKlWGQQe2PSgDifhX42HjXwjFLPIp1S0xDeLnlmx8r49GH6g13S9K+apUm+CfxcDoZB4e1H6sPIJ5+rRn8SP8Aer6St5Y54EmhcPFIoZHU5DA8gg9xQA8+lZmqS6VpMNxreoJBCttCWlumjBdUHOAev4DqTWk3JFfPnxa8VXvjXxVbeAPDjebGs+y4KHiWYclT/spgknpkEn7uaAMSx03VPjp49v8AULhpbXSbaMrGf+eS8+XGOxYn5j+P+yK9H+AGgNpXgefUJogtxqF056YISM7Ap/4EHP413Pg7wrZ+DvDNro9mAxjG6aYrgzSHG5j+WB6AAdq27e3itYRFBGEjBJCj3OT+poAkXpS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRVe9uoLGznvLmVYreCNpJZG6IqjJJ9gAaAOU+JfjeDwN4XluwUbULgGKyhbnc/diP7q5yfwHGRXnnwW8HPGs/xA8Ryf6RPva2kuT91TnfMxPc5IB44yehFeXeMvFV3498U3GqyNEtlbbVtbW5mWMCPdwMbhknq2D+IAFdBZ6PqXjnypPFvxB0TTrBMLHanUYDsUDjZDGwROOOcHjpQB6v4n+OfhTQQ8OnyNrF2MgJanEQPvL0x7qGrhzr3xY+JwKaRanRtIkH+tTMKFT0Pmn53/wCAflXW+GPD3wi8MBJIdZ0K9u1/5eb3UYZWB9VUnav1AB967oeOvCAH/I1aGP8AuIQ//FUAedeG/wBn7R7R/tXiO+l1W5PzNFGTFFk8nJzuY575H0r1nS9J0/R7NbTTbK3s7dekcEYQfXAHX3rM/wCE78If9DXof/gxh/8AiqP+E78If9DXof8A4MYf/iqAOgFFc/8A8J34Q/6GvQ//AAYw/wDxVH/Cd+EP+hr0P/wYw/8AxVAHQUVz/wDwnfhD/oa9D/8ABjD/APFUf8J34Q/6GvQ//BjD/wDFUAdBRXP/APCd+EP+hr0P/wAGMP8A8VR/wnfhD/oa9D/8GMP/AMVQB0FFc/8A8J34Q/6GvQ//AAYw/wDxVH/Cd+EP+hr0P/wYw/8AxVAHQUVz/wDwnfhD/oa9D/8ABjD/APFVBd/EPwba20k8ninSGSNSWEV5HI5+iqST+AoA6eo5pEhRpJHVERSzMxAAA7mvC/E/7RMCB4PDGmGZhwLq9+VfqIwcn6kjHpXIx2mtfESRbjxf8QtG0+yJDC3k1GEkDsVhRgoPbLEN9aAPWvE/xu8JaAJIrS4bV7scCOzP7sH3k+7j/d3GuD/4Sv4rfEs7NAsX0fS36TxExAj185uTj/Yx9K6rwx4Z+EPhkRyDWtCv7teftF9qEMhz6hd20fgM+9d6vjrweAB/wlWhj2/tGH/4qgDzbw5+z5p0MgvPFOozancsd0kMTFIyT1y/32+vy16zpOiaXoVp9l0rT7eyg6lIIwufc46ngcnmqH/Cd+EP+hr0P/wYw/8AxVH/AAnfhD/oa9D/APBjD/8AFUAdAKK5/wD4Tvwh/wBDXof/AIMYf/iqP+E78If9DXof/gxh/wDiqAOgorn/APhO/CH/AENeh/8Agxh/+Ko/4Tvwh/0Neh/+DGH/AOKoAteJdBtPE/h+90a+XMF1EULDqjdVYe4OD+FeIfCDX7vwX4y1DwDrrCMSTkQZbgT46DPZ1wR749a9kPjrwgf+Zq0P0/5CMP8A8VXjXxvXw7qqWfifQPEOlS6raMscsdrextI6Z+V1CtnKt6djn+GgDv8Aw7o/jbwvLqk3l6fqttqN7LeG1+0NDJbu7ZIUlSrDpkcYOcZqa08Kavr3je08U+KEtrVNORlsNNgk83y2PWSR8AFvYDsp7HKeCPipoGueFLO71fW9OsNSUeVcw3NzHC3mL1YBiOG68cc47Gui/wCE78If9DXof/gxh/8AiqAN5c7eRinVzr+OPCDqR/wlWhkEY51CHH/oVeaeJfiRdeCNSW60jxBpXibQpnwbJ75HubU+gdSWZT/eYMR0PqQD22ivOvDXxn8H+IIwsuoDS7nq0WoERj8Hztx+OfaukHjvwh/0NWh/+DGH/wCKoA6Giuf/AOE78If9DXof/gxh/wDiqP8AhO/CH/Q16H/4MYf/AIqgDoKK5/8A4Tvwh/0Neh/+DGH/AOKo/wCE78If9DXof/gxh/8AiqAOgorn/wDhO/CH/Q16H/4MYf8A4qj/AITvwh/0Neh/+DGH/wCKoA6Ciuf/AOE78If9DXof/gxh/wDiqP8AhO/CH/Q16H/4MYf/AIqgDoKK5/8A4Tvwh/0Neh/+DGH/AOKo/wCE78If9DXof/gxh/8AiqAOgorn/wDhO/CH/Q16H/4MYf8A4qj/AITvwh/0Neh/+DGH/wCKoA6Ciuf/AOE78If9DXof/gxh/wDiqP8AhO/CH/Q16H/4MYf/AIqgDoKK5/8A4Tvwh/0Neh/+DGH/AOKo/wCE78If9DXof/gxh/8AiqAOgorn/wDhO/CH/Q16H/4MYf8A4qj/AITvwh/0Neh/+DGH/wCKoAyfil4KTxt4RmtYkH9o22Z7NzgfOBypPow4+uD2rj/gT41a/wBLk8J6kzi+00E2/mcM0IPK4PdCcY9CPSvRT478If8AQ1aH/wCDGH/4qvBPiRcab4Z+Idl408Iazpt00svmTw2t0khSUfe3BTnbIpOT67umRQB6l8XfiAPBvh37JZTKNZvlKQYOTCnRpT9Og9T64NZnwR+HzaBpP/CRapERquoJmNG+9DCeRn3bg+wwOua4vwBoV78V/H914v8AEEe/TLaUFYW5RmHKQr6qowW9eM53GvpBc7emKAAHIpaKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooprUAOqtqFlb6lp9xYXcfmW1zE0MyZI3IwwwyCCMgkcV5j8aPEut+EdKsb7RNantrm5ufKFsYYZEKBSSRuQtnO0de/Sukt/D/is6Tbs/jS8XUjErS+ZZ2zwh8cjaI1bGf8Aa6UAUv8AhSfw9P8AzL3/AJO3H/xyj/hSXw9/6F7/AMnbj/45Ufgzx9eah4lvvCPiO3gtdesMkNAT5VygA+ZQeQcEHHoSeMYr0MUAcB/wpL4e/wDQvf8Ak7cf/HKP+FJfD3/oXv8AyduP/jlegUUAef8A/Ckvh7/0L3/k7cf/AByj/hSXw9/6F7/yduP/AI5XoFFAHn//AApL4e/9C9/5O3H/AMco/wCFJfD3/oXv/J24/wDjlegUUAef/wDCkvh7/wBC9/5O3H/xyj/hSXw9/wChe/8AJ24/+OV6BRQB5/8A8KS+Hv8A0L3/AJO3H/xyj/hSXw9/6F7/AMnbj/45XoFFAHn/APwpL4e/9C9/5O3H/wAco/4Ul8Pf+he/8nbj/wCOV6BSEHPBoA4D/hSXw9/6F7/yduP/AI5R/wAKS+Hv/Qvf+Ttx/wDHK574peI/E+ieLvD+keHdfnin1aQo9u9vA6x5dVQrlM45bOSeldtJ4b15o9sfjjVlfH3jaWhH5CEUAZX/AApL4e/9C9/5O3H/AMco/wCFJfD3/oXv/J24/wDjlbfgca6NBmHiG+a9vVvbiNZjCsW6NJCikKoAwdu4f71dLQB5/wD8KS+Hv/Qvf+Ttx/8AHKP+FJfD3/oXv/J24/8AjlegUUAef/8ACkvh7/0L3/k7cf8Axyj/AIUl8Pf+he/8nbj/AOOV6BRQB5//AMKS+Hv/AEL3/k7cf/HKP+FJfD3/AKF7/wAnbj/45XoFFAHn/wDwpL4e/wDQvf8Ak7cf/HKP+FJfD3/oXv8AyduP/jlegUUAef8A/Ckvh7/0L3/k7cf/AByj/hSXw9/6F7/yduP/AI5XfN1rxDxp458ReG/ippulWeuXEmkNPbpeJNbwEIzvlkDCMEDyyp9eetAHY/8ACkvh7/0L3/k7cf8Axyj/AIUl8Pf+he/8nbj/AOOV33Xr2rw74kfEvxAniyw0HwhdC3D3BtHuPKSQTT7lBQblPyqWAJA5OR2oA7I/BT4ej/mX/wDyduP/AI5XnXxI8PfD/wANhdD0Dww1/wCJbofu4Irm4kMAP8TKrnLei/ieOD7xYWlxa2UcVzfzXs6/euJVRWYn2RQAPwqLTdC0zSGlexsooZZ2LSygZklPq7n5mP1JoA+cvC/wB8RasUn1uaPSbbIzGcSTEewHA/E59q9XsfgX4DtrRIrjS5ryRes893KrN9QjKP0r0gUtAHn/APwpL4e/9C9/5O3H/wAco/4Ul8Pf+he/8nbj/wCOV6BRQB5//wAKS+Hv/Qvf+Ttx/wDHKP8AhSXw9/6F7/yduP8A45XoFFAHn/8AwpL4e/8AQvf+Ttx/8co/4Ul8Pf8AoXv/ACduP/jlegUUAef/APCkvh7/ANC9/wCTtx/8co/4Ul8Pf+he/wDJ24/+OV6BRQB5/wD8KS+Hv/Qvf+Ttx/8AHKP+FJfD3/oXv/J24/8AjlegUUAef/8ACkvh7/0L3/k7cf8Axyj/AIUl8Pf+he/8nbj/AOOV6BRQB5//AMKS+Hv/AEL3/k7cf/HKP+FJfD3/AKF7/wAnbj/45XoFFAHn/wDwpL4e/wDQvf8Ak7cf/HKP+FJfD3/oXv8AyduP/jlegUUAef8A/Ckvh7/0L3/k7cf/AByj/hSXw9/6F7/yduP/AI5XoFFAHn//AApL4e/9C9/5O3H/AMcpD8FPh8Dx4f8A/J24/wDjldN4q8UaZ4Q0SXVdUlKRJ8qIoy8r9kUdyef1PauV0FfGXjS0j1bUdSk8O6bOoe2sbGNGnZD0Z5JFbHHOAOfbpQB2ui6Np/h/SodM0u1W2s4c+XEpJxk5PJyTyT1rQrzDxRp/jLw/LpX9keKL27sLu+htLlLyGF5Yg7gb1cIOOxB6ZFemr92gB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh7UtRyusSNJIwVFUszE8ADuaAPE/HQ/4Sz49eGfDgPmW2mAXE6noD/rWB9iqRj8a9uGcc4+leGfCG6g8SfEvxh4slmXOfLtwzDPluxwfwWNR+NeieJviDpOhxNb2TDVdakBW306yPmyu3bdtztX1J/AHpQB5nqEn2v9qmzFkTvgCiZl9oGLZ/AgV74Onb8K8x+F/gK/0a8v/FPiRlfX9TZnaMHIgVjuI+pOOB0AAr04dKAFooooAKKKKACiiigAooooAKKKKACkPalqhrWpwaLo95qdywWK1haZsnGQBnH9PxoA8SluL/xJ+0ReX2nWC6imgQ+UkTziJcqCp+Yg8+Y7Ecdq9D0PWfEms+OJ7PVdKGk2um2gl8uO6877Q8pIQlgAMAJJ8uOuD2rjPgCIZNJ17Xbq6hN9qF7iUM43AKN2cZ7mRvyrt/EnjrQtBcRWU9rea7eukFvZ27qzyyE4TeV5VQSck++KAO0HT8aWmRb/ACl8wgvj5iowM+1PoAKKKKACiiigAooooAKKKKAGuwUEkgADnPSvm34iRPdfDmz8XgHz9R8QS3UZP3liKssQ+myFPzr2T4na4mg+AtSlEqpc3SfZLbLYJkk+UEfQEt9Frmfi/ocdn8FfsFsuY9MNqseBzhWEY/8AQqAOn8U67cyRWOi6FJjV9XXMUoGfssHBecj2B4HdiK8x0bSLTUP2gLTS7BM6X4Xs9q5OcsoyST3bzZSSfUGu88G6ZL4Y8LzeJPFEoGpyWiNcM3At4I1+SJfoOT6sxrlvgDC2or4l8UXJU3WoX2xvY48xvzMg/wC+aAPaV6UtAooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKSlpDQB4H44c+Nfj7o3hSfLadp5VpIj0c7POfP1Xate+KABgYA9q8I8aQP4I+OmmeM7qKQ6PelUmmVSVibyjCQfoMP7846V7UNUsTp634vbf7Gy7xP5q7Cvru6YoAtyIrjDKGwQwB7Ecg/nTxWNpGtrrcks1nA7acoAivDkLO3fYp5K9Pn6E5xkc1sL0oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKq3+n2ep2zW1/ZwXdu33op4xIp/BuKtUUAc8PAvhAcjwtof1/s+H/4mtWy0yw02Mx2FlbWkZ6rBCEB/AAVcooABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVLUtI03WIVh1PT7S+iU7lS6gWVQfUBh1q7RQBz3/AAgvhA9fCuhn/uHRf/E1NbeD/DFjcx3Np4c0i3njOUliso0ZT6gheK26KAEFLRRQAUUUUAFFFFABRRRQAUUUUAZmp+HtF1mVJNU0fT76RBtRrq2SUqOuAWBxU0emWENiljFZW0dohBSBIlCKQQwwuMDBAP1FXaKAM7UdG0vWUVNU02zvkjJKLdQLKFPqNwIFRaf4a0LSJzNpuiadZSEYL21okZ/NQK1qKAAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFe8s7a/tpLa7t4riCQYeKVAysPcHrXOW3w48GWd4LqDw3pwmB3AtCGAPqAcgflXV0UAIoCjAGBS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9k='] Multimodal Competition True Theorem proof Geometry Math English 9 "In parallelogram $A B C D, A B=a$ and $B C=b$, where $a>b$. The points of intersection of the angle bisectors are the vertices of quadrilateral $P Q R S$. Prove that $P R=a-b$." ['Since $A M$ is a bisector of $\\angle D A B$, let $\\angle D A M=\\angle B A M=y$.\n\nAlso, $\\angle D M A=y$ (alternate angles)\n\nThis implies that $\\triangle A D M$ is isosceles.\n\nUsing the same reasoning in $\\triangle C B N$, we see that it is also isosceles and so the diagram may now be labelled as:\n\n\n\n$A N=a-b$\n\nThus $\\triangle A D M$ and $\\triangle C B N$ are identical isosceles triangles.\n\nAlso, $A M \\| N C$ (corresponding angles)\n\nor, $A P \\| N R$.\n\nBy using properties of isosceles triangles (or congruency), $A P=N R$ implying that $A P R N$ is a parallelogram.\n\nThus $A N=P R$ and since $A N=a-b, P R=a-b$ (as required)'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAQwCVwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKQ1z954u0618Z6d4XJZr+9hkmG08RqoJGfrhsf7tAHQ0Ug6UtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVHKSqlgpYgHCr1Pt/kigCSiuK074k6Ze+NW8JT6dqOn6qqlgl0ke1sLuwpR2z8vP4Guru55Le2eWK1muXXpDCVDN9NxC/maALVFcx4R8ZQ+MrWS8stJ1K2tUcoJrtY1V2HDBdrsTj1xj3rph3+tAC0UUUAFFFFABRRRQAUUUUAFFMckDIBY4zgd64G7+KljZeKh4Yfw/rkmrMBtgjSBt2V3ZDCXH3cmgD0GiuN1Hx3PpNlJeXvg7xGkESl5GRLeTao6k7Zjx/gfSum0nUI9W0ez1KGOSOK7hSdElADhWUMAQCQDg+tAFyiiigAooooAKKKKACiiigAooooAKKKKACiua8Y+MLfwZpp1K+06/uLJSqvNa+WQhY4AIZ1PXuAetZVv8SYZ/D6a8PDOvrpTJ5n2oxQsAgPLFVlL46nO3pk9qAO6orO0PW9N8RaTDqelXSXNpNnY65HTggg8gj0NaNABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNbqPWgCjrer22haPdald7jDAhYqoyznoqqO7MSAB6mvCta0+/8NfFvwT4g1R2OoavKRd85VHZtmxfZUkRffbnvXoWsLqHjHxWLHSL23trPw/Mss0s1uZo5bsj5UwGX7ikNnP3iOOK4f426d4gsNE0bWdR1WzvTZXwEQt7BoGRmG7JJlbI/djjAoA96HSlqG0uEu7SG5iOY5UWRD7EAipqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApDS1znj3Vn0TwRq15CSLjyDDb7evmyEImP+BMKAPFfF9jdnT4/itp+WuU1p5QecG1VhFFn2/d/j5ley6v4qt4fh1deJ7STMZsDcW5yOWZfkB99xAPvmpovCtofAsfhadQbb7ALRyB0+TaWHvnn614t4Jvr25htvhfqCk3FlrgaYYyptYy0rLn08xBj2cUAe3eDNF/4R7wbpOlEYe3tlEv/AF0PzOf++ia3aQdKWgAooooAKKKKACiiigAooooAQnFeB+CNY0vVvjV4p8UalqNnbwW263tWuJ0j3ZOxSNxH8EZ/76r17xvrX/CO+CdY1UNtkgtm8o/9ND8qf+PEVwnwS8KWMPw6gvL+wt559Qme4HnRK5CDCqOR0+Xd/wACoA7jTNd0zxeNVtrCRbvTosW0l1E4ZJHZSXVSOu1WT5v9rHat23hjt7eOCJdscahFA7ADArL8M6Ba+G9MlsrSNEjkup7grGu1R5khYAD0AIUey1s0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUhoA8Z/aG1QjQtI0CJ1WXULrzGLNgBUGOfQbnBz/s10mo+K/DmjeD/AOwtFvYNXvUsfstpY6ewuZJCE2jKpnA7knt69K5G+VfGX7SdvaMiy2WhW+XUjIJUZ/SSRR+FaHxy0fStO8JW+t2cMdjq9tdoLa5tQIpDnORle2Bn2I+uQDd+DfhLUvCPgp7bVVEd1dXLXJgDZ8oFVUA+/wAue/WvQ8ewrC8E6hear4J0bUL8H7XcWkckpIxuJUfNj36/jW9QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVLVIb24sJYtOu47S7ZcJPJD5oT327lyfTn8+lXaKAOU8D+Fbvwho8mnXGqRagrTPOZ/sxikZ3OSXJdt36dO9VfiD4LvvHOkrpY1iCwtPMWRv9DMrlhnHzeYoA5/u/jXX3VxDaW0tzcSJFDChkkkc4CKBkknsABXntt8cvAU+/wA3VZrfacAS2kh3e42qeKAOu8MaVe6JoFnpl7fxX32SFYY5UtzESigAbgWbJ468fStqvPv+F2fD0f8AMw/+SVx/8bpf+F2/D3/oYf8AySuP/jdAHoFFef8A/C7fh7/0MP8A5JXH/wAbo/4Xb8Pf+hh/8krj/wCN0AegUV5//wALt+Hv/Qw/+SVx/wDG6P8Ahdvw9/6GH/ySuP8A43QB6BRXn/8Awu34e/8AQw/+SVx/8bo/4Xb8Pf8AoYf/ACSuP/jdAHoFFef/APC7fh7/ANDD/wCSVx/8bo/4Xb8Pf+hh/wDJK4/+N0AegUV5/wD8Lt+Hv/Qw/wDklcf/ABuj/hdvw9/6GH/ySuP/AI3QB6BRXn//AAu34e/9DD/5JXH/AMbo/wCF2/D3/oYf/JK4/wDjdAHoFFef/wDC7fh7/wBDD/5JXH/xuj/hdvw9/wChh/8AJK4/+N0AegUV5/8A8Lt+Hv8A0MP/AJJXH/xuj/hdvw9/6GH/AMkrj/43QB6BRXn/APwu34e/9DD/AOSVx/8AG6P+F2/D3/oYf/JK4/8AjdAHoFFef/8AC7fh7/0MP/klcf8Axuj/AIXb8Pf+hh/8krj/AON0Ad+a5Dxn4T1TxRLp62+uQWFpZXMd2IWsTMZJEOV3HzF+X2x+Ppn/APC7fh7/ANDD/wCSVx/8bo/4Xb8Pf+hh/wDJK4/+N0AdzbCZLdFuZI5JgMO8aFFJ9QpJx9MmuctfBdpa/EW98WxkCW6s1t2jx/GGGX/FVUfhWT/wu34e/wDQw/8Aklcf/G6P+F2/D3/oYf8AySuP/jdAHoApMjOM81wH/C7fh7/0MP8A5JXH/wAbrI8Q/Ez4beItPNu/iea1uEy1veW9rcJLA/8AeVgg/EdDQB6vRXzbofx61XQ72Sx1ZoPEFjG21L6FDBK69mwwAPHYgHOck9a9MtPjl4BuLWOWXV5bV2GTDNaSlk9jsVh+RNAHo1Fef/8AC7fh7/0MP/klcf8Axuj/AIXb8Pf+hh/8krj/AON0AegUV5//AMLt+Hv/AEMP/klcf/G6P+F2/D3/AKGH/wAkrj/43QB6BRXn/wDwu34e/wDQw/8Aklcf/G6P+F2/D3/oYf8AySuP/jdAFz4heDNQ8c6UNJj1uLTrEsryqLMyvIQcgbvMUAdDjHUda1/C2jXnh/QLPSbq9hu0s4kgikitjCSqjALAu2T69M+lc5/wu34e/wDQw/8Aklcf/G6ib44+AFmVBrMjKR/rBZzbR7cqD+lAHog6Utef/wDC7Ph6P+Zh/wDJK4/+N0f8Lt+Hv/Qw/wDklcf/ABugD0CivP8A/hdvw9/6GH/ySuP/AI3R/wALt+Hv/Qw/+SVx/wDG6APQKK8//wCF2/D3/oYf/JK4/wDjdH/C7fh7/wBDD/5JXH/xugD0CivP/wDhdvw9/wChh/8AJK4/+N0f8Lt+Hv8A0MP/AJJXH/xugD0CivP/APhdvw9/6GH/AMkrj/43R/wu34e/9DD/AOSVx/8AG6APQKK8/wD+F2/D3/oYf/JK4/8AjdH/AAu34e/9DD/5JXH/AMboA9AqvdpcPA62ssUU5HyPLEZFB9wGXP5iuH/4Xb8Pf+hh/wDJK4/+N0f8Lt+Hv/Qw/wDklcf/ABugDN8N/C7XfDXiXUNetfFlrNe3+43H2jSSysWbccYmBHPvWpf/AA4/4SLU7e78W61Nq8Vsd0NjFCLe3UnrlQSx6Dq3403/AIXX8PWH/Iwf+Sdx/wDEV1+ha1p/iLSIdV0q4+0WU5bypdjJuwxU8MARyCOaAL0SLHEqIoVFGFUDAA7ADtT6KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQ9aWuL+JnjiHwN4YkvFKPqFxmKyhbnc/diP7qjk/gOM0Aee/G7xpc6hdw+A9BLS3Nw6LeCPqzEjZCPrwT07D1rhNf8GT/AAm8S6DqGo2ttq+nzKpnjlhEkZfGJY8MMZwcqSP5Gu/+CHgeZ3l8ca2rSXl2WazMpy2GzvmJ9WyQPbJ716Z468K2/jTwneaPNhZXHmW0pH+rlH3W+nY+xPrQBHp3hTwPqunW+oWfhrQpra5jEsUg06L5lIyDytWv+EE8If8AQqaH/wCC6H/4mvJ/gV4qnsL298B6zmK6tpJDapI3KkH95F+Byw+rV7uOlAGB/wAIJ4Q/6FTQ/wDwXQ//ABNH/CCeEP8AoVND/wDBdD/8TXQUUAc//wAIJ4Q/6FTQ/wDwXQ//ABNH/CCeEP8AoVND/wDBdD/8TXQUUAc//wAIJ4Q/6FTQ/wDwXQ//ABNH/CCeEP8AoVND/wDBdD/8TXQUUAc//wAIJ4Q/6FTQ/wDwXQ//ABNH/CCeEP8AoVND/wDBdD/8TXQUUAc//wAIJ4Q/6FTQ/wDwXQ//ABNH/CCeEP8AoVND/wDBdD/8TXQUUAc//wAIJ4Q/6FTQ/wDwXQ//ABNH/CCeEP8AoVND/wDBdD/8TXQUUAc//wAIJ4Q/6FTQ/wDwXQ//ABNH/CCeEP8AoVND/wDBdD/8TXQUUAc//wAIJ4Q/6FTQ/wDwXQ//ABNH/CCeEP8AoVND/wDBdD/8TXQUUAc//wAIJ4Q/6FTQ/wDwXQ//ABNH/CCeEP8AoVND/wDBdD/8TXQUUAc//wAIJ4Q/6FTQ/wDwXQ//ABNH/CCeEP8AoVND/wDBdD/8TXQUUAc//wAIJ4Q/6FTQ/wDwXQ//ABNH/CCeEP8AoVND/wDBdD/8TW3PNHBE8krqkaKWZ3OFUDqST2rzXS/Emq/EvWbuLRLqfTfC9lJ5ct9EMXF5J/djJHyL0JON2COhOAAdBrPw58MX+jX1na+H9GtLie3kiinSwiBiZlIDjC5yCQeMdK8Z+EK6Pa+J9Q8F+K9A02a+81vIkurRJGEijDR7iCSMDI57H1Feo+LPCEekeGb/AFfw9qOp2Gq2MD3KT/bpphLsBYo6yMysCAevTjsMV5H4u+0+KfCmk/FDTF+zapaSrBqXkfwyxkCOYe/3fplR2JoA9/HgTwhjnwroZ/7h8P8A8TWZr2g+APDmkzanqfh3QoLaIck6dDlieiqNvLHsKu+APF0HjTwjaatFtWcjy7qIf8s5hjcPochh7MK3p7K1uLiC4mt4pJYCTE7oGMZPUqT0P0oA+a7j4e+JfiRrZ1Cz8N2PhjRukAe3W3OzPUqo3OxBzyAPQ4r0vwt8C/C2hbJtRV9Zu16tcqBED7Rjg/8AAi1eor3paAOeHgTwhz/xSuh/+C+H/wCJpf8AhBPCH/QqaH/4Lof/AImugpkjKilmYKoGST0AoAwv+EE8If8AQqaH/wCC6H/4mj/hBfCH/QqaH/4Lof8A4muY8T/Gnwj4d3Rw3h1S8AwIbEhlB95Pu9vc+1efHxr8UviU5j8Nae2laaxx58XyDHvM3XH+wAfagD0vxDafDHwrD5us6V4btcjIjNhE0jf7qBdx/AV5Hq/xA0DVrw6d4J+G+lXFw+Qks+lxyOfUiJF/HJP1FdX4e/Z9sxN9t8V6rJqNw/zPDASqFu+5z8zfhtNetaNoGkeHrT7LpGnW9nD3WKMKW9yepPueaAPn7RPgT4j8Q3Jv/Ec9npEchy0FvBGHP/AI8Rp+f4V61oHwi8F6Db7Bo0N/LjDTaggnZvwYbR+Ciu6HNLQBzw8CeEMf8ipon/gvi/8AiaX/AIQTwh/0Kmh/+C6H/wCJroKKAOf/AOEE8If9Cpof/guh/wDiaP8AhBPCH/QqaH/4Lof/AImugooA5/8A4QTwh/0Kmh/+C6H/AOJo/wCEE8If9Cpof/guh/8Aia6CigDn/wDhBPCH/QqaH/4Lof8A4mj/AIQTwh/0Kmh/+C6H/wCJroKKAOf/AOEE8If9Cpof/guh/wDiaP8AhBPCH/QqaH/4Lof/AImugpDQBgf8IJ4Q/wChU0P/AMF0P/xNH/CCeEP+hU0P/wAF0P8A8TTPEfjjw54VQ/2vqsEEuMiAHfK30QZP44x715Nqvx11rX7w6b4G8PzSTN0mljM0mPURrwuPUkj1AoA9UvPCHgewtnubzw74et4Ixl5ZbKFFUe5IxXl3ij4g/CrRt0OkeEtI1i5HePT4o4cj1cpk/wDAQR71WtPg/wCNfGl0l/451+SBM7lt94lkX1AUfJH+GfpXZXnh3wR8IfDM2tppsc13AAsE10fMmlmP3QpPCE9yoGAM0AfPfizW7/VJ40ufDumaNHIBJFb2empAxB6NuI3kH64OOPb6e+FHhu/8LfD+y0/Uji6ZmneLn9zvOQn1Hf3J+teYfCTwre+MvFNz4/8AEmZVE++2Eg4lmHGQD/CmAB6ED+7X0IowKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiimt/nvQBX1G+ttNsZ728lWG2t4zJLIx4VRyTXzhpcF38cPijLe3ayR6DYgZQnGyLJ2x8fxuQSfbdjoK2PjJ4vvPEuvW/gDw7mZzMEu/LORJLkYjz6J1Y9iO201674G8I2ngrwvbaRbYeRfnuJgMebKcbm+nQD2AoA6CCKOGFIoUVIkUKiKAAoAwAB6U89aUUUAeCfG/wxdaFrNl4+0TMU0cqC6ZB9yQfckPsfunPH3R3r13wb4ntfF/hez1m1+XzlxLHnJjkH3l/A9PUYPetDWNLtNb0u60y/iEtrdRNHIh7g9wexHUHtjIr5/wDh1qd38L/iZe+DdYlIsb2ZUSVshd5/1cg7AOCAfQ4z900AfR1FNT7tOoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8p+Puvz6R4DWxtmKPqc4gdgcfuwCzD8cKD7E11/w80JPDngPSNOVNsgt1kmyOTI43Pn8SR9AK5n43+Eb7xR4Pil0yBri80+bzhCn3njIwwX1PQ474IHJwd7RPiB4bv/D1vqEms2FowiHnwzzrG0Lgcoyk5GDx+WOtAEPxY1pNE+GuszFgJLiE2sQ7s0ny8e4BY/gawfg34bWL4SJa6lB5kOrNLM8TDrG4CD81XP41V1bR7/4t+IbJriC5svBunv5i+epjk1B/VVOCq4yAx7E468es28ccMCRRIEjjAVVUYAAHAHtQB84eFr2f4O/Fe68P6jMf7GviqiWQ4Xaf9VL+Byrf8CPavpJegxXmvxo8DjxX4Va9tIt2qaYpmiAHMsfV4+OvAyPcADqa5XwR8cdH0/wLFD4inuZNVsgIESGMu9wg+62T8oIHB3HPGe9AHutZmteINI8PWn2rV9Rt7OLBIM0mC2Oyjqx9gCa8Nn+KnxA8ezyWfgnRGtYN2w3CL5jL/vSNiNcj2z6Gruj/AAEvdUvP7R8ba9PdzuQWigkLufZpXH4YA+hoAteIP2gbY3AsfCOkTalcudkcsyMqs3bbGPnb6HaaxU8D/FD4kOJvE+pyaXpz8+RJ8ox7QIQMj/bw3Heva/D3hDQPC0Jj0bS7e1yMNIi7pHHu5JY/QmtwUAed+GPgx4Q8ObZZLM6ndLz518A4B9kxt/ME+9ehxgKgVQFA4AHanUUAFFFFABRRRQAUUUUAFFFFABRRWL4g8VaH4Yt/P1nUre0UjKq5y7/7qD5m/AUAbVRTzR28TSzOkcSDLO7AAD3Jrw/Wvj9PfXf9n+DNCmvbhuI5J0LFvXbEnJ/FvwrOj+GvxH+IMqXPjDWXsbM4IgkYMw9CIUwgPucH1oA7jxP8cfCmgF4bKZtYul6LaEeUD7yHjHuu6uFHiT4sfE5tmi2h0bSpP+W8ZMK47HzT8ze+z8q9M8MfCLwj4ZCSx6eL67Xn7TfYlI9Cqn5V+oGfeu7UYHTFAHi/hv8AZ90u2f7X4mv5dUuWO9oYSY4snrls72PfOV69K9a0rRtN0SzFppdjb2cA/wCWcEYQfU46n3q/TW60AMmkSGN5JXVI0UszMcBR3Jr5r1u8vfjb8S4tK095U0GxJHm44WMH5pf95uij/dz3rqfjh47lGzwRohkkvrvat35PLbW+7CMclmyM+xA53V3Pwz8Cw+BvDCW7hG1K5xJeSjkb8cIP9lenucnvQB1ml6daaTplvp9hAsFpboI4o16BR/P69+tW6RelLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXBfFbx4ngfwyXt2U6teBorROu04+aQj0XI/Ej3rrtY1W00TSrnVL+YRWlrGZJH9h2A7k9APU187+GNLvPjR8SrnX9WRl0WyZf3RPy7QSUhH15LEe/TcKAOv+B/gN9PtD4u1dGbUb8FrbzeWSJuS5P95/X+7/vGvZx0pIwFQKFCgcADoKdQAUUUUAFeSfHXwR/b/h1desoi2o6WhLheskHUj/gJyw9t3c163TJArAqwBBBBB5BFAHA/CTxt/wAJl4QT7TKG1WxIhu8nl/7sn/AgD/wINXoC8Cvmu/im+C3xhS7iVh4f1HJIC5HkM3zKB3MZwQBzjHrX0jbyx3FvHNE6yRyKGV1OQwIyCD3FAElFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU08HNAGZr02rxWW3RLOC4vXyqtdS+XDF/tPjLEeyjn2615LBofxU8Malc6oul6B4gurqTzZ58/veOAAX2bQOgC8e2c16N4m+IXhjwkpXVdUiW4HS1iO+U/wDAV6fU4HvXlWofGvxP4qu307wHoEoYnb58kfmyqD0bb9xP+BZHFAHaR+MvGclo0mqeHdN8NW6cSajqWoq0af7sYwWPoCw5xzWBrfx50TRbZLHQ1uddvEGw3Uo8uNmPU9ASc9goHocYrJ0/4KeJ/FN2mo+PPEEoJ58iOTzpVB6ruPyJz/dDCvVfDPw98MeE1VtK0uJLgdbmUeZKe33j06dsD2oA8hOl/Fv4n5N/M2iaVJwYn3W6FehGzmR/X5uD2rlvFPgYfCrxXot5fRRa3pMjB3EsIVZCpw6FckA4IIySD6HBr6wAwK5vx34TtvGnhW70efCSuN9vKR/qpRna307H2JoA1tFuNPu9Gs7jShELCWJXtxCoVdhGRgDp9O1X68G+Bviu406/vPAWtForiCST7Ksh5VgT5kX82H/Aq94HSgBaKKKACiiigAooooAKKKKACis3Wte0nw9afatX1C2s4exmkC7vYDqT7CvJPEX7QVmJfsXhPSptSunbZHLMjKjN22oPnb6fKaAPa3YKCzHAAySe1efeJvjN4Q8OFolvTqV4vHk2OHAPu+Qo6epI9K87Hg/4p/ErEniO/bSdMfn7PLlAQfSBeSRj/loQea77wx8E/CPh4JNcWzareLz5t7hkB/2Y/u+/OfrQBwD+Pvib8RmaLwrpTabpznabiIdB3zM+BkdfkAP1rX0H9n6Oa4+3+MdYmv7p/meGBjhj/tSN8zfhj617dEixoERQqDhVUYAHoKfQBkaJ4a0Xw3bfZtH0y3s48YPlINz/AO8x5b8Sa1hS0UAFFFFABXIfEbxrb+B/DEuoMUe9lzFZwN/HIR1IHJVep/AcEiumv72306ynvbuVYbeCMySyMeFUckn8BXzfaQ3vxx+KD3E8ckXh+wwCuSPLhycL7O5Bz6DP90UAdD8FPBVxfX0vjzXw81zcO5szLyzMSd8x9+oH4+1e7r0qO2gitbaOCCNI4Y1CIiKAqqBgAAdAB2qWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmnk06vN/jD8QB4N8OfZLKUDWL9WSDBw0KdGk+ozge5zzg0Aef8AxX8T3vjvxfa+AvDrGSJJwk5Q/LLMOu7/AGYwCT75PYV7Z4Q8MWXhDw1a6PZKCsQzJJjBlkP3nP19OwwOgrz/AOCXw/bw7o39valBt1XUEyiuPmghPIB924Y+gwOoNetjv9aAFooooAKKKKACiiigDivif4MTxr4Rnso0U6hADPZueMSD+HPowyPTOD2ri/gR40e+0ubwnqLsL7TgWtt+dzQ55XB7oT09CB/DXtB/+vXzv8WdEvPAXjux8eaGmyOefdOP4RNj5gfaRd2ffd7UAfRC9KWszw9rln4k0Cz1ixbdb3Ue9c9VPQqfcEEH3FadABRRRQAUUUUAFFFFABRRRQAUUUUAFFFYfiHxdoHheDzta1S3tMjKxscu/wBEGWI+goA3KhubmC0gee5mSGGNSzySMFVQO5J4FeG6z8erzU7r+zvBOgzXVy+QktxGzuR/sxJyexyT9RVKH4WeP/Hk8d5421trWDO9bdmEjL/uxqQiEjvnPqKAOx8UfHfwtoYeHTWfWLpeMQHbED7yEYP/AAENXFf2r8W/icB/Z0TaJpMnAkUtboV9fMP7x+uPl4OOleo+F/hT4R8K+XLa6aLq7X/l6vP3rg+oGNqn6AV24+lAHjnhn9n/AELTyLjX7ubVbjO4xjMUIPvg7m575GfSvWdN02x0mzW006zgtLdDxFBGEUfgAPzq3RQAUUUUAFIRmlooA8F+OPhW50jVbPx/ohaK4iljF06fwOCBHIfY8Kc/7Pqa9Y8D+Krbxn4UtNYt9qu42XEQOfKlH3l/qPYitbVNOtdX025069j821uo2ilT1UjH4fWvnvwRqVz8JvileeFNVmxpV7IqpK/C8/6qX2yDtbsO/wB2gD6QopqdD9adQAUUVT1LVLDSLVrvUby3tLdess8gRc/Un9KALlIa8c8S/tBaHp5a30Czl1W4zgSNmKLPtkbm57YGc8GuaOk/Fv4nc6jM2i6RL1jbMCFT1HljLv8A8C496APUvE/xV8JeFvMiu9TW6u14+y2n718+hI+VfoxFeZTfFbx/47nez8E6E9rBu2m4VfMZT1w0jYjTI7EfQ12Hhn4E+FtECS6mr6xdrzmddsQPtGDj8GJFen21vBaW6QW0McMKDCRxqFVR6ADpQB4XpHwF1DVrz+0vG+vz3Nw/3ooJDI5HYNK/5YAPsa9b8PeDvD/hWHy9G0q3tTt2tKF3SN9XOWP51vUUAIKWiigAooooAKKKKACkPWlrz/4sePU8E+GiLWRf7XvQY7VeDs9ZSPRe3uR15oA8++MnjC78S63D8P8Aw6Gnd5lW68ts+ZLnIj+i8Fs9CO201634F8H2fgrwxBpdvh5uXuZ9uDLIep9h0AHoBXn3wQ8BPp1mfFurozahfKTbCTlo4m6uSf4n659P9417MOlAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTW+8OuKAM3xDrll4c0O71bUJPLtraMuxHVj2UepJwAPevAfAOiXnxZ+IN54u16LOmW0oKxNyrMMFIR6qowW9cj+8ad8Rtfvvih48tfBXh6RXsbeYhpQco8gzvkJ/uKMgepzjORXvfhvQLLwxoFpo+nx7be2XaCR8znuze5OTQBqL0paKKACiiigAooooAKKKKACsjxNoFp4o8PXujXy/uLqMruxzG3VXHuDg/hWvSNzQB8+fB7X7vwZ4z1DwDrreV5kx8jJ+VZwOgPo64I+g9a+g16d/xrxP48+DpJbW38ZaUHS9sCq3LRZDeXn5ZBjurd/Q542133w48ZR+NvCNvqLMovY/3N4i8bZVAyQPQ5DfjjtQB19eY/HHUH0fwSL61v76z1Bp44beS1vJIeSSWyFYA/Kp65xmvTCf8AGvDvjG1x4l+IXhfwjZJHM4zcyRO+1GJJ4YgHGFjbsfvdKAOq0fwXeTeArKa58ReIINce0Ez3R1SYhZCN2GjZihUEgEYHA6jrSfBjxpqfjHwvcNq5Et3Zz+UbgKF81SARkDjcMkce1XdZg+IGuWM2nQQaJosFwhjluFuZLmVVPBKARqAfr68VteCvB9h4I8OxaTYM0nzGSad/vSyEDLY7dAAPQDqeaAOiHSloHSigAorN1rXtJ8PWn2rV9QtrOHsZpAu72A6k+wryXxD+0FZCX7F4T0ubUrl22JLOrKjHttQfO2fQ7aAPaXZUBZjtUDJJ7V574m+M/hDw7uiW9Op3Y/5Y2OHAP+0+Qo59yR6V54PBXxS+JRWTxLqL6VpjkH7PJ8ox7QLjJH+2Qfc16D4Y+C3hHw6Elms/7Uu1/wCW16Ayj6R/dHryCR60AefP44+J/wASGMPhfTW0rTmJBni444zmd8dOvyAH2NbXh79n62af7d4u1aXUbp23SRQMwRj/ALUjfO3/AI6fevbI1VI1VFCqBgADGBTqAMrRfD+keHrMWuj6db2cIHKxJgt7sepPucmtQUtFABRRRQAUUUUAFFFFABRRRQAV5X8cPA48S+GP7Xs486lpaNJ8o5lh6uv1GNw/Ed69NvLu2sbZrm7uIreCMZaWVwiqPck4ry7xP8efDGjb4NJWXWLocZiOyFf+Bkc/8BBHvQBf+DnjgeLvCi2l5Nu1XTgIZ8kkyJ/BJ7kgYPfIJ7it3xN8RvC3hIMmqarH9qH/AC6wfvJendR936tgV8pXz6/pF3LrEVne6Ba6u0giEPmQo0RIYop6sgyv14r3Pwf8C/C8VnbanqN6+uGZVmjI/dQMD8ykAHcevc4PpQBi3/xo8V+LbyTT/Anh6ZckD7Q0fmyqOxI+5H/wLcPenad8EPEfia7TUfHXiGbceTBHIZpAO43H5U5/uhhXuthp9npdolpYWkFrbp92KCMIo+gAAqzQBy3hrwB4Z8Jop0rS4o5wMG5k+eY/8DPT6DArqAMClooAKKKKACiiigAooooAKKKKACiimN94cUAUtb1ez0DR7rVdQl8q0tYzJI3f2A9STgAdyRXz14R0m9+MfxGuvEmtRk6NZuB5JOVIGTHCPUAct65P96rPxO8Q3/xG8aWvgbw63mWsE+2RwcLJKM73J/uIM/r14r3Pwr4bsfCXh210fT1IhgHLt96Rj9529yfyGB2oA2FACgAAAcACloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiio5pBFG0jBiFUnCqWP4AAkn2oAc3WvIvjJ8Trfw/pU2g6Pdq+sXIKTNE2Taxkc5I6Oc4A6gc8cZj+JvibxqNBvLmxgTw5o0S4a8upgLq5zwFjRMlCe2cHuSozXgfhbT5NR8Y6FBNE7x3l/CjMykhwZAG57jk5oA+j/g58Pv+ER0H+09QhC6zqCgybhgwxHkR88g9C3vgdq9PFC9KWgAooooAKKKKACiiigAooooAKKKKAILu2hvLaW1uYllgmQxyIwyGUjBB+oOK+cdFuJ/gx8XJ9Lu5GGg6gVHmN08pifLk+qHIb23e1fStec/GPwR/wl/hJ5rSEvqmnBprYKOZB/HH75AyPcD1NAHe3N3b2Vs9zdTRwQRjLySuFVR7k9K8K8C61pviX4+a5rk97AqLG0OnCR1Bk5WNSmeuVBOB/erqPgj43/4SPwwNHvJg2paWoTLHmWDoje+Pun0wCeTXpV9qFlpdq93f3cFrbp96WeQIo+pJoAtjpQetePeJv2gPD+ml4NCtpdWuOgkBMUQPTqRk/TGDnrXMGx+LnxP5u3bRNIk6xkNboy/7gzI+ffj3FAHqfij4peE/CpeK81Nbi8Tj7LaASSZ9D2U+zEV5jcfFjx746uJLPwPoL20OdpuAvmOO/wA0jYjTI9eR2Ndd4Y+AvhbRhHNqhl1e6HP775IQfZB1+jE16jbW0Fnbpb20McEEYwkcahVUegA4FAHhekfAbUNWu/7S8b+IJ7m4b70UEhdyPRpX/kAfY1634e8H+H/CsPl6NpVvakrtaVV3SN9XOWP0zW9RQAgpaKKACiiigAooooAKKKKACiio5pUgiaWV1SNRlmYgAD3JoAkpDXmXij43+EtADw2lw+r3Y4CWZ/dg+8h4x7rurhf+Eo+K3xMfy9Dsm0fS3/5bxZhUj185hlv+AD8KAPZvEfjfw54VQnWNWgt5MZEAO+VvTCDJ/HGPevJ9U+O2r67ef2Z4H8PzSzPwJpozLJj1Ea8DHqSR6itDw7+z5pkEgu/E+pTapcsdzwxMUjJ75b77fXK/SvWtJ0XTdDsxa6VY29nAP4IIwoPucdT7nk0AeGWvwj8b+NrpL/x1r0lumdwt9wldfXaq/u0/DPuK9R8MfDHwp4U2SWGlpLdpjF3dHzZcjuCeFPP8IFdRexxTWsqXDyJCV+Zo5WiYAcnDKQR07GvEfhBaX/jGTXdR1PXNfl02KcQ2UX9q3CY6sckPkkKU/M0Aem/EDwhB418JXOlyYS5H720kPHlzDO0/Q8g+xPevN/gV4vmhe58D6wTFd2kjm0WQ/MME+ZF9QcsB/vf3av6R4h1nw38a/wDhCpdUudU0m6QvH9rbzJof3Rf733jyCOe3NYnxp8M3XhvxFY/EDQy0UomT7SUHCSj7r/7rAbT2+u6gD34UtYfhDxNaeL/DFnrNmRtmXEkYOTFIOGQ9+D69Rg9CK3KACiiigAooooAKKKKACiiigAooooAK8s+NHxCHhTQv7J0+bbrGoIQpU/NBFyGf2J5A9wT2ruPFfiSx8JeH7nWb9sRwL8qZwZH/AIUHuT/j0FeG/DDw3ffEXxpdeOPES+Zawz7okIOySUfdUD+4gxx3IA55oA7n4M/D7/hE9B/tbUIsavqCAsrDmGLqE9ieC34DtXqY6UL0paACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKaxABJOBjrQevfpXkHxw8fNo2lr4Y0pidT1FMTmMZMUJOMf7zcj6Z9qAOM8ZatffGD4j2vhjQpyNHs3b96PmQ44ec46jsv14xur1C/8C2Vn4g8BNptuEs9HmmhIA/hMLMGb1O9Mk9y5NHwj8BL4M8MrLdx41e+Akus9Yx/DH+Hf3Jr0MUAA6UtFFABRRRQAUUUUAFFFFABRRRQAUVDc3ENrC89xKkUMa7nkkYKqgdyTwK8z8T/AB18K6EJINOeTWLteNtucRA+8h4I/wB0NQB6ia5jxN4+8M+E0YatqkUc4GRbRnzJT6fIOnTqcDNePf218WviaMaXbtoukS4xMpMCY9fMOXb0+Tr6V0nhv9n7Q7F1ufEN7Lqs55MSkxxZ75wdzHOecjPcUAeM3/jH+zvH9/4l8HLPpscrt5aSKp27x82V5XGcsFOQDj0r0PQfhNr/AMQIrTxD4u8TPJbXKLLFHE/mybGGcDPyR9uAGx6CvWfE3gLSNb8E3Ph20sraxiK+ZbGKIIsUoHytgD8D3IJrzb4GeKrnTtQvfAWslori3kdrVZDyrKf3kX82H/AqAPTPDPw68L+EwraXpUYuQObqb95KfcMfu/8AAcD2rqxQOlLQAUUUUAFFFFABRRRQAUUUUAFFNdgoJJAAGSTXn/ib4x+EfDYaL7d/aN0vHkWOJMH3fIUc++fagD0KsbX/ABRonhi38/WdSgs1IyodvnfH91B8zfgDXiMnxB+JnxFZ4PCekNp1gx2meIcgd8zPhQf93B+taug/s/rPcHUfGOtT6hdOQ0kUDt8x/wBqRvmbj0A+tACa38fnu7v+zvBuiTX1y52xyzoW3H/ZiTk/iR9KzY/hr8R/iFIlx4w1l7C0zuWCQhip7EQphB35JB+te26H4Z0Xw1bfZ9G0y3s48YbykG5/95jy34mtcdKAOC8MfCHwj4ZCSLp/2+7X/l4vsSEH2X7o9sDPvXer90cYpaKACiikPWgDi/izrf8AYXw11mdWxLPD9mi7HMnynH0Uk/hXldlrXir4V/DTQpoLfSzYapJ5rzPDI0sLSAMCw3AE7Rx/u1d+PPiGw1W/0PwvDqEBT7V5l66yAiDkIu4joQGckHpgV6X408P2ni34bXumae0cyG3D2TQsGUunKBSOMEjb+JoAg8I+ArHR9Vm8TXWoSavrV8oLX8qBVCkD7ijoMADqeK6fVtJs9d0e60u/i8y1uozHIvse49COCD7cVwPwV8Y22ueC7TSp7pP7U08G3aJmAdo1+4wHUjbhf+AmvTlORQB85/DnVbv4YfEi98Ga1IRYXkwSOVuEEh/1cg9A4wD74z9019GL05ryX46+Bzr/AIeXX7GPOo6WhLheskHUj6qfmHtu9RWz8I/HA8ZeEkW5lDatY7Ybrnl/7sn/AAIZz7g0AehUUi9OKWgAooooAKKKKACiiigApsjBVJJAAGSScAfj2pTXifxv+JMFjpsvhbR7pHvbkFL6SNs+TGeCmR/E3cdhn1FAHL+LtWvfjH8SLfw3ospGj2bnEoGV2j/WTnH/AHyo75HTdX0NomkWWg6PbaVp0IhtLVNkaD07knuScknuSa474T+A08E+GEe4j/4m16qy3bHHyf3Yx/u55989sV344GKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmSMqKzuwVVGSScAD1p9U9StLK+spINRhhmtMbpI5wDGwHPzA8EfXigDyPx98c7TSkmsfC6pfXSnZJekFoISfT++evtx35Fea/CdLrxV8Y7LUNUla9mRpLuaSY5JZUIU59mKY7DHHFaurSz/GH4jwaFoyi18O6eWVDGgREiB+eXHYscBRjuM45r0LwZ4Lh8N/GzXnsoBBp6aXD9njH8IkKj+cL0AetDpS0g/SloAKKKKACiiigAooprsFBZjgAZJPagB1FeeeJfjN4Q8Ololvv7Suxx5NjhwD7vkKOR6kj0rzt/HvxO+I7mDwtpTaZpzHH2iMdu4aZgBnP90A/WgD2zxD4s0LwvB52tanb2qkZVGbMj/7qD5m/AV5Hrfx9udRu/7N8FaDNd3MnEctwhdm9dsScnsck/UVP4f/AGfYZLj7f4v1mbULpzueKBjtZv8Aakb5m/DafevW9E8OaP4ctPs2j6db2cXcRJgt7s3Vj7kk0AeHwfC/4g+PpY7vxnrT2dsTuFszb3X6RqQi59Sc+1el+GfhN4R8LFJLfTVvLtcEXN7iVgR3AI2qfcAGu5FLQAi9KWiigBCM14L8cPDF1ousWXj/AETMc0csYumUZ2SKR5ch9jgKc+ijua97qlqumWus6bc6bexCW1uYmilQ91Ixx6Hvn2oAzPBfie18YeFbPWLYgGVds0ecmOQcMv59PUEHvXQV84/D7Urv4XfE+98H6vKf7PvZQiSngFz/AKqQegYHB9/92vo1en+FAC0UUUAFFFIaAForifE/xT8J+FjJFd6mtxdpx9ltMSyZ9D/Cp9mIrzG4+LHj3xzcPZ+B9Ce2iztM4USOO/zO2I0yPXkdjQB7nrGu6V4ftDd6tqFvZwjo00gXd7AdSfYV5J4i/aCslmNl4T0ubU7pztSaZWRCe21B87fT5TVLSPgNqWr3Y1Lxv4gnubhvvRQSGRyPRpX6fQA+xr1rw74N8PeFYdmjaVb2rEYaUDdK31c5Y/TNAHiw8I/FT4l4k8Q37aTpcnP2eTMYKn0hXkkEf8tCDXe+GPgn4S0Dy5rm2bVbtest5hkB74j+7j67q9KFLQAyJFiiWNEVEUYVVGAB6Cn0UUAFFFFABRRRQAUUUUAFFFFABRRRQAyRQ3ysAVIwQe4r5t1SGf4K/FyK/tlf+wNRJPlgZHkkjeg9TGcEe231NfStcf8AEnwdD428KT6cAovov31nIeNso6An0OSD9c9qAOqtbiG7tIrm2lSWCVA8bocqykZBB7gipq8S+A/jOWa2m8Gaq7pe2BY2yy8MUB+aMg91OePQ/wCzXti9KAFooooAKKKKACmSNsUsQSAM8Ak/kOtPqC6nhtbeW4uJVihiQySSOcKijkkn0AFAHjnxa8UeMLTQZbiDyfD+mFxEhknDXt2T2QJkIO5+YHA6/wAJ8K0Xw9d3OseHReWzpaavepDC7dJR5io2PxOK9GuZL344/FFYIjLF4esejY+5CDy3pvkIwPQY67TXsmveELa51XwXLaWqxw6PeMERPuxRCFiP/Ho4x+NAHaDkZpaBRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADW6+9eK/HHx3LFEngvRi0l/fbVu/KyWVG+7EMfxPxkenrur0L4geMrbwP4Yn1SXa9y37u1gP/LSQjj8B1PsPcV5Z8FfB1zrOqT+Ptf3TTSzO1p5n8chJ3Sn6HIHuD6CgD0T4YeBIvA3hhIZEQ6pdbZL2Qc/N2Qf7K5I9zk967BLWBLyS7VAJ5I0iZ+5VSxUfmzH8asL0paAEAwMUtFFABRSHrXGeKPij4T8KGSK91NZrxODa2mJZAfQ9lP+8RQB2lZ2s63pWg2ZutW1G3soOzTSBd3sAep9hzXhtx8WvHXji4ksvA+gvbR7sGfaJXH+87YjTI7HPsataV8B9T1m8GpeN/EE9xM2N0UMhlkI9DK/T6AH2NAF3xF+0FYpL9i8J6ZPqV07bY5plZUJ7YQfO30O2sNPB/xT+JWH8R6g2k6Y/Igk+QYPpCuCcY/jINe0eHvBnh7wrHs0XSre2bGDNt3SN9XOW/DpW+OlAHm3hj4KeEvD2ya4tW1S8Xnzb3DID/sxj5ffnP1r0eJFjQIihUHCqowAPQU+igAooooAKKKKACiiigAooooA8l+Ovgf/AISDw6Nds4/+JhpaFnwOZIOrD/gP3h/wL1rY+EPjf/hMvCSC6l3arYYhu89X/uyf8CAOfcGvQHAYFSMgjkV8yX90nwc+MklxYypNpFz80ttC6llhc/MhHYoRlc4yAOeTQB9OAYHHSqmpanY6Tatd6jeQWlsvWWeQIv5k14XqHxp8VeKrt9O8C+H5VPA894/OlUHoSMbE/wCBbh70un/BTxN4ovF1Lx54gl3f88I5PNlA7ruPyJz/AHQwoA3PEv7QOhaeTBoFrNqtznaJWBjhB9iRubn2GfWuaOm/F34m830zaJpT/wDLNt1uhHQjYMyP6/Nxz2r1PTvCXgv4daW+oJaWtmkC5kv7k7pOePvnkEnjC45NSH4jaFHZrfXKapaae+Nl5cabMkLAng7tvAPYnGaAOa8M/AXwvo22bUzJrF2vP74bIQfaMHn/AIESK9RtraCzt0t7WCOCCMYSKNAqqPQAcCq+kapba3pNtqdkzNa3KeZEzKVLKehweeau0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1qdRQB89/GDw7eeD/F1j4+0EGPzJgbgKOEm9SP7rrkEdzn+8K9s8LeIbPxV4cs9Zsm/dXKbiucmNujIfcHI/DPSptf0az8Q6Jd6RfpvtrqMowHUehHuDyPcV4P8Ldau/h58Qr7wLrcmLe5n2xP0UTEDYw9pF2j67aAPoqikXpS0AFFFZmua/pXhyxN9q9/DaW44DStyx64VerH2AJoA0j1rwj42eNrnUL2LwHoO6W5ndFu/LIy7EjbD+J2k9Ow9RVT4hfGXxELZYdD0q80eynJWO+vYSks4HXyweAPU84yPumsP4B6TLrPxDutaui8/wBhhaVpnYkmaQ7QSTySQZDz6UAe3/DvwTb+BvC8NioR76XEt3MM4eT0B/ujoPpnvXXjpQOlLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUNzcRWlvLcXEqRQRIZJHc4CqBkkn0GKlPWvC/jb42uL67i8B6GWlurh0F4I8ZYkjZCD2JOCenGB3NAHN3D3vxx+KAijMsfh/T+jYxsh3DLf78hHHoMdlr6Ss7SCxsobS1hWG3gQRxRqMBVAwAPwrlvh34Jt/A3heGwXY99JiS8nGf3knoCf4R0H0z3rrqAHUVzXiTx54a8Jqf7X1WGKYDIt0JeU/8AAFyfxOB715Nqnxv8Q+JLttN8CeH5mdv+W0kXnSqP721cqmPUlhQB7pf39nplq91f3UNtboPmlmkCKPqSQK8q8TfH/wAPaYWg0OCXV7gcBxmKEH6kZP4DB9a5yy+DPi3xddpqHjvX5Yx/zwV/NkUHqB/An4Z+leq+GPhz4X8JBH0zSo/tS9bqf95LnpkMfu/8BwKAPI/snxc+J/8Ax8O2i6RKOVbdbxsp6jbzI4I9fl+ldl4Y+AvhjRwk2rGXWLpcf675IQfZAef+BEivVl6UtAENpa29lapbWkEUEEYwkUSBFUegA4FTUUUAFFFFABRRRQAUUUUAFFFIaAFornvEXjXw74VjLaxqtvbvjcsOd0rfRBkn8se9eT6p8d9W1y7/ALN8D+H55pn6TTRmWTHqI14GPUsR6igD3K7u7axt3ubu4it4Ixl5ZXCKo9SScV5f4n+PPhnRWaHSll1m5HGYTshB93I5/wCAgj3rkrb4R+OfGtwl94416SCInd9n3+a6+u1F/dpx6Z9xXqHhj4X+E/CmySx0xZrpf+Xu7xLJn1GeFP8AugUAeV/bfi38T1/0VG0XSJRw6g26MvruOZHBGPu8H2q/N+zxa2/hu9I1We81wxFoMKI4d4wduDknOMZLDrnHFe8DpzSN1oA8V+AXisSaZdeEL2MQ3tgzSwgptZlJ+ZSOpZW9exA7V7WK+ePi1od34E8c6f490NAkc0+ZwBwJ8HcD7SLuz77vUV7p4e12z8TeH7LWLF91vdxBwOpQ9GU+4OQfcUAeb/H+K+/4RbTLyCEz2NpfLLdR9uhClvbJIz6kV2+n6jpXxA8FSyWMqyWd/bvAykcxFlwyMOxGf5HvWqs1lrVncwbEuLcvJbTI65BKnaykfnXilnpt38Jfi9pun6dNJJ4f8QyiNbd2zsJbbz7qWHPdWweaAPbtH09NJ0Wx02P7lpbxwL9FUL/SrtIpyKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBDXj3x28Etq2ip4o09CNQ0xczFOrQAk5+qHJ+hb0FexVFNGkisjqGRlKlWGQQe2PSgDifhX42HjXwjFLPIp1S0xDeLnlmx8r49GH6g13S9K+apUm+CfxcDoZB4e1H6sPIJ5+rRn8SP8Aer6St5Y54EmhcPFIoZHU5DA8gg9xQA8+lZmqS6VpMNxreoJBCttCWlumjBdUHOAev4DqTWk3JFfPnxa8VXvjXxVbeAPDjebGs+y4KHiWYclT/spgknpkEn7uaAMSx03VPjp49v8AULhpbXSbaMrGf+eS8+XGOxYn5j+P+yK9H+AGgNpXgefUJogtxqF056YISM7Ap/4EHP413Pg7wrZ+DvDNro9mAxjG6aYrgzSHG5j+WB6AAdq27e3itYRFBGEjBJCj3OT+poAkXpS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRVe9uoLGznvLmVYreCNpJZG6IqjJJ9gAaAOU+JfjeDwN4XluwUbULgGKyhbnc/diP7q5yfwHGRXnnwW8HPGs/xA8Ryf6RPva2kuT91TnfMxPc5IB44yehFeXeMvFV3498U3GqyNEtlbbVtbW5mWMCPdwMbhknq2D+IAFdBZ6PqXjnypPFvxB0TTrBMLHanUYDsUDjZDGwROOOcHjpQB6v4n+OfhTQQ8OnyNrF2MgJanEQPvL0x7qGrhzr3xY+JwKaRanRtIkH+tTMKFT0Pmn53/wCAflXW+GPD3wi8MBJIdZ0K9u1/5eb3UYZWB9VUnav1AB967oeOvCAH/I1aGP8AuIQ//FUAedeG/wBn7R7R/tXiO+l1W5PzNFGTFFk8nJzuY575H0r1nS9J0/R7NbTTbK3s7dekcEYQfXAHX3rM/wCE78If9DXof/gxh/8AiqP+E78If9DXof8A4MYf/iqAOgFFc/8A8J34Q/6GvQ//AAYw/wDxVH/Cd+EP+hr0P/wYw/8AxVAHQUVz/wDwnfhD/oa9D/8ABjD/APFUf8J34Q/6GvQ//BjD/wDFUAdBRXP/APCd+EP+hr0P/wAGMP8A8VR/wnfhD/oa9D/8GMP/AMVQB0FFc/8A8J34Q/6GvQ//AAYw/wDxVH/Cd+EP+hr0P/wYw/8AxVAHQUVz/wDwnfhD/oa9D/8ABjD/APFVBd/EPwba20k8ninSGSNSWEV5HI5+iqST+AoA6eo5pEhRpJHVERSzMxAAA7mvC/E/7RMCB4PDGmGZhwLq9+VfqIwcn6kjHpXIx2mtfESRbjxf8QtG0+yJDC3k1GEkDsVhRgoPbLEN9aAPWvE/xu8JaAJIrS4bV7scCOzP7sH3k+7j/d3GuD/4Sv4rfEs7NAsX0fS36TxExAj185uTj/Yx9K6rwx4Z+EPhkRyDWtCv7teftF9qEMhz6hd20fgM+9d6vjrweAB/wlWhj2/tGH/4qgDzbw5+z5p0MgvPFOozancsd0kMTFIyT1y/32+vy16zpOiaXoVp9l0rT7eyg6lIIwufc46ngcnmqH/Cd+EP+hr0P/wYw/8AxVH/AAnfhD/oa9D/APBjD/8AFUAdAKK5/wD4Tvwh/wBDXof/AIMYf/iqP+E78If9DXof/gxh/wDiqAOgorn/APhO/CH/AENeh/8Agxh/+Ko/4Tvwh/0Neh/+DGH/AOKoAteJdBtPE/h+90a+XMF1EULDqjdVYe4OD+FeIfCDX7vwX4y1DwDrrCMSTkQZbgT46DPZ1wR749a9kPjrwgf+Zq0P0/5CMP8A8VXjXxvXw7qqWfifQPEOlS6raMscsdrextI6Z+V1CtnKt6djn+GgDv8Aw7o/jbwvLqk3l6fqttqN7LeG1+0NDJbu7ZIUlSrDpkcYOcZqa08Kavr3je08U+KEtrVNORlsNNgk83y2PWSR8AFvYDsp7HKeCPipoGueFLO71fW9OsNSUeVcw3NzHC3mL1YBiOG68cc47Gui/wCE78If9DXof/gxh/8AiqAN5c7eRinVzr+OPCDqR/wlWhkEY51CHH/oVeaeJfiRdeCNSW60jxBpXibQpnwbJ75HubU+gdSWZT/eYMR0PqQD22ivOvDXxn8H+IIwsuoDS7nq0WoERj8Hztx+OfaukHjvwh/0NWh/+DGH/wCKoA6Giuf/AOE78If9DXof/gxh/wDiqP8AhO/CH/Q16H/4MYf/AIqgDoKK5/8A4Tvwh/0Neh/+DGH/AOKo/wCE78If9DXof/gxh/8AiqAOgorn/wDhO/CH/Q16H/4MYf8A4qj/AITvwh/0Neh/+DGH/wCKoA6Ciuf/AOE78If9DXof/gxh/wDiqP8AhO/CH/Q16H/4MYf/AIqgDoKK5/8A4Tvwh/0Neh/+DGH/AOKo/wCE78If9DXof/gxh/8AiqAOgorn/wDhO/CH/Q16H/4MYf8A4qj/AITvwh/0Neh/+DGH/wCKoA6Ciuf/AOE78If9DXof/gxh/wDiqP8AhO/CH/Q16H/4MYf/AIqgDoKK5/8A4Tvwh/0Neh/+DGH/AOKo/wCE78If9DXof/gxh/8AiqAOgorn/wDhO/CH/Q16H/4MYf8A4qj/AITvwh/0Neh/+DGH/wCKoAyfil4KTxt4RmtYkH9o22Z7NzgfOBypPow4+uD2rj/gT41a/wBLk8J6kzi+00E2/mcM0IPK4PdCcY9CPSvRT478If8AQ1aH/wCDGH/4qvBPiRcab4Z+Idl408Iazpt00svmTw2t0khSUfe3BTnbIpOT67umRQB6l8XfiAPBvh37JZTKNZvlKQYOTCnRpT9Og9T64NZnwR+HzaBpP/CRapERquoJmNG+9DCeRn3bg+wwOua4vwBoV78V/H914v8AEEe/TLaUFYW5RmHKQr6qowW9eM53GvpBc7emKAAHIpaKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooprUAOqtqFlb6lp9xYXcfmW1zE0MyZI3IwwwyCCMgkcV5j8aPEut+EdKsb7RNantrm5ufKFsYYZEKBSSRuQtnO0de/Sukt/D/is6Tbs/jS8XUjErS+ZZ2zwh8cjaI1bGf8Aa6UAUv8AhSfw9P8AzL3/AJO3H/xyj/hSXw9/6F7/AMnbj/45Ufgzx9eah4lvvCPiO3gtdesMkNAT5VygA+ZQeQcEHHoSeMYr0MUAcB/wpL4e/wDQvf8Ak7cf/HKP+FJfD3/oXv8AyduP/jlegUUAef8A/Ckvh7/0L3/k7cf/AByj/hSXw9/6F7/yduP/AI5XoFFAHn//AApL4e/9C9/5O3H/AMco/wCFJfD3/oXv/J24/wDjlegUUAef/wDCkvh7/wBC9/5O3H/xyj/hSXw9/wChe/8AJ24/+OV6BRQB5/8A8KS+Hv8A0L3/AJO3H/xyj/hSXw9/6F7/AMnbj/45XoFFAHn/APwpL4e/9C9/5O3H/wAco/4Ul8Pf+he/8nbj/wCOV6BSEHPBoA4D/hSXw9/6F7/yduP/AI5R/wAKS+Hv/Qvf+Ttx/wDHK574peI/E+ieLvD+keHdfnin1aQo9u9vA6x5dVQrlM45bOSeldtJ4b15o9sfjjVlfH3jaWhH5CEUAZX/AApL4e/9C9/5O3H/AMco/wCFJfD3/oXv/J24/wDjlbfgca6NBmHiG+a9vVvbiNZjCsW6NJCikKoAwdu4f71dLQB5/wD8KS+Hv/Qvf+Ttx/8AHKP+FJfD3/oXv/J24/8AjlegUUAef/8ACkvh7/0L3/k7cf8Axyj/AIUl8Pf+he/8nbj/AOOV6BRQB5//AMKS+Hv/AEL3/k7cf/HKP+FJfD3/AKF7/wAnbj/45XoFFAHn/wDwpL4e/wDQvf8Ak7cf/HKP+FJfD3/oXv8AyduP/jlegUUAef8A/Ckvh7/0L3/k7cf/AByj/hSXw9/6F7/yduP/AI5XfN1rxDxp458ReG/ippulWeuXEmkNPbpeJNbwEIzvlkDCMEDyyp9eetAHY/8ACkvh7/0L3/k7cf8Axyj/AIUl8Pf+he/8nbj/AOOV33Xr2rw74kfEvxAniyw0HwhdC3D3BtHuPKSQTT7lBQblPyqWAJA5OR2oA7I/BT4ej/mX/wDyduP/AI5XnXxI8PfD/wANhdD0Dww1/wCJbofu4Irm4kMAP8TKrnLei/ieOD7xYWlxa2UcVzfzXs6/euJVRWYn2RQAPwqLTdC0zSGlexsooZZ2LSygZklPq7n5mP1JoA+cvC/wB8RasUn1uaPSbbIzGcSTEewHA/E59q9XsfgX4DtrRIrjS5ryRes893KrN9QjKP0r0gUtAHn/APwpL4e/9C9/5O3H/wAco/4Ul8Pf+he/8nbj/wCOV6BRQB5//wAKS+Hv/Qvf+Ttx/wDHKP8AhSXw9/6F7/yduP8A45XoFFAHn/8AwpL4e/8AQvf+Ttx/8co/4Ul8Pf8AoXv/ACduP/jlegUUAef/APCkvh7/ANC9/wCTtx/8co/4Ul8Pf+he/wDJ24/+OV6BRQB5/wD8KS+Hv/Qvf+Ttx/8AHKP+FJfD3/oXv/J24/8AjlegUUAef/8ACkvh7/0L3/k7cf8Axyj/AIUl8Pf+he/8nbj/AOOV6BRQB5//AMKS+Hv/AEL3/k7cf/HKP+FJfD3/AKF7/wAnbj/45XoFFAHn/wDwpL4e/wDQvf8Ak7cf/HKP+FJfD3/oXv8AyduP/jlegUUAef8A/Ckvh7/0L3/k7cf/AByj/hSXw9/6F7/yduP/AI5XoFFAHn//AApL4e/9C9/5O3H/AMcpD8FPh8Dx4f8A/J24/wDjldN4q8UaZ4Q0SXVdUlKRJ8qIoy8r9kUdyef1PauV0FfGXjS0j1bUdSk8O6bOoe2sbGNGnZD0Z5JFbHHOAOfbpQB2ui6Np/h/SodM0u1W2s4c+XEpJxk5PJyTyT1rQrzDxRp/jLw/LpX9keKL27sLu+htLlLyGF5Yg7gb1cIOOxB6ZFemr92gB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh7UtRyusSNJIwVFUszE8ADuaAPE/HQ/4Sz49eGfDgPmW2mAXE6noD/rWB9iqRj8a9uGcc4+leGfCG6g8SfEvxh4slmXOfLtwzDPluxwfwWNR+NeieJviDpOhxNb2TDVdakBW306yPmyu3bdtztX1J/AHpQB5nqEn2v9qmzFkTvgCiZl9oGLZ/AgV74Onb8K8x+F/gK/0a8v/FPiRlfX9TZnaMHIgVjuI+pOOB0AAr04dKAFooooAKKKKACiiigAooooAKKKKACkPalqhrWpwaLo95qdywWK1haZsnGQBnH9PxoA8SluL/xJ+0ReX2nWC6imgQ+UkTziJcqCp+Yg8+Y7Ecdq9D0PWfEms+OJ7PVdKGk2um2gl8uO6877Q8pIQlgAMAJJ8uOuD2rjPgCIZNJ17Xbq6hN9qF7iUM43AKN2cZ7mRvyrt/EnjrQtBcRWU9rea7eukFvZ27qzyyE4TeV5VQSck++KAO0HT8aWmRb/ACl8wgvj5iowM+1PoAKKKKACiiigAooooAKKKKAGuwUEkgADnPSvm34iRPdfDmz8XgHz9R8QS3UZP3liKssQ+myFPzr2T4na4mg+AtSlEqpc3SfZLbLYJkk+UEfQEt9Frmfi/ocdn8FfsFsuY9MNqseBzhWEY/8AQqAOn8U67cyRWOi6FJjV9XXMUoGfssHBecj2B4HdiK8x0bSLTUP2gLTS7BM6X4Xs9q5OcsoyST3bzZSSfUGu88G6ZL4Y8LzeJPFEoGpyWiNcM3At4I1+SJfoOT6sxrlvgDC2or4l8UXJU3WoX2xvY48xvzMg/wC+aAPaV6UtAooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKSlpDQB4H44c+Nfj7o3hSfLadp5VpIj0c7POfP1Xate+KABgYA9q8I8aQP4I+OmmeM7qKQ6PelUmmVSVibyjCQfoMP7846V7UNUsTp634vbf7Gy7xP5q7Cvru6YoAtyIrjDKGwQwB7Ecg/nTxWNpGtrrcks1nA7acoAivDkLO3fYp5K9Pn6E5xkc1sL0oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKq3+n2ep2zW1/ZwXdu33op4xIp/BuKtUUAc8PAvhAcjwtof1/s+H/4mtWy0yw02Mx2FlbWkZ6rBCEB/AAVcooABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVLUtI03WIVh1PT7S+iU7lS6gWVQfUBh1q7RQBz3/AAgvhA9fCuhn/uHRf/E1NbeD/DFjcx3Np4c0i3njOUliso0ZT6gheK26KAEFLRRQAUUUUAFFFFABRRRQAUUUUAZmp+HtF1mVJNU0fT76RBtRrq2SUqOuAWBxU0emWENiljFZW0dohBSBIlCKQQwwuMDBAP1FXaKAM7UdG0vWUVNU02zvkjJKLdQLKFPqNwIFRaf4a0LSJzNpuiadZSEYL21okZ/NQK1qKAAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFe8s7a/tpLa7t4riCQYeKVAysPcHrXOW3w48GWd4LqDw3pwmB3AtCGAPqAcgflXV0UAIoCjAGBS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9k='] Multimodal Competition True Theorem proof Geometry Math English 10 "An equilateral triangle $A B C$ has side length 2 . A square, $P Q R S$, is such that $P$ lies on $A B, Q$ lies on $B C$, and $R$ and $S$ lie on $A C$ as shown. The points $P, Q, R$, and $S$ move so that $P, Q$ and $R$ always remain on the sides of the triangle and $S$ moves from $A C$ to $A B$ through the interior of the triangle. If the points $P, Q, R$ and $S$ always form the vertices of a square, show that the path traced out by $S$ is a straight line parallel to $B C$. " ['Let $\\angle R Q C=\\theta$ and from $S$ draw a line perpendicular to the base at $P$.\n\nThen $\\angle T Q B=180-(90+\\theta)=90-\\theta$.\n\nLet $s$ be the length of the side of the square.\n\nFrom $R$ draw a line perpendicular to $B C$ at $D$ and then through $S$ draw a line parallel to $B C$. From $R$ draw a line perpendicular to this line at E.\n\n\n\nFrom $\\triangle R Q D, R D=s \\sin \\theta$.\n\nSince $\\angle Q R D=90-\\theta$ then $\\angle S R E=\\theta$.\n\nFrom $\\triangle S E R, E R=s \\cos \\theta$.\n\nThe perpendicular distance from $S$ to $B C$ is $R D+E R=s \\sin \\theta+s \\cos \\theta$ which we must now show is a constant.\n\nWe can now take each of the lengths $D C, D Q, P F, F B$ and express them in terms of $s$.\n\nFrom $\\triangle R D C$ which is a $30^{\\circ}-60^{\\circ}-90^{\\circ}$ triangle, $\\frac{D C}{R D}=\\frac{1}{\\sqrt{3}}$.\n\nSince $R D=s \\sin \\theta$ (from above)\n\n$$\nD C=\\frac{1}{\\sqrt{3}}(s \\sin \\theta)=\\frac{\\sqrt{3}}{3} s \\sin \\theta\n$$\n\n\n\nFrom $\\Delta R D Q, \\frac{Q D}{R Q}=\\cos \\theta, Q D=s \\cos \\theta$.\n\nFrom $\\triangle T F Q, \\sin \\theta=\\frac{F Q}{s}$ and $\\cos \\theta=\\frac{T F}{s}$. or, $F Q=s \\sin \\theta$ and $T F=s \\sin \\theta$.\n\nFrom $\\triangle T F B, \\frac{B F}{T F}=\\frac{1}{\\sqrt{3}}, B F=\\frac{1}{\\sqrt{3}} T F=\\frac{1}{\\sqrt{3}} s \\cos \\theta=\\frac{\\sqrt{3}}{3} s \\cos \\theta$.\n\nSince $D C+Q D+F Q+B F=2, \\frac{\\sqrt{3}}{3} s \\sin \\theta+s \\cos \\theta+s \\sin \\theta+\\frac{\\sqrt{3}}{3} s \\cos \\theta=2$.\n\n$$\n\\begin{aligned}\n\\frac{\\sqrt{3}}{3}(s \\cos \\theta+s \\sin \\theta)+(s \\cos \\theta+s \\sin \\theta) & =2 \\\\\ns \\cos \\theta+s \\sin \\theta & =\\frac{2}{\\left(\\frac{\\sqrt{3}}{3}+1\\right)}\n\\end{aligned}\n$$\n\nThus $s \\cos \\theta+s \\sin \\theta$ is a constant and the path traced out by $S$ is a straight line parallel to $B C$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAXQBgwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKpX+p2mmRQyXtykCzTJbxl+jSOcKo9yauAnvQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUHpRXJ+O9bvrDSU0zRYmn1zUy0FpFGyhlAGZJMsQBtXnnjJWgDyj40atqGpR2mtWcmNF0nVFtYSp/19wAzPJ9FKbB77q9+t5o7i3jnjOUkUOp9iM14v8R4b4fCObR4/B+oWFpYLE6TTXNs4QKwySEkZiSC2Tg8nJ9a9F+HOof2n8OvD91uyxso42PqyDY36qaAOoooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGSsyROyozsBkIuMt7DOB+fFcD4Xt/EN54+1XW/EGgz2iSQrbaaTcQSLDCCxfcFckMx2ZwD6ZwK9BIB60hHHFAHNeOre71Dwbqum2Glz39xe2slvGkUkaBGZSFLF2UYBIPGelYXwh07X9A8IxaFruky2j2zyNFL58UiOjNux8jE5yzdsY79q1dB+Inh/xH4n1DQLGaQ31kW3F0+SQKQGMZB5AJxzjPUZFdYAN2cf8A16AHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAAa86+LfjSXwz4cGnaazPreqn7PaJGMuoPDOAO/OB7kehrvb28t9PsZ727lWK2t4zLLI3RVUZJ/SvG/h7ZXHxE8fXvxB1WEiwtHNvpUDg8Y4B/4CDn/AHmJ4xQBga18N7/4b+GND8XaOxfWdLIk1FBllcOeeAeFXOw46g54xXuvhzXrPxLoVnrFg2be6j3gHqpzhlPuDkH3FaFzbw3VrLbTxrJDMhjdHGVZSMEEdwQa8V8F3Enwv+Jd14KvZD/YuqsJ9MmkP3WPAGfU42H3UHjPIB7hRTRnuadQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh6Up6VzvjXxVb+DvCt5q9zhmRdkEROPNlP3V/PnPoDQB538V9XvPFHiCw+G+iTDzrpxJqMo5EUY+YK3pgfOe/CgdSK9W0TSLPQdHs9KsYvLtrWIRID1wO59yckn1NeefBrwrc2enXHizWiZNb1wmYu45WEnI+m4/N9No4wa9SAA6CgAPSuD+Kngo+MPCzG0XGr6eTcWbrwxYY3Jn/aAGPcL6V3tIQAv0oA4f4WeNR4z8KRyXLD+1bPEF6uMEtjh8dtwGfqCO1dzXh/i2GT4VfE228YWUbf2Fq7mHUokGQjk5Y49T98e4YdCK9rgnS4hjmhkWSKRQ6OvIZTyCD7igCWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKDwKAEY4UnOPevDbwt8XviutjGS3hbw+26Yr92eTJ/8AQiMD/ZViCM11Xxf8Y3Gg6BFo2ksW1vWG+z26xn50U8Fh7kkKPc57Vu/DzwdB4I8KWumKAbtx5t3IP45SOfwHCj2HuaAOpVQpAAAA6DFPpMAUtABR1oooAyPE3h6y8UeHb3R75f3NymNwHKN1Vh7g4NecfCDxDe6ddX3w/wBfYLqWks32Yk58yH0HrgEEf7LD+7Xrx6V5H8YvDl5aS2Pj7QRs1XR2Bn25/eQg9SO+MkH1Vj6CgD1oHJp1YvhXxFZ+K/DtlrNlgRXCBmTOTG3IZD7g5Hv1raoAKKD0riPH3jW68NS6RpWlQQz6xrFyLe2E+fLj5UF2wc4y6/r6UAdvRXnvia78b+FPC91rUOradqrWyb5oJrAxDZ3ZCj9uuDnIB5zXb6abr+zLQXx3Xfkp55AABkx82APfNAFuiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQ9Kq6jqNtpWnXGoXkoitbeNpZXb+FQM5q0eFNeMfFHUrrxn4rsPhxozkB3WbU5l6IowwB+g+bB7lRQA34a6ddePfGl98RtZiK26uYNKgbkIBkZ/wCAgkZ6Fix4xXtOB6VR0nS7TRNMtdMsIRFa20QjjQdgB1PqT1J75zV+gAooooAKKKKACo5oo5YJIpUR4nUq6uMqykcg+1SUHpQB4d4Zkk+FHxOn8LXTuPD+st5unyOTtikPAGSfX5D64Qmvb1JPU9vSuI+KHgpPGnhKWGCMf2laZnsnxghgOUz2DAY9M4Pao/hR41Pi/wAMCO8JXWNOIt71H+8SOFcj/awc+4agDvD0rzH4weDNQ8QafY65oTuNX0ZjNCiD5pBkN8v+0CoIHfkelenHOOOtc34L8TQ+LPDUWqRNGS0kkbqnG0q5AB/4Dg/jQBhfDrx9YfETRJ7K+gjj1OGPZfWjD5XU8blB6qehHYnHoT6CAB0rxefSIbX9piwfQ1Ee+xe41NYvuqxWRct6bv3Zx6kHvXtGaAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKD0opD064oA5jx54vt/BXhO51WbbJPjy7aInHmynoPoOp9ga5n4O+EJtI0ibxHq4L65rR8+V5Bh0jY7gvsSfmI+npXMg/wDC4fitkfvPCnh859UuJM/ruI/75Xtu59yAOetAChQOgpaKKACiiigAoopDnHFAC0jdKr3l9bafZyXV5cw20EYy8szhFUepJwK8j1j4tav4mv5ND+G+mS3s+MSajJHhIgc/MA3A9i+OeMHigD0PxT400LwdZfaNYvVjYgmKBPmll9lXv6ZOBzya+eLTx3c6X8Rz4+s9DurDQdQn8i5GCyTAj5zuwBv+XfgdwevNbfwo8IaX4213VdQ8YXVzqGt2VxtlsLonA7bn5ywDAjbwBjBByK9v8T+EtN8SeE7nQJYY4bd4wsOxQBCw+4ygdMH9MjvQBrQzw6jZJNBMstvcRh0kjb7ysAQR+BrloPhr4e09MaOL/SZNoR5NPvZIjIAON4zhj7kZ964n4MeI7vSr+++HmvExX+nuxtA5wXUZLIMgEj+NfVSewFeyjJPPSgDG8P8AhTSPDQnbT7dvPuG3XFzNI0s0zerOxJ/DpW5RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUh6cdaAFPSvMfjF4tudL0WHw1o+6TW9bPkRJH99YydrEe7Z2g+5PavQNV1S00bSbvUr+YRWltE0kjn0Hp6nsB1J6V5N8K9MuvGfirUPiRraH53MGlwsciNQNpI+g+UHuS5PNAHoPgPwjb+C/ClppEW15QPMuZR/y1lONx+nQD2UV02KTAznFLQAUUUUAFFITgZrn/FPjTQ/B1l9o1i9SJiCY4F+aWX/AHV/TJwB3NAG+WwM1534z+L2i+G5G07TgdZ1pm8tLS1bcFfOMMwzz22jJzxgZzXJvqnj34uuYtHjk8OeF2yrXcmfMnU9cYwW+i4XqCxr0LwZ8ONA8Ewr9hthLe7cPezYaVvXB/hHsMe+etAHA2Xw88WfEO8j1T4g6hJZWAbfDpFsdu32I5Cdu7NyQSK9d0jRNN8P6cmn6VZxWlqn3UjGOcdSepPqTya0NoznHNGBQB4r8SNOufAfjWx+I2jRZgZxDq1unAcHAz/wIcZ7MFPOaNR+J/iPx1eNo3w50+RY8AT6rcKFEQOMkZ4X8ct1wM17DqOm2eradc6ffwLPaXMZjljbOGU/TkfUcim6ZpVho2nxWGm2kVraxDCRRLgD/wCv70AeC+JfhPqfg3w/H4w0/WLq/wDEenzi7u5WJIZerEZyTg8kseV3ZHavaPCHia18X+GrLWbQqFmXEsecmOQfeT8D37jnvW46K6MrKGVgQQRkEGvD9DdvhJ8VZNBlZk8Na+RJZl2ysMnQDPbBOwn0KE9KAPcqKaCTinUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIxwMmg9K5P4ieMofBPhK51FijXbjyrSJv45SDjPqB1PsMdxQBwPxJv7nx5410/4c6PKwt4nE+qTp0QAA4/4CCD/ALzKOCK9g03T7XStPtrCyhWG2t4xFFGvZRwBXA/B/wAGzaBoUms6qDJresH7RcSS8uqE5VSTzk53H3OD0FekAYoAWiimlsDNACnOOKr3l9bafZyXV5cw20EYy8szhFUepJwK4Lxn8XtF8NyNp2nA6zrTN5aWlq24K+cYZhnnttGTnjAzmuXsvh54s+Id5HqnxB1CSysA2+HSLY7dvsRyE7d2bkgkUAWtX+LWreJ9RfQ/hxpkl7PwJNSljxHEDn5gG4A93x0OAeKv+F/g5Zw341rxhdnXtZkO9hMS8KH0wfv498D/AGRXomj6JpmgafHp+lWUVpax/djjXHOOpPUn3PJrRxQA1UVVCqoAHAA7U7FFFABRRRQAUUUUAB6VxvxK8FReNvCNxZKqi/hzNZyH+GQds+jDg/XPYV2VIw4OKAPPfhH4zm8UeG2stSLLrWlt9nu1k++2MhXPvxg+6n1r0OvEviBZ3Pw58fWXxB0qNjYXji31aBRwc9T/AMCAz/vKD/FivZLG9h1CzgvLaVZbe4jEsTr0dGAIP5EfnQBZooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKzddOzRbyc309ksMLytcQBCyBRkkbgR29K8s+FN34v8caBearq3ivUIEWfybcW8FuASACSd0RyPmAH0NAHstFeXeEPG+tx/ErU/AviGaG+lt1MlvfRRCNnG1XAdRxyrZ4xgjHOePUT0oARiApJOAOea8NsUPxg+KzajJl/C/h9tkKEHbPJnOfTkjJ/2VUEc1v/ABj8VXdtp1t4Q0XMuta2wh2p1SFjtP0LHI+gb0zXY+CvCtr4M8LWmj221nQbp5QMebKfvN/QegAFAHQgYI4FKTgZqveXtrp1nJdXlxDbQRjLyzOEVR6knAFeSav8WtW8T6i+h/DjTJL2fgSalLHiOIHPzANwB7vjocA8UAeh+KfGmh+DrL7RrF6kTEExwL80sv8Aur+mTgDua8ufVPHvxdcxaPHJ4c8LtlWu5M+ZOp64xgt9FwvUFjW74X+DlnDfjWvGF2de1mQ72ExLwofTB+/j3wP9kV6mqKqhVUADgAdqAOR8GfDjQPBMK/YbYS3u3D3s2Glb1wf4R7DHvnrXX7RnOOaXFFABgCiiigAooooAKKKKACiiigAooooAz9b0ay1/RLvSb+LzLW6jMbr3HoR7g4IPqBXlXwo1e78La/f/AA21uUedZyNJp8h4EyH5to+oO8D3b0xXshzjjrXlnxj8K3NzY23i7Rcx6zoZ83eg5eEHcfrtOWx0ILjvQB6mKWuc8E+K7bxn4ZtNYtdqmRds8QOTFKPvKfx5HqCDxXR0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUHpRQelAHnfxr1o6N8M9QRG2y3zLZp77jlvzQOKzfA1zrvhrwDpmlWfgjUbmdYTIzvdW8ccjOd5JbeSOuMFc+3FYXxhuI/EXxE8J+D/MHl+estyM/wB9gAD6HarH1+avcFAzgdBxQB5z4G8B6lY+KtS8ZeJZoJNZvwQkFuS0duhxwCRycAL7AHk5ruNc1iz0DRbzVNQkCW1rGZHPc+gHuTgAepFaBwBmvnj40eNrLVvElp4Sa8ki0mylEmpywAszuMnYo7kDjnjcecbc0AdH8KdIu/E+v6h8SdcjHn3TvHp0TfN5UY+UleOw+QH/AHuOc1veMvi5ofhqQ6dpoOsa0W8tLS0bcFcnGHYZ5z/CMnPYda421uPGvxNtINN8O2zeF/B8SCFJznzJIwAAAcgsMDGFwOoLGvSfBnw40DwTCv2G2Et7tw97NhpW9cH+Eewx7560AcDZfDzxZ8Q7yPVPiDqEllYBt8OkWx27fYjkJ27s3JBIr13R9E0zQNPj0/SrKK0tY/uxxrjnHUnqT7nk1obRnOOaXAFABiiiigAooooAKKKKACiiigAooooAKKKKACiiigApjqNpOATjjNPooA8MsWPwg+KrWD5i8LeIG3QE/dt5M8D22k4P+yyk/dr3Lnd7VynxD8Gw+NfCN1phCrdqPNtJD/DKBxz6HlT7H2rC+D/jGbxBoD6RqhZNb0g/Z7hJPvuoOFc+/G0+4yeooA9JooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACjrRRQBhP4K8KyTGV/DOjNKW3F2sYixPrnb1raSKOGJI4kVEQBUVRgKOgAHpT6bIypGzuwVFGWJOMD1oA4/wCJXjWPwT4SnvkZTfzfubKM87pD/FjuFHJ/AdxXg+jeGV8F+N/D9747sYru01mIyb5yWWGZj1cdGYEruzkfPnkiu40SNvi38VZtdnVm8MaC3l2aMDtmkByDjockbz7BARXpPj7wfB408I3WkvtW4/1trK3/ACzlUfKT7HkH2JoA6ZFRVCKoCgYCgYAA9KfivM/g94wn1jRpvD2sZj13RWME0bn5nRTtDH3BG0/QH+KvTKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEPSvFfiTYXHgLxpYfEbR4WNvJIIdUhQ4DqRjPp8wHXpuVT1Ne11S1bS7PWtJutMvohJa3UZikT2Pp6EdQexAoAdpuoW2q6fbX9lMJrW5jEsci9GUjI+n0q3Xi/wALNUuvBvivUPhvrUhPlyNNpk7jAkU/MVHpuHz4HQ7wTnivZweR/KgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiig0AIxIHHWvJ/jH4nu2tbTwRomZNY1siNwv8ABCTjk9t2CP8AdDZxxXoviHXbPw3oN5rF++22tYy5AOCx/hUe5OAPrXmXwh0O71zVdQ+Iuuxj7bqbstkjDPlxfdJHoMAKO+1T1BoA9D8IeGrTwj4astGtMEQp+8k7yyHlnP1PT0AA7VukDFAAFLQB4v8AE7TrrwT4v0/4kaPGSgdYNUhXgOpAAJ+o+XPYhTXrml6nbazplrqNlKJbW5iWWN/UEcfj6jtRqmm2mraVdadexCW1uY2ilQ91bg/Q+/avIfhnqd14H8Y6h8ONYlLR7zPpk7fxqRuwPquT6BlYZJIoA9qopoJzzinUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh5FLRQB5f8AGLwnPqWjQeJdHzHrWinzopIwMtEOWX3x94DngMMc11PgLxbB418KWurxbVmI8u5iB/1co6j8chh7MK6YgAZwBgV4aM/B/wCK2OY/CviA8Z+5bSZ/9lJ/75f/AGaAPc6KaDk06gApKjuImmt3jWWSJmGA8eNy/TIIrxf4dax4q8a+INfSXxZqA0jT5THbywwW6vLlm2kkxkfdXJ47igD22ivJ7Xxnr/hv4rW/g3Wr1NVsr1A1vdtCsc0e4MQG2AKeVI6eh9q9XB5oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAoPSiuI+KPjT/hC/Ccs0Dj+07vMFkmMneR97Hoo5+uB3oA4jxvcz/Ev4i2vgbT3YaRpr+dqksZ6sOq/UcKP9pj/dr2i2tobS3ht7eNY4YUEcaKMBVHAA9uK4j4UeC28JeGPNvgzaxqRFxeu5ywJHCE9yMnP+0WrvAAOgoAWiiigBD0rzL4w+EJ9Z0GHX9J3R61op+0QPH99kHzMo9SMbh7jA616dTXA2k96AOX+H3i6Hxr4TtdVTYtxjyrqJD/AKuUfeH0OQR7Ee9dVXhkx/4VB8WBcAiPwr4hY7xwEtpM/oFZs/7rn+7XuIJ3D6dKAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSHpQAtcx498IW3jTwldaTKFWcjzLWU/8ALOUfdP0OSD7E1vXt9badaSXV7cxW9vEMySyuEVB6kngV5Fq/xU1vxZfvoXw3sJLiQELNqs0WI4we6gjAHu3XGApOKANj4OeLrjVtJn8N6wSmuaKTBKkh+d41O0N7lT8pP0PevTq+a9b8K+I/hLqmk+Nzqb6tM8u3U25AJbqpY5LKwyNxHDBTjoK+hdK1a01vSrbU7GUS2lzGssb47H19COhHYg0AZPj7XP8AhHvAes6mrlJI7ZliYdpH+RP/AB5hXjHg7xTqXws+GtnqE3hpbi21e5aVLv7Zs5IAUMuwkDCEjnnmuj/aD1cjRNJ8OwOBcahc+Y65/gXgA+xZh/3zXZ+MfBkOrfDCfw3axBntbRBaADJ3xD5APrjbn3NAGd4b8AXU3jI+N/EmoW99qbx4tobUHyLdSuAVY8t8vHQdSeeK9HxXm/wU8TjxB4CtbaWUNeaZ/osy9yo/1bfTbge5U16RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUjZ2nHWgBk80dvBJNK6xxxqXd2OAoHJJPYV4l4Xif4r/ABRuPFV0hPh7RX8nT4m6SSDkMR+Tn6oORmtb4v8AiS9u5rDwDoLbtU1hlE5UkeXCTxyPXaSfRVPqK9C8LeHrTwr4cstGsh+6t48Fj1dzyzH3JyfxoA2Mc570tFFABRRRQAUdaKKAOa8d+Erbxl4Su9JlCLKQJLeVv+Wcq52n6ckH2JrlPg34tn1LSp/DGsAxa5ohMEiSMC7xqdoPuVPynr/Cc/NXqB6V4x8VNKu/CHinT/iRosZJhZYdTiXpIh+UE/UfL7HYaAPZ6Ko6Rqtrrek2up2MgktbqJZY29j6+46EdiDV6gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKDQBheL/DFp4u8MXmj3XyiZf3cgGTHIOVYfQgZHcZHevPPgprJsYdQ8C6nbQ2uraXK5wqBfPTPJJ/iIJHPdSvXBNevMcKScY754r52+JfiLTbv4iaRqPgSaa98TW58uX7HD5kcqjOFyPvHGVOAQQeSNuKAPZfG194ctvC15F4nuoYdOuozEwcgs5/2FGSWHBGO4zXjnwI8cxWWpz+Ebi4eSznd5NNkm4IbqUxk43AbsZxuzjJatvQvg/qniPURr3xH1KW7uH5FjHJwo/usy8KM5+RPz6itz4p+AI7zwpbX3h22Sz1LQj59qtsgTKA7mVcdxjcOpyMDlqAO3uvCPhrULp7m98O6TczucvLNZRuzH1JIya1LaztrK3S3tbeKCCP7kUSBVX6AcCua+HnjCLxr4UttTXYtyv7q7iH8EoAz+ByGHsfUGusoAy7Lw1oOm3pvbHRNNtbo5zPBaojnPX5gM81qUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIelZHibxFZ+F/D15rF8T5FtHu2DrIx4VR7k8fjnpWu3Cn1rxDxXNL8U/ibb+EbJ2/sHR5PO1KVCcO4OCufX+Ae5Y8gDABpfB7w/e6jeX/wAQNfXdqWrMfswYcRw8fMM9AcBR/sqOoNeu4qK3hit4Y4IY1jjjUKiKuAqjgAY6YGBU1ABRRRQAUUUUAFFFFABVTUtOtdV0y5sLyFZra4iaKRG/iVhgj2q3SHkYoA8V+HGo3PgDxtf/AA61eVmtpXNxpc78bwQTt9PmA7fxKw5LV7UM8V5v8X/B02v+Hk1jS1ZNa0c/aLd4+HZQQzKMdxjcO+Rx1rd+HfjCLxt4TtdTBRbpB5N3Gv8ABKAM/QHhh7H1FAHWUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUjHCkkgAdSaoavrOn6Dp0t/qt9DZ2sfBllOOfQep9AMk0AX2OFJ9K5Lxl8RdA8E2xOpXQkuyMx2cA3Sv9RxtHucD0ya4K++I/ir4gXkuk/DzTnt7MErNq1yNu0exIIT6ctjBAFdF4M+EGj+HbldU1aRta1x28x7q6+ZVfqSqnOTnnccnvxQBygsPH3xecPqDN4b8LSci3XPmTr15HBbty2F5BAPf1Hwp4K0HwfaG30izWORhiW4k+aaX/ebr+AwPaui2jjjpRgUAGBnPekIVV6AAfpTqKAPC7sH4QfFcX6KYvCviBtswAwkEmT+W0nI/wBlmA6V7ij78EYKkZBzWD428KWvjLwreaRcbVeRd0ExGTFKPut/Q+xI71xvwa8U3V3p9z4R1oNFrWhkxMj9XiB2j67T8ufTb1zQB6nRSCloAKKKKACiiigAooooAKKKKACiiigAoPTiiorm4htbWW4uJFihiQvJIxwFUDJJPYAd6AOH+Knjc+DvCjfZWzq1/mCyQfeDH7zgf7IP5lfWn/CzwUPBnhOKG5T/AIml6BNeueTuxkR59FBI6nnce9cV4Lt5fif8TLnxrexN/YulSeTpkTjguvIOPUZDn0JUc4r24KB0FABgUtFFABRRRQAUUUUAFFFFABR1FFFACN0rw2+z8IPiumoRgReFvEB2zqB8lvJ3P/AScj/ZZgBxXudc7428J2njLwreaPcBVeRd8EpGTFKPut/Q+xI70Ab6vvIK4KnkYp9eWfBvxVc3Wn3HhDWt0etaITEUkPzPCp2g++04X0xt65r1IUALRRRQAUUUUAFFFFABRRSMcKT6UAKaY7FUJyAMck8YHrXKeMviLoHgm2J1K6El2RmOzgG6V/qONo9zgemTXnQsPH/xecSagz+G/C78rbrnzJ165I4LduWwvQgHuAdB4q+MlnaXg0XwnanX9akbYogBaFG+o5f/AIDx6sMVmaX8KNY8V6kutfEjUpbqXGYtNgfCRD0JXhfonU87jzXofhPwVoHg6zNto9ksbsMSTvzNL/vN1/AYHoK6LaB2FAFeysbTTrSK0sraK3tohtSKJAqqPQAVZwM5oxzRQAUUUUAFFFFACHkV438WNIu/C+v6f8SNDizPausWoRjgSIflDN9QdhPbKEdK9l61WvrK21CxuLO7hWa3njaKWNujqRgigCvoms2mv6PaarYuXtbuMSRt6A9j7g5B9xWjXifw9vbn4eePb74farMzWF25uNKnc8HOeB/vAY9N6kfxV7WpyB/nNAC0UUUAFFFFABRRRQAUUUUAFFFBoAK8f+L+vXmr3th8PNCfOoaoym7Zf+WcPXB9M4LH/ZH+1XonivxLa+EvDl5rF6QUgT5EzgyueFQfU/kMntXBfBzw1czx3njnXQZdW1lmeIt0SEnOQO27Ax6KFx1NAHonhzQbPwzoFlo9iuILWMKGIwWPUsfckk/jWrRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSHpS0daAPGvixpF34W8Qaf8SdDizNauseoxjpJH90FvqPkJ7ZQjpXqmiaxa6/o9pqti++1uohIh7jPY+4OQfcVY1CxttRsLizu4RNb3EbRSxt0dWGCK8c+Hl7cfDzx7ffD3VZmaxunM+kzueuf4f+BAfQMpH8VAHtlFIpyB/nNLQAUUUGgApGOFJJAA6k012KoTkAY5J4wPWvL/ABV8ZLO0vBovhO1Ov61I2xRAC0KN9Ry//AePVhigD0PV9Z0/QdOlv9VvobO1j4Mspxz6D1PoBkmvJL74j+KviBeS6T8PNOe3swSs2rXI27R7EghPpy2MEAVLpfwo1jxXqS618SNSlupcZi02B8JEPQleF+idTzuPNeu2VjaadaRWllbRW9tENqRRIFVR6ACgDz/wZ8INH8O3K6pq0ja1rjt5j3V18yq/UlVOcnPO45PfivSNo446UuBnNFACYFLRRQAUUUUAFFFFABRRRQAUjAFSCMj0paKAPOvi54Kk8T+G11DTgy63pRM9q6HDMBgsv14BHuB6mtT4a+M4/G3hK3v2ZRfQ/ubxBxiQAfNj0Ycj647V17KCpFeH6yrfCP4px67CrL4a19tl4oHywyZJJ/DO8excDpQB7lRTI3Eih1cMjAFSvQj1p9ABRRRQAUUUUAFFFFABSHpQTgV5/wDFjxtJ4U8Ni1sSz6zqZ+z2kaKSy5wGcDvjIA/2iPQ0Acd4gkf4sfFOHw3bOzeHdDbzL6RchZZBwRn1z8g9g5HFe3xRpEipGioigKqqMAAdsflXHfDLwZH4K8JwWcig6jPia9fOT5hH3c+i9PTqe9dpigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQ8gg81518XvBknibw2uoaarrrWlE3Fq8ed7gcsgx34BHfIGOpr0amkYU49O5oA5H4b+M4vG/hODUNyi9i/c3kYGNsoAyfowwR9cdQa7CvDdXU/CP4rR61EGTwxr77LpQDtgkycnHbaTuHH3WcDpXsGqa5pui6Y+o6lqEFrZquTNI3ByMjH94+wyTQBoscKT6VyXjL4i6B4JtidSuhJdkZjs4Bulf6jjaPc4Hpk1wV98R/FXxAvJdJ+HmnPb2YJWbVrkbdo9iQQn05bGCAK6LwZ8INH8O3K6pq0ja1rjt5j3V18yq/UlVOcnPO45PfigDlRYeP/i84k1Bn8N+F35W3XPmTr1yRwW7cthehAPf1Dwn4K0DwdZm20eyWN2GJJ35ml/3m6/gMD0FdFtHHHSjAoANoHYUuOaKKACiiigAooooAKKKKACiiigAooooAKKKKACsHxj4Ys/F3he90a7AUTJmKTbkxSDlWH0P5jI71vUh6UAeU/BzxPdGG88E64DHrGiEogfq8IOOD32kgA/3SvXk16sDXj3xd0S80HV9P+I2gr/pmnsq30Y6SxdAT7YO0nrhgRjbXpvh7W7TxHodnq9hJvtrpN6+qnoVPuCCD7igDVooooAKKKKACiig0AIenSvAvEfhv4mXPxTk8T23h6y1GOykKacs9xH5SxDOxtvmK27ndz/F9BXvp5GKAMUAeQf8JD8cv+hM0P8A7+r/APJFH/CRfHL/AKE3Q/8Av6v/AMkV7BRQB4//AMJF8cv+hN0P/v6v/wAkUf8ACRfHL/oTdD/7+r/8kV7BRQB4/wD8JF8cv+hN0P8A7+r/APJFH/CRfHL/AKE3Q/8Av6v/AMkV7BRQB4//AMJF8cv+hN0P/v6v/wAkUf8ACRfHL/oTdD/7+r/8kV7BRQB4/wD8JF8cv+hN0P8A7+r/APJFH/CRfHL/AKE3Q/8Av6v/AMkV7BRQB4//AMJF8cv+hN0P/v6v/wAkUf8ACRfHL/oTdD/7+r/8kV7BRQB4/wD8JF8cv+hN0P8A7+r/APJFH/CRfHL/AKE3Q/8Av6v/AMkV7BRQB4//AMJF8cv+hN0P/v6v/wAkUf8ACRfHL/oTdD/7+r/8kV7BRQB4/wD8JF8cv+hN0P8A7+r/APJFH/CRfHL/AKE3Q/8Av6v/AMkV7BRQB4N4nh+MHi/Q5tI1TwXo/wBnlKsHinRXjYHIZSZzg/h0JFcc/wAMvihdTWR1LQ21KCyjEcFtd6jGY1QDAUbZQQOB0I6V9VUYFAHi9nqfxm060itLHwL4et7aIbY4oXRVUegAuKsf8JD8cs5/4QzQ/wDv6v8A8kV7BiigDx//AISL45f9Cbof/f1f/kij/hIvjl/0Juh/9/V/+SK9gooA8f8A+Ei+OX/Qm6H/AN/V/wDkij/hIvjl/wBCbof/AH9X/wCSK9gooA8f/wCEi+OX/Qm6H/39X/5Io/4SL45f9Cbof/f1f/kivYKKAPH/APhIvjl/0Juh/wDf1f8A5Io/4SL45f8AQm6H/wB/V/8AkivYKKAPH/8AhIvjl/0Juh/9/V/+SKP+Ei+OX/Qm6H/39X/5Ir2CigDx/wD4SL45f9Cbof8A39X/AOSKP+Ei+OX/AEJuh/8Af1f/AJIr2CigDx//AISL45f9Cbof/f1f/kij/hIvjl/0Juh/9/V/+SK9gooA8f8A+Ei+OX/Qm6H/AN/V/wDkij/hIvjl/wBCbof/AH9X/wCSK9gooA8f/wCEi+OX/Qm6H/39X/5Io/4SH45H/mTND/7+r/8AJFewUUAeM3OsfGu8tZra58EaDJBMhjkRpVwykEEH/SOmCak+Cvh/xr4VudQ0vXNMFtpEimaEmZH2S5Awu1jwR1z/AHR6mvYT0puMHIAz3NAD6KQHNLQAUUUUAFB6UUh6UAeNePte8TWPxP0Lw1oPiG6hXUgjTxmGF/JVnIyuUzwqscHPStTx7qniP4eaRba9aa/Nqdqs6RXFpqEMPzA91aNEIPHv19q5PRJ9S8SfHbXvEOl6fFqCaVm3iWW58lV+UxBg21uu1z+NW9bvp/HXjS28H+Ny3h6GKQTwWMH7wXpIIX9/nAH3gMKO4zuxgA9l0fUo9Y0Ww1OIMsd5bx3Cq3UB1DAfrV6ore3itLeK3gjEcMSBI0HRVAwAPwFS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSE4BNLXBfF3xdN4R8DTz2khjvrtxa27jqhYElvqADj3xQBNfeN7m/wDEc3hvwpbRXuoW/wDx+3UxItrP2Yjl37bRjnqeDiHxBceNfDWj3Gtx6rp+rR2iGa4snsTBujXljGwckEDJ5z0pvwf8NJ4d+H1i7RgXmoKLy4c9W3jKD8Fxx65rZ+IWoR6Z8PfEFzIRj7DLGPTc67Fz+LCgC34V8S2ni3w9aazYkiGdTlG+8jjhlPuDn69a268o/Z8tp4Phu8sudk9/LJFn+6FRTj/gSt+ter0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhOBmlpD0oA898ffEC50XULPw14egS98SagQIo2GUgU9Hb9T7YyeODb074eW8tusvibVNR1vUGGZJJLuSOJT6RxoygD8M1518HD/wlfxS8UeKLsCSSPIhDc7BIxC4+iIV+hr3zAznvQB5vZ+ENQ0X4o6ZJZarqkmgfZZ5vsc91JJHFKAqYG4ngiXIBzyD6V6TRRQAUUUUAFY3irW08O+FdT1eRwv2W3d0z3fHyj8WwPxrZqhqWh6TrKxrqml2V8sZygurdZdp9twOKAPKvgBBaWfgm/1Se5hFxd3jGV2cAqqgAA56clj+NZHiBn+I3xn0T/hHh9p0/RWiNzqEXMIKvvYBuh6KoweTnqOa9cHgbwip3DwtogPqLCLP/oNbNva29pAsNtBHDEv3UjUKq/QDpQBIowf606iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAD0rxr9orTbm68H6fexKWis7v98B/CGUgMfbOB+NeynpWL4j1bTNM0mUanA90kymNbOKEzSXPH3FjH3s//AK8UAWtGnt7rRbGe0YNbSwI8RHQrtGOnHTFeV/Ey6u/Hut2/gHw8wkSKRZ9Vuhyluo6Kx7kckjrkKPWuS0vxTp3hya8t/EOjeL9E02eX/R7G3mljggjPbJZWyTknBA5OBXo/hz4heBIrNNM8J2txcS/eWwsdPkDlvVmYBc/7TN+NAHc6HpFroGjWWk2KFba0iEaZ6nHUn3JyfzrRqrYtdNaRNeRxR3BGXjiYsq+gB74HfAz6CrVABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIeBS0UAeCaCrfBz4laqurxSR+HNXP+j34QlEO4sisR0IBZT+fSvU5viD4YAC2er2+o3Dj93bacwuZnOOgVM4/HAHfAzXSSQRSxNFJEjxsMFWGQR9KhtdNsbEMLOyt7cN97yYgmfrgUARaTLqE9p5upQxW8zuSsEbbjEnZWbOC3rjjnAzjJv0mAMe1LQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSEA9aWigBrxpIpV1DKRghhkGo4LS3tU2W8EUK+kaBR+lTUUAJgUtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/2Q=='] Multimodal Competition True Theorem proof Geometry Math English 11 "In the diagram, line segment $F C G$ passes through vertex $C$ of square $A B C D$, with $F$ lying on $A B$ extended and $G$ lying on $A D$ extended. Prove that $\frac{1}{A B}=\frac{1}{A F}+\frac{1}{A G}$. " "['Without loss of generality, suppose that square $A B C D$ has side length 1 .\n\nSuppose next that $B F=a$ and $\\angle C F B=\\theta$.\n\nSince $\\triangle C B F$ is right-angled at $B$, then $\\angle B C F=90^{\\circ}-\\theta$.\n\nSince $G C F$ is a straight line, then $\\angle G C D=180^{\\circ}-90^{\\circ}-\\left(90^{\\circ}-\\theta\\right)=\\theta$.\n\nTherefore, $\\triangle G D C$ is similar to $\\triangle C B F$, since $\\triangle G D C$ is right-angled at $D$.\n\nThus, $\\frac{G D}{D C}=\\frac{B C}{B F}$ or $\\frac{G D}{1}=\\frac{1}{a}$ or $G D=\\frac{1}{a}$.\n\nSo $A F=A B+B F=1+a$ and $A G=A D+D G=1+\\frac{1}{a}=\\frac{a+1}{a}$.\n\nThus, $\\frac{1}{A F}+\\frac{1}{A G}=\\frac{1}{1+a}+\\frac{a}{a+1}=\\frac{a+1}{a+1}=1=\\frac{1}{A B}$, as required.' 'We attach a set of coordinate axes to the diagram, with $A$ at the origin, $A G$ lying along the positive $y$-axis and $A F$ lying along the positive $x$-axis.\n\nWithout loss of generality, suppose that square $A B C D$ has side length 1 , so that $C$ has coordinates $(1,1)$. (We can make this assumption without loss of generality, because if the square had a different side length, then each of the lengths in the problem would be scaled by the same factor.)\n\n\n\nSuppose that the line through $G$ and $F$ has slope $m$.\n\nSince this line passes through $(1,1)$, its equation is $y-1=m(x-1)$ or $y=m x+(1-m)$. The $y$-intercept of this line is $1-m$, so $G$ has coordinates $(0,1-m)$.\n\nThe $x$-intercept of this line is $\\frac{m-1}{m}$, so $F$ has coordinates $\\left(\\frac{m-1}{m}, 0\\right)$. (Note that $m \\neq 0$ as the line cannot be horizontal.)\n\nTherefore,\n\n$$\n\\frac{1}{A F}+\\frac{1}{A G}=\\frac{m}{m-1}+\\frac{1}{1-m}=\\frac{m}{m-1}+\\frac{-1}{m-1}=\\frac{m-1}{m-1}=1=\\frac{1}{A B}\n$$\n\nas required.' 'Join $A$ to $C$.\n\nWe know that the sum of the areas of $\\triangle G C A$ and $\\triangle F C A$ equals the area of $\\triangle G A F$.\n\nThe area of $\\triangle G C A$ (thinking of $A G$ as the base) is $\\frac{1}{2}(A G)(D C)$, since $D C$ is perpendicular to $A G$.\n\nSimilarly, the area of $\\triangle F C A$ is $\\frac{1}{2}(A F)(C B)$.\n\nAlso, the area of $\\triangle G A F$ is $\\frac{1}{2}(A G)(A F)$.\n\nTherefore,\n\n$$\n\\begin{aligned}\n\\frac{1}{2}(A G)(D C)+\\frac{1}{2}(A F)(C B) & =\\frac{1}{2}(A G)(A F) \\\\\n\\frac{(A G)(D C)}{(A G)(A F)(A B)}+\\frac{(A F)(C B)}{(A G)(A F)(A B)} & =\\frac{(A G)(A F)}{(A G)(A F)(A B)} \\\\\n\\frac{1}{A F}+\\frac{1}{A G} & =\\frac{1}{A B}\n\\end{aligned}\n$$\n\nas required, since $A B=D C=C B$.']" ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAVgCIQMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDB1vxVZaBqek6fdRXDy6pN5MLRKCqnKrlskYGXHTNb1eafEr/kdPAX/AGET/wCjIa9LoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPNPiV/wAjp4C/7CJ/9GQ16XXmnxK/5HTwF/2ET/6Mhr0ugAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGk4H51yOp/EbRbLUzpdkt1q+ogkG206LzSnruOQox35474rnvjB4tvNLs7Tw/pLOuo6mcM0Z+ZYycAD0LHIB9jXU+CfCFl4O0KOzhRGumUNdT4+aR+/PXA7D0+poAqSeLvEUMfnP4F1Qw9fkuIWf/vgMTVzwp430/wAWyXkVpbX1tcWewXEN3FsZC2cdCfQ109ZFhokNhrWr6mjs0upvG8gI4Xy4wgA9emaAOL+JX/I6eAv+wif/AEZDXpdeafEr/kdPAX/YRP8A6Mhr0ukAUUUUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDwzxQv2r9ovR47j/VxNAY8+wLj/wAer3PA9K8t+J3hHVLjVtN8X+HofO1HTyvmW4UlpFVtykAdSMkEdSCMdK3tL+KHhm+tg11frpt0vE1regxvG3oc4B/z0oAs+MvFOoeE9Ol1NNHjvdPgRTLKb0RMjMwUDaVORyvOc89Kb4L8V6j4u0+PUn0VLHT5VYxSm8EjOQxXG0IOMg857VxHxJ8YWfi7QT4e8LJc6pdyzoZTawMyKqknBPHO4L7e9ej+DdLk0XwbpGnzR7JobVBKv91yMt+pNAHB/GC/Olaz4R1Hy/NNpcSz+XnG7a0RxntnArrPDHxA0PxSEit7g296f+XSc7XbHXaejD6c47CsD4lAf8Jn4C/7CJ/9GQ1c8T/CvRteZ7qy/wCJZfHnzIV/dufVk9fpj3zSA7/PvS143H4o8Z/D2ZbXxJatqWl52pdBtxx/syd/o4BPY16P4f8AF2jeJ4C+mXavIBl4H+WRPqv9Rx70wN2iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAwPSopbW3nIM0EUhHQugOPzqWigBqoiIERVVR0UDApcD0FLRQB5p8Sv8AkdPAX/YRP/oyGvS680+JX/I6eAv+wif/AEZDXpdAEc0EVxE8U0SSRuNro6ghh6EHrXm3iH4SWs1x/aPhm6bSr9CWVAWEZP8AskfNGfpke1em0UAeQWPxG8Q+ErtNN8a6bM6E4S7jA3EevHyuORyCCB154r03SNc07XrIXel3kVzEeCUblT6EdQfY4qe+0+z1O1a1vbeK4gccpKoIP/168x1f4W3uj3h1TwVqUtrcLz9meTHHZVc9R7Pn3NID1mivKdH+K1zpt3/ZPjPT5bK7Tj7QkZwR6snpx95cg54Fem2d/bajbJc2VxHcQOMrJEwZT+IpgWaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPNPiV/wAjp4C/7CJ/9GQ16XXmnxK/5HTwF/2ET/6Mhr0ugAooooAKMUUUAZes6BpfiC0+y6pZRXEfVdy/Mh9VYcg/SvM7zwD4l8G3T6j4M1KWe3yWktHI3n/gP3X79g3TAJr2CigDzbw58WrK8n/s/wAQwHSb9G2OXBEe70OeUPsc/WvRI5o5o1kikV0cZVkYEMPUEdaw/Eng7RfFEBXUbQGYLhLiP5ZE+h7j2OR7V5y/h/xr8O2a40C5OqaRnc1uULED3Tr/AMCQ9uwpAez0Vwnhf4o6J4hZLa4f+zr8nb5M7fKx/wBl+n4HB9jXc5PXtxTAdRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeafEr/kdPAX/YRP8A6Mhr0uvNPiV/yOngL/sIn/0ZDXpdABRRRQAUUUUAFFFFABRgelFFAHHeKPh3ofigPNLF9lvmBxcwAAt/vD+L+fvXECbxz8M8CVf7Y0JM4bk+Wv16x/jleepr2jA9KQgHqBQBy3hrx7ofilEjtbryLw9bWf5Xz/s9mH07eldV+NefeJfhTpGss13px/svUD8weFf3bn3Xt+GPxrnIfFvjH4fTpaeKLRtR03O1btW3HA44k4z64fDe9ID2SisPQPFWkeJ7bztMvFkZRmSJvlkj/wB5ev49Pc1uUwCiiigAooooAaTiuR1L4jaLZamdKslutX1IEg22nReaU9dzEhRjvzx3xXO/GHxbeaXY2ugaSzrqOpHDMn3ljJwAPQscgH/ZNdV4J8I2Xg7QorKBEa6ZQ11OBzK/fnrgdh6fU0AVZPF3iGKPzn8C6n5XX5LmFnx/uhiat+FfGln4skvobayv7O4sSi3EN5EI2UtnHc/3T6V09ZVhokNhq+q6ijs0uoyRySAj7uyMIAPXpn8aANWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAE6UZqKaJZ4ZI3LBHUqdrFTz7jkH3rwuTT2v/jW3hqy1PVYtKiH71Uv5mIxFuPzFifvYFAHvOTS1ws/w2hMZNj4n8R2kv8ACy6gzjPuD1H41zNh418Q+CPGMPhvxhdLf2NwVFvqIXawDHAY+ozwQeRyckYyAavxK/5HTwF/2ET/AOjIa9LrzT4lf8jp4C/7CJ/9GQ16XQAUUUUAFFFFABRRRQAUUUUAFFFFABio5oIriF4Z4klicYZHUMrD0IPWpKKAPMPEHwmgN3/aXhe7fS75PmWMOQmf9lh8yH8x7CqGn/EjXvC92mm+NtNm25AW7RQC3vx8rjp90jHPWvXqp6hptlq1m9pf20VxA45SVQRz3HoaQEek61p2uWa3em3sdzAerIeh9GHVT7HBrQrybVvhdqOh3jat4J1GW2nHP2V5OvsGPDD/AGW/OpdG+LEtld/2V4wsJbG8QhWnWMhfqy9R9RkHtxTA9Uoqta3lvfWyXNrPHPBIAUkjYFWB96s0AeG+Kl+1/tEaNFcDMcZgMef9nLD/AMer3LA9K8u+JnhLVLnVdM8XeHoTPqWnFd8A6yqrbgQO5Bzx1IPtW5pnxS8MXtuDeXy6ZdqMTWl6DG8bemTgH/PSgDtaaPWvPNe+J2ny2NzaeGBd6vqkkbJEtlbuyxMR8rFsdAfTP4V2HhuwbS/DOl2L58y3tY0fJ/iCjd+uaANWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvEfhZ/xOfir4o1z70a+YEbrjzJfl/wDHUNeu69f/ANl+HtS1DODbW0ko57qpI/UV5l8AdP8AK8N6pqBGGubsR59Qi5/m5oA9erw/9oRIx/wj7hR5x+0AEdcfu/8AH+de3MwUEswAHJJ9K8O1df8AhafxWtrazHm6HpIAnnB+Vvmy2D33EBQO4UnpmgDW+Jt+NO1DwLqN4JD9mlM8wXG47TCzYBxk8EdRWj/wu/w3/wA+Orf9+o//AI5S/Enjxp4C/wCwif8A0ZDXpdIDzP8A4Xf4b/58dW/79R//AByj/hd/hv8A58dW/wC/Uf8A8cr0yigDzP8A4Xf4b/58dW/79R//AByj/hd/hv8A58dW/wC/Uf8A8cr0yigDzP8A4Xf4b/58dW/79R//AByj/hd/hv8A58dW/wC/Uf8A8cr0yigDzP8A4Xf4b/58dW/79R//AByj/hd/hv8A58dW/wC/Uf8A8cr0yigDzP8A4Xf4b/58dW/79R//AByj/hd/hv8A58dW/wC/Uf8A8cr0yigDzP8A4Xf4b/58dW/79R//AByj/hd/hv8A58dW/wC/Uf8A8cr0yigDzP8A4Xf4b/58dW/79R//AByj/hd3hr/nx1b/AL9R/wDxyvTKKAPM/wDhd3hr/nx1b/v1H/8AHKzNb+JvgXxFa/ZtU0TUrhAPlYxRBk/3WEmR+Fev0UAfL8HiVfDGrG58JahqEdq53PBexoAR6EBirfXg16p4X+MGmaq0drrKjTroj/XE/wCjseP4jyuc5544+9XpleN3fhrT/FPxn8RWGoq5jFikiPG5VkcJCAfTPJ4NAHsCyJJGHRgyEcMDkEev0pJbW3nIM0EUhHTegOPzrx5tE8b/AA4kM2jTnV9HU5NuVLbR7p1B91OOMnArrvC3xP0XxGyW8r/2ffk7fInb5XPord/ocH2NMDtkRI0CIqqo6BRgCnYHpTM0+gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDlvFvhzWPEljcafBrkFhYXEXlyJ9i8x2z1+feAPyrA0HwB4o8NaYunaV4ziitVYuEbSUbk+5fNekUUAcDd+AdY1pPJ8ReM769tD962tLdLVX9mwTkfWus0bQ9N8P6eljpdpHa26nO1M5J9STyx9zWlRQB5p8Sv+R08Bf8AYRP/AKMhr0uvNPiV/wAjp4C/7CJ/9GQ16XQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXmei/8l+8R/8AYOT/ANBt69MrzPRf+S/eI/8AsHJ/6Db0mB6Zgelcb4q+G+h+J98zR/Y79h/x8wAAt/vL0b9D712VGKAPGFvPHPwzOy7iOsaGmAHyWEaj0b7yf8CBUdia7/wz470TxSoSzufKu8fNaT4WQfTsw+mffFdOVDAggEHqDXnvib4UaTqzm70kjSr9TuUxA+Ux/wB0fdPHVcfQ0Aeh0V45b+MvF/gK4Sy8V2kmoWGdqXiHcxHs5wG+jYPuK9J0DxRpHiW187S7xZSBl4jxIn1U8ge/Q9iaLgbVFFFMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDzT4lf8AI6eAv+wif/RkNel15p8Sv+R08Bf9hE/+jIa9LoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzPRf+S/eI/wDsHJ/6Db16ZXmei/8AJfvEf/YOT/0G3pMD0yiiimAUYoooAjnt4bqB4LiGOWFxho5FDKw9CD1rzPX/AITRLc/2l4UvX0y9Ri6xFzsz/ssPmU/mPpXqFFAHkWnfEvW/DN6ml+N9OlUnAW7jUBj74HDjpyuMdOTXp2l6xp+tWi3em3kdzAeNyNnB9COoPscGl1LS7HV7J7TULWK5gbqki5GfX2PuK8y1T4YaroN4dU8EalNDIDuNo74JHoCeGH+y350gPW6K8s0P4sNbXf8AZfi+xl068TgzeWQp92Q8r9RkHrwK9MtruC8t47i2mSaGQbkeNgwYexpgT0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHmnxK/wCR08Bf9hE/+jIa9LrzT4lf8jp4C/7CJ/8ARkNel0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5nov/ACX7xH/2Dk/9Bt69MrzPRf8Akv3iP/sHJ/6Db0mB6ZRRRTAKKKKACiiigAxRgelFFAGTrnhvSfEdp9n1SzSdR91yMOn+6w5FeZ3PgjxX4FuJL7wfqEl5Z7t0lo+NxHun3X9yMNzxXsVGKAPOfDXxZ03UpBZa2h0rUAdjeZ/qi3cZPK+4bp616GrB1DKwKnoR3rnvEvgrRPFMRN/ahbgL8t1F8ki46c9x7HNeef2V44+GrGXS5Tq+ioQWg2k7VHX5Oqd+VyOmeKQHs9FcV4V+Juh+JfLt3kFhft8v2advvN6K3Rvp19q7PORwetMB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeafEr/kdPAX/AGET/wCjIa9LrzT4lf8AI6eAv+wif/RkNel0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5nov/JfvEf/AGDk/wDQbevTK8z0X/kv3iP/ALByf+g29JgemUUUUwCiiigAooooAKKKKACiiigBMD06UuKKKAOL8U/DXQvExebyzZXx/wCXi3Ucn/bXo314PvXGLqfjj4auItRj/tjRVOBJuLbR6BvvKfZgR6V7PSMqspVlBUjBBHBFIDmvDXjnRPFKBbK6CXWMtazfJIPoP4h7jP4V01edeJfhRpepubzRn/sq/U7l8oYiZv8AdH3T7rj6GsG28aeLvAs6WXiyxlvbLO1LtDuYj2fo3fhsH3FAHsdFY2h+J9J8RWv2jS71JwAN8ecPGf8AaXqP69q2aYBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5p8Sv+R08Bf9hE/+jIa9LrzT4lf8jp4C/wCwif8A0ZDXpdABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeZ6L/AMl+8R/9g5P/AEG3r0yvM9F/5L94j/7Byf8AoNvSYHplFFFMAooooAKKKKACiiigAooooAKKKKACiiigAxUNxbQXls9vcwRzQyDDxyIGVh6EHg1NRQB5ZrnwoEV0NT8I30mnXiHcsLSNs/4CwyR9OR9Kr6Z8TtX8PXiaV4302aKXgLdIgBYepAOHHunpjBNet1R1TSrDWbJrPUbSK5gbqki5/EHsfpQAmm6tYaxZrd6ddx3MDdGjbOD6EdQfY81fryPUvhnrHh29OqeCNSmjYcm0kfBI9Ax+Vx7MPxNW9B+LQjuf7M8W2UmmXiHaZtjBCf8AaU8r9Rkd+BQB6jRUFtcw3lulxbTpNDIMrJGwZWHsRU9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeafEr/kdPAX/YRP8A6Mhr0uvNPiV/yOngL/sIn/0ZDXpdABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeZ6L/yX7xH/ANg5P/QbevTK8z0X/kv3iP8A7Byf+g29JgemUUUUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAoxRRQAYHpWNrnhjSfEdr5Gp2cc2BhJPuun0Ycj6Vs0UAeOT+DfF3gO4e98JXz39jndJZuNzEdeU6N9V+b0rf8M/FjStWZbPVwdKv1O1vNP7pm9Ax+79Gx6Ak16HgegrmfEvgfQ/FKF722CXQGBdQ/LIPYnoR7HNAHShtyhlOQRkY706vGP7P8cfDQ+ZYSHWNFX70e0kIvun3kP+7kDvXaeF/iVoniYJCJfsV83H2ac/fP+w3RvpwfagDs6KaDnvTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPNPiV/yOngL/sIn/wBGQ16XXmnxK/5HTwF/2ET/AOjIa9LoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzPRf+S/eI/+wcn/AKDb16ZXmei/8l+8R/8AYOT/ANBt6TA9MooopgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABgelcR4p+GWh+JBJPHH9gvn5M8C8Mf9pOh+vB967eigDxhdY8cfDZlj1aE6vo4ICzbi20E/38bl+jDHpXonhvxtonimMCwuwtzjLWs2FlX/gPce4yPeuhZFdSrKGUjBBGQa868R/CbTtQkN9ocv8AZN+DvAjyIifoOU+o/KkB6PRXj1r468VeCLiOw8X6fJdWmdsd4nLN9GHyv06HDDPJr0nRPEmleIrT7Rpd7HcKB86jh09ip5H9e1FwNiiiimAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeafEr/kdPAX/AGET/wCjIa9LrzT4lf8AI6eAv+wif/RkNel0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5nov/JfvEf/AGDk/wDQbevTK8z0X/kv3iP/ALByf+g29JgemUUUUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKMUUUAQXVpbXts9tdQRTQOMNHIgZSPcHivMdb+FDW10dU8IX76deLki3MjbT7K45H0OR7gV6rRigDyTS/ijqmh3i6V4106WCYcC6SPBI9Sg4I6/MnHsa9O0/VbHVbNbvT7qK5gbo8Tbhn0PofbrTNV0fT9bsmtNStIrmA87ZF6e4I5U+4rzHUfhtrXhm8bU/BOpy572sjgMR6An5XHswH4mkB69RXl+gfFqP7SdO8VWj6XfIdrS7GEef9pTyn6jvkCvSoLiK6hSeCZJYnG5XjYMrD2PemBNRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUxnCKWZgFAySTwB60AYHijxlo/g+CCbVp5FFw5WNI03sccngdug/EVq6XqNvq+l2uo2jlre5iWWNiMZDDNeQ6/pzeO9A8UeLZVJt4YGh0hSOkUTb3lA9XKkfTIrq/g3qH2/4c2aMd0lpLJbtz6NuH6MKAKnxK/wCR08Bf9hE/+jIa9Lrzz4kaHr+qan4d1DQbFLqbTZnmKySKihsxsudzKSMoelVv7a+LX/QsaT/38X/4/SA9MorzP+2vi1/0LGk/9/F/+P0f218Wv+hY0n/v4v8A8fouB6ZRXmf9tfFr/oWNJ/7+L/8AH6P7a+LX/QsaT/38X/4/RcD0yivM/wC2vi1/0LGk/wDfxf8A4/R/bXxa/wChY0n/AL+L/wDH6LgemUV5n/bXxa/6FjSf+/i//H6P7a+LX/QsaT/38X/4/RcD0yivM/7a+LX/AELGk/8Afxf/AI/R/bXxa/6FjSf+/i//AB+i4HplFeZ/218Wv+hY0n/v4v8A8fo/tr4tf9CxpP8A38X/AOP0XA9MorzP+2vi1/0LGk/9/F/+P0f218Wv+hY0n/v4v/x+i4HplFeZ/wBtfFr/AKFjSf8Av4v/AMfo/tr4tf8AQsaT/wB/F/8Aj9FwPTK8z0X/AJL94j/7Byf+g29H9tfFr/oWNJ/7+L/8frDtdP8AiXaeLr3xKnh6yN7dwrDIjTx+WFGzoPMzn92Op9aAPaKK8z/tr4tf9CxpP/fxf/j9H9tfFr/oWNJ/7+L/APH6LgemUV5n/bXxa/6FjSf+/i//AB+j+2vi1/0LGk/9/F/+P0XA9MorzP8Atr4tf9CxpP8A38X/AOP0f218Wv8AoWNJ/wC/i/8Ax+i4HplFeZ/218Wv+hY0n/v4v/x+j+2vi1/0LGk/9/F/+P0XA9MorzP+2vi1/wBCxpP/AH8X/wCP0f218Wv+hY0n/v4v/wAfouB6ZRXmf9tfFr/oWNJ/7+L/APH6P7a+LX/QsaT/AN/F/wDj9FwPTKK8z/tr4tf9CxpP/fxf/j9H9tfFr/oWNJ/7+L/8fouB6ZRXmf8AbXxa/wChY0n/AL+L/wDH6P7a+LX/AELGk/8Afxf/AI/RcD0yivM/7a+LX/QsaT/38X/4/R/bXxa/6FjSf+/i/wDx+i4HplFeZ/218Wv+hY0n/v4v/wAfo/tr4tf9CxpP/fxf/j9FwPTKK8z/ALa+LX/QsaT/AN/F/wDj9H9tfFr/AKFjSf8Av4v/AMfouB6ZRXmf9tfFr/oWNJ/7+L/8fo/tr4tf9CxpP/fxf/j9FwPTKK8z/tr4tf8AQsaT/wB/F/8Aj9H9tfFr/oWNJ/7+L/8AH6LgemUV5n/bXxa/6FjSf+/i/wDx+j+2vi1/0LGk/wDfxf8A4/RcD0yjAznFeZ/218Wv+hY0n/v4v/x+j+2vi1/0LGk/9/F/+P0XA7DX/C2j+JrfytTtElZRhJV+WSP/AHW6j6dK83n8I+MPAMz3nhW9kv8AT87mtGG5sZ7x9CenK4PXgVsf218Wf+hY0n/v4v8A8fo/tr4s/wDQsaT/AN/F/wDj9AFrwz8VtJ1hha6oDpd+G2lZT+6Y+zHofZsegya9ADZGQcj1rxDxJ4e8d+KSXvfB+lR3OMfabeVUk/E+cc/iDUvhvTvip4XiMNppqXFrtwtvdXMbpGeOVw4I78A4oA9sorzP+2vi1/0LGk/9/F/+P0f218Wv+hY0n/v4v/x+i4HplFeZ/wBtfFr/AKFjSf8Av4v/AMfo/tr4tf8AQsaT/wB/F/8Aj9FwPTKK8z/tr4tf9CxpP/fxf/j9H9tfFr/oWNJ/7+L/APH6LgemUV5n/bXxa/6FjSf+/i//AB+vQNNlvJdLtXv4livWhQ3EaHhJNoLKOTxnPc/WmBcooooAKKKKACvO/ip4i+w6RBoVtI63WrN5cjRRmRorfP7xwq8njj8/Su7u722sbZ7i7nSGFBuZ5GwAME/0NcH8P8eI9X1TxtcsC92xtbCLIPk2yt6dizDJ+hPegAj8aeErfw//AGJDb6pHZrbG2C/2dLwpG05+Xk965r4AX5W31vSpDgxypOqng5O5W4/4CtezswVSWOAOST2rwrwde2+ifHfW7UzxC2vWuFVt42csJF56dBigD3jAFFNBBGQcjt706gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAKGp3lzY2nn2unzX77gPKhkRGx65dlH61w2l/FmPWri4t9N8MaxdS2xxMsQjOzkjn5u+DXc6xfDTNFv784/0a3km5/2VJ/pXlvwCsimgavqDfeuLpYsnvsXOfzkoA6KT4raXY3sVrrmlavo7ScpJd2/yEfVSc8+gNd3FKk0SSxuHjdQyspyGBGQRXlPx0u7aTw1Y6WpEuozXqvFAg3OFCsCcDnqVHuT7V3vg7T7jSvB2kWF5xcQ2qJIpOdpx938OlAG7RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGB4qn1Wz0S4v9Ov7a1+yQyTS+fbmUOqrnA+Ybeh9etcJ4K8SePvGukz6jbXmjW0UU/k4ltpDuO0MSMN6MK6b4rX/9n/DbWHBw0yLAB672Cn/x3d+VVfhBaLY/DfTtxVZLhpJ2GfVzj9AKADUB8RbDT7i7/tXw+6wRtKy/ZpOQoJ/ve1dJ4Vv73U/CmmahqGwXd1brM4jUgDcNw4PsRTjqtne65PoBj84rZ+fOeCm1mKhT7n5vwFacMEVvBHDDGscUahURRgKB0AHYUAS0UUUAFFFFABRRRQAUUUUAFFFFAFTUNK07VoVh1GwtbyJG3qlxCsihvUBgeeTUen6HpGktI2m6XZWZkxvNtbpHux0ztAzir9FAEU9vBdW8kFxDHNDIpV45FDKwPUEHgisj/hC/Cv8A0LOjdc/8eEX/AMTW5RQA1I0jQIiKqKMBVGABTqKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA4r4r3/2D4bauyth5lWBRnrvcKf8Ax3dXLfDv4eWF/wCBtOvLu71SGa6DysttePGmCxCnA4+6FNVPjn4lsJtGttDtb2KW7W7D3EUbZKBVPDY6ct068V02gfEXwTpXhvTLA67CDa2sURHlSdVUA/w+1AHG+K9DufhRfWniTRLgXtvNP5UqahEkrqxUkYkwGAIVhwRjHevZdF1KPWtFstThDKl1CkoU9VBAODXkXjjVLz4pNY6H4XsLmaxjmE8t/LE0cW7BA5I6AEn1PYGvXtG02PRtEsdNiYtHaQJCGPfaMZ/SgC/RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFIeAcUAeS/Hy/8nwtptgDhri7349VRSP5utb2l/Crwkmk2SXmixS3IgjEzmRwWfaMnG7jnNcr8QNC8W+Mtc0meLwtcR2NiSWjlvLbc+WUt0kPZQK9V0q/vb6J2vdIuNNdTwk0sUm76FGb9cUAYnhXwZa+Ftb1u5soIYLO98gQRIzExqiENnPqxJ4JrraMUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABgU3yo852Ln1xTqKAEwPSlxRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAYFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//Z'] Multimodal Competition True Theorem proof Geometry Math English 12 "A circle with its centre on the $y$-axis intersects the graph of $y=|x|$ at the origin, $O$, and exactly two other distinct points, $A$ and $B$, as shown. Prove that the ratio of the area of triangle $A B O$ to the area of the circle is always $1: \pi$. " ['Since both the circle with its centre on the $y$-axis and the graph of $y=|x|$ are symmetric about the $y$-axis, then for each point of intersection between these two graphs, there should be a corresponding point of intersection symmetrically located across the $y$-axis. Thus, since there are exactly three points of intersection, then one of these points must be on the $y$-axis, ie. has $x$-coordinate 0 . Since this point is on the graph of $y=|x|$, then this point must be $(0,0)$.\n\nSince the circle has centre on the $y$-axis (say, has coordinates $(0, b)$ ), then its radius is equal to $b$ (and $b$ must be positive for there to be three points of intersection). So the circle has equation $x^{2}+(y-b)^{2}=b^{2}$. Where are the other two points of intersection? We consider the points with $x$ positive and use symmetry to get the other point of intersection.\n\n\n\nWhen $x \\geq 0$, then $y=|x|$ has equation $y=x$. Substituting into the equation of the circle,\n\n$$\n\\begin{aligned}\nx^{2}+(x-b)^{2} & =b^{2} \\\\\n2 x^{2}-2 b x & =0 \\\\\n2 x(x-b) & =0\n\\end{aligned}\n$$\n\nTherefore, the points of intersection are $(0,0)$ and $(b, b)$ on the positive side of the $y$-axis, and so at the point $(-b, b)$ on the negative side of the $y$ axis.\n\nThus the points $O, A$ and $B$ are the points $(0,0)$, $(b, b)$ and $(-b, b)$.\n\n\n\nSince the radius of the circle is $b$, then the area of the circle is $\\pi b^{2}$.\n\nTriangle $O A B$ has a base from $(-b, b)$ to $(b, b)$ of length $2 b$, and a height from the line $y=b$ to the point $(0,0)$ of length $b$, and so an area of $\\frac{1}{2} b(2 b)=b^{2}$.\n\nTherefore, the ratio of the area of the triangle to the area of the circle is $b^{2}: \\pi b^{2}=1: \\pi$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAZwB4wMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCC5Fw1u4tpY4pj915Iy6j6gMM/mK4vwp4n1ibxprnhjX5Ld7q0VZraSCLy1eI4ycZJ/iXv3PpXdYFeYeNZY/D3xT8Ma/I/l29xDLaXBxxgAkZ9T84wO+2gDqtLv9ePjTWNO1AWz6dHDFPaSQqQVViy7W9WyjH8BXTVlaLbzJBLeXcZju72TzZEPPljACJ/wFQAe27ce9atABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZ+q61puiRRS6nfQWkUsnlo8zhQWwTjJ+hrHms7TxTqtjeMkc2n6dKZreQcrPPjAZT0KqM8jqfZTnc1HSdO1eBYdRsbe7iVg6pPGHAYdwD35qyqKiKqqAqjAAHQe1ADgAKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvPPGHj4aB4+8OaMJMQTNuveBwr5SPk9ACCx+g9a9BZwilmYBVGSTwAO5r5B8ZavN4k8UX+tlG+z3VwyW5KkAqgAC/ULsJHq1AH1/S1zHgLX/APhJfBmm6iz7pzH5VxyP9Yvyt09cZ+hFdPQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHN+NBe3egSaTpp23upt9lVyOI0P+sc46AIG/EgdSAfN/HWgWPhzV/hxpNjHi3ivmU7hzITJBuZvcmva9q7g2BuAxnvXlPxZ48Z/D/0/tBv/RkFAHQeGdCbwd4m1HTrZW/sbU/9KtB2gmHEkf4rgj2Q9xz29IUUkEgHByM9jS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5R8Wv+Rz+H//AGEG/wDRkFer15R8Wv8Akc/h/wD9hBv/AEZBQB6vRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXlHxa/5HP4f/APYQb/0ZBXq9eUfFr/kc/h//ANhBv/RkFAHq9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFNJOM1xPiT4qeGvDrtB9qN/eg7fs1nhyD6Fs4HPXqfagDt+fWoLq9trGA3F3cw28KjmSaQKo+pPFeUjVvij40GdM0+Dw7p7dJbkfvGX8QT9MKPrVq0+CtnczC68Ta5qOsXOed0hVSPQk7mP4EUAb2o/FnwZprFG1lLmQfw2qNLn6MBt/WsBvjbbXhK6J4Z1fUH7KUCg/wDfO727d67PTfAfhXSAPseg2SsOjyR+a4/4E+T+tdAkaRqFRQqjsowKAPLE+JHja7I+zfDq9QZ/5bO4/wDQkWuK8ca74wv9f8Lz6x4djsrq2ui1lEp3ee+6M7T83HIQf8Cr6Kryj4s/8jn8P/8AsIN/6MgoAkPjv4h2wH2nwA8vc+Q5PHpxu5pg+MGqWgL6x4E1eziHWQBj/wChIvt3716tgUmB6UAedad8bfCF8cTzXdkc4Hn25IJ9Mpu/XFdjpfiTRtbH/Es1WzujjJSKZSw+q9R+NP1Hw/o2rjGo6VZXfoZ4Fcj6EjiuK1X4LeEr5g9pHc6ZPnIa2mJGf91s/pigD0Xd+NOryNvDfxM8I/Poeuxa7Zoc/Zrz7/0G4n9HH0q5pXxit4btdP8AFmk3eiXuPvPGxjb3xjcB6cEe9AHqFFVLPULTUbVbqyuobi3cZWWJwyn8R/kVboAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKYX684Hr6UAPrlvFvjzRvB0G7ULjfdMu6K0i5lfJwOOij3OOhxk8Vyvif4k3l9qn/CNeBoRqGpvkSXagNHDjg47HHdj8o984rQ8IfC+z0a6/tfXJv7X1uRvMaec7kjbvtB6n/aPPHAWgDnVtPHnxOVmvJD4b8PyfdhUHzJVz0PQtx64Xpwa7vwv8P8Aw74URTYWSyXS9bqfDyE+x6L+GK6nAznvS4oATaM5xRgUtFABRRRQAV5R8Wv+Rz+H/wD2EG/9GQV6vXlHxa/5HP4f/wDYQb/0ZBQB6vRRRQAUmAOgpaKADAqhquiaZrlobXVLGC7gPO2ZA2D6g9QfcVfooA8jvvhhrPhm8k1XwBq0tu5+ZtPnbKuByACcg+mGH/Aq0fDnxYgmvv7G8V2p0TV0O0+aCsTn6n7uffg9jzXpWB6Vg+J/COjeLbH7NqtqrsoPlzL8skf+6f6HjpQBuq25QRg59KdXisd/4n+EVzHa6mJdZ8KswWO4QEvbj056f7p4PY9QPWtI1mw13TIdR026S5tZR8sievcEdQfY9KANCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopuaAGu4RGZmCqASSewHevIPEHijVviJrj+FvB0xh0yP5b/U1zjB7A/3fQDlj6LyX+MPEGo+PPEJ8E+F5ClqpI1K+U/LtB5XI/hHf+8cDpyfR/DfhvT/C+iQ6Vp8eIo+WZvvSOerMe5PH0AA6CgCDwp4Q0vwhpQstPhG9tpnuGHzzMO5Pt2HQdq38ClxRQAUUUUAFFFFABRRRQAV5R8Wv+Rz+H/8A2EG/9GQV6vXlHxa/5HP4f/8AYQb/ANGQUAer0UUUAFFFFABRRRQAUYoooAiuLaC7t5Le4iSaGRSrxyLuVgeoIPUV45rPh7WPhZqsniDwuJLvQZG3X2nsS3lr6564AyQ3UY5yOa9oppRWUqVBB4I9aAMrw74j0/xTo8ep6XN5kLnaysMNG46qw7EZ/kRkEGtevGPEOj3/AMLfER8UeHo2fQbhwt/p6/djB9uygn5T/CTj7pr1bR9Zs9f0m31PTpxNazjcrDt2IPoQeCPagDRooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzf4m+LruzFv4W0EGTXdUwgEZw0UbcZz2JAP0AJOOK7DxJr9v4Z8P3erXZylunyp0MjnhVHuSR/kVwvws0C6u5rrxxro36nqhLW+7jy4jgZUHpkAAf7IHrQB1PgfwdZ+DNBjsYQJLp8PdXGOZH/8AiRyAPqepNdRgY6UYFLQAUUUUAFFFFABRRRQAUUUUAFeUfFr/AJHP4f8A/YQb/wBGQV6vXlHxa/5HP4f/APYQb/0ZBQB6vRRRQAUUUUAFFFFABRRRQAUUUUART20N1byW88SywyKUeNxkMp4II7givHLSSf4Q+N1sJ3d/CerSboZGOfs7nj8xxn1XB6givaKwfFnhm18WeHrnS7rA8wbopSMmKQfdYf57n1oA21beoYEEEZBHSn15l8KfEd55d34Q1obNW0c7FDHmSLIH44JHPcFcZ5Nem0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEMlxHCU82VI97BE3kDcx6Aep46VJn3rlPHXg6LxjoyQLcPbXtsxltJ1YhUf3APf16jqKwfA3ju6+3t4U8Wr9k122IjSSQgLcjtg/3iMEdj270Ael0U3NOoAKKKKACiisjxNrkfhzw3f6vLhhbRFlU9Gc8Kv4sQPxoA818YvJ8QPiXY+D4GZtK00+fqJQ8E45H5EID2LH0r16KGOGJIokVI0UKqqMBQOAAOwrzn4O6HNa+G59evm36hrMrXDu3Xbk4z/vEs/H94V6TQAUUUUAFFFFABRRRQAUUUUAFFFFABXlHxa/5HP4f/8AYQb/ANGQV6vXlHxa/wCRz+H/AP2EG/8ARkFAHq9FFFABRRRQAUUUUAFFFFABRRRQAUmBS0UAeS/FLTbjw7rWm+PtKjPnWcqx3qLx5iHgE/UEpn/aX0r0/TdQt9V062v7R/Mt7iNZI29VIzTNW0231jSbrTbpd0F1E0TjHQEdR7jrXnPwe1G4sl1bwbqLj7XpFw3lj+9GWIOPYNz9HFAHqlFFFABRRRQAUUVieJPE1h4V0aXU9Tm2xrwiLgvK3ZVHc/yGfQmgC3qWs6fo0MUup3sNrHNKIY2lbALHoP8APQZ9Ca0K8g8N+G9R+IWsx+L/ABdFt09edN0w/d2dQzDuvQ/7RwemAfX6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEwPSuO8d+BLPxnpwIK2+qQAm1u1HK99rY5Kk8+3UV2VJgelAHl/gPx3eRaifCPi5Tb63AdkU0nAuAOgJ/vcjB/iz69fT81x/jzwJZ+M9OBytvqkAJtbsDlT1Ctjkj+XUVgeA/Hd5FqJ8I+LlNvrcB2RTScC4A6An+9yMH+LPr1APUaKbmnUAFeUfF6eTWNQ8O+DbZyJNRuhLNt6qgO0HHpy7f8AAK9XryXQB/wknx31vVDhrfRoRbReqvjZ/wDHqAPVLa2htLWG2gjCRQoI40XoqgAAD8AKmoooAKKKKACiiigAooooAKKKKACiiigAryj4tf8AI5/D/wD7CDf+jIK9Xryj4tf8jn8P/wDsIN/6MgoA9XooooAKKKKACiiigAooooAKKKKACiiigBMCvI/GH/FJfGDQfEifJaamPsl36Z4UsT6YKH/tnXrteffGPSP7U+Hl1Iiky2MiXSAegO1v/HWY/hQB6BS1ieEtX/t3wlpWpkgyT2yGTHTzBw4/Bga26ACiisTxJ4msPCujS6nqc22NeERcF5W7Ko7n+Qz6E0AHiTxNYeFdGl1PU5tsa8Ii4Lyt2VR3P8hn0Jrzvw34b1H4hazH4u8XRbdOTnTdMb7mzqGYHqvQ/wC1x/DgE8N+G9R+IWsx+LvF0W3Tk503TG+5s6hmB6r0P+1x/DgH17aKADaKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooATA9K47x54Es/GenA5W31SAE2t2Byp6hWxyR/LqK7KkwPSgDy/wH47vItRPhHxcpt9bgOyKaTgXAHQE/wB7kYP8WfXr6fmuP8eeBLPxnpwOVt9UgBNrdgcqeoVsckfy6isDwH47vItRPhHxcpt9bgOyKaTgXAHQE/3uRg/xZ9eoB6ZcTpa20s8jYjjQux9ABk/yrzD4H28k3h7VdauB/pWoX7M7/wB8AZ4/4E711/j26+yeAdelzj/QZUBzjllKjn8aofCm0+x/DTRkP3nR5T77pGYfoRQB2lFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeUfFr/AJHP4f8A/YQb/wBGQV6vXlHxa/5HP4f/APYQb/0ZBQB6vRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVLVLBNU0e90+XOy6geFvoykH+dXaKAPM/gffPP4DezlG17G8kiCnqFOH5/Fm/KvTK8p+Fm6y8beOtNPyxpfeZGnoN8nP5Fa7nxN4q0zwnpLahqc21fuxRKMvM+PuqPX9B3xQA7xJ4msPCujS6nqc22NeERcF5W7Ko7n+Qz6E1534b8N6j8QtZj8XeLotunJzpumN9zZ1DMD1Xof9rj+HAJ4b8N6j8QtZj8XeLotunJzpumN9zZ1DMD1Xof9rj+HAPrgAycfTjtQA7aKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiuS8deLrzwbpA1RNPgurcOsbK1yY3yc9BsI7etAHWYHpXHePPAln4z04HK2+qQAm1uwOVPUK2OSP5dRUMXi7xKfC8fiCTw1ataNALlootQYzLGRuztMQU8c43VveGvEen+K9Ei1XTmbyXJVlcYaNh1VvcUAeKa7461JfAes+D/E8c0OvQeVHFMR/r1EiHkjqdoJz0Yc9evs3ghAngPw+B/0Drc/nGprkPjZoen3fgmbVpIB9usmQRTKMNtZ1BU+o+Yn27dTVH4W/EHfbWXhbXY/st7FBGtjK67RPEVGwemcYwf4vr1APXKKbmnUAFFFFABRRRQAUUUUAFFFFABRRRQAV5R8Wv8Akc/h/wD9hBv/AEZBXq9eUfFr/kc/h/8A9hBv/RkFAHq9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFYPirxXp3hHRX1HUJf9mKFT80z9lX/HoKAPLf8AhKdP8FfF3xjdXxYxtbI0aKcGSQiIhAPU7jz6A5q94W8Lal491mPxf4xTFn1sNOYfKV6glT/D3wfvdTx15fwPbxfED4s3t/4iswD5BvFtcYQ48tUBB5I2sD/tcE8HFfRIVQAAOlAFDVdSt9G0u51G6JEMCFiF6segUepJIAHqa8++FWv6lq2v+LLfWdyXiXauYC2RF95Sg9htUVoa14n0O58aR6bqOrWdtZaRtnljllAM1yQdgx6IPmP+0RxxXM+EdTsv+F764NOu4biy1C2LxvE4ZWfEbt09w4oA9nooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArxv43Xv2268P8AhtGcCeb7RNsUsVUfIDgAk9XOMfw17JXjmk/8VT+0DqF4TvttFhMac8Bh8mPruaQ/hQBt654602Swfw14eiebVbqA29tDMhtkTI25zLtyR/dGST+ONj4deE5PBnhVdPnmjlupZmmmMf3d5AGFPcAKPxzXM/HdrIeD7PzQv243YFsR9/AUl8d8Yxn3xXfeFjeN4U0ltR3m9NnF55kOWL7Rnd75oAwvixbtc/DLWUXGVSN+nZZUJ/QGsH/hCbLx18MPD8isLfUrewiFrdgfdKoBtbHJXIPuOox0ruPF9m1/4M1u0QFnlsZgg/2thx+uK534O3gvPhrpyltz27ywt7fOWA/75K0AZfgPx3eRaifCPi5Tb63AdkU0nAuAOgJ/vcjB/iz69fT81x/jzwJZ+M9OBytvqkAJtbsDlT1Ctjkj+XUVgeA/Hd5FqJ8I+LlNvrcB2RTScC4A6An+9yMH+LPr1APUaKbmnUAFFFFABRRRQAUUUUAFFFFABXlHxa/5HP4f/wDYQb/0ZBXq9eUfFr/kc/h//wBhBv8A0ZBQB6vRRRQAUUUUAFFFFABRRRQAUUUUAFFFYPirxXp3hHRX1HUJf9mKFT80z9lX/HoKADxV4r07wjor6jqEv+zFCp+aZ+yr/j0Fed+FvC2pePdZTxh4xTFp1sNOYfKV6glT0Xvg/e6njqeFvC2pePdZTxh4xTFp1sNOYfKV6glT0Xvg/e6njr7AFCgADpwKAPLPBgW7+NXjK8ABEMawZ9MbVx/5D/Suq8d+M7XwfoE1y0sbX0ilbW3Jyzv0Bx/dHUn9elcn8HcX2qeMNcUkx3uonYf+BO5/SRa9WKg4yOlAGH4TsbbT/DVlFb3aXgYGSS6R9wmlZiXfPfLE15d4t1zTNN+OmgalFf27RJCIbp0cMsZYumWIPGAwzn0r23aPSjAoAjiuI54klhkSSNwCrIQQw9iODUtGBRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFe7hkuLV447qW2ZhxNEELL9NwI/MVxejfC2y8P3s95pfiDXYLi4z5z+bC+/JzzuiPOe9d5iigDlIPAOjrqqarqDXWrXqfcl1CXzPL9NqABR+VdVgUuKKAEKgggjIPUV5R8GT/Zlz4o8MuTu0+/LLnqwJKf+0wf+BV6xXks5/4Rj9oGKYnba69a7CTwofGAB7lo1/77oA9ZwPSuO8eeBLPxnpwOVt9UgBNrdgcqeoVsckfy6iuypMD0oA8v8B+O7yLUT4R8XKbfW4Dsimk4FwB0BP8Ae5GD/Fn16+n5rj/HngSz8Z6cDlbfVIATa3YHKnqFbHJH8uorA8B+O7yLUT4R8XKbfW4Dsimk4FwB0BP97kYP8WfXqAeo0U3NOoAKKKKACiiigAooooAK8o+LX/I5/D//ALCDf+jIK9Xryj4tf8jn8P8A/sIN/wCjIKAPV6KKKACiiigAooooAKKKKACiisHxV4r07wjor6jqEv8AsxQqfmmfsq/49BQAeKvFeneEdFfUdQl/2YoVPzTP2Vf8egrzvwt4W1Lx7rKeMPGKYtOthpzD5SvUEqei98H73U8dTwt4W1Lx7rKeMPGKYtOthpzD5SvUEqei98H73U8dfYQqgAAdKAAKoAAHSsfxTqf9j+FNV1EEBre1kdMnguAdo/76wK2a8w+NmounhWz0S3+a61W7SNY+7KpB/wDQjGPxoAvfBnTP7P8AhzaSEFXvJXuGB+uwfmqCvQao6Tp0ek6RZadD/q7SBIVPqFXGavUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeZ/GbS55fDdnr1kD9r0a5WcMOyEjJ/Bgh+gNemVWvrKDUdPuLK6TfBcRNFIvqrDBH5UAVdB1eLXtBsdVgOI7qFZNo52kjlT7g5B9wa068l+E9/NoWr6z4D1F/39jM01oW48yMn5se3KuB/tt6V61QAmB6Vx3jzwJZ+M9OBytvqkAJtbsDlT1Ctjkj+XUV2VJgelAHl/gPx3eRaifCPi5Tb63AdkU0nAuAOgJ/vcjB/iz69fT81x/jzwJZ+M9OBytvqkAJtbsDlT1Ctjkj+XUVgeA/Hd5FqJ8I+LlNvrcB2RTScC4A6An+9yMH+LPr1APUaKbmnUAFFFFABRRRQAV5R8Wv8Akc/h/wD9hBv/AEZBXq9eUfFr/kc/h/8A9hBv/RkFAHq9FFFABRRRQAUUUUAFFFYPirxXp3hHRX1HUJf9mKFT80z9lX/HoKADxV4r07wjor6jqEv+zFCp+aZ+yr/j0Fed+FvC2pePdZTxh4xTFp1sNOYfKV6glT0Xvg/e6njqeFvC2pePdZTxh4xTFp1sNOYfKV6glT0Xvg/e6njr7CFUAADpQABVAAA6UtFFABXkRI8Z/HVQBv0/w5Ec91MoPP0Ic/j5Vd74y8Rp4W8K32quy+bHHiBW/jkPCjH15+gPpXO/CHw7Jo/hH+0LtWN/qz/apmf7+052A/gd31Y0AehUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHlPxV0m60jUNO8eaSn+laa6rdL2ePkAn2+YqT1w3tXo2java67o1pqlm+63uYxImeo9QfcHIPuDVq5tIL21ltbmJZYJkKSIwyGUjBFeQ+E7ub4aeN5vCGqSOdI1CTzdOuHPCk54J7Z+6fRgD0bNAHslFNyfWnUAJgelcd488CWfjPTgcrb6pACbW7A5U9QrY5I/l1FdlSYHpQB5f4D8d3kWonwj4uU2+twHZFNJwLgDoCf73Iwf4s+vX0/Ncf488CWfjPTgcrb6pACbW7A5U9QrY5I/l1FYHgPx3eRaifCPi5Tb63AdkU0nAuAOgJ/vcjB/iz69QD1Gim5p1ABRRRQAV5R8Wv8Akc/h/wD9hBv/AEZBXq9eUfFr/kc/h/8A9hBv/RkFAHq9FFFABRRRQAUUVg+KvFeneEdFfUdQl/2YoVPzTP2Vf8egoAPFXivTvCOivqOoS/7MUKn5pn7Kv+PQV534W8Lal491lPGHjFMWnWw05h8pXqCVPRe+D97qeOp4W8Lal491lPGHjFMWnWw05h8pXqCVPRe+D97qeOvsIVQAAOlAAFUAADpS0UUAFJzS1wnxL8Zt4Y0VbSxO/WdQPk2ka8suer474yAPUn60Acv4lZviR8Tbbw3AxbRNHbzb9lOUd84YcHr/AADuMucda9hVFRQqgKoGAB0Arjvhz4PXwj4aWKYA6ldHzbyTqSx6Ln0XkfXce9dnQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXKeOvBtt4y0BrRiIryEmS1n7o+Oh9jwD9AeoFdXSYGc96APN/ht41nvjL4X1/MGv6fmMiXrOi9892Hf1HI749Jrz74heBJteEOuaHL9m8Q2WGhdTt84Dop9COx/A8HIm8AfECPxPAdN1JRaeILbK3Fq67C+3qyg/qOx/CgDu6KKKAEwPSuO8eeBLPxnpwOVt9UgBNrdgcqeoVsckfy6iuypMD0oA8v8B+O7yLUT4R8XKbfW4Dsimk4FwB0BP97kYP8AFn16+n5rj/HngSz8Z6cDlbfVIATa3YHKnqFbHJH8uorA8B+O7yLUT4R8XKbfW4Dsimk4FwB0BP8Ae5GD/Fn16gHqNFNzTqACvKPi1/yOfw//AOwg3/oyCvV68o+LX/I5/D//ALCDf+jIKAPV6KKKACiisHxV4r07wjor6jqEv+zFCp+aZ+yr/j0FAB4q8V6d4R0V9R1CX/ZihU/NM/ZV/wAegrzvwt4W1Lx7rKeMPGKYtOthpzD5SvUEqei98H73U8dTwt4W1Lx7rKeMPGKYtOthpzD5SvUEqei98H73U8dfYQqgAAdKAAKoAAHSloooAKKKzNa13T/D2lzajqdysFvF1LdWPUKo7n/PagCHxL4lsfCuiT6rqMgWKMYRAfmkc/dRR3J/QAnoCa4D4e+H77xLrr+PvEi/vpc/2dbEfLCg4DAH06D/AL66kGqGjaRqXxW8QJ4j12J7fw3bOfsNix4lx3x6f3j3IwOBx7KsaIqqqhVUYAHAA9KAF2j0paKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEwD2rz/AMd/D867cJruhzfYPENsd0cqNtE+Ozf7WBgH04PHT0Gk2j0oA858FfEo6jdf8I94mi/s3xDC3llZV2LOe2PRvboeoPOB6Nn865Pxn4E0nxnZhbpTBeouILuIDenoD/eUdcfliuIsvF/ib4cXUel+MoJb/SWbZb6pFlyB7k/e+hw3BPPAoA9korP0rWbDXLFL3S7uK6tn/jjbOD6HuD7HmtCgBMD0rjvHngSz8Z6cDlbfVIATa3YHKnqFbHJH8uorsqTA9KAPL/Afju8i1E+EfFym31uA7IppOBcAdAT/AHuRg/xZ9evp+a4/x54Es/GenA5W31SAE2t2Byp6hWxyR/LqKwPAfju8i1E+EfFym31uA7IppOBcAdAT/e5GD/Fn16gHqNeUfFr/AJHP4f8A/YQb/wBGQV6rmvKvi1/yOfw//wCwg3/oyCgD1eiisHxV4r07wjor6jqEv+zFCp+aZ+yr/j0FAB4q8V6d4R0V9R1CX/ZihU/NM/ZV/wAegrzvwt4W1Lx7rKeMPGKYtOthpzD5SvUEqei98H73U8dTwt4W1Lx7rKeMPGKYtOthpzD5SvUEqei98H73U8dfYQqgAAdKAAKoAAHSloooAKKYzhVLEgADOe1eceJvitDDejRfCdv/AGzrEh2qYhuijPrkfeI9uB1J4xQB1finxfpfhDTjd6pOFZuIYE5klPcKPT36DP5+b6P4c1r4n6pD4i8Vq1rokbFrLTlON6+vrg926nHGBitbwz8MZ7jUh4h8bXH9p6s+GWByGih9iOjY9B8o7Zr1AKB0FADYoYoIkihjWOOMBURBhVAGAAOwp9FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFZF54o0DT7t7S91zTba4TG6Ka7jR1z0ypOfSgDXorD/wCE08K/9DNo3/gfF/8AFUf8Jp4V/wChm0b/AMD4v/iqANyisP8A4TTwr/0M2jf+B8X/AMVR/wAJp4V/6GbRv/A+L/4qgDcorD/4TTwr/wBDNo3/AIHxf/FUf8Jp4V/6GbRv/A+L/wCKoA3KKw/+E08K/wDQzaN/4Hxf/FUf8Jp4V/6GbRv/AAPi/wDiqANyisP/AITTwr/0M2jf+B8X/wAVR/wmnhX/AKGbRv8AwPi/+KoA3KKw/wDhNPCv/QzaN/4Hxf8AxVH/AAmnhX/oZtG/8D4v/iqANyisP/hNPCv/AEM2jf8AgfF/8VR/wmnhX/oZtG/8D4v/AIqgDcorD/4TTwr/ANDNo3/gfF/8VR/wmnhX/oZtG/8AA+L/AOKoA28AjGOKhurO2vrWS1u4I54JBteOVQysPcHrWV/wmnhX/oZtG/8AA+L/AOKo/wCE08K/9DNo3/gfF/8AFUAcJqfwrvtDvn1fwFqkmnXOMmzlbdFJ7ZOfyYEe4o0/4t3ej3UeneOtFuNMuCdouooy0T++BnI6cqW5PQV3X/CZ+Ff+hm0b/wAD4v8A4qq194j8EanatbX+t6BcwP8Aejmu4WU/gTQBq6Xrem63ai50y/gu4TwWicHafQjqD7EZq/mvF9U8F+AvtH27w341s9CuwPlaDUUZB9PnDAf8Cx7VSXxp4y8LKAfEfhnxFaLzn7fF5gUf8CVif++qAPdsD0rjvHngSz8Z6cDlbfVIATa3YHKnqFbHJH8uorj9N/aA0uUAano93bHput3WUf8AjxXH4Zrq7L4teCb5lUauIXP8M0Lp+uMfrQBi+A/Hd5FqJ8I+LlNvrcB2RTScC4A6An+9yMH+LPr1g+LJz4y+H5z/AMxBv/RkHFWPHEfgjxvpgdfEuj22pwDNrdG8jUqeoVuQSufxHOK8n1bx1f3d54dXWBHdXOgXhdriKVWFyoeMj5hkH/VkbhnqPegD6K8VeK9O8I6K+o6hL/sxQqfmmfsq/wCPQV534W8Lal491lPGHjFMWnWw05h8pXqCVPRe+D97qeOuL4cm03xt4gbxV431zS4oYmIs9KkvEXAB43KTnb7H7x5PHB9Pu/iT4L09f3mvWjY7Qbpf/QAaAOsCqAAB0pa8u1H47eGLUstnBfXrgcMsYjQ/ixz+lc6/xg8SeIGMWjW+i6RH0abUL6MMp9t5Uf8AjpoA9veZIkZ5HVUX7zEgAVwHiD4weHdJY22nNJrF8x2xxWnKFuw8zGDn/Z3GuMXw5Z+IZFn8a/E/Trod7W1v4gg+mSFH4LXeeH2+G3hdMaTqWgQSkbWmN7G0rD0Llice2cUAcsNB8e/EY7/ENydB0RzkWUKkSOM8blzn67jjjO2vRfDXhLRfCdmbfSbNYyceZK3zSSf7zfnwOOTxzR/wmXhQ/wDMy6N/4HRf/FUv/CZ+Ff8AoZtG/wDA+L/4qgDcwKWsP/hNPCv/AEM2jf8AgfF/8VR/wmnhX/oZtG/8D4v/AIqgDcorD/4TTwr/ANDNo3/gfF/8VR/wmnhX/oZtG/8AA+L/AOKoA3KKw/8AhNPCv/QzaN/4Hxf/ABVH/CaeFf8AoZtG/wDA+L/4qgDcorD/AOE08K/9DNo3/gfF/wDFUf8ACaeFf+hm0b/wPi/+KoA3KKw/+E08K/8AQzaN/wCB8X/xVH/CaeFf+hm0b/wPi/8AiqANyisP/hNPCv8A0M2jf+B8X/xVH/CaeFf+hm0b/wAD4v8A4qgDcorD/wCE08K/9DNo3/gfF/8AFUf8Jp4V/wChm0b/AMD4v/iqANyisP8A4TTwr/0M2jf+B8X/AMVR/wAJp4V/6GbRv/A+L/4qgDbJx1OMUmWz0rDPjHwoylW8S6MQeMG+i/8Aiq4bX9Xj0XdqHg3xpo7KPmfSLu+ieFx/0yJfMf8AuggHsR0IB6vRXkPh/wCPOlXWyLXrGWxkOAZof3sZ46kfeX6YavS9J1/Stdg8/StRtruMDLGKQErx3HUfQ4oA06KK8717xbrPhXxxo9tq13Zvol/HJueO3MZjZR/vMT1X65xigD0Siud0yTxPc6yt3eGxt9HkhO2z2MbhGz8u5umcckdunPWuioAKKKKACuS1n4a+Fdf1WbU9S05prubb5ji4kXdtAUcBgOgFdbRQBwf/AAp3wN/0CH/8C5f/AIqj/hTvgb/oEP8A+Bcv/wAVXeUUAcH/AMKd8Df9Ah//AALl/wDiqP8AhTvgb/oEP/4Fy/8AxVd5RQBwf/CnfA3/AECH/wDAuX/4qj/hTvgb/oEP/wCBcv8A8VXeUUAcH/wp3wN/0CH/APAuX/4qj/hTvgb/AKBD/wDgXL/8VXeUUAcH/wAKd8Df9Ah//AuX/wCKo/4U74G/6BD/APgXL/8AFV3lFAHB/wDCnfA3/QIf/wAC5f8A4qj/AIU74G/6BD/+Bcv/AMVXeUUAcH/wp3wN/wBAh/8AwLl/+Ko/4U74G/6BD/8AgXL/APFV3lFAHB/8Kd8Df9Ah/wDwLl/+Ko/4U74G/wCgQ/8A4Fy//FV3lFAHB/8ACnfA3/QIf/wLl/8AiqP+FO+Bv+gQ/wD4Fy//ABVd5RQBwf8Awp3wN/0CH/8AAuX/AOKo/wCFO+Bv+gQ//gXL/wDFV3lFAHB/8Kc8C5z/AGQ2fX7VL/8AFUf8Kd8Df9Al/wDwLl/+KrvKKAOD/wCFOeBf+gQ//gXL/wDFUH4OeBT10hz/ANvcv/xVd5RQBwn/AAp3wN/0CH/8C5f/AIqvOvH/AIA8P6B4l8J2enW8sUOpXhiuA0zMSu+IYBJyPvmvoCvKPiz/AMjn8P8A/sIN/wCjIKANlPg34IVdraXKx9WupM/o1O/4U74G/wCgQ3/gVL/8VXeVzmt+L7XSdQg0m2hk1DWLgborK3xux/edjwi+5P0zQBjf8Kd8Df8AQIf/AMC5f/iqP+FOeBR00hx9LuX/AOKq7qWt+LNIsJdSuNH025toEMk1va3bmVVHJIZkAbAycYGccZra0DXrLxLo0Gq6fJvt5hwD1VhwVPuDQBzH/CnfA3/QIf8A8C5f/iqP+FOeBf8AoEP/AOBcv/xVd5RQBwf/AAp3wN/0CH/8C5f/AIqj/hTvgb/oEP8A+Bcv/wAVXeUUAcH/AMKd8Df9Ah//AALl/wDiqP8AhTvgb/oEP/4Fy/8AxVd5RQBwf/CnfA3/AECH/wDAuX/4qj/hTvgb/oEP/wCBcv8A8VXeUUAcH/wp3wN/0CH/APAuX/4qj/hTvgb/AKBD/wDgXL/8VXeUUAcH/wAKd8Df9Ah//AuX/wCKo/4U74G/6BD/APgXL/8AFV3lFAHB/wDCnfA3/QIf/wAC5f8A4qj/AIU74G/6BD/+Bcv/AMVXeUUAcH/wp3wN/wBAh/8AwLl/+Ko/4U74G/6BD/8AgXL/APFV3lFAHB/8Kd8Df9Ah/wDwLl/+Ko/4U74G/wCgQ/8A4Fy//FV3lFAHB/8ACnfA3/QIf/wLl/8AiqP+FO+Bv+gQ/wD4Fy//ABVd5RQBwY+Dvgb/AKBD/wDgXL/8VXGeKPC/gjTJ5NK0DwzcaxrmMG3guZ2SDPRpWDcd/l6n2617a6B0KtnBGDgkH8xUdtaW1lCIbW3igiHISJAqj8BQB4Jo3wP1vUpEn1++h0+PaFWCI+bIFHRRzgD8TXqXhn4ceGvCzJPZWbS3aDi6uH3uPp/Cv4AV19GKAGGQDblgMnA9z6V5R8Wbi4ubG21iyiR7XQb6OSSUjPmSbgCqnphTtBPPzHHBU16F4h8M6X4osUs9Wt2nhjlEqBXZCrAEZyCD0JqW70HTbzQX0Wa1T+z3i8owrkAKPpz269aAJ7fULa7IWCUOxiWXAGcK33TnpzjP4GrlZmiaDp3h7TEsNNtxDAvPJLMx9STkngAD0AA6CtOgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvKPi1/yOfw//AOwg3/oyCvV68o+LX/I5/D//ALCDf+jIKAO38Z+JF8KeFL3VmAaWNdkCE8NIxwufbufYGuU+EGiyDQ5vE2osZ9U1iRpXmcZby8nA+hIJ/wC+fQVF8dYJpvAMTxAlIL6OSXHZSrrz7biPzrt/Ciwp4Q0RbfBhFjDsI7jYvNAFjW7mKy0PULmf/VQ20kj/AECkmvNfgD53/CKaluz5P235PTPlrnH4ba0PizrNxNp0HhHSUM+rauwUxJ1SLPU+gJHU9g1dX4N8OQ+FPC9npMZDPGpaZx/HIeWP0z09hQB0FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5R8Wv+Rz+H//AGEG/wDRkFer15R8Wv8Akc/h/wD9hBv/AEZBQB6ffWNrqVlNZ3kCTW0ylJI3HDA1zWneD7zRLX7BpXiS9g09c+XBJDFK0QPZWZScfUGutpMD0oAxNF8L6Zoc011bpJPfXH+vvbl/Mmk9i3YcDgYHA4rbwKMCloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvPPiH4b1fXfEvg+80208+DT7xpbl/MRfLUvEc4JGeFPTPSvQ6TAoAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//Z'] Multimodal Competition True Theorem proof Geometry Math English 13 "In the diagram, triangle $A B C$ has a right angle at $B$ and $M$ is the midpoint of $B C$. A circle is drawn using $B C$ as its diameter. $P$ is the point of intersection of the circle with $A C$. The tangent to the circle at $P$ cuts $A B$ at $Q$. Prove that $Q M$ is parallel to $A C$. " "['Since $M$ is the midpoint of a diameter of the circle, $M$ is the centre of the circle.\n\nJoin $P$ to $M$. Since $Q P$ is tangent to the circle, $P M$ is perpendicular to $Q P$.\n\nSince $P M$ and $B M$ are both radii of the circle, then $P M=M B$.\n\n\n\nTherefore, $\\triangle Q P M$ and $\\triangle Q B M$ are congruent (Hypotenuse - Side).\n\nThus, let $\\angle M Q B=\\angle M Q P=\\theta$. So $\\angle Q M B=\\angle Q M P=90^{\\circ}-\\theta$\n\nThen $\\angle P M C=180^{\\circ}-\\angle P M Q-\\angle B M Q=180^{\\circ}-\\left(90^{\\circ}-\\theta\\right)-\\left(90^{\\circ}-\\theta\\right)=2 \\theta$.\n\nBut $\\triangle P M C$ is isosceles with $P M=M C$ since $P M$ and $M C$ are both radii.\n\nTherefore, $\\angle C P M=\\frac{1}{2}\\left(180^{\\circ}-\\angle P M C\\right)=90^{\\circ}-\\theta$.\n\nBut then $\\angle C P M=\\angle P M Q$, and since $P M$ is a transversal between $A C$ and $Q M$, then $Q M$ is parallel to $A C$ because of equal alternating angles.' 'Join $M$ to $P$ and $B$ to $P$.\n\nSince $Q P$ and $Q B$ are tangents to the circle coming from the same point, they have the same length. Since $Q M$ joins the point of intersection of the tangents to the centre of the circle, then by symmetry, $\\angle P Q M=\\angle B Q M$ and $\\angle P M Q=\\angle B M Q$. So let $\\angle P Q M=\\angle B Q M=x$ and $\\angle P M Q=\\angle B M Q=y$.\n\n\n\nLooking at $\\triangle Q M B$, we see that $x+y=90^{\\circ}$, since $\\triangle Q M B$ is right-angled.\n\nNow if we consider the chord $P B$, we see that its central angle is $2 y$, so any angle that it subtends on the circle (eg. $\\angle P C B$ ) is equal to $y$.\n\nThus, $\\angle A C B=\\angle Q M B$, so $Q M$ is parallel to $A C$.' 'Join $P B$.\n\nSince $Q P$ is tangent to the circle, then by the Tangent-Chord Theorem, $\\angle Q P B=\\angle P C B=x$ (ie. the inscribed angle of a chord is equal to the angle between the tangent and chord.\n\n\n\nSince $B C$ is a diameter of the circle, then $\\angle C P B=90^{\\circ}$ and so $\\angle A P B=90^{\\circ}$, whence\n\n$\\angle A P Q=90^{\\circ}-\\angle Q P B=90^{\\circ}-x$.\n\nLooking at $\\triangle A B C$, we see that $\\angle P A Q=90^{\\circ}-x$, so $\\angle P A Q=\\angle A P Q$, and so $A Q=Q P$.\n\nBut $Q P$ and $Q B$ are both tangents to the circle $(Q B$ is tangent since it is perpendicular to a radius), so $Q P=Q B$.\n\nBut then $A Q=Q B$ and $B M=M C$, so $Q$ is the midpoint of $A B$ and $M$ is the midpoint of $B C$. Thus we can conclude that $Q M$ is parallel to $A C$.\n\n(To justify this last statement, we can show very easily that $\\triangle Q B M$ is similar to $\\triangle A B C$, and so show that $\\angle C A B=\\angle M Q B$.)']" ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIASIBngMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAM0mR60jVwkvjm913XZ9G8H2tvdNbHFzqN0xFtCemFC8uc+hx70Ad5uHrS1x1/aeNrKwlurPWdOv7mNdwtZrAxq+ByFYPkH0znrWh4H1e/17wjZarqUccdxdb38uMEKq7iFHJP8IFAHQ0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUZAoBBGRyKACiiigAooooA89+MXiObQPBTxWrlLnUH+zKynBVSCWIP04/4F7Vq/Dfw/F4e8DadbrGBPPEtzcNjBaRwCc/TgfhXM/HbR7m/wDCVrfWyNJ9hn3SqoyQjDGcexx+ddx4S1e11zwrpt9ayK6PAisFOdjgAMp9wcigDZxzTLa3itbaOCCNY4oxtVFHAFU73Vra0vLazy0t1cEbIYRubaCAXPoi55J+nUgVfXkfjQA6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKCcdaKo6vqltouk3epXb7be1iaVyOuB2Hueg96AOD+I/ibVF1zRvCvhu5aHVryZZJJlAIijyevB44JI9F969GhVkiVWcu4GGcgAsfXivLfhTpdzrOpap491VCbrUJHjtEPSOIEZ2+3AQH0Q+teqjigBaKM0mRQAtGayNU8UaDopK6lq9lbOBkxyTDfj2Xqfyrj7/42+DbRcw3F3e84/cW5H/ozbQB6HNEk0bRyKHjdSrKwyGB6giuSX4baFDcyz6e+oaWZjmaPT714Ec/RT+gxXOL8aoLtQ2m+FdZu1PcIBx/wHdWXc/Hie0vms5vB9xHMrBfLkuisn4r5fB56UAeqaVoWnaNG62FuFaUgzTO5eSUjoXdiWY/U8ZrSXgc15a/xl+y7m1DwjrNsg6sycf8AjwFWbH44eD7t9s5vrT18633fj8hY0Ael0Vg6T408Na3sGn63ZTO/3YjIFkP/AABsN+lb2aACik3D1paACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKM0AFeS/E68uPFPifSvAOmSMplcXF+6c7EHIz9B82DwSUr0XxFrdv4d0G81W5P7u2jLbe7t0VfxOB+NcJ8IdEuJLa+8Zar82pay7MjN/DDuzx7MRx/sqlAHo+n2Vtpmn29jaII7e3jWKJB2VRgD8hS3l7bWFq91d3EUECDLSSuFUfUmuI8Y/E6w8O3P9l6bC2q62x2Law/MEfoN5Hf/AGRz64rAsPh34g8Z3UeqePdRkEQO6LTIG2hB744U/TLe4oAuar8YIrm8bTfCGk3OtXucCQIwiX36biP++R71WHhL4j+Lh5niHxCuj2r8/Y7L7wH907TjH1Zq9L0nRNO0KzW00uxgtIF/giQLn3J6k+5zV/p1NAHnul/BnwfppDXFtcahKDu3XcxIB+i7R+ea6y20nQtBgkuLaw0+wijUu8scKRgADklhjsOtQeKPFukeE9P+1ancYLf6qBPmkmPoq/16DNeawaX4o+Ls8d5qzSaR4WDboraNvnnHY/7XQfMeB2B60AWtZ8fa14z1J9B8AwuqDi41VgUVFPdcg7R6NjPoOmea8beALDwbo+hypK91qVxqKC5u5Cfm4zgDoBnnnJ969x0bQ9P0DTksNLs4ra2TkIg6nuSepPqTkmvPfjd/yDfD/wD2E1/9BNAHqQziqd9o2maohj1DT7W7Q/wzwrIP/HgavCigDg9W+D/g7VNzLprWUrf8tLSQp/46cr+lYDfD/wAb+FP3nhLxS11bL0sr7oB2AzlSfwT6163SY5oA8ps/i1eaPdpYeOdBuNKm6C6hUtEx+np7qW+lek6Xq+naxZLd6bew3cDc74WDY9jjofY80++0+21K2e1vbaG5t3BDRzIGU/ga8x1X4V3+gXbax4B1SXT7kZLWUsmY5B6Ang/7r5GT1GKAPWQQRkUV5r4W+KUdzfjRPFdodG1pTtzMCsUh7YJ+6T7nB7HnFekBhgcjB6c9aAHUUAg9KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPWlrB8YeI4fCvhm81aUK7RJiGNv+Wkh4Vfz/TNAHnnj65bxx4807wVbSsthZn7TqcingAYPPoQvQ9i/PSna54x1PxPqX/CIfD1QkMKiO41FDtSNMY+Rh0UdNw5P8PHJ878Iw674snvNI0uSRJ9Sk87V9RfqIgeFyOxOSR1Y4HAWvojwz4Y07wpo0Wm6bCFReZJCBvlfuzHuT+nYUAZXgv4e6T4OtQ0Ci51JhiW9kX5m9Qo/hHt+ZNdcCF4zS5Cg5qtf39rptlLeXtxHBbRKS8kjbQo+tAFrIrzrxn8ToNKvRofh+3/tbXpGMYijG5Im9Gx1P+yOnOSMYrAv/FniP4k30mkeDo5bLSFbbc6rLlCR3AI5XjsPm9cA13Pg7wFpHgyz2WMXm3brtmu5AN8nt7D2/PNAHNeF/hjPc6h/wkfjef8AtPVpMMtu7boofTI6EjsANo7Z6j08dOaFGBiloAK8r+N3/IN8Pf8AYTX+Rr1SvK/jd/yDfD3/AGE1/kaAPVBRQKKACiiigApDntS0UAc74q8FaP4vsPI1KD98nMNzGdskR9j6exyP0rzzTfEevfC7VItD8WNLfaHIdtpqSAsYhnGD3x6qSSvbIxXstUNZ0ex13TZNP1G1S5tpB8yOOh9QeoPoRQBZt54bi2jnglSWGVQ6SIwZWU9CCOoxUwORkV4tp99qPwg8QjRtVkmu/C165NrdsSTbEnv2/wB4D/eHdT7LDNHNCssbq8bgMrqchgehBoAkooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKZLLHBE8srhEQFmYngD1NYf/Cb+FQxU+I9KBBII+1pxjrnmgDfoqjYazpeqoz6dqNrdqv3jBMr4+uDxV3IoAQnFeAfFTV73xp43tfCWjqZVtZChAPDzn7xPoFGRnt8/rXrPj/xSvhLwndagpH2ph5Nqp/ilbpx3wAWx/s1ynwd8Gtpekv4i1JS2pakN8Zflo4icg59W+8T6bfegDsPB3hKy8H6FHp9ou+U/PcTnhpZMdT7eg7D3roV44/KgHA5NeZeK/idJJqH/CO+C7b+1NZk+UzRrujh9SD0Yjrn7o4yTyAAdP4w8c6N4OsxLfS+bdMMw2kR/eSHt9B7n9elcHY+FfEnxOvYtX8XSPYaIrb7bTYiQWHY+2c8sfmIyAFBzW74Q+GKWF6de8S3A1bXZW8zfId8cJ7bc/eI9T04wBjNejDOOaAKun6baaVYRWNhbRW9rENqRRrgAVbHTmiigAooooAK8r+N3/IN8Pf9hNf5GvVK8r+N3/IN8Pf9hNf5GgD1QUUCigAooooAKKKKACiiigDL8Q6DYeJNGuNM1KLfbyr1H3o27Op7Ef8A6+K828A61feEPEsngDxDLuAOdNuTwsinJCDPYgHA7EFeeM+uHr0rh/ib4ObxP4f+0WS7dXsMzWrocM2OSgPvjj3A96AO4U5H6Utch8OvF6+LvC0VzMQL+3Ihu1xj5wPvfQjn8x2rr6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGOVUbmIAXkk9q8d+E0C65408UeLJIwEeZo4CV6bmLHr/shfwau7+I2r/2L4B1a8VisjQGGPsdznYCPpnP4Vy3w38F3sHgSwli1/UtP+2g3MkNskO35vukFoywyoXvQBmeMVWw+N/hk6KohvZ9hvBCMb4zIdxYDqdmck9gPavZAT6VzeheCdJ8P3s2oxfaLzU5xiS+vJPNmYemcYAwMcCs74m+L08KeFbgwygajdAw26qw3LuBzJj0UA89M49aAOH1hz8Tfi5Bo8eZND0Ukz/3ZCCA/wD302E+gJHFeu6rq+naBpj3upXEVtaxjGX4z6KB3PoBXifgbxFpXw88FNf3C/a9e1Z98VnETv2LkJvP8IJ3MDjJDDg9t/R/AWt+ONQj17x7LItuObbSkOwKD2Yfwj1H3j3IxggFa41jxP8AFm6ex0NJdI8NKxWa8kBDzDoRx1/3Rx/ePPHpHhbwfpPhHTfsmlwYLY82d+ZJSO7H+Q6Cti2tIbS2jt7aGOGGJQqRxoFVAOAABwBU4oAFGBS0UUAFFFFABRRRQAV5X8bv+Qb4e/7Ca/yNeqV5X8bv+Qb4e/7Ca/yNAHqgooFFABRRRQAUUUUAFFFFABTSCT7U6igDxy+j/wCFc/F6C+j/AHei+IcpKvRYpSRk+gAYhvozelexiuL+KXh0eI/A17Gibrm0H2qDA53IDkfipYY9SKtfDrxCfEvgjT76R91yq+RcHqTInBJ+ow3/AAKgDqqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApDk/SlooA8v+LWj+KPFFjbaTomjSy28c3nSzm4hQOQCFCgvnueoHavQtJHlaXBGbKSyWNAiwSshKKAABlCR+tXs4rI8ReI9M8M6c1/qd0sMQyFXq8h/uqvUn/8AWcAUAVPHOrXGieC9W1G0RnnigIjKHlCTt3/Rc7vwr5HuLme8uGuLqaSeeQ5aSVssxxjOTknp6mvRfHPjfxL4utoPKt5rDRrybyrS2U/vLsgjJOBlhkr04zgDcQSDTvhpay/Ei08L3F1M6pZLcaiY2AKvtyUU4+7lk6g8H16Azuvgx4Q0oeHLbxJNaNLqMxdUknwwjVWI/d+mcdevUcV60oOOcZqtpthbaXptvYWcfl21vGI41znCjpz3PueTVqgQUUUUAFFFFABRRRQAUUUUAFeV/G7/AJBvh7/sJr/I16pXlfxu/wCQb4e/7Ca/yNAHqgooFFABRRmjINABRRnFGaACiiigAooooAawB7Zryf4Yf8U9458V+ETxFHL9qtU9EJHP12tF/wB816yRXlPiFf7E+PPh/UAQkWp2xt5SP4nwyj+cf5UAer0Ug6UtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUmQDiobq6t7S2knup44YI1LvJIwVVUdSSewryfV/HmueNtRk0DwFC6QA7bnVZBtVAf7p/hB9eWPYccgHR+NPiXYeHJf7M0+M6nrchCR2kGW2Mem7Hf/ZHP061g6D8O77Xb8eJfiFci6nxuj09jiOFR/fHQAddo47knJFdP4L+Hel+EI/tC/6Zqrg+dfSj5iT1Cj+Efjk9/Ssj4ueIZ7TRrfw5pm6TU9ZfyFVD8wjyAR7bj8v03elAGL4Qh/4T74j3fil48aPpBFvp0W3Ckj7px7D58cYJXrir3goDUPjT4z1Pj/R1W165xgqv/tKu78KeHYPC3huz0mDDeSn72TGPMkPLN+J/TFcF8J/m8bfEBiPm/tEZ/GScmgZ6uOlLRRQIKKKKACiiigAooooAKKKTIoAMivLPjcc6b4fP/USU/oa9PuJo7eCSaZwkUalnZuigDJJr5U8Z/ELVvFuo7pZVisbacy2kKIoKckKxOOWxjvj+oCPq8HNB9QM8Vwnwt8bT+MvD8z35j/tC0kCSmNcBlIyrY6c8jj07V3Wc0Acl4w8e2ngswtqWm3skE7FY5YTGQxAyRgsCPyrp7K6jvbGC7iz5c8aypu64IBH868k+LludcXWSBuj0KwiZeek00y5/KNP/AB6u68GalF/wrjRr64lVIodPTzJCeAEXBJ/75zQBZ8XeLtN8H6Ut/qRkZZHEccUWC7k9cAkdBz/+upfDPiIeJ9Jj1OHTru0tZhuiNxsBkHqArHA+uM14t8TJbrXodMu54ytzq9x5Wm2z8eTbAgZI7PIzKfooHrXvOl2MemaVaWEP+rtoUhX6KAP6UAWhnvS0UUAFFFFABXlPxkH2TUfCGsd7TUf5lG/9kNerV5V8fQP+EIsWHDDUUwfT93J/hQB6oOlLTY23xq2MZGcU6gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikJA60ALkCuf8VeMNI8Jaf9q1KfDMCIoE5klPoo/megrmfGPxPi069Gh+Grf+1tdkbYEiG9IT746t7Dgc5PGDW8K/DCaW/wD+Eh8bXH9qavJ8wgkO6OH0yOjEen3RzjPBoAx7bSPFHxanjvtaeTSfDG4PDaRth5x2Pv8A7x4HYHOa9W0nRbDQtPjsNLtI7a1jHCIOvuT1J4HJya0BnHNBIHWgCG5nitLaa5uHCQxI0kjnoqgZJ/CvJ/h9bTeNvHGpeO76NhawubfTY26KAMZ/BT1/vO3pV34ua1c3Y0/wXpJ3X+ruvm4z8kW7gH0yRyewVvWvQPD+jW3h7QbPSbMfubaMIGI5Y9WY+5JJP1oA0BwK8q+FHy+N/iCh+9/aI4+kk9erHpXlXg0rp/xs8ZacBgXCLdfU5Vv/AGqaAPVhRSDpS0AFFFFABRRRQAUUZqve3trp9pLdXtxFBbRDLySsFVR7k0AT5FYHifxlovhO08/VLxY3IzHCvzSSf7q/1OB71wuqfErV/E19Jo/w/wBPknkHEuozJtSMeoB4H1b8q0fDHwns7O7Or+Jbltb1hzuZpyWjRvYH7x+ox6AUAYRuPG3xVLLahvD3hp8gyEnzJ079MFsg9BhevJxzwnjv4Y3ng+5t3jvYrmxu5/JgZ8iRSeQHHQ8dx6dBX0+qhVCgYA4AHavLfjd/yDfD/wD2E1/9BNAHS/D3wUvgrQHs3lS4u55fNnmVcZ4ACjuQAP1NdaxCgknAxyacKyfEWm32r6PPY2GoJYPOhjadoPNIUjB2jcuD780AcRFb/wBr/DLxbq7jL6ubu6iz18tAViH/AHzGD+NYfw7eXxd4T0rw6Q40rTi8mpyEYEx81migHsRhm9go716Ronh650zwomg3V7DcxRW/2aOSO3MR2bdvzDe2T9MUaJ4ZHhnwvBpGjSxRSRLkzzQlw8h+85UMMkn/AGuKAPPrxR4n/aDtLYDda6HAHYAcBkG4EfR3Uf8AAa9hHSvP/C3w61Hw14mvdcbxBDez32ftAlsCpOW3HDCTjn2PavQBnvQAtFFFABRRRQAV5V8fDnwTYIBlm1JMY9opa9Vryr4wv9q1XwdpA/5etSDH2wyL/wCz0Aepou2NV9BinUg6UtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUZpMjNct4y8d6R4NtN17IZbt1zDaRHMj+h/2RkdT+tAG9qOoWel2Ul7e3EUFvEuWkkbAH/6+mOp7V5Ne+KvEnxMvZNJ8Hxy6foqtsuNUf5WZe4BHTjoBycjOAadYeE/EfxLvotX8ZO1lo6tvttLjJBI7Eg8jg/ePzHsAMV6zY6daaZZR2djbxwW0QwkUa4AoAwPB3gTSPBtn5dlF5l06/vruQDfIev4L6Afqea6hQQMGlFFABVTUr+DS9Pub+6cJb28TSyN6ADJq0SBXlHxV1G41/WNL8A6W582+kWS9cchI85APtgFiP8AZX1oAb8LrC58Sa/qnxA1JDvuXaGxRv4EHBIPsAEB9m9a9ZUYFVdL0620nS7bT7RNlvbRrFGD1wBjn375q3QAhryjXCdC+P2jXuAkGq2hgdj/ABPhlA/MR16xXl/xrsZo9F0vxFaAC60i8WQMf4VYjn/vtY/zNAHp69KWqmm38Op6Za38BzDcxLMmfRgCP51boAKKKTcBjPegAJA470ZFYXibxdo3hSz+0atepFuB8uEfNLKfRV7/AMvcV5u2oeN/imWj01G8P+HHOGuHz5ky/hgtn0GB1G44oA6fxd8UtJ0Gf+ztNQ6vq7HYltbZZVbkYYjPOf4QCfpXP2fgHxN45u49T8d38kFoCGi0u3baE+vZeuD1b3HFdr4U8AaH4QiBsLbzLsjD3c2Glb8f4R7DHvmupUYFAFLS9IsdEskstMtIbW1T7scS4H1Pcn3OTV4UUUAFeV/G7/kG+Hv+wmv8jXqleV/G7/kG+Hv+wmv8jQB6oKKBRQAUUUUAFFFFABRRRQAUUUUAIeoryjWz/bnx90SyX54dKtTPKP7r4Zgf1ir1Z2CgkkAAZJ9K8o+FYbxB4t8VeMJBuS4n+zWzEYOwYOCP90RfkaAPWB0paQdKWgAooooAKKKKACiiigAooooAKKKKACiijIoAQkCgnnHes/Wdb07QdOkv9Tuo7e2Tje5+8eygdyfQV5RPqvif4t3D2ejrJo/hcEpNdSDDzjpjg5P+6Dj+8e1AGv4p+J0txqH/AAj3giD+09WkBU3MY3xwjuR2bHXJO0cdeQLng74YxaZef274iuP7X16RhIZZDuSFuMFc9SP7x7AYFdN4Y8I6T4T04Wml24BOPNnfBklI7scc/ToO1byjAxQAAYpaKKACiikJ5xQBn67q9voOjXeq3R/c20RcjPLHso9ycD6kV558JdHur+XUPHGqKTfarIyw5/gi3c49iQAPZR2NVviPcz+MvGemeArCRlhUi41GRP4RjIB9MKc+hLL0xXq9nbQWVnDa20YjghRY4kXoqgYAHsAAKAJRS0UUAFZuv6TFr2g32lT42XULR5IztJHB/A4P4VpUhoA8z+DWsSyaBd+HL35b7RrhomQnnYWP8m3DjpgV6YD69a8e8Xh/AHxMsPF0K40zVD9mvwBwrcZPHcgBvqh9a6TxV8VNF0HbZ2BGrapLxHb2rblBPTcwBH4DLH0oA7e6u7aytpLm6njhgjG55JGCqo9ya8t1X4m6l4gv5NH+H9g93P0k1GRMRxD1APAHu3vwar2vgfxT8QLmPUvHF69nYhg8WlW/ylfY9dvuTlv92vUdJ0XT9CsY7LTLSO2tk6JGP1J6k+5zQBwnhv4TW8N2dY8VXR1vVpDuYSktEh9MN9/2zwOwr0lV2KFUDA4A6YFKKWgAFFFFABRRRQAV5X8bv+Qb4e/7Ca/yNeqV5X8bv+Qb4e/7Ca/yNAHqgooFFABRRRQAUUUUAFFFFABRmikJ5FAHEfFfxD/YPga7SJ8Xd/8A6JAo6nd94jHPC7uexxWl4B8Pnw14K07TpF23ATzZx38xjuIPrjO38K4RnHxG+L6KreZoXh3kn+GSXOf1ZR7ER+/PsC9KAFooooAKKKKACiiigAooooAKKKKACjNGRUcsscUbSSOqIqlmZmwABznPp1oAfkZIz0rjPGvxF0rwiBbj/TdWkAENlEfmyehY/wAI6e57Cua1/wCI+p+ItSbw74AgN1O3E2o7f3cQ9VJ4H+8fwB61u+C/hpYeGm/tG9k/tLXJMtLeS5Oxj12Z57nLHk8njOKAOd0fwDrfjXUY/EHj6VxGPmt9KXKhAezD+EdMjqeMkYwfWLe2itLdLe3iSGGNQsaRgKqgdgBwKlAIHJzS0AIKWiigAooooAMgVi+KfEEHhjw7eavcAMsCfIhOPMkJwq/icfSthjivIPGLyfED4j2Pg63Zzpemn7RqLoerY5H1wdo9Cx9KANX4Q+H7iLTLrxRqZL6nrLGUuwwyx5yP++jlvpt9K9MFMijSKJY41VUQbVVRgADoKfQAUZozioLm5gtLeS4uJo4oI13PJI4VVA7kngCgCYnFYviPxTo3heyN3q14kK4+SMfNJIfRV6n/AD0rgtY+KF/rWoPongHT31C66PetH+7i/wBoA4468sQPY1a8PfCdPt39teMLxta1aQhijsTDGe3X7+MdDgD04zQBgX114s+MEZtdPsI9L8N7wxuLobml2nqOOcEdF4BBye1SfB2303R9b1XQdSsI4fElrI2Lh8lpYx1Ck8D14xuBB5wa9lVNqKoUKoGAo6CvOviX4Qu7lrbxX4fzHrumYfbGBunQHpjuRzgdwSOeBQB6QvApa5fwN4ys/GWgpeQlY7qPC3NvnmJsdR/snBIP9RXUUAFFFFABRRRQAUUUUAFeV/G7/kG+Hv8AsJr/ACNeqV5X8bv+Qb4e/wCwmv8AI0AeqCigUUAFFFFABRRRQAUUUEgUAISB1rgvij4vk0DRo9M00s+s6n+5t0jGWRTwXA9ecD3PtXSeJ/Emn+FdGl1O/k2og2pGPvyueiKPXj8AMmuB+HXh+/8AEWtS+P8AxGoNzcf8g+A/dhToGA9McL6jJ75oA634feEo/CHha3sSFN5IfOu5FOd0h6jPcDoPpnvXVikAwKWgAooooAKKKKACiiigAooozQAUZpMiuD8afEyy8Oz/ANlaXF/amuyHYlpDlhGx6b8d/wDZHP0HNAHSeI/Eul+GNNa/1S6WGMZCIOXkPoq9z/kkCvL1j8U/GCcNL5ujeEwx+UffuQD/AOPHPttBH8RBzpeHvhrf67qS+IvH9wb28JzFp5wYoh1wwHHH90cDuTk49URBHGqKoVVGAq9APQUAZeg+HNM8NaathpVokMI+8cZaQ+rHqTWsM96UUUAFFFFABRRRQAUUUhoA53xv4mi8J+FbvVGwZgBHboT9+Vvuj8Op9gawPhN4Yl0bw22q3wdtU1ZvtE7SfeCnJUH35JPufaue1k/8LI+K0OjL82g6ETLdH+GSQEAg+uT8nPYORmvYQQoxmgBQfWjcM4zWR4g8TaR4Zsfteq3kcKNwifeeQ+iqOT/SvMm1/wAafE2UweHoG0PQidr38pO+QZwQCP5J+LCgDq/GPxO0fwxIbGHOo6qx2LZ255DHoGbnB/2RlvauYtvBniz4h3Ed/wCNLt9P0wEPHpcHyn/gQOdv1OW+ldl4P+HeieEI1ltYTcaiQRJez4Ln1x/dH069ya64cCgDO0fQtN0CwSy0uzitbdP4UHLH1Y9WPuTWkO9FFABTWGe1OooA8i8ZeFdU8H66/jfwkMDO7ULFVyrqTl2wOqnGT3B+Ye3e+EfF2m+MNHW+sH2uuFmgc/PEx7H1B7HofzA3mBJrynxR8P8AUdB1c+KfAh8i9BLXOnrwkynlgo6c/wB3/vkggUAesUda4jwR8R9L8VoLKbFjrMeVkspTgkjrszjP06jB4xgntsigBaKOtFABRRWbqHiHRNJnWDUtY0+zmZd6x3NykbFckZAYg4yDz7UAaVeV/G7/AJBvh7/sJr/I13H/AAmnhX/oZtG/8D4v/iq83+L2vaPq9noMWmarY3siairMltcJIVGMZIUnFAHsgopBS0AFFFFABRRSFgOpx3oAXIHWsrxBr+m+HNKl1HU7gRQRjoPvOf7qjuf88dayvGPj3R/BttuvZDLdOhMVpEf3j+hP91c9z+GelcRong/W/iDq0XiTxsDDYJ81npQJAAOD8w7Kcc55bg8AAEAh0HSNU+Kuvx+JPEMBg8O2zH7FYFuJcHv6jjJbuQAOOnsqKEQKoCgcADoKbBEkEKRRRrHGihURQAFAGAAB6VJQAUUUUAFFFFABRRRQAUUUZoAM1Bd3VvZ20lzdTxwQRKWeSVgqqB1JJrF8V+MdG8I2IutTuAJG/wBVbpzJKfYenPU8DI9a85tdF8TfFm5j1HXXl0nw1u3wWUTYaYdj7/7xHQ/KOc0ATat4713x1qEmheA4XitR8tzqsoKBQeOP7o/8ePYcc9h4L+HmleD4POjBu9SkH729lHzn1C/3Vznjv3JrodK0aw0TT47HTLWO1toxhY0GPxJ7n3OavgYoAAMDFLRRQAUUUUAFFFFABRRRQAVyPxH8Vjwl4QubyN8Xk37i1HfzCPvf8BGT+A9au+LPGWjeDrJLjVZ2DS7hDDGm6SUgZIA6ficCvCde+Itp4n8d2GqXWn3UunacA1pp4IzLNnK7uuMnGevCjg5oA9c+G/huLwd4NE+oOkV5dD7XeSzHbs44VieyjrnuSe9Yus/FO41TUG0XwFYPql8chrpk/dR89QOM9+WIGR/FVK38JeMPiPLHeeL7p9L0fho9MgJVmHGNwOefd8kHOAua9O0XQNM8PWC2WlWcdtAOyjlj6sepPuTQBwegfCfz73+2fGt2dZ1J+fJdi0Kck7Tn7w9sADpivTEjCRqiqFVRhQBwB24p4paAEAwKWiigAooooAKKKKACmsu7tninUUAcT4y+Gul+LD9sjZrDVkwUvIRySOm8fxdueDwOeK5SDxr4t+H00dh420+S/wBPzti1S3O447ZPG48dG2t35r2Gobi3juYnhnijlhddrpIoZWHoQeCKAM/QvE2jeJLQXOlahBcrgFlRvnTPTcp5X8RWtmvNda+DmlXFz9v8PXtzoOoA7le3clAfYZyv/ASAPSs4at8UvCHyajpcHiKxTnzrXmXH/ARu/EoevU0DPW8147410iw1747+H9M1KDz7SfTD5ke9kzt89hypB6gVq6b8bfDUzGLVYr3S514dZ4S4U+nyjP5gVi3niHSNW+PfhnULHUbea0WwdGlV8KrFbjg56HkcH1FAHXD4QeBTz/YX/k3P/wDF1wnxO8EeHfC1volxo2nfZpZtQRJG86STK4zjDE98H8K9xjkSRNyOGU9CDkV5d8biP7N8P/8AYSX+RoEepjpS00uqrksAPWsm+8WeHtNJW81zT4GHO17lQ35ZzQBsUmQO9ec6p8a/Cdl8llJdalKTgLbQkDP1fb+maym8U/ErxaNmg+H00S1f/l6vD8wHYjcBx9EP1oA9M1bWtN0OyN5qd9DawD+KVsbvZR1J9hXmV98Stc8WXT6Z4B0uQrnbJqdyoVIx3IB4Hblsnr8vSremfB2G5uxqPjDVbrW7w8lDIyxj2zncR1x0HtXpFlYW2m2qWtlbxW9unCRRIFVfwFAHD+EPhbZaLd/2xrU7avrbtvM8+WWNvVQ2ST/tH8AK9BAxnjFLRQAUUUUAFFFFABRRRQAUUUUAFIaWoLu6hsraW5uJBHDEjPI56KoGSf0oA4rxZ8LNJ8Y6z/al9eX8UvlLFtgdAoAz2ZT6ms0fBPScf8h/Xh7faV/+IrtvC3iG38U+H7fV7WN44py4COckbWK8/XGfxrYoA8y/4UppX/Qwa9/4Ep/8RR/wpTSv+hg17/wJT/4ivTaKAPMv+FKaV/0MGvf+BKf/ABFH/ClNK/6GDXv/AAJT/wCIr02igDzL/hSmlf8AQwa9/wCBKf8AxFH/AApTSv8AoYNe/wDAlP8A4ivTaKAPMv8AhSmlf9DBr3/gSn/xFH/ClNK/6GDXv/AlP/iK9NooA8y/4UppX/Qwa9/4Ep/8RSf8KU0n/oYNe/8AAlP/AIivTqRiByaAPmT4qeCU8H3Wmtbahd3dvdRuALuQMyspGegHBDLgexzXOeC/D1z4n8VWOnQNLHGz7pZ4hzFGOSwPQHA4znmvW9BQfEv4oXWvTqJdC0b9zZo3KSNzhsdOuX9fuDmvWLHT7HTYBBYWdtaQ53bIIhGuTyeBjk0Dueej4KaTj/kP68Pb7SnH/jlH/ClNJ/6GDXv/AAJT/wCIrrrrxbpVteS2ETT317FjzoLKBpmiz03lRhP+BEVLo/ivSdZvJbGCaSG/h5ktLmJoZVHrtYDI9xmgRxv/AApTSv8AoYNe/wDAlP8A4ij/AIUppX/Qwa9/4Ep/8RXptFAHmX/ClNK/6GDXv/AlP/iKP+FKaV/0MGvf+BKf/EV6bRQB5l/wpTSv+hg17/wJT/4ij/hSmlf9DBr3/gSn/wARXptFAHmX/ClNK/6GDXv/AAJT/wCIo/4UppX/AEMGvf8AgSn/AMRXptFAHmX/AApTSv8AoYNe/wDAlP8A4ij/AIUppX/Qwa9/4Ep/8RXptFAHmX/ClNK/6GDXv/AlP/iKP+FKaV/0MGvf+BKf/EV6bRQB5l/wpTSv+hg17/wJT/4ij/hSmk99f14/9vCf/EV6bRQB5bN8C9DuBibWdbk9nnQj/wBAqE/ALw3/ANBLVf8AvuPH/oFesUUAeSt8AvD45i1XVEbsS0Zx+Sioz8A9MLKTruoEg5B2qcV61M7JEzJE0rAZCKQC358Vw9j8TIdS8QXehWfh7VptRtCwmjUwALtOD8xkA6+9AGL/AMKI0CZt93q+sTv3Pmx8/mhNa9n8G/BVpgtpstyw7z3D/wAlIH6Vs6b4206+15tCuILvTtVC71tb1FUyDrlGUlW/A9j6V0oORQBm6b4e0fR/+QdpVnaN/ehhVWP1OMmtL8KWigAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUABOK47xRC3ivUG8KwSFbRIhPqUiH1z5UWf9ojcfZR/erd8QazBoGjz6hcAsIwBHEp+aVzwqL7k4rmtG8N+K7C1ll/t/T0u71zdXIfTDIRKwGV3ecMqMbRwBgCgDF+BN40vgy7snyHtb1xt/uhlU4/PdXqdePfCgS6T4+8YaJcSLJIJBNuVSoO12GQCTgEOOM17AOlAC0UUUAFFFFABRRRQAUUUUABIFedfFzxHNpvh+PRtN3PqmsN9miWP7wQkBiPc52j/AHj6V6GeoNea6R4X1fVvirqPiTxDbGK3sR5WmxmQOCOQGGOmASef4n9qAOr8GeG4fCnhez0qPaZEG+aQDh5W+8f6D2Ark/iT4tv11Ox8G+HpTHquokCWdTgwRsccEdDjJz1AHHXI9L7dK8U8JQtqf7QPiG6u/wDWWazNHnqMFYl/8dJoA9X8PaBZeGtGg0ywjCRRDlscyMfvM3qSef06CvMvi9dnR/GvhDVLP5b1HcMV6tGHT5D7Hc4/E17CWA6kCvFLuFviH8a0aIF9I0IoJZAMoxRi2Pxfj3CntQB7YORS0ijApaACiiigAooooAKKKKACiiigAooooAKKKKACiiigCC7uYrO0mup22xQxtI57BQMk/lXi3wk1nSYJfEPiXW9VsLW6v7jAWedVfHLtgE5IJYDj+6a7X4vawNK+Hd+FcLJeFbRTn+8fmH4qGH41P4H8LWNp8P8ASrK9sYJmltxJMs0SnJk+YhsjtnH4UAcvLYXnjj4saX4g0+2mi0PTI0xfSoYxcbWZh5eQCyndjPTgnPIz62vSvGfhTdzWfxA8T+HbOV30S3aVoULbliYShRj6gn67Qa9mHSgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKAOW8TeFtQ1/WtJvItZjtrTTpBOtnJamRZJQeHYh16DGB25PeujZJ/IIV0E23AcqSobHUjPIz2zU1FAHn+n/D3VLDx3c+Kl1+3a4ugVmg/s8hChx8o/e5B+Veeeld+o45HJ60tFABRRRQAUUUUAFFFFABRRRQAhoxS0UANPp3rzbxhpS+FPEg8dabdW8dxIvkXNjOxUXmcACMgE+Ydq44PTJ4zXpLLuxXMaz8P9B8R3T3GtxXF/JyIxLcuqxKeyqhUDp6EnuTQBXuP+Eo8SacsEAtNDtp0xLcpObiYKeoj2gKp7btx9ulaWiaJovg/TrbTLELAJWwpcgyTv1LHj5jgZ6YAB6AVySfBjTLK4M2j67rWmFjlhBOB+RAB/Mmuv0PwrZaETMk13e3rLta8vZzNMR3GT0BwOAB0HtQBuL0paRQQMGloAKKKKACiiigAooooAKKKKACiiigAooooAKQgnpS0UAcF48+H1/45e3il16O0s7di8cKWRcljxliZADjtwO9aM2geKLmyFpJ4pghXbsaW103ZKR/vNIwB9wBXWUUAYHhfwfpPhCxa10qFxvOZZpX3PIeeWP9AAOelb4oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//2Q=='] Multimodal Competition True Theorem proof Geometry Math English 14 "A large square $A B C D$ is drawn, with a second smaller square $P Q R S$ completely inside it so that the squares do not touch. Line segments $A P, B Q, C R$, and $D S$ are drawn, dividing the region between the squares into four nonoverlapping convex quadrilaterals, as shown. If the sides of $P Q R S$ are not parallel to the sides of $A B C D$, prove that the sum of the areas of quadrilaterals $A P S D$ and $B C R Q$ equals the sum of the areas of quadrilaterals $A B Q P$ and $C D S R$. (Note: A convex quadrilateral is a quadrilateral in which the measure of each of the four interior angles is less than $180^{\circ}$.) " "['We begin by ""boxing in"" square $P Q R S$ by drawing horizontal and vertical lines through its vertices to form rectangle $W X Y Z$, as shown. (Because the four quadrilaterals $A B Q P$, $B C R Q, C D S R$, and $D A P S$ are convex, there will not be any configurations that look substantially different from this the diagram below.) We also label the various areas.\n\n\n\nSince $W X$ is parallel to $A B$, then quadrilateral $A B X W$ is a trapezoid. Similarly, quadrilaterals $B C Y X, C D Z Y$, and $D A W Z$ are trapezoids.\n\nWe use the notation $|A B Q P|$ to denote the area of quadrilateral $A B Q P$, and similar notation for other areas.\n\nSuppose that the side length of square $A B C D$ is $x$ and the side length of square $P Q R S$ is $y$.\n\nAlso, we let $\\angle W P Q=\\theta$.\n\nSince each of $\\triangle W P Q, \\triangle X Q R, \\triangle Y R S$, and $\\triangle Z S P$ is right-angled and each of the four angles of square $P Q R S$ is $90^{\\circ}$, then $\\angle W P Q=\\angle X Q R=\\angle Y R S=\\angle Z S P=\\theta$. This is because, for example,\n\n$\\angle X Q R=180^{\\circ}-\\angle P Q R-\\angle W Q P=90^{\\circ}-\\left(180^{\\circ}-\\angle P W Q-\\angle W P Q\\right)=90^{\\circ}-\\left(90^{\\circ}-\\theta\\right)=\\theta$\n\nThis fact, together with the fact that $P Q=Q R=R S=S P=y$, allows us to conclude that the four triangles $\\triangle W P Q, \\triangle X Q R, \\triangle Y R S$, and $\\triangle Z S P$ are congruent.\n\nIn particular, this tells us\n\n* the four areas labelled $e, f, g$ and $h$ are equal (that is, $e=f=g=h$ ),\n* $P Z=Q W=R X=S Y=y \\sin \\theta$, and\n\n$* W P=X Q=Y R=Z S=y \\cos \\theta$.\n\n\n\nCombining these last two facts tells us that $W Z=X W=Y X=Z Y$, since, for example, $W Z=W P+P Z=Z S+S Y=Z Y$. In other words, $W X Y Z$ is a square, with side length $z$, say.\n\nNext, we show that $(a+r)+(c+n)$ is equal to $(b+m)+(d+s)$.\n\nNote that the sum of these two quantities is the total area between square $A B C D$ and square $W X Y Z$, so equals $x^{2}-z^{2}$.\n\nThus, to show that the quantities are equal, it is enough to show that $(a+r)+(c+n)$ equals $\\frac{1}{2}\\left(x^{2}-z^{2}\\right)$.\n\nLet the height of trapezoid $A B X W$ be $k$ and the height of trapezoid $Z Y C D$ be $l$.\n\nThen $|A B X W|=a+r=\\frac{1}{2} k(A B+W X)=\\frac{1}{2} k(x+z)$.\n\nAlso, $|Z Y C D|=c+n=\\frac{1}{2} l(D C+Z Y)=\\frac{1}{2} l(x+z)$.\n\nSince $A B, W X, Z Y$, and $D C$ are parallel, then the sum of the heights of trapezoid $A B X W$, square $W X Y Z$, and trapezoid $Z Y C D$ equals the height of square $A B C D$, so $k+z+l=x$, or $k+l=x-z$.\n\nTherefore,\n\n$$\n(a+r)+(c+n)=\\frac{1}{2} k(x+z)+\\frac{1}{2} l(x+z)=\\frac{1}{2}(x+z)(k+l)=\\frac{1}{2}(x+z)(x-z)=\\frac{1}{2}\\left(x^{2}-z^{2}\\right)\n$$\n\nas required.\n\nTherefore, $(a+r)+(c+n)=(b+m)+(d+s)$. We label this equation $(*)$.\n\nNext, we show that $r+n=m+s$.\n\nNote that $r=|\\triangle Q X B|$. This triangle can be viewed as having base $Q X$ and height equal to the height of trapezoid $A B X W$, or $k$.\n\nThus, $r=\\frac{1}{2}(y \\cos \\theta) k$.\n\nNote that $n=|\\triangle S Z D|$. This triangle can be viewed as having base $S Z$ and height equal to the height of trapezoid $Z Y C D$, or $l$.\n\nThus, $n=\\frac{1}{2}(y \\cos \\theta) l$.\n\nCombining these facts, we obtain\n\n$$\nn+r=\\frac{1}{2}(y \\cos \\theta) k+\\frac{1}{2}(y \\cos \\theta) l=\\frac{1}{2} y \\cos \\theta(k+l)=\\frac{1}{2} y \\cos \\theta(x-z)\n$$\n\nWe note that this sum depends only on the side lengths of the squares and the angle of rotation of the inner square, so is independent of the position of the inner square within the outer square.\n\nThis means that we can repeat this analysis to obtain the same expression for $m+s$.\n\nTherefore, $n+r=m+s$. We label this equation $(* *)$.\n\nWe subtract $(*)-(* *)$ to obtain $a+c=b+d$.\n\nFinally, we can combine all of this information:\n\n$$\n\\begin{aligned}\n& (|A B Q P|+|C D S R|)-(|B C R Q|+|A P S D|) \\\\\n& \\quad=(a+e+s+c+g+m)-(b+f+r+d+h+n) \\\\\n& \\quad=((a+c)-(b+d))+((m+s)-(n+r))+((e+g)-(f+h)) \\\\\n& \\quad=0+0+0\n\\end{aligned}\n$$\n\nsince $a+c=b+d$ and $n+r=m+s$ and $e=f=g=h$.\n\nTherefore, $|A B Q P|+|C D S R|=|B C R Q|+|A P S D|$, as required.']" ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAdIBzQMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKZKypEzuwVFGWLdAPevENQ8U68PGnh3xA1/cw6Bqd80FvZiRghgVlTe65wS24tz6CgD3KikHaloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqK4uIbWBp7iaOGJPvPIwVR9SalpkqxvEyyqrRkfMGGQRQBmDxNoB/5jem/wDgUn+NXbS+tL5d9pdQXCDq0MocD8jXkHwg0fTtdfxJrd5p9pcR3F9iFZoVZU6uQoYcffH5UzxRptvoHxh8Mp4YhS0ubkqbuC1XYhi38llHAG0N2/hzQB7XRTR1p1ABSHpQehqjqmq2Oj2L3eoXcNrAnBklbaM9gPU+3egDjviZr9pbxWXhubUI7L+1W23U7NjyrUff/Fvuj8a474sa94Z1Twhp8Gh6pZy3Fhcx+TDCckR7SuAMcAfL+Vdl8O7m18Ry6p4pkmhmvL6Xy0hDhmtbdf8AVxsP4SeWPrkelWPik2nD4fapb3dzbQSSxboVkcKZHQhwFz1Py9qAOq0m+XU9Gsb9Pu3UCTD6MoP9au1wHwi1621TwNp9mLqN72zjMUsO8F0UMQpI6jIxXf0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVieML/wDszwbrN4Gw0dpJsOcfMVIX9SK2m6Vw3xMs9c1nwxc6Jo2kTXT3ITfMJokRQrhsfM4OTjHAxz1oA5n4Y+Chd+AbS8Ot61YtdtJIYrK78pR8xUHG084Uc1DbGX4cfFCy02Zk1S31oqgvZ0zdoWbbhpP4hu29un0rp/D994j0Lw3YaUvgq9ke0tkiLi9twHYDk539zzVS08I654j8d2vinxNFb2UVgB9k0+GXzWBBJBdgMcMc5HXHbHIB6QOop1J3xS0AFFFFABSHpS0HpQBxfjzx3/whX2Af2b9s+2eZ1n8vbt2/7Jznd+lYcPxQ8QXEMc0Hw+1SWKRQyOjSEMDzkERdOn51l/Hjj/hHz6faP/aVWvhtrt34f1i58Ea422WBz9kY9OmSoP8AdI+ZfbOe1IC9/wALJ8S/9E61b85P/jNH/CyfEv8A0TrVvzk/+M16WKWiwHmf/CyfEv8A0TrVvzk/+M0f8LJ8S/8AROtW/OT/AOM16ZRRYDzP/hZPiX/onWrfnJ/8Zo/4WT4l/wCidat+cn/xmvTKKLAeZ/8ACyfEv/ROtW/OT/4zR/wsnxL/ANE61b85P/jNemUUWA8z/wCFk+Jf+idat+cn/wAZo/4WT4l/6J1q35yf/Ga9MoosB5n/AMLJ8S/9E61b85P/AIzR/wALJ8S/9E61b85P/jNemUUWA8z/AOFk+Jf+idat+cn/AMZo/wCFk+Jf+idat+cn/wAZr0yiiwHmf/CyfEv/AETrVvzk/wDjNH/CyfEv/ROtW/OT/wCM16ZRRYDzP/hZPiX/AKJ1q35yf/GaP+Fk+Jf+idat+cn/AMZr0yiiwHmf/CyfEv8A0TrVvzk/+M0f8LJ8S/8AROtW/OT/AOM16ZRRYDzP/hZPiX/onWrfnJ/8Zo/4WT4l/wCidat+cn/xmvTKKLAeZ/8ACyfEv/ROtW/OT/4zR/wsnxL/ANE61b85P/jNemUUWA8z/wCFk+Jf+idat+cn/wAZo/4WT4l/6J1q35yf/Ga9MoosB5n/AMLJ8S/9E61b85P/AIzR/wALJ8S/9E61b85P/jNemUUWA8z/AOFk+Jf+idat+cn/AMZo/wCFk+Jf+idat+cn/wAZr0yiiwHmf/CyfEv/AETrVvzk/wDjNH/CyfEv/ROtW/OT/wCM16ZRRYDzP/hZPiX/AKJ1q35yf/GaP+Fk+Jf+idat+cn/AMZr0yiiwHmf/CyfEv8A0TrVvzk/+M0f8LJ8S/8AROtW/OT/AOM16ZRRYDzP/hZPiX/onWrfnJ/8Zo/4WT4l/wCidat+cn/xmvTKKLAeZ/8ACyfEv/ROtW/OT/4zR/wsnxL/ANE61b85P/jNemUUWA8z/wCFk+Jf+idat+cn/wAZo/4WT4l/6J1q35yf/Ga9MoosB5n/AMLJ8S/9E61b85P/AIzR/wALJ8S/9E61b85P/jNelnpXCeKPijo3h8ta2bDUtQB2+TC42IfRn5APsMmgDMm+J/iGCF5Zvh9qccSDLO7uoUepJirJPx3z08Oe/wDx+k5H/fuiHwz40+IkqXXiO5bTNLJ3JbBNpI9o8nn3c5HbINN+JnhTR/DHgOzj0y0CO1+geZ/mkf8AdydW/oMD2pAeyjrTqTvS1QBRRRQAUUUUAFFFFABQelFB6UAeN/Hj/mX/APt4/wDaVb3xT8KSalYx69pgaPVNOAcNGcMyA54/2lPzD8awfjx/zL//AG8f+0q9iY4HPSktwOX8BeLIvFnh+O5JVb2HEd1Gp+6+OoH909R+PpXVV4vrdtP8MPHcet2UbnQ9QYrNCg+VO7Jj1HVfxHrXsNpdQXtrDdW0qywzIHjdejKRkEUwJ6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKDWPr3iTSfDloZ9UvUhBHyR5zI59FUcmgDXPSuX8UeO9D8LIUvLjzbvGVtYSGc/X+6Pc1wk/jHxd48uHsvCVlJYWGdr3bkBvxf+H/gOWrovC/wq0nR3W81V/7V1AneXlX92rdchT9489WJ9QBSuBzP2jxz8TSRAh0fQmP3iSokHfn70nfpha7nwt8O9D8LhZYYTdXoGPtM4BYf7o6KPpz6mutUBQAowBwB6CnUwErzX43/APIl2f8A2EU/9FyV6XXmnxv/AORLs/8AsIp/6LkoA9K70tJ3paACiiigAooooAKKKKACg9KKD0oA8b+PH/Mv/wDbx/7Sr2M9K8c+PH/Mv/8Abx/7Sr2PvSW4GXr+h2niLRrnTbxcxzLwwHKN2Ye4rzn4ca3deG9cufA+tsEeJ2NmxJxnqVBPZh8w4Hf1AHrR6V558UfCUmrWEet6YrrqunDeDEPneMHOB7r1H40wPQhgmnVyngHxZH4t0CO5cqL+DEd1GP72PvAejdvoR2rq6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiimTSxwxNLM6xxoMs7HAUepPagB5qnqGpWWk2j3d/cxW9unWSRsD6D/CvPvEPxZto5xp3he2bVb9ztWRVLRg/7IGDJ+GB71naf8ONe8U3a6n421KUL1S0jf5gPTj5U6DoMnPY0gH6r8T9T169bSvBGnTTzHj7U6ZIB/iCnhR0+ZvXpVjQvhP59z/afi69fUr2Qhmh3kr9GY8sOnAwPqK9D0nRtO0S0W002zitoB/DGuM+7HqT7nmtCiwEFraw2cCW9tFHDCgwscShVA9gKnoopgFFFFABXmnxv/5Euz/7CKf+i5K9LrzT43/8iXZ/9hFP/RclAHpXelpO9LQAUUUUAFFFFABRRRQAUHpRQelAHjfx4/5l/wD7eP8A2lXsfevHPjx/zL//AG8f+0q9j70luAtIelLQaYHi/iC0uPhj43i1+wjJ0W+fbPCg4UnlkH/oS/QivYLO6gv7SG7tZVlglQPG69GB5Bqpr2i2viDRbrTLwHyp02hgPmRuoYe4OD+FebfDrWrvwxr1z4I1s7GRybNyflz1IB/ut94e5I9KAPXKKaOWp1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSHpQAtI3SuY8T+OtE8LIUvLnzLvHy2sJDSH6/3R7n8K8/Nz43+JuVt0Oj6C5wzElQ69Dz96TjsML6mgDrfFPxR0Xw8z21sf7Rv1+UxQt8iH/afkA+wya5WLw14z+IsqXPiO5bS9L6rbKu0n0IjJPPHVzkdsg123hX4eaH4XCSxxfar/HNzOAWB77R0UfT6ZrrhQBh+HfCWjeF4PL0y0VHYYed/mlf6t/QYHtW7RRQAUUUUAFFFFABRRRQAV5p8b/8AkS7P/sIp/wCi5K9LrzT43/8AIl2f/YRT/wBFyUAeld6Wk70tABRRRQAUUUUAFFFFABQelFB6UAeN/Hj/AJl//t4/9pV7H3rxz48f8y//ANvH/tKvY+9JbgLRRRTAQ9K89+KPhJ9Y05NZ00MuqacN6lB8zoOcDHdfvD8fWvQ6D0oA5H4feLY/FmgJK7KNQt8JdIP72PvAeh7fiB0rrq8Y8S2c/wANPG0HiXTomOkXrFLiFBgAnlkA7ZxuHuMdq9fsruC/tIbu1lWWCZA6OvRlPQ0AWKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikPSsu98R6JppK3ur2Nu4/gknUN+Wc0AatFcNe/FnwhZq2y/kuWHVbeBj+RIA/WuV1P4u3+tXMel+E9OeO5uGCRzXG0vk+i5K/iSaLgema54k0nw5a/aNTvI4QfuRk5d/ZV6n/Oa8zuPGvizx3cPY+EbGSysc7XvGOGx6l+iHBHyjLVoaJ8J2ubr+1PGF7JqN25y0AcsvsGbq34YA6dK9NtbaCzt47e1hjhgQYSONQqgewFAHA+GPhTpOkyLd6s39qagTuLSqfLVvYH7x92J9cCvQlAVQFGFHAA6AU6igAooooAKKKKACiiigAooooAKKKKACvNPjf/yJdn/2EU/9FyV6XXmnxv8A+RLs/wDsIp/6LkoA9K70tJ3paACiiigAooooAKKKKACg9KKD0oA8b+PH/Mv/APbx/wC0q9j71458eP8AmX/+3j/2lXsfektwFooopgFFFFAGbrmjWuvaNc6beoWhnQjIOGU9mHuDgj6V5n8PNYuvCviG58D62wUBybNySF3HnAJ/hYfMPQ5B5Neunocda4D4n+EJNd0yPVNNUjVbBS8Zj4aRByVBH8QPK/jQB3y8nP8AkU6uP+Hni9fFmgK8zD+0LbEdyuMFuOHx74P4g46V2FABRRRQAUUUUAFFFFABRRUcsscKF5JFRR1ZjgCgCSiuevvHHhewBM+u2Py9VilEjD8Fya5y++Mvhe2O23+23fGd0UO0f+PlT+lFwPRKK8kPxe1XUiy6H4SubjHRyXk/NVXj86P7S+LesBTBp9vpqH+LYi4HuJGLD8BSA9bPSql5qNlp6eZe3lvbJ/emkVB+teYf8IB491VmOr+LzCrdVgldgfqg2rVi0+CGkKd9/qt9cyZySm1AfrkE/rRcDpr74k+EbA4k1qGRuoECtLn8VBH51zl78btCi3LZ2F9cuOhYLGp/HJP6Vv2Xwx8IWTB10dJXHeeR5AfwJI/SujsdJ03TBtsNPtbUf9MYlT+QpgeY/wDCyPGmqhf7G8HuitwHljkkX67gFAo+zfF3WCRJc22mIeNu6Nfx+UMw/OvW6Q9KVgPJP+FT+INUQDXfF9xKCctGN8wz7FiMflVwfCfwbo8Yn1XUZzH0zdXKRIfxAB/Wuq8c+KovB3he41Mqrz5ENtGejyEcZ9gASfYVg+CPBwubSLxH4pA1LW71BKDcqHW2Q8hUU8A4IJ9Ogx3YGjonhjwBIpXSbTR73bycSLdEf99FsVyXxPt7fQvF/hTWIYlhijlCv5ahQFR1bsPRmroPiL4Vs28OXeuaZEthq2mRNdQ3VsBG+E+ZlJA5BANcl4u1SXxh8HNK12VV+0w3IW5wMDI3RsQPchT+NID2wUtZnh++OpeHdMvTjdPaxSMPQlQSPzrTpgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeafG//kS7P/sIp/6Lkr0uvNPjf/yJdn/2EU/9FyUAeld6Wk70tABRRRQAUUUUAFFFFABQelFB6UAeN/Hj/mX/APt4/wDaVex968c+PH/Mv/8Abx/7Sr2PvSW4C0UUUwCiiigApG+6aWigDxnxTZT/AA38bQeKNNjzpN65W5hXgAnll/HG4e4PQAZ9csb2DUbSG7tZBJbzIHjcdwef8/8A1qg1vSLXXdGudNvE3QzptJHVT2I9wcH8K8U0XX/GHg7U7rwdptnDfzxTlo0kQsQpGcrhhhSMNz0yfekB75SHpXkv2T4uauzeZdW2mRntujH6pub9RR/wqXXdUQf274unmBOTH88w/Aswx+VFwPRr3xJoemkreavYwOP4HnUN+Wc1zd78WfCNmG8u+lumHVYIGP6tgfrVKx+C/hi2bNxJfXZ7iSUKv/joB/WuisvAXhXTwBBoVmcHgzJ5pH4vmgDjJ/jXBNKsWkaBeXcjdpHCn8lDfzqMeLfibq+4ad4YS0QnAM0LIw/GRlB/KvVoLeK2QRwRRxxjoqKFA/ACpaLAeSHwz8UtYVft3iKOyU9Vjl2MP+/Sj+dPj+C32qYzaz4ku7uQjqqYb/vpixP5V6xRTA4Oy+EXhKzA8y1uLtgchpp2H6JtFdHY+FfD+nFWtNGsYXXgOsC7v++uv61s0UWAQDGABx/KloooAKKKKACiiigAooooA8g+Nq/adR8I2Mv/AB6z3brL6dYh/Jmr10cDAxx0rmPHXg+HxloP2MzeRdRN5ttOBnY49R6Hp+NYs/jXXfCmhNN4p8PXMrW4CPe2EsckUpzgMQSGTJx1H+AANH4oavHpHw81V2Yb7mE2sanq5k4x/wB8lj+Fczp3h94P2fJLS4VlkNo96R6Df5o/8dA/WpLPQr/4nXmn+IddktovD8X72z023l8zzPUyMMDtgj2xgck+l3FslzZzWzjEckbRtgY4IweKAOT+FN59r+H1gpfc9u0sLH0w5IH/AHyRXa15V8Erh49O1nSpFKyW10JGHoWXaf8A0X+teq0kAUUUUwCiiigAooooAKKKKACiiigAooooAK80+N//ACJdn/2EU/8ARclel15p8b/+RLs/+win/ouSgD0rvS0neloAKKKKACiiigAooooAKD0ooPSgDxv48f8AMv8A/bx/7Sr2PvXjnx4/5l//ALeP/aVex96S3AWiiimAUUUUAFFFFABXknijGk/HHw/qAXCXaJGT6s26L+RWvWz0ryj40xy2q6BrEOA9rcsuT3Jwy/8AoBpAerHBHtWR4nhspPDl/LqFuk8FvC9wVf1RSc/pWnDKs8KTRkFHQMp9jyK5D4q3/wBg+G+sMpxJLGsC/wDA2Cn9CaYHGfCfwZpeu+DW1HWbeS4mluXETi4lTagCgAYYY+YMc1d0K7vvCXxgXwjFf3F1o97AZYYrmQyNbkIzYBPb5CMehHU81a8D6h4h0jwNpVlZeDbm5UQeZHK17BGrhyX3ctkfe6YzWj4V8G6mvi268X+JpYG1SZPLgtrckx2yYx948k449st1zwAd/RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVXvrO31Gwns7uFJredDHJG4yGU8EVYooA4Xw98PZPC12f7K8R6nHpzSCU2TrGyn1GWU4zwCQAfeu3BP1p9B6UAeS+DN2kfGbxLpbMBHcCSZR7llkUf98u1etV5Jr+3SPjzo16AQt7GisR0ZmDRc/kletDt9KSAWiiimAUUUUAFFFFABRRRQAUUUUAFFFFABXmnxv8A+RLs/wDsIp/6Lkr0uvNPjf8A8iXZ/wDYRT/0XJQB6V3paTvS0AFFFFABRRRQAUUUUAFB6UUHpQB438eP+Zf/AO3j/wBpV7H3rxz48f8AMv8A/bx/7Sr2PvSW4C0UUUwCiiigAooooAK4T4uWIvPAF1LtLNayxTLtGT97aT+Tmu7rI8U2J1Lwnq1moy8tpKqf7207f1xQBT8C3ov/AANo04O4/ZVjYg5yyfIefqtcT8Y5b7WNGh0TSdM1W6mW7WSd4bGZk2hTj5guG5YdCelavwZvTdeCDbnANrdSRgexw4/9CP5V6JQgMvQry1utOiS0gvIYoFWILdWskBwBgYDqMj3FalFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFB6UUHpQB5N8ZVexufDutwqCba4IJzjkFWX+TV6tG6yIjqcqwyD7VwnxhsvtfgCabvaXEc4/E7P/AGeug8FXo1DwVo1yDuJtERj/ALSja36g0gN6iiimAUUUUAFFFFABRRRQAUUUUAFFFFABXmnxv/5Euz/7CKf+i5K9LrzT43/8iXZ/9hFP/RclAHpXelpO9LQAUUUUAFFFFABRRRQAUHpRQelAHjfx4/5l/wD7eP8A2lXsfevHPjx/zL//AG8f+0q9j70luAtFFFMAooooAKKKKACkYAqQRkHgiloPSgDyT4Qn+zfEPijQi+RBN8g/3HdGP4/L+Vet15Jp5/sf9oG9h2FY9Qhbae3zIJCf++kNet0gCiiimAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBi+LrI6j4P1i1Ay0lpJsH+0FJX9QK5j4N3xuvAiQEEG1uZIsH3w/wDN69AYBlIPQjFeT/B3dp2q+JdDkbm2nG0f7pZWP/oNID1miiimAUUUUAFFFFABRRRQAUUUUAFFFFABXmnxv/5Euz/7CKf+i5K9LrzT43/8iXZ/9hFP/RclAHpXelpO9LQAUUUUAFFFFABRRRQAUHpRQelAHjfx4/5l/wD7eP8A2lXsfevHPjx/zL//AG8f+0q9j70luAtFFFMAooooAKKKKACiig0AeSfEIHSvil4V1gMFSUpCxPosmH/8dkr1odf615f8bbTf4e02/Qfvbe72AgdA6k/zRa9G0u8TUdKs72M/JcQJMv0ZQf60gLdFFFMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAPSvJNGK6P8ftUtQCq38TlRjqSqyk/mGr1uvJfHO7S/i34X1VPljn8uEnp/GVb/x2QUgPWqKQdaWmAUUUUAFFFFABRRRQAUUUUAFFFFABXmnxv/5Euz/7CKf+i5K9LrzT43/8iXZ/9hFP/RclAHpXelpO9LQAUUUUAFFFFABRRRQAUHpRQelAHjfx4/5l/wD7eP8A2lXsfevHPjx/zL//AG8f+0q9j70luAtFFFMAooooAKKKKACg9KKKAOQ+Jtib74faqqrl40WYfRWBP6A074aXpvvh/pLsRujjaEgHOAjFR+gH510OrWS6lo97YsMrcwPEf+BKR/WvPPgjeiXwzf2TNl7e7LY9FZRj9VakB6fRRRTAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAD0ryv432udF0rUU4kt7oxhvTcuf5oK9UPSuM+KNkb34ealtUGSHZMvttYZ/8dzQB1VhdJfWFtdxnKTxLKp9Qwz/WrNct8Ob7+0Ph/o8x6pD5P/fslB+iiupoAKKKKACiiigAooooAKKKKACiiigArzT43/8AIl2f/YRT/wBFyV6XXmnxv/5Euz/7CKf+i5KAPSu9LSd6WgAooooAKKKKACiiigAoPSig9KAPG/jx/wAy/wD9vH/tKvY+9eOfHj/mX/8At4/9pV7H3pLcBaKKKYBRRRQAUUUUAFFFFAAa8k+HB/sv4l+KtG2FA7NMg9FWQhfzEgNet15Jdg6R+0DbSltseowjP4xlB/49HSYHrdFIOtLTAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKoa3Zf2loOoWOSPtNtJDkdtykf1q/QelAHmfwSvDP4TurVmJa3uzhf7qsqn+YavTK8k+GJGlfEHxXom3au8vGP9lJCB+kgr1ukAUUUUwCiiigAooooAKKKKACiiigArzT43/wDIl2f/AGEU/wDRclel15p8b/8AkS7P/sIp/wCi5KAPSu9LSd6WgAooooAKKKKACiiigAoPSig9KAPG/jx/zL//AG8f+0q9j71458eP+Zf/AO3j/wBpV7H3pLcBaKKKYBRRRQAUUUUAFFFFABXknxYK6X4q8K64RgRS4kYeiOrY/Jmr1s9K84+NFkbjwSlyq/8AHpdpIxx/CQy/zK0MD0YdvelrK8NXp1Hwzpd45y81pG7/AO8VGf1zWrQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh6UtB4BoA8kcto37QKnIWLUYOeMcGLH/ocf6160K8k+KhXSvG3hbXCSFSQLKc4+WORW/k7V62OtIBaKKKYBRRRQAUUUUAFFFFABRRRQAV5p8b/+RLs/+win/ouSvS680+N//Il2f/YRT/0XJQB6V3paTvS0AFFFFABRRRQAUUUUAFB6UUHpQB438eP+Zf8A+3j/ANpV7H3rxz48f8y//wBvH/tKvY+9JbgLRRRTAKKKKACiiigAooooAK5zx7ZDUPAeswEE4tmlAHqnzj/0GujqO4hS4tpYZBlJEKMPYjBoA4r4SXovPh/ZJuBe2kkhf2+YsB+TD9K7mvKfgnPJBb65pEow9rcq5A7Egqf/AECvVqSAKKKKYBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUjdDS0UAeS/FG51Gw8ReH7PSNX1K2uNVufLkSK5YKFyijCngdT+VbHiTw5q+iaFe6vo/i3WftNlC0/l3kqzRuqgkgqVGOM81zXjG5ub3456NFZWEmoPptqJDbRuqEt8z5BYgDqh59Kt6r4o1zxvqV94GstPi0S5MR+2veTeY/lHGVRVGCSG9Twe3WgDK8WavN4z+D+ma9NCiXMF1tnx0GAyEj0ydhx/hz6/oF6dT8PabfHG64tY5G9iVBP61yeueFLXR/hHfaHaMzR2tsZvMPV2RvNY/iQfWrPwpvftnw904FtzwF4W9sMSB/3yRSA7WiiimAUUUUAFFFFABRRRQAUUUUAFeafG//AJEuz/7CKf8AouSvS680+N//ACJdn/2EU/8ARclAHpXelpO9LQAUUUUAFFFFABRRRQAUHpRQelAHjfx4/wCZf/7eP/aVex968c+PH/Mv/wDbx/7Sr2PvSW4C0UUUwCiiigAooooAKKKKACiig8CgDyXwlnSPjb4i04sQl0rygerErIP/AB1jXrVeSeJwNI+OegX4XC3apGW9WbdF/IrXrXekgFopHYKhZiAAOSe1cinxAsLyWddI03VtXjhYpJPY2waMMOoDsyhuMHjPUetMDr6KwfDvim08RzX0ENrfWtzYsq3EF5B5bIWGR3IPAz+IreoAKKKKACiiigAooooAKKKKACiiigAooooAKgvb220+0ku7y4it7eMAvLM4VV5xyT71PRQB4l4O13StQ+NXiHVp9StESVfstm0kqqJjuRV256khO3rV/wCJ8EnhfxfoPji0RiscgtrwKOWXnk+5TcMn0UV69UUs8UEZkmkjjQdWcgAfjSAoW15pviTSJWsryG7s50aFpIHDDkYIOOh56V598Ebh003WdLlTZLbXSyMp7Fl2kfgY/wBa7G+8e+FbBcz69ZMBwRC/mn8kya83+HmvWCfFLW0t7kfYtTaV4GdSu99+4DnGOC/X0oA9sopBS0wCiiigAooooAKKKKACiiigArzT43/8iXZ/9hFP/Rclel15p8b/APkS7P8A7CKf+i5KAPSu9LSd6WgAooooAKKKKACiiigAoPSig9KAPG/jx/zL/wD28f8AtKvY+9eOfHj/AJl//t4/9pV7H3pLcBaKKKYBRRRQAUUUUAFFFFABQelFB6UAeUfGiKS1/sDWYeHtbllz7nay/wDoBr1OGVZ4o5k5SRQwPseRXD/F2yF38P7qUgn7LLFMMdfvbD+jmtvwPejUPA+jXAbcfsqRs3qyDYf1U0gLPiu0u7/wjq9pY5+1TWkiRAHBLFSMA+p6V5/8KPGeix+H7TwzeOthqdqXjMM48sSksTxn+LJwVPOc16XPqNtbX9pZSuRcXe/yVAznaMtz9MVzfjH4daH4ugkkngFvqJXEd5CMOD23dmHsaYHSWmmWtnfX15ChE966vO2SdxVAg+nAFXa86+DGr3+q+CWW/laY2l09tFK7EkoFUgZPJxnAPpj0r0WgAooooAKKKKACiqV7q2naau6+v7W1HrPMqfzrnb34neELElX1hJnHQQRtJn8QMfrRcDr6K8tvPjdo6ZSw0u+uJOwk2xgn8Nx/Sq3/AAsHx3qrKNI8IGJGGQ88cjjHs52CkB63SMQASSAPU15KNO+LmsbvOv7fTUb+DcikfQopP60D4Q6tqextd8W3NxjlkAaT8mdv6UXA9EvfFOgacSt3rNjCw6o067vyzmuavfi54StEPlXdxdkHG2CBs/m+0frVey+DPhe25uDe3h9JZto/8cArorLwN4X09QINCssg5DSx+aR+L5NAHEv8aPtU3k6P4cu7tzzhnwf++VBz+dR/8JP8UtZVvsHh2OzU9Gki2MPxlYA/lXrEUccKhIkVFHZRgflUlFgPJP8AhE/idrG06j4mSzQ/eWGYow/CJQD+dSQ/BSCeXzdX8QXl3IepRArfiX3Zr1eimBwtn8JfCNmFL2Mt04OQ1xO3P4LgH8qzvHHw4tbjSkvfDVpHZ6nY/vI0t1CGYDnHGMsOoPtivS6RvumiwHFfDrxqvirSzBdMF1S0G2dCMeYOgcDt6Edj6ZFdtXkXj/w7e+Gdbi8beHgVKNuvYVHHPViO6t0b8/p6H4Y8RWfijRoNStDgN8skR5MUg+8p+nr7j1oA2qKKKACiiigAooooAKKKKACvNPjf/wAiXZ/9hFP/AEXJXpdeafG//kS7P/sIp/6LkoA9K70tJ3paACiiigAooooAKKKKACg9KKD0oA8b+PH/ADL/AP28f+0q9j71458eP+Zf/wC3j/2lXsfektwFooopgFFFFABRRRQAUUUUAFFFFAGR4qsjqPhPV7NRl5bSVUH+1tO39cVyXwavjdeBjAxGbW6kjA9jh8/+PGu9vbq3sbOa6u5Uit4lLSO5wFXvmvn3wP4zufC8+p2el6TNqsdxIGhCkqVALDdtCknII9OgpAex+JvC91reoadqWn6xNpt9p+/yXWJZEYOAGDKeoIGKq3eh+LtUtHsrzxJZ21vIuySSxsCsrqeCNzSEL9QK5QeJPinrCn7D4ejslP3Wki2MP+/rc/lQfCXxN1cqdR8TJaRnkrFMyMPwjUA/nRcD0PR9K0zwpokNha7La0gXG6RxknuWJ6k/56CqV74+8K6epafXbJsHBEL+cfyQGuNg+ClvPKZdX8QXl3Ie8aBW/EvuzW/ZfCXwhaBd9jLdMP4p52/kpA/Si4FG9+NPhi2Yrbx312ezJEFX82IP6Vlf8LZ1/VEP9h+EJ5R0WQh5h+IVR/OvRbLw3ommnNlpFjbv/fjgUMfxxk1qigDyU3Xxd1dlMdtbaZGw5IEYH5OWb9KP+FceNdULHWPGDoG6pDJJIv8A3ySoH4CvW6KLAeX2XwR0OLa15qF9cOD8wTZGh/DBP610ll8NvCNid0eiwyH1nZpQfwYkfpXWUU7AVLPTrHTk8uysre2T0hiCD9BVuiigAooooAKKKKACiiigAooooAKKKKAGTRJNC8UqK8bqVZWGQwPBBrxa7gu/hJ4xF9arJL4c1BsOi87f9n/eXnb/AHgSOTnHthrO1rRrLxBpM+m38ZaCZcErwynqGB9QcGkBZs7uC+tYbq1lWW3mQOkinIIPSrFeNeEtau/h94lk8I69IfsEzhrS4PCruPDD0Vj27Nnrya9iXnB6/SmA+iiigAooooAKKKKACvNPjf8A8iXZ/wDYRT/0XJXpdeafG/8A5Euz/wCwin/ouSgD0rvS0neloAKKKKACiiigAooooAKD0ooPSgDxv48f8y//ANvH/tKvY+9eOfHj/mX/APt4/wDaVex96S3AWiiimAUUUUAFFFFABRRQaACquo6haaVYTXt9MsNtCu53Y8D/AOvnjFM1TU7LR9Omvr+dYbaJcu5/kMckk8Y75rx9f7Z+MGt/N5lh4btJM8dWP8mkI+qqPXOWQBdT6x8Xdc+z2gls/DdpJ80h43Edz6uew/hHv19d0fR7HQtOi0/ToFht4xwB1J9Se5PrTtK0yz0ewhsbC3WC2hXaqr/P3z1Jq9TAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApD0paKAOU8c+D4PF2imL5Y76DL2s2M4bup/2Txn0xntXP/DPxhcTs/hbXN0eq2QKRmU/NIq9VPqy+vcDPYk+lHoa82+Jfg64vQniXQ1aPV7LDMI/vSqvII/2l/UcdhSA9Kork/AXjGHxfowlYql/AAl1EPXs49j+hyO2T1lMAooooAKKKKACvNPjf/wAiXZ/9hFP/AEXJXpdeafG//kS7P/sIp/6LkoA9K70tJ3paACiiigAooooAKKKKACg9KKD0oA8b+PH/ADL/AP28f+0q9j71458eP+Zf/wC3j/2lXsfektwFooopgFFFFABRRSHgGgAPSs7WdasNB02W/wBRnWKGPjPdj2UDuTUev69p/hzSZdQ1GbZEnAVfvO3ZVHcn/wDXXlNhpmr/ABY1garqoaz0C3ciGEEnd7Ke/Tl/y9AmAW1rrPxc14XV4JbLw3bP8iAkB/Zf7zkdW6AZH19g06xtdMtIrGxt44LaJcIkY4H/ANfOc+v51JZWlvY2sVraxLFBEu1EUYAFWKYBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUjfdOKWigDx3xnod74E8SR+MNAQ/ZXcrdwL90biMgj+6x/I49senaDrdn4h0m31OwfdDMvQnlD3U+hB/wA9KvXVtDeWkttcRLLDKpR42GQwPUGvGYnu/hH4waCV5ZvDl+cq/JKD1/3l7j+Ic/QA9soqK3mjuIY5oXWSKRAyOjZDKeQQe49DUtABRRRQAV5p8b/+RLs/+win/ouSvS680+N//Il2f/YRT/0XJQB6V3paTvS0AFFFFABRRRQAUUUUAFB6UUHpQB438eP+Zf8A+3j/ANpV7H3rxz48f8y//wBvH/tKvY+9JbgLRRRTAKKKKAA9Kx/EXiLTvDOlSX2ozbUGQkY+/I391R6/y61F4o8Vad4U0s3l8+S3EUKn5pG9B6e57CvNdB8Nar8SNZXxJ4lDR6Wp/wBHtegdQeFUf3fU9/pSYDdG0bVvilrA13xAHh0OFmFvbKSA4zjavqOPmbqeg9F9itYIbSCO3t4VihjUKiKuFUdgBT4YkgiSKNFSNBtVVGAoHQAVJTAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooADWP4i8PWXibRZtNvR8rjKSDkxOOjD3rYpG+6f8cUAeReA9fu/CWvSeCvEJKL5mLOZj8uT0AP91s8e5x9PXB1rjfiD4Kj8WaOHt1VNUtVJtnPG7/Yb2Pb0P41Q+GnjWTWrd9E1Ysms2QKHzPvSqvGT/tjo35+oAB6HRRRQAV5p8b/+RLs/+win/ouSvS680+N//Il2f/YRT/0XJQB6V3paTvS0AFFFFABRRRQAUUUUAFB6UUHpQB438eP+Zf8A+3j/ANpV7H3rxz48f8y//wBvH/tKvY+9JbgLRRSHpxTAD0rnvFni2x8JaU13dMHmbIgt1bDStjoPQep7e/SovGPjOw8IacZZz515Ip+z2qn5pD6+wz3/AJ1w3hPwdqPizV/+Er8XAurkNbWrAgMP4SQekY6he55PHLJgM8M+FdS8famPFPiwsLM4NraAFVdQeMA9E9O7ZP4+wRosaqiKFVRgBRgAduKRAEAVV2gcBR2FSUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQ9DXl3xI8K3MFynjLw+zRahaESXAiGSyj+PHfA6juPpXqVIehoA5vwX4stvFuiR3ke2O5j+S5gzkxv/geoP+Brpa8X8SaZefDPxWniTR4i2jXL7bi3XgJk5ZPYE8qex444z61pOp2ms6bBqFjL5ltOu5GxjHYg+4IIPocigC9Xmnxv/wCRLs/+win/AKLkr0uvNPjf/wAiXZ/9hFP/AEXJQB6V3paTvS0AFFFFABRRRQAUUUUAFB6UUHpQB438eP8AmX/+3j/2lXsfevHPjx/zL/8A28f+0q9jNJbgKelcn428cWfg+wyQs2oSj/R7fPX/AGm9FH+cdofG/jqz8JWYjjKz6rKpEFtnOP8AafHRf59BXOeCfAd3qV6fFPjDfcX87CSG3m/g9GYdj6L2HvwowIvB/gm98Q6mPFfi5mlmlPmQWkg6D+EsOwHZfofr6yAB2oFLTAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAKuo2FtqmnXFjeQrNbzoUeNuhBrx/SLy7+FXi+TRtSkeTQb5t8U56L2D/UdG/4CeOM+1Vg+LfDFp4r0OWwuT5cg+eCbGTE/Y47j1HcZ6UgNtGDqHUgqwyCDnIrzf43/wDIl2f/AGEU/wDRclU/h34outH1F/BPiEtFc2zeXaO54I7Jn0xgqe449M2/jb/yJln6f2gn/ouSmB6X3paTvS0AFFFFABRRRQAUUh6VTu9V0/Tygvb+2tS+dvnyqmcemaALtB6Vlf8ACS6EeF1vTSfT7Un+NaEU0c8QkhkSSM9HQ7gfxFAHkHx4/wCZf/7eP/aVdZ478f2/hWD7Jaqtzq8ykRQjkR54DN/h3rk/jx/zAP8At5/9pVy3hDxP4c0vUpdb8RQ6lqOsPIXVgiOkZ9eXBLenYY4qQO+8DeAbr7efE/iktcapO3mxRSc+Wf7zD+96Doo9+F9NA5rzUfG7w1n/AI8dW/79Rf8Axyl/4Xd4a/58dW/79R//ABymB6XRXmn/AAu7w1/z46t/36j/APjlH/C7vDX/AD46t/36j/8AjlMD0uivNP8Ahd3hr/nx1b/v1H/8co/4Xd4a/wCfHVv+/Uf/AMcoA9LorzT/AIXd4a/58dW/79R//HKP+F3eGv8Anx1b/v1H/wDHKAPS6K80/wCF3eGv+fHVv+/Uf/xyj/hd3hr/AJ8dW/79R/8AxygD0uivNP8Ahd3hr/nx1b/v1H/8co/4Xd4a/wCfHVv+/Uf/AMcoA9LorzT/AIXd4a/58dW/79R//HKP+F3eGv8Anx1b/v1H/wDHKAPS6K80/wCF3eGv+fHVv+/Uf/xyj/hd3hr/AJ8dW/79R/8AxygD0uivNP8Ahd3hr/nx1b/v1H/8co/4Xd4a/wCfHVv+/Uf/AMcoA9LorzT/AIXd4a/58dW/79R//HKP+F3eGv8Anx1b/v1H/wDHKAPS6K80/wCF3eGv+fHVv+/Uf/xyj/hd3hr/AJ8dW/79R/8AxygD0uivNP8Ahd3hr/nx1b/v1H/8co/4Xd4a/wCfHVv+/Uf/AMcoA9LorzT/AIXd4a/58dW/79R//HKP+F3eGv8Anx1b/v1H/wDHKAPS6K80/wCF3eGv+fHVv+/Uf/xyj/hd3hr/AJ8dW/79R/8AxygD0uivNP8Ahd3hr/nx1b/v1H/8co/4Xd4a/wCfHVv+/Uf/AMcoA9LorzT/AIXd4a/58dW/79R//HKP+F3eGv8Anx1b/v1H/wDHKAPS6K80/wCF3eGv+fHVv+/Uf/xyj/hd3hr/AJ8dW/79R/8AxygD0uivNP8Ahd3hr/nx1b/v1H/8co/4Xd4a/wCfHVv+/Uf/AMcoA9LorzT/AIXd4a/58dW/79R//HKP+F3eGv8Anx1b/v1H/wDHKAPS6K80/wCF3eGv+fHVv+/Uf/xyj/hd3hr/AJ8dW/79R/8AxygD0uivNP8Ahd3hr/nx1b/v1H/8co/4Xd4a/wCfHVv+/Uf/AMcoA9LpGOFJrzX/AIXd4a/58dW/79R//HKP+F3eGv8Anx1b/v1H/wDHKAL3xH8F/wDCR6euo6epXV7IZiKcNKo5259e6n1rznxR41Hif4dWtnesF1ezv41mU8GVRHIPMx254PofTIFdufjd4bxxY6t/36j/APjleW+OtY8P6/rP9p6LbXdtLNk3KTxoqs3Tcu1m5Pfpzg9zSA+ne9LSClpgFFFFABRRRQAHpXAfGKeG2+HN+XjRppmjhiLKCVJYZx+ANd+eleTfHCRru08PaFGfnv7/ACB9AE/9qUAdF4R8H6IvgjR0vNG06aZ7SOSVpbVGJZhuOSRz1/SuP8caW3wxvbHxN4YL21nNOIbywVyYpDgkHb2yA344r2OONYokjQYVVCqPQAV5X8dbnzdA0rRoB5l5e3wMUQ6ttUrj8TIooA9Rs7mO8s4LmE5jmjWRD/ssMip6p6Xa/YNKs7IHd9ngSLPrtUD+lXKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQ9K4zxr42Pht7TTNNtPt2u37bbW1ydq543Nj+HP0zg8jFdmeleQeFc658e/EF/c5b+zomigB/gIIj4/Dd/wB9GgDrrHwnq11CJ/EHibUpbt/vRWE32aGP2XaAxx6k/hVebw3q+k+IdGl0zXdauLKW6KXdvdTGdFj2M2dx5HKgcn+Ku6ooAQZPPSloooARiQpIBJHYd68l8U6Z4o13x3oetQ+FbprDSyH8qW7t1dmDZyMOQOi/ka9booA5F/EHiyVNtt4KlSQ/x3Oowqq+/wApYn8BVLQ/BN3L4iHibxTdxXurKu23ghUiC0HoueSRk8n1PXqO7ooAaODTqKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARvumvKL21ufAfxNu/E5tJ59A1WMrcyQoWNq52nLKOcZXOenze1esUh6UAcy3xB8IrAJz4h08qedqzAv8ATaPm/So/C2t3XiLW9Uv44ryHR40ihtBcQtGJmG8vIAwzjlR+FdKltAkplWGMSHqwUZ/OpqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9k='] Multimodal Competition True Theorem proof Geometry Math English 15 "In triangle $A B C, \angle A B C=90^{\circ}$. Rectangle $D E F G$ is inscribed in $\triangle A B C$, as shown. Squares $J K G H$ and $M L F N$ are inscribed in $\triangle A G D$ and $\triangle C F E$, respectively. If the side length of $J H G K$ is $v$, the side length of $M L F N$ is $w$, and $D G=u$, prove that $u=v+w$. " ['Let $\\angle B A C=\\theta$. Then by parallel lines, $\\angle D J H=\\angle B D E=\\theta$.\n\nThus, $\\angle B E D=90^{\\circ}-\\theta$ and so\n\n$\\angle N E M=\\theta$ since\n\n$\\angle D E F=90^{\\circ}$.\n\nSince $D G=u$ and $H G=v$,\n\nthen $D H=u-v$.\n\n\n\nSimilarly, $E N=u-w$.\n\nLooking at $\\triangle D H J$ and $\\triangle M N E$, we see that $\\tan \\theta=\\frac{u-v}{v}$ and $\\tan \\theta=\\frac{w}{u-w}$.\n\nTherefore,\n\n$$\n\\begin{aligned}\n\\frac{u-v}{v} & =\\frac{w}{u-w} \\\\\n(u-v)(u-w) & =v w \\\\\nu^{2}-u v-u w+v w & =v w \\\\\nu(u-v-w) & =0\n\\end{aligned}\n$$\n\nand since $u \\neq 0$, we must have $u-v-w=0$ or $u=v+w$.\n\n[Note: If $u=0$, then the height of rectangle $D E F G$ is 0 , ie. $D$ coincides with point $A$ and $E$ coincides with point $C$, which says that we must also have $v=w=0$, ie. the squares have no place to go!]'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIARIB3QMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAopD0riPihq1/oHhCfVNP1OazukdI4lRUZXLOM5DKf4dx49KAO4orz7QLLxXqPgq01SXxVeR6pc2/nqj20BhG4ZUFfLDdMd+9Wvhl41n8aaBLcXsKxXttJ5UuwEK+RkMAemfT2oA7eiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAPSvHPjRNPq2p+HPClmA811OJWTdjr8iZODgcvk47V7E3CmvFtHvLbxN+0He3bXEbQaZA6W+WHzFQEwPXl3b8KANfxj4o8Q6FpcNlc6RFo2lXA+zPqNvL9qMKkYGEGwg44z+XOK63wN4d0jw34bgt9GmNxbT/AL83JOTOWA+bjgcYGB/OuS+Lmv2l34ePhnTmW+1W+mj2wW5DsiqwbccdPu4rs/BOjT6B4P0rTLpt1xb24WTnoxJYj3xnH4UAdBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBHPBDdQPBcRJLE4w0cihlYehB61j/8IZ4W/wCha0b/AMAIv/ia2z0Ncp8QfF6eDvC898pU3kp8m0jY9ZCOpHcAAn34HegDoLHSNN0zd/Z+nWlpuGD9nhWPI/ACrleU6J8WrmwvE0zxzpcmk3TAMlyIysbA9ypJIHTnJGc524r1C2uYbyCO4tpo5oJBuSSNgysPUEUATUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNclUJCliOgHegB1FcNcfEu3t/FX/CNnQdWk1Q/diQQ/MNu7IPmY6c9auXfju20h4/7c0rU9KikYKLieON4QTwAXjdwPxxQB1tFQ29xFdQxzQypJFKodHQ5DKRnIPcc1KelACO21CxOAO9eOaaG+J/xPfU3DN4e0I7bcEfLNJng++SNx9AFBHNbnxY8T3FjpMHh3SyzatrJEKKpGVjJwT17n5R/wL0rm7PR/HHwnhL6ckOuaIx824giQqyNgbiP4h0wG5XAyVGKAPW9Y0PS9esGs9Vs4bqA8gSD7p9VPVT7jmvC0TW/B/wAQb3RPh/dXWpQW0YmubKbDIp/iU9M4yORg5OOcGu2vvjNoUng261LTZSNUCbIrKYfOJDkA8ZDKMEnB7YOCQK0vhZ4Vfw94dN7fhm1bVG+0XDPyyg8qpJ74OT3yx64oAb4U+Kuk69KNP1JX0jV1O17a54Vm9FYjr/snB+td+D05rmPFfgPQfF8J/tG023IGEuoRtlX2zjkex4rgRL45+Fu0S58ReG0/jGfNhT+aj65XAHIzQB7NRXM+F/HGh+LrcPpl5mYLmS2lwsqfUdxz1GRXSAjsaAHUUUUAFV7u8t7GBp7qeOGFfvPIwUD8TViqWsahFpOi32ozAGO1geZge4VScfjQBl/8Jz4VwP8AipNJ5/6fI/8AGpIfGfhm5mjht/EGmSzSsEjRbpCWYnAAGeTXBfAvRxF4b1DWpkUzX9yVVivVE44/4EWH4V3N3pOmeJJNN1CJISbO985ZhGNzeWWXAPpuGfwzQB0A69TS0g4NLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLWB411f+wvBeraiG2yR27CM/9NG+Vf8Ax4igDzv4dj/hJviv4n8TOA0NuTbwk+52qR/wCP8A8er1LXrC31PQNQsrpFaGe3dHB9MdfqK4v4MaT/Zvw8huXG2W/le4OeCF+6v6Ln/gVaPxM8UQ+G/B92BIPt17Gbe1iz8zMwwWH0BJ/AUAcz8BtUuLvwzfafM5eOyuB5RP8KuCdo/EE/jXqGo39vpem3N/dyCO3t42kkbGcADJ47n271xfwn8Kz+F/By/bEMd7eOZ5VYYKDGFU+mBzjsWI7VhfE3UrrxP4hsPh/pMuDOyzajKvIjQfMAfoPnx3OygBPhvYXPi3xXf+P9VjIVmaDToznCqBgsPoPl+pbuK9bIGDxVTS9NtdH0y206yiEVtbRiONB6DufUnqferlAHIar8N/DWsa5b6xNY+XdxTCVzEQqzkcjevQ/XgnuSOK60dadiigAwPSkNLRQB554q+FOlaxcf2lpEraLq6sXWe2yFdvUgYwf9pcH61h2vj/AMTeCLyPTvHenvPakhItUtl3bvTPZuATjAbAJwa9fqC7tLa+tJLa7t4p4JFw8UqhlYe4NAFbSNZ07XLJL3TLyK6t36PG2fwI6g+xxWhXk+qfC3UNCvn1fwDqclhc/wAdi75jkHoCeMeitkc9RVnQfi0sd6NH8aWL6Jqi4BkcEQufXn7o98leCc0Aen15x8atXOneAntI2xLqEyQADOcA7m/9BA/GvQY5Y54w8TiRGXcrKcgj2x1ryn4iaH4o8TeK9IltfDk8+k6bIHdXuoENxlgWwC/QqoAzg8nigDUi+Hclt4BSytNU1mC/SxOIIL9kjMxXJXbwMFyfzNdzpGnx6TpNlp0P+qtYEhX3CqBn9KxLjxD4hWEm28FX8kuOFkvbVFJ9MiQ/Tp+FReD7fxFdX1/rHie3S1upCIbW0jkV1hhHJOVJBLMeSefkHQcUAdfiiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQ9K5Dxz4Qv/GenrpqaxHY2O5XkUWhkdyOxbeOM4OMdutdhRQByGl+HfEelaPaaXD4ks/JtolhjkGl4k2qAASTKQTgD+GpdO8C6dbasNY1Ga51fVR925vWB8v8A3EACr+ArqqQ9OKAMTxX4jtvCvhu71e4wxiT91H3kkPCr+fX0GTXgvw9tvGviHWtb1bw/q9laX5KfapruMMzhyxwuY2wMqeOO3pXY62x+J3xNi0KNi/h/RCXvGBO2WQHDL+J+QHsA5FX/AIUqF8cfEFVACjURgAYGPMn6UDHf2F8ZP+hs0b/v0v8A8Yo/sL4yf9Dbo3/fpf8A4xXqlFAjyv8AsL4yf9Dbo3/fpf8A4xR/YXxk/wCht0b/AL9L/wDGK9UooA8r/sL4yf8AQ26N/wB+l/8AjFH9hfGT/obdG/79L/8AGK9UooA8r/sL4yf9Dbo3/fpf/jFH9hfGT/obNG/79L/8Yr1SigDyr+wfjJ/0Nmjf9+l/+MVl674A+JniO0EGra7oN3Gpym6IBl+jCAFeg6EV7TSHoaBnzhoE3jrwL4pv/D2l7NU+wRLcT2KMXiZDtOYwcMD+8UcDr2IFes+EvidoXikrbFzYalkhrS5O0lh1Cno304PtWDoY/wCMjPE4/wCoan/oNtXSeLfhzoXi0Ge4gNtqA+7eW42yZHTd/eH1/AjrQI6/jjIHp0p1eNJrXjf4YssWtwtr+gLhUvYz+8iGe5PI+j5yeAwAr0jw54t0XxVa/aNJvklIH7yF/lkj/wB5TyPr0oA3aKSloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBD0NcT8TPFreFvCrLbMx1O+P2e0VfvZPVh9AePciu0mljgheaWRY441Lu7sAqgckknoK8f8AC8bfEj4j3Xim5U/2NpLeRYRsOHbqCc9DzvPcEr1xQB2fw48JL4S8KwwTKDqFwRNeP1Jcjhf+AjA+uT3rm/hX/wAj18RP+wmP/Rk9epD/ADjtXlvwr/5Hr4if9hMf+jJ6APVKKKKACiiigAooooAKKKKACg9DRQehoA8r0L/k43xP/wBgxP8A0G2r1TANeV6F/wAnG+J/+wYn/oNtXqlADXRXjZGUMrDBBGQR9K818RfCW0uLv+1vC902h6qh3KYGKwufoPu55zjj2PWvTKMUAeSad8S9a8LXqaR8QNNkhY/LHqUCblk9yF4b3K89Plr1DTtRs9Vs47ywuY7m2kGVljYMD+X8u1GpabZarYSWd/aw3NvIMNHKoYGvLb/4b674RvX1bwBqUiDrJplw+VcegJ4b6Nz6NmgD12ivN/Dfxasby6/srxJbyaJq6HYyzgrG7egJ6H6/gTXoysGAYHIPQjoaAHUUUUAFFFITgZoAWiud8a3Vxp/hO/v7a9uLW4giJhMKoS8h4RSGU8FiB+Nc58IvE2reI9B1A61cm4vba7Me4qqkKVHHygDqG5xQB6LRWH4m8QJ4d0eS7KGa4ciK2gBx5sp+6vsOpJ7AE1wnwm1rxP4tN/qmr6zM9pBKIoYY4YlR26tnC54BXGD3oA9XopO9LQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIeBS1n6zq1roej3Wp3smy3t4y7HHJ9FA7knAA7kigDgPizr93Iln4N0Zi2qau4V8HHlxZxzjoGP/jqtXceGtCtfDOgWekWgzHbptL4GXbqzH6nJrz/4WaVda9q2oePtZQfab12jskPIjjHBI9sDYO+A3rXq9ABXlfwr/wCR6+In/YTH/oyevVK8r+Ff/I9fET/sJj/0ZPQB6pRRRQAUUUUAFFFFABRTJmZIXZEZ2CkhFIBY+gzxXJ6J8QLDWPFdz4cayvbHUrdSzR3QTBxjIUqxz1znpigDr6D0NVb65ktLSSeK1lumQZ8qIqGP03ED9ayPCvilPFmmjUbbTr21tGyI5LnYPMxkHAVicAg8nFAHGaF/ycb4n/7Bif8AoNtXqleV6F/ycb4n/wCwYn/oNtXqlABRRRQAUhHBA4paKAMDxL4P0XxZa+Rq1msjAYjmXiSP/dbrjvg8eoNec/2Z45+GLmTR5W8Q+HlO42r5MkS+wGSPquR1JUV7LikIyKAOR8JfETQvF6IlpceRe7cvZzkLIPdezD6c+oFdaOoriPF3ww0PxLIbyIHTdU3blvLYYy3XLLkBj78H3rlYvFvjL4cyLaeLrR9W0gHbHqVsdzge5PU9BhsHn7xoA9joNZOheIdK8SWYu9JvY7mLo4U/NGfRgeVP16+9arYAOelAHJ+LD9u1nw5oY5Fxefa5vTyoBv5Hu5jrj/hS6ab4q8dadKwSOC88wFjgBQ8gJPpxtrp9Fuodb+Jeu3ccqumlW0VgmCD8zFnkOO2CFX/gJHauIt/DWoal8YfE+nRFodIn8ttRkXgvGwWQRg/7RyD7B6AL3i7VWvPC+r+MZ8rbmFrHRYnGCEk+V58f3mXJH+yPeus+FejnRvh5pcbria4Q3MnGM7zlf/Hdo/CuM+MlzFfX/hrwjbSJGJrhTIqcCMEhI+Ow5Y/QV7DBFHBFHDEoRI1Cqo7AcCgCWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiimNIqAFmCjsScUAPopiyI7YV1J64BzTz0oAQ9K8g8fXM/jjxvZeBNOkZbSAifU5U52jrt/AEf8CYeld1448Ux+EfDFzqLlTcEeVbIf45T90fQck+wrD+E/haXRtCk1fUgzavqzfaJmkHzKpO4Kfc53H3OOwoA7mytILG0gtbaMRQQxrHHGvRVAwAPYAYqzRRQAV5X8K/8AkeviJ/2Ex/6Mnr1SvK/hX/yPXxE/7CY/9GT0AeqUUUUAFFFFABRRQelADZHWONndgqqCxY9AB3rwHXLe60m30T4mwRyefPfyT3Kf9MXc+Wv08sFc/wC0K9X+IF7LbeDryC3P+lX5WxgHq8rbOPoCT+FXdW8N2upeD5vDuAsDWot4yR9wqBsP4EA/hQBT8W60sHgK+1GybzWuLYJalf4mlwqEfiwNa+h6XHo2hWGmR4K2kCRZA6kAAn8efzrxzwHqdzq40TwXepILjRtSkuLlWGSsUOSgP/bVgv0UV7n04oA8dttY07Q/2gvElzql7FaQNp8cayTNgFtlucZ+gNd7/wALD8If9DFp/wD3+Fefx6DpniH9oDxHaatZpdW62EcqxuSAGCQDPHsTXcf8Kv8ABX/QAtv++n/xoAsf8LD8If8AQxaf/wB/hR/wsPwh/wBDFp//AH+FV/8AhV/gr/oAW3/fT/40f8Kv8Ff9AC2/76f/ABoAsf8ACw/CH/Qxaf8A9/hR/wALD8If9DFp/wD3+FV/+FX+Cv8AoAW3/fT/AONH/Cr/AAV/0ALb/vp/8aALH/Cw/CH/AEMWn/8Af4Un/Cw/B/8A0MWn/wDf4VB/wq/wV/0ALb/vp/8AGj/hV/gr/oAW3/fT/wCNAE//AAsPwf8A9DFp/wD3+FMl8e+C7iF4Zde0ySJ12sjSKQw7gj0qP/hV/gr/AKAFt/30/wDjR/wq/wAFf9C/bf8AfT/40Aeba5pPhC2vzrPgnxjZaNqSDPlC4/ct7d9o9uVOMYFaHhf4121wTpni6GOKTmNruEb4ZOx3L2HuuV57V3DfC/wXj/kX7b/vp/8AGuC+HXhfRdR8R+PtMvNNgltIL0Qwo6/6tRJMBtPUHCjkHPFAHqWk6J4bi8rUNI0vSk3rlLi0t41yCOzKOlayQQxSSyRxIjysGkZVALkAAEnucAD6AV5HceBPFHgS6fUPAl89zYkl5dLuTnIyOADgH68N6Zrf8K/FbStcm/s7U0fSNXVtj210SoLegYjg/wCy2DnpnrQB08nhDwzLI0knh3SHdjks1lGST9dta0FvDawrDbwxxRJwqRqFVfoBTx2BNLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVy/xClsbbwJrFxfW8MqpbOsfmIGxI3yqRnodxFdOeleUfHHUJG0XS9Atsm41K7Hyg8sq4GPxZl/KgC58FvDlvp/gyDVZLaP7beyPIJGQb0jztCg9cHbn8a9Lb7pqnpWnx6Vo9lp8X+rtYEhXHfaMf0rjPir4rm0Lw+um6cXfV9VJt7dE5YKcBmHvyFHufagDmW/4ul8UthIk8OaF94EZSeQn8iGI+hVPevZRXM+A/CsXg/wtbaaCGuDmW5kHR5TjOPYcAewrp8CgAooooAK8r+Ff/I9fET/sJj/0ZPXqleV/Cz/keviJ/wBhMf8AoyegD1SiqmofaRZSNbXMVvIqlvMmjLqoHcgEfzrz74a+LvFXjaO5vrw6db6fbyCP93buXlbqQCXwMDHY9aAPTKK4n4leJtV8I+HhqunS2efNWLybiFm3ls/xBxjGCeh6VseErrWL/QLS/wBZe28+6iWYRQRMgiVhkA5ZsnBFAG9SN04paKAOR8SeGNW17VtMu4tagtbfT7hbmK2ayMm9wOrN5i579AMZ/GuoiEixKJnDvgBiilQTjnAycD6k9etTYooA5rSvCNrpfjTV/EMRG/UIo02AY2kffP8AwLCn6iukI4pcUHoaAPK9C/5ON8T/APYMT/0G3r1SvK9C/wCTjfE//YMT/wBBtq9UoAKKKKACiiigAooooAKKKKACvK/hX/yPXxE/7CY/9GT16pXlfwr/AOR6+In/AGEx/wCjJ6APVO1cx4q8CaD4vgxqNoBcquEuovllQemccj2ORXT0YHpQB4zu8d/C4EnPiTw6gznkSwoPzK/qvHavQPC3jrQvF0OdMvQbgDL2suFlXpztzyORyMjmulIrz7xV8KdJ1y4/tHSpG0bVlbetxbDCs2c5ZQRz15GD9aAPQAc06vILXx74o8DXUen+O9OkuLQnbHqlqu7P17N69m9jXp+ka1p2vWSXul3kV3btxvibOD3BHUH2OKANCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoNFFAHHeOfEWteHf7JudNshc2T3IXUH8pnaOPjoF6cbjk9CB61zn9lXHjb4sW2ueVINC0iNRBLIjKJ5RlvkyBkBm5P+xXqeBnOBn1oI4OB+VAENzcw2drNdXMixwQoZJHboqgEkn2xXzjZeNrvW/ijN4kj8O3WuNbxt9is4ScwIDtVztVs43HPbcwIORXffFTV7rWdRsPAWkMTd38itduP+WcXXB9sDcfZR61S8DaTa6F8ctc0qzXbBa6TGgz1J22+Sfc9T7k0AaH/AAtLxT/0THWPzl/+M0f8LT8Vf9Ex1n85f/jNeqUUAeV/8LT8Vf8ARMdZ/OX/AOM0f8LT8Vf9Ex1n85f/AIzXqlFAHlf/AAtLxV/0TLWP++pf/jNU/gzdS3/iXxveT2slrLcXccr275DRMXnJU5A5GcdunSvYK8q+Fv8AyPPxFPQ/2kOf+2k9AHS/E7WP7F+Huqzq+2SWP7PGe+X+UkfRSx/CuZ+HGpXHhzwTY2n/AAiuvTvJm4kmhiiKOXOQRmQHG3aOnaqvxmnfVtV8NeE4Hw95dCSQZ+7khEP6v+VetwxJBbxwxKFjjUKijoABwKAPEviNrE3jHxF4b8LDTNQ0/wAy5Es0V2qKzKx2hhsduABJXt6IqKqqAAowAOgFeP8Ahgr4o+PGs6tkSW2lRtDAc5AYDy+PY/vD+Nex0AFFFFABRRRQAUHoaKD0NAHlehf8nG+J/wDsGJ/6DbV6pXlehf8AJxvif/sGJ/6DbV6pQAUUUUAFFFFABRRRQAUUUUAFeV/Cv/keviJ/2Ex/6Mnr1SvK/hX/AMj18RP+wmP/AEZPQB6pRRRQAUUUUAQXlrb3tpJbXcEU9vINrxyqGVh7g15fq3wtvtF1FtZ8A6nJp131azd8xyD0BORj/ZYEZxyK9XpMD0oA8w0L4siC9Gj+NLF9F1NcAysh8lz6+q9+eV75HSvS4Zo540kikSSNxuV0YMGHqCOorN1/w3pHiWwNrq9lHcRgHa54aP3Vuqn/ACeK8zk8KeMvhzK134Su31fRgdz6bMNzqO+AOp90wT6GgD2OiuF8JfE/RPE7i2lc6dqY+VrO5bqw6hG4DfoeOldwD60AOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigANZPiPXrTw3oF3q16T5NumQoPMjHhVHuTx7da1W+6a8d8VyyfEX4jWnhG1Zv7I0xvO1F1OAWGAVz7Z2D3Zj2oA0vhNoV3ci88bayN2p6szNFkH5IjzkA9ASBgf3VXB5pmg8ftGeJh2/sxP8A0G2r0+KNIYUiiRUjRdqoowFA7CvMNC/5ON8T/wDYMT/0G2oA9UooooAKKKKACvKvhZ/yPPxF/wCwmP8A0ZPXqteV/Cv/AJHr4if9hMf+jJ6AOrvPh94av9WGq3VncyX4YMtwb+43oR02kP8ALjtitu506C7shZyvceUBjMdzIj8erqwY/nV7FFAHMaP4A8N+Hro3Wk2U9pKcbil7Ph8c/MC5BHsQa6Udep/xp1FABRRRQAUUUUAFB6Gig9DQB5XoX/Jxvif/ALBif+g21eqV5XoX/Jxvif8A7Bif+g21eqUAFFFFABRRRQAUUUUAFFFFABXlfwr/AOR6+In/AGEx/wCjJ69Uryv4V/8AI9fET/sJj/0ZPQB6pRRRQAUUUUAFFFFABRRRQBx/i74d6D4tjM1zAbfUBjZeW42yZHTPZvofwI61xa6v45+GLeVrELeINAU4W7jJ8yIdOT1HbhsjsGr2SmyKrIVcAqeCD3oAwvDfi/RfFdr5+lXyykAF4X+WWP8A3lPPXjI4rerzbxJ8JrK7u/7W8M3TaJq6ZZWgJWJ2x3A+7nplePY1naf8Stb8KXsekeP9NkjLHbHqUCZWQcckLw3XkqcjIG2gD1uiqenalZ6tZx3mn3UVzbSDKyROGU/l0Pt271coAKKKKACiiigAooooAKKKKACiiigAooooAKQ9KWkYgKSTgDqfSgDkfiL4uTwh4Vmuo2Bvp8xWiHnLn+LHoo5/Id6q/C/wk3hfw0JbtP8AiaagftF2zHLDPKoT3wCc+5NcppOfif8AE+TWJMt4f0JttqufllfOVb3yRuPsqg17EBzmgBT0ryzQv+TjfE//AGDE/wDQbavVD0NeV6F/ycb4n/7Bif8AoNtQB6pRRRQAUUUUAFeV/Cv/AJHr4if9hMf+jJ69Uryv4V/8j18RP+wmP/Rk9AHqlFFFABRRRQAUUUUAFFFFABQehooPQ0AeV6F/ycb4n/7Bif8AoNtXqleV6F/ycb4n/wCwYn/oNtXqlABRRRQAUUUUAFFFFABRRRQAV5X8K/8AkeviJ/2Ex/6Mnr1SvK/hX/yPXxE/7CY/9GT0AeqUUUUAFFFFABRRRQAUUUUAFFFFABiquoabZarYyWd/axXNtIMNFKgYH8+/vVqigDyO/wDhrrfhS9fVvAGpvGfvSaZO4KyD0BPB9Pm5HZq0vDfxas7q8/snxPbPomrIQjCZSsTN9TyhPYNx6E5r0kgEVheJfCOi+K7PydWs1lKgiOVeJY/91v1x0PcGgDbRw4DKQVIyCOQffNPrxo6T44+GTtLos7a/4fQ7mtHBMkS+w5I+qnHcrxXa+EviNoXi5RFbTm2v8fPZXBxID329mHB6H8BQB2FFIKWgAooooAKKKKACiiigAooooAD0rzX4seJbi10yDwzpQaTVtZIhCIeUjJwT7bumf949q9Jb7pryHWfh745uPHt14m0vW9MSUsRayTqd0UeNu0IUdRgZGQeeTwSRQB6D4Q8N2/hTw3aaTDtLxrumfGPMkPLN+fT2AFb1eV/2F8ZP+hs0b/v0v/xij+wvjJ/0Nujf9+l/+MUAeqHoa8r0L/k43xP/ANgxP/QbakOhfGTH/I26N/36X/4xWVb+APidbeJLrxBD4g0dNUuohFNPydy/LgbTDt/gXkDtQB7VRXlf9hfGT/obdG/79L/8Yo/sL4yf9Dbo3/fpf/jFAHqlFeV/2F8ZP+ht0b/v0v8A8Yo/sL4yf9Dbo3/fpf8A4xQB6pXlfwr/AOR6+In/AGEx/wCjJ6Q6F8ZP+hs0b/v0v/xisrSvh/8AE7Rb/Ub3TvEOjwXGoyeddPgt5jZZs4aEgcu3Ax19qAPaqK8r/sL4yf8AQ26N/wB+l/8AjFH9hfGT/obdG/79L/8AGKAPVKK8r/sL4yf9Dbo3/fpf/jFH9hfGT/obdG/79L/8YoA9Uoryv+wvjJ/0Nujf9+l/+MUf2F8ZP+ht0b/v0v8A8YoA9Uoryv8AsL4yf9Dbo3/fpf8A4xR/YXxk/wCht0b/AL9L/wDGKAPVKD0NeV/2F8ZP+ht0b/v0v/xikOhfGTH/ACNujf8Afpf/AIxQAuhf8nG+J/8AsGJ/6DbV6pXitv4A+J1t4kuvEEPiDR01S6iEU0/J3L8uBtMO3+BeQO1a39hfGT/obdG/79L/APGKAPVKK8r/ALC+Mn/Q26N/36X/AOMUf2F8ZP8AobdG/wC/S/8AxigD1SivK/7C+Mn/AENujf8Afpf/AIxR/YXxk/6G3Rv+/S//ABigD1SivK/7C+Mn/Q26N/36X/4xR/YXxk/6G3Rv+/S//GKAPVKK8r/sL4yf9Dbo3/fpf/jFH9hfGT/obdG/79L/APGKAPVK8r+Ff/I9fET/ALCY/wDRk9IdC+Mn/Q2aN/36X/4xWVpXw/8Aidot/qN7p3iHR4LjUZPOunwW8xss2cNCQOXbgY6+1AHtVFeV/wBhfGT/AKG3Rv8Av0v/AMYo/sL4yf8AQ26N/wB+l/8AjFAHqlFeV/2F8ZP+ht0b/v0v/wAYo/sL4yf9Dbo3/fpf/jFAHqlFeV/2F8ZP+ht0b/v0v/xij+wvjJ/0Nujf9+l/+MUAeqUV5X/YXxk/6G3Rv+/S/wDxij+wvjJ/0Nujf9+l/wDjFAHqlFeV/wBhfGT/AKG3Rv8Av0v/AMYo/sL4yf8AQ26N/wB+l/8AjFAHqlFeV/2F8ZP+ht0b/v0v/wAYo/sL4yf9Dbo3/fpf/jFAHqlGK8r/ALC+Mn/Q26N/36X/AOMUf2F8ZP8AobdG/wC/S/8AxigD1MjiuI8W/DHQ/FEhukVtP1QHK3lsMEt2LLwGx9QfesP+wvjJ/wBDbo3/AH6X/wCMUf2F8ZP+hs0b/v0v/wAYoAz4fFfjL4cSLa+LLV9X0dSEj1G3bLKMDGSevbhsE88nFem6D4k0nxLZi70m+juY/wCNQcPGfRlPKn6/hxXn8vh34wTRNFL4p0SSNgQyNChBHoQYK5my+D/jvTdTGpWGs6TaXgOQ1vLJGPphYgNv+zjFAHvtFUtKS8i0uzi1GZZr5YEW4lQfK8gUbyOBxnPYfSrtABRRRQAUUUUAFFFI33TQAtFcR8TfFsvhbwtM1kWOo3KlINvPljjdIfYZH4stb/hXUG1bwrpN+7l5J7SN5GPd9o3frmgDYoooPSgBKPwrz/4v3f8AZvgie8hurq2vjJHFbSW9y8R3FsnIUgH5Q3WjwtJB4U8GadqGt6hf3Wo30KvslnknkkdwCI44yTyMgcD1yaAPQMj1FFcBoHhLUrnV59b1u/1O2jmcNb6TFqEpSEY/jYNyTjJUfKM984HfD0oAdRRSHpQAtFcHr3ji7l8SL4W8LQR3Oq8m5uJcmG0UYznHVuRx2JA6nA1IvDGpNCGuvFusPdkZMkXlRID7R7CMexz9aAOoorg/Dk3ixfH15pWtail1p9laCaKWOFYzNvbCl8dxscYGBkV3lABRRRQAUUUUAFFFFABRQa57xndTWHhTUtQg1CayltbeSVHiCHLBTtBDKRgnA6d6AOhxRXmPw8HifxV4Wj1jVfFOoQtPK4iS2it1GxTtycxt3B/Kt220/wASWHjLTVbxFd6hpMkMzzxz28QwVChfmRF6lwf+AmgDsaKKKACiiigAooooAKKKKACk6elRXcMU9rJFMWEbD5irshH/AAJSCPrXjvwpguvEusazql1q2qz6bbT+XZwvfy7Tklufm5wu0YPrQB7PS01eMCnUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSHpSSMEjZmYKFGSxOAK8pttYv/in4ku7Kwu57LwpYMBNJAxSW7bPA3dQp64/u9eWGAD0xtQsUnEBvLZZs48syAN+WasK6mQoHBZQCwB5GemR+BrBj8EeFo7H7Gugab5W0g7rdSx9yxG4n3zms7wD4R/4RM63CN5ilvSbZnOSYAilB+BZh+FAHZ0UUUAFFFFABTJZUhheWVwkaAszMcAAdTTj0rivFN/FrOv2XguCYN9pBuNSAblbdSD5f/Azgf7ufWgDIvobfxL4R8R63cyxiXULGSPT4WdQ0dugLR8di7AOR7qO1X/g3fC8+G9jHnLWsssDY7YcsB+TCt5vBvhbac+G9IHqRZRj8c4rgPgTdLDZa9oxlVmtbwSAA9dwK8e37sfnQB6/RSCmTzxW0DzTypFEgyzuwVVHqSelAHj/xiaXX/E3hrwhbOFe4k86Qkbtu47ASPYBzVz4Y6k134q1qy8RRq3ie0chZHOdsIwuyJeiKDg8Y3BgeetYvhvWtN8R/Hi/1aa+gW3tonjsS8gCyYxGNhPBzl2x15q38WZYfDfijRvFumXMCarDIIri28wB5U2kgleuCoZScdCKAPZ8CisjQPEOm+JLCK9027imR41do1kBaPPZl7EdPzrXoAKyPFOrNoXhbU9UQZktrd3QH+9j5f1xWvWT4o0b/AISHwvqWk7gjXUDRqx6K38JPtnFAHn3wN0vb4evtduMyXmoXLIZW5JRf8WLE/hXpOqalDpNi93PHO0MYLOYYy5UAZJwOa87+D+rJY6RP4V1LFpq9jcPm2lO1nUnOV/vYJI47Y7EVv/E7XotD8CalulUXN1C1tBGThnL/ACnHuASfwoAveG/GWi+KJnbSFuJQvyPMbZ0VSMkKWI9+nvXS1xnwt0f+xvh9pkLptmmU3MmRg5c5H/ju0fhXZ0AFFFFABRRRQAUUUUAB6V5h8cdVNp4Lh0yI5m1G5VCo6lF+Y/qF/OvTj0rxrxZNH4n+OPh/RRKrW+nDzXB5BcAyN+ioPzoA2WvfFvhXwhp2k2Xh22jdViskujfiQJI5ChymwE5Zs9eK9Htofs9vFDveTy0Cb5DlmwMZJ7mlkhjmwJEVtrBgCM4PY1LQAUUUUAFFFFABRRRQAUGikb7tAHLfEXWP7F8Aavdq22RoDDGc/wAT/KCPpnP4VR+Eukf2T8PNO3KRJd5unzxncfl/8cCVxXxy8RWdzHpvh6G8jJ+0Ga72MG8vb8qq2Oh5Y49ga7+Dx54MsrCKKLxBYCGGNURVkyQoAAGAM5xjigDrqK43wt4vTxj4hvptLaQ6NYxiFZGUqLiVjktgjIChePXeTjpXZUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHH/FK+m074b6zLbkiR41hyOwd1Rv0Y1n/BqyitfhtYTIBvupJZpD77yv8lFdZ4j0WHxF4dvtInYql1EUDgZ2t1VvwIB/CvOPBGs33w/sJPDXijTryKC3kZrW+t4GmhZCclfkBPUk9P4u2KAPW8YormI/EV1roEWg2dykTff1C8t2ijjHqqPhnb0GAPU9q6OIMqqrOXKjBY4yxHfjigCSiiigAooooAKyx4a0Fb37aNE00Xe7f54tE8zd67sZz71qUUAQ3VpbX1u0F3bxXEL/AHo5UDqfqDxVC08M6Bp9wtxZaHpttOvSSG0jRh+IGa1aKACiiigAxRgelFFABRRRQAUGiigDK1Xw5o2t7TqemWt0ycK8sQLKPY9R+BqvZeD/AA5p9ys9vo9mJ1+7K6b3X6FskfhW7RQAUUUUAFFFFABRRRQAUUUUAIyh1KsAVIwQRwaxh4P8MCTzB4c0gPnO77DHnPrnbW1RQAiqFUKoAUDAA6CloooAKKKKACiiigAooooAKKKKACjFFFABiiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKMD0oooAKMAdqKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//Z'] Multimodal Competition True Theorem proof Geometry Math English 16 "In the diagram, quadrilateral $A B C D$ has points $M$ and $N$ on $A B$ and $D C$, respectively, with $\frac{A M}{A B}=\frac{N C}{D C}$. Line segments $A N$ and $D M$ intersect at $P$, while $B N$ and $C M$ intersect at $Q$. Prove that the area of quadrilateral $P M Q N$ equals the sum of the areas of $\triangle A P D$ and $\triangle B Q C$. " "['We use the notation $|P M Q N|$ to represent the area of quadrilateral $|P M Q N|,|\\triangle A P D|$ to represent the area of $\\triangle A P D$, and so on.\n\nWe want to show that $|P M Q N|=|\\triangle A P D|+|\\triangle B Q C|$.\n\nThis is equivalent to showing\n\n$$\n|P M Q N|+|\\triangle D P N|+|\\triangle C Q N|=|\\triangle A P D|+|\\triangle D P N|+|\\triangle B Q C|+|\\triangle C Q N|\n$$\n\nwhich is equivalent to showing\n\n$$\n|\\triangle D M C|=|\\triangle D A N|+|\\triangle C B N|\n$$\n\nsince combining quadrilateral $P M Q N$ with $\\triangle D P N$ and $\\triangle C Q N$ gives $\\triangle D M C$, combining $\\triangle A P D$ with $\\triangle D P N$ gives $\\triangle D A N$, and combining $\\triangle B Q C$ with $\\triangle C Q N$ gives $\\triangle C B N$. Suppose that $D C$ has length $x$ and $D N$ has length $t x$ for some $t$ with $0\n\nFigure 1\n\nThen $|\\triangle D A N|=\\frac{1}{2}(t x)(a)$ and $|\\triangle C B N|=\\frac{1}{2}((1-t) x) b$ so\n\n$$\n|\\triangle D A N|+|\\triangle C B N|=\\frac{1}{2}(t x a+(1-t) x b)=\\frac{1}{2} x(t a+(1-t) b)\n$$\n\nAlso, $|\\triangle D M C|=\\frac{1}{2} x m$.\n\nIn order to prove that $|\\triangle D M C|=|\\triangle D A N|+|\\triangle C B N|$, we need to show that $\\frac{1}{2} x m$ equals\n\n\n\n$\\frac{1}{2} x(t a+(1-t) b)$ which is equivalent to showing that $m$ is equal to $t a+(1-t) b$.\n\nIn Figure 2, we draw a horizontal line from $A$ to $B G$, meeting $M F$ at $R$ and $B G$ at $S$.\n\nSince $M F$ and $B G$ are vertical and $A R S$ is horizontal, then these line segments are perpendicular.\n\nSince $A E=a, M F=m$ and $B G=b$, then $M R=m-a$ and $B S=b-a$.\n\n\n\nFigure 2\n\nNow $\\triangle A R M$ is similar to $\\triangle A S B$, since each is right-angled and they share a common angle at $A$.\n\nTherefore, $\\frac{M R}{B S}=\\frac{A M}{A B}=\\frac{N C}{D C}$.\n\nSince $M R=m-a$ and $B S=b-a$, then $\\frac{M R}{B S}=\\frac{m-a}{b-a}$.\n\nSince $\\frac{A M}{A B}=\\frac{N C}{D C}$, then $\\frac{M R}{B S}=\\frac{(1-t) x}{x}=1-t$.\n\nComparing these two expressions, we obtain $\\frac{m-a}{b-a}=(1-t)$ or $m-a=(b-a)(1-t)$ or $m=a+b(1-t)+(t-1) a=t a+(1-t) b$, as required.\n\nThis concludes the proof, and so $|P M Q N|=|\\triangle A P D|+|\\triangle B Q C|$, as required.' 'Let $A M=x$ and $M B=y$. Then $A B=x+y$ and so $\\frac{A M}{A B}=\\frac{x}{x+y}$.\n\nLet $N C=n x$ for some real number $n$.\n\nSince $\\frac{N C}{D C}=\\frac{A M}{A B}$, then $\\frac{n x}{D C}=\\frac{x}{x+y}$ and so $D C=n(x+y)$.\n\nThis tells us that $D N=D C-N C=n(x+y)-n x=n y$.\n\nJoin $M$ to $N$ and label the areas as shown in the diagram:\n\n\n\nWe repeatedly use the fact that triangles with a common height have areas in proportion to the lengths of their bases.\n\nFor example, $\\triangle M D N$ and $\\triangle M N C$ have a common height from line segment to $D C$ to $M$ and so the ratio of their areas equals the ratio of the lengths of their bases.\n\nIn other words, $\\frac{w+r}{u+v}=\\frac{n x}{n y}=\\frac{x}{y}$. Thus, $w+r=\\frac{x}{y}(u+v)$.\n\n\n\nAlso, the ratio of the area of $\\triangle N A M$ to the area of $\\triangle N M B$ equals the ratio of $A M$ to $M B$.\n\nThis gives $\\frac{k+v}{s+w}=\\frac{x}{y}$ or $k+v=\\frac{x}{y}(s+w)$.\n\nNext, we join $A$ to $C$ and relabel the areas divided by this new line segment as shown:\n\n\n\n(The unlabelled triangle adjacent to the one labelled $k_{1}$ has area $k_{2}$ and the unlabelled triangle adjacent to the one labelled $r_{2}$ has area $r_{1}$.)\n\nConsider $\\triangle A N C$ and $\\triangle A D N$.\n\nAs above, the ratio of their areas equals the ratio of their bases.\n\nThus, $\\frac{k_{2}+v_{2}+w_{2}+r_{2}}{z+u}=\\frac{n x}{n y}=\\frac{x}{y}$, and so $k_{2}+v_{2}+w_{2}+r_{2}=\\frac{x}{y}(z+u)$.\n\nConsider $\\triangle C A M$ and $\\triangle C M B$.\n\nAs above, the ratio of their areas equals the ratio of their bases.\n\nThus, $\\frac{k_{1}+v_{1}+w_{1}+r_{1}}{s+t}=\\frac{x}{y}$, and so $k_{1}+v_{1}+w_{1}+r_{1}=\\frac{x}{y}(s+t)$.\n\nAdding $k_{2}+v_{2}+w_{2}+r_{2}=\\frac{x}{y}(z+u)$ and $k_{1}+v_{1}+w_{1}+r_{1}=\\frac{x}{y}(s+t)$ gives\n\n$$\n\\left(k_{1}+k_{2}\\right)+\\left(v_{1}+v_{2}\\right)+\\left(w_{1}+w_{2}\\right)+\\left(r_{1}+r_{2}\\right)=\\frac{x}{y}(s+t+z+u)\n$$\n\nor\n\n$$\nk+v+w+r=\\frac{x}{y}(s+t+z+u)\n$$\n\nSince $k+v=\\frac{x}{y}(s+w)$ and $w+r=\\frac{x}{y}(u+v)$, then\n\n$$\n\\frac{x}{y}(s+w)+\\frac{x}{y}(u+v)=\\frac{x}{y}(s+t+z+u)\n$$\n\nwhich gives\n\n$$\ns+w+u+v=s+t+z+u\n$$\n\nor\n\n$$\nw+v=t+z\n$$\n\nBut $w+v$ is the area of quadrilateral $P M Q N, z$ is the area of $\\triangle A P D$ and $t$ is the area of $\\triangle B Q C$. In other words, the area of quadrilateral $P M Q N$ equals the sum of the areas of $\\triangle A P D$ and $\\triangle P Q C$, as required.']" ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAWYCdQMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKTNLQAUUZooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDA8U67c+G9Il1SKwS8t4EZ583AjZQMYx8p3dT6Vh6V448Qa1o8Oq2HgyWa0mUtGRqEQZgCR0OPSq/xnv8A7H8N7uLO1ruaOFT+O/8AklV9A+IHhLw34N0uzm1JvMtrWON40tpCTJtBYfd9c9SBQB0XhPxzp3iyS6tYYbi11CzO24tLhcOhzjPBPGeK6mvL/hxoV3P4l1rxpdokKamWW1gEiuRGWBJYqSM/Kg69c9K9QoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikyKM0AeS/Gc/2lfeFfD68/bb7LKO3KoD/4+35V6rLBDPCYJY0kiYYMbKCpHoQe1cjrPw4ttd12HWLzXdYF3bsWtjG8KiAZJAUeV2z1OT6k1LP4Eku4jDd+LPEU0LcNH9ojQMPQlYwcUAcV8Jt0HjvxdZadu/sSKZjEin5FbzCF2+mQG+uB0xXslZOg+G9K8M2AstItI7eDO4gZLMfVieTWtQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVR1XUxpVk10bO5uVU/MtuqllGCdxyRxx+tAF6iua8JeOdH8aJdtpX2gfZSolE6BSN2cHqf7prpCwVSTwBzk0ALRXE6Z8UNF1vVLjT9Is9Sv5YCdzQQrtIBxuBLDiu2oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiijNABRRmkzTAWikLBQSSAB1JrIvfFfh/Tsi71qxiYDO0zqWx9Ac0gNikzXCXvxf8I2oJiubm7I/hggIP/j+2sN/jO95OYdF8NXd43bc/zf8AfKqf50gPWM0hYAV5IPEXxU1eM/YdAisUP3WeIIy/9/W/pTj4P+JWrsDqXihbVD1WGZlI+qooB/Oi4Hqs91b2sZkuJ44kHVpHCgfia569+IXhOwXMuu2kn/Xu3nf+gZrkIPgjaSymXVdevbuRjy0aCMn6lt2a37L4T+ELPaW097l1/iuJmbP1AIB/KgDMvfjT4ctyVtbe/uyOhVAin/vo7v0rW8E+PrXxpJdxJZm1mtwreW0gfehJGRwPQfmKq+PNJ0fQfh9q81hpdnbO0Sx7oYEVjudV6454PevMfD6z+BdW8Ma/IxFlqULC4J4AVnII/AbHHvxQB9F0UgYEZByKWmAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSbhQAtFJuFLQAUUUUAFFFFABRRRQAVzvjq/Om+BtbugxDLaOiH0ZhtH6sK6KuM+Ip+06TpekjpqWq21uy+qB97fhhKAON8A2P/CJfFe+0EjZFc6ZC6j1dEQn9TJXa+Mrye/e18KadKUvNVz58q9be1H+sf2J+6Pcn0rk/iJdReGfij4U8TTblt2SS2mZVJ+UZzx9Jf0rZshcWPhPX/GWpIY9Tv7WSdIz1ghVT5MQ9+QT/tMaAOf+CNpBJqPifU7aIJbvcLDbqvREyzY/IpXsdecfBOyFl8OoZyOby5ll/AHYP/QK9HoAKKKKACiiigAopM0Z5xQAtFJn6/lTJZ4oIjJNIkaDks7AAfjQBJSZrnb3x74V09S0+u2Z2nBEL+aQfomTXOX3xn8M25K28d9dns0UO1fx3EH9KQHouaXNeSH4ta3qiN/YPhGef0c75h+Koo/nQbz4uawV8q0ttNiYZ3BYhj8HLH9KLgetZGM1UvdW07Tl3X1/a2y+s0yp/M15j/wrnxtqxY6z4weNWPKQySSLj/d+UVbtPghoceGvdRvrl/4tu1Fb8ME/rQB0N98TvCFgzK+rpK47QRs4P/AgNv61zV38btIQlLDSr+5kJwok2xhvpjcf0rp7H4a+EbA7o9Ghkb+9OWk/RiR+ldFZ6bY6fH5dlZW1sn92GJUH6CgDy7/hP/HmquBpHhEwxt/HPE7D/vo7V/Sj+zPi3rAbz9Rt9NQ/w70Qj8YwT+tetYoxTA8nHwf1TUWR9c8WXNzg8oA7/kzNx+RrXsfg14WtTmcXl4f+ms20fhsAI/OvQqKVgOfsvA/hjT1UW+h2OV6NJEJGH4tk1upEkaBI0VVHZRgU+imAmKMUtFABRRRQB558Zbr7P4E8oZ/0i7jjx68Fv/Zaj1/wsdV+EFjaLGDeWVlFcRBRyXVAWH4jd+OKz/jfMW0zRrBOZJ7lnVe5KgD/ANnr1OKIRQpEoG1VCj6CkBx/ww8Qf2/4MtvMk3XNmfs0xzydv3W/EY/EGu0rxzQ/+KE+L9zo5/d6bq2DAOgGSTHj6Nujx717FmhALRRRTAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuF8f6jqVwsfhzQLiSDUp4ZLqaeIkNBDHz1HILthRj3rsr6+t9OsLi9upBHb28bSSOeiqBkn8q808HeM/DQOoa/q2s2cWp6pJuMLvzbwJxHH+A5PuTQBsfCTW7jXPAVvLeXElzdQTSwySyuXZju3DJPJ4YD8K7uvHvgjeQRX3ifSLaZZbWK6E1u6HIdcspYH/AICn517DQAUUUUAFFFFABRRSEgUALXI614X13VtcsdQXXbGGOwmaW2gOnM4+ZSvznzhk4PUbfpXXUmRQBzuv+EbbxMukDVGjkNhcLPIqR4SYhSCuCTtUttOOeBjPOaj8X+G9U8T6ZcaXBq9vZWNxGElBszLIecnDeYBg4Axt9eea3bzU7HT4/Mvby3tk/vTSqg/MmuevfiV4RsCRJrMUrc4FurS5/FQR+tAFrwjoF74a0SHSrjULe7gt1CQGO1MLAck7iXbPXsBj+XQ5rzC9+N2hRbls9PvrlwcKWCxq345J/SqZ+I/jXVCv9j+D3RWPDzxySKR9cIKVwPWs0Z79q8mFn8XdYZhLd22mRntujXH4oGak/wCFSa5qaL/bni6eb+9GN8w/N2H8qAPR73xLoemkreavZQOP4HnUN+Wc1zV78XPCForGO9mumXgrBA3X0y2AfzqnZfBfwxbMGuHvbs/3ZJQq/htAI/OuisvAXhbTwog0OzO05BmTzWB+r5NAHFzfGqOeUQ6P4eu7pyOBI4U/98qG/nUf/CVfE/V1Yaf4aS0U9GlhKMP+/rAfpXq0NvFboI4IkiQdFRQoH4CpMUwPJf8AhFfifrG06h4kjs0/iEUpVvyjUA/nUkPwVS5n8/WPEV5dyHqUTDD/AIExbP5V6tjt2paVgOGsvhH4RtAvmWc12y9GuJ2J+vy4H6V0dl4Y0LTmD2ej2ML/AN9YF3fnjNa1FMBMcY7UYxS0UAJiloooAKKKKACiiigAooooAKKKKACiiigAooooA8l+Jbi8+InhDTsbsTKzL6B5VB/RDXrVeTawVv8A9oDSYcZ+zQAN7YR5B/6EK9ZpIDzT4waI9zoNvrlqCt3pkgYuvB8skc/gwU/nXYeFddj8R+GrHVFwDMn70DtIOGH5g1p3lnFf2c1pcIHhnQxyKe6kEEfrXlfwvup/D3ijWPBt85JWRpbdjxkrgHH+8m1h9DQB65RRRTAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPN/F3iDSvEHiXTPByanarbPOJNSPmgZCN8tvnuzOBleuBXoghjAAEaYHAGKcVJ9D9adQB4bpfiLRtI+PGqXcep2f9mX8Gz7SJh5QcqjH5s4+8pHB717lVLUtQttJ06e/u38uCBdzt/T6k/qa82m+NlpLKsOk6DeXcjHAR5FRifou40AerZpMivJR4x+JWrErpvhZbVCOGmhZT+BdlB/KkHhz4qawg+26/HYq3LKkuxgPT90v9aQHrUkiRLukdVX1Y4FYV7438MaerG41yyyvVY5RI3/fK5NcMnwXkvJvN1rxNd3ZPXanzf8AfTE/yrcsvhB4StVAmtri7I5BnnYc/wDANtAEN98ZPC1qSIDe3Z9YoNo/8fK1jf8AC39S1EldC8J3NyB919zSfmqL/WvQrLwn4f04q1nothE68BxApYfiRmtgDHSgDyUap8W9ZVfI02301G/j2IhH1EjM36Vy/jODxfodvE2ueK3kuLkgRWdrcSZYDqWACgDPHGefxr2vxFr9n4Z0SbUr1xsjGETODI/ZR+v4AntXnHgTw/eeL9efxr4h+eMuTZwEfKSOAQP7q4wPU8/UA4G/8Fa5olta6vq+mzz2Mu2WYROd6g9nODsPTnHcDrxXpXgvR/hvrkSyafp6PdqMyW947M499pO1h7gGvUDGGXaQCPQjIrzrxP8ACizvJzqXh2b+ytSU71WMlYi3qNvKH3Xjjp3osB3VlpWm6cuLCwtbYekMSp/IVdx/kV5HpXxH1nwzfLo/jiymUjhLtVyxHqQOHHuvPqDXqdhqNnqlnHd2NxHcQSD5ZI2yD7ex9u3egCzilpM+xpaYBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFGaAPJtB23/AMfNbn6/Z4GAx2KrHH/jXrNeTfDALe+PfF+ojn9+wB9nlZv/AGWvWaSAK8j+KVnPoPiHSPGVgo3xSLFPjgMRyufZl3KT7CvXKx/E2hx+IfDl9pcmAZ4yEb+645U/gwBpgaFlewahY295bNvgnjWSNvUEZH6VYrzL4P61JNo11oF3lbvTZCFVuoQk8fg2R7ZFem0IAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKM0VQ1bVLfRtJutRujiG2jLt6nHYe5PA9zQB5r8VNTuNZ1bTfBWmtme5kV7jB4/wBkH2Ayx+i9ah1j4a6n4aki1jwZeT/aIEAkt2OS4xyRnhgcD5TU3wq0y51jV9S8aamN01xI0cGe2fvEew4Ue2RXq+2lYDgfBvxLs9elGnaqi6frAOwxv8qSMOoUno3+ya77jHGBXH+Mfh3pnitGuF/0PUlHyXMY+97OP4h78EeuODx+k+N9c8D6hHofjKCSa1ziG9XLMFBxnP8AGv8A48O+aAPYqKr2d9a6jZxXdnOk9vKNySRnKsKnz9aYC1Bc3cFlay3VzIIoIkLu7dFUDJNS7hnHOa8e8Za1eePvEkfhDQJC1lHJm7nXlWIPLH1VDjju2PY0gK0KXfxc8YmeVZIvDent8q9N3t/vMBk+g9+vs0FvHbQpDCipFGoVEUYCgcAD2qloeh2nh/SINNsE2wxDkn7znuxPck9606YBRRRQBQ1bRdO1yxaz1O0juYG/hccg+oPUH3HNeWX/AIG8SeBryTVfBt5LcWx5ks3+ZiPQr0cfTB/nXsVJg+v5UAcB4T+KOma462OpAabqW7Z5cpwjt6Kx6H/ZOOTgZNd8XAHNcp4s+HujeK0aWWMWuoYwt3EOfQb16OOnXkdiK4OLV/GHwwmW21eFtU0MMESYMTsHbDfwnHRDx2FID2misXw94r0jxPa+fplyJGABkhbiSP8A3l/r0461s5qgFooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFRXEogt5Zm4WNSx+gGalrE8Xzm28G61KDhlsZsH32HH60AcJ8D7fGi6rek5aa6WNj67Vz/AOz16tXn/wAHLT7P4CSXH/HzcySn8MJ/7JXoFCAKKKKAPHPEX/FC/Fuy1xfk07VMi4x0GeJPyO1/cmvYgwOPeuO+Jnh86/4NuliTdc2n+kQ46kqOV/EE/jik+GfiEa/4NtjK+66sz9mmz1O0DafxBH45pAdnRRRTAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAM15N8VNTuNZ1fTfBemNunuJFkuMdB/dB9hyx+imvStW1S30bSbrUbo4htoy7epx2HuTwPc15r8KtMudY1fUvGmpjdNcSNHBntn7xHsOFHtkUgPS9J0u30bSbXTrVQILaMRr7+pPuTk/jV6iimAVnavomn67p72Oo2yTwPzhhyD6g9QfcVo0UAeLXei+Jfhdeyalocr6hoTNvmhcElR33gf+hjp3GOvonhPxppfi6032cmy6jUGa1f78fY/7w9x+ldFtypHGDnPFeL/E7w9pPhae11zRrttO1N5fkt4Ojerrz8o5AIHBzjvSYHQfEvxjNa7PDGiEyate7UcxH5o1Y8Af7TZ/Ac+lb/gXwZB4R0VYm2yX8+Huph0z/dX/AGR2/OvMfhtq+l6d4tvJ/Exmh1uc5iuLsbVUt97Ofulux6EdMZ5943DAIPXofWhAOooopgFFFFABRRRQAVFLBHPE8U0aSRupVkcAhgeoI7ipaKAPLfEXwqaG8/tbwjdNp96h3CAMQhPfY3Ve/ByOe1R6F8UrvTb7+x/GtnJZ3SnaLny8A+7KP5rx7V6risrXfDel+I7I2uqWqTL/AAvjDJ9D1FAGhb3UF3BHPbTRzQyLuSSNgysPYjrUuRXjVx4Z8W/De6e98N3D6jpJO6S2ZdxH+8g6ngfMvPt2rsvCXxI0bxTst2cWeon/AJdpWHzH/Yb+L6dfakB2lFJuFLTAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArjvilcGD4c6qVOGcRoPcNIoP6Zrsa83+NVw0PgqGJTjzr1EP0Cuf5gUmBvfDm1+yfD7R4uOYTJ/32xb/2auqrL8PWxs/DWlWx6w2kUf5IB/StSmAUUUUAJjIwenpXj3h4f8IL8W7zRD+707VQDbDGFBPMY/A7k/WvYq8y+MWiyTaNa69akrdabICXXhgjEc59mCn8TQwPTM+1LWN4Y1tPEPhyx1SPGZ0/eKOiSDIYf99A1s0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVS1TU7fSNLudQum2wW8Zkc+w7D3PT8aAPM/irqdxrGraZ4M01sz3MiPcY6DJ+UH2Ay59gp5r0vSdLt9G0m1061UCC2jEa+/qT7k5P415l8LdNn1zXNT8aaimZZpXjt884J+8R7AYUe2R2r1uhAFFFFABRRUU1xFbwSTzOscUalndjgKB3NAFHXtcsvDukT6lfybIYhwO7t2UDuTXmHg3RL3x54jk8Y+IEJtEfFnbn7pKngAf3V7+pJ9DVSRrn4ueMxFGXh8Oae2Sw4Lgnr/ALzY4/ur79fY4YINPs1ihjSK3gTaiIvCqO2KQGJ4r8E6V4ttNl5H5d0i4hukHzp6D/aHsf06153Z674l+F14mm67E9/oZIWGdD9xf9gnocfwN+BFd/L8SPCcE7QS6r5c69Ymt5Qw79NuafbeJPCfixJdLj1CyvjICHtX4Zup4VsHt1HSmBsaTrWn65YJe6bcpcQP0ZeoPoQeQfY1ezXjuseCtd8C6i2ueDppJrUYM1mcuQvPBX+Nev8AtDt612Pgz4h6Z4rjEBItdTAy1szfe909R+tIDsqKQsAM0tMAooooAKKKKACiiigBNtcR4t+GWkeJS91ABYaiTu8+Jflc/wC2oxk9eevueldxRQB43a+LvFXw9uU0/wAV2sl9ppO2K7U5bH+y/G7/AHWw3vXqOi+INL8QWS3emXSTxHqBwyn0KnkVburOC+tntruGOeCQYeORdysPpXl2tfDHUNEvTrHge9lt7hefsjSdR6KTwR/stn69qQHrGRS15j4b+K0TXQ0rxVbnTL9TsMpUrGTxjcDynXr0969LSVJYxJG4dGGQynII9sdaAH0UhOKWmAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5N8ame4/4R/TI+DczueOuRsA/9DNes15L8QWa++K/hPT1GRG0cx+hl5/RKTA9YChQABgDpTqKKYBRRRQAVWvbKHULGezuVDwTxmORfVSCD+lWaKAPI/hddz6B4j1jwbfPho5TLbk/xEYzjvyu1h7A165XkfxRtJvD3ibR/GVinzRyCK4xxuI5GT/tLuU/QV6pZ3sF/ZwXds++GeNZI29VIBH6EUgLFFFFMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8o+K+q3GqahpvgzTG3T3ciPOAexPyKcduCx9gDXpWqanb6RpdzqF022C3jMjn2HYe56fjXmXwu06fXdd1LxrqSZlmleO2B5Ck/eI9lGEHtmkB6Vo2kW+iaPaabbD91bRhFJHLHux9ycn8TWhRRTAKKKKAE3D3ryHx1r974x15PBXh0hoy2LycH5Tg8jP91ep9TgfXa+JXjOXSoU0DR2L6ze4X93y0KNxkf7TcgenX0zp/D/wXF4S0fMoDancgPcy9cHsg9h+pJ+gQG54c8PWfhnRodNsl+RPmdz96Rz1dj3J/QYHQCtXBzS1FPcR28Ek0hwkal2PsBk0wPKPBYGsfG3xbq3Dpap9mVh2YEIP0ib86j+OUEFvp2jalaps1dLzZDLGvzlQpPX2YL9O1Z/wm0zxBqen6vrenaxb2BvbwrKJrPz2cqN2QS4wP3h4xXd23w+FxrtvrXiPVptbvbY5t0kiWKCE5BBWMZ5GM5J7D0BoGdhD5hhQygB9uWA7GuE8ZfDK012U6lpMi6fqyt5gkUbUkbrk46Nn+Ic+xrv8UtAjyTw78Rr/AEO/GgeNoJLe4j+VLtl5I9Xx94f7Q/HnmvV4p4p40kidZI3Xcrqcqw9Qe4rK8Q+F9M8T2H2XU4A4GTHInyvGT3U/5B7ivLB/wlPwku+jan4cdscZCpz+PlsSf9057nogPbKKx/D3ifSvE9h9r0y43hcCSJuJIj6Mvb+R7ZrX3DOM80wFooooAKKKKACiiigApMUtFAGB4k8H6R4ptjHqVsGlAwlxGdsifQ9xz0OR7V5q1n4y+F8pks3OraCDloyCQg9wOUP+0Mj1r2mkK5FAHLeFfHmi+K41S1m8q8xlrWXhx6lf7w+n44rqc1574p+FWn6tI1/o0g0vUgQ4MeRE7DoSByp6cj8jWFpvxA8QeD75NJ8a2cskI4S8UZYgH72ejr78H1yaQHsFFU9N1Wx1eyjvNPuo7m3fo8Zzz6H0I9DzVsMDTAWiiigAooooAKKKKACiiigAooooAK8lvGN/+0JZx4ytnBhvb9yzj9WFetV5L4Vb7f8AHLxHdAZWGJ03ejK0af0P5UmB61RRRTAKKKKACiiigDF8UaGviHwzfaW2N00f7tj/AAuOVP0yB+Ga474Pa291odzod1uF1pkm0Kx52Enj8GDD24r0rFeO69/xQvxdtNZX93purZE/90FiA/5Ntc0mB7HRSbhS0wCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiqWqanb6RpdzqF022C3jMjn2HYe56fjQB5r8V9VuNU1DTfBmmNunu5EecA9ifkU47cFj7AGvR9G0i30TR7TTbYfuraMIpI5Y92PuTk/ia81+F2nT67rupeNdSTMs0rx2wPIUn7xHsowg9s161QgCiiigArmPG3i+18I6I107K93LlLaEn77ep9AOMn3A6kCtjWNYstC0u41G/l8u3gXLHuT2AHcnsK8o8LaTefEbxTL4p12LbpcD7La3Y5Vyp4QeqqTye7Ej1AQGv8NvCVw0r+Lde3S6neEyQLIOUBH3z6Ejp6D68enYpNuOAABTqYBWD4rtNb1HRbrT9Hjsd13BJC811cPH5e4YyAqNu6nuO1b1FAHE/D7w5rvhPRYNHvodMeCNpHa5t7qQuzMcj5DGB7fe7V21FFABRRRQAVFLAk8TxTIskTrtZHGQw9CPSpaKAPJvEXw41DQ786/4ImkguEyXtFbt1wmeoz/A3H6Ctnwb8TbPXZF0zVkGn6up2GN8qkjei56N/smu/wAVx/jL4d6Z4sjafi01ID5LlF+97OP4vrwR69iAdeWA9adXjmkeNdd8B6hHofjGGSa06QXincQoOMg/xr/48PTtXrdlf2mpWcV5ZXEc9tKu5JYzlSKQFiikzS0wCiiigAooooAKKKKACqWo6TZavZvaahbR3Nu/VJBnB9Qex9xzV2igDx/U/h9rvhC+fV/BF5K8Z5ks2OWI7DniQDJxnkcck81t+Fvirp+qSjTtaiXStSB2FZMrGx/HlT7H869D21zPirwHo3iuJjdQ+TeYwl3EMOPr2Ycd/wACOtAHT5FLXiyXnjH4WyLFdKdW8PghUcE4QegPJjPscr6GvSvDfjHRvFNsZdOuR5qjMlvJ8sifVfT3GR70gN+ikyKWmAUUUUAFFFFABRRRQAV5L8JWF94o8W6kMkSTgqfUO8jH+Veo31x9k0+5uSQBDE8hJ7YBNebfA63C+GNRuMfNJebCfUKin+bGkB6lRRRTAKKKKACiiigArivib4f/ALe8G3PloGurP/SYcDk4HzL+Iz+OK7Wmldw5x9KAOQ+GviD+3/Blq8j77m1/0Wc55JUDDfipU/XNdjXjvhs/8IN8Wb3QZMrp+p/Nb56An5kx9DuT64r2HPtSQC0UUUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8o+K+q3GqahpvgzTG3T3ciPOAexPyKcduCx9gDXpeqanb6RpdzqF022C3jMjn2HYe56fjXmHwt06fXdd1PxtqSZlmleO2B5AJ+8R7KMIPbPpSA9L0bSLfRNHtNNth+6towikjlj3Y+5OT+JrQoopgFRyTRxRvJIwREBLM3AAHU5p5YDrXkvxB8R3niLWo/BHh4h5JH23cgPHHO3PoOrH2x9UBn6hc3fxZ8YLp9k8kXh2wfc8o4DkdW/3m6L6DJ7mvYrKxt9Os4bO0iSK3hQJGijgAVm+GPDVp4X0SLTrT5sfNLKRhpX7sf8PStumAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBn6tothrlg9lqNslxbv8AwsPun1B6g+4rya80PxL8Lr6TUtClk1DQ2JeeBxkqO+4D/wBGDp3GOvtNM2Agg8g9QaAOc8JeNNK8XWgezl8u6Rd0tq5+dOeSP7y9OR6jpXS7h7mvMvFvwx33f9teFJPsGpxnf5KNtSRh3U/wMfyPtyaTwr8Tma7/ALE8WJ/Z+pxkJ5si7Fc/7QP3T79D2xSA9PopAwPQ5paYBRRRQAUUUUAFFFFABRRRQBG8SyRvG6KyMCCrDIIPXIrzbxJ8KIpLkap4WuDpeoId6xISsef9kjlPw49q9NpMUAeTaN8TdS0S+GjeOLGSCZeBdrH29WA4Yf7SflXqdpe2t/apc2k8c8DjKyRsGUj6iqetaBpniCxNpqdpHcRHkbhgofVT1Bry288HeKvh/dSaj4TupL/Tyd0lm43Nj/aTo3QfMuG9qQHsmaWuG8J/E7SPEjLaXP8AxL9SJ2/Z5m4c/wCwxxk+3B9q7gMDTAWiiigAooooA5/xvOLbwPrch72ciZ92Ur/WsT4RW4g+HtpIBzPLLIfruK/+y1J8WLjyfh1qC5wZXiRf+/in+QNafgG1Fn4D0WNRgNarJ/338/8A7NS6gdJmkzWX4g1+y8N6Hc6rfuRBAvQdXboFHqSa4/w5D4j8b2g1rV9SutJ02c77PT7B/LfZ2Z5cbjkcgDFMD0TcM4ozXnHiq213wPpza/our3t7a2zA3VhqEpnDxkgZVz8ykZHft+fbaFrFvr+iWeq2mTBdRiRQeo9QfcHIP0oA0qKKKACiiigDzH4w6LJLpFp4htMpd6dIoZ16+WxGD+DbT+JrtvDWtx+IPDljqke0efGDIo/hccMPwINXr+xi1LT7iyuVDwXEbRSD1Ugg/wA68t+Fd7Poev6x4Mvn+eGRpIMjGSDg49iuxh+NID1yiiimAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFVdR1C30rTrm/u32W9vGZHb2Az+dAHmHxa1a41C+03wdpuWubuRZJgD1BOEU+2QSfYA16To+k2+i6PaabbACK2jCKcck92+pOT+JrzP4YWFx4i8San411JfmeRo7YdlJHOPZVwg9ia9cpIApM84pa53xj4stPCWhvez4e4fK20JODI+P5DqT/XApgYHxI8bHQbFdL0xi+s3nyx7OTEp/ix/ePRR+Pbmz8OvBS+FtLNzdqH1a7AM79TGDzsB/me5x6CsL4ceFbu/v5PGfiDdLfXTb7dZP4Qf4yO3GAo7D8MeqYoAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAbt/Kud8VeCdK8W2ZjvE8u5UYhukHzxn/2Yex/TrXSUUAeL2mteJfhbdpp2txvqGhMdsM6H7ij+4T0OP4CfoRXrGka5p2u2CXum3Kzwv3HVT6Edj7Gp7uxt7+0ktbyGOeCQYeN1yDXk2r+CNc8Dag+ueDJ5JLXrNZN852+mP415P+0P1pAexUVxngz4h6Z4rQW7EWmqAZa1dvve6Hv3468HiuyLADNMBaKKKACiiigAooooAKKKKACm4OKdRQBxvi34b6P4pDz7fsWoEcXMK/eP+2v8X6H3rirfxJ4s+G86WXiKB9R0fO2O5DbiB/sucf8AfLc+9ez1FPbQ3UEkFxDHNFINrpIoZWHoQetKwGdoPiXSvEtn9p0u6WVRjeh+V4z6Mp5H16HtWruFeVa78LbjTr0ax4Ku3srtPmFqZMA+oRj0Hs3HPXHFP8O/FNre8Oj+L7RtPvoyFa4MZCknoXX+HP8Ae6HrwKAPU6KihuIriJJYXWSNxuV0OVYeoPepNwzimB5n8bp/L8IWcIODJfKSPUBHP88V32kWosdFsLQAj7PbxxD8FA/pXmvxjQ3up+GNMB4nncEf7xRR/M16xikB5F8aWk1HU/Cvh1XKxXt5+8we5Kop9/vt+desxRJBCkUSBI4wFVQMBQOlcD8U/DGoazaaZrGjR+bqejz+fHF3kXKsQPcFVwPrWnp3xJ8M3dgJ7rU4LC4Vf31rdt5csbdxtPJ/DNMB/wAS7yKy+HWtvIRh7cwqD3ZyFH86r/Ce2ktPhlo0coIZ1kkAP91pGZfzBz+Ncvr/ANv+LGqWunadBPb+FraTzbi/ljKfaWAPEYPJGCR+OTjjPq9tbRWlrDbQRrHDCgSNF6KoGAKAJqKKKACiiigAryP4m2svhvxTo3jKyQ/LIIrgDgMQOM/VNy/hXrlYnivQk8R+GL7TCFLyx5iY/wAMg5U/mBn2zQBqWl3De2kN1buHhmQSRsP4lIyD+tT15t8H9de88Pz6LdErdaY+wK/B8s5wMexDD8q9JoQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5V8WdXuL+507wbpp3XV7IrzgHsThFPsSCx9Ao7GvS9R1C30rTrm/u32W9vGZHb2Az+deW/DGxuPEfiPU/GupJ88kjR2wPIUkc4/wB1cJ7gn0pAel6Jo8GhaLZ6Za/6u2jCBiOWPdvqSSfxrRopjSKqlmICgElieBTAranqlpo+m3GoX0oitoFLOx/kPc9B9a8i0DTrz4n+LH8QavGyaJaNsgtzyr4OVT35wWP4fQ1q+vPin4uTQ9LldNDsn3TXA6N2Ln17hB9T0zj13TtNttK02Cws4lit4FCIi9h/ie575pAWggVQFAAAwMdqdRRTAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKTHvS0UAcB4z+GdprztqWluthq6neJEyqStnOWx0bP8Q5+vGMTw/wDEXUNBvhoHjeCSCdeEvCOo/wBrHUf7Q/HnmvWqx/EPhnTPE2nm01K3DjnZIvDxn1Vu306HvQBqQzxXESSwyLJG43K6HII9iOtSV4pjxR8Jrz5d2p+HHbp2T/4236H3PT1Lw94o0rxRYfatNuA4HEkTYDxn0Ydu/txSA2aKTcM0tMAooooAKKKKACiiigAooooAQjP0rF8QeFNJ8T2gg1O1SQrny5l4kjPqrf06HAzW3RQB4vLo/jD4ZTvc6NI2qaGCWeBlJ2j3XqP95ePX0rufCfxB0bxXGsUUn2a+xzazNyT/ALJ6N/P2rrdpwMmuD8WfC3S9eZr3Tyunalnd5kYOxz/tKOn1Hr36UAYfjUNf/GfwvZA5WFYpsZ9JGc/ogr1qvnG21i/8MfEy2ufFUkt1Np37mRkYOSpjYIQeN3Dg9j7Z4r3/AErWtO1uyS8027juYG/iQ9PYjqD7GkgLpXPpWH4r8K2Pi3QrjTbxVVpFBjnCgtE46MPXHp3BI71u7hS0wPP/AAVZeONAgg0XVbXT7ywgISO8F2VdI/TbtO7A6A49M8V6BSY4xmloAKKKKACiiigApMUtFAHjmtZ8CfF621Yfu9N1YETdlG4gPz7Ntc/WvYs1xXxP8P8A9veDZ2iTddWX+kxYHJwDuX8VJ/HFWPhz4h/4SDwbaSyMWurb/Rp88kso4J+q7T9SaQHXUUUUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKq6jqFvpWnXN/dvst7eMyO3sBn86APNPizq9xf3OneDdNO66vZFecA9icIp9iQWPoFHY16JomjwaFotnplr/q7aMIGI5Y92+pJJ/GvNPhjY3HiPxHqfjXUk+eSRo7YHkKSOcf7q4T3BPpXreaSAMivKfiL4outV1FfBXh0mS7uGCXckZ6f9M89uOWPoMeoG78RfG3/AAjGnrZ2LB9YuwRCgGTGDxvI7n0Hem/DjwT/AMI5p7ahqKl9YuxulZ+TEpOdn1J5J9eO1AG74S8K2nhPQ47C3w8pw1xORgyv6+wHQD/65rfoopgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUARyQxzRPFJGjxuNrI4yGHuO9eV+I/hxf6LfnX/AATO9tcp8z2iHqOuEz1H+wePoMCvWKTFAHn3g/4m2mtSjTNXjGn6up2bH+VJG9BnlW/2T/8Aq9B3AVx/jL4eaZ4tiMxxa6kowl0g5b2cfxDp7jHXHFcbpPjPXvAV+mieMIJZ7LO2G8XLEKD1B/jX2+8B+VID2Oiq1jqNpqdpHd2NxHcW8oykkZyD/wDX9utWM0wFooooAKKKKACiiigAooooAKKKM0AeOeF7C28RfFjxab63juLULLAySLkHEiqP/QDz1qbVvhtrHhm+fWPA99Kjcl7Nn+YjsoJ4cezenU0/4Nsb3UfE2qEcXE6EE+pLsf5ivWcGkgPN/DHxWtLyYab4ih/srUVOwlwVjZvfPKH2PHvXo4cMoZTkHkEVz3ifwRo3iuAi/twtyBhLqL5ZF+p/iHscj6da86/4rP4WPxnV/D4b3IjX9TGfzWgD2fNLXN+GPG2jeK4M2M+y5UZktpflkX3x3HuK6PcKoBaKKKQBRRRQAUUUUANZdwwcfQ1494WJ8DfFW/8ADsnyWGo82+egPLR/zZPqK9jrzD4w6NI+mWXiKyyt3psqhnUchCw2n8Hx/wB9GhgenZpayfDmtRa/4dstUi2gTxguv91xwy/gwIrWoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAryr4s6vcX9zp3g3TTuur2RXnAPYnCKfYkFj6BR2Nel6jqFvpenXF/dvst7eMySN7AZ/P2ry34Y2Fx4i8R6n411JPnkkaK2U8hSRg49lXCe+TSA9L0TR4NC0Wz0y1/1dtGEDEcse7fUkk/jVPxX4mtPCuiTahckM4+WGLODK/Yfz/CtO/wBRtNMsJ768mWK2gQvJIx4UD/P4149pdpd/Ffxc+ragkkfh+xfZFCTgP32/U8Fj9B3FAGl8PfDd7ruqt418RZkmmbfaRuOB2D47AYwv0z0wa9YxTEiEaKkaqiKAFAGAB7CpKYBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZ+raLYa3p72Oo20c9u/O1hypx1B7H3FaFFAHi15oPiX4X30mpaBK9/ohOZ7dxkgf7YH/oY6d+OvoXhPxrpXi213Wkoju0XMtrIQHTsSPVenI9RnFdKyBhg8j0rzTxZ8MFluf7a8KSHT9TjJfyo22I5HUqR9xj+R9ByaAPS9wNOrzDwt8TmF2NF8Wxf2fqMZ2efIuxHP+1/dPv90+1enBgQCOQemKQC0UUUwCiiigAooooAKoaxdfYdFv7skDyLeSTJ9lJ/pV+ub8fXItPAWtSE4DWrR/8AfXy/1oA5f4JW/l+EbyYrgy3rYPqAiD+ea9MrifhPAYfh3p7EYMryuc/9dGA/QCu2oAKaUBUqwBU8EEcYp1FAHm/if4UWl5P/AGl4cm/srUUO9FjJWIt6jbyh9xxx071laT8SNY8NXq6P44spkIwFu1Tkr6kDhx7rz6g167Wfquiafrlk1nqVrHcQNn5XHKn1B6g+4waAJrDUbPVLOO8sbmO4t5PuyRtkH/A+1Wc+xrx6+8D+JfA16+qeDruW5tc5ks3+Zse69HH0wfT1ro/CfxR0zXJFsdSA03U92wxSthHb0Vj0P+yce2aQHf0U0uAKdTAKKKKACquoWEOp6dc2Nyu6C4jaNx7MMHHpVqigDyX4U3s+ja1rHg6+kxJbytJD2Bx8rY9iArAfU161XkXxMt5fDPi/R/GVohxvEVwB/EVB6/VNw/4DXq9tcw3lrFcwOHhmQOjDoQRkGkBNRRRTAKKKKACiiigAooooAKKKKACiiigAooooAKKKrX9/b6bp9xfXT7ILeNpHY9gBmgDzP4t6tPevp3hHTsvd30qvMqnqucIp+rck9tor0DQ9It/D2g2mmQH93bR7dx/iPUt+JJP415v8NLKfxP4q1TxrqCc+YYrZTztJABx/urhffJq38SPFlzPdJ4Q8P7pdQujsuDGeVU/wA9iR19F+vCAyfEmqXfxL8VxeGdFkK6RbSb7i4HKsQfmc+wzhR3Jz9PWdK0i00XS7fTrGJY7eBdqj19SfUk81leDPCNt4R0NLOPa9zJh7mYf8tH9B/sjoB9fU10lMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKTbS0UAc54q8F6V4ttPLvYglyi4hukHzx//FL7H9DzXnFrrPib4WXiWGtRPqGgs22GZDkoP9knocfwN+BFe1VWu7G3v7SS0vIY54JBh0dcgigCvpGuabr2nre6bdLcQNwSvVT6EdQfY1o147q/gfXPBGotrvgyaSS36y2TfMwX0x/GvP8AvDj6113gz4i6Z4rQW0hFpqg4a2dvv/7h79+OvBOMUgO0opNwpaYBRRRQAVwnxeuBD8PrqI8efNFGPf5w3/std3XlvxxuAvhnTrbODJeb/wAFRh/7NSYHZ+CYPs3gjQ4wMZs4nI92UMf1JrfqtYwC00+2twMCKNYwPoAKs0wCiiigAooooAbt/wAiuT8V/DzRvFUbySoLa/Iwt3CvzfRh0ccDryOxFddRQB4vFrHjD4YzLbavC2qaGGCJMGJ2Dttb+E46IeOwr07w94r0jxRaefpl0HYAF4W4kj/3l/r09DWtJBHPE8U0aSROpVkdQVYHqCPSvMfEPwqaC7/tbwjdtp98hLi33EIT32N1XjPByOccCkB6jmlryjQvildabfDSPGtnJZ3SnAufL2g+7KP5rx7V6jb3UF3BHPbzJNDINySRsGVh6gigCaikzS0wMPxboS+I/DF7pjY8yRN0TH+GQcqfzH5Zrk/g/rzXvhyXR7kkXWmPs2sDu8ticZ+hDD2wK9HxXj2rf8UL8YbfUh8mmavxMew3nDc+z4c+xpMD2KikzntS0wCiiigAooooAKKKKACiiigAooooAKKKKACvK/i1rFxdNp/hDTfnur+RWlAP8OcKD9Tyf92vS7+/t9N0+4vrp9kFvG0jsewAzXinhnVIhf6z8R9eX5VkMNlFnl5WGNqn/ZUBendj2NJgdd4j120+Gvg2z0fTmWTUTD5cCgZIPO6Vh6bjn3J9jiT4beCX0a3bW9W3SazeDcTJy0Kk5Iz3Y9z+HqTh+AvD954q1t/G3iJd+5ybOEj5cg4DAdlXHyjnJ57ZPruKYC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANwfWuD8ZfDKy8QOdR0x10/V1JYSrwkhzn5sdDn+Ic+oPFd9RQB5H4f+IuoeHr8aD43geGVOEvGXJx/tY++P8AaH4+terw3EVxEksEiyxuoZHQ5VgehB71l+IPDGmeJrA2mpW6uoz5ci8PGT3Vu306HvXljReKPhNdbo92qeHXbocgKf8A2m3vyD/JAe2UVi+HfFOleKbD7Vptxu2/6yJ8CSI+jD8+RkHHBrZ3DOKYC15N8WlW+8U+EtNPIknIZT3DvGo/ka9ZryXxSo1D45+HbbqIIUfHoVZ3/oKTA9aooopgFFFFABRRRQAUUUUAFJilooAyNd8NaX4jszbanapMuCFfo6fRuo7V5hceG/F3w3uXvPDlw+paVnMlsy7iB/tIOp4HzLz7dq9mpu2gDjfCXxI0XxTsty/2PUTgG2mYfMf9hv4vp19q7PcM4zzXD+LfhjpPiUvdW+LDUTz58S/K5/21GM/Xr9elcnaeL/FXw+uk07xbayX2nE7YrtTk4/2X43/7rYb3xSA9lrh/iloA1zwbPLGga6sc3EfHO0D5x/3z+oFdNo2v6Zr9kLvTLtJ4+hAOGU+jKeQfrV9gGUggEHqDTA5X4deIP+Eh8HWc0jFrq3H2afnJ3L0J9yu0/ia62vHfCTHwP8UtQ8NyHbYX/Ntnp3Mf6FkPqRXsOaSAWiiimAUUUUAFFFFABRRRQAUUUUAFFGarX1/b6bYXF7dOUgt42lkbGcKBk8evtQB5f8YvEJW3tfDNrKokuSJrk7vuxg/KD6cjcf8Ad965vwvoMnjvVba2CSReGNHXYvG3zTncf+BufmP90YHXGeehttT+I/jaZlG2W6kLyM3KwRDgfXC4GO+B0zX0ZouiWegaTBpthHsghHU8s57sT3JNTuBdhgSCFIYkVI0UKqKMBQOgFS0UVQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFRSwJNE8Uiq8bjDI4yGHcEd6looA8n8R/Da+0e+OveCZ3trlDuezVuCOuEz1H+yePcDArV8H/E211mYaVrUY07V1by9j/Kkjegz91v9k16FgGuQ8Y/D3TPFsZmb/RdRUfJcovJ9nH8Q6e49e1IDrywA5ryayQ3/AO0Ley53LZwEj2HlKv8ANzVbSvGOv+AL+PRPF8EtxYk7YbxPmIXtg/xr7feHv0qT4bypqvxM8UazE++E+YsT9AyNKChGfZBQB6/RRRTAKKKKACiiigAooooAKKKKACiiigAqtd2Nvf20ltdwxzwSDa8ci5Vh9Ks0UAeS618MdR0K+bV/A97Jbzrz9jL9R6Kx4YcD5W49z0q54b+K0LXP9l+KrY6XfqdhkKlYyf8AaB5T68j3r0zFYXiTwfo/im3Meo2/70DCXEfyyoPY9x7HI9qQHG/F7Snk0zT/ABPp7YuNPkXMsZz8jEbWHrhsY/3jXd+HtYi1/QLLVIsYuIw7KP4W6MPwII/CvI9S0XxV4Bsru1X/AInHhmeNkmjIJCKwwSRyUPX5hkVe+CfiD/j98Pyvx/x825Pvw6/ng/iaAPZKKKKYBRRRQAUUUUAFFFFABXn1z8RdSt/FsfhlfDPn6lJH5qrFqC7duCc5KjHAr0GvI/CmdY+O/ifUTzHZQ/Z19nG1P5I/50AdLe+ONW0eFrnWPBuoQ2acyTWtxFcbB3JVTkAeprWt7vQPHvht/JkjvtOuBtdQSCGBzg91YEA1vlcgg4IPXNeOfDdf7K+LfizRLQ7bDEkoTPClZFCgfQOR9BQAv/ChzzjxJ/5I/wD2yl/4UP8A9TJ/5I//AGyvY6KVgPHP+FD/APUyf+SP/wBso/4UP/1Mn/kj/wDbK9joosB45/wof/qZP/JH/wC2Uf8ACh/+pk/8kf8A7ZXsdFFgPHP+FD/9TJ/5I/8A2yj/AIUP/wBTJ/5I/wD2yvY6KLAeOf8ACh/+pk/8kf8A7ZR/wof/AKmT/wAkf/tlex0UWA8c/wCFD/8AUyf+SP8A9so/4UP/ANTJ/wCSP/2yvY6KLAeOf8KH/wCpk/8AJH/7ZR/wof8A6mT/AMkf/tlex0UWA8c/4UP/ANTJ/wCSP/2yj/hQ/wD1Mn/kj/8AbK9joosB45/wof8A6mT/AMkf/tlH/Ch/+pk/8kf/ALZXsdFFgPHP+FD/APUyf+SP/wBso/4UP/1Mn/kj/wDbK9joosB45/wof/qZP/JH/wC2Uf8ACh/+pk/8kf8A7ZXsdFFgPHP+FD/9TJ/5I/8A2yj/AIUP/wBTJ/5I/wD2yvY6KLAeOf8ACh/+pk/8kf8A7ZR/wof/AKmT/wAkf/tlex0UWA8c/wCFD/8AUyf+SP8A9so/4UP/ANTJ/wCSP/2yvY6KLAeOf8KH/wCpk/8AJH/7ZR/wof8A6mT/AMkf/tlex0UWA8c/4UP/ANTJ/wCSP/2yj/hQ/wD1Mn/kj/8AbK9joosB45/wof8A6mT/AMkf/tlH/Ch/+pk/8kf/ALZXsdFFgPHP+FD/APUyf+SP/wBso/4UP/1Mn/kj/wDbK9joosB45/wof/qZP/JH/wC2Uf8ACh/+pk/8kf8A7ZXsdFFgPHP+FD/9TJ/5I/8A2yj/AIUP/wBTJ/5I/wD2yvY6KLAeOf8ACh/+pk/8kf8A7ZR/wof/AKmT/wAkf/tlex0UWA8c/wCFD/8AUyf+SP8A9so/4UP/ANTJ/wCSP/2yvY6KLAeOf8KH/wCpk/8AJH/7ZR/wof8A6mT/AMkf/tlex0UWA8c/4UP/ANTJ/wCSP/2yj/hQ/wD1Mn/kj/8AbK9jopgeNf8ACiBj/kY/ysfX/tpR/wAKJ6/8VJjscWP/ANsqz8QvEni3w3rM0WjaoJ4YbT7fNHLbRny4zKEABxzz+gNeiWF+PEfhq1v9PumtftkCyRyIquYyeo5BBI6dKVgPM/8AhRP/AFMn/kj/APbKX/hQ/wD1Mn/kj/8AbK63wPPresw3Go3+tPPapeTwQxLbxoJERigYkDOeCeCK7aiwHjn/AAof/qZP/JH/AO2Uf8KH/wCpk/8AJH/7ZXsdFFgPHP8AhQ//AFMn/kj/APbKP+FD/wDUyf8Akj/9sr2OiiwHjn/Ch/8AqZP/ACR/+2Uf8KH/AOpk/wDJH/7ZXsdFFgPHP+FD/wDUyf8Akj/9so/4UP8A9TJ/5I//AGyvY6KLAeOf8KH/AOpk/wDJH/7ZR/wof/qZP/JH/wC2V7HRRYDxz/hQ/wD1Mn/kj/8AbKP+FD/9TJ/5I/8A2yvY6KLAeOf8KH/6mT/yR/8AtlH/AAof/qZP/JH/AO2V7HRTA8b/AOFD/wDUyf8Akj/9srrPA3w5h8G3N3cveRX8820RytbBGiA3bsEsx5yM4x0713FFABVe6vbaxtJbq6lWG3iUs8jnAUetWK8i+IU0vir4iaH4HSRlsSRc3oU/fwC2D9FXj3YelAHVWfji51ze/hrw/dahZqcC8uJFtYX/ANzcCzfXbx3qO/8AGet6K0Lat4SkS1klSH7Ra3yThWZgq5BCkZJHOMc12NvbRWtvHb28SRQxqEREGAoHQCo7yxt9QhWG6iEsayJKFJIG5GDqfwZQfwoAtUUUUAFFFFADJJVijaRzhFBLH0Aryj4Ho93a+ItdkUiS/v8Akn2Bb+ctei63o0mtWbWv9qXtlE6skn2Xy8yKRjBLo2PwxXNaT8MoNCtDaaX4m1+1t9xfy45osZIwT/q/YflQB1Ws63YaBpU+pajMIraFSWY9Seyj1J7CvPfhLo15LPrHjDUYGin1iZmgjYYKxlixOPQnGPZRXSRfDvR3vI7vVJr7WZ4iGjOp3BlVD7IAF/SurCbV2gAAdB7UAPooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiims6opZ2CqOpJwKAOH0+yh1/xv4x+0qJLVbeDTAPVTGXkH5uB+Fc58N9Zl8N6V4n8N6g/7/QDLcR7v4osEkgem4bv+B11Pw3dbrSNU1NWDf2jq11cAg5wu/Yo/JK4T4v6Re6f4ltNY0vKjWYG025AHDE8DP1XH/fFAHpHw9sjYfD/RIWB3NbLM2euZPnP6tXT1FbwJa2sVvGMJEgRR7AYFS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5DqKjSP2iLG9u/kg1C22QyHoH8vZjPrkAf8CFevVj6/4Z0vxPZC01W1WaNW3RsCVeJvVWHI7f/XoA181mS6xCniC20cKWnlt5LliOkaKyqCfqW4+hrHj8H6jDEIIvGWui3AwAxhdwP99oyat6F4O07QL2e/hku7nULhdkt3eTtLIy5zj0Az6CgDoaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKp32lWGpweRqFjbXcIbcI7iJZFB9cEYz1q5RQBmWHh3R9KlaXTtJsLKR12M1tbJGSM5wSoGRnHFWrmxtb1Y1u7aC4EUiyxiWMPscdGGehHY9RVmigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//Z'] Multimodal Competition True Theorem proof Geometry Math English 17 "In the diagram, $A B$ and $B C$ are chords of the circle with $A B" "['Join $A$ to $E$ and $C$, and $B$ to $E$.\n\n\n\nSince $D E$ is parallel to $B C$ and $A D$ is perpendicular to $B C$, then $A D$ is perpendicular to $D E$, ie. $\\angle A D E=90^{\\circ}$.\n\nTherefore, $A E$ is a diameter.\n\nNow $\\angle E A C=\\angle E B C$ since both are subtended by $E C$.\n\nTherefore, $\\angle E A C+\\angle A B C=\\angle E B C+\\angle A B C=\\angle E B A$ which is indeed equal to $90^{\\circ}$ as required, since $A E$ is a diameter.' 'Join $A$ to $E$ and $C$.\n\n\n\nSince $D E$ is parallel to $B C$ and $A D$ is perpendicular to $B C$, then $A D$ is perpendicular to $D E$, ie. $\\angle A D E=90^{\\circ}$.\n\nTherefore, $A E$ is a diameter.\n\nThus, $\\angle E C A=90^{\\circ}$.\n\nNow $\\angle A B C=\\angle A E C$ since both are subtended by $A C$.\n\nNow $\\angle E A C+\\angle A B C=\\angle E A C+\\angle A E C=180^{\\circ}-\\angle E C A$ using the sum of the angles in $\\triangle A E C$.\n\nBut $\\angle E C A=90^{\\circ}$, so $\\angle E A C+\\angle A E C=90^{\\circ}$.' 'Join $A$ to $E$ and $C$, and $C$ to $D$.\n\n\n\nSince $D E$ is parallel to $B C$ and $A D$ is perpendicular to $B C$, then $A D$ is perpendicular to $D E$, ie. $\\angle A D E=90^{\\circ}$.\n\nTherefore, $A E$ is a diameter.\n\nNow $\\angle A B C=\\angle A D C$ since both are subtended by $A C$.\n\nAlso $\\angle E A C=\\angle E D C$ since both are subtended by $E C$.\n\nSo $\\angle E A C+\\angle A B C=\\angle E D C+\\angle A D C=\\angle A D E=90^{\\circ}$.']" ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAboBxwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoppOOc4A9apXOs6ZY/8fepWcGOvmzqv8zQBforBk8a+GIhk+INNP8Au3KN/Imq8vxC8JxKC2vWZz/dYt/IUAdNRXMxfEHwnKpK69ZjHXcxX+YFWI/GvhiVcr4g00D/AGrpF/maAN6iqNrrGmXuPsmo2k+enlTq2fyNXc8UALRR2ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiisDxh4hXwz4cutQC+ZcYEVrCOTLK3CKB9Tk+wNAHPa38VtK0bxhH4ea2mmYyxxS3CMAkbORx74BGcetegDkV8/fEjwjJ4f8AaHdzMX1IXryXs+cl5pl3MSfYxgZ9vevctHvxqmiWOoL0ubZJhj/aUH+tAF+iiigAooooAKKKYWCgktgDJOeMCgB9FcT4g+KXhvQi8S3LX9yvHlWuGAPoW+6Ppkn2rlF8R/EbxmV/sXThpNi5/1zcZX/fcc/8AAQDQB6tfalZaZAZ7+7gtYR/HNIEH61xWq/GDwvp5ZLZ7i/kXI/0eP5QfdmIGPpmsnT/g2lzKLzxLrdzf3TAb/KY/kXbJYfgK7fSfBnh3RNpsdItkkXkSunmSD/gbZIpAcEPiT4x13aPD3hQrG3SaUNKPru+VR+NL/Y3xY1tD9r1eHTUJ+4siowHsY1J/WvWx0oxQB5Ifg/qWosr6z4tubn+8pRpD+DM/9Kvw/BLw6mDNe6nL7eYij/0DNemUU7AcLF8I/CEYG6xnk4/juH/oRUy/CnwYBzo5P1uZv/iq7TFFFkBxbfCnwY3/ADByPpdTf/FVBL8I/B8udtnPEfVLhz/Mmu7oosgPMpvgj4efJhvtSiJ6ZdGA/wDHKpD4Qapp+9tG8W3Nv/dTayf+PIw/lXrVFFgPJDpPxY0UD7NqkOpIv8HmK5I9zIAfyNIfiZ4u0LI8ReFH8tTgzRK8a/8AfWGUn6EV65SYHoKQHBaV8XvC+o7VnmnsHJA/0iPK/wDfS5GPriu0stQtNStxPY3cFzEf44ZA6/mKydX8E+G9b3NfaRbtIx5ljXy3z6llwT+NcPffB1rKU3vhjXbmyuRkqszY79A6YIH4HPvQB6uOgzS14/8A8JT8QvBhxr2mjVLBDzcKOQP+uiDgf765rrPD3xP8Oa9siN0bG6Y48q6+XJ9A33T+efai4HaUU0HIHOadTAKKKKACmM20E/pnH5U+igDz3W/igPD2qW+m6j4c1NLq4P7hFeJvM5wMbXPU+tWLr4jTafC09/4P8RQW6/elECOFHqcNXF+I8a5+0VpFkBlbBYi3oNgab+ZFew6jeWmnWE93qEscdrEhMryY2hff+WKAKHhrxTpPi2wN7pN15sana6nho29CP89K3K8T+A2nXQk1rVzG8VjOUihB/jYbjx67QcZ/2jivbKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGn615RrWuXOt/EWOW10a+1bSPD7kbbRVKteYHLbiPug8e4966L4heObPwpot3FHdRnWJI8W1vuG4FsgOfQDk89cVe8A2Gnab4PsodNvIr1CC01zE24SzE5c569fx4GaAOI+I+t6hrvgi/tJfCWr2oQpL58wTbHtYEk4J425/Oun+EWof2h8NtNywMlvvt2PptY7f/AB0rWx4yvdNtvCuoQ6pew2sN3bS26tMwXczIRgZ7815h8CfEdlbWV9od1dRxTy3Ky28bnBkLLg7fpsH50Ae4UUDpRQAU0tgE9h1rD8S+LdJ8K2Zn1K52yMD5UCcySEeg9Pc8CvNGvPGPxRmZLNW0jQSdrPkgOPdvvSHHYYUd/WgDrPFHxT0XQZGtbNjqV8Pl8uBsIh/2mwR+WenauXXRPHfxEPma1c/2RpLc/ZwpXcP9zOT2+8e/Fdz4W8AaH4VRZbeAT3v8V1MMt/wHso+nNdXgelAHJeHvh34c8OhZIbNbi5Xn7Rc4cg+w6L+AzXXYoooAMCjAoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKADAPUVx3iL4a+HfEPmSNaC0umz+/tgEJP+0Ojfl+NdjRQB402l+Pvh2fM0y4Os6QnWLG7aP9wncpx/cyPaur8LfFHRfEDJa3Lf2dfscCGdvlc+ivwD9Dg/Wu6wK47xT8O9C8T+ZJJB9lvm/5eoFAYn/aHRvx/OgDrweBTq8XTVfGXwvlWDVIm1bQg21JgxOwdAA3VD0+U8dh616b4d8VaV4os/tOmXIcr/rImwJI/wDeXP68igDbpO9LWP4i8Q6d4c057vULyG3+VvKWRsGRgCQAO9AHjPhnSIPG/wAXvEt1cz3KW0DSlJLeYxtkOI0+Yc4KA11/iH4Q2d5ZtNp2p6h9uhBaBb2UXURYDgMrg1xnwc8UeH/D0WsXGtamltdXckYUSKzEgbiTkA9S36V3+sfFbRTYTQ+Hjc6xqjoVghtbaQ4c/dJJXpnnjPTpQBX+EfjefxVpdzY3kMMd1YbBmFQiuhzj5QAAQQegA5Fel15n8IPBd74W0q8u9UQRXl+V/cnrHGucZ9yWOfQYr0ygAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBMD0FLjNFFABijAoqGaeO3jkmmkWOKMEu7HAUDqSTQBITjJJwBzXmfjn4r22jGXTtDZLrUFysk2QY4D/AOzN7dB68EVl694x1jx3qb+HPCCSJZn5bi95Xcvrn+Ff1P6F1z8DIDYxfZNZkW7Vfn82IGNj7BcFRn60rgcNoWteHZNUl1bxd/amqXrNnykRGjOOhYlwTj+7gAe9emR/GvwvHEscen6mqKAFVYYgAPQYk6Vyv/CMeL/CYxL4Z0bW7VAORYxzED2wFkP4g1f03x14JaX7Prngyz06dTtciyjdVPfIKhh9MGgDd/4Xd4Z/58dW/wC/Uf8A8cpf+F3+Gv8Anx1b/v1H/wDHK3NJtfAOuJu0yw0G6OMlEtYt6j3UrkfiK1f+ER8Nf9C9pP8A4BR//E0Acd/wu/w1/wA+Orf9+o//AI5R/wALv8Nf8+Orf9+o/wD45XY/8Ij4a/6F7Sf/AACj/wDiaP8AhEfDX/QvaT/4BR//ABNAHHf8Lv8ADX/Pjq3/AH6j/wDjlH/C7/DX/Pjq3/fqP/45XY/8Ij4a/wChe0n/AMAo/wD4mj/hEfDX/QvaT/4BR/8AxNAHHf8AC7/DX/Pjq3/fqP8A+OUf8Lv8Nf8APjq3/fqP/wCOV2P/AAiPhr/oXtJ/8Ao//iaP+ER8Nf8AQvaT/wCAUf8A8TQBx3/C7/DX/Pjq3/fqP/45R/wu/wANf8+Orf8AfqP/AOOV2P8AwiPhr/oXtJ/8Ao//AImj/hEfDX/QvaT/AOAUf/xNAHHf8Lv8Nf8APjq3/fqP/wCOUf8AC7/DX/Pjq3/fqP8A+OV2P/CI+Gv+he0n/wAAo/8A4mj/AIRHw1/0L2k/+AUf/wATQBx3/C7/AA1/z46t/wB+o/8A45R/wu/w1/z46t/36j/+OV2P/CI+Gv8AoXtJ/wDAKP8A+Jo/4RHw1/0L2k/+AUf/AMTQBx3/AAu/w1/z46t/36j/APjlH/C7/DX/AD46t/36j/8Ajldj/wAIj4a/6F7Sf/AKP/4mj/hEfDX/AEL2k/8AgFH/APE0Acd/wu/w1/z46t/36j/+OUf8Lv8ADX/Pjq3/AH6j/wDjldj/AMIj4a/6F7Sf/AKP/wCJo/4RHw1/0L2k/wDgFH/8TQBx3/C7/DX/AD46t/36j/8AjlH/AAu/w1/z46t/36j/APjldj/wiPhr/oXtJ/8AAKP/AOJo/wCER8Nf9C9pP/gFH/8AE0Acd/wu/wANf8+Orf8AfqP/AOOUf8Lv8Nf8+Orf9+o//jldj/wiPhr/AKF7Sf8AwCj/APiaP+ER8Nf9C9pP/gFH/wDE0Acd/wALv8Nf8+Orf9+o/wD45R/wu/w1/wA+Orf9+o//AI5XY/8ACI+Gv+he0n/wCj/+Jo/4RHw1/wBC9pP/AIBR/wDxNAHEzfGnwtPE8M2napJG6kMjwREMD2/1leaa1reg22qpq/g5tU0y5B3GKREWMepUhjx22kY56ivoH/hEfDQ/5l7Sf/AKP/4muU+Imn+HfD/gy9uYdD0mK5mxBA4s4wVduMggdQoYg/7IoAi8EfFO013y9P1cpaajjCyfdjmPt/db26H17V6TivH9D+FljrHw9smlzbatMpuUuRzt3YKqw7rt2n1BJxS+HfG2reDdUXw34yVxCuBBek7sL0HPVk9+oPHsAD10ordVB+opVRVGFUAewqOKaOaJJI5FdHXcrKwIYeoI7VLTAMUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFQzzpBFJNLIqRxKWdmbAUAZJJ+lADb28gsLSW6uplhgiUs7ucACvHNS1TWfivrDaTpBe00GBv387/xj1YDqe6p+fsapqeo/FnxH/ZGks9voFqd005HDejkd88hV/H6esaLodhoGlRadp0Ijt0BB7lierMe5NICPw/4d07w1piWOmw7E6u55eRv7zHua1+tHUUUwCs7U9E0rWI/L1LT7a6XGB5sYYj6HqPwrRooA801b4MaFdEy6Zc3OnSjBUBvMjU+uG+b/AMerMOk/E/wq5NhqK6zaIf8AVu3mNt7ZDncPopNevYHpRgelIDyiz+MUtjOLXxPoF1ZzjGWiBH47HwQPxNdto/jfw3rm1bLV7dpDwIpG8tyf91sZ/Cti9sbTULdre9tobmFuscyBlP4GuK1j4R+GNT3Pbxz6fMSTutn+XP8AutkY9higDvM+/f1pw6V5AfBfj/wtk+Htf+226Y2wSNt49Aj5Qf8AfWakj+KuvaFIsHivw3LF8+3z4gYx+AbIb8Gpget0VyOkfEnwtq+FTU1tZTjMV4PJIJ7ZPB/A11aSK6hlYFT0IOQfxoAfRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeRfEp38TeO9C8JwElFYSXG09N3J/FUUn/AIFXrMsiwxPLI4REUszE8ADvXk3wzjfxJ4113xbcI2N/l2+4fd3dAD6qgUf8CoA9bjjSKNI0UKiAKqgYAA9KxvEnhvTfFGmvZahFnBzHKuN8TY6qe38jW2OlFAHi2ka3q/wt1ddD18PcaJMSbe4QEhB/eUHoB/EnbII9G9it7mG7to7i3lSWGVQySI2Qy+oIqhrug2HiPS5tO1CIyQvypHDRtjhlPYjP8+1eWaJq+o/CzxAfD+uMZ9EuG3QXA6IDwWHt03L25I/2kB7SOlFRxSpNGksTh43AZWU5DA9CDUnamAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA0kDk8D3rx7xjr19488QL4Q8PMTZK/+l3IyFYqfmyf7i/q2PbO18TfF9xZiPwzoheXVr75H8rlo1bgL7M3r2HPGQa3vAvg638I6KIcI99PhrqVR1I6KD/dAPH40gNTw94fsfDejw6bYoRGnLufvSOerN7mtfg80nUc4paYBRRRQAUUUUAFFFFABRRRQAYHp0pkkUc0bRyxq8bDDKwyCPcU+igDjNX+F/hXV9zf2eLKZuklmfLx/wH7v6VyzfDHxP4ekM3hTxI6oG3CCUmMfQgZVj9QK9cooA8hHj/xx4XAXxN4e+0QJgG4Rdmfq6ZT8MCuj0j4s+F9V2pLcyWEx6pdJgf8AfS5AH1Iru8AjGOK5nWPAfhnXCzXekwrKcnzYB5Tk+pK4z+OaAN61u7e9gWe1uIp4WGRJE4ZT+IOKsV5Nc/CK90uZrrwr4iuLWXskrFSfq6dv+A1GPEXxM8LMF1XSBq1qD/rI0DNtHo0fQe7LQB67RXnGkfGXw9fbY9QS406UjnepkTP+8oz+YFdzp+r2GrQiXT722uk7mKQNj6gdPoaAL1FA6UUAFFFFABRRRQAUUUUAFFFFAHEfFTWv7H8D3aIcTXx+yp9GB3cf7oI/EVc+Hmi/2H4J0+3dAs8q/aJsjnc/zYPuBgfhXF+N/wDirfipo/htPntbQh7kc4yRvcf98Koz6mvXgAAAAMUAL2ooooAKxPFHhyx8U6NLp16MA5aKVR80T4wGH59O4NbdGB6UAeQeCfEWoeENffwZ4jbCbgLOdugz90An+Bu3oePp6+OgxXHfEDwXF4u0ciFVXUrcFraQ8Z9UPqDj8CB71l/DPxlNrFtJoWrMy6tY5Q+Z96VV4Of9peM/UH1oA9FooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsHxb4lt/Cvh+fUZiDIPkgjJx5kh6D6ep9Aa22YLyTj3z2rxm7L/FH4kC0RidA0sney5AcZ5IPq5GB/sqSOQaANb4YeGZ7mabxjre+S/vWZrfzB91T1f2z0HoPrXqWBikSNI4ljRFVFACqowAPQCnUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAYFGB6UUUAYur+FdD10N/aOl287njzCu1x9HHP61w9/wDBmzSb7ToGrXenTqSVD/OB6AMCGX65NepUYoA8gEvxU8KABlj1y1QYJ/1zfptkz7nNX9N+NGnGb7PrmmXWnTKdrkDeqH/aBAYfQA16hWfqWjaZrEQj1GwtrpRnHmxBiv0PUfhQBBpPibRdcVf7M1O2uWIz5avhwPdTyPxFa/avNdV+DOhXbGTTLi506UcqFbzEB+jc/k1Zf9i/E/wqR/Z2pLrFoh4jdt52j1D4I+itQB69RXk9p8YbjT5ltfE/h+6s5QvLxKQT77HwQP8AgRrttI8c+G9c2rZatAZT0ilby3z6YbGfwzSuB0VFNByByDmnUwCoLu6isrSe6nbZDChkdicAADNT1598X9b/ALM8FvZxt++1B/JGOuwcvx36Bf8AgVIDG+EltLrGs654uul/eXEhhj9stvf8vkA/GvWu1c/4L0T/AIR/wlp9g6bZlj3zDv5jctk98Zx9BXQUwCiiigAooooAMD0ryn4m+HbnTNQg8a6GfLvLV1+1BRxjoJD7YOGHoQfXPq1RTQx3EUkMsayRyKVdGGQwPBB/A0AZXhjxFbeKNBt9Stvl8wYkjzzG4+8prarxfSJJfhh8RJNIuHb+xNTYGF3PC5OFbPqD8p9sE8AV7QOlIAooopgFFFFABRRRQAUUUUAFFFFABRRRQAUUUx2AViTgL1JOAKAOD+Kvig6F4dNjauRf6iTGgX7ypgbmH5gD61p/D/wuvhTwvDbSIBezDzrpv9o/w/RRgfma4fw8v/CwPinda7J82maWV+zg9CQxEf5nc/sa9kHSgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoxRRQBXu7K1v4GgvLaG4hb70cyBlP4GuJ1f4R+F9TLPBDNp8pOc20nyn/gLZAHsMV3EwlMUgikVJCDtYruCn1I7/pXk134x8aR/EdfBtrfaTNOcZuGs2RR+7MnI3nsP1oAP+EJ8feFufDviH7ZboABBI+38Aj5Qf8AfWafH8U/EOgSrD4r8NyxjO3zolMe76A5VvwIrqPsXxFxkat4fJ97SX/4qo/DGo+I7zxPrOieIW024hsoImLWsLBS0mSAd3+yp/OkBZ0b4l+FtYCqmprbTEZMd2PLK5/2j8p/AmuN1918Z/GLTdKQ+dYaaoeTaQVJA3sc+h+RPwNdH4s8BeD20i91K500Wv2eF5S9o3lcAZwB93J6civK/BfhjxZc2Euv+G7lYJI5DCVE2x5cYYjBAUjkcEjkd6QH0iMYBFLXiyfE7xh4ZkEHifRPNUHaJGQwsx74YZRvwA+tdbpHxb8L6oFSe4l0+U8bblflz/vqSuPqRTA7yiq9reW97As9rcwzwsMh4nDqfxBxVimAUUUUAFFFFAHG/Ejwt/wk/hmQQR7r60zNbY6sccoP97+YFQ/DHxQfEXhhIbiQtf2JEM25vmcY+VvxHB91NdxgeleNakB8O/i1DfoPK0fVQfNwPlXcfn+m1tr/AO6cCkB7KORRQOlFMAooqGS5ghbEk0aE84ZwOPXmgCaiq4vrQ9LqD/v4P8alV1ZdysGU9CDnNAD6KB0ooAKKKKACiiigArh/ip4g/sPwdPFE+Lq/Jto8dQpGXP8A3zx9SK7ivH/EA/4TT4x2ekAeZYaUu6ZcZBxhn/M7E/CgDtPh34f/AOEd8IWtvIm26uP9IuAeu5gPlP0G0fga6wdKTHGDzS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACdzXiPgVhrfxy8R6o7Ax2/nLGxP+0sa9f8AZBr2TUbtLDTbq9k+5bwvM30VSf6V4d8HvBukeJtN1XUdcsUvP9JWOIuzDa2CzHg853rQB7NrmuWuhaU99PlwGVFjQjc7MwUAc+pq9FaW8VzNdRwok84XzZAAGfbwMnviuHvPhboEV7pVzo2mwWktpfxXMzGRyWjTJ2gEn+LHau//AAoA81+NGtfYvC8OlxviXUJcMMZPlphj/wCPbP1rrPBmj/2D4R03T2TZLHCGlB6iRvmYfgTj8K8b8f8AiC3vfiektxG1zp2lyxxNHFzvCsGcc8Z3Ej3xXqOjfEzwtrQVV1AWkx/5ZXY8v/x7lf1pAdfJHHNGySorowwVYZBHuK8OvfD2k+JvjDJpFnZxW2m2qH7ULXCAlR8xwOAdzKp+ma9l1DU7fT9GutTdw8FvC0xKsPmAGeD715z8HLGaeDWPEl4d9xfTlQ5Xk4JZiPqzD/vmnoBHdfCC70yZrrwv4hubObAwkrFc/V05x7bah/4SD4m+FDjVdLXVrRSP3qJuOPZo+n1Za9fwPSilYDzfSfjL4fvCItRiudOlGAxdfMQH/eUZ/HArutO1fTtXh87T7+3u0HUwyBsfUDkH2NVNX8LaHroI1LTLedyMeYUAkH0cc/rXDaj8GLETfatB1S6064BygYl1X2BBDD65NAHqVFeQb/in4SBJ2a3aRjnJ80/0lJ/MVf074zWKzm117SrzTrhW2OVG9VP+0CAw+mDRcD1CuM+Jvh/+3/B1z5SbrqzP2mH1O0fMv4rn8cVt6R4o0TXVH9m6pbXDEZEYfa+PUqcMPyrVIyMEZB7Hv60Ach8NPEB1/wAGWzSyb7q0/wBGmJPJ2gbW/Fcfjmuyrx/wkT4N+LOp+HmJWyv8tb54GeXTH0BZfrivYKYBXnfxkt9NTwHfX9xY20t6AkME7xKZEy4ztYjI43HivRK8h+P195fh3StPXlri7MuB3CKRj83FAE/w7+Hvhy+8B6bearpEFzd3CNK8r5yQWO3of7uKf4l+GiaPY3GreCbq70vULZTL9ninYpMF5Iwx6kDgfdPQj09E0KxGmeH9NsMY+zWscX/fKgf0q5IURGd9oUDLE9h3oA4n4YeN38aaDKbvauo2bhLjYMBwQdr47ZwePUGu6rwn4AIzanr8yKfJEcSn6lnIH5A17tQAUUUUAFFFFAFPVL+LStKu7+bPl20LTNjuFGcfpXm3wb0+Se31bxJdktc3s7IHYckZ3O34sf8Ax2tP4x6qbDwSbRDiS+mWLAODtHzEj8gPxrpfCGk/2J4R0yw27ZIoAZB/tt8zf+PE0gN0dKKOlFMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA4/x62u3uhX+kaLoc93JeW5i+0ieKNF3cEfM4bpnt3rF+GOn674V0SLRr/wzdRF52lkuVuYGQbuBwJN3RR616VijAoAQDis7XtUj0TQr7UpcbbeFnAPdugH4nArSry/4zapL/Zen6BabmuNQnBMacllUjav4uVIP+zQAnwc0lv7E1DW71d82ozEbn5LKucnJ9WY/lXQ6z8NPC2tFnfTVtZj0ktP3ZHvgfKfyrf0TSotE0Oz0yEAx20Kx5AxuOOTj3OT+NaNKwHjGqfCLWrO1mt9C195bSX/WWk7tFuHvjKsfqFr03wpo/wDYPhfTdNKhZIYV83ByPMPL4/EmtqjFMAHSiiigAooooAKoalo2m6vF5WoWFvdJ282INj6HqDV+igDzbV/gzoF2Xk02e502U4ICt5kYPrg8/wDj34VlHQvib4UOdM1RdXtVP+qkfeSB2w+CPorV69gCmO6RIzswRVGWJ6AetID5w8VeL9SvfEWm39/pIsNZ0xl8wEMgkAYOgKtyoznuQdwr6KsbyLULC3vLdt0NxEssbHjKsMj+deEabpD+PG8Z6/IjNiJhaLjndkOqg+oVFX/gdeifCXVTqXgS3jZi0tnK9uSe4HK/gFYD8KAO7rxL4p/8Tr4r+FtDHzRqYy49N8nzf+OoDXst1C9zayQx3E0DOuBLFt3L7jcCP0rhbv4Tafe6yNYn8Q+IDqK4C3IuI1dcccERjFMD0D8TXn/xN8Zw6RpEuiae5uNc1BPIit4fmdA3Bcgcjg8d8kdquN8PGlXbN4x8VSIeqfbwoYehwma0vD/gjQPDcpn0+xH2p87rqZjJMfX5m5Ge+MUAZvwy8IP4Q8KpDdKo1C6bzrkLztOOE/AfqTXbUgH50tABRRRQAUUUUAeR/EQHXfiZ4a0AKHjj2yyr/ss+WH/fMefxr1vHqBmvJdA2638eNYveWWwjdUJ6KyhYcf8AoVet0gCiiimAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACZ5PrXkFif+Ew+N1xeEbrLR1KqSMgmM4A/7+MzD6V6N4r1lfD/AIX1HUyQHhhbyge8h4Qf99EVyXwc0Y2PhaXU5gTPqMxcMTyY1yBn/gRc/QikB6OBxRR2opgFFFFABRRRQAUUUUAFFFFABXG/E3Wf7G8D3xRts12Bax/8Dzu/8d3fpXZV5D8RmPij4g6H4TiYmJG33O09N3zN+IRcj/eoA674aaN/Y3gWwjdQJbkG6lzxkvyOPXaFH4VyXws/4knjTxL4bO4Kjl4g391H2/qHU162iqqKqqAAMADoK8mvwdG/aAtJgxEepQruHQcoUH/jyCkB63RijtRTAKKKKACiiigAooooAKaxABJ6Ac06s7Xrn7F4f1O7HWG0lkH4ITQB5t8G999feJNZcDNzOuD7kuzf+hLXrVeafBODy/BlzIcfvb1yD6gIg/nmvS6EAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSH60AeVfGC+mvJ9G8MWZBmvZ1kcf8AAtiA+xJb/vmvTNNsYdN0u1sIB+5t4ViXPcKAP6V5V4Z/4rD4xanrZG+y00GOEnkZxsQfj+8f2r1+kAUUUUwCiiigAooooAKKKKACiiigCOWRYonkkYIiAsWJ4AAzmvJ/hlE/iLxnr/i2dW2FjFBuH945xn1VVUf8CrqPijrX9j+B70I2JrvFtH/wLO7/AMdDfmKm+G2i/wBi+B7CNl2zXC/aZeMHL4Iz7hdo/CkB1o6DnPvXkvxZ2ad4s8KawRgRzYdvQJIjD/0Jq9bry744QqfC1hPjlL3b+aMf/ZRQB6iORRVbT5/tWm2txnPmwo+fqAas0wCiiigAooooAKKKKACuf8cSeV4H1tsf8uci/mpH9a6CuW+I5I+H2sYOP3IH/jy0AUPhKgT4d2B/vySn/wAfYf0ruK434Vf8k10j/tt/6OeuyoWwBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc5451o6B4P1G+Rts3l+VAQefMf5Rj6Zz+Bro68l+LE8uteINC8JWpxJPIJpD12liVUn6AOSPcUAbnwj0T+yvBcd064nv3MzEjB29F/DAz/wI131RW1tFaWsNtAgSGFFjRR0CgYAqWgAooooAKKKKACiiigAooooAKKKjlkWKJ5ZGCoilmYngAd6APJPiIx8T/EXQvC0RLRRMHuApP8XzN9CI1zn/AGsV68qqqhVAAAwAK8k+GMUniLxjr3i64RtrOYrcOPu7jnGfUKFH/Aq9cpIArz/4xwiTwFKxx+7uI35H1H9a9ArifiyAfhzqWQDhocf9/VpgbfhBy/gvQ2PX7BBn/v2tbdc94GJbwJohJJP2RBz9K6GhAFFFFABRRRQAUUUUAFcr8RwT8PtZwCcQg/kwNdVXP+N4/M8D62o6izlP5KT/AEoAzfhV/wAk10kZ/wCe3/o567KuG+Esgk+Hdio/5ZvMv5yE/wBa7mhbAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAxmwCSQAO56V5H4EB8V/E3WvE7gvbW2UtiffKr/44CT7muy+I+tnQ/BN/MkgWe4X7NCTxhn4J/Bdx/Cq/wu0UaN4GtC6lZr0m6f8A4EBt/wDHQv45pAdrRQOlFMAooooAKKKKACiiigAooooAK4n4p6wNJ8DXiK4WW9ItUzz97O7/AMdDfmK7avIPiC3/AAlHxL0TwuhzBAQ9yASD83zMP++FGD23H1oA7P4daN/YvgjT4mQJNMv2mUEc7n559wuB+FdZSAAKABgAdKWhAFcR8WDj4c6kCcZeID3/AHi//Xrt64D4xTCLwDKpXJkuI1HPplv6UAbvgUEeBdE3DH+iRn8CK6KsXwgmzwZoY5/48IM5/wCuYraoQBRRRQAUUUUAFFFFABWdrtqb3w9qdqOTNayxj8VI/rWjSEAgg9DQB5t8E5/N8GXMRP8Aqb11H0KIf5k16VXk3wb3WF/4l0aRubadcDvwXVj+i16zQgCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqOWRYYnlkcIiKWZieAB3oA8m+JTv4m8d6F4TgJKKwkuNp6buT+KopP/Aq9bjjSKNY0UKigKqgYAA7V5J8M438SeNdd8W3CNjf5dvuH3d3QA+qoFH/Aq9dHSkgCiiimAUUUUAFFFFABRRRQAUUUUARyyJDE8sjhUQFmJPAA5zXk/wALo5PEHi7X/Fs6sFkcxQbh93cckZ9VUKPo1dL8Vda/sfwPdohxNfH7Kn0YHdx/ugj8RVz4eaKNC8Fafbsm2eZftEwIwdz88+4GB+FIDqx0FFA6UUwCvLvjjMq+F9PgJ+Zr0OB7KjA/+hCvUa8l+LO3UvFnhTRs58yb509ndFBI/wCAtQB6jp1v9k0y1tx/yyhSP8gBVmjqKKACiiigAooooAKKKKACiiigDyPQiui/HjWbL5gt9G7IOgZmVZc/ow/OvXK8j+IzHQfiT4a8QBtsb4ikOOyt83/jkh/KvXO1IAooopgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcR8VNa/sfwPdohxNfH7Kn0YHdx/ugj8RXb15B43/AOKt+Kmj+G0+e1tCHuRzjJG9x/3wqjPqaAO0+Hmi/wBh+CdPt3QLPKv2ibI53P8ANg+4GB+FdX2pAAAAAMUtCAKKKKACiiigAooooAKKKKACiioppkt4ZJpWCxxqXYk8AAZJ/KgDyXx4f+Eq+KGieGk+e3tiHuQD6/Mw/wC+FXB969eAAGABivJfhXDJrvinXvFtwrZkcxQ7v4dx3EfgoQfQ162OlJAFFFFMAryS+P8AbXx/tIdpaLTYV3HtlUMg/JnA+tesk7csTgd89q8l+Fg/trxp4m8SHdsdzHET6O5bH4Kij8aAPXO1FFFABRRRQAUUUUAFFFFABRRRQB578Y9K+3+CWugMtZTLKcDJ2H5Wx/30D+FdJ4P1Y634R0u/Z90kkAWUj/novyt/48DWlqlhFqml3WnzZ8u4iaJsdQGGMj35rzf4OX8tvHq/hu7OLixnLqhPTna4HsCoP/AqQHqlFA6UUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAILu6isrSe6nbZDChkdicAADNeWfCS2l1jWdc8XXS/vLiQwx+2W3v8Al8gH41s/F/W/7M8FvZxt++1B/JGOuwcvx36Bf+BV0PgvRP8AhH/CWn2DptmWPfMO/mNy2T3xnH0FIDoO1FFFMAooooAKKKKACiiigAooooAK4f4rayNI8DXUaNtmvSLZPoeW4/3Qw/EV3FeQeOj/AMJZ8UtF8MKd1va4e4GSPvDe4/74VQD6mgDtfh7o39h+CtPt2TbPKv2ibI53Pg8+4GB+FdUOlIAAOABS0IAooooA5vx3qo0XwXql2GKyGEwxkHB3Odox9M5/Csj4SaUdN8B28rqRJeyNcNn0Pyr+ig/jWH8YLyTUb3Q/C1oQ093OJXX0ydiZ9jl8/SvT7G0hsLC2s4BiGCJYkH+yAAP5UAWKKKKACiiigAooooAKKKKACiiigAwK8f8AEB/4Qr4xWWsg+Xp+qDbMegGcK+fo2xz9TXsFcP8AFPw+dd8HzyRJuurEm4jwMkqAQ4H1XP4qKTA7gdKK5L4d+Iv+Ej8IWk8jhrq3/wBGuAD/ABqBgn6rtP4mutHSmAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRVPU9Qi0vS7u/nz5VtE8rAdwozgfyoA8s8Rf8AFX/GbT9HAMllpYDSjGVBA3tn6nYn4GvXhjtXlfwcsJbn+1/E14Abi+nZFbGO+5z9CzD/AL5r1UdKQBRRRTAKKKKACiiigAooooAKKKKAIrieO2tpbiZtsUSF3bPQDkmvKfhPBLrXiLXvFlyDumkMUeeg3NuYD6DYPzrovixrP9k+CLmJX2y3zC2UjqFPL8em0EfjWj8P9F/sLwVp1q6bZnjE8wIwQ7/Ng+pAwPwpAdQOBRQOlFMApjHAJz05yegp9cX8TvEI0DwfcCOTbdXn+jRYOCN33mH0XP4kUAcn4Rz4y+LGqeIz81nYDZbk9DkFUP8A3zubHrivYB0rjvhpoH9geDbVZE23V1/pM3qCwG0fgoHHrmuxoAKKKKACiiigAooooAKKKKACiiigApjKGBBAIIwc9xT6KAPGdBZvh98VLrRZSY9K1MjyC3RdxPlnPsxZPrzXs1cD8VfDB1zw59utYy1/p5MqbfvOmPmUe+BkfT3rS8AeKf8AhKfDMM8kgN9b4huh0O8AYbHow+b8xQB1lFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5r8ZdYa08Mw6VCSbjUZtuwDkxryf/Htn5mvSc15Dcn/hMPjhDACGsdGG4lScFo+T/wCRGAPqFoA9H8MaOugeGtP0wABoYQJMHq55c/8AfRNbA6CjHFFABRRRQAUUUUAFFFFABRRRQAUUVDc3EdpazXEzBYokLu3oAMn9KAPJfHGPFfxV0Xw0CGtrXDXCn3HmOP8AvhVGfU17BgeleS/CaCXWtc13xbdqd88phiJ7ZO5gPoNg/OvWqSAKKKKYCE9cdfSvGr8n4jfFiOzU79G0gnf3V9pG4+nzNhf90ZrtPiP4p/4RjwzK0D4vromG3xyV4+Z/wB/MioPhl4WPhvwuktwu2+vsTTccqP4F/AHP1Y0gO4HTOMUtA6CimAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA0gHg9+1eM3iyfC74jfa0UjQNUzvCjiMZyePVCc47qcDmvaKwfFvhu38VaDcabPhHI3QSkf6qQfdb9cfQn2oA245EljWRGDIwBVlOQQafXlnww8TXNtPL4O1vdFfWZIt955ZVzlM98Y49h7V6nQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZuvapHomhX2pS4228LOAe7dAPxOBXBfBrS5E0e/wBdutzXGozkb25JVc5OfdifypPjNqkv9l6foFpua41CcExpyWVSNq/i5Ug/7Nd/omlRaJodnpkIBjtoVjyBjcccnHucn8aQGjRRRTAKKKKACiiigAooooAKKKKACuD+LWsDS/BE8CNtmv3FsuOu08ucem0EfiK7yvIPGmPFnxZ0fw6o321lhrgY45HmOPxRVH1NAHdeA9H/ALC8GadZuhSZo/OmB6h3+Yg/TOPwrpaQAY7UtCAKhnmjt4ZZppBHFGpd3Y4CqOpqavJ/iZ4huNX1CHwTof7y5u3Vbor0AJyEz1A4LMfQdetAGfo0UnxO+Ikus3CE6HppAhRxw2DlAR3JOWPtgelez4HWsfwz4ftvDOhW+mW2D5Y3SS4wZZD95j/npgVsjpSAKKKKYBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRgelFFAHm3xN8ITXyJ4l0ZWj1WwIeTyuGkRecjH8Qxx7cc4AO54E8YxeLdEWViF1CABbqIcYb+8o9DgkenIrrcCvHfGOg33gTxEvjDw8hFmz/6XbIPlXJGQR/cb/x09O2EB7FRWP4d8Q2XibRYtSsX/duMOmeY2HVT7g962KYBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJnk+tLWL4r1lfD/hfUdTJAeGFvKB7yHhB/wB9EUAec2J/4TD43XF4RustHUqpIyCYzgD/AL+MzD6V7ABxXnHwc0Y2PhaXU5gTPqMxcMTyY1yBn/gRc/QivR+1IAooopgFFFFABRRRQAUUUUAFFFFAENzcxWlrNcztsihQyOxPQAZP6V5V8JIJdY1zXvFl0vz3EhhjJPTc29h+HyD863vi3rP9l+CpreNsTX8gtwB129W49MDB/wB6trwPov8AYXg7TrJ0KzeX5kwPUO/zEH3GcfhSA6OigdKxPFHiWy8K6RJqF6/TiKIH5pX7KP8APGDTAyfiD40j8JaM3lbZNSuAVtouuPV29hn8Tj3xmfDTwdJpNtJrurb31i+y5Mn3kRjnn/aY8n8B61ieB/Dl/wCLtebxp4lG5d2bOAjg46EA/wAA7ep5Pv69gEc4NAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVFNBFcwyQTRrJFIpV0YZVlIwQR3BqWigDxbVdM1P4VeIv7b0lXudAuWxPb7vu5PCn6fwt+B9/V9E1yw8QaXFqGnTebBIPoVPdWHY1avLS3vrWW1uYUmgmUrIjjIYe9eParpWsfCnWm1jQw9z4fmYefbM2dnONrE9B/df8D23ID2misbw94k0/xNpi3unThk6OjcPE39117H+fatmmAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeU/GC+mvJ9G8MWZBmvZ1kcf8AAtiA+xJb/vmvVT9a8h8M/wDFYfGLU9bI32Wmgxwk8jONiD8f3j+1AHqum2MOm6Xa2EA/c28KxLnuFAH9KtUUUAFFFFABRRRQAUUUUAFFFFABRRUF3cxWVpNdTttihRpHY9gBk0AeT+MAPFnxd0jQAN9rYANOMZHI8xx+KhB9a9ewPavJvhFbS6tq2u+K7oZkuZTFGc9Mtvcfh8g/A13/AIk8T6d4W01rzUJSMnbFEv35W/uqO/8AIUgJte16x8OaVLqGoTeXCnAA5Z2PRVHcn0/kATXluiaNqXxP8Q/8JFryPDocDEW9qSQHAP3R7cfM3c8D2NG0TVvidrS694h3W+iRPi3tlJAcZ+6p7Dplup6D1HscMMVvBHDBGkcUahERBgKo4AA7CmAsUUcMKRRoqRoAqqowAB0AFPoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACopoYriJ4Zo1kicEOjgFWB6gj0qWigDx3XvB2seB9SbxF4PZ2tV5nss7tq5yRj+JP1Xt7dr4N8d6d4utiqMLfUIxultHb5sf3lP8AEvuOnf362vNvGPwzS9um1rw5KNP1ZGMhVG2JI3qCPuN79CevrQB6TRXlnhv4oT2d4dE8ZwNZX0ZCfaWXare7jtn+8OD7CvT45FmjWSNwyOAyspyCPUGgCSigciigAooooAKKKKACiiigAooooAKKKKAOc8c60dA8H6jfI22by/KgIPPmP8ox9M5/A1ifCPRP7K8Fx3Trie/czMSMHb0X8MDP/AjWH8WJ5da8QaF4StTiSeQTSHrtLEqpP0Acke4r1W2torS1htoECQwosaKOgUDAFAEtFFFABRRRQAUUUUAFFFFABRRRQAVwPxc1k6Z4JmtY2xNqEgtgB12/ebj/AHRj/gVdzNPHbxPLNIqRICWdjgAe5rwPx/rknjjxnZWHh0NeraqUhCLkPISGZhnjbwvJ/unsaTA6+PxNp3w08EafprBZ9YeESm0B5WR+SXPYDIA7nH4il4d8E6p4w1T/AISXxm77G5gsSuMrnIBH8Kf7PU9T77Xg34aQ6TONW16X+0dXZ9+XO9I2POefvN/tH8PWvRB0FACRxxxRpHGioiKFVVGAoHQAU6iimAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUmB6ClooAwfEnhXSPFFn5GpW+50z5U6YEkR9VP9DxXmjWHjL4Wu01g/wDaugA7mQg4jHfK9UOP4h8vr6V7TRgelIDkfC/xD0PxOqRRT/Zb4jm0uPlYn/ZPR/w59QK66uC8UfCzRdfZ7qzX+zL8nd5sC/IzerJ6+4wfrXLrrfj74e/u9WtjrGkp0nyWCr/106r1/jB9qAPZaK5Dw98SPDniHbHHeC0umx/o91hD+B6H8660H/OaYDqKKKACiiigAooooAKYzYBJIAHc9KfXJfEfWzofgm/mSQLPcL9mhJ4wz8E/gu4/hQBxvgQHxX8Tda8TuC9tbZS2J98qv/jgJPua9frivhdoo0bwNaF1KzXpN0//AAIDb/46F/HNdqOlABRRRQAUUUUAFFFFABRTS2K47xB8TPDnh/fEbz7bdLkeRa4bn0LdB785HpQB2J5rkPFPxG0TwwHheb7XfjOLaA8g/wC03Re2epxziuMOqePviINunW/9jaRIOZixXcv++RufP+yMetdV4X+GGheHSk80f9oX6/8ALadPlU9flToOfXJ9DSA5GPSPGHxPlS41eRtK0MnckIBG8deFPL8fxNx6Z6V6d4e8L6T4YsxbaZahMgeZK3zSSH1Zvrk46DtW0OlZ+q2Ul9ZNHHqN1YEHcZrYpuAGf7ysMfh+NAGhRXiHw81Dxb44m1VpfFl9a21oyBGWGJi24t/s+i/rXX6p4b8T2Wl3d4njzUGa3heUq1pDztUnHA9qYHoFFYXg+a+uPB2kXGo3DT3c9rHNLIwwSWAboPrW7QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSEA9RS0UAcV4g+F/hvXmaRbZrC5Y5MtnhAT7qQVPvgAn1rk18M/EXwYc6HqQ1WxTGLdiOAO2xz8o/3DmvYcUUgPKbH4yG0nW18S6Jc2M4+80an8yjYIH4mu20nxr4c1raLLV7ZnY4EcjeW5PptbBP4Vq32nWWpwGC+s4LqI/wTRhx+tcVqvwh8L6hl7aOewlPQ28mQT/utkY+mKAO+BzzTu1eRj4aeLtCx/wAI74rPlqciGRniX2G35lP40DV/izoyN9p0yHU41PDiNHYj2EbA/mKYHrlFeSN8X9W07aNY8IXVv2Zy7xj8Ayf1q7D8b/D7YE1jqUZPcIjAf+PClcD06vIviU7+JvHeheE4CSisJLjaem7k/iqKT/wKuhi+L3hKXG67uIs9d9u/H5A/pmuA8IeLtEHj3V/EuvXjQSTZFqphZyFY4z8oJBVVC/jQB7zHGkUaxooVFAVVAwAB2p1cV/wtjwb/ANBV/wDwFl/+JqCb4v8AhCMHbd3EuP7luw/9CxQB3lFeYzfHDw+m4Q2GpSEdNyooP5MapD4u6zqSt/Y3hG4n7K+5pB+IVR/OmB63TScE56CvJv7U+LWtKn2fTrfTY3437EQj6iQs35CkPww8Va3n/hI/FblC2TDEzyr+R2qD+FAHdar448N6JuW91i3EinBijJkcH0Krkj8cVxV78YZb6ZrTwxoV1ezkYEkqk4PrsTOR+Ix3ra0r4R+FdNZXmgnvpRzm5k4/75XAx9c12tnYWenQCGytILaIdEhjCD8hQB5OfCfxB8ZnPiHVBptkx5toz2/3F4P/AAI11vh/4Z+G9AKSi1+23Qx++usPg+y9B+Wa7PA9KKQCDoKXA9KKKYBWF4yvxpngzWbzdtaO0k2kHHzFSq/qRW7XnXxr1D7H8Op4t2Dd3EUPvwd5/wDQKAOO+EHi7wz4X8MXUerapHbXc90ZChjcnYFAHIXHXdXpPhvxdB4r1rVorBo59JtEhRJijAyyPuLdcfKAFGMdc80vw304ad8O9DhKAM1uJjx3kJf/ANmq19n0zwlFq2rTzusd5dCeViudrMFjVVAHPOMe5NAHQgAAYHSlpF+6PpS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAGB6VTudJ028BF1p9pPnr5sKtn8xVykoAw5PBnhiQEN4f0wZ/u2qL/IVCPAfhUf8wGx/79Vk+JPiJBpmsJoOi2Mmsa7IcfZoXASL/fft1zjt3IqaCx+IF7EJbrXNH05yM+TbWLTgexZnH6UAaH/CB+Ff+gBYf9+hU0fg3wxGBt8P6Ycetqh/mK5e71fx34d1rSbfUJNH1HT7+8S186OJ45VLZJO3dgcAnoelei0AVLbStOswBa2FrAB0EUKrj8hVvFFFABRRRQAUUUUAFFFFABRRRQA057da8x+IPg/xf43jgtEOjWtnbzGRM3UpZ+wLDy8DjsCcZPNeoUYoA4W0t/iRZWcFrDF4SEUMaxpl7joowO3tVW70Hxzr2paWuuTaAmmWd7HdyR2LTb5ChyAdwwRn+VeiUUAA6UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc74419vDPg7UtVj2meKPZCG6GRiFX9SD+FdFXnXxsikl+HVw0YJWK4iaTH93OP5kUAUPgnoKw+H5/El0TLf6pKx86Q5by1YjqecltxPrxXqg6c9a5L4ZPG/w40QxEEC32kj+8Cc/rXW0AVrmzt7qW3eeFZGt5fNiLD7j4IyPfDGrI4FVF1G1fU5dOWcG7ijWZ4x1VGJAJ+pU1bHSgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqWqada6vplzp17EJLe5QxyKTjg+h7HuD61doxQB5doOj+L/h28unWNmniDQmkLxKkwimgz14bg5POBxn0rem8U+KZ0K6f4IuxIeN95eQxIvvwxJ/CuzooA5DwbomtWF5q+q+IpbV9R1OSNmS1JKRIi4VRkD1Pr9a68dKMUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//Z'] Multimodal Competition True Theorem proof Geometry Math English 18 "Suppose that $m$ and $n$ are positive integers with $m \geq 2$. The $(m, n)$-sawtooth sequence is a sequence of consecutive integers that starts with 1 and has $n$ teeth, where each tooth starts with 2, goes up to $m$ and back down to 1 . For example, the $(3,4)$-sawtooth sequence is The $(3,4)$-sawtooth sequence includes 17 terms and the average of these terms is $\frac{33}{17}$. Prove that, for all pairs of positive integers $(m, n)$ with $m \geq 2$, the average of the terms in the $(m, n)$-sawtooth sequence is not an integer." ['In an $(m, n)$-sawtooth sequence, the sum of the terms is $n\\left(m^{2}-1\\right)+1$.\n\nIn each tooth, there are $(m-1)+(m-1)=2 m-2$ terms (from 2 to $m$, inclusive, and from $m-1$ to 1 , inclusive).\n\nThis means that there are $n(2 m-2)+1$ terms in the sequence.\n\nThus, the average of the terms in the sequence is $\\frac{n\\left(m^{2}-1\\right)+1}{n(2 m-2)+1}$.\n\nWe need to prove that this is not an integer for all pairs of positive integers $(m, n)$ with $m \\geq 2$.\n\nSuppose that $\\frac{n\\left(m^{2}-1\\right)+1}{n(2 m-2)+1}=k$ for some integer $k$. We will show, by contradiction, that this is not possible.\n\nSince $\\frac{n\\left(m^{2}-1\\right)+1}{n(2 m-2)+1}=k$, then\n\n$$\n\\begin{aligned}\n\\frac{m^{2} n-n+1}{2 m n-2 n+1} & =k \\\\\nm^{2} n-n+1 & =2 m n k-2 n k+k \\\\\nm^{2} n-2 m n k+(2 n k-n-k+1) & =0\n\\end{aligned}\n$$\n\nWe treat this as a quadratic equation in $m$.\n\nSince $m$ is an integer, then this equation has integer roots, and so its discriminant must be a perfect square.\n\nThe discriminant of this quadratic equation is\n\n$$\n\\begin{aligned}\n\\Delta & =(-2 n k)^{2}-4 n(2 n k-n-k+1) \\\\\n& =4 n^{2} k^{2}-8 n^{2} k+4 n^{2}+4 n k-4 n \\\\\n& =4 n^{2}\\left(k^{2}-2 k+1\\right)+4 n(k-1) \\\\\n& =4 n^{2}(k-1)^{2}+4 n(k-1) \\\\\n& =(2 n(k-1))^{2}+2(2 n(k-1))+1-1 \\\\\n& =(2 n(k-1)+1)^{2}-1\n\\end{aligned}\n$$\n\nWe note that $(2 n(k-1)+1)^{2}$ is a perfect square and $\\Delta$ is supposed to be a perfect square. But these perfect squares differ by 1 , and the only two perfect squares that differ by 1 are\n\n\n\n1 and 0.\n\n(To justify this last fact, we could look at the equation $a^{2}-b^{2}=1$ where $a$ and $b$ are non-negative integers, and factor this to obtain $(a+b)(a-b)=1$ which would give $a+b=a-b=1$ from which we get $a=1$ and $b=0$.)\n\nSince $(2 n(k-1)+1)^{2}=1$ and $2 n(k-1)+1$ is non-negative, then $2 n(k-1)+1=1$ and so $2 n(k-1)=0$.\n\nSince $n$ is positive, then $k-1=0$ or $k=1$.\n\nTherefore, the only possible way in which the average is an integer is if the average is 1.\n\nIn this case, we get\n\n$$\n\\begin{aligned}\nm^{2} n-2 m n+(2 n-n-1+1) & =0 \\\\\nm^{2} n-2 m n+n & =0 \\\\\nn\\left(m^{2}-2 m+1\\right) & =0 \\\\\nn(m-1)^{2} & =0\n\\end{aligned}\n$$\n\nSince $n$ and $m$ are positive integers with $m \\geq 2$, then $n(m-1)^{2} \\neq 0$, which is a contradiction.\n\nTherefore, the average of the terms in an $(m, n)$-sawtooth sequence cannot be an integer.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAJcDewMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5nxn4ysvB1jayXTxLNeTCGHzmKxqepZyASFA9AeSOmcjpqyPEHhrRfE1vDBrWnxXkcMnmxq+flYDrx1+nQ0Ac54q1vxV4S0GXXmm0nVLa22tcWyWsluxQnGUcyOMjIOCOQDj0rpfDev2nifw/Z6zY7vs10m5Q4wykEhlI9QQR+FcH8RfEUOu6O/hDRCw1LVHWDzLuNraKJAwLHdIAHJAwFXJ56cV2/hLQIPC3hbT9Et5DIlpFtLkY3MSWY47ZYk496ANqiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQnFLQRmgDkdU8Yp/wmUPhLT7uyg1SSHzme6V3AHJ2qikbmwCeWXAx1zxjeIvHeq+AdZ0yLxF9ivdI1BjH9stYnhe3YEZLIWfcOexB4Ppg9RqGgeH7fWF8U3WnhtRto/LW6VHd1U8cKucnBIzgnFedeJ44vix4x0zR7SbydJ0lzPfGcGGWYnb8qRth8YBG4gDk9cUAexgk9aWmr/SnUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjNtri9O8XS+LNY1Ox0DUdPt10yYwzGeB5pHI4LBQyBV3AgHLZwenftCAa5k2HhnwVPe6rDYNay37mS5kt7eWYuRkkkIGwOT0AFAGPpnj29tfH7eC/EUFsL2RPNtL20VkinXaWwUYkqcA/xHkV3wOa8l8LaYPGnxQuPHzyRpYWSfZdPt/MVpThSpeRR9z7zkK3zcjpivWl7jn8aAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqWranbaLpN3qd4xW2tYmmkKjJ2qM8Duau1Xv7K31GxnsryFJraeMxyxv0ZSMEUAcrpGs694p0SPWdG1LRooZlJhge1llwRxtd96HORzhOOevUs+H/j5fGcF/b3Nn9i1XTZfJu4A25c5I3KfTKtx2xS3us+GvhvoLWFrZTwwWyForeCCQqxJzzKRtGSeWZuPWsr4SeEbjQdN1DWdRmgl1LWpRcS/Z5A8aDJIUMCQTlmJI45A7UAekiikFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcf4r+Imk+Etc0rSb+G6kn1FgEMCgiMFgoLZI7nt2B9s9hiuf8AEPhiHWbuw1KJoodU09i1tPLCJUAI5VlOMjIByCCCMgigCp8R9OtdT+HevxXcaMkdlLMhYfddELKw+hA/WsL4H67qGu/DxH1GWSaW1uXtklkJLOgCsCSeuNxGfYVf8QaD4s8U6W+jXV9pdhYXAC3VxaB5JZUzyqq2AgP1auk8OaDp/hjQ7bSNLiMdrbrhcnLMTyWY9yTkmgDVooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPtS0hGaAOQ0/4iaTqfjy88JQQ3QvbVWLSsg8tiuNwHOcjPcdj+PHfH5PsGgaNr9o5t9Vs9QWOG4j4dVZHYjPplB+vrXcXPheay8RXOu6C1lDeXiqt3Fcwblmx0YOuGQ4wD1BwDjIycbWfAmpeNdTspPFt1aJpVk/mR6dYb2Ez+skjAcY4wAOp5oA7Dw9fS6p4c0zUZ0CTXdpFPIoGMMyAkfrWlTUUIgVVCqBgADAFOoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCOeVYIXlc4VFLE+wFct4H+IGl+Pba9m02G6h+ySBHW4UAnOdpGCeoB+n6nq2GRg9DXI6f4a1PwrHNa+GRpbabJI0q2l0jRNGzHJAkQHcvpuUkcDOMYAPPfHN3L4X+PPhy90n922qLDFeQxjiYNKUJI7nB4Pqte4iuF0zwBLc+Mm8XeJ7uK91RF8u0gt1KwWqY4xu+Zm5JzxyScdMd0Bgn3oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKw/Fviiy8H+Hp9Zv0lkghKrshALMWIAABI9fyzW5Wdr2i2XiHRbnStRi8y1uF2uO4IIII9wQD+FAEGga3aeKfDtpq1rG4tryMsI5VG4DlSCOQec+1eTfC6+n0n4u+K/Clqx/sZHmnigBysDLIBhfQYYg+6ivRFs/F+naeun2M2hyxxoIobiWOSEooGBmNcqxHsVB9BTPBPgGz8Ifbbt7l77V9QcyXl7IoXeSckKP4VyScdaAOvHSloxiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKQ5oz9KAFopAeaWgAooooAKKKKAExSgYoooAKKKKACiiigAopCcYozQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUhOKAFopM/SgHNAC0UUUAFFFFACEA9RRtGc96WigAxiiiigAooooAKKQmk3c47+lADqKAc0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUhOKTdzigB1FIDS0AFFFFAARmk2jOe9LRQAAAdKKKKACiiigAoopCcUALRSbvp+dLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSGgBaKQHNLQAUUUUAFIQCc45paKAEwKAMUtFABRRRQAUUUUAFFITyKQtg44zQA6ikBzS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGbr+sW/h/Q7zVrs/uLWMyPg4J9APqcD8a5y3sNe8QaTFqcPjB7aW4j3wrpsUMlrHntlkZpMdM7hnHQV0uuaLZeItFutJ1BGa1uU2OEbafUEH1BANQaLoum+EvD0GmWA8mwtFZgZXztBJZmLH3JP8A9agDkvh947v9Y1rVfC2vwwx65pZO+SAYS4jDbd4Hbqp99w6V6GDmvGvhfZXHiL4keJPHqxNHplyXtbMsNpmG5fmA9AI1/EkdjXsooAWiiigAooooAKKKKACiiigApGOBxS0hAPWgDjf7an8UeItS0bTNaj06PTWEc5g8t7qR8AnAcMEQZA3FTk5xjHPOa94s1z4a6/p39saidY8OahJ5f2iaNEntWGOpQBWGDnpnAPTv2OmeB9E0bxVqPiSzhkGo6gpEzNIWXlgzYXtkgH+WK89+MUEvjLxDoHgjTFMl0ZTd3TjkW8eNoLenBY/98juKAPZgc0tMiVUjVEGFUAAe1PoAKKKKACiiigAooooAKKKKACub8XeJE0GGwt0uLS3u9RuPs8E142IouMl25GcDouRkkDI610lc34t8EaJ40js49ZhkkFpIXjMchU84DKcdjgZ+lAGN4i0zxdpOjXGraR4ouLy8tkaZ7O8toTBOACSi7EVl9vmPpnvWp8PvGMHjjwtFq0UQglDmG4hByI5FxkA+hBBHsal8ca/beGPBupajcMMpA0cKE8ySMCEUfU/oCa534KeGL3wz4DUaghjur6c3ZjbhkUqoUEdjhc/jzzQB6NRRRQAUUUUAFFFFABRRRQAUUUUAQ3VxHaW0lzM4SKJC7ueiqBya4vRptR8baUmsWvid7C1mz5NtpiwSeUOwlZ1fL4xkDaBnHOMntLu0hvrOe0uU3wTxtFImfvKwwR+RrG8LeEtK8F6Q2m6QkogeYzOZXLszEAE/koGB6UAcn4X8bavZ+PrjwL4oeG4vQnmWV/FH5YuE27sMg4DYDHjupHoT6UDmvGNIt38Z/Hy58RWQ3aPoaG1E+Plll2FSqnvguTn0UdiK9nXpQAtFFFABRRRQAUUUUAFFFFABQaKCM0AclrGvSXXimLwtp2p21hdtb+fNO+1pQpJAWJG4ZvlYkkEKAODnjnPGep+J/h1aQ69Fq0uuaQsqpeWl9DEsiBjgMrxovfAwQcEjrXV3fgfRLvxnbeK5YZTqkEfloRIQh4IBK9zgkentXJ/GzUXl8Jw+GLKI3Oq6zcJHBbxjLFUYOzY9MqBzxyfSgD0XSdSt9Y0m01K0Ytb3UKyxk9drDIyOx5q5WN4U0ZvD3hTS9IkdXks7ZIndc4ZgOSM9s5xWzQAUUUUAFFFFABRRRQAUUUUAFYvivxBB4Y8P3GqTiM7CscayOEVnchVDMei5Iyewye1bVY/ifwzpvi7RJNJ1VJGtnZXzG+1lYHIINAGJJo3iS/0sX1l41kS8kjEkXk20JsznkAAqXKkYGd+e/tVb4a+PJvF9vqFlqVqlprWly+Tdxx/dY5I3D8VYEe3vXTBNK8I+GVTcLbTNNtsZZs7Y0X1PJP8AM15t8FdHvp7zxD4yvYGt01u5MltG3UoXZi30JYAH2PbFAHr4ooxRQAUUUUAFFFFABRRRQAUUUUAIc44ri7LVbnxrfaimm6+NPsbC4a3KWQie5kKkgu+8MEUlWCjbkgE56Cu0IB61zfh3wNofhTUNSvtKgkSfUZN8u+QkDkkKo7DJP+RQByUnjDW/BHjvTvD/AIjvU1TS9WIWz1BoVimjcnG1woCkAleQB97PtXqKknrXi/jq1k8c/F7w/oNgN8OhEXOoTj7sW5kYpnsSEUD3b2NezqMZoAdRRRQAUUUUAFFFFABRRRQAUhNLSEZoA5jxP4iNlqWl6HaXlna6hqZYxz3RBWNFxkqpI3uSwCrn1PbBwfFieLPCOjS+INM8Q3OqLZr5t1Y6hBDtkjB+Yq0aIVwMnvwD6c9D4g8DaH4k1rS9W1KCR7nTX3wlHIBwQwDDuARWX8Vtbi0f4fanF9+61GM2FvCoy0jyDaQB1OFJP4UAbvhDxLbeL/DNnrdqhjjuE+aNjkxuCQyk+xB+owe9blcd8L/Ddx4V8A6fpt4At3hpplBztZyW259QCAfcGuxoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEJx0ri9Thk8eyvYJK8PhiJ9t1NGcNqDA8xIeojBGGbqxyo4yT02taWutaPdaa93dWiXKeW01q4WRQeu0kEDI46dCa8z/4Z48KcY1XXhgYGLiL/AON0AeiRXVpYarZeH7W3SMG0klRI8KsUcbRqBjsD5nH+6a1hXGeCvhlongS8u7rTLm/nlukVHN06NgA542ovX3z0rtKACiiigAooooAKKKKACiiigApGJAzS0hGaAMPXtZuLUx6dpcKXGsXKkwxscRxL0MshHRB+bHAHqM2y0nT/AAF4f1TWJWkvb4xvc3t3LgS3cgGcD+6OyqOBx9axvEPwW0LxPrt1q+o6vrhuLg/dSeIJGo6KoMZwo/z1qjafs/8AhW0vre7Go61I8EqyhZJ4irEHOD+7yRmgD1OPO0EjBwOKfSAAUtABRRRQAUUUUAFFFFABRRRQAVWv72306zku7uVYreJSzu3QAfTk/SrNcz408E2XjnT4LDUb/Uba2ifzClnKqCQ9t25TnHUUAUrTQZvE2sweIPEMBSG2O7TNLkGRB/01lHeU+nRB6nkdHp2qR6jdalDFGQLG5Fuz54dvLRyR9N+PqDXmbfs7+FGGDq2vn/t4i/8Ajdd/4R8Kaf4M0FNH0155LdHaTfOyl2LHJyVAHt07UAbtFFFABRRRQAUUUUAFFFFABRRRQAjEjoK5PW5r3xNcTaDpM721mp2alqMf3lBHMMX/AE0IPLfwD3PHUXMJuLaWFZpIWdColiIDJkYyMgjI6jivKm/Z78LSStI+r+IHdySzNcxEsScnJ8v15+tAHeQJpvhWPRtC06zSGG5laCGGM42gRvIznufucnqSw55rdFcD4R+EPh/wbro1ewu9TnuRG0YF1KjKAep+VAc/j3Nd/QAUUUUAFFFFABRRRQAUUUUAFITS0hGaAMzWtZj0i1RhE1zdTt5Vrax43zyHPyjPbAJJ6AAk9KyPD/hj7Bf3HiHWpkutduVxLcDiO3j7RRZ6IPXq3U9cVQ8YfCvSfG2qx3+p6pq8bRx+XHDbzRrGg7kAoeTxnnsK50/s7eEyMHVNdx6faIsf+iqAPTdF1JdZ0a01KONo47qISorHna3I/TB/Gr9VtPsodN062sbfPk20SQx567VAA/QVZoAKKKKACiiigAooooAKKKKACmSSLEpd2CqASSTgCn1keJvD0PinQp9Iuby8tbefiV7R1V2XuuWUjB78UAc9cae/xAuY5L5WTwvA4eG3IIOouOkj/wDTIdVH8X3jxjPS2+pQnWptGgjANtbRzOVxtQOzKq47fcavNv8Ahnfwmf8AmK69/wCBEX/xqux8EfD7SfAUF5Fpc95P9rZWke7dWb5c4A2qvHJ/OgDq6KQDFLQAUUUUAFFFFABRRRQAUUUUAIxIx0x71zuvapfS3K6LoRUapIu6SdxlLKM8eY4/iY87U7nk8AmujxXl+qfArw9rGq3WpXus6/Jc3MhkkY3EXU9h+76DoB2HFAHT2enaV4A8PbbSOSR5biNZJZHzLdTyyKgZ2PUlm/w6V0647V5novwK8MaHrllq0F9q809nMs0aTzRsm4HIyBGD1969NAA6UALRRRQAUUUUAFFFFABRRRQAUhz2paMUAUdU1O30nT5Lu6LBEwAsa7ndjwFUfxMTwB61zuk+Gpr3WV8T+Io0bUkUrZWeQ0dhGew/vSH+J/wHA5Xxr8O9N8d/ZU1PUdThhtslILWVFQsf4iGQ5bHAPbJ9a5L/AIZ28J4x/auvf+BEX/xqgD0zSNUj1a3nniTbHHcywK2c7/LcoWHtlTWhWV4b8P2fhbw/aaLYNK1taqVRpSCxyxYk4AGck9q1aACiiigAooooAKKKKACiiigAopGJHSgHNAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUGmk49KAHUUgOaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikNAC0U0t+dKDmgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKQnFGaAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopCcUALRSAkk0tABSE0tBGaAOK8czeKLLQNb1Cw1ays7W1tHmiCWjPOSqZwXLlRyD/DU3wvu7i++G+iXd3PJPcSwFnllcszHe3Unk1Z+IYx8OPEmOP+JdP/6Aao/CT/klegf9cD/6G1AHaUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAh4+leOfF3UPGOheFILttetoBPepb+Xp1s0J2lWPMjOx/hHTH417JivJf2hOPAenkdf7Wh/9FyUAesrjt3paQUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFVdRF6bKQac9ul1xsa4RnjHIzkKQTxnvVqkIzQB5LPqXiS0+OnhvRdS1v7TbS2Uty8FtCYIdxWUY27mLY2A/MTg9MZr1odK8m14AftMeFsf8AQKk/lcV60OlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGbq8esSxxrpFzY27EnzHu7d5uP8AZCuvPXqa8/8Ahrqms3vxA8bWerapNffYZYYYtyhEUAyfdQcL2+uBmvUiM15N8Mv+SqfEf/r7i/8AQpKAPWRRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACE4rl/Fn/CSxWGoXWnapY2drb2ryqfsbSzblUn7xfYOnUqa6msnxOP+KT1n/rxn/8ARbUAc18HtQvNU+GmnXl/dS3NzJJOXllfczfvn713ded/A7/kkuk/78//AKOevRKACkJI6CloIzQBzHxDb/i3HiPJA/4l04/8cNUPhIf+LWaAMj/UN+e9q1dY8E6Hr8sz6pDd3AmxviN/OsZwMfcVwo/KmaR4D8P6A8R0u3u7ZYmLJEuoXBjBP+wXK/pQB0YOaWkAxS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhOK8l/aFP/FB6eDwP7Wi5/wC2ctetEbhjn8K5LUfhl4U1c51KxubzDFgJ9QuHAJ9AZMD8KAOrDH06804HNZGkeGdM0NmNgLtQU2bZr2aZQPQLI7AfgK2KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQnFLVe+sodQs5LWcyiKQYbypWjb8GUgj8DQB5Zrx/4yY8Len9kyfyuK9aHT2rj5Phb4Qlv1v5NPuXvE5W4bULgyD6N5me5/Oul03TLbSbX7Namcx7i2Z7iSZs/7zsW/WgC5RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACE4ryX4ZnHxS+I3qbuP8AD5pa9L1XRrPWYo4rw3IVG3D7PdSwHPuY2Un8a5+0+F3hGwuZLmy0+5triTO+WDUblHbJycsJATzQB14z3pait4EtbeOCLd5cahF3MWOAMDJPJ+p5qWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEJx2rJ8UMP+ES1nkD/AEGbPt+7atYjNYes+ENG8QSO2px3cyyJseNb6eONl9CiuF/SgDlvge3/ABafSQO0k4PfH71//rV6ICSMgD865nSvh54a0R4m0y1urUROJFjj1C4Cbgc8pv2nnsRzXTGME5Jb/vo0AOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP//Z'] Multimodal Competition True Theorem proof Number Theory Math English 19 "In the diagram, $A B C D$ is a square. Points $E$ and $F$ are chosen on $A C$ so that $\angle E D F=45^{\circ}$. If $A E=x, E F=y$, and $F C=z$, prove that $y^{2}=x^{2}+z^{2}$. " "['Rotate $\\triangle D F C$ through an angle of $90^{\\circ}$ counterclockwise about $D$, so that $D C$ now lies along $D A$ and $F^{\\prime}$ is outside the square, as shown.\n\nJoin $F^{\\prime}$ to $E$.\n\n\n\nSince $A C$ is a diagonal of square $A B C D$, then $\\angle E A D=\\angle F C D=45^{\\circ}$.\n\nSince $\\angle E A D=45^{\\circ}$ and $\\angle F^{\\prime} A D=\\angle F C D=45^{\\circ}$, then $\\angle F^{\\prime} A E=45^{\\circ}+45^{\\circ}=90^{\\circ}$.\n\nBy the Pythagorean Theorem in $\\triangle F^{\\prime} A E$, we have $F^{\\prime} E^{2}=F^{\\prime} A^{2}+A E^{2}$.\n\nBut $F^{\\prime} A=F C=z$ and $A E=x$, so $F^{\\prime} E^{2}=z^{2}+x^{2}$.\n\nTo show that $y^{2}=x^{2}+z^{2}$, it is sufficient to show that $F^{\\prime} E=y$.\n\nConsider $\\triangle F^{\\prime} D E$ and $\\triangle F D E$.\n\nNote that $F^{\\prime} D=F D$ and $\\angle F^{\\prime} D A=\\angle F D C$ by construction and $E D=E D$.\n\nAlso, $\\angle F^{\\prime} D E=\\angle F^{\\prime} D A+\\angle E D A=\\angle F D C+\\angle E D A=90^{\\circ}-\\angle E D F=45^{\\circ}$, which tells us that $\\angle F^{\\prime} D E=\\angle F D E=45^{\\circ}$.\n\nTherefore, $\\triangle F^{\\prime} D E$ is congruent to $\\triangle F D E$ (side-angle-side), and so $F^{\\prime} E=F E=y$.\n\nThis gives us the desired conclusion that $y^{2}=x^{2}+z^{2}$.' 'Since $A C$ is a diagonal of square $A B C D$, then $\\angle E A D=\\angle F C D=45^{\\circ}$.\n\nLet $\\angle A D E=\\theta$.\n\nSince the angles in a triangle have a sum of $180^{\\circ}$, then\n\n$$\n\\angle A E D=180^{\\circ}-\\angle E A D-\\angle A D E=180^{\\circ}-45^{\\circ}-\\theta=135^{\\circ}-\\theta\n$$\n\nSince $A E F$ is a straight angle, then $\\angle D E F=180^{\\circ}-\\angle A E D=180^{\\circ}-\\left(135^{\\circ}-\\theta\\right)=45^{\\circ}+\\theta$. Continuing in this way, we find that $\\angle E F D=90^{\\circ}-\\theta, \\angle D F C=90^{\\circ}+\\theta$, and $\\angle F D C=45^{\\circ}-\\theta$.\n\n\n\nUsing the sine law in $\\triangle A E D$, we see that $\\frac{A E}{\\sin \\angle A D E}=\\frac{E D}{\\sin \\angle E A D}$ or $\\frac{x}{\\sin \\theta}=\\frac{E D}{\\sin 45^{\\circ}}$.\n\nUsing the sine law in $\\triangle D E F$, we see that $\\frac{E F}{\\sin \\angle E D F}=\\frac{E D}{\\sin \\angle E F D}$ or $\\frac{y}{\\sin 45^{\\circ}}=\\frac{E D}{\\sin \\left(90^{\\circ}-\\theta\\right)}$.\n\n\n\nUsing the sine law in $\\triangle D E F$, we see that $\\frac{E F}{\\sin \\angle E D F}=\\frac{F D}{\\sin \\angle D E F}$ or $\\frac{y}{\\sin 45^{\\circ}}=\\frac{F D}{\\sin \\left(45^{\\circ}+\\theta\\right)}$.\n\nUsing the sine law in $\\triangle D F C$, we get $\\frac{F C}{\\sin \\angle F D C}=\\frac{F D}{\\sin \\angle D C F}$ or $\\frac{z}{\\sin \\left(45^{\\circ}-\\theta\\right)}=\\frac{F D}{\\sin 45^{\\circ}}$.\n\nDividing the first of these equations by the second, we obtain $\\frac{x \\sin 45^{\\circ}}{y \\sin \\theta}=\\frac{\\sin \\left(90^{\\circ}-\\theta\\right)}{\\sin 45^{\\circ}}$ or $\\frac{x}{y}=\\frac{\\sin \\left(90^{\\circ}-\\theta\\right) \\sin \\theta}{\\sin ^{2} 45^{\\circ}}$.\n\nDividing the fourth of these equations by the third, we obtain $\\frac{z \\sin 45^{\\circ}}{y \\sin \\left(45^{\\circ}-\\theta\\right)}=\\frac{\\sin \\left(45^{\\circ}+\\theta\\right)}{\\sin 45^{\\circ}}$ or $\\frac{z}{y}=\\frac{\\sin \\left(45^{\\circ}+\\theta\\right) \\sin \\left(45^{\\circ}-\\theta\\right)}{\\sin ^{2} 45^{\\circ}}$.\n\nSince $\\sin \\left(90^{\\circ}-\\alpha\\right)=\\cos \\alpha$ for every angle $\\alpha$, then $\\sin \\left(90^{\\circ}-\\theta\\right)=\\cos \\theta$.\n\nAlso, $\\sin \\left(45^{\\circ}+\\theta\\right)=\\sin \\left(90^{\\circ}-\\left(45^{\\circ}-\\theta\\right)\\right)=\\cos \\left(45^{\\circ}-\\theta\\right)$.\n\nUsing this and the fact that $\\frac{1}{\\sin ^{2} 45^{\\circ}}=\\frac{1}{(1 / \\sqrt{2})^{2}}=2$, the expressions for $\\frac{x}{y}$ and $\\frac{z}{y}$ become\n\n$$\n\\frac{x}{y}=2 \\cos \\theta \\sin \\theta=\\sin 2 \\theta\n$$\n\nand\n\n$$\n\\frac{z}{y}=2 \\cos \\left(45^{\\circ}-\\theta\\right) \\sin \\left(45^{\\circ}-\\theta\\right)=\\sin \\left(2\\left(45^{\\circ}-\\theta\\right)\\right)=\\sin \\left(90^{\\circ}-2 \\theta\\right)=\\cos 2 \\theta\n$$\n\nFinally, this tells us that\n\n$$\n\\frac{x^{2}}{y^{2}}+\\frac{z^{2}}{y^{2}}=\\left(\\frac{x}{y}\\right)^{2}+\\left(\\frac{z}{y}\\right)^{2}=\\sin ^{2} 2 \\theta+\\cos ^{2} 2 \\theta=1\n$$\n\nSince $\\frac{x^{2}}{y^{2}}+\\frac{z^{2}}{y^{2}}=1$, then $x^{2}+z^{2}=y^{2}$, as required.\n\n\n\n\n#']" ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAccB4AMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooNHegAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKDRVa/vbbTbCe9vZkgtoEMkkjnAVRySaAOe8e+NLTwR4Zn1Kcq9w37u1tycGWQ9B9B1J9Per3g28vNR8G6Nf38vm3V1ZxTyOFABLqG6Dgda8R+MEd1qHg2DxPqsbxXF/eRw2Fo/BtLXY7ZI/vuQrN6DavavePD1t9j8OaXbEYMNpFHj0wgFAGlRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUN3HLLbPHDO0EjcLKqqxX3w3FTVna/qsWh+H9Q1WbBjtLd5iCcbtqkgficD8aAPKPDvibxx4l+Imt+HLfxBbxWOltIGvP7PRySrBQuMjk8/98mtDxJ458T/DjVLAeIms9X0W9Yr9rggME0RGM5XcQeDkevNcv8GPE/hvw7oWraprmuWsGpajdF5FkbLlFBwSBzyzPVvxXDqHxo1jS7XQ7S4g8MWbs0uqXEflrKTgExq3LYAIHHU84FAHuMMqTwpLGweN1DKw6EHoRUlQWlvHaW8VtCoWKJAiKOwAwP0xU9ABRRSMcY9+KABjgZrzfxA+ueNdXW10KHT59G0q5H2n7dI8cV7cLn5BsViyRnBPYtxzt5v+P7/xnLplxpnhLQZ5LiZdh1BrmBERSOdgZwxbnGSBjqM10Hhq3Fh4csrVNLk01YIgn2WR0Zlx1OVYg5OTnOTnnFAHiHxrk8TXSeHtM16LSUW6u3MP2CSRySNqnO8D++K+h1G0ADoAAK8U+Iuh+M/F3i3Q9QsPCVwLHSXEgW4vbZGlbcrMMCQ4Hygd/wAK9h067mvLUS3FhcWMhJ/c3DRsw98xuy4/GgC2TikBOef1ofG3ntzXyZol54qu59Kl1vxzr+j6Xqqv9l1A3MssW5XKFX/eLsGVPOeMgng5AB9a5ozXjw+Efi9unxY1zpnpN/8AH6X/AIVD4v8A+is65+Uv/wAfoA9gzRmvH/8AhUPi/wD6Kzrn5S//AB+j/hUPi/8A6Kzrn5S//H6APYM0Zrx//hUPi/8A6Kzrn5S//H6P+FQ+L/8AorOuflL/APH6APYM0Zrx/wD4VD4v/wCis65+Uv8A8fo/4VD4v/6Kzrn5S/8Ax+gD2DNGa8f/AOFQ+L/+is65+Uv/AMfo/wCFQ+L/APorOuflL/8AH6APYM0Zrx//AIVD4v8A+is65+Uv/wAfo/4VD4v/AOis65+Uv/x+gD2DNGa8f/4VD4v/AOis65+Uv/x+j/hUPi//AKKzrn5S/wDx+gD2DNGa8f8A+FQ+L/8AorOuflL/APH6P+FQ+L/+is65+Uv/AMfoA9gzRmvH/wDhUPi//orOuflL/wDH6P8AhUPi/wD6Kzrn5S//AB+gD2DNGa8f/wCFQ+L/APorOuflL/8AH6P+FQ+L/wDorOuflL/8foA9gzRmvH/+FQ+L/wDorOuflL/8fo/4VD4v/wCis65+Uv8A8foA9gzRmvH/APhUPi//AKKzrn5S/wDx+j/hUPi//orOuflL/wDH6APYM0Zrx/8A4VD4v/6Kzrn5S/8Ax+j/AIVD4v8A+is65+Uv/wAfoA9gzRmvH/8AhUPi/wD6Kzrn5S//AB+j/hUPi/8A6Kzrn5S//H6APYM0Zrx//hUPi/8A6Kzrn5S//H6P+FQ+L/8AorOuflL/APH6APYM0Zrx/wD4VD4v/wCis65+Uv8A8fo/4VD4v/6Kzrn5S/8Ax+gD2DNGa8f/AOFQ+L/+is65+Uv/AMfo/wCFQ+L/APorOuflL/8AH6APYM0Zrx//AIVD4v8A+is65+Uv/wAfo/4VD4v/AOis65+Uv/x+gD2DNGa8f/4VD4v/AOis65+Uv/x+j/hUPi//AKKzrn5S/wDx+gD2DNGa8f8A+FQ+L/8AorOuflL/APH6P+FQ+L/+is65+Uv/AMfoA9gzRmvH/wDhUPi//orOuflL/wDH6P8AhUPi/wD6Kzrn5S//AB+gD2DNGa8f/wCFQ+L/APorOuflL/8AH6P+FQ+L/wDorOuflL/8foA9gzSEnHFeQf8ACofF/wD0VnXPyl/+P1n678NPF+i+HtS1X/haWuT/AGK1lufKzKu/YhbGfOOM464oA9uB5+ma8q+PmtvYeA49LhY/aNUuUiCr1KL87Y/EIP8AgVbPwn1K9vfhVpV/dy3N/eMs5ZpZd8smJpABucjJwABkge9cf410bxn4n+IOi6unhG4k0jSHV0t5b22V5WD7iTiQgZ2qMc9PegD0zQfC9hpvg7TtCu7O2uIoLVIpUkjDrI235iQeuTu/OvG/BM8vhX4/ah4X0qR/7GuJZA1tuJVMRGQEA9CD8oPXHBr0bUde+Id5am30nwbFYzuNour7UYZEi/2tiE7v/rdDUHw5+GJ8J313rmr3i6hr15nzJgDtj3HLbScEknqSB6ADuAejKMf/AFqWjFFABQRmiigBMCgADoKWigBNopcUUUABryn4beHdM8U/AjSNL1WAS28v2jB6MjefJhlPZh/9Y5BIr1avP/gmM/CHQv8At4/9HyUAc94e8Ran8MNbh8I+L5zNospK6Vq7fdVe0chPQDIH+zx/Dgj19Wyfwz0rK8SeHNM8U6NNpeq24lt5ec/xI3ZlPZh2/LkEg+aeHvEOp/DDW4fCPi6czaLKSulau33VXtHIT0AyB/s8fw4IAPYqKarZP4Z6U6gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuf8d/8k98S/8AYKuv/RTV0Fc/47/5J54l/wCwVdf+imoA574Jf8ki0P8A7b/+j5K9AwK4D4Jf8ki0P/tv/wClElegUAJgelLRRQAUUUUAFFFFABRRRQAUUUUAFef/AAS/5JDoX/bx/wClElegV5/8Ev8AkkOhf9vH/pRJQB6ARmsjxJ4c0zxTo02l6rbiW3l5z/EjdmU9mHb8uQSDr0EZoA8d8PeIdT+GGtw+EfF05m0WUldK1dvuqvaOQnoBkD/Z4/hwR7ArZP4Z6VleJPDmmeKdGm0vVbcS28vOf4kbsynsw7flyCQfNPD3iHU/hhrcPhHxdOZtFlJXStXb7qr2jkJ6AZA/2eP4cEAHsVFNVsn8M9KdQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc/47/wCSeeJf+wVdf+imroK5/wAd/wDJPPEv/YKuv/RTUAc/8Ev+SRaH/wBt/wD0okr0CvP/AIJf8ki0P/tv/wClElegUAFFFFABRRRQAUUUUAFFFFABRRRQAV5/8Ev+SQ6F/wBvH/pRJXoFef8AwS/5JDoX/bx/6USUAegUUUUABGayPEnhzTPFOjTaXqtuJbeXnP8AEjdmU9mHb8uQSDr0EZoA8d8PeIdT+GGtw+EfF05m0WUldK1dvuqvaOQnoBkD/Z4/hwR7ArZP4Z6VleJPDmmeKdGm0vVbcS28vOf4kbsynsw7flyCQfNPD3iHU/hhrcPhHxdOZtFlJXStXb7qr2jkJ6AZA/2eP4cEAHsVFNVsn8M9KdQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVz/jv/knniX/ALBV1/6Kaugrn/Hf/JPPEv8A2Crr/wBFNQBz/wAEv+SRaH/23/8ASiSvQK8/+CX/ACSLQ/8Atv8A+lElegUAFFFFABRRRQAUUUUAFFFFABRRRQAV5/8ABL/kkOhf9vH/AKUSV6BXn/wS/wCSQ6F/28f+lElAHoFFFFABRRRQAEZrI8SeHNM8U6NNpeq24lt5ec/xI3ZlPZh2/LkEg69BGaAPHfD3iHU/hhrcPhHxdOZtFlJXStXb7qr2jkJ6AZA/2eP4cEewK2T+GelZXiTw5pninRptL1W3EtvLzn+JG7Mp7MO35cgkHzTw94h1P4Ya3D4R8XTmbRZSV0rV2+6q9o5CegGQP9nj+HBAB7FRTVbJ/DPSnUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVz/jv/AJJ54l/7BV1/6Kaugrn/AB3/AMk88S/9gq6/9FNQBz/wS/5JFof/AG3/APSiSvQK8/8Agl/ySLQ/+2//AKUSV6BQAUUUUAFFFFABRRRQAUUUUAFFFFABXn/wS/5JDoX/AG8f+lElegV5/wDBL/kkOhf9vH/pRJQB6BRRRQAUUUUAFFFFAARmsjxJ4c0zxTo02l6rbiW3l5z/ABI3ZlPZh2/LkEg69BGaAPHfD3iHU/hhrcPhHxdOZtFlJXStXb7qr2jkJ6AZA/2eP4cEewK2T+GelZXiTw5pninRptL1W3EtvLzn+JG7Mp7MO35cgkHzTw94h1P4Ya3D4R8XTmbRZSV0rV2+6q9o5CegGQP9nj+HBAB7FRTVbJ/DPSnUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXP+O/+SeeJf8AsFXX/opq6Cuf8d/8k88S/wDYKuv/AEU1AHP/AAS/5JFof/bf/wBKJK9Arz/4Jf8AJItD/wC2/wD6USV6BQAUUUUAFFFFABRRRQAUUUUAFFFFABXn/wAEv+SQ6F/28f8ApRJXoFef/BL/AJJDoX/bx/6USUAegUUUUAFFFFABSNwOuPWlpD0oA80+Ifi7xh4IFrq6w6VdaH9pWOdEicThTnjJbHbGcdccYrS8QeJfEmpRyQeBLO0u3iVHmvbptsS7gGCIONzbSCewBHc8M+Lgiu/h9f6Z5ZnurxP9GhT7zMn7wt9FCEn8u4pnwbvLe7+FuktCiRmESRShf76u2Sfcghj9aAOz0t76TSrQ6mkSX7QqbhYTlBJgbgvtnOKq+JPDmmeKdGm0vVbcS28vOf4kbsynsw7flyCQdVTmnEZoA8d8PeIdT+GGtw+EfF05m0WUldK1dvuqvaOQnoBkD/Z4/hwR7ArZP4Z6VleJPDmmeKdGm0vVbcS28vOf4kbsynsw7flyCQfNPD3iHU/hhrcPhHxdOZtFlJXStXb7qr2jkJ6AZA/2eP4cEAHsVFNVsn8M9KdQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVz/AI7/AOSeeJf+wVdf+imroK5/x3/yTzxL/wBgq6/9FNQBz/wS/wCSRaH/ANt//SiSvQK8/wDgl/ySLQ/+2/8A6USV6BQAUUUUAFFFFABRRRQAUUUUAFFFFABXn/wS/wCSQ6F/28f+lElegV5/8Ev+SQ6F/wBvH/pRJQB6BRRRQAUUUUAFYniyPxBJ4duF8MTW8Oq5UxvcAFcAjcOcjOM9f/r1t0EZoA5nQNH1Mk6p4mktrjV5IfJ8u2B8mCPjcqA8ksRlj3wAOAK5DwF8PvEPhp9Q0i7v7UeHDe/aoViJM02MYVj0VcKuR1JGOhOfVNoIwRke9AAFAAoA6CloooACM1keJPDmmeKdGm0vVbcS28vOf4kbsynsw7flyCQdegjNAHjvh7xDqfww1uHwj4unM2iykrpWrt91V7RyE9AMgf7PH8OCPYFbJ/DPSsrxJ4c0zxTo02l6rbiW3l5z/EjdmU9mHb8uQSD5p4e8Q6n8MNbh8I+LpzNospK6Vq7fdVe0chPQDIH+zx/DggA9iopqtk/hnpTqACkY4x7mlpGGRQBx3ij4k6R4OuI4tatdRhWVmWKZbcMkmMZwQ3uOtNHxFt2iWRfDXikowyCukucj2xXn/wAVgPFfxZ8J+EFG6OI+dcBf7rHLD8Ejz/wKvabq9trHyRcSbPOlWCNdpJZz0Ax+J9gD6UAcz4Y+JOieK9bn0iwivkvIIzJKlxbmPaAQD15zlhwfeuxrHtNBtrbxRfa6gUT3drDbsAuD8jOSxOeSd6j/AIAK2KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5/wAd/wDJPPEv/YKuv/RTV0Fc/wCO/wDknniX/sFXX/opqAOf+CX/ACSLQ/8Atv8A+lElegV5/wDBL/kkWh/9t/8A0okr0CgAooooAKKKKACiiigAooooAKKKKACvP/gl/wAkh0L/ALeP/SiSvQK8/wDgl/ySHQv+3j/0okoA9AooooAKKKKACiiigAooooAKKKKACiiigAIzWR4k8OaZ4p0abS9VtxLby85/iRuzKezDt+XIJB16CM0AeO+HvEOp/DDW4fCPi6czaLKSulau33VXtHIT0AyB/s8fw4I9gVsn8M9KyvEnhzTPFOjTaXqtuJbeXnP8SN2ZT2Ydvy5BIPmnh7xDqfww1uHwj4unM2iykrpWrt91V7RyE9AMgf7PH8OCAD2KkPSmhicdefauX+IviJPDPgTVdQMoScwtFbgnBMrjauB3xnP0BoA8m8GWF34/+K/ijxNaarcWEdrJ5Vvc26IzEHKLjepGNiZPHcc813OmeFNVg+Ktvdajr15qtnZWDTwLcBV8qVyY/uoAv3d/IFZ3wKTS9L+HSTPe2onvbiWWVWlUMuDsAIPThM/8CrpPFvxR8N+F9OlddQt76/xiGztpQ7M3bdjO0e5/XpQB2ygZzjmnVl+Hor+LQrManJ5l+0QkuD2EjfMyj0AJIA9AK1KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5/x3/wAk88S/9gq6/wDRTV0Fc/47/wCSeeJf+wVdf+imoA5/4Jf8ki0P/tv/AOlElegV5/8ABL/kkWh/9t//AEokr0CgAooooAKKKKACiiigAooooAKKKKACvP8A4Jf8kh0L/t4/9KJK9Arz/wCCX/JIdC/7eP8A0okoA9AooooAKKKKACiiigAooooAKKKKACiiigAooooACM1keJPDmmeKdGm0vVbcS28vOf4kbsynsw7flyCQdegjNAHjvh7xDqfwx1uHwj4vnM2iykrpWrt91V7RyHsBkD/Z4/hwR6Te+GPD2rXJuNR0LTLycgZluLOORsfVhn8Kd4k8OaZ4o0WbS9VtxNby9P7yN2ZT2Yev1zwSD5D4K+IS+CfFF34F17VI73TLOb7PZ6pniH0jkP8Ad/hz/CQR93BUA9V/4QTwf/0Kmh/+C6L/AOJpyeCPCcciyR+F9FR1IZWWwiBBHQ/drcVsn8M9KdQAgAFLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXP+O/+SeeJf8AsFXX/opq6Cuf8d/8k88S/wDYKuv/AEU1AHP/AAS/5JFof/bf/wBKJK9Arz/4Jf8AJItD/wC2/wD6USV6BQAUUUUAFFFFABRRRQAUUUUAFFFFABXn/wAEv+SQ6F/28f8ApRJXoFef/BL/AJJDoX/bx/6USUAegUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIxIHHWlqtqF9baZp9xfXkqxW1uhllkboqgZJoA434oeNJfCugJbadmTXNTf7PYRIMtuOAXx3xkY9SR71U8N/CrSbP4et4e1iCO5uLw+fezjlvOI4KN1yucA98njDEHF+Htjc+PfF918RNXhZLSNjb6NbSD7iDgv6eo7/MW/uivXgooA8f8PeIdT+GGtw+EfF05m0WUldK1dvuqvaOQnoBkD/Z4/hwR7ArZP4Z6VleJPDmmeKdGm0vVbcS28vOf4kbsynsw7flyCQfNPD3iHU/hhrcPhHxdOZtFlJXStXb7qr2jkJ6AZA/2eP4cEAHsVFNVsn8M9KdQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXP+O/8AknniX/sFXX/opq6Cuf8AHf8AyTzxL/2Crr/0U1AHP/BL/kkWh/8Abf8A9KJK9Arz/wCCX/JItD/7b/8ApRJXoFABRRRQAUUUUAFFFFABRRRQAUUUUAFef/BL/kkOhf8Abx/6USV6BXn/AMEv+SQ6F/28f+lElAHoFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFBoARjgcV5B8Qr668eeMLT4daRKy2kbLc6zcRn/VoCCE9OMg/7xX0Ndh8RfGieC/C812mJNRnPk2MBGS8p6HHcDqfwHU1U+F3g1/C3h5rjUSZNd1NvtV/Kxy245IT/AIDk5/2i3tQB2On2Ntpthb2VnCsNtbxrHHGvRVAwBVqgDFFAARmsjxJ4c0zxTo02l6rbiW3l5z/EjdmU9mHb8uQSDr0EZoA8d8PeIdT+GGtw+EfF05m0WUldK1dvuqvaOQnoBkD/AGeP4cEewK2T+GelZXiTw5pninRptL1W3EtvLzn+JG7Mp7MO35cgkHzTw94h1P4Ya3D4R8XTmbRZSV0rV2+6q9o5CegGQP8AZ4/hwQAexUU1Wyfwz0p1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVz/jv/knniX/sFXX/AKKaugrn/Hf/ACTzxL/2Crr/ANFNQBz/AMEv+SRaH/23/wDSiSvQK8/+CX/JItD/AO2//pRJXoFABRRRQAUUUUAFFFFABRRRQAUUUUAFef8AwS/5JDoX/bx/6USV6BXn/wAEv+SQ6F/28f8ApRJQB6BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUVzPFa20k88ixxRqXeRjgIoGST7Ac1I3AryX4oaxe+I9bs/hvoUxW5viH1KZeRBAOcHHqOSO42j+KgCp4Uhl+KHxBn8ZXsZ/sHSXMGkQuOHcf8tMeufm9clR/DXsijFUND0ez0HRrTSrCIJbW0YjQcZPufUkkknuSTWjigAooooAKKKKAAjNZHiTw5pninRptL1W3EtvLzn+JG7Mp7MO35cgkHXoIzQB474e8Q6n8MNbh8I+LpzNospK6Vq7fdVe0chPQDIH+zx/Dgj2BWyfwz0rK8SeHNM8U6NNpeq24lt5ec/xI3ZlPZh2/LkEg+aeHvEOp/DDW4fCPi6czaLKSulau33VXtHIT0AyB/s8fw4IAPYqKarZP4Z6U6gAoNFZ+r6fJqdkbdNRvLHuZLRlV+h7lTx34weKAL2eTzRuPtXk3wa1HUxq/jHQdU1G5v30y/CpLcymR25dDyTnH7tTjpzWvq2natH8ZNCvrXWZjZz28oudO3HakaKfnx0ILOg9Qe5zwAehgmlpBxS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc/47/5J54l/7BV1/wCimroK5/x3/wAk88S/9gq6/wDRTUAc/wDBL/kkWh/9t/8A0okr0CvP/gl/ySLQ/wDtv/6USV6BQAUUUUAFFFFABRRRQAUUUUAFFFFABXn/AMEv+SQ6F/28f+lElegV5/8ABL/kkOhf9vH/AKUSUAegUUUUAFFFFABRRRQAUUUUAFFFFABSGlpruEUsxAUckk9BQBzvjnxba+C/C1zq1xteRfkt4ScGWU/dUe3c+wNc78KPCdzpem3HiHW9z+INab7Rcs4w0Sk7lj9uuSPoP4a53T8/Fr4lNqcg3+FPD0uy2Uj5bqcEHcR3HfnttGPmNezAYNACgAUtFFABRRRQAUUUUAFFFFAARmsjxJ4c0zxTo02l6rbiW3l5z/EjdmU9mHb8uQSDr0EZoA8d8PeIdT+GGtw+EfF05m0WUldK1dvuqvaOQnoBkD/Z4/hwR7ArZP4Z6VleJPDmmeKdGm0vVbcS28vOf4kbsynsw7flyCQfNPD3iHU/hhrcPhHxdOZtFlJXStXb7qr2jkJ6AZA/2eP4cEAHsXWkIB6jNNDE9+2elNlmSGF5ZXVI4xud3OAoAyST24oA8Y8M6jbeHfjT4/8AtjlIfKW5IAyWJKEADqzEyAADkk4FeneHtNuUkudY1NAup3+0ugbcLeIZ2Qg/7OSSRwWJPTGOZ0DwdZ6r4+1Dx9OjlLoRrYRSAgbVRV84j32gqD0GD1xj0MCgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACuf8d/8k88S/8AYKuv/RTV0Fc/47/5J54l/wCwVdf+imoA5/4Jf8ki0P8A7b/+lElegV5/8Ev+SRaH/wBt/wD0okr0CgAooooAKKKKACiiigAooooAKKKKACvP/gl/ySHQv+3j/wBKJK9Arz/4Jf8AJIdC/wC3j/0okoA9AooooAKKKKACiiigAooooAKKKQ8CgAPTjrXl3xY8R3s7WfgTQG3azrXyTMv/ACxgOQxPpkA5/wBkN7V3HinxJZ+FPDl5rF8f3VuuVQHmRjwqD3JwPbr0FcP8J/DV3N9r8ceIB5ms6188Qb/lhb/wgDtkAcdlCj1oA7rwt4ds/Cvh600axH7m3TBc/ekc8sze5OT+nQVsUAYooAKKKKACiiigAooooAKKKKACiiigAIzWR4k8OaZ4p0abS9VtxLby85/iRuzKezDt+XIJB16CM0AeOaB4h1P4Y61D4Q8XTmbRZiV0nV2OFVe0chPQDIGf4eP4cEdNp3w58nXtSv8AUtfv9Ss725+0jT5PlhBBJUNydwGeBwOBkHAx03iPw5pnijRZ9L1WAS28vfoyN2ZT2Ydvy5BIPmnh7xDqfww1uHwh4vnM2iykjStYb7qr2jkJ6AZA5+7x/DggA9hFLTEOT+GelPoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuf8d/8k88S/wDYKuv/AEU1dBXP+O/+SeeJf+wVdf8AopqAOf8Agl/ySLQ/+2//AKUSV6BXn/wS/wCSRaH/ANt//SiSvQKACiiigAooooAKKKKACiiigAooooAK8/8Agl/ySHQv+3j/ANKJK9Arz/4Jf8kh0L/t4/8ASiSgD0CiiigAooooAKKKKACiiigApG6UtecfFfxbd6Zp1t4b0PdJr+tHyIFThooycNJnt6A9uT/DQBzt8T8W/iUunR4k8K+HpN9wyn5Luf8Au+hBwR/uhufmFezqAAAOBjgYxiud8EeE7TwZ4YttGtsOyDfcS4x5spA3N/QegAFdGBigBaKKKACiiigAooooAKKKKACiiigAooooAKKKKAAjNZHiTw5pninRptL1W3EtvLzn+JG7Mp7MO35cgkHXoIzQB474e8Q6n8MNbh8I+LpzNospK6Vq7fdVe0chPQDIH+zx/Dgj2BWyfwz0rK8SeHNM8U6NNpeq24lt5ec/xI3ZlPZh2/LkEg+aeHvEOp/DDW4fCPi6czaLKSulau33VXtHIT0AyB/s8fw4IAPYqKarZP4Z6U6gAooooAKKKKACiiigAooooAKKKKACiiigArn/AB3/AMk88S/9gq6/9FNXQVz/AI7/AOSeeJf+wVdf+imoA5/4Jf8AJItD/wC2/wD6USV6BXn/AMEv+SRaH/23/wDSiSvQKACiiigAooooAKKKKACiiigAooooAK8/+CX/ACSHQv8At4/9KJK9Arz/AOCX/JIdC/7eP/SiSgD0CiiigAooooAKKKKACg+1FIxwKAM/XNZs/D+i3eq38nl2trGXdj39APcnAA7kivOPhdo154h1q9+I+vREXd8SmmwuP+PeDkZHpkcDgcZPO+qXimaT4ofESLwdZu39gaO4n1WVD8skg6R5H4r253f3Qa9gghitoY4IY0jiiUJGiDAVRwAB7AUASAAHIpaKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooACM1keJPDmmeKdGm0vVbcS28vOf4kbsynsw7flyCQdegjNAHjvh7xDqfww1uHwj4unM2iykrpWrt91V7RyE9AMgf7PH8OCPYFbJ/DPSsrxJ4c0zxTo02l6rbiW3l5z/EjdmU9mHb8uQSD5p4e8Q6n8MNbh8I+LpzNospK6Vq7fdVe0chPQDIH+zx/DggA9iopqtk/hnpTqACiiigAopGOBXG+J/iVo/g65jh1q11KFZWYRSrbhkkx1wQfcUAdnRXGr8RIHiWRPDXihkYZBGlOQR9RUFn8VNEu/EVroDWWr22pXLBY4bqyaJgMZyQ3IGAefagDuaKQGloAKKKKACuf8d/8k88S/8AYKuv/RTV0Fc/47/5J54l/wCwVdf+imoA5/4Jf8ki0P8A7b/+lElegV5/8Ev+SRaH/wBt/wD0okr0CgAooooAKKKKACiiigAooooAKKKKACvP/gl/ySHQv+3j/wBKJK9Arz/4Jf8AJIdC/wC3j/0okoA9AooooAKKKKACiiigBGOB1xXCfFDxnN4X0FLTTQZNc1N/s1hEoy248FwPUZGPcr712Wo39tpenXF/ezLDbW8Zklkboqjkn/61eU/DuwufHXi+6+I2rxMlshNvotu3/LOMEgvj8x3GWf0FAHY/DjwbF4K8LRWTESX8x869lHO+UjkA+g6D8T3rr8YpAMUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAEZrI8SeHNM8U6NNpeq24lt5ec/wASN2ZT2Ydvy5BIOvQRmgDx3w94h1P4Ya3D4R8XTmbRZSV0rV2+6q9o5CegGQP9nj+HBHsCtk/hnpWV4k8OaZ4p0abS9VtxLby85/iRuzKezDt+XIJB808PeIdT+GGtw+EfF05m0WUldK1dvuqvaOQnoBkD/Z4/hwQAexUU1Wyfwz0p1ACHp1rwz4rgeLPiz4U8IqN0cJ864APRWILA/RI8/wDAq9zbpXz74JsLvx/8VfFHie11W509LeTyre4t0RiVOUUfOpH3E5470Ae76hf2ml2Ml3dyiOCPCk9eScAADqSSAB71QvvD9vf+KNK1qRU8zTop1T5eS0m0A59gG/764rhNS8Ha2/xD8MfbfE1/qumxyyXb29wqJ5bRAFGwgCt87KOmRXqgHOaAFH9KWiigAooooAK5/wAd/wDJPPEv/YKuv/RTV0Fc/wCO/wDknniX/sFXX/opqAOf+CX/ACSLQ/8Atv8A+lElegV5/wDBL/kkWh/9t/8A0okr0CgAooooAKKKKACiiigAooooAKKKKACvP/gl/wAkh0L/ALeP/SiSvQK8/wDgl/ySHQv+3j/0okoA9AooooAKKKKACkOe1B6Vx/xG8aJ4L8LSXSYk1K5PkWMGMl5SOuO4A5P4DvQBx/j+/ufH/jK1+HWkzMtnCVuNanjP3FUghPqMj1+Yr/dNer6fY22m2MFlZwrDb28axxxqMBVAwAK4/wCGHgyTwp4eabUcy63qTfab+ZuW3HkIT325OfctXcgAdKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAIzWR4k8OaZ4p0abS9VtxLby85/iRuzKezDt+XIJB16CM0AeO+HvEOp/DDW4fCPi6czaLKSulau33VXtHIT0AyB/s8fw4I9e3E9O49KzPEnhzTPFOjTaXqtuJbeXnP8SN2ZT2Ydvy5BIPmnh7xDqXwx1uHwj4vmM2iynbpWrt91VzxHIT0AyB/s8fw4IAO1+JPiJPDXgLVb4yiOdoTDbc4Jkf5Vx64zn6A1znwF0yGy+GsNyhVnvriWaTHJXB2AH8Ez/wKu3vPC/h7Vro3Oo6Dpl5OwGZbizjkYjtywzU2m+HND0ed59L0bT7GZ12tJbWqRswyDglQMjIH5UAaWBS0UUAFFFFABRRRQAVz/jv/knniX/sFXX/AKKaugrn/Hf/ACTzxL/2Crr/ANFNQBz/AMEv+SRaH/23/wDSiSvQK8/+CX/JItD/AO2//pRJXoFABRRRQAUUUUAFFFFABRRRQAUUUUAFef8AwS/5JDoX/bx/6USV6BXn/wAEv+SQ6F/28f8ApRJQB6BRRRQAUUUhzjjr2zQBHczxWttJcTyJHDEpd3dsKqgZJJ9AM1494Sgm+JvxCm8aXsbLoWlMYNIhkHEjA/6zH15+pUZO2rfxP1e98Ta5Z/DjQ5ds95iXU515EEAOcHHr1I7/ACj+KvS9F0iz0LSLTS7CLy7S1iCRg8njuT3JPJPcmgC8Bzn/ACadQBiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKTPHB/SgBaKpahq2n6TB52o39rZxf37iVY1/NiK4TVfjh4L06Qw213c6ncbtoisoCxJ6DBbaD+BNAHo5pCeM15QfH3xF1/K+HPATWce7AuNVcoCPUKSn6Fvxo/4QT4j+IDnxH48+xQk5+z6TGVyvpuAQ/nuoA9G1XxBo+hx79W1SzslP3ftE6oW+gJ5/CvMPGXxQ+H/AIi0yTQjbX2vGckKllbHcrjgMpfByOxUH8QTW3pPwQ8GadL511bXWqXBbcZL6ctk+6rtB/EGu607R9M0eHydM060sov7lvCsYP5CgDxT4c+PNY8IfY9A8bWV9ZaXOxTTr6+iKGIA48tyR93pz/Dn+7jb7srZP4Z6VleI/DmmeKNEm0rVLcS20nT+9G3ZlPZhn+hyCQfNPD3iHU/hhrcPhHxdOZtFlJXStXb7qr2jkJ6AZA/2eP4cEAHsVFNVsn8M9KdQAUUUUAFFFFABXP8Ajv8A5J54l/7BV1/6Kaugrn/Hf/JPPEv/AGCrr/0U1AHP/BL/AJJFof8A23/9KJK9Arz/AOCX/JItD/7b/wDpRJXoFABRRRQAUUUUAFFFFABRRRQAUUUUAFef/BL/AJJDoX/bx/6USV6BXn/wS/5JDoX/AG8f+lElAHoFFFFACGub8deLrXwX4WutVuNrygeXbQt/y1lPRfp3PsDXRuQqEkgADJJ7V4zpf/F2/iS2ruC/hXw/JstUI+W6n67sdx0OD22jAyaAOj+FHhG60fTbnX9c3SeIdZbz7mRx80aHkJ7epHuB/DXolJjHSvL9R8e6ndfFPw9pGmuE0KeeeGSYKp+1PGvzbSRnarYXIxkhuoAoA9Rpax/Emtf2DoVxfKgluBtit4icebM5Cxp+LEZ9Bk9q47TdK+LC6nbNqniTRGsFkBnEEBLlM8gZjAzjpzQB6QeKBnvXLeLZbtLjT1L6nHpTeb9qfTYmeYOAPLBCAvsPz5KjqFycGtPww+oyeH7R9VEguyh3ecoEm3cdm8DgPt27sDGc0Aa9FFFABRRRQAUUUUAFFFFABRRRQAUUUGgAoqGe4itoWmnlSKJRlnkYKoHuTxXG6z8XfBGihhLrsF1IBny7IGYn2yvyj8SKAO4oNeTf8La1/XlH/CIeBNSvEdcpdXv7qPP4cEf8DFH9i/F3xJ/yE/EOneHbdl+aKwi3yL+PX8pKAPULy+tdPt2uLy6gtoF+9LNIEUfUk4riNZ+M/gnRt6/2r9vmXH7uxjMm76Nwh/76rMtPgboM063XiLU9V166xhnurkgfodw/76Ndxo3hHw74fA/srRbK1cDHmRwjeR7sfmP4mgDgD8TfGmvKR4U8AXXlkZjutTby0YeuDtH5OaD4U+KfiIZ1rxjb6NA/PkaXFlkHcbhtI/76NetYowKAPMdP+BnhSKdrnVn1DWblyC8l7ctyf+A4P5k13ek+HtG0JCmk6VZ2QP3vIhVC31IGT+NaeKKAEwKWiigAooooACM1keJPDmmeKdGm0vVbcS28vOf4kbsynsw7flyCQdegjNAHjvh7xDqfww1uHwj4unM2iykrpWrt91V7RyE9AMgf7PH8OCPYFbJ/DPSsrxJ4c0zxTo02l6rbiW3l5z/EjdmU9mHb8uQSD5p4e8Q6n8MNbh8I+LpzNospK6Vq7fdVe0chPQDIH+zx/DggA9iopqtk/hnpTqACiiigArn/AB3/AMk88S/9gq6/9FNXQVz/AI7/AOSeeJf+wVdf+imoA5/4Jf8AJItD/wC2/wD6USV6BXn/AMEv+SRaH/23/wDSiSvQKACiiigAooooAKKKKACiiigAooooAK8/+CX/ACSHQv8At4/9KJK9Arz/AOCX/JIdC/7eP/SiSgD0CkPTig8CsTxX4ls/Cfhu81i9b5LdfkTODK5+6g9yfy69AaAOJ+K/iG8u5LLwFoLbtX1k7Z2XP7i3/iJx0yAc/wCyG9RXc+GfD9n4V8PWejWC4gtk2ljyXY8sx9ycn+XArifhP4bu3F34319S2ta186A/8sIONqgdsgDjsoUcc16dtA6D2oA5Dxfr8UVxb+HYdShsbq/QtNcySqn2a3Bw7gn+Mn5V98n+GuJ8R3uhWnxP+HsWnXlithYx3CZjmUpEuwAAnPHTv3r0fW/BXhvxFeJeavpFveXKRiJZJQSQgJIHXpkn86828SfDTRk+I3hOHT/DOdIk8835ihd4uF+Xew4HPTkfjQB6F4q8I6R470iC11GWd7RWE0TW020EkYDZ6Hhjj6155ZWWufCTxbpFkmpT6n4T1a5W0RLg5e1lc4XB6DueMAgNwDiu61/xLH4HXSbGDw9qNzphTyfOsIjKLVVACgqOSMfTgdzVa7jfxzf6SRp93a6TY3aXzS3kXkyTyoDsRI2+bbltxZgAdoAzk4AO2GD9DzSgAGkXPf0p1ABRRRQAUUUhOBmgBaKTOBkniua1n4heE/D5ZdS16zjkXgxRt5kg/wCApk/pQB01ITivKZfjdDqUrw+E/C2s65IjBS6RFIx7kgMR+IFN874y+IifLi0fw1bluC2JZdv/AI+M/UKaAPVmkCDcxCqOSxOAK5PWPih4M0TK3XiC0aUEjy7YmdgfQhM4/HFcqvwWbVWEvi3xfrWsNu3eUr+XEPbB3cfTFdbo3w18G6EF+xeH7PzFORJOvnOD6hnyR+FAHI/8LmvNZITwh4L1fVQzFBPKvlRA+uQGH5kUv2P4yeIwPtN9pHhqBuGSBRLLj/x/n6MtesBQoAAAA6AUuAKAPKIPghYXk0dx4p8Raxrs6n/ltOUQ+2Msw/BhXaaL4D8K+HyjaZoVlDIn3ZTHvkH/AANst+tdFgUtACYA7UYA7UtFABgUUUUAFFFFABRRRQAUUUUAFFFFACMcDNeb638TNasvEF9pui+CdR1q3s3EL3kDsqGTaCy/6sjjODz/APX9Hfp+NYGp6iukiLTdIs4ptUumeSG2UYRctmSaUjooZiSepY4GSaAOR0f4meJdX8R22iyeAbqxllXzJHubwoIo84LkGPp6eprt/EXh3TfFOjTaXqsAlt5ec9GRuzKezDP646Egv0PRY9IhlZ5Wur64bzLq8kADzP8Ah91QOFUcAfiTqbQO1AHj3h7xDqfww1uHwj4unM2iykrpWrt91V7RyE9AMgf7PH8OCPYFbJ/DPSsrxJ4c0zxTo02l6rbiW3l5z/EjdmU9mHb8uQSD5p4e8Q6n8MNbh8I+LpzNospK6Vq7fdVe0chPQDIH+zx/DggA9iopqtk/hnpTqACuf8d/8k88S/8AYKuv/RTV0Fc/47/5J54l/wCwVdf+imoA5/4Jf8ki0P8A7b/+lElegV5/8Ev+SRaH/wBt/wD0okr0CgAooooAKKKKACiiigAooooAKKKKACvP/gl/ySHQv+3j/wBKJK9Arz/4Jf8AJIdC/wC3j/0okoA79vu9q8XvC3xa+JYsUHmeFPDsu645+W6uMkbfccEf7obn5hXQ/FfxZeabYW3hnQ90mv62fIhCHDRRk4Z89vQHtyf4a6XwT4UtPBvhe10a22uyDfPKFx5spxub8+B6AAdqAOhUY4HTHpTqAMUUAFJtHpS0GgBMClwKbu56/SsrVvFGhaCudV1iys2xnZNMqufovU/gKANekJxXmF78dPDQuBa6Ja6lrd0wPlpaWxAY+nzYb8lNVh4l+LXiTaNJ8KWeg20i/wCv1KXdIh9ccEfjGaAPWMmsHWfGvhrw+H/tTW7K3deTEZQ0n/fC5Y/lXCf8Kt8VeIAD4u8fX80TriS008eVGfx4U/ilbui/B7wPo5VhoyXkyjBkvmM2f+An5fyWgDIuvjlpFzNJbeGdG1bXrpV3KttblUP1OCw/74qE6r8YfEmRYaRpfhy3YArJduJJRn2+b9UFeqW9pb2kCwW0EUES8KkSBVH0AqXA9KAPJv8AhUGra7ubxf441XUFflra1Iiiz6YOQR1/hFdNo3wo8EaLjyPD9tPJ3kvAZyT6/PkD8AK7SigBkcUcMaxxoqIowqqMAD2FPxRRQAmBS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBQ1q6vrLSbifTNPbUL1V/c2wlWPe3bLMQAB1PfA4zXkWlXXxf0ua5uP8AhDNMuby6ffPcy3ce9xztXibhVzgADHfkkk+1kAjB6UbR6e9AHF+Bx4wvr2+1PxjZwWE4RLe0tLeRWRU5Z3OHbknaOTxt967WjGKKAAjNZHiTw5pninRptL1W3EtvLzn+JG7Mp7MO35cgkHXoIzQB474e8Q6n8MNbh8I+LpzNospK6Vq7fdVe0chPQDIH+zx/Dgj2BWyfwz0rK8SeHNM8U6NNpeq24lt5ec/xI3ZlPZh2/LkEg+aeHvEOp/DDW4fCPi6czaLKSulau33VXtHIT0AyB/s8fw4IAPYq5/x3/wAk88S/9gq6/wDRTVvK2T+GelYPjv8A5J54l/7BV1/6KagDn/gl/wAki0P/ALb/APpRJXoFef8AwS/5JFof/bf/ANKJK9AoAKKKKACiiigAooooAKKKKACiiigBDXl/wv1qz8PfAfTtWv5PLtrWO4dz6/v5MKM9ycAe5r1A9q+WPC14vi/Q/D3hS+uorDw3o/mXOqzzSiNJGaV2VA3uGGBkHlj/AAigD1D4WaNea/q178RtfjIvdQymnwtyLe36Aj0yOAcDIyf469XwByK841L4z+BtDjW2tbx754wI0t9PgLYA4ABOF/I1mt8RPH+vkr4Y8BTW8eRtudVYxqw9Qp2Z/AmgD1gnHeqGp67pWixCXU9StLJD0NxMsefpk815t/whPxM8Q5OveOE0yEnIt9JjIOO43Daf1atDS/gf4Os5jcX8V5q9yzbjLf3BOT64XaD+OaAE1L45eD7ScW1hJe6vck7VjsbcnJ9i23P4Zqj/AMJr8TvEOP7A8ER6Zbscefq0hDAeu07D+QavStM0XStFiMWl6bZ2UZ6rbwrHn64HNXuPagDyb/hXfj3X9reKPH80MZ+/baWnlqy+m4bR+amtXRvgn4I0orJLp0mozqc+ZfTF8n3UYU/iK9E/z1o/KgCtY6bY6Zbi30+yt7SEdI7eJY1/IACrOBjFLmjNABijAFGaM0AFFGaM0AFFGaM0AFFGaM0AFFGaM0AFFGaM0AFFGaM0AFFGaM0AFFGaM0AFFGaM0AFFGaM0AFFGaM0AFFGaM0AFFGaM0AFFGaM0AFFGaM0ABGayPEnhzTPFOjTaXqtuJbeXnP8AEjdmU9mHb8uQSDr5pDz/AProA8e8PeIdT+GGtw+EfF05m0WUldK1dvuqvaOQnoBkD/Z4/hwR6B45bPw98S/9gm6PT/pk1W/EfhzTPFOjTaXqtuJbeXnI+8jdmU9mHb8uQSD4xqWtax8O9B1rwR4meS60u6065i0bU9pOcxsFib8wP9nj+HBAB33wS/5JFof/AG3/APSiSvQK8/8Aglj/AIVJomD/AM9//R8legUAFFFJmgBaKM0UAFFFFACN0rzH4weKNe8FaPbatpOqohnuVg+yy26OuNjEsDjPVe/rXpx6V4b8VCfFfxa8K+EEw0MLCe5UdCGO5gfcRx5/4FQB22lWHj+70W0vZvFVnFczQJK9vJpIIjZlztJDg8dM1n23xG1bw94qtvDnjmxtbV7z/j01O0Zvs8vOACGyV54PPBIyACDXpeABivG/2jraJvBel3RUedHqIjU/7LRuT+qr+VAHsWdwwT8pH6V5Ev7OnhQjD6nrR7jE0Q/9pntj9a9B8DXs2p+BdCvbpme4msYWkdjks2wZJ+uM10GMUAeW6d8C9E0d2fTPEniiyduGa2vkiJ/75jFaX/CrP+p88cf+Df8A+wr0CigDz/8A4VZ/1Pnjj/wcf/YUn/CrAOnjzxwPpq//ANhXoNFAHn//AAqz/qffHH/g4/8AsKP+FWf9T744/wDBx/8AYV6BRQB5/wD8Ks/6n3xx/wCDj/7Cj/hVn/U++OP/AAcf/YV6BRQB5/8A8Ks/6n3xx/4OP/sKP+FWf9T744/8HH/2FegUUAef/wDCrP8AqffHH/g4/wDsKP8AhVn/AFPvjj/wcf8A2FegUUAef/8ACrP+p98cf+Dj/wCwo/4VZ/1Pvjj/AMHH/wBhXoFFAHn/APwqz/qffHH/AIOP/sKP+FWf9T744/8ABx/9hXoFFAHn/wDwqz/qffHH/g4/+wo/4VZ/1Pvjj/wcf/YV6BRQB5//AMKs/wCp98cf+Dj/AOwo/wCFWf8AU++OP/Bx/wDYV6BRQB5//wAKs/6n3xx/4OP/ALCj/hVn/U++OP8Awcf/AGFegUUAef8A/CrP+p98cf8Ag4/+wo/4VZ/1Pvjj/wAHH/2FegUUAef/APCrP+p98cf+Dj/7Cj/hVn/U++OP/Bx/9hXoFFAHn/8Awqz/AKn3xx/4OP8A7Cj/AIVZ/wBT744/8HH/ANhXoFFAHn//AAqz/qffHH/g4/8AsKP+FWf9T744/wDBx/8AYV6BRQB5/wD8Ks/6n3xx/wCDj/7Cj/hVn/U++OP/AAcf/YV6BRQB5/8A8Ks/6n3xx/4OP/sKP+FWf9T744/8HH/2FegUUAef/wDCrP8AqffHH/g4/wDsKP8AhVn/AFPvjj/wcf8A2FegUUAef/8ACrP+p98cf+Dj/wCwo/4VZ/1Pvjj/AMHH/wBhXoFFAHn/APwqz/qffHH/AIOP/sKP+FWf9T744/8ABx/9hXoFFAHn/wDwqz/qffHH/g4/+wo/4VZ/1Pvjj/wcf/YV6BRQB5//AMKs/wCp98cf+Dj/AOwo/wCFWf8AU++OP/Bx/wDYV6BRQB5//wAKs/6nzxx/4OP/ALCqmo/BnT9Vtfs2peLfF17BuDeVc6isq59cNGef8a9LoIB60AYvhXw5aeE/D9roljLPLa22/Y87BnO52c5IAHVj27VsOwRCxYKAMlj0H1pcV4/8fPF1xpWg2vh6wdludVJEpQ8+UCBtH+8SB9AR3oA2T8QtR8Va5Po/ga2t5o7ZsXer3gP2eL2RQQZD6HIHHcc1sjwz4m2eY3jm/NzjIIsbYRZ9NmwnH/As+9WvAvhaDwh4TsdKiRRKiB7l1/5aTEfMT6+g9gK6MoKAPO/B+u+L9Q+IGs6Lr72Yt9Ht1UtaQlRO8hDRyEknHyBvlHcn0r0UVTttMtrXUr2/jQi4u9glY99gIX+Zq7QAUUUhoAG6V4Z8Lf8Airvi/wCKvFzjdBATDbsfRjtUj/gEZ/76r0vxpe69/Yd5Y+H9Eub29uLcpHOs8MccRYEZJdw2QORgEdK4T4X6b4s8B+HbrTrrwVdXE81y0/mxX1qAwKqoBzIMY2+/WgD2I8An1rwn42Xc3izxVofgbSB512JPOuAORGzDC59MLuY+zCu+u774h6upt7LR9O0BDw13eXQuZFHqsaDbn/eOKu+D/AWm+FGnuxJLfatdHdc6jcndLIScnH90Z7fnQB0OlWEOlaVZ6fb58i1gSGPPXaqgDPvxVygDFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIelfPPxiBj+Nfhaa64tNlrlm+7gXDFv5jP1r6Hrh/iX8Pbfx9oscKzC31G1YtbTkEgZ6q2Ox4+hA9wQDtlGKU57V5boPijx34etItM8S+Dr/UZIVCJfaa6S+aBwCwzwenORn0FdGl14m8SqYX0yTw/pzcSzTTK11IvpGqZEef7xOR2GeQAdZG6yZZWBHbBqSoLS3hs7aK2t41ihhQJGijACgcAe3Sp6ACiiigBMA0bR6UtFACYGc0AAUtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAmB6CjAPalooAKKKKAP//Z'] Multimodal Competition True Theorem proof Geometry Math English 20 "In the diagram, $A B$ is tangent to the circle with centre $O$ and radius $r$. The length of $A B$ is $p$. Point $C$ is on the circle and $D$ is inside the circle so that $B C D$ is a straight line, as shown. If $B C=C D=D O=q$, prove that $q^{2}+r^{2}=p^{2}$. " ['Join $O$ to $A, B$ and $C$.\n\n\n\nSince $A B$ is tangent to the circle at $A$, then $\\angle O A B=90^{\\circ}$.\n\nBy the Pythagorean Theorem in $\\triangle O A B$, we get $O A^{2}+A B^{2}=O B^{2}$ or $r^{2}+p^{2}=O B^{2}$.\n\nIn $\\triangle O D C$, we have $O D=D C=q$ and $O C=r$.\n\nBy the cosine law,\n\n$$\n\\begin{aligned}\nO C^{2} & =O D^{2}+D C^{2}-2(O D)(D C) \\cos (\\angle O D C) \\\\\nr^{2} & =q^{2}+q^{2}-2 q^{2} \\cos (\\angle O D C) \\\\\n\\cos (\\angle O D C) & =\\frac{2 q^{2}-r^{2}}{2 q^{2}}\n\\end{aligned}\n$$\n\nIn $\\triangle O D B$, we have $\\angle O D B=\\angle O D C$.\n\nThus, using the cosine law again,\n\n$$\n\\begin{aligned}\nO B^{2} & =O D^{2}+D B^{2}-2(O D)(D B) \\cos (\\angle O D B) \\\\\n& =q^{2}+(2 q)^{2}-2(q)(2 q)\\left(\\frac{2 q^{2}-r^{2}}{2 q^{2}}\\right) \\\\\n& =q^{2}+4 q^{2}-2\\left(2 q^{2}-r^{2}\\right) \\\\\n& =q^{2}+2 r^{2}\n\\end{aligned}\n$$\n\nSo $O B^{2}=r^{2}+p^{2}=q^{2}+2 r^{2}$, which gives $p^{2}=q^{2}+r^{2}$, as required.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAToBYQMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACikyKWgAoprypGu6R1RfVjisyfxPoFtJ5c+uabE/92S7jU/kTQBq0VjHxd4aHXxDpI+t7H/jR/wl3ho5/wCKh0njr/psf/xVIDZoqha63pN8cWmp2VwfSK4V/wCRq/kUwCijNJkUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRmgAoyKY8qRIzyOERRuZmOAB3JNec+Ivi1p9lP8AYdAgbVr5m2K0YPlbvQY5c+y/nSA9ILKASSMDqa4/W/ib4W0UvG1/9rnXrFaDzD/3190fnXGr4R8c+OcTeJNSbTbBvm+ygc4/65g4/Fjkehrs9D+GfhrQwjpYi7nX/ltdnzCD6hfug+4GfegDkv8AhZvinxAxTwv4YYxklfPlVpB9c/Kqn6kilHhn4o65g6jryafGT8yRyhWA/wC2Qwf++q9ZCBVCqAoA4AHSn0WA8ni+CcdxL5ureIbu6c9SiAH/AL6Yt79u9adv8F/C8J/ePfz9/wB5Oo/9BUV6LRRYDiE+Eng5AQdOlfPrcyD+TCo5PhD4Rk3Ys548jjbcudv5k13dFMDzSf4JeHZCTFealF6L5iMB/wCOZ/WqH/CotZ0xWOh+LriD+7H88Q/Eo39K9aopWA8jb/hbPh45/caxAo6DbIPx+65qey+Mi2twLXxJod1YTjhmjB6+uxsED8TXqmDVW902z1O3MF/aQXMR/gmjDj9c0wKGi+KtD8QKDpmpQTtgkxZ2uAOp2nBx+FbWRXm2tfBzR7xzcaRPNpd0GDLsbemQc9DyD9Dx6ViDW/iB4A+XWLb+2NLTGZwxbaPaTGV/4GKQHsmaK5fwx480LxSgWyuPKu8Za1nwsg+nZvwJrp8imAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFJkUAG5fWub8V+NNK8JWoa9k33TrmK1jOXf/AAX3Nc/42+I40mc6NoKfbNZkby/kXesLHtgfeb2/PPSq3hP4Yt9pOt+LW+3anK3meTI29UP+0ejH25UdBnghAYken+MPilIs9/IdK0EkFIwpw47EL1Y8dTgDqPSvSfDngzRfC8G3TrUCYrh7iT5pH+p7fQcVvBcAAAYHFOpgNAp1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFNwSOQDTqKAPPPE3wo0vVybvSSNL1FTuVohiIsOnyj7vTquMdcGsHTfHev+C9Qj0jxpayTQY/dXqjc2313dHH/AI965r2GqGq6RY61YSWWo2kdxA/Ox+x7EHqCPUcjtSsBNYahZ6nZxXljcRz28oykiHINWc14rfaL4h+FeoNqmiSPe6E7Zmt3JO0d94Hf0cfiMcH03wv4r07xXpou7CTDrgTQMfniY9AR/XpwfShAbtFICDS0wCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikyPWgALAdTXmHjzx3dfbh4W8Lq82qzN5cssYyYv9lO27rlui89/u3fiR43l0aFND0ctJrN38oEY3NEp4yB/ePYfj6Vc+H3gVPCtibq8VZdYuRmaUnd5Y67Qf5nuR6AUgF8C/D628Kw/bLnbc6xKCZZzyEz1VM/q3U/Tiu2oopgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAMeNZEKOodWGCrDII9x3ryHxR4R1DwTqh8VeEMrCpLXNmASqL1bC90PccYPToNvsNMZNwIPQ+tDA57wh4tsfFukLd2zBJ0wtxBnmJz/AEPY10eRXjXizQLz4fa8vi3w4MWDPi6t8fLHk/MPZG4Gf4Tj2x6j4f12z8R6PBqVk2Y5Ryjfejbup9waQGrRRRTAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArnfGHie38KeH5dQkw05+S3jP/AC0kIOPwGMn6V0BdVBLMAB1J7V4uqv8AFL4jszbjoGlHgHOHGen1dhz/ALKj8UBr/DLwtPcTyeMddJl1C8O+ASD7qn/lp7EjgDsPqAPU6jWPYoVQFUDAUdBUlMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAILi2juoJLedFkhkUq6MMhgeoIrxuFp/hL458lmd/Duonr12DPX/AHlz+Kn1xj2usHxb4ah8VeHp9Om2rKfnglI/1cg6H6dj7E0AbiSJIiujBkYAqynIIPQ5p1eY/CjxHOYrjwpqhZL/AE0sIg/Uxg4K/wDATx9CPQ16dkUkAUUUUwCiiigAooooAKKKKACiiigAooooAKKKKACiijNAHnvxY8SNo/hwabayH7dqWYlC/eEeQG/PIX/gR9K2vAvhlfC3he2syi/apP3tywxy57fQDAH0964TSB/wnfxeudTYl9N0ggRHqp2nCf8AfTbn/CvY6SAKKKKYBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSbh60tZ2radaalYPFetMsK/vGMM7wsMd9yEH9aANDIoyK8F+Fekz+MpNXn1HV9YW2gdFgEV/IpG7cTnn0C/nXc3/wAOdStoWm8OeLtbtbpRlY7q6M0LEeoPT68j2oA9B3DGc8HpS15n8PPiDf6vqtz4a8RwpFrdqWUOgAEwX72R03fTg9sV6ZQB5F8TtOn8OeI9N8a6YmJFlWO5A/iYcDP+8uUP0UdTXqOnahBqum21/avvguI1kQ+xqDXNIi13RLzTLgfu7mMpn+6eqsPoQD+Fef8Awg1aaCPUvC18dt1p8rMiE87d2HH0Dc/8CpAep0UUUwCiiigAooooAKKKKACiiigAooooAKKKKACuZ8ea2dA8GajeI+2do/JgOcHe/wAoI+mS34V01eS/F+aTVNU8P+GYHw91OJGGOhJ2If1c0mBu/CbRP7J8FQ3Lpie/Y3DHvs6IPyGf+BGu9qG2t47a2it4lCxRIERfRQMAfgKmpgFFFFABRRRQAUUUUAFFFFABRSZFGR60ALRSbh6ijIoAWiiigAooooAKKKKACiiigArnfHd//ZvgTW7oNhhZuin0ZhtH6sK6KvNvjff/AGT4eSQBsG8uooj9Bl//AGSgCP4GWItPALXJHN3dySA+wwg/9BNem5Fcx8PrD+zPh/oduRhjarKQexf5z+rVs6rq9loumT6hfzrBbQrud2P6e59qAPFbwFP2mo/s/BMqb8e9sN36Z/M17xXi/wALtKuvEfjLU/Ht/C0UEryCzVh94scZHsqDbnvnivaKACvIPFf/ABR/xc0vXlOyz1HCXHzYGeEfI9ACje5Fev1578YdK+3eCGu1X95YzJL0ySp+Qj/x4H/gNAHoOeaWsLwdqp1rwhpd+zbnkgUSN6uvysfzBrdoAKKKKACiiigAooooAKKKKACiiigAooooAK8kjzrn7QEjEhotLh4H+6gH6PJn8K9bryT4VhNQ8a+LNW6sZcKf9mSRm/8AZBSA9booopgFFFFABRRRQAUUUUAFFFFAHI+OfHVj4LsY2kja61C4yLa1Q8tzjJPYc/j2rN0rRfGeu2y3uveIZtL80BlsNNjRDED0DOwJJ9v1rifDC/8ACd/G+/1W7xJaaYXaBW+7hGCR/rl/qK90xQB5l4jufFvw+hXV49UfXtFR1W5t7xFE0YJADB1AzyR249K7zRNZtNf0e21Sxctb3CBlyMEc4II9QQRVDxysbeAtfEw+UWExGfUISv6gVx/wGeV/Adyrn5E1CQR57DZGT+pNAHqVFFFABRRRQAUUUZoAKKM0ZzQAV514x+HWseNNkd94lghtopDJFFDpuNueOT5vzcV6Lmo5riG2jMk8qRRjqzsFA/E0AcXB4X8bW9ulvF46hWONQiY0aPgDgfxVEPhlHqd1Hc+KtcvtdMZ3JBJiGAH1EacD8/Y5FdpZ6jZajE0tjeQXMaMUZoZA4DdcEjvgj86s0AQwwJbwpDDEkcSAKqKMBQOwHapqKKACs/XNP/tXQdQ0/p9pt5IgfQlSAfz5rQooA8y+Cd+bjwndWTsS1rdEhT/CrgHH/fW6vTa8k+GRXTviF4t0kLtBkZ1HskrKD+TivW6SAKKKKYBRRRQAUUUUAFFFFABRRRQAUUUUAMkYrE5HYZry74GwAeHtTn7vdhCe/wAqg/8As1eoTf6iT/dP8q83+CIA8GXhA5OoN/6Lj/xpAemUUUUwCiiigAooooAKKKKACiiigDw74KAaZ4x8TaVc4W7UAbT1+SQq36ste45rhPE3w+kv9fi8TeH78aZrsWMuVzFNgYw46jI4J5yO1StP8SHg8hdP8Oxz4x9pNxKUz6hduf1oAxfjX4jTT/Cw0SBt19qbquxTlhGDknHuQB75NdP8PfDz+GPBVhp8y4uSpmnx/fY5x+Awv4VleHvhv9k10+IvEWoNrGtk5R2XbFCe21fbJx2HYCu9/CgAyPWjIrwf4vfEHWrHxLLoOk3s9lbwRL57x/KzuwDfK/UDBUcY71n+Dvif42nEml28H9tXAXdE0sTO0ajg7ipBYEkcsaBn0TRmvJdnxd1hzue20uI+8QB+mNzCk/4VT4k1VMa74vlkBOWiUyTL+G5h/KkI9IvvEWiaYcX2rWNu392WdVY/QZya5q++LHhC0DBL+S6df4YIGP6sAP1rPsfgt4btiGuZ767PdWlCL+SgEfnXRWPw/wDCunqBDoVm2O86ecfzfNAHHT/Gq3mkEOj+H7y7cjOHcKfyUNUZ8VfE7WNw0/wylonYywlWH4ysB+lerRW8VvGI4IkjQdFRQoH5VJg0wPJf+EV+KGsBTqHiRLNe4il2MPwjUA/nUsPwUhuJfO1jxBeXcuMbkQKR+LFjXq1FKwHi/h95fhr8RJNAuppDo+okGCVyMAk/K3TGRyjdOx6ACvZ8iuL+JPhT/hJvDTtboDqFnmW3I6t/eT8R+oFN+Gfiv/hJfDaxXMhOoWOIZ93Vx/C/4jr7g0AdvRRRTAKKKKAPJ9ExafH7WohwJbcjB7lljc/yr1ivJLb/AJOLvP8AriP/AEnSvW6SAKKKKYBRRRQAUUUUAFFFFABRRRQAUUUUARzf6iT/AHT/ACrzP4HuP+ETv0zyL4nH1jT/AAr08gEEHoa8n+C2+0l8R6XJndbXCce/zg/+gikB6zRRRTAKKKKACiiigAooooAKKKKACiiigAooooA898e/Cy08aXi6jHeyWWoJEIt4QMjgEkbhkHPJG7P8qt+A/hxZeB0uJUuXvL24UJJM6BQqg5wi8kA8ZyTyBXb0UAJiloooAKKKKACiiigAooooAbj2rxzxJBJ8OPiJb+IrSM/2VqLMLiNBwCf9YP0Dj1Ix0Fey1i+KPD0Hibw/c6ZPwZBmNz/BIOVb8P5E0AasFxFcwRzwuJIpFDoy8gg8g/qKlry74Ua9cQm78IaoTHe6ezeSrHnaCdy++DyPY+gr1DIpIBaKKKYHktkpk/aI1B1PCQAn/vwg/ma9aryXwa/9ofGnxNeYykKSxZ9xIiD/ANANetUkAUUUUwCiiigAooooAKKKKACiiigAooooAK8k8Jf8Sf41+IdOZ/lu1klUerFlkH6M1et15H44P/CPfFvw9rvypDchYpWPsSjE/RHH5UmB65RRmimAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5P8AFDR7rRtWsvG+kDbcW8irc7R17Kx9ivyn2x2ya9F0PWbbX9FtdTtW/dXCBtp6oehU+4PFWr6yg1Gxns7qMSQToY5EPdSOa8m8DXlx4H8b3ng7UZCbS6k3WkrcAufun/gajHHcAeppbAexVHNMkELyyHCIpZj6AdafkVy/xD1P+yvAerTA4eSHyE57udvH0BJ/CmByHwYjkvG8Qa1KPmurhV6dG+Z2/wDQ1/KvWM1xPwq0z+zfAVkWTbJdM9w/PXccKf8AvlVrb8S+J9L8KaS2o6pNsjztRFGXkb0Ufh16YoA280mRnGea8/0vWPHPiyIXllaWGhaa/MTXqtNPIv8AeCAgAfWrN7Y/ESyhMtjrmj6i6jPk3FiYc+wKuf1oA7fIpa57wVrd54i8I2GrX0UUM90jMUiBCjDlRjJPUAH8a6GgAooooAKKKKACiiigAooooAK87+MOj/2j4N+2xrmWwlEucc7G+Vh+oP4V6JVW/sotR0+4sbhd0FxG0Ug77WBB/nQBmeD9Z/t7wnp2oM26SSICU/7a/K35kE/jW7XkvwlvZtJ1XWfCF6wE1tK0sXXkg7XxnsRsYexJr1rNJAFFFFMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvPPip4WfWNBXVbNT/AGjpuZFKfeaPOSB7j7w+hxXodNK5GCOKAOX8BeKo/FXhqG6Z1+2xfurlR/fA+99GHI/H0Nch8X7uTUr/AEPwvav++uZhK4xwNx2IT+Jc/hVCYN8MPiWs65XQtVOCF6ICf/ZCQf8AdOKn8GE+MvilqfiZwTZ2WUt89BkbE/8AHQzexNID1m0tIrGygtYF2xQRrFGvoqjA/SvE1/4uP8b5Le6HmaTo2/bC33SI2A/8efBPsMdq90rw74NL9m+IHii2n+W5XeCD1+WXDfqRmmB7cqkDGP1pxGRilzVW+1G00y3E95MIojIkYJBOWZgqgAckkkUALZ2cGn2kVpaQrFbxLtjjXgKPQVZoooAKKKKACiiigAooooAKKKKACiiigDyH4l2s/hjxbpPjSxQ48wRXKr/EQOh/3kyPbbXqtlewX9jBeWz+ZBOgkjYdwRkVT1/RYPEGiXWl3K/u50Khv7jdQw9wcGvPfhXrdxpd7d+CtW/d3Vo7tbgnggcsg9e7D2J9KQHq9FJuA70tMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiio5ZooInlmkWONAWZ2OAABkkn6UAeb/Gi7sY/ClvaTxCW9nuAbb1TH32/I4x/tD0qD4MalbLpV9obQmDULedpZFYYZwcLkj1BGMfT3rM0FJPiR8SpddnVjpGlkCBHHDYOUGPc/OfwFTfEGwuPB/i6y8aaXGfLlk2XaLwpbgc/768fUepFID2DIrzjxF4E1S18Wr4v8JSwpqJ/4+bSc4S4GMHnsTgcHjIByK7zTdQt9V023v7R/Mt50Do3sat0wOMTxZ4j8oJP4F1EXGOVS6haP/vrd/Ss+TTfGfinW9Km1ewsdI0ixulu2tRcedNI6525KjGMn2698V6Fg0tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXl3xS8NXCNB4v0fMeoWBVpti5LIpyH+q9/8AZPPAr1Go3jEiMjqGVgQQehHofWgDC8IeJbfxXoEOoRYWYfJcRA8xSdx9O49jXQ14rqlpd/CjxgurafG8nh+/fbLAOdvcp9RyVJ7ZHYmvYNP1C11SwgvrKZZradd0ci9CP89u1JAWqKKKYBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSZFABuA6kV5X8TvEdzf3dv4L0T95eXbAXO04wDyE9s9T7D610fj/AMaweE9IIiZJNTmGIIjzt/22HYDnHqRj1xl/DTwZNpcUmv6wGfWL75v3n3olbk5/2m6n06euUB1nhbw7B4Y8P2+mQYYoN0sn/PSQ9T/T6AVb1nSbbW9IutNu03QXCbW9j2Ye4IBHuKv0UwPI/hpqtx4c1+98Eas2GSVmtGPQnGSB7MvzD8a9b3D1rzL4r+HJntbfxRpm6O/00gyMg5KBshv+Atz9Ca6/wl4ih8T+HLXUkwsjDZOg/gkHUfTnI9iKQG/RRRTAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAKOpaXa6xptxp9/CJracbXRvrkEehBAIPsK8gsb3UfhH4jOn3xkuvD1226OUD7vbIHTcONwHUYPpXttZ2r6LZa7psun6jAs0EnUHqp7MvoaGBatLy2vrSK6tZkmglUMkiHIYGp8ivE45dd+EOq+XMHv/AA1O4ww42k9AP7r4HTo38vW9H1rT9e0+O+064WaFu46qfQjqD7GkgNGikyPWlpgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSZHr0oAXIrmPGHjHT/CWmNPOwkvHGILYN8zt2JHZc9TVDxr8QLDwnA1sm261Vh+7t1b7mf4n9B7de3Tmuc8I+BNQ1zVF8UeMS0074eG0kH/fJcdAoycJj69wUwDwN4Rv9e1f/AITDxUDJM532sEg6ejFewH8K/iff1fB9KUDHT/8AVS0wCiiigCKWFZonikRWR1KsrDIYdMH2Irx3RZH+GfxIm0idiui6mwMLseFyfkbPqCdh/A+lez1xvxG8KDxR4ZkWGMHULX97bn1PdPoR+uKAOxyKWuF+GHis+IvDgtrp/wDiYWGIpt3V152t9cDB9wfUV3VCAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCtd2UF9aSWt3BHNBICHRxkEf5/KvJtX8Fa94E1B9a8Gyyz2fWWyILkL6Ff416/wC0M9T1r2Km4NDA4rwh8SdI8T7bWVlsdT6G3lbhz/sN3+nX2rtsiuJ8WfDPSPExa6iH2DUeT9oiXhz/ALa9/qMH3NchH4h8b/Dplg1y1Oq6UDtW5DEkD2k6j6OPypAezZormPDvjzw/4lCLZ3qx3LD/AI9p8JJn2HRvwzXT5pgFFJkUtABRRRQAUUUUAFFFFABRRmjNABSZFNlmigiaWaRY40GWdzgAe5rzzxD8WtH01vs2jxtqt8x2qIsiPPpu6t9FyPekB6DcXMFrbyXFxNHFDGpZ5JGCqoHUknoK8r174l32s3v9h+CLWW5uX4a72ds9UB6D/bbA/nVSHwn4x8fzpd+Kbp9O03IdLVRg/gn8J/2nyw969M0Lw3pnhux+y6XarEp++55eQ+rN3/z0oA5XwZ8M4dFnGra1KL/WHO8s53JE3qM/eb/aP4DqT6DilopoAooooAKKKKACkpaKAPGvFFvL8OviFbeJrNG/szUHKXMaDjJ5df03j3B7V7Bb3MN3bx3FvIskMqh0dTkMpGQR9QRWZ4m0CDxLoF3pdwABKuY3P/LOQcqw+hx+HHeuD+FWu3FrJd+DtVyl5Yu32cNx8oPzIPp1HqD6CkB6pRRmimAUUZpMigBaKTINLQAUUUUAFFFFABRRRQAUUUUAFFFFABmisTxTLrcGhSSeH7eOfUQy7EkxgjPPUgdK4T+1vi7/ANAW0/8AIf8A8coA9WqN4xIpR1DKRggjIIry3+1vi7/0BbT/AMh//HKP7W+Lv/QFtP8AyH/8cpAa/iH4SeH9ZLzWiNply2TugGY2J7mPp+WK57+z/id4NybK5XW7Fc4Rz5pA7ZBw4+ikj3q1/a3xd/6Atp/5D/8AjlJ/avxc/wCgJZ/lH/8AHKAHWXxmtoZvs2v6LeWFwMA+X82fUlW2kfhmuv074geFdSA8jW7VGPG2dvKP/j+M1wt4/wAT9ViMF94Z0q6jPVJ44WH6yVzF78O/GF4zOPClnbu3OYLpAB9FMuBQB9Bwzw3EYkhlSRD0ZGDA/iKkyK+bYfhj47t5BJBpbxOOjJeRAj6fPWpF4V+K8G0RSamoXGANVTH/AKMx+lAHsOu+MvD3hraNX1WC2dhlYySzkZxnaoJx74xWlp2q2Gr2gutOvILu3Jx5kLhxn0OOh9u1fJHi6212z8SXKeIfO/tHCs7Sybztx8p3AkdPQ1veBtM8cX+l3beGZLtbLzQsnkXawjzAAeCWU5wRnjnNMZ9SZFU73VtN01d19qFraj1nmVP5mvB7jwV8TrtStyt/MO4k1NGB/OSs8fCzxoCM6GD7faoQP0cUhHruqfFbwlpwYJfPeSLxstYy2foxwv61zUnxO8S+IZDB4U8NyMpO3z5gZAPfjCqfqTXN6d4H8c6WS1v4W04tnIac28xz6je5x+GK6RZvjEqhUsLZQBgAG2x/6FQA2P4beKvE8iz+LtddY85+zREOQe+APkT6gNXd+HvBWheGUBsLGMXGMNcyfPIf+BHp+GB7Vx4/4W+VBK2CkjofK4NQNbfGMkkXlsoJyAFt+P8Ax2gD1gDrTq8j+yfGP/n+t/8Avm2/+Jo+yfGP/n+t/wDvm2/+JoA9coryP7J8Y/8An+t/++bb/wCJo+yfGP8A5/rf/vm2/wDiaAPXKK8j+yfGP/n+t/8Avm2/+Jo+yfGP/n+t/wDvm2/+JoA9coryP7J8Y/8An+t/++bb/wCJqWOx+MMgO7VLSMj+8sBz+SUAer5oryptL+LzddZsvwEY/wDadJ/ZPxd/6DVn+Uf/AMboA9Wryf4p6JdaVqNn420kBbi1dRc47gfdc+38J9se9O/sn4u/9Bqz/KP/AON1DdeH/itfWktrdarYywTKUkRhHhlI/wCufvQB6P4f1u28RaHa6paN+7mXJXPKN0Kn3BrVrg/hp4U1nwpp9/banJGVllV4kjk3KvB3Hp34/Ku8pgee/EvxFr/hDTRq1jfWTW7zJClrNaFmyQTnfv8A9k9qTSZfiNq2h2WpRX+gILqBJ0iktpBgMM4JDHsa5j4/3u630LTFYDzJZJnz2xtVSf8Avpq7mL4g+CtK02GEeILMxW8SxqI2LnAGBgKCT0oGYnh34jak3jJ/CXijTre01LdtjmtWPlsdu4Ahieo6HPtXpleN+HtE1Dxf8VH8bTWU1npERBtftC7HmxHsUgdcZ+bP0r2SgQUUUUAFFFFABRRRQAUUUUAFFFFACYopaKAEopaKAEopaKACiiigAooooAzNW0jSNUgH9rWVpcww/Pm4jVgmO+T0wM8+5qt4f1/w/q8bwaFeWs0dqqgx24wIwc4GMDA4PT0rC8f3s9+1j4Q0+Qpd6wxE7r1htV/1jfiPl5964f4dwJ4Y+M2vaBEClvKkghTOcAMHT64UmgZ7jRRRQIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApMilqveSywWsssFrJcyouVhjZVZz6AsQB+JoA8Y8aIuv/HjQNLKiSK1EXmIRkHBaVgfbbivW7jw5ol3C0NzpFhLGRghrdT/AErye20PxnbfFC68YS+EpJ1fd5UJv4AyZQIMncf4a7SbxJ44mTbZ+BvLkPAkudTh2KfUheT+BFAHA+HXm8HfHC48NaZNJ/ZNw+GtyxKruh8wEe4PGTzivdq848GfDu/03xFdeKvEV3Dda1cFiqQg7It3BOT32/L6AZ616PQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVDdXcFlay3NzII4YkLu56KoGSfyqavPvHk8viHV9O8D2blftpFxqTr1jtVOcexYjH4ehoAxvBni3w9c6pqnirWdYs7e/v38m3t5JQGt7ZD8o9iTya5zWdc0tPj1o2saXfwXMFyYUlkicEKzAwkH/AIDg17XHoOkxRLGml2QRVCgeQp4HA7eleQfHTS4tNGg6np9vFbGOWRCYkCfN8rKTgc9DQM9wyKWqun3iX+m2t7H9y4iSVcejDP8AWrVAgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApKWigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAaVyCD0Poa5e2+Hnhu01MalBaXSXuQTP9vuCzY6Bv3nzDgcHIrqqKACuZ1nwD4d8Q3TXGrWU11ITnDXkyqDjHChwo/ACumooAytF8P6d4etDa6ZDJFATkI88koXjHy72OB7DFatFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q=='] Multimodal Competition True Theorem proof Geometry Math English 21 "Suppose there are $n$ plates equally spaced around a circular table. Ross wishes to place an identical gift on each of $k$ plates, so that no two neighbouring plates have gifts. Let $f(n, k)$ represent the number of ways in which he can place the gifts. For example $f(6,3)=2$, as shown below. Throughout this problem, we represent the states of the $n$ plates as a string of 0's and 1's (called a binary string) of length $n$ of the form $p_{1} p_{2} \cdots p_{n}$, with the $r$ th digit from the left (namely $p_{r}$ ) equal to 1 if plate $r$ contains a gift and equal to 0 if plate $r$ does not. We call a binary string of length $n$ allowable if it satisfies the requirements - that is, if no two adjacent digits both equal 1. Note that digit $p_{n}$ is also ""adjacent"" to digit $p_{1}$, so we cannot have $p_{1}=p_{n}=1$. Prove that $f(n, k)=f(n-1, k)+f(n-2, k-1)$ for all integers $n \geq 3$ and $k \geq 2$." "[""An allowable string $p_{1} p_{2} \\cdots p_{n-1} p_{n}$ has $\\left(p_{1}, p_{n}\\right)=(1,0),(0,1)$, or $(0,0)$.\n\nDefine $g(n, k, 1,0)$ to be the number of allowable strings of length $n$, containing $k 1$ 's, and with $\\left(p_{1}, p_{n}\\right)=(1,0)$.\n\nWe define $g(n, k, 0,1)$ and $g(n, k, 0,0)$ in a similar manner.\n\nNote that $f(n, k)=g(n, k, 1,0)+g(n, k, 0,1)+g(n, k, 0,0)$.\n\nConsider the strings counted by $g(n, k, 0,1)$.\n\nSince $p_{n}=1$, then $p_{n-1}=0$. Since $p_{1}=0$, then $p_{2}$ can equal 0 or 1 .\n\nWe remove the first and last digits of these strings.\n\nWe obtain strings $p_{2} p_{3} \\cdots p_{n-2} p_{n-1}$ that is strings of length $n-2$ containing $k-11$ 's.\n\nSince $p_{n-1}=0$, then the first and last digits of these strings are not both 1 . Also, since the original strings did not contain two consecutive 1's, then these new strings does not either.\n\nTherefore, $p_{2} p_{3} \\cdots p_{n-2} p_{n-1}$ are allowable strings of length $n-2$ containing $k-1$ 1's, with $p_{n-1}=0$ and $p_{2}=1$ or $p_{2}=0$.\n\nThe number of such strings with $p_{2}=1$ and $p_{n-1}=0$ is $g(n-2, k-1,1,0)$ and the number of such strings with $p_{2}=0$ and $p_{n-1}=0$ is $g(n-2, k-1,0,0)$.\n\nThus, $g(n, k, 0,1)=g(n-2, k-1,1,0)+g(n-2, k-1,0,0)$.\n\nConsider the strings counted by $g(n, k, 0,0)$.\n\nSince $p_{1}=0$ and $p_{n}=0$, then we can remove $p_{n}$ to obtain strings $p_{1} p_{2} \\cdots p_{n-1}$ of length $n-1$ containing $k 1$ 's. These strings are allowable since $p_{1}=0$ and the original strings were allowable.\n\nNote that we have $p_{1}=0$ and $p_{n-1}$ is either 0 or 1 .\n\nSo the strings $p_{1} p_{2} \\cdots p_{n-1}$ are allowable strings of length $n-1$ containing $k$ 1's, starting with 0 , and ending with 0 or 1 .\n\nThe number of such strings with $p_{1}=0$ and $p_{n-1}=0$ is $g(n-1, k, 0,0)$ and the number of such strings with $p_{1}=0$ and $p_{n-1}=1$ is $g(n-1, k, 0,1)$.\n\nThus, $g(n, k, 0,0)=g(n-1, k, 0,0)+g(n-1, k, 0,1)$.\n\n\n\nConsider the strings counted by $g(n, k, 1,0)$.\n\nHere, $p_{1}=1$ and $p_{n}=0$. Thus, $p_{n-1}$ can equal 0 or 1 . We consider these two sets separately.\n\nIf $p_{n-1}=0$, then the string $p_{1} p_{2} \\cdots p_{n-1}$ is an allowable string of length $n-1$, containing $k 1$ 's, beginning with 1 and ending with 0 .\n\nTherefore, the number of strings counted by $g(n, k, 1,0)$ with $p_{n-1}=0$ is equal to $g(n-1, k, 1,0)$.\n\nIf $p_{n-1}=1$, then the string $p_{2} p_{3} \\cdots p_{n-1}$ is of length $n-2$, begins with 0 and ends with 1 . Also, it contains $k-1$ 1's (having removed the original leading 1) and is allowable since the original string was.\n\nTherefore, the number of strings counted by $g(n, k, 1,0)$ with $p_{n-1}=1$ is equal to $g(n-2, k-1,0,1)$.\n\nTherefore,\n\n$$\n\\begin{aligned}\nf(n, k)= & g(n, k, 1,0)+g(n, k, 0,1)+g(n, k, 0,0) \\\\\n= & (g(n-1, k, 1,0)+g(n-2, k-1,0,1)) \\\\\n& \\quad+(g(n-2, k-1,1,0)+g(n-2, k-1,0,0)) \\\\\n& \\quad+(g(n-1, k, 0,0)+g(n-1, k, 0,1)) \\\\\n= & (g(n-1, k, 1,0)+g(n-1, k, 0,1)+g(n-1, k, 0,0)) \\\\\n& \\quad+(g(n-2, k-1,0,1)+g(n-2, k-1,1,0)+g(n-2, k-1,0,0)) \\\\\n= & f(n-1, k)+f(n-2, k-1)\n\\end{aligned}\n$$\n\nas required."" ""We develop an explicit formula for $f(n, k)$ by building these strings.\n\nConsider the allowable strings of length $n$ that include $k$ 1's. Either $p_{n}=0$ or $p_{n}=1$.\n\nConsider first the case when $p_{n}=0$. (Here, $p_{1}$ can equal 0 or 1.)\n\nThese strings are all of the form $p_{1} p_{2} p_{3} \\cdots p_{n-1} 0$.\n\nIn this case, since a 1 is always followed by a 0 and the strings end with 0 , we can build these strings using blocks of the form 10 and 0 . Any combination of these blocks will be an allowable string, as each 1 will always be both preceded and followed by a 0 .\n\nThus, these strings can all be built using $k 10$ blocks and $n-2 k 0$ blocks. This gives $k$ 1 's and $k+(n-2 k)=n-k 0$ 's. Note that any string built with these blocks will be allowable and will end with a 0 , and any such allowable string can be built in this way.\n\nThe number of ways of arranging $k$ blocks of one kind and $n-2 k$ blocks of another kind is $\\left(\\begin{array}{c}k+(n-2 k) \\\\ k\\end{array}\\right)$, which simplifies to $\\left(\\begin{array}{c}n-k \\\\ k\\end{array}\\right)$.\n\nConsider next the case when $p_{n}=1$.\n\nHere, we must have $p_{n-1}=p_{1}=0$, since these are the two digits adjacent to $p_{n}$.\n\nThus, these strings are all of the form $0 p_{2} p_{3} \\cdots 01$.\n\nConsider the strings formed by removing the first and last digits.\n\nThese strings are allowable, are of length $n-2$, include $k-11$ 's, end with 0 , and can begin with 0 or 1 .\n\nAgain, since a 1 is always followed by a 0 and the strings end with 0 , we can build these strings using blocks of the form 10 and 0 . Any combination of these blocks will be an allowable string, as each 1 will always be both preceded and followed by a 0 .\n\nTranslating our method of counting from the first case, there are $\\left(\\begin{array}{c}(n-2)-(k-1) \\\\ k-1\\end{array}\\right)$ or\n\n\n\n$\\left(\\begin{array}{c}n-k-1 \\\\ k-1\\end{array}\\right)$ such strings.\n\nThus, $f(n, k)=\\left(\\begin{array}{c}n-k \\\\ k\\end{array}\\right)+\\left(\\begin{array}{c}n-k-1 \\\\ k-1\\end{array}\\right)$ such strings.\n\nTo prove the desired fact, we will use the fact that $\\left(\\begin{array}{c}m \\\\ r\\end{array}\\right)=\\left(\\begin{array}{c}m-1 \\\\ r\\end{array}\\right)+\\left(\\begin{array}{c}m-1 \\\\ r-1\\end{array}\\right)$, which we prove at the end.\n\nNow\n\n$$\n\\begin{aligned}\nf & n-1, k)+f(n-2, k-1) \\\\\n& =\\left(\\begin{array}{c}\n(n-1)-k \\\\\nk\n\\end{array}\\right)+\\left(\\begin{array}{c}\n(n-1)-k-1 \\\\\nk-1\n\\end{array}\\right)+\\left(\\begin{array}{c}\n(n-2)-(k-1) \\\\\nk-1\n\\end{array}\\right)+\\left(\\begin{array}{c}\n(n-2)-(k-1)-1 \\\\\n(k-1)-1\n\\end{array}\\right) \\\\\n& =\\left(\\begin{array}{c}\nn-k-1 \\\\\nk\n\\end{array}\\right)+\\left(\\begin{array}{c}\nn-k-2 \\\\\nk-1\n\\end{array}\\right)+\\left(\\begin{array}{c}\nn-k-1 \\\\\nk-1\n\\end{array}\\right)+\\left(\\begin{array}{c}\nn-k-2 \\\\\nk-2\n\\end{array}\\right) \\\\\n& =\\left(\\begin{array}{c}\nn-k-1 \\\\\nk\n\\end{array}\\right)+\\left(\\begin{array}{c}\nn-k-1 \\\\\nk-1\n\\end{array}\\right)+\\left(\\begin{array}{c}\nn-k-2 \\\\\nk-1\n\\end{array}\\right)+\\left(\\begin{array}{c}\nn-k-2 \\\\\nk-2\n\\end{array}\\right) \\\\\n& =\\left(\\begin{array}{c}\nn-k \\\\\nk\n\\end{array}\\right)+\\left(\\begin{array}{c}\nn-k-1 \\\\\nk-1\n\\end{array}\\right) \\quad \\text { (using the identity above) } \\\\\n& =f(n, k)\n\\end{aligned}\n$$\n\nas required.\n\nTo prove the identity, we expand the terms on the right side:\n\n$$\n\\begin{aligned}\n\\left(\\begin{array}{c}\nm-1 \\\\\nr\n\\end{array}\\right)+\\left(\\begin{array}{c}\nm-1 \\\\\nr-1\n\\end{array}\\right) & =\\frac{(m-1) !}{r !(m-r-1) !}+\\frac{(m-1) !}{(r-1) !(m-r) !} \\\\\n& =\\frac{(m-1) !(m-r)}{r !(m-r-1) !(m-r)}+\\frac{r(m-1) !}{r(r-1) !(m-r) !} \\\\\n& =\\frac{(m-1) !(m-r)}{r !(m-r) !}+\\frac{r(m-1) !}{r !(m-r) !} \\\\\n& =\\frac{(m-1) !(m-r+r)}{r !(m-r) !} \\\\\n& =\\frac{(m-1) ! m}{r !(m-r) !} \\\\\n& =\\frac{m !}{r !(m-r) !} \\\\\n& =\\left(\\begin{array}{c}\nm \\\\\nr\n\\end{array}\\right)\n\\end{aligned}\n$$\n\nas required.""]" ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAVgCogMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKQk44oB5oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQ9KWigDyX4k674v0yHTZxc2+m2lxfJCILVy8zDkkvIQABx0X16npXrKgDpXlvxt40rQP8AsKJ/6Ca9SFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIx2qT6V5l4x8ceJdMvdIS20xdOsr28SES3LK00g3DPyDIQEHuSfYV6dXlvxi/1/hL/sKL/7LQB6j3paSloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApGJCkjrS0UAeM/F/xHompWGiw2OrWd1JDqKPIsMyuUXByTg8dutep6Xr+k60X/szU7S8KAF1gmVyoPTIHI/GtLAxjHFAAHTigBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEPTivKvjFNGbnwou9crqasRkZUccmvVWVXUqwBUjBB6EVif8IX4V6nw1o5Oc82MXX1+7QBsxyLIAyMGU8hlOQRT6o6foulaQZDpumWdkZMb/s0Cx7sdM7QM1eoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqre6haabatc3tzDbwKMtJK4VfzNAFo03JrzHV/jDA9yLHwxps2p3TnajsjBSfZB8zfpWcPC3xC8Y/Nr2rDTLNv+XdOpHpsUjI/3jkelK4HoWreNPDuiFlv9XtkkU4MaN5jj6quSPxFcdf/ABt0eJmTTtOvb1xwCcRq30PJ/StDSPg/4X0/a11HcahIO88hVc+yrjj65rs7HR9M0xdthp9raj/pjCqZ/IUAeYn4ieO9SK/2V4OaNCM7poZHH4N8opWvvjBdn93p9taqw6jyeP8Avpif0r1aeWO3gkmmkWOKNS7u5wFA6knsMV5Ff+MfEvjrVpdK8Go9rYJ/rb0jYxHqW/hz2A+bj8KAJhB8XVz52r2cI7GQW4z+SHn8qPK+MUf7wXVvMFOdgW3G781FOt/grBPmbV9du7m6fl5EUDP/AAJsk/U/lUFx8L9f8NF7zwlr8pdfmNs52Fz6f3X+jACgCf8At34tWKZn0K1uABz8quT/AN8OP0FN/wCFt67pig654RngXOGk+eIfgGU5/OtnwL8Q31y7bRNagFprUOQVIKiUjtg/db1H1x6D0HrwfyoA4DTvjH4WvDtuZLqxb/pvFkfgVz+uK7LTtZ03V4vM02+trtB1MMqvj64PH41R1Pwf4c1YMb7SLR2brIqbHP8AwJcH9a4nU/gxYeb9q0LVbrT7hTlA53qp9ARhh+ZoA9RBJxS147/a3xI8Ec6lajWtPTrKpLkAf7QG5fq4xXVeHPil4e18xwvP9gu2OPKuTgE+iv0P0OD7UXA7iikBJPtS0wCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKD0oAKKjklWNGd3VEUZZnOAB7muC1/wCLmg6VI1vYb9UugcbYDiMH3fBz9QCKAPQM1S1DWNP0qMSahfW1qh6GaUJn2GeprywXPxO8afNAi6FYt0J/dEj1ycufqMCtDT/gvp/m/adb1a7v525fadgY+5OWP1yKVwNbUPi94TsciO6nvGBxtt4T/Nto/WsNvjS13MY9I8M3l3/vSYYfgqt/Ou103wN4X0tR9m0S0yDkPKnmsD7M+TW/iOGPgKiKO3AAoA8obx/8Qbpv9C8GNGv/AE2tpiD9DlaePE3xVbn/AIRqzGe3lnj/AMiUmtfEfV9c1NtF8EWpnlX796UGODyVB4Cj+83rx2NMT4b+MdQBk1XxnPFKxzsjkkkUH81H5AUAObxZ8U4VDP4XtXB9IWJ/8dkNCfE7xdaAnUPBNyQP4limiH/jymoJ9B+JPhEm707WH1i2Xl4pGaViB/sNk4/3Tmut8EeP7PxfC0DRi11OJcy25OQenzKe4z1HUfqUBgWnxv0ljsv9KvbaQHDCMrIF/Vf5V1GnfEfwnqbBItagic/w3AMR+mWAB/A1v3en2Wox+Xe2kF1H2WaNXH5GuX1P4W+E9S3MNONo7cb7WQoB9F+7+lMDr0lWVBJG6uhGQynIP0xTwc968kl+Feu6DIZ/CniSWMjnyZmMefxXKsfYgCmx/EXxd4VlSDxdoTSxdBcxKFY++RlGPsMUwPXqK57w9410LxMMadfKZ8ZNtKNkg/4Ceo9xkVvhsnFADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ8CgAJwM0hOB1/Oqmp6pZaPYS3uo3MdvbRDLyOcD8B1J7YHNeR32v+I/ihqL6ZoKSWGiods87/KWB/vkd+mEBzzzx0QHReKPiraadP8A2boEf9q6kzbF8sF41b/gPLnOOF4988Vj2Pw68QeLrpNS8aalMkf3ltI2G4A9sD5U/DJx6Gu38JeBdH8JwD7LF512V2yXcq/O3sP7o9hXT7RnOOaAMzRvD2k6BbeRpdhDbqRhmUZZv95jyfxrUwM5oxRTAKKKKAPM/jHrE9vollotpuM+pzbSidWVcfL+LFRXYeF/D1r4Y8P2+m26ruRQZpAOZH/ic/09sVwPxQcW3jrwfdTuFtlnUknooWVCxJ+hFem6lDLc6VeQW77JpYJEjb+6xUgH8DikB5B4q+OptNRltPDtjbXKRNt+13JJR8EglQpGR6HPOa6H4f8AxYt/F18NLv7RbPUWBaPaxMcuOoGeQ2MnHPFfN0sEsE8kE6OkyN5cqEfMGBwQR+Hf+hrqfhnZ3V78RNFW03B4rgTSMq52xry2fQEAr+NMo9d+LuhtbR2nizTsxX9pMiyyL3H8DH6HC+4bByK9F0PU01nRLHUkG0XUCS7f7pIyR+BzXOfFWSNPhzqiuRmTylQE4y3mKf0xn8Kt/DmOSL4f6MsnUw7x/usxI/QikSdTRiiimAhAxjtXI+JvhzoHiQSSy2otr1sn7VbgKxP+0Ojfj+Yrr6TAoA8YL+OPhi4Lt/bOhIQuSSQg/Uxfqtei+FvGuj+LLffYTlbgDMlrKAsifh3HuPWuhZVZSpAIIxjFeaeKvhbHLcf2x4VkGn6nGS3lI22Nz7f3D19u2KQHpgOaWvMvB/xKka8/sHxWhs9UjYRiWRdgc9g4/hJ9R8p9uM+lhjkDtTAdRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRUF1dwWNrJc3U0cEEQ3PJIwVVHqSaAJj0rifF3xL0jwyHtoiL7URkfZ4m4Q/wC23b6dR3x1rltY8ca7421OTQfBsUkdsOJ70/Kdvrn+Bf8Ax4+g6V1Hg74baV4aCXNwFvtTGCbiReI2/wBgHp9ev06UAclF4b8bfENxc6/eNpelsQyWyrtJHtHn9XOe/Neg+HfBGgeGUUWNghnH/LxNh5D+J6fRcCujwKXFIAxRiiimAhHfvXnPxf16fT9At9ItC32jVJDGQvUxrjcB7klR9Ca9HPSvJPiRlfiV4PaU/wCj+dF16A+cu79MflQB3HgzwtbeFNBhso1U3TqHupQOZJO/4DoK6PFNHanUgEIGM46V5B8TtFbw3rOn+M9HQRTLOFuVQYDP1BOOgYbg31Hqa9grifitsHw41PccMTDtye/mp+fGaYHV6bfRanptrfwcxXMSyp67WGR/OreB6VzPw+Eg8BaN5v3vs4x/u5OP0xXTUAJgUyaGOaFopY0kjYYZGUEEfQ1JRQB5z4i+Emj6k5udIdtKvAdy+V/qs9fu9VP+7j1rCt/GPi7wBdR2Piu0fULAnal2jbmPbh+h/wB18N74r2LaDUN1Z297ayW1zBHNBINrRyLuUj3BoApaJ4g03xFYi80y7SeLHIH3l9mHUdK0wc15Hr3w41Hw5fnXfBFxJE65L2gOWI7hc/fHH3Tzx1ziug8FfEm08RsNP1FUsdZXhomOElI67M85/wBk/hmgDvaKQHJFLQAUUUUAFFFFABRRRQAUUUUAFFFFACHOOKw/Eniey8MWMc955kks8gitreFQZJ3PRVH9e3et09K8f8Qata/8L3sF1KQi00myLxRhGcmRlJyFUEk/MvT0HpQB1N/4w8RaVZDUNQ8ImKyDKJGTUEeSMMQBldvqR0JrtVPTnPvXHSfEPw/9qistRhv7BLg7YpNQsJIo5TnsWH88V2AJIzjn/PFADjwOKytd8QWPhzSpNQ1GXZEnCgdZG7Ko7k1Nq2rWej6XcX9/KIraFdzFu/sB3J6Y715Hpen6h8WfEjavqm+30G1bbDArEh/VVPc8Dc3uAPYAWx03Wvi1qw1LUy9j4fhciGBW+96hfU9mb8B7ewafp1npVlFZ2NukFvENqIg6D/E9z3qS2toLO3jt7eJIoYlCJGi4VQOgAqegBMCloooAKKKKACiiigDifid4Xk8S+FW+zIZL6zbzoUXrIMYZB7kdB3IFQ/Drxvb+JNKjsbyYJq9umyVHODMBxvX9MjsfqK7sjjivPvFvwwtNbvG1XSro6ZqpYuXjBCO3qQOQfVh+VIDR8RfDLwt4muzeXtk0V2/3prdzGz/UdCffGffgVf8ADvhDQfB9tINLtEty4/ezuxLsPcnt7DiuFjh+LukHyIxb6lGowJGeJs/ixVj+IqOTwn8RvFg8nX9WSwsicPCjLkj/AHY+G/4EaLgV/GOryfEbxRZ+FdDcyWMEnmXFyoypI4Lf7qgkA9Cx6HANew2ltFZ2sNrAmyKGNY0X0UDA/TFY/hbwlpXhOxNrp8XztgyzvgvIcd/Qeg6dfU1vYApgLRRRQAUUUUAFJgYpaKAOV8ZeCNN8X2RE6iG8jU+TdAZK+zDuvt7nFcT4X8Y6l4L1YeFvGGREuFtr12yFXoCT/FH23fw9D7evkDHSsDxd4SsPFukNaXS7Jky0Fwq5aJvX3HTI7/UAhAbqvuIxypGQafXkXgnxTfeE9ZPgzxOQgjbZZ3LH5QOwz3Q8YP8AD0PoPW1LZ56fSmA41zXiV/EEmo6VY6Jci0juGlN1dG3E3lKqgjg8DJ45rpaaw4NAHnPivUvFfgbTY9b/ALZj1mySVUuLe5tUiIVuAVZAOc46132n3sepada30JPk3MSTR567WUEfzrgfipLLrVnZeD9NUS6lqU6s6jkQwqcl29BnH1wa73TbKPTdNtLCEkxWsCQJn0VQB+goAt0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUHpRQelAGD4m8VWXhi2ge4WWa5un8q1tIQDJO/HC5IHcZJ9RWTeeL/ABBpcMV1qXhTybOSWOJpYtQSRot7BQWXb6kDgmuS1PWLU/HzdqUjC30mxzAixtIS7KDlVUEk/vD0GflHpXX/APCwfD8l/DYahFe2JuGxCdRsnhSQ54wWH484/OgDsQcgUHgUg6nP4VBfXsGnWU13dzJDbwqXeRuij+v0oAi1TVbPRtPmvr+dYLeEZZ2P6D1J7CvIXl134u6wUh83T/Ddu+CSOSRzz/ec9cdFGPqzf+Jl8XfEhJMtp4csnGV7sfT0LsPqFB/P2LTdOtdKsIbCyhWG2hXaiIOMe/qc8k9STmgCvoeg6d4f06Ox063WKFep/ic+rHua08ClwM5ooAKKKKACiiigAPSvPPi14dm1jw3Ff2aM11prGXC/eMZ+9j6YB/CvQ6a6gqc46d+lAHL+B/GFv4t0SObeq38KhbqHurf3gP7p5I/KupBz3/KvLvEPwxurbVDrPg69/s+85LW4YohOcnae3+6ePoOKqDxh8TNLxBfeF/tbjjzI7Z3JPrmMlfyoA9bJ4P8ASvHfiHrD+MvENh4O0ZxKFuN11InKhhx1HZRuJ9+O1PnPxP8AGKm1e2j0ayc4dseUce+SXP4YzXb+DfA2neD7ZvIZri9lAE104wSOuFH8K57d8DPQUAdDYWkVhYW9nACIoI1iQHrtUYFWaQACloAKKKKACiiigBCoPYVw3jn4d23iVTf2DLZ6xH8yzDIEpHQPjnP+11HHpXdUhHBoA8v8F+P7uC//AOEY8Wq9vqkTeXFPIAA57Kx6bsdGHBBHsT6epJ6n9MVyHjrwLaeL7Deu2HUoRiC4x2zna3que/Y81g/D3xrdpenwn4k3Rarbny4pZTzKQPusf72Oh/iGPxAPT6Q5xx1pAcnr79KdQBzPiTWdatNX0nStEtbOWe+WZ3lu2YRxLHs5+Xkk7/0rE17xd4l8FrbXuv2mm3ulyyiKWbTxIkkJPcq5II4PcV35Rc5wMgYFea/GB5NT0bTvDNigl1LU7xfKiHZFyS59FBIz+NAHpEMyXEMc0Th45FDKw6EHkEfWpKq6faLYafbWaMWW3iWIMepCgDNWqACiiigAooooAQ9K8sv4jpP7QWnXUx2QapYtHG7fdLqpGB7/ACj/AL6FeqVj+IfDWneJbKO3vkkDQyCWCeFyksLjoysOh/SgDlfjRHA3w0vmmCb0khaIt2beAT/3zu/Wuo8MmVPCGjvekrOthD5xkPIbYM5/HrWTN4Ei1Ca2bXda1HVoLWQSRW9wY0jLDoWCIpY/XP61g/FTxLPDBB4U0lS+oahhZFjOCsZOAo92PH069c0AYeqXV38VvGQ0iwZ49AsX3yyg8Pg4Ln3PIUegJ45r1mBNO0PS4oVaCzsoECrvYKqj6nrn17815nfatB8MtAtvDejIt54iu8NKyjdtlbAzjqT0Cr1xgnPdunfCnU/EEg1LxhrFw1xIM+TEwLKDzgsRhf8AdAIHY0gPSbfxLoN1KI7fWtOmk6bY7uNj+QNaoOa83ufgr4akhxDPqEMgHDiRW/MFf5Vzs0fi34UTRzLOdV8P78MjZwmfXOSh7ZHy9O/FMD2uis7RdZs9e0q31Gxk3wTLkZ+8p7qR2IrRoAKKKKACiiigAowKKKAEwM5paKKACiiigAooooAKKKKACkOccUHgVyvjfxpbeD9KWVws17MdtvBuxuPcn/ZH69KAOneVIozJI6og6sxAArMHinw+0vlLrumF842i7jLflmvMLDwJ4k8d7NU8WapPb27/ADRWqjDAH0U/Kg9OCT3xW+fgt4XMGzzNRDf3/OXcP/HcfpQBrePPB1t4w0U+W0a38KlrabPB4yUJ7qf06+tZXwy8Yz6lFL4e1gsmsWIKfvQQ0iqcEH/aXgH+uDXOX/hfxT8Ny+q+HtQkvtLjy80D8kKOSWToR/tLgj2FUvEN1HrdpafEHw4Ps2oWTquoWynLRkcByP4lxx7qR0waQHuma5Dxx44t/CsdvaCSFdQvcrC1xkQxDvI5HJUeg69K2PDGv23ifQbbVLbAEq4kjzny3HVc9/6jB71Z1DQdH1d0fUtJsb10G1GubdJCo9AWBxTA4Xw/4o8C6Is9xL4lgvNTujuvL2ZW3yn06fKg7KOAK9AsL221KyhvbOZZredd0ci9GHrWb/whfhX/AKFrR/8AwBi/+JrWtrW3s7eO3tYI4IYxtSOJQqqPQAcUATUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUHpRR1oA8q8v8Asj9oczzfImr6fiJjwGZVUEfX91+vvVz43RwN8O5GlCl0uYjET13ZOce+M12HiDwzp3iO2hjvFljmt5BLb3MDlJYXH8St+A68cD0FZT+BYr+6tptd1jUNXS0fzIILjy0iDDozLGi7iM9/60AbuifaBoGnG63faPssfm5Ofn2jP65ryrxPql58SfFieF9IkC6Vaybrm4U5V8HBPuB0UdCeenTofil4ql0vTotC0ssdU1L5AsfLJGTjgDuxO0d+tZQvrH4S+FYLGOKO78Q3y+Y8YPGeQM452KeAONxBxjnAB6To+k2eh6ZBptjF5dvCu1RjknuSe5PWr4ZT91gfYGvHYPBXjPxsv23xJrT2FvL8yWoBOB1H7sEKo6dSW45q3J8EoYAsuna/dwXKch2jzz7YIIpAesAnvS141F4m8XfDm+itfEwbUtJkO1LpW3Eeu1zyT/sv+Br1yxvrfUrOG8tJlmt5l3xuvQj/AD2NMCzRRRQAUUUUAFFFFACYGc0YHoKWigBMClwM5oooAKKKKACiiigAoopD0oAWm59s5rA8WeLbHwlpJvLwl5HJWC3UgNK2Omew9T2zXnNppvjr4jKbu+1A6RpUgzHEm5A49k4Yjjqx+lAHsm4ZwSMjnHcVwfxG8Ef8JBaDU9NBTV7NdyFODKo5257EdQaw2+Btl5A8rXblbgchzACufXbkH9ap3E3jj4aSLcXNwdZ0TeAxd2faD0GSCyeg5K5IHWkB1/w48af8JRpbWt4durWQCzqeC46B8evqOx+tduSccY/GvDfEFxHaXlj8R/CrE20sm2+gIA8tz1DgdAw6+5BydwI9k0fVbbXNKttSs33W9wgZc9R6g+4OQaYGV4n8W2vh5YbYBJtTujttrZpAgY/3nY8Ko5yfas7w/Bo+n3c2r6prun3uuXQ2z3PnoFRe0cQz8qD8z1Namv8Agbw54ouornWdO+0zRR+WjefImFznGFYDrWR/wqDwJnP9hc9c/a5//i6AOzhljmjSSJ1dGGVdSCGHqCKlqvYWNtpmn29jZx+XbW8YjiTcW2qBgDJJJ/GrFABRRRQAUUUUAFBopDwKAKGsapbaNo93qN2cQQRl2H970Ue5OB+NeY/DXTpdW1LUvHutDc7M/wBn4yBx8zD2C/IPofQVN8WL+41fUtK8G6cQZ7uRZJvQZOFz7Dlj7AGu+fR47PwfLo9ipCpZPBFjgklCPzJ5+ppAed/CyxfxH4i1bxjqI8yXzjHADyFYjJx/uqVUexr13A9K8y+CE8TeFL+3UjzY74uwB52sibT/AOOkfhXp1ABgGq97ZW2oWU1ndQpLbzIUkjYZDA9asUjdKYHknwxafw94217wlMztEhaaEt14IGf+BIVP/ARXrleS6Iy3/wAf9Ynt3JjhhIfbwMqiRkH6NXrVJAFFFFMAooooAKKKKACiiigAooooAKKKKACiiigAPSvHdNth43+MmoXV2u+w0glI0YZXKsVUfi25/wAK9iNeTfC51tfHfi/T5SRcGYuBjqFkcE/+PL+dAHrAVc5xye9LRRQA1lUqQQCCMHIzXjlpZxeEfjBJo4Rf7I1uEg25Hy7XDYG0ccMGUexNeyHpXkfjH/T/AI1+GrWAZkgETyMnBGHZ9p/4CufoaTAg8KTS/D/4kXXhi5c/2dqBDWruehP3D+P3D6nHpXsYOa86+Lnh46j4cTV7UEXmlt5gK53GPPPT04b2ANdL4L18eJfDFlqJYGYp5c4HaRcBvz6j2NCA6GiiimAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIelVNS1C30rTbm/um2wW8Zkc+wHQep9quGvKvi5qtxeTab4R085uL+RWlAPbdhFPsSCT7LQBT8AWcniXxJqfjvWRiGJmFsDyowOceyLgA9ySeoNJ8OLA+LvFuqeMdTTzBFNstkblUfGR/wB8rsx9c9a76fRI9I+H15o+n5/dafLEjY5ZijfMfckkn3Ncz8FZI38FXKJgSJevu98ohBP8vwpAa3jv4hWHge0i8yFrq/nyYrZW2/KDyzHB2j8OT06Ejz7S/j/M16F1XRYRas33rZzvQeuDkN+lY3x3tbmPxvbXMqsbeWzRYXK8fKzblz6gnP8AwIV5aRweR+JwPz7Ux2Psm8tNN8V+HjDIVuLG9iDI6+h5Vh7jgj6V598J7y40rWdZ8IXkm5rOR5YeOMBtr49AcoQPc10/wws7qx+HOjQ3YdZTGzhXGCFd2ZQR2+UjjsOK5jQHW4+PmuPA2US3Kvg9wIwf/HutIR6xRRRTAKKKKACiiigAooooAKKKKACiiigAooooAKRvumloPSgDxqO3HxB+L14LwGTStIygjIyrbGxg/wC85Y+4XFeieLPFeneDdFOoXoJy3lxQx43SN2A9sck9gK4b4SfufEvi22mfM/nqfrteQMfzIrN/aCs7p7bQ7tAzWkTzRuQOFdtpXP1Cn8vekBRh/aCvvt26fQrb7GSBsSciRef7x4P5CvYNE1jTPFvh6O+tQJrK5RleOROR2ZGHr2I7/QivjrJwec8f5HtX0Z8CbS4t/BV1LMrLFcXrvDkfeAVVLD1yQRn/AGTTKMfRdNi8NfEjUvB1wpk0bV42EaN0AKllx3BGGXPqM+lW/h9fXHg/xlfeC9RkJhlcvaO3A3YyMf7y4+jDFS+LP33x08OpCRuSCLcAemGkY/8AjtXPi/ocv2Cz8TWOUvNNkUPIvXy85U/8Bbt/tGkSenAk9aWsjwzrUXiHw9Y6pEAPPiBdf7rDhh+BzWvTAKKKKACiiigAooooAKZK6xxO7kBVG4knAwKeeh5xXH/EzVjpPgPUXVwstwBbJn/b4b/x3cfwoA5D4cRnxV491vxdOpaJGKW24dN3C/iIwAf96vXiABmuR+Gekf2R4F09WAEtyv2qQjuX5XP/AAHaPwrryMjFAHit49z8LPH8uoLC76BqhJYIPuckkD3UkkA9Qcdc49e0/UrTVbKK8sLmK4t5RlJIzuB/wI7jtSappdlrFhLZX9uk1vIMMrj9R6H3rzO4+FOsaNdvdeEPEMlqHPMMzMvHoWUfMPqKQHrGfSuO8dePLPwpp8kUckcuqyJiGAc7SejP6AdffGPccvJ4a+Kl8hguPElvFF0LJJsbHsUQHP1Ira8LfCzTNGvRqWpTvqmoBt4klXCK3rjJy3uSfWgBvwq8L3Oj6VPqupq41HUiJGEn3kTqM553EnJ/DvmvQqTaM570tMAooooAKKKKACiiigAooooAKKKKACiiigAooooAQ5wcDJryLx7Y3/g/xjbeNtLjMlvIwS8TPygkBefZhj/gQ9xXrxAIwelRTwRXFvJDNGkkUilXR13KwPBBB6igDO0DxHp3iXTkvdNnEiEfOhwHjPow7H9PTNahbjivLdT+EbWt+dQ8KavLpk5ziNmYAHPQOvIHsc1EfDvxYdPs7eIrUJjlxJg/gwj3UAd14o8Wab4V09rm+lUyEfurcN88rdgPQe/QfpXEfDLRr/V9cvfG+soRLdbltVYY4PBYA9AANo9s+xNjRPhHEt+NR8TalJq10cEoxYrkf3mJy/44/EcV6YiJGipGoVFACqowAPQCkAyeCKeCSGVA8cilHRujAjBB/CvJ/hjJJ4b8aa54QuHJQOZbfcepXj82QqfoteuHpXkXxGX/AIRv4h6B4oT5IpGEdwQOy8MfqUbH4UAeu0tNBzz2p1MAooooAKKKKACiiigAooooAKKKKACiiigAoooPSgBrsqIzMQFAySegFeQ+AEPi74k6x4pmG63tiUttw/vfKv5Ip/Fs12fxI1f+yPAmoyKR5lwn2aME4yX4P5LuP4VD8LtI/snwLYllxLdg3UhPU7vu/wDjoWkB2RAweK8W027b4WfEC7sL1ZBoWo/NFLjIVR0b1O0kqQOcc46Z9qrJ8Q+G9M8TaY1jqUHmJnKOOHjb1U9qAI9Y0LRvFmlpBqNtDeWrgPFIjcjPIZGHTPsefeuX0r4NeENKvhdmC5vGVtypdShkH/AQBkexzWCngzx74Odk8Maqt7Zbsrbuyhsd8q/yj6ggn0qWS7+L18vkLYW1rk4Mo8kED8Wb9BTA7Xxl4wsvCOjvPM6PeOpFvbluZG/ntHc+3rXN/CXw9d2ljd+INTz9t1Rty7hzsyW3fVic+mAp71H4f+Fch1NdX8WagdUvM7vK3s6ZHTczYLAemMfhXpoUKAAMAcAUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUjHCk9KWigDxzxQtx8P8A4kx+KIIJZNLvyVuVQfxH76+x4DrnGTkdK9Mxo3i7QRnyNR0y6T03Kf8AAg/iCO1WtV0yy1fTZrG/tkntpRh0YfqPQjqD2ry6f4deKPDF7NdeDNaPkSDJt5mAY+gIIKP7E4xn8aQGvH8E/B0V79oMN48Y6W73B2D8huP511uratpPhHQzPceVa2kCbYoYwFzgcIg/yBXn7aj8Xmj8gaXaxvwPMBhz9eX259qWw+F+sa3fpqHjXV3udvS2icnjuM8BR7KPxouA34bWF54k8Waj431KHYjs0dqpHf7px7Ko257k5r1K/sodR064srhd0M8bRuPYjB/GnW1vDawRQW8SRwxrsREGFUDoBUx6UWA8o+El3NpOr634RvGPmWsrSx574IV/wOUI+pr1ivIPGJPhX4uaLryEJb32EnJOB/ccn6Kyn6ivXgTkZ/KhALRRRTAKKKKACiiigAryb4xvJqGoeHdAifDXU5Yjrgkqin/x5q9ZryXVcat8f9OtyMrYwLuPoVRpB+rikB6tDEkESRRqFSNdqgdh2FSUgpaYBRiiigAxRiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBMDOe9LiiigAxRRRQAVwHxg04X3gOW4A+aznjmHHYnYf0bP4V39ZHiiy+3+E9XtAuWltJAo/wBracfrigCDwXqX9reDtJvCxZ2tlVye7L8rfqprerzv4MXjXPgYwt/y7XTxgexCv/NjXolCAKKKKACiiigAooooAKKKKACiiigAooooAKQ8iloPSgDyf4xSvqF34e8PQuu67uNzZ7EkIh/8ef8AKvU4IUt4Y4YlCxxqEVR0AA4xXlOq41f4/wCnW5XK2MKlvRSEaQH82WvWh29KSAWgjIwaKKYBgUYoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKTavoKWigBMCjAHQUtFABig0UUAeb/GfTRdeDY70Ab7K5Ryx/utlCPzK/lXY+GNROreGdMvyQXntkZ8f38YYfnn8qg8a2S3/gjWbdl3ZtJHUf7SjcP1ArA+D959q8AW8Wcm1nlhP4nf8A+z0uoHe0UUUwCiiigAooooAD0rybwwwvPjv4hmbJMcDgZ/2TGn8q9ZryT4ec/FfxgTyfOnGT/wBd6TA9bxRRRTAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkZQyFT0IwaWigDyb4IO0Vtrtg3W3njJ9MncDj/vj+Ves15R8JQF8T+MAOB9pXj/AIHJXq9JAFFFFMAooooAKKKKACiiigAooooAKKKKACkPQ0tB6UAeTeFWF98dPEVwRuEUUig+hUxx/wAga9Zryf4bKJPiR4xm5B+0Scf70zH+lesUgCiiimAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUARzxLNbyRNyrqVP0Iry34Gzk6JqtqeDHcq5HpuXH1/gr1Y9K8m+DyeRrviyDrtnQbvXDy0mB6zRRRTAKKKKACiiigAryP4efJ8WfFyNwxknYA9SPO6j25FeuGvJvDgWy+PWuwluZrdyP+BeU9Jges0UUUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoPSimuwSNnY4VRkn0oA8q+EhD+JfF8i8obhSD9Xlr1evJ/gdEz2Gt37/euLhFJ9SoLH/0OvWKSAKKKKYBRRRQAUUUUAFFFFABRRRQAUUUUAFB6UUHpQB5P8NWCfEfxlCSd5uJD+Urf4ivWK8l8IIbL43+JbfOFlilkx6lnjcfoTXrVIAooopgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXk/wAH387X/F0w4DXEZA7jLSmvVpXWOJ3Y4VQST7V5V8DonbTNYvZOXmuVRm9SoJ/9npAer0UUUwCiiigAooooAK8j1zbo/wAe9IvGyEvYlBPYllaEfyWvXDXlHxmgksm0DXoAN1pcmPnqTw6/lsb86QHqwzn+lLUNtcR3dtDcxNuilQSIR3BGR+hqamAUUUmeaAFopKAc96AFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooPSkzxnn8qAFopBS0AFYvi+8+weDtYuN21ltJAp/wBoqQP1IraPSvO/jLqQs/BH2XPzXtwkeM/wqd5P/jo/OhgSfByy+zeAo5z/AMvVzLNj05Cf+yV6BWL4S046R4U0qwZArxWyeYvo5GW/UmtqgAooooAKKKKACiiigAooooAKKKKACiiigApD0paQ9KAPJrwf2T+0HaTM+E1CAZz7xlAB/wACjH516yP6V5L8XUOl674b8RRx5ME212HfYyuo/H569YjdZEWRGDKwyCO4PSkA+iiimAUUUlAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBi+Lrv7D4P1i5DBWS0kCk/wB4qQP1IrmPg3Zm28BpMf8Al6uZJfywn/slJ8Y9SFn4Ga1z817cJFjvgHeT/wCOj866bwfpv9keEdJsmXZJFbL5i+jsNzf+PE0gNyiiimAUUUUAFFFFABXLfETR/wC2fA2pwKu6WOPz4+5ynzce5GR+NdTSMAVIOMHjmgDivhVrH9reBbNHbM1mTbSY6DGCuP8AgJX8a7Y9K8f8Ds3g/wCJ2reGJSVtbwl7XOTnGXTn/dLA+6ivXj905OBjrSA5/wAWeL9P8I6aLm+cvLJlYLdD88rDGcegGRz7jqSM+fQXXxJ8dr9ps5I9G01+Y2DGPcPUHBc/XgHtUPhmyX4kfEDUNe1BfM0qyIWCJvusMnYuD24LEep9zXo/inxfpHg2wS61OUqXJWGGNcvIRjIX6ZGc9qYHDN4B8fWgWa08ZSyyrzsmupcE+mDuB/EUab8Rte8NanHpfjizKK5wt6qDp/ewvyuP93kelO0349aDdXghvtPu7KFj8s5YSKB6sByPwzXe67oeneLdCe0uVSSGZPMhnTB2Ej5XU/T8wcdCaQGvBPHcRJNC6SROoZXRgQwPIII6jHepa8s+Eeq3drcap4R1I5uNOdmj5zhQ21lH+yDgj/fNep0wCiiigAooooAKKKKACiiigAooooAKKKKACiiigAPArM1vXbHw9pcuoajN5UEfHCkszHooHc/54rTPSvGtdST4h/FM6GXJ0jSlYzBT97bgPj/aLEL9M0APTxP498eTyf8ACOW40vSwdvnvtBP1cjk/7nTjNTH4eePFTzV8aSm4HVftU238+f5V6LqWp6T4R0E3V28dpYWyhFVF/BVUDqf/ANfSvOE+P2iNebH0i/S17S5UsB6lc8D8c0gsMTxn4z8DXkcHi20F9YOwVbuPAx9GAAJ/2WwT1yK9U0zU7XWNPgv7GZZraZco6/kQfQg5BHY8VVjk0nxb4f3r5d7pt7GcZUgMuT2OCCCPYgivNfA0k/gr4jX3hC4lZ7O6+e2ZvULuU+nK5Bx3A9KAPYTXkHjnHif4qaF4cX95Ba7XnXHr87g/8AVfzr1e8u4bGynu7htsMEbSSMeygZJ/SvLfhRaza34g1vxfdqd08hihB52lvmYfguwD2zTA9YGOMU6jAooAKKKKACiiigAooooAKKKKACiiigAooooAKQ9KWigDi/ijpJ1bwJfbF3S2mLpPov3v/HS1WPhvrA1jwNp0hIMtun2aQZzgpwPzXB/GupljjlheKRQ0bqVZT0IPUV5J8Mpn8M+M9a8H3TEfOZLct/EV7/VkIb6LSA9dJIUkDJ7CsjX/ABJp3hrTje6lP5adERRueQ+ir3P6DuRWtuBGe1eLadbN8VPiBdXt4ztoWncRQno4JO0f8C2lj3xgdKYFtfGvj3xg8h8L6UtpYhsLcOqk/wDfb/KfoBkVM9t8X7ICdb21vMHLQqIefY5Vf0NeqwwxQQpBFGkcUahVjRcKoHQAewqQigDzPQPiq/8AaP8AZHiuwOl3wbb5xUpHntuDH5R05yRz2Felqc1zXjTwdZeLdGkglREvUUm2uNvKN2BPdT0I9/Wue+E2v3N3Y3fh/UgwvdKbYodsnZkrt+qEbfoVFAHpFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSHpxS0h6GgCnqOq2ek2Ut5fzpBbxLuZ3OB9PcnsBzXmE/xH8UeKLyW18F6MTCnBuZkBbPryQi/7pyeDVfxQ1x8QPiPH4XgmdNLsAXuSvTI++xHcgkIM9Mn3r1jTNOs9JsIbCxt0gtoV2oiDGPr6n1PrQB5ibD4wJH5o1O1Z8f6vEOc/wDfIFP0/wCKOr6JqS6b410lrUtgLcxxkcd2IyQw9Sp49K9WwMYxxWZr+g6d4j0qWw1KESROOGx80bdmU9iKQF21uoryCO4t5UlhkUOjochgRkEVOeleSfDa/vfDfiu/8EalIWCFpLVie/3jj2ZTv9vqa9VubiK0tZbidwkMSNJI5/hUDJP5U7geT/EBv+Ek+JegeG1w0UBEk4/3jub/AMcQH8a9cHXHSvJfhbBL4h8W654vulPzyGGEEg4LHOB/uoEH0Y165SQBRRRTAKKKKACiiigAoPSiigDyz4u6TPbrp3iuwG2506RVkI/u7sqT/wAC4/4FXYJrK694Dn1WxJzcWMjKo6rIFIK/UNkfhW1f2NvqWn3FldJvgnjaN19QRivJ/h/fz+D/ABZqHgnVnHkyyF7WR8BWbHb2dQD7EY6mkBq/BLb/AMIfekfe/tB857fu4+PpXn3x4Nx/wm9oJCfI+woYhzj775/Hp07Yz2rpfCl6Phz481Dw7qbeXpt8Q1tPJkKM52Ek9iCQx7EDsK9F8WeDdK8ZaclpqaMGiJeGeI7XjY9cZ4IPcH+eDQB8hnJzycnjPevqn4UG4b4a6MbjduKPt3ddnmNt/DbjHtXK6b8A9JtLwTajq1xewKd3krEIsj0LAk/lj8K9F1vWdO8J6C15cbIbaBRHFEvBY/wxoPw49uegpgcDpWV/aD1UQY2fZ/3mOP8AlnHn/wAexXrNeVfCPTLu9vNU8XaguJr92WLIPILbnI/2c4A/3TXqtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAGvJ/hVj/AITDxh5u37R9o/H/AFkm79cV6weleNaxK/w8+K39tOjDSNVB811QkDdy/wBWDANj0OBSAh/aDNz9i0JV3fZPMm3/AN3zMJtH1xvx7bq8Lx9K+xtX0jSvF2hNaXqpc2M4WRHjf8VdWH+efQ15nH+z9pi32+TXLtrPP+pEKiQj/fzj/wAdpjTLvwDNwfB+oB/+PYXx8r2Oxd2O2Oh49T3zUfjfj4y+FvI/122EOO23zW/XG6vRLeDSPCfh9Yo/Ks9Ns485J4AzknJ5JJJ9yTXl/hi9HiXx3qnjm/LQaRpsbGJpBgAbSFHuduWPuw/FCNv4va7JFpdr4cssve6m4DIvUpu4H/AmwPoDXZ+FdDj8O+G7HS0wXijzKw/ikPLH8yfwxXnPgK0uPGvji98ZahGRb2z7LWM9AcfKP+AqQfqQa9fAA6CmAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAh6V5L8VdPn0TW9I8Y6en72CVYpgP4iOUz7EblJ9wK9brP1vR7XXdEvNMulJhuYyhIGSp7MPcEA/hQBn6jqaX/ga91SwcyJNp0s0JHBOYyQPr2rlvgpFEvgq4dCGd75y5x0+RMD8v51mfDLVJtNvdS8CayMSxs/kKzcNx86D2I+cexNQ/DnUT4Q8War4P1Nwgkm3W0jYAZ8cf99LtI9MY6mkB7FiikBoPApgLXk/h+Nbb4+a5HAMRvbkuB05WNj/49+tekavq9romlXGoX0gjghXcSeMnsB7ntXnHwms7nVdY1rxhdxlPtkjRw8nu258ewwo/A0gPV6KKKYBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQelFIelAHk3wi/f8AibxbczKBcG4XPcjc8hYZ+oFes4FeNxXK/D74v3ZvD5elavlhKxwqljnJ+jAqfQHJr2JWJOD+BpAPoPNB6VDPcR20Ek88ipFGpd3Y4Cgckn0FMDyrxZ+4+OXh14QA8kMYcgdctIp/8drT+L3iB7HQItEtiTd6o2whD8wjBGfzOF9+awfD14viz4n3/iyVvK0jSYm2SOcLgKVXP4b39R0p/g+CTx78RbvxTdxt/Z9gwW1Rum4fcH1A+Y+hI9aQHovg/QV8N+GbLTuPNRN05H8Ujct9cHgewFb1JgDtS0wCiiigAooooAKKKKACuc8danf6R4PvL3S5UivVeFIndQyqXlRDkH2Y10dc/wCNtLvNZ8J3VjYRJLdPJC6I77Q2yVHIz24U0Acr/ZHxZIw3iTROeuIMY/8AIZ5qDxx4P1bUvCljqkssUviPTUDSy2qkCVQcnbwPu/eHHr610F7rnjHT7SS9l8MWNxBGpdorXUiZQB1I3RgE9eAa1/DfiTT/ABVocWq6ex8l8qySDDRsOqsPb+tAHFaeuk/FzwfGl8TFq1ooSSRMb0bH3sd0bHT6jPGay7c/EjwKptY7Rdb06PCxlVMpC9AFAO8AehBA7etN8VaXe/DvxTH4r0SItply5F1bDhVLHlSOwbqD2PHoK9U0bWLLX9Lg1CxlEtvMMjPVT6EdiPSkB5tJ8SPGlyvlWXgq4ScnG94JXA9yMLj8TUdj8PvEXivVI9U8b3hWJSdtnG43Y7gbTtQHjOCScevNeu4FLimBDbwR20EcEEaxwxrsREGFUDoB+FTUmBS0AFFFFABRRRQAUUUUAFFJmjNAC0UUUAFFFFABRRRQAdaytf8AD+neJNJl0/UYBJE/KkcMjeqnsf59DkcVq0UAeNx6H4++H8zJobrq+lklliYbsd/uEhgTz90kHqfSrR+JfjAxmNPA90J8dfJmxn/d25r1kKBQcAEnt3pAeO/8Ir438e3UUvii4/s3TEbeLePAOD6Jk4Pu+cfpVfxfLHf3ll8OPCkQjt45B9qZDwG6kMe+37zZ749K6/4i+N/+EbsBp9gwk1m6AWJVGTEDxvx69lHr9KX4b+Cj4b01r3UBv1a9XM5blo167M9znknufpkgHRWVpp/hHwysMeUs9Pt2kdsZJCgszH3PJrGj+IcUtl9uj8OeIns9u8TiyAVl/vAbtxH4V1V7ZwX1hcWdwm+CeNopFyRuVgQRkc9DWfe63ofh+2KXmo2lokEY2xvKAwUDAAXOT06d6YEuha/p3iTTY9Q0q6W4tmOCQMFW7qw7EZFadeZfBzS7yy0zVr64tpbW21C8MtrDIpU+Xz82O2cgc/3R7V6bQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAc/wCMtbvtA8Ovfadbw3F350UUcUpwpLuq88j1rljrnxWwP+KT0rn/AKel/wDjldD48tbq68M4s7WW6mju7abyogNzBJVY4yR2B71WvvHFxpdu93qHhTXLeyQZecJFJsXuzKjkgCgDlPH2gatLpWm+Mo7dbTXbFEe9jgIYDHO4ckHacjPoTngVbu9J0/4s+GLbVrWVbTW7dfLZx0SQclGxztySVI5GfXIr0HTtSsdd0uO+sZkurK5TKMBkMOhBB/LFeS6hBdfCbxit/ao0vh2/bbJEDwncrz3XqueoyKQE9v438Z+CoxaeJdEkvbeIBVugSOOgzIAVb8cH1q1L8boJQsWn6BdT3L8KjyY59toYn9K9Psbu21GzhvbSVZbedQ6SL0YHv/8AW7VYCIucKBnrgdaAPHIvDfi/4i30N14n36dpMbbktQuwn6IeQfdvwr1vT7G302yhsrSIRQQrsRR6f4/zqyVB6gH60AAGmAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQelFFAHP+LPCdj4t0g2V0THMh3wXCjLRv6+4Pcd/qAR5xaar45+HKCzvtOOr6REMRSoSQij/AGwCVHsw+lez0mBSA8mb46WDW42aJctOeNnnLt/76x/SqU8Xjj4myLBcW50fQyQzK6kBx9DzJ+i/Q17KUXJbADetcf8AEDxrD4S0giJlbUrkFbeI87fVyPQenc0AcL4uMNjBZfDfwmpaaaQfa5M/MzHnEjd+zH0AA6V6houl6f4N8LparIsdraRmSad+Mnqzt/ngYArmPhl4Nm0q2k13WFZtYvwXPmnLRK3Jz/tMeTnnoOORXa6xpsOsaNe6bOzpFdwvC7IQGAYYJGeM80wMAfEvwmyeaNVPk5/132Wby/8AvvZtx+NdNaXlvf20dzaTxzwSDKSRtkMPYioJ1srLSpEuTFHYxRFX8z7ioBjnPbFeefA2G4i8J3rsjpYy3ztaK2R8uADj2yO3cGgD1GiiigAooooAKKKKAA1i+IvEEXh22sri5VfInvI7aSRmCrGHyN5J7AgVtVXvbCz1G2a2vrWC5gbrHNGHU/gaAKeo65p2laXJqV1eQpaom4PvB3+gX1J7AZriPglpV1pvgmSS7jaL7ZdNPFGwx8m1VBx2zt/LFdZB4H8K284ni8O6YsoOQ32ZTg/lW8FC9AB9KAILyytr+zmtLqFZoJkKSRtyGB7V42Rqfwf8Sbx5l54avpDxnlT+PAcD/voD/vn2zrVPUtMstV0+ayv4EmtpRh0b+Y9D70gF07UbXVbGG9sp1ntpl3RyL0I/oQeCDyCMGrdeJyw678ItZaW28y+8N3LjKt/B0HPZXHTPRhj6D1fQdf0/xHpyX+m3Cywtwy9GjburDsR+vbI5pgatFFFABRRRQAUUUUAIenFeceKfiitjqJ0bw7aDU9TztYrlkRh1AA5YjnPIx+BFXfin4nl8PeFvKtJCl5fMYY2HVVxlmHvjA/4FVj4e+Crfwro0ck0IOqXCB7iRgCVzg7AfQfqcn0oA5ePTvi1qqG4l1K10/ccrE5RcD/gKH9Tmop9Z+JvhDNxqcEWrWC8u6IrAAdeVCsv1IxXr+BSMoIPHJ4oA5zwj4003xfZGW0LRXMYHnWshG+P/ABHof/1V0leNeO9HfwL4ksfF2hR+XbvLsuLePhdx5Ix2VwD9CB6ivXrG7i1Cyt7yBt0M8SyofUMAR/OgCxRRRQAUUUUAFFFITgUAB6VyfjfxxaeENO+YrLqEynyIM/hub0UfrjA74p+OPiLZ+F42srULdaw4GyAciLI4L4/D5epyOxrG8F+ALu81A+JvF+64v5SHitpuQnozr2x0C/wjrz0AF+H/AIKvLjUG8W+KA02o3B8yCKYcxgjhmHZsYAH8I98bfUMAHIoAApaAIbq5gs7Z7i5lSKFMFnc4A59aztR8NaHq7mXUNIsrmYjHmyQqZB9Gxkfgaf4j0dfEHh6+0lpjCLqMx+YFyV98ZFYq6Z43jtxb/wDCSaZIcYNy+mHzPrjzNufwoA574d6jeWnjjxL4Ve6mutPsW8y1ady7RDONm48nggc/3fevT65vwn4PtPCyXUq3E15qF9J5t3eTgBpWyT0HQZJ4966SgAooooAKKKKACiiigAooooAKKKKACiiigApD0paKAMzU9Yg0iTT1uA2L26W0jIHCuVYjPt8uPxp+r3FtbaNezXbILZIHaQv024OabregaZ4isBZapb+fAriRR5jIVYZAIKkEHk1jH4eaBNsS7GoXkKEFYLrUJpYwR0+Utg9OhoAwPgfbXMHgAtchgk15JJDnumFGfpuVq7vWNHstc0qfT76LfBMuD6qezA9iOoNW4YIbaJIoIkiiRQqIg2qoHYAcCpCMjBoA8V0fU9R+FPiI6LrRaXQrli0FztyF/wBod+ONyjpnIHPPssE6XESTQyLJFIoZHQghgRkEEdaz/EHh/T/EmlSWGoxb42O5WU4aNuzKex/yeteU6bq2tfCjVxpOsLJeaBK3+jzIPuDPJX0xnlM9TkepQHtdFVLDULbU7OG8s5457aUZSSNsg/8A1/UdjxVumAUUUUAFFFFABSHgUMcKTx+Ncb8SvFL+GPC7tavtvrpvJgPde7N+A/UigCDxb8TdN8N3BsLeNtQ1IEAwRNhUJ7M2Dz7AZ+lc8viH4r6rH59noUNrET8qvGqN+IlcE/kK2vh34Ft9C0+LVtQi83WbhfMZ5RkwBudoz35+Y+uRWtrnxG8LeHb02Wo6qiXI+9HHG0hX/e2g4Pt1pDscafiP4x8Nyr/wlPhwG2PBlhUpj33ZZT9OPrXo/h/xHpvibTxe6bP5idHRhh429GXtTdK1rRfFWmPNp9zb31m2UkUjIH+y6kZB9iK8s1/T5fhZ4vtNc0ncNFvH8qeAZIUfxJ7nGWX6EdBQI9roqKGZLiKOaJw8bqHVh0IIyDUtMAooooAKKKKACig9K5Txn440/wAI2YExWe+kXMNqrYY8/eY/wr7/AJZ7AFnxd4tsfCWktd3Tbpmytvbj70zY/kOMnt+IrhvA3hS/8Sa1/wAJj4oUszkPZwMMA91bHZR/CO/Xpjczwp4M1Hxfqv8AwlHjIM8b821m4IBGcjK/wqOy9+pyPveuhQMYGKADAzmhmCrkkAeppaxfFuk3WueF73T7KaOG6lCGKSTO0MrqwzjnGRQBQ17wF4f8R3Ml1qNtKbpwP3qzuNpAAB2528fSsP4c+INRm1rXfC+pTC5bR5dkFzsCl48kAMAAMjA7d/atj7X47Nv5Q0jQvOI4nF/J5YPrt8vP60ngrwcfDB1C9vboXmr6nMZrudV2rnJO1R2Ayf09BQB11FFFABRRRQAUUUUAFFFFABRRRQAUUUUAQ3Nrb3dvJb3EKSxSrtdHXcGHoR3ryTV/A+t+DdSbXfBMskkGMy2R+chfTH8a/wDjw7Z6j2GkwAKAOG8IfE3S/Eyx2lwy2GqYwYJG+WQ5/gY9f904PXrjNdwCe/vXF+Lvhvo/ibfcxg2WpdftEIGHP+2vGfrwfeuPi8R+NPhzIttr1o2q6UuFS5Vi20e0hGR9HH0OOaAPZqK5vw9460DxKqixvlW4I5tpvkkH4dD9VJFdECc4NADqDRQelAHk3xOAl8f+D4plBtzOm7d0IMqBv0Ar1dQB/WvOPjBo017oFrrFqG87S5PMbHURtjcR9Cqn6ZrqvCHiW38U6Db38TL520JcRD/lnJjkfTuPYikgN+g9KKRs7TjrTA4z4qIh+HGqluCoiKnGcHzUq18N5JJfh/ozSDBERUc5+UMQv6AVyHxY1xtSns/B+lkTXtxMjThDnaf4VP4/MfQAetel6PpyaRo9lp0XKWsCRA+uBjP6UkBeoopDwKYC0VHJMsUbSSOqIoyXY4AHqSelcB4j+LeiaUWttMzqt50CwtiMH3fv/wABz9aAO8ubqK0t3nuZkhhjGXkkYKoHqSeBXlmv/Eu/168OheCLeWaaXg3oXHy9ymfugZ5ZsY9Ohqpb+FfGHxAuI7zxPdPpunZ3JaoNpP0j/h+r5PsRXp2geHdL8N2QtNLtUhQ4Ltj55Pdm/iPX6Z4oA5jwV8NrXw/KNS1SQX2sOS5lbJWInk7c8k553Hn6V3uAKMDOcUtABRRRQAUmBS0UAIAB0FLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFGKKKACiiigAqjquk2GsabLYahbJNbOOUbjHuD2I9RV6gjIxQB4tdaP4l+Fd9LqGiO2oaC7bpoXBOwf7YHTAGN4Hbkdj6H4W8caR4stwbOby7pRmS1kIDr9P7w9x684PFdIVBBGP0rzjxT8K7W9uP7S8OT/2XqStvCISsbH2x9w/Tj25pAekA+/6UteQWHxI17wrdrpvjXS5T2S7iABYDv8A3Xxxkg5HfNel6P4g0vX7fz9LvYrlB94KcMn+8p5H5UXA1KKTmlpgIRkYNeS/E0Ld/ELwhYzJugaZAwPQ7plB/Ra9bPSvLvjFp1ytnpXiGzB83TpxvxztBIKsfoygf8CoA7fxVfTaV4S1fULXK3FtZyyRNjO1gpIbHoMZ/Cvjx3eSV5HYmRySzOcsx9z3P1r7F0jVbDxX4cjvIQktrdxFZIm+bGRhkYe3INeL698B9UXUJW0K8tJLJmysc7MkiZ7cAg49cg+1A0znvg3qN1ZfEWwt7d28m7SSGZM/fUIzD8QQDXtPxZgjk+HWoOwBaFonQ/3T5irkfgxFZfw3+Fo8H3T6rqc8NzqjKUQQg7IQeuCQCSfXA6kVW+L+tG4trPwrYHzb29lRpI0PRc/KD9WwfYL70COw8AStP4C0R3BBFqqDPovyj9BXS1n6Hpy6RodjpwOfs0CRE+pAGT+JzWhQAUUU3J9aAHGmM4RSzEBQMknsPU1yPiT4kaB4cDRPci8vBwLe2IYg/wC0Rwv8/auHMfjb4nuPMDaPoLfMoIIDr1HH3pDyPRePWgDb8VfFFVuBo/hSIalqMpKeai+ZGp9FA++f0GO9O8IfDV473+3fFcn27VZDv8p23rG3qx/ib26Dt0zXUeF/Bmj+FIPLsIA07LtluZfmkcemew9hgV0eAO1AAABS0UUAFHWiigAxRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJgHr06U2SNJI2jdQ6MMMrDII96fRQB59r/AMJNA1VjPp+7SrrOQ1uMx59SmRj/AICRXPrb/E7wYB5Ei67YLwF5lI/D/WflkCvYCARg0YHpSA8v0/402Hmm21vSbuwuFOH2/OFPuDhh+Rrr9P8AHXhjVFU22t2gJOAkz+Ux/wCAvg/pWrf6RpuqxCLULC2ukH3VmiD7fpnpXIah8I/CV6D5VrPZsTnNvMev0fIH4CgDt28ueFgdkkbrg9CpHv2xXk+reAte8Kaw+teCJ2aNjmSyY5OM8jDcMP19KlPwXezmMukeJ7u0Pb9183/fSsP5UxvAPxCtj/ofjNpB/wBNrqYfphqAGj4x6lpwWLW/C80MwGCwdowT7KynH/fVRzePfGvitDaeHvD8lgJODctltg9d7KFH5fT1q1/wjXxV6f8ACS2Z9/MP/wAbpG8K/FSZQreKLRRnOVmZf5R0gNzwP8PovDUrajqUovdZmzvlySsWeTtJ5JPdj+nfs7u/s7BPMvLuC3T+9NIEH5kivLl+GnjC6BXUPG1wqt1VJZZF/IlRU1r8EdLB36hq99cvnkxqsefz3H9aYHRan8UfCWm7h/aYunA+7aoZM/Rvu/rXLTfFfW9cla28KeG5pWBx5sqmTbn1VeF+pYiuv034beEtMYPHo8M0mMFrkmXP4MSPyFdTFDHDGscUaxoowqoMAD2FAHkUfw/8Y+K5Fl8Wa40EGc/Zo2Dkc9lXCA+/Nd74d8E6B4ZCtp9kpnA5uZTvkP0Pb6DAroto9KXFMBNoznHNLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSYFLRQBVv9OstStGtr+1huYGPKSqGGfXnv79q831f4Qxw3Jv/Cupz6ZdLkrGztsHsGHzAfXd9K9SpMCgDx//AIS/4geDcp4g0galZoT/AKQnXHb51BAH+8ua6LSfi/4X1IAXE01hIcfLPHlT9GXIx7nFd8FA4A4rA1bwR4a1olr7R7ZpCcmSMGNyfdlwT+NIDTstV0/U499jfW10h/ihlVx+hqW7tYL60ltbmJZYJVKOjDIYHrXm178E9IkJfTdTvbN92QH2yKv0Awf1qsfh/wCPdNYf2Z4xMqDoLiaRR/3yQ4pgU59B8VfDTU5bzw6r6no0h3SW7KWK+gZQckgfxj0GfQ6lr8btFaIC+0zUIZxnckYSRR+JKn9KrvafF+zYFb20u1X+EeTg/wDfSqf1qtLF8Tpjm98NaVdyE53zRW7n9GpAT33xdvdXb7D4S0O5luZBgSTIGZM9wikj8ScDuK1fA3gG502/fxD4il+06zKSwVjuEJPU57t244HaseIfFqNTHbaXZWcTcbYhbqq++MmphofxZvlxPr1rb56/MqH/AMhx0AernOM9KxNT8Y+HtHDfbtYtI2X70avvcf8AAVyf0rgD8Jdc1NB/bvi6eZc5aP55Qfxdh/KtzTfg74VsiGuY7q+Yc/v5doB9gmP1zTAzdS+NFk0n2bQNLutQuWOELjap9wBlm+hC1nto/wASPG4xqdyujae/WEDZkH/ZB3H6MRXq2n6Rp2lRGLT7G3tUPUQxhc/XHWreB6UgOJ8NfDLw/oDJO8Rv7wHPn3IBCkf3V6L+pHrXbbR6ClopgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh6UtIelAFbUNQttM064vryVYreBDJI7dgP5n271ynw98a3PjSPVZ5rRLaO2ufKijAO8LjI35/i9ccU58eM/EXkj5tB0mb94f4bu6U/d90j7+rcdqwPg39/xUf8AqKN/WgD1KiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKADFJgDoKWigANRTSxwQSSyyLHGilndjgKB1JJqU9K43VyfF2utoERzpFi6vqkg6TP1W3Ht0L+2B3NAFjwX42tfG0eozWls0dvaz+VG7sD5oxkNjtx2NdVivLPgwAp8UgDAGpsMDoOtep0AGB6UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWZ4httRvPD99baTPHb38sRSGWQkBCeM5AJHGa06KAPMNM0H4naRp9vYWV94XjtrdAiKBL0HUn5OSTkn1rnfhLF4q/tXVWtbjTVsV1EjUFdW3u3OTHxjH1Ir3GsrRvDek+H/tf9l2n2f7XKZp/3jtvc9/mJx+FAGoM59qWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDM8RPqkfh6/bRYll1PySLZGIA39jkkDjrz6V55odz8QtB0qHT7bwNbOqZaSV9SiLyueWdvm6k816sQCMGkIAFAHh/wl1HxHHq2qRW+ixS2c2on7dP9oUG2bnKgZy34Zr28HJrB8M+E9P8LG/+xS3Mn26czyeeynDHsuFHH510GBQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/Z'] Multimodal Competition True Theorem proof Algebra Math English 22 "In trapezoid $A B C D, B C$ is parallel to $A D$ and $B C$ is perpendicular to $A B$. Also, the lengths of $A D, A B$ and $B C$, in that order, form a geometric sequence. Prove that $A C$ is perpendicular to $B D$. (A geometric sequence is a sequence in which each term after the first is obtained from the previous term by multiplying it by a non-zero constant.) " ['Since the lengths of $A D, A B$ and $B C$ form a geometric sequence, we suppose that these lengths are $a$, ar and $a r^{2}$, respectively, for some real numbers $a>0$ and $r>0$.\n\nSince the angles at $A$ and $B$ are both right angles, we assign coordinates to the diagram, putting $B$ at the origin ( 0,0$), C$ on the positive $x$-axis at $\\left(a r^{2}, 0\\right), A$ on the positive $y$-axis at $(0, a r)$, and $D$ at $(a, a r)$.\n\n\n\nTherefore, the slope of the line segment joining $B(0,0)$ and $D(a, a r)$ is $\\frac{a r-0}{a-0}=r$.\n\nAlso, the slope of the line segment joining $A(0, a r)$ and $C\\left(a r^{2}, 0\\right)$ is $\\frac{a r-0}{0-a r^{2}}=-\\frac{1}{r}$.\n\nSince the product of the slopes of these two line segments is -1 , then the segments are perpendicular, as required.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAQ8BkQMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiijNACZ5peorA8VeKbLwrYRXFyS89xOlvbW6thpZGIAA9h1P/1xW+OlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXJeN/HEfgawS/vdLurmyaQRmWB04Y5IGCwPY0AdbmiuLtPHOpXWmwaivgnXGs54lmjeJ7d2ZGGQdnm7uhHGM1o+GvHGh+Kmnh0+eRLy3OLizuYzFPEQcHcp9+MjIzx1oA6OiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqtf31tp1lPeXcqxW1vGZJJG6KAM1OXAGcHFeda9f6r4n12KPStF/tTQNNnPn5ukiS5ukwQuWzlEbr2LrjnbggHAeMf7Q1v4neBr3UfMiF7epJBYN/wAu9uJUK7h2dhuZvTIH8NfQw6V4Tqd5qOtftC+FYNT0w6fJbW7OITOsvQSvu3Lx/COPavdqACiiigAooooAKKKKACiiigAooooAKQsBS1xemfETTb/xvqXhS6gnsL+2k224uSALtccsn6kDuuD6gAHZ7gOtLXF638RNM8P+M7LQNVt57WC8i3RahJgQM+cbM9uvJ7ZGeDmuy3ADn+VADqKKKACiiigAooooAKKKKACiiigArxj43ytrmseFvBluxEmoXgllx1Vc7A30+aQ/8Br2bIrxbw//AMVd+0VrOrHL2mgwm2iPUB8GPH5mU/hQB7LDBHBCkMSBIkUKqAcADoBXhnxhnPg74leGPFVgPLuJtyXATjzVQqCD6ko+36Aele7lgoyewzXg/wARI/8AhO/jToXhu0xLb6Yoe9cdI8sHkBP+6EH1bFAHvNFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHE+Pr7xedNm07wnoc81xONrX/2mGNY1PXYGcNv7cgY61vaTBHpvh62htNMmtUt4QsdiWjMiYGAuQxXJ9d3PXvWvt/X3pNp45/KgDxz+x/F0nxqXxhL4Suv7NjiMCJ9rtvNVdhXdjzcdSTjPQ17DFKXiR2jZGKglGwSvHQ4JGfoTTwMCkI+n40AeTz/ALRHg6GeSNLPWJkVyqyxwRhXAONw3SA4PXkA+wqL/ho3wh/0Ddc/78Rf/Ha4v4VfDjTPGngC6vjNNYazbam622oQMd0YEUZAIzyMknsfQiuwtvHnib4fXcWlfEK0e6sGISDXLVNwPpvGOTjPYNx0brQBJ/w0d4Q/6Buuf9+If/jtH/DR3hD/AKBuuf8AfiH/AOO16np2p2Or2EV9p11DdWsgyksLhlP4j+XareaAPIf+GjvCH/QN1z/vxD/8do/4aO8If9A3XP8AvxD/APHa9fooA8g/4aO8If8AQN1z/vxD/wDHaP8Aho7wh/0Ddc/78Q//AB2vX6KAPIP+GjvCH/QN1z/vxD/8do/4aO8If9A3XP8AvxD/APHa9fooA8g/4aO8If8AQN1z/vxD/wDHa4vx/wDErwN43sEljstbs9ZtPmsr5IYlZCDkKxEmdufxB5HcH6TryDxj4j1rxx4kuPAfhEvbwwts1fU2UgRDJBRT19R6tyBwCSAcT/wtvw/4o8EjQvHmmX1zeKcJeWSRk5H3ZBuZdr9QccHnscUvw/8AjenhzT30nXkvtQsYOLK5jRBPszgK4L4xjH8RI6cjBHY61ex/D2ysfAHgLT3n8RXy7zMyDKA5BmdiMFjtOP4VAycAAHrvh/8AD208F2Ekssn23Wrv572+k5Z2PJUE87c888k8nsAAcr/w0b4Q/wCgbrn/AH4h/wDjtH/DR3hD/oG65/34h/8Ajtev0UAeQf8ADR3hD/oG65/34h/+O0f8NHeEP+gbrn/fiH/47Xr9FAHkH/DR3hD/AKBuuf8AfiH/AOO0f8NHeEP+gbrn/fiH/wCO16/RQB5B/wANHeEP+gbrn/fiH/47R/w0d4Q/6Buuf9+If/jtev00uFyTwB1OaAPI/wDho3whj/kG65/34h/+O12vg34g6D45tpJNJlmWaEbpba4TZJGCSATgkEHb1BPUZweK8+13WL34u+IpPC/h2cxeGLRlOqaimP33OdiHuOOPUjJyAMp408KD4a32l+NfCNn5drYIttqVnGf9bAcDcT3PqTnna3Y0Aeq67f6jY2EjaXpE+pXbI3lqkkSKrdt5d14z6Z6GvLvhdo/i7wRZaoNT8H3l1e31wJmnhvbU7gB0OZR3LH8a9Y0nU7PWtJtdT0+RZrS5jEkbjjg9vYjoR25FXsUAcTd3fj3WUNtZaTZeH424a8vLlbiVB6pHH8u76tWj4Q8EaZ4PtJRaGS4vblt93fTndNOx5yT2GSeB+pyT0uP8iloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApDS0hoA8g/Zy/5J7f/wDYVk/9ExV6xd2VvfW0ltdwRT28oxJFKgZWHoQeK8n/AGcv+Se3/wD2FZP/AETFXsFAHkOpfDXW/B19LrPw3vmjDHdPo1y+6GXv8pJ/QkH0YdK3fCPxT03X7w6Pq0Emia/Gdr2V3ldzf7BIGTz904Ppkc135Tj+lcx4v8AaD41tBFqtqvnouIruL5Zo/o3ccng5HPrQB0+4AdPoKdXjCav42+FDCLXVk8SeF1bAv4h+/thn+LPb/eJHI+YdK9Q8PeJ9H8U6YL/R71LqHo4XIaM+jKeVP169qANeik3CloAKKKKACoUtoo5ZZY4o0eVg0jBcFyBjLHvwAPwqaigCH7NH9oFwY4zMqFBJt+YKSCRnqBwPyHpUwGABRRQAUUUUAFFFFABRRTSwFAAWAOK8e8XeItS+IfiCXwL4SmMdihxq2qpyiJ3RSOo6jGRuII+6GNWfHfi/UvEett4C8FOHvpAV1O+U/LaR9GXI78/MRyPuj5s7e58IeD9N8GaBHpWmJx9+aZh800ndm/w7CgCz4b8N6d4V0S30nS4RHbwjknlpGPV2Pdj3+nGBgDSuLaK7t5be4iSWGVGjkRxkMpGCD7GpqKAPGvClzL8MPH03grUJXOhanIZtIuJm4VyR+7z9eD/tAHHz17IDwOtcj8RPBcPjXwxNZrtj1CD9/ZT90lAOBnrg9D6cHGQKo/C7xnL4n0SWx1TdHr+luLe+icYZiOA+PfBB9we2MgHe0UDpRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSGlpDQB5B+zl/yT2//AOwrJ/6Jir2CvH/2cv8Aknt//wBhWT/0TFXsFABRRRQAx0DqysAVbgg8jH0rzDxB8JjbamfEHgS//sLWUBzCn/HvN3Kleig8cYK8DjvXqVNxQB5b4e+K7WuojQfHll/YOrrws7/8e83YMGyQv1yV9x0r1FXUopU5BGQQc5rK8QeGNI8UacbHWLOO5h6oW4aNv7ysOVP0ry99H8a/Chmk0NpfEnhdSSdPmJM9uvX5SAePdQR1+UdaAPaKK5jwh4+0DxrZ+bpd1/pCjMtpL8s0X1XuPcZFdNuGB70ALRRRQAUUUUAFFFFABRRSFgKAAsAa8w+InjfUG1KPwV4PzN4gvBiaeM8WSdySM4bHPqAQRyRVr4i+PbjR54fDfhpBd+KdQ+SGJRn7OpH32B4zgcA+m48DB0fh74Ag8F6a8k0n2vWr3D394zFi7dSoJ52gk+5PJ7AAFrwL4GsfA+hiztj513Lh7u7YYeZ/6KM8D+ZJNdWOlA6UUAFFFFACYryP4jaZd+DfE1t8RtDiLohEGr2qHAmiOBv/AEAJ9Qp7GvXagurSG9tZrW5iSa3mQxyRuMhlPBB9sUARaXqlprGlWupWMyzWtzGJI3HcEfoexHY1crxvwfcz/DTx1N4G1OVm0XUXM2jXEnQMTzGT6npj+9g4+evYwe1AC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSGlpDQB5B+zl/wAk9v8A/sKyf+iYq9grx/8AZy/5J7f/APYVk/8ARMVewUAFFFFABRRRQAUhXP0paKAPPvF/wq03xBenWNJuJNF19DvS9tCV3N/tgEZPbIweeSRxWFYfEnXfB16mj/EeyaJWJW31m1TdFNjuwA69OgyMjKjrXr1U9R0uy1exlsdRtYrq1lGHimUMp/A/hg9qAJLS9tr60iurS4juLeVQySxMGRh6gjtU+a8eu/AXib4e3cuqfD68a609iXn0O6Ysp9ShyMnpjkNx1bpXT+DPiho3iyU6fMH0zWkJWTT7o4fcOoUnGcc8cHg8CgDu6KbvHrzTqACiik3D8qAAsBXCfEbx+vhS1i07TYje+Ib/AOSztI/mZSeA7Ac4z0H8RGOmSLXxB8eWvgnSVcJ9p1W6JSxs1yWkfpkgdhkfXoOayPh54ButPvJvFfilxdeKL7LNkgrbKQPlXH8WOCRxj5RxkkAt/DrwA/hqKbWNZmF74k1D57u5c7imedin0z1I64A6AV3w6UUUAFFFFABRRRQAUUUUAcd8RvBcXjXwzLaxkRalbkz2U/IKSAcDI5w3Q/gcEgVW+GPjKTxToD2uogx67pj/AGa/iYYJYcb/AMcHPuD2wT3OK8h+Ium3fgnxZa/EbRYDJEcW+s2yHAkjJAD/AKAHPcKcdaAPXx0oqnpmp2msaZbajYTCa1uYxJFIP4lI/Q9sdjVygAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQ0tIaAPIP2cv+Se3/wD2FZP/AETFXsFeP/s5f8k9v/8AsKyf+iYq9goAKKKKACiiigAooooAKKKKAEIyK5Dxn8N9C8axCS7ia31GNcQ38BxKnpn+8Aex98EZrsKKAPGYvFXjD4YTLZ+MYZdb0AMFi1m35kjHQCQHqen3jnk4ZuleqaLr2l+IdOjvtKvYrq2fgPGeh9COoPscGr0sEc8bxyoskbgqyOMgg9QQa8r1r4WXmhak+vfDu/bS77rJp7Mfs9wOu0ZyB34PGem2gD1cEGuX8ceNNO8EaE+oXpMsz5S2tFba87+g9B6nsPqBXHWfxttNPtbyz8YaZc6TrlnGS1sIiUuD0AjPOMn1OMH7x61H4I8Laj4t15PiB4yiHmsFbSrE/ct0GSrkevQjPfJPOMAFvwB4M1K+1U+OPGZMuuXIza2zrgWSchQB2bB4HbJz8xJr1IflSBeKd2oAKKKKACiiigAooooAKKKKACq95ZwX9pPaXUSTW86NHJG4yHU8EEfSrFFAHjngq6ufhx46n8B6pKzaPfO0+j3Mh4yesZPTnpj+8OnzivYgeBwa4/4jeDE8ZeHGhgYRaraN9osLnkGOQdsjkA4wcegPOBVf4Z+NH8WeHmiv/wB3rent9nv4WwDuHG/A6bsHj1BHSgDuaKB0ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQ0tIaAPIP2cv+Se3/wD2FZP/AETFXsFeP/s5f8k9v/8AsKyf+iYq9goAKKKKACiiigAooooAKKKKACiiigArK8Qa9p/hrRrnVtTmEVtAuSf4mPZVB6kngCp9V1ex0TTLnUdRuFt7S3XdJI/b+pJJAAHJJAryLSdPv/jL4iTX9bgeDwhZSMun2RODcsDgu/txz2/hGeSQCLR/CV98YNQm8U+LhcWmjlGi0vT43IZUIx5hP65xliB0UAGwy+OPhKcJ5nifwlH/AAt/x8WiD8yABjnleP4M162l7YKgVLq2UKAAA6jA7Dr+VTRzQzhvKljfHXYwOKAMbwr400LxjYfadHvFlKgebA/yyxH0Zeo+vQ9ia39wxnPFebeKPhPaXt+Nd8KXh0DX0O9ZbfKxSn/aUdM9yAc5OQ2az9G+KWoaBqMWgfEWwbTr08RajGmYJwO5x0zxkjgZ5C0AetUVFBcQ3EKSwSpJG6hkdGBDA9CCOo96loAKKKKACiiigAooooAKKKKAExXj3xB0+68BeMLb4i6LAWtZGEGs20YxvU4G/wBOcDnjDBTzuNexVWvbG31Gzns7uJZba4jMcsbchlIIII/GgBunalaarpttqFjMJrS4jEkUi/xKRkfT6Vbrx3wRe3Hw78bXHw/1aYnTrpmuNGuZD1DEkxk+pP8A48D/AHhXsOQBz2FAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhpaQ0AeQfs5f8AJPb/AP7Csn/omKvYK8f/AGcv+Se3/wD2FZP/AETFXsFABRRRQAUUUUAFFFFABRRRQAVBdXlvY2st1dTJDbwoXklkbaqKOpJPQU+WeKCKSWZ1jijUs7ucKoAySSeg614vfXl98afET6Vp0klt4IsJgbq7XIa8kHIUZ/MDsMMedq0ANiS8+NviP7ROtxaeBtOlysRyrX0g7nH6n+EcDBJI9nitoba2jtreNIYIlCJHGoVVUcAADgDtxUWn6dbaXp1vYWMCQWtvGI4o04CqOn+e9LqN7Dpmm3V/cELDbQvM59FUbj/I0AeGReHNH8VftE6jbpp1s2l6ZBm4iWICOWQIF+YAYzvf/wAcrd+K/hDQvD/gyfxDoVpHo+q2MkX2eawHks26RVKkL1ODnPXj0zWR8GofErWOs+KrTTNOvX1e7bf9pvHgclSSdpEbgruc+n3a63WfA3iLx7e2y+LbyzstFtpPNXTdNd3aZsY/eSMFx1I4HQnGCc0AdR4F1i78QeBtH1S+QC6uLYNKcY3Hpux74z+NaWsaHp2v6dJp+q2cN3aSdY5Vzz2IPUEeo5q3a2sNlaxWttGkcEKCOONRgIoGAAPTFTDpzQB41L4T8X/DGZrzwZcy6zoQYmXRrlsvGOp8v1PJ5UA9Mq3Wu08GfEjQfGaeRbStbanGP3thcDbKpHXHZgPUdOMgdK68g5zxXEeMvhdo3i1/tyFtN1pDvi1G1G2QMOhYDG7GBzwRjg0Adxmlrxy18deKfh5eR6X4/tHvNNLCOHW7VCwI7bwOv5BuCfm6n1fTdVsdXsIr7TrqK6tpRlZInDA/l39qALlFJuBpetABRRRQAUUUUAFFFFAHE/EvwWPGPhspakx6vZP9osJlbayyD+Hd2DY/MA9qb8NPGv8AwmHhz/TAItZsG+z6hCw2kOOA+OwbB+hBHau1KZz715B490658AeM7b4haRGxsZmWDWrdF4ZWIAkx69PT5gv940AexDoKKq2F/a6jp9ve2cqzWs8ayRSJyGUjINWutABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIaWkNAHkH7OX/JPb//ALCsn/omKvYK8f8A2cv+Se3/AP2FZP8A0TFXsFABRRRQAUUUUAFFFFABTSwGc8AdSaUtj1rx7xj4j1Lx9r83gXwfKFtRxrGpr92NM4KKe/pgfeJI6bjQBB4i1i/+LPiOTwj4buHh8O2rf8TXU05WXnhEPQjI4/vcn7oyfWNG0Sw0HSLbTNNt1gtbdQqKP1J9Sckk+pzVfw34Z03wpocGk6XDst4gcluWkY9WY9ye/wCAGAAK2R05oAK8x+OniKPR/h7cWKShbvU3W3Rc87M5c/TAx/wKvTqxLvwf4bv7l7m88PaTczOSzyTWUbsxPPJK+tAFXwBpUei+AtEsYiCEtEdipBBdxvY/99Ma6THtVTT9J07Sbc2+m2FrZQk7jHbQrGpPrgCrg6UAFFFFABRRRQBBdWkF9bS211DFPbyrtkilQMrDuCDwa8p1P4aa14Rvpda+HF+0DMd0+jztuhmxzhSe/wDvHIycMOleu00rk84x9KAPPfCPxW07Xbv+x9agfRPECHY1ndAqrt/sMfX+6cHnjPWvQwR0H0rmfF3gLQvGtn5OrWoMyriK6i+WaLr0buOTwcj2zzXn41Pxt8J8RawkniXwqhwL2LPn2y/7QOeOvUkdPmHSgD2cHIzRWN4e8U6N4q01b7Rr6O5hPDBeGjP91lPKn69e1bG4etAC0UUUAFFFFABVa/sLfU7GeyvIlltp0aOWNujKeCKs0UAeO+BL+5+H3jO5+HmrzM1hMTPo1zIcBkOSU+pOf+BBh/EK9hzjrXE/EzwX/wAJf4dBsiYtZsHNxp8ynawcclc9g2B9CAe1Hw08ajxl4aDXI8rV7FhBfwkbSrjjdjsGwfoQR2oA7eigdKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApDS0hoA8g/Zy/5J7f/APYVk/8ARMVewV4/+zl/yT2//wCwrJ/6Jir2CgAooooAKKKKACk3DJ68UbhnFeZfEPxzfR6lD4N8IYuPEd78ruvSzQjJYns2OfYc9xkAq+PPGGpa3rg8B+Cn36nMcX99GfktI+jDcM4PPJ6joMseO18G+DdO8FaBFpmnKGP3prhlw8792b+g7Dj3NbwH4FsfA+h/ZYD597OA95dvyZn/APiRk4H58kmusAwAKACiiigAooooAKKKKACiiigAooooAKKKKACmsm4EEDBBHIp1FAHl3iP4TeTqTa/4Gv20LWh1jQ4t5u5Urg4zxxgqfTvTPD/xXey1FdA8fWJ0PVhwtwwxbTds7skL9clevI6V6njPesnxB4Z0nxRpzWOsWUVzCeVLDDRnGNysOVP0oA1UdXQMh3KRkEHII+tOrxeTRfGnwodpvD7yeIvDCkltOn5mt1zk7cDp7qMcnK967/wf8QPD/jS1DaZdbbpRmWzn+WaP/gPce4yKAOpopu8ce9OoAKKKKAGlM59DXkHjmyuPh341g+IGlRM2m3TrBrVtGOoYgCQD1JA9PmA/vGvYaqajp1tq2nXOn3sSy2txGY5EP8SkYI/+vQA6xvrbULGC8s5Vlt541kidOjKRkH8iKs1498P9QufAXi+5+HWszlrV2M2i3Dn76Nk7M+/P0YMOdy17BuAFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIaWkNAHkH7OX/JPb/wD7Csn/AKJir2CvH/2cv+Se3/8A2FZP/RMVewUAFFFFABSbhnFGea4b4i+PovCNrDY2MQvfEF+RHY2SgkkscB2A5257dWPA7kAFX4i+PptEaLw54ehN54n1AbLeGPB8gH+NgeM9SAeOMn5Rze+HvgCHwdp8txdzfbddvv3l9esSSzHkqCeduec9SeT2AqfDn4fyeHY5tc1yX7X4n1EFrudzu8sE52KfyzjuMDgCvQaAAcAZOTRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACFc/SuA8Y/CrS/EV0dW0ueTRdeQ70vrT5d7f7YGM9TyMH1JHFegUUAeQWHxH1/wZex6N8R7IqjHbBrNqm6KX3YAfyAPqvevVrK+tdQs4buzuIri3lXdHLEwZXHqCODTdR02z1aykstQtYbq1kGHimUMp/A15Te+APEngC8k1T4eXjTWTEvcaJdsWRh/sEkZPTqQ3H3j0oA9gyCOKWuD8GfFHSPFcx064R9L1yMlZdPu/lbeOoUnGcc8cHg8V3ZYDrQAtFFFAHC/E7wU3i/w9vsWaHW9Pf7Rp8yHawcYO3d2zgYORggHtU/w38Zr4y8MJcT4j1S1YQX8GMFJB3x2DDn25HY12LLkY45rx7xvaz/Djx1b+O9LhdtKv2FvrNvGOMsf9YB0yevb5hjPzmgD2IdBS1Xs723v7KC7tZVmt50EkciHIZSMgj8KsUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIaWkNAHkH7OX/JPb/wD7Csn/AKJir2CvH/2cv+Se3/8A2FZP/RMVewUAFIWAoJx2Ncz438aab4I0KTUr990rArbWynDzvjO0HsOmWxxn1wKAK/j/AMc2fgnR1leP7TqNyfLs7NT80r/Qc7Rxkj1A71i/DzwLeWl5L4t8VSC78S3w3jeOLRSPur6HGAcdMYHGSaXgDwXqWpay3jrxqC+tT4NnaN92zi/h+XseuB2yScsePVaAFHQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTcHJOadRQByHjP4caF42hDXsJg1CMYhv4MCVMdAf7wz2PvjGc1xEfibxl8L5VtPF0EuueHgdserwcyxjOB5meT2+9+DHpXs1RywpNG8UqLJHICro4ypU9QR3oAo6Jr+leItNTUNJvorq2b+ND90+jDqp56HBrRyK8p1v4V3ejai+v/AA8vzpGoHmWx3f6POM5K4xgdTwQVHGNtXPDPxYgn1H+wfF9odA11MKUn+WGU+qsTxnHGTg8YLUAel1T1PTLXWNMutOvohNa3MbRyoe6kY/A+nvVsMOKWgDx/4d3934H8W3Xw41qXfCSbjR7huPMjJJ2foxx2YOO4r18Hj/CuG+J3gyXxVoC3GnM0WuaY/wBp0+ZDht4IO3PvgY9CF561Y+HPjSPxp4ZjupNseo258m+gAIMco74PIDdR6cjsaAOyooHSigAooooAKKKKACiiigAooooAKKKKACkNLSGgDyD9nL/knt//ANhWT/0TFXr+cZ9q+efgt8QvC3hHwbd2Guap9luZNQedE8iWTKGONQcopHVT+VeiSfGz4frEzprjSMASEWzny2B0GUwCffFAHT+KvFGm+ENCuNX1OXbFH8qRrjfK56IvqT+gyegrz3wT4X1Lxlry+PfGEYBPOlac4JW2TqrkHqe49T8x5xin4U0e++K2vxeNvEsYXQ7Zyuk6cGyrbWILOO4yOc/eIx90YPtIXAwOO1ACYx0p1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRmigAooooAKKKKACiiigAooooAKKKKACiiigBMVheJ/B+i+L9Paz1mzSYDJilHyyRH1VhyOg9jjmt6igDxcw+N/hKf9HMnibwpGcmMn/SLRP54Ax6rgdE616P4T8a6F4y08XOjXgkZQPNt3+WWI+jL/UZHoa3ypJ9q848VfCa0v9QGu+GLo6Fr8ZLrNb/LHK3fco6Z7kdcnIOaAPRjycd8968d8ZW03wz8dQeOdNidtF1FxBrFug4BY58wDpnPP+9kZ+ermkfE/UvDWoRaF8RrBrC5Y7YdUiXNvP7nHAzwSR0zyFr0a9tNN8Q6LNazmK70++gwdjBldGHDAj8wR9aALdpeW97aQ3VrKs0E0ayRyIcqykZBB+lWK8h+HOp3fgzxPdfDjW5SyKTPo9y/HnREk7B+pA7EMM9K9dB44oAWiiigAooooAKKKKACiiigAoqjquqw6RZtdTw3MsaAlvs8LSMoAySQOccVy+n/ABV8N6rbyXOnpq11bxHbJNBpk8iIcZwSqnHFAHbUhrJ0LxRovia1a50fUIrqNDhwoKsh9GVgCvQ9RWqWABJ4HqaAPA/gvpvhY/DPVdY8R6Zpc0drfyb7m8tUkKIIojjLAnqTgep460eGfB9n8TfE48RNoVppHhO0craWcVqkLXpH8TlQMrkc9QOVH8RrzPwZfaTdLBonirWmsPDcFy17JbxxyM1zKVVduUBwML17AnGM5H0Hb/GH4b2tvFbW2tpDDCoSONLKdVUAYAH7vjjFAE3wUH/Fo9DwB/y35/7byV6COleIfC/4oeDvDfw60rStV1j7Pewed5kQtpn27pnYcqhHQg9a6/8A4Xb8PP8AoYf/ACSuP/jdAHoFFef/APC7fh5/0MP/AJJXH/xuj/hdvw8/6GH/AMkrj/43QB6BRXn/APwu34ef9DD/AOSVx/8AG6P+F2/Dz/oYf/JK4/8AjdAHoFFef/8AC7fh5/0MP/klcf8Axuj/AIXb8PP+hh/8krj/AON0AegUV5//AMLt+Hn/AEMP/klcf/G6P+F2/Dz/AKGH/wAkrj/43QB6BRXn/wDwu34ef9DD/wCSVx/8bo/4Xb8PP+hh/wDJK4/+N0AegUV5/wD8Lt+Hn/Qw/wDklcf/ABuj/hdvw8/6GH/ySuP/AI3QB6BRXn//AAu34ef9DD/5JXH/AMbo/wCF2/Dz/oYf/JK4/wDjdAHU+JdftfDGg3er3kU8kFsu5kgj3seccDp+JIA7mjSfEuma54fTW9OnM9m0ZkzGpZhgZKlRk7h6YzXJy/Gf4dTRskmvK8bgqytYzkMD2I8vkV5QPG2geAfGH9peCdW+36Hetm90popY/KP95C6gd+Oc9j2oA918H+ONG8bac93pUsgaJ9ktvMoWWI843AE8EDIIJH4ggdKORXzZ4t8XeFbLXovGvgTXBba0xH23T3tZlS6UkE7vl259RnBwCDuGT6PpPx08EXmmW899qElhdOo8y2e3lkMbdCNyqQw9D6dQDxQB6ZRXn/8Awu34ef8AQw/+SVx/8bo/4Xb8PP8AoYf/ACSuP/jdAHoFFef/APC7fh5/0MP/AJJXH/xuj/hdvw8/6GH/AMkrj/43QB6BRXn/APwu34ef9DD/AOSVx/8AG6P+F2/Dz/oYf/JK4/8AjdAHoFFef/8AC7fh5/0MP/klcf8Axuj/AIXb8PP+hh/8krj/AON0AegUV5//AMLt+Hn/AEMP/klcf/G6P+F2/Dz/AKGH/wAkrj/43QB6BRXn/wDwu34ef9DD/wCSVx/8bo/4Xb8PP+hh/wDJK4/+N0AegUmK4D/hdvw8/wChh/8AJK4/+N0f8Lt+Hn/Qw/8Aklcf/G6AOw1fRNO17T5LDVbOG7tJPvRyrnnsQeoI7Ec+9eUzeEPFvwzuZr7wPcPquiGTfNotySzr6mPuTjuMHpkPium/4Xb8PP8AoYf/ACSuP/jdIfjZ8PCf+Rh/8krj/wCN0Aclr2raT8W9ASXRJpNP8Z6O32i2tJm8uYOp+ZFJ4YZAII6EDO0E13vw78aQ+NfDEd42I9Qt/wB1eQAYMcg749G6j8R2Ned+MvEHwi8XN9t/4SBtP1lMNFqNrZXCyBhjBbCfN0HJ5GOCK898GeMrzwx8TVuYL4azBfyi3untYnVrsMeGCMqsZMkHpknPJ3EkA+t6KQHHGDxWbrPiHSfD1mbvVr+G0hzgGRuWPooHLH2AJoA06K5VPHUUsfnReHvEL22M+f8AYCox6hGIcj6LU+g+OdB8T6jNY6Pcy3MsEXmTnyWQRc42tuAIbrxjsaAOjooyKMigAooooA5T4ja0PD/w/wBavw2JBAY4uf43+RfyJz+FZXwh0dPD3ww0wzFY3ukN5K+QB8/IJ+iBf1rnvjZPJq+o+FvBts58zUr0SS7eqoDtBPt8zH/gFWPHvwxtv+EQvJ9N1bV0ewgM8dvc3sk8DrGC2wo5I7YHvjtQBifDvOsfHHxLruiqV0Ha8ckyD93Kx2dD0JLKz/T6ivctvvXnvwd8Tp4m8Dq62NtZTWcptpI7WIJGSFBDKo4GQeR657EV6IOlADQCO9G36U6igBu33paWigAooooAKKKKACiiigAooooAKKKKACiiigAooooAzNd1yw8O6PdarqUwitbddzt1PoAPckgAe9eR6Zpt/wDFbVB4r8Wf6D4Rsdz2VlI+xZAOTJIc/dwOT+A4yT7Ne2FtqNrNaXkEVxbTKUkilUMrA9iDUqwpGiJGqqiLtVQMBR6CgDxK5u9R+M+sHSNH8zT/AANYSKlxcqm1rtlwQijsOmF7cM3JVa9j0rSLHRNMt9O023S3tIE2Rxp0A9/UnqSeSSafZada6dZpaWNtDa28edkUCBFTJJOAOBySfrVugBMUtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUwq2eO/rT6KAMfxNr1r4W8OX2s3h/c2sZfb3duiqPckgfjXm/ww0a78X3cvxB8T/6RdzSMmmQSDMdtGpxuReg54H0J6nNR/tF3UsXgrT7eMkRT348w+u1HwD+PP4V6R4TtYrDwfo1vCAI4rCFQR3wg5/mfxoA2wvA4rndD8Mx6P4m8R6uiop1aaF8J6JHg59yxc/jXRbh0ooAOaOaXNGaACobm6jtLd55FlZE6iKJpGP0VQSfwFTUm2gDwxb+9vPjhL4o1Hw54j/sqztzBYMukzsScbclduQDukPryOPTf8X+IvE3ivS7jQPC3hbVoftiGGe91GH7NHHG3DBQxyTjIzjI9DXqmPWjFAHK/D3wZH4H8KQ6UJVnuGcz3Mo6PIQAcewAUD6V1faiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOU+IXg+Lxv4TuNJLiK4DCW2lYcJKoOM+xBKn61xng/xvqXhDSbfw9420XUrWWyUQwX8Ns00MsY4Xlc8gADjOR6V65t5pcUAcmnii517Nv4c0+8+fAN/fWrwQxL/eCvhpG9ABj1Irp7W3+zWsUHmSy+WgXzJWy7YHUnuTUoXHelHAoAKKKKAP/9k='] Multimodal Competition True Theorem proof Geometry Math English 23 "In the graph, the parabola $y=x^{2}$ has been translated to the position shown. Prove that $d e=f$. " ['Since the given graph is congruent to $y=x^{2}$ and has $x$-intercepts $-d$ and $e$, its general form is $y=(x+d)(x-e)$.\n\nTo find the $y$-intercept, let $x=0$. Therefore $y$-intercept $=-d e$.\n\nWe are given that the $y$-intercept is $-f$.\n\nTherefore $-f=-d e$ or $f=d e$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAcoCOQMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKM0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUNy0ywO1uiPKAdqu+1SfQkAkD8DU1IRkUAcFofjzUrn4hXnhLW9Jg065S38+2aK4MqzD2YquRjPb+E8DFad54m1Ky+Ien6BJpB/s2+hdor8Pn94qlipHboPzrkPijGdE8feCfFUYCBbz7DcyD/nm5GB/3yZa7qxH9reIrjUwM21ir2Vqcfeckecw9gVVPYo/Y0Ab470tIBiloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKOlFYPi3w9N4m0YWEGrXmlyCVZBcWjbW+U9D7f1AoAxviPoUfi+y0/w4rstw93HdNInWCJM7n+pBKqO5PoGx19jZw6fZQ2lsmyCFFRFznAA9e/1qlo2jRaPalBNPdXLgGa6uG3SzEdNx7D0AAArUHU0ALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUhoAwfEviqx8My6THen/kI3qWic/dLA/MfYHbk+9bw718tfHvxJ/avjxNNhfMOlReWCP+ejYZ//AGUfVa+gvAfiNfFXgrTNXLAzSwhbjAxiVflfjsNwJHsRQB0lFGc0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZ+u6rBoeh3uq3P+ptIHmYA4JwCcD3PT8a0KzNc0a3120itLwCS0EyyzQkZEwU7lU+24KSO+MdDQB8m654T1OPTNK8R66zLc+Ib53EYGGCMQxc56Fi+QPTB74r2H4RW2o+CvE+teBdW5B/06wlAwkyfdZl+o2HHYhqh+P3y/8ACJnGP9PbH/jleq6loltqF7p9+UCXunzebbzBQWUHh0+jKSD+B6igDUFLTVGM/WnUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHi37QP/Mpf9f7f+yV7TXi37QP/ADKX/X+3/sle00AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSHpQAuaKxr/xPo2m67Y6LdX8cWpXv/HvAQSW688dBwQM9T0rYXHQdqAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPG/j/Dut/C027AXUdmPqAf/AGWvYx0ryD4/f8gvwz/2FV/9BNevjpQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUZxWPq/ifRtE1LTrDUb6O3udQYpaoyk+YwKjGQMDllHPXNAGxRTV706gAooooAKKKKACiiigAooooAKKKKACiiigApD2paKAPIPjxpM8ejaV4ssPkvNFulYt2VGYYY+uJAmB/tGvTdA1aDXdBsdWt+IruBJVH93I5X8DkfUGl17SYNe0K+0m5/1N5A8LEDJXcMZHuOv4V5j8B9Wni0jVvCV/8l7ot06hMg4VmO4e+HDkn/aFAHr9FIKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooA8f+P3/IL8M/8AYVX/ANBNevjpXkHx+/5Bfhn/ALCq/wDoJr18dKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEOMivEbUf8J7+0PPckCTTPDUYRDglTKpIH4+YWYe0deoeNPECeF/B+p6ySoe2gJiBGQ0p4QfixFcb8CvDraV4GOq3Kn7bq8puGdvveWOEz9fmb/gdAHqC9O/40tFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhrxHxP/wAUD8edL19T5ena9H9nuT0Ab5UY/QHynP417fXnvxn8NHxF8O7x4Uzd6cftsOOpCg7x6/dLHHqBQB6AnAxTq5H4Z+JR4q8BabqDybrlU8i5yct5qcEn3YYb6MK66gAooooAKKKKACiiigAooooAKKKKACiiigAooooA8f8Aj9/yC/DP/YVX/wBBNevjpXjn7Q8/2bQNAn27vK1EPj1wpNexjpQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSH3paZK6xxtI7BUUEsxOAB60AeM/Gi5n8R+IfDfgGxch72dbi5K9UXlVP0A8xiPYV7FZWsNjZQWltGI4II1jjQdFUDAA/AV4z8K428afEjxH48nQm2ST7LZbh0BAH4EIFz7ua9sHegBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAprgMhVgCGGCD3FOpDQB4l8NWfwR8UvEHgWditndMbmwBPBwNwA9SY+p9Y69tXv8A4V4z8btNuNIu9C8d6an+laZcJFNjI3JnKbj/AHc7lPr5gr1vS9RttW0u11K0ffbXUKTRMRglWGRn86ALlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHiv7SP/ACKujf8AX8f/AEA17UK8V/aR/wCRV0b/AK/j/wCgGvahQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeb/G3xMNA+H1xbwvi71M/ZIwDztP+sP025H1YV6OwzXh+pH/AIWF8frXTwfM0rw0PMlxyplUgsPTJfYpB7RmgD0j4d+Gh4T8D6bpTIFuFiEtz6mV+Wz9M7foorqaRaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDK8SaJb+JPDl/o9zgRXcLR7sZ2E/db6g4P4V5v8AAnXLj+xtR8JajmPUNFuGUIxGQhY5HvtcNz0wy164a8P8aZ+Hnxp0rxav7vS9YX7PfEDCg8K5P4bH9ypoA9wHTilpAc59qWgAooooAKKKKACiiigAooooAKKKKACiiigDxX9pH/kVdG/6/j/6Aa9qFeK/tI/8iro3/X8f/QDXtQoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ0AYPjTxFH4V8I6jrL4LW0RMSno8h+VAfYsRXFfAzw7Lp3hCbXL0M9/rUxnZ3+8YgTtyfclmz3DCsf4v3M3izxl4e+H9i+BNKLi9ZcEop4H/fKb2x3+WvZbS2is7SK1t4xFBCixxovRVAwAPoKAJhS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcb8UfCx8W+BL6yijLXkA+02mBk+agOAPdgSv8AwKuypD9KAOB+Dvin/hKPh/ZmWQNeWH+hzjPJ2gbW/Fcc+ua7+vDdJ/4tx8d7jS/9Xo3iQB7ck/KshJKj04fegHo6+1e4L6dqAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB4x+0hHnwZpUu77uoBceuY3/wAK9mFeO/tIf8iLpn/YTX/0VJXsdABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVXUL630zTri/u5AltbRNLK/8AdVRkn8hVk15L8c9enGi6f4T03Mmo63OsZjQ8mMMMD23NtGfQNQBS+DVlc+JPEGvfELUY2Et5M0FmG/gTgnHsAEQH/ZavZxxWT4X0K38M+GdP0a2wY7WEIXAxvbqzfi2T+Na9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhpaKAPMPjf4Zk1jwaNXs1K6hoz/akdeG8v8AjAPtgN/wCuq8B+Jo/F3g7T9XDKZpYwk6jjbKvDjHbkEj2IroZokmieORQyOpVlIyCDwRXinw4kfwD8T9a8CXTMLG8JudOL5weMjH1Tgn1jxQB7fRSL6UtABRRRQAUUUUAFFFFABRRRQAUUUUAeOftIf8iLpn/YTX/wBFSV7HXjn7SH/Ii6Z/2E1/9FSV7HQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAyQhVLMwVQCSScYHrXiPgUN8Q/i/q/jKUGTTNLH2fT9w4J5Vcf8B3sfQuK6n41+KT4f8AA0tlbORqGqk2sIX7wQ48xsdfunbkdC4rd+HPhZfB/giw0tlAutvnXZwMmZuW6dccKD6KKAOqA60tFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeQ/HHQbiOx03xnpg2X+izqzkDrHuBVj67Wx+DGvXqrX9lb6jp9xZXcYltriNopUPRlYYI/I0AUvDOu23iXw3Ya1akeVdxCTbnOxujKfcEEfhWtXifwgvp/CfizW/h3qcgLQSm4s3bjeMDOPqpVgO3zV7WKAFooooAKKKKACiiigAooooAKKKKAPG/2kP+RF0z/sJr/wCipK9krxz9o/8A5EbTP+wmn/oqSvYIm3xI/wDeUGgB9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUjdKWuH+K/i7/AIRDwNdXMMm2+uv9GtcdQ7Dlv+AruPpkAd6AOFsh/wALM+Os15xJofhoBUxyryBjtPpkvub3EYr3FeOK4b4S+Ej4S8DW0NxFsv7v/SbrI+YMwGFP+6uB9c13VABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSMMj3paKAPGvjXpV1o95pPxA0kBbzTJUjuOOGQn5d3qMkqfUOPSvVtE1a113RbPVLJ91vdRLKntkZwfcdD7g0usaZba1pN1pl7HvtrqJoZR3wwxx79x9K8k+DeqXfh3XNZ+HWrv8A6RYyvLZknAdOrBfYghwP9pqAPac5opB3paACiiigAooooAKKKKACiiigDxz9o/8A5EbTP+wmv/ouSvX7f/j2i/3B/KvIP2j/APkRtM/7Ca/+i5K9ft/+PaL/AHB/KgCSiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARq8M1BW+KHxujsP9ZoHhvmXj5HkB+YH3Zxtx3VCa9C+J/i4eDvBV1fxSBb6X/R7QZ/5aMD83/AQC3PHGO9Zvwc8If8Iv4KimuYyupali5uSw+ZQRlEPfhTkg9CxoA9DXPNLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIa8a+M+lXWhapo/wAQ9IXbdadMkV3jgMhPyk+3JQ+ocV7NVHV9Mtda0q60y9jMlrdRNFKoODtIxwex9DQA3RNVtNb0W01WyYG2u4llT2BGcH0I6Eeua0K8W+EGp3fhjxHq3w41eUGW0kaaxY8bl6kL7FSHA92r2gdTQAtFFFABRRRQAUUUUAFFFFAHjn7R/wDyI2mf9hNf/Rclev2//HtF/uD+VeQftH/8iNpn/YSX/wBFSV6/b/8AHtF/uD+VAElFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSHpS1xXxS8Xjwd4JuryKTbfXH+j2mOodh94f7oy3pwB3oA8/1Q/8LR+NkGlr+80Dw7zPgfLJID8w/FgFx/dRiK9zXGOK8/8Ag/4PPhXwXDJcxFdT1DFzdFvvLkfIhzzwDyPUmvQRQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh6UtFAHjvxq0K7sZdM8faNHi/0qVBcYH3o85Ut6gH5T6h/QV6Z4b1208SeH7LWbJv3F3GJACclT/Ep9wQQfpV2/s4NRsZ7K6iEttcRtFLGejKwwR+teMfDK9uPAXj7Uvh3qcrG1lcz6bK2QHyM8f7yjtxuUjvQB7hRSD9e9LQAUUUUAFFFFABRRRQB49+0cv8AxQGnP6aog/OKX/CvXYP+PeP/AHR/KvI/2jv+Seaf/wBhWP8A9FS165B/x7x/7o/lQBJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjYxyM+1eFOv/AAtj40bdon8O+GwQ+cMk0m4/o7L9CsfvXZ/GHxkfCng9oLSQjVNT3W1qE+8oI+dx9AQB7stX/hd4PHgzwZb2csajULj9/eMP75HC/wDARgfUE96AOzXv1/GloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQ9RXlXxr8K3F/o1t4o0jfHq+iuJg8fDNECCfxUgN9A1erUyREkjZHUMjAqynkEHrmgDn/A3iq38Y+ErLWISqySLsuIx/yzlH31+ncexFdHkHoa8J0B3+E3xbn0CclfDuuOHtHbpG5OFGe2Cdh9ipPFe6r3oAWiiigAooooAKKKKAPH/2jv8Aknmn/wDYVj/9FS165B/x7x/7o/lXkf7R3/JPNP8A+wrH/wCipa9cg/494/8AdH8qAJKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKZK6Rxs7sqooJYscADvTj1FeTfGrxVcQabaeD9H/earrZEbKh5WFjtx143n5cnIxvoAxPCyP8AFT4s3fimdHbQtEIisVYYWRwcocHvnMh9DsBr3QVz/gnwtbeDfCtno1vtZol3TygAebKfvN69eBnkAAdq6GgAooooAKKKKACiiigAooooAKKKM0AFFFFABRRRnjPagAooyPWigAooooAKKKoa3c3lloV/dafbfar2G3eSCDBPmuFJVePU4FAF+ivFv+FifFUH/knv/kKXj9aP+Fi/FT/onn/kKT/GgD2mivFv+Fi/FT/onn/kKT/GnxfEb4oB/wB78OnZfREkU/1oA9morx//AIWR8RgT/wAW0uf++3/+Jpf+Fk/Ef/omlz/32/8A8TQB6/RXkH/CyfiP/wBE0uf++3/+Jo/4WT8R/wDomlz/AN9v/wDE0Aev0V5B/wALJ+I//RNLn/vt/wD4mj/hZPxH/wCiaXP/AH2//wATQB6/RXkH/CyfiP8A9E0uf++3/wDiaP8AhZPxH/6Jpc/99v8A/E0Aev0hryH/AIWT8R/+iaXP/fb/APxNH/CyfiP/ANE0uf8Avt//AImgDpfip4LHjLwjLHbxg6pZ5ns3AG4sOqZ/2hx9cHtUPwj8anxd4TEd45/tbTiLe8VuGbH3XP1A59wa58/Ej4jH/mmtz/32/wD8TXmk/iTxN4P8fT+Mf+ESu9Hgu2MdzbTxukErMMkByoGSV3cdwe1AH1XRXiEHxg8c3FvHcW3w2vpoZVDxyRxTsrqeQwITkHrUn/C2viB/0THUv+/Fx/8AG6APa6K8U/4W18QP+iY6l/34uP8A43R/wtr4gf8ARMdS/wC/Fx/8boA9rorxT/hbXxA/6JjqX/fi4/8AjdH/AAtr4gf9Ex1L/vxcf/G6ALn7R3Pw8sMf9BWP/wBFS163Af8AR4v90fyr5i+KPjjxP4m8M21lrng+70W2S8WVbieKVVZwjgJl1AyQxP4V2cPxa8feRGU+GmoupUYYQTkMMdfuUAe3UV4p/wALa+IH/RMdS/78XH/xuj/hbXxA/wCiY6l/34uP/jdAHtdGa8Wj+LfjwHMnwv1Vh6LFOP8A2mal/wCFueNf+iVaz/3zN/8AGaAPZKK8b/4W741/6JVrP/fM3/xmj/hbvjX/AKJVrP8A3zN/8ZoA9korxv8A4W741/6JVrP/AHzN/wDGaP8AhbvjX/olWs/98zf/ABmgD2SivG/+Fu+Nf+iVaz/3zN/8Zo/4W741/wCiVaz/AN8zf/GaAPZKK8b/AOFu+Nf+iVaz/wB8zf8Axmj/AIW741/6JVrP/fM3/wAZoA9korxv/hbvjX/olWs/98zf/GaP+Fu+Nf8AolWs/wDfM3/xmgD2SivGD8Y/GCnB+F2rA+h87/41Sf8AC5PF/wD0S/Vv/I3/AMaoA9oorxf/AIXJ4v8A+iX6t/5G/wDjVH/C5PF//RL9W/8AI3/xqgD2iivF/wDhcni//ol+rf8Akb/41R/wuTxf/wBEv1b/AMjf/GqAPaKK8X/4XJ4v/wCiX6t/5G/+NUf8Lk8X/wDRL9W/8jf/ABqgD2iivF/+FyeL/wDol+rf+Rv/AI1R/wALk8Yf9Ew1X/yN/wDGqAPWda1Wz0PR7rVL+QJaWsZkkb2HYDuScAD1NeRfCfSrzxd4o1H4ka3EQ00jRadGeQg5UkeyqNgPf5u+K4fxz8RvEfxERPDcHhu8szbymW7tIN8s0m3AAYbAVAyeoxkj0rs9K+KXiPRtMtdPtfhTqyW1tEsUaK0vCgYGf3JyfegD3AUteNj4y+Kf+iV6x/33L/8AGKX/AIXN4p/6JZrP/fcv/wAYoA9jorxz/hc3in/olms/99y//GKP+FzeKf8Aolms/wDfcv8A8YoA9jorxz/hc3in/olms/8Afcv/AMYo/wCFzeKf+iWaz/33L/8AGKAPY6K8c/4XN4p/6JZrP/fcv/xij/hc3in/AKJZrP8A33L/APGKAPY6K8c/4XN4p/6JZrP/AH3L/wDGKP8Ahc3in/olms/99y//ABigD2Fueh/Wuf1nxdpvhq6ii1rzrK2mYLFeuhaBm/ull+4f94AehODjz7/hc3ir/olms/8Afcv/AMYqhf8Axi1bUbOexv8A4W380EgMcsMsrkH2IMNAHtVle2uoWy3Nlcw3Nu4yssMgdW+hHBqxmviabWdS8M+IprjQk1Pw+rEOtq87FlXrhiVXeuc43KePXqfT/BXx08UXd3Hp97oR1x8AbrGIrOB3YqoKt9AFHvQB9EnnFc54x1nWNA0O71PTNNtbxLSFppBNcNG21Rk7VCndxk9V/GtqwuHurKK4ltJrR5F3GGcrvT2baSPyJqtr95aWeiXUl4jSxOhi8lBl5Wf5RGo7sxIAHvQByth4+u9b8I6df6DpP9oave2/nfYxMI0iCsUYs56DerBR1bBxwGI6/R57250m1n1KzFneyRK01usgcRuRyMjg/h/9evL/AIAqtn4e1vSbiERalY6i0dx0JxgADPoGVxjp1Pc166KAFooooAKKKKACiiigAoziio7iWOGCSWV1SNFLOzHCgDqT7UAOLopUFlBY4GT1PX+h/KnZrhPCDv4y1CTxjdBvsYkeHRoWH+riGVabHZ3IIz2UY7mu6UYoAWiiigAooooAKKKKACijOKKACsfxPoFn4p8PXmj3q5huUK7gMmNuquPcHB/CrmqJfPp0y6bNDFe7cwtOpZNw5wwHOD046Zz2rP8ADPiCLxFpjTiJra7t5Db3lo7Za3mX7yE9x0we4IPtQB5t8IfEN7omqXvw58QNsvrB2NkzH/WR/eKjPUY+de+1j2WvZBXk3xk8JXc9rbeM9BLRazo5EjtHwXiHOfcrkn/dLD0Fdr4G8XWnjTwvbatb7Ukb5LiEHmKUfeX+RHsRQB0tFGaKACiiigDx/wDaO/5J7Yf9hWP/ANFS16rpX/IIsv8ArhH/AOgivKv2jv8Aknth/wBhWP8A9FS16rpX/IIsv+uEf/oIoAt0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJRS0UAJRS0UAJRS0UAJRS0UAJmuP+JPjSHwT4TnvwytfyZis4zzukI6kdwo+Y/QDuK62eaKCF5ppFjijUu7u2FVQOST24rwzQ4JfjD8T38QXUbHwxoj7LWNgcTODleD3PDMPTap60AdZ8HvBkugaBJrOqh31vVj587SZLRoeVU57nJY9Dlsdq9K6Uid8/wAq5nxx4mk8PaRClgqTavqMy2enwseGlfgM3+yucnt0HGaAOmV1YsFYEqcMAehxnB/AilrK8O6HDoGlLaI7zTOxluLmQ5e4lblnY9yT+QwBwK1qAEopciigBKM0tYPiDxXp+gXFnZSrNd6jesVtbC1UPNLjqQCQAoGSSxA4NAG7mk8xN5Tcu8DJXPOPWuYi8Z20Wt2uj6vYXmk3t5k2n2kxtHcEfwo6MRu6fKcHkdc1H4z066WzXxFo4/4nOloZYgOlzEOXhb1DDOPQgEUAdZmis3w/rdn4j0Kz1ewbdbXUYkXPVT3U+4OQfcVp0ANIJx7Vyvia48U3EZ03wvZxRTuMSalekCOAf7K8mR8HrjaO+eldZRQB5JovwG0WK4a/8S393rt9IxkkMjGONmPc4O8n6tg+lem6bpOn6Nara6ZY29nbj/lnBGEGfXAHX3q9RQAxlLDGceh9K5Pw34W1iynSfxJ4hk1yaBmNpm3WJYc8FiB95scZPQE46119FAHnkfw3uIfHGr6vBrDw6Rq+xr7TkiGZmHVS56KSWzjnDEdK9BQbVAwAAOg7U6igAooooAKKKKACiiigArz/AONOsPo/wx1IxOUluylopHo5+Yf98hq9AryP9osOfh3Z7c4Gpx7senlyf1xQB6F4Q09dK8HaNYqAPIsoUOPXYMn8Tk/jW1UFlt+w2+37vlrj6YqcEHpQAUUU1ucUAB5xivK/jlcy2XhS1ayu76DU7q7jtoBbXckYcHJIKK209AOQevvWvbeJb7xr4jvNM8PXRtNG06QJeamiq7zS/wDPOHIKgDqWIPt1Brkdc0+61b45eHPD0t3NeWGmIdSPnkMyN1wT3G5Exn+8aAPX9Gsf7L0WxsN7ObaBIS7HJYqoGSe5OKvUgpaAOP8AiX4zHgjwfNqUYR7yVxBao/QyEE5OOwAJ/Kqtj4Iup/DcbajrerDxBLGJHvUvZEEMxGcLGpEYQE427cECuJ/aAZpdT8G2L5+zzXUpdexIMQ/kzfnXtx6Hnr3oA4T4X+MrrxTot1bars/trSp/st7tAAcgkB8AcZwePVT06VmX143hf47WSodtj4ksxHOD08+PIVvrjav/AAI1z/wvY2/xw8d2kfEDyTSEdtwm4/8AQ2q98ZnNv4v+Ht7GP3kepnBHU/PCcfoaAPXiN3BH1B7V4POsvwW+Jf2pUI8Ja42HVRxbnPT/AIAWyPVCRyQce9isPxh4XsvGHhu50e+ACSjdHLjJikH3XHuP1BI70AbUbpIiujhkYAqynII9RT68c+Efim+0vUbn4d+JT5eqaexW0Zm/1kYGdgJ6gL8y/wCyfRa9iFAC0UUUAeP/ALR3/JPbD/sKx/8AoqWvVdK/5BFl/wBcI/8A0EV5V+0d/wAk9sP+wrH/AOipa9U0r/kEWX/XCP8A9BFAFyiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApDS1yHxH8b23gbwvLfMyPfSgxWcJ53yY6kf3V4J/LuKAOI+LniW91vVrP4c+HW339+4F6yn7ife2EjoMZZu+B6GvTPCnhuy8J+HbXR7Bf3cCfM5HzSOfvOfcn8uAOAK4f4ReCbnR7K48T62Hk17V8yyGQDdEjHdg+7HDH8Bjg59RAxmgANeS6rOdb/aL0bT87rfRrB7goegkZTz/49H+VetE4rxzR8r+1Hr2/o2mpsz6eXB/gaAPYxgcdBWbq+vabovkLe3IWa4bZBAil5Zm9ERclvwHFP1rVLfRNFvdUuifJtIWmcDqQozge56D61498OdU1PVZdR8aXWjX+r63qDGCxjRPLt7eBSflWVyEClgQdu4jbnqSKAPU9G8WaZrWrX2lQNPDqFiFM9tcRFHVWGQ3PUHI6eo6ZFborjfB3hK70nU9U8Ra5cxXGuaqV87yQfKgjUfLGmeSAMDJ64H49kKAA14x4Gum8TfHTxVq0x8yPTYms7YdkAfYCvpkI5/4Ea9nNeI/CGNrD4p+PLCUYl+0Fx7gSvz+TCgDoPjtZ+b8Om1BCVuNPu4biKVThkJbZwf8AgQ/IV2vhXVm8QeEdJ1V9vmXdpHJIAON5X5h9M5rlPjjMkXwm1WNuDM8CL9fNRv5Ka2vhravZfDTw9FLwxskk57Bhu/k1AHI/BK4Nk/izwwWOzSdUcRAnojMy4HtmMn8fevWa8b+FuT8WviIV/wBX9swf97zZP/r17IKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArg/jHo0mtfDLVI4V3TWwW6QeyHLf8Aju6u8prorrtYZU8EetAGD4P1I6r4F0a/Qh5JbGMsM4G8KAwz7MCKxBq3xKx/yK+i57/8TJv/AImneGbWTwZqsnhiRJDpNzI8+kTAZEecs9uT2KnLKT1BPpXcLQBw39rfErIz4X0X/wAGTf8AxNReL9b1/TfhRrWpahZw2OqCExqlrN5gQOwQMGwORuJ/Cu/qtqFlb6jYzWd3Ak9tOhjlicZDKeooA4P4Wx6b4d+EemXRlRY50NxPIBkvI7Y246sfuoAOTgd65r4XX51jxp4r8Y6n+6kubpNNtEzvK8/cGOpAWPJHYE13mgfDjwz4auvtGnWDhkYtEJpnlWEnugYnaffr71Y8P+BPD/hm9ubzTLEx3Fw7OzvIz7cnkKCTt+o5xwTwKANTWda03QNOk1HVbuO1tYyAZJORk9OByT9Km0zUrPWNPh1DT7mO5tJhmOWM5VhnH88jHbFZvizStK1jw9cWutafNfWgIfyIUZpCwPy7dvOc8fz4zVfwF4bPhbwtFp5i8ktLJP5AkLiAOxIjDHrtXC57kE0AcZ8fNEubzwpY63Zpum0e581uOkbYBP4MEP0zXpdjqlpqGkW+qQyr9knhE6yMQAEK7sn0x3+lW5Y1lQo6qyMCGVhkEHtXLf8ACvNDW0exj+3RabISX0+K9lWA55I2huFJ/hB2+1AHE/BbTpb7V/FXjKWNli1W8dbUsMEpvZmI9slR/wABNP8AitF/anxI+HulRgs4vGnkA7IHjJ/RGr1e0tLewtIrW1hjgt4lCRxxqFVQOwA6CuA0CyPir4nX/jFhu07TYzpumPjiRwT5sg9QCzoCODk+lAHow70HtQPpiloA8t+Lfga51myh8TaEJI/EGlDzEaIfNKindgD+8DyvryO4x0Pw38dW3jrw0l58keoQ4jvLdT9x+zAf3WHI/EdjXYMCeleFeN9HvvhZ40i8eeH7cvpN0+zU7ROFXceforHBB7Nx0IWgD3brRWdoWsWOv6Nbapp06zWtym9HU/mD6EHII7EEVo0AeTftDwiX4cQOSQYtRicf98Ov9a9N0r/kD2X/AF7x/wDoIrzf9oL/AJJn/wBv0X8mr0nSv+QRZf8AXCP/ANBFAFuiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikPagCpqmo2uk6bPqF9OkFrboZJZHPCqB+p9q8T8JaddfFzx3J4x1mBl0DTpPL0+1fG12U5AI744LHucDkDAPFurXnxa8ax+DNBnKaFZSeZqN5GflkK9eehAPC9i3zdBke1aPpVnoelW+l6fAsFpbII4kXsPf1J6k9yc96ALigAdKdRRQAhrybXbdtD/AGhPD+qkBLbWLOS0dz081VPH/ouvWq53xn4a/wCEm0VYYJRb6jayrdWFzj/Uzocqfoeh9j7CgCx4r0Q+JPCup6MJPLa8t2jWQ9FbsT7Zxn2rhPAMnjPwx4fh8M3ng+SWS0LiG8jvIlhdSxYFjkkcnsGOMcV3vhvWX1rTDLcWr2l9C5hu7VxzDKACRn+IcghhwQRWxQBjpHrVvol2zzQXOqsjvCoTZCj7flQd9oPVjyck8cAcn8Ndd8YX11q+leMbSOK9tBFLG0ez7km8YOwlf4OO/P0r0JhkcVQ0jSYNKhlEbyzTzyebcXM5BkmfAG5iAB0AAAAAAAAGKAL5/P2rz3WfC2o6N8RE8a6FaG8W5h+zanZIyrI68Ykj3EKWG1cgkZ2+pr0SigDzXxXo2q/Ea407SX06603QIJxcXs10VWWcrwI41BJA5OWOO2M459FVY7eEABY40X6BQBUh6VyfjO5vb62HhnSAwvtSUpLcBTttbc8PIT/eIyFHc/Q0Acr8EbR7m28SeJ3Uj+2dTkeMkfeRWY5/N2H4V6sKpaPpVpoej2ml2Mey1tYhFGO+B3PqT1J7k1eoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBrjOKVRj/AD1paKACiiigAooooAKKKKACiiigCnqmnrqmnTWMk00UU67JGgfa+09QG7ZHGRzgnHPIksrO30+zhtLWBILeFAkcaDAVRwAKsUUAFFFFABVe/srbUbGeyvIUntp0McsbjIZSOQasUUAeBaddXvwP8btpV+8s3hDVZC9vORkwNwMn3HAbHUYI6ba95hkWWNZEdWjcBlZTkMDzkVkeK/DGneLtAn0jU48xSjKSKPmifs6nsR+vTvXlHgPxTqHw+8RH4f8Ai6QLAD/xLb1+F2knaM/3D2/unK/QA3f2gv8Akmf/AG/RfyavStK/5BFl/wBcI/8A0EV5p+0AP+LZnA/5fov5NXpWlf8AIIsv+uEf/oIoAuUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSGgAJ968j+Kvji8lvI/AfhXdPreoERTtFgmBGGSoPYkZJP8K5PHBGz8UPiKPCFhHp2lgXHiG+wlrAq7zHnjeV7+gHc+uDUXwu+Hb+FrOTV9Z/f+I7/L3ErNvMQJzsz3JPLHueBwMkA3fAPgiy8D+HY9PgCyXUnz3dxjmV/wCe0dAP6k11YoFLQAUUUUAFIw4paKAGoMZOOtOoooAKKKKACiiigBDSBQDkDHHpTqKAAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFGcdaKQ9qAFzRmuJ1rUZ/Efik+EtOnkht7WMT6tcwttcK33IFYfdL8kkchQcda7P5UBJIA9zQA+isS38XeHLq9Wzt9e02S4dtiRpcoSzf3RzyfYVtCgBaKKKACiiigAooooAKKQ/pWTb+JdDvb4WNvq1lNcvuCRJKCXK/eA5+Yjvjp3oA1TziuT8feBbHx1oDWdxiK8jy9pdD70L4/VT0I/HqBVfxVe3HhLUIvFCSyy6S7JDqlucsI1PyrcIOxU8MB95T7V2UbpJGJI2DowDKynIIPPB70AfK/i/xXrdv4Kn8CeK7eRdVsLiJ7ecjIlhUEct37YYdR15Bz9QaVxpNnnr5CZz/uivKP2hdHsZfBlvqz26/bYLpIlmAw2xgcqfUcA/h9ag+F/wATLiGS28I+Lz9lv40UWVzL8ouEI+RSem4jo38XQ88kA9qopqH5eeMU6gAooooAKKKKACiiigAooooAKKKKACiiigAoooyPWgArifiP8RLHwHpIchbjVLhWFpa56kfxPjoo/MngdyD4jfEbT/AWmKzqt1qk4P2azDYJ7b29FH6ngdyOX+H/AMPtR1DWf+E48bhrjWZSJLW0lGBbDqrMvZh/Cv8AD1PzfdAJPhj8P75b1/Gvi4vc6/eZkhjmHNupz1HZiDgDGFHHHQesJnHNC5Awfz9adQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUN3cxWdnPdTNtihjaRz6KBkmpqwfGzMngLxE6ffXTLkr9fKagDi/gf52oeHNX8Q3gzd6vqckzt1+UAADPoDvxUHxh1me51Dw74JtJmi/tu6Rbt0OGEJcLj6Ekk/wC7Wl8DAF+E+mY6mWcn6+a1ct49BX9ozwc0n+qMEW3PTd5kv9cUAel+IvCmn6t4IufD6WkaW62xjtY0XiF1GEZfQgj+fXNYHwX8V3HirwKjX0plvbGU20sjHmQAAqx98HGe5UmvQvxrxH9nQN9n8Tuv+oa6iEfpnD5/QigD3CigHPSigAooooAKKKawB6/SgDzz4s63PBpml+HNOuDDf+ILtbQSKcNHESBIw/76A+hNdHJ4M0KW80S5+x4bRFK2KpIyrGCAOQOvQda8uuvC2har+0Fb6Rb6PZJp+naeZ7y3WBdkkhBwXGOf9ZH+VezaXpVho9p9k02xt7O2DFhFBGEXJ6nA4oAreI9NXV/DOqaa6bxdWskWPcqQD9c4rkfgnrcmtfDSyE8hkmsZHs2Y9wuCv5Kyj8K9DNeO/s7kjw1riL/qxqRKn/gC/wCAoAv/ALQX/JNP+36L+TVd1r4e6Z47+Hujw3AEF/FYwm3u1X5kPlrw395TgZH5VS/aD/5Jn/2/Rfyau+8NZ/4RXR/+vKH/ANAFAHlHhT4h6v4L1lfB3xB3IyHZa6ozZRl/hLMfvKeznkHhgOSPaomV0V0ZWVgCGU5BHY/SsLxV4R0jxjpLafq1r5iD5o5F4kib1Vu306GvI7XU/FnwSvEsdYjl1jwk7bYLmMfNDnsM/dP+wTg9j1oA98orK0DxFpPibTE1HSL2K6t34yp+ZDjO1h1U+xrVyPWgAooooAKKKKACiiigAooooAKKKjmljhhaWWRI40BZnc4VQO5PYUAObHHSvOviH8UbTwp/xKtMj/tDxDPhIrSPLeUW6F8c56YUcnP41z3ij4qaj4i1I+F/hxA15eS5WTUQvyRr3KZ4A/2zx6ZJBHSfD74V2PhL/iZ6hJ/aXiCXLS3khLCMt12Z574LHk89ASKAMnwB8MrpdVPi/wAaub7X5282OGTBW2bsTjjcOMAcLjjkDHrK5HHbtSLxkYxTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqup2a6jpd3YucJcwvCx9mUg/zq1SN2oA8u+A80qeBLnTLhdlxp2ozW7oeo+6382P5U/4t+HL24k0PxZpVs9zeaFcrNJBGPmlhDKxx3JBXp6Mavy2g8EeOrnWcBND14ot4+OLa6BwkjeivuwT0DEE9a70fTOKAOM134haJF4Rm1HTb+G8u54ilnawOGmkmYYVNg+YEE88cc1nfD7w8/wAOfhhPLqEMj3YSS/u4YxuYEJkIPUhVA+ua79bO2jnNwltCs7dZAgDH6nGakcMFO1ckdBnH8qAOO+HXxEsviDY3s1vaSWk9o6iaF2DcMDtIPGc7T27V2FxG8sDxpIY2ZSokUcoSOCPcVk6Bosmnz3+o3piOo6g6tP5I+RFUYRFJALAZJ3EAksxwM4G3QBwg8DeIv+iha0P+2MP/AMTS/wDCDeIcf8lC1o/9sYf/AImu6ooAztD0+50vS47S81KfUZlLE3M4AdskkZxxwMCtA0GuFuvHlwl34i0tNGuI9Tsdsenx53G+dwdrKMDCggZY5AB5NAGD8LY21jx5458UMN0cl79htpPVI+v/AI6Iq9YFcz4A8Ljwf4QtNJch7lQZbmQfxytyxz3xwo9lFdMaAKmr3yaXo19qDkBbW3knbPoqk/0rzz4C6VJp3w1juJRh9QupLkZGDt4Qf+gZ/Gtbx48+vxp4M0yTbcX+DfTIM/ZbUHJY/wC02Nqjv83oa7CwsrbTrGCys4litreNY4o16KoGABQB5p+0H/yTP/t+i/k1d/4Z/wCRU0f/AK8of/QBXn/7Qf8AyTP/ALfov5NXoHhn/kVNH/68of8A0AUAatQXdrBe20ltdQRzwSqUkjkQMrKeoIPUe1T0UAeK638KNZ8Lam3iD4cX8lrPjMmmySZWT2Utww77X9M56CtHwv8AGuwuLsaT4vtH0LVoyEcyoyws3rzzHnHQ8e9esMMisDxL4M0HxdafZ9Z06KcgfJMBtlj/AN1xyO3HQ4Gc0AbkE0VxCk0MiSROAVdCCGHqCOtSV4jJ8MPGvgmaS48A+InmtOSdPvSAW9hkbGJ9fkxUsPxs1fw9Mtr448IXlk+4qbi1UhWI/uq/B+oc0Ae05orhdK+L3gbVcCPXoLdyMlLtWh2n0ywC/ka6e18RaHervtdZ0+dcZzFco38jQBp0VRl1rSoU8yXU7NE/vNOoH86wdR+JfgvS0ZrnxJp52HBWCbzmB/3U3H9KAOspD2ryDUvj7pMlx9j8M6LqOtXjcIFQxq3uBgufptFUG0v4t/EHA1G7j8L6W55iiyspUg9gd5PqGZQc9KAO08Y/Fbw14RWSGa6+2aivAsrUhnDejnonbrzzwDXBpovjz4vzJPrrv4f8MlspaIpDyjPXB5b/AHmwvcKa7nwj8I/DHhEx3CWpv9QTn7XdgMVP+yvRfYgbueprvF78UAYvhrwpo/hLTFsNHslgiODIx5eQ+rN1J/QduK2xS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBDcwR3Nu8E0SSxSKVdHUMrAjBBB61IgwCAMAdKdRQAUUUUAFFFFABRRRQAhpMU6igAFNfkYxnPanUUAQR28UUssqRIskpBd1QBnwMDJ79KmFLRQB5j8fIVk+F9w5JBiuYXGPXdt/rXc+Gf+RU0f/ryh/8AQBXE/Hn/AJJXe/8AXeH/ANDFdt4Z/wCRU0f/AK8of/QBQBq0UUUAFFFFACGmSwxzxtHLGsiMMMrqCCPQipKKAOO1L4V+CNWINz4cs0b1tgYPx/dlc1zd3+z94KuSfKGpWgP/ADxuQcf99hq9VooA8kg/Z48HQsWe51eYH+F7hAP/AB1BW9YfBnwHYOrroSzOv8VxNJID9QWwfyrvaKAKWn6Tp+k24g06wtrOIdEt4lQfkKuL75paKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA80+PP8AySu9/wCu8P8A6GK7bwz/AMipo/8A15Q/+gCuJ+PH/JK73/rvD/6GK7bwz/yKmkf9eUP/AKAKANWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5D4l+Fr7xl4MuNG06W3iuJZI3DXDMqYVgTkqCe3pXQ6NZyafolhZzFTLb20cTlOhKqASM89qvUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9k='] Multimodal Competition True Theorem proof Geometry Math English 24 "In quadrilateral $K W A D$, the midpoints of $K W$ and $A D$ are $M$ and $N$ respectively. If $M N=\frac{1}{2}(A W+D K)$, prove that $WA$ is parallel to $K D$. " "['Establish a coordinate system with $K(0,0), D(2 a, 0)$ on the $x$-axes. Let $W$ be $(2 b, 2 c)$ and $A$ be $(2 d, 2 e)$.\n\nThus $M$ is $(b, c)$ and $N$ is $(a+d, e)$.\n\n$K D$ has slope 0 and slope $W A=\\frac{e-c}{d-b}$.\n\nSince $M N=\\frac{1}{2}(A W+D K)$\n\n$$\n\\begin{aligned}\n& \\sqrt{(a+d-b)^{2}+(e-c)^{2}} \\\\\n= & \\frac{1}{2}\\left(2 a+\\sqrt{(2 d-2 b)^{2}+(2 e-2 c)^{2}}\\right) \\\\\n= & \\frac{1}{2}\\left(2 a+2 \\sqrt{(d-b)^{2}+(e-c)^{2}}\\right)\n\\end{aligned}\n$$\n\n\n\nSquaring both sides gives,\n\n$$\n\\begin{aligned}\n& (a+d-b)^{2}+(e-c)^{2}=a^{2}+2 a \\sqrt{(d-b)^{2}+(e-c)^{2}}+(d-b)^{2}+(e-c)^{2} \\\\\n& a^{2}+2 a(d-b)+(d-b)^{2}=a^{2}+2 a \\sqrt{(d-b)^{2}+(e-c)^{2}}+(d-b)^{2}\n\\end{aligned}\n$$\n\nSimplifying and dividing by $2 a$ we have, $d-b=\\sqrt{(d-b)^{2}+(e-c)^{2}}$.\n\nSquaring, $(d-b)^{2}=(d-b)^{2}+(e-c)^{2}$.\n\nTherefore $(e-c)^{2}=0$ or $e=c$.\n\nSince $e=c$ then slope of $W A$ is 0 and $K D \\| A W$.' 'Join $A$ to $K$ and call $P$ the mid-point of $A K$.\n\nJoin $M$ to $P, N$ to $P$ and $M$ to $N$.\n\nIn $\\triangle K A W, P$ and $M$ are the mid-points of $K A$ and $K W$.\n\nTherefore, $M P=\\frac{1}{2} W A$.\n\nSimilarly in $\\triangle K A D, P N=\\frac{1}{2} K D$.\n\nTherefore $M P+P N=M N$.\n\n\n\nAs a result $M, P$ and $N$ cannot form the vertices of a triangle but must form a straight line.\n\nSo if $M P N$ is a straight line with $M P \\| W A$ and $P N \\| K D$ then $W A \\| K D$ as required.' 'We are given that $\\overrightarrow{A N}=\\overrightarrow{N D}$ and $\\overrightarrow{W M}=\\overrightarrow{M K}$.\n\nUsing vectors,\n\n(1) $\\overrightarrow{M N}=\\overrightarrow{M W}+\\overrightarrow{W A}+\\overrightarrow{A N}$ (from quad. $M W A N$ )\n\n(2) $\\overrightarrow{M N}=\\overrightarrow{M K}+\\overrightarrow{K D}+\\overrightarrow{D N} \\quad$ (from quad. $K M N D$ )\n\nIt is also possible to write, $\\overrightarrow{M N}=-\\overrightarrow{M W}+\\overrightarrow{K D}-\\overrightarrow{A N}$,\n\n(3) (This comes from taking statement (2) and making appropriate substitutions.)\n\n\n\nIf we add (1) and (3) we find, $2 \\overrightarrow{M N}=\\overrightarrow{W A}+\\overrightarrow{K D}$.\n\nBut it is given that $2|\\overrightarrow{M N}|=|\\overrightarrow{A W}|+|\\overrightarrow{D K}|$.\n\nFrom these two previous statements, $\\overrightarrow{M N}$ must be parallel to $\\overrightarrow{W A}$ and $\\overrightarrow{K D}$ otherwise $2|\\overrightarrow{M N}|<|\\overrightarrow{A W}|+|\\overrightarrow{D K}|$.\n\nTherefore, $W A \\| K D$.']" ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAZQB6AMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAopu8Zx39KUtgZ60ALRSBs+lLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHLeOPC7+I9AvY7W9v7W/EB+ztbXkkalhkqGQNtbJ4ORnB9hWH8L9Yk8Y/CqOC6uZluo45NPuJkciRSBgMGPO7YynPrXomK8S8IW91YeOfHHgu2WRI7q9S43oMCC3cFpCD2Yq0aL7kHoDQB6B8N7O6sPBNrDdX0t6PMlaCeY5Z4d7eWT9U2n8a66o4okhhSKJVSJFCqijAAHAA9sVJQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHK3PxA0CHXbvQUuJJ9YtwALOOJi0rEAhVP3ScEZ5wM8kYONHRNF+wSXmoXQjbU9QkEt1InQYUKkanuqqAB0yctgFsVpLZWy3b3a28QuJFCPKEG9lHYnqRU2fagBR0ooHSigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGPIsaM7kKigsWJwAB3NeRfCn4iN4q8Y+KLGaT5J5zeWIbtEMR4/75EZx67jW/8AGbxEfD/w6vlifbdagfscXr84O/8A8cDc+pFfMvgjXn8J+NNM1hsrFbzhZ+Cf3bZVxj12luPUUAfbY5FFNVw6qyEMpGQQcginUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5zr3hU+OviHbPqUZPh/QV4jI4url8Mw90UBAffK/wB7Hn/gvwnp/jHXviZo9+gCtf5hlUDMMglnw6/y9wSO9fQewYIAAHJ6eteNfBzn4h/Ebn/mIf8AtWagDvvALX9v4Xi0jVlIv9KP2ORj0kRQPLdT3BQrz65HUGuqHSmCMBy3GTjPH+fWn0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAnevGPg3/yUP4jf9hD/ANqzV7P3rxj4N/8AJQ/iN/2EP/as1AHtFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJ3rxj4N/8lD+I3/YQ/8Aas1ez968Y+Df/JQ/iN/2EP8A2rNQB7RRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACd68Y+Df8AyUP4jf8AYQ/9qzV7P3rxj4N/8lD+I3/YQ/8Aas1AHtFFFFABRRRQAVVvtQttNtJLu7cxwRjLvtJ2j6AE1apjDOQQDnjB6UAYOk+OfDWu3YtdK1aG8mP8MIZsfXjjv1pmoePfDGk3zWWo6vBa3S/8sZgyt6cAjn2x1rzP4FxJpvivxxpGADBcoqjvhHlU/wBKzfjVqdqPiV4XEaFpdPljNzJ/CC0iuqfXAJPswoA92OqWq6d9vLOLbaG3eU2cf7uN36VQ0XxdoXiKaWLR9RivHhGZPKBIX6nGKb4q11fDfhy51AI0s4AitoR1lmchUQD3Yj6c1B4I8Lp4U8MWtgdrXbAzXkqgfvJm5c5HUAnA9gKAOkooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQtj0/Ogtj8K8d+JHxEuNL8eeHdHsJpYrSG/ibUZkJCucrmLPsjhiP9tfSgD2OiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooATvXjHwb/5KH8Rv+wh/wC1Zq9n714x8G/+Sh/Eb/sIf+1ZqAPaKKKKACiiigApMUtFAHgmjavB4O+Nvj2a6yIBaPdBO8jlo2VR6kmQgfWqnxd8P3Gl/DPSL++51WfVDc3zjtLKjMQPZdiqPZRXU3XgV9W/aBl1i4ib+zra0gu3JHyyyj5EX3wY93/APetn40aPc638PJbWzhaa5F3AYkQZJYuE/wDZ6AJrSceNPGltcj59J0FEk45WS+kTI+vlow/F/au+HSsHwf4ah8KeF7LSIjuaFN00neSU8ux+pz9Bit6gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooppfk8UAYfivXDoOivPDGJr2Z1t7K3P/Lad+EX6ZOT7A15F8YvCv8AYfwy0iVZGnvrbUDLd3LdZJZVYyOe/wB4Lj0GB2rs7S30/wCJfii/vbyJbrQNIc2VpGWO2a44MsvB7Daqnngk96zPif8AD7w5Z/DnWLvTdJgt7q3jWVJELcBXUt1OOmRQB6dpN8NT0Wxv1xi5t45h/wACUH+tXa4f4Saj/aXwu0KQtkxQm3b28tioB/BQfxFdwOlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAnevGPg3/yUP4jf9hD/ANqzV7P3rxj4N/8AJQ/iN/2EP/as1AHtFFFFABRRRQAUUUUAJtyaxPF3iGHwr4V1HW51DC1iLIhOPMc8Iv4sQPxzW5Xi3xnu5/EniPw98P7ByJLydZ7plGSicgE+wG9iPYUAR6d8VviHe2CXsPw/a5tpV3xSQeYAy+o4OfwqWP4ueOFBMvwu1Vs85VJl/wDaRr2G0s4LGygs7aMR28EaxRRjoqKMAD8AKnoA8ZHxm8VqCZPhdq5x1IaUAf8AkGlT456oqM118PdWi291dmH5mMV7JijFAHjiftA2qxM9z4T1eILySuGAHuTimx/tIeGiP3uj6sp9EEbf+zCvZcUFQwweR6EUAeQL+0d4SIy2ma2D7QxH/wBqVYh/aG8GSqS8GrQkdpLdDn/vlzXqTWsDAgwxEHsUFV20bTHUq2n2jKeoMCkH9KAPP4vj54FkTL3N7Ef7r2rZ/TIqxH8c/ALjLatNGfRrSX+imuvbwt4edCj6FpjIeqm0jIP6VWPgTwgQR/wiuh4Ppp8X/wATQBzy/G74esOdeKn0NnP/AESrMPxh8AzLuXxHCB6PDKh/IqK02+Hng11IPhfR/wALOMH+VV3+GHgh0Kt4a0/B7iPB/SgBsXxS8DzIWXxNYADs7lT+RAqwnxF8GSLuHijSR/vXaKf1NZ7/AAg8BOhRvDkGD6SyA/mGqsfgl8PcY/sAg+ovZ/8A4ugDfXx74PYZHinRMe9/EP8A2arEXi3w3cJvh8QaVIh7peRn+Rrk3+BvgBlIGjyqf7wu5sj82qvJ8BfAroVW0vEJ/iW6bI/PigDvotb0qdd0Wp2ci+qTqf5GrCXttIoaO4iZT0KuDXl8n7PXgt4yqyaoh7MtwuR+a4qs37OXhLaQup62D2zNEf8A2nQB68rqwBUgg9MGlzXjj/s4eGdhEer6urdiXjIH4bBSD9nywhg8u08UavDg5UDbtH4DH86APZM1U1HTrfVbCazuvNMEw2uIZniYjuNyEN+teTn4FX0cHl2vj7V4iDlcqSo/AOP51Xufg34stbGZ7X4l6tJJHGzJCFlQOQOBnzjjP0oA9N8O+EdE8KQvBotrNbQscmI3U0iZ7kK7EA8dQKn13wzpniWzNpqqXE1uRhokupYkcZzhgjANyB1zXGfBDXrjXfh2hvLmW4ubS6lgklmcu78hwSTyeHwPpXpY6UAYPh7wbonhSJ4tEt5rWFzkxG6lkTPHIV2IB4HI5reoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAE714x8G/+Sh/Eb/sIf8AtWavZ+9eMfBv/kofxG/7CH/tWagD2iiiigAooooAKKKKAIp7iO2hkmmYJDGpd3J4VQMkmvGPhNFJ4w8eeI/H93GREZTbWIccoOPyIQIvvuat/wCOPiM6L4GfT7d2+26s/wBmjVfveXwZCPwwv/AxXU+BPDS+E/BemaRtVZoog1wV5zK3zPz3GTgewFAHSUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJj370tFAHi3wdA0Lx9438L8pHFc+dbxnsgdlz+KtH+le014teE+Hv2nrWUYEOt2O1z2+4VA+u6Ffzr2mgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAE714x8G/+Sh/Eb/sIf+1Zq9n714x8G/8AkofxG/7CH/tWagD2iiiigAooooAKQtjtS1z3jbxFH4V8HanrLFd8EJEIIyDKx2oCPTcRn2zQB5jIf+Fg/tBKnMmk+GVyR/CZlP8APzMD3Ede3jpXl3wN8OPpHgc6rchjfaw/2l3f7xTnZk985LZ/269RoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDxf46K2kat4P8VIOLC/2yf7XKuo+mEf869nRgyKynIIyK87+N+ljUvhdqLiPfJZvHcpjthgGP/fLNXQfD/Vf7a+H+hX2/e72caSMT1dBsb/x5TQB0tFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAnevGPg3/AMlD+I3/AGEP/as1ez968Y+Df/JQ/iN/2EP/AGrNQB7LIzKjFEDOFJCk4yfTNef2/wAVYD8RE8GXejz29+ZPLMomV0B2bxjHPIx6da7+WVIYnlkdURAWZm6ADk5/CvmW6SS18d+BvFc6tHLr2oNdyZ7I1xhBn2iZPzoA+nd35VwXj34r6T4DvLayuLWa8u5lMjRQOo8tOgJz6nOB7H8ek8S6/B4a0Sa/lRp5crFb26cvcTMcJGo7kkj8MntXgGq6Dcat8Y/D+h6jIt1qbut7q8g5G8/vGjH+wsSIo/8Ar0AfROkX13f6dHc3untYSSAMIHkDsoIzzgcH2ryP4vzy+LPGvhzwBZuQJZRdXbIeUGCAfYhBI2D1yteyXVzBZWk91cSLFbwRmWV26Iqgkk/gDXjnwctZvE/irxH8QL5CGuZmtrUPztXgkf8AAVEag/WgD2W2torS2htreNY4YUEcaKOFUDAA9gKmoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDN17TRrGgalprfdu7aWAn03IVz+tecfs/ak118P5dPl4k0+9kjCk8hWAcZ/wCBM35V6wRmvF/hkP7A+MXjnw8w2rM/2yNR0Ch8qB/wGYflQB7SOQKKKTPagBaKaGBHH86Xdx0NAC0U3dzThyKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooATvXjHwb/5KH8Rv+wh/wC1Zq9n714x8G/+Sh/Eb/sIf+1ZqAO4+Jl9La+Br21tT/pepMmnW47s8zbOPopY/hXnXx3sU0TRvB9xaqRHpdx5EXqAFQj/ANF13Hi3QfFmt+KNEvLGPR/7M0q6Fz5Fxcyq9w44BOIiFwCcdeTmrXj3wY3jvRNM0+6dLcRXsdzc7GJ+UKwdUbAyTuwCQPXHagCpoZPjTxKfFMwI0XTy8Ojo3SV+klyfbqq+2T3rh/hF/wAVV8U/Ffi9xuiVjFbk9g7fLj3CRgfjXp/iLTta/wCEbk0bwrb6bbhrY2ySXE7xi3XbtBVVRskDpyPxrn/hT4L1zwHpVzpmpJpc0c9ybg3NtcuWGUVQuxoxx8vXd/F0oAp/HPxDLpvg6LRbPcb3WphboifeMYwXx7nKrj0au08F+HI/CnhDTNGTbvt4R5pHRpTy5+m4nHtivLrT/i4X7QU10R5mk+Gl2pxwZVbA/HzNxB7iMV7gOgoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8W8SY8PftJaBqOPLg1a2EMr9A8hDRgfpF+le01418f4ZLGy8NeJIBmbTNQwv1bDj9Yh+dAHstIRmo4J0uLeOaNgySIHVh3BGQaezhVZmIAAJJPYUAfPHxJubrwr8Rl1rQBdLY6Y9sNQhE7GNpJNzbdpOAGRQD7kdzXv1pd22qadBdwMJbW5iWRGxwyMMg/ka880LQYvG3w98RT3PB8SXk9zC79Y1VtkH5eWp/H3rJ+Dni42vgTV9M1XKXXhvzTJG/URDc2PwIdfbAoA0/B/h6zvviH4o1eMz/YLC8S0s7fzn8tJURTKwXOPvEfrXqI6VyPw206XT/AunPcD/S71WvrhscmSY7zn8CB+FddQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACd68Y+Df/ACUP4jf9hD/2rNXs/evGPg3/AMlD+I3/AGEP/as1AHs+OaNtLRQAmOK8K+P/AIv1vR7nTdH024urK3ngeWaeE7PN+bAQMOeMZI77hXuufavDfixFH42+J3hvwVb4zETNeSrjMasAWGccEImffK0Ac7+zvrN1D4q1DRxF5lvd232h2UDKMhABJ/u/MR9SK+lR0rlvB/w+0DwRDKukW8nnTKFmuJ5C8kgHTPYck9AK6ntQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVwnxg04an8L9ZQbRJAi3KE9ijBjj3Khh+Nd3Xi37Ro1D/hFNL8jH9ni8b7Tj72/Ydn4Y3598UAdl8Ktdttc+HejeVcRSXFtarbTRhwXjKfINw6jIXPPY1J8UvEEfh74fapceaqXE8RtrcFsEu428fQEt9BXzz8ExqJ+J2nGw+4EkN0SPl8nac5x74x74r6l1Hw3ousTJNqmkaffSIu1XurVJGA9AWBwOaAHaFpsWjaDp2mwEGK1t44VI/iCqBn8cZrw/wAf+Fb6y+LlvFphaKw8XKLe62em5TOPrtUNn/aNe82en2enWy21jawW0C9IoYwij8BxRPYW1zc21zNCjzWrF4HZeY2KlSR/wFiPxoAnRFRFVQFVRgADgU6iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAE714x8G/wDkofxG/wCwh/7Vmr2fvXjHwb/5KH8Rv+wh/wC1ZqAPaKKKKAKt/eQadYXN9dSCO3to2mlc9FVRkn8hXkHwVsrjX9a8Q+PtQQie+naC3B52LkMwB7gDYoP+ya0vjtrs1t4YtPDlgGk1DW7hYVjT7zRggkfUsUHuCa73wr4fh8MeFtN0aAhltYQrPj77nl2/FiT+NAG0OlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUU0EdxG0cyJJG4wyOoIYehB6ipaKAPEvAMEXhf47+LPD0EaQ2lzD9ohjVQAPuuqqMdAsj9Owr20dK8X8dA6B8fvB2t8CK+T7G3u5JjJP4Sp+Ve0DpQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJ3rxj4N/8lD+I3/YQ/wDas1ez968Y+Df/ACUP4jf9hD/2rNQB7RSZpa5L4k+J/wDhE/A2paijbbop5Nr7ytwCPoMt9FNAHnei4+IXx9v9XZfM0rw6nkwHjBkBIX65fzXB/wBkV7iOnNed/Bjwx/wjvw9tZJkIu9SP2yYsOQGA2Lnr93Bx6sa9EoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDx79oSykHhbS9at1IudOv1xIOqKwPP/AH0qV6vp19FqWmWl9AQYbmFJkI7qygj9DXM/FLS/7X+Gev2wBLLbGcY65jIk/wDZaqfB/VTqvwt0WRiDJBG1s2O2xiq/+OhfzoA7uiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBO9eMfBv/kofxG/7CH/ALVmr2fvXjHwb/5KH8Rv+wh/7VmoA9nzXiHxKd/HPxW0HwNCSbK1Iub/AGn1G4g+mIxwfWSvY9U1G30jSrzUbt9tvawvNIfRVBJ+v0ryb4Hafc6tda7461NT9q1S4aKEnsgO58e2dqj/AHKAPZFQIoVQFUYAAHAp1HaigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAIp4UuIJIZFDJIpRge4PGK8e+AMsljZ+JfDU5Jm0zUMt9TlD+sX617KRk/wA68W8O48PftJa/p3+rg1a2M0S9nkIWQn8xL+tAHtVFHaigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBO9eMfBv/kofxG/7CH/tWavZ+9eMfBw4+IPxGOD/AMhD/wBqzUAXPjtrU40XTfCmngvf65cqmwH+BWXA9suVH4GvR/DmiQeHfDmn6RbY8u0gWPdj75A+Zj9SSfqa8k8KkfED47ap4kJ8zTNDTyLQ9QzfMqkeoJ8x/wAVr3CgAHAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArxb4nk6F8YvA/iJcBZn+xysegQPtYn/gMzflXtNeTftBaa118P4r+Ph7C9jkLeitlMD8WX8qAPWaKztC1Max4e03U0HF3axz/APfSg4/WtGgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK838TfGvw54U8Q3ei39jqslzald7QRRlDuUMMEyA9GHagD0iivH/+GjvCH/QN1z/vxD/8dprftH+E8/LpetEe8UQ/9qUAexUV45/w0f4V/wCgVrH/AHxF/wDHKP8Aho/wr/0CtY/74i/+OUAex0V45/w0f4V/6BWsf98Rf/HKP+Gj/C3/AECtZ/79xf8AxdAHsdFeOf8ADR/hb/oFaz/37i/+OUf8NIeFf+gVrP8A37i/+OUAexd6+ZtO8T/8Io/xVvY3KXc199ltiDgiR5J8EfQBm/4DXbf8NH+Fv+gVrH/fuL/45XhEus6de+ObjU71Lk6Pc6m15NboAXePezBSM4zhiOvGT1oA+nPhD4Y/4Rn4e2KSIEu73/S589cuBtB+i7ePXNd/2rxMftIaAAB/YepcdgY8fzpf+GktA/6Aep/99R/40Ae10V4p/wANJaB/0A9S/wC+o/8AGj/hpLQP+gHqX/fUf+NAHtdFeOQ/tCaXcoXg8NazKg6tGqsP0NP/AOF/WP8A0Kut/wDfC/40AewUV4//AML+sf8AoVdc/wC+F/xo/wCF/WP/AEKuuf8AfC/40AewUV45N8f7ZUBh8Jay7ejgKPzGah/4aB/6kzU/++//ALGgD2mivFv+Ggf+pM1T/vv/AOxo/wCGgf8AqTNU/wC+/wD7GgD2mivFx+0ASwA8F6pk9Bv5P/jtWf8Ahd98engDXCPUBv8A4igD1+ivIP8Ahd9//wBE/wBc/wC+W/8AiKP+F33/AP0T/XP++W/+IoA9foryD/hd9/8A9E/1z/vlv/iKry/HLWlciL4caq6di8rqT+HlGgD2eivFP+F6a9/0TbUv+/8AJ/8AGaP+F6a9/wBE11L/AL/yf/GaAPa6K8U/4Xpr3/RNdS/7/wAn/wAZp8fxu8RzHEXwy1Rz6LNIf/aNAHtFFeN/8Lm8Vf8ARLNY/wC/kv8A8Yo/4XP4p/6JZrH/AH8l/wDjFAHslFeN/wDC5/FP/RLNY/7+S/8AxikPxm8VHp8LNYz/AL8v/wAYoA9lorxf/hcvi/8A6Jfqv5y//GaP+Fy+L/8Aol+q/nL/APGaAPaKK8X/AOFy+L/+iX6r+cv/AMZo/wCFy+L/APol+q/nL/8AGaAPaKK8bHxe8aMAR8KtYIPcCb/4zS/8Ld8a/wDRKtY/75m/+M0Aex1zPxB0v+2vh/rtiI97vZyPGoGcuo3p/wCPAVwX/C3fGv8A0SrWP++Zv/jNIfi340ZSrfCnWCp4I2zdP+/NAG/8ENU/tP4XachffJZvJbPz0wxZR/3yy16LXzN4C1/x14C0+9sbXwBq91b3NwZ1WS0nUxnAGMhOeAPyrrv+FtfED/omOpf9+Lj/AON0Ae10V4p/wtr4gf8ARMdS/wC/Fx/8bo/4W18QP+iY6l/34uP/AI3QB7XRXiyfFj4gu4UfDHUQT3aGdR+ZSrP/AAsn4j/9E0uP++3/APiaAPYKpajd3NpaPPa2LXjRn5oY5FV2H+zu4LdOCR9e1eWf8LJ+I/8A0TS4/wC+3/8AiaP+FkfEb/omtz/32/8A8TQB22h/Ebwzr05tYNQW3v1YpJZXgMEyOOqlW6ke2a6jdx059K+WPihf6rrlrHqmu+BG0a5VhGL7zCnmf7DAqN3HTuMdcZFc/wCE/iJ410K5gtNIv7m7RiFSymU3Ct7KpyR/wHFAH2Rnp7+tUdS1rTNGtvtGp31tZxc/NPKqZ+mTzWB4H13xPrVh5niPw2NJfaCr+cD5p7/u/vJ9Cc11E0MU8ckUqK6OCrAjgg9RQBStPEOkX2jf2xbajbSacAWNyJAEUA4JJPTHvUul6xp+t2CX2mXcV3auSBLE24EjqK8b+D+lpcT694bv5I7rTtD1KQpat86yuxKhmGSCq+WSBz8zE9QK9osNOstLtVtdPtILS2UkiGCMIgycnAHFAFqiiigAqJreJmJMaEnk5UVLRQBH9nh/55J/3yKPIi/55J/3yKkooAj+zw/88k/75FH2eH/nkn/fIqSigCP7PD/zyT/vkUqwxqcqig+wp9FABRRRQAnWvGfg4SfiF8RR6ah/7Vmr2bvXjHwb/wCSh/Eb/sIf+1ZqAPYLm7tbJA91cQwITgNK4UH8TUEes6VLIsceo2jO5wqiZSSc4wBn1NZXjy6tNP8AAut3d5HHJFFaSELIoILEEKOf9ogV5d8GrXRPCnw/l8V615Mc17cMsEjpukKKdqpGOWLFg3A9uOKAPZ5tW022maG4vrWKVeSkkyqw75wfrViC4guYhLbyxyxno8bBgfxFedTeDZPiBrNrrfiqw+yabag/YdKIHmuDj5p2HQnAwgPHQnqD6LbWlvZ26W9rBFBAgwscSBVUewHSgCXApaKKACiiigAxRiiigAxRiiigBMUuKKKADFGKKKADFJilooATFGKWigBMUYpaKAExRilooATFGKWigBMUYpaKAExRilooATFLRRQAVUn1OwtZvKuL22ikxnZJKqt+RNW68b/aJurWHwfYWpiR7y6vB5bbAWCKpLYP1ZR+NAHqqa3pUjBU1KzYscALOpJ/WrgcH09a5Dw38PdAsPCOnaZfaJp08yWyC4aW2Ry8mMsSSCfvZ+navPdU1Cb4QfEnTbCzuZj4U1UDNnLIzLandtYoSSQB8p9wSPQgA9z6iloHSigBMe9LiiigAqlqU91b2jtZWf2u46JF5gQH/eY9AO+Mn0Bq7TSmcnPJoA8sl+Elz4r1Yat471t76Zf9XZWIMVvCO6gn5iPcbScZPNd7oXhbQ/DVv5OjaZbWaEAMY0+Z/wDeY/M34mtfFLQA3H1OK4seJb/xDqWo6BY6PqmmvBM0M2pXEQSNYwcbojn5mYfd44yG7YPbU3b7980AeNwWN18P/jDeDStBvbrStXsI1hitI8okqYA3MeAMqxJJz8+fr7BbLOLSIXRjNxsHmGIELuxzjPOM1IU4xmnAYGBQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAnevGPg3/wAlD+I3/YQ/9qzV7P3rxf4Ossfj/wCI7uwVVv8AJYnAA82fk0AWf2hdZa08GWmjxE+dqV0AVH8UcfzH/wAeKVzGgQ3Hw4+KmkaV4nZLuxmslh065lHy2rNjOzsvzhlJ6ncCTzTPGviLR/FXx10C1fUrX+yNOZFecyDymcEyMN3TnCJ9RXd/GvTNI1jwBJc3F7aw3dsPtVhK8qgynjcq8/NuXHTvtoA9MA57injpXmnwn+Ilp4p8NWtnf30S63bgQyRySAPPjo6g8nI64716WOlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAGa8J8cn/hLv2gPD3h9fnttMVJZlPQH/Wvn6qsYr2nUdUstIsnvNQuobW2j+9LM4UD8+/tXz/8LvFGiXHxL8T+J9b1S2s3uQ32X7VIEBRnzgE4GQqoKAPozPFfPfxxY+IfiP4b8N2Y8y4ChWC/wmVwMH6BQx9jmvTtS+I1m8Dw+GbG88QagwxGlpC3lKexeUjao79TWR4B+HN7Ya7deMPFU8d14iuyXVI+Y7bIxwe5x8vHAHHPWgD04dBRQBgYooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBO9eMfBzn4hfEXjpqHH/f2avZ+9eMfBv/kofxG/7CH/ALVmoA9m2CgLg5zTqKAGlAQQefrzTu1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJj3oxzmlooATbzmjHvS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJ3rxj4N/8lD+I3/YQ/wDas1ez968Y+Df/ACUP4jf9hD/2rNQB7RRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACd68Y+Df/JQ/iN/2EP/AGrNXs9eQfCOwvLPx78QJbm1mijmv8xtJGVDjzZjlSeo5H50AewUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAh6/jSHg/hSn+tI3U/Q0AOHSijtRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9k='] Multimodal Competition True Theorem proof Geometry Math English 25 "Consider the first $2 n$ natural numbers. Pair off the numbers, as shown, and multiply the two members of each pair. Prove that there is no value of $n$ for which two of the $n$ products are equal. " "[""The sequence is $1(2 n), 2(2 n-1), 3(2 n-2), \\ldots, k(2 n-k+1), \\ldots, p(2 n-p+1), \\ldots, n(n+1)$.\n\nIn essence we are asking the question, 'is it possible that $k(2 n-k+1)=p(2 n-p+1)$ where $p$ and $k$ are both less than or equal to $n$ ?'\n\n$$\n\\begin{aligned}\nk(2 n-k+1) & =p(2 n-p+1) \\\\\n2 n k-k^{2}+k=2 n p-p^{2}+p & \\text { (supposing them to be equal) } \\\\\np^{2}-k^{2}+2 n k-2 n p+k-p & =0 \\\\\n(p-k)(p+k)+2 n(k-p)+(k-p) & =0 \\\\\n(p-k)[(p+k)-2 n-1] & =0 \\\\\n(p-k)(p+k-2 n-1) & =0\n\\end{aligned}\n$$\n\nSince $p$ and $k$ are both less than or equal to $n$, it follows $p+k-2 n-1 \\neq 0$. Therefore $p=k$ and they represent the same pair. Thus the required is proven."" 'The products are $1(2 n+1-1), 2(2 n+1-2), 3(2 n+1-3), \\ldots, n(2 n+1-n)$.\n\nConsider the function, $y=x(2 n+1-x)=-x^{2}+(2 n+1) x=f(x)$.\n\n\n\nThe graph of this function is a parabola, opening down, with its vertex at $x=n+\\frac{1}{2}$.\n\nThe products are the $y$-coordinates of the points on the parabola corresponding to $x=1,2,3, \\ldots, n$. Since all the points are to the left of the vertex, no two have the same $y$ coordinate.\n\nThus the products are distinct.\n\n' 'The sum of these numbers is $\\frac{2 n(2 n+1)}{2}$ or $n(2 n+1)$.\n\nTheir average is $\\frac{n(2 n+1)}{2 n}=n+\\frac{1}{2}$.\n\nThe $2 n$ numbers can be rewritten as,\n\n$$\nn+\\frac{1}{2}-\\left(\\frac{2 n-1}{2}\\right), \\cdots, n+\\frac{1}{2}-\\frac{3}{2}, n+\\frac{1}{2}-\\frac{1}{2}, n+\\frac{1}{2}+\\frac{1}{2}, n+\\frac{1}{2}+\\frac{3}{2}, \\cdots, n+\\frac{1}{2}+\\left(\\frac{2 n-1}{2}\\right) .\n$$\n\nThe product pairs, starting from the middle and working outward are\n\n$$\n\\begin{gathered}\nP_{1}=\\left(n+\\frac{1}{2}\\right)^{2}-\\frac{1}{4} \\\\\nP_{2}=\\left(n+\\frac{1}{2}\\right)^{2}-\\frac{9}{4} \\\\\n\\vdots \\\\\nP_{n}=\\left(n+\\frac{1}{2}\\right)^{2}-\\left(\\frac{2 n-1}{2}\\right)^{2}\n\\end{gathered}\n$$\n\nEach of the numbers $\\left(\\frac{2 k-1}{2}\\right)^{2}$ is distinct for $k=1,2,3, \\ldots, n$ and hence no terms of $P_{k}$ are equal.' 'The sequence is $1(2 n), 2(2 n-1), 3(2 n-2), \\ldots, n[2 n-(n-1)]$.\n\nThis sequence has exactly $n$ terms.\n\nWhen the $k$ th term is subtracted from the $(k+1)$ th term the difference is $(k+1)[2 n-k]-k[2 n-(k-1)]=2(n-k)$. Since $n>k$, this is a positive difference.\n\nTherefore each term is greater than the term before, so no two terms are equal.']" ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIANYFVgMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKAGhuT7Uua89+LmpeItG8F6hqukanFZJbeWCFg3SuHdUOHJwnLdlJ46iug8BzzXXgDQJ7iV5ppLCFnkdtzMSgyST1PvQB0dFFFABRRRQAUUUUAFNLfSnVxHiKPXfE+s3OiaNqsmj2NnGovb6FN0zyuAwiTkbcIQxYc/OoHegDtQ+R2/DmnDkV8/eKLbxh8Ib6z1y28TX2taPNMI5oL2Rm5OWwckjkA4YY5/X3u0uY72ygu4s+VPGsiZHOGGR/OgCaiiigAooooAKKKKACkJpawPEaazeC303R7g2TXBY3F+Yw/kRjGQoPV2zxngAMewFAG7u6cU6vDvHvhnXPAGkL4q0PxlrVxJbyoLiHUbnzVkDHHAwBjJHBHQ9RivZdIvW1LRbC/eLymubeOYx/3Cyg4/DNAFyiiigAoopMnNAC0UDkUmTnpQAtFA6U0tigB1FA6UUAFFFJn8qAELYpRyAa5LUdduNT8Vt4W0eXyngiE2p3qgE2yt92NO3mN6nhVGcE9OpgiS2t44E3bI1CDexY4AwMseSfc0AS0U3dg9KXPrQAtFFFABRRRQAhOO1N39eK5rxXe6u0lnougSpBqN9vZrqRN62sCY3ybf4myyqo7luuAa828W+CPGPhTTJvEmkeOdWvZ7MefcQ3LsVZBkswXJUgDnaQeM46cgHt5YjpjPv3pQTjt71yPgnXv+E78AWeoXAeCa4RorjyZGQrIrEEqQcjOMj0yBUmh69PB4iufCusSh7+GIXFpckAfa7c8ZI6b1PDAdeoAHAAOrooooAKKKKACiiigApM0tct4h8Rzxa3ZeGdI2HV71TK8jruW0twcNKwyMk9FGRkn8wDp92OtOqpY2gsrSOATTTFfvSSvvZiTkkn3J6AAegFWcn6UAOopM0tABRRRQAUUU1ywUlcZxxmgA3HnijdjrXjvjDWfE9h8WfCemT60P7PvLhJDa2sRiXAfBDNkl/zAPoK9haJXjKEsARj5WKkfQjp+FADs+lKOlchbavN4f8UQeHNTneW2vlZtLu5WJcleWgkbuwHKseSODkjJ6+gAooooAKKKKACiiigAoopM+vrQAtFJupN2R2oAdRRRQAUUUUAFFFFABSZ9BmlrmfFPiR9KmsdK06NJ9b1SUxWkUn3UAGXlf/YQc46k4A65AB0YfJwOafVLTrFrC2EclzNdTMd8s0zZLsepA6KPQDAAq3n6YoAdRTS3pTqACiiqltqVleXNxb2t5bzzWzBJ445QzRN6MB908d6ALdFFFADd3OMUuTXFfEy91/TPB2p6jo2pQWJtYg5YweZI3IBwxOF4P90n6VN8Lby51D4baLd3lxLcXEsTtJLKxZmPmNySetAHXb/mx/SnVy/iiW+0KOXxHYeZPFbKGvrEtkTQjqyA/dkUZIx94DBH3SN3TtQttV063v7KZJra4jWSKRejKR1/+tQBbooooAKKKKACiiigApM0tct4h8Rzxa3ZeGdI2HV71TK8jruW0twcNKwyMk9FGRkn8wDp92OtOqpY2gsrSOATTTFfvSSvvZiTkkn3J6AAegFWcn6UAOopM0tABRSZ61VstSstSWVrG8t7lYpDFIYZA4Rx1VsdGGRkH1oAt0UDpUNzcR2ttLcTMFiiQu7dcKBkn+dAEm7mlDZ7V5dc+EvFfju2/tPUPFN7ocU432unWQwIEPK+aQwLtjGQeh6Vk/D7xF4l8P8AxFufAPie/k1HMZktLqRizHC7wdx5IK56k4INAHsxbAzj6CnVyPia+ufCbt4gEk82kllXUrdiX8pThRNGDyMcblHBGTgEEnqYZ47iFJYXV43UMjqchlIzkH0xQBLRRRQAUUUUAFFFFABRRWP4l8R2fhbQ7nVb4kxRABETlpXPCoo9SaANYtjPHSnDkZrE0G01PyRf61Kf7QuFBe2jf9zbDqI1HcjPLnJJ6YGANnd+VADqKaGyM04HIBoAKKKqNqVkmoppzXlut86eYlsZAJGTJG4L1I4PPtQBbooooAQtg4pN1cnr2la14k1CbT4tUu9G0iAASTWeEnupGGcK5ztRQQMjknI7c+e3sGu/DP4j+G7W18Qalquj63cC3a21CYyMh3Kpb043g5AGcEH1oA9uLEA5p1ZOtafd3cAl068e1v4MtAxJMbn+7InRlPT1HUEHmq/hXxND4n0k3KxfZ7qCVre8tWbLW8ynDIfXnoe9AG9RRRQAUUUUAFFFFABRRRQAUzcc4xVPWdYs9B0i61TUJRFa2sZkkbqceg9STgAeprJ8NtqOp2y69q+63e5j3W9irYS3hbBG/wDvSEYJJ6dBjnIB0e7/ADijcfQfnXmM/h/xJ8Qrf+1JvE97oelzEvY2dku1jF/DJI2QSWHzbe2RWD4Q1zxP4L+JsXgfxFqcmq2d5GXtLmVizjglWBbJwdpUqScHpxQB7dRTQcccDtS7qAFopu7I7U6gAooooAKTNLVe8F01uy2bwpOeFeVSyr74BGfpkUAT5pu/gk8Ad68i8A6xr998YPE+ma1qz3qWMBjiVV8uJfnXBEeSAceuT7mvUtRsBqFm8AuZ7aTIZJoHw6MDwfQ/Qgg9CCKAL1Fc14Y8SSalcX+jamqRa3pjhLlEGFlQ8pMn+yw5x/Ccg+/S0AFFFFADd3zYwaMnPTiuT8VXGt6jqMPh7QLxNPleI3F5fsgcwQ5KqqKersQ2D2CN7V5n4x8MeMvh3Y/8JRpPjLU9QhgdftUF67PwSBuILEMMnHqM8GgD3qisfwvrqeJPDGm6wkflC7gWQpnO1v4lz3wQea1txIzxQA6ikzS9qACiiigAooooA8++Ngx8I9cPoYD/AOR462vh3/yTjw5/2DoP/QBWL8bGH/CpNbUnqYAPc+fH/wDr/Ctn4eMB8OPDfIP/ABLof/QRQB1FFFFABRRRQAUUUUAFM2gbuBz1p9c34r8WWfhuCGN57cX92xjtIp5hGrMByzsfuooOSfoBkkAgHK/FSzk8XXmjeCbLcZbm4W9vXT/lhbJkbj25JIHqVx9PSoIY7a3jgiULHGgRVHYAYArjtC1XwnosM883inSLnULtvMvLxr2MGVwOg+b5VUcBR0HqSSek0fWLbW9PW+siXtXZlikx/rFViu4f7JIOD3GDQBo0UUUAFFFFABRRRQAVG5wGO0nAPHc+341JVW41GytbqC2uLu3hnnbbDHJKqtIe4UE5PUdPWgDxf4p+I/E8N3Yzav4Q3+FLa5WWWI3Afz2HC+YUJ2AHkAggnGd3QewaFrVnr+hWeq2BJtrqISRggAr6qccZByPwrN8dTWUPgTXGv9rW5spVKtzuJUhQPcsRj3xVL4XaLdeHfhto+n3yNHcpG8rxsMFC7s+0jsQGAPvQB2NFFFABXA+GD4//AOE+1oeIEA8OAzf2fjyOR5o8v7h3/cz978ea76kKg/zoAWuB11vH/wDwsjTRpC58LYj+2H9x13Nv+98/THSu+pMUALXCfEk+PBb6f/wgwBl3v9qz5P3cDb/rPfPTmu7pNoNADYt/lJ5n39o3fWn0UUAFQ3Mq21vLO5OyNC7Y9AKmqC6h+1Ws0B6SIU/MUAeW/AiSTVNA17X7o5vNS1WRpH9QFUgfQFmx6V0fxR1fUfD3ga91fTNTayuLfaFxCsnmFmCgfMDjr1rmv2fy9t4Q1XS51KXNlqkiSIRgj5UH8w35VF8bWm1u58MeDbR8Tape75COSiL8uSPT5mP/AACgDT0q98Saj8P0Lay9pNb2hnv9VMKvIZSC5iRcBcJnazY4KlRyCRe+D2s6xr/w+t9R1u4NxO80qxzMoDNGDgZx15DD8BVf4q3UPhb4R3djYrs85EsIF6lt5wwPqSock9zXR+DLO20bw3Y6DEQZdOt44rjap2iRl3MM4xkkkkdQCCeooA6LdzilzVLVdLg1nS57C4knjhnADNBKUccg8MOR0rk/+FUaH/0Etf8A/BrL/jQB3OaWuF/4VRof/QS1/wD8Gsv+NdnZWiWFhbWcTSNHbxLErSOWYhQACSeSeOTQBKUUtux83TNch8SdTax8F3tjbRtPqOqqdPs7dOWkkkBXj6KSxPbFb2ua7YeHdJuNT1KdYLaBcknqx7ADuSe1cno+taDc6mfEGt69ow1N1MVvb/b4mSyiP8CnPLnqzd/ujgcgG54H8Mr4R8H6dowcPJBHmVx0aRjuc/TJOPYCuE+Mt0+ha94M8SQt5clpftFIw6sjbSy/TaHH4mvRtK8S6Zrl1cxaZdR3kVsUWS4hcPFvbPyBh1IABPb5gOtebfHW3bVF8J6LFk3F9qYVAPoFJ/8AHxQB7COlFFFABRRRQAUUUUAJnn6V5J8MLo6/8SvHmtznc8c6WcBP8MQZxj8o1P1r1s+3U14/8JYW0nx78QNImG2UXqzRjuyFpCD/AN8sh/GgD0Pxjc3On+E9SvrW/NjLaW7ziXylk5VScYYEcnFcT8PdW8U+JPCMQm1MtqF2zT3F9JEv+ixHiNEQAKXYLu5+6GBOcgGX45apJa+AhpVt811q11HaogPJGd5x+QX/AIFWpeW0Pw5+EN0lu372ysCvmgYMk5XaG/76IH0wO1AGX8HNd1vXbXX21TUn1G2tb8wWty6BS4Gc9PYofxr04cDA6CvPfhBZ22i+A9K00Efbbm3/ALRmCqeFlb5CfQlcAZ67T6V300C3EEkTlgJEKMVbBAPoe1AEmaM1w3/CqND/AOglr/8A4NJf8aP+FUaH/wBBLX//AAay/wCNAHcbqWs/RNGt9B0yOwtZbmWKMsQ1zMZX5OeWPNX8kcDHHvQB418SRj42eAR/00H/AKMr2evF/iS6n42eAuRuDqcen7z/APXXs27nA5oA8v8AjxFLF4HtdVtnMd1puoQ3EUg+8p5HH4kH8BXo2k3y6no9jqCjat1bxzAegZQ39a87+PU4T4aSwc7rm8hiRQMljktx/wB8133h6xfTPDWlWEv+stbOGFvqqAH+VAGlRRRQAUUUUAFFFFABXmnxh17XPDuh2lzoOrSW13c3SWqQJBHIZCwY8FgSOnbvXpdeNfEW3PjD4veF/Cis/wBmsla9uyhxgZzjPY4QAHtvFAGn4o1HXo/h3danY661nb6fbKEvEjV5dQlGFLcjCIW4GBls54GN3WeAL7UdU8B6Nfas/mXtxbLI8mMbwc7T+K4P41x/xqlaXw1o/hay2xTazqEVsiAcCNSOg9Axjr0bSpbP7Etvp5zbWh+yqcHHyDBAPfB4JHcEdQaANCiiigAooooAKKKKACvI/Dl22vftCeJLif549KsfsdsrD7nzLuI+p3/99V65XkHhCBtK/aE8XWcoK/bLUXcTYwHUlDx+LEf8BNAHqOqBxply0d6bIqhY3AQNsA5JweOleWfDHxL4r8S6Dcy3Oo/aNRvZiYppYlEdnbrlfM2qACzNvVVzyUJ6A103xf1oaJ8M9WkVgst0gtI+epk4OP8AgO4/hSeDdIh+H/wtSS4X99BZte3hzyXC7iPwAC/h70AZHw01jXr7xn4u0vUNXk1Ow0ycRRzSxqrCTcwIGAB/Cc/hXqY6V5V8Eo47PwjHcXT7tT1y5nvmG05KA7cnjgZHGe7V6oOgxQBmTeJdCt5nhm1rTY5Y2KvG90ispHBBBPBrzT4ea7pFv468fzXGq2UUU2oRvE73CKJB8/IJPI6fnXX33ws8Fanf3F9eaFFLc3EjSyyGWQFmY5J4b1Nec+Bvh/4U1Txl42sr3R4prfT75I7SNpHHlr8+QMNk/dHWgD2mx1fTtSD/AGC/tbvy8b/ImV9uc4zgnHQ1drC8O+DtA8KfaP7E05LP7Tt87Y7Nv25x94npuP51u0Acd8VQP+FX+If+vU/zFQ/CH/klWgf9cW/9GNUvxVYD4YeIMkAfZsf+PDiofhCf+LV6DjnEL/8Aox6AO0kjSRGRwCjAhgRkEdK8o+BF7Mmja54flct/ZF+0ceecKxPH5qx/GvWc+/WvIPgXA0x8W60ufIv9TIjbHB27myP+/g/KgD2GiiigAooooAKKKKAEzz9K8k+GF0df+JXjzW5zueOdLOAn+GIM4x+Uan6162fbqa8f+EsLaT49+IGkTDbKL1Zox3ZC0hB/75ZD+NAHofjG5udP8J6lfWt+bGW0t3nEvlLJyqk4wwI5OK4n4e6t4p8SeEYhNqZbULtmnuL6SJf9FiPEaIgAUuwXdz90MCc5AMvxy1SS18BDSrb5rrVrqO1RAeSM7zj8gv8AwKtS8tofhz8IbpLdv3tlYFfNAwZJyu0N/wB9ED6YHagDL+Dmu63rtrr7apqT6jbWt+YLW5dApcDOensUP416bnAwO1effCCzttF8B6VpoI+23Nv/AGjMFU8LK3yE+hK4Az12n0r0IDgZ60AZDeKPD6OyNrumKynDKbuMEH6Zrzn4P67pFlpPiMXeq2MBk124kQSXCLuUhAGGTyDg8+1dRL8JPAksryv4fhLuxYkSycknOfvVwPwt+HvhTXtN12TVNGiuHt9Znt4S0jjZGqphRhu2Tz70Ae02WpWWpRs9jeW90inaWhlVwD6Egn61ZZFdSGGVIwQR1rJ8P+F9F8L2ctrotilnDK/mOiMzZbGM/MT2rVLMM4AoADx2GBXmPhfTf+En+KereN8Z021T7Bp0n/PZlGHkHqudygjg59q0te8U6TrGqXHh7+3bGwsoDs1K4e8SN2PeCPJGDg/O/wDCDtHzZ26q+LvCmm2dvZ6bqWmzHKW9rZ2NwjsxJAVVVT0568ADJ9TQBs65YLqegajYMMi5tpIcH1ZSP61wXwI1mbVfhtDFMxdrC4ktQT/dAVlH5PgfSvRNQuVs9OurqRtqQxPISewCk/0rzH9nzTpbL4dSXEqkC8vpJY8/3Qqp/NWoA9YooooAKKKKACiiigAryP4j3bal8WfA3h1yfsyT/bpE7OwJ25Htscf8CNeuV4/8QYW0/wCNvgXWHH7mcmy3ejbiB/6NH5GgD11lyGAbBx1xnFeQaH4o8RS/E/XtPk1STU7LTiLa1tvLjiEtw+OGKrkKoWQlucBc4P3T6tqV9Fpel3eoTnENrC8z9uFBJry34FaK76Nf+LL4br3V7mRkY/wpu+Yj03MDn12igBx1XxTp/wAbtI0KbXWvra8s2ubu3ECxxQjD4CjkjBQYJOeec5r1ztXjvg28t9R+K/jHxRcyYihnj0izwNxZs7TtAyT/AKsH6MSeM49i7UAULzXNK06byb7U7O1lKhwk86oSuSM4JHGQfyry7Udc0iT9oDR71NUsWtU0V0adbhCgbfJ8pIOAeR+dd5r3gHwx4nv1vtZ0mO7uVjESyM7ghQSQOCO5P515bqHw+8KQ/G7S9DTSIl0yXSXuJLfzHwzhpBuzuz0A79qAPZLXxBo9/MILPVrC4mPSOG4R2P4A1pVy+jfDrwn4f1OLUtL0aK1vYwwWVZHJG4EHqSOhNdRQBUvppoLSWS3tWupQPkhRlUufTLEAV4dfeNNV0T4qWWpeO/DP2S12mDT5Fl8xbQE4Zww+V2II3dCBjGOh9w/tCye+kslu7dryNQ0kAlUuinoSuc4rz741WK6x4VsdGghE2q31/GllGB824Z3t67QpOT0APOKAPSxhlBzkHng8V5HoN2+jftE+I9JVsWmqWqXOwdPNVFOf1k/OvWLWL7NaQwbiwjjVNx6nAxXklhbvqX7TWqXEYzFp2nKsjdgzIgA+vzH8jQB7DTd3JFOpjDOQRkehGaAF3A8gg06uB+G/w6k8ALqKyay2pfbTGRug8vy9u4H+Js53D06V3wzgZ60AN3dfanVwNr8OWtvipceNTrBdZQy/Yvs+AoKBPv7vUZ+7XfDoKAGlsZH5U6uB8XfDl/FHjPRvEC6wbQaa0ZNuLff5u2Tfy28Yz06Gu+HSgDyP413LXN54R8NAnydV1RPPGfvKrIoB9syZ/AV6z5a7cDoe2K8i+NULWuu+BteZf9HsdVCyn6vGy59OI2r18E0AM+4OAAB0ArzHT9NPi74yz+JlQnS9CgNhbSdRPcfNvI9QvmMM+oFbPiLxbp9zq0vhuDXbLTSgH9oXcl0kTwqR/qo9x/1jf3uiDn72BVtPFfg3QNGjtNP1TTGigQRwWdpco7uf4UVQcliSPzye5oAwvjBr2ueHtCs7nQdWe2u7q6S1SBII5DKWDHgsCR0/WoPFGo69H8O7rU7HXWs7fT7ZQl4kavLqEowpbkYRC3AwMtnPAxuy/iJAfGPxd8LeFVZxbWaG+uyhIIB5xnscIAD23itD41StL4a0fwtZbYptZ1CK2RAOBGpHQegYx0Adh4AvtR1TwHo19qz+Ze3FssjyYxvBztP4rg/jXS59xVDSpbP7Etvp5zbWh+yqcHHyDBAPfB4JHcEdQai17QLXxDp4srua7hjDiTNrO0TZAPGV5xzQBqZpC3NcP/wqnQ/+glr/AP4NZf8AGj/hVGh/9BHXvX/kKS/40Ad1SYpegpCTngUAeM+AR/xf3xuPSM49vnSvZ8V4v4BYH4/eNipBBjbkezpn8q9ooA8i8X3Umg/HvwpfQnbHqdsbGdRxvG4gZ/Fk/wC+RXrtePfEG3fVvjf4FsIsl7Ym8fHZVfdk/wDfoivYaACiiigBuwbi2PmPeuB+K80t34aTwzp0Ym1XXJVghi9EVgzu3ooVevv3rp/Eniaw8MaYb2/kUbmEcMZcKZpDwFBJAHuTwBknArndE1bw7bXc2sat4m0SbWbpQsjrfR7II88Qx5bIUdSeCx5PYAA6LS9DXRPClpolhctCLW2WFLgICQQOX2njk5P415r8NvFfifxGurSzakNQlmuTBZGWFUit4U+9M6qBnO5QFzliCMgAsOl8X+N9PHw68Rapplys0VvG1pFcxsCkkrgL8hH3tu8cjjg+hqH4U6BD4R+G1rc3Xyz3EH2y5dj9xSCyr9Apzj1LHvQBm+BtX8QyfFfxLoN7rUuq6ZYQKfMkiVCJTs4AUADrIP8AgIr1avIfgvKj6dqWu3hxqHiPUZpY4wOWRMn8AGLDPQZA6kCvXgcgGgAooooAKKKKAMHxD4N0TxVF5WswXFzDkN5P2yZI8jodiuBn8KsaJ4a0zw7bLbaWlzFbou1Inu5ZVQewdiB+Fa1FABRRRQAUUUUAFFFFABXJ698NfCfifU31HWdMku7plCb2u5lAUdAArgAdTgDqSe9dZRQBwH/Ck/h7nP8Awj//AJOT/wDxddvZWNtp1jb2VpGIra3jWKKMEkKqgADnnoKsUUAFFFFABRRRQAUUUUAFc34r8CaB40jgXWbV5Hg3eVJHKyMmcZHHUcDrmukooA57TvBmkaeYGc3t89u26FtQvJLkRkdCquxVSPUAGugx70tFABRRRQAUUUUAFFFFABRRRQAUUUUAFJgGlooA4W50z/hEPGd54jtkY6RqqKupogybeZfuXGO6nJDY6ZDdM46F/Dei33iGz8TPbCbUreHy7e5EzEKjA9BnachjzjvWwVBOaSONIo1jjVURAFVVGAAOgAoAyfEvhbSPF2ljTtZtjcWyyCUKHZCGGQDkEdiR+NXdP0yz0qyjs7G3WG3jB2ovv1JJ5JJ5JPJPWrdFAAOBiiiigAooooAwfEngzQfF8cEeu2T3ccBLRp9okjUE9ThGAJ9z059a57/hSfw9wf8Ain+vpeT/APxdd/RQBh6RoWh+DNGkttNt47DTkZppC0rEAkcsWck9AO/GBWFp+jz+I/Gy+LdQgeK0soWt9Jt5VIYhvvzsp5Ut0AODgZIFds0aOCHUMPQ80uwZzQA4dKKKKACiiigAooooAK4rX9Gm0vxbbeM9MgeV0hNpqdtEuXntyQQ6Du6EA46sOByAD2tIVBOaAMC50Tw/4sl0nWbiFL02T+fYzJM+1GJB3AAgHlR1HatDW9EsPEOj3OlanD51ncgCSPcRnBBHI54IBq6sSINqKEBJJCjHJOT+Zp9AGZofh7S/Dmmrp+lWogt1xxuLMxAwCWbJPAAGTwAAOAK06KKACiiigApCuepNLRQByV/8M/Cup6pHqd7ZXc99Ft8u4bUrnfHtORtPmfLg8jGOa6SGCKyttivKY0yd00zufxZiTVmmsiuCGAIPUHnNAHC3OmN448V6bfSqR4f0eTz4C2MXtzjh1H/PNMHDfxEnGRzXeDpTdgwB2HGKdQAUUUUAFFFFABRRRQAVkW/hjR7XxJd+IYbTbqt3EIprgyOdyDbgbSdo+6vQdq16iuLmG1t5bi4ljhgiQvJLIwVUUckkngACgDG8ReDdD8VSWT6xaNO1k5eArM8ZUnGeVI64H5VsW9rBa28dvbxrFBEgRI0GFVR0AFR2Oo2mp2iXdhdQXdq+dk0EgkRsHBwwODyCPqKtUAFFFFABRRRQAUUUUAFcd4s8PzvremeKtJjL6ppe5ZIRgG6t2zvjGf4hklcnGeD147GkwM5oA5y90rw74+0q0e8gF9aRTCaNPNdNkgBGGCkcjJBU9OQQK2r/AE+21TT7mxvI/NtrmJopUyRuVhgjI5HB7VYWNFJKoAWOTgdfrTqAMXw54U0fwpYGz0e18iNiCzFy7NjplmJOOTx0GTjqa2qKKACsvTfDulaRqGo39jamK51KQS3b+a7eYwzg4JIHU9MVqUUAFFFNLHoMZ9KAMfX/AAnpHieAwavFczwMAGhW8mijbByMqjAHn1HYego0HwppHhm3W30mK4gt1BCwtdyyRrk5OFdiBz6CtqigDmPFmoXktlNoehjfq95GYw+fltI2yDNIf4cc7R1Y9AcHGj4Z8PWfhbw7ZaNYg+TbR7dx6ux5Zj7kkmtMRIGZgoDMckgdTT6ACiiigAooooAKKKKACuK1/RptL8W23jPTIHldITaanbRLl57ckEOg7uhAOOrDgcgA9rSFQTmgDAudE8P+LJdJ1m4hS9Nk/n2MyTPtRiQdwAIB5UdR2rQ1vRLDxDo9zpWpw+dZ3IAkj3EZwQRyOeCAaurEiDaihASSQoxyTk/mafQBmaH4e0vw5pq6fpVqILdccbizMQMAlmyTwABk8AADgCtOiigBMe9ZmieHdL8OwXMOlW32dLm4a5mHmM26VgAW+YnGcDgccVqUUAFRTQJcQyRPu2yKVO1ipwfQjkH3FS0UAcAfgp8PiSToBJJySb246/8Afyr2j/CvwXoGrQappuiiG8tyTFI1xLJtJBHRmI7ntxXY0UAcd4yN34gtZvCujuVmu8RX90BlLOAjLZPd2U4Cjn5snA5rpdK0u10bSbXTLKPy7a2iEUa5zgAY69zVkRIudqgbjk4GMmn0AFFFFABRRRQAUUUUAFc5408Lx+K9BazEnkXkMi3FlcgZMM6fcb6dj7E10dJt5oA5q0mtfF2hXOk61atFdeWIdSsS7IVJ7gqQSjYO1geR7g42tL0yy0fS7fT9OhENnboEijBJ2r9Tkn6k5qz5Ue/fsXcBtzgZx6U+gDndG8C+HdA1W61PTtPEd3cu0jyNIz7S3LbQxIXPt9OnFdFRRQAVly+HNKm8RweIJLYtqkEBt45/Mb5YySSNudvc9u9alFAB0FFFFAHIa18NPDeua+NdmhurfVMgm5s7l4XJA2g5U9ccZHNbOneG9M0yc3EUUk10yeW1zdTPPKV/u73JIHsMD2rWooAzNY1eLSbTzDG9xcOStvbQjMk7/wB1R/MngDJOAKxvBPheXQbW9v8AUmSTWtWuDdXzocqrE/LGp/uqDgfjXUmJGfeVBbBAOBkA9f5D8qdj60ALSbQaWigBNoAwOB6CloooATAzmloooAMUUUUAYnirw5aeLPDt5o97xHcLhXHWNxyrD3BAqr4a1K4uLL+xtZ/d6zaR+XOM4+0KBgTRnPKtxkjlWJBwRXSY+tNMSNIJCo3qMBscgUAcLJ8GPAE8jzS6E0kkhLO7X1wSxPJJPmVY034S+B9I1G21Cy0MR3Vs4kic3MzbWByDhnI4PPSu1ooAyLbwvo9p4juvEMNpt1W6iEM1wZGO5BtwNpO0fdXoB0qDxF4N0PxVJZPrFo07WTl4CszxlScZ5UjrgflW9RQBDb2sFrbx29vGsUESBEjQYVVHQAVNRRQAUUUUAFQ3VrHdwNDI0oRupjlaNuvZlII/OpqKAOSsPhp4V0vVJNTsrK6hvpSTJcLqNzvkycncfM+bJ55ror2+t9Ms3uLqTy4o8DJBYk9AAByxPQAck1bpjxo5BZQSDkEjofWgDjvC+g3U/iXUfGOsQmG/vkEFpbPgm1th0U4/iYjcfTOK7Sk28YyaWgAooooA5vxJ4C8NeLrmK413T3u5IU2R5uZUVRnJwqsBn3xn8qxP+FJ/D3Of+Ef/APJyf/4uu/ooA5qfwB4YufC9v4al0zOj28nmR2yzyLhsk5LBtx5YnknrW9NZwXFnJaSxhreSMxNH0BUjBHHtU9FAGD4a8G6F4Rtnh0azMAf7zNIzsR1xlicDJzgcZ5reoooAKKKKACiiigAqtfahaaZaSXd/dQWttHjfNPIERcnAyx4GSQPxqzXn/wAa+PhFrpHXNv8A+j46AO8t7iG6tori3lSaCVA8ckbBldSMggjggjvUlc/4F/5J74a/7BVr/wCilroKACiiigAooooAKKKKAEJxnp60teP/ALRox8P9PI/6Csf/AKKlr2CgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiuD+LPjXUvAnha11TS4LSaeW9S3ZbpGZQpR2yNrKc5Qd/WgDvKKKKACiiigAooooAKKKKACiiigAooooAK57x1/yT7xL/2Crr/0U1dDXPeO/wDkn3iX/sFXX/opqAOf+CYz8ItDP/Xx/wCj5K9Brz/4Jf8AJItD/wC3j/0fJXoFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV4B+0wSP+EXAPH+l/+0a9/r5//aZ/5lf/ALe//aNAH0BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFc1eeNdOsfHen+EJYLo399AbiKVUXygoDnBO7Of3Z7dxQB0tFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADSxGadXHfFLWtQ8O/DnVdV0q4+z3sBh8uTYr43TIp4YEHhiOnetnwne3GpeDdDv7uTzLm50+3mmfaF3O0aljgYA5J6UAbFFFFABRRRQAUUUUAFc1Z+NtPvfHeo+EIoLoahYW4uJZGRfKKkIQAQ2c/vF7etdLXj/h8Z/ag8V/9gpP/AEG2oA9goo7UUAFFFFABRRRQAUUUUAFef/Gz/kkOuf8AbD/0fHXoFef/ABs/5JDrn/bD/wBHx0AdB4E/5J74a/7BVr/6KWugrn/An/JPfDX/AGCrX/0UtdBQAUUUUAFFFFABRRRQB5B+0d/yT7T/APsKx/8AoqWvX+1eQftHf8k+0/8A7Csf/oqWvX+1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANLc06vH/AIRc/EL4m5/6Cv8A7VuK9g7UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5B+0d/yT7T/APsKx/8AoqWvX68g/aMy3w/08AEn+1o+B3/dS0Aev9qKQcgUtABRRRQAUUUUAFFFFABRRRQAUUUUAFYviyzuNT8H65YWkfmXN1p9xDEmQNztGygZPA5I61tUmKAPCfCy/Gbwl4ctdDsPCOlSWttv2NcTxs53OznJE4HVj2rY/wCEh+OX/Qm6H/3+X/5Ir178aPxoA8h/4SH45f8AQm6H/wB/l/8Akij/AISH45f9Cbof/f5f/kivXvxo/GgDyH/hIfjl/wBCbof/AH+X/wCSKP8AhIfjl/0Juh/9/l/+SK9e/Gj8aAPIf+Eh+OX/AEJuh/8Af5f/AJIo/wCEh+OX/Qm6H/3+X/5Ir178aPxoA8h/4SH45f8AQm6H/wB/l/8Akij/AISH45f9Cbof/f5f/kivXvxo/GgDyH/hIfjl/wBCbof/AH+X/wCSKP8AhIfjl/0Juh/9/l/+SK9e/Gj8aAPIf+Eh+OX/AEJuh/8Af5f/AJIo/wCEh+OX/Qm6H/3+X/5Ir178aPxoA8h/4SH45f8AQm6H/wB/l/8Akij/AISH45f9Cbof/f5f/kivXvxo/GgDyH/hIfjl/wBCbof/AH+X/wCSK4/xz4a+LPxAFh/a3hexg+w+Z5ZtLmIZ37c5zM2cbB096+jvxoxzQAo6UUg4GKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8f8Rf8nP+FB/1CpD/AOO3VewV4/4h5/ae8KH/AKhbj/x25oA9gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApM84pa8r+Peq6jo3gexudLv7qynbU442ktpmjYqY5TglSMjIHHtQB6pRQOAKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8/+Nn/ACSHXP8Ath/6PjroPAn/ACT3w1/2CrX/ANFLXP8Axs/5JDrn/bD/ANHx10HgT/knvhr/ALBVr/6KWgDoKKKKACiiigAooooAK8f8Pf8AJ0Hiz/sFJ/6DbV7BXj/h7/k6DxZ/2Ck/9BtqAPYKKKKACiiigAooooAKKKKACvP/AI2f8kh1z/th/wCj469Arz/42f8AJIdc/wC2H/o+OgDoPAn/ACT3w1/2CrX/ANFLXQVz/gT/AJJ74a/7BVr/AOilroKACiiigAooooAKKKKAPIP2jv8Akn2n/wDYVj/9FS16/wBq8g/aO/5J9p//AGFY/wD0VLXr/agAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPH/hD/AMlD+Jv/AGFf/atxXsHavn3R9Z8UeA/HXjS4t/AmsatDqmpO8ckcMiLtWWUhlIjYMCH/AErov+Fv+Lx/zSfXP++pv/jFAHsFFeP/APC4PF//AESfXP8Avqb/AOMUf8Lg8X/9En1z/vqb/wCMUAewUV4//wALg8X/APRJ9c/76m/+MUf8Lg8X/wDRJ9c/76m/+MUAewUV4/8A8Lg8X/8ARJ9c/wC+pv8A4xR/wuDxf/0SfXP++pv/AIxQB7BRXj//AAuDxf8A9En1z/vqb/4xR/wuDxf/ANEn1z/vqb/4xQB7BRXj/wDwuDxf/wBEn1z/AL6m/wDjFH/C4PF//RJ9c/76m/8AjFAHsFFeP/8AC4PF/wD0SfXP++pv/jFH/C4PF/8A0SfXP++pv/jFAHsFFeP/APC4PF//AESfXP8Avqb/AOMUf8Lg8X/9En1z/vqb/wCMUAewUV4//wALg8X/APRJ9c/76m/+MUf8Lg8X/wDRJ9c/76m/+MUAewVzfjTwVpvjrR4dM1Oe7hgiuFuFNq6qxYKy4O5SMYY9vSuD/wCFweL/APok+uf99Tf/ABij/hcHi/8A6JPrn/fU3/xigBf+GcfCH/QS1z/v9D/8ao/4Zx8If9BLXP8Av/D/APGqT/hcHi//AKJPrn/fU3/xij/hcHi//ok+uf8AfU3/AMYoAX/hnHwh/wBBLXP+/wDD/wDGqP8AhnHwh/0Etc/7/wAP/wAapP8AhcHi/wD6JPrn/fU3/wAYo/4XB4v/AOiT65/31N/8YoAX/hnHwh/0Etc/7/w//GqP+GcfCH/QS1z/AL/w/wDxqk/4XB4v/wCiT65/31N/8Yo/4XB4v/6JPrn/AH1N/wDGKAF/4Zx8If8AQS1z/v8Aw/8Axqj/AIZx8If9BLXP+/8AD/8AGqT/AIXB4v8A+iT65/31N/8AGKP+FweL/wDok+uf99Tf/GKAF/4Zx8If9BLXP+/8P/xqj/hnHwh/0Etc/wC/8P8A8apP+FweL/8Aok+uf99Tf/GKP+FweL/+iT65/wB9Tf8AxigBf+GcfCH/AEEtc/7/AMP/AMao/wCGcfCH/QS1z/v/AA//ABqk/wCFweL/APok+uf99Tf/ABij/hcHi/8A6JPrn/fU3/xigBf+GcfCH/QS1z/v/D/8ao/4Zx8If9BLXP8Av/D/APGqT/hcHi//AKJPrn/fU3/xij/hcHi//ok+uf8AfU3/AMYoAX/hnHwh/wBBLXP+/wDD/wDGqP8AhnHwh/0Etc/7/wAP/wAapP8AhcHi/wD6JPrn/fU3/wAYo/4XB4v/AOiT65/31N/8YoAX/hnHwh/0Etc/7/w//GqP+GcfCH/QS1z/AL/w/wDxqk/4XB4v/wCiT65/31N/8Yo/4XB4v/6JPrn/AH1N/wDGKAF/4Zx8If8AQS1z/v8Aw/8Axqj/AIZx8If9BLXP+/8AD/8AGqT/AIXB4v8A+iT65/31N/8AGKP+FweL/wDok+uf99Tf/GKAF/4Zx8If9BLXP+/8P/xqj/hnHwh/0Etc/wC/8P8A8apP+FweL/8Aok+uf99Tf/GKP+FweL/+iT65/wB9Tf8AxigBf+GcfCH/AEEtc/7/AMP/AMao/wCGcfCH/QS1z/v/AA//ABqk/wCFweL/APok+uf99Tf/ABij/hcHi/8A6JPrn/fU3/xigBf+GcfCH/QS1z/v/D/8ao/4Zx8If9BLXP8Av/D/APGqT/hcHi//AKJPrn/fU3/xij/hcHi//ok+uf8AfU3/AMYoAX/hnHwh/wBBLXP+/wDD/wDGqP8AhnHwh/0Etc/7/wAP/wAapP8AhcHi/wD6JPrn/fU3/wAYo/4XB4v/AOiT65/31N/8YoAX/hnHwh/0Etc/7/w//GqP+GcfCH/QS1z/AL/w/wDxqk/4XB4v/wCiT65/31N/8Yo/4XB4v/6JPrn/AH1N/wDGKAF/4Zx8If8AQS1z/v8Aw/8Axqj/AIZx8If9BLXP+/8AD/8AGqT/AIXB4v8A+iT65/31N/8AGKP+FweL/wDok+uf99Tf/GKAF/4Zx8If9BLXP+/8P/xqj/hnHwh/0Etc/wC/8P8A8apP+FweL/8Aok+uf99Tf/GKP+FweL/+iT65/wB9Tf8AxigBf+GcfCH/AEEtc/7/AMP/AMao/wCGcfCH/QS1z/v/AA//ABqk/wCFweL/APok+uf99Tf/ABij/hcHi/8A6JPrn/fU3/xigBf+GcfCH/QS1z/v/D/8ao/4Zx8If9BLXP8Av/D/APGqT/hcHi//AKJPrn/fU3/xij/hcHi//ok+uf8AfU3/AMYoAX/hnHwh/wBBLXP+/wDD/wDGqP8AhnHwh/0Etc/7/wAP/wAapP8AhcHi/wD6JPrn/fU3/wAYo/4XB4v/AOiT65/31N/8YoAX/hnHwh/0Etc/7/w//GqP+GcfCH/QS1z/AL/w/wDxqk/4XB4v/wCiT65/31N/8Yo/4XB4v/6JPrn/AH1N/wDGKAF/4Zx8If8AQS1z/v8Aw/8Axqj/AIZx8If9BLXP+/8AD/8AGqT/AIXB4v8A+iT65/31N/8AGKP+FweL/wDok+uf99Tf/GKAF/4Zx8If9BLXP+/8P/xqj/hnHwh/0Etc/wC/8P8A8apP+FweL/8Aok+uf99Tf/GKP+FweL/+iT65/wB9Tf8AxigBf+GcfCH/AEEtc/7/AMP/AMao/wCGcfCH/QS1z/v/AA//ABqk/wCFweL/APok+uf99Tf/ABij/hcHi/8A6JPrn/fU3/xigBf+GcfCH/QS1z/v/D/8aq7pPwF8LaPq9lqdvf6w81ncR3EayTRFSyMGAIEY4455qj/wuDxf/wBEn1z/AL6m/wDjFH/C4PF//RJ9c/76m/8AjFAHsFFeP/8AC4PF/wD0SfXP++pv/jFH/C4PF/8A0SfXP++pv/jFAHsFFeP/APC4PF//AESfXP8Avqb/AOMUf8Lg8X/9En1z/vqb/wCMUAewUV4//wALg8X/APRJ9c/76m/+MUf8Lg8X/wDRJ9c/76m/+MUAewUV4/8A8Lg8X/8ARJ9c/wC+pv8A4xR/wuDxf/0SfXP++pv/AIxQB7BRXj//AAuDxf8A9En1z/vqb/4xR/wuDxf/ANEn1z/vqb/4xQB7BRXj/wDwuDxf/wBEn1z/AL6m/wDjFH/C4PF//RJ9c/76m/8AjFAHsFFeP/8AC4PF/wD0SfXP++pv/jFH/C4PF/8A0SfXP++pv/jFAHsFFeP/APC4PF//AESfXP8Avqb/AOMUf8Lg8X/9En1z/vqb/wCMUAewUV4//wALg8X/APRJ9c/76m/+MUf8Lg8X/wDRJ9c/76m/+MUAewV5B+0d/wAk+0//ALCsf/oqWk/4XB4v/wCiT65/31N/8YrkfiN4l8X/ABA8O2+l/wDCudcsPJu1ufN8qWXOEdduPKX+/wBfb3oA+ju1FU9JvJtQ0axvbi0ezmuLeOWS2kzuhZlBKHIHIJx0HTpVygAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPP/AI2f8kh1z/th/wCj466DwJ/yT3w1/wBgq1/9FLXP/Gz/AJJDrn/bD/0fHXQeBP8Aknvhr/sFWv8A6KWgDoKKKKACiiigAooooAK8f8Pf8nQeLP8AsFJ/6DbV7BXj/h7/AJOg8Wf9gpP/AEG2oA9gooooAKKKKACiiigAooooAK8/+Nn/ACSHXP8Ath/6Pjr0CvP/AI2f8kh1z/th/wCj46AOg8Cf8k98Nf8AYKtf/RS10Fc/4E/5J74a/wCwVa/+ilroKACiiigAooooAKKKKAPIP2jv+Sfaf/2FY/8A0VLXr/avIP2jv+Sfaf8A9hWP/wBFS16/2oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBNopQMDFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFQ3V1DZWs11cOI4IUaSRz0VVGSfyBoAmorJ0DxLpHiiykvNFvUvLeOQxu6KwAYAHHIHYj861qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkKg0tFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHn/xs/wCSQ65/2w/9Hx10HgT/AJJ74a/7BVr/AOilrn/jZ/ySHXP+2H/o+Oug8Cf8k98Nf9gq1/8ARS0AdBRRRQAUUUUAFFFFABXj/h7/AJOg8Wf9gpP/AEG2r2CvH/D3/J0Hiz/sFJ/6DbUAewUUUUAFFFFABRRRQAUUUUAFef8Axs/5JDrn/bD/ANHx16BXn/xs/wCSQ65/2w/9Hx0AdB4E/wCSe+Gv+wVa/wDopa6Cuf8AAn/JPfDX/YKtf/RS10FABRRRQAUUUUAFFFFAHkH7R3/JPtP/AOwrH/6Klr1/tXkH7R3/ACT7T/8AsKx/+ipa9f7UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVXvLOC/sp7O5UvBPG0Ui5xlWBBHHsTViigDE8M+EtG8IWEtlols1vbyymVlMrPlyAM5YnsBW3RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAef/Gz/AJJDrn/bD/0fHXQeBP8Aknvhr/sFWv8A6KWuf+Nn/JIdc/7Yf+j466DwJ/yT3w1/2CrX/wBFLQB0FFFFABRRRQAUUUUAFeP+Hv8Ak6DxZ/2Ck/8AQbavYK8f8Pf8nQeLP+wUn/oNtQB7BRRRQAUUUUAFFFFABRRRQAV5/wDGz/kkOuf9sP8A0fHXoFef/Gz/AJJDrn/bD/0fHQB0HgT/AJJ74a/7BVr/AOilroK5/wACf8k98Nf9gq1/9FLXQUAFFFFABRRRQAUUUUAeQftHf8k+0/8A7Csf/oqWvX+1eQftHf8AJPtP/wCwrH/6Klr1/tQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUN1dQ2VrNdXDiOCFGkkc9FVRkn8gamqveWcF/ZT2dypeCeNopFzjKsCCOPYmgCjoHiXSPFFlJeaLepeW8chjd0VgAwAOOQOxH51rVieGfCWjeELCWy0S2a3t5ZTKymVny5AGcsT2ArboAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPP/AI2f8kh1z/th/wCj466DwJ/yT3w1/wBgq1/9FLXP/Gz/AJJDrn/bD/0fHXQeBP8Aknvhr/sFWv8A6KWgDoKKKKACiiigAooooAK8f8Pf8nQeLP8AsFJ/6DbV7BXj/h7/AJOg8Wf9gpP/AEG2oA9gooooAKKKKACiiigAooooAK8/+Nn/ACSHXP8Ath/6Pjr0CvP/AI2f8kh1z/th/wCj46AOg8Cf8k98Nf8AYKtf/RS10Fc/4E/5J74a/wCwVa/+ilroKACiiigAooooAKKKKAPIP2jv+Sfaf/2FY/8A0VLXr/avIP2jv+Sfaf8A9hWP/wBFS16/2oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqG6uobK1murhxHBCjSSOeiqoyT+QNAE1FZOgeJdI8UWUl5ot6l5bxyGN3RWADAA45A7EfnWtQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAef/Gz/kkOuf8AbD/0fHXQeBP+Se+Gv+wVa/8Aopa5/wCNn/JIdc/7Yf8Ao+Oug8Cf8k98Nf8AYKtf/RS0AdBRRRQAUUUUAFFFFABXj/h7/k6DxZ/2Ck/9Btq9grx/w9/ydB4s/wCwUn/oNtQB7BRRRQAUUUUAFFFFABRRRQAV5/8AGz/kkOuf9sP/AEfHXoFef/Gz/kkOuf8AbD/0fHQB0HgT/knvhr/sFWv/AKKWugrn/An/ACT3w1/2CrX/ANFLXQUAFFFFABRRRQAUUUUAeQftHf8AJPtP/wCwrH/6Klr1/tXkH7R3/JPtP/7Csf8A6Klr1/tQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVe8s4L+yns7lS8E8bRSLnGVYEEcexNWKKAMTwz4S0bwhYS2WiWzW9vLKZWUys+XIAzliewFbdFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5/8bP+SQ65/wBsP/R8ddB4E/5J74a/7BVr/wCilrn/AI2f8kh1z/th/wCj466DwJ/yT3w1/wBgq1/9FLQB0FFFFABRRRQAUUUUAFeP+Hv+ToPFn/YKT/0G2r2CvH/D3/J0Hiz/ALBSf+g21AHsFFFFABRRRQAUUUUAFFFFABXn/wAbP+SQ65/2w/8AR8degV5/8bP+SQ65/wBsP/R8dAHQeBP+Se+Gv+wVa/8Aopa6Cuf8Cf8AJPfDX/YKtf8A0UtdBQAUUUUAFFFFABRRRQB49+0Yc/D+wHpqsfT/AK5S16D/AMJ34QHXxVoef+whF/8AFVY8R+FtG8WWEdjrdobq2jlEyJ5rphwCAcqQejH865f/AIUl8PP+he/8nbj/AOOUAdB/wnng/wD6GvQ//BhF/wDFUf8ACeeD/wDoa9D/APBhF/8AFVgf8KT+Hn/Qv/8Ak7cf/HKP+FJ/Dz/oX/8AyduP/jlAG/8A8J54P/6GvQ//AAYRf/FUf8J54P8A+hr0P/wYRf8AxVYH/Ck/h5/0L/8A5O3H/wAco/4Un8PP+hf/APJ24/8AjlAG/wD8J54P/wChr0P/AMGEX/xVH/CeeD/+hr0P/wAGEX/xVYH/AApP4ef9C/8A+Ttx/wDHKP8AhSfw8/6F/wD8nbj/AOOUAb//AAnng/8A6GvQ/wDwYRf/ABVH/CeeD/8Aoa9D/wDBhF/8VWB/wpP4ef8AQv8A/k7cf/HKP+FJ/Dz/AKF//wAnbj/45QBv/wDCeeD/APoa9D/8GEX/AMVR/wAJ54P/AOhr0P8A8GEX/wAVWB/wpP4ef9C//wCTtx/8co/4Un8PP+hf/wDJ24/+OUAb/wDwnng//oa9D/8ABhF/8VR/wnng/wD6GvQ//BhF/wDFVgf8KT+Hn/Qv/wDk7cf/AByj/hSfw8/6F/8A8nbj/wCOUAb/APwnng//AKGvQ/8AwYRf/FUf8J54P/6GvQ//AAYRf/FVgf8ACk/h5/0L/wD5O3H/AMco/wCFJ/Dz/oX/APyduP8A45QBv/8ACeeD/wDoa9D/APBhF/8AFUf8J54P/wChr0P/AMGEX/xVYH/Ck/h5/wBC/wD+Ttx/8co/4Un8PP8AoX//ACduP/jlAG//AMJ54P8A+hr0P/wYRf8AxVH/AAnng/8A6GvQ/wDwYRf/ABVYH/Ck/h5/0L//AJO3H/xyj/hSfw8/6F//AMnbj/45QBv/APCeeD/+hr0P/wAGEX/xVH/CeeD/APoa9D/8GEX/AMVWB/wpP4ef9C//AOTtx/8AHKP+FJ/Dz/oX/wDyduP/AI5QBv8A/CeeD/8Aoa9D/wDBhF/8VR/wnng//oa9D/8ABhF/8VWB/wAKT+Hn/Qv/APk7cf8Axyj/AIUn8PP+hf8A/J24/wDjlAG//wAJ54P/AOhr0P8A8GEX/wAVR/wnng//AKGvQ/8AwYRf/FVgf8KT+Hn/AEL/AP5O3H/xyj/hSfw8/wChf/8AJ24/+OUAb/8Awnng/wD6GvQ//BhF/wDFUf8ACeeD/wDoa9D/APBhF/8AFVgf8KT+Hn/Qv/8Ak7cf/HKP+FJ/Dz/oX/8AyduP/jlAG/8A8J54P/6GvQ//AAYRf/FUf8J54P8A+hr0P/wYRf8AxVYH/Ck/h5/0L/8A5O3H/wAco/4Un8PP+hf/APJ24/8AjlAG/wD8J54P/wChr0P/AMGEX/xVH/CeeD/+hr0P/wAGEX/xVYH/AApP4ef9C/8A+Ttx/wDHKP8AhSfw8/6F/wD8nbj/AOOUAb//AAnng/8A6GvQ/wDwYRf/ABVH/CeeD/8Aoa9D/wDBhF/8VWB/wpP4ef8AQv8A/k7cf/HKP+FJ/Dz/AKF//wAnbj/45QBv/wDCeeD/APoa9D/8GEX/AMVR/wAJ54P/AOhr0P8A8GEX/wAVWB/wpP4ef9C//wCTtx/8co/4Un8PP+hf/wDJ24/+OUAb/wDwnng//oa9D/8ABhF/8VR/wnng/wD6GvQ//BhF/wDFVgf8KT+Hn/Qv/wDk7cf/AByj/hSfw8/6F/8A8nbj/wCOUAb/APwnng//AKGvQ/8AwYRf/FUf8J54P/6GvQ//AAYRf/FVgf8ACk/h5/0L/wD5O3H/AMco/wCFJ/Dz/oX/APyduP8A45QBv/8ACeeD/wDoa9D/APBhF/8AFUf8J54P/wChr0P/AMGEX/xVYH/Ck/h5/wBC/wD+Ttx/8co/4Un8PP8AoX//ACduP/jlAG//AMJ54P8A+hr0P/wYRf8AxVH/AAnng/8A6GvQ/wDwYRf/ABVYH/Ck/h5/0L//AJO3H/xyj/hSfw8/6F//AMnbj/45QBv/APCeeD/+hr0P/wAGEX/xVH/CeeD/APoa9D/8GEX/AMVWB/wpP4ef9C//AOTtx/8AHKP+FJ/Dz/oX/wDyduP/AI5QBv8A/CeeD/8Aoa9D/wDBhF/8VR/wnng//oa9D/8ABhF/8VWB/wAKT+Hn/Qv/APk7cf8Axyj/AIUn8PP+hf8A/J24/wDjlAG//wAJ54P/AOhr0P8A8GEX/wAVR/wnng//AKGvQ/8AwYRf/FVgf8KT+Hn/AEL/AP5O3H/xyj/hSfw8/wChf/8AJ24/+OUAb/8Awnng/wD6GvQ//BhF/wDFUf8ACeeD/wDoa9D/APBhF/8AFVgf8KT+Hn/Qv/8Ak7cf/HKP+FJ/Dz/oX/8AyduP/jlAG/8A8J54P/6GvQ//AAYRf/FUf8J54P8A+hr0P/wYRf8AxVYH/Ck/h5/0L/8A5O3H/wAco/4Un8PP+hf/APJ24/8AjlAG/wD8J54P/wChr0P/AMGEX/xVH/CeeD/+hr0P/wAGEX/xVYH/AApP4ef9C/8A+Ttx/wDHKP8AhSfw8/6F/wD8nbj/AOOUAb//AAnng/8A6GvQ/wDwYRf/ABVH/CeeD/8Aoa9D/wDBhF/8VWB/wpP4ef8AQv8A/k7cf/HKP+FJ/Dz/AKF//wAnbj/45QBv/wDCeeD/APoa9D/8GEX/AMVR/wAJ54P/AOhr0P8A8GEX/wAVWB/wpP4ef9C//wCTtx/8co/4Un8PP+hf/wDJ24/+OUAb/wDwnng//oa9D/8ABhF/8VR/wnng/wD6GvQ//BhF/wDFVgf8KT+Hn/Qv/wDk7cf/AByj/hSfw8/6F/8A8nbj/wCOUAb/APwnng//AKGvQ/8AwYRf/FUf8J54P/6GvQ//AAYRf/FVgf8ACk/h5/0L/wD5O3H/AMco/wCFJ/Dz/oX/APyduP8A45QBv/8ACeeD/wDoa9D/APBhF/8AFUf8J54P/wChr0P/AMGEX/xVYH/Ck/h5/wBC/wD+Ttx/8co/4Un8PP8AoX//ACduP/jlAG//AMJ54P8A+hr0P/wYRf8AxVH/AAnng/8A6GvQ/wDwYRf/ABVYH/Ck/h5/0L//AJO3H/xyj/hSfw8/6F//AMnbj/45QBv/APCeeD/+hr0P/wAGEX/xVH/CeeD/APoa9D/8GEX/AMVWB/wpP4ef9C//AOTtx/8AHKP+FJ/Dz/oX/wDyduP/AI5QBv8A/CeeD/8Aoa9D/wDBhF/8VR/wnng//oa9D/8ABhF/8VWB/wAKT+Hn/Qv/APk7cf8Axyj/AIUn8PP+hf8A/J24/wDjlAG//wAJ54P/AOhr0P8A8GEX/wAVR/wnng//AKGvQ/8AwYRf/FVgf8KT+Hn/AEL/AP5O3H/xyj/hSfw8/wChf/8AJ24/+OUAb/8Awnng/wD6GvQ//BhF/wDFUf8ACeeD/wDoa9D/APBhF/8AFVgf8KT+Hn/Qv/8Ak7cf/HKP+FJ/Dz/oX/8AyduP/jlAG/8A8J54P/6GvQ//AAYRf/FUf8J54P8A+hr0P/wYRf8AxVYH/Ck/h5/0L/8A5O3H/wAco/4Un8PP+hf/APJ24/8AjlAG/wD8J54P/wChr0P/AMGEX/xVH/CeeD/+hr0P/wAGEX/xVYH/AApP4ef9C/8A+Ttx/wDHKP8AhSfw8/6F/wD8nbj/AOOUAb//AAnng/8A6GvQ/wDwYRf/ABVH/CeeD/8Aoa9D/wDBhF/8VWB/wpP4ef8AQv8A/k7cf/HKP+FJ/Dz/AKF//wAnbj/45QBv/wDCeeD/APoa9D/8GEX/AMVR/wAJ54P/AOhr0P8A8GEX/wAVWB/wpP4ef9C//wCTtx/8co/4Un8PP+hf/wDJ24/+OUAb/wDwnng//oa9D/8ABhF/8VR/wnng/wD6GvQ//BhF/wDFVgf8KT+Hn/Qv/wDk7cf/AByj/hSfw8/6F/8A8nbj/wCOUAb/APwnng//AKGvQ/8AwYRf/FUf8J54P/6GvQ//AAYRf/FVgf8ACk/h5/0L/wD5O3H/AMco/wCFJ/Dz/oX/APyduP8A45QBv/8ACeeD/wDoa9D/APBhF/8AFUf8J54P/wChr0P/AMGEX/xVYH/Ck/h5/wBC/wD+Ttx/8co/4Un8PP8AoX//ACduP/jlAG//AMJ54P8A+hr0P/wYRf8AxVH/AAnng/8A6GvQ/wDwYRf/ABVYH/Ck/h5/0L//AJO3H/xyj/hSfw8/6F//AMnbj/45QBv/APCeeD/+hr0P/wAGEX/xVH/CeeD/APoa9D/8GEX/AMVWB/wpP4ef9C//AOTtx/8AHKP+FJ/Dz/oX/wDyduP/AI5QBv8A/CeeD/8Aoa9D/wDBhF/8VR/wnng//oa9D/8ABhF/8VWB/wAKT+Hn/Qv/APk7cf8Axyj/AIUn8PP+hf8A/J24/wDjlAG//wAJ54P/AOhr0P8A8GEX/wAVR/wnng//AKGvQ/8AwYRf/FVgf8KT+Hn/AEL/AP5O3H/xyj/hSfw8/wChf/8AJ24/+OUAb/8Awnng/wD6GvQ//BhF/wDFUf8ACeeD/wDoa9D/APBhF/8AFVgf8KT+Hn/Qv/8Ak7cf/HKP+FJ/Dz/oX/8AyduP/jlAG/8A8J54P/6GvQ//AAYRf/FUf8J54P8A+hr0P/wYRf8AxVYH/Ck/h5/0L/8A5O3H/wAco/4Un8PP+hf/APJ24/8AjlAG/wD8J54P/wChr0P/AMGEX/xVH/CeeD/+hr0P/wAGEX/xVYH/AApP4ef9C/8A+Ttx/wDHKP8AhSfw8/6F/wD8nbj/AOOUAb//AAnng/8A6GvQ/wDwYRf/ABVH/CeeD/8Aoa9D/wDBhF/8VWB/wpP4ef8AQv8A/k7cf/HKP+FJ/Dz/AKF//wAnbj/45QBv/wDCeeD/APoa9D/8GEX/AMVR/wAJ54P/AOhr0P8A8GEX/wAVWB/wpP4ef9C//wCTtx/8co/4Un8PP+hf/wDJ24/+OUAb/wDwnng//oa9D/8ABhF/8VR/wnng/wD6GvQ//BhF/wDFVgf8KT+Hn/Qv/wDk7cf/AByj/hSfw8/6F/8A8nbj/wCOUAb/APwnng//AKGvQ/8AwYRf/FUf8J54P/6GvQ//AAYRf/FVgf8ACk/h5/0L/wD5O3H/AMco/wCFJ/Dz/oX/APyduP8A45QBv/8ACeeD/wDoa9D/APBhF/8AFUf8J54P/wChr0P/AMGEX/xVYH/Ck/h5/wBC/wD+Ttx/8co/4Un8PP8AoX//ACduP/jlAG//AMJ54P8A+hr0P/wYRf8AxVH/AAnng/8A6GvQ/wDwYRf/ABVYH/Ck/h5/0L//AJO3H/xyj/hSfw8/6F//AMnbj/45QBv/APCeeD/+hr0P/wAGEX/xVH/CeeD/APoa9D/8GEX/AMVWB/wpP4ef9C//AOTtx/8AHKP+FJ/Dz/oX/wDyduP/AI5QBv8A/CeeD/8Aoa9D/wDBhF/8VR/wnng//oa9D/8ABhF/8VWB/wAKT+Hn/Qv/APk7cf8Axyj/AIUn8PP+hf8A/J24/wDjlAG//wAJ54P/AOhr0P8A8GEX/wAVR/wnng//AKGvQ/8AwYRf/FVgf8KT+Hn/AEL/AP5O3H/xyj/hSfw8/wChf/8AJ24/+OUAb/8Awnng/wD6GvQ//BhF/wDFUf8ACeeD/wDoa9D/APBhF/8AFVgf8KT+Hn/Qv/8Ak7cf/HKP+FJ/Dz/oX/8AyduP/jlAG/8A8J54P/6GvQ//AAYRf/FUf8J54P8A+hr0P/wYRf8AxVYH/Ck/h5/0L/8A5O3H/wAco/4Un8PP+hf/APJ24/8AjlAG/wD8J54P/wChr0P/AMGEX/xVH/CeeD/+hr0P/wAGEX/xVYH/AApP4ef9C/8A+Ttx/wDHKP8AhSfw8/6F/wD8nbj/AOOUAb//AAnng/8A6GvQ/wDwYRf/ABVH/CeeD/8Aoa9D/wDBhF/8VWB/wpP4ef8AQv8A/k7cf/HKP+FJ/Dz/AKF//wAnbj/45QBv/wDCeeD/APoa9D/8GEX/AMVR/wAJ54P/AOhr0P8A8GEX/wAVWB/wpP4ef9C//wCTtx/8co/4Un8PP+hf/wDJ24/+OUAb/wDwnng//oa9D/8ABhF/8VR/wnng/wD6GvQ//BhF/wDFVgf8KT+Hn/Qv/wDk7cf/AByj/hSfw8/6F/8A8nbj/wCOUAb/APwnng//AKGvQ/8AwYRf/FUf8J54P/6GvQ//AAYRf/FVgf8ACk/h5/0L/wD5O3H/AMco/wCFJ/Dz/oX/APyduP8A45QBv/8ACeeD/wDoa9D/APBhF/8AFUf8J54P/wChr0P/AMGEX/xVYH/Ck/h5/wBC/wD+Ttx/8co/4Un8PP8AoX//ACduP/jlAG//AMJ54P8A+hr0P/wYRf8AxVH/AAnng/8A6GvQ/wDwYRf/ABVYH/Ck/h5/0L//AJO3H/xyj/hSfw8/6F//AMnbj/45QBv/APCeeD/+hr0P/wAGEX/xVH/CeeD/APoa9D/8GEX/AMVWB/wpP4ef9C//AOTtx/8AHKP+FJ/Dz/oX/wDyduP/AI5QBv8A/CeeD/8Aoa9D/wDBhF/8VR/wnng//oa9D/8ABhF/8VWB/wAKT+Hn/Qv/APk7cf8Axyj/AIUn8PP+hf8A/J24/wDjlAGN8XfFnhzVPhdrNnYeINKurmTyNkMF5HI7YmjJwoOTgAn8K7nwLx8PvDX/AGCrX/0Utc//AMKT+Hv/AEL5/wDA24/+OV29hZW+mafbWFpH5dtbRLDCmSdqKAFGTycADrQBYooooAKKKKACiiigArx/w9/ydB4s/wCwUn/oNtXsFeP+Hv8Ak6DxZ/2Ck/8AQbagD2CiiigAooooAKKKKACiiigArz/42f8AJIdc/wC2H/o+OvQK8++Nn/JItd/7Yf8Ao+OgDofAn/JPfDX/AGCrX/0UtdBXlHhT4v8AgXTPB2h6fea75d1a6fBDMn2SdtrrGqsMhCDyDyDitf8A4Xb8PP8AoYf/ACSuP/jdAHoFFef/APC7fh5/0MP/AJJXH/xuj/hdvw8/6GH/AMkrj/43QB6BRXn/APwu34ef9DD/AOSVx/8AG6P+F2/Dz/oYf/JK4/8AjdAHoFFef/8AC7fh5/0MP/klcf8Axuj/AIXb8PP+hh/8krj/AON0AegUV5//AMLt+Hn/AEMP/klcf/G6P+F2/Dz/AKGH/wAkrj/43QB6BRXn/wDwu34ef9DD/wCSVx/8bo/4Xb8PP+hh/wDJK4/+N0AegUV5/wD8Lt+Hn/Qw/wDklcf/ABuj/hdvw8/6GH/ySuP/AI3QB6BRXn//AAu34ef9DD/5JXH/AMbo/wCF2/Dz/oYf/JK4/wDjdAHoFFef/wDC7fh5/wBDD/5JXH/xuj/hdvw8/wChh/8AJK4/+N0AegUV5/8A8Lt+Hn/Qw/8Aklcf/G6P+F2/Dz/oYf8AySuP/jdAHoFFef8A/C7fh5/0MP8A5JXH/wAbo/4Xb8PP+hh/8krj/wCN0AegUV5//wALt+Hn/Qw/+SVx/wDG6P8Ahdvw8/6GH/ySuP8A43QB6BRXn/8Awu34ef8AQw/+SVx/8bo/4Xb8PP8AoYf/ACSuP/jdAHoFFef/APC7fh5/0MP/AJJXH/xuj/hdvw8/6GH/AMkrj/43QB6BRXn/APwu34ef9DD/AOSVx/8AG6P+F2/Dz/oYf/JK4/8AjdAHoFFef/8AC7fh5/0MP/klcf8Axuj/AIXb8PP+hh/8krj/AON0AegUV5//AMLt+Hn/AEMP/klcf/G6P+F2/Dz/AKGH/wAkrj/43QB6BRXn/wDwu34ef9DD/wCSVx/8bo/4Xb8PP+hh/wDJK4/+N0AegUV5/wD8Lt+Hn/Qw/wDklcf/ABuj/hdvw8/6GH/ySuP/AI3QB6BRXn//AAu34ef9DD/5JXH/AMbo/wCF2/Dz/oYf/JK4/wDjdAHoFFef/wDC7fh5/wBDD/5JXH/xuj/hdvw8/wChh/8AJK4/+N0AegUV5/8A8Lt+Hn/Qw/8Aklcf/G6P+F2/Dz/oYf8AySuP/jdAHoFFef8A/C7fh5/0MP8A5JXH/wAbo/4Xb8PP+hh/8krj/wCN0AegUV5//wALt+Hn/Qw/+SVx/wDG6P8Ahdvw8/6GH/ySuP8A43QB6BRXn/8Awu34ef8AQw/+SVx/8bo/4Xb8PP8AoYf/ACSuP/jdAHoFFef/APC7fh5/0MP/AJJXH/xuj/hdvw8/6GH/AMkrj/43QB6BRXn/APwu34ef9DD/AOSVx/8AG6P+F2/Dz/oYf/JK4/8AjdAHoFFef/8AC7fh5/0MP/klcf8Axuj/AIXb8PP+hh/8krj/AON0AegUV5//AMLt+Hn/AEMP/klcf/G6P+F2/Dz/AKGH/wAkrj/43QB6BRXn/wDwu34ef9DD/wCSVx/8bo/4Xb8PP+hh/wDJK4/+N0AegUV5/wD8Lt+Hn/Qw/wDklcf/ABuj/hdvw8/6GH/ySuP/AI3QB6BRXn//AAu34ef9DD/5JXH/AMbo/wCF2/Dz/oYf/JK4/wDjdAHoFFef/wDC7fh5/wBDD/5JXH/xuj/hdvw8/wChh/8AJK4/+N0AegUV5/8A8Lt+Hn/Qw/8Aklcf/G6P+F2/Dz/oYf8AySuP/jdAHoFFef8A/C7fh5/0MP8A5JXH/wAbo/4Xb8PP+hh/8krj/wCN0AegUV5//wALt+Hn/Qw/+SVx/wDG6P8Ahdvw8/6GH/ySuP8A43QB6BRXn/8Awu34ef8AQw/+SVx/8bo/4Xb8PP8AoYf/ACSuP/jdAHoFFef/APC7fh5/0MP/AJJXH/xuj/hdvw8/6GH/AMkrj/43QB6BRXn/APwu34ef9DD/AOSVx/8AG6P+F2/Dz/oYf/JK4/8AjdAHoFFef/8AC7fh5/0MP/klcf8Axuj/AIXb8PP+hh/8krj/AON0AegUV5//AMLt+Hn/AEMP/klcf/G6P+F2/Dz/AKGH/wAkrj/43QB6BRXn/wDwu34ef9DD/wCSVx/8bo/4Xb8PP+hh/wDJK4/+N0AegUV5/wD8Lt+Hn/Qw/wDklcf/ABuj/hdvw8/6GH/ySuP/AI3QB6BRXn//AAu34ef9DD/5JXH/AMbo/wCF2/Dz/oYf/JK4/wDjdAHoFFef/wDC7fh5/wBDD/5JXH/xuj/hdvw8/wChh/8AJK4/+N0AegUV5/8A8Lt+Hn/Qw/8Aklcf/G6P+F2/Dz/oYf8AySuP/jdAHoFFef8A/C7fh5/0MP8A5JXH/wAbo/4Xb8PP+hh/8krj/wCN0AegUV5//wALt+Hn/Qw/+SVx/wDG6P8Ahdvw8/6GH/ySuP8A43QB6BRXn/8Awu34ef8AQw/+SVx/8bo/4Xb8PP8AoYf/ACSuP/jdAHoFFef/APC7fh5/0MP/AJJXH/xuj/hdvw8/6GH/AMkrj/43QB6BRXn/APwu34ef9DD/AOSVx/8AG6P+F2/Dz/oYf/JK4/8AjdAHoFFef/8AC7fh5/0MP/klcf8Axuj/AIXb8PP+hh/8krj/AON0AegUV5//AMLt+Hn/AEMP/klcf/G6P+F2/Dz/AKGH/wAkrj/43QB6BRXn/wDwu34ef9DD/wCSVx/8bo/4Xb8PP+hh/wDJK4/+N0AegUV5/wD8Lt+Hn/Qw/wDklcf/ABuj/hdvw8/6GH/ySuP/AI3QB6BRXn//AAu34ef9DD/5JXH/AMbo/wCF2/Dz/oYf/JK4/wDjdAHoFFef/wDC7fh5/wBDD/5JXH/xuj/hdvw8/wChh/8AJK4/+N0AegUV5/8A8Lt+Hn/Qw/8Aklcf/G6P+F2/Dz/oYf8AySuP/jdAHoFFef8A/C7fh5/0MP8A5JXH/wAbo/4Xb8PP+hh/8krj/wCN0AegUV5//wALt+Hn/Qw/+SVx/wDG6P8Ahdvw8/6GH/ySuP8A43QB6BRXn/8Awu34ef8AQw/+SVx/8bo/4Xb8PP8AoYf/ACSuP/jdAHoFFef/APC7fh5/0MP/AJJXH/xuj/hdvw8/6GH/AMkrj/43QB6BRXn/APwu34ef9DD/AOSVx/8AG6P+F2/Dz/oYf/JK4/8AjdAHoFFef/8AC7fh5/0MP/klcf8Axuj/AIXb8PP+hh/8krj/AON0AegUV5//AMLt+Hn/AEMP/klcf/G6P+F2/Dz/AKGH/wAkrj/43QB6BRXn/wDwu34ef9DD/wCSVx/8bo/4Xb8PP+hh/wDJK4/+N0AegUV5/wD8Lt+Hn/Qw/wDklcf/ABuj/hdvw8/6GH/ySuP/AI3QB6BRXn//AAu34ef9DD/5JXH/AMbo/wCF2/Dz/oYf/JK4/wDjdAHoFFef/wDC7fh5/wBDD/5JXH/xuj/hdvw8/wChh/8AJK4/+N0AegUV5/8A8Lt+Hn/Qw/8Aklcf/G6P+F2/Dz/oYf8AySuP/jdAHoFFef8A/C7fh5/0MP8A5JXH/wAbo/4Xb8PP+hh/8krj/wCN0AegUV5//wALt+Hn/Qw/+SVx/wDG6P8Ahdvw8/6GH/ySuP8A43QB6BRXn/8Awu34ef8AQw/+SVx/8bo/4Xb8PP8AoYf/ACSuP/jdAHoFFef/APC7fh5/0MP/AJJXH/xuj/hdvw8/6GH/AMkrj/43QB6BRXn/APwu34ef9DD/AOSVx/8AG6P+F2/Dz/oYf/JK4/8AjdAHoFFef/8AC7fh5/0MP/klcf8Axuj/AIXb8PP+hh/8krj/AON0AegUV5//AMLt+Hn/AEMP/klcf/G6P+F2/Dz/AKGH/wAkrj/43QB6BRXn/wDwu34ef9DD/wCSVx/8bo/4Xb8PP+hh/wDJK4/+N0AegUV5/wD8Lt+Hn/Qw/wDklcf/ABuj/hdvw8/6GH/ySuP/AI3QB6BRXn//AAu34ef9DD/5JXH/AMbo/wCF2/Dz/oYf/JK4/wDjdAHoFeP+Hv8Ak6DxZ/2Ck/8AQbaug/4Xb8PP+hh/8krj/wCN1w/gzxRo2r/tH6zqFheedbalp4htH8p18x1SFmGGAI4ifqB09xQB7xRRRQAUUUUAFFFFABRRRQAVWvtPs9TtHtL+1huraTG+GeMOjYORkHg8gH8Ks0UAc/8A8IJ4Q/6FXQ//AAXxf/E0f8IJ4Q/6FXQ//BfF/wDE10FFAHP/APCCeEP+hV0P/wAF8X/xNH/CCeEP+hV0P/wXxf8AxNdBRQBz/wDwgnhD/oVdD/8ABfF/8TR/wgnhD/oVdD/8F8X/AMTXQUUAc/8A8IJ4Q/6FXQ//AAXxf/E0f8IJ4Q/6FXQ//BfF/wDE10FFAHP/APCCeEP+hV0P/wAF8X/xNH/CCeEP+hV0P/wXxf8AxNdBRQBz/wDwgnhD/oVdD/8ABfF/8TR/wgnhD/oVdD/8F8X/AMTXQUUAc/8A8IJ4Q/6FXQ//AAXxf/E0f8IJ4Q/6FXQ//BfF/wDE10FFAHP/APCCeEP+hV0P/wAF8X/xNH/CCeEP+hV0P/wXxf8AxNdBRQBz/wDwgnhD/oVdD/8ABfF/8TR/wgnhD/oVdD/8F8X/AMTXQUUAc/8A8IJ4Q/6FXQ//AAXxf/E0f8IJ4Q/6FXQ//BfF/wDE10FFAHP/APCCeEP+hV0P/wAF8X/xNH/CCeEP+hV0P/wXxf8AxNdBRQBz/wDwgnhD/oVdD/8ABfF/8TR/wgnhD/oVdD/8F8X/AMTXQUUAc/8A8IJ4Q/6FXQ//AAXxf/E0f8IJ4Q/6FXQ//BfF/wDE10FFAHP/APCCeEP+hV0P/wAF8X/xNH/CCeEP+hV0P/wXxf8AxNdBRQBz/wDwgnhD/oVdD/8ABfF/8TR/wgnhD/oVdD/8F8X/AMTXQUUAc/8A8IJ4Q/6FXQ//AAXxf/E0f8IJ4Q/6FXQ//BfF/wDE10FFAHP/APCCeEP+hV0P/wAF8X/xNH/CCeEP+hV0P/wXxf8AxNdBRQBz/wDwgnhD/oVdD/8ABfF/8TR/wgnhD/oVdD/8F8X/AMTXQUUAc/8A8IJ4Q/6FXQ//AAXxf/E0f8IJ4Q/6FXQ//BfF/wDE10FFAHP/APCCeEP+hV0P/wAF8X/xNH/CCeEP+hV0P/wXxf8AxNdBRQBz/wDwgnhD/oVdD/8ABfF/8TR/wgnhD/oVdD/8F8X/AMTXQUUAc/8A8IJ4Q/6FXQ//AAXxf/E0f8IJ4Q/6FXQ//BfF/wDE10FFAHP/APCCeEP+hV0P/wAF8X/xNH/CCeEP+hV0P/wXxf8AxNdBRQBz/wDwgnhD/oVdD/8ABfF/8TR/wgnhD/oVdD/8F8X/AMTXQUUAc/8A8IJ4Q/6FXQ//AAXxf/E0f8IJ4Q/6FXQ//BfF/wDE10FFAHP/APCCeEP+hV0P/wAF8X/xNH/CCeEP+hV0P/wXxf8AxNdBRQBz/wDwgnhD/oVdD/8ABfF/8TR/wgnhD/oVdD/8F8X/AMTXQUUAc/8A8IJ4Q/6FXQ//AAXxf/E0f8IJ4Q/6FXQ//BfF/wDE10FFAHP/APCCeEP+hV0P/wAF8X/xNH/CCeEP+hV0P/wXxf8AxNdBRQBz/wDwgnhD/oVdD/8ABfF/8TR/wgnhD/oVdD/8F8X/AMTXQUUAc/8A8IJ4Q/6FXQ//AAXxf/E0f8IJ4Q/6FXQ//BfF/wDE10FFAHP/APCCeEP+hV0P/wAF8X/xNH/CCeEP+hV0P/wXxf8AxNdBRQBz/wDwgnhD/oVdD/8ABfF/8TR/wgnhD/oVdD/8F8X/AMTXQUUAc/8A8IJ4Q/6FXQ//AAXxf/E0f8IJ4Q/6FXQ//BfF/wDE10FFAHP/APCCeEP+hV0P/wAF8X/xNH/CCeEP+hV0P/wXxf8AxNdBRQBz/wDwgnhD/oVdD/8ABfF/8TR/wgnhD/oVdD/8F8X/AMTXQUUAc/8A8IJ4Q/6FXQ//AAXxf/E0f8IJ4Q/6FXQ//BfF/wDE10FFAHP/APCCeEP+hV0P/wAF8X/xNH/CCeEP+hV0P/wXxf8AxNdBRQBz/wDwgnhD/oVdD/8ABfF/8TR/wgnhD/oVdD/8F8X/AMTXQUUAc/8A8IJ4Q/6FXQ//AAXxf/E0f8IJ4Q/6FXQ//BfF/wDE10FFAHP/APCCeEP+hV0P/wAF8X/xNH/CCeEP+hV0P/wXxf8AxNdBRQBz/wDwgnhD/oVdD/8ABfF/8TR/wgnhD/oVdD/8F8X/AMTXQUUAc/8A8IJ4Q/6FXQ//AAXxf/E0f8IJ4Q/6FXQ//BfF/wDE10FFAHP/APCCeEP+hV0P/wAF8X/xNH/CCeEP+hV0P/wXxf8AxNdBRQBz/wDwgnhD/oVdD/8ABfF/8TR/wgnhD/oVdD/8F8X/AMTXQUUAc/8A8IJ4Q/6FXQ//AAXxf/E0f8IJ4Q/6FXQ//BfF/wDE10FFAHP/APCCeEP+hV0P/wAF8X/xNH/CCeEP+hV0P/wXxf8AxNdBRQBz/wDwgnhD/oVdD/8ABfF/8TR/wgnhD/oVdD/8F8X/AMTXQUUAc/8A8IJ4Q/6FXQ//AAXxf/E0f8IJ4Q/6FXQ//BfF/wDE10FFAHP/APCCeEP+hV0P/wAF8X/xNH/CCeEP+hV0P/wXxf8AxNdBRQBz/wDwgnhD/oVdD/8ABfF/8TR/wgnhD/oVdD/8F8X/AMTXQUUAc/8A8IJ4Q/6FXQ//AAXxf/E0f8IJ4Q/6FXQ//BfF/wDE10FFAHP/APCCeEP+hV0P/wAF8X/xNH/CCeEP+hV0P/wXxf8AxNdBRQBz/wDwgnhD/oVdD/8ABfF/8TR/wgnhD/oVdD/8F8X/AMTXQUUAc/8A8IJ4Q/6FXQ//AAXxf/E0f8IJ4Q/6FXQ//BfF/wDE10FFAHP/APCCeEP+hV0P/wAF8X/xNH/CCeEP+hV0P/wXxf8AxNdBRQBz/wDwgnhD/oVdD/8ABfF/8TR/wgnhD/oVdD/8F8X/AMTXQUUAc/8A8IJ4Q/6FXQ//AAXxf/E0f8IJ4Q/6FXQ//BfF/wDE10FFAHP/APCCeEP+hV0P/wAF8X/xNH/CCeEP+hV0P/wXxf8AxNdBRQBz/wDwgnhD/oVdD/8ABfF/8TR/wgnhD/oVdD/8F8X/AMTXQUUAc/8A8IJ4Q/6FXQ//AAXxf/E0f8IJ4Q/6FXQ//BfF/wDE10FFAHP/APCCeEP+hV0P/wAF8X/xNH/CCeEP+hV0P/wXxf8AxNdBRQBz/wDwgnhD/oVdD/8ABfF/8TR/wgnhD/oVdD/8F8X/AMTXQUUAc/8A8IJ4Q/6FXQ//AAXxf/E0f8IJ4Q/6FXQ//BfF/wDE10FFAHP/APCCeEP+hV0P/wAF8X/xNH/CCeEP+hV0P/wXxf8AxNdBRQBz/wDwgnhD/oVdD/8ABfF/8TR/wgnhD/oVdD/8F8X/AMTXQUUAc/8A8IJ4Q/6FXQ//AAXxf/E0f8IJ4Q/6FXQ//BfF/wDE10FFAHP/APCCeEP+hV0P/wAF8X/xNH/CCeEP+hV0P/wXxf8AxNdBRQBz/wDwgnhD/oVdD/8ABfF/8TR/wgnhD/oVdD/8F8X/AMTXQUUAc/8A8IJ4Q/6FXQ//AAXxf/E0f8IJ4Q/6FXQ//BfF/wDE10FFAHP/APCCeEP+hV0P/wAF8X/xNH/CCeEP+hV0P/wXxf8AxNdBRQBz/wDwgnhD/oVdD/8ABfF/8TR/wgnhD/oVdD/8F8X/AMTXQUUAc/8A8IJ4Q/6FXQ//AAXxf/E0f8IJ4Q/6FXQ//BfF/wDE10FFAHP/APCCeEP+hV0P/wAF8X/xNH/CCeEP+hV0P/wXxf8AxNdBRQBz/wDwgnhD/oVdD/8ABfF/8TR/wgnhD/oVdD/8F8X/AMTXQUUAc/8A8IJ4Q/6FXQ//AAXxf/E0f8IJ4Q/6FXQ//BfF/wDE10FFAHP/APCCeEP+hV0P/wAF8X/xNH/CCeEP+hV0P/wXxf8AxNdBRQBz/wDwgnhD/oVdD/8ABfF/8TR/wgnhD/oVdD/8F8X/AMTXQUUAc/8A8IJ4Q/6FXQ//AAXxf/E0f8IJ4Q/6FXQ//BfF/wDE10FFAHP/APCCeEP+hV0P/wAF8X/xNH/CCeEP+hV0P/wXxf8AxNdBRQBz/wDwgnhD/oVdD/8ABfF/8TVix8JeHNMvEu7DQNLtLmPOyaCzjR1yMHDAZHBI/GtiigAooooAKKKKACiiigD/2Q=='] Multimodal Competition True Theorem proof Number Theory Math English 26 "This Question involves one Robber and one or more Cops. After robbing a bank, the Robber retreats to a network of hideouts, represented by dots in the diagram below. Every day, the Robber stays holed up in a single hideout, and every night, the Robber moves to an adjacent hideout. Two hideouts are adjacent if and only if they are connected by an edge in the diagram, also called a hideout map (or map). For the purposes of this Power Question, the map must be connected; that is, given any two hideouts, there must be a path from one to the other. To clarify, the Robber may not stay in the same hideout for two consecutive days, although he may return to a hideout he has previously visited. For example, in the map below, if the Robber holes up in hideout $C$ for day 1 , then he would have to move to $B$ for day 2 , and would then have to move to either $A, C$, or $D$ on day 3. Every day, each Cop searches one hideout: the Cops know the location of all hideouts and which hideouts are adjacent to which. Cops are thorough searchers, so if the Robber is present in the hideout searched, he is found and arrested. If the Robber is not present in the hideout searched, his location is not revealed. That is, the Cops only know that the Robber was not caught at any of the hideouts searched; they get no specific information (other than what they can derive by logic) about what hideout he was in. Cops are not constrained by edges on the map: a Cop may search any hideout on any day, regardless of whether it is adjacent to the hideout searched the previous day. A Cop may search the same hideout on consecutive days, and multiple Cops may search different hideouts on the same day. In the map above, a Cop could search $A$ on day 1 and day 2, and then search $C$ on day 3 . The focus of this Power Question is to determine, given a hideout map and a fixed number of Cops, whether the Cops can be sure of catching the Robber within some time limit. Map Notation: The following notation may be useful when writing your solutions. For a map $M$, let $h(M)$ be the number of hideouts and $e(M)$ be the number of edges in $M$. The safety of a hideout $H$ is the number of hideouts adjacent to $H$, and is denoted by $s(H)$. The Cop number of a map $M$, denoted $C(M)$, is the minimum number of Cops required to guarantee that the Robber is caught. Consider the hideout map $M$ below. Show that one Cop can always catch the Robber." ['Have the Cop stay at $A$ for 2 days. If the Robber is not at $A$ the first day, he must be at one of $B_{1}-B_{6}$, and because the Robber must move along an edge every night, he will be forced to go to $A$ on day 2 .'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAVABvwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ0ALketFcB8SfHg8MJYaTp7q2t6nMkcI4PkozbTIR+YHqc9dpFd6p60AOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKADNZevazDoeltdvG88pYR29vGfnnlY4VF+p79hkngGr9xNFbQPNPKkUUalndyAqgckknoK4e10aPx7NH4hvpr23sUz/ZEdrcvA6xkENOxUg7pAeB2QjuxoA4Txpo0sHjzwDDfSrPqt/qZu9QkXpkPFtRc9EUAqPpnqa93HrXh2q6RBZ/tDeE9Ohur64SO3e4Y3l5JcFW2ytgF2JH3BwPY969xHpQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBka/4a0zxNaC01WKea2/iiS5liV84+8EYbunfOOam0nRbPRNLj02wWaO0jXaiPcSSlBjAAZ2LADsAcDtWjRQByEnw18Ly6wusPZXjakhyt2dSufMHUcN5mQME8V1cMYhiWNd21VABZix4Hcnk/U81JRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUZxQAUhpayte8Q6V4b0832rX8NpAM4MjcuQM4UDlj7AE+1AGdrnj/wr4dv0stV1u2t7pmCmLl2Qn+8FB2jnqcVv2V5a6haR3Vlcw3NvIMpLC4dGHsRwa+GdbvLjUNbvb+5dnlupmnMhTZu3HcGC9gc8Dng19N/ACC+h+GwN3kQyXcjWgJziPCg49t4c/iT3oA9SooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoozjrSHrjPNAC1FPNFDA00sqRxICzOzbQoHcnoB9a43xZ8S9H8NXK6dbpLqutyHEWm2Q3yFvRsZ2/z9AeawI/BHifx5NHd+Pb37JpobdHoVhIQvsZXycnj178FelAFjUvibd63fSaL8PdN/ti8XCy6jKNtpBnuTxu4Deg443dKl0f4Z20F03iLxtqJ17V1Uu0lyP9GtgOSEQ8YHPJGO4VTXeaXpdjo9hHZadZw2ltGPlihQKo98Dv79TXE/FzU518OWvhzTiP7S8Q3C2MXP3YyR5jH/AGcEA+zUAY/w60a08Z3+seOtY06C5F/d7NNS6hV/JhiO1WUEHaeAD7oT3r1lRgYwAOwFUtF0u20PRbLS7QYgtIViTjkgDGT7nqav0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVBdXVvZ28lzczxwwRqWeSRwqqB1JJ4FeaXvxH1bxPeyaV8OtN+3Mh2TatdKVtYPp/ePOf5Bh0AO58R+KdF8K2H2zWNQitYyDtUnLyeyqOSenQV5+b/AMb/ABLUDSo5fC/ht/8Al8lH+mXC/wCwB9wHjkH6MeRWz4d+F9nY6ida8R3UniDXWIJubsZji74jQ5AA7enbHSu/Xvnv7UAc14V8CaD4Ot/L0q0/fsMTXc2Glm9dzY/HAAFdIoxTqKAEbpj+VeW+HR/wmfxe1bxGT5mm6Cv9nWBxwZj/AK1x24ywz3DKe1dP8R/Ev/CK+Cb6/ifF46/Z7QDk+c4wuB3IGWx6A1L8PvDI8J+C9P0tlAuQnm3R67pn+Zue+M7QfRRQB0wz3paKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiuf8U+MdD8I2YuNXvo4WIJjhX5pZP91ByfTPT1IoA3zziuE8UfE3S9GvP7J0u3l1zXWO1bCy+faeh3sMhcenJ9h1rB/4rr4m9PN8KeGX/wDA25T9NoI+nX+MV3XhfwZofg+y+zaPYpESB5kzfNJIfVmxnueBwM8AUAcXb/D/AMQeMriPUPiJqG6BW3xaHZOVgjPYuwOWI56HP+1jivS7CxtdNso7Oytora2iXEcMSBVUewHFWBS0AFFFFABSNnHFLWb4g1i28P6BfatdnEFpC0rDOC2Bwo9ycAe5oA8/1lf+Ey+Mem6MmW0zw1GL274+VrlseWh7EgYYf8DFeorXn/wj0e4tvC82u6io/tTX521C4YLjCsfkUe2PmA7bq9BFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNbkUAOqtf31rp1nJeXtzFbW0Q3SSyuFVR6kmuH8SfFCysdROieHLSXxBrzfKLW0OY4z6yOOAB3x+JXrWdY/DjVfFF5Hq3xE1D7cyt5kOkWrFLWE++D8x7foSwoAbP4/1/xncy6b8PNOBgRvLm1y+UrBGe+xSPmPTqPquOa2fDPww03Rrw6vq00mua85Dvf3nzbT/sKchcdjyR2wOK7S0tYLK3S2tYI4LeJQsccShVUegA4FT0AIOvTtS0UUAFFFFABRRRQAjfzry/4nSSeJfEGgeALZmC30ovNRKcbbaM5xn3IOP9pV9a9OlkSGNpZGCogLMzHAAAySa8x+F8T+JNZ17x9dRsP7SmNrp6sPuW0Zxx6ZIAPuh9aAPTokSKJY40CIoAVQMAD0Ap9IvfrS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFJketAC0ZqlqmqWOj2Ml7qN3Da20Yy8szhVH59z6V5tJ438TePJXs/AdgbPTt22TXr5CEx38pCDk+/PuF60Adj4t8c6D4Ntll1W8xMwzFaRfPNKewC5/U4Hv0rizp3jf4ljOpvL4W8NSdbOI/6ZcL33kj5AeeCPqG610fhX4a6R4cuDqVyZdW1yQ7pdRvjvk3eq5J2/UZPOMmu0UdTzz60AY3hzwto/hSwFno9hFbRnl2Ay8h9Wbqe/wBO2BW0KWigAooooAKKKKACiiigAoopD/k0Aee/F7V7iDwzB4e05lOp+IJxYQqT0RseYx9sEKT2312eh6Tb6FolnpVopEFpCsSZ6nA6n3PU+5rzzw//AMVp8YNV185fTPDqnT7Lj5WnOfMYfT5h9GU16kowKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAozjrSEgdSOK5bxd4+0LwhGsd7cNNfycQ2FsN88hPT5ewPqce3NAHU5B54rzrXvilD/aP9ieDrJvEOtHIxAf8AR4P9p3zjGe2QODkjjOYdA8Z/EnD+I5X8OeHX5XS7V/8ASJl9JWPQe2PT5cjNeh6F4d0nw3p62OkafFaW46hByx9Wbqx9yaAOH034ZXmuX0esfELUP7XvFOYdOiJW0ts9gvG48DPrjndwa9KgijgiWKKNY4kAVEVQFUegA6U8ZpaACiiigAooooAKKKKACiiigAooooAK5T4i+Jx4T8E6hqUbf6UV8i1UHlpn4XH0+9j0U11Rry7Xj/wmXxh0rQUJbTfDqDULwfwtOQPLQ9iQMEexb0oA6j4deGf+ET8E6fpsi4uinnXTdzM/Lc98cLn0UV1VNXvTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopkjKqMzkBVBJJ6Ae9AD8j1rO1rWdN0HT3v9WvIbS0TrJK2AT2AHUn2HNcNq3xQa+1JtE8C6edf1TOHnBxa2/B5Z+jdD0IB7HPFGjfC9r7UU1zx1f8A9vaqPmSBhi1t/ZU4DfiMdyM80AUW8V+LviEzW/gq1OkaISVbW71PnkHQmJPz5/Mqa6fwl8OdE8KObyJJL3VpctNqN4d8zseuD0UfTn1JxXXRIsaBEUKigKqjoAPSn0AIKWiigAooooAKKKKACiiigAooooAKKKKACiikNAGfr2rW2g6Fe6tdkeRaQtK4zgsAPuj3JwB7muN+EWkXEHhmfxDqCg6p4gna/mbHIRjmNfpglh/vVR+J8z+I9b0DwDbM2NRmF3qBTjbaxknH4kHHuoHevTYY0hiWKNQqIAqqowAB0AoAeKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiijOKACijNZmo+ItD0dwmp6zp9k56Lc3KRk/8AfRFAGnRVG31rS7u2jubfUrOaCVxHHLHOrKznooIOCT6VeoAKKKa30oAdRmvP9d+Id5ofi6z8Nf8ACONdXt6m+2MF4oVlyeuVG3AUn096nufiLFouq2lh4n0i80b7YxW3uneOaBiMcF1J2nkdRQB3NFNUYzTqACijNGaACkyCM54rL1/xDpPhvTWv9Xv4rS2X+Jzyx9FA5Y+wBrzsa94z+JIMfhqB/D3h9+Dq10v+kTL6xJ2+o/76BGKAOp8X/EbQ/CRFpLI99q0nyw6daDfM7HpkfwjkdfwBxiuXXwp4u+IbC48ZXTaRopYMmiWT4dx1HnPz6Djn6Ia67wl8P9B8Hq0ljbtNfPky31yd88hPX5j0B9BgevPNdQoxxjAoAoaPomm6BYJY6VYw2lsnSOJcZPqT1J4HJyTWgKWigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKZK6RRtJIwVFBLMegHc0+vPvi9rE9t4Wi0LTiDqmvTrYQLnorECRj7YO0/wC+KAM/4ZRN4l1/X/H86HbfzGz08MDxbR4GR6biBn3VvWvUBWdoGj23h/QbLSLQfubSFYlJHLYHLH3JyT9a0qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmt2p1I3agDy3xp4u1XUvGFt4B8KTeRfzANf36jJtIsZOO27ac591A5OR2fh/wlpHhu1CWForTEZmu5fmnnY8lmc8kk++OteU/As/2v4w8Ya/dc3bzKoLdQJHdmHt9xRj0Fe6qeOetAHDan4Fs5/iVoHiO1sY4TbJObto12iRtoEZOO4LMc9Tj2ruQMUtFABSGlrN8QatFoXh7UNWmwUs7d5sE43EA4H4nA/GgDyGy8Q6Le/H3WtX1fVLO0ttGt/sVp9pmVCZM7WK5POCZfzFSePHl+Ld3pWh+GIpZ9Lt7gy3mrMhWCP5cbVYj5yAT07kds1t/BXQ1i+Hp1C/iWa51i4lupjKoJZSdoBz2ON3/Aq5zRP+JF+0hdaPoAEWmXMRe8t4R+6RvJ3Zx2+faPYsRQB7jEuxAoJOABljk/jSv2Hc0ooIzQB5X4h+O3hvQNck0oWt9etbyGK5lhVQqEHBC5I3EEew96JvitdeJ2Gn/D3SJtSu3UGW8uozHb2uf72cZOAeMjpxu6V4X4p+G3ifRPEdxZjSNQu4pJ3FtcxwmXz13HaSVB+YjBI611fhnS5vCJi0rxpqXi7wul0/mQXNjqAS1diBwwVWw3TJyffGKAPWNC+FsJ1Bdb8Y3z+IdbOGDTj/AEeDviNOmAfXjvtBr0RQBnAxXnkHw1guYEng+IXjSWGRQ6SR60GVlPQghcEe9S/8Ks/6nzxx/wCDj/7GgD0CivP/APhVv/U+eOP/AAcf/Y0f8Ks/6nzxx/4N/wD7GgD0CivP/wDhVn/U+eOP/Bv/APY0f8Ks/wCp88cf+Df/AOxoA9Aorz//AIVZ/wBT544/8G//ANjR/wAKs/6nzxx/4N//ALGgD0CivP8A/hVn/U+eOP8Awb//AGNH/CrP+p88cf8Ag3/+xoA9Aorz/wD4VZ/1Pnjj/wAG/wD9jR/wqz/qfPHH/g3/APsaAPQKK8//AOFWf9T544/8G/8A9jR/wqz/AKnzxx/4N/8A7GgD0CivP/8AhVn/AFPnjj/wb/8A2NH/AAqz/qfPHH/g3/8AsaAPQKK8/wD+FWf9T544/wDBv/8AY0f8Ks/6nzxx/wCDf/7GgD0CivP/APhVn/U+eOP/AAb/AP2NH/CrP+p88cf+Dj/7GgDv2xx9a8u0T/is/jFqWtsC+meG0NhZjHytcnPmMO3HzD8UNZnjzwsvg3whe6wPHXjSS4RdltFJrBw8rcKCAuSByxAIOFNXPC3wd/s/w9arJ4q8U6fdzIs13BYagIYxMVG7gKeeAMk9hQB6wPSlrz//AIVZ/wBT544/8G//ANjR/wAKs/6nzxx/4N//ALGgD0CivP8A/hVn/U+eOP8Awb//AGNH/CrP+p88cf8Ag3/+xoA9Aorz/wD4VZ/1Pnjj/wAG/wD9jR/wqz/qfPHH/g3/APsaAPQKK8//AOFWf9T544/8G/8A9jR/wqz/AKnzxx/4N/8A7GgD0CivP/8AhVn/AFPnjj/wb/8A2NH/AAqz/qfPHH/g3/8AsaAPQKK8/wD+FWf9T544/wDBv/8AY0f8Ks/6nzxx/wCDf/7GgD0CivP/APhVn/U+eOP/AAb/AP2NH/CrP+p88cf+Df8A+xoA9Aorz/8A4VZ/1Pnjj/wb/wD2NH/CrP8AqfPHH/g3/wDsaAPQKK8//wCFWf8AU+eOP/Bv/wDY0f8ACrP+p88cf+Df/wCxoA7q6njtreSeZ1SKNS8jscBVAyST2FeTN+0N4VGr/ZhaagbPODd7FxnP9wnO3v6+1aup/CWS60q7t4/G/i+R5YHRUutU3xMSpADrtG5fUZGRXzm/w98YJrH9mHw5qAugfurESvrkOMrj3zigD7PtLmG8tYrq3kWWCZFkjdTwykZBH4Gpj29qxvCOky6D4R0nSp33zWtpHFIc8bgvIHtnpW1QB4qui618K/Huo6xp2lXWpeGNVOZ47FN8ts2SRhO4Us2O208nNd1B8QtJ1FQmmWWr310f+WEenSoQf9ppFVF9Mlq689R1ox/kUAUNIj1BYJJtSdftEzb/ACYzlIBjhFPG7HdsckntgDQpBS0AIQa5Dx14S1Txjo0ujwa1Dp9jMVMgFkZZGwQcbvMUYyB2rsKKAODtfCHi2y0K20i28ZW9vbW0KwRvBo4EgRV2jkykZwOuKv8Ag74f6V4ONxcW7z3eo3JzcX1026STnP0A/n3ziutooAQDFLRRQAh+maqajp1nqljLZX9pFdWsow8UyBlYfQ9885q5RQB5VP4G8R+B5nvfAF6ZrEtvl0K9cmM56mJyeD+R9zwK3/CfxK0jxNctps0cula5GSJdMvBskDAZIXON3fsDxyBXaMM1zXivwHoXjG3VNTtiLiP/AFF3Adk0J7bWHUexyPxxQB0wI9fxpa8lOr+NPhmduvRy+JvDq9NSgX/SrdcdZF/ixjqT9W6LXonh/wARaR4l05b7R7+K6tzwdh+ZD6Mp5U+xFAGtRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh5paz9b1W30PRbzVbtiLe0haV8dSAM4Hueg+tAHnviJj4x+L+keHU+fTdAUalfehmI/dKe2RkH3DP6V6iteefCPSblPDlz4k1Jf+Jn4hnN9KcciM/6tR/s4JYezY7V6GO9AC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAGm45zjmnUUAIKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAawzjjNeea78Lo11Btc8G3zeHtaGSTCP9Hn9pI+nX0GO+Ca9FpDQB5ppXxOn0nUU0Xx/p/8AYuoE7Y71ebS491f+HqPUepHQekxOsiB1cMrAEMOhHtVLV9G0/XdPew1Syhu7WT70cqg89iPQjJ5HI7V5xJ4U8XfDxjc+DLt9X0QEs+hXj5ZB1Pkt+J44+jmgD1eiuR8H/EPRPF262hd7PVY8ibTrobJoyOuAfvAeo9sgdK60EHmgBaKKKACiiigAooooAKKKKACiiigBDXmHxSlk8RatoHgG0dl/tOcXN+UOCltGcntxkg4PqgFemyusaF3YKigszE4AA7+1eY/DNW8T+JfEHj2ZT5d1N9h00MCNttHjkem4hc+hVvWgD02CNIYViiRUiQBUVRgADsBUlIvSloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmsM9s06igDkvF3w80Pxhie6ie11KPBh1G1OyZCOnP8AEB6Hp2wea5RPFHi74cult4zt21jQshU1uzTMkQ/6ap+XPXryx4r1imSxrIhR1DKwKlSMgg9jQBR0bWtN17T1v9KvYbu1fpJE2QD3BHUHkcHnmtDI9RXmus/DGfTtQfXPAWof2HqbHMlrj/RLgc8MnIXr2GB6DqHaD8UFTUV0TxpYHw9rPRTKf9Hn943zgfiSPc0Aek0U1SMdqdQAUUUUAFFFFABRRTW7UAcB8XtansfCcejaf82qa7Oun2yg4OH4c/TB2+xcGuu8PaNb+HvD9jo9qP3NnCsQOMbiOrH3JyT9a8/0gHxn8ZtR1ggtpfhmM2Nr6NctkSN+HzD8ENepDOTmgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEOeMVla74d0rxJpzWGr2EV3AegcZKn1VuCp9wa1qKAPJToXjP4Z/P4elk8R+G0PzaZcN/pNuvrE2OQMdMd/u9x2fhHx3oPjCBv7Nudl3GP31lONk0RHXK98HuMj3rpj2rjPFvw40nxPMuoRNLpmtw/NDqVkdsgbtuxjcPyPoRk0AdpRXlMXjXxJ4DnWx8e2Ru9Ozth12yQlSOAPNXHB55/QNya9L07UrLVbNLywuobm1kGVlhcMp/EUAW6KKKACuZ8f8AidPCPgzUNW3KJ0jMdup/ilbhRj26n2BrpW6V5Z4mP/CY/FzR/DS5bTtCUalf+jS8eUh/MH3DN6UAdP8ADbwyfCngixsJlIvZB9ovCfvGZ+Wz9Bhf+A11tIveloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAiuII7mFoZoklicFXRxlWB7Ed68z1L4a6j4cvZdZ+Heof2dOx3TaVOd1pcewB+6ev54BUV6jSGgDz/AMN/E+zvdR/sPxLayaBr64U210cRynpmNzwc9gfwLda79axvEnhXRvFlgbLWbCO5iGdjnh4z6q3Uf175Feezjxl8KYHnWeTxN4ThGWWZ9t1ZoO4J+8oH4cdEHNAHp2tapb6Lo15ql22ILSFppPXCjOB7nGB74riPhDpVyvh+78TakmNT8QTm8kGPuxZPlqPbBJHsw9K8c8afGe88Y2p0ZtOSy0WSaNpUjctM6K2du77vJAONvBHUivpvR7izu9GsrjT9v2KWBHt9owPLKgrx9MUAXRS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWV4k0WHxF4c1DSJyQl3A0W4dVJHDfgcH8K1aKAPlFfgP44Oq/YTb2ggHP2w3A8n8sb/APx2vp/RNMj0XQ7HS4mZ47SBIVZ+rbQBk/Wr+R60mQO4oAWijNFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUje/SlpDjHNAHjfx2jWSPw/YaeDFrWo36xxyxMVZkA2kHHbc6flXa/8K20BLNYoBqFrOiBVubbUJ45FOMbs7sZ+oI9q425/wCKs/aNghHz2nh2z8xgeV808/nudf8Avg+lew8etAHlfg3xTq2k/EK98AeIbw30kamTT751AkmTbu2OR1+XnPqrcnjHqi9PWvDblTrH7U1t9lyU063Bnde2Ij/WRVr3IUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVma5r2meHrB73VL2G1hRGb944BfAyQoz8x6cD1rTpCM4oA8F+DnirQIH8S6/rmtWNnqWp3xZoriYK2zlvlzyQS5HH90V6Hf/EGO9ia28IWFxrmotwjRwslrGT/E8rALjrwDk4/Gu3/MfjQBzQBxPw+8BHwlFeahqF0L7XtScyXt1jjJJO1fbJyT3P4Cu2FLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q==', '/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAV4BkQMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKQnFIXwOn4UAOopu7/IpQc9KAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopCcUALRTd3pyKUHPpQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACN9M15Xrcdzq3xqsNDs9V1WCxhsGu9Sjt9QmRTkkIBhvl5KdMcGvVDwK8d8C6XeeL9a8VeLrbW73TTe3zWlrJbRxMHhjACk+Yjcfd6Y6Hr2AL9zqmo+Gfi7ovh2y1K7v9N1OBnntbuYzSW5G7Dq7fMB8vQkjhvWvUl4GPSvIvhdIkXjbxLpGqwi68Q2LYfWGZme4izgBgxOzHy8Lx+WT6NrmvNo0LPFpd/qLohkeO0Vcog/iJdlH0UEsew64ANmis7Qdbs/EeiWur6ezNa3Kb03rhh2II7EEEH6Vo0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU2RQylTnBGODg/n2p1Y3ivWV8PeFdT1diP9EtnkUHu+PlH4tgUAeeeDrKfxL4x8XzyaxrX9jWV2LOziTVZ1Adf9Yc784BAI7fN0rR8BeINUk8deJ/C9zey6lYaYym3u58GRM9Y3YD5j15/2T68YvhbwRrcHwlhl07xPqOnX15A188QWLyy7jcMts8xSQFBbfx1rf8Ag1qOm6p4FF3YaVHYTfaGiughLebKADv3MSzZDDqSQcjmgD0Ud6WuK134k6d4euT9q0rV309JBFNqUdsDbxNnbgsTkgHgkAjPAya7OORJY1kjYMjAFWByCD3oAdRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGN4oh1q60O6tNCFot3cRPEs1zO0YiJGAw2o2cZzjjpXI+GPD/jTwt4OtPD9ha+Hlktww+1yXk75LMWLbBCvcnHzelejEZox+P1oA47wP4Fj8Ii/vLm9fUdZ1KQy3t2ybN5yTtVewySffPoABB8StW8QaN4emvtMghewiA+2ukhW5SInDNFkFcgHqc4644rtnHHHXtmuLfTPFfiLQrnRPEUOkWsNx8k1zp88hLxE/MqxsvykjI3bjjOcUAdD4YttOtPDOmw6REYtOFsjW6nqEYZGffnJ9zWtUVvDHbwJDEoWONQqKOiqBgAVLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACE4rhfiZ4b8ReMdC/sTSTp0NrJKkk8lzcyK7qpzs2rGcc4Oc9uld3jNIBQBw2raX441jSW0iBtD0S2li8mSe3nluZETGCEBjjAOOM5+mOtbnhbwvYeEPD1vo2nhzFFks7AbpXP3mPbJ4/ACt0jNUNZ/tMaVMNGS0fUCuIvtbssQPq21STj0xz7UAYPjS2HiLTpPCtsczXoU3MoGRbQbss57bmAKqO5JPQGuptoY7eBIIl2xxqEVfQDpXFeH9O8cWl5BFqZ0COzaQy3c1rJNJczsB/tqByQv0HCgYGO5WgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEIzUN1cwWdu9xczRwwRqWkllcKqAdyTwBU9cD8ZNH1bXPhzeWmkJJNMJY5JLaJNzzxq2Sqj1Bw3vtx3oA6PRvF2ga/LJDpOr2l7LH96OKUFh749PfpW0Dmvkz4N6ZqEPxY01WSS0eFZnlWUbGZQjKVCtyTnjHbBPY19ZjqaAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKZLKkMbSSMqooLMzEAADqST2FPrjfitbXV38Mtdjs5xDKtv5jEtgMikM6/ioI/GgDV0vxn4b1q9kstN1qxurmMkGKKZSzYGSVH8Q9xkVuA5r5B+Fnh3X77x7o15YWl1Fb29xHLPdeUwjWMfMylsY+Zeg75HrX16vf0oAdSEZIPpS0UAJigDHelooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkIz3xS0UAcT8RvD95f6Vba1ooxruiSfa7P/AGwP9ZEcdQyjGO5AHQmt/wAM6/Z+J/D1lrNif3N1GH2d0boyn3ByPwrWYZxXmljjwB8R5dMOI9B8SOZ7P+5Be8b09t/BA9cACgD0sHNLSA8ke9LQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhOB0Neb+NZX8aeK7PwFaOwso9t7rcifwxAho4s9ixwfYYPrXW+LvElt4T8M3usXQ3CBD5cWeZZDwqj6kj6DJ7VlfDvw3c6Lost/q3za9q0n2vUHYch25EY9AoOMdM5xxigDrIoY4o1jjRERAFVUUAADoAOw9qkAxSiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK53xt4YTxb4YuNM8zyboYmtJwcGGdeUcHqOeDjnBNdFSMobr0oA5TwB4ok8TeHBJeJ5Wq2UhtNQgPBjmTgn6Hr+OO1dWDmvNfFA/4QPx1aeL4QV0jVSllrKjOI36RXB+n3SfT1LV6ShyMjpQA6iiigAooooAKKKKACiiigAooooAKRuwoJwK5D4h+JrjQdCjttLTzNc1SQWenRAjPmNwXOeyg59M7c8HIAMR8/ED4lCPPmeH/AAxJubulxf46e/lj8j7GvSUGM+9Yfg/w1B4T8M2ukQMXMS7ppiOZZW5dz9T+QwK3QKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCjrOlWmuaRdaXfR+Za3UZikX2Pce46j6Vx/w31a6t4r3whrDl9X0RhEsh/wCXm2P+rlH4cH8M8mu+xXnfxH0+50e6sPHelRGS80jK3sKg5ubNj86nH93JYZ4HJ7AUAehg57Ypaq6bf22qadb39nKJba5jWWKQfxKRkVaoAKKKKACiiigAooooAKKKQnHpQA2V1jjZ3ZVRQSxY4AHcmvOPB8b+N/GF544uVP8AZ1tvstDRh/BnEk+D3Y5A9sg9AatfETUbrVJrDwPpMpjv9YybuRettaD/AFjH3P3R68iu10zT7bSdNttPsohFa20SxRIOyqMCgC0BjPPWloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKZLGssbRuoZGBVlYZBHoR6U+kIPagDzfwZI/gvxbe+Bbkt9gn3XuiO3/PM8yQ5PUqckd8ZPpXpAOa4/4h+GrjXNDivNLOzW9KkF5p8g6l1IJQ+oYDGPXFavhLxJbeKvDVpq9uNvmpiWLPMMg4dD9D+mD3oA3KKQHNLQAUUUUAFFFFABVLV9UtNF0q61O+lEVrbRtJI3sB0A7k9AO+auE4xxXmvipj478b2ng2LcdI0/be60ynhz1igP1OGI9PQrQBb+G2lXV4t7411dNmqa4RJHEefs1qP9Ug+owSe/HGRz34GKaihRgDA9AMYp9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANbp3rzQZ+H3xK24K+H/ABRLxj7ltf8A9BIPzPsK9MIzWH4v8NW3ivwzd6RckJ5q7opu8Mg5Rx9D+YyO9AG2vf8AzinVx3w88S3Gu6FJa6ouzXNLk+x6jGSM+YvAfjswGfTOcV2AOaAFooooAKDRSMcYoA5/xn4nh8J+GLrVHTzJ1xHbQDkzTNwiADnk+nYGqngDwzN4d8O/6e/m6xfSNd6hMcEvM/JH0HT06njNc/af8V98S3v+X0DwxIYbcA/LPe/xP77ARj3wQcGvSl6UAKBjvS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1qdVHVtUg0jTpLycMwUhUjjGWlcnCoo7sxIAHqaAOC8YqfBnjGz8b2oP2CYLZ65GgziMnEcxA7q3GfTA9a9IikWWMSIwZGAZSDkEe1eV/D1rrxfceOT4jjSUXF3/Z0kCtlESMONinjgbjg8HOTWr8OdQuNIuL/AMCarK0t9o+Gs5W63NmfuMPdchT2HAycGgD0KikBz6fhS0AITiuM+I3iG70zSLfSdGIbXtZl+x2KgnKZ+/Lx0CjnPYkHpmuvuJo7aF5pnVIo1LO7HAUDkkn6V574Fhk8W+I7/wAe3iusEm6z0aNx9y2B+aXB6Fz+gI5BBoA67wx4es/C/h2z0axH7q2j2l8cyN1Zj7kkn8fStgDFAGOpzS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFJn/JoAWiiigAooJooAKKKKACiiigAooooAKKKKACiiigApCcUtIRnFADXYKpZiFUckk8VwovNZ1nXY9atdEF7pUCn+zd92sQZjkNOVwTyOF9FJP8AFxs+LfD+r+ItPNhY63Dp1tKALgGzMryrnldwkXCkcEdcZ5rTvrPUJtINrZ3ttbXTR7DO1sXReMEqgcEc8j5jj3oA8++BJa48H6pfuMNe6vPN68EJ379DWl8SdKureOy8ZaPHv1XQ2Mjov/Lzan/Wxn8MkenOOTWj4B8GXfgjRP7IbVob62V2eNhZmJwWPc72B/IV1jqGUqcYb1GRQBU0bVbTXNHtNUsJPMtbqISxt3wex9COhHYirpOK828LN/wg3jm78Hy7l0rUy17ozMeEbrLAPTB+YD09zXba9rlp4e0K81e+bbbWsRkbB5bsFHuTgD60Acb8Q7yfxFqVh4A0yVo5tQHn6nMmc29mp5+hc4UD8Dw1d9ZWkFhZQ2drEsVvBGscca9FVRgAe2BXGfDfRLtLO88U6zHt1zXXFxKDnMEWP3UQz0CrjPQ9Afu5rugMCgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAIrgSmFhC6JJj5WdNwB9xkZ/MV5z4R8T+M/F0Gq3dtLoUUFneyWkDNazEXBT+LIl+UEEc4PWun8fa7/wjfgbV9UVtssVuywn/AKat8qf+PMK850+fxf8ADz4TWX2XRrAW8UPnT3UczzTQrIdxcwlEBK7um8gY54oA7zwF42HjGzv1ns/seo6dcG2u4A+9QwzyrdwcH8vxrrq4z4aaHo+j+FUutIvJNQXUmN3NfSjDzOepI7Y6Y7HPfNddcXMNpbyXFzLHDDGpaSSRgqqB1JJ4A+tAGD428X2Xgjw3Lq95G02HWOKFGCtK57An2BJ9ga4XwT8d9L8RajJZazaxaMdheO4lul8o4/hLMFweePWuy+IHgyHx54YfSJJ/s0yyLNBOY94Rxx0yMggsOvfNcB4B+BCaHq7aj4lmsNRCKyRWiw+ZGSeA7FxycZ4x1Oc8UAelf8J34Q7+KtDB/wCwjF/8VR/wnfhD/oa9D/8ABjD/APFUg8B+EAMf8IroZ+unRf8AxNL/AMIJ4Q/6FTQ//BdD/wDE0AH/AAnfhD/oa9D/APBjD/8AFUf8J34Q/wChr0P/AMGMP/xVH/CCeEP+hU0P/wAF0P8A8TR/wgnhD/oVND/8F0P/AMTQAf8ACd+EP+hr0P8A8GMP/wAVR/wnfhD/AKGvQ/8AwYw//FUf8IJ4Q/6FTQ//AAXQ/wDxNH/CCeEP+hU0P/wXQ/8AxNAB/wAJ34Q/6GvQ/wDwYw//ABVH/Cd+EP8Aoa9D/wDBjD/8VR/wgnhD/oVND/8ABdD/APE0f8IJ4Q/6FTQ//BdD/wDE0AH/AAnfhD/oa9D/APBjD/8AFUf8J34Q/wChr0P/AMGMP/xVH/CCeEP+hU0P/wAF0P8A8TR/wgnhD/oVND/8F0P/AMTQAf8ACd+EP+hr0P8A8GMP/wAVR/wnfhD/AKGvQ/8AwYw//FUf8IJ4Q/6FTQ//AAXQ/wDxNH/CCeEP+hU0P/wXQ/8AxNAB/wAJ34Q/6GvQ/wDwYw//ABVH/Cd+EP8Aoa9D/wDBjD/8VR/wgnhD/oVND/8ABdD/APE0f8IJ4Q/6FTQ//BdD/wDE0AH/AAnfhD/oa9D/APBjD/8AFUjeOvCBGP8AhK9C/wDBjD/8VS/8IJ4Q/wChU0P/AMF0P/xNIfAvhAf8ypof/guh/wDiaAOJ+KXiPwnqXg6W6tPE2mvqumypd6e9pdRSyrMpG0BQ2SDnn0HODjB4a2+KVv8AETxPoGleJIrfStHguDc3JaceVO6KSiuWwFTIPBznIHvXd/FPwx4R07wJdpB4esLfULt0t7D7BZRpO9wzAoqkLnsc+q5HXFec6R8L5fA3jHw7eeMFsbvSby4a3Oz95EkrIfLEgdQCC2fUfLyaAPeV8deEAP8Aka9D/HUYv/iqd/wnfhD/AKGvQ/8AwYw//FU1fAvg88f8IrofHrp0X/xNO/4QTwh/0Kmh/wDguh/+JoAP+E78If8AQ16H/wCDGH/4qj/hO/CH/Q16H/4MYf8A4qj/AIQTwh/0Kmh/+C6H/wCJo/4QTwh/0Kmh/wDguh/+JoAP+E78If8AQ16H/wCDGH/4qj/hO/CH/Q16H/4MYf8A4qj/AIQTwh/0Kmh/+C6H/wCJo/4QTwh/0Kmh/wDguh/+JoAP+E78If8AQ16H/wCDGH/4qj/hO/CH/Q16H/4MYf8A4qj/AIQTwh/0Kmh/+C6H/wCJo/4QTwh/0Kmh/wDguh/+JoAP+E78If8AQ16H/wCDGH/4qj/hO/CH/Q16H/4MYf8A4qj/AIQTwh/0Kmh/+C6H/wCJo/4QTwh/0Kmh/wDguh/+JoAP+E78If8AQ16H/wCDGH/4qj/hO/CH/Q16H/4MYf8A4qj/AIQTwh/0Kmh/+C6H/wCJo/4QTwh/0Kmh/wDguh/+JoAP+E78If8AQ16H/wCDGH/4qj/hO/CH/Q16H/4MYf8A4qj/AIQTwh/0Kmh/+C6H/wCJo/4QTwh/0Kmh/wDguh/+JoAP+E78If8AQ16H/wCDGH/4qj/hO/CH/Q16H/4MYf8A4qj/AIQTwh/0Kmh/+C6H/wCJo/4QTwh/0Kmh/wDguh/+JoAq6j8RvCFhp1xeDxFpVz5EbSeTb30TySYGdqqG5J6AVwXhj4/2uueKLfSrvRXtILuZYYJ1nDlWY4XcNoxkkd+Peu51j4beFNT0e7sYdA0qzkniaNbi3sYleIkcMpAByDg9a808K/s/3WkeLbfUNT1e3msbKdJolhjYPPtO4BgeF5A6FsjI4oA94ByKjuXmSBmt445JQPlSSQop+pAOPyqRenf8a57x3rf/AAjngjV9VV9kkNswiP8A00b5U/8AHmFAGB4c+IGveKLG+vdO8LW7Q2lw9sc6phpnUAny8xYI5HJI/Suh8IeL9P8AGekPf2CTRNFKYJ4J1w8Ug6qfzHNea6P4i1D4b/DDTLZ/DF3C7KC9/dOhto5JGyHfy2eQKCw4KgnGOK7b4a+FIPC3hx2W+TULnUZPtk93H9yQsONn+zjoe+SaAO0oppYD0/OlBoAWiiigAoNFFAHlXxamuNbfRdAg0rVrixOoJNqU0GnTyIsK9shPmzk9M/dq34z1vU/Evh658PeGfD2qST38Xktc3lo9pDBGeGJMgXJxkYA9/avScUbc0AYHhLQ4vB/g2w0h51ZbKE+bMx2ruJLM3PRck1xXi+e68War4b0xXki0zUdRVktz8rXdvCDJLI46hOFCr75I5AHe+I9Aj8R6Q2mzXt3axu6uz2rKGO05CncrAjOMjHOK4fR/Cd9P8Trq5uNc16a10WKJLeS5dMTvJ88i8RgFMBAQADnvxigD00DPX8CafSKMUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1qUnFcN8R9bvEsLTw1ozY1zXXNvCQf9RFj95Ke+FUn37jOCKAM7RVXx78QpvEUi79C0B3tdNDDKzXB/wBZMOxA4A69iCCMV2fibQLPxP4dvdHvuIbqMpvxko3VWHuCAfwqXw/otn4d0Kz0ixULb2kQjX1buWPuSST7k1pFc98UAcX8OfEF3qOlXGj6yca9o8v2W9UnmQD7koz1DKM57kE9xXaK24ZHSvOPHlvL4T8RWHj6xjd4YsWesxIMmS2Y8SY7lGx+g4AJr0O2nhureOe3lWWGVA6SIch1IyCD3BFAEtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACEZoAx0paKAE6e9eQfGHxBpOoXnh/wpLqVqkNxqKyai3mriGFOob0zuyM/3a9fIzRt9aAPK/iH4w03XvCt34b8Mf8AE81PUFWFI9P/AHscSkjLO4+VQAD39+ACR23gzRJvDng3SdIuJA89rbqkrA5G7qQPYE4HtW9t4xk01isYyzYHXJoA4VPtN/8AGV4Yr68+w6Zpglubf7Qxi8+ViEBTOPuBjXeLjHFcL8MmGqW+ueKM7v7Z1KR4W9YIj5UY/JW/Ou7oAKKKKACiiigAooooAQjNAXFLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFIxx0GaAIb27gsbOa7upVit4I2llkc4CKoySfYAVwHw+s5vEer3/j/AFKJkkvx5GlQuOYLNTwfZnOWP1yDhqb48uJfFniKw8A2TusMuLzWJUOPLtlPEeexdsfoeQSK9DtoIrW2jt4I1ihiUIkaDCooGAAOwAoAkAxnmloooAgvbWC+s5rS5iWW3njaKWNxlXVhgg+xBrgPh9ezeHNWv/AGpSs8lh/pGlzOebizY8D3ZDlT9MAYWvRSM1w3xH0S8ewtPEujLnXNCc3EIA/18WP3kR74ZQffsMZJoA7kHOeKWszw/rVn4i0Kz1exYNb3cQkX1XsVPuCCD7g1p0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVBeWVtf27W93bw3EDjDxzIHVh7g8Gp6KAKenaTp2jwGDTLC1soScmO2hWNc/RQKuUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhOOT0rI8T6/aeGPDt7rF9/qbWMvszgueiqPckgfjWuTjtn2rzO9/wCK/wDiTFpy5fQPDMgnujjK3F7j5E/4BzkeuQRyDQBsfDnw/d6fpVxrGsjOvaxL9qvWI5jz9yIZ6BVOMdiSOwrtFXaMDpSKMZ96dQAUUUUAFNanUhGaAPNdFI8BfEKfw9Idmha8z3Wmk/dhuB/rIR6A8EDjsOSc16UDmuZ8d+Fx4r8My2cUhi1CFhcWE4O0xTpyrZ7DqD7E98UeBfFI8U+GorqZDFqMDG2v4CMGKdOGGOw6EexHfNAHT0UA0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSE4GaWmu21SxIAHOScYoA5bx/4ok8NeHC1lH52rX0gs9OgBGXmfgHB7Dr+Q4zVrwV4Zi8J+GbfTBIZrnJmu525aaduXck8nngZ5wBXLeF1/4Trxxd+MJdx0nTN9loysOHb/AJazj6ngH09xXpKrtz6Ht6UAKOKKKKACiiigAooooARhmvNdcA8B/EG38RJ8mh666Wmpj+GGf/lnMfQHkE8evJOK9LrM8QaLaeItCvNIvl3W13EY3I6r3DD3BAI+lAGihyM06uE+G+t3b2d54W1mTdrmhOLeUnOZ4sfupRnqGXGep6E/exXdA5FAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAITiuA+JWrXdzHZeDdHfbq2uExvIp/497X/AJayH8AQPxxyBXa6nf22laZc6heTCG2to2lkkP8ACoGTXEfDnT7nVrm/8d6tCY77WMLZxMObezH+rUf73DH14PFAHaaNpdpomj2ml2Efl2trEIo1PXA7n1J6k981epAMCloAKKKKACiiigAooooAKQjNLRQB518QrOfw7qdh4+02JpJdPHkanCmc3Fmx54zyyH5gfxJwuK72xu4NQsoLy2lWW3njWWKRejqwyCPbBp9xDHcwPBMivFIpV0YZDKeCCO4rz3wLNJ4S8R3/AIBvHdoI915o0jn79sTzFk9WQ/oSeAKAPR6KQHPUYpaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQnGKCcVheL/Ett4T8M3msXIDeUuIoieZZDwicep/IZPagDlPGUreNPF1l4GtmP8AZ8G291t1OP3YOY4fqxwfpg9q9GiRYoxGihUUBVAGAB7VyPw88NXOhaFJdaq2/XNUkN5qLnGQ7chPoo49M7scV2AGKAFooooAKKKKACiiigAooooAKKKKAEIzXGfEfw9d6npFvq+jDGvaNL9rsWAOXx9+I46hhxjuQB3NdpSMASKAMfwv4htPFHh2z1mx/wBTcx7ipPMbdGU/Qgj8PStgHNeaWf8AxQPxLfTzlNA8TyGa2IHy297xuT2DgDHvgAYBNelKcjpigB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRQTigBrdP6eteajPxA+JeeW0DwvLx/cuL/+ojH4g+zVufEPxHc6Jocdnpa79c1WT7Hp8fo7dX+ig59M4zWn4R8NW3hPw1aaPbnd5SZll7yyHl3P1OfoMDtQBtr1Jp1IBiloAKKKKACiiigAooooAKKKKACiiigAoNFFAHPeM/DEXizwzc6W7+VOcSW044MMy8o4PUYPp2Jqp4B8TTeIvD2b9PK1ixka01CE8FJk4Jx6Hr6deuK6sjOOa818Uq3gXxxZ+MYcjSdR22WtADhD0inP0OFJ9OOS1AHpQOe1LTFbgHrngU5TuzxQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUZorivizdWdl8NNZmu7eGYmAxQCRQxWV/kVlz/EN2cj0oA7PdkcCuH+LfiPU/DHgC61DSfMjujLHEJ1AIhVm5Yg/Tb9WFczqPg/Q/DHwbN3dwx2es29h5q30bGKf7UVyo3ggn5yFx6V1/gyK68SfDPS08VWy3M11b/v0uIwfMXJ2MwPcqFP1560AeCfCjxHq+pfFnSX1K7uNTdlmiVrqVpTEGQklcnjpg47HHpX1Uvfniua8OfD3wv4UupLrR9KjguH4MrO0jAegLk4H0rpwMUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXF/Fi6Np8MdccWouS9v5WxlyFDMFL/VQdwPbbnsa7Sobq1gvbWW1uokmglQpJHIMq6nqCO4NAHyn8L/AB54msvGWjaaNSvbywuZ4raS1lkMihD8o2g52hRzxjhfSvrAcZ9zXL6J8N/CXh3VH1PS9GhhvCxZZSzOY8gg7AxIXqemODj0rqCAPTigBQ2elG4YzXlHxksLXWbnwxoCW8f9oanqSp54QeYsCD95z1xhwce3tVL4pWNn4RtdFufCMCad4glvUitoLEbDcJtO4Mg4cZ2jJHcUAeyKcilpkedo3ABscgU+gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBCcV5d8UEHiTxV4R8GcmK6umvbxVYg+TGDxkcjI3jPqBXqLAkHBwexx0rgW8B69/wAJzL4rXxJYG7a2+yRwyaSzRxR5Bwv78HOcnOe5oA5D4q6XbeCJNG8UWLz3jpeiFrHUp3vI3BUnK+aWKsNmMg8Z7d/a1cCMOw2DGTuPT61xLfDttW1211bxTrMmsPZtvtbVIBBbxtwc7ASWPHc11WqacmqaXdWEk88KXMTxNLAwV0DDB2nnBx04oAwNH8fQ61rEVjb+HfEccMpbZfz6eUtmUAkNvz0YDjjnI9a60HNefeDP7b0TxZqXhHU9Rl1Szt7SK8sLq4H71Y2YqUc45wVOD/s++B6COKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkY4+tLUN2lzJbOtpNFDP/AAvLGZFH1UMufzoA8raxg8bfHDUDO05sfD1gkCtBcPCyzyHJw0bBgcF1OD/DVCKBPBfx107TrTdfwazbF2a8JmuLY4f7krZbbhOQSeCa6fw94C8R+GpNVls/FVjJPqdw1zcTT6QzPvPpicDAycAg9a0fD/w/t9I1+bxFqOoXGr65Muw3c6hRGv8AdjQcKO3figDqZ7mCxtpLi5mSGCJS8ksjBVVR1JPQCqGj+IItdHnWVndmxI/d3ksYjSX3QMQxHvtAPYmuH8WQXXjb4g2/hKOYQ6TpluuoahuQss0hb93GwyMgAbv/ANQrf8Fa/falqGvaLqQga60W6EIngj2LLGwyh25O04BBANAHYCigDFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACGsLW5PE0N/ZPodtpdzafMLqK7meJz02lHVWA75yD2repMfhQBk6TpD215eanePHJqF5sWQxg7I0TO2NM8kAsxJPUsTxwBr0AYooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQ0tFAHMto97pnirU9b06CG5/tK2hjkjkmMZWSLcFOdp+Uh+fTYOueH+EPDR8PWd5JcTrc6lqNy13e3CjCtI3ZR2VRwK6LHPb8qAMd6AFooooAKKKKACiiigAooooAKKKKACiiigD//2Q=='] Multimodal Competition True Theorem proof Combinatorics Math English 27 "This Question involves one Robber and one or more Cops. After robbing a bank, the Robber retreats to a network of hideouts, represented by dots in the diagram below. Every day, the Robber stays holed up in a single hideout, and every night, the Robber moves to an adjacent hideout. Two hideouts are adjacent if and only if they are connected by an edge in the diagram, also called a hideout map (or map). For the purposes of this Power Question, the map must be connected; that is, given any two hideouts, there must be a path from one to the other. To clarify, the Robber may not stay in the same hideout for two consecutive days, although he may return to a hideout he has previously visited. For example, in the map below, if the Robber holes up in hideout $C$ for day 1 , then he would have to move to $B$ for day 2 , and would then have to move to either $A, C$, or $D$ on day 3. Every day, each Cop searches one hideout: the Cops know the location of all hideouts and which hideouts are adjacent to which. Cops are thorough searchers, so if the Robber is present in the hideout searched, he is found and arrested. If the Robber is not present in the hideout searched, his location is not revealed. That is, the Cops only know that the Robber was not caught at any of the hideouts searched; they get no specific information (other than what they can derive by logic) about what hideout he was in. Cops are not constrained by edges on the map: a Cop may search any hideout on any day, regardless of whether it is adjacent to the hideout searched the previous day. A Cop may search the same hideout on consecutive days, and multiple Cops may search different hideouts on the same day. In the map above, a Cop could search $A$ on day 1 and day 2, and then search $C$ on day 3 . The focus of this Power Question is to determine, given a hideout map and a fixed number of Cops, whether the Cops can be sure of catching the Robber within some time limit. Map Notation: The following notation may be useful when writing your solutions. For a map $M$, let $h(M)$ be the number of hideouts and $e(M)$ be the number of edges in $M$. The safety of a hideout $H$ is the number of hideouts adjacent to $H$, and is denoted by $s(H)$. The Cop number of a map $M$, denoted $C(M)$, is the minimum number of Cops required to guarantee that the Robber is caught. The map shown below is $\mathcal{C}_{6}$, the cyclic graph with six hideouts. Show that three Cops are sufficient to catch the Robber on $\mathcal{C}_{6}$, so that $C\left(\mathcal{C}_{6}\right) \leq 3$. " ['The Cops should stay at $\\left\\{A_{1}, A_{3}, A_{5}\\right\\}$ for 2 days. If the Robber evades capture the first day, he must have been at an even-numbered hideout. Because he must move, he will be at an odd-numbered hideout the second day. Equivalently, the Cops could stay at $\\left\\{A_{2}, A_{4}, A_{6}\\right\\}$ for 2 days.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAVABvwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ0ALketFcB8SfHg8MJYaTp7q2t6nMkcI4PkozbTIR+YHqc9dpFd6p60AOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKADNZevazDoeltdvG88pYR29vGfnnlY4VF+p79hkngGr9xNFbQPNPKkUUalndyAqgckknoK4e10aPx7NH4hvpr23sUz/ZEdrcvA6xkENOxUg7pAeB2QjuxoA4Txpo0sHjzwDDfSrPqt/qZu9QkXpkPFtRc9EUAqPpnqa93HrXh2q6RBZ/tDeE9Ohur64SO3e4Y3l5JcFW2ytgF2JH3BwPY969xHpQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBka/4a0zxNaC01WKea2/iiS5liV84+8EYbunfOOam0nRbPRNLj02wWaO0jXaiPcSSlBjAAZ2LADsAcDtWjRQByEnw18Ly6wusPZXjakhyt2dSufMHUcN5mQME8V1cMYhiWNd21VABZix4Hcnk/U81JRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUZxQAUhpayte8Q6V4b0832rX8NpAM4MjcuQM4UDlj7AE+1AGdrnj/wr4dv0stV1u2t7pmCmLl2Qn+8FB2jnqcVv2V5a6haR3Vlcw3NvIMpLC4dGHsRwa+GdbvLjUNbvb+5dnlupmnMhTZu3HcGC9gc8Dng19N/ACC+h+GwN3kQyXcjWgJziPCg49t4c/iT3oA9SooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoozjrSHrjPNAC1FPNFDA00sqRxICzOzbQoHcnoB9a43xZ8S9H8NXK6dbpLqutyHEWm2Q3yFvRsZ2/z9AeawI/BHifx5NHd+Pb37JpobdHoVhIQvsZXycnj178FelAFjUvibd63fSaL8PdN/ti8XCy6jKNtpBnuTxu4Deg443dKl0f4Z20F03iLxtqJ17V1Uu0lyP9GtgOSEQ8YHPJGO4VTXeaXpdjo9hHZadZw2ltGPlihQKo98Dv79TXE/FzU518OWvhzTiP7S8Q3C2MXP3YyR5jH/AGcEA+zUAY/w60a08Z3+seOtY06C5F/d7NNS6hV/JhiO1WUEHaeAD7oT3r1lRgYwAOwFUtF0u20PRbLS7QYgtIViTjkgDGT7nqav0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVBdXVvZ28lzczxwwRqWeSRwqqB1JJ4FeaXvxH1bxPeyaV8OtN+3Mh2TatdKVtYPp/ePOf5Bh0AO58R+KdF8K2H2zWNQitYyDtUnLyeyqOSenQV5+b/AMb/ABLUDSo5fC/ht/8Al8lH+mXC/wCwB9wHjkH6MeRWz4d+F9nY6ida8R3UniDXWIJubsZji74jQ5AA7enbHSu/Xvnv7UAc14V8CaD4Ot/L0q0/fsMTXc2Glm9dzY/HAAFdIoxTqKAEbpj+VeW+HR/wmfxe1bxGT5mm6Cv9nWBxwZj/AK1x24ywz3DKe1dP8R/Ev/CK+Cb6/ifF46/Z7QDk+c4wuB3IGWx6A1L8PvDI8J+C9P0tlAuQnm3R67pn+Zue+M7QfRRQB0wz3paKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiuf8U+MdD8I2YuNXvo4WIJjhX5pZP91ByfTPT1IoA3zziuE8UfE3S9GvP7J0u3l1zXWO1bCy+faeh3sMhcenJ9h1rB/4rr4m9PN8KeGX/wDA25T9NoI+nX+MV3XhfwZofg+y+zaPYpESB5kzfNJIfVmxnueBwM8AUAcXb/D/AMQeMriPUPiJqG6BW3xaHZOVgjPYuwOWI56HP+1jivS7CxtdNso7Oytora2iXEcMSBVUewHFWBS0AFFFFABSNnHFLWb4g1i28P6BfatdnEFpC0rDOC2Bwo9ycAe5oA8/1lf+Ey+Mem6MmW0zw1GL274+VrlseWh7EgYYf8DFeorXn/wj0e4tvC82u6io/tTX521C4YLjCsfkUe2PmA7bq9BFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNbkUAOqtf31rp1nJeXtzFbW0Q3SSyuFVR6kmuH8SfFCysdROieHLSXxBrzfKLW0OY4z6yOOAB3x+JXrWdY/DjVfFF5Hq3xE1D7cyt5kOkWrFLWE++D8x7foSwoAbP4/1/xncy6b8PNOBgRvLm1y+UrBGe+xSPmPTqPquOa2fDPww03Rrw6vq00mua85Dvf3nzbT/sKchcdjyR2wOK7S0tYLK3S2tYI4LeJQsccShVUegA4FT0AIOvTtS0UUAFFFFABRRRQAjfzry/4nSSeJfEGgeALZmC30ovNRKcbbaM5xn3IOP9pV9a9OlkSGNpZGCogLMzHAAAySa8x+F8T+JNZ17x9dRsP7SmNrp6sPuW0Zxx6ZIAPuh9aAPTokSKJY40CIoAVQMAD0Ap9IvfrS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFJketAC0ZqlqmqWOj2Ml7qN3Da20Yy8szhVH59z6V5tJ438TePJXs/AdgbPTt22TXr5CEx38pCDk+/PuF60Adj4t8c6D4Ntll1W8xMwzFaRfPNKewC5/U4Hv0rizp3jf4ljOpvL4W8NSdbOI/6ZcL33kj5AeeCPqG610fhX4a6R4cuDqVyZdW1yQ7pdRvjvk3eq5J2/UZPOMmu0UdTzz60AY3hzwto/hSwFno9hFbRnl2Ay8h9Wbqe/wBO2BW0KWigAooooAKKKKACiiigAoopD/k0Aee/F7V7iDwzB4e05lOp+IJxYQqT0RseYx9sEKT2312eh6Tb6FolnpVopEFpCsSZ6nA6n3PU+5rzzw//AMVp8YNV185fTPDqnT7Lj5WnOfMYfT5h9GU16kowKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAozjrSEgdSOK5bxd4+0LwhGsd7cNNfycQ2FsN88hPT5ewPqce3NAHU5B54rzrXvilD/aP9ieDrJvEOtHIxAf8AR4P9p3zjGe2QODkjjOYdA8Z/EnD+I5X8OeHX5XS7V/8ASJl9JWPQe2PT5cjNeh6F4d0nw3p62OkafFaW46hByx9Wbqx9yaAOH034ZXmuX0esfELUP7XvFOYdOiJW0ts9gvG48DPrjndwa9KgijgiWKKNY4kAVEVQFUegA6U8ZpaACiiigAooooAKKKKACiiigAooooAK5T4i+Jx4T8E6hqUbf6UV8i1UHlpn4XH0+9j0U11Rry7Xj/wmXxh0rQUJbTfDqDULwfwtOQPLQ9iQMEexb0oA6j4deGf+ET8E6fpsi4uinnXTdzM/Lc98cLn0UV1VNXvTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopkjKqMzkBVBJJ6Ae9AD8j1rO1rWdN0HT3v9WvIbS0TrJK2AT2AHUn2HNcNq3xQa+1JtE8C6edf1TOHnBxa2/B5Z+jdD0IB7HPFGjfC9r7UU1zx1f8A9vaqPmSBhi1t/ZU4DfiMdyM80AUW8V+LviEzW/gq1OkaISVbW71PnkHQmJPz5/Mqa6fwl8OdE8KObyJJL3VpctNqN4d8zseuD0UfTn1JxXXRIsaBEUKigKqjoAPSn0AIKWiigAooooAKKKKACiiigAooooAKKKKACiikNAGfr2rW2g6Fe6tdkeRaQtK4zgsAPuj3JwB7muN+EWkXEHhmfxDqCg6p4gna/mbHIRjmNfpglh/vVR+J8z+I9b0DwDbM2NRmF3qBTjbaxknH4kHHuoHevTYY0hiWKNQqIAqqowAB0AoAeKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiijOKACijNZmo+ItD0dwmp6zp9k56Lc3KRk/8AfRFAGnRVG31rS7u2jubfUrOaCVxHHLHOrKznooIOCT6VeoAKKKa30oAdRmvP9d+Id5ofi6z8Nf8ACONdXt6m+2MF4oVlyeuVG3AUn096nufiLFouq2lh4n0i80b7YxW3uneOaBiMcF1J2nkdRQB3NFNUYzTqACijNGaACkyCM54rL1/xDpPhvTWv9Xv4rS2X+Jzyx9FA5Y+wBrzsa94z+JIMfhqB/D3h9+Dq10v+kTL6xJ2+o/76BGKAOp8X/EbQ/CRFpLI99q0nyw6daDfM7HpkfwjkdfwBxiuXXwp4u+IbC48ZXTaRopYMmiWT4dx1HnPz6Djn6Ia67wl8P9B8Hq0ljbtNfPky31yd88hPX5j0B9BgevPNdQoxxjAoAoaPomm6BYJY6VYw2lsnSOJcZPqT1J4HJyTWgKWigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKZK6RRtJIwVFBLMegHc0+vPvi9rE9t4Wi0LTiDqmvTrYQLnorECRj7YO0/wC+KAM/4ZRN4l1/X/H86HbfzGz08MDxbR4GR6biBn3VvWvUBWdoGj23h/QbLSLQfubSFYlJHLYHLH3JyT9a0qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmt2p1I3agDy3xp4u1XUvGFt4B8KTeRfzANf36jJtIsZOO27ac591A5OR2fh/wlpHhu1CWForTEZmu5fmnnY8lmc8kk++OteU/As/2v4w8Ya/dc3bzKoLdQJHdmHt9xRj0Fe6qeOetAHDan4Fs5/iVoHiO1sY4TbJObto12iRtoEZOO4LMc9Tj2ruQMUtFABSGlrN8QatFoXh7UNWmwUs7d5sE43EA4H4nA/GgDyGy8Q6Le/H3WtX1fVLO0ttGt/sVp9pmVCZM7WK5POCZfzFSePHl+Ld3pWh+GIpZ9Lt7gy3mrMhWCP5cbVYj5yAT07kds1t/BXQ1i+Hp1C/iWa51i4lupjKoJZSdoBz2ON3/Aq5zRP+JF+0hdaPoAEWmXMRe8t4R+6RvJ3Zx2+faPYsRQB7jEuxAoJOABljk/jSv2Hc0ooIzQB5X4h+O3hvQNck0oWt9etbyGK5lhVQqEHBC5I3EEew96JvitdeJ2Gn/D3SJtSu3UGW8uozHb2uf72cZOAeMjpxu6V4X4p+G3ifRPEdxZjSNQu4pJ3FtcxwmXz13HaSVB+YjBI611fhnS5vCJi0rxpqXi7wul0/mQXNjqAS1diBwwVWw3TJyffGKAPWNC+FsJ1Bdb8Y3z+IdbOGDTj/AEeDviNOmAfXjvtBr0RQBnAxXnkHw1guYEng+IXjSWGRQ6SR60GVlPQghcEe9S/8Ks/6nzxx/wCDj/7GgD0CivP/APhVv/U+eOP/AAcf/Y0f8Ks/6nzxx/4N/wD7GgD0CivP/wDhVn/U+eOP/Bv/APY0f8Ks/wCp88cf+Df/AOxoA9Aorz//AIVZ/wBT544/8G//ANjR/wAKs/6nzxx/4N//ALGgD0CivP8A/hVn/U+eOP8Awb//AGNH/CrP+p88cf8Ag3/+xoA9Aorz/wD4VZ/1Pnjj/wAG/wD9jR/wqz/qfPHH/g3/APsaAPQKK8//AOFWf9T544/8G/8A9jR/wqz/AKnzxx/4N/8A7GgD0CivP/8AhVn/AFPnjj/wb/8A2NH/AAqz/qfPHH/g3/8AsaAPQKK8/wD+FWf9T544/wDBv/8AY0f8Ks/6nzxx/wCDf/7GgD0CivP/APhVn/U+eOP/AAb/AP2NH/CrP+p88cf+Dj/7GgDv2xx9a8u0T/is/jFqWtsC+meG0NhZjHytcnPmMO3HzD8UNZnjzwsvg3whe6wPHXjSS4RdltFJrBw8rcKCAuSByxAIOFNXPC3wd/s/w9arJ4q8U6fdzIs13BYagIYxMVG7gKeeAMk9hQB6wPSlrz//AIVZ/wBT544/8G//ANjR/wAKs/6nzxx/4N//ALGgD0CivP8A/hVn/U+eOP8Awb//AGNH/CrP+p88cf8Ag3/+xoA9Aorz/wD4VZ/1Pnjj/wAG/wD9jR/wqz/qfPHH/g3/APsaAPQKK8//AOFWf9T544/8G/8A9jR/wqz/AKnzxx/4N/8A7GgD0CivP/8AhVn/AFPnjj/wb/8A2NH/AAqz/qfPHH/g3/8AsaAPQKK8/wD+FWf9T544/wDBv/8AY0f8Ks/6nzxx/wCDf/7GgD0CivP/APhVn/U+eOP/AAb/AP2NH/CrP+p88cf+Df8A+xoA9Aorz/8A4VZ/1Pnjj/wb/wD2NH/CrP8AqfPHH/g3/wDsaAPQKK8//wCFWf8AU+eOP/Bv/wDY0f8ACrP+p88cf+Df/wCxoA7q6njtreSeZ1SKNS8jscBVAyST2FeTN+0N4VGr/ZhaagbPODd7FxnP9wnO3v6+1aup/CWS60q7t4/G/i+R5YHRUutU3xMSpADrtG5fUZGRXzm/w98YJrH9mHw5qAugfurESvrkOMrj3zigD7PtLmG8tYrq3kWWCZFkjdTwykZBH4Gpj29qxvCOky6D4R0nSp33zWtpHFIc8bgvIHtnpW1QB4qui618K/Huo6xp2lXWpeGNVOZ47FN8ts2SRhO4Us2O208nNd1B8QtJ1FQmmWWr310f+WEenSoQf9ppFVF9Mlq689R1ox/kUAUNIj1BYJJtSdftEzb/ACYzlIBjhFPG7HdsckntgDQpBS0AIQa5Dx14S1Txjo0ujwa1Dp9jMVMgFkZZGwQcbvMUYyB2rsKKAODtfCHi2y0K20i28ZW9vbW0KwRvBo4EgRV2jkykZwOuKv8Ag74f6V4ONxcW7z3eo3JzcX1026STnP0A/n3ziutooAQDFLRRQAh+maqajp1nqljLZX9pFdWsow8UyBlYfQ9885q5RQB5VP4G8R+B5nvfAF6ZrEtvl0K9cmM56mJyeD+R9zwK3/CfxK0jxNctps0cula5GSJdMvBskDAZIXON3fsDxyBXaMM1zXivwHoXjG3VNTtiLiP/AFF3Adk0J7bWHUexyPxxQB0wI9fxpa8lOr+NPhmduvRy+JvDq9NSgX/SrdcdZF/ixjqT9W6LXonh/wARaR4l05b7R7+K6tzwdh+ZD6Mp5U+xFAGtRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh5paz9b1W30PRbzVbtiLe0haV8dSAM4Hueg+tAHnviJj4x+L+keHU+fTdAUalfehmI/dKe2RkH3DP6V6iteefCPSblPDlz4k1Jf+Jn4hnN9KcciM/6tR/s4JYezY7V6GO9AC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAGm45zjmnUUAIKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAawzjjNeea78Lo11Btc8G3zeHtaGSTCP9Hn9pI+nX0GO+Ca9FpDQB5ppXxOn0nUU0Xx/p/8AYuoE7Y71ebS491f+HqPUepHQekxOsiB1cMrAEMOhHtVLV9G0/XdPew1Syhu7WT70cqg89iPQjJ5HI7V5xJ4U8XfDxjc+DLt9X0QEs+hXj5ZB1Pkt+J44+jmgD1eiuR8H/EPRPF262hd7PVY8ibTrobJoyOuAfvAeo9sgdK60EHmgBaKKKACiiigAooooAKKKKACiiigBDXmHxSlk8RatoHgG0dl/tOcXN+UOCltGcntxkg4PqgFemyusaF3YKigszE4AA7+1eY/DNW8T+JfEHj2ZT5d1N9h00MCNttHjkem4hc+hVvWgD02CNIYViiRUiQBUVRgADsBUlIvSloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmsM9s06igDkvF3w80Pxhie6ie11KPBh1G1OyZCOnP8AEB6Hp2wea5RPFHi74cult4zt21jQshU1uzTMkQ/6ap+XPXryx4r1imSxrIhR1DKwKlSMgg9jQBR0bWtN17T1v9KvYbu1fpJE2QD3BHUHkcHnmtDI9RXmus/DGfTtQfXPAWof2HqbHMlrj/RLgc8MnIXr2GB6DqHaD8UFTUV0TxpYHw9rPRTKf9Hn943zgfiSPc0Aek0U1SMdqdQAUUUUAFFFFABRRTW7UAcB8XtansfCcejaf82qa7Oun2yg4OH4c/TB2+xcGuu8PaNb+HvD9jo9qP3NnCsQOMbiOrH3JyT9a8/0gHxn8ZtR1ggtpfhmM2Nr6NctkSN+HzD8ENepDOTmgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEOeMVla74d0rxJpzWGr2EV3AegcZKn1VuCp9wa1qKAPJToXjP4Z/P4elk8R+G0PzaZcN/pNuvrE2OQMdMd/u9x2fhHx3oPjCBv7Nudl3GP31lONk0RHXK98HuMj3rpj2rjPFvw40nxPMuoRNLpmtw/NDqVkdsgbtuxjcPyPoRk0AdpRXlMXjXxJ4DnWx8e2Ru9Ozth12yQlSOAPNXHB55/QNya9L07UrLVbNLywuobm1kGVlhcMp/EUAW6KKKACuZ8f8AidPCPgzUNW3KJ0jMdup/ilbhRj26n2BrpW6V5Z4mP/CY/FzR/DS5bTtCUalf+jS8eUh/MH3DN6UAdP8ADbwyfCngixsJlIvZB9ovCfvGZ+Wz9Bhf+A11tIveloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAiuII7mFoZoklicFXRxlWB7Ed68z1L4a6j4cvZdZ+Heof2dOx3TaVOd1pcewB+6ev54BUV6jSGgDz/AMN/E+zvdR/sPxLayaBr64U210cRynpmNzwc9gfwLda79axvEnhXRvFlgbLWbCO5iGdjnh4z6q3Uf175Feezjxl8KYHnWeTxN4ThGWWZ9t1ZoO4J+8oH4cdEHNAHp2tapb6Lo15ql22ILSFppPXCjOB7nGB74riPhDpVyvh+78TakmNT8QTm8kGPuxZPlqPbBJHsw9K8c8afGe88Y2p0ZtOSy0WSaNpUjctM6K2du77vJAONvBHUivpvR7izu9GsrjT9v2KWBHt9owPLKgrx9MUAXRS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWV4k0WHxF4c1DSJyQl3A0W4dVJHDfgcH8K1aKAPlFfgP44Oq/YTb2ggHP2w3A8n8sb/APx2vp/RNMj0XQ7HS4mZ47SBIVZ+rbQBk/Wr+R60mQO4oAWijNFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUje/SlpDjHNAHjfx2jWSPw/YaeDFrWo36xxyxMVZkA2kHHbc6flXa/8K20BLNYoBqFrOiBVubbUJ45FOMbs7sZ+oI9q425/wCKs/aNghHz2nh2z8xgeV808/nudf8Avg+lew8etAHlfg3xTq2k/EK98AeIbw30kamTT751AkmTbu2OR1+XnPqrcnjHqi9PWvDblTrH7U1t9lyU063Bnde2Ij/WRVr3IUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVma5r2meHrB73VL2G1hRGb944BfAyQoz8x6cD1rTpCM4oA8F+DnirQIH8S6/rmtWNnqWp3xZoriYK2zlvlzyQS5HH90V6Hf/EGO9ia28IWFxrmotwjRwslrGT/E8rALjrwDk4/Gu3/MfjQBzQBxPw+8BHwlFeahqF0L7XtScyXt1jjJJO1fbJyT3P4Cu2FLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q==', '/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAVMBjwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKTIoAWik3DOM0tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVUutSs7Ke0guJ1jlu5PKgQ5zI2CxA/AGrdABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWdq2qQaRp0l3OGbbhUiTl5HJwqKO7FiAK0GdVBLEAAZJNcF9v1fV9bTWrfRDe6Rbqf7NLXaRBychpypyeRwv+ySR97AAKXwq1LU9dvfFmq6oy/aDqX2QIjEpEsQ4RT6DcTnuST1NelZFeYfAkmbwJd3zDDXuqT3B/HaP/AGU12HiPWNT0i1mn03RBqH2eFppd9yIAFAJwp2nLcHjge/NAHQZorM0HWIfEOg2Or26OkN3Csqq/3lyOhrToAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqC8vbaws5ru6mWK3gQySyMeFUDJJqbIrjdRhu/Gd+EsL8Wul6bcAmXylkF1cIegB42Rkde7j/Y5AOOWbUtU+Pfhy41HzIgunT3UNk3H2aNhIi7h/fbq3pkD+GvYwwPQ15JoEF4/7QWoi/vhfSWWihBN5QjxudGAwCR0dvzr0jWIdSuLMxaXdw2czthrqRPN8pMEkqhwC2cDkgDOecYIBp5FLXB+CtT8Qr4o8Q+HNevU1L+zhDLFfJAsW5ZFJ2sq/KDx/Ou8oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDmvFugav4hsTYWOsQ6day4+0A2hlaVQeU3eYuFYcHAyRnntWjqNhqFzo72lleW9rcvF5ZnNsXUZUg7UDjHPI5OMY5rUooA5LwF4RuvBWgro0mqQ3tpGztEy2phcFjk5PmMD36AVkfFd9csvDU2pWdzBJpdvtN9p5Qo9xCSA6iUHK8HkADjPXkH0GRWaNgjbWIIDYzg+tcjD4X1rUNN/szxRrltqll5qu/lWQgecK25VkIYrtyBkKoJxjOM5AOm09YI9OtktYRDbrEojiC42Lj5QB7dKt00Efd/SnUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSbgcYOc0AVr+wh1KzktbjzhFIMN5M7xN/30hBH51S0Pw3pvhzTf7N0qGWCzGSsRuJJNpYknaWYleSTxWtketLQBzNn4C8P2GvSa3bW90mpS/wCtuTqFwzSdMBsuQw4HB44HFamp6i9oI4bWIXF/PnyIM4Bx1Zj/AAoMjJ+gAJIB0q5TWPh34b13VJNS1KyuJruRVVnF9OowOgAVwAB6ADqfWgDQ0LS7fTorkidbq+nm33twMZeXA7c7Qo2hV7DHXqdus/SNGstB0uHTdMg8i0h3eXHuZsZYseWJJ5JPJ71oUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFch8Q/GsPgPww2qtbi4nkmEMEJfaHcgnkgcAKCf07119eZfGOGDXNI03wnDCJtY1W8T7Hn/lgEOZJT/shcj/gRx0oA5/4f/HX+3dXOneJo9P01XRnivBKYo8jBCMHJAyM87uwGOa9N/wCE78If9DXof/gxi/8Aiq4/4e/Buz8D6w+rzai2oXoRo4T5IjSMHGWxljuIyM5AwSMHrXp+KAMD/hO/CH/Q16H/AODGL/4qj/hO/CH/AENeh/8Agxi/+KrfxRigDA/4Tvwh/wBDXof/AIMYv/iqP+E78If9DXof/gxi/wDiq38UYoAwP+E78If9DXof/gxi/wDiqP8AhO/CH/Q16H/4MYv/AIqt/FGKAMD/AITvwh/0Neh/+DGL/wCKo/4Tvwh/0Neh/wDgxi/+KrfxRigDA/4Tvwh/0Neh/wDgxi/+Ko/4Tvwh/wBDXof/AIMYv/iq38UYoAwP+E78If8AQ16H/wCDGL/4qj/hO/CH/Q16H/4MYv8A4qt/FGKAMD/hO/CH/Q16H/4MYv8A4qj/AITvwh/0Neh/+DGL/wCKrfxRigDA/wCE78If9DXof/gxi/8Aiq47x/8AGPSfDOlQvoV1p2s39w7KqQ3QkSFQPvPsJ7kADIzk4PFeoYrj/iB8PbDx/pUFrdTyW1xbOz29wihipIwQQeqnCkgEH5RzQBzfwo+Ks/jy4utM1Kzht9Qt4vPV7ctslTdhuDnaRle5zk9MV6rXinw78LRfDT4iz6LqUguJdVsw2nX+3YG2HMsWMnDfdPXoo9a9qyPXpQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRmgCG5u4LK1murmVYoIY2lkdjgKoGST7ACvP/AIf2s/iLV7/x/fxlGvx9n0uFusNop4PsXbLf/Wam+O7ibxTr9j4AsZSsc+LvWZY2wYrVT9z2LnA9RxkEGvQre3jtbeK3gjWOGJAiIvAVRwAPYACgCaiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOU8feF5vEvh4/YHEWsWMi3enTcZSZOQMnoG6fke1WPBfiaLxZ4YttTVfKuDmK6gOQYJl4dCO2DyM84Iro68zvs+APiQmoqRH4f8SyCG6HRLe9/hf6PyCfXJPQUAemUUmRS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFY/iTxBaeF/D17rF8f3NrGX2jrIeAqj6kgfjWvkV5rqH/FffEeLS1+fQvDTie7PVZ7zokfvsGSffIPUGgDU+HOgXdhpdzrWsDOu63L9rvCf+WY/5ZxD2ReMdiT1wK7em4p1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWP4l8P2vijw/eaPej91cx7Q46o3VXHuDg/hWxRQBxXw68QXWo6TcaPrB265osn2S9BP3wB8ko9QyjOe5BNdrXnHjqGTwn4hsfH1lGxhi22msxIP9ZbEjEmO7Ice5GBkAV6HBcQ3MEc8EqSRSKHR0OQwIyCPqOaAJKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopu9cZyAPegDlvH3ieTwz4cZ7JDLq17ILTToQMmSd+F49B19OPerHgvwwvhPwzb6ZvM1ySZbuctuM0zcu5J5PPTPYDvXL+GAfHPjq58XS4fR9L32WjAj5ZGziWcfXG0e3YFa9LoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCvd2kF/ZzWd1EJbedGjkRuQykYINcD8Prufw9q1/4A1KVpJNPH2jS5nJJns2PAzjqh4P5Dha9GrhfiNol7LY2niXRlzrWhObmED/AJbxY/exHH95fxOMd6AO5yKWsvQtatPEOh2er2L7re6iEik9V9QfdSCD9K1KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArgfiRqt3NFZeD9Hk26trrGIuP+Xe2H+tkP4cD1ycciu1v7+20zT7i/vJVitreNpZHPRVUZJ/KuE+HVjcavdah461SEpeax8tnC/W3s1PyL7FvvHHB4OOcUAdrpGk2uh6RaaZYxeXbWsQijXqSB3PqT1Puav0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU3BzTqKAPM9EI8BfEKbw4+I9D15nu9MJOFhuBjzIR7HgjtyAMk16XuB71zPjjwu3irwzNZxSeTqELrc2M6tgxTpyhz27g+xNHgXxR/wlXhuK7mQw6hA5tr+AjBiuF4YEdvUexx1oA6eiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkzS1h+LPEdt4U8NXmsXI3CBf3cY6ySHhVHuTQByPjNm8Z+LLPwJbljYw7L3W3Xp5YIMcOfVjgnuBgjPNejRxLEioihUUYVV4AHbHpXI/Dzw5c6Hob3mqfPrmqyG81CQ9d7chPooOPTOccGuyoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvNdbX/hBPiFb+JE+XRNcZbPUwB8sM4/1Ux9Afuk9ue5FelVm69otr4h0K90i+TfbXUZjb1HoR7g4I9wKANHcPWlrhPhzrN9JZ3nhnWWB1vQnFtMx/wCW0RH7qUeoK4z345613dABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJuHrXmpz4++JuMF/D/AIXk5yPluL/+REY/EH1DVtfELxHcaHocVrpY8zXNUl+x6fGOvmN1f6KOc9M4zWn4R8MweEvDFno9sQ/kpmWXGDLIeWc/Uk/QY9KAN3FLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHnPxBtLjw/qlh8QNOjLS6aPI1OFOtxZsefqVPzDPHc/drv7W8t760hu7aVZYJ0WSORejKwyD+INLNAlxDJDNGHikUq6NyGB4IP4V574Flfwn4jvvAN45Num690aVznfbsSWjz6ofxIyeBigD0iikyKWgAooooAKKKKACiiigAooooAKKKa8iRozuyqqglmJwAPegBQwPelrL0HWrPxFpEWqWBLWsryLGzLjcEdk3fQ7SR7GtSgAprSIiM7uqooJZicAAdSTQ8iRoXdgqryWY4ArzPxr4jg8WGz8F+FtVgubjVXKXtzaSiQWlqv+sLFTwW+6AeucdxQBL4OVvGfi+88c3CE6fBusdERhj92OJJserHIHfGQelek1T07TrbStOt7CyhWG1t4xFEi9AoGB+PH9auUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcV8RdAu9R0m31jRwBruiyfa7Igcyf89IvcOvGO5A967Wm4NAGR4Y8QWnijw5ZazZnEV1GGKHqjdGU/Qgj8K2a8vinh+G3xAuLe5lS38MeIS1zFI7bY7S7Ay4JPCq4GR74A4BNej2Oo2Wp2iXVhdwXVu/3ZYJA6H6EcUAWaKKKACiopLiGJ4kklRXmYpGpOC7bS2B6nCk/QGpaACiiigAooooAQsB39q87+I9/LqXhvxBY2srJZWFjM99Ohxvl8slIAfrtZvQYH8Rx0niLWjZyWukWMsX9s6kSlqjn7igZeVh3VQCcfxHA7kjgPiV4atvDPwu1drfV9UfO391Nc7lkeSUbiwxySWZifagDsvhhai0+GXh6MD71mkn/ffz/+zV1u4DvWP4VhW28IaJbqQVjsIEBHIOI1rE8e+MLjw9p/2XSIVudYuHjhhVvuxGRtis3uTnA74J6A0AU/jJY6tqPw1vrfSEeWYyRNNDEhZ5Iw/IXHPXB+gNeE/BOC9f4qaebdjGIUma5ycfu9hBBHf5io9jz2r6yjR1iVXbe6gAtjG49zj3riPiNol5LZWnibRlzrehObmFR1mj/5axH2Zc+/GO9AHdZFLWXoOt2niLQrLV7F91vdRiRcHO31U47g5B9CK1KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiim71xnIA96APA/2k4b0x6DP5mbAGZCgOMS/KcnnnKjA9MH1qX9nPTtWt4dZu5opodNnWIQmRCFlcFuVPcAHnHXI9K6/wANZ8deOLnxfJ82kaWZLLRl52yN0lnHrnoD6DsRXpG3HQcUAOqOaeK3gknmkWOGNS7uxwqqOSSewFPyPWuM17+0vE1+dO0pbQ6dYzD7YbsN5dzIORCNvVVOC3qcL03CgDk4NU1HXvjrozXOYtPh0yW8s7YjDIrFow7g9HbrjsCo65r2CvJPDTahdfH7XJNT+zm4stIjhP2fdsG4o4xnnoTXqtzK8NtJJHF5jqMhNwXP4nigCXIpa53wb4jk8W+GbfWmsDZJcl/KiaXeSgYqCeB1weP1roqACiiigDJfwzocupDUZNF0574MGF01qhlBHQ7sZz71JqOgaRrBRtU0qxvmT7hubdJdv03A46mtKigDB1G2m8P+G7lfC+i273KgeRZwLHChYkDPVRwOeozjGa84M2qXnjXw5o8nhe/WS0mbVr43F1Azzt/qkmZlcjCsxIUc4ACjA49lrOh0Wzt9bu9XjjP227jjilctn5EztAHYZYmgDRpuDmnUUAeZ6L/xQfxDm8OufL0PXi13phPCw3A/1kI9AeGHboBkmvS9wPeua8b+GG8VeF57KN/J1CJhcWNwrbTFOnKMG6juCfQnvSeBvFH/AAlXhqK8mQw6hA7W1/ARgxXC8MCPyI9jjrQB09FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcD8R9Vu54rLwdo8m3VtcYxM4/5d7b/AJayH04yB6845Fdpf6ha6Zp9zfXkqxW1tG0srn+FVGSfyBrhvh1YXGrXV/461WIpeaxhbKJuttZj7i/8CxuPY8HgkigDtNI0m10PSLTS7GLy7a1iEUY6kgdz6k9T7mr9FFAFLULKW+spLeK9uLFnGPPttnmAexdWH6flVDw74bTw1oK6Ta395PEhYxy3BjaRSxJJyFAJySckHrW5RQByGleAINJ8U3viKLW9Wlvr3AuRMYCkqjGFIEQwOAOMHHepPiPqkmleA9Ukt8m7ni+y26jqZJTsXHv82fwrq65XxT4V1DxHfaTImqwW1pp14l6LdrMyebIn3dzeYOBk9qANnQ9Kj0TQNP0uH7lpbpCDjrtAGfxxn8a0aQZwM9aWgAooooAKKKKACiiigAooooAK811zPgT4hweJE40TXSlnqmBhYJx/qpj6A/dPpzzk16VWbrui2niHQrzSL5N9tdxGN8dR6Ee4OCPcCgDR3DOM80tcJ8NtYvXsrzwxrT7tb0KQW8zH/ltER+6lHqCv48DPJru6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApM0tYfizxJbeFPDV5q9zhvJXEUfeWQ8Kg9yf8aAOR8ZO/jTxZZ+BLdj9gh2X2tuv/ADzBBjhz6scE98YIzgivRUiWONY0VVRQAqqMAD29PTFcl8PPDlzoehveap8+uarIbzUJD13tyE+ig49M5xwa7KgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDzn4hWtx4f1Ox8f6bEWl00eRqcKdbizZufqVPzDPHc/drv7W8t760hu7aVZYJ0WSORejKwyD+INLNAlxDJDNGHikUq6NyGB4IP4V574Flfwn4jvvAV4xNvHuvNGlc/ft2JLR59UJ6dSMngYoA9IopMiloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooATcPWvNcHx98TOm7w/4XkwePluL/ANPcRg/gfUNW18QvEdxoehxWuljzNc1SX7Hp8Y6+Y3V/oo5z0zjNafhLwzB4S8MWejWuH8lP3suMGWQ8s5+pz9Bj0oA3cUtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXFfEXQLvUdIg1jRxt17RpPtdicZ8wf8tIjjqHXjHcgds12tNwaAMjwx4gtPFHhyy1mzOIrqMMUPVG6Mp+hBH4Vs15pZL/AMID8SH07lPD/iaQzW3923vf409g4wR74AGATXpW4etAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTWkREZ3dVRQSzE4AA6kmlyK89+I19dapcWHgXSZmjvdY+a7lTn7NZA/Ox/3sFQO/I70AQ+Dlbxn4vvPHNwhOnwbrHREYY/djiSbHqxyB3xkHpXpNU9O0620rTrewsoVhtbeMRRIvQKBgfjx/WrlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAc94z8Mx+LPDF1pbN5c5xJbT55imXlHz1GD1x2Jqn4B8TS+JfDo+3L5Wr2MrWeoRdCkycE/Q8H9O1dbXmvioN4H8b2vjGEFdI1Ix2WtKoOIz0in/AnB9uMEtQB6VRSBlYZByPUc0tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSZHr1oAo6vqtromkXeqX0gjtbWNpJGz0A7D3PTHc8Vx/w40q8njvvGOrpt1bXGEixsOba2H+riH4YJ/DIyKp+KCfHHjm18HxHOkaYUvdZYH5ZDnMVufXP3iPTpytekhQowBgDpjtQA6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqGraVa61pd1pl9EJbS5iaKRfYjsex7g9iM1fooA8/+G+pXVqt74L1iTfqmhkJHKwx9ptT/AKuQfQfKeuOM85r0DNee/EWwutMnsPHGlRF77RiftUS8G4s2/wBYv1Ucj056mu307UbXVNOtr+zmWW2uYxLE47qRkGgC3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXO+NPE0XhTwzcakV8254itbcZzPM33EA788nHOAa6HI9a80sAfH3xHfUyRJ4f8ADUjQWo6rcXn8cnuEGAD64I6mgDofAXhibw14dAv383WL2RrvUZzjLzPyRkdh0444JxzXV0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEbxiRWV1DKwIIPIIPbFec+D2fwX4wvPA1yx/s64DX2iO3ZCSZIMnupywHpknrXpIYHpXl3xwvLXS/CVlqoYx6vaX8b6bKn3lkzlgf9kqpyPXFAHqWaK8G8FftALd3ssHi9LWygKM0d3bRyEA5GEKDcemfmz2Hua7n/AIXb8PP+hh/8krj/AON0AegUV5//AMLt+Hn/AEMP/klcf/G6P+F2/Dz/AKGH/wAkrj/43QB6BRXn/wDwu34ef9DD/wCSVx/8bo/4Xb8PP+hh/wDJK4/+N0AegUV5/wD8Lt+Hn/Qw/wDklcf/ABuj/hdvw8/6GH/ySuP/AI3QB6BRXn//AAu34ef9DD/5JXH/AMbo/wCF2/Dz/oYf/JK4/wDjdAHoFFef/wDC7fh5/wBDD/5JXH/xuj/hdvw8/wChh/8AJK4/+N0AegUV5/8A8Lt+Hn/Qw/8Aklcf/G6P+F2/Dz/oYf8AySuP/jdAHoFFef8A/C7fh5/0MP8A5JXH/wAbo/4Xb8PP+hh/8krj/wCN0AegUmRXAf8AC7fh5/0MP/klcf8Axuud8XfHrQtP0lW8LSx6nfu+0rLFLGkS4J3HKqW5xwCOp54oA6z4ieILrTtJt9F0fnXdakNpZKDzGMfPKfQKp69iQexre8NeH7Xwv4fs9Hsl/c20e3eeC7dWc+5OT+NeQ/CLxY/jn4galqmuqjatBYIlkkakRQxbsSFQScMSyc/7TDgcV7tQAUUZpNw9RQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJkUZFYXijXJNF00fY7d7rU7glLS2jUszHuxA/hUck/QdSMgHJ/EXxlc2Gp6P4c0lmE9/qNvbXVyn/LBHYHYD/eYc+y/7wrqfGHhCw8aeHpNI1FpEjLiSOWLG+Nh0IyCOhIPHQkV5hrBjl8cfD/SUtNQhkS/mu7ia+hEb3Mo2sXOOpyD9MgdK9uLqASTgDuaAPNfh/wDB3T/A2rPq0moS6jfhGjiZohGkanHIGSd2ARnIGCRivS8Vzei/EDwr4i1L+ztI1iK7u9pfy0jf7o6nJGK6WgBMUYpaKAExRilooATFGKWigBMUYpaKAExRilooATFGKWigBMUYpaKAExXI+Pfh9p/j7SoLW9mlt57ZzJb3EYBKEjBBB6qeCRxnaORXX0UAcD8OvhbYfD/7RcR3kl9f3KCOSZ0CKqg5wgGSMnGck52jpXfUUmRQBU1LUbbStOnvrpysMK5OBkk9AoHUkkgADkkgDmuL+GPiLUfFa+IdVvw8ajU2toLfcCIUjRfl44J+bk9zSXHiBNT14X0ml6ndaNpxLWb29vvinlGd0xJIBVeQnbOW/ukU/gSjH4dG6cYe7v55mz65A/8AZaAPTaKr3t/Z6baSXV9dQ21vGMvLM4RVHuTTbHULfUbYXFv5vlk4BkheMnjPAYA4569KALVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBDMJRGzQojygHYHbaCfQnBwPwrm/Dul+II9d1LU/EEemmSfbHam0neQwQj/lnho16nLFs8nHHAx1VFAHneteF/FGo/EvRvE0MOkCz0uOSNIHvJBJLvVlLEiIhfvDjnp15rrfEGnXer+G73TbO8SyuLqExiYx+YEDcNxxnjIz75rXrA1XWNY0/WLa3tvDlzqNhLGS9zbXESvG+cBSjsvGOc7vwoAxfAesapdXms6Fr1taLqmkPGj3Fom2O4jkUsjAduF5H0ruaw9D0eW0vNS1W8VFv9SkRpFRtwjjRdsaZ74GST6se2K3KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5fxfYeJdSsRp+hjT44JSouZbi5kjkMefnRNsbYLDjdnIyeM4NdRRQBiavZ6ifDkljo9rYx3D25gRZZmjjh+TaNpVCSB6YHTtWT8N/Dur+E/CNroWqJYt9lL7JrWdn37nZ+QyLj72O/SuxooA8c/tDVvE+o6r40Wytr7RNDkkTTLCadoxK0X35+FIL8HaT06YzzXqOhavba9oVjqtoHEF3CsqK/DKCOh9x/+quItfD+t6X8O28GafZMtwwmtRfM6+SsLu5M3Xdnax+XGd3t81dzoukwaFollpVruMNpAsKFurBRjJ9+KANCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACk9KWk9KAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAE7ZpaT+GloAKKKKACiiigAooooAKKKKACiiigD//Z'] Multimodal Competition True Theorem proof Combinatorics Math English 28 "This Question involves one Robber and one or more Cops. After robbing a bank, the Robber retreats to a network of hideouts, represented by dots in the diagram below. Every day, the Robber stays holed up in a single hideout, and every night, the Robber moves to an adjacent hideout. Two hideouts are adjacent if and only if they are connected by an edge in the diagram, also called a hideout map (or map). For the purposes of this Power Question, the map must be connected; that is, given any two hideouts, there must be a path from one to the other. To clarify, the Robber may not stay in the same hideout for two consecutive days, although he may return to a hideout he has previously visited. For example, in the map below, if the Robber holes up in hideout $C$ for day 1 , then he would have to move to $B$ for day 2 , and would then have to move to either $A, C$, or $D$ on day 3. Every day, each Cop searches one hideout: the Cops know the location of all hideouts and which hideouts are adjacent to which. Cops are thorough searchers, so if the Robber is present in the hideout searched, he is found and arrested. If the Robber is not present in the hideout searched, his location is not revealed. That is, the Cops only know that the Robber was not caught at any of the hideouts searched; they get no specific information (other than what they can derive by logic) about what hideout he was in. Cops are not constrained by edges on the map: a Cop may search any hideout on any day, regardless of whether it is adjacent to the hideout searched the previous day. A Cop may search the same hideout on consecutive days, and multiple Cops may search different hideouts on the same day. In the map above, a Cop could search $A$ on day 1 and day 2, and then search $C$ on day 3 . The focus of this Power Question is to determine, given a hideout map and a fixed number of Cops, whether the Cops can be sure of catching the Robber within some time limit. Map Notation: The following notation may be useful when writing your solutions. For a map $M$, let $h(M)$ be the number of hideouts and $e(M)$ be the number of edges in $M$. The safety of a hideout $H$ is the number of hideouts adjacent to $H$, and is denoted by $s(H)$. The Cop number of a map $M$, denoted $C(M)$, is the minimum number of Cops required to guarantee that the Robber is caught. Show that for all maps $M, C(M) Every day, each Cop searches one hideout: the Cops know the location of all hideouts and which hideouts are adjacent to which. Cops are thorough searchers, so if the Robber is present in the hideout searched, he is found and arrested. If the Robber is not present in the hideout searched, his location is not revealed. That is, the Cops only know that the Robber was not caught at any of the hideouts searched; they get no specific information (other than what they can derive by logic) about what hideout he was in. Cops are not constrained by edges on the map: a Cop may search any hideout on any day, regardless of whether it is adjacent to the hideout searched the previous day. A Cop may search the same hideout on consecutive days, and multiple Cops may search different hideouts on the same day. In the map above, a Cop could search $A$ on day 1 and day 2, and then search $C$ on day 3 . The focus of this Power Question is to determine, given a hideout map and a fixed number of Cops, whether the Cops can be sure of catching the Robber within some time limit. Map Notation: The following notation may be useful when writing your solutions. For a map $M$, let $h(M)$ be the number of hideouts and $e(M)$ be the number of edges in $M$. The safety of a hideout $H$ is the number of hideouts adjacent to $H$, and is denoted by $s(H)$. The Cop number of a map $M$, denoted $C(M)$, is the minimum number of Cops required to guarantee that the Robber is caught. Show that $C(M) \leq 3$ for the map below. " ['The following strategy guarantees capture using three Cops for four consecutive days, so $C(M) \\leq 3$. Position three Cops at $\\{B, E, H\\}$ for two days, which will catch any Robber who starts out at $B, C, D, E, F, G$, or $H$, because a Robber at $C$ or $D$ would have to move to either $B$ or $E$, and a Robber at $F$ or $G$ would have to move to either $E$ or $H$. So if the Robber is not yet caught, he must have been at $I, J, K, L$, or $A$ for those two days. In this case, an analogous argument shows that placing Cops at $B, H, K$ for two consecutive days will guarantee a capture.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAVABvwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ0ALketFcB8SfHg8MJYaTp7q2t6nMkcI4PkozbTIR+YHqc9dpFd6p60AOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKADNZevazDoeltdvG88pYR29vGfnnlY4VF+p79hkngGr9xNFbQPNPKkUUalndyAqgckknoK4e10aPx7NH4hvpr23sUz/ZEdrcvA6xkENOxUg7pAeB2QjuxoA4Txpo0sHjzwDDfSrPqt/qZu9QkXpkPFtRc9EUAqPpnqa93HrXh2q6RBZ/tDeE9Ohur64SO3e4Y3l5JcFW2ytgF2JH3BwPY969xHpQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBka/4a0zxNaC01WKea2/iiS5liV84+8EYbunfOOam0nRbPRNLj02wWaO0jXaiPcSSlBjAAZ2LADsAcDtWjRQByEnw18Ly6wusPZXjakhyt2dSufMHUcN5mQME8V1cMYhiWNd21VABZix4Hcnk/U81JRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUZxQAUhpayte8Q6V4b0832rX8NpAM4MjcuQM4UDlj7AE+1AGdrnj/wr4dv0stV1u2t7pmCmLl2Qn+8FB2jnqcVv2V5a6haR3Vlcw3NvIMpLC4dGHsRwa+GdbvLjUNbvb+5dnlupmnMhTZu3HcGC9gc8Dng19N/ACC+h+GwN3kQyXcjWgJziPCg49t4c/iT3oA9SooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoozjrSHrjPNAC1FPNFDA00sqRxICzOzbQoHcnoB9a43xZ8S9H8NXK6dbpLqutyHEWm2Q3yFvRsZ2/z9AeawI/BHifx5NHd+Pb37JpobdHoVhIQvsZXycnj178FelAFjUvibd63fSaL8PdN/ti8XCy6jKNtpBnuTxu4Deg443dKl0f4Z20F03iLxtqJ17V1Uu0lyP9GtgOSEQ8YHPJGO4VTXeaXpdjo9hHZadZw2ltGPlihQKo98Dv79TXE/FzU518OWvhzTiP7S8Q3C2MXP3YyR5jH/AGcEA+zUAY/w60a08Z3+seOtY06C5F/d7NNS6hV/JhiO1WUEHaeAD7oT3r1lRgYwAOwFUtF0u20PRbLS7QYgtIViTjkgDGT7nqav0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVBdXVvZ28lzczxwwRqWeSRwqqB1JJ4FeaXvxH1bxPeyaV8OtN+3Mh2TatdKVtYPp/ePOf5Bh0AO58R+KdF8K2H2zWNQitYyDtUnLyeyqOSenQV5+b/AMb/ABLUDSo5fC/ht/8Al8lH+mXC/wCwB9wHjkH6MeRWz4d+F9nY6ida8R3UniDXWIJubsZji74jQ5AA7enbHSu/Xvnv7UAc14V8CaD4Ot/L0q0/fsMTXc2Glm9dzY/HAAFdIoxTqKAEbpj+VeW+HR/wmfxe1bxGT5mm6Cv9nWBxwZj/AK1x24ywz3DKe1dP8R/Ev/CK+Cb6/ifF46/Z7QDk+c4wuB3IGWx6A1L8PvDI8J+C9P0tlAuQnm3R67pn+Zue+M7QfRRQB0wz3paKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiuf8U+MdD8I2YuNXvo4WIJjhX5pZP91ByfTPT1IoA3zziuE8UfE3S9GvP7J0u3l1zXWO1bCy+faeh3sMhcenJ9h1rB/4rr4m9PN8KeGX/wDA25T9NoI+nX+MV3XhfwZofg+y+zaPYpESB5kzfNJIfVmxnueBwM8AUAcXb/D/AMQeMriPUPiJqG6BW3xaHZOVgjPYuwOWI56HP+1jivS7CxtdNso7Oytora2iXEcMSBVUewHFWBS0AFFFFABSNnHFLWb4g1i28P6BfatdnEFpC0rDOC2Bwo9ycAe5oA8/1lf+Ey+Mem6MmW0zw1GL274+VrlseWh7EgYYf8DFeorXn/wj0e4tvC82u6io/tTX521C4YLjCsfkUe2PmA7bq9BFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNbkUAOqtf31rp1nJeXtzFbW0Q3SSyuFVR6kmuH8SfFCysdROieHLSXxBrzfKLW0OY4z6yOOAB3x+JXrWdY/DjVfFF5Hq3xE1D7cyt5kOkWrFLWE++D8x7foSwoAbP4/1/xncy6b8PNOBgRvLm1y+UrBGe+xSPmPTqPquOa2fDPww03Rrw6vq00mua85Dvf3nzbT/sKchcdjyR2wOK7S0tYLK3S2tYI4LeJQsccShVUegA4FT0AIOvTtS0UUAFFFFABRRRQAjfzry/4nSSeJfEGgeALZmC30ovNRKcbbaM5xn3IOP9pV9a9OlkSGNpZGCogLMzHAAAySa8x+F8T+JNZ17x9dRsP7SmNrp6sPuW0Zxx6ZIAPuh9aAPTokSKJY40CIoAVQMAD0Ap9IvfrS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFJketAC0ZqlqmqWOj2Ml7qN3Da20Yy8szhVH59z6V5tJ438TePJXs/AdgbPTt22TXr5CEx38pCDk+/PuF60Adj4t8c6D4Ntll1W8xMwzFaRfPNKewC5/U4Hv0rizp3jf4ljOpvL4W8NSdbOI/6ZcL33kj5AeeCPqG610fhX4a6R4cuDqVyZdW1yQ7pdRvjvk3eq5J2/UZPOMmu0UdTzz60AY3hzwto/hSwFno9hFbRnl2Ay8h9Wbqe/wBO2BW0KWigAooooAKKKKACiiigAoopD/k0Aee/F7V7iDwzB4e05lOp+IJxYQqT0RseYx9sEKT2312eh6Tb6FolnpVopEFpCsSZ6nA6n3PU+5rzzw//AMVp8YNV185fTPDqnT7Lj5WnOfMYfT5h9GU16kowKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAozjrSEgdSOK5bxd4+0LwhGsd7cNNfycQ2FsN88hPT5ewPqce3NAHU5B54rzrXvilD/aP9ieDrJvEOtHIxAf8AR4P9p3zjGe2QODkjjOYdA8Z/EnD+I5X8OeHX5XS7V/8ASJl9JWPQe2PT5cjNeh6F4d0nw3p62OkafFaW46hByx9Wbqx9yaAOH034ZXmuX0esfELUP7XvFOYdOiJW0ts9gvG48DPrjndwa9KgijgiWKKNY4kAVEVQFUegA6U8ZpaACiiigAooooAKKKKACiiigAooooAK5T4i+Jx4T8E6hqUbf6UV8i1UHlpn4XH0+9j0U11Rry7Xj/wmXxh0rQUJbTfDqDULwfwtOQPLQ9iQMEexb0oA6j4deGf+ET8E6fpsi4uinnXTdzM/Lc98cLn0UV1VNXvTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopkjKqMzkBVBJJ6Ae9AD8j1rO1rWdN0HT3v9WvIbS0TrJK2AT2AHUn2HNcNq3xQa+1JtE8C6edf1TOHnBxa2/B5Z+jdD0IB7HPFGjfC9r7UU1zx1f8A9vaqPmSBhi1t/ZU4DfiMdyM80AUW8V+LviEzW/gq1OkaISVbW71PnkHQmJPz5/Mqa6fwl8OdE8KObyJJL3VpctNqN4d8zseuD0UfTn1JxXXRIsaBEUKigKqjoAPSn0AIKWiigAooooAKKKKACiiigAooooAKKKKACiikNAGfr2rW2g6Fe6tdkeRaQtK4zgsAPuj3JwB7muN+EWkXEHhmfxDqCg6p4gna/mbHIRjmNfpglh/vVR+J8z+I9b0DwDbM2NRmF3qBTjbaxknH4kHHuoHevTYY0hiWKNQqIAqqowAB0AoAeKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiijOKACijNZmo+ItD0dwmp6zp9k56Lc3KRk/8AfRFAGnRVG31rS7u2jubfUrOaCVxHHLHOrKznooIOCT6VeoAKKKa30oAdRmvP9d+Id5ofi6z8Nf8ACONdXt6m+2MF4oVlyeuVG3AUn096nufiLFouq2lh4n0i80b7YxW3uneOaBiMcF1J2nkdRQB3NFNUYzTqACijNGaACkyCM54rL1/xDpPhvTWv9Xv4rS2X+Jzyx9FA5Y+wBrzsa94z+JIMfhqB/D3h9+Dq10v+kTL6xJ2+o/76BGKAOp8X/EbQ/CRFpLI99q0nyw6daDfM7HpkfwjkdfwBxiuXXwp4u+IbC48ZXTaRopYMmiWT4dx1HnPz6Djn6Ia67wl8P9B8Hq0ljbtNfPky31yd88hPX5j0B9BgevPNdQoxxjAoAoaPomm6BYJY6VYw2lsnSOJcZPqT1J4HJyTWgKWigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKZK6RRtJIwVFBLMegHc0+vPvi9rE9t4Wi0LTiDqmvTrYQLnorECRj7YO0/wC+KAM/4ZRN4l1/X/H86HbfzGz08MDxbR4GR6biBn3VvWvUBWdoGj23h/QbLSLQfubSFYlJHLYHLH3JyT9a0qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmt2p1I3agDy3xp4u1XUvGFt4B8KTeRfzANf36jJtIsZOO27ac591A5OR2fh/wlpHhu1CWForTEZmu5fmnnY8lmc8kk++OteU/As/2v4w8Ya/dc3bzKoLdQJHdmHt9xRj0Fe6qeOetAHDan4Fs5/iVoHiO1sY4TbJObto12iRtoEZOO4LMc9Tj2ruQMUtFABSGlrN8QatFoXh7UNWmwUs7d5sE43EA4H4nA/GgDyGy8Q6Le/H3WtX1fVLO0ttGt/sVp9pmVCZM7WK5POCZfzFSePHl+Ld3pWh+GIpZ9Lt7gy3mrMhWCP5cbVYj5yAT07kds1t/BXQ1i+Hp1C/iWa51i4lupjKoJZSdoBz2ON3/Aq5zRP+JF+0hdaPoAEWmXMRe8t4R+6RvJ3Zx2+faPYsRQB7jEuxAoJOABljk/jSv2Hc0ooIzQB5X4h+O3hvQNck0oWt9etbyGK5lhVQqEHBC5I3EEew96JvitdeJ2Gn/D3SJtSu3UGW8uozHb2uf72cZOAeMjpxu6V4X4p+G3ifRPEdxZjSNQu4pJ3FtcxwmXz13HaSVB+YjBI611fhnS5vCJi0rxpqXi7wul0/mQXNjqAS1diBwwVWw3TJyffGKAPWNC+FsJ1Bdb8Y3z+IdbOGDTj/AEeDviNOmAfXjvtBr0RQBnAxXnkHw1guYEng+IXjSWGRQ6SR60GVlPQghcEe9S/8Ks/6nzxx/wCDj/7GgD0CivP/APhVv/U+eOP/AAcf/Y0f8Ks/6nzxx/4N/wD7GgD0CivP/wDhVn/U+eOP/Bv/APY0f8Ks/wCp88cf+Df/AOxoA9Aorz//AIVZ/wBT544/8G//ANjR/wAKs/6nzxx/4N//ALGgD0CivP8A/hVn/U+eOP8Awb//AGNH/CrP+p88cf8Ag3/+xoA9Aorz/wD4VZ/1Pnjj/wAG/wD9jR/wqz/qfPHH/g3/APsaAPQKK8//AOFWf9T544/8G/8A9jR/wqz/AKnzxx/4N/8A7GgD0CivP/8AhVn/AFPnjj/wb/8A2NH/AAqz/qfPHH/g3/8AsaAPQKK8/wD+FWf9T544/wDBv/8AY0f8Ks/6nzxx/wCDf/7GgD0CivP/APhVn/U+eOP/AAb/AP2NH/CrP+p88cf+Dj/7GgDv2xx9a8u0T/is/jFqWtsC+meG0NhZjHytcnPmMO3HzD8UNZnjzwsvg3whe6wPHXjSS4RdltFJrBw8rcKCAuSByxAIOFNXPC3wd/s/w9arJ4q8U6fdzIs13BYagIYxMVG7gKeeAMk9hQB6wPSlrz//AIVZ/wBT544/8G//ANjR/wAKs/6nzxx/4N//ALGgD0CivP8A/hVn/U+eOP8Awb//AGNH/CrP+p88cf8Ag3/+xoA9Aorz/wD4VZ/1Pnjj/wAG/wD9jR/wqz/qfPHH/g3/APsaAPQKK8//AOFWf9T544/8G/8A9jR/wqz/AKnzxx/4N/8A7GgD0CivP/8AhVn/AFPnjj/wb/8A2NH/AAqz/qfPHH/g3/8AsaAPQKK8/wD+FWf9T544/wDBv/8AY0f8Ks/6nzxx/wCDf/7GgD0CivP/APhVn/U+eOP/AAb/AP2NH/CrP+p88cf+Df8A+xoA9Aorz/8A4VZ/1Pnjj/wb/wD2NH/CrP8AqfPHH/g3/wDsaAPQKK8//wCFWf8AU+eOP/Bv/wDY0f8ACrP+p88cf+Df/wCxoA7q6njtreSeZ1SKNS8jscBVAyST2FeTN+0N4VGr/ZhaagbPODd7FxnP9wnO3v6+1aup/CWS60q7t4/G/i+R5YHRUutU3xMSpADrtG5fUZGRXzm/w98YJrH9mHw5qAugfurESvrkOMrj3zigD7PtLmG8tYrq3kWWCZFkjdTwykZBH4Gpj29qxvCOky6D4R0nSp33zWtpHFIc8bgvIHtnpW1QB4qui618K/Huo6xp2lXWpeGNVOZ47FN8ts2SRhO4Us2O208nNd1B8QtJ1FQmmWWr310f+WEenSoQf9ppFVF9Mlq689R1ox/kUAUNIj1BYJJtSdftEzb/ACYzlIBjhFPG7HdsckntgDQpBS0AIQa5Dx14S1Txjo0ujwa1Dp9jMVMgFkZZGwQcbvMUYyB2rsKKAODtfCHi2y0K20i28ZW9vbW0KwRvBo4EgRV2jkykZwOuKv8Ag74f6V4ONxcW7z3eo3JzcX1026STnP0A/n3ziutooAQDFLRRQAh+maqajp1nqljLZX9pFdWsow8UyBlYfQ9885q5RQB5VP4G8R+B5nvfAF6ZrEtvl0K9cmM56mJyeD+R9zwK3/CfxK0jxNctps0cula5GSJdMvBskDAZIXON3fsDxyBXaMM1zXivwHoXjG3VNTtiLiP/AFF3Adk0J7bWHUexyPxxQB0wI9fxpa8lOr+NPhmduvRy+JvDq9NSgX/SrdcdZF/ixjqT9W6LXonh/wARaR4l05b7R7+K6tzwdh+ZD6Mp5U+xFAGtRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh5paz9b1W30PRbzVbtiLe0haV8dSAM4Hueg+tAHnviJj4x+L+keHU+fTdAUalfehmI/dKe2RkH3DP6V6iteefCPSblPDlz4k1Jf+Jn4hnN9KcciM/6tR/s4JYezY7V6GO9AC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAGm45zjmnUUAIKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAawzjjNeea78Lo11Btc8G3zeHtaGSTCP9Hn9pI+nX0GO+Ca9FpDQB5ppXxOn0nUU0Xx/p/8AYuoE7Y71ebS491f+HqPUepHQekxOsiB1cMrAEMOhHtVLV9G0/XdPew1Syhu7WT70cqg89iPQjJ5HI7V5xJ4U8XfDxjc+DLt9X0QEs+hXj5ZB1Pkt+J44+jmgD1eiuR8H/EPRPF262hd7PVY8ibTrobJoyOuAfvAeo9sgdK60EHmgBaKKKACiiigAooooAKKKKACiiigBDXmHxSlk8RatoHgG0dl/tOcXN+UOCltGcntxkg4PqgFemyusaF3YKigszE4AA7+1eY/DNW8T+JfEHj2ZT5d1N9h00MCNttHjkem4hc+hVvWgD02CNIYViiRUiQBUVRgADsBUlIvSloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmsM9s06igDkvF3w80Pxhie6ie11KPBh1G1OyZCOnP8AEB6Hp2wea5RPFHi74cult4zt21jQshU1uzTMkQ/6ap+XPXryx4r1imSxrIhR1DKwKlSMgg9jQBR0bWtN17T1v9KvYbu1fpJE2QD3BHUHkcHnmtDI9RXmus/DGfTtQfXPAWof2HqbHMlrj/RLgc8MnIXr2GB6DqHaD8UFTUV0TxpYHw9rPRTKf9Hn943zgfiSPc0Aek0U1SMdqdQAUUUUAFFFFABRRTW7UAcB8XtansfCcejaf82qa7Oun2yg4OH4c/TB2+xcGuu8PaNb+HvD9jo9qP3NnCsQOMbiOrH3JyT9a8/0gHxn8ZtR1ggtpfhmM2Nr6NctkSN+HzD8ENepDOTmgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEOeMVla74d0rxJpzWGr2EV3AegcZKn1VuCp9wa1qKAPJToXjP4Z/P4elk8R+G0PzaZcN/pNuvrE2OQMdMd/u9x2fhHx3oPjCBv7Nudl3GP31lONk0RHXK98HuMj3rpj2rjPFvw40nxPMuoRNLpmtw/NDqVkdsgbtuxjcPyPoRk0AdpRXlMXjXxJ4DnWx8e2Ru9Ozth12yQlSOAPNXHB55/QNya9L07UrLVbNLywuobm1kGVlhcMp/EUAW6KKKACuZ8f8AidPCPgzUNW3KJ0jMdup/ilbhRj26n2BrpW6V5Z4mP/CY/FzR/DS5bTtCUalf+jS8eUh/MH3DN6UAdP8ADbwyfCngixsJlIvZB9ovCfvGZ+Wz9Bhf+A11tIveloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAiuII7mFoZoklicFXRxlWB7Ed68z1L4a6j4cvZdZ+Heof2dOx3TaVOd1pcewB+6ev54BUV6jSGgDz/AMN/E+zvdR/sPxLayaBr64U210cRynpmNzwc9gfwLda79axvEnhXRvFlgbLWbCO5iGdjnh4z6q3Uf175Feezjxl8KYHnWeTxN4ThGWWZ9t1ZoO4J+8oH4cdEHNAHp2tapb6Lo15ql22ILSFppPXCjOB7nGB74riPhDpVyvh+78TakmNT8QTm8kGPuxZPlqPbBJHsw9K8c8afGe88Y2p0ZtOSy0WSaNpUjctM6K2du77vJAONvBHUivpvR7izu9GsrjT9v2KWBHt9owPLKgrx9MUAXRS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWV4k0WHxF4c1DSJyQl3A0W4dVJHDfgcH8K1aKAPlFfgP44Oq/YTb2ggHP2w3A8n8sb/APx2vp/RNMj0XQ7HS4mZ47SBIVZ+rbQBk/Wr+R60mQO4oAWijNFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUje/SlpDjHNAHjfx2jWSPw/YaeDFrWo36xxyxMVZkA2kHHbc6flXa/8K20BLNYoBqFrOiBVubbUJ45FOMbs7sZ+oI9q425/wCKs/aNghHz2nh2z8xgeV808/nudf8Avg+lew8etAHlfg3xTq2k/EK98AeIbw30kamTT751AkmTbu2OR1+XnPqrcnjHqi9PWvDblTrH7U1t9lyU063Bnde2Ij/WRVr3IUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVma5r2meHrB73VL2G1hRGb944BfAyQoz8x6cD1rTpCM4oA8F+DnirQIH8S6/rmtWNnqWp3xZoriYK2zlvlzyQS5HH90V6Hf/EGO9ia28IWFxrmotwjRwslrGT/E8rALjrwDk4/Gu3/MfjQBzQBxPw+8BHwlFeahqF0L7XtScyXt1jjJJO1fbJyT3P4Cu2FLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q==', '/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAWEBYQMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiop5HjhZo4zI4GQgIBP51x2gfECXxLo/wDaum+GdWmtBIyBhJAGYrwcBpBnnI98UAdtRWR4f8R6d4kspLnT5H/dSGKaGZCksMg6q6nkGtegAooooAKKKKACiiigAooooAKKKKACikYkYxWFq3imy0m/g03ZPeapcjdBZWqhpHXuxyQqL7sQOKAN6iuR1fxdf6Dp/wBt1Hw9eeS7LGhtZ45SrsQqh8kbQSQMjIGfpnrFzk0AOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ57UAcx8Rdb/wCEf8AazqCuVlW3MURHXe5CKR9CwP4VN4I0T/hHfBGkaUy7ZILZfNHpI3zP/wCPE1znxI07XfEF3oWn2WhXN3pVtqEd3fyLPAvmInRVDSAnOTnOOg61vXeqeJLyJrfTPD7WU7DaLnU7iLy4/fbEzliPT5fqKAOS8IM7fHXxz9k/48PJtxNsPy+dsX9c+Z+tepjvXP8AhHwpa+FbCeKOaS6vbqU3F7eTAb7iU8ljjoPQdvxyehoAKKKKACiiigAooooAKKKKACiiigCC7nS1tZbiT7kSM7Y9AMmvN/g3E+saZqnjLUAH1HWbt/mbny4UO1UX0AO4fgPSvS5o0lheKRdyOCrL6g9RXm/hGw1/4dw3GgvpFzq2irO8ljd2TxmRFY5KOjsp4PcZ70AeiXdrBeRLFPGHQSJLg/3kYMp/AqD+FTL3GKyrG51K+nE9xavp1sFO2CVkeWQ+rbSwUDsAxJzzjHOsvTigBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiioHuoIn2vPGrejOAfyoAnoqBbq3dwiXETMegDgk/r9amFAC0UUUAFFFFABSYHpS0UAFFFNfPGDj8aAHUV5+PjH4PfxQNBW9n88y+QJzAfJMpbbsz1698bfeu+UmgB1FFFABRRRQAUUUUAFFZ+t63p/h3SZ9U1S4FvZwAGSQqTjJAAwOSSSOK53wf8S/Dvja5ntdKnnW6gUyNDPHtYoCBuHUEcj356CgDssZoximrTqACiiigAooooAKKKKACikJwOTioVu7d22rcRE+gcflQBPRSA5JpaACiiigAooooAKKKKACiiigAooooAKKKKAEIyK8m8Rpo2s/G6wt9RWxFpo+nPcXLXIXa8kh2qjZ64XDDPTk16w5CjcTgAZJPSvL/AIa2ln4lfxL4svLeG5XVdRdYPOjD4gjGxOo9Ccj2FAHQ6d4c8L6tfaZ4k0jTrOF7SeXyp7aBVEow0Z+7wRnkE+mR1rsF6VzvhW90nyH0PRWWa00iKK3aaNgybtp+TI6sAATjj5vXIHRCgBaKKKACiiigAoprHGOD+Fcjrfj6zsb9tH0W1l1zXen2K0I2xHp+9kPyxjI788jjmgDq7ieO2haaZ1jiRSzOzBVAHqT0rhbnx1feIbh7DwLp41DB2S6vdhksoj0O0j5pT7LxyDnGaSLwTqfiWVL3x3frdIDui0azLJaR+m/OGlboeeOvUV3dvBFawJBBEkUUahUjjUKqjsABwKAPnW3/AGctVXXYkuNatG0kMDJNGGWcjuAmCoPvkjvz0r1T+yPiDpOTpviWw1iMMAINXtPKYL3xJF1PuVrusD0FIxC5PAAHNAHD/wDCb67pZx4h8F6nAoOPP0xlvY8f3iFwyj6qa09I+IPhTW5BFZa5bfaN237POxhl3emxwG/So9U+I3hLSZfIuNbtpLjdsEFqTPIW9NqAnPtXO6rqVz4yVYrb4ZSX0e4p9p15Y7UJx94K26TH0AoA9LyCODxUNzdwWcDT3VxFBCoy0krBVA9yTxXk2k/CrxHbEyx+K/8AhH4SD/oOjvO8IJ75lkPP0H0xUP8AwrHXdLv/ALdeWmleNNgJB1S4nSc57AO0kX5gUAdndfFLwvHO9rp91cazeKM/Z9Jt2uWP0Kjb+tQnxB471jcNI8KW2lxHBS51q75I94ogSD9WFQW3j6z8P2wttb8Kar4dgiXLOtmJbRPYSQ5H6Cuo0fxToWvjOk6xY3hIyUimUuo7ZXOR364oA4rxJ8OvEvi3Rbi01rxmXd8SQ21tZLFbo46buS7j8eOuK5LwZ8I/GHge/bX7W80e5v4Q0aWRaQpLGfvfvCBtbjjgj1r3odTRgegoA5LQfHlhql6NKv4ZtH1xR8+nXo2s3bKN92Qe6nt0rrFJOc1k+IfDej+JrD7JrFjFcxD5kZuHjPqjDlT7giuUMXjHwOR9nefxVoSnmKQgahAvs3AmHXg4bkAcDNAHodFYfh3xXo/ii2abS71ZHQ4lgcFJYW5BV0OCpyCPTg4z1rcoAKKKKACiikNADZCoQlyAgBLE9Me9eJ+Cm8F3Gh6/4g1yLSnGq6jPJb2siI8vkqdqKife3E7unqDXefFDWjo3w/1SSFj9quY/sluoPJeX5Rj3AJP4Vynj7SdA8N/Ca20iaO3/ALXhghisPJUfaHuFIG9MfNnOSSOxPrQB03wmtNas/AdtHrgnWUyO1vFc582KA/cVs8568HoCK7isnwuuop4X0tdXZm1EWkQuS3UybRuz7561rUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAQXlla6hbPbXttDcwP96KaMOrfUHg1kf8ACD+EgpX/AIRfRNp6j+z4sH/x2t6igCnp2k6bpFsbfTNPtbKBmLmK2hWNSxwCcKAM8Dn2q5RRQAUUjHAyenrVHVdWsNG097/Ur2G0tEHzTSuFUfTPUnsOfpQBeY4rB8R+L9H8MRR/2hcsbmY7YLOBTJPO3YIg5P8A9euQ1Lxtquu24fSJ7bw5oTH/AJDusFUaUdvIhY854wz4Bz0zVLw/rfg3RbiSbw7Yaz4q1dyUn1CK1eeRmP8Aemfaqj2U4oA2PsHi/wAanfqk83hrQ36WVs4+2zj/AKaSDiMdPlXnGQa67Q9A0nw5py2Oj2ENlbDqqDlj6sx5Y+5ya5oX/wARNYx9m0bSdBgLYLX1wbqXb6hY8L+BalHw/vtSw3iPxfrOpDkNBbOLOBh6FI+T/wB9UAbuteLvD3h4N/aus2VowGfLeUeYR7IPmP4CsD/hY7akCvhnwxrWsZXMc7Qi0t2/7aS4/wDQa29F8EeGPDxVtL0SyglXpN5e+X/vtst+tdBQBwrQfEjWSfMvtH8O27YKi3iN5cL6gl9qfiAaD8MdMvyW8RarrOvHcHMd5eMsIYd1ij2qB+dd1gelFAGdpWhaTokRi0vTLOyTuLeFUz9cdfxrRwPSiigAxRgelFFABgVzus+A/Cuvsz6joVlLMx3GdI/LlJ/31w3610VFAHCnwHqmm/N4c8Z6vYjIxb3pW9hUD+ECT5lH/AqX+1PiFpHF7oOma3ED/rNMujbyBfUpLwT7Bq7mjFAHDx/FHQY5Eh1qHUtBuGbaq6pZtEpPqHAKY9811en6nY6rbi4069truE/8tbeVZF/MZq1LHHMhjlRXRhgqwyD+FcjffDHwleXC3MOlLp92udtxprtaupPf5CB+YNAFjxH4H0rXbtdRQy6drKDMWpWTeXMOgAbH314HDdvSsf8A4SnxD4OPleMbT7Zpq/8AMc0+EkKPWeEZKfVcjoO9TDwr4w0cA6H4ze7iRcLa65bifcfeZNr/AM6G8UeL9JVl1zwU97Ai5e50S4Wfcf8AZhfa/wDOgDsdP1Cz1SyjvLC6huraUZSWFwyt9CKtV4wb3wsmqTXXhLxGPCWuMd0+nahE1vbTt2WSKQBQeMbk5GT1zXWaZ8Q0t7mHT/FdqNGvZf8AUXXmeZZXfXBjm6Dpna2DyB3oA7uimBsgc8euacDyeaAM/UtA0bWCh1TSLC+KcKbq2SXb9NwOKjsPDOgaXcfaNP0PTbSb/npb2kcbfmADWrRQAdKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApDS01jj/wDVQB4b+0bdarDpujRQTummTPKs6I+N74UqHHcY3Y7dfauG8LfDXx14z0W21GPUEgtbdytmmpTzLgfKd8Q2HCngBgR09q2PiJcT+PtXbUFZ/wCyLe3vjpuw5V47aJmlmPs8uxFI6heR6/Sa96APFNP+Gni/T7g3B0fwFeXTEFp79ry5cn1zITz9MV1ap8XEUIi+BlUdABdjFehUUAef/wDF3v8AqR//ACbpP+Lvf9SP/wCTdeg0UAef/wDF3v8AqR//ACbo/wCLvf8AUj/+TdegUUAef/8AF3v+pH/8m6P+Lvf9SP8A+TdegUUAef8A/F3v+pH/APJuj/i73/Uj/wDk3XoFFAHn/wDxd7/qR/8Aybo/4u9/1I//AJN16BRQB5//AMXe/wCpH/8AJuj/AIu9/wBSP/5N16BRQB5//wAXe/6kf/ybo/4u9/1I/wD5N16BRQB5/wD8Xe/6kf8A8m6T/i73/Uj/APk3XoNFAHn/APxd7/qR/wDybo/4u9/1I/8A5N16BRQB5pf6Z8TtUtzb6jY/D67hP/LOeK5kX8iDXGal8H/GN7FNFbReE9LSZg0q2FxeKkmCD80bbkI4/u179ijAPWgD4y8a+HvFXg+8s9N1m6uJYbZVazljlkeBe+IywABB7ADpX1P8PZtQufh9oU+qSmW8ks43aQtuLqRlSx7tt25981yHx7sZdT8I6Lp9uAZrrW4IIwf7zRygfqai+DevvHptv4dvJQyyWq32mSbsh4TxJFk9THIGXrnGOwoA9aopF6UtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIe1cR8QNQubtbLwfpUpTUtaJSSVeTb2o/wBbIfQ4+Ue59q6/UL630ywnvruQRW1vG0srn+FVGSf0ri/A8LXEWo+PNZUwXGqJvhWX/l1sU5jX2yPnOODkcZFAHMX2m23mePGs4THYaB4abRrMBsrzC0kn/Ah8gJ9q9jHevK9HglPwJ8R6rcxmO61m01DU5lJzgyK+3/xwJXqo6UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5/8VP+ZL/7Gmx/9nrmIdDu1tddsNJ2DXvCeryX2lqo+9bzjzPJ+jqzrgdwK6f4qf8AMl/9jVY/+z1Ndn+x/jFYzE7YNd057cgDgz253gk/7jMPw9qAOm8O67aeJdBs9XsiTBcxhgp6oejKfcEEH3Falee2OfBPxAk04/JoXiJ2mteflgvQMvH7Bx8w98gV6CKAFooooAKKKKACiiigAooooAKKKKAGscd8D1rBbxt4ZS4kt212wE8Zw8ZnG5fqO1bzEAZJAx39K8Z8E+MNB0//AIS3xhqt0YTqWoMYf3TMTBH8sYBA6nJH1FAHqGn+KdD1a+Nlp+rWlzcqhcxRSguFBxnHpkitcVl2mnwz3tvrctr5OoNaCFwcFkViGKk45wRj8K1BQAtNYkYxTqxfFfiGDwv4cu9VmUyGJcRQry0shOEQD3YgUAcv4sJ8YeKrTwZF82mW2y91th0ZQcxW+f8AbYZI64XI71e+J91JB4EvLC12i71R49Nt1PAZpmCEf98lj+FW/Avh+fQtDefU2EmtahIbvUZuuZW/hHoqjCgdODjrWb4j/wCJv8TfC+jfI0Ngk2r3SH/ZHlwn6hnJ/CgDS8V2cOn/AAt12ytlCQW+jTxRqOgVYWAH5Cup7Vz3jr/knviXP/QKuf8A0U1dD2oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDz/wCKf/Mlf9jVY/8As9T/ABQU2Whaf4hj3BtD1GC8fyxlmi3bJFHsVcn8Kg+Kn/Mlf9jVY/8As9dhrmmR61oOoaXLxHd28kBPpuUjP4ZoAo+LPD0Pirw5Pp5lMUxxNa3Cn5oJl5SQH2Pp2JHeq/gfxHJ4i0HdexiDVrORrTUYB/yznQ4bHseGGMjBxk4NQ/DnU5dW+H+jzXAYXMMX2acOcsJIiY2z7krn8ax/ERPgvxnbeLIyV0nU/LsdZUdEbpDOfQg/IfQEdzQB6JRTVJOc06gAooqnqeowaVYyXlxu8tMYVBlnYkBVUd2JIAHqaALlFcb8NPEN/wCKvDt1rF+AjT38wihU5EMa4ULnv0JJ7kk+1dlQAUUUUAFBNFFAHF/FDxPb+GvAuqyG5jjvJrdobZCwDs7fLkDvgHP4VY8HaNp0fw50vSI3hubT7GscjROGR2Iy+COOWLH8a6zAowKAEH0paKRuntQAjHGDXAR58b/EQyZ36H4Ym2r/AHZ7/HJ/7Zg/UFjXL+PvjnbaNc6poWkWc0t/CHtzeMwVIZehIAzu2nPpyvpXp3hHRbDQPC2n6fpziW3SIMJupmZvmLk/7ROaANjtxwK4nwgf7X8ceLtdJ3RRXEelW+R91YVzJz3Bdz+VdVrOoxaNol9qcwJis7eS4YDqQqlsD8qw/htp0uneAtLFyS11cxm8uGYYJkmJkOfpux+FAFrx3/yT3xL/ANgq6/8ARTV0Pauf8d/8k98S/wDYKuv/AEU1dB2oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDz/4qf8yV/wBjVY/+z1357VwHxU/5kr/sarH/ANnrvzQBwvgxTpPjPxhoBBWNrtNVt9zfeWdfnx7B0I/Guu1TTbbV9MutNvI/MtbqJopVPoR/nB7ECuR18HSfij4a1dVAh1GCbSZ3Y4AOPNhH1LKw/Gu665oA4j4f6ndQx3nhLVZGfU9EKxrI3W5tiP3Uo9Tjg8nBHvXbivM/irfw+ELjRvG0DBb61uPsckIOPtdu4JaMn227h2Bz3Navw9+JWm/ECC5FtbTWl5ahTPBKwYYbPKsPvDIPYfSgDtmzjr+tcLe6nquoXh1y20uO60eyieSyL3Ij8yQBg020g5GPlT2LHuMdL4i0T/hIdKl019SvrGGZSsrWbIrOpHK5ZWwPpjrTb/QxqPh59GfULyGKSEwSSwiISMhBUj7m0ZHoo9qAOa+C8Bt/hTowb7ziWQ/jK5H6YrvqxfC/h6HwvocGk217dXVtbrti+0lCyDJOMqq56962qACiiigAooooAKKKKACmt096dRQB8+fEv4RWVrrS+I4r2SLTb3UYlv4QgDW6yuFaRW6Y3HoRxn2r3yytYLKzhtbaMRwQxrHGq9AoAAA/ACsjxpoo8QeC9Y0rYGe4tXEeegkAyh/BgtHg3Wf+Eg8GaRqhYNJcWqNKV6CQDDj8GBoAxvikzXXhuz0GMuJNc1CCwLIeVjLb5G+mxGB+tdrGqoioihVAwFAxgVw19/xOvjFpdsQWt9E02S8Yg8CaciNVYeoRWI+td0KAMDx3/wAk98S/9gq6/wDRTV0Hauf8d/8AJPfEv/YKuv8A0U1dB2oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDz/wCKn/Mlf9jVY/8As9d/XAfFT/mSv+xqsf8A2evQBQBxnxRtJJfBE9/bIGvNJmi1O3JH3WhYMT/3xvH411djdQ39lBeW7B4Z41ljcfxKwBBp13bRXlpNazqGhmRo5FPdSMEfrXIfC26lbwTDptzJvu9Hnl02f2MTlV/8c2UAZvxu0ix1P4d3M90r+fZyJJamMZYyMwQL7glhkfQ9qm+GXwxg+H8F3K16by+uggkfywioFz8q8k9+TnnAqfxvnVPFXg/w+A5V75tRn29kt1JUN7M7KPwruqAExxS4FFFABRRRQAUUUUAFFFFABRRRQAUUUUAI1cL8O/8AiXXfibwySP8AiV6m8sEajGy3n/eoPzLiu6NeV+OtZ/4QfxnPrYfYmqaHPCigcNdQHfGSfo5AoA2/h6P7S1HxV4kYA/2jqbQQOpyHgtx5SEfUh67qsDwRov8Awj3grR9KKKjwWqCVV6eYRuc/ixJrfoA5/wAd/wDJPfEv/YKuv/RTV0Hauf8AHf8AyT3xL/2Crr/0U1dB2oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDz/AOKn/Mlf9jVY/wDs9egCvP8A4qf8yV/2NVj/AOz16AKAENcLoROkfFXxJpLNiPU7eHVrdAOAR+6l/ElUNd0a4Lx3Omg+J/CniZ2ZIIrmTT7raODHOnylj2AdFP40ASaIv9rfFjxFqhU+TpVrBpcDA/KWb97L+IJQV3K9K4v4WWzjwauqXCbLrWbmXU5hn/nqxK/+OBa7WgAooooAKKKKACiiigAooooAKKKKACiiigBDXkvx0vLG30/w1HdQecV1Rbp4wMk28Skyj6YZa9aNeb6hpsfjP4j67YSsfsum6L9g6fcmugSWB9QirQB6OjB1DKQykZBB4Ip1cr8N9Tk1T4f6RLOCtzDD9lnVjyJIiY2z7/Ln8a6qgDn/AB3/AMk98S/9gq6/9FNXQdq5/wAd/wDJPfEv/YKuv/RTV0HagAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPP8A4qf8yV/2NVj/AOz16AK8/wDip/zJX/Y1WP8A7PXoAoAK88+Njx/8Kwv7Upvnu54IbeMdXk81WwPfCtXoRrhPEf8AxOfid4Y0XKPDYRzatcxt3IHlwn8GZj+FAHR+E7m2u/CGjXFmmy2ksYWiT+4uwYHHp0/CtmuG+F4On6NqfhxgwOialPaxhzljCzeZGx+qv+ldzQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA1yFUsxwAMmuI+GAa+0K/8RSbt+uajNeKGGGWIN5ca/wDfKA/jV/4kanJpXw/1eaAMbmWH7NAEOG8yUiNce4LZ/CtnQtLi0XQdP0uHBjtLeOEEDGdqgZ/HGaAOW8HZ0nxp4v0AgrG10mqW4J6rOvz49g6H867kd64bxD/xKPif4Y1gALDqMM2k3Dk8ZP72EfiysPxruRQBgeO/+Se+Jf8AsFXX/opq6DtXP+O/+Se+Jf8AsFXX/opq6DtQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHn/xU/wCZK/7Gqx/9nr0AV5/8VP8AmSv+xqsf/Z69AFACGuG8IH+1vG/i7Xclo47iPSbbcPurCuZMHuDI5/Kus1rUotG0S/1SYZjs7eSdh3IVScD8qwfhpp0um/D/AElblma6uIjdzs4wxklYyHPv82PwoAoW4/sb4y3cYG231/TEm3E/euLc7SB/2zZT+Fd2K4X4jhdNfw54mAVf7J1OMTSH+G3m/dSfzQ/hXcr0oAWiiigAooooAKKKKACiiigAopDSZ7c0AOpD2oB5NB/WgD5Y+I3xP8QXXjaazysVjo+pCS3tWj4Z4mwrOerA9cZxyK+ndMuzqGmWt4YXhM8KSmN+qblB2n3Ga5Pxh8MfDniuO7uZdPgi1aWIiO8TKkPgbWcDh+QOoPHFaPgXxFL4h0E/bU8nVrGVrPUYD/BOnUj1BGGBGRzjsaAKXxSs5ZfA1xfWsatd6TLFqVvnoGhYMf8Ax3cPxrq7G7hv7G3vLZw8FxEssbDoysMg/rS3dtFeWkttOgeKZGjdT0KkYI/KuR+Fl1K/gqPTLmQSXejXEumTMBgZibC4/wCAFKANXx3/AMk98S/9gq6/9FNXQdq5/wAd/wDJPfEv/YKuv/RTV0HagAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPP8A4qf8yV/2NVj/AOz16AK8/wDip/zJX/Y1WP8A7PXf0AcR8Ui154cs/D8ZcSa5qMFiSh5WMtvdvoFQ5+tdsiqihVUKB0A9K4e8B1n4xabBtJg0PTZLpiG4Wac+WqsPXYrkfWu3JwePy9aAPMvjxrs+kfD1raG2SVdRnFtI8i5Ea4LZHP3sqMfjWd8EPH2ueLE1Kw1qQXLWSRvFceWFbDFhtbHB6cHGeuc1ueLIo/G/iq08HbfM02y2X+sOCcY58qDI6Fj8xwQdo4711vh7wxonheza00TTobOJiC+wEs5/2mJLHGT1NAGuKWjFJn3oAWikFLQAUUUUAFIaWkIHegDjvHPiy60RtO0bRo45te1eXybRZOUiXjdI/sB/k4Iq3aeDbBbdf7UnudWvGA826upmO5j1KqDtjHoFA/rXJa8hsv2g/Dd9eZWzudNkt7eRvuiYbyR7HDKPfNdJ8StQGj+ANV1JLi4tp4YcQPBMyMJWIVOh5wSCQc9KAL/hjQZtCm1YSXl1cwz3Ia1+03DTNHCI1wgLEnAfzMe2K6GsHwdp95p/hqyTUru6utReBHupLiVnPmEZIAJwACSOAOlb1ACGvPfExPgvxha+LosLpWoFLHWgOAnOIZz/ALpO0k9AQAPT0Oqeqada6tplzp15H5ltdRNDKnqpGD9Pr2oAsjJHX8xXEaEf7I+LHiTSS2ItUtodVt0AwAR+6l/ElUNO8Aajc2q3ng/VZN2paIQkcjdbi1P+qkHvjCn0I5603xr/AMSrxZ4Q8QBnVEvW0242jgpcLhS3sHVfzoA2fHX/ACT3xL/2Crr/ANFNXQ9q57xz/wAk88S/9gq5/wDRTV0PagAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPP/AIqf8yV/2NVj/wCz13/WuA+Kn/Mlf9jVY/8As9dJ4x1keHvB+raruCvb2ztFnvJjCD8WIFAGF8PQNSv/ABR4mYKf7S1NoYHU5DwQDykI+pDn8a3fFviGDwt4dudUmTzHQbIYFHzTytwiKBySWPb3PY1F4N0b/hHvBejaVt2SQWqCUDp5hGX/APHixrn4Q3jj4iNcMC2heGpSkX92e/x8ze/lg4HHDE4oA2fAnh2fQNDaTUXEus6hKbzUZeOZn5Kj/ZX7o5xwT3rqKQZ70tACGvMTbnXfjfeW8dzdrp2k6ejXUMd1Isb3DklcgHH3W6f7NemSyJFG0sjBUQFmYnAAHJJrzv4Ro19o+r+KpQRJruoyzoSORCjFEX8MN+dAHoqgKMDoOBTqp2GoW9/9p+zsWW3mMDtjguoG4A98E4PuCO1XKACiiigAooooAzdb0PTdfsRZ6paJcwhg6g5DIw6MrLypHqDmsqTwPpF0Ikv5NQ1GGJg6Q3t9LNHkdCVJw2PVsmunooAQd6WiigApDS0UAcN4/srjTHs/GmmRs99o+ftMSdbmzP8ArU/4D98Z4BB4yan8awReK/hjqMumytJ51mLyzkj+8zJiVMehJUD8a7B8EhSAQeorz7wrnwh4quvBcwK6bcl73RWP3QhOZbfPqhJYDk7Wye1AGlrmqR638HdU1WMYW80KacDPTdATj8M4/Cux7V5NpX+gfCTxx4cYFW0RNQtowzZJhaNpIm+hV8D6V6z2oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDz/4qf8AMlf9jVY/+z1N8RCNSuvDPhkMp/tTU0knjbnfbwDzZB+YQfjUPxU6eC/+xqsf/Z6fBKuqfGDUbl3xbeH9MSDDDhZpz5jMD/1zRQfrQBf8ea9daTpMOn6V82uatKLSxTurH70h9Ai5bPritbwxoNr4a8PWej2nMdtGFLkcyN1Zz7lsmuW8Gxt4r8R3nji4BNphrLRo2HCwKfnmwehdgewOBjpXoAwM4oAWiiigCjq2lWmtWElhfLM9tKpWRIp3i3qRgglGBII7Vh23w+8PWdgthaJqcFmgIWCLWLxUAPUBRLgdTXVUUAUNG0ex0HSoNM0y3FvZwAiOIMWxkknk8kkknmr9FFABRRRQAUUUUAFFFFABRRRQAUUUUAFct488PXGu6Ik2mHy9a06QXenzekq/wH2cZUjpzz0rqaQ9qAPDbrxDBfjxHqUCeRD4l8LXEkkTH5kvLaN0kjI9Qrde4Ar3IV87fGrSp/CmsDVbHYLHVTOGQ/8ALKeSFopSBn/lojAnjqg/H3nRdb03xBYC/wBKvYbu2Y43xNnDd1PcHpwcdaANGiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopGOKAOA+KhAHgskgAeKbE5P/AAOuK026n8T6c2i2EsqXfi+/uNRvpcYe201X8sDPbcqBFyCPmOeoq5+0LrVpF4a07T4r6IanHqMVyIEceYiCOQb8dQMkc103wi8OHTPC0WsXRD3upwxMpyG8u2VQIUBHH3cE+pJzQB3dlawWNnDaW0SxW8EaxxRqOEVRgAfQCrGMdKMYooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikJwQO9Y6eKtCk1VtLTVrU34IDW3mDzB0/h645H50AbNIe1ZOp+JdF0WaOHU9UtrN5eI1mkCl/YZ6/h6itKCaO4hWWNg6OMqw6EUAeUfGzwDrnjG20u60VRcSWfmK9qZFUkNt+ZSSB/Dzk+leXnwJ8SPBWkw3CXl/ZWEr+ZcxabeyfuDwC0ix57DllD4wM9q+rMU1gKAPnvSFvLvT0vbvUfiLNZuwC3eja4t/GOASWVVDpjIypXI9q6DSdP8J63KIbP4seLhcF9gt59ZMMpb02OgYn8K7HV/h/bnUJNY8M3smgay3LS2ygwzn/prF91+rc9RnPNYl5rFiZY9N+J/hyxhkZtkWpmLzLKT/dkb5oj14bHTrjFAF8fC3cMjx744I7Eax/9hS/8Ks/6nzxz/wCDj/7CnxfDjTraNJ/DGuaxoyEb40s7wy2zZ5B8t9ykc9uKeE+JGjAbZ9G8RwKMnzFNlcMew43R/oKAIf8AhVn/AFPnjj/wcf8A2FH/AAqz/qfPHH/g4/8AsKmb4kLpuR4l8Oa1ogRcvcNb/aLdf+2sW4fpXQ6P4q0HXxnStYsrwkZ2RTKXA91zuH4igDmP+FWf9T544/8ABx/9hR/wqz/qfPHH/g4/+wrvxnJpaAPP/wDhVn/U+eOP/Bx/9hR/wqz/AKnzxx/4OP8A7CvQKKAPP/8AhVn/AFPnjj/wcf8A2FH/AAqz/qfPHH/g4/8AsK9AooA8/wD+FWf9T544/wDBx/8AYUf8Ks/6nzxx/wCDj/7CvQKKAPP/APhVn/U+eOP/AAcf/YUf8Ks/6nzxx/4OP/sK9ApjuFBJIGOeTQBwX/CrP+p88cf+Dj/7Cj/hVn/U+eOP/Bx/9hWrqnxH8J6TL5E+t20tyTtFva5uJC3ptjyc1QXxn4k1XA0DwTfmMsV+06vKtmq++zlyPwoAh/4Vb/1Pnjj/AMHH/wBhUF18Obaxgae7+InjO3hXlpJdaCKPqSvFXRofjvVip1bxXa6ZEQd9to1oCSPaWXLA+4AqjqPg7wD4Xtl1fxRM188YI+1a3dPcvIcZwEJwzcdFUnigDk7r/hGI5pLbTviH8Qdau0XP2fSb57liPYqm39a5nxGfEdlOlnY6r4ytbyfBtre91/zrmUH/AKd4VJX6syj3r1G0m8S+KIEtfD1gPCfhwcC7ltwt1KvfyoukYIyNzc4IIFdT4a8IaN4YSQ6fbE3U3M95O3mTznuXc8nnt0z2oA+ctS+D/wARtTe3vr6Jr+5uAA7TXoeWIdvMLH+ROM19HeCtFn8O+DNK0i6mMtxa26pI24sA3UgE9hnA9gK3sD0pcYoAKKbI4RCzHAAJJ9BWTY+J9F1S+eysNUtbi6jJEkMUgZkx/eA6dD1oA2KKyIPEujXOqyaXBqltLfxkh7dJAZEI9VHStYHNAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAhPQV5J4J1vS7rxx4w8S3cpD3F2LG1Kwu/7qIBSwIB4Y7f++a7fx54mt/CvhHUNQknjjuBA4tVZsF5cYXA78kVm/DWLT9G+F+jFby38lbYTTzGVdiyP87BmzjILY59KAMLVry08a/Fzw1p1tmay0iCXUrndGy/OcKgwwHRtp/GvU1/WvL/hnqFn4i8XeMfEaXUUktxeLa26hhuFvEoCsB/dbIOfUH3r1AUALRRRQAVBd20F5bSW1zBHPDKpV45EDKw9CDwanooA8+l8F6v4Wla78DX6x224tLol87PbP6+W3LRN16cZxngVpaH49sdT1AaPqUEui68B82n3hAL88mN/uyL1wV5ODxXX4rI8Q+HNI8S6f9i1ixiuoM5XcMMh9VYcqfcEenegDVXkdK5/WvAnhbxAWfUtDs5Zn6zpH5cuf99cN+tYH2bxf4IUm0lm8UaGnWCZgL+3X/ZfpMB6HB6AV0nh3xbo/ii3Z9Nuw0sZ2zW0oKTQt/ddDyDweehxxQBhN4C1PTiW8N+M9X08EjFveFb2FR/dVZOQP+BUp1P4iaRn7ZoWla5Fu4fTbo28gX1KS8E+wau4FB46dKAOIj+KegwyJDrcOp6BO7bFXVLNo1Y+zgFMe+a6vTtVsNWtxcaffW13Cf8AlpbyrIv5g1Hqup6VplqZdXvbS1tm4zdSKin2+avKr+T4catd+Z4d8Palf6grFRceHbaS3CN6mQbE/HmgD2UEmgnkDnmvH9H0r4sIxNlqCWNiBhINeukvJj6HdHGD+ZP41TudJ8bpO7eNbbxBrVmqnP8AYOoIkTg9jAqxu350Aeo6z4w8O+Htw1bW7K1dRkxPKPM/BBlj+ArAPxHl1JWHhnwtrWrkrmOd4haW7/8AbSUj+RrL8Max8LNInW3srey0W/jXJTU7c28659ZJRkn/AIEa9LilSaNZInV42GVZSCCPUGgDiWt/iRrBbzb/AEbw9bnBUW0TXk49QWfan4gUD4YaZfMW8RaprGvsWD+XfXbCFW9VjTao/HPSu5FISBj3oAoaVoek6LEY9L02zsoz2t4VTP1x1q5cTRW0LTTSJFEilnkc7VUDuT2FcnrXj+1tNQbR9Ds5td1wcG0syNkXvLKfljH159qow+B9Q8RzrfeOtQW+VCHi0e0ylnF/vA8yt7scdeCDQAs3jfUfEk0ll4GsBeKp2y6xdgpZx84OzvKR7cdOcVd0TwFZ2uoLrGt3Uuua6Dn7Zdj5YT1xFH92Menf3rrLeGK3hSGCJIokAVURQoUDoABwB9KkwPSgBF5zxTqKKACiikJ6c0ARXU8VrbSXE7hIokZ3YngADJP5Zrxr4U6vNq8WsLpskUGsapdyajfXEyjNvE7ERqiH77dSP4V3ZOT8p6b4xeJbfRvAOoWa3USX1+gtYoi4DYc4ckZyBt3c/SsTxjY2XgnQvDni3RLu2+0aJFFZMqyri/tuFZAf4iD8w+pNAHp+j6NZaPBIlpGS8zmSeeQ7pJ3PVnbuf0A4GBxWjWV4e8Q6X4m0uLUNKu4riF1DEKwLISM7WH8JHpWrQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAYzRgelFFABRRRQAUUUUAFFFFABRRRQAhArmPEvgfS/EM6X4M1hq8Q/c6jZP5cy+gJH3l46EHvjFdOaDjPv0oA+Q7P4i/ENfGUX/E3u5tS+0LbmykI8p33Y2GIYXk8ZAB54I4r6Cbwl4p1ct/bnja7iiYZFvo0C2u3/ALaHc5rrhpGm/wBpf2l/Z9p9v27PtXkr5uOeN2M45P51doA5LTvhr4S064N1/Y8V3dMQzXF+zXLk+uZCcH6Yrq0RUQIihVAwABgCnUUAFFFFAFS/02x1S3Nvf2VvdwnrHPEJF/IiuSm+Fvh+OR5tFk1HQbhmDPJpV40Ib2KElMfhXcUUAeR+On+IHgzwffahZ+JodTtU2qzzWSpcQIxC7lZCFY5I5K+9ee/C3UvFHjjXJ9B1DxHrDaU0TXF0Un+cgEAIJCCyqc8qCMjNfTrKrqVZQwIwQRnNVNP0nTdJieLTdPtLKN23MttCsYY+pCgZNAEGh6Fpfh6wFhpNhDZ2yfwxryx9WPUn3PNaYAHQUAAdKQ0ALRSCloAKKKKACiiigAwPSjA9KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGt6f0zXmXge3bWfiB4t1YXN22m2d2tjZwNdSNEJEUCVgpOOoBH1Nd34k1aPQfDeo6tLjbZ27zDPdgpwPxOB+Nc/8KNIfSfh1pYnybm7Q3szHqzSndz77So/CgDsxS0UUAFFFFABRRRQAUUUUAFFFFABXHfFLUI9L+HWr3btIsqxbLcxStG4lY7UIKnPBOcd8V0Or63puhW0Vzql7DaQySrCjStgM7dAPfr+tcP8AEAf8JD4s8KeFYv3kZu/7Svl5wsMQ4D+gY5H1AoA6nwbosuh+GLG2uprie+8hDdSzzNIzSYy3LE45JH0Fb9IKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkNLRQBj6/4a0vxPZGy1eGa4tjgtCtzLGjEEEZCMM8gHn0q7p2n2+l2UdnaiQQRKFRZJnkKgdBuck4q3gelFABRRRQAUUUUAFFFFABRRRQAUUUUAZeveH9O8RWkNtqMJkWGZbiFlcq0cq/ddSOhHP50mlaBp2lXNzdW0LNd3JHnXM0hklfHQFmycDso4HYVq0UAHSiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/2Q=='] Multimodal Competition True Theorem proof Combinatorics Math English 30 "This Question involves one Robber and one or more Cops. After robbing a bank, the Robber retreats to a network of hideouts, represented by dots in the diagram below. Every day, the Robber stays holed up in a single hideout, and every night, the Robber moves to an adjacent hideout. Two hideouts are adjacent if and only if they are connected by an edge in the diagram, also called a hideout map (or map). For the purposes of this Power Question, the map must be connected; that is, given any two hideouts, there must be a path from one to the other. To clarify, the Robber may not stay in the same hideout for two consecutive days, although he may return to a hideout he has previously visited. For example, in the map below, if the Robber holes up in hideout $C$ for day 1 , then he would have to move to $B$ for day 2 , and would then have to move to either $A, C$, or $D$ on day 3. Every day, each Cop searches one hideout: the Cops know the location of all hideouts and which hideouts are adjacent to which. Cops are thorough searchers, so if the Robber is present in the hideout searched, he is found and arrested. If the Robber is not present in the hideout searched, his location is not revealed. That is, the Cops only know that the Robber was not caught at any of the hideouts searched; they get no specific information (other than what they can derive by logic) about what hideout he was in. Cops are not constrained by edges on the map: a Cop may search any hideout on any day, regardless of whether it is adjacent to the hideout searched the previous day. A Cop may search the same hideout on consecutive days, and multiple Cops may search different hideouts on the same day. In the map above, a Cop could search $A$ on day 1 and day 2, and then search $C$ on day 3 . The focus of this Power Question is to determine, given a hideout map and a fixed number of Cops, whether the Cops can be sure of catching the Robber within some time limit. Map Notation: The following notation may be useful when writing your solutions. For a map $M$, let $h(M)$ be the number of hideouts and $e(M)$ be the number of edges in $M$. The safety of a hideout $H$ is the number of hideouts adjacent to $H$, and is denoted by $s(H)$. The Cop number of a map $M$, denoted $C(M)$, is the minimum number of Cops required to guarantee that the Robber is caught. The police want to catch the Robber with a minimum number of Cops, but time is of the essence. For a map $M$ and a fixed number of Cops $c \geq C(M)$, define the capture time, denoted $D(M, c)$, to be the minimum number of days required to guarantee a capture using $c$ Cops. For example, in the graph below, if three Cops are deployed, they might catch the Robber in the first day, but if they don't, there is a strategy that will guarantee they will capture the Robber within two days. Therefore the capture time is $D\left(\mathcal{C}_{6}, 3\right)=2$. A path on $n$ hideouts is a map with $n$ hideouts, connected in one long string. (More formally, a map is a path if and only if two hideouts are adjacent to exactly one hideout each and all other hideouts are adjacent to exactly two hideouts each.) It is denoted by $\mathcal{P}_{n}$. The maps $\mathcal{P}_{3}$ through $\mathcal{P}_{6}$ are shown below. Show that $D\left(\mathcal{P}_{n}, 1\right) \leq 2 n$ for $n \geq 3$." "[""The following argument shows that $C\\left(\\mathcal{P}_{n}\\right)=1$, and that capture occurs in at most $2 n-4$ days. It helps to draw the hideout map as in the following diagram, so that odd-numbered hideouts are all on one level and even-numbered hideouts are all on another level; the case where $n$ is odd is shown below. (A similar argument applies where $n$ is even.)\n\n\n\n\n\nEach night, the Robber has the choice of moving diagonally left or diagonally right on this map, but he is required to move from top to bottom or vice-versa.\n\nFor the first $n-2$ days, the Cop should search hideouts $A_{2}, A_{3}, \\ldots, A_{n-1}$, in that order. For the next $n-2$ days, the Cop should search hideouts $A_{n-1}, A_{n-2}, \\ldots, A_{2}$, in that order.\n\nThe Cop always moves from top to bottom, or vice-versa, except that he searches $A_{n-1}$ two days in a row. If the Cop is lucky, the Robber chose an even-numbered hideout on the first day. In this case, the Cop and the Robber are always on the same level (top or bottom) for the first half ( $n-2$ days) of the search. The Cop is searching from left to right, and the Robber started out to the right of the Cop (or at $A_{2}$, the first hideout searched), so eventually the Robber is caught (at $A_{n-1}$, if not earlier).\n\nIf the Robber chose an odd-numbered hideout on the first day, then the Cop and Robber will be on different levels for the first half of the search, but on the same level for the second half. For the second half of the search, the Robber is to the left of the Cop (or possibly at $A_{n-1}$, which would happen if the Robber moved unwisely or if he spent day $n-2$ at hideout $A_{n}$ ). But now the Cop is searching from right to left, so again, the Cop will eventually catch the Robber.\n\nThe same strategy can be justified without using the zig-zag diagram above. Suppose that the Robber is at hideout $A_{R}$ on a given day, and the Cop searches hideout $A_{C}$. Whenever the Cop moves to the next hideout or the preceding hideout, $C$ changes by \\pm 1 , and the Robber's constraint forces $R$ to change by \\pm 1 . Thus if the Cop uses the strategy above, on each of the first $n-2$ days, either the difference $R-C$ stays the same or it decreases by 2 . If on the first day $R-C$ is even, either $R-C$ is 0 (the Robber was at $A_{2}$ and is caught immediately) or is positive (because $C=2$ and $R \\geq 4$ ). Because the difference $R-C$ is even and decreases (if at all) by 2 each day, it cannot go from positive to negative without being zero. If on the first day $R-C$ is odd, then the Robber avoids capture through day $n-2$ (because $R-C$ is still odd), but then on day $n-1, R$ changes (by \\pm 1 ) while $C$ does not. So $R-C$ is now even (and is either 0 or negative), and henceforth either remains the same or increases by 2 each day, so again, $R-C$ must be zero at some point between day $n-1$ and day $2 n-4$, inclusive.""]" ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAVABvwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ0ALketFcB8SfHg8MJYaTp7q2t6nMkcI4PkozbTIR+YHqc9dpFd6p60AOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKADNZevazDoeltdvG88pYR29vGfnnlY4VF+p79hkngGr9xNFbQPNPKkUUalndyAqgckknoK4e10aPx7NH4hvpr23sUz/ZEdrcvA6xkENOxUg7pAeB2QjuxoA4Txpo0sHjzwDDfSrPqt/qZu9QkXpkPFtRc9EUAqPpnqa93HrXh2q6RBZ/tDeE9Ohur64SO3e4Y3l5JcFW2ytgF2JH3BwPY969xHpQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBka/4a0zxNaC01WKea2/iiS5liV84+8EYbunfOOam0nRbPRNLj02wWaO0jXaiPcSSlBjAAZ2LADsAcDtWjRQByEnw18Ly6wusPZXjakhyt2dSufMHUcN5mQME8V1cMYhiWNd21VABZix4Hcnk/U81JRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUZxQAUhpayte8Q6V4b0832rX8NpAM4MjcuQM4UDlj7AE+1AGdrnj/wr4dv0stV1u2t7pmCmLl2Qn+8FB2jnqcVv2V5a6haR3Vlcw3NvIMpLC4dGHsRwa+GdbvLjUNbvb+5dnlupmnMhTZu3HcGC9gc8Dng19N/ACC+h+GwN3kQyXcjWgJziPCg49t4c/iT3oA9SooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoozjrSHrjPNAC1FPNFDA00sqRxICzOzbQoHcnoB9a43xZ8S9H8NXK6dbpLqutyHEWm2Q3yFvRsZ2/z9AeawI/BHifx5NHd+Pb37JpobdHoVhIQvsZXycnj178FelAFjUvibd63fSaL8PdN/ti8XCy6jKNtpBnuTxu4Deg443dKl0f4Z20F03iLxtqJ17V1Uu0lyP9GtgOSEQ8YHPJGO4VTXeaXpdjo9hHZadZw2ltGPlihQKo98Dv79TXE/FzU518OWvhzTiP7S8Q3C2MXP3YyR5jH/AGcEA+zUAY/w60a08Z3+seOtY06C5F/d7NNS6hV/JhiO1WUEHaeAD7oT3r1lRgYwAOwFUtF0u20PRbLS7QYgtIViTjkgDGT7nqav0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVBdXVvZ28lzczxwwRqWeSRwqqB1JJ4FeaXvxH1bxPeyaV8OtN+3Mh2TatdKVtYPp/ePOf5Bh0AO58R+KdF8K2H2zWNQitYyDtUnLyeyqOSenQV5+b/AMb/ABLUDSo5fC/ht/8Al8lH+mXC/wCwB9wHjkH6MeRWz4d+F9nY6ida8R3UniDXWIJubsZji74jQ5AA7enbHSu/Xvnv7UAc14V8CaD4Ot/L0q0/fsMTXc2Glm9dzY/HAAFdIoxTqKAEbpj+VeW+HR/wmfxe1bxGT5mm6Cv9nWBxwZj/AK1x24ywz3DKe1dP8R/Ev/CK+Cb6/ifF46/Z7QDk+c4wuB3IGWx6A1L8PvDI8J+C9P0tlAuQnm3R67pn+Zue+M7QfRRQB0wz3paKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiuf8U+MdD8I2YuNXvo4WIJjhX5pZP91ByfTPT1IoA3zziuE8UfE3S9GvP7J0u3l1zXWO1bCy+faeh3sMhcenJ9h1rB/4rr4m9PN8KeGX/wDA25T9NoI+nX+MV3XhfwZofg+y+zaPYpESB5kzfNJIfVmxnueBwM8AUAcXb/D/AMQeMriPUPiJqG6BW3xaHZOVgjPYuwOWI56HP+1jivS7CxtdNso7Oytora2iXEcMSBVUewHFWBS0AFFFFABSNnHFLWb4g1i28P6BfatdnEFpC0rDOC2Bwo9ycAe5oA8/1lf+Ey+Mem6MmW0zw1GL274+VrlseWh7EgYYf8DFeorXn/wj0e4tvC82u6io/tTX521C4YLjCsfkUe2PmA7bq9BFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNbkUAOqtf31rp1nJeXtzFbW0Q3SSyuFVR6kmuH8SfFCysdROieHLSXxBrzfKLW0OY4z6yOOAB3x+JXrWdY/DjVfFF5Hq3xE1D7cyt5kOkWrFLWE++D8x7foSwoAbP4/1/xncy6b8PNOBgRvLm1y+UrBGe+xSPmPTqPquOa2fDPww03Rrw6vq00mua85Dvf3nzbT/sKchcdjyR2wOK7S0tYLK3S2tYI4LeJQsccShVUegA4FT0AIOvTtS0UUAFFFFABRRRQAjfzry/4nSSeJfEGgeALZmC30ovNRKcbbaM5xn3IOP9pV9a9OlkSGNpZGCogLMzHAAAySa8x+F8T+JNZ17x9dRsP7SmNrp6sPuW0Zxx6ZIAPuh9aAPTokSKJY40CIoAVQMAD0Ap9IvfrS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFJketAC0ZqlqmqWOj2Ml7qN3Da20Yy8szhVH59z6V5tJ438TePJXs/AdgbPTt22TXr5CEx38pCDk+/PuF60Adj4t8c6D4Ntll1W8xMwzFaRfPNKewC5/U4Hv0rizp3jf4ljOpvL4W8NSdbOI/6ZcL33kj5AeeCPqG610fhX4a6R4cuDqVyZdW1yQ7pdRvjvk3eq5J2/UZPOMmu0UdTzz60AY3hzwto/hSwFno9hFbRnl2Ay8h9Wbqe/wBO2BW0KWigAooooAKKKKACiiigAoopD/k0Aee/F7V7iDwzB4e05lOp+IJxYQqT0RseYx9sEKT2312eh6Tb6FolnpVopEFpCsSZ6nA6n3PU+5rzzw//AMVp8YNV185fTPDqnT7Lj5WnOfMYfT5h9GU16kowKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAozjrSEgdSOK5bxd4+0LwhGsd7cNNfycQ2FsN88hPT5ewPqce3NAHU5B54rzrXvilD/aP9ieDrJvEOtHIxAf8AR4P9p3zjGe2QODkjjOYdA8Z/EnD+I5X8OeHX5XS7V/8ASJl9JWPQe2PT5cjNeh6F4d0nw3p62OkafFaW46hByx9Wbqx9yaAOH034ZXmuX0esfELUP7XvFOYdOiJW0ts9gvG48DPrjndwa9KgijgiWKKNY4kAVEVQFUegA6U8ZpaACiiigAooooAKKKKACiiigAooooAK5T4i+Jx4T8E6hqUbf6UV8i1UHlpn4XH0+9j0U11Rry7Xj/wmXxh0rQUJbTfDqDULwfwtOQPLQ9iQMEexb0oA6j4deGf+ET8E6fpsi4uinnXTdzM/Lc98cLn0UV1VNXvTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopkjKqMzkBVBJJ6Ae9AD8j1rO1rWdN0HT3v9WvIbS0TrJK2AT2AHUn2HNcNq3xQa+1JtE8C6edf1TOHnBxa2/B5Z+jdD0IB7HPFGjfC9r7UU1zx1f8A9vaqPmSBhi1t/ZU4DfiMdyM80AUW8V+LviEzW/gq1OkaISVbW71PnkHQmJPz5/Mqa6fwl8OdE8KObyJJL3VpctNqN4d8zseuD0UfTn1JxXXRIsaBEUKigKqjoAPSn0AIKWiigAooooAKKKKACiiigAooooAKKKKACiikNAGfr2rW2g6Fe6tdkeRaQtK4zgsAPuj3JwB7muN+EWkXEHhmfxDqCg6p4gna/mbHIRjmNfpglh/vVR+J8z+I9b0DwDbM2NRmF3qBTjbaxknH4kHHuoHevTYY0hiWKNQqIAqqowAB0AoAeKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiijOKACijNZmo+ItD0dwmp6zp9k56Lc3KRk/8AfRFAGnRVG31rS7u2jubfUrOaCVxHHLHOrKznooIOCT6VeoAKKKa30oAdRmvP9d+Id5ofi6z8Nf8ACONdXt6m+2MF4oVlyeuVG3AUn096nufiLFouq2lh4n0i80b7YxW3uneOaBiMcF1J2nkdRQB3NFNUYzTqACijNGaACkyCM54rL1/xDpPhvTWv9Xv4rS2X+Jzyx9FA5Y+wBrzsa94z+JIMfhqB/D3h9+Dq10v+kTL6xJ2+o/76BGKAOp8X/EbQ/CRFpLI99q0nyw6daDfM7HpkfwjkdfwBxiuXXwp4u+IbC48ZXTaRopYMmiWT4dx1HnPz6Djn6Ia67wl8P9B8Hq0ljbtNfPky31yd88hPX5j0B9BgevPNdQoxxjAoAoaPomm6BYJY6VYw2lsnSOJcZPqT1J4HJyTWgKWigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKZK6RRtJIwVFBLMegHc0+vPvi9rE9t4Wi0LTiDqmvTrYQLnorECRj7YO0/wC+KAM/4ZRN4l1/X/H86HbfzGz08MDxbR4GR6biBn3VvWvUBWdoGj23h/QbLSLQfubSFYlJHLYHLH3JyT9a0qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmt2p1I3agDy3xp4u1XUvGFt4B8KTeRfzANf36jJtIsZOO27ac591A5OR2fh/wlpHhu1CWForTEZmu5fmnnY8lmc8kk++OteU/As/2v4w8Ya/dc3bzKoLdQJHdmHt9xRj0Fe6qeOetAHDan4Fs5/iVoHiO1sY4TbJObto12iRtoEZOO4LMc9Tj2ruQMUtFABSGlrN8QatFoXh7UNWmwUs7d5sE43EA4H4nA/GgDyGy8Q6Le/H3WtX1fVLO0ttGt/sVp9pmVCZM7WK5POCZfzFSePHl+Ld3pWh+GIpZ9Lt7gy3mrMhWCP5cbVYj5yAT07kds1t/BXQ1i+Hp1C/iWa51i4lupjKoJZSdoBz2ON3/Aq5zRP+JF+0hdaPoAEWmXMRe8t4R+6RvJ3Zx2+faPYsRQB7jEuxAoJOABljk/jSv2Hc0ooIzQB5X4h+O3hvQNck0oWt9etbyGK5lhVQqEHBC5I3EEew96JvitdeJ2Gn/D3SJtSu3UGW8uozHb2uf72cZOAeMjpxu6V4X4p+G3ifRPEdxZjSNQu4pJ3FtcxwmXz13HaSVB+YjBI611fhnS5vCJi0rxpqXi7wul0/mQXNjqAS1diBwwVWw3TJyffGKAPWNC+FsJ1Bdb8Y3z+IdbOGDTj/AEeDviNOmAfXjvtBr0RQBnAxXnkHw1guYEng+IXjSWGRQ6SR60GVlPQghcEe9S/8Ks/6nzxx/wCDj/7GgD0CivP/APhVv/U+eOP/AAcf/Y0f8Ks/6nzxx/4N/wD7GgD0CivP/wDhVn/U+eOP/Bv/APY0f8Ks/wCp88cf+Df/AOxoA9Aorz//AIVZ/wBT544/8G//ANjR/wAKs/6nzxx/4N//ALGgD0CivP8A/hVn/U+eOP8Awb//AGNH/CrP+p88cf8Ag3/+xoA9Aorz/wD4VZ/1Pnjj/wAG/wD9jR/wqz/qfPHH/g3/APsaAPQKK8//AOFWf9T544/8G/8A9jR/wqz/AKnzxx/4N/8A7GgD0CivP/8AhVn/AFPnjj/wb/8A2NH/AAqz/qfPHH/g3/8AsaAPQKK8/wD+FWf9T544/wDBv/8AY0f8Ks/6nzxx/wCDf/7GgD0CivP/APhVn/U+eOP/AAb/AP2NH/CrP+p88cf+Dj/7GgDv2xx9a8u0T/is/jFqWtsC+meG0NhZjHytcnPmMO3HzD8UNZnjzwsvg3whe6wPHXjSS4RdltFJrBw8rcKCAuSByxAIOFNXPC3wd/s/w9arJ4q8U6fdzIs13BYagIYxMVG7gKeeAMk9hQB6wPSlrz//AIVZ/wBT544/8G//ANjR/wAKs/6nzxx/4N//ALGgD0CivP8A/hVn/U+eOP8Awb//AGNH/CrP+p88cf8Ag3/+xoA9Aorz/wD4VZ/1Pnjj/wAG/wD9jR/wqz/qfPHH/g3/APsaAPQKK8//AOFWf9T544/8G/8A9jR/wqz/AKnzxx/4N/8A7GgD0CivP/8AhVn/AFPnjj/wb/8A2NH/AAqz/qfPHH/g3/8AsaAPQKK8/wD+FWf9T544/wDBv/8AY0f8Ks/6nzxx/wCDf/7GgD0CivP/APhVn/U+eOP/AAb/AP2NH/CrP+p88cf+Df8A+xoA9Aorz/8A4VZ/1Pnjj/wb/wD2NH/CrP8AqfPHH/g3/wDsaAPQKK8//wCFWf8AU+eOP/Bv/wDY0f8ACrP+p88cf+Df/wCxoA7q6njtreSeZ1SKNS8jscBVAyST2FeTN+0N4VGr/ZhaagbPODd7FxnP9wnO3v6+1aup/CWS60q7t4/G/i+R5YHRUutU3xMSpADrtG5fUZGRXzm/w98YJrH9mHw5qAugfurESvrkOMrj3zigD7PtLmG8tYrq3kWWCZFkjdTwykZBH4Gpj29qxvCOky6D4R0nSp33zWtpHFIc8bgvIHtnpW1QB4qui618K/Huo6xp2lXWpeGNVOZ47FN8ts2SRhO4Us2O208nNd1B8QtJ1FQmmWWr310f+WEenSoQf9ppFVF9Mlq689R1ox/kUAUNIj1BYJJtSdftEzb/ACYzlIBjhFPG7HdsckntgDQpBS0AIQa5Dx14S1Txjo0ujwa1Dp9jMVMgFkZZGwQcbvMUYyB2rsKKAODtfCHi2y0K20i28ZW9vbW0KwRvBo4EgRV2jkykZwOuKv8Ag74f6V4ONxcW7z3eo3JzcX1026STnP0A/n3ziutooAQDFLRRQAh+maqajp1nqljLZX9pFdWsow8UyBlYfQ9885q5RQB5VP4G8R+B5nvfAF6ZrEtvl0K9cmM56mJyeD+R9zwK3/CfxK0jxNctps0cula5GSJdMvBskDAZIXON3fsDxyBXaMM1zXivwHoXjG3VNTtiLiP/AFF3Adk0J7bWHUexyPxxQB0wI9fxpa8lOr+NPhmduvRy+JvDq9NSgX/SrdcdZF/ixjqT9W6LXonh/wARaR4l05b7R7+K6tzwdh+ZD6Mp5U+xFAGtRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh5paz9b1W30PRbzVbtiLe0haV8dSAM4Hueg+tAHnviJj4x+L+keHU+fTdAUalfehmI/dKe2RkH3DP6V6iteefCPSblPDlz4k1Jf+Jn4hnN9KcciM/6tR/s4JYezY7V6GO9AC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAGm45zjmnUUAIKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAawzjjNeea78Lo11Btc8G3zeHtaGSTCP9Hn9pI+nX0GO+Ca9FpDQB5ppXxOn0nUU0Xx/p/8AYuoE7Y71ebS491f+HqPUepHQekxOsiB1cMrAEMOhHtVLV9G0/XdPew1Syhu7WT70cqg89iPQjJ5HI7V5xJ4U8XfDxjc+DLt9X0QEs+hXj5ZB1Pkt+J44+jmgD1eiuR8H/EPRPF262hd7PVY8ibTrobJoyOuAfvAeo9sgdK60EHmgBaKKKACiiigAooooAKKKKACiiigBDXmHxSlk8RatoHgG0dl/tOcXN+UOCltGcntxkg4PqgFemyusaF3YKigszE4AA7+1eY/DNW8T+JfEHj2ZT5d1N9h00MCNttHjkem4hc+hVvWgD02CNIYViiRUiQBUVRgADsBUlIvSloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmsM9s06igDkvF3w80Pxhie6ie11KPBh1G1OyZCOnP8AEB6Hp2wea5RPFHi74cult4zt21jQshU1uzTMkQ/6ap+XPXryx4r1imSxrIhR1DKwKlSMgg9jQBR0bWtN17T1v9KvYbu1fpJE2QD3BHUHkcHnmtDI9RXmus/DGfTtQfXPAWof2HqbHMlrj/RLgc8MnIXr2GB6DqHaD8UFTUV0TxpYHw9rPRTKf9Hn943zgfiSPc0Aek0U1SMdqdQAUUUUAFFFFABRRTW7UAcB8XtansfCcejaf82qa7Oun2yg4OH4c/TB2+xcGuu8PaNb+HvD9jo9qP3NnCsQOMbiOrH3JyT9a8/0gHxn8ZtR1ggtpfhmM2Nr6NctkSN+HzD8ENepDOTmgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEOeMVla74d0rxJpzWGr2EV3AegcZKn1VuCp9wa1qKAPJToXjP4Z/P4elk8R+G0PzaZcN/pNuvrE2OQMdMd/u9x2fhHx3oPjCBv7Nudl3GP31lONk0RHXK98HuMj3rpj2rjPFvw40nxPMuoRNLpmtw/NDqVkdsgbtuxjcPyPoRk0AdpRXlMXjXxJ4DnWx8e2Ru9Ozth12yQlSOAPNXHB55/QNya9L07UrLVbNLywuobm1kGVlhcMp/EUAW6KKKACuZ8f8AidPCPgzUNW3KJ0jMdup/ilbhRj26n2BrpW6V5Z4mP/CY/FzR/DS5bTtCUalf+jS8eUh/MH3DN6UAdP8ADbwyfCngixsJlIvZB9ovCfvGZ+Wz9Bhf+A11tIveloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAiuII7mFoZoklicFXRxlWB7Ed68z1L4a6j4cvZdZ+Heof2dOx3TaVOd1pcewB+6ev54BUV6jSGgDz/AMN/E+zvdR/sPxLayaBr64U210cRynpmNzwc9gfwLda79axvEnhXRvFlgbLWbCO5iGdjnh4z6q3Uf175Feezjxl8KYHnWeTxN4ThGWWZ9t1ZoO4J+8oH4cdEHNAHp2tapb6Lo15ql22ILSFppPXCjOB7nGB74riPhDpVyvh+78TakmNT8QTm8kGPuxZPlqPbBJHsw9K8c8afGe88Y2p0ZtOSy0WSaNpUjctM6K2du77vJAONvBHUivpvR7izu9GsrjT9v2KWBHt9owPLKgrx9MUAXRS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWV4k0WHxF4c1DSJyQl3A0W4dVJHDfgcH8K1aKAPlFfgP44Oq/YTb2ggHP2w3A8n8sb/APx2vp/RNMj0XQ7HS4mZ47SBIVZ+rbQBk/Wr+R60mQO4oAWijNFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUje/SlpDjHNAHjfx2jWSPw/YaeDFrWo36xxyxMVZkA2kHHbc6flXa/8K20BLNYoBqFrOiBVubbUJ45FOMbs7sZ+oI9q425/wCKs/aNghHz2nh2z8xgeV808/nudf8Avg+lew8etAHlfg3xTq2k/EK98AeIbw30kamTT751AkmTbu2OR1+XnPqrcnjHqi9PWvDblTrH7U1t9lyU063Bnde2Ij/WRVr3IUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVma5r2meHrB73VL2G1hRGb944BfAyQoz8x6cD1rTpCM4oA8F+DnirQIH8S6/rmtWNnqWp3xZoriYK2zlvlzyQS5HH90V6Hf/EGO9ia28IWFxrmotwjRwslrGT/E8rALjrwDk4/Gu3/MfjQBzQBxPw+8BHwlFeahqF0L7XtScyXt1jjJJO1fbJyT3P4Cu2FLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q==', '/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAVMBjwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKTIoAWik3DOM0tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVUutSs7Ke0guJ1jlu5PKgQ5zI2CxA/AGrdABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWdq2qQaRp0l3OGbbhUiTl5HJwqKO7FiAK0GdVBLEAAZJNcF9v1fV9bTWrfRDe6Rbqf7NLXaRBychpypyeRwv+ySR97AAKXwq1LU9dvfFmq6oy/aDqX2QIjEpEsQ4RT6DcTnuST1NelZFeYfAkmbwJd3zDDXuqT3B/HaP/AGU12HiPWNT0i1mn03RBqH2eFppd9yIAFAJwp2nLcHjge/NAHQZorM0HWIfEOg2Or26OkN3Csqq/3lyOhrToAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqC8vbaws5ru6mWK3gQySyMeFUDJJqbIrjdRhu/Gd+EsL8Wul6bcAmXylkF1cIegB42Rkde7j/Y5AOOWbUtU+Pfhy41HzIgunT3UNk3H2aNhIi7h/fbq3pkD+GvYwwPQ15JoEF4/7QWoi/vhfSWWihBN5QjxudGAwCR0dvzr0jWIdSuLMxaXdw2czthrqRPN8pMEkqhwC2cDkgDOecYIBp5FLXB+CtT8Qr4o8Q+HNevU1L+zhDLFfJAsW5ZFJ2sq/KDx/Ou8oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDmvFugav4hsTYWOsQ6day4+0A2hlaVQeU3eYuFYcHAyRnntWjqNhqFzo72lleW9rcvF5ZnNsXUZUg7UDjHPI5OMY5rUooA5LwF4RuvBWgro0mqQ3tpGztEy2phcFjk5PmMD36AVkfFd9csvDU2pWdzBJpdvtN9p5Qo9xCSA6iUHK8HkADjPXkH0GRWaNgjbWIIDYzg+tcjD4X1rUNN/szxRrltqll5qu/lWQgecK25VkIYrtyBkKoJxjOM5AOm09YI9OtktYRDbrEojiC42Lj5QB7dKt00Efd/SnUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSbgcYOc0AVr+wh1KzktbjzhFIMN5M7xN/30hBH51S0Pw3pvhzTf7N0qGWCzGSsRuJJNpYknaWYleSTxWtketLQBzNn4C8P2GvSa3bW90mpS/wCtuTqFwzSdMBsuQw4HB44HFamp6i9oI4bWIXF/PnyIM4Bx1Zj/AAoMjJ+gAJIB0q5TWPh34b13VJNS1KyuJruRVVnF9OowOgAVwAB6ADqfWgDQ0LS7fTorkidbq+nm33twMZeXA7c7Qo2hV7DHXqdus/SNGstB0uHTdMg8i0h3eXHuZsZYseWJJ5JPJ71oUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFch8Q/GsPgPww2qtbi4nkmEMEJfaHcgnkgcAKCf07119eZfGOGDXNI03wnDCJtY1W8T7Hn/lgEOZJT/shcj/gRx0oA5/4f/HX+3dXOneJo9P01XRnivBKYo8jBCMHJAyM87uwGOa9N/wCE78If9DXof/gxi/8Aiq4/4e/Buz8D6w+rzai2oXoRo4T5IjSMHGWxljuIyM5AwSMHrXp+KAMD/hO/CH/Q16H/AODGL/4qj/hO/CH/AENeh/8Agxi/+KrfxRigDA/4Tvwh/wBDXof/AIMYv/iqP+E78If9DXof/gxi/wDiq38UYoAwP+E78If9DXof/gxi/wDiqP8AhO/CH/Q16H/4MYv/AIqt/FGKAMD/AITvwh/0Neh/+DGL/wCKo/4Tvwh/0Neh/wDgxi/+KrfxRigDA/4Tvwh/0Neh/wDgxi/+Ko/4Tvwh/wBDXof/AIMYv/iq38UYoAwP+E78If8AQ16H/wCDGL/4qj/hO/CH/Q16H/4MYv8A4qt/FGKAMD/hO/CH/Q16H/4MYv8A4qj/AITvwh/0Neh/+DGL/wCKrfxRigDA/wCE78If9DXof/gxi/8Aiq47x/8AGPSfDOlQvoV1p2s39w7KqQ3QkSFQPvPsJ7kADIzk4PFeoYrj/iB8PbDx/pUFrdTyW1xbOz29wihipIwQQeqnCkgEH5RzQBzfwo+Ks/jy4utM1Kzht9Qt4vPV7ctslTdhuDnaRle5zk9MV6rXinw78LRfDT4iz6LqUguJdVsw2nX+3YG2HMsWMnDfdPXoo9a9qyPXpQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRmgCG5u4LK1murmVYoIY2lkdjgKoGST7ACvP/AIf2s/iLV7/x/fxlGvx9n0uFusNop4PsXbLf/Wam+O7ibxTr9j4AsZSsc+LvWZY2wYrVT9z2LnA9RxkEGvQre3jtbeK3gjWOGJAiIvAVRwAPYACgCaiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOU8feF5vEvh4/YHEWsWMi3enTcZSZOQMnoG6fke1WPBfiaLxZ4YttTVfKuDmK6gOQYJl4dCO2DyM84Iro68zvs+APiQmoqRH4f8SyCG6HRLe9/hf6PyCfXJPQUAemUUmRS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFY/iTxBaeF/D17rF8f3NrGX2jrIeAqj6kgfjWvkV5rqH/FffEeLS1+fQvDTie7PVZ7zokfvsGSffIPUGgDU+HOgXdhpdzrWsDOu63L9rvCf+WY/5ZxD2ReMdiT1wK7em4p1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWP4l8P2vijw/eaPej91cx7Q46o3VXHuDg/hWxRQBxXw68QXWo6TcaPrB265osn2S9BP3wB8ko9QyjOe5BNdrXnHjqGTwn4hsfH1lGxhi22msxIP9ZbEjEmO7Ice5GBkAV6HBcQ3MEc8EqSRSKHR0OQwIyCPqOaAJKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopu9cZyAPegDlvH3ieTwz4cZ7JDLq17ILTToQMmSd+F49B19OPerHgvwwvhPwzb6ZvM1ySZbuctuM0zcu5J5PPTPYDvXL+GAfHPjq58XS4fR9L32WjAj5ZGziWcfXG0e3YFa9LoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCvd2kF/ZzWd1EJbedGjkRuQykYINcD8Prufw9q1/4A1KVpJNPH2jS5nJJns2PAzjqh4P5Dha9GrhfiNol7LY2niXRlzrWhObmED/AJbxY/exHH95fxOMd6AO5yKWsvQtatPEOh2er2L7re6iEik9V9QfdSCD9K1KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArgfiRqt3NFZeD9Hk26trrGIuP+Xe2H+tkP4cD1ycciu1v7+20zT7i/vJVitreNpZHPRVUZJ/KuE+HVjcavdah461SEpeax8tnC/W3s1PyL7FvvHHB4OOcUAdrpGk2uh6RaaZYxeXbWsQijXqSB3PqT1Puav0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU3BzTqKAPM9EI8BfEKbw4+I9D15nu9MJOFhuBjzIR7HgjtyAMk16XuB71zPjjwu3irwzNZxSeTqELrc2M6tgxTpyhz27g+xNHgXxR/wlXhuK7mQw6hA5tr+AjBiuF4YEdvUexx1oA6eiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkzS1h+LPEdt4U8NXmsXI3CBf3cY6ySHhVHuTQByPjNm8Z+LLPwJbljYw7L3W3Xp5YIMcOfVjgnuBgjPNejRxLEioihUUYVV4AHbHpXI/Dzw5c6Hob3mqfPrmqyG81CQ9d7chPooOPTOccGuyoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvNdbX/hBPiFb+JE+XRNcZbPUwB8sM4/1Ux9Afuk9ue5FelVm69otr4h0K90i+TfbXUZjb1HoR7g4I9wKANHcPWlrhPhzrN9JZ3nhnWWB1vQnFtMx/wCW0RH7qUeoK4z345613dABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJuHrXmpz4++JuMF/D/AIXk5yPluL/+REY/EH1DVtfELxHcaHocVrpY8zXNUl+x6fGOvmN1f6KOc9M4zWn4R8MweEvDFno9sQ/kpmWXGDLIeWc/Uk/QY9KAN3FLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHnPxBtLjw/qlh8QNOjLS6aPI1OFOtxZsefqVPzDPHc/drv7W8t760hu7aVZYJ0WSORejKwyD+INLNAlxDJDNGHikUq6NyGB4IP4V574Flfwn4jvvAN45Num690aVznfbsSWjz6ofxIyeBigD0iikyKWgAooooAKKKKACiiigAooooAKKKa8iRozuyqqglmJwAPegBQwPelrL0HWrPxFpEWqWBLWsryLGzLjcEdk3fQ7SR7GtSgAprSIiM7uqooJZicAAdSTQ8iRoXdgqryWY4ArzPxr4jg8WGz8F+FtVgubjVXKXtzaSiQWlqv+sLFTwW+6AeucdxQBL4OVvGfi+88c3CE6fBusdERhj92OJJserHIHfGQelek1T07TrbStOt7CyhWG1t4xFEi9AoGB+PH9auUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcV8RdAu9R0m31jRwBruiyfa7Igcyf89IvcOvGO5A967Wm4NAGR4Y8QWnijw5ZazZnEV1GGKHqjdGU/Qgj8K2a8vinh+G3xAuLe5lS38MeIS1zFI7bY7S7Ay4JPCq4GR74A4BNej2Oo2Wp2iXVhdwXVu/3ZYJA6H6EcUAWaKKKACiopLiGJ4kklRXmYpGpOC7bS2B6nCk/QGpaACiiigAooooAQsB39q87+I9/LqXhvxBY2srJZWFjM99Ohxvl8slIAfrtZvQYH8Rx0niLWjZyWukWMsX9s6kSlqjn7igZeVh3VQCcfxHA7kjgPiV4atvDPwu1drfV9UfO391Nc7lkeSUbiwxySWZifagDsvhhai0+GXh6MD71mkn/ffz/+zV1u4DvWP4VhW28IaJbqQVjsIEBHIOI1rE8e+MLjw9p/2XSIVudYuHjhhVvuxGRtis3uTnA74J6A0AU/jJY6tqPw1vrfSEeWYyRNNDEhZ5Iw/IXHPXB+gNeE/BOC9f4qaebdjGIUma5ycfu9hBBHf5io9jz2r6yjR1iVXbe6gAtjG49zj3riPiNol5LZWnibRlzrehObmFR1mj/5axH2Zc+/GO9AHdZFLWXoOt2niLQrLV7F91vdRiRcHO31U47g5B9CK1KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiim71xnIA96APA/2k4b0x6DP5mbAGZCgOMS/KcnnnKjA9MH1qX9nPTtWt4dZu5opodNnWIQmRCFlcFuVPcAHnHXI9K6/wANZ8deOLnxfJ82kaWZLLRl52yN0lnHrnoD6DsRXpG3HQcUAOqOaeK3gknmkWOGNS7uxwqqOSSewFPyPWuM17+0vE1+dO0pbQ6dYzD7YbsN5dzIORCNvVVOC3qcL03CgDk4NU1HXvjrozXOYtPh0yW8s7YjDIrFow7g9HbrjsCo65r2CvJPDTahdfH7XJNT+zm4stIjhP2fdsG4o4xnnoTXqtzK8NtJJHF5jqMhNwXP4nigCXIpa53wb4jk8W+GbfWmsDZJcl/KiaXeSgYqCeB1weP1roqACiiigDJfwzocupDUZNF0574MGF01qhlBHQ7sZz71JqOgaRrBRtU0qxvmT7hubdJdv03A46mtKigDB1G2m8P+G7lfC+i273KgeRZwLHChYkDPVRwOeozjGa84M2qXnjXw5o8nhe/WS0mbVr43F1Azzt/qkmZlcjCsxIUc4ACjA49lrOh0Wzt9bu9XjjP227jjilctn5EztAHYZYmgDRpuDmnUUAeZ6L/xQfxDm8OufL0PXi13phPCw3A/1kI9AeGHboBkmvS9wPeua8b+GG8VeF57KN/J1CJhcWNwrbTFOnKMG6juCfQnvSeBvFH/AAlXhqK8mQw6hA7W1/ARgxXC8MCPyI9jjrQB09FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcD8R9Vu54rLwdo8m3VtcYxM4/5d7b/AJayH04yB6845Fdpf6ha6Zp9zfXkqxW1tG0srn+FVGSfyBrhvh1YXGrXV/461WIpeaxhbKJuttZj7i/8CxuPY8HgkigDtNI0m10PSLTS7GLy7a1iEUY6kgdz6k9T7mr9FFAFLULKW+spLeK9uLFnGPPttnmAexdWH6flVDw74bTw1oK6Ta395PEhYxy3BjaRSxJJyFAJySckHrW5RQByGleAINJ8U3viKLW9Wlvr3AuRMYCkqjGFIEQwOAOMHHepPiPqkmleA9Ukt8m7ni+y26jqZJTsXHv82fwrq65XxT4V1DxHfaTImqwW1pp14l6LdrMyebIn3dzeYOBk9qANnQ9Kj0TQNP0uH7lpbpCDjrtAGfxxn8a0aQZwM9aWgAooooAKKKKACiiigAooooAK811zPgT4hweJE40TXSlnqmBhYJx/qpj6A/dPpzzk16VWbrui2niHQrzSL5N9tdxGN8dR6Ee4OCPcCgDR3DOM80tcJ8NtYvXsrzwxrT7tb0KQW8zH/ltER+6lHqCv48DPJru6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApM0tYfizxJbeFPDV5q9zhvJXEUfeWQ8Kg9yf8aAOR8ZO/jTxZZ+BLdj9gh2X2tuv/ADzBBjhz6scE98YIzgivRUiWONY0VVRQAqqMAD29PTFcl8PPDlzoehveap8+uarIbzUJD13tyE+ig49M5xwa7KgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDzn4hWtx4f1Ox8f6bEWl00eRqcKdbizZufqVPzDPHc/drv7W8t760hu7aVZYJ0WSORejKwyD+INLNAlxDJDNGHikUq6NyGB4IP4V574Flfwn4jvvAV4xNvHuvNGlc/ft2JLR59UJ6dSMngYoA9IopMiloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooATcPWvNcHx98TOm7w/4XkwePluL/ANPcRg/gfUNW18QvEdxoehxWuljzNc1SX7Hp8Y6+Y3V/oo5z0zjNafhLwzB4S8MWejWuH8lP3suMGWQ8s5+pz9Bj0oA3cUtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXFfEXQLvUdIg1jRxt17RpPtdicZ8wf8tIjjqHXjHcgds12tNwaAMjwx4gtPFHhyy1mzOIrqMMUPVG6Mp+hBH4Vs15pZL/AMID8SH07lPD/iaQzW3923vf409g4wR74AGATXpW4etAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTWkREZ3dVRQSzE4AA6kmlyK89+I19dapcWHgXSZmjvdY+a7lTn7NZA/Ox/3sFQO/I70AQ+Dlbxn4vvPHNwhOnwbrHREYY/djiSbHqxyB3xkHpXpNU9O0620rTrewsoVhtbeMRRIvQKBgfjx/WrlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAc94z8Mx+LPDF1pbN5c5xJbT55imXlHz1GD1x2Jqn4B8TS+JfDo+3L5Wr2MrWeoRdCkycE/Q8H9O1dbXmvioN4H8b2vjGEFdI1Ix2WtKoOIz0in/AnB9uMEtQB6VRSBlYZByPUc0tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSZHr1oAo6vqtromkXeqX0gjtbWNpJGz0A7D3PTHc8Vx/w40q8njvvGOrpt1bXGEixsOba2H+riH4YJ/DIyKp+KCfHHjm18HxHOkaYUvdZYH5ZDnMVufXP3iPTpytekhQowBgDpjtQA6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqGraVa61pd1pl9EJbS5iaKRfYjsex7g9iM1fooA8/+G+pXVqt74L1iTfqmhkJHKwx9ptT/AKuQfQfKeuOM85r0DNee/EWwutMnsPHGlRF77RiftUS8G4s2/wBYv1Ucj056mu307UbXVNOtr+zmWW2uYxLE47qRkGgC3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXO+NPE0XhTwzcakV8254itbcZzPM33EA788nHOAa6HI9a80sAfH3xHfUyRJ4f8ADUjQWo6rcXn8cnuEGAD64I6mgDofAXhibw14dAv383WL2RrvUZzjLzPyRkdh0444JxzXV0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEbxiRWV1DKwIIPIIPbFec+D2fwX4wvPA1yx/s64DX2iO3ZCSZIMnupywHpknrXpIYHpXl3xwvLXS/CVlqoYx6vaX8b6bKn3lkzlgf9kqpyPXFAHqWaK8G8FftALd3ssHi9LWygKM0d3bRyEA5GEKDcemfmz2Hua7n/AIXb8PP+hh/8krj/AON0AegUV5//AMLt+Hn/AEMP/klcf/G6P+F2/Dz/AKGH/wAkrj/43QB6BRXn/wDwu34ef9DD/wCSVx/8bo/4Xb8PP+hh/wDJK4/+N0AegUV5/wD8Lt+Hn/Qw/wDklcf/ABuj/hdvw8/6GH/ySuP/AI3QB6BRXn//AAu34ef9DD/5JXH/AMbo/wCF2/Dz/oYf/JK4/wDjdAHoFFef/wDC7fh5/wBDD/5JXH/xuj/hdvw8/wChh/8AJK4/+N0AegUV5/8A8Lt+Hn/Qw/8Aklcf/G6P+F2/Dz/oYf8AySuP/jdAHoFFef8A/C7fh5/0MP8A5JXH/wAbo/4Xb8PP+hh/8krj/wCN0AegUmRXAf8AC7fh5/0MP/klcf8Axuud8XfHrQtP0lW8LSx6nfu+0rLFLGkS4J3HKqW5xwCOp54oA6z4ieILrTtJt9F0fnXdakNpZKDzGMfPKfQKp69iQexre8NeH7Xwv4fs9Hsl/c20e3eeC7dWc+5OT+NeQ/CLxY/jn4galqmuqjatBYIlkkakRQxbsSFQScMSyc/7TDgcV7tQAUUZpNw9RQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJkUZFYXijXJNF00fY7d7rU7glLS2jUszHuxA/hUck/QdSMgHJ/EXxlc2Gp6P4c0lmE9/qNvbXVyn/LBHYHYD/eYc+y/7wrqfGHhCw8aeHpNI1FpEjLiSOWLG+Nh0IyCOhIPHQkV5hrBjl8cfD/SUtNQhkS/mu7ia+hEb3Mo2sXOOpyD9MgdK9uLqASTgDuaAPNfh/wDB3T/A2rPq0moS6jfhGjiZohGkanHIGSd2ARnIGCRivS8Vzei/EDwr4i1L+ztI1iK7u9pfy0jf7o6nJGK6WgBMUYpaKAExRilooATFGKWigBMUYpaKAExRilooATFGKWigBMUYpaKAExXI+Pfh9p/j7SoLW9mlt57ZzJb3EYBKEjBBB6qeCRxnaORXX0UAcD8OvhbYfD/7RcR3kl9f3KCOSZ0CKqg5wgGSMnGck52jpXfUUmRQBU1LUbbStOnvrpysMK5OBkk9AoHUkkgADkkgDmuL+GPiLUfFa+IdVvw8ajU2toLfcCIUjRfl44J+bk9zSXHiBNT14X0ml6ndaNpxLWb29vvinlGd0xJIBVeQnbOW/ukU/gSjH4dG6cYe7v55mz65A/8AZaAPTaKr3t/Z6baSXV9dQ21vGMvLM4RVHuTTbHULfUbYXFv5vlk4BkheMnjPAYA4569KALVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBDMJRGzQojygHYHbaCfQnBwPwrm/Dul+II9d1LU/EEemmSfbHam0neQwQj/lnho16nLFs8nHHAx1VFAHneteF/FGo/EvRvE0MOkCz0uOSNIHvJBJLvVlLEiIhfvDjnp15rrfEGnXer+G73TbO8SyuLqExiYx+YEDcNxxnjIz75rXrA1XWNY0/WLa3tvDlzqNhLGS9zbXESvG+cBSjsvGOc7vwoAxfAesapdXms6Fr1taLqmkPGj3Fom2O4jkUsjAduF5H0ruaw9D0eW0vNS1W8VFv9SkRpFRtwjjRdsaZ74GST6se2K3KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5fxfYeJdSsRp+hjT44JSouZbi5kjkMefnRNsbYLDjdnIyeM4NdRRQBiavZ6ifDkljo9rYx3D25gRZZmjjh+TaNpVCSB6YHTtWT8N/Dur+E/CNroWqJYt9lL7JrWdn37nZ+QyLj72O/SuxooA8c/tDVvE+o6r40Wytr7RNDkkTTLCadoxK0X35+FIL8HaT06YzzXqOhavba9oVjqtoHEF3CsqK/DKCOh9x/+quItfD+t6X8O28GafZMtwwmtRfM6+SsLu5M3Xdnax+XGd3t81dzoukwaFollpVruMNpAsKFurBRjJ9+KANCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACk9KWk9KAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAE7ZpaT+GloAKKKKACiiigAooooAKKKKACiiigD//Z', '/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAK4GDAMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACijtWRrviXR/DFl9s1rUIrSE5ALkksR1CqASfwHegDXoqjpmrWGs2Ud7pt5Dd2shISWJgykjgjjvV6gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ8CgBaKy9U8QaPoihtU1ayslPT7RcKhP0B5Nc4fidpV3j+wtO1nXMtt32Fi/lA+8j7Vx75oA7eiuIOpfELVMfZNE0nRI92C2o3RuZNvqEi+UH2LUHwZrmpLnXfG2qyjdu8nTFSxQD+6SuXI/4FQB1Oo6xpukQ+dqWoWtlGeA1zMsYP4sa5eT4o6BM7RaPHqWuTKdpTTLJ5QD/vkBMe+cVb0/4ceEdOm86PQ7ae4LbmnvM3EhPrukJOfpXUoiRoERVVFGAqjAAoA4pta8e6puGm+F7HS4/wCCbV73cSP+ucIbB+rVw/xH+GHjXxZb2t6+t2ep3VsGCWSQfZkQEDIQknJOBncR0Fe34ooA4P4VeDb/AMEeEf7P1KaKS5muWuHWNiVi3Ko2g4Gfu5+p74Ge8qnfalZ6aIGu7hIhPOlvFu6vI5wqj3JNXKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACig9KbyOlADqKwNX8aeG9ADjU9csbeROsRlBk/wC+Blv0rI/4WGb/AI8PeGdc1bcuUmNv9mgb/tpLj9AaAO2pCcda4kP8RtWIwmh6BAwOSzPezqfYDYn6mhfAFxfbW8QeLNc1M4IeKOYWkD59Y4gD+bGgCL4kfEe28A6XFIkUd7qE77I7UzbSoxku2ATgcccZz1pPhj8RR8QdNu5JLIWd3ZyKsyJJvVgwOGBxxkqwx7daW++EPgm90b+zV0SG3XIKzwEiZTg8+YcluvRsg9SDitjwd4L0jwTpj2OkJJtkcSTSzNueRsAZJwAOOwAHNAHSUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTScd6AHUVzuseOvC+gl11HXrGGVOsKyiST/AL4XLfpWU/j+5vgy+HfCmuaoduY5pYRZwP8AR5SD+S0AdvTScA81xbJ8RdWB/e6JoEDrwVV724Q/jsT+dH/Cvjfnd4g8Ta5quRh4Rc/ZoG/7Zxbf1Y0AUPiZ8UYPAVvbRW9vHe6hclsRGXAiCgfM2MnqQMcZ5qj4X+L8/ijSxJZeEtWur5GKSR2oUwKw6ZlYqBkEcYJHp0J1dV+D/grU9JSwXSEsvL+5cWmFmH1Y5Lf8CzXQ+FfCmk+DtHGl6RE6QlvMcyPueRuAWb3wB27CgDFFz8RtV2tHY6JoMJ+/9ome8mX6BAqfqaF8C6hflG1/xjrd8wPzRWrrZQsPQrEN2Pq1dvRQBzWleAPCmisr2WgWQmB3efLH5smfXe+W/WukAAAAAwO1LRQAYHpRRRQAUUUUAFRyyxwwvLLIqRopZ2Y4CgdSTTz0NedeLPEEep64ugfZNTutIt23apLYWMtwJH4K2xKKcAggv7YXucAHG6treoeJ/jR4OjcGLSWb7XYW5BBeNd2JmHYtsJUf3cepr3ivELXUIvEP7SOm3MFtdQR2OmsojubdoXUbHH3GAIH7yvbz0oAKKxV8S2M+qyaZZCa+uoWC3AtlDJb/AO+5IUH/AGQS3tWzz6GgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopCQOpoAWisTVvF3h7QSy6rrdjaSKM+VJOvmEeyfeP4CueufiOb+1lTwt4f1rV5nhY29x9jMNsXxxl5CuRnHQUAd3nnrS18t/C7xH40vPinZ289/qd0JJXF9DcyOVVQp3blJwuO3TkAD0r6koAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopjsEUszBVHJJoAfRXKX/AMRvCOnTCCTXbea4LbRDZ5uXJ9NsYY5+teffFHxv4kvfB7yaDoniDSrRZQbm/ni8hjHg8KAd4UnB3YHTHQmgD2oEHoc96QtgZJwB1OeleC/CF/HnibQ7xP8AhJriy06KYeXcz24uZZTj5kRpDgKMD1wTXow+GelXZZtc1PWddJbdsvr5vKB9o02qB7YNAGlqnj/wpo7mO816zEwO3yYn82TPpsTLZ/Cs3/hPNRvw66B4N1u+YEbZrtFsoXHqGkIY/wDfNdHpXh7RdEUjStJsrIHgm3t1jJ+pAya1KAOJaD4i6oWWW/0PQYWAKfZoXvJ19iXKp+Smk/4Vvb329vEOv65rO8YeCW7MMB/7ZRbR/Ou3oxQBi6R4T8P6EQdL0axtJAMeZFCoc/Vsbj+JraoooAKKKKACjAoooAKgubmGztpbm4mSKGFC8kjtgKoHJJ7Cpz0rzTx7eP4h0fX7aJiujaPaTS3kin/j5uVQlIR/sqcM/qdq/wB6gDovA/i0eM9LvNUii8uzW9eC1JBDPGoX5mz3JLcdhgdRXU1518DrbyPhTpbkYaeSaU5/66MB+gFei0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVHLLHDE0kkiogBJLnAH4mgCSg8CuSvfiV4SspltxrcN5cNkLDp6tdOSO2Iw2PxrzP4t+N/E934bt5NI0nXdE03zytzdXCfZ5HOPlUANuVT82dwGfl+lAHvGeM0hbapYnAHJz2rxD4Ujx74m8Js8/ii4srCO4KRSyWgmuJlwCwWSTI2gng4PcduO7Hwx0W5w2t3mra64feP7SvXdFPtGu1Me22gC9qfxE8JaS/lXOvWbT7tnkW7+fJu9NkeSD9RVA+O9V1BT/AGB4L1i75AEt9tsoiPUFzuI+i102l6JpOixeVpem2lkh6i3hVM/XA5rRoA4g2nxE1XcLjVdF0KI4Kiyt2u5gPQtIVUH3Cmg/DWxvtx8QazrWt7uWiur1o4c+0cW0D9a7eigDI0nwzoWhKBpWkWVmcYLQwKrH6tjJ/GteiigAooooAKKKKACkPQ0p4FZGu63FoWltdSI80zsIoLaM/PPM3Cxr7k9+w56CgDI8TeN4NC13QtCgCTanql1HH5bZ/dQlgHcge2QvbOT0BFddXgkmkXMP7QHhWLUJRc6lNbNfXswzsWTEuEQdkUIqj8+pr3ugAooooAKD0NFFAHFeO/Fmo6Jpslromj6rfarKAqPbafLNFAD/ABlgu1sDkAZ54OK2dFgsNF8NwLaR3X2aNPM/eW8hnkZjlmZMbyxJJPGea3MD0oxQB4joF3eH48az4jvNC12HTLm1+z28zaXORkCIAkBMjIRu3eu4+I2tX+n6Fa6do0pj1XWbpLC3l5/c7s7n9tqg89RkHtXake1c/wCIdGl1K70jUbdYmu9LuvPijkOFkVkZGXPY4bIPqozQBzXh6S48DeJ9G8EsLW40++tZJLeeKExSrLH8z+Z8zBtw53ccnFejYHpXL2Ph25uPGUnifVmjE0Vv9ksbaJiywxk5Z2YgZdj2AAA45611FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFB6Vymq/ETwpomtDSNR1u3gvjjMZDEJnoHYAqvUdT/AEoA6uimIQQCG3Ajr60+gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo7VymmfEbwnrGtvo9hrlvPeqThFBCvjk7GI2twD0JoA6uiuX1P4ieEtKfyrjXbR7jdsEFs3nybvTZHlgfqKoDxzq2ohhoPgvWbrDYEt/ssoiPUFzuI/4DQB29NPFcUbT4iapvFxq2i6HESCosrZruYDuC0hVc+4U0f8K1sL7cde1jW9bDfeiu75khz7Rx7VA9jmgDV1fx14X0NmXUNesYpU4MKy+ZLn/rmuW/Sso+P7q/Z08P+Etc1I4yk08Is4HB9HlIP/jprodJ8NaFoY/4lWj2NmcYLQwKjH6tjJ/GtagDiCnxG1VmVp9D0GB148tXvbhPz2p+hpT8PBfNv1/xLrurbl2yQm6+zQN/2ziC4/M121FAGFpHg7w5oDK2l6JY2zqMCVIQZPxc/MfzrdoooAQIoYsFAJ6nHWloooAKKK8++KfjK58OeG7yDSAW1N4DI0gPFrFkL5h9ySFUdyc9FNAHdQXEdwm+KVJFDsm6NsgEEgjPqCCD6HI7VPXH/C2A2/wy8PhiSz23mknvvYvn9a7CgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACis3Wdb0/QNNk1HVLyO1tI/vSSHjPYAdSfYVQ0nxx4a1zSpdTsNZtWtIjiSSVvK8v/eD4K/U0AdDRXGXHxQ8MLNJb6fc3OsXSc/Z9KtnuWP4qNv61H/wknjPUyRpPg4WcTDKXGsXqx4+sUYZv1FAHb1DPcQ20LS3EqRRqMs8jBVA9ya47/hHfGeqc6v4xWyhYYe30azWPH0lk3N+gqS3+GHhgXCXOo29zrF0nAm1W5e5J+qsdv6UASXfxN8JW8/2WDVRqF2c7bfTY2uXbH+4CB+JFVx4u8T6nt/sbwVdxRtkefq9wlqF+sY3OfyFdfZWFnptuLextILWEdI4Iwij8BVigDiF0fx7qW06l4osdMTPzw6RZbiw9PMmzz9FFLH8MPD8rrJq8mpa3KhyH1W9kmGf9zIT9K7ajAoApadpGm6RD5Omafa2cX9y3hWMfoBVzA9BS0UANVFVQqqAoGAAOBTqKKADjrUNxcRWtvJPPMkUUalneRgoUDuSeAKmrw/4ueK7vUtS0vw1poZdOn1GO2u5wf8AXShlJiHqFDKWPqQOxoA9tBzjmn0gFLQAUUUUAFFFFABQeAf60VWuhdPbutnLFFOR8jzRGRV+qhlJ/OgDD8Taneb4tB0WUJq98pInK7xZxDhpmHfHRR3Y+xrgPHGh6/4U+E+p2/8AwkFjNp8NuImhTTCjyb3CklzKfmJbJJBzk12PhfwnrGh69quqaj4gi1R9R2eZmxMTJsB2qjCQ4QAnjB/POV8e+ENT8a6RJpCa3BYafIytIn2IyyOVIIG7zVGMgH7v40AP+GFt9l+GXh6Ppus1k4/2/m/9mqh4o8R3k3iuDwzoviTTtJ1BYhJILuLzDMz52ooJGCACT67lrf8ACui6joGh2uk3upQX0VpCkEEkVoYG2qMDd87AnGOgHTvmsP4p6Jbax4LuQtujakrxiwlVQJFnLqE2t1GScfQ5oA63Sor6DTLeLUbtbq9VB5s6R+WHPqF7VeqOMFUQMdzY5NSUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUHpQAUVka74i0nwzpv9oaxfJaWobbvbJy2M4AGSTgHpVXTvGvh3VNG/te21qzFhuKmaWQRBWABIO/GDgg4PqKAOhori5fih4beSWHSnvdbuI+sWlWclx/48AE/8epp1/xxqbOuleEbfT4yMx3Gs3oB/GKIMR9NwoA7Y9KgubqCzgae6uIoIl+9JK4VR9SeK48+F/F2qM39seNJbaF15ttHtEg2n2lfc/8AKprb4Y+FI7gXV7YPqt1jBn1Wd7pm/ByV/IUAJc/E7wrFObaz1CTVbvGRb6XA9yzfQoCPzNRDxV4t1XA0fwXLbRMDi41m6W32/WJNz/yrsba0trOFYbW3igiXgJEgVR+AqbA9KAOIGheOdT2tqniy20+PnzLfRrIZP0llLEfgtPh+GPhxpEl1QX2tXCHPmarePcf+OEhP/Ha7SigCpYaZYaVALfTrG2s4f+edvEsa/kAKtFVZSpUFSMEEdRS0UAIFAGAAB7CloooAO1QSzx26o00yRguqAu2AWYgAc9ySAB1OamJwCT2rxHxB4qu/E/xd8JaVbbk0SO6+0Qt0+1NGWzJ/uAoQvrgnuKAPb6KKKACiiigAooooAKKKD0oAimnitoJJppFjijUu7uwAVR1JJ6CuAi0/xB4s1aDxRa6pbadaRq8emW1zYGc+Wes5HmLhnGceiEeprR8beE9Z8W2X9nweIodN05ipliWxMjy4/hZ/MAK+wUZ75rplivhp4jNxb/bAmPNEBEZb/c35x7bvxoA8d0OG/n/aSnTU72K+urDTiTNFb+SuCi4+Xc2OJfWvYNW1S20bSbvU7tytvaxNM5HcKCcD1PFcJpXw51zS/Hd74v8A+EptJr6+QxTxvpZ8soduAP32RjYuOvSvRiodcMAcjByOMfSgDhvBd54h12aHWH8V6ZqOkuW8y2s7UAxsV4TfnI2kjqMn6Gu9rhPDGiw6b8SPE82mwrBp8sNt50cYwn2nDFsAcAhSpOP79d3QAUUUUAFFFFABRiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACijtTGcKMscAcknigB9FctqPxG8I6ZN5E2u2stwW2iC0JuJM+hWPcQfriqP/AAm2taioOg+CtVnUtjzdRdLFMf3gGJcj/gNAHb01jgda4o2HxE1Vf9J1zSNEj3AhNOtTcybfQvKQufcLSf8ACs9KvsnXtU1nXSWDbL2+YRBvaOPaoHtg0Aamq+PvCuiOY77XbJJgdvkxyebJn02Jlv0rNbx5f3wceHvB+taiR9ya5RbKFx6hpSGP/fNdFpPh7RdDQrpWlWVkCMEwQKhP1IGT+NalAHDvB8RtVDhr7RNAiYZXyIXvJ19iW2p+QNeW+I/gL4j1PxTNeQazbXdvdyeZNc3RKygkfNlAuOucAdsDivorFGB6UAV7O3W1s4LdXZxEioGY5LADGSfWrFFB6UAMkkSKNpJGVEUZZmOAB9aztC1u08Q6VDqdg7NaTM6xMwwXCsy7h7Hbke2Oh4rzj4wa7eXXhXXLHTJmis7CJP7SuU/ieRlVbdT6kOGY9lwP4q7D4aW32X4aeHY8YzYxyf8AfQ3f1oA6uiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooPSoLi6gs4GnuriKGJfvSSOFUfUnigCeiuNufid4ViuGtbO/k1W7xlYNLge6ZvoUBX8zUf/CT+LtTIGj+DJbeFxlbnWbpYNp94k3uf0oA7ao5JkhjMkrqiAZLMQAPzrjBoPjjUyj6p4ug0+Ig+ZbaPYgflLKWP/jtOi+GHhp5o5tUS91q6j6Tardvcf8AjhOz/wAdoAsXnxK8I2dwLZdZivLlshYLBWunJHbEYOPxqqPGPiTUtn9i+B9QETHBm1adLML77Pmcj8K62x06x0u3W30+yt7SEdI4IlRfyAxVqgDhZ9E8e63A0WpeJNP0mCQMrw6VZmV2QjBHmyHg47hRXl/hv4Aara+K4JtbubGfR7eQSN5bEm4AOQu0rwDxnJ78Zr6KowM5xzQBn6ZoelaLGY9L02zskPUW8Cxg/XA5rQooPSgAxRVTUNQtdK064v76ZYLW3RpJZGPCqKTTL5NT0yzv4lkWK6gSdBIMMAyggEDgHn/9dAFyiiigAooooAKKKKACijtVHUtVsNHsnvNRvYLS3QcyTuEH5nqfYUAUvFHiWy8J6DcarfuPLjGETdgyueFUemT36AcnivGPHPiHQm+F2rxpr1hqHiDVpYXu/s8m48OreWn+wgGB+J6mu/8AB2vab4+16815bpHj06RrfT7QkBolIG64ZTyC+So44UEdSa5P9oXxBp7+F7XRYL2CS++3LLLBHIGZEVHB3Acryy9aAPVfCNt9j8F6FbYx5WnwIfwjArZYhVJYgADJJ7VmaNqOm6jpUEmlXsF1aIioskDhlGAODjocY4ri/iFrNze+EdX/ALPkdbFVNoskZw13cOwjWNDn7is3zEdcbegbIB3thf22pWsd3ZTrNbuSFkU8NgkHH4g/lVus7Q9Li0TQrDSoceXaQJCpxjO0Yz+PWtGgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAopM8Vnanr+kaKm/VNUs7JT0NxMqZ+metAGlRXE/8LO0i9IXQrDWNcJbbvsLFvLB95H2rj3zigan8QdVyLTQdL0VN2N+o3ZuJNvqEiGAfq1AHbVS1HVtO0mDztR1C1s4v79xKsY/NiK5X/hDNe1FT/b3jfVJVLBvJ0tEsUH+ySAXI/4FVvTvhv4Q024adNEt7i4YhmnvM3Mhb13SFiD9MUAVX+KPh6d3i0ddR1ydDho9Ls5JQP8AgeAuPfdig63481MONO8LWWlx8FJ9XvdxI94ogSD7FhXaIiRoERFVFGAqjAFOoA8k8a/Dfxf4y0IwX/iq1mnjkWWGzSz8i3DjIOW+ZzwTjP5d6q/DL4MQ6DHc3fiuy06/upighgZRKkKjqTuGCxJH5V7LgelGB6UARW9tBawrDbwxwxKMKkahVH0AqXFFB4FABRWVq+u2WiPYJdyN5l9dR2lvGvLO7EDp6AZJPYCtWgAooooAKKKKACiiigAoPQ460VzXi7xto/g3SpLrU7uMTbC0NqrjzZj2Cr1xnjOMDvQBnePPGNroSWukrqlvYX+oEqLmZwBaxD78p9T/AAqD1Yj0NebeI7rw/qXj34caJ4cvILqz0663t5T7+fMRiWPdiUJJ7kmvUfAzW1xobeIZb23urzVFFzd3ETgpHxkRD+6sanGDznJPJNeZ+IfE+iX37Q3hyc6panT7G3MUtwJQYllKykDd06sgz2oA96qpeaja2Cwtd3CQiaVIY9x++7EBVA9STUd1q1naab/aElwptmVWRkO7zN33QmPvFiQAB1yMVwM1rea58VfD/wDaW4PZW0uptabspbqf3cSnHBkyWZj6qAOBkgHpo6UUUUAFFFFABRRRQAUYoooAjngjuLeSCVA0ciFGXpkEYIrD0Pwdovh1YksYZ9kJPkLPcySrDnIPlq7EIcEj5QODXQUYoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKQnANZOq+JtD0LjVdYsbJsZCTzqrEeyk5NAGvRXEL8S7C+Kf2Do+ua2r5CzWliyQ5HrJLtX8RmgX3xF1TYbfSdF0SInD/AG25e7lA9QsYVQfYsaAO3rP1LW9K0aMSanqdnZIehuZ1jB+m4jNcx/wg+r35Vte8bazcgMSYrDbYxkf3TsG4j/gVX9M+HvhLSZRJbaFaPPu3efcqZ5CfXdISc/SgCi3xP0W4Ypotrq2uPu2506xd0B93YKuPfNIdX+IGqZFj4c03R488Sareec7L6+XF0PsWrtgqqoUKAo6ADgUtAHjnj74XeLvGGmxvceKLe9u4JC8VobUW0CgjkAjcxPAALE9T0zVn4afB608N2M03iWy07UtRllDJuj81IVA4xuH3s57enNetUUAMjijhjWOKNURRhVUYAHsKfRRQAUVlXmvWVlrmm6RLITe6hvMMSckKilmZvReMfUj3xq0AFFFFABRRRQAUUUUAFB6UVxXjr4i6X4M02VXuraXVmAWC0MgJ3HozgHIUdSTjI6c0AUfHHi3S11WLwnca1BpyTp5mo3DzBGjg/wCeS+jv6/wrk+lcha3+la9+0PoL6JPbz6dp2lmKP7Of3aAJKMDHpvH6V6j4ft9N0Tw4LgalDcxSk3NzqTSLtuHb70hbpjPA5wAAO1eTaB4n0O5/aM1vU5NUtY7M2Zgtp5JVVHdREpAY8c4fHrigD3o9KqT6ha2lxawXFwkct1J5UCMeZGALEAfQEmotU1OLS7MTSK0jyMI4YY+Xmc9EQdyf0AJOACa4XSbC51L4wy3uoSiafSdNG8ISY4JZ2O2NPYRqct1YsTgDAAB6VRRRQAUUUUAFFFFABRRRQAhx144rD1rwnpWu39ne3kdwLqy3CCa3upIXUN1GUIODit2igCtZ2VvYW6wWsSxRgkgDkkk5JPcknOSeas0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRQelVru+tdPt3uL26htoF6yzSBFH4nigCzRXHXPxP8MRzvbWN3PrF0oz5GlW73RP/AkG39ah/wCEl8Y6p/yCPB32SJlytxrN4sWD7xR72H44oA7c9KimuIreJpZpUjRRks7BQPqTXG/8I9401Xa2reMEsImXD22jWap+UshZv0FSRfDDwyZUn1OC61m5T/lvql09wT/wFjt/QUAefeK/j/Jo/iuXT9I06zv9Otn2PO05Bn4GdjDhcHIyd2cZrubXxt4h1yCC48P+DLtrWdQ63WqXSWy7SMhgo3sQcg8DpUeq/B3wVq2qRX8uleQUwHhtnMMUgAwMquMY/wBnH413UcaRRpFGoVFAVVUYAA6DHbgUAcb/AGP4+1NEbUPFFhpSgnfDpNl5jEenmSk4P0WlX4X6DOyvrM2p67Mrbg+p3rygH/cBCY9ttdtRQBR03R9M0eHydM0+0s4v7lvCsY/QVeoooAMCjFFFABiiiigAoooPQ4oAD0Ncx4v16+0yyWx0S2N5rt6rLaW4I+UAfNK2SAFXI6kZJA71tald3FlZvNa6fcX838MELxqx/F2UAfj+Fcn4Fg12S91TVPFGjPZapcyBY386KSNLdfuRIVckYO4ngZJzk9AAeefEq6vtH+E76PL4av7CGaeNXvLm6gkM0pbzGZtjklmKkk4x6cYr2fw5bfYvC2k2v3fIsoYsem1AP6V538ZNF8T+MdJttF0Xw/cSxwXIuJLl7m3RGwrKAoMm7+I9QOgr0nSrm4urKOS602fTpAADBM8bEcDoUZhjqOueOgoAwfFfjG78LWsmoPok1xpNs6rdXPnhGQMQNyoQS4BYDqPbPWusUhgGGcHkV5r45fVrXxL4e/tP7LqHhi+1KK0exWIxtHMxzEzHcfMAIyQcDj7vQj0vA9KAFooooAKKKKACiiigAooooAKKKKACikJxVDU9c0rRoxJqepWdkp6G5nWPP03EZoA0KK4lvidotwduiWmr6627ZnTbF3QH3dgEx75xSHV/iBqefsHhzTdIjyMSareGV2X18uLofYtQB2xOAT0xVTUdVsNJtWudQvYLWFQSXmkCj9etcp/wh/iPUiTrfjjUdhOfJ0qJLNV9tw3OR+INWrL4a+EbO4a4bRYby5bBae/Zrl2PrmQtz9MUAeYaV+0PdXniZbefw+W06dxHDHasXudx4UYJCuSccDH1Neitr/jnUyy6V4St9PjIBjuNYvQM/WKIMR9Cwpmk/CXwfpHiUa7Z6c63KMHijaRjFE/OWVfx7kgYGADXdUAcQ3hbxdqjN/bHjWW2hdcG20a0SDafaV9z/wAqnt/hj4UjuFur2wfVbrGDPqk73TN9Q5K/kK7CigCK2tbezhWG1gigiUYVIkCqB7AVLRRQAUUUUAFFFFABRRRQAUHpRXF+NdY1N1Hh/wAP21xdajcIHuWt5ERra3LYLBnIUO3zBRnPDH+GgDzr44a5d6t4XlazmaPRIL9bTevS8uAGZsf7CbSPd8/3a9t0q2+x6TZ22MeTAiY+i4rwn4pzXM2leFfDT+GbjRrQ36JAkk8MgbACYHluxyN/frk19A0ALRXIeKPGV14XT7dNok02jRTJDcXgmCvHuYKGWPBLLkgZyDnoCOa60e5oAdRRRQAUUUUAFFFFABgAYxRgelFFAEc8KTwSQuDtdSp2kg4IxwRyK8x1f4XabJrvh+xsbTUBpEUjy3jf2lOVQIn7pFDOcHcc5XkBeK9SowPSgCGCJLeCOGPISNQoBYscD3PJ+pqaiigAooooAKKKKACiiigAooooAKKKKACimk+9YGr+OPDGgM6alr1jBIvWHzQ8n/fAy36UAdDRXEN8Qp75inh7wprup5XckzwC1gf6PKR+gpWHxF1UnEmhaDA69g97Oh/HYn86AO1J61xHxB+I1j4H0NrhWt7rUncRw2XnAMc9WYDJAAH54HenH4etfkPr/ifXdUypDwi5+ywNn/pnEFP5salm+GPgqXSJNO/4R6yjt3ABeNdsvByP3n3v1oA4vwP8atR8TRTWknha7vNTjG5f7OK+Uw6fOXI8vt3OcnpiuvW5+IuqspjsNE0GBvvfaZnvJl+ioFT9TV7wh4F0PwRbyw6NburXG3z5ZpC7ybc4z24yemK6igDiB4F1G+Ktr/jLW77H3orR1soWB7FYxu/8erR0r4f+E9GdZLLQbITA7vPlTzpM+u98t+tdNRQAgAAwABS0UUAFFFFABRRRQAUUUUAB4FVr6+ttMsJ728lENtAhkkkY8Ko71YPQ151rWp6j4j8QRR2Og3OreH9NmJmMFxCi3N0h4Hzuu5Iz17Fuv3aAOJv5tU1z47eD5dSDwrNGbu2sT/y7wjzCu7/bPl7m9Mgfw175XiNheXet/tJ2015p0thNY6aQbeWRHZAUPOUJHPm+vevap5fJgkl2M+xS21BljgdAPWgCSiuU07xddTeLv+Ed1TR5LC4ltjd2zicTLJGGwQ2ANjD05Hv69XQAUUUUAFFFFABRgelFFABgUhAx0paKAMfXvDmm+I4IIdSSZ44JfOj8m4kiKvgjOUIPQn865PwX4Fh0vxRrOt3EF7DILsw2CTXskv7hU27jljuDMWIDZxxivRKTAGOOnSgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACimscDOeK5zVvHvhbQ3Md/r1mkwO3yY382TPpsTLfpQB0tB6VxDePb++Djw/wCD9b1Ej7s1yi2ULj1DSkMf++aGg+I2rBw97omgQsPl8iJ7ydfqW2p+hFAHak4z/wDrrz/4l/E618DaZH9kFte6rLJsW1M2PLG0newHJAOBjjOetW2+HEOobj4g8Qa5rG4YeGS7MEB+kcW0D8zU178LvBd7pDaYdAtIIeDvt02Sgjod4+Y9T1zQByfgr4yaj4qsJYofCd5earCRvWxdBBgjgs8jDZkhhjnp17V0xf4jaqVKxaHoEDLz5jPezofbGxP51q+EvB+jeDNMNjo0LpHI2+V5H3vI3AyT06DoAB19a6KgDiP+EBub90k8QeLNc1LAIeGGYWcD/VIgD/48a1dI8DeFtDKPp+g2MUq/dmaISS/Xe2W/WuiooAMD0ooooAMUUUUAFFFFABRRRQAVm61rEGhaVNqF1uKxgKsSDLSuThUUd2YkAfWtCR1jjZ3ICgEkk4AFeb/2tq+veJY9bg8MX2paJaZ/sox3FvGsj8q1wVkkB56J/skt/FQBy3hWPVLz9om7k1mVZL+203zZI0PyW+5UxGnsokxnuST3r3OvFvhvPNqvxt8Z6pcWzW0qQrA8LsrGMhlXBKkj/ln2NexXMzW9u8qxSTMo4jjGWc9gMkDn3IHqaAJ6K5XRfFtzfeKrvw5qektp9/DbLeR7ZxMksJbbu3ADBzxgjseTXVUAFFFFABRRRQAUUUUAJgZzgUYAHAFLRQBha54V0rxFNazalHcNJahxEYLqWAruxnlGGc4Arnfh34MXRHv9YuoLuHULy6m2xzXUkhjgDbY1bLEMdqg7jzhsV3+BRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNzz157U49DXy/8AFvUPGcPxNlSK41WGHcn9mraySKhG1eY8cFs5zjvx0FAH1BVHUNW07SIPP1K/trOL+/cSqg/UiuM0/wAJeJdY0y1k8TeMNWSWSNHltNOVLQRsVGULqCzYPGcjNath8OPCOnzmYaJb3NwxBM98TcyE+uZCxB+mKAK8vxP8PyNJHo66jrs0ZAaPSbN5gPq+AgH/AAKmtrfjvVA40vwtZ6YnVJ9Yvckj3ihBIP1YV2iRpFGscaKiKMKqjAA+lOoA4l/CninVQ41nxtdQRyAf6Po1ulqE9QJG3ufrkVNa/DHwnDP9putN/tO6Iw0+qSNdO318wkfkBXYUUARQW0FrAsFvDHDCowscaBVA9gKloooAMUUUUAFGB6UUHpQAV5h4r8eyN8RfD/g/R5m3vexPfzISMKuH8oHvkct7EDua63xLrNzarbaVpRV9Z1DcluGGVhUffmcf3VBzjucL3rzBtItrD9oLwtpVqGaKx055JZHOXllImZpGPdmYgk+p9KAPcaKD0puecfnQA6iiigAooooAKKKKACjA9KKKADHFUdVtry70ueDTr77BeOhEVz5Sy+Uex2Hg/jV6jA9KAOYtPD9/dzabceI9Qt76bT5DNAtvbGFDJgqJHBZssAxxjaAWJwTjHT0UUAFFFFABRRRQAU3PvxQ5YRsUALYOAema+TtCvfiNc/E2O2W+1WHWHuAtyJQ7pEhb5iyE7TGASQOmBx2oA+sicA1k6t4n0PQh/wATXWLGzYjISedUZh7KTk/gK57/AIQG41Aq/iHxZrmpEDEkMM4tIG9ikQB/8erW0jwN4W0Mq+naDZRSDpM0Qkk/77bLfrQBlj4lWF6Y/wCwNH1vW1ckLLaWLJD+Mku1fypBe/EbVNht9J0TQ4icP9tuXu5QPULGFUH2LGu2wPQUtAHD/wDCEatf7W1/xtrN1hsmKw2WMRH90hBuI/4FWhpnw88JaTJ5ttoVo8+7d59ypnkz675Mn8jXUUUAIFCqFUAADAAFLRRQAUUUUAFFFFAB2rE8UeJbHwl4fudX1Fz5cK/Ki/elfoFX3J/KteWRIYnkldUjRSzMxwFA65NeLfE2V9e+H2seKLlWWzURwaPCwxlWkQPcEH+J1yF7hf8AeNAHo/gLWL7X/Bem6vqJX7TeB5SqLhVUyNtA9gu0e+OeTXTVzngG2+y/D7w5ERgjToGI9CUBP8zXR0AFFFFABRRRQAUHoaKKAMjXtQ1TT9PeTSdGm1S7YERxJNHGobsWLsMD6ZPtWN4Bs9VtdFmm1/TZbbW7qZpb2R5I3EzE4XaUY4VV2qAcYxxnqewwPSjHOe9AHj3xE0fxX4k8Y+Gr6w8LXMlhotz57+ZdW6GY70YhR5h4xGMZx1r1e1nluLZJZbSW1ds5imZS68nrsZh27E1ZIGOlZ+r21/eaTcQabqP2C9dQIrryRL5Zz12tweOOaAOF8Xvqtt428OLqxt9S8OX18sCWixNGYZ+sbudx8zGCcH5eCdoIBr0vFc1Z6Be3N5p194hvbe+udP3Nbi3tzDGJGXaZCCzZbGQOgG5jjOMdLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFB6GgApuTjNcL8XZtfi+H143h5pluRInnNblvNWLPzFNvQ5xn/AGd1eW/BqHxvrkN7Hb+Ir7T9KXawmlgE+9snKxGTgHGSxGcYGetAH0YThSxOB1rmdU+InhLSJPKutetDPu2eRbsZ5N3psjyR+Iqifhjot1htcvNW11w+8f2jeuyA+0a7UA9ttdLpmh6TosXl6XplnZJ6W8Cx5+uBzQBzJ8darqAx4f8ABes3vzDE17tsYiPUGT5j/wB80ptfiJqu4T6po2hRHlRaW7XcwHoWfaufcKa7aigDiD8NrK+LN4g1rW9b3D5orm8aOH8I4toH05roNJ8MaDoQH9laPY2ZAxvhgVWP1bGT+Na9FAAQCMEZooooAOtFFFABRRRQAVwPivx5/ZvjHQPCmnOrahe3cRujjd5UGckf7zAfgMnuK6LxHrkmj2UaWkIudUu38mxtmOBJIQTlsdEUfMx9B615I+iLYftBeFrBpTc3CWb3d7dMMNNMRMSxHbogA7AADgUAe70UUUAFFFFABRRRQAUdqKKAOK8eXvi7+y5dP8L6HcTzTqFe9+0QxiNT97YGkDF+w4AHXmt/T4k0zw9bRWelzQJBCEjslaPzFxxtzv2E++7k961sUYoA8d0XSvFlr8ZNW8XX3hW6Fhe2/wBnjVLu2Z4wBGFYjzcdI+x/i7163P57QOLd1ilKnY0ibwp9SoIz+YqbgA8Vha1Ya/cX1ncaPrVvZRRZE9tcWfnJMCRg5DKy4wehoA5bwPJfnx54lsvECQ3etWKwrHqMQKq9s+WVFQ8RgEcgZyepO3J9HrH0jRU0y5vbx5POv9QkWW5m27Q21Qqqq/wqo4A56knk5rYoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAD0pueOORXmvxvudft/AQfQXuo/9IX7W9qWDiHa2eRyFzjP1HYmuM+Dtr4317Q7kSeJNQ07SY3XyWaBZnmyDuEbyZ2qMDoCM5xg5oA98ZwilmYKo5JPAFcxqPxG8I6bKIZddtZpydohtCbiTPoVj3EH64qlF8MNBlZW1mXU9dlU7g+qXrzAH/cGEx+FdTpuj6Zo8PkaZp9pZxD+C3hWMfoKAOWHjXW9RTOheCdWmGcedqbpYpj+8AxLkf8BobT/iJqqn7TrmkaJHuBC6dam5k29wXlIUH3C129GAe1AHEH4Z6Vej/ifalrOukkNsvb5xEG9o49qge2DXSaT4e0XQ0K6VpVlZAjBMECoW+pAyfxrTwKMUAFFFFABRjNFFABRRRQAVwPivx5/ZvjHQPCmnOrahe3cRujjd5UGckf7zAfgMnuK6LxHrkmj2UaWkIudUu38mxtmOBJIQTlsdEUfMx9B615I+iLYftBeFrBpTc3CWb3d7dMMNNMRMSxHbogA7AADgUAe70UUUAFFFFABRRRQAUHoaKKAPP/Gs3inVLiDR9O8OXcujvcKNRuFuoEeaDPzJGpkBAYZBzg44wM12U08llp6vbadPOyqoW0tzGGXjp8zKvHTrV7FGB6UAeQ/DTRfFWgeLvEeo654bniTXLkTCWK6t3EHzuSGHmZx+87ZPy9K9TvFupbSRLKaOG4Zfkkki8wL/AMB3Ln86tHoeMmsHVbHxFLq9vdaVrttbWaR7ZrS4svOVzk/OGDKw+mccUAc18OZ7ybXfE0GtxRS6/ZXKQz36Z2zwspaMKvRABztHrk5OSfRKydF0aDSFuWVzLdXs5ubqdhzI5AHTsoACgdgB1OSdagAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAowPSiigAwKKD0rnfEmr3VsLfSdKZW1nUMrBuGVgQffmYf3UHQd2IHegC7Ya9ZalrOo6ZaymSbTvLFww+4rPuwuf7w28j/AGh3yBq141+z2jTaFr+ovK8zXGpYMshy7kKDk+5317LQAUUUUAFFFFABRRRQAHpWZrmt2Xh7SJ9T1CUpBCucAZaRj0VR3YngCtM9DXN+IPA3h/xRMkms2lxdGNtyIb2dEU+oRXCg++M0AZdl4Hg1l21rxKly2s3Q+dbe+miW2jzlYB5bqCF7nu2T6Vw3hfTbS2/aR1a1sRL9nsdPyvmzvKRlYgfmdmJ5cjGePwr2UWEI08WIe58kJsDG4k8zH/XTdvz75zXN2vwy8KWOrPq1rZXcWoOWZ7ldTuRIxb725vMyc96AOou4GubWWBZpYTIpXzIiAyg8fKex9DXnNv4Xg8O/FrR/+Eca5iguLW4l1iF7iSVSoAWJzvJO4uSOv8B966Xxb410nwjbwLf3sMV1c/LAkrHAx1ZtoJ2juR9BzUXgnWND1cXsuj3x1OfcrXt/5ZUPIRwoz0AHRRwoI5JJJAOuooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkwM5wKWigApD0Jpa8x+MPj6Xwt4fmsdLZjqdygDSqeLaNsjcT2ZsNt78Mf4aAPS1JODn/AD/Wn1leG7Y2nhfSLZusNlDGT7qgH9K1aACiiigAooooAKKKKACg9KD0qjqVpLfWUkEWo3ViWH+utdm8DvgurAfXGaAOX8QRv42vbrw1bXU1vpVv8up3UBUMzkZECEgjoQX4OBhedxxwHxt0e40PwHEz+I9XvUnvI4Rb3bQlMbWbOEjU5Gwd69P8I+DrfwdbXFrZ6nqV1DPK0zLevG53t1bcqKxJwOpNZ/jD4cWXjdo11fWdXFvE5kjtoHhSNCRjP+ryTj1J60AdVpdv9j0iztunkwJH9MKBXDfETTNXt9D1LxHa+K9SsbmxQzW1vAyrbYGMI6Yy5b1Jxk8DHFdnY2/9j6cVvNWuLtIV3tc3rRgqoHJJRVGO+SPxrm01zRfEWoWj3Gq2hsknQ2lmJlaS6mJG13Qc7QeQpH+0QMDAB1OlzXNxpVnNexeTdSQo80f9xyMlfwPFXaMUUAFFFFABRRRQAUUUUAFFFFABgDoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKMUUHpQAGsqw16x1LWdR0y1kMk+neWLhgPkVn3YXP94beR/tDvkCl4k1e6thb6TpTK2s6hlYNwysCD78zD+6g6DuxA7155+z2jTaFr+ovK8zXGpYMshy7kKDk+530Aey0UUUAFFFFABRRRQAUUUUAFVdQ1C10vT5769mWG1gQySSOcAKBmrXauS8WeB4fGKJFf61q8FqrLItraSRJHuXoTmMlueeSRQBm2nhm/wDEd8vie/1bVdIu5ozHaWtqYl+z25wQrb0b52xubHQ4H8Ncf4esZE/aS1CCXULq/aw08Hz7tkL8ogwdqqOsuOlexC1mFh9m/tC583bt+1bY/Mz/AHsbNmf+A49q47T/AIXWmmeKbjxJbeItdXVLkETzNJAwkU4ypUxYx8q49MCgDuLkTPbSrbyLHMVIR3XcFOOCR3x6V52LPW/DfxJ0C3g8Rapqlpqq3H2y3vnDiMRqD5iYACDcyjgAc45zXa6zrlloNks97MiF22RRs4Bkf+6CcD8TgAckgVm+HZtPvNVurwalZ3+qSRr5ptZRKltFk7YlI6DOSScFiCcYACgHT0UUUAFFFFABRRRQAUUUUAFGKKKADA9KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACjFFB6UAHFUrPUrPUJblLSdZTazGCbb0WQAErn1AYZ/xBrm/HviW70jSZ7TSNratJayzqx6W0KLl5m+nRR3Yj3rE+BUTD4aQ3MrF5Lq7mmZ2OSxLYJJ9floA9MooooAKKKKACiiigAooooAKq6hqFrpenz317MsNrAhkkkc4AUDNWu1cl4s8Dw+MUSK/1rV4LVWWRbW0kiSPcvQnMZLc88kigDNtPDN/4jvl8T3+rarpF3NGY7S1tTEv2e3OCFbejfO2NzY6HA/hrj/D1lIn7SWoQS6hdX7WGnZ8+7KM/KIOdiqOsuOlexC1mFh9m/tC583bt+1bY/Mz/exs2Z/4Dj2rjtP+F9ppnim48SW3iLXV1S5DCeZpIGEinGVKmLGPlXA7YGKAO1vUuJrSSK1uPs8zjCy7NxTPcA8ZHbPFcBp1rrPhz4oWOmReINS1fTdRspZ7mK/kEjW5QgB1IAwCSAABjr+HYa5r9hoNvE11cRLNMdtvFJKqeaw9zwFGRkngZHcgGl4ak06e6vLmLUbbUtTk2fa7i3YMiD5tkSkE7VXnAJzzk8tQB0tFFFABRRRQAUUUUAFFFFABRgelFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUdqKbIxSJ2VGchSQq4yfYZ4oAz9Z1i20PS5tQu2fyowAERdzSMSAqKByWJIAHqa8/t9Q8SaTY6zreqeD706lcRO8s4vLYpbwop2RoBJnao5OBlmLHHYaNs3iTWviBb3Or+Gbm20KzRjYhrq3fbOePOkVZCSQu4DG7GSepyNbx7/AGvc+E9S0vRtGnvrq+tZLdWSWKNI9w2ksXcHoSeAfwoA5b4A23kfDQSYx597NJ/6Cv8A7LXo2q3zaZpdzeiB5xBG0hRGVSQBk8sQBXH/AAn03WPD/g200HWNEnsZ7UykzGaKSOTdIWGNjkg4buMcdatfE+7lXwZLpts2271iaLTIPcyttb/xzfQBt+GNbfxF4csNYe0a0+2R+asLPuKoSdvOB1XB/HvWzVeztIrGyt7SBdsMEaxRj0VRgfoBVigAooooAKKKKACjFFFABiiiigAowPSiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACjtQeBVa7vbbT7SW7vJkgt4lLSSSNgIAMkk0AZ3iTxBD4c0g3cqmaZ2WG2gDBTNM3Cpk8DPUnoACe1eM/FmyjtvBOm2b3sN7rOqask19PE4O9wjrtHoi7lVR2C+ua9E0Kz0/wAf58T6pZ297p0m+HS7S5iEixxBsPIVbI3uy+mVUAdzXA/FbSvD+m+NvA1hp2n6bp5lvw10beCOIhPMiClio6fe6+lAHu6qEQKvAUYFQXF/aWs8MNxdQQyTMFiSSQKZG9FBPJqdTz1rg9UtrfWPjLosSwRk6PYS3s0gQZLSHy41J9sM2KAO/ooooAKKKKACiiigAoxRRQAYooooAgu7K1v7V7W8tobm3kGHimjDow9weDWdZeE/Dem3aXdh4f0q1uY87JoLKNHXIIOGAyOCR+NbFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAHas3WdYttD0ubULtn8qMABEXc0jEgKigcliSAB6mtCRikTsqM5CkhVxk+wzxXAWzeJNa+IFvc6v4ZubbQrNGNiGurd9s5486RVkJJC7gMbsZJ6nIAM631DxJpNjrOt6p4PvTqVxE7yzi8tilvCinZGgEmdqjk4GWYscdgnwAtvI+Ggkx/r72aT/wBBX/2Wuo8e/wBr3PhPUtL0bRp766vrWS3VklijSPcNpLF3B6EngH8KzPhRpusaB4NtNB1jRJ7Ke1MpMxmikjk3SFhjY5IOG7jHHWgDpfE2u/8ACOeHrzVzaSXSWsZkaNJFQ4Hu39M/Q1b0m+l1HSLK9mtzbSXMCStCzZMZYA7ScDkZxXJ/Esf2hZ6P4ZTltb1GKGYDr9njPmSn8lA/4FXcDHpigB1FFFABRRRQAUUUUAFFFFABgUYoooAztS0DRtZaNtU0iwvjECIzdWyS7AeuNwOKfpmiaVoqSJpWmWVgshBdbW3WIMR0ztAzV6igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAPSsvXdat9A0ibULlZHCYWOGNS0kznhURRyWJ4Aq3dXSWdu88qysiDLCGJ5G/BUBY/gK4XQNVuPFnjm4utR0fVbG101caUl5Yyxo7MD5kxJXAbGFUE5wx4ySAActrOvi18AeJLvUdN1pdb1W0dbmabSp44YQwKpCGZQAihyMk8kse+K7T4SW32X4VaAh4JgaX/vt2b+tZ3xiuLq68DXuh6Zpmp3t9dmIAWtlLIqqHDklwu3ouMZzzW58O7hR4J0exazvrS4s7OGGeK7tJISHC4bG5RuGQeQT17UAaXibxNZeFNGk1TUUuWt4yN3kQlzyQB7DkgcmtaGQyxJIUZC6htrdVz2NcT4+P9p6v4W8MjBF/qAubhcZBgtx5jA+xbZXdAAYAoAWiiigAooooAKKKKACiiigAwKMUUUAZmpeHND1mZJtU0bTr6VF2q91apKyj0BYHip9O0jTdHgaDS9OtLGJmLtHawrEpbAGSFA54HPtVyigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooATAHQCloooAQgYPFcrrnhfUdZ8S6NqZ1a3itdLlaZLNrMv5jspXLP5g5GTj5eD611dGB6UANHQf4Yp1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVR1LRtL1iJItU02zvo0OVS6gWUKfYMDir1FAFLTdH0vR4Xi0vTbOxjc7mS1gWIMfUhQMmqE/gzwtcytLP4a0eWVjlnksYmJPuStblFAFSOC00qx8q1tkt7aIHbDbQ4C9ztVR/IVx3gEz32veKtbu7G9tZr69WOFbq1khzbxIFjYb1H3sscetd5RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSYA6AUtFABSHAGaWigDlLnwvqN3470/xDNq1uYLGKSGCzNkcgP95t/mffIAGduMDpXV45zRgUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAGKMA9qKKADFIelLRQBx1toety/ElvEN9Fp4sY7D7FbxxXDtJHlwzOQYwCTjHXgAdc12NJgelLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9k='] Multimodal Competition True Theorem proof Combinatorics Math English 31 "This Question involves one Robber and one or more Cops. After robbing a bank, the Robber retreats to a network of hideouts, represented by dots in the diagram below. Every day, the Robber stays holed up in a single hideout, and every night, the Robber moves to an adjacent hideout. Two hideouts are adjacent if and only if they are connected by an edge in the diagram, also called a hideout map (or map). For the purposes of this Power Question, the map must be connected; that is, given any two hideouts, there must be a path from one to the other. To clarify, the Robber may not stay in the same hideout for two consecutive days, although he may return to a hideout he has previously visited. For example, in the map below, if the Robber holes up in hideout $C$ for day 1 , then he would have to move to $B$ for day 2 , and would then have to move to either $A, C$, or $D$ on day 3. Every day, each Cop searches one hideout: the Cops know the location of all hideouts and which hideouts are adjacent to which. Cops are thorough searchers, so if the Robber is present in the hideout searched, he is found and arrested. If the Robber is not present in the hideout searched, his location is not revealed. That is, the Cops only know that the Robber was not caught at any of the hideouts searched; they get no specific information (other than what they can derive by logic) about what hideout he was in. Cops are not constrained by edges on the map: a Cop may search any hideout on any day, regardless of whether it is adjacent to the hideout searched the previous day. A Cop may search the same hideout on consecutive days, and multiple Cops may search different hideouts on the same day. In the map above, a Cop could search $A$ on day 1 and day 2, and then search $C$ on day 3 . The focus of this Power Question is to determine, given a hideout map and a fixed number of Cops, whether the Cops can be sure of catching the Robber within some time limit. Map Notation: The following notation may be useful when writing your solutions. For a map $M$, let $h(M)$ be the number of hideouts and $e(M)$ be the number of edges in $M$. The safety of a hideout $H$ is the number of hideouts adjacent to $H$, and is denoted by $s(H)$. The Cop number of a map $M$, denoted $C(M)$, is the minimum number of Cops required to guarantee that the Robber is caught. The police want to catch the Robber with a minimum number of Cops, but time is of the essence. For a map $M$ and a fixed number of Cops $c \geq C(M)$, define the capture time, denoted $D(M, c)$, to be the minimum number of days required to guarantee a capture using $c$ Cops. For example, in the graph below, if three Cops are deployed, they might catch the Robber in the first day, but if they don't, there is a strategy that will guarantee they will capture the Robber within two days. Therefore the capture time is $D\left(\mathcal{C}_{6}, 3\right)=2$. Definition: The workday number of $M$, denoted $W(M)$, is the minimum number of Cop workdays needed to guarantee the Robber's capture. For example, a strategy that guarantees capture within three days using 17 Cops on the first day, 11 Cops on the second day, and only 6 Cops on the third day would require a total of $17+11+6=34$ Cop workdays. Let $M$ be a map with $n \geq 3$ hideouts. Prove that $2 \leq W(M) \leq n$, and that these bounds cannot be improved. In other words, prove that for each $n \geq 3$, there exist maps $M_{1}$ and $M_{2}$ such that $W\left(M_{1}\right)=2$ and $W\left(M_{2}\right)=n$." ['A single Cop can only search one hideout in a day, so as long as $M$ has two or more hideouts, there is no strategy that guarantees that a lone Cop captures the Robber the first day. Then either more than one Cop will have to search on the first day, or a lone Cop will have to search for at least 2 days; in either of these cases, $W(M) \\geq 2$. On the other hand, $n$ Cops can always guarantee a capture simply by searching all $n$ hideouts on the first day, so $W(M) \\leq n$.\n\nTo show that the lower bound cannot be improved, consider the star on $n$ hideouts; that is, the map $\\mathcal{S}_{n}$ with one central hideout connected to $n-1$ outer hideouts, none of which is connected to any other hideout. (The map in 1a is $\\mathcal{S}_{7}$.) Then $W\\left(\\mathcal{S}_{n}\\right)=2$, because a single Cop can search the central hideout for 2 days; if the Robber is at one of the outer hideouts on the first day, he must go to the central hideout on the second day. For the upper bound, the complete map $\\mathcal{K}_{n}$ is an example of a map with $W(M)=n$. As argued above, the minimum number of Cops needed to guarantee a catch is $n-1$, and using $n-1$ Cops requires two days, for a total of $2 n-2$ Cop workdays. So the optimal strategy for $\\mathcal{K}_{n}$ (see 2c) is to use $n$ Cops for a single day.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAVABvwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ0ALketFcB8SfHg8MJYaTp7q2t6nMkcI4PkozbTIR+YHqc9dpFd6p60AOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKADNZevazDoeltdvG88pYR29vGfnnlY4VF+p79hkngGr9xNFbQPNPKkUUalndyAqgckknoK4e10aPx7NH4hvpr23sUz/ZEdrcvA6xkENOxUg7pAeB2QjuxoA4Txpo0sHjzwDDfSrPqt/qZu9QkXpkPFtRc9EUAqPpnqa93HrXh2q6RBZ/tDeE9Ohur64SO3e4Y3l5JcFW2ytgF2JH3BwPY969xHpQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBka/4a0zxNaC01WKea2/iiS5liV84+8EYbunfOOam0nRbPRNLj02wWaO0jXaiPcSSlBjAAZ2LADsAcDtWjRQByEnw18Ly6wusPZXjakhyt2dSufMHUcN5mQME8V1cMYhiWNd21VABZix4Hcnk/U81JRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUZxQAUhpayte8Q6V4b0832rX8NpAM4MjcuQM4UDlj7AE+1AGdrnj/wr4dv0stV1u2t7pmCmLl2Qn+8FB2jnqcVv2V5a6haR3Vlcw3NvIMpLC4dGHsRwa+GdbvLjUNbvb+5dnlupmnMhTZu3HcGC9gc8Dng19N/ACC+h+GwN3kQyXcjWgJziPCg49t4c/iT3oA9SooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoozjrSHrjPNAC1FPNFDA00sqRxICzOzbQoHcnoB9a43xZ8S9H8NXK6dbpLqutyHEWm2Q3yFvRsZ2/z9AeawI/BHifx5NHd+Pb37JpobdHoVhIQvsZXycnj178FelAFjUvibd63fSaL8PdN/ti8XCy6jKNtpBnuTxu4Deg443dKl0f4Z20F03iLxtqJ17V1Uu0lyP9GtgOSEQ8YHPJGO4VTXeaXpdjo9hHZadZw2ltGPlihQKo98Dv79TXE/FzU518OWvhzTiP7S8Q3C2MXP3YyR5jH/AGcEA+zUAY/w60a08Z3+seOtY06C5F/d7NNS6hV/JhiO1WUEHaeAD7oT3r1lRgYwAOwFUtF0u20PRbLS7QYgtIViTjkgDGT7nqav0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVBdXVvZ28lzczxwwRqWeSRwqqB1JJ4FeaXvxH1bxPeyaV8OtN+3Mh2TatdKVtYPp/ePOf5Bh0AO58R+KdF8K2H2zWNQitYyDtUnLyeyqOSenQV5+b/AMb/ABLUDSo5fC/ht/8Al8lH+mXC/wCwB9wHjkH6MeRWz4d+F9nY6ida8R3UniDXWIJubsZji74jQ5AA7enbHSu/Xvnv7UAc14V8CaD4Ot/L0q0/fsMTXc2Glm9dzY/HAAFdIoxTqKAEbpj+VeW+HR/wmfxe1bxGT5mm6Cv9nWBxwZj/AK1x24ywz3DKe1dP8R/Ev/CK+Cb6/ifF46/Z7QDk+c4wuB3IGWx6A1L8PvDI8J+C9P0tlAuQnm3R67pn+Zue+M7QfRRQB0wz3paKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiuf8U+MdD8I2YuNXvo4WIJjhX5pZP91ByfTPT1IoA3zziuE8UfE3S9GvP7J0u3l1zXWO1bCy+faeh3sMhcenJ9h1rB/4rr4m9PN8KeGX/wDA25T9NoI+nX+MV3XhfwZofg+y+zaPYpESB5kzfNJIfVmxnueBwM8AUAcXb/D/AMQeMriPUPiJqG6BW3xaHZOVgjPYuwOWI56HP+1jivS7CxtdNso7Oytora2iXEcMSBVUewHFWBS0AFFFFABSNnHFLWb4g1i28P6BfatdnEFpC0rDOC2Bwo9ycAe5oA8/1lf+Ey+Mem6MmW0zw1GL274+VrlseWh7EgYYf8DFeorXn/wj0e4tvC82u6io/tTX521C4YLjCsfkUe2PmA7bq9BFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNbkUAOqtf31rp1nJeXtzFbW0Q3SSyuFVR6kmuH8SfFCysdROieHLSXxBrzfKLW0OY4z6yOOAB3x+JXrWdY/DjVfFF5Hq3xE1D7cyt5kOkWrFLWE++D8x7foSwoAbP4/1/xncy6b8PNOBgRvLm1y+UrBGe+xSPmPTqPquOa2fDPww03Rrw6vq00mua85Dvf3nzbT/sKchcdjyR2wOK7S0tYLK3S2tYI4LeJQsccShVUegA4FT0AIOvTtS0UUAFFFFABRRRQAjfzry/4nSSeJfEGgeALZmC30ovNRKcbbaM5xn3IOP9pV9a9OlkSGNpZGCogLMzHAAAySa8x+F8T+JNZ17x9dRsP7SmNrp6sPuW0Zxx6ZIAPuh9aAPTokSKJY40CIoAVQMAD0Ap9IvfrS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFJketAC0ZqlqmqWOj2Ml7qN3Da20Yy8szhVH59z6V5tJ438TePJXs/AdgbPTt22TXr5CEx38pCDk+/PuF60Adj4t8c6D4Ntll1W8xMwzFaRfPNKewC5/U4Hv0rizp3jf4ljOpvL4W8NSdbOI/6ZcL33kj5AeeCPqG610fhX4a6R4cuDqVyZdW1yQ7pdRvjvk3eq5J2/UZPOMmu0UdTzz60AY3hzwto/hSwFno9hFbRnl2Ay8h9Wbqe/wBO2BW0KWigAooooAKKKKACiiigAoopD/k0Aee/F7V7iDwzB4e05lOp+IJxYQqT0RseYx9sEKT2312eh6Tb6FolnpVopEFpCsSZ6nA6n3PU+5rzzw//AMVp8YNV185fTPDqnT7Lj5WnOfMYfT5h9GU16kowKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAozjrSEgdSOK5bxd4+0LwhGsd7cNNfycQ2FsN88hPT5ewPqce3NAHU5B54rzrXvilD/aP9ieDrJvEOtHIxAf8AR4P9p3zjGe2QODkjjOYdA8Z/EnD+I5X8OeHX5XS7V/8ASJl9JWPQe2PT5cjNeh6F4d0nw3p62OkafFaW46hByx9Wbqx9yaAOH034ZXmuX0esfELUP7XvFOYdOiJW0ts9gvG48DPrjndwa9KgijgiWKKNY4kAVEVQFUegA6U8ZpaACiiigAooooAKKKKACiiigAooooAK5T4i+Jx4T8E6hqUbf6UV8i1UHlpn4XH0+9j0U11Rry7Xj/wmXxh0rQUJbTfDqDULwfwtOQPLQ9iQMEexb0oA6j4deGf+ET8E6fpsi4uinnXTdzM/Lc98cLn0UV1VNXvTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopkjKqMzkBVBJJ6Ae9AD8j1rO1rWdN0HT3v9WvIbS0TrJK2AT2AHUn2HNcNq3xQa+1JtE8C6edf1TOHnBxa2/B5Z+jdD0IB7HPFGjfC9r7UU1zx1f8A9vaqPmSBhi1t/ZU4DfiMdyM80AUW8V+LviEzW/gq1OkaISVbW71PnkHQmJPz5/Mqa6fwl8OdE8KObyJJL3VpctNqN4d8zseuD0UfTn1JxXXRIsaBEUKigKqjoAPSn0AIKWiigAooooAKKKKACiiigAooooAKKKKACiikNAGfr2rW2g6Fe6tdkeRaQtK4zgsAPuj3JwB7muN+EWkXEHhmfxDqCg6p4gna/mbHIRjmNfpglh/vVR+J8z+I9b0DwDbM2NRmF3qBTjbaxknH4kHHuoHevTYY0hiWKNQqIAqqowAB0AoAeKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiijOKACijNZmo+ItD0dwmp6zp9k56Lc3KRk/8AfRFAGnRVG31rS7u2jubfUrOaCVxHHLHOrKznooIOCT6VeoAKKKa30oAdRmvP9d+Id5ofi6z8Nf8ACONdXt6m+2MF4oVlyeuVG3AUn096nufiLFouq2lh4n0i80b7YxW3uneOaBiMcF1J2nkdRQB3NFNUYzTqACijNGaACkyCM54rL1/xDpPhvTWv9Xv4rS2X+Jzyx9FA5Y+wBrzsa94z+JIMfhqB/D3h9+Dq10v+kTL6xJ2+o/76BGKAOp8X/EbQ/CRFpLI99q0nyw6daDfM7HpkfwjkdfwBxiuXXwp4u+IbC48ZXTaRopYMmiWT4dx1HnPz6Djn6Ia67wl8P9B8Hq0ljbtNfPky31yd88hPX5j0B9BgevPNdQoxxjAoAoaPomm6BYJY6VYw2lsnSOJcZPqT1J4HJyTWgKWigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKZK6RRtJIwVFBLMegHc0+vPvi9rE9t4Wi0LTiDqmvTrYQLnorECRj7YO0/wC+KAM/4ZRN4l1/X/H86HbfzGz08MDxbR4GR6biBn3VvWvUBWdoGj23h/QbLSLQfubSFYlJHLYHLH3JyT9a0qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmt2p1I3agDy3xp4u1XUvGFt4B8KTeRfzANf36jJtIsZOO27ac591A5OR2fh/wlpHhu1CWForTEZmu5fmnnY8lmc8kk++OteU/As/2v4w8Ya/dc3bzKoLdQJHdmHt9xRj0Fe6qeOetAHDan4Fs5/iVoHiO1sY4TbJObto12iRtoEZOO4LMc9Tj2ruQMUtFABSGlrN8QatFoXh7UNWmwUs7d5sE43EA4H4nA/GgDyGy8Q6Le/H3WtX1fVLO0ttGt/sVp9pmVCZM7WK5POCZfzFSePHl+Ld3pWh+GIpZ9Lt7gy3mrMhWCP5cbVYj5yAT07kds1t/BXQ1i+Hp1C/iWa51i4lupjKoJZSdoBz2ON3/Aq5zRP+JF+0hdaPoAEWmXMRe8t4R+6RvJ3Zx2+faPYsRQB7jEuxAoJOABljk/jSv2Hc0ooIzQB5X4h+O3hvQNck0oWt9etbyGK5lhVQqEHBC5I3EEew96JvitdeJ2Gn/D3SJtSu3UGW8uozHb2uf72cZOAeMjpxu6V4X4p+G3ifRPEdxZjSNQu4pJ3FtcxwmXz13HaSVB+YjBI611fhnS5vCJi0rxpqXi7wul0/mQXNjqAS1diBwwVWw3TJyffGKAPWNC+FsJ1Bdb8Y3z+IdbOGDTj/AEeDviNOmAfXjvtBr0RQBnAxXnkHw1guYEng+IXjSWGRQ6SR60GVlPQghcEe9S/8Ks/6nzxx/wCDj/7GgD0CivP/APhVv/U+eOP/AAcf/Y0f8Ks/6nzxx/4N/wD7GgD0CivP/wDhVn/U+eOP/Bv/APY0f8Ks/wCp88cf+Df/AOxoA9Aorz//AIVZ/wBT544/8G//ANjR/wAKs/6nzxx/4N//ALGgD0CivP8A/hVn/U+eOP8Awb//AGNH/CrP+p88cf8Ag3/+xoA9Aorz/wD4VZ/1Pnjj/wAG/wD9jR/wqz/qfPHH/g3/APsaAPQKK8//AOFWf9T544/8G/8A9jR/wqz/AKnzxx/4N/8A7GgD0CivP/8AhVn/AFPnjj/wb/8A2NH/AAqz/qfPHH/g3/8AsaAPQKK8/wD+FWf9T544/wDBv/8AY0f8Ks/6nzxx/wCDf/7GgD0CivP/APhVn/U+eOP/AAb/AP2NH/CrP+p88cf+Dj/7GgDv2xx9a8u0T/is/jFqWtsC+meG0NhZjHytcnPmMO3HzD8UNZnjzwsvg3whe6wPHXjSS4RdltFJrBw8rcKCAuSByxAIOFNXPC3wd/s/w9arJ4q8U6fdzIs13BYagIYxMVG7gKeeAMk9hQB6wPSlrz//AIVZ/wBT544/8G//ANjR/wAKs/6nzxx/4N//ALGgD0CivP8A/hVn/U+eOP8Awb//AGNH/CrP+p88cf8Ag3/+xoA9Aorz/wD4VZ/1Pnjj/wAG/wD9jR/wqz/qfPHH/g3/APsaAPQKK8//AOFWf9T544/8G/8A9jR/wqz/AKnzxx/4N/8A7GgD0CivP/8AhVn/AFPnjj/wb/8A2NH/AAqz/qfPHH/g3/8AsaAPQKK8/wD+FWf9T544/wDBv/8AY0f8Ks/6nzxx/wCDf/7GgD0CivP/APhVn/U+eOP/AAb/AP2NH/CrP+p88cf+Df8A+xoA9Aorz/8A4VZ/1Pnjj/wb/wD2NH/CrP8AqfPHH/g3/wDsaAPQKK8//wCFWf8AU+eOP/Bv/wDY0f8ACrP+p88cf+Df/wCxoA7q6njtreSeZ1SKNS8jscBVAyST2FeTN+0N4VGr/ZhaagbPODd7FxnP9wnO3v6+1aup/CWS60q7t4/G/i+R5YHRUutU3xMSpADrtG5fUZGRXzm/w98YJrH9mHw5qAugfurESvrkOMrj3zigD7PtLmG8tYrq3kWWCZFkjdTwykZBH4Gpj29qxvCOky6D4R0nSp33zWtpHFIc8bgvIHtnpW1QB4qui618K/Huo6xp2lXWpeGNVOZ47FN8ts2SRhO4Us2O208nNd1B8QtJ1FQmmWWr310f+WEenSoQf9ppFVF9Mlq689R1ox/kUAUNIj1BYJJtSdftEzb/ACYzlIBjhFPG7HdsckntgDQpBS0AIQa5Dx14S1Txjo0ujwa1Dp9jMVMgFkZZGwQcbvMUYyB2rsKKAODtfCHi2y0K20i28ZW9vbW0KwRvBo4EgRV2jkykZwOuKv8Ag74f6V4ONxcW7z3eo3JzcX1026STnP0A/n3ziutooAQDFLRRQAh+maqajp1nqljLZX9pFdWsow8UyBlYfQ9885q5RQB5VP4G8R+B5nvfAF6ZrEtvl0K9cmM56mJyeD+R9zwK3/CfxK0jxNctps0cula5GSJdMvBskDAZIXON3fsDxyBXaMM1zXivwHoXjG3VNTtiLiP/AFF3Adk0J7bWHUexyPxxQB0wI9fxpa8lOr+NPhmduvRy+JvDq9NSgX/SrdcdZF/ixjqT9W6LXonh/wARaR4l05b7R7+K6tzwdh+ZD6Mp5U+xFAGtRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh5paz9b1W30PRbzVbtiLe0haV8dSAM4Hueg+tAHnviJj4x+L+keHU+fTdAUalfehmI/dKe2RkH3DP6V6iteefCPSblPDlz4k1Jf+Jn4hnN9KcciM/6tR/s4JYezY7V6GO9AC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAGm45zjmnUUAIKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAawzjjNeea78Lo11Btc8G3zeHtaGSTCP9Hn9pI+nX0GO+Ca9FpDQB5ppXxOn0nUU0Xx/p/8AYuoE7Y71ebS491f+HqPUepHQekxOsiB1cMrAEMOhHtVLV9G0/XdPew1Syhu7WT70cqg89iPQjJ5HI7V5xJ4U8XfDxjc+DLt9X0QEs+hXj5ZB1Pkt+J44+jmgD1eiuR8H/EPRPF262hd7PVY8ibTrobJoyOuAfvAeo9sgdK60EHmgBaKKKACiiigAooooAKKKKACiiigBDXmHxSlk8RatoHgG0dl/tOcXN+UOCltGcntxkg4PqgFemyusaF3YKigszE4AA7+1eY/DNW8T+JfEHj2ZT5d1N9h00MCNttHjkem4hc+hVvWgD02CNIYViiRUiQBUVRgADsBUlIvSloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmsM9s06igDkvF3w80Pxhie6ie11KPBh1G1OyZCOnP8AEB6Hp2wea5RPFHi74cult4zt21jQshU1uzTMkQ/6ap+XPXryx4r1imSxrIhR1DKwKlSMgg9jQBR0bWtN17T1v9KvYbu1fpJE2QD3BHUHkcHnmtDI9RXmus/DGfTtQfXPAWof2HqbHMlrj/RLgc8MnIXr2GB6DqHaD8UFTUV0TxpYHw9rPRTKf9Hn943zgfiSPc0Aek0U1SMdqdQAUUUUAFFFFABRRTW7UAcB8XtansfCcejaf82qa7Oun2yg4OH4c/TB2+xcGuu8PaNb+HvD9jo9qP3NnCsQOMbiOrH3JyT9a8/0gHxn8ZtR1ggtpfhmM2Nr6NctkSN+HzD8ENepDOTmgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEOeMVla74d0rxJpzWGr2EV3AegcZKn1VuCp9wa1qKAPJToXjP4Z/P4elk8R+G0PzaZcN/pNuvrE2OQMdMd/u9x2fhHx3oPjCBv7Nudl3GP31lONk0RHXK98HuMj3rpj2rjPFvw40nxPMuoRNLpmtw/NDqVkdsgbtuxjcPyPoRk0AdpRXlMXjXxJ4DnWx8e2Ru9Ozth12yQlSOAPNXHB55/QNya9L07UrLVbNLywuobm1kGVlhcMp/EUAW6KKKACuZ8f8AidPCPgzUNW3KJ0jMdup/ilbhRj26n2BrpW6V5Z4mP/CY/FzR/DS5bTtCUalf+jS8eUh/MH3DN6UAdP8ADbwyfCngixsJlIvZB9ovCfvGZ+Wz9Bhf+A11tIveloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAiuII7mFoZoklicFXRxlWB7Ed68z1L4a6j4cvZdZ+Heof2dOx3TaVOd1pcewB+6ev54BUV6jSGgDz/AMN/E+zvdR/sPxLayaBr64U210cRynpmNzwc9gfwLda79axvEnhXRvFlgbLWbCO5iGdjnh4z6q3Uf175Feezjxl8KYHnWeTxN4ThGWWZ9t1ZoO4J+8oH4cdEHNAHp2tapb6Lo15ql22ILSFppPXCjOB7nGB74riPhDpVyvh+78TakmNT8QTm8kGPuxZPlqPbBJHsw9K8c8afGe88Y2p0ZtOSy0WSaNpUjctM6K2du77vJAONvBHUivpvR7izu9GsrjT9v2KWBHt9owPLKgrx9MUAXRS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWV4k0WHxF4c1DSJyQl3A0W4dVJHDfgcH8K1aKAPlFfgP44Oq/YTb2ggHP2w3A8n8sb/APx2vp/RNMj0XQ7HS4mZ47SBIVZ+rbQBk/Wr+R60mQO4oAWijNFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUje/SlpDjHNAHjfx2jWSPw/YaeDFrWo36xxyxMVZkA2kHHbc6flXa/8K20BLNYoBqFrOiBVubbUJ45FOMbs7sZ+oI9q425/wCKs/aNghHz2nh2z8xgeV808/nudf8Avg+lew8etAHlfg3xTq2k/EK98AeIbw30kamTT751AkmTbu2OR1+XnPqrcnjHqi9PWvDblTrH7U1t9lyU063Bnde2Ij/WRVr3IUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVma5r2meHrB73VL2G1hRGb944BfAyQoz8x6cD1rTpCM4oA8F+DnirQIH8S6/rmtWNnqWp3xZoriYK2zlvlzyQS5HH90V6Hf/EGO9ia28IWFxrmotwjRwslrGT/E8rALjrwDk4/Gu3/MfjQBzQBxPw+8BHwlFeahqF0L7XtScyXt1jjJJO1fbJyT3P4Cu2FLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q==', '/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAVMBjwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKTIoAWik3DOM0tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVUutSs7Ke0guJ1jlu5PKgQ5zI2CxA/AGrdABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWdq2qQaRp0l3OGbbhUiTl5HJwqKO7FiAK0GdVBLEAAZJNcF9v1fV9bTWrfRDe6Rbqf7NLXaRBychpypyeRwv+ySR97AAKXwq1LU9dvfFmq6oy/aDqX2QIjEpEsQ4RT6DcTnuST1NelZFeYfAkmbwJd3zDDXuqT3B/HaP/AGU12HiPWNT0i1mn03RBqH2eFppd9yIAFAJwp2nLcHjge/NAHQZorM0HWIfEOg2Or26OkN3Csqq/3lyOhrToAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqC8vbaws5ru6mWK3gQySyMeFUDJJqbIrjdRhu/Gd+EsL8Wul6bcAmXylkF1cIegB42Rkde7j/Y5AOOWbUtU+Pfhy41HzIgunT3UNk3H2aNhIi7h/fbq3pkD+GvYwwPQ15JoEF4/7QWoi/vhfSWWihBN5QjxudGAwCR0dvzr0jWIdSuLMxaXdw2czthrqRPN8pMEkqhwC2cDkgDOecYIBp5FLXB+CtT8Qr4o8Q+HNevU1L+zhDLFfJAsW5ZFJ2sq/KDx/Ou8oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDmvFugav4hsTYWOsQ6day4+0A2hlaVQeU3eYuFYcHAyRnntWjqNhqFzo72lleW9rcvF5ZnNsXUZUg7UDjHPI5OMY5rUooA5LwF4RuvBWgro0mqQ3tpGztEy2phcFjk5PmMD36AVkfFd9csvDU2pWdzBJpdvtN9p5Qo9xCSA6iUHK8HkADjPXkH0GRWaNgjbWIIDYzg+tcjD4X1rUNN/szxRrltqll5qu/lWQgecK25VkIYrtyBkKoJxjOM5AOm09YI9OtktYRDbrEojiC42Lj5QB7dKt00Efd/SnUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSbgcYOc0AVr+wh1KzktbjzhFIMN5M7xN/30hBH51S0Pw3pvhzTf7N0qGWCzGSsRuJJNpYknaWYleSTxWtketLQBzNn4C8P2GvSa3bW90mpS/wCtuTqFwzSdMBsuQw4HB44HFamp6i9oI4bWIXF/PnyIM4Bx1Zj/AAoMjJ+gAJIB0q5TWPh34b13VJNS1KyuJruRVVnF9OowOgAVwAB6ADqfWgDQ0LS7fTorkidbq+nm33twMZeXA7c7Qo2hV7DHXqdus/SNGstB0uHTdMg8i0h3eXHuZsZYseWJJ5JPJ71oUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFch8Q/GsPgPww2qtbi4nkmEMEJfaHcgnkgcAKCf07119eZfGOGDXNI03wnDCJtY1W8T7Hn/lgEOZJT/shcj/gRx0oA5/4f/HX+3dXOneJo9P01XRnivBKYo8jBCMHJAyM87uwGOa9N/wCE78If9DXof/gxi/8Aiq4/4e/Buz8D6w+rzai2oXoRo4T5IjSMHGWxljuIyM5AwSMHrXp+KAMD/hO/CH/Q16H/AODGL/4qj/hO/CH/AENeh/8Agxi/+KrfxRigDA/4Tvwh/wBDXof/AIMYv/iqP+E78If9DXof/gxi/wDiq38UYoAwP+E78If9DXof/gxi/wDiqP8AhO/CH/Q16H/4MYv/AIqt/FGKAMD/AITvwh/0Neh/+DGL/wCKo/4Tvwh/0Neh/wDgxi/+KrfxRigDA/4Tvwh/0Neh/wDgxi/+Ko/4Tvwh/wBDXof/AIMYv/iq38UYoAwP+E78If8AQ16H/wCDGL/4qj/hO/CH/Q16H/4MYv8A4qt/FGKAMD/hO/CH/Q16H/4MYv8A4qj/AITvwh/0Neh/+DGL/wCKrfxRigDA/wCE78If9DXof/gxi/8Aiq47x/8AGPSfDOlQvoV1p2s39w7KqQ3QkSFQPvPsJ7kADIzk4PFeoYrj/iB8PbDx/pUFrdTyW1xbOz29wihipIwQQeqnCkgEH5RzQBzfwo+Ks/jy4utM1Kzht9Qt4vPV7ctslTdhuDnaRle5zk9MV6rXinw78LRfDT4iz6LqUguJdVsw2nX+3YG2HMsWMnDfdPXoo9a9qyPXpQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRmgCG5u4LK1murmVYoIY2lkdjgKoGST7ACvP/AIf2s/iLV7/x/fxlGvx9n0uFusNop4PsXbLf/Wam+O7ibxTr9j4AsZSsc+LvWZY2wYrVT9z2LnA9RxkEGvQre3jtbeK3gjWOGJAiIvAVRwAPYACgCaiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOU8feF5vEvh4/YHEWsWMi3enTcZSZOQMnoG6fke1WPBfiaLxZ4YttTVfKuDmK6gOQYJl4dCO2DyM84Iro68zvs+APiQmoqRH4f8SyCG6HRLe9/hf6PyCfXJPQUAemUUmRS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFY/iTxBaeF/D17rF8f3NrGX2jrIeAqj6kgfjWvkV5rqH/FffEeLS1+fQvDTie7PVZ7zokfvsGSffIPUGgDU+HOgXdhpdzrWsDOu63L9rvCf+WY/5ZxD2ReMdiT1wK7em4p1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWP4l8P2vijw/eaPej91cx7Q46o3VXHuDg/hWxRQBxXw68QXWo6TcaPrB265osn2S9BP3wB8ko9QyjOe5BNdrXnHjqGTwn4hsfH1lGxhi22msxIP9ZbEjEmO7Ice5GBkAV6HBcQ3MEc8EqSRSKHR0OQwIyCPqOaAJKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopu9cZyAPegDlvH3ieTwz4cZ7JDLq17ILTToQMmSd+F49B19OPerHgvwwvhPwzb6ZvM1ySZbuctuM0zcu5J5PPTPYDvXL+GAfHPjq58XS4fR9L32WjAj5ZGziWcfXG0e3YFa9LoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCvd2kF/ZzWd1EJbedGjkRuQykYINcD8Prufw9q1/4A1KVpJNPH2jS5nJJns2PAzjqh4P5Dha9GrhfiNol7LY2niXRlzrWhObmED/AJbxY/exHH95fxOMd6AO5yKWsvQtatPEOh2er2L7re6iEik9V9QfdSCD9K1KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArgfiRqt3NFZeD9Hk26trrGIuP+Xe2H+tkP4cD1ycciu1v7+20zT7i/vJVitreNpZHPRVUZJ/KuE+HVjcavdah461SEpeax8tnC/W3s1PyL7FvvHHB4OOcUAdrpGk2uh6RaaZYxeXbWsQijXqSB3PqT1Puav0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU3BzTqKAPM9EI8BfEKbw4+I9D15nu9MJOFhuBjzIR7HgjtyAMk16XuB71zPjjwu3irwzNZxSeTqELrc2M6tgxTpyhz27g+xNHgXxR/wlXhuK7mQw6hA5tr+AjBiuF4YEdvUexx1oA6eiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkzS1h+LPEdt4U8NXmsXI3CBf3cY6ySHhVHuTQByPjNm8Z+LLPwJbljYw7L3W3Xp5YIMcOfVjgnuBgjPNejRxLEioihUUYVV4AHbHpXI/Dzw5c6Hob3mqfPrmqyG81CQ9d7chPooOPTOccGuyoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvNdbX/hBPiFb+JE+XRNcZbPUwB8sM4/1Ux9Afuk9ue5FelVm69otr4h0K90i+TfbXUZjb1HoR7g4I9wKANHcPWlrhPhzrN9JZ3nhnWWB1vQnFtMx/wCW0RH7qUeoK4z345613dABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJuHrXmpz4++JuMF/D/AIXk5yPluL/+REY/EH1DVtfELxHcaHocVrpY8zXNUl+x6fGOvmN1f6KOc9M4zWn4R8MweEvDFno9sQ/kpmWXGDLIeWc/Uk/QY9KAN3FLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHnPxBtLjw/qlh8QNOjLS6aPI1OFOtxZsefqVPzDPHc/drv7W8t760hu7aVZYJ0WSORejKwyD+INLNAlxDJDNGHikUq6NyGB4IP4V574Flfwn4jvvAN45Num690aVznfbsSWjz6ofxIyeBigD0iikyKWgAooooAKKKKACiiigAooooAKKKa8iRozuyqqglmJwAPegBQwPelrL0HWrPxFpEWqWBLWsryLGzLjcEdk3fQ7SR7GtSgAprSIiM7uqooJZicAAdSTQ8iRoXdgqryWY4ArzPxr4jg8WGz8F+FtVgubjVXKXtzaSiQWlqv+sLFTwW+6AeucdxQBL4OVvGfi+88c3CE6fBusdERhj92OJJserHIHfGQelek1T07TrbStOt7CyhWG1t4xFEi9AoGB+PH9auUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcV8RdAu9R0m31jRwBruiyfa7Igcyf89IvcOvGO5A967Wm4NAGR4Y8QWnijw5ZazZnEV1GGKHqjdGU/Qgj8K2a8vinh+G3xAuLe5lS38MeIS1zFI7bY7S7Ay4JPCq4GR74A4BNej2Oo2Wp2iXVhdwXVu/3ZYJA6H6EcUAWaKKKACiopLiGJ4kklRXmYpGpOC7bS2B6nCk/QGpaACiiigAooooAQsB39q87+I9/LqXhvxBY2srJZWFjM99Ohxvl8slIAfrtZvQYH8Rx0niLWjZyWukWMsX9s6kSlqjn7igZeVh3VQCcfxHA7kjgPiV4atvDPwu1drfV9UfO391Nc7lkeSUbiwxySWZifagDsvhhai0+GXh6MD71mkn/ffz/+zV1u4DvWP4VhW28IaJbqQVjsIEBHIOI1rE8e+MLjw9p/2XSIVudYuHjhhVvuxGRtis3uTnA74J6A0AU/jJY6tqPw1vrfSEeWYyRNNDEhZ5Iw/IXHPXB+gNeE/BOC9f4qaebdjGIUma5ycfu9hBBHf5io9jz2r6yjR1iVXbe6gAtjG49zj3riPiNol5LZWnibRlzrehObmFR1mj/5axH2Zc+/GO9AHdZFLWXoOt2niLQrLV7F91vdRiRcHO31U47g5B9CK1KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiim71xnIA96APA/2k4b0x6DP5mbAGZCgOMS/KcnnnKjA9MH1qX9nPTtWt4dZu5opodNnWIQmRCFlcFuVPcAHnHXI9K6/wANZ8deOLnxfJ82kaWZLLRl52yN0lnHrnoD6DsRXpG3HQcUAOqOaeK3gknmkWOGNS7uxwqqOSSewFPyPWuM17+0vE1+dO0pbQ6dYzD7YbsN5dzIORCNvVVOC3qcL03CgDk4NU1HXvjrozXOYtPh0yW8s7YjDIrFow7g9HbrjsCo65r2CvJPDTahdfH7XJNT+zm4stIjhP2fdsG4o4xnnoTXqtzK8NtJJHF5jqMhNwXP4nigCXIpa53wb4jk8W+GbfWmsDZJcl/KiaXeSgYqCeB1weP1roqACiiigDJfwzocupDUZNF0574MGF01qhlBHQ7sZz71JqOgaRrBRtU0qxvmT7hubdJdv03A46mtKigDB1G2m8P+G7lfC+i273KgeRZwLHChYkDPVRwOeozjGa84M2qXnjXw5o8nhe/WS0mbVr43F1Azzt/qkmZlcjCsxIUc4ACjA49lrOh0Wzt9bu9XjjP227jjilctn5EztAHYZYmgDRpuDmnUUAeZ6L/xQfxDm8OufL0PXi13phPCw3A/1kI9AeGHboBkmvS9wPeua8b+GG8VeF57KN/J1CJhcWNwrbTFOnKMG6juCfQnvSeBvFH/AAlXhqK8mQw6hA7W1/ARgxXC8MCPyI9jjrQB09FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcD8R9Vu54rLwdo8m3VtcYxM4/5d7b/AJayH04yB6845Fdpf6ha6Zp9zfXkqxW1tG0srn+FVGSfyBrhvh1YXGrXV/461WIpeaxhbKJuttZj7i/8CxuPY8HgkigDtNI0m10PSLTS7GLy7a1iEUY6kgdz6k9T7mr9FFAFLULKW+spLeK9uLFnGPPttnmAexdWH6flVDw74bTw1oK6Ta395PEhYxy3BjaRSxJJyFAJySckHrW5RQByGleAINJ8U3viKLW9Wlvr3AuRMYCkqjGFIEQwOAOMHHepPiPqkmleA9Ukt8m7ni+y26jqZJTsXHv82fwrq65XxT4V1DxHfaTImqwW1pp14l6LdrMyebIn3dzeYOBk9qANnQ9Kj0TQNP0uH7lpbpCDjrtAGfxxn8a0aQZwM9aWgAooooAKKKKACiiigAooooAK811zPgT4hweJE40TXSlnqmBhYJx/qpj6A/dPpzzk16VWbrui2niHQrzSL5N9tdxGN8dR6Ee4OCPcCgDR3DOM80tcJ8NtYvXsrzwxrT7tb0KQW8zH/ltER+6lHqCv48DPJru6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApM0tYfizxJbeFPDV5q9zhvJXEUfeWQ8Kg9yf8aAOR8ZO/jTxZZ+BLdj9gh2X2tuv/ADzBBjhz6scE98YIzgivRUiWONY0VVRQAqqMAD29PTFcl8PPDlzoehveap8+uarIbzUJD13tyE+ig49M5xwa7KgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDzn4hWtx4f1Ox8f6bEWl00eRqcKdbizZufqVPzDPHc/drv7W8t760hu7aVZYJ0WSORejKwyD+INLNAlxDJDNGHikUq6NyGB4IP4V574Flfwn4jvvAV4xNvHuvNGlc/ft2JLR59UJ6dSMngYoA9IopMiloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooATcPWvNcHx98TOm7w/4XkwePluL/ANPcRg/gfUNW18QvEdxoehxWuljzNc1SX7Hp8Y6+Y3V/oo5z0zjNafhLwzB4S8MWejWuH8lP3suMGWQ8s5+pz9Bj0oA3cUtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXFfEXQLvUdIg1jRxt17RpPtdicZ8wf8tIjjqHXjHcgds12tNwaAMjwx4gtPFHhyy1mzOIrqMMUPVG6Mp+hBH4Vs15pZL/AMID8SH07lPD/iaQzW3923vf409g4wR74AGATXpW4etAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTWkREZ3dVRQSzE4AA6kmlyK89+I19dapcWHgXSZmjvdY+a7lTn7NZA/Ox/3sFQO/I70AQ+Dlbxn4vvPHNwhOnwbrHREYY/djiSbHqxyB3xkHpXpNU9O0620rTrewsoVhtbeMRRIvQKBgfjx/WrlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAc94z8Mx+LPDF1pbN5c5xJbT55imXlHz1GD1x2Jqn4B8TS+JfDo+3L5Wr2MrWeoRdCkycE/Q8H9O1dbXmvioN4H8b2vjGEFdI1Ix2WtKoOIz0in/AnB9uMEtQB6VRSBlYZByPUc0tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSZHr1oAo6vqtromkXeqX0gjtbWNpJGz0A7D3PTHc8Vx/w40q8njvvGOrpt1bXGEixsOba2H+riH4YJ/DIyKp+KCfHHjm18HxHOkaYUvdZYH5ZDnMVufXP3iPTpytekhQowBgDpjtQA6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqGraVa61pd1pl9EJbS5iaKRfYjsex7g9iM1fooA8/+G+pXVqt74L1iTfqmhkJHKwx9ptT/AKuQfQfKeuOM85r0DNee/EWwutMnsPHGlRF77RiftUS8G4s2/wBYv1Ucj056mu307UbXVNOtr+zmWW2uYxLE47qRkGgC3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXO+NPE0XhTwzcakV8254itbcZzPM33EA788nHOAa6HI9a80sAfH3xHfUyRJ4f8ADUjQWo6rcXn8cnuEGAD64I6mgDofAXhibw14dAv383WL2RrvUZzjLzPyRkdh0444JxzXV0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEbxiRWV1DKwIIPIIPbFec+D2fwX4wvPA1yx/s64DX2iO3ZCSZIMnupywHpknrXpIYHpXl3xwvLXS/CVlqoYx6vaX8b6bKn3lkzlgf9kqpyPXFAHqWaK8G8FftALd3ssHi9LWygKM0d3bRyEA5GEKDcemfmz2Hua7n/AIXb8PP+hh/8krj/AON0AegUV5//AMLt+Hn/AEMP/klcf/G6P+F2/Dz/AKGH/wAkrj/43QB6BRXn/wDwu34ef9DD/wCSVx/8bo/4Xb8PP+hh/wDJK4/+N0AegUV5/wD8Lt+Hn/Qw/wDklcf/ABuj/hdvw8/6GH/ySuP/AI3QB6BRXn//AAu34ef9DD/5JXH/AMbo/wCF2/Dz/oYf/JK4/wDjdAHoFFef/wDC7fh5/wBDD/5JXH/xuj/hdvw8/wChh/8AJK4/+N0AegUV5/8A8Lt+Hn/Qw/8Aklcf/G6P+F2/Dz/oYf8AySuP/jdAHoFFef8A/C7fh5/0MP8A5JXH/wAbo/4Xb8PP+hh/8krj/wCN0AegUmRXAf8AC7fh5/0MP/klcf8Axuud8XfHrQtP0lW8LSx6nfu+0rLFLGkS4J3HKqW5xwCOp54oA6z4ieILrTtJt9F0fnXdakNpZKDzGMfPKfQKp69iQexre8NeH7Xwv4fs9Hsl/c20e3eeC7dWc+5OT+NeQ/CLxY/jn4galqmuqjatBYIlkkakRQxbsSFQScMSyc/7TDgcV7tQAUUZpNw9RQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJkUZFYXijXJNF00fY7d7rU7glLS2jUszHuxA/hUck/QdSMgHJ/EXxlc2Gp6P4c0lmE9/qNvbXVyn/LBHYHYD/eYc+y/7wrqfGHhCw8aeHpNI1FpEjLiSOWLG+Nh0IyCOhIPHQkV5hrBjl8cfD/SUtNQhkS/mu7ia+hEb3Mo2sXOOpyD9MgdK9uLqASTgDuaAPNfh/wDB3T/A2rPq0moS6jfhGjiZohGkanHIGSd2ARnIGCRivS8Vzei/EDwr4i1L+ztI1iK7u9pfy0jf7o6nJGK6WgBMUYpaKAExRilooATFGKWigBMUYpaKAExRilooATFGKWigBMUYpaKAExXI+Pfh9p/j7SoLW9mlt57ZzJb3EYBKEjBBB6qeCRxnaORXX0UAcD8OvhbYfD/7RcR3kl9f3KCOSZ0CKqg5wgGSMnGck52jpXfUUmRQBU1LUbbStOnvrpysMK5OBkk9AoHUkkgADkkgDmuL+GPiLUfFa+IdVvw8ajU2toLfcCIUjRfl44J+bk9zSXHiBNT14X0ml6ndaNpxLWb29vvinlGd0xJIBVeQnbOW/ukU/gSjH4dG6cYe7v55mz65A/8AZaAPTaKr3t/Z6baSXV9dQ21vGMvLM4RVHuTTbHULfUbYXFv5vlk4BkheMnjPAYA4569KALVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBDMJRGzQojygHYHbaCfQnBwPwrm/Dul+II9d1LU/EEemmSfbHam0neQwQj/lnho16nLFs8nHHAx1VFAHneteF/FGo/EvRvE0MOkCz0uOSNIHvJBJLvVlLEiIhfvDjnp15rrfEGnXer+G73TbO8SyuLqExiYx+YEDcNxxnjIz75rXrA1XWNY0/WLa3tvDlzqNhLGS9zbXESvG+cBSjsvGOc7vwoAxfAesapdXms6Fr1taLqmkPGj3Fom2O4jkUsjAduF5H0ruaw9D0eW0vNS1W8VFv9SkRpFRtwjjRdsaZ74GST6se2K3KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5fxfYeJdSsRp+hjT44JSouZbi5kjkMefnRNsbYLDjdnIyeM4NdRRQBiavZ6ifDkljo9rYx3D25gRZZmjjh+TaNpVCSB6YHTtWT8N/Dur+E/CNroWqJYt9lL7JrWdn37nZ+QyLj72O/SuxooA8c/tDVvE+o6r40Wytr7RNDkkTTLCadoxK0X35+FIL8HaT06YzzXqOhavba9oVjqtoHEF3CsqK/DKCOh9x/+quItfD+t6X8O28GafZMtwwmtRfM6+SsLu5M3Xdnax+XGd3t81dzoukwaFollpVruMNpAsKFurBRjJ9+KANCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACk9KWk9KAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAE7ZpaT+GloAKKKKACiiigAooooAKKKKACiiigD//Z'] Multimodal Competition True Theorem proof Combinatorics Math English 32 "This Question involves one Robber and one or more Cops. After robbing a bank, the Robber retreats to a network of hideouts, represented by dots in the diagram below. Every day, the Robber stays holed up in a single hideout, and every night, the Robber moves to an adjacent hideout. Two hideouts are adjacent if and only if they are connected by an edge in the diagram, also called a hideout map (or map). For the purposes of this Power Question, the map must be connected; that is, given any two hideouts, there must be a path from one to the other. To clarify, the Robber may not stay in the same hideout for two consecutive days, although he may return to a hideout he has previously visited. For example, in the map below, if the Robber holes up in hideout $C$ for day 1 , then he would have to move to $B$ for day 2 , and would then have to move to either $A, C$, or $D$ on day 3. Every day, each Cop searches one hideout: the Cops know the location of all hideouts and which hideouts are adjacent to which. Cops are thorough searchers, so if the Robber is present in the hideout searched, he is found and arrested. If the Robber is not present in the hideout searched, his location is not revealed. That is, the Cops only know that the Robber was not caught at any of the hideouts searched; they get no specific information (other than what they can derive by logic) about what hideout he was in. Cops are not constrained by edges on the map: a Cop may search any hideout on any day, regardless of whether it is adjacent to the hideout searched the previous day. A Cop may search the same hideout on consecutive days, and multiple Cops may search different hideouts on the same day. In the map above, a Cop could search $A$ on day 1 and day 2, and then search $C$ on day 3 . The focus of this Power Question is to determine, given a hideout map and a fixed number of Cops, whether the Cops can be sure of catching the Robber within some time limit. Map Notation: The following notation may be useful when writing your solutions. For a map $M$, let $h(M)$ be the number of hideouts and $e(M)$ be the number of edges in $M$. The safety of a hideout $H$ is the number of hideouts adjacent to $H$, and is denoted by $s(H)$. The Cop number of a map $M$, denoted $C(M)$, is the minimum number of Cops required to guarantee that the Robber is caught. The police want to catch the Robber with a minimum number of Cops, but time is of the essence. For a map $M$ and a fixed number of Cops $c \geq C(M)$, define the capture time, denoted $D(M, c)$, to be the minimum number of days required to guarantee a capture using $c$ Cops. For example, in the graph below, if three Cops are deployed, they might catch the Robber in the first day, but if they don't, there is a strategy that will guarantee they will capture the Robber within two days. Therefore the capture time is $D\left(\mathcal{C}_{6}, 3\right)=2$. Definition: A map is bipartite if it can be partitioned into two sets of hideouts, $\mathcal{A}$ and $\mathcal{B}$, such that $\mathcal{A} \cap \mathcal{B}=\emptyset$, and each hideout in $\mathcal{A}$ is adjacent only to hideouts in $\mathcal{B}$, and each hideout in $\mathcal{B}$ is adjacent only to hideouts in $\mathcal{A}$. Prove that if $M$ is bipartite, then $C(M) \leq n / 2$." ['Suppose $M$ is bipartite, and let $\\mathcal{A}$ and $\\mathcal{B}$ be the sets of hideouts referenced in the definition. Because $\\mathcal{A}$ and $\\mathcal{B}$ are disjoint, either $|\\mathcal{A}| \\leq n / 2$ or $|\\mathcal{B}| \\leq n / 2$ or both. Without loss of generality, suppose that $|\\mathcal{A}| \\leq n / 2$. Then position Cops at each hideout in $\\mathcal{A}$ for two days. If the Robber was initially on a hideout in $\\mathcal{B}$, he must move the following day, and because no hideout in $\\mathcal{B}$ is connected to any other hideout in $\\mathcal{B}$, his new hideout must be a hideout in $\\mathcal{A}$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAVABvwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ0ALketFcB8SfHg8MJYaTp7q2t6nMkcI4PkozbTIR+YHqc9dpFd6p60AOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKADNZevazDoeltdvG88pYR29vGfnnlY4VF+p79hkngGr9xNFbQPNPKkUUalndyAqgckknoK4e10aPx7NH4hvpr23sUz/ZEdrcvA6xkENOxUg7pAeB2QjuxoA4Txpo0sHjzwDDfSrPqt/qZu9QkXpkPFtRc9EUAqPpnqa93HrXh2q6RBZ/tDeE9Ohur64SO3e4Y3l5JcFW2ytgF2JH3BwPY969xHpQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBka/4a0zxNaC01WKea2/iiS5liV84+8EYbunfOOam0nRbPRNLj02wWaO0jXaiPcSSlBjAAZ2LADsAcDtWjRQByEnw18Ly6wusPZXjakhyt2dSufMHUcN5mQME8V1cMYhiWNd21VABZix4Hcnk/U81JRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUZxQAUhpayte8Q6V4b0832rX8NpAM4MjcuQM4UDlj7AE+1AGdrnj/wr4dv0stV1u2t7pmCmLl2Qn+8FB2jnqcVv2V5a6haR3Vlcw3NvIMpLC4dGHsRwa+GdbvLjUNbvb+5dnlupmnMhTZu3HcGC9gc8Dng19N/ACC+h+GwN3kQyXcjWgJziPCg49t4c/iT3oA9SooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoozjrSHrjPNAC1FPNFDA00sqRxICzOzbQoHcnoB9a43xZ8S9H8NXK6dbpLqutyHEWm2Q3yFvRsZ2/z9AeawI/BHifx5NHd+Pb37JpobdHoVhIQvsZXycnj178FelAFjUvibd63fSaL8PdN/ti8XCy6jKNtpBnuTxu4Deg443dKl0f4Z20F03iLxtqJ17V1Uu0lyP9GtgOSEQ8YHPJGO4VTXeaXpdjo9hHZadZw2ltGPlihQKo98Dv79TXE/FzU518OWvhzTiP7S8Q3C2MXP3YyR5jH/AGcEA+zUAY/w60a08Z3+seOtY06C5F/d7NNS6hV/JhiO1WUEHaeAD7oT3r1lRgYwAOwFUtF0u20PRbLS7QYgtIViTjkgDGT7nqav0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVBdXVvZ28lzczxwwRqWeSRwqqB1JJ4FeaXvxH1bxPeyaV8OtN+3Mh2TatdKVtYPp/ePOf5Bh0AO58R+KdF8K2H2zWNQitYyDtUnLyeyqOSenQV5+b/AMb/ABLUDSo5fC/ht/8Al8lH+mXC/wCwB9wHjkH6MeRWz4d+F9nY6ida8R3UniDXWIJubsZji74jQ5AA7enbHSu/Xvnv7UAc14V8CaD4Ot/L0q0/fsMTXc2Glm9dzY/HAAFdIoxTqKAEbpj+VeW+HR/wmfxe1bxGT5mm6Cv9nWBxwZj/AK1x24ywz3DKe1dP8R/Ev/CK+Cb6/ifF46/Z7QDk+c4wuB3IGWx6A1L8PvDI8J+C9P0tlAuQnm3R67pn+Zue+M7QfRRQB0wz3paKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiuf8U+MdD8I2YuNXvo4WIJjhX5pZP91ByfTPT1IoA3zziuE8UfE3S9GvP7J0u3l1zXWO1bCy+faeh3sMhcenJ9h1rB/4rr4m9PN8KeGX/wDA25T9NoI+nX+MV3XhfwZofg+y+zaPYpESB5kzfNJIfVmxnueBwM8AUAcXb/D/AMQeMriPUPiJqG6BW3xaHZOVgjPYuwOWI56HP+1jivS7CxtdNso7Oytora2iXEcMSBVUewHFWBS0AFFFFABSNnHFLWb4g1i28P6BfatdnEFpC0rDOC2Bwo9ycAe5oA8/1lf+Ey+Mem6MmW0zw1GL274+VrlseWh7EgYYf8DFeorXn/wj0e4tvC82u6io/tTX521C4YLjCsfkUe2PmA7bq9BFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNbkUAOqtf31rp1nJeXtzFbW0Q3SSyuFVR6kmuH8SfFCysdROieHLSXxBrzfKLW0OY4z6yOOAB3x+JXrWdY/DjVfFF5Hq3xE1D7cyt5kOkWrFLWE++D8x7foSwoAbP4/1/xncy6b8PNOBgRvLm1y+UrBGe+xSPmPTqPquOa2fDPww03Rrw6vq00mua85Dvf3nzbT/sKchcdjyR2wOK7S0tYLK3S2tYI4LeJQsccShVUegA4FT0AIOvTtS0UUAFFFFABRRRQAjfzry/4nSSeJfEGgeALZmC30ovNRKcbbaM5xn3IOP9pV9a9OlkSGNpZGCogLMzHAAAySa8x+F8T+JNZ17x9dRsP7SmNrp6sPuW0Zxx6ZIAPuh9aAPTokSKJY40CIoAVQMAD0Ap9IvfrS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFJketAC0ZqlqmqWOj2Ml7qN3Da20Yy8szhVH59z6V5tJ438TePJXs/AdgbPTt22TXr5CEx38pCDk+/PuF60Adj4t8c6D4Ntll1W8xMwzFaRfPNKewC5/U4Hv0rizp3jf4ljOpvL4W8NSdbOI/6ZcL33kj5AeeCPqG610fhX4a6R4cuDqVyZdW1yQ7pdRvjvk3eq5J2/UZPOMmu0UdTzz60AY3hzwto/hSwFno9hFbRnl2Ay8h9Wbqe/wBO2BW0KWigAooooAKKKKACiiigAoopD/k0Aee/F7V7iDwzB4e05lOp+IJxYQqT0RseYx9sEKT2312eh6Tb6FolnpVopEFpCsSZ6nA6n3PU+5rzzw//AMVp8YNV185fTPDqnT7Lj5WnOfMYfT5h9GU16kowKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAozjrSEgdSOK5bxd4+0LwhGsd7cNNfycQ2FsN88hPT5ewPqce3NAHU5B54rzrXvilD/aP9ieDrJvEOtHIxAf8AR4P9p3zjGe2QODkjjOYdA8Z/EnD+I5X8OeHX5XS7V/8ASJl9JWPQe2PT5cjNeh6F4d0nw3p62OkafFaW46hByx9Wbqx9yaAOH034ZXmuX0esfELUP7XvFOYdOiJW0ts9gvG48DPrjndwa9KgijgiWKKNY4kAVEVQFUegA6U8ZpaACiiigAooooAKKKKACiiigAooooAK5T4i+Jx4T8E6hqUbf6UV8i1UHlpn4XH0+9j0U11Rry7Xj/wmXxh0rQUJbTfDqDULwfwtOQPLQ9iQMEexb0oA6j4deGf+ET8E6fpsi4uinnXTdzM/Lc98cLn0UV1VNXvTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopkjKqMzkBVBJJ6Ae9AD8j1rO1rWdN0HT3v9WvIbS0TrJK2AT2AHUn2HNcNq3xQa+1JtE8C6edf1TOHnBxa2/B5Z+jdD0IB7HPFGjfC9r7UU1zx1f8A9vaqPmSBhi1t/ZU4DfiMdyM80AUW8V+LviEzW/gq1OkaISVbW71PnkHQmJPz5/Mqa6fwl8OdE8KObyJJL3VpctNqN4d8zseuD0UfTn1JxXXRIsaBEUKigKqjoAPSn0AIKWiigAooooAKKKKACiiigAooooAKKKKACiikNAGfr2rW2g6Fe6tdkeRaQtK4zgsAPuj3JwB7muN+EWkXEHhmfxDqCg6p4gna/mbHIRjmNfpglh/vVR+J8z+I9b0DwDbM2NRmF3qBTjbaxknH4kHHuoHevTYY0hiWKNQqIAqqowAB0AoAeKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiijOKACijNZmo+ItD0dwmp6zp9k56Lc3KRk/8AfRFAGnRVG31rS7u2jubfUrOaCVxHHLHOrKznooIOCT6VeoAKKKa30oAdRmvP9d+Id5ofi6z8Nf8ACONdXt6m+2MF4oVlyeuVG3AUn096nufiLFouq2lh4n0i80b7YxW3uneOaBiMcF1J2nkdRQB3NFNUYzTqACijNGaACkyCM54rL1/xDpPhvTWv9Xv4rS2X+Jzyx9FA5Y+wBrzsa94z+JIMfhqB/D3h9+Dq10v+kTL6xJ2+o/76BGKAOp8X/EbQ/CRFpLI99q0nyw6daDfM7HpkfwjkdfwBxiuXXwp4u+IbC48ZXTaRopYMmiWT4dx1HnPz6Djn6Ia67wl8P9B8Hq0ljbtNfPky31yd88hPX5j0B9BgevPNdQoxxjAoAoaPomm6BYJY6VYw2lsnSOJcZPqT1J4HJyTWgKWigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKZK6RRtJIwVFBLMegHc0+vPvi9rE9t4Wi0LTiDqmvTrYQLnorECRj7YO0/wC+KAM/4ZRN4l1/X/H86HbfzGz08MDxbR4GR6biBn3VvWvUBWdoGj23h/QbLSLQfubSFYlJHLYHLH3JyT9a0qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmt2p1I3agDy3xp4u1XUvGFt4B8KTeRfzANf36jJtIsZOO27ac591A5OR2fh/wlpHhu1CWForTEZmu5fmnnY8lmc8kk++OteU/As/2v4w8Ya/dc3bzKoLdQJHdmHt9xRj0Fe6qeOetAHDan4Fs5/iVoHiO1sY4TbJObto12iRtoEZOO4LMc9Tj2ruQMUtFABSGlrN8QatFoXh7UNWmwUs7d5sE43EA4H4nA/GgDyGy8Q6Le/H3WtX1fVLO0ttGt/sVp9pmVCZM7WK5POCZfzFSePHl+Ld3pWh+GIpZ9Lt7gy3mrMhWCP5cbVYj5yAT07kds1t/BXQ1i+Hp1C/iWa51i4lupjKoJZSdoBz2ON3/Aq5zRP+JF+0hdaPoAEWmXMRe8t4R+6RvJ3Zx2+faPYsRQB7jEuxAoJOABljk/jSv2Hc0ooIzQB5X4h+O3hvQNck0oWt9etbyGK5lhVQqEHBC5I3EEew96JvitdeJ2Gn/D3SJtSu3UGW8uozHb2uf72cZOAeMjpxu6V4X4p+G3ifRPEdxZjSNQu4pJ3FtcxwmXz13HaSVB+YjBI611fhnS5vCJi0rxpqXi7wul0/mQXNjqAS1diBwwVWw3TJyffGKAPWNC+FsJ1Bdb8Y3z+IdbOGDTj/AEeDviNOmAfXjvtBr0RQBnAxXnkHw1guYEng+IXjSWGRQ6SR60GVlPQghcEe9S/8Ks/6nzxx/wCDj/7GgD0CivP/APhVv/U+eOP/AAcf/Y0f8Ks/6nzxx/4N/wD7GgD0CivP/wDhVn/U+eOP/Bv/APY0f8Ks/wCp88cf+Df/AOxoA9Aorz//AIVZ/wBT544/8G//ANjR/wAKs/6nzxx/4N//ALGgD0CivP8A/hVn/U+eOP8Awb//AGNH/CrP+p88cf8Ag3/+xoA9Aorz/wD4VZ/1Pnjj/wAG/wD9jR/wqz/qfPHH/g3/APsaAPQKK8//AOFWf9T544/8G/8A9jR/wqz/AKnzxx/4N/8A7GgD0CivP/8AhVn/AFPnjj/wb/8A2NH/AAqz/qfPHH/g3/8AsaAPQKK8/wD+FWf9T544/wDBv/8AY0f8Ks/6nzxx/wCDf/7GgD0CivP/APhVn/U+eOP/AAb/AP2NH/CrP+p88cf+Dj/7GgDv2xx9a8u0T/is/jFqWtsC+meG0NhZjHytcnPmMO3HzD8UNZnjzwsvg3whe6wPHXjSS4RdltFJrBw8rcKCAuSByxAIOFNXPC3wd/s/w9arJ4q8U6fdzIs13BYagIYxMVG7gKeeAMk9hQB6wPSlrz//AIVZ/wBT544/8G//ANjR/wAKs/6nzxx/4N//ALGgD0CivP8A/hVn/U+eOP8Awb//AGNH/CrP+p88cf8Ag3/+xoA9Aorz/wD4VZ/1Pnjj/wAG/wD9jR/wqz/qfPHH/g3/APsaAPQKK8//AOFWf9T544/8G/8A9jR/wqz/AKnzxx/4N/8A7GgD0CivP/8AhVn/AFPnjj/wb/8A2NH/AAqz/qfPHH/g3/8AsaAPQKK8/wD+FWf9T544/wDBv/8AY0f8Ks/6nzxx/wCDf/7GgD0CivP/APhVn/U+eOP/AAb/AP2NH/CrP+p88cf+Df8A+xoA9Aorz/8A4VZ/1Pnjj/wb/wD2NH/CrP8AqfPHH/g3/wDsaAPQKK8//wCFWf8AU+eOP/Bv/wDY0f8ACrP+p88cf+Df/wCxoA7q6njtreSeZ1SKNS8jscBVAyST2FeTN+0N4VGr/ZhaagbPODd7FxnP9wnO3v6+1aup/CWS60q7t4/G/i+R5YHRUutU3xMSpADrtG5fUZGRXzm/w98YJrH9mHw5qAugfurESvrkOMrj3zigD7PtLmG8tYrq3kWWCZFkjdTwykZBH4Gpj29qxvCOky6D4R0nSp33zWtpHFIc8bgvIHtnpW1QB4qui618K/Huo6xp2lXWpeGNVOZ47FN8ts2SRhO4Us2O208nNd1B8QtJ1FQmmWWr310f+WEenSoQf9ppFVF9Mlq689R1ox/kUAUNIj1BYJJtSdftEzb/ACYzlIBjhFPG7HdsckntgDQpBS0AIQa5Dx14S1Txjo0ujwa1Dp9jMVMgFkZZGwQcbvMUYyB2rsKKAODtfCHi2y0K20i28ZW9vbW0KwRvBo4EgRV2jkykZwOuKv8Ag74f6V4ONxcW7z3eo3JzcX1026STnP0A/n3ziutooAQDFLRRQAh+maqajp1nqljLZX9pFdWsow8UyBlYfQ9885q5RQB5VP4G8R+B5nvfAF6ZrEtvl0K9cmM56mJyeD+R9zwK3/CfxK0jxNctps0cula5GSJdMvBskDAZIXON3fsDxyBXaMM1zXivwHoXjG3VNTtiLiP/AFF3Adk0J7bWHUexyPxxQB0wI9fxpa8lOr+NPhmduvRy+JvDq9NSgX/SrdcdZF/ixjqT9W6LXonh/wARaR4l05b7R7+K6tzwdh+ZD6Mp5U+xFAGtRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh5paz9b1W30PRbzVbtiLe0haV8dSAM4Hueg+tAHnviJj4x+L+keHU+fTdAUalfehmI/dKe2RkH3DP6V6iteefCPSblPDlz4k1Jf+Jn4hnN9KcciM/6tR/s4JYezY7V6GO9AC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAGm45zjmnUUAIKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAawzjjNeea78Lo11Btc8G3zeHtaGSTCP9Hn9pI+nX0GO+Ca9FpDQB5ppXxOn0nUU0Xx/p/8AYuoE7Y71ebS491f+HqPUepHQekxOsiB1cMrAEMOhHtVLV9G0/XdPew1Syhu7WT70cqg89iPQjJ5HI7V5xJ4U8XfDxjc+DLt9X0QEs+hXj5ZB1Pkt+J44+jmgD1eiuR8H/EPRPF262hd7PVY8ibTrobJoyOuAfvAeo9sgdK60EHmgBaKKKACiiigAooooAKKKKACiiigBDXmHxSlk8RatoHgG0dl/tOcXN+UOCltGcntxkg4PqgFemyusaF3YKigszE4AA7+1eY/DNW8T+JfEHj2ZT5d1N9h00MCNttHjkem4hc+hVvWgD02CNIYViiRUiQBUVRgADsBUlIvSloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmsM9s06igDkvF3w80Pxhie6ie11KPBh1G1OyZCOnP8AEB6Hp2wea5RPFHi74cult4zt21jQshU1uzTMkQ/6ap+XPXryx4r1imSxrIhR1DKwKlSMgg9jQBR0bWtN17T1v9KvYbu1fpJE2QD3BHUHkcHnmtDI9RXmus/DGfTtQfXPAWof2HqbHMlrj/RLgc8MnIXr2GB6DqHaD8UFTUV0TxpYHw9rPRTKf9Hn943zgfiSPc0Aek0U1SMdqdQAUUUUAFFFFABRRTW7UAcB8XtansfCcejaf82qa7Oun2yg4OH4c/TB2+xcGuu8PaNb+HvD9jo9qP3NnCsQOMbiOrH3JyT9a8/0gHxn8ZtR1ggtpfhmM2Nr6NctkSN+HzD8ENepDOTmgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEOeMVla74d0rxJpzWGr2EV3AegcZKn1VuCp9wa1qKAPJToXjP4Z/P4elk8R+G0PzaZcN/pNuvrE2OQMdMd/u9x2fhHx3oPjCBv7Nudl3GP31lONk0RHXK98HuMj3rpj2rjPFvw40nxPMuoRNLpmtw/NDqVkdsgbtuxjcPyPoRk0AdpRXlMXjXxJ4DnWx8e2Ru9Ozth12yQlSOAPNXHB55/QNya9L07UrLVbNLywuobm1kGVlhcMp/EUAW6KKKACuZ8f8AidPCPgzUNW3KJ0jMdup/ilbhRj26n2BrpW6V5Z4mP/CY/FzR/DS5bTtCUalf+jS8eUh/MH3DN6UAdP8ADbwyfCngixsJlIvZB9ovCfvGZ+Wz9Bhf+A11tIveloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAiuII7mFoZoklicFXRxlWB7Ed68z1L4a6j4cvZdZ+Heof2dOx3TaVOd1pcewB+6ev54BUV6jSGgDz/AMN/E+zvdR/sPxLayaBr64U210cRynpmNzwc9gfwLda79axvEnhXRvFlgbLWbCO5iGdjnh4z6q3Uf175Feezjxl8KYHnWeTxN4ThGWWZ9t1ZoO4J+8oH4cdEHNAHp2tapb6Lo15ql22ILSFppPXCjOB7nGB74riPhDpVyvh+78TakmNT8QTm8kGPuxZPlqPbBJHsw9K8c8afGe88Y2p0ZtOSy0WSaNpUjctM6K2du77vJAONvBHUivpvR7izu9GsrjT9v2KWBHt9owPLKgrx9MUAXRS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWV4k0WHxF4c1DSJyQl3A0W4dVJHDfgcH8K1aKAPlFfgP44Oq/YTb2ggHP2w3A8n8sb/APx2vp/RNMj0XQ7HS4mZ47SBIVZ+rbQBk/Wr+R60mQO4oAWijNFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUje/SlpDjHNAHjfx2jWSPw/YaeDFrWo36xxyxMVZkA2kHHbc6flXa/8K20BLNYoBqFrOiBVubbUJ45FOMbs7sZ+oI9q425/wCKs/aNghHz2nh2z8xgeV808/nudf8Avg+lew8etAHlfg3xTq2k/EK98AeIbw30kamTT751AkmTbu2OR1+XnPqrcnjHqi9PWvDblTrH7U1t9lyU063Bnde2Ij/WRVr3IUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVma5r2meHrB73VL2G1hRGb944BfAyQoz8x6cD1rTpCM4oA8F+DnirQIH8S6/rmtWNnqWp3xZoriYK2zlvlzyQS5HH90V6Hf/EGO9ia28IWFxrmotwjRwslrGT/E8rALjrwDk4/Gu3/MfjQBzQBxPw+8BHwlFeahqF0L7XtScyXt1jjJJO1fbJyT3P4Cu2FLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q==', '/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAVMBjwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKTIoAWik3DOM0tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVUutSs7Ke0guJ1jlu5PKgQ5zI2CxA/AGrdABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWdq2qQaRp0l3OGbbhUiTl5HJwqKO7FiAK0GdVBLEAAZJNcF9v1fV9bTWrfRDe6Rbqf7NLXaRBychpypyeRwv+ySR97AAKXwq1LU9dvfFmq6oy/aDqX2QIjEpEsQ4RT6DcTnuST1NelZFeYfAkmbwJd3zDDXuqT3B/HaP/AGU12HiPWNT0i1mn03RBqH2eFppd9yIAFAJwp2nLcHjge/NAHQZorM0HWIfEOg2Or26OkN3Csqq/3lyOhrToAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqC8vbaws5ru6mWK3gQySyMeFUDJJqbIrjdRhu/Gd+EsL8Wul6bcAmXylkF1cIegB42Rkde7j/Y5AOOWbUtU+Pfhy41HzIgunT3UNk3H2aNhIi7h/fbq3pkD+GvYwwPQ15JoEF4/7QWoi/vhfSWWihBN5QjxudGAwCR0dvzr0jWIdSuLMxaXdw2czthrqRPN8pMEkqhwC2cDkgDOecYIBp5FLXB+CtT8Qr4o8Q+HNevU1L+zhDLFfJAsW5ZFJ2sq/KDx/Ou8oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDmvFugav4hsTYWOsQ6day4+0A2hlaVQeU3eYuFYcHAyRnntWjqNhqFzo72lleW9rcvF5ZnNsXUZUg7UDjHPI5OMY5rUooA5LwF4RuvBWgro0mqQ3tpGztEy2phcFjk5PmMD36AVkfFd9csvDU2pWdzBJpdvtN9p5Qo9xCSA6iUHK8HkADjPXkH0GRWaNgjbWIIDYzg+tcjD4X1rUNN/szxRrltqll5qu/lWQgecK25VkIYrtyBkKoJxjOM5AOm09YI9OtktYRDbrEojiC42Lj5QB7dKt00Efd/SnUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSbgcYOc0AVr+wh1KzktbjzhFIMN5M7xN/30hBH51S0Pw3pvhzTf7N0qGWCzGSsRuJJNpYknaWYleSTxWtketLQBzNn4C8P2GvSa3bW90mpS/wCtuTqFwzSdMBsuQw4HB44HFamp6i9oI4bWIXF/PnyIM4Bx1Zj/AAoMjJ+gAJIB0q5TWPh34b13VJNS1KyuJruRVVnF9OowOgAVwAB6ADqfWgDQ0LS7fTorkidbq+nm33twMZeXA7c7Qo2hV7DHXqdus/SNGstB0uHTdMg8i0h3eXHuZsZYseWJJ5JPJ71oUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFch8Q/GsPgPww2qtbi4nkmEMEJfaHcgnkgcAKCf07119eZfGOGDXNI03wnDCJtY1W8T7Hn/lgEOZJT/shcj/gRx0oA5/4f/HX+3dXOneJo9P01XRnivBKYo8jBCMHJAyM87uwGOa9N/wCE78If9DXof/gxi/8Aiq4/4e/Buz8D6w+rzai2oXoRo4T5IjSMHGWxljuIyM5AwSMHrXp+KAMD/hO/CH/Q16H/AODGL/4qj/hO/CH/AENeh/8Agxi/+KrfxRigDA/4Tvwh/wBDXof/AIMYv/iqP+E78If9DXof/gxi/wDiq38UYoAwP+E78If9DXof/gxi/wDiqP8AhO/CH/Q16H/4MYv/AIqt/FGKAMD/AITvwh/0Neh/+DGL/wCKo/4Tvwh/0Neh/wDgxi/+KrfxRigDA/4Tvwh/0Neh/wDgxi/+Ko/4Tvwh/wBDXof/AIMYv/iq38UYoAwP+E78If8AQ16H/wCDGL/4qj/hO/CH/Q16H/4MYv8A4qt/FGKAMD/hO/CH/Q16H/4MYv8A4qj/AITvwh/0Neh/+DGL/wCKrfxRigDA/wCE78If9DXof/gxi/8Aiq47x/8AGPSfDOlQvoV1p2s39w7KqQ3QkSFQPvPsJ7kADIzk4PFeoYrj/iB8PbDx/pUFrdTyW1xbOz29wihipIwQQeqnCkgEH5RzQBzfwo+Ks/jy4utM1Kzht9Qt4vPV7ctslTdhuDnaRle5zk9MV6rXinw78LRfDT4iz6LqUguJdVsw2nX+3YG2HMsWMnDfdPXoo9a9qyPXpQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRmgCG5u4LK1murmVYoIY2lkdjgKoGST7ACvP/AIf2s/iLV7/x/fxlGvx9n0uFusNop4PsXbLf/Wam+O7ibxTr9j4AsZSsc+LvWZY2wYrVT9z2LnA9RxkEGvQre3jtbeK3gjWOGJAiIvAVRwAPYACgCaiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOU8feF5vEvh4/YHEWsWMi3enTcZSZOQMnoG6fke1WPBfiaLxZ4YttTVfKuDmK6gOQYJl4dCO2DyM84Iro68zvs+APiQmoqRH4f8SyCG6HRLe9/hf6PyCfXJPQUAemUUmRS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFY/iTxBaeF/D17rF8f3NrGX2jrIeAqj6kgfjWvkV5rqH/FffEeLS1+fQvDTie7PVZ7zokfvsGSffIPUGgDU+HOgXdhpdzrWsDOu63L9rvCf+WY/5ZxD2ReMdiT1wK7em4p1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWP4l8P2vijw/eaPej91cx7Q46o3VXHuDg/hWxRQBxXw68QXWo6TcaPrB265osn2S9BP3wB8ko9QyjOe5BNdrXnHjqGTwn4hsfH1lGxhi22msxIP9ZbEjEmO7Ice5GBkAV6HBcQ3MEc8EqSRSKHR0OQwIyCPqOaAJKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopu9cZyAPegDlvH3ieTwz4cZ7JDLq17ILTToQMmSd+F49B19OPerHgvwwvhPwzb6ZvM1ySZbuctuM0zcu5J5PPTPYDvXL+GAfHPjq58XS4fR9L32WjAj5ZGziWcfXG0e3YFa9LoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCvd2kF/ZzWd1EJbedGjkRuQykYINcD8Prufw9q1/4A1KVpJNPH2jS5nJJns2PAzjqh4P5Dha9GrhfiNol7LY2niXRlzrWhObmED/AJbxY/exHH95fxOMd6AO5yKWsvQtatPEOh2er2L7re6iEik9V9QfdSCD9K1KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArgfiRqt3NFZeD9Hk26trrGIuP+Xe2H+tkP4cD1ycciu1v7+20zT7i/vJVitreNpZHPRVUZJ/KuE+HVjcavdah461SEpeax8tnC/W3s1PyL7FvvHHB4OOcUAdrpGk2uh6RaaZYxeXbWsQijXqSB3PqT1Puav0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU3BzTqKAPM9EI8BfEKbw4+I9D15nu9MJOFhuBjzIR7HgjtyAMk16XuB71zPjjwu3irwzNZxSeTqELrc2M6tgxTpyhz27g+xNHgXxR/wlXhuK7mQw6hA5tr+AjBiuF4YEdvUexx1oA6eiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkzS1h+LPEdt4U8NXmsXI3CBf3cY6ySHhVHuTQByPjNm8Z+LLPwJbljYw7L3W3Xp5YIMcOfVjgnuBgjPNejRxLEioihUUYVV4AHbHpXI/Dzw5c6Hob3mqfPrmqyG81CQ9d7chPooOPTOccGuyoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvNdbX/hBPiFb+JE+XRNcZbPUwB8sM4/1Ux9Afuk9ue5FelVm69otr4h0K90i+TfbXUZjb1HoR7g4I9wKANHcPWlrhPhzrN9JZ3nhnWWB1vQnFtMx/wCW0RH7qUeoK4z345613dABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJuHrXmpz4++JuMF/D/AIXk5yPluL/+REY/EH1DVtfELxHcaHocVrpY8zXNUl+x6fGOvmN1f6KOc9M4zWn4R8MweEvDFno9sQ/kpmWXGDLIeWc/Uk/QY9KAN3FLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHnPxBtLjw/qlh8QNOjLS6aPI1OFOtxZsefqVPzDPHc/drv7W8t760hu7aVZYJ0WSORejKwyD+INLNAlxDJDNGHikUq6NyGB4IP4V574Flfwn4jvvAN45Num690aVznfbsSWjz6ofxIyeBigD0iikyKWgAooooAKKKKACiiigAooooAKKKa8iRozuyqqglmJwAPegBQwPelrL0HWrPxFpEWqWBLWsryLGzLjcEdk3fQ7SR7GtSgAprSIiM7uqooJZicAAdSTQ8iRoXdgqryWY4ArzPxr4jg8WGz8F+FtVgubjVXKXtzaSiQWlqv+sLFTwW+6AeucdxQBL4OVvGfi+88c3CE6fBusdERhj92OJJserHIHfGQelek1T07TrbStOt7CyhWG1t4xFEi9AoGB+PH9auUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcV8RdAu9R0m31jRwBruiyfa7Igcyf89IvcOvGO5A967Wm4NAGR4Y8QWnijw5ZazZnEV1GGKHqjdGU/Qgj8K2a8vinh+G3xAuLe5lS38MeIS1zFI7bY7S7Ay4JPCq4GR74A4BNej2Oo2Wp2iXVhdwXVu/3ZYJA6H6EcUAWaKKKACiopLiGJ4kklRXmYpGpOC7bS2B6nCk/QGpaACiiigAooooAQsB39q87+I9/LqXhvxBY2srJZWFjM99Ohxvl8slIAfrtZvQYH8Rx0niLWjZyWukWMsX9s6kSlqjn7igZeVh3VQCcfxHA7kjgPiV4atvDPwu1drfV9UfO391Nc7lkeSUbiwxySWZifagDsvhhai0+GXh6MD71mkn/ffz/+zV1u4DvWP4VhW28IaJbqQVjsIEBHIOI1rE8e+MLjw9p/2XSIVudYuHjhhVvuxGRtis3uTnA74J6A0AU/jJY6tqPw1vrfSEeWYyRNNDEhZ5Iw/IXHPXB+gNeE/BOC9f4qaebdjGIUma5ycfu9hBBHf5io9jz2r6yjR1iVXbe6gAtjG49zj3riPiNol5LZWnibRlzrehObmFR1mj/5axH2Zc+/GO9AHdZFLWXoOt2niLQrLV7F91vdRiRcHO31U47g5B9CK1KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiim71xnIA96APA/2k4b0x6DP5mbAGZCgOMS/KcnnnKjA9MH1qX9nPTtWt4dZu5opodNnWIQmRCFlcFuVPcAHnHXI9K6/wANZ8deOLnxfJ82kaWZLLRl52yN0lnHrnoD6DsRXpG3HQcUAOqOaeK3gknmkWOGNS7uxwqqOSSewFPyPWuM17+0vE1+dO0pbQ6dYzD7YbsN5dzIORCNvVVOC3qcL03CgDk4NU1HXvjrozXOYtPh0yW8s7YjDIrFow7g9HbrjsCo65r2CvJPDTahdfH7XJNT+zm4stIjhP2fdsG4o4xnnoTXqtzK8NtJJHF5jqMhNwXP4nigCXIpa53wb4jk8W+GbfWmsDZJcl/KiaXeSgYqCeB1weP1roqACiiigDJfwzocupDUZNF0574MGF01qhlBHQ7sZz71JqOgaRrBRtU0qxvmT7hubdJdv03A46mtKigDB1G2m8P+G7lfC+i273KgeRZwLHChYkDPVRwOeozjGa84M2qXnjXw5o8nhe/WS0mbVr43F1Azzt/qkmZlcjCsxIUc4ACjA49lrOh0Wzt9bu9XjjP227jjilctn5EztAHYZYmgDRpuDmnUUAeZ6L/xQfxDm8OufL0PXi13phPCw3A/1kI9AeGHboBkmvS9wPeua8b+GG8VeF57KN/J1CJhcWNwrbTFOnKMG6juCfQnvSeBvFH/AAlXhqK8mQw6hA7W1/ARgxXC8MCPyI9jjrQB09FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcD8R9Vu54rLwdo8m3VtcYxM4/5d7b/AJayH04yB6845Fdpf6ha6Zp9zfXkqxW1tG0srn+FVGSfyBrhvh1YXGrXV/461WIpeaxhbKJuttZj7i/8CxuPY8HgkigDtNI0m10PSLTS7GLy7a1iEUY6kgdz6k9T7mr9FFAFLULKW+spLeK9uLFnGPPttnmAexdWH6flVDw74bTw1oK6Ta395PEhYxy3BjaRSxJJyFAJySckHrW5RQByGleAINJ8U3viKLW9Wlvr3AuRMYCkqjGFIEQwOAOMHHepPiPqkmleA9Ukt8m7ni+y26jqZJTsXHv82fwrq65XxT4V1DxHfaTImqwW1pp14l6LdrMyebIn3dzeYOBk9qANnQ9Kj0TQNP0uH7lpbpCDjrtAGfxxn8a0aQZwM9aWgAooooAKKKKACiiigAooooAK811zPgT4hweJE40TXSlnqmBhYJx/qpj6A/dPpzzk16VWbrui2niHQrzSL5N9tdxGN8dR6Ee4OCPcCgDR3DOM80tcJ8NtYvXsrzwxrT7tb0KQW8zH/ltER+6lHqCv48DPJru6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApM0tYfizxJbeFPDV5q9zhvJXEUfeWQ8Kg9yf8aAOR8ZO/jTxZZ+BLdj9gh2X2tuv/ADzBBjhz6scE98YIzgivRUiWONY0VVRQAqqMAD29PTFcl8PPDlzoehveap8+uarIbzUJD13tyE+ig49M5xwa7KgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDzn4hWtx4f1Ox8f6bEWl00eRqcKdbizZufqVPzDPHc/drv7W8t760hu7aVZYJ0WSORejKwyD+INLNAlxDJDNGHikUq6NyGB4IP4V574Flfwn4jvvAV4xNvHuvNGlc/ft2JLR59UJ6dSMngYoA9IopMiloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooATcPWvNcHx98TOm7w/4XkwePluL/ANPcRg/gfUNW18QvEdxoehxWuljzNc1SX7Hp8Y6+Y3V/oo5z0zjNafhLwzB4S8MWejWuH8lP3suMGWQ8s5+pz9Bj0oA3cUtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXFfEXQLvUdIg1jRxt17RpPtdicZ8wf8tIjjqHXjHcgds12tNwaAMjwx4gtPFHhyy1mzOIrqMMUPVG6Mp+hBH4Vs15pZL/AMID8SH07lPD/iaQzW3923vf409g4wR74AGATXpW4etAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTWkREZ3dVRQSzE4AA6kmlyK89+I19dapcWHgXSZmjvdY+a7lTn7NZA/Ox/3sFQO/I70AQ+Dlbxn4vvPHNwhOnwbrHREYY/djiSbHqxyB3xkHpXpNU9O0620rTrewsoVhtbeMRRIvQKBgfjx/WrlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAc94z8Mx+LPDF1pbN5c5xJbT55imXlHz1GD1x2Jqn4B8TS+JfDo+3L5Wr2MrWeoRdCkycE/Q8H9O1dbXmvioN4H8b2vjGEFdI1Ix2WtKoOIz0in/AnB9uMEtQB6VRSBlYZByPUc0tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSZHr1oAo6vqtromkXeqX0gjtbWNpJGz0A7D3PTHc8Vx/w40q8njvvGOrpt1bXGEixsOba2H+riH4YJ/DIyKp+KCfHHjm18HxHOkaYUvdZYH5ZDnMVufXP3iPTpytekhQowBgDpjtQA6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqGraVa61pd1pl9EJbS5iaKRfYjsex7g9iM1fooA8/+G+pXVqt74L1iTfqmhkJHKwx9ptT/AKuQfQfKeuOM85r0DNee/EWwutMnsPHGlRF77RiftUS8G4s2/wBYv1Ucj056mu307UbXVNOtr+zmWW2uYxLE47qRkGgC3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXO+NPE0XhTwzcakV8254itbcZzPM33EA788nHOAa6HI9a80sAfH3xHfUyRJ4f8ADUjQWo6rcXn8cnuEGAD64I6mgDofAXhibw14dAv383WL2RrvUZzjLzPyRkdh0444JxzXV0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEbxiRWV1DKwIIPIIPbFec+D2fwX4wvPA1yx/s64DX2iO3ZCSZIMnupywHpknrXpIYHpXl3xwvLXS/CVlqoYx6vaX8b6bKn3lkzlgf9kqpyPXFAHqWaK8G8FftALd3ssHi9LWygKM0d3bRyEA5GEKDcemfmz2Hua7n/AIXb8PP+hh/8krj/AON0AegUV5//AMLt+Hn/AEMP/klcf/G6P+F2/Dz/AKGH/wAkrj/43QB6BRXn/wDwu34ef9DD/wCSVx/8bo/4Xb8PP+hh/wDJK4/+N0AegUV5/wD8Lt+Hn/Qw/wDklcf/ABuj/hdvw8/6GH/ySuP/AI3QB6BRXn//AAu34ef9DD/5JXH/AMbo/wCF2/Dz/oYf/JK4/wDjdAHoFFef/wDC7fh5/wBDD/5JXH/xuj/hdvw8/wChh/8AJK4/+N0AegUV5/8A8Lt+Hn/Qw/8Aklcf/G6P+F2/Dz/oYf8AySuP/jdAHoFFef8A/C7fh5/0MP8A5JXH/wAbo/4Xb8PP+hh/8krj/wCN0AegUmRXAf8AC7fh5/0MP/klcf8Axuud8XfHrQtP0lW8LSx6nfu+0rLFLGkS4J3HKqW5xwCOp54oA6z4ieILrTtJt9F0fnXdakNpZKDzGMfPKfQKp69iQexre8NeH7Xwv4fs9Hsl/c20e3eeC7dWc+5OT+NeQ/CLxY/jn4galqmuqjatBYIlkkakRQxbsSFQScMSyc/7TDgcV7tQAUUZpNw9RQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJkUZFYXijXJNF00fY7d7rU7glLS2jUszHuxA/hUck/QdSMgHJ/EXxlc2Gp6P4c0lmE9/qNvbXVyn/LBHYHYD/eYc+y/7wrqfGHhCw8aeHpNI1FpEjLiSOWLG+Nh0IyCOhIPHQkV5hrBjl8cfD/SUtNQhkS/mu7ia+hEb3Mo2sXOOpyD9MgdK9uLqASTgDuaAPNfh/wDB3T/A2rPq0moS6jfhGjiZohGkanHIGSd2ARnIGCRivS8Vzei/EDwr4i1L+ztI1iK7u9pfy0jf7o6nJGK6WgBMUYpaKAExRilooATFGKWigBMUYpaKAExRilooATFGKWigBMUYpaKAExXI+Pfh9p/j7SoLW9mlt57ZzJb3EYBKEjBBB6qeCRxnaORXX0UAcD8OvhbYfD/7RcR3kl9f3KCOSZ0CKqg5wgGSMnGck52jpXfUUmRQBU1LUbbStOnvrpysMK5OBkk9AoHUkkgADkkgDmuL+GPiLUfFa+IdVvw8ajU2toLfcCIUjRfl44J+bk9zSXHiBNT14X0ml6ndaNpxLWb29vvinlGd0xJIBVeQnbOW/ukU/gSjH4dG6cYe7v55mz65A/8AZaAPTaKr3t/Z6baSXV9dQ21vGMvLM4RVHuTTbHULfUbYXFv5vlk4BkheMnjPAYA4569KALVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBDMJRGzQojygHYHbaCfQnBwPwrm/Dul+II9d1LU/EEemmSfbHam0neQwQj/lnho16nLFs8nHHAx1VFAHneteF/FGo/EvRvE0MOkCz0uOSNIHvJBJLvVlLEiIhfvDjnp15rrfEGnXer+G73TbO8SyuLqExiYx+YEDcNxxnjIz75rXrA1XWNY0/WLa3tvDlzqNhLGS9zbXESvG+cBSjsvGOc7vwoAxfAesapdXms6Fr1taLqmkPGj3Fom2O4jkUsjAduF5H0ruaw9D0eW0vNS1W8VFv9SkRpFRtwjjRdsaZ74GST6se2K3KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5fxfYeJdSsRp+hjT44JSouZbi5kjkMefnRNsbYLDjdnIyeM4NdRRQBiavZ6ifDkljo9rYx3D25gRZZmjjh+TaNpVCSB6YHTtWT8N/Dur+E/CNroWqJYt9lL7JrWdn37nZ+QyLj72O/SuxooA8c/tDVvE+o6r40Wytr7RNDkkTTLCadoxK0X35+FIL8HaT06YzzXqOhavba9oVjqtoHEF3CsqK/DKCOh9x/+quItfD+t6X8O28GafZMtwwmtRfM6+SsLu5M3Xdnax+XGd3t81dzoukwaFollpVruMNpAsKFurBRjJ9+KANCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACk9KWk9KAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAE7ZpaT+GloAKKKKACiiigAooooAKKKKACiiigD//Z'] Multimodal Competition True Theorem proof Combinatorics Math English 33 "This Question involves one Robber and one or more Cops. After robbing a bank, the Robber retreats to a network of hideouts, represented by dots in the diagram below. Every day, the Robber stays holed up in a single hideout, and every night, the Robber moves to an adjacent hideout. Two hideouts are adjacent if and only if they are connected by an edge in the diagram, also called a hideout map (or map). For the purposes of this Power Question, the map must be connected; that is, given any two hideouts, there must be a path from one to the other. To clarify, the Robber may not stay in the same hideout for two consecutive days, although he may return to a hideout he has previously visited. For example, in the map below, if the Robber holes up in hideout $C$ for day 1 , then he would have to move to $B$ for day 2 , and would then have to move to either $A, C$, or $D$ on day 3. Every day, each Cop searches one hideout: the Cops know the location of all hideouts and which hideouts are adjacent to which. Cops are thorough searchers, so if the Robber is present in the hideout searched, he is found and arrested. If the Robber is not present in the hideout searched, his location is not revealed. That is, the Cops only know that the Robber was not caught at any of the hideouts searched; they get no specific information (other than what they can derive by logic) about what hideout he was in. Cops are not constrained by edges on the map: a Cop may search any hideout on any day, regardless of whether it is adjacent to the hideout searched the previous day. A Cop may search the same hideout on consecutive days, and multiple Cops may search different hideouts on the same day. In the map above, a Cop could search $A$ on day 1 and day 2, and then search $C$ on day 3 . The focus of this Power Question is to determine, given a hideout map and a fixed number of Cops, whether the Cops can be sure of catching the Robber within some time limit. Map Notation: The following notation may be useful when writing your solutions. For a map $M$, let $h(M)$ be the number of hideouts and $e(M)$ be the number of edges in $M$. The safety of a hideout $H$ is the number of hideouts adjacent to $H$, and is denoted by $s(H)$. The Cop number of a map $M$, denoted $C(M)$, is the minimum number of Cops required to guarantee that the Robber is caught. The police want to catch the Robber with a minimum number of Cops, but time is of the essence. For a map $M$ and a fixed number of Cops $c \geq C(M)$, define the capture time, denoted $D(M, c)$, to be the minimum number of days required to guarantee a capture using $c$ Cops. For example, in the graph below, if three Cops are deployed, they might catch the Robber in the first day, but if they don't, there is a strategy that will guarantee they will capture the Robber within two days. Therefore the capture time is $D\left(\mathcal{C}_{6}, 3\right)=2$. Definition: A map is bipartite if it can be partitioned into two sets of hideouts, $\mathcal{A}$ and $\mathcal{B}$, such that $\mathcal{A} \cap \mathcal{B}=\emptyset$, and each hideout in $\mathcal{A}$ is adjacent only to hideouts in $\mathcal{B}$, and each hideout in $\mathcal{B}$ is adjacent only to hideouts in $\mathcal{A}$. Prove that $C(M) \leq n / 2$ for any map $M$ with the property that, for all hideouts $H_{1}$ and $H_{2}$, either all paths from $H_{1}$ to $H_{2}$ contain an odd number of edges, or all paths from $H_{1}$ to $H_{2}$ contain an even number of edges." ['The given condition actually implies that the graph is bipartite. Let $A_{1}$ be a hideout in $M$, and let $\\mathcal{A}$ be the set of all hideouts $V$ such that all paths from $A_{1}$ to $V$ have an even number of edges, as well as $A_{1}$ itself; let $\\mathcal{B}$ be the set of all other hideouts in $M$. Notice that there are no edges from $A_{1}$ to any other element $A_{i}$ in $\\mathcal{A}$, because if there were, that edge would create a path from $A_{1}$ to $A_{i}$ with an odd number of edges (namely 1). So $A_{1}$ has edges only to hideouts in $\\mathcal{B}$. In fact, there can be no edge from any hideout $A_{i}$ in $\\mathcal{A}$ to any other hideout $A_{j}$ in $\\mathcal{A}$, because if there were, there would be a path with an odd number of edges from $A_{1}$ to $A_{j}$ via $A_{i}$. Similarly, there can be no edge from any hideout $B_{i}$ in $\\mathcal{B}$ to any other hideout $B_{j}$ in $\\mathcal{B}$, because if there were such an edge, there would be a path from $A_{1}$ to $B_{j}$ with an even number of edges via $B_{i}$. Thus hideouts in $\\mathcal{B}$ are connected only to hideouts in $\\mathcal{A}$ and vice versa; hence $M$ is bipartite.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAVABvwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ0ALketFcB8SfHg8MJYaTp7q2t6nMkcI4PkozbTIR+YHqc9dpFd6p60AOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKADNZevazDoeltdvG88pYR29vGfnnlY4VF+p79hkngGr9xNFbQPNPKkUUalndyAqgckknoK4e10aPx7NH4hvpr23sUz/ZEdrcvA6xkENOxUg7pAeB2QjuxoA4Txpo0sHjzwDDfSrPqt/qZu9QkXpkPFtRc9EUAqPpnqa93HrXh2q6RBZ/tDeE9Ohur64SO3e4Y3l5JcFW2ytgF2JH3BwPY969xHpQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBka/4a0zxNaC01WKea2/iiS5liV84+8EYbunfOOam0nRbPRNLj02wWaO0jXaiPcSSlBjAAZ2LADsAcDtWjRQByEnw18Ly6wusPZXjakhyt2dSufMHUcN5mQME8V1cMYhiWNd21VABZix4Hcnk/U81JRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUZxQAUhpayte8Q6V4b0832rX8NpAM4MjcuQM4UDlj7AE+1AGdrnj/wr4dv0stV1u2t7pmCmLl2Qn+8FB2jnqcVv2V5a6haR3Vlcw3NvIMpLC4dGHsRwa+GdbvLjUNbvb+5dnlupmnMhTZu3HcGC9gc8Dng19N/ACC+h+GwN3kQyXcjWgJziPCg49t4c/iT3oA9SooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoozjrSHrjPNAC1FPNFDA00sqRxICzOzbQoHcnoB9a43xZ8S9H8NXK6dbpLqutyHEWm2Q3yFvRsZ2/z9AeawI/BHifx5NHd+Pb37JpobdHoVhIQvsZXycnj178FelAFjUvibd63fSaL8PdN/ti8XCy6jKNtpBnuTxu4Deg443dKl0f4Z20F03iLxtqJ17V1Uu0lyP9GtgOSEQ8YHPJGO4VTXeaXpdjo9hHZadZw2ltGPlihQKo98Dv79TXE/FzU518OWvhzTiP7S8Q3C2MXP3YyR5jH/AGcEA+zUAY/w60a08Z3+seOtY06C5F/d7NNS6hV/JhiO1WUEHaeAD7oT3r1lRgYwAOwFUtF0u20PRbLS7QYgtIViTjkgDGT7nqav0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVBdXVvZ28lzczxwwRqWeSRwqqB1JJ4FeaXvxH1bxPeyaV8OtN+3Mh2TatdKVtYPp/ePOf5Bh0AO58R+KdF8K2H2zWNQitYyDtUnLyeyqOSenQV5+b/AMb/ABLUDSo5fC/ht/8Al8lH+mXC/wCwB9wHjkH6MeRWz4d+F9nY6ida8R3UniDXWIJubsZji74jQ5AA7enbHSu/Xvnv7UAc14V8CaD4Ot/L0q0/fsMTXc2Glm9dzY/HAAFdIoxTqKAEbpj+VeW+HR/wmfxe1bxGT5mm6Cv9nWBxwZj/AK1x24ywz3DKe1dP8R/Ev/CK+Cb6/ifF46/Z7QDk+c4wuB3IGWx6A1L8PvDI8J+C9P0tlAuQnm3R67pn+Zue+M7QfRRQB0wz3paKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiuf8U+MdD8I2YuNXvo4WIJjhX5pZP91ByfTPT1IoA3zziuE8UfE3S9GvP7J0u3l1zXWO1bCy+faeh3sMhcenJ9h1rB/4rr4m9PN8KeGX/wDA25T9NoI+nX+MV3XhfwZofg+y+zaPYpESB5kzfNJIfVmxnueBwM8AUAcXb/D/AMQeMriPUPiJqG6BW3xaHZOVgjPYuwOWI56HP+1jivS7CxtdNso7Oytora2iXEcMSBVUewHFWBS0AFFFFABSNnHFLWb4g1i28P6BfatdnEFpC0rDOC2Bwo9ycAe5oA8/1lf+Ey+Mem6MmW0zw1GL274+VrlseWh7EgYYf8DFeorXn/wj0e4tvC82u6io/tTX521C4YLjCsfkUe2PmA7bq9BFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNbkUAOqtf31rp1nJeXtzFbW0Q3SSyuFVR6kmuH8SfFCysdROieHLSXxBrzfKLW0OY4z6yOOAB3x+JXrWdY/DjVfFF5Hq3xE1D7cyt5kOkWrFLWE++D8x7foSwoAbP4/1/xncy6b8PNOBgRvLm1y+UrBGe+xSPmPTqPquOa2fDPww03Rrw6vq00mua85Dvf3nzbT/sKchcdjyR2wOK7S0tYLK3S2tYI4LeJQsccShVUegA4FT0AIOvTtS0UUAFFFFABRRRQAjfzry/4nSSeJfEGgeALZmC30ovNRKcbbaM5xn3IOP9pV9a9OlkSGNpZGCogLMzHAAAySa8x+F8T+JNZ17x9dRsP7SmNrp6sPuW0Zxx6ZIAPuh9aAPTokSKJY40CIoAVQMAD0Ap9IvfrS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFJketAC0ZqlqmqWOj2Ml7qN3Da20Yy8szhVH59z6V5tJ438TePJXs/AdgbPTt22TXr5CEx38pCDk+/PuF60Adj4t8c6D4Ntll1W8xMwzFaRfPNKewC5/U4Hv0rizp3jf4ljOpvL4W8NSdbOI/6ZcL33kj5AeeCPqG610fhX4a6R4cuDqVyZdW1yQ7pdRvjvk3eq5J2/UZPOMmu0UdTzz60AY3hzwto/hSwFno9hFbRnl2Ay8h9Wbqe/wBO2BW0KWigAooooAKKKKACiiigAoopD/k0Aee/F7V7iDwzB4e05lOp+IJxYQqT0RseYx9sEKT2312eh6Tb6FolnpVopEFpCsSZ6nA6n3PU+5rzzw//AMVp8YNV185fTPDqnT7Lj5WnOfMYfT5h9GU16kowKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAozjrSEgdSOK5bxd4+0LwhGsd7cNNfycQ2FsN88hPT5ewPqce3NAHU5B54rzrXvilD/aP9ieDrJvEOtHIxAf8AR4P9p3zjGe2QODkjjOYdA8Z/EnD+I5X8OeHX5XS7V/8ASJl9JWPQe2PT5cjNeh6F4d0nw3p62OkafFaW46hByx9Wbqx9yaAOH034ZXmuX0esfELUP7XvFOYdOiJW0ts9gvG48DPrjndwa9KgijgiWKKNY4kAVEVQFUegA6U8ZpaACiiigAooooAKKKKACiiigAooooAK5T4i+Jx4T8E6hqUbf6UV8i1UHlpn4XH0+9j0U11Rry7Xj/wmXxh0rQUJbTfDqDULwfwtOQPLQ9iQMEexb0oA6j4deGf+ET8E6fpsi4uinnXTdzM/Lc98cLn0UV1VNXvTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopkjKqMzkBVBJJ6Ae9AD8j1rO1rWdN0HT3v9WvIbS0TrJK2AT2AHUn2HNcNq3xQa+1JtE8C6edf1TOHnBxa2/B5Z+jdD0IB7HPFGjfC9r7UU1zx1f8A9vaqPmSBhi1t/ZU4DfiMdyM80AUW8V+LviEzW/gq1OkaISVbW71PnkHQmJPz5/Mqa6fwl8OdE8KObyJJL3VpctNqN4d8zseuD0UfTn1JxXXRIsaBEUKigKqjoAPSn0AIKWiigAooooAKKKKACiiigAooooAKKKKACiikNAGfr2rW2g6Fe6tdkeRaQtK4zgsAPuj3JwB7muN+EWkXEHhmfxDqCg6p4gna/mbHIRjmNfpglh/vVR+J8z+I9b0DwDbM2NRmF3qBTjbaxknH4kHHuoHevTYY0hiWKNQqIAqqowAB0AoAeKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiijOKACijNZmo+ItD0dwmp6zp9k56Lc3KRk/8AfRFAGnRVG31rS7u2jubfUrOaCVxHHLHOrKznooIOCT6VeoAKKKa30oAdRmvP9d+Id5ofi6z8Nf8ACONdXt6m+2MF4oVlyeuVG3AUn096nufiLFouq2lh4n0i80b7YxW3uneOaBiMcF1J2nkdRQB3NFNUYzTqACijNGaACkyCM54rL1/xDpPhvTWv9Xv4rS2X+Jzyx9FA5Y+wBrzsa94z+JIMfhqB/D3h9+Dq10v+kTL6xJ2+o/76BGKAOp8X/EbQ/CRFpLI99q0nyw6daDfM7HpkfwjkdfwBxiuXXwp4u+IbC48ZXTaRopYMmiWT4dx1HnPz6Djn6Ia67wl8P9B8Hq0ljbtNfPky31yd88hPX5j0B9BgevPNdQoxxjAoAoaPomm6BYJY6VYw2lsnSOJcZPqT1J4HJyTWgKWigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKZK6RRtJIwVFBLMegHc0+vPvi9rE9t4Wi0LTiDqmvTrYQLnorECRj7YO0/wC+KAM/4ZRN4l1/X/H86HbfzGz08MDxbR4GR6biBn3VvWvUBWdoGj23h/QbLSLQfubSFYlJHLYHLH3JyT9a0qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmt2p1I3agDy3xp4u1XUvGFt4B8KTeRfzANf36jJtIsZOO27ac591A5OR2fh/wlpHhu1CWForTEZmu5fmnnY8lmc8kk++OteU/As/2v4w8Ya/dc3bzKoLdQJHdmHt9xRj0Fe6qeOetAHDan4Fs5/iVoHiO1sY4TbJObto12iRtoEZOO4LMc9Tj2ruQMUtFABSGlrN8QatFoXh7UNWmwUs7d5sE43EA4H4nA/GgDyGy8Q6Le/H3WtX1fVLO0ttGt/sVp9pmVCZM7WK5POCZfzFSePHl+Ld3pWh+GIpZ9Lt7gy3mrMhWCP5cbVYj5yAT07kds1t/BXQ1i+Hp1C/iWa51i4lupjKoJZSdoBz2ON3/Aq5zRP+JF+0hdaPoAEWmXMRe8t4R+6RvJ3Zx2+faPYsRQB7jEuxAoJOABljk/jSv2Hc0ooIzQB5X4h+O3hvQNck0oWt9etbyGK5lhVQqEHBC5I3EEew96JvitdeJ2Gn/D3SJtSu3UGW8uozHb2uf72cZOAeMjpxu6V4X4p+G3ifRPEdxZjSNQu4pJ3FtcxwmXz13HaSVB+YjBI611fhnS5vCJi0rxpqXi7wul0/mQXNjqAS1diBwwVWw3TJyffGKAPWNC+FsJ1Bdb8Y3z+IdbOGDTj/AEeDviNOmAfXjvtBr0RQBnAxXnkHw1guYEng+IXjSWGRQ6SR60GVlPQghcEe9S/8Ks/6nzxx/wCDj/7GgD0CivP/APhVv/U+eOP/AAcf/Y0f8Ks/6nzxx/4N/wD7GgD0CivP/wDhVn/U+eOP/Bv/APY0f8Ks/wCp88cf+Df/AOxoA9Aorz//AIVZ/wBT544/8G//ANjR/wAKs/6nzxx/4N//ALGgD0CivP8A/hVn/U+eOP8Awb//AGNH/CrP+p88cf8Ag3/+xoA9Aorz/wD4VZ/1Pnjj/wAG/wD9jR/wqz/qfPHH/g3/APsaAPQKK8//AOFWf9T544/8G/8A9jR/wqz/AKnzxx/4N/8A7GgD0CivP/8AhVn/AFPnjj/wb/8A2NH/AAqz/qfPHH/g3/8AsaAPQKK8/wD+FWf9T544/wDBv/8AY0f8Ks/6nzxx/wCDf/7GgD0CivP/APhVn/U+eOP/AAb/AP2NH/CrP+p88cf+Dj/7GgDv2xx9a8u0T/is/jFqWtsC+meG0NhZjHytcnPmMO3HzD8UNZnjzwsvg3whe6wPHXjSS4RdltFJrBw8rcKCAuSByxAIOFNXPC3wd/s/w9arJ4q8U6fdzIs13BYagIYxMVG7gKeeAMk9hQB6wPSlrz//AIVZ/wBT544/8G//ANjR/wAKs/6nzxx/4N//ALGgD0CivP8A/hVn/U+eOP8Awb//AGNH/CrP+p88cf8Ag3/+xoA9Aorz/wD4VZ/1Pnjj/wAG/wD9jR/wqz/qfPHH/g3/APsaAPQKK8//AOFWf9T544/8G/8A9jR/wqz/AKnzxx/4N/8A7GgD0CivP/8AhVn/AFPnjj/wb/8A2NH/AAqz/qfPHH/g3/8AsaAPQKK8/wD+FWf9T544/wDBv/8AY0f8Ks/6nzxx/wCDf/7GgD0CivP/APhVn/U+eOP/AAb/AP2NH/CrP+p88cf+Df8A+xoA9Aorz/8A4VZ/1Pnjj/wb/wD2NH/CrP8AqfPHH/g3/wDsaAPQKK8//wCFWf8AU+eOP/Bv/wDY0f8ACrP+p88cf+Df/wCxoA7q6njtreSeZ1SKNS8jscBVAyST2FeTN+0N4VGr/ZhaagbPODd7FxnP9wnO3v6+1aup/CWS60q7t4/G/i+R5YHRUutU3xMSpADrtG5fUZGRXzm/w98YJrH9mHw5qAugfurESvrkOMrj3zigD7PtLmG8tYrq3kWWCZFkjdTwykZBH4Gpj29qxvCOky6D4R0nSp33zWtpHFIc8bgvIHtnpW1QB4qui618K/Huo6xp2lXWpeGNVOZ47FN8ts2SRhO4Us2O208nNd1B8QtJ1FQmmWWr310f+WEenSoQf9ppFVF9Mlq689R1ox/kUAUNIj1BYJJtSdftEzb/ACYzlIBjhFPG7HdsckntgDQpBS0AIQa5Dx14S1Txjo0ujwa1Dp9jMVMgFkZZGwQcbvMUYyB2rsKKAODtfCHi2y0K20i28ZW9vbW0KwRvBo4EgRV2jkykZwOuKv8Ag74f6V4ONxcW7z3eo3JzcX1026STnP0A/n3ziutooAQDFLRRQAh+maqajp1nqljLZX9pFdWsow8UyBlYfQ9885q5RQB5VP4G8R+B5nvfAF6ZrEtvl0K9cmM56mJyeD+R9zwK3/CfxK0jxNctps0cula5GSJdMvBskDAZIXON3fsDxyBXaMM1zXivwHoXjG3VNTtiLiP/AFF3Adk0J7bWHUexyPxxQB0wI9fxpa8lOr+NPhmduvRy+JvDq9NSgX/SrdcdZF/ixjqT9W6LXonh/wARaR4l05b7R7+K6tzwdh+ZD6Mp5U+xFAGtRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh5paz9b1W30PRbzVbtiLe0haV8dSAM4Hueg+tAHnviJj4x+L+keHU+fTdAUalfehmI/dKe2RkH3DP6V6iteefCPSblPDlz4k1Jf+Jn4hnN9KcciM/6tR/s4JYezY7V6GO9AC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAGm45zjmnUUAIKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAawzjjNeea78Lo11Btc8G3zeHtaGSTCP9Hn9pI+nX0GO+Ca9FpDQB5ppXxOn0nUU0Xx/p/8AYuoE7Y71ebS491f+HqPUepHQekxOsiB1cMrAEMOhHtVLV9G0/XdPew1Syhu7WT70cqg89iPQjJ5HI7V5xJ4U8XfDxjc+DLt9X0QEs+hXj5ZB1Pkt+J44+jmgD1eiuR8H/EPRPF262hd7PVY8ibTrobJoyOuAfvAeo9sgdK60EHmgBaKKKACiiigAooooAKKKKACiiigBDXmHxSlk8RatoHgG0dl/tOcXN+UOCltGcntxkg4PqgFemyusaF3YKigszE4AA7+1eY/DNW8T+JfEHj2ZT5d1N9h00MCNttHjkem4hc+hVvWgD02CNIYViiRUiQBUVRgADsBUlIvSloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmsM9s06igDkvF3w80Pxhie6ie11KPBh1G1OyZCOnP8AEB6Hp2wea5RPFHi74cult4zt21jQshU1uzTMkQ/6ap+XPXryx4r1imSxrIhR1DKwKlSMgg9jQBR0bWtN17T1v9KvYbu1fpJE2QD3BHUHkcHnmtDI9RXmus/DGfTtQfXPAWof2HqbHMlrj/RLgc8MnIXr2GB6DqHaD8UFTUV0TxpYHw9rPRTKf9Hn943zgfiSPc0Aek0U1SMdqdQAUUUUAFFFFABRRTW7UAcB8XtansfCcejaf82qa7Oun2yg4OH4c/TB2+xcGuu8PaNb+HvD9jo9qP3NnCsQOMbiOrH3JyT9a8/0gHxn8ZtR1ggtpfhmM2Nr6NctkSN+HzD8ENepDOTmgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEOeMVla74d0rxJpzWGr2EV3AegcZKn1VuCp9wa1qKAPJToXjP4Z/P4elk8R+G0PzaZcN/pNuvrE2OQMdMd/u9x2fhHx3oPjCBv7Nudl3GP31lONk0RHXK98HuMj3rpj2rjPFvw40nxPMuoRNLpmtw/NDqVkdsgbtuxjcPyPoRk0AdpRXlMXjXxJ4DnWx8e2Ru9Ozth12yQlSOAPNXHB55/QNya9L07UrLVbNLywuobm1kGVlhcMp/EUAW6KKKACuZ8f8AidPCPgzUNW3KJ0jMdup/ilbhRj26n2BrpW6V5Z4mP/CY/FzR/DS5bTtCUalf+jS8eUh/MH3DN6UAdP8ADbwyfCngixsJlIvZB9ovCfvGZ+Wz9Bhf+A11tIveloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAiuII7mFoZoklicFXRxlWB7Ed68z1L4a6j4cvZdZ+Heof2dOx3TaVOd1pcewB+6ev54BUV6jSGgDz/AMN/E+zvdR/sPxLayaBr64U210cRynpmNzwc9gfwLda79axvEnhXRvFlgbLWbCO5iGdjnh4z6q3Uf175Feezjxl8KYHnWeTxN4ThGWWZ9t1ZoO4J+8oH4cdEHNAHp2tapb6Lo15ql22ILSFppPXCjOB7nGB74riPhDpVyvh+78TakmNT8QTm8kGPuxZPlqPbBJHsw9K8c8afGe88Y2p0ZtOSy0WSaNpUjctM6K2du77vJAONvBHUivpvR7izu9GsrjT9v2KWBHt9owPLKgrx9MUAXRS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWV4k0WHxF4c1DSJyQl3A0W4dVJHDfgcH8K1aKAPlFfgP44Oq/YTb2ggHP2w3A8n8sb/APx2vp/RNMj0XQ7HS4mZ47SBIVZ+rbQBk/Wr+R60mQO4oAWijNFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUje/SlpDjHNAHjfx2jWSPw/YaeDFrWo36xxyxMVZkA2kHHbc6flXa/8K20BLNYoBqFrOiBVubbUJ45FOMbs7sZ+oI9q425/wCKs/aNghHz2nh2z8xgeV808/nudf8Avg+lew8etAHlfg3xTq2k/EK98AeIbw30kamTT751AkmTbu2OR1+XnPqrcnjHqi9PWvDblTrH7U1t9lyU063Bnde2Ij/WRVr3IUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVma5r2meHrB73VL2G1hRGb944BfAyQoz8x6cD1rTpCM4oA8F+DnirQIH8S6/rmtWNnqWp3xZoriYK2zlvlzyQS5HH90V6Hf/EGO9ia28IWFxrmotwjRwslrGT/E8rALjrwDk4/Gu3/MfjQBzQBxPw+8BHwlFeahqF0L7XtScyXt1jjJJO1fbJyT3P4Cu2FLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q==', '/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAVMBjwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKTIoAWik3DOM0tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVUutSs7Ke0guJ1jlu5PKgQ5zI2CxA/AGrdABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWdq2qQaRp0l3OGbbhUiTl5HJwqKO7FiAK0GdVBLEAAZJNcF9v1fV9bTWrfRDe6Rbqf7NLXaRBychpypyeRwv+ySR97AAKXwq1LU9dvfFmq6oy/aDqX2QIjEpEsQ4RT6DcTnuST1NelZFeYfAkmbwJd3zDDXuqT3B/HaP/AGU12HiPWNT0i1mn03RBqH2eFppd9yIAFAJwp2nLcHjge/NAHQZorM0HWIfEOg2Or26OkN3Csqq/3lyOhrToAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqC8vbaws5ru6mWK3gQySyMeFUDJJqbIrjdRhu/Gd+EsL8Wul6bcAmXylkF1cIegB42Rkde7j/Y5AOOWbUtU+Pfhy41HzIgunT3UNk3H2aNhIi7h/fbq3pkD+GvYwwPQ15JoEF4/7QWoi/vhfSWWihBN5QjxudGAwCR0dvzr0jWIdSuLMxaXdw2czthrqRPN8pMEkqhwC2cDkgDOecYIBp5FLXB+CtT8Qr4o8Q+HNevU1L+zhDLFfJAsW5ZFJ2sq/KDx/Ou8oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDmvFugav4hsTYWOsQ6day4+0A2hlaVQeU3eYuFYcHAyRnntWjqNhqFzo72lleW9rcvF5ZnNsXUZUg7UDjHPI5OMY5rUooA5LwF4RuvBWgro0mqQ3tpGztEy2phcFjk5PmMD36AVkfFd9csvDU2pWdzBJpdvtN9p5Qo9xCSA6iUHK8HkADjPXkH0GRWaNgjbWIIDYzg+tcjD4X1rUNN/szxRrltqll5qu/lWQgecK25VkIYrtyBkKoJxjOM5AOm09YI9OtktYRDbrEojiC42Lj5QB7dKt00Efd/SnUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSbgcYOc0AVr+wh1KzktbjzhFIMN5M7xN/30hBH51S0Pw3pvhzTf7N0qGWCzGSsRuJJNpYknaWYleSTxWtketLQBzNn4C8P2GvSa3bW90mpS/wCtuTqFwzSdMBsuQw4HB44HFamp6i9oI4bWIXF/PnyIM4Bx1Zj/AAoMjJ+gAJIB0q5TWPh34b13VJNS1KyuJruRVVnF9OowOgAVwAB6ADqfWgDQ0LS7fTorkidbq+nm33twMZeXA7c7Qo2hV7DHXqdus/SNGstB0uHTdMg8i0h3eXHuZsZYseWJJ5JPJ71oUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFch8Q/GsPgPww2qtbi4nkmEMEJfaHcgnkgcAKCf07119eZfGOGDXNI03wnDCJtY1W8T7Hn/lgEOZJT/shcj/gRx0oA5/4f/HX+3dXOneJo9P01XRnivBKYo8jBCMHJAyM87uwGOa9N/wCE78If9DXof/gxi/8Aiq4/4e/Buz8D6w+rzai2oXoRo4T5IjSMHGWxljuIyM5AwSMHrXp+KAMD/hO/CH/Q16H/AODGL/4qj/hO/CH/AENeh/8Agxi/+KrfxRigDA/4Tvwh/wBDXof/AIMYv/iqP+E78If9DXof/gxi/wDiq38UYoAwP+E78If9DXof/gxi/wDiqP8AhO/CH/Q16H/4MYv/AIqt/FGKAMD/AITvwh/0Neh/+DGL/wCKo/4Tvwh/0Neh/wDgxi/+KrfxRigDA/4Tvwh/0Neh/wDgxi/+Ko/4Tvwh/wBDXof/AIMYv/iq38UYoAwP+E78If8AQ16H/wCDGL/4qj/hO/CH/Q16H/4MYv8A4qt/FGKAMD/hO/CH/Q16H/4MYv8A4qj/AITvwh/0Neh/+DGL/wCKrfxRigDA/wCE78If9DXof/gxi/8Aiq47x/8AGPSfDOlQvoV1p2s39w7KqQ3QkSFQPvPsJ7kADIzk4PFeoYrj/iB8PbDx/pUFrdTyW1xbOz29wihipIwQQeqnCkgEH5RzQBzfwo+Ks/jy4utM1Kzht9Qt4vPV7ctslTdhuDnaRle5zk9MV6rXinw78LRfDT4iz6LqUguJdVsw2nX+3YG2HMsWMnDfdPXoo9a9qyPXpQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRmgCG5u4LK1murmVYoIY2lkdjgKoGST7ACvP/AIf2s/iLV7/x/fxlGvx9n0uFusNop4PsXbLf/Wam+O7ibxTr9j4AsZSsc+LvWZY2wYrVT9z2LnA9RxkEGvQre3jtbeK3gjWOGJAiIvAVRwAPYACgCaiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOU8feF5vEvh4/YHEWsWMi3enTcZSZOQMnoG6fke1WPBfiaLxZ4YttTVfKuDmK6gOQYJl4dCO2DyM84Iro68zvs+APiQmoqRH4f8SyCG6HRLe9/hf6PyCfXJPQUAemUUmRS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFY/iTxBaeF/D17rF8f3NrGX2jrIeAqj6kgfjWvkV5rqH/FffEeLS1+fQvDTie7PVZ7zokfvsGSffIPUGgDU+HOgXdhpdzrWsDOu63L9rvCf+WY/5ZxD2ReMdiT1wK7em4p1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWP4l8P2vijw/eaPej91cx7Q46o3VXHuDg/hWxRQBxXw68QXWo6TcaPrB265osn2S9BP3wB8ko9QyjOe5BNdrXnHjqGTwn4hsfH1lGxhi22msxIP9ZbEjEmO7Ice5GBkAV6HBcQ3MEc8EqSRSKHR0OQwIyCPqOaAJKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopu9cZyAPegDlvH3ieTwz4cZ7JDLq17ILTToQMmSd+F49B19OPerHgvwwvhPwzb6ZvM1ySZbuctuM0zcu5J5PPTPYDvXL+GAfHPjq58XS4fR9L32WjAj5ZGziWcfXG0e3YFa9LoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCvd2kF/ZzWd1EJbedGjkRuQykYINcD8Prufw9q1/4A1KVpJNPH2jS5nJJns2PAzjqh4P5Dha9GrhfiNol7LY2niXRlzrWhObmED/AJbxY/exHH95fxOMd6AO5yKWsvQtatPEOh2er2L7re6iEik9V9QfdSCD9K1KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArgfiRqt3NFZeD9Hk26trrGIuP+Xe2H+tkP4cD1ycciu1v7+20zT7i/vJVitreNpZHPRVUZJ/KuE+HVjcavdah461SEpeax8tnC/W3s1PyL7FvvHHB4OOcUAdrpGk2uh6RaaZYxeXbWsQijXqSB3PqT1Puav0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU3BzTqKAPM9EI8BfEKbw4+I9D15nu9MJOFhuBjzIR7HgjtyAMk16XuB71zPjjwu3irwzNZxSeTqELrc2M6tgxTpyhz27g+xNHgXxR/wlXhuK7mQw6hA5tr+AjBiuF4YEdvUexx1oA6eiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkzS1h+LPEdt4U8NXmsXI3CBf3cY6ySHhVHuTQByPjNm8Z+LLPwJbljYw7L3W3Xp5YIMcOfVjgnuBgjPNejRxLEioihUUYVV4AHbHpXI/Dzw5c6Hob3mqfPrmqyG81CQ9d7chPooOPTOccGuyoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvNdbX/hBPiFb+JE+XRNcZbPUwB8sM4/1Ux9Afuk9ue5FelVm69otr4h0K90i+TfbXUZjb1HoR7g4I9wKANHcPWlrhPhzrN9JZ3nhnWWB1vQnFtMx/wCW0RH7qUeoK4z345613dABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJuHrXmpz4++JuMF/D/AIXk5yPluL/+REY/EH1DVtfELxHcaHocVrpY8zXNUl+x6fGOvmN1f6KOc9M4zWn4R8MweEvDFno9sQ/kpmWXGDLIeWc/Uk/QY9KAN3FLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHnPxBtLjw/qlh8QNOjLS6aPI1OFOtxZsefqVPzDPHc/drv7W8t760hu7aVZYJ0WSORejKwyD+INLNAlxDJDNGHikUq6NyGB4IP4V574Flfwn4jvvAN45Num690aVznfbsSWjz6ofxIyeBigD0iikyKWgAooooAKKKKACiiigAooooAKKKa8iRozuyqqglmJwAPegBQwPelrL0HWrPxFpEWqWBLWsryLGzLjcEdk3fQ7SR7GtSgAprSIiM7uqooJZicAAdSTQ8iRoXdgqryWY4ArzPxr4jg8WGz8F+FtVgubjVXKXtzaSiQWlqv+sLFTwW+6AeucdxQBL4OVvGfi+88c3CE6fBusdERhj92OJJserHIHfGQelek1T07TrbStOt7CyhWG1t4xFEi9AoGB+PH9auUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcV8RdAu9R0m31jRwBruiyfa7Igcyf89IvcOvGO5A967Wm4NAGR4Y8QWnijw5ZazZnEV1GGKHqjdGU/Qgj8K2a8vinh+G3xAuLe5lS38MeIS1zFI7bY7S7Ay4JPCq4GR74A4BNej2Oo2Wp2iXVhdwXVu/3ZYJA6H6EcUAWaKKKACiopLiGJ4kklRXmYpGpOC7bS2B6nCk/QGpaACiiigAooooAQsB39q87+I9/LqXhvxBY2srJZWFjM99Ohxvl8slIAfrtZvQYH8Rx0niLWjZyWukWMsX9s6kSlqjn7igZeVh3VQCcfxHA7kjgPiV4atvDPwu1drfV9UfO391Nc7lkeSUbiwxySWZifagDsvhhai0+GXh6MD71mkn/ffz/+zV1u4DvWP4VhW28IaJbqQVjsIEBHIOI1rE8e+MLjw9p/2XSIVudYuHjhhVvuxGRtis3uTnA74J6A0AU/jJY6tqPw1vrfSEeWYyRNNDEhZ5Iw/IXHPXB+gNeE/BOC9f4qaebdjGIUma5ycfu9hBBHf5io9jz2r6yjR1iVXbe6gAtjG49zj3riPiNol5LZWnibRlzrehObmFR1mj/5axH2Zc+/GO9AHdZFLWXoOt2niLQrLV7F91vdRiRcHO31U47g5B9CK1KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiim71xnIA96APA/2k4b0x6DP5mbAGZCgOMS/KcnnnKjA9MH1qX9nPTtWt4dZu5opodNnWIQmRCFlcFuVPcAHnHXI9K6/wANZ8deOLnxfJ82kaWZLLRl52yN0lnHrnoD6DsRXpG3HQcUAOqOaeK3gknmkWOGNS7uxwqqOSSewFPyPWuM17+0vE1+dO0pbQ6dYzD7YbsN5dzIORCNvVVOC3qcL03CgDk4NU1HXvjrozXOYtPh0yW8s7YjDIrFow7g9HbrjsCo65r2CvJPDTahdfH7XJNT+zm4stIjhP2fdsG4o4xnnoTXqtzK8NtJJHF5jqMhNwXP4nigCXIpa53wb4jk8W+GbfWmsDZJcl/KiaXeSgYqCeB1weP1roqACiiigDJfwzocupDUZNF0574MGF01qhlBHQ7sZz71JqOgaRrBRtU0qxvmT7hubdJdv03A46mtKigDB1G2m8P+G7lfC+i273KgeRZwLHChYkDPVRwOeozjGa84M2qXnjXw5o8nhe/WS0mbVr43F1Azzt/qkmZlcjCsxIUc4ACjA49lrOh0Wzt9bu9XjjP227jjilctn5EztAHYZYmgDRpuDmnUUAeZ6L/xQfxDm8OufL0PXi13phPCw3A/1kI9AeGHboBkmvS9wPeua8b+GG8VeF57KN/J1CJhcWNwrbTFOnKMG6juCfQnvSeBvFH/AAlXhqK8mQw6hA7W1/ARgxXC8MCPyI9jjrQB09FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcD8R9Vu54rLwdo8m3VtcYxM4/5d7b/AJayH04yB6845Fdpf6ha6Zp9zfXkqxW1tG0srn+FVGSfyBrhvh1YXGrXV/461WIpeaxhbKJuttZj7i/8CxuPY8HgkigDtNI0m10PSLTS7GLy7a1iEUY6kgdz6k9T7mr9FFAFLULKW+spLeK9uLFnGPPttnmAexdWH6flVDw74bTw1oK6Ta395PEhYxy3BjaRSxJJyFAJySckHrW5RQByGleAINJ8U3viKLW9Wlvr3AuRMYCkqjGFIEQwOAOMHHepPiPqkmleA9Ukt8m7ni+y26jqZJTsXHv82fwrq65XxT4V1DxHfaTImqwW1pp14l6LdrMyebIn3dzeYOBk9qANnQ9Kj0TQNP0uH7lpbpCDjrtAGfxxn8a0aQZwM9aWgAooooAKKKKACiiigAooooAK811zPgT4hweJE40TXSlnqmBhYJx/qpj6A/dPpzzk16VWbrui2niHQrzSL5N9tdxGN8dR6Ee4OCPcCgDR3DOM80tcJ8NtYvXsrzwxrT7tb0KQW8zH/ltER+6lHqCv48DPJru6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApM0tYfizxJbeFPDV5q9zhvJXEUfeWQ8Kg9yf8aAOR8ZO/jTxZZ+BLdj9gh2X2tuv/ADzBBjhz6scE98YIzgivRUiWONY0VVRQAqqMAD29PTFcl8PPDlzoehveap8+uarIbzUJD13tyE+ig49M5xwa7KgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDzn4hWtx4f1Ox8f6bEWl00eRqcKdbizZufqVPzDPHc/drv7W8t760hu7aVZYJ0WSORejKwyD+INLNAlxDJDNGHikUq6NyGB4IP4V574Flfwn4jvvAV4xNvHuvNGlc/ft2JLR59UJ6dSMngYoA9IopMiloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooATcPWvNcHx98TOm7w/4XkwePluL/ANPcRg/gfUNW18QvEdxoehxWuljzNc1SX7Hp8Y6+Y3V/oo5z0zjNafhLwzB4S8MWejWuH8lP3suMGWQ8s5+pz9Bj0oA3cUtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXFfEXQLvUdIg1jRxt17RpPtdicZ8wf8tIjjqHXjHcgds12tNwaAMjwx4gtPFHhyy1mzOIrqMMUPVG6Mp+hBH4Vs15pZL/AMID8SH07lPD/iaQzW3923vf409g4wR74AGATXpW4etAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTWkREZ3dVRQSzE4AA6kmlyK89+I19dapcWHgXSZmjvdY+a7lTn7NZA/Ox/3sFQO/I70AQ+Dlbxn4vvPHNwhOnwbrHREYY/djiSbHqxyB3xkHpXpNU9O0620rTrewsoVhtbeMRRIvQKBgfjx/WrlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAc94z8Mx+LPDF1pbN5c5xJbT55imXlHz1GD1x2Jqn4B8TS+JfDo+3L5Wr2MrWeoRdCkycE/Q8H9O1dbXmvioN4H8b2vjGEFdI1Ix2WtKoOIz0in/AnB9uMEtQB6VRSBlYZByPUc0tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSZHr1oAo6vqtromkXeqX0gjtbWNpJGz0A7D3PTHc8Vx/w40q8njvvGOrpt1bXGEixsOba2H+riH4YJ/DIyKp+KCfHHjm18HxHOkaYUvdZYH5ZDnMVufXP3iPTpytekhQowBgDpjtQA6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqGraVa61pd1pl9EJbS5iaKRfYjsex7g9iM1fooA8/+G+pXVqt74L1iTfqmhkJHKwx9ptT/AKuQfQfKeuOM85r0DNee/EWwutMnsPHGlRF77RiftUS8G4s2/wBYv1Ucj056mu307UbXVNOtr+zmWW2uYxLE47qRkGgC3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXO+NPE0XhTwzcakV8254itbcZzPM33EA788nHOAa6HI9a80sAfH3xHfUyRJ4f8ADUjQWo6rcXn8cnuEGAD64I6mgDofAXhibw14dAv383WL2RrvUZzjLzPyRkdh0444JxzXV0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEbxiRWV1DKwIIPIIPbFec+D2fwX4wvPA1yx/s64DX2iO3ZCSZIMnupywHpknrXpIYHpXl3xwvLXS/CVlqoYx6vaX8b6bKn3lkzlgf9kqpyPXFAHqWaK8G8FftALd3ssHi9LWygKM0d3bRyEA5GEKDcemfmz2Hua7n/AIXb8PP+hh/8krj/AON0AegUV5//AMLt+Hn/AEMP/klcf/G6P+F2/Dz/AKGH/wAkrj/43QB6BRXn/wDwu34ef9DD/wCSVx/8bo/4Xb8PP+hh/wDJK4/+N0AegUV5/wD8Lt+Hn/Qw/wDklcf/ABuj/hdvw8/6GH/ySuP/AI3QB6BRXn//AAu34ef9DD/5JXH/AMbo/wCF2/Dz/oYf/JK4/wDjdAHoFFef/wDC7fh5/wBDD/5JXH/xuj/hdvw8/wChh/8AJK4/+N0AegUV5/8A8Lt+Hn/Qw/8Aklcf/G6P+F2/Dz/oYf8AySuP/jdAHoFFef8A/C7fh5/0MP8A5JXH/wAbo/4Xb8PP+hh/8krj/wCN0AegUmRXAf8AC7fh5/0MP/klcf8Axuud8XfHrQtP0lW8LSx6nfu+0rLFLGkS4J3HKqW5xwCOp54oA6z4ieILrTtJt9F0fnXdakNpZKDzGMfPKfQKp69iQexre8NeH7Xwv4fs9Hsl/c20e3eeC7dWc+5OT+NeQ/CLxY/jn4galqmuqjatBYIlkkakRQxbsSFQScMSyc/7TDgcV7tQAUUZpNw9RQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJkUZFYXijXJNF00fY7d7rU7glLS2jUszHuxA/hUck/QdSMgHJ/EXxlc2Gp6P4c0lmE9/qNvbXVyn/LBHYHYD/eYc+y/7wrqfGHhCw8aeHpNI1FpEjLiSOWLG+Nh0IyCOhIPHQkV5hrBjl8cfD/SUtNQhkS/mu7ia+hEb3Mo2sXOOpyD9MgdK9uLqASTgDuaAPNfh/wDB3T/A2rPq0moS6jfhGjiZohGkanHIGSd2ARnIGCRivS8Vzei/EDwr4i1L+ztI1iK7u9pfy0jf7o6nJGK6WgBMUYpaKAExRilooATFGKWigBMUYpaKAExRilooATFGKWigBMUYpaKAExXI+Pfh9p/j7SoLW9mlt57ZzJb3EYBKEjBBB6qeCRxnaORXX0UAcD8OvhbYfD/7RcR3kl9f3KCOSZ0CKqg5wgGSMnGck52jpXfUUmRQBU1LUbbStOnvrpysMK5OBkk9AoHUkkgADkkgDmuL+GPiLUfFa+IdVvw8ajU2toLfcCIUjRfl44J+bk9zSXHiBNT14X0ml6ndaNpxLWb29vvinlGd0xJIBVeQnbOW/ukU/gSjH4dG6cYe7v55mz65A/8AZaAPTaKr3t/Z6baSXV9dQ21vGMvLM4RVHuTTbHULfUbYXFv5vlk4BkheMnjPAYA4569KALVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBDMJRGzQojygHYHbaCfQnBwPwrm/Dul+II9d1LU/EEemmSfbHam0neQwQj/lnho16nLFs8nHHAx1VFAHneteF/FGo/EvRvE0MOkCz0uOSNIHvJBJLvVlLEiIhfvDjnp15rrfEGnXer+G73TbO8SyuLqExiYx+YEDcNxxnjIz75rXrA1XWNY0/WLa3tvDlzqNhLGS9zbXESvG+cBSjsvGOc7vwoAxfAesapdXms6Fr1taLqmkPGj3Fom2O4jkUsjAduF5H0ruaw9D0eW0vNS1W8VFv9SkRpFRtwjjRdsaZ74GST6se2K3KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5fxfYeJdSsRp+hjT44JSouZbi5kjkMefnRNsbYLDjdnIyeM4NdRRQBiavZ6ifDkljo9rYx3D25gRZZmjjh+TaNpVCSB6YHTtWT8N/Dur+E/CNroWqJYt9lL7JrWdn37nZ+QyLj72O/SuxooA8c/tDVvE+o6r40Wytr7RNDkkTTLCadoxK0X35+FIL8HaT06YzzXqOhavba9oVjqtoHEF3CsqK/DKCOh9x/+quItfD+t6X8O28GafZMtwwmtRfM6+SsLu5M3Xdnax+XGd3t81dzoukwaFollpVruMNpAsKFurBRjJ9+KANCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACk9KWk9KAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAE7ZpaT+GloAKKKKACiiigAooooAKKKKACiiigD//Z'] Multimodal Competition True Theorem proof Combinatorics Math English 34 "This Question involves one Robber and one or more Cops. After robbing a bank, the Robber retreats to a network of hideouts, represented by dots in the diagram below. Every day, the Robber stays holed up in a single hideout, and every night, the Robber moves to an adjacent hideout. Two hideouts are adjacent if and only if they are connected by an edge in the diagram, also called a hideout map (or map). For the purposes of this Power Question, the map must be connected; that is, given any two hideouts, there must be a path from one to the other. To clarify, the Robber may not stay in the same hideout for two consecutive days, although he may return to a hideout he has previously visited. For example, in the map below, if the Robber holes up in hideout $C$ for day 1 , then he would have to move to $B$ for day 2 , and would then have to move to either $A, C$, or $D$ on day 3. Every day, each Cop searches one hideout: the Cops know the location of all hideouts and which hideouts are adjacent to which. Cops are thorough searchers, so if the Robber is present in the hideout searched, he is found and arrested. If the Robber is not present in the hideout searched, his location is not revealed. That is, the Cops only know that the Robber was not caught at any of the hideouts searched; they get no specific information (other than what they can derive by logic) about what hideout he was in. Cops are not constrained by edges on the map: a Cop may search any hideout on any day, regardless of whether it is adjacent to the hideout searched the previous day. A Cop may search the same hideout on consecutive days, and multiple Cops may search different hideouts on the same day. In the map above, a Cop could search $A$ on day 1 and day 2, and then search $C$ on day 3 . The focus of this Power Question is to determine, given a hideout map and a fixed number of Cops, whether the Cops can be sure of catching the Robber within some time limit. Map Notation: The following notation may be useful when writing your solutions. For a map $M$, let $h(M)$ be the number of hideouts and $e(M)$ be the number of edges in $M$. The safety of a hideout $H$ is the number of hideouts adjacent to $H$, and is denoted by $s(H)$. The Cop number of a map $M$, denoted $C(M)$, is the minimum number of Cops required to guarantee that the Robber is caught. The police want to catch the Robber with a minimum number of Cops, but time is of the essence. For a map $M$ and a fixed number of Cops $c \geq C(M)$, define the capture time, denoted $D(M, c)$, to be the minimum number of days required to guarantee a capture using $c$ Cops. For example, in the graph below, if three Cops are deployed, they might catch the Robber in the first day, but if they don't, there is a strategy that will guarantee they will capture the Robber within two days. Therefore the capture time is $D\left(\mathcal{C}_{6}, 3\right)=2$. Definition: A map is bipartite if it can be partitioned into two sets of hideouts, $\mathcal{A}$ and $\mathcal{B}$, such that $\mathcal{A} \cap \mathcal{B}=\emptyset$, and each hideout in $\mathcal{A}$ is adjacent only to hideouts in $\mathcal{B}$, and each hideout in $\mathcal{B}$ is adjacent only to hideouts in $\mathcal{A}$. A map $M$ is called $k$-perfect if its hideout set $H$ can be partitioned into equal-sized subsets $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{k}$ such that for any $j$, the hideouts of $\mathcal{A}_{j}$ are only adjacent to hideouts in $\mathcal{A}_{j+1}$ or $\mathcal{A}_{j-1}$. (The indices are taken modulo $k$ : the hideouts of $\mathcal{A}_{1}$ may be adjacent to the hideouts of $\mathcal{A}_{k}$.) Show that if $M$ is $k$-perfect, then $C(M) \leq \frac{2 n}{k}$." "['Because a Robber in $\\mathcal{A}_{i}$ can only move to a hideout in $\\mathcal{A}_{i-1}$ or $\\mathcal{A}_{i+1}$, this map is essentially the same as the cyclic map $\\mathcal{C}_{k}$. So the Cops should apply a similar strategy. First, position $n / k$ Cops at the hideouts of set $\\mathcal{A}_{1}$ and $n / k$ Cops at the hideouts of set $\\mathcal{A}_{2}$. On day 2 , leave the first $n / k$ Cops at $\\mathcal{A}_{1}$, but move the second group of Cops to $\\mathcal{A}_{3}$. Continue until the second set of Cops is at $\\mathcal{A}_{k}$; then ""wait"" one turn (search $\\mathcal{A}_{k}$ again), and then search backward $\\mathcal{A}_{k-1}$, $\\mathcal{A}_{k-2}$, etc.']" ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAVABvwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ0ALketFcB8SfHg8MJYaTp7q2t6nMkcI4PkozbTIR+YHqc9dpFd6p60AOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKADNZevazDoeltdvG88pYR29vGfnnlY4VF+p79hkngGr9xNFbQPNPKkUUalndyAqgckknoK4e10aPx7NH4hvpr23sUz/ZEdrcvA6xkENOxUg7pAeB2QjuxoA4Txpo0sHjzwDDfSrPqt/qZu9QkXpkPFtRc9EUAqPpnqa93HrXh2q6RBZ/tDeE9Ohur64SO3e4Y3l5JcFW2ytgF2JH3BwPY969xHpQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBka/4a0zxNaC01WKea2/iiS5liV84+8EYbunfOOam0nRbPRNLj02wWaO0jXaiPcSSlBjAAZ2LADsAcDtWjRQByEnw18Ly6wusPZXjakhyt2dSufMHUcN5mQME8V1cMYhiWNd21VABZix4Hcnk/U81JRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUZxQAUhpayte8Q6V4b0832rX8NpAM4MjcuQM4UDlj7AE+1AGdrnj/wr4dv0stV1u2t7pmCmLl2Qn+8FB2jnqcVv2V5a6haR3Vlcw3NvIMpLC4dGHsRwa+GdbvLjUNbvb+5dnlupmnMhTZu3HcGC9gc8Dng19N/ACC+h+GwN3kQyXcjWgJziPCg49t4c/iT3oA9SooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoozjrSHrjPNAC1FPNFDA00sqRxICzOzbQoHcnoB9a43xZ8S9H8NXK6dbpLqutyHEWm2Q3yFvRsZ2/z9AeawI/BHifx5NHd+Pb37JpobdHoVhIQvsZXycnj178FelAFjUvibd63fSaL8PdN/ti8XCy6jKNtpBnuTxu4Deg443dKl0f4Z20F03iLxtqJ17V1Uu0lyP9GtgOSEQ8YHPJGO4VTXeaXpdjo9hHZadZw2ltGPlihQKo98Dv79TXE/FzU518OWvhzTiP7S8Q3C2MXP3YyR5jH/AGcEA+zUAY/w60a08Z3+seOtY06C5F/d7NNS6hV/JhiO1WUEHaeAD7oT3r1lRgYwAOwFUtF0u20PRbLS7QYgtIViTjkgDGT7nqav0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVBdXVvZ28lzczxwwRqWeSRwqqB1JJ4FeaXvxH1bxPeyaV8OtN+3Mh2TatdKVtYPp/ePOf5Bh0AO58R+KdF8K2H2zWNQitYyDtUnLyeyqOSenQV5+b/AMb/ABLUDSo5fC/ht/8Al8lH+mXC/wCwB9wHjkH6MeRWz4d+F9nY6ida8R3UniDXWIJubsZji74jQ5AA7enbHSu/Xvnv7UAc14V8CaD4Ot/L0q0/fsMTXc2Glm9dzY/HAAFdIoxTqKAEbpj+VeW+HR/wmfxe1bxGT5mm6Cv9nWBxwZj/AK1x24ywz3DKe1dP8R/Ev/CK+Cb6/ifF46/Z7QDk+c4wuB3IGWx6A1L8PvDI8J+C9P0tlAuQnm3R67pn+Zue+M7QfRRQB0wz3paKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiuf8U+MdD8I2YuNXvo4WIJjhX5pZP91ByfTPT1IoA3zziuE8UfE3S9GvP7J0u3l1zXWO1bCy+faeh3sMhcenJ9h1rB/4rr4m9PN8KeGX/wDA25T9NoI+nX+MV3XhfwZofg+y+zaPYpESB5kzfNJIfVmxnueBwM8AUAcXb/D/AMQeMriPUPiJqG6BW3xaHZOVgjPYuwOWI56HP+1jivS7CxtdNso7Oytora2iXEcMSBVUewHFWBS0AFFFFABSNnHFLWb4g1i28P6BfatdnEFpC0rDOC2Bwo9ycAe5oA8/1lf+Ey+Mem6MmW0zw1GL274+VrlseWh7EgYYf8DFeorXn/wj0e4tvC82u6io/tTX521C4YLjCsfkUe2PmA7bq9BFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNbkUAOqtf31rp1nJeXtzFbW0Q3SSyuFVR6kmuH8SfFCysdROieHLSXxBrzfKLW0OY4z6yOOAB3x+JXrWdY/DjVfFF5Hq3xE1D7cyt5kOkWrFLWE++D8x7foSwoAbP4/1/xncy6b8PNOBgRvLm1y+UrBGe+xSPmPTqPquOa2fDPww03Rrw6vq00mua85Dvf3nzbT/sKchcdjyR2wOK7S0tYLK3S2tYI4LeJQsccShVUegA4FT0AIOvTtS0UUAFFFFABRRRQAjfzry/4nSSeJfEGgeALZmC30ovNRKcbbaM5xn3IOP9pV9a9OlkSGNpZGCogLMzHAAAySa8x+F8T+JNZ17x9dRsP7SmNrp6sPuW0Zxx6ZIAPuh9aAPTokSKJY40CIoAVQMAD0Ap9IvfrS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFJketAC0ZqlqmqWOj2Ml7qN3Da20Yy8szhVH59z6V5tJ438TePJXs/AdgbPTt22TXr5CEx38pCDk+/PuF60Adj4t8c6D4Ntll1W8xMwzFaRfPNKewC5/U4Hv0rizp3jf4ljOpvL4W8NSdbOI/6ZcL33kj5AeeCPqG610fhX4a6R4cuDqVyZdW1yQ7pdRvjvk3eq5J2/UZPOMmu0UdTzz60AY3hzwto/hSwFno9hFbRnl2Ay8h9Wbqe/wBO2BW0KWigAooooAKKKKACiiigAoopD/k0Aee/F7V7iDwzB4e05lOp+IJxYQqT0RseYx9sEKT2312eh6Tb6FolnpVopEFpCsSZ6nA6n3PU+5rzzw//AMVp8YNV185fTPDqnT7Lj5WnOfMYfT5h9GU16kowKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAozjrSEgdSOK5bxd4+0LwhGsd7cNNfycQ2FsN88hPT5ewPqce3NAHU5B54rzrXvilD/aP9ieDrJvEOtHIxAf8AR4P9p3zjGe2QODkjjOYdA8Z/EnD+I5X8OeHX5XS7V/8ASJl9JWPQe2PT5cjNeh6F4d0nw3p62OkafFaW46hByx9Wbqx9yaAOH034ZXmuX0esfELUP7XvFOYdOiJW0ts9gvG48DPrjndwa9KgijgiWKKNY4kAVEVQFUegA6U8ZpaACiiigAooooAKKKKACiiigAooooAK5T4i+Jx4T8E6hqUbf6UV8i1UHlpn4XH0+9j0U11Rry7Xj/wmXxh0rQUJbTfDqDULwfwtOQPLQ9iQMEexb0oA6j4deGf+ET8E6fpsi4uinnXTdzM/Lc98cLn0UV1VNXvTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopkjKqMzkBVBJJ6Ae9AD8j1rO1rWdN0HT3v9WvIbS0TrJK2AT2AHUn2HNcNq3xQa+1JtE8C6edf1TOHnBxa2/B5Z+jdD0IB7HPFGjfC9r7UU1zx1f8A9vaqPmSBhi1t/ZU4DfiMdyM80AUW8V+LviEzW/gq1OkaISVbW71PnkHQmJPz5/Mqa6fwl8OdE8KObyJJL3VpctNqN4d8zseuD0UfTn1JxXXRIsaBEUKigKqjoAPSn0AIKWiigAooooAKKKKACiiigAooooAKKKKACiikNAGfr2rW2g6Fe6tdkeRaQtK4zgsAPuj3JwB7muN+EWkXEHhmfxDqCg6p4gna/mbHIRjmNfpglh/vVR+J8z+I9b0DwDbM2NRmF3qBTjbaxknH4kHHuoHevTYY0hiWKNQqIAqqowAB0AoAeKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiijOKACijNZmo+ItD0dwmp6zp9k56Lc3KRk/8AfRFAGnRVG31rS7u2jubfUrOaCVxHHLHOrKznooIOCT6VeoAKKKa30oAdRmvP9d+Id5ofi6z8Nf8ACONdXt6m+2MF4oVlyeuVG3AUn096nufiLFouq2lh4n0i80b7YxW3uneOaBiMcF1J2nkdRQB3NFNUYzTqACijNGaACkyCM54rL1/xDpPhvTWv9Xv4rS2X+Jzyx9FA5Y+wBrzsa94z+JIMfhqB/D3h9+Dq10v+kTL6xJ2+o/76BGKAOp8X/EbQ/CRFpLI99q0nyw6daDfM7HpkfwjkdfwBxiuXXwp4u+IbC48ZXTaRopYMmiWT4dx1HnPz6Djn6Ia67wl8P9B8Hq0ljbtNfPky31yd88hPX5j0B9BgevPNdQoxxjAoAoaPomm6BYJY6VYw2lsnSOJcZPqT1J4HJyTWgKWigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKZK6RRtJIwVFBLMegHc0+vPvi9rE9t4Wi0LTiDqmvTrYQLnorECRj7YO0/wC+KAM/4ZRN4l1/X/H86HbfzGz08MDxbR4GR6biBn3VvWvUBWdoGj23h/QbLSLQfubSFYlJHLYHLH3JyT9a0qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmt2p1I3agDy3xp4u1XUvGFt4B8KTeRfzANf36jJtIsZOO27ac591A5OR2fh/wlpHhu1CWForTEZmu5fmnnY8lmc8kk++OteU/As/2v4w8Ya/dc3bzKoLdQJHdmHt9xRj0Fe6qeOetAHDan4Fs5/iVoHiO1sY4TbJObto12iRtoEZOO4LMc9Tj2ruQMUtFABSGlrN8QatFoXh7UNWmwUs7d5sE43EA4H4nA/GgDyGy8Q6Le/H3WtX1fVLO0ttGt/sVp9pmVCZM7WK5POCZfzFSePHl+Ld3pWh+GIpZ9Lt7gy3mrMhWCP5cbVYj5yAT07kds1t/BXQ1i+Hp1C/iWa51i4lupjKoJZSdoBz2ON3/Aq5zRP+JF+0hdaPoAEWmXMRe8t4R+6RvJ3Zx2+faPYsRQB7jEuxAoJOABljk/jSv2Hc0ooIzQB5X4h+O3hvQNck0oWt9etbyGK5lhVQqEHBC5I3EEew96JvitdeJ2Gn/D3SJtSu3UGW8uozHb2uf72cZOAeMjpxu6V4X4p+G3ifRPEdxZjSNQu4pJ3FtcxwmXz13HaSVB+YjBI611fhnS5vCJi0rxpqXi7wul0/mQXNjqAS1diBwwVWw3TJyffGKAPWNC+FsJ1Bdb8Y3z+IdbOGDTj/AEeDviNOmAfXjvtBr0RQBnAxXnkHw1guYEng+IXjSWGRQ6SR60GVlPQghcEe9S/8Ks/6nzxx/wCDj/7GgD0CivP/APhVv/U+eOP/AAcf/Y0f8Ks/6nzxx/4N/wD7GgD0CivP/wDhVn/U+eOP/Bv/APY0f8Ks/wCp88cf+Df/AOxoA9Aorz//AIVZ/wBT544/8G//ANjR/wAKs/6nzxx/4N//ALGgD0CivP8A/hVn/U+eOP8Awb//AGNH/CrP+p88cf8Ag3/+xoA9Aorz/wD4VZ/1Pnjj/wAG/wD9jR/wqz/qfPHH/g3/APsaAPQKK8//AOFWf9T544/8G/8A9jR/wqz/AKnzxx/4N/8A7GgD0CivP/8AhVn/AFPnjj/wb/8A2NH/AAqz/qfPHH/g3/8AsaAPQKK8/wD+FWf9T544/wDBv/8AY0f8Ks/6nzxx/wCDf/7GgD0CivP/APhVn/U+eOP/AAb/AP2NH/CrP+p88cf+Dj/7GgDv2xx9a8u0T/is/jFqWtsC+meG0NhZjHytcnPmMO3HzD8UNZnjzwsvg3whe6wPHXjSS4RdltFJrBw8rcKCAuSByxAIOFNXPC3wd/s/w9arJ4q8U6fdzIs13BYagIYxMVG7gKeeAMk9hQB6wPSlrz//AIVZ/wBT544/8G//ANjR/wAKs/6nzxx/4N//ALGgD0CivP8A/hVn/U+eOP8Awb//AGNH/CrP+p88cf8Ag3/+xoA9Aorz/wD4VZ/1Pnjj/wAG/wD9jR/wqz/qfPHH/g3/APsaAPQKK8//AOFWf9T544/8G/8A9jR/wqz/AKnzxx/4N/8A7GgD0CivP/8AhVn/AFPnjj/wb/8A2NH/AAqz/qfPHH/g3/8AsaAPQKK8/wD+FWf9T544/wDBv/8AY0f8Ks/6nzxx/wCDf/7GgD0CivP/APhVn/U+eOP/AAb/AP2NH/CrP+p88cf+Df8A+xoA9Aorz/8A4VZ/1Pnjj/wb/wD2NH/CrP8AqfPHH/g3/wDsaAPQKK8//wCFWf8AU+eOP/Bv/wDY0f8ACrP+p88cf+Df/wCxoA7q6njtreSeZ1SKNS8jscBVAyST2FeTN+0N4VGr/ZhaagbPODd7FxnP9wnO3v6+1aup/CWS60q7t4/G/i+R5YHRUutU3xMSpADrtG5fUZGRXzm/w98YJrH9mHw5qAugfurESvrkOMrj3zigD7PtLmG8tYrq3kWWCZFkjdTwykZBH4Gpj29qxvCOky6D4R0nSp33zWtpHFIc8bgvIHtnpW1QB4qui618K/Huo6xp2lXWpeGNVOZ47FN8ts2SRhO4Us2O208nNd1B8QtJ1FQmmWWr310f+WEenSoQf9ppFVF9Mlq689R1ox/kUAUNIj1BYJJtSdftEzb/ACYzlIBjhFPG7HdsckntgDQpBS0AIQa5Dx14S1Txjo0ujwa1Dp9jMVMgFkZZGwQcbvMUYyB2rsKKAODtfCHi2y0K20i28ZW9vbW0KwRvBo4EgRV2jkykZwOuKv8Ag74f6V4ONxcW7z3eo3JzcX1026STnP0A/n3ziutooAQDFLRRQAh+maqajp1nqljLZX9pFdWsow8UyBlYfQ9885q5RQB5VP4G8R+B5nvfAF6ZrEtvl0K9cmM56mJyeD+R9zwK3/CfxK0jxNctps0cula5GSJdMvBskDAZIXON3fsDxyBXaMM1zXivwHoXjG3VNTtiLiP/AFF3Adk0J7bWHUexyPxxQB0wI9fxpa8lOr+NPhmduvRy+JvDq9NSgX/SrdcdZF/ixjqT9W6LXonh/wARaR4l05b7R7+K6tzwdh+ZD6Mp5U+xFAGtRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh5paz9b1W30PRbzVbtiLe0haV8dSAM4Hueg+tAHnviJj4x+L+keHU+fTdAUalfehmI/dKe2RkH3DP6V6iteefCPSblPDlz4k1Jf+Jn4hnN9KcciM/6tR/s4JYezY7V6GO9AC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAGm45zjmnUUAIKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAawzjjNeea78Lo11Btc8G3zeHtaGSTCP9Hn9pI+nX0GO+Ca9FpDQB5ppXxOn0nUU0Xx/p/8AYuoE7Y71ebS491f+HqPUepHQekxOsiB1cMrAEMOhHtVLV9G0/XdPew1Syhu7WT70cqg89iPQjJ5HI7V5xJ4U8XfDxjc+DLt9X0QEs+hXj5ZB1Pkt+J44+jmgD1eiuR8H/EPRPF262hd7PVY8ibTrobJoyOuAfvAeo9sgdK60EHmgBaKKKACiiigAooooAKKKKACiiigBDXmHxSlk8RatoHgG0dl/tOcXN+UOCltGcntxkg4PqgFemyusaF3YKigszE4AA7+1eY/DNW8T+JfEHj2ZT5d1N9h00MCNttHjkem4hc+hVvWgD02CNIYViiRUiQBUVRgADsBUlIvSloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmsM9s06igDkvF3w80Pxhie6ie11KPBh1G1OyZCOnP8AEB6Hp2wea5RPFHi74cult4zt21jQshU1uzTMkQ/6ap+XPXryx4r1imSxrIhR1DKwKlSMgg9jQBR0bWtN17T1v9KvYbu1fpJE2QD3BHUHkcHnmtDI9RXmus/DGfTtQfXPAWof2HqbHMlrj/RLgc8MnIXr2GB6DqHaD8UFTUV0TxpYHw9rPRTKf9Hn943zgfiSPc0Aek0U1SMdqdQAUUUUAFFFFABRRTW7UAcB8XtansfCcejaf82qa7Oun2yg4OH4c/TB2+xcGuu8PaNb+HvD9jo9qP3NnCsQOMbiOrH3JyT9a8/0gHxn8ZtR1ggtpfhmM2Nr6NctkSN+HzD8ENepDOTmgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEOeMVla74d0rxJpzWGr2EV3AegcZKn1VuCp9wa1qKAPJToXjP4Z/P4elk8R+G0PzaZcN/pNuvrE2OQMdMd/u9x2fhHx3oPjCBv7Nudl3GP31lONk0RHXK98HuMj3rpj2rjPFvw40nxPMuoRNLpmtw/NDqVkdsgbtuxjcPyPoRk0AdpRXlMXjXxJ4DnWx8e2Ru9Ozth12yQlSOAPNXHB55/QNya9L07UrLVbNLywuobm1kGVlhcMp/EUAW6KKKACuZ8f8AidPCPgzUNW3KJ0jMdup/ilbhRj26n2BrpW6V5Z4mP/CY/FzR/DS5bTtCUalf+jS8eUh/MH3DN6UAdP8ADbwyfCngixsJlIvZB9ovCfvGZ+Wz9Bhf+A11tIveloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAiuII7mFoZoklicFXRxlWB7Ed68z1L4a6j4cvZdZ+Heof2dOx3TaVOd1pcewB+6ev54BUV6jSGgDz/AMN/E+zvdR/sPxLayaBr64U210cRynpmNzwc9gfwLda79axvEnhXRvFlgbLWbCO5iGdjnh4z6q3Uf175Feezjxl8KYHnWeTxN4ThGWWZ9t1ZoO4J+8oH4cdEHNAHp2tapb6Lo15ql22ILSFppPXCjOB7nGB74riPhDpVyvh+78TakmNT8QTm8kGPuxZPlqPbBJHsw9K8c8afGe88Y2p0ZtOSy0WSaNpUjctM6K2du77vJAONvBHUivpvR7izu9GsrjT9v2KWBHt9owPLKgrx9MUAXRS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWV4k0WHxF4c1DSJyQl3A0W4dVJHDfgcH8K1aKAPlFfgP44Oq/YTb2ggHP2w3A8n8sb/APx2vp/RNMj0XQ7HS4mZ47SBIVZ+rbQBk/Wr+R60mQO4oAWijNFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUje/SlpDjHNAHjfx2jWSPw/YaeDFrWo36xxyxMVZkA2kHHbc6flXa/8K20BLNYoBqFrOiBVubbUJ45FOMbs7sZ+oI9q425/wCKs/aNghHz2nh2z8xgeV808/nudf8Avg+lew8etAHlfg3xTq2k/EK98AeIbw30kamTT751AkmTbu2OR1+XnPqrcnjHqi9PWvDblTrH7U1t9lyU063Bnde2Ij/WRVr3IUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVma5r2meHrB73VL2G1hRGb944BfAyQoz8x6cD1rTpCM4oA8F+DnirQIH8S6/rmtWNnqWp3xZoriYK2zlvlzyQS5HH90V6Hf/EGO9ia28IWFxrmotwjRwslrGT/E8rALjrwDk4/Gu3/MfjQBzQBxPw+8BHwlFeahqF0L7XtScyXt1jjJJO1fbJyT3P4Cu2FLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q==', '/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAVMBjwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKTIoAWik3DOM0tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVUutSs7Ke0guJ1jlu5PKgQ5zI2CxA/AGrdABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWdq2qQaRp0l3OGbbhUiTl5HJwqKO7FiAK0GdVBLEAAZJNcF9v1fV9bTWrfRDe6Rbqf7NLXaRBychpypyeRwv+ySR97AAKXwq1LU9dvfFmq6oy/aDqX2QIjEpEsQ4RT6DcTnuST1NelZFeYfAkmbwJd3zDDXuqT3B/HaP/AGU12HiPWNT0i1mn03RBqH2eFppd9yIAFAJwp2nLcHjge/NAHQZorM0HWIfEOg2Or26OkN3Csqq/3lyOhrToAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqC8vbaws5ru6mWK3gQySyMeFUDJJqbIrjdRhu/Gd+EsL8Wul6bcAmXylkF1cIegB42Rkde7j/Y5AOOWbUtU+Pfhy41HzIgunT3UNk3H2aNhIi7h/fbq3pkD+GvYwwPQ15JoEF4/7QWoi/vhfSWWihBN5QjxudGAwCR0dvzr0jWIdSuLMxaXdw2czthrqRPN8pMEkqhwC2cDkgDOecYIBp5FLXB+CtT8Qr4o8Q+HNevU1L+zhDLFfJAsW5ZFJ2sq/KDx/Ou8oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDmvFugav4hsTYWOsQ6day4+0A2hlaVQeU3eYuFYcHAyRnntWjqNhqFzo72lleW9rcvF5ZnNsXUZUg7UDjHPI5OMY5rUooA5LwF4RuvBWgro0mqQ3tpGztEy2phcFjk5PmMD36AVkfFd9csvDU2pWdzBJpdvtN9p5Qo9xCSA6iUHK8HkADjPXkH0GRWaNgjbWIIDYzg+tcjD4X1rUNN/szxRrltqll5qu/lWQgecK25VkIYrtyBkKoJxjOM5AOm09YI9OtktYRDbrEojiC42Lj5QB7dKt00Efd/SnUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSbgcYOc0AVr+wh1KzktbjzhFIMN5M7xN/30hBH51S0Pw3pvhzTf7N0qGWCzGSsRuJJNpYknaWYleSTxWtketLQBzNn4C8P2GvSa3bW90mpS/wCtuTqFwzSdMBsuQw4HB44HFamp6i9oI4bWIXF/PnyIM4Bx1Zj/AAoMjJ+gAJIB0q5TWPh34b13VJNS1KyuJruRVVnF9OowOgAVwAB6ADqfWgDQ0LS7fTorkidbq+nm33twMZeXA7c7Qo2hV7DHXqdus/SNGstB0uHTdMg8i0h3eXHuZsZYseWJJ5JPJ71oUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFch8Q/GsPgPww2qtbi4nkmEMEJfaHcgnkgcAKCf07119eZfGOGDXNI03wnDCJtY1W8T7Hn/lgEOZJT/shcj/gRx0oA5/4f/HX+3dXOneJo9P01XRnivBKYo8jBCMHJAyM87uwGOa9N/wCE78If9DXof/gxi/8Aiq4/4e/Buz8D6w+rzai2oXoRo4T5IjSMHGWxljuIyM5AwSMHrXp+KAMD/hO/CH/Q16H/AODGL/4qj/hO/CH/AENeh/8Agxi/+KrfxRigDA/4Tvwh/wBDXof/AIMYv/iqP+E78If9DXof/gxi/wDiq38UYoAwP+E78If9DXof/gxi/wDiqP8AhO/CH/Q16H/4MYv/AIqt/FGKAMD/AITvwh/0Neh/+DGL/wCKo/4Tvwh/0Neh/wDgxi/+KrfxRigDA/4Tvwh/0Neh/wDgxi/+Ko/4Tvwh/wBDXof/AIMYv/iq38UYoAwP+E78If8AQ16H/wCDGL/4qj/hO/CH/Q16H/4MYv8A4qt/FGKAMD/hO/CH/Q16H/4MYv8A4qj/AITvwh/0Neh/+DGL/wCKrfxRigDA/wCE78If9DXof/gxi/8Aiq47x/8AGPSfDOlQvoV1p2s39w7KqQ3QkSFQPvPsJ7kADIzk4PFeoYrj/iB8PbDx/pUFrdTyW1xbOz29wihipIwQQeqnCkgEH5RzQBzfwo+Ks/jy4utM1Kzht9Qt4vPV7ctslTdhuDnaRle5zk9MV6rXinw78LRfDT4iz6LqUguJdVsw2nX+3YG2HMsWMnDfdPXoo9a9qyPXpQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRmgCG5u4LK1murmVYoIY2lkdjgKoGST7ACvP/AIf2s/iLV7/x/fxlGvx9n0uFusNop4PsXbLf/Wam+O7ibxTr9j4AsZSsc+LvWZY2wYrVT9z2LnA9RxkEGvQre3jtbeK3gjWOGJAiIvAVRwAPYACgCaiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOU8feF5vEvh4/YHEWsWMi3enTcZSZOQMnoG6fke1WPBfiaLxZ4YttTVfKuDmK6gOQYJl4dCO2DyM84Iro68zvs+APiQmoqRH4f8SyCG6HRLe9/hf6PyCfXJPQUAemUUmRS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFY/iTxBaeF/D17rF8f3NrGX2jrIeAqj6kgfjWvkV5rqH/FffEeLS1+fQvDTie7PVZ7zokfvsGSffIPUGgDU+HOgXdhpdzrWsDOu63L9rvCf+WY/5ZxD2ReMdiT1wK7em4p1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWP4l8P2vijw/eaPej91cx7Q46o3VXHuDg/hWxRQBxXw68QXWo6TcaPrB265osn2S9BP3wB8ko9QyjOe5BNdrXnHjqGTwn4hsfH1lGxhi22msxIP9ZbEjEmO7Ice5GBkAV6HBcQ3MEc8EqSRSKHR0OQwIyCPqOaAJKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopu9cZyAPegDlvH3ieTwz4cZ7JDLq17ILTToQMmSd+F49B19OPerHgvwwvhPwzb6ZvM1ySZbuctuM0zcu5J5PPTPYDvXL+GAfHPjq58XS4fR9L32WjAj5ZGziWcfXG0e3YFa9LoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCvd2kF/ZzWd1EJbedGjkRuQykYINcD8Prufw9q1/4A1KVpJNPH2jS5nJJns2PAzjqh4P5Dha9GrhfiNol7LY2niXRlzrWhObmED/AJbxY/exHH95fxOMd6AO5yKWsvQtatPEOh2er2L7re6iEik9V9QfdSCD9K1KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArgfiRqt3NFZeD9Hk26trrGIuP+Xe2H+tkP4cD1ycciu1v7+20zT7i/vJVitreNpZHPRVUZJ/KuE+HVjcavdah461SEpeax8tnC/W3s1PyL7FvvHHB4OOcUAdrpGk2uh6RaaZYxeXbWsQijXqSB3PqT1Puav0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU3BzTqKAPM9EI8BfEKbw4+I9D15nu9MJOFhuBjzIR7HgjtyAMk16XuB71zPjjwu3irwzNZxSeTqELrc2M6tgxTpyhz27g+xNHgXxR/wlXhuK7mQw6hA5tr+AjBiuF4YEdvUexx1oA6eiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkzS1h+LPEdt4U8NXmsXI3CBf3cY6ySHhVHuTQByPjNm8Z+LLPwJbljYw7L3W3Xp5YIMcOfVjgnuBgjPNejRxLEioihUUYVV4AHbHpXI/Dzw5c6Hob3mqfPrmqyG81CQ9d7chPooOPTOccGuyoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvNdbX/hBPiFb+JE+XRNcZbPUwB8sM4/1Ux9Afuk9ue5FelVm69otr4h0K90i+TfbXUZjb1HoR7g4I9wKANHcPWlrhPhzrN9JZ3nhnWWB1vQnFtMx/wCW0RH7qUeoK4z345613dABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJuHrXmpz4++JuMF/D/AIXk5yPluL/+REY/EH1DVtfELxHcaHocVrpY8zXNUl+x6fGOvmN1f6KOc9M4zWn4R8MweEvDFno9sQ/kpmWXGDLIeWc/Uk/QY9KAN3FLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHnPxBtLjw/qlh8QNOjLS6aPI1OFOtxZsefqVPzDPHc/drv7W8t760hu7aVZYJ0WSORejKwyD+INLNAlxDJDNGHikUq6NyGB4IP4V574Flfwn4jvvAN45Num690aVznfbsSWjz6ofxIyeBigD0iikyKWgAooooAKKKKACiiigAooooAKKKa8iRozuyqqglmJwAPegBQwPelrL0HWrPxFpEWqWBLWsryLGzLjcEdk3fQ7SR7GtSgAprSIiM7uqooJZicAAdSTQ8iRoXdgqryWY4ArzPxr4jg8WGz8F+FtVgubjVXKXtzaSiQWlqv+sLFTwW+6AeucdxQBL4OVvGfi+88c3CE6fBusdERhj92OJJserHIHfGQelek1T07TrbStOt7CyhWG1t4xFEi9AoGB+PH9auUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcV8RdAu9R0m31jRwBruiyfa7Igcyf89IvcOvGO5A967Wm4NAGR4Y8QWnijw5ZazZnEV1GGKHqjdGU/Qgj8K2a8vinh+G3xAuLe5lS38MeIS1zFI7bY7S7Ay4JPCq4GR74A4BNej2Oo2Wp2iXVhdwXVu/3ZYJA6H6EcUAWaKKKACiopLiGJ4kklRXmYpGpOC7bS2B6nCk/QGpaACiiigAooooAQsB39q87+I9/LqXhvxBY2srJZWFjM99Ohxvl8slIAfrtZvQYH8Rx0niLWjZyWukWMsX9s6kSlqjn7igZeVh3VQCcfxHA7kjgPiV4atvDPwu1drfV9UfO391Nc7lkeSUbiwxySWZifagDsvhhai0+GXh6MD71mkn/ffz/+zV1u4DvWP4VhW28IaJbqQVjsIEBHIOI1rE8e+MLjw9p/2XSIVudYuHjhhVvuxGRtis3uTnA74J6A0AU/jJY6tqPw1vrfSEeWYyRNNDEhZ5Iw/IXHPXB+gNeE/BOC9f4qaebdjGIUma5ycfu9hBBHf5io9jz2r6yjR1iVXbe6gAtjG49zj3riPiNol5LZWnibRlzrehObmFR1mj/5axH2Zc+/GO9AHdZFLWXoOt2niLQrLV7F91vdRiRcHO31U47g5B9CK1KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiim71xnIA96APA/2k4b0x6DP5mbAGZCgOMS/KcnnnKjA9MH1qX9nPTtWt4dZu5opodNnWIQmRCFlcFuVPcAHnHXI9K6/wANZ8deOLnxfJ82kaWZLLRl52yN0lnHrnoD6DsRXpG3HQcUAOqOaeK3gknmkWOGNS7uxwqqOSSewFPyPWuM17+0vE1+dO0pbQ6dYzD7YbsN5dzIORCNvVVOC3qcL03CgDk4NU1HXvjrozXOYtPh0yW8s7YjDIrFow7g9HbrjsCo65r2CvJPDTahdfH7XJNT+zm4stIjhP2fdsG4o4xnnoTXqtzK8NtJJHF5jqMhNwXP4nigCXIpa53wb4jk8W+GbfWmsDZJcl/KiaXeSgYqCeB1weP1roqACiiigDJfwzocupDUZNF0574MGF01qhlBHQ7sZz71JqOgaRrBRtU0qxvmT7hubdJdv03A46mtKigDB1G2m8P+G7lfC+i273KgeRZwLHChYkDPVRwOeozjGa84M2qXnjXw5o8nhe/WS0mbVr43F1Azzt/qkmZlcjCsxIUc4ACjA49lrOh0Wzt9bu9XjjP227jjilctn5EztAHYZYmgDRpuDmnUUAeZ6L/xQfxDm8OufL0PXi13phPCw3A/1kI9AeGHboBkmvS9wPeua8b+GG8VeF57KN/J1CJhcWNwrbTFOnKMG6juCfQnvSeBvFH/AAlXhqK8mQw6hA7W1/ARgxXC8MCPyI9jjrQB09FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcD8R9Vu54rLwdo8m3VtcYxM4/5d7b/AJayH04yB6845Fdpf6ha6Zp9zfXkqxW1tG0srn+FVGSfyBrhvh1YXGrXV/461WIpeaxhbKJuttZj7i/8CxuPY8HgkigDtNI0m10PSLTS7GLy7a1iEUY6kgdz6k9T7mr9FFAFLULKW+spLeK9uLFnGPPttnmAexdWH6flVDw74bTw1oK6Ta395PEhYxy3BjaRSxJJyFAJySckHrW5RQByGleAINJ8U3viKLW9Wlvr3AuRMYCkqjGFIEQwOAOMHHepPiPqkmleA9Ukt8m7ni+y26jqZJTsXHv82fwrq65XxT4V1DxHfaTImqwW1pp14l6LdrMyebIn3dzeYOBk9qANnQ9Kj0TQNP0uH7lpbpCDjrtAGfxxn8a0aQZwM9aWgAooooAKKKKACiiigAooooAK811zPgT4hweJE40TXSlnqmBhYJx/qpj6A/dPpzzk16VWbrui2niHQrzSL5N9tdxGN8dR6Ee4OCPcCgDR3DOM80tcJ8NtYvXsrzwxrT7tb0KQW8zH/ltER+6lHqCv48DPJru6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApM0tYfizxJbeFPDV5q9zhvJXEUfeWQ8Kg9yf8aAOR8ZO/jTxZZ+BLdj9gh2X2tuv/ADzBBjhz6scE98YIzgivRUiWONY0VVRQAqqMAD29PTFcl8PPDlzoehveap8+uarIbzUJD13tyE+ig49M5xwa7KgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDzn4hWtx4f1Ox8f6bEWl00eRqcKdbizZufqVPzDPHc/drv7W8t760hu7aVZYJ0WSORejKwyD+INLNAlxDJDNGHikUq6NyGB4IP4V574Flfwn4jvvAV4xNvHuvNGlc/ft2JLR59UJ6dSMngYoA9IopMiloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooATcPWvNcHx98TOm7w/4XkwePluL/ANPcRg/gfUNW18QvEdxoehxWuljzNc1SX7Hp8Y6+Y3V/oo5z0zjNafhLwzB4S8MWejWuH8lP3suMGWQ8s5+pz9Bj0oA3cUtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXFfEXQLvUdIg1jRxt17RpPtdicZ8wf8tIjjqHXjHcgds12tNwaAMjwx4gtPFHhyy1mzOIrqMMUPVG6Mp+hBH4Vs15pZL/AMID8SH07lPD/iaQzW3923vf409g4wR74AGATXpW4etAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTWkREZ3dVRQSzE4AA6kmlyK89+I19dapcWHgXSZmjvdY+a7lTn7NZA/Ox/3sFQO/I70AQ+Dlbxn4vvPHNwhOnwbrHREYY/djiSbHqxyB3xkHpXpNU9O0620rTrewsoVhtbeMRRIvQKBgfjx/WrlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAc94z8Mx+LPDF1pbN5c5xJbT55imXlHz1GD1x2Jqn4B8TS+JfDo+3L5Wr2MrWeoRdCkycE/Q8H9O1dbXmvioN4H8b2vjGEFdI1Ix2WtKoOIz0in/AnB9uMEtQB6VRSBlYZByPUc0tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSZHr1oAo6vqtromkXeqX0gjtbWNpJGz0A7D3PTHc8Vx/w40q8njvvGOrpt1bXGEixsOba2H+riH4YJ/DIyKp+KCfHHjm18HxHOkaYUvdZYH5ZDnMVufXP3iPTpytekhQowBgDpjtQA6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqGraVa61pd1pl9EJbS5iaKRfYjsex7g9iM1fooA8/+G+pXVqt74L1iTfqmhkJHKwx9ptT/AKuQfQfKeuOM85r0DNee/EWwutMnsPHGlRF77RiftUS8G4s2/wBYv1Ucj056mu307UbXVNOtr+zmWW2uYxLE47qRkGgC3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXO+NPE0XhTwzcakV8254itbcZzPM33EA788nHOAa6HI9a80sAfH3xHfUyRJ4f8ADUjQWo6rcXn8cnuEGAD64I6mgDofAXhibw14dAv383WL2RrvUZzjLzPyRkdh0444JxzXV0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEbxiRWV1DKwIIPIIPbFec+D2fwX4wvPA1yx/s64DX2iO3ZCSZIMnupywHpknrXpIYHpXl3xwvLXS/CVlqoYx6vaX8b6bKn3lkzlgf9kqpyPXFAHqWaK8G8FftALd3ssHi9LWygKM0d3bRyEA5GEKDcemfmz2Hua7n/AIXb8PP+hh/8krj/AON0AegUV5//AMLt+Hn/AEMP/klcf/G6P+F2/Dz/AKGH/wAkrj/43QB6BRXn/wDwu34ef9DD/wCSVx/8bo/4Xb8PP+hh/wDJK4/+N0AegUV5/wD8Lt+Hn/Qw/wDklcf/ABuj/hdvw8/6GH/ySuP/AI3QB6BRXn//AAu34ef9DD/5JXH/AMbo/wCF2/Dz/oYf/JK4/wDjdAHoFFef/wDC7fh5/wBDD/5JXH/xuj/hdvw8/wChh/8AJK4/+N0AegUV5/8A8Lt+Hn/Qw/8Aklcf/G6P+F2/Dz/oYf8AySuP/jdAHoFFef8A/C7fh5/0MP8A5JXH/wAbo/4Xb8PP+hh/8krj/wCN0AegUmRXAf8AC7fh5/0MP/klcf8Axuud8XfHrQtP0lW8LSx6nfu+0rLFLGkS4J3HKqW5xwCOp54oA6z4ieILrTtJt9F0fnXdakNpZKDzGMfPKfQKp69iQexre8NeH7Xwv4fs9Hsl/c20e3eeC7dWc+5OT+NeQ/CLxY/jn4galqmuqjatBYIlkkakRQxbsSFQScMSyc/7TDgcV7tQAUUZpNw9RQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJkUZFYXijXJNF00fY7d7rU7glLS2jUszHuxA/hUck/QdSMgHJ/EXxlc2Gp6P4c0lmE9/qNvbXVyn/LBHYHYD/eYc+y/7wrqfGHhCw8aeHpNI1FpEjLiSOWLG+Nh0IyCOhIPHQkV5hrBjl8cfD/SUtNQhkS/mu7ia+hEb3Mo2sXOOpyD9MgdK9uLqASTgDuaAPNfh/wDB3T/A2rPq0moS6jfhGjiZohGkanHIGSd2ARnIGCRivS8Vzei/EDwr4i1L+ztI1iK7u9pfy0jf7o6nJGK6WgBMUYpaKAExRilooATFGKWigBMUYpaKAExRilooATFGKWigBMUYpaKAExXI+Pfh9p/j7SoLW9mlt57ZzJb3EYBKEjBBB6qeCRxnaORXX0UAcD8OvhbYfD/7RcR3kl9f3KCOSZ0CKqg5wgGSMnGck52jpXfUUmRQBU1LUbbStOnvrpysMK5OBkk9AoHUkkgADkkgDmuL+GPiLUfFa+IdVvw8ajU2toLfcCIUjRfl44J+bk9zSXHiBNT14X0ml6ndaNpxLWb29vvinlGd0xJIBVeQnbOW/ukU/gSjH4dG6cYe7v55mz65A/8AZaAPTaKr3t/Z6baSXV9dQ21vGMvLM4RVHuTTbHULfUbYXFv5vlk4BkheMnjPAYA4569KALVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBDMJRGzQojygHYHbaCfQnBwPwrm/Dul+II9d1LU/EEemmSfbHam0neQwQj/lnho16nLFs8nHHAx1VFAHneteF/FGo/EvRvE0MOkCz0uOSNIHvJBJLvVlLEiIhfvDjnp15rrfEGnXer+G73TbO8SyuLqExiYx+YEDcNxxnjIz75rXrA1XWNY0/WLa3tvDlzqNhLGS9zbXESvG+cBSjsvGOc7vwoAxfAesapdXms6Fr1taLqmkPGj3Fom2O4jkUsjAduF5H0ruaw9D0eW0vNS1W8VFv9SkRpFRtwjjRdsaZ74GST6se2K3KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5fxfYeJdSsRp+hjT44JSouZbi5kjkMefnRNsbYLDjdnIyeM4NdRRQBiavZ6ifDkljo9rYx3D25gRZZmjjh+TaNpVCSB6YHTtWT8N/Dur+E/CNroWqJYt9lL7JrWdn37nZ+QyLj72O/SuxooA8c/tDVvE+o6r40Wytr7RNDkkTTLCadoxK0X35+FIL8HaT06YzzXqOhavba9oVjqtoHEF3CsqK/DKCOh9x/+quItfD+t6X8O28GafZMtwwmtRfM6+SsLu5M3Xdnax+XGd3t81dzoukwaFollpVruMNpAsKFurBRjJ9+KANCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACk9KWk9KAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAE7ZpaT+GloAKKKKACiiigAooooAKKKKACiiigD//Z'] Multimodal Competition True Theorem proof Combinatorics Math English 35 "This Question involves one Robber and one or more Cops. After robbing a bank, the Robber retreats to a network of hideouts, represented by dots in the diagram below. Every day, the Robber stays holed up in a single hideout, and every night, the Robber moves to an adjacent hideout. Two hideouts are adjacent if and only if they are connected by an edge in the diagram, also called a hideout map (or map). For the purposes of this Power Question, the map must be connected; that is, given any two hideouts, there must be a path from one to the other. To clarify, the Robber may not stay in the same hideout for two consecutive days, although he may return to a hideout he has previously visited. For example, in the map below, if the Robber holes up in hideout $C$ for day 1 , then he would have to move to $B$ for day 2 , and would then have to move to either $A, C$, or $D$ on day 3. Every day, each Cop searches one hideout: the Cops know the location of all hideouts and which hideouts are adjacent to which. Cops are thorough searchers, so if the Robber is present in the hideout searched, he is found and arrested. If the Robber is not present in the hideout searched, his location is not revealed. That is, the Cops only know that the Robber was not caught at any of the hideouts searched; they get no specific information (other than what they can derive by logic) about what hideout he was in. Cops are not constrained by edges on the map: a Cop may search any hideout on any day, regardless of whether it is adjacent to the hideout searched the previous day. A Cop may search the same hideout on consecutive days, and multiple Cops may search different hideouts on the same day. In the map above, a Cop could search $A$ on day 1 and day 2, and then search $C$ on day 3 . The focus of this Power Question is to determine, given a hideout map and a fixed number of Cops, whether the Cops can be sure of catching the Robber within some time limit. Map Notation: The following notation may be useful when writing your solutions. For a map $M$, let $h(M)$ be the number of hideouts and $e(M)$ be the number of edges in $M$. The safety of a hideout $H$ is the number of hideouts adjacent to $H$, and is denoted by $s(H)$. The Cop number of a map $M$, denoted $C(M)$, is the minimum number of Cops required to guarantee that the Robber is caught. The police want to catch the Robber with a minimum number of Cops, but time is of the essence. For a map $M$ and a fixed number of Cops $c \geq C(M)$, define the capture time, denoted $D(M, c)$, to be the minimum number of days required to guarantee a capture using $c$ Cops. For example, in the graph below, if three Cops are deployed, they might catch the Robber in the first day, but if they don't, there is a strategy that will guarantee they will capture the Robber within two days. Therefore the capture time is $D\left(\mathcal{C}_{6}, 3\right)=2$. Definition: The workday number of $M$, denoted $W(M)$, is the minimum number of Cop workdays needed to guarantee the Robber's capture. For example, a strategy that guarantees capture within three days using 17 Cops on the first day, 11 Cops on the second day, and only 6 Cops on the third day would require a total of $17+11+6=34$ Cop workdays. Definition: A map is bipartite if it can be partitioned into two sets of hideouts, $\mathcal{A}$ and $\mathcal{B}$, such that $\mathcal{A} \cap \mathcal{B}=\emptyset$, and each hideout in $\mathcal{A}$ is adjacent only to hideouts in $\mathcal{B}$, and each hideout in $\mathcal{B}$ is adjacent only to hideouts in $\mathcal{A}$. Find an example of a map $M$ with 2012 hideouts such that $C(M)=17$ and $W(M)=34$, or prove that no such map exists." ['There are many examples. Perhaps the simplest to describe is the complete bipartite map on the hideouts $\\mathcal{A}=\\left\\{A_{1}, A_{2}, \\ldots, A_{17}\\right\\}$ and $\\mathcal{B}=\\left\\{B_{1}, B_{2}, \\ldots, B_{1995}\\right\\}$, which is often denoted $M=\\mathcal{K}_{17,1995}$. That is, let $M$ be the map with hideouts $\\mathcal{A} \\cup \\mathcal{B}$ such that $A_{i}$ is adjacent to $B_{j}$ for all $i$ and $j$, and that $A_{i}$ is not adjacent to $A_{j}$, nor is $B_{i}$ adjacent to $B_{j}$, for any $i$ and $j$.\n\nIf 17 Cops search the 17 hideouts in $\\mathcal{A}$ for two consecutive days, then they are guaranteed to catch the Robber. This shows that $C(M) \\leq 17$ and that $W(M) \\leq 34$. If fewer than 17 Cops search on a given day, then the Robber has at least one safe hideout: he has exactly one choice if the Cops search 16 of the hideouts $A_{i}$ and the Robber was hiding at some $B_{j}$ the previous day, 1995 choices if the Robber was hiding at some $A_{i}$ the previous day. Thus $C(M)=17$.\n\nOn the other hand, fewer than 34 Cop workdays cannot guarantee catching the Robber. Unless the Cops search every $A_{i}$ (or every $B_{j}$ ) on a given day, they gain no information about where the Robber is (unless he is unlucky enough to be caught).\n\nThe complete bipartite map is not the simplest in terms of the number of edges. Try to find a map with 2012 hideouts and as few edges as possible that has a Cop number of 17 and a workday number of 34 .'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAVABvwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ0ALketFcB8SfHg8MJYaTp7q2t6nMkcI4PkozbTIR+YHqc9dpFd6p60AOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKADNZevazDoeltdvG88pYR29vGfnnlY4VF+p79hkngGr9xNFbQPNPKkUUalndyAqgckknoK4e10aPx7NH4hvpr23sUz/ZEdrcvA6xkENOxUg7pAeB2QjuxoA4Txpo0sHjzwDDfSrPqt/qZu9QkXpkPFtRc9EUAqPpnqa93HrXh2q6RBZ/tDeE9Ohur64SO3e4Y3l5JcFW2ytgF2JH3BwPY969xHpQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBka/4a0zxNaC01WKea2/iiS5liV84+8EYbunfOOam0nRbPRNLj02wWaO0jXaiPcSSlBjAAZ2LADsAcDtWjRQByEnw18Ly6wusPZXjakhyt2dSufMHUcN5mQME8V1cMYhiWNd21VABZix4Hcnk/U81JRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUZxQAUhpayte8Q6V4b0832rX8NpAM4MjcuQM4UDlj7AE+1AGdrnj/wr4dv0stV1u2t7pmCmLl2Qn+8FB2jnqcVv2V5a6haR3Vlcw3NvIMpLC4dGHsRwa+GdbvLjUNbvb+5dnlupmnMhTZu3HcGC9gc8Dng19N/ACC+h+GwN3kQyXcjWgJziPCg49t4c/iT3oA9SooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoozjrSHrjPNAC1FPNFDA00sqRxICzOzbQoHcnoB9a43xZ8S9H8NXK6dbpLqutyHEWm2Q3yFvRsZ2/z9AeawI/BHifx5NHd+Pb37JpobdHoVhIQvsZXycnj178FelAFjUvibd63fSaL8PdN/ti8XCy6jKNtpBnuTxu4Deg443dKl0f4Z20F03iLxtqJ17V1Uu0lyP9GtgOSEQ8YHPJGO4VTXeaXpdjo9hHZadZw2ltGPlihQKo98Dv79TXE/FzU518OWvhzTiP7S8Q3C2MXP3YyR5jH/AGcEA+zUAY/w60a08Z3+seOtY06C5F/d7NNS6hV/JhiO1WUEHaeAD7oT3r1lRgYwAOwFUtF0u20PRbLS7QYgtIViTjkgDGT7nqav0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVBdXVvZ28lzczxwwRqWeSRwqqB1JJ4FeaXvxH1bxPeyaV8OtN+3Mh2TatdKVtYPp/ePOf5Bh0AO58R+KdF8K2H2zWNQitYyDtUnLyeyqOSenQV5+b/AMb/ABLUDSo5fC/ht/8Al8lH+mXC/wCwB9wHjkH6MeRWz4d+F9nY6ida8R3UniDXWIJubsZji74jQ5AA7enbHSu/Xvnv7UAc14V8CaD4Ot/L0q0/fsMTXc2Glm9dzY/HAAFdIoxTqKAEbpj+VeW+HR/wmfxe1bxGT5mm6Cv9nWBxwZj/AK1x24ywz3DKe1dP8R/Ev/CK+Cb6/ifF46/Z7QDk+c4wuB3IGWx6A1L8PvDI8J+C9P0tlAuQnm3R67pn+Zue+M7QfRRQB0wz3paKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiuf8U+MdD8I2YuNXvo4WIJjhX5pZP91ByfTPT1IoA3zziuE8UfE3S9GvP7J0u3l1zXWO1bCy+faeh3sMhcenJ9h1rB/4rr4m9PN8KeGX/wDA25T9NoI+nX+MV3XhfwZofg+y+zaPYpESB5kzfNJIfVmxnueBwM8AUAcXb/D/AMQeMriPUPiJqG6BW3xaHZOVgjPYuwOWI56HP+1jivS7CxtdNso7Oytora2iXEcMSBVUewHFWBS0AFFFFABSNnHFLWb4g1i28P6BfatdnEFpC0rDOC2Bwo9ycAe5oA8/1lf+Ey+Mem6MmW0zw1GL274+VrlseWh7EgYYf8DFeorXn/wj0e4tvC82u6io/tTX521C4YLjCsfkUe2PmA7bq9BFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNbkUAOqtf31rp1nJeXtzFbW0Q3SSyuFVR6kmuH8SfFCysdROieHLSXxBrzfKLW0OY4z6yOOAB3x+JXrWdY/DjVfFF5Hq3xE1D7cyt5kOkWrFLWE++D8x7foSwoAbP4/1/xncy6b8PNOBgRvLm1y+UrBGe+xSPmPTqPquOa2fDPww03Rrw6vq00mua85Dvf3nzbT/sKchcdjyR2wOK7S0tYLK3S2tYI4LeJQsccShVUegA4FT0AIOvTtS0UUAFFFFABRRRQAjfzry/4nSSeJfEGgeALZmC30ovNRKcbbaM5xn3IOP9pV9a9OlkSGNpZGCogLMzHAAAySa8x+F8T+JNZ17x9dRsP7SmNrp6sPuW0Zxx6ZIAPuh9aAPTokSKJY40CIoAVQMAD0Ap9IvfrS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFJketAC0ZqlqmqWOj2Ml7qN3Da20Yy8szhVH59z6V5tJ438TePJXs/AdgbPTt22TXr5CEx38pCDk+/PuF60Adj4t8c6D4Ntll1W8xMwzFaRfPNKewC5/U4Hv0rizp3jf4ljOpvL4W8NSdbOI/6ZcL33kj5AeeCPqG610fhX4a6R4cuDqVyZdW1yQ7pdRvjvk3eq5J2/UZPOMmu0UdTzz60AY3hzwto/hSwFno9hFbRnl2Ay8h9Wbqe/wBO2BW0KWigAooooAKKKKACiiigAoopD/k0Aee/F7V7iDwzB4e05lOp+IJxYQqT0RseYx9sEKT2312eh6Tb6FolnpVopEFpCsSZ6nA6n3PU+5rzzw//AMVp8YNV185fTPDqnT7Lj5WnOfMYfT5h9GU16kowKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAozjrSEgdSOK5bxd4+0LwhGsd7cNNfycQ2FsN88hPT5ewPqce3NAHU5B54rzrXvilD/aP9ieDrJvEOtHIxAf8AR4P9p3zjGe2QODkjjOYdA8Z/EnD+I5X8OeHX5XS7V/8ASJl9JWPQe2PT5cjNeh6F4d0nw3p62OkafFaW46hByx9Wbqx9yaAOH034ZXmuX0esfELUP7XvFOYdOiJW0ts9gvG48DPrjndwa9KgijgiWKKNY4kAVEVQFUegA6U8ZpaACiiigAooooAKKKKACiiigAooooAK5T4i+Jx4T8E6hqUbf6UV8i1UHlpn4XH0+9j0U11Rry7Xj/wmXxh0rQUJbTfDqDULwfwtOQPLQ9iQMEexb0oA6j4deGf+ET8E6fpsi4uinnXTdzM/Lc98cLn0UV1VNXvTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopkjKqMzkBVBJJ6Ae9AD8j1rO1rWdN0HT3v9WvIbS0TrJK2AT2AHUn2HNcNq3xQa+1JtE8C6edf1TOHnBxa2/B5Z+jdD0IB7HPFGjfC9r7UU1zx1f8A9vaqPmSBhi1t/ZU4DfiMdyM80AUW8V+LviEzW/gq1OkaISVbW71PnkHQmJPz5/Mqa6fwl8OdE8KObyJJL3VpctNqN4d8zseuD0UfTn1JxXXRIsaBEUKigKqjoAPSn0AIKWiigAooooAKKKKACiiigAooooAKKKKACiikNAGfr2rW2g6Fe6tdkeRaQtK4zgsAPuj3JwB7muN+EWkXEHhmfxDqCg6p4gna/mbHIRjmNfpglh/vVR+J8z+I9b0DwDbM2NRmF3qBTjbaxknH4kHHuoHevTYY0hiWKNQqIAqqowAB0AoAeKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiijOKACijNZmo+ItD0dwmp6zp9k56Lc3KRk/8AfRFAGnRVG31rS7u2jubfUrOaCVxHHLHOrKznooIOCT6VeoAKKKa30oAdRmvP9d+Id5ofi6z8Nf8ACONdXt6m+2MF4oVlyeuVG3AUn096nufiLFouq2lh4n0i80b7YxW3uneOaBiMcF1J2nkdRQB3NFNUYzTqACijNGaACkyCM54rL1/xDpPhvTWv9Xv4rS2X+Jzyx9FA5Y+wBrzsa94z+JIMfhqB/D3h9+Dq10v+kTL6xJ2+o/76BGKAOp8X/EbQ/CRFpLI99q0nyw6daDfM7HpkfwjkdfwBxiuXXwp4u+IbC48ZXTaRopYMmiWT4dx1HnPz6Djn6Ia67wl8P9B8Hq0ljbtNfPky31yd88hPX5j0B9BgevPNdQoxxjAoAoaPomm6BYJY6VYw2lsnSOJcZPqT1J4HJyTWgKWigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKZK6RRtJIwVFBLMegHc0+vPvi9rE9t4Wi0LTiDqmvTrYQLnorECRj7YO0/wC+KAM/4ZRN4l1/X/H86HbfzGz08MDxbR4GR6biBn3VvWvUBWdoGj23h/QbLSLQfubSFYlJHLYHLH3JyT9a0qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmt2p1I3agDy3xp4u1XUvGFt4B8KTeRfzANf36jJtIsZOO27ac591A5OR2fh/wlpHhu1CWForTEZmu5fmnnY8lmc8kk++OteU/As/2v4w8Ya/dc3bzKoLdQJHdmHt9xRj0Fe6qeOetAHDan4Fs5/iVoHiO1sY4TbJObto12iRtoEZOO4LMc9Tj2ruQMUtFABSGlrN8QatFoXh7UNWmwUs7d5sE43EA4H4nA/GgDyGy8Q6Le/H3WtX1fVLO0ttGt/sVp9pmVCZM7WK5POCZfzFSePHl+Ld3pWh+GIpZ9Lt7gy3mrMhWCP5cbVYj5yAT07kds1t/BXQ1i+Hp1C/iWa51i4lupjKoJZSdoBz2ON3/Aq5zRP+JF+0hdaPoAEWmXMRe8t4R+6RvJ3Zx2+faPYsRQB7jEuxAoJOABljk/jSv2Hc0ooIzQB5X4h+O3hvQNck0oWt9etbyGK5lhVQqEHBC5I3EEew96JvitdeJ2Gn/D3SJtSu3UGW8uozHb2uf72cZOAeMjpxu6V4X4p+G3ifRPEdxZjSNQu4pJ3FtcxwmXz13HaSVB+YjBI611fhnS5vCJi0rxpqXi7wul0/mQXNjqAS1diBwwVWw3TJyffGKAPWNC+FsJ1Bdb8Y3z+IdbOGDTj/AEeDviNOmAfXjvtBr0RQBnAxXnkHw1guYEng+IXjSWGRQ6SR60GVlPQghcEe9S/8Ks/6nzxx/wCDj/7GgD0CivP/APhVv/U+eOP/AAcf/Y0f8Ks/6nzxx/4N/wD7GgD0CivP/wDhVn/U+eOP/Bv/APY0f8Ks/wCp88cf+Df/AOxoA9Aorz//AIVZ/wBT544/8G//ANjR/wAKs/6nzxx/4N//ALGgD0CivP8A/hVn/U+eOP8Awb//AGNH/CrP+p88cf8Ag3/+xoA9Aorz/wD4VZ/1Pnjj/wAG/wD9jR/wqz/qfPHH/g3/APsaAPQKK8//AOFWf9T544/8G/8A9jR/wqz/AKnzxx/4N/8A7GgD0CivP/8AhVn/AFPnjj/wb/8A2NH/AAqz/qfPHH/g3/8AsaAPQKK8/wD+FWf9T544/wDBv/8AY0f8Ks/6nzxx/wCDf/7GgD0CivP/APhVn/U+eOP/AAb/AP2NH/CrP+p88cf+Dj/7GgDv2xx9a8u0T/is/jFqWtsC+meG0NhZjHytcnPmMO3HzD8UNZnjzwsvg3whe6wPHXjSS4RdltFJrBw8rcKCAuSByxAIOFNXPC3wd/s/w9arJ4q8U6fdzIs13BYagIYxMVG7gKeeAMk9hQB6wPSlrz//AIVZ/wBT544/8G//ANjR/wAKs/6nzxx/4N//ALGgD0CivP8A/hVn/U+eOP8Awb//AGNH/CrP+p88cf8Ag3/+xoA9Aorz/wD4VZ/1Pnjj/wAG/wD9jR/wqz/qfPHH/g3/APsaAPQKK8//AOFWf9T544/8G/8A9jR/wqz/AKnzxx/4N/8A7GgD0CivP/8AhVn/AFPnjj/wb/8A2NH/AAqz/qfPHH/g3/8AsaAPQKK8/wD+FWf9T544/wDBv/8AY0f8Ks/6nzxx/wCDf/7GgD0CivP/APhVn/U+eOP/AAb/AP2NH/CrP+p88cf+Df8A+xoA9Aorz/8A4VZ/1Pnjj/wb/wD2NH/CrP8AqfPHH/g3/wDsaAPQKK8//wCFWf8AU+eOP/Bv/wDY0f8ACrP+p88cf+Df/wCxoA7q6njtreSeZ1SKNS8jscBVAyST2FeTN+0N4VGr/ZhaagbPODd7FxnP9wnO3v6+1aup/CWS60q7t4/G/i+R5YHRUutU3xMSpADrtG5fUZGRXzm/w98YJrH9mHw5qAugfurESvrkOMrj3zigD7PtLmG8tYrq3kWWCZFkjdTwykZBH4Gpj29qxvCOky6D4R0nSp33zWtpHFIc8bgvIHtnpW1QB4qui618K/Huo6xp2lXWpeGNVOZ47FN8ts2SRhO4Us2O208nNd1B8QtJ1FQmmWWr310f+WEenSoQf9ppFVF9Mlq689R1ox/kUAUNIj1BYJJtSdftEzb/ACYzlIBjhFPG7HdsckntgDQpBS0AIQa5Dx14S1Txjo0ujwa1Dp9jMVMgFkZZGwQcbvMUYyB2rsKKAODtfCHi2y0K20i28ZW9vbW0KwRvBo4EgRV2jkykZwOuKv8Ag74f6V4ONxcW7z3eo3JzcX1026STnP0A/n3ziutooAQDFLRRQAh+maqajp1nqljLZX9pFdWsow8UyBlYfQ9885q5RQB5VP4G8R+B5nvfAF6ZrEtvl0K9cmM56mJyeD+R9zwK3/CfxK0jxNctps0cula5GSJdMvBskDAZIXON3fsDxyBXaMM1zXivwHoXjG3VNTtiLiP/AFF3Adk0J7bWHUexyPxxQB0wI9fxpa8lOr+NPhmduvRy+JvDq9NSgX/SrdcdZF/ixjqT9W6LXonh/wARaR4l05b7R7+K6tzwdh+ZD6Mp5U+xFAGtRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh5paz9b1W30PRbzVbtiLe0haV8dSAM4Hueg+tAHnviJj4x+L+keHU+fTdAUalfehmI/dKe2RkH3DP6V6iteefCPSblPDlz4k1Jf+Jn4hnN9KcciM/6tR/s4JYezY7V6GO9AC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAGm45zjmnUUAIKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAawzjjNeea78Lo11Btc8G3zeHtaGSTCP9Hn9pI+nX0GO+Ca9FpDQB5ppXxOn0nUU0Xx/p/8AYuoE7Y71ebS491f+HqPUepHQekxOsiB1cMrAEMOhHtVLV9G0/XdPew1Syhu7WT70cqg89iPQjJ5HI7V5xJ4U8XfDxjc+DLt9X0QEs+hXj5ZB1Pkt+J44+jmgD1eiuR8H/EPRPF262hd7PVY8ibTrobJoyOuAfvAeo9sgdK60EHmgBaKKKACiiigAooooAKKKKACiiigBDXmHxSlk8RatoHgG0dl/tOcXN+UOCltGcntxkg4PqgFemyusaF3YKigszE4AA7+1eY/DNW8T+JfEHj2ZT5d1N9h00MCNttHjkem4hc+hVvWgD02CNIYViiRUiQBUVRgADsBUlIvSloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmsM9s06igDkvF3w80Pxhie6ie11KPBh1G1OyZCOnP8AEB6Hp2wea5RPFHi74cult4zt21jQshU1uzTMkQ/6ap+XPXryx4r1imSxrIhR1DKwKlSMgg9jQBR0bWtN17T1v9KvYbu1fpJE2QD3BHUHkcHnmtDI9RXmus/DGfTtQfXPAWof2HqbHMlrj/RLgc8MnIXr2GB6DqHaD8UFTUV0TxpYHw9rPRTKf9Hn943zgfiSPc0Aek0U1SMdqdQAUUUUAFFFFABRRTW7UAcB8XtansfCcejaf82qa7Oun2yg4OH4c/TB2+xcGuu8PaNb+HvD9jo9qP3NnCsQOMbiOrH3JyT9a8/0gHxn8ZtR1ggtpfhmM2Nr6NctkSN+HzD8ENepDOTmgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEOeMVla74d0rxJpzWGr2EV3AegcZKn1VuCp9wa1qKAPJToXjP4Z/P4elk8R+G0PzaZcN/pNuvrE2OQMdMd/u9x2fhHx3oPjCBv7Nudl3GP31lONk0RHXK98HuMj3rpj2rjPFvw40nxPMuoRNLpmtw/NDqVkdsgbtuxjcPyPoRk0AdpRXlMXjXxJ4DnWx8e2Ru9Ozth12yQlSOAPNXHB55/QNya9L07UrLVbNLywuobm1kGVlhcMp/EUAW6KKKACuZ8f8AidPCPgzUNW3KJ0jMdup/ilbhRj26n2BrpW6V5Z4mP/CY/FzR/DS5bTtCUalf+jS8eUh/MH3DN6UAdP8ADbwyfCngixsJlIvZB9ovCfvGZ+Wz9Bhf+A11tIveloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAiuII7mFoZoklicFXRxlWB7Ed68z1L4a6j4cvZdZ+Heof2dOx3TaVOd1pcewB+6ev54BUV6jSGgDz/AMN/E+zvdR/sPxLayaBr64U210cRynpmNzwc9gfwLda79axvEnhXRvFlgbLWbCO5iGdjnh4z6q3Uf175Feezjxl8KYHnWeTxN4ThGWWZ9t1ZoO4J+8oH4cdEHNAHp2tapb6Lo15ql22ILSFppPXCjOB7nGB74riPhDpVyvh+78TakmNT8QTm8kGPuxZPlqPbBJHsw9K8c8afGe88Y2p0ZtOSy0WSaNpUjctM6K2du77vJAONvBHUivpvR7izu9GsrjT9v2KWBHt9owPLKgrx9MUAXRS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWV4k0WHxF4c1DSJyQl3A0W4dVJHDfgcH8K1aKAPlFfgP44Oq/YTb2ggHP2w3A8n8sb/APx2vp/RNMj0XQ7HS4mZ47SBIVZ+rbQBk/Wr+R60mQO4oAWijNFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUje/SlpDjHNAHjfx2jWSPw/YaeDFrWo36xxyxMVZkA2kHHbc6flXa/8K20BLNYoBqFrOiBVubbUJ45FOMbs7sZ+oI9q425/wCKs/aNghHz2nh2z8xgeV808/nudf8Avg+lew8etAHlfg3xTq2k/EK98AeIbw30kamTT751AkmTbu2OR1+XnPqrcnjHqi9PWvDblTrH7U1t9lyU063Bnde2Ij/WRVr3IUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVma5r2meHrB73VL2G1hRGb944BfAyQoz8x6cD1rTpCM4oA8F+DnirQIH8S6/rmtWNnqWp3xZoriYK2zlvlzyQS5HH90V6Hf/EGO9ia28IWFxrmotwjRwslrGT/E8rALjrwDk4/Gu3/MfjQBzQBxPw+8BHwlFeahqF0L7XtScyXt1jjJJO1fbJyT3P4Cu2FLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q==', '/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAVMBjwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKTIoAWik3DOM0tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVUutSs7Ke0guJ1jlu5PKgQ5zI2CxA/AGrdABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWdq2qQaRp0l3OGbbhUiTl5HJwqKO7FiAK0GdVBLEAAZJNcF9v1fV9bTWrfRDe6Rbqf7NLXaRBychpypyeRwv+ySR97AAKXwq1LU9dvfFmq6oy/aDqX2QIjEpEsQ4RT6DcTnuST1NelZFeYfAkmbwJd3zDDXuqT3B/HaP/AGU12HiPWNT0i1mn03RBqH2eFppd9yIAFAJwp2nLcHjge/NAHQZorM0HWIfEOg2Or26OkN3Csqq/3lyOhrToAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqC8vbaws5ru6mWK3gQySyMeFUDJJqbIrjdRhu/Gd+EsL8Wul6bcAmXylkF1cIegB42Rkde7j/Y5AOOWbUtU+Pfhy41HzIgunT3UNk3H2aNhIi7h/fbq3pkD+GvYwwPQ15JoEF4/7QWoi/vhfSWWihBN5QjxudGAwCR0dvzr0jWIdSuLMxaXdw2czthrqRPN8pMEkqhwC2cDkgDOecYIBp5FLXB+CtT8Qr4o8Q+HNevU1L+zhDLFfJAsW5ZFJ2sq/KDx/Ou8oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDmvFugav4hsTYWOsQ6day4+0A2hlaVQeU3eYuFYcHAyRnntWjqNhqFzo72lleW9rcvF5ZnNsXUZUg7UDjHPI5OMY5rUooA5LwF4RuvBWgro0mqQ3tpGztEy2phcFjk5PmMD36AVkfFd9csvDU2pWdzBJpdvtN9p5Qo9xCSA6iUHK8HkADjPXkH0GRWaNgjbWIIDYzg+tcjD4X1rUNN/szxRrltqll5qu/lWQgecK25VkIYrtyBkKoJxjOM5AOm09YI9OtktYRDbrEojiC42Lj5QB7dKt00Efd/SnUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSbgcYOc0AVr+wh1KzktbjzhFIMN5M7xN/30hBH51S0Pw3pvhzTf7N0qGWCzGSsRuJJNpYknaWYleSTxWtketLQBzNn4C8P2GvSa3bW90mpS/wCtuTqFwzSdMBsuQw4HB44HFamp6i9oI4bWIXF/PnyIM4Bx1Zj/AAoMjJ+gAJIB0q5TWPh34b13VJNS1KyuJruRVVnF9OowOgAVwAB6ADqfWgDQ0LS7fTorkidbq+nm33twMZeXA7c7Qo2hV7DHXqdus/SNGstB0uHTdMg8i0h3eXHuZsZYseWJJ5JPJ71oUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFch8Q/GsPgPww2qtbi4nkmEMEJfaHcgnkgcAKCf07119eZfGOGDXNI03wnDCJtY1W8T7Hn/lgEOZJT/shcj/gRx0oA5/4f/HX+3dXOneJo9P01XRnivBKYo8jBCMHJAyM87uwGOa9N/wCE78If9DXof/gxi/8Aiq4/4e/Buz8D6w+rzai2oXoRo4T5IjSMHGWxljuIyM5AwSMHrXp+KAMD/hO/CH/Q16H/AODGL/4qj/hO/CH/AENeh/8Agxi/+KrfxRigDA/4Tvwh/wBDXof/AIMYv/iqP+E78If9DXof/gxi/wDiq38UYoAwP+E78If9DXof/gxi/wDiqP8AhO/CH/Q16H/4MYv/AIqt/FGKAMD/AITvwh/0Neh/+DGL/wCKo/4Tvwh/0Neh/wDgxi/+KrfxRigDA/4Tvwh/0Neh/wDgxi/+Ko/4Tvwh/wBDXof/AIMYv/iq38UYoAwP+E78If8AQ16H/wCDGL/4qj/hO/CH/Q16H/4MYv8A4qt/FGKAMD/hO/CH/Q16H/4MYv8A4qj/AITvwh/0Neh/+DGL/wCKrfxRigDA/wCE78If9DXof/gxi/8Aiq47x/8AGPSfDOlQvoV1p2s39w7KqQ3QkSFQPvPsJ7kADIzk4PFeoYrj/iB8PbDx/pUFrdTyW1xbOz29wihipIwQQeqnCkgEH5RzQBzfwo+Ks/jy4utM1Kzht9Qt4vPV7ctslTdhuDnaRle5zk9MV6rXinw78LRfDT4iz6LqUguJdVsw2nX+3YG2HMsWMnDfdPXoo9a9qyPXpQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRmgCG5u4LK1murmVYoIY2lkdjgKoGST7ACvP/AIf2s/iLV7/x/fxlGvx9n0uFusNop4PsXbLf/Wam+O7ibxTr9j4AsZSsc+LvWZY2wYrVT9z2LnA9RxkEGvQre3jtbeK3gjWOGJAiIvAVRwAPYACgCaiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOU8feF5vEvh4/YHEWsWMi3enTcZSZOQMnoG6fke1WPBfiaLxZ4YttTVfKuDmK6gOQYJl4dCO2DyM84Iro68zvs+APiQmoqRH4f8SyCG6HRLe9/hf6PyCfXJPQUAemUUmRS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFY/iTxBaeF/D17rF8f3NrGX2jrIeAqj6kgfjWvkV5rqH/FffEeLS1+fQvDTie7PVZ7zokfvsGSffIPUGgDU+HOgXdhpdzrWsDOu63L9rvCf+WY/5ZxD2ReMdiT1wK7em4p1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWP4l8P2vijw/eaPej91cx7Q46o3VXHuDg/hWxRQBxXw68QXWo6TcaPrB265osn2S9BP3wB8ko9QyjOe5BNdrXnHjqGTwn4hsfH1lGxhi22msxIP9ZbEjEmO7Ice5GBkAV6HBcQ3MEc8EqSRSKHR0OQwIyCPqOaAJKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopu9cZyAPegDlvH3ieTwz4cZ7JDLq17ILTToQMmSd+F49B19OPerHgvwwvhPwzb6ZvM1ySZbuctuM0zcu5J5PPTPYDvXL+GAfHPjq58XS4fR9L32WjAj5ZGziWcfXG0e3YFa9LoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCvd2kF/ZzWd1EJbedGjkRuQykYINcD8Prufw9q1/4A1KVpJNPH2jS5nJJns2PAzjqh4P5Dha9GrhfiNol7LY2niXRlzrWhObmED/AJbxY/exHH95fxOMd6AO5yKWsvQtatPEOh2er2L7re6iEik9V9QfdSCD9K1KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArgfiRqt3NFZeD9Hk26trrGIuP+Xe2H+tkP4cD1ycciu1v7+20zT7i/vJVitreNpZHPRVUZJ/KuE+HVjcavdah461SEpeax8tnC/W3s1PyL7FvvHHB4OOcUAdrpGk2uh6RaaZYxeXbWsQijXqSB3PqT1Puav0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU3BzTqKAPM9EI8BfEKbw4+I9D15nu9MJOFhuBjzIR7HgjtyAMk16XuB71zPjjwu3irwzNZxSeTqELrc2M6tgxTpyhz27g+xNHgXxR/wlXhuK7mQw6hA5tr+AjBiuF4YEdvUexx1oA6eiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkzS1h+LPEdt4U8NXmsXI3CBf3cY6ySHhVHuTQByPjNm8Z+LLPwJbljYw7L3W3Xp5YIMcOfVjgnuBgjPNejRxLEioihUUYVV4AHbHpXI/Dzw5c6Hob3mqfPrmqyG81CQ9d7chPooOPTOccGuyoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvNdbX/hBPiFb+JE+XRNcZbPUwB8sM4/1Ux9Afuk9ue5FelVm69otr4h0K90i+TfbXUZjb1HoR7g4I9wKANHcPWlrhPhzrN9JZ3nhnWWB1vQnFtMx/wCW0RH7qUeoK4z345613dABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJuHrXmpz4++JuMF/D/AIXk5yPluL/+REY/EH1DVtfELxHcaHocVrpY8zXNUl+x6fGOvmN1f6KOc9M4zWn4R8MweEvDFno9sQ/kpmWXGDLIeWc/Uk/QY9KAN3FLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHnPxBtLjw/qlh8QNOjLS6aPI1OFOtxZsefqVPzDPHc/drv7W8t760hu7aVZYJ0WSORejKwyD+INLNAlxDJDNGHikUq6NyGB4IP4V574Flfwn4jvvAN45Num690aVznfbsSWjz6ofxIyeBigD0iikyKWgAooooAKKKKACiiigAooooAKKKa8iRozuyqqglmJwAPegBQwPelrL0HWrPxFpEWqWBLWsryLGzLjcEdk3fQ7SR7GtSgAprSIiM7uqooJZicAAdSTQ8iRoXdgqryWY4ArzPxr4jg8WGz8F+FtVgubjVXKXtzaSiQWlqv+sLFTwW+6AeucdxQBL4OVvGfi+88c3CE6fBusdERhj92OJJserHIHfGQelek1T07TrbStOt7CyhWG1t4xFEi9AoGB+PH9auUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcV8RdAu9R0m31jRwBruiyfa7Igcyf89IvcOvGO5A967Wm4NAGR4Y8QWnijw5ZazZnEV1GGKHqjdGU/Qgj8K2a8vinh+G3xAuLe5lS38MeIS1zFI7bY7S7Ay4JPCq4GR74A4BNej2Oo2Wp2iXVhdwXVu/3ZYJA6H6EcUAWaKKKACiopLiGJ4kklRXmYpGpOC7bS2B6nCk/QGpaACiiigAooooAQsB39q87+I9/LqXhvxBY2srJZWFjM99Ohxvl8slIAfrtZvQYH8Rx0niLWjZyWukWMsX9s6kSlqjn7igZeVh3VQCcfxHA7kjgPiV4atvDPwu1drfV9UfO391Nc7lkeSUbiwxySWZifagDsvhhai0+GXh6MD71mkn/ffz/+zV1u4DvWP4VhW28IaJbqQVjsIEBHIOI1rE8e+MLjw9p/2XSIVudYuHjhhVvuxGRtis3uTnA74J6A0AU/jJY6tqPw1vrfSEeWYyRNNDEhZ5Iw/IXHPXB+gNeE/BOC9f4qaebdjGIUma5ycfu9hBBHf5io9jz2r6yjR1iVXbe6gAtjG49zj3riPiNol5LZWnibRlzrehObmFR1mj/5axH2Zc+/GO9AHdZFLWXoOt2niLQrLV7F91vdRiRcHO31U47g5B9CK1KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiim71xnIA96APA/2k4b0x6DP5mbAGZCgOMS/KcnnnKjA9MH1qX9nPTtWt4dZu5opodNnWIQmRCFlcFuVPcAHnHXI9K6/wANZ8deOLnxfJ82kaWZLLRl52yN0lnHrnoD6DsRXpG3HQcUAOqOaeK3gknmkWOGNS7uxwqqOSSewFPyPWuM17+0vE1+dO0pbQ6dYzD7YbsN5dzIORCNvVVOC3qcL03CgDk4NU1HXvjrozXOYtPh0yW8s7YjDIrFow7g9HbrjsCo65r2CvJPDTahdfH7XJNT+zm4stIjhP2fdsG4o4xnnoTXqtzK8NtJJHF5jqMhNwXP4nigCXIpa53wb4jk8W+GbfWmsDZJcl/KiaXeSgYqCeB1weP1roqACiiigDJfwzocupDUZNF0574MGF01qhlBHQ7sZz71JqOgaRrBRtU0qxvmT7hubdJdv03A46mtKigDB1G2m8P+G7lfC+i273KgeRZwLHChYkDPVRwOeozjGa84M2qXnjXw5o8nhe/WS0mbVr43F1Azzt/qkmZlcjCsxIUc4ACjA49lrOh0Wzt9bu9XjjP227jjilctn5EztAHYZYmgDRpuDmnUUAeZ6L/xQfxDm8OufL0PXi13phPCw3A/1kI9AeGHboBkmvS9wPeua8b+GG8VeF57KN/J1CJhcWNwrbTFOnKMG6juCfQnvSeBvFH/AAlXhqK8mQw6hA7W1/ARgxXC8MCPyI9jjrQB09FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcD8R9Vu54rLwdo8m3VtcYxM4/5d7b/AJayH04yB6845Fdpf6ha6Zp9zfXkqxW1tG0srn+FVGSfyBrhvh1YXGrXV/461WIpeaxhbKJuttZj7i/8CxuPY8HgkigDtNI0m10PSLTS7GLy7a1iEUY6kgdz6k9T7mr9FFAFLULKW+spLeK9uLFnGPPttnmAexdWH6flVDw74bTw1oK6Ta395PEhYxy3BjaRSxJJyFAJySckHrW5RQByGleAINJ8U3viKLW9Wlvr3AuRMYCkqjGFIEQwOAOMHHepPiPqkmleA9Ukt8m7ni+y26jqZJTsXHv82fwrq65XxT4V1DxHfaTImqwW1pp14l6LdrMyebIn3dzeYOBk9qANnQ9Kj0TQNP0uH7lpbpCDjrtAGfxxn8a0aQZwM9aWgAooooAKKKKACiiigAooooAK811zPgT4hweJE40TXSlnqmBhYJx/qpj6A/dPpzzk16VWbrui2niHQrzSL5N9tdxGN8dR6Ee4OCPcCgDR3DOM80tcJ8NtYvXsrzwxrT7tb0KQW8zH/ltER+6lHqCv48DPJru6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApM0tYfizxJbeFPDV5q9zhvJXEUfeWQ8Kg9yf8aAOR8ZO/jTxZZ+BLdj9gh2X2tuv/ADzBBjhz6scE98YIzgivRUiWONY0VVRQAqqMAD29PTFcl8PPDlzoehveap8+uarIbzUJD13tyE+ig49M5xwa7KgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDzn4hWtx4f1Ox8f6bEWl00eRqcKdbizZufqVPzDPHc/drv7W8t760hu7aVZYJ0WSORejKwyD+INLNAlxDJDNGHikUq6NyGB4IP4V574Flfwn4jvvAV4xNvHuvNGlc/ft2JLR59UJ6dSMngYoA9IopMiloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooATcPWvNcHx98TOm7w/4XkwePluL/ANPcRg/gfUNW18QvEdxoehxWuljzNc1SX7Hp8Y6+Y3V/oo5z0zjNafhLwzB4S8MWejWuH8lP3suMGWQ8s5+pz9Bj0oA3cUtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXFfEXQLvUdIg1jRxt17RpPtdicZ8wf8tIjjqHXjHcgds12tNwaAMjwx4gtPFHhyy1mzOIrqMMUPVG6Mp+hBH4Vs15pZL/AMID8SH07lPD/iaQzW3923vf409g4wR74AGATXpW4etAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTWkREZ3dVRQSzE4AA6kmlyK89+I19dapcWHgXSZmjvdY+a7lTn7NZA/Ox/3sFQO/I70AQ+Dlbxn4vvPHNwhOnwbrHREYY/djiSbHqxyB3xkHpXpNU9O0620rTrewsoVhtbeMRRIvQKBgfjx/WrlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAc94z8Mx+LPDF1pbN5c5xJbT55imXlHz1GD1x2Jqn4B8TS+JfDo+3L5Wr2MrWeoRdCkycE/Q8H9O1dbXmvioN4H8b2vjGEFdI1Ix2WtKoOIz0in/AnB9uMEtQB6VRSBlYZByPUc0tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSZHr1oAo6vqtromkXeqX0gjtbWNpJGz0A7D3PTHc8Vx/w40q8njvvGOrpt1bXGEixsOba2H+riH4YJ/DIyKp+KCfHHjm18HxHOkaYUvdZYH5ZDnMVufXP3iPTpytekhQowBgDpjtQA6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqGraVa61pd1pl9EJbS5iaKRfYjsex7g9iM1fooA8/+G+pXVqt74L1iTfqmhkJHKwx9ptT/AKuQfQfKeuOM85r0DNee/EWwutMnsPHGlRF77RiftUS8G4s2/wBYv1Ucj056mu307UbXVNOtr+zmWW2uYxLE47qRkGgC3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXO+NPE0XhTwzcakV8254itbcZzPM33EA788nHOAa6HI9a80sAfH3xHfUyRJ4f8ADUjQWo6rcXn8cnuEGAD64I6mgDofAXhibw14dAv383WL2RrvUZzjLzPyRkdh0444JxzXV0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEbxiRWV1DKwIIPIIPbFec+D2fwX4wvPA1yx/s64DX2iO3ZCSZIMnupywHpknrXpIYHpXl3xwvLXS/CVlqoYx6vaX8b6bKn3lkzlgf9kqpyPXFAHqWaK8G8FftALd3ssHi9LWygKM0d3bRyEA5GEKDcemfmz2Hua7n/AIXb8PP+hh/8krj/AON0AegUV5//AMLt+Hn/AEMP/klcf/G6P+F2/Dz/AKGH/wAkrj/43QB6BRXn/wDwu34ef9DD/wCSVx/8bo/4Xb8PP+hh/wDJK4/+N0AegUV5/wD8Lt+Hn/Qw/wDklcf/ABuj/hdvw8/6GH/ySuP/AI3QB6BRXn//AAu34ef9DD/5JXH/AMbo/wCF2/Dz/oYf/JK4/wDjdAHoFFef/wDC7fh5/wBDD/5JXH/xuj/hdvw8/wChh/8AJK4/+N0AegUV5/8A8Lt+Hn/Qw/8Aklcf/G6P+F2/Dz/oYf8AySuP/jdAHoFFef8A/C7fh5/0MP8A5JXH/wAbo/4Xb8PP+hh/8krj/wCN0AegUmRXAf8AC7fh5/0MP/klcf8Axuud8XfHrQtP0lW8LSx6nfu+0rLFLGkS4J3HKqW5xwCOp54oA6z4ieILrTtJt9F0fnXdakNpZKDzGMfPKfQKp69iQexre8NeH7Xwv4fs9Hsl/c20e3eeC7dWc+5OT+NeQ/CLxY/jn4galqmuqjatBYIlkkakRQxbsSFQScMSyc/7TDgcV7tQAUUZpNw9RQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJkUZFYXijXJNF00fY7d7rU7glLS2jUszHuxA/hUck/QdSMgHJ/EXxlc2Gp6P4c0lmE9/qNvbXVyn/LBHYHYD/eYc+y/7wrqfGHhCw8aeHpNI1FpEjLiSOWLG+Nh0IyCOhIPHQkV5hrBjl8cfD/SUtNQhkS/mu7ia+hEb3Mo2sXOOpyD9MgdK9uLqASTgDuaAPNfh/wDB3T/A2rPq0moS6jfhGjiZohGkanHIGSd2ARnIGCRivS8Vzei/EDwr4i1L+ztI1iK7u9pfy0jf7o6nJGK6WgBMUYpaKAExRilooATFGKWigBMUYpaKAExRilooATFGKWigBMUYpaKAExXI+Pfh9p/j7SoLW9mlt57ZzJb3EYBKEjBBB6qeCRxnaORXX0UAcD8OvhbYfD/7RcR3kl9f3KCOSZ0CKqg5wgGSMnGck52jpXfUUmRQBU1LUbbStOnvrpysMK5OBkk9AoHUkkgADkkgDmuL+GPiLUfFa+IdVvw8ajU2toLfcCIUjRfl44J+bk9zSXHiBNT14X0ml6ndaNpxLWb29vvinlGd0xJIBVeQnbOW/ukU/gSjH4dG6cYe7v55mz65A/8AZaAPTaKr3t/Z6baSXV9dQ21vGMvLM4RVHuTTbHULfUbYXFv5vlk4BkheMnjPAYA4569KALVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBDMJRGzQojygHYHbaCfQnBwPwrm/Dul+II9d1LU/EEemmSfbHam0neQwQj/lnho16nLFs8nHHAx1VFAHneteF/FGo/EvRvE0MOkCz0uOSNIHvJBJLvVlLEiIhfvDjnp15rrfEGnXer+G73TbO8SyuLqExiYx+YEDcNxxnjIz75rXrA1XWNY0/WLa3tvDlzqNhLGS9zbXESvG+cBSjsvGOc7vwoAxfAesapdXms6Fr1taLqmkPGj3Fom2O4jkUsjAduF5H0ruaw9D0eW0vNS1W8VFv9SkRpFRtwjjRdsaZ74GST6se2K3KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5fxfYeJdSsRp+hjT44JSouZbi5kjkMefnRNsbYLDjdnIyeM4NdRRQBiavZ6ifDkljo9rYx3D25gRZZmjjh+TaNpVCSB6YHTtWT8N/Dur+E/CNroWqJYt9lL7JrWdn37nZ+QyLj72O/SuxooA8c/tDVvE+o6r40Wytr7RNDkkTTLCadoxK0X35+FIL8HaT06YzzXqOhavba9oVjqtoHEF3CsqK/DKCOh9x/+quItfD+t6X8O28GafZMtwwmtRfM6+SsLu5M3Xdnax+XGd3t81dzoukwaFollpVruMNpAsKFurBRjJ9+KANCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACk9KWk9KAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAE7ZpaT+GloAKKKKACiiigAooooAKKKKACiiigD//Z'] Multimodal Competition True Theorem proof Combinatorics Math English 36 "This Question involves one Robber and one or more Cops. After robbing a bank, the Robber retreats to a network of hideouts, represented by dots in the diagram below. Every day, the Robber stays holed up in a single hideout, and every night, the Robber moves to an adjacent hideout. Two hideouts are adjacent if and only if they are connected by an edge in the diagram, also called a hideout map (or map). For the purposes of this Power Question, the map must be connected; that is, given any two hideouts, there must be a path from one to the other. To clarify, the Robber may not stay in the same hideout for two consecutive days, although he may return to a hideout he has previously visited. For example, in the map below, if the Robber holes up in hideout $C$ for day 1 , then he would have to move to $B$ for day 2 , and would then have to move to either $A, C$, or $D$ on day 3. Every day, each Cop searches one hideout: the Cops know the location of all hideouts and which hideouts are adjacent to which. Cops are thorough searchers, so if the Robber is present in the hideout searched, he is found and arrested. If the Robber is not present in the hideout searched, his location is not revealed. That is, the Cops only know that the Robber was not caught at any of the hideouts searched; they get no specific information (other than what they can derive by logic) about what hideout he was in. Cops are not constrained by edges on the map: a Cop may search any hideout on any day, regardless of whether it is adjacent to the hideout searched the previous day. A Cop may search the same hideout on consecutive days, and multiple Cops may search different hideouts on the same day. In the map above, a Cop could search $A$ on day 1 and day 2, and then search $C$ on day 3 . The focus of this Power Question is to determine, given a hideout map and a fixed number of Cops, whether the Cops can be sure of catching the Robber within some time limit. Map Notation: The following notation may be useful when writing your solutions. For a map $M$, let $h(M)$ be the number of hideouts and $e(M)$ be the number of edges in $M$. The safety of a hideout $H$ is the number of hideouts adjacent to $H$, and is denoted by $s(H)$. The Cop number of a map $M$, denoted $C(M)$, is the minimum number of Cops required to guarantee that the Robber is caught. The police want to catch the Robber with a minimum number of Cops, but time is of the essence. For a map $M$ and a fixed number of Cops $c \geq C(M)$, define the capture time, denoted $D(M, c)$, to be the minimum number of days required to guarantee a capture using $c$ Cops. For example, in the graph below, if three Cops are deployed, they might catch the Robber in the first day, but if they don't, there is a strategy that will guarantee they will capture the Robber within two days. Therefore the capture time is $D\left(\mathcal{C}_{6}, 3\right)=2$. Definition: The workday number of $M$, denoted $W(M)$, is the minimum number of Cop workdays needed to guarantee the Robber's capture. For example, a strategy that guarantees capture within three days using 17 Cops on the first day, 11 Cops on the second day, and only 6 Cops on the third day would require a total of $17+11+6=34$ Cop workdays. Find an example of a map $M$ with 4 or more hideouts such that $W(M)=3$, or prove that no such map exists." "['We denote a map as star, that is, the map $\\mathcal{S}_{n}$ with one central hideout connected to $n-1$ outer hideouts, none of which is connected to any other hideout.\n\nNo such map exists. Let $M$ be a map with at least four hideouts. The proof below shows that either $W(M)>3$ or else $M$ is a star, in which case $W(M)=2$.\n\nFirst, suppose that there are four distinct hideouts $A_{1}, A_{2}, B_{1}$, and $B_{2}$ such that $A_{1}$ and $A_{2}$ are adjacent, as are $B_{1}$ and $B_{2}$. If the Cops make fewer than four searches, then they cannot search $\\left\\{A_{1}, A_{2}\\right\\}$ twice and also search $\\left\\{B_{1}, B_{2}\\right\\}$ twice. Without loss of generality, assume the Cops search $\\left\\{A_{1}, A_{2}\\right\\}$ at most once. Then the Robber can evade capture by moving from $A_{1}$ to $A_{2}$ and back again, provided that he is lucky enough to start off at the right one. Thus\n\n\n\n$W(M)>3$ in this case. For the second case, assume that whenever $A_{1}$ is adjacent to $A_{2}$ and $B_{1}$ is adjacent to $B_{2}$, the four hideouts are not distinct. Start with two adjacent hideouts, and call them $A_{1}$ and $A_{2}$. Consider any hideout, say $B$, that is not one of these two. Then $B$ must be adjacent to some hideout, say $C$. By assumption, $A_{1}, A_{2}, B$, and $C$ are not distinct, so $C=A_{1}$ or $C=A_{2}$. That is, every hideout $B$ is adjacent to $A_{1}$ or to $A_{2}$.\n\nIf there are hideouts $B_{1}$ and $B_{2}$, distinct from $A_{1}$ and $A_{2}$ and from each other, such that $B_{1}$ is adjacent to $A_{1}$ and $B_{2}$ is adjacent to $A_{2}$, then it clearly violates the assumption of this case. That is, either every hideout $B$, distinct from $A_{1}$ and $A_{2}$, is adjacent to $A_{1}$, or every such hideout is adjacent to $A_{2}$. Without loss of generality, assume the former.\n\nBecause every hideout is adjacent to $A_{1}$ (except for $A_{1}$ itself), the foregoing proves that the map $M$ is a star. It remains to show that there are no ""extra"" edges in the map. For the sake of contradiction, suppose that $B_{1}$ and $B_{2}$ are adjacent hideouts, both distinct from $A_{1}$. Because the map has at least four hideouts, choose one distinct from these three and call it $A_{2}$. Then these four hideouts violate the assumption of this case.']" ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAVABvwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ0ALketFcB8SfHg8MJYaTp7q2t6nMkcI4PkozbTIR+YHqc9dpFd6p60AOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKADNZevazDoeltdvG88pYR29vGfnnlY4VF+p79hkngGr9xNFbQPNPKkUUalndyAqgckknoK4e10aPx7NH4hvpr23sUz/ZEdrcvA6xkENOxUg7pAeB2QjuxoA4Txpo0sHjzwDDfSrPqt/qZu9QkXpkPFtRc9EUAqPpnqa93HrXh2q6RBZ/tDeE9Ohur64SO3e4Y3l5JcFW2ytgF2JH3BwPY969xHpQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBka/4a0zxNaC01WKea2/iiS5liV84+8EYbunfOOam0nRbPRNLj02wWaO0jXaiPcSSlBjAAZ2LADsAcDtWjRQByEnw18Ly6wusPZXjakhyt2dSufMHUcN5mQME8V1cMYhiWNd21VABZix4Hcnk/U81JRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUZxQAUhpayte8Q6V4b0832rX8NpAM4MjcuQM4UDlj7AE+1AGdrnj/wr4dv0stV1u2t7pmCmLl2Qn+8FB2jnqcVv2V5a6haR3Vlcw3NvIMpLC4dGHsRwa+GdbvLjUNbvb+5dnlupmnMhTZu3HcGC9gc8Dng19N/ACC+h+GwN3kQyXcjWgJziPCg49t4c/iT3oA9SooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoozjrSHrjPNAC1FPNFDA00sqRxICzOzbQoHcnoB9a43xZ8S9H8NXK6dbpLqutyHEWm2Q3yFvRsZ2/z9AeawI/BHifx5NHd+Pb37JpobdHoVhIQvsZXycnj178FelAFjUvibd63fSaL8PdN/ti8XCy6jKNtpBnuTxu4Deg443dKl0f4Z20F03iLxtqJ17V1Uu0lyP9GtgOSEQ8YHPJGO4VTXeaXpdjo9hHZadZw2ltGPlihQKo98Dv79TXE/FzU518OWvhzTiP7S8Q3C2MXP3YyR5jH/AGcEA+zUAY/w60a08Z3+seOtY06C5F/d7NNS6hV/JhiO1WUEHaeAD7oT3r1lRgYwAOwFUtF0u20PRbLS7QYgtIViTjkgDGT7nqav0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVBdXVvZ28lzczxwwRqWeSRwqqB1JJ4FeaXvxH1bxPeyaV8OtN+3Mh2TatdKVtYPp/ePOf5Bh0AO58R+KdF8K2H2zWNQitYyDtUnLyeyqOSenQV5+b/AMb/ABLUDSo5fC/ht/8Al8lH+mXC/wCwB9wHjkH6MeRWz4d+F9nY6ida8R3UniDXWIJubsZji74jQ5AA7enbHSu/Xvnv7UAc14V8CaD4Ot/L0q0/fsMTXc2Glm9dzY/HAAFdIoxTqKAEbpj+VeW+HR/wmfxe1bxGT5mm6Cv9nWBxwZj/AK1x24ywz3DKe1dP8R/Ev/CK+Cb6/ifF46/Z7QDk+c4wuB3IGWx6A1L8PvDI8J+C9P0tlAuQnm3R67pn+Zue+M7QfRRQB0wz3paKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiuf8U+MdD8I2YuNXvo4WIJjhX5pZP91ByfTPT1IoA3zziuE8UfE3S9GvP7J0u3l1zXWO1bCy+faeh3sMhcenJ9h1rB/4rr4m9PN8KeGX/wDA25T9NoI+nX+MV3XhfwZofg+y+zaPYpESB5kzfNJIfVmxnueBwM8AUAcXb/D/AMQeMriPUPiJqG6BW3xaHZOVgjPYuwOWI56HP+1jivS7CxtdNso7Oytora2iXEcMSBVUewHFWBS0AFFFFABSNnHFLWb4g1i28P6BfatdnEFpC0rDOC2Bwo9ycAe5oA8/1lf+Ey+Mem6MmW0zw1GL274+VrlseWh7EgYYf8DFeorXn/wj0e4tvC82u6io/tTX521C4YLjCsfkUe2PmA7bq9BFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNbkUAOqtf31rp1nJeXtzFbW0Q3SSyuFVR6kmuH8SfFCysdROieHLSXxBrzfKLW0OY4z6yOOAB3x+JXrWdY/DjVfFF5Hq3xE1D7cyt5kOkWrFLWE++D8x7foSwoAbP4/1/xncy6b8PNOBgRvLm1y+UrBGe+xSPmPTqPquOa2fDPww03Rrw6vq00mua85Dvf3nzbT/sKchcdjyR2wOK7S0tYLK3S2tYI4LeJQsccShVUegA4FT0AIOvTtS0UUAFFFFABRRRQAjfzry/4nSSeJfEGgeALZmC30ovNRKcbbaM5xn3IOP9pV9a9OlkSGNpZGCogLMzHAAAySa8x+F8T+JNZ17x9dRsP7SmNrp6sPuW0Zxx6ZIAPuh9aAPTokSKJY40CIoAVQMAD0Ap9IvfrS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFJketAC0ZqlqmqWOj2Ml7qN3Da20Yy8szhVH59z6V5tJ438TePJXs/AdgbPTt22TXr5CEx38pCDk+/PuF60Adj4t8c6D4Ntll1W8xMwzFaRfPNKewC5/U4Hv0rizp3jf4ljOpvL4W8NSdbOI/6ZcL33kj5AeeCPqG610fhX4a6R4cuDqVyZdW1yQ7pdRvjvk3eq5J2/UZPOMmu0UdTzz60AY3hzwto/hSwFno9hFbRnl2Ay8h9Wbqe/wBO2BW0KWigAooooAKKKKACiiigAoopD/k0Aee/F7V7iDwzB4e05lOp+IJxYQqT0RseYx9sEKT2312eh6Tb6FolnpVopEFpCsSZ6nA6n3PU+5rzzw//AMVp8YNV185fTPDqnT7Lj5WnOfMYfT5h9GU16kowKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAozjrSEgdSOK5bxd4+0LwhGsd7cNNfycQ2FsN88hPT5ewPqce3NAHU5B54rzrXvilD/aP9ieDrJvEOtHIxAf8AR4P9p3zjGe2QODkjjOYdA8Z/EnD+I5X8OeHX5XS7V/8ASJl9JWPQe2PT5cjNeh6F4d0nw3p62OkafFaW46hByx9Wbqx9yaAOH034ZXmuX0esfELUP7XvFOYdOiJW0ts9gvG48DPrjndwa9KgijgiWKKNY4kAVEVQFUegA6U8ZpaACiiigAooooAKKKKACiiigAooooAK5T4i+Jx4T8E6hqUbf6UV8i1UHlpn4XH0+9j0U11Rry7Xj/wmXxh0rQUJbTfDqDULwfwtOQPLQ9iQMEexb0oA6j4deGf+ET8E6fpsi4uinnXTdzM/Lc98cLn0UV1VNXvTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopkjKqMzkBVBJJ6Ae9AD8j1rO1rWdN0HT3v9WvIbS0TrJK2AT2AHUn2HNcNq3xQa+1JtE8C6edf1TOHnBxa2/B5Z+jdD0IB7HPFGjfC9r7UU1zx1f8A9vaqPmSBhi1t/ZU4DfiMdyM80AUW8V+LviEzW/gq1OkaISVbW71PnkHQmJPz5/Mqa6fwl8OdE8KObyJJL3VpctNqN4d8zseuD0UfTn1JxXXRIsaBEUKigKqjoAPSn0AIKWiigAooooAKKKKACiiigAooooAKKKKACiikNAGfr2rW2g6Fe6tdkeRaQtK4zgsAPuj3JwB7muN+EWkXEHhmfxDqCg6p4gna/mbHIRjmNfpglh/vVR+J8z+I9b0DwDbM2NRmF3qBTjbaxknH4kHHuoHevTYY0hiWKNQqIAqqowAB0AoAeKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiijOKACijNZmo+ItD0dwmp6zp9k56Lc3KRk/8AfRFAGnRVG31rS7u2jubfUrOaCVxHHLHOrKznooIOCT6VeoAKKKa30oAdRmvP9d+Id5ofi6z8Nf8ACONdXt6m+2MF4oVlyeuVG3AUn096nufiLFouq2lh4n0i80b7YxW3uneOaBiMcF1J2nkdRQB3NFNUYzTqACijNGaACkyCM54rL1/xDpPhvTWv9Xv4rS2X+Jzyx9FA5Y+wBrzsa94z+JIMfhqB/D3h9+Dq10v+kTL6xJ2+o/76BGKAOp8X/EbQ/CRFpLI99q0nyw6daDfM7HpkfwjkdfwBxiuXXwp4u+IbC48ZXTaRopYMmiWT4dx1HnPz6Djn6Ia67wl8P9B8Hq0ljbtNfPky31yd88hPX5j0B9BgevPNdQoxxjAoAoaPomm6BYJY6VYw2lsnSOJcZPqT1J4HJyTWgKWigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKZK6RRtJIwVFBLMegHc0+vPvi9rE9t4Wi0LTiDqmvTrYQLnorECRj7YO0/wC+KAM/4ZRN4l1/X/H86HbfzGz08MDxbR4GR6biBn3VvWvUBWdoGj23h/QbLSLQfubSFYlJHLYHLH3JyT9a0qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmt2p1I3agDy3xp4u1XUvGFt4B8KTeRfzANf36jJtIsZOO27ac591A5OR2fh/wlpHhu1CWForTEZmu5fmnnY8lmc8kk++OteU/As/2v4w8Ya/dc3bzKoLdQJHdmHt9xRj0Fe6qeOetAHDan4Fs5/iVoHiO1sY4TbJObto12iRtoEZOO4LMc9Tj2ruQMUtFABSGlrN8QatFoXh7UNWmwUs7d5sE43EA4H4nA/GgDyGy8Q6Le/H3WtX1fVLO0ttGt/sVp9pmVCZM7WK5POCZfzFSePHl+Ld3pWh+GIpZ9Lt7gy3mrMhWCP5cbVYj5yAT07kds1t/BXQ1i+Hp1C/iWa51i4lupjKoJZSdoBz2ON3/Aq5zRP+JF+0hdaPoAEWmXMRe8t4R+6RvJ3Zx2+faPYsRQB7jEuxAoJOABljk/jSv2Hc0ooIzQB5X4h+O3hvQNck0oWt9etbyGK5lhVQqEHBC5I3EEew96JvitdeJ2Gn/D3SJtSu3UGW8uozHb2uf72cZOAeMjpxu6V4X4p+G3ifRPEdxZjSNQu4pJ3FtcxwmXz13HaSVB+YjBI611fhnS5vCJi0rxpqXi7wul0/mQXNjqAS1diBwwVWw3TJyffGKAPWNC+FsJ1Bdb8Y3z+IdbOGDTj/AEeDviNOmAfXjvtBr0RQBnAxXnkHw1guYEng+IXjSWGRQ6SR60GVlPQghcEe9S/8Ks/6nzxx/wCDj/7GgD0CivP/APhVv/U+eOP/AAcf/Y0f8Ks/6nzxx/4N/wD7GgD0CivP/wDhVn/U+eOP/Bv/APY0f8Ks/wCp88cf+Df/AOxoA9Aorz//AIVZ/wBT544/8G//ANjR/wAKs/6nzxx/4N//ALGgD0CivP8A/hVn/U+eOP8Awb//AGNH/CrP+p88cf8Ag3/+xoA9Aorz/wD4VZ/1Pnjj/wAG/wD9jR/wqz/qfPHH/g3/APsaAPQKK8//AOFWf9T544/8G/8A9jR/wqz/AKnzxx/4N/8A7GgD0CivP/8AhVn/AFPnjj/wb/8A2NH/AAqz/qfPHH/g3/8AsaAPQKK8/wD+FWf9T544/wDBv/8AY0f8Ks/6nzxx/wCDf/7GgD0CivP/APhVn/U+eOP/AAb/AP2NH/CrP+p88cf+Dj/7GgDv2xx9a8u0T/is/jFqWtsC+meG0NhZjHytcnPmMO3HzD8UNZnjzwsvg3whe6wPHXjSS4RdltFJrBw8rcKCAuSByxAIOFNXPC3wd/s/w9arJ4q8U6fdzIs13BYagIYxMVG7gKeeAMk9hQB6wPSlrz//AIVZ/wBT544/8G//ANjR/wAKs/6nzxx/4N//ALGgD0CivP8A/hVn/U+eOP8Awb//AGNH/CrP+p88cf8Ag3/+xoA9Aorz/wD4VZ/1Pnjj/wAG/wD9jR/wqz/qfPHH/g3/APsaAPQKK8//AOFWf9T544/8G/8A9jR/wqz/AKnzxx/4N/8A7GgD0CivP/8AhVn/AFPnjj/wb/8A2NH/AAqz/qfPHH/g3/8AsaAPQKK8/wD+FWf9T544/wDBv/8AY0f8Ks/6nzxx/wCDf/7GgD0CivP/APhVn/U+eOP/AAb/AP2NH/CrP+p88cf+Df8A+xoA9Aorz/8A4VZ/1Pnjj/wb/wD2NH/CrP8AqfPHH/g3/wDsaAPQKK8//wCFWf8AU+eOP/Bv/wDY0f8ACrP+p88cf+Df/wCxoA7q6njtreSeZ1SKNS8jscBVAyST2FeTN+0N4VGr/ZhaagbPODd7FxnP9wnO3v6+1aup/CWS60q7t4/G/i+R5YHRUutU3xMSpADrtG5fUZGRXzm/w98YJrH9mHw5qAugfurESvrkOMrj3zigD7PtLmG8tYrq3kWWCZFkjdTwykZBH4Gpj29qxvCOky6D4R0nSp33zWtpHFIc8bgvIHtnpW1QB4qui618K/Huo6xp2lXWpeGNVOZ47FN8ts2SRhO4Us2O208nNd1B8QtJ1FQmmWWr310f+WEenSoQf9ppFVF9Mlq689R1ox/kUAUNIj1BYJJtSdftEzb/ACYzlIBjhFPG7HdsckntgDQpBS0AIQa5Dx14S1Txjo0ujwa1Dp9jMVMgFkZZGwQcbvMUYyB2rsKKAODtfCHi2y0K20i28ZW9vbW0KwRvBo4EgRV2jkykZwOuKv8Ag74f6V4ONxcW7z3eo3JzcX1026STnP0A/n3ziutooAQDFLRRQAh+maqajp1nqljLZX9pFdWsow8UyBlYfQ9885q5RQB5VP4G8R+B5nvfAF6ZrEtvl0K9cmM56mJyeD+R9zwK3/CfxK0jxNctps0cula5GSJdMvBskDAZIXON3fsDxyBXaMM1zXivwHoXjG3VNTtiLiP/AFF3Adk0J7bWHUexyPxxQB0wI9fxpa8lOr+NPhmduvRy+JvDq9NSgX/SrdcdZF/ixjqT9W6LXonh/wARaR4l05b7R7+K6tzwdh+ZD6Mp5U+xFAGtRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh5paz9b1W30PRbzVbtiLe0haV8dSAM4Hueg+tAHnviJj4x+L+keHU+fTdAUalfehmI/dKe2RkH3DP6V6iteefCPSblPDlz4k1Jf+Jn4hnN9KcciM/6tR/s4JYezY7V6GO9AC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAGm45zjmnUUAIKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAawzjjNeea78Lo11Btc8G3zeHtaGSTCP9Hn9pI+nX0GO+Ca9FpDQB5ppXxOn0nUU0Xx/p/8AYuoE7Y71ebS491f+HqPUepHQekxOsiB1cMrAEMOhHtVLV9G0/XdPew1Syhu7WT70cqg89iPQjJ5HI7V5xJ4U8XfDxjc+DLt9X0QEs+hXj5ZB1Pkt+J44+jmgD1eiuR8H/EPRPF262hd7PVY8ibTrobJoyOuAfvAeo9sgdK60EHmgBaKKKACiiigAooooAKKKKACiiigBDXmHxSlk8RatoHgG0dl/tOcXN+UOCltGcntxkg4PqgFemyusaF3YKigszE4AA7+1eY/DNW8T+JfEHj2ZT5d1N9h00MCNttHjkem4hc+hVvWgD02CNIYViiRUiQBUVRgADsBUlIvSloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmsM9s06igDkvF3w80Pxhie6ie11KPBh1G1OyZCOnP8AEB6Hp2wea5RPFHi74cult4zt21jQshU1uzTMkQ/6ap+XPXryx4r1imSxrIhR1DKwKlSMgg9jQBR0bWtN17T1v9KvYbu1fpJE2QD3BHUHkcHnmtDI9RXmus/DGfTtQfXPAWof2HqbHMlrj/RLgc8MnIXr2GB6DqHaD8UFTUV0TxpYHw9rPRTKf9Hn943zgfiSPc0Aek0U1SMdqdQAUUUUAFFFFABRRTW7UAcB8XtansfCcejaf82qa7Oun2yg4OH4c/TB2+xcGuu8PaNb+HvD9jo9qP3NnCsQOMbiOrH3JyT9a8/0gHxn8ZtR1ggtpfhmM2Nr6NctkSN+HzD8ENepDOTmgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEOeMVla74d0rxJpzWGr2EV3AegcZKn1VuCp9wa1qKAPJToXjP4Z/P4elk8R+G0PzaZcN/pNuvrE2OQMdMd/u9x2fhHx3oPjCBv7Nudl3GP31lONk0RHXK98HuMj3rpj2rjPFvw40nxPMuoRNLpmtw/NDqVkdsgbtuxjcPyPoRk0AdpRXlMXjXxJ4DnWx8e2Ru9Ozth12yQlSOAPNXHB55/QNya9L07UrLVbNLywuobm1kGVlhcMp/EUAW6KKKACuZ8f8AidPCPgzUNW3KJ0jMdup/ilbhRj26n2BrpW6V5Z4mP/CY/FzR/DS5bTtCUalf+jS8eUh/MH3DN6UAdP8ADbwyfCngixsJlIvZB9ovCfvGZ+Wz9Bhf+A11tIveloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAiuII7mFoZoklicFXRxlWB7Ed68z1L4a6j4cvZdZ+Heof2dOx3TaVOd1pcewB+6ev54BUV6jSGgDz/AMN/E+zvdR/sPxLayaBr64U210cRynpmNzwc9gfwLda79axvEnhXRvFlgbLWbCO5iGdjnh4z6q3Uf175Feezjxl8KYHnWeTxN4ThGWWZ9t1ZoO4J+8oH4cdEHNAHp2tapb6Lo15ql22ILSFppPXCjOB7nGB74riPhDpVyvh+78TakmNT8QTm8kGPuxZPlqPbBJHsw9K8c8afGe88Y2p0ZtOSy0WSaNpUjctM6K2du77vJAONvBHUivpvR7izu9GsrjT9v2KWBHt9owPLKgrx9MUAXRS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWV4k0WHxF4c1DSJyQl3A0W4dVJHDfgcH8K1aKAPlFfgP44Oq/YTb2ggHP2w3A8n8sb/APx2vp/RNMj0XQ7HS4mZ47SBIVZ+rbQBk/Wr+R60mQO4oAWijNFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUje/SlpDjHNAHjfx2jWSPw/YaeDFrWo36xxyxMVZkA2kHHbc6flXa/8K20BLNYoBqFrOiBVubbUJ45FOMbs7sZ+oI9q425/wCKs/aNghHz2nh2z8xgeV808/nudf8Avg+lew8etAHlfg3xTq2k/EK98AeIbw30kamTT751AkmTbu2OR1+XnPqrcnjHqi9PWvDblTrH7U1t9lyU063Bnde2Ij/WRVr3IUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVma5r2meHrB73VL2G1hRGb944BfAyQoz8x6cD1rTpCM4oA8F+DnirQIH8S6/rmtWNnqWp3xZoriYK2zlvlzyQS5HH90V6Hf/EGO9ia28IWFxrmotwjRwslrGT/E8rALjrwDk4/Gu3/MfjQBzQBxPw+8BHwlFeahqF0L7XtScyXt1jjJJO1fbJyT3P4Cu2FLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q==', '/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAVMBjwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKTIoAWik3DOM0tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVUutSs7Ke0guJ1jlu5PKgQ5zI2CxA/AGrdABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWdq2qQaRp0l3OGbbhUiTl5HJwqKO7FiAK0GdVBLEAAZJNcF9v1fV9bTWrfRDe6Rbqf7NLXaRBychpypyeRwv+ySR97AAKXwq1LU9dvfFmq6oy/aDqX2QIjEpEsQ4RT6DcTnuST1NelZFeYfAkmbwJd3zDDXuqT3B/HaP/AGU12HiPWNT0i1mn03RBqH2eFppd9yIAFAJwp2nLcHjge/NAHQZorM0HWIfEOg2Or26OkN3Csqq/3lyOhrToAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqC8vbaws5ru6mWK3gQySyMeFUDJJqbIrjdRhu/Gd+EsL8Wul6bcAmXylkF1cIegB42Rkde7j/Y5AOOWbUtU+Pfhy41HzIgunT3UNk3H2aNhIi7h/fbq3pkD+GvYwwPQ15JoEF4/7QWoi/vhfSWWihBN5QjxudGAwCR0dvzr0jWIdSuLMxaXdw2czthrqRPN8pMEkqhwC2cDkgDOecYIBp5FLXB+CtT8Qr4o8Q+HNevU1L+zhDLFfJAsW5ZFJ2sq/KDx/Ou8oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDmvFugav4hsTYWOsQ6day4+0A2hlaVQeU3eYuFYcHAyRnntWjqNhqFzo72lleW9rcvF5ZnNsXUZUg7UDjHPI5OMY5rUooA5LwF4RuvBWgro0mqQ3tpGztEy2phcFjk5PmMD36AVkfFd9csvDU2pWdzBJpdvtN9p5Qo9xCSA6iUHK8HkADjPXkH0GRWaNgjbWIIDYzg+tcjD4X1rUNN/szxRrltqll5qu/lWQgecK25VkIYrtyBkKoJxjOM5AOm09YI9OtktYRDbrEojiC42Lj5QB7dKt00Efd/SnUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSbgcYOc0AVr+wh1KzktbjzhFIMN5M7xN/30hBH51S0Pw3pvhzTf7N0qGWCzGSsRuJJNpYknaWYleSTxWtketLQBzNn4C8P2GvSa3bW90mpS/wCtuTqFwzSdMBsuQw4HB44HFamp6i9oI4bWIXF/PnyIM4Bx1Zj/AAoMjJ+gAJIB0q5TWPh34b13VJNS1KyuJruRVVnF9OowOgAVwAB6ADqfWgDQ0LS7fTorkidbq+nm33twMZeXA7c7Qo2hV7DHXqdus/SNGstB0uHTdMg8i0h3eXHuZsZYseWJJ5JPJ71oUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFch8Q/GsPgPww2qtbi4nkmEMEJfaHcgnkgcAKCf07119eZfGOGDXNI03wnDCJtY1W8T7Hn/lgEOZJT/shcj/gRx0oA5/4f/HX+3dXOneJo9P01XRnivBKYo8jBCMHJAyM87uwGOa9N/wCE78If9DXof/gxi/8Aiq4/4e/Buz8D6w+rzai2oXoRo4T5IjSMHGWxljuIyM5AwSMHrXp+KAMD/hO/CH/Q16H/AODGL/4qj/hO/CH/AENeh/8Agxi/+KrfxRigDA/4Tvwh/wBDXof/AIMYv/iqP+E78If9DXof/gxi/wDiq38UYoAwP+E78If9DXof/gxi/wDiqP8AhO/CH/Q16H/4MYv/AIqt/FGKAMD/AITvwh/0Neh/+DGL/wCKo/4Tvwh/0Neh/wDgxi/+KrfxRigDA/4Tvwh/0Neh/wDgxi/+Ko/4Tvwh/wBDXof/AIMYv/iq38UYoAwP+E78If8AQ16H/wCDGL/4qj/hO/CH/Q16H/4MYv8A4qt/FGKAMD/hO/CH/Q16H/4MYv8A4qj/AITvwh/0Neh/+DGL/wCKrfxRigDA/wCE78If9DXof/gxi/8Aiq47x/8AGPSfDOlQvoV1p2s39w7KqQ3QkSFQPvPsJ7kADIzk4PFeoYrj/iB8PbDx/pUFrdTyW1xbOz29wihipIwQQeqnCkgEH5RzQBzfwo+Ks/jy4utM1Kzht9Qt4vPV7ctslTdhuDnaRle5zk9MV6rXinw78LRfDT4iz6LqUguJdVsw2nX+3YG2HMsWMnDfdPXoo9a9qyPXpQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRmgCG5u4LK1murmVYoIY2lkdjgKoGST7ACvP/AIf2s/iLV7/x/fxlGvx9n0uFusNop4PsXbLf/Wam+O7ibxTr9j4AsZSsc+LvWZY2wYrVT9z2LnA9RxkEGvQre3jtbeK3gjWOGJAiIvAVRwAPYACgCaiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOU8feF5vEvh4/YHEWsWMi3enTcZSZOQMnoG6fke1WPBfiaLxZ4YttTVfKuDmK6gOQYJl4dCO2DyM84Iro68zvs+APiQmoqRH4f8SyCG6HRLe9/hf6PyCfXJPQUAemUUmRS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFY/iTxBaeF/D17rF8f3NrGX2jrIeAqj6kgfjWvkV5rqH/FffEeLS1+fQvDTie7PVZ7zokfvsGSffIPUGgDU+HOgXdhpdzrWsDOu63L9rvCf+WY/5ZxD2ReMdiT1wK7em4p1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWP4l8P2vijw/eaPej91cx7Q46o3VXHuDg/hWxRQBxXw68QXWo6TcaPrB265osn2S9BP3wB8ko9QyjOe5BNdrXnHjqGTwn4hsfH1lGxhi22msxIP9ZbEjEmO7Ice5GBkAV6HBcQ3MEc8EqSRSKHR0OQwIyCPqOaAJKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopu9cZyAPegDlvH3ieTwz4cZ7JDLq17ILTToQMmSd+F49B19OPerHgvwwvhPwzb6ZvM1ySZbuctuM0zcu5J5PPTPYDvXL+GAfHPjq58XS4fR9L32WjAj5ZGziWcfXG0e3YFa9LoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCvd2kF/ZzWd1EJbedGjkRuQykYINcD8Prufw9q1/4A1KVpJNPH2jS5nJJns2PAzjqh4P5Dha9GrhfiNol7LY2niXRlzrWhObmED/AJbxY/exHH95fxOMd6AO5yKWsvQtatPEOh2er2L7re6iEik9V9QfdSCD9K1KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArgfiRqt3NFZeD9Hk26trrGIuP+Xe2H+tkP4cD1ycciu1v7+20zT7i/vJVitreNpZHPRVUZJ/KuE+HVjcavdah461SEpeax8tnC/W3s1PyL7FvvHHB4OOcUAdrpGk2uh6RaaZYxeXbWsQijXqSB3PqT1Puav0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU3BzTqKAPM9EI8BfEKbw4+I9D15nu9MJOFhuBjzIR7HgjtyAMk16XuB71zPjjwu3irwzNZxSeTqELrc2M6tgxTpyhz27g+xNHgXxR/wlXhuK7mQw6hA5tr+AjBiuF4YEdvUexx1oA6eiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkzS1h+LPEdt4U8NXmsXI3CBf3cY6ySHhVHuTQByPjNm8Z+LLPwJbljYw7L3W3Xp5YIMcOfVjgnuBgjPNejRxLEioihUUYVV4AHbHpXI/Dzw5c6Hob3mqfPrmqyG81CQ9d7chPooOPTOccGuyoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvNdbX/hBPiFb+JE+XRNcZbPUwB8sM4/1Ux9Afuk9ue5FelVm69otr4h0K90i+TfbXUZjb1HoR7g4I9wKANHcPWlrhPhzrN9JZ3nhnWWB1vQnFtMx/wCW0RH7qUeoK4z345613dABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJuHrXmpz4++JuMF/D/AIXk5yPluL/+REY/EH1DVtfELxHcaHocVrpY8zXNUl+x6fGOvmN1f6KOc9M4zWn4R8MweEvDFno9sQ/kpmWXGDLIeWc/Uk/QY9KAN3FLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHnPxBtLjw/qlh8QNOjLS6aPI1OFOtxZsefqVPzDPHc/drv7W8t760hu7aVZYJ0WSORejKwyD+INLNAlxDJDNGHikUq6NyGB4IP4V574Flfwn4jvvAN45Num690aVznfbsSWjz6ofxIyeBigD0iikyKWgAooooAKKKKACiiigAooooAKKKa8iRozuyqqglmJwAPegBQwPelrL0HWrPxFpEWqWBLWsryLGzLjcEdk3fQ7SR7GtSgAprSIiM7uqooJZicAAdSTQ8iRoXdgqryWY4ArzPxr4jg8WGz8F+FtVgubjVXKXtzaSiQWlqv+sLFTwW+6AeucdxQBL4OVvGfi+88c3CE6fBusdERhj92OJJserHIHfGQelek1T07TrbStOt7CyhWG1t4xFEi9AoGB+PH9auUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcV8RdAu9R0m31jRwBruiyfa7Igcyf89IvcOvGO5A967Wm4NAGR4Y8QWnijw5ZazZnEV1GGKHqjdGU/Qgj8K2a8vinh+G3xAuLe5lS38MeIS1zFI7bY7S7Ay4JPCq4GR74A4BNej2Oo2Wp2iXVhdwXVu/3ZYJA6H6EcUAWaKKKACiopLiGJ4kklRXmYpGpOC7bS2B6nCk/QGpaACiiigAooooAQsB39q87+I9/LqXhvxBY2srJZWFjM99Ohxvl8slIAfrtZvQYH8Rx0niLWjZyWukWMsX9s6kSlqjn7igZeVh3VQCcfxHA7kjgPiV4atvDPwu1drfV9UfO391Nc7lkeSUbiwxySWZifagDsvhhai0+GXh6MD71mkn/ffz/+zV1u4DvWP4VhW28IaJbqQVjsIEBHIOI1rE8e+MLjw9p/2XSIVudYuHjhhVvuxGRtis3uTnA74J6A0AU/jJY6tqPw1vrfSEeWYyRNNDEhZ5Iw/IXHPXB+gNeE/BOC9f4qaebdjGIUma5ycfu9hBBHf5io9jz2r6yjR1iVXbe6gAtjG49zj3riPiNol5LZWnibRlzrehObmFR1mj/5axH2Zc+/GO9AHdZFLWXoOt2niLQrLV7F91vdRiRcHO31U47g5B9CK1KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiim71xnIA96APA/2k4b0x6DP5mbAGZCgOMS/KcnnnKjA9MH1qX9nPTtWt4dZu5opodNnWIQmRCFlcFuVPcAHnHXI9K6/wANZ8deOLnxfJ82kaWZLLRl52yN0lnHrnoD6DsRXpG3HQcUAOqOaeK3gknmkWOGNS7uxwqqOSSewFPyPWuM17+0vE1+dO0pbQ6dYzD7YbsN5dzIORCNvVVOC3qcL03CgDk4NU1HXvjrozXOYtPh0yW8s7YjDIrFow7g9HbrjsCo65r2CvJPDTahdfH7XJNT+zm4stIjhP2fdsG4o4xnnoTXqtzK8NtJJHF5jqMhNwXP4nigCXIpa53wb4jk8W+GbfWmsDZJcl/KiaXeSgYqCeB1weP1roqACiiigDJfwzocupDUZNF0574MGF01qhlBHQ7sZz71JqOgaRrBRtU0qxvmT7hubdJdv03A46mtKigDB1G2m8P+G7lfC+i273KgeRZwLHChYkDPVRwOeozjGa84M2qXnjXw5o8nhe/WS0mbVr43F1Azzt/qkmZlcjCsxIUc4ACjA49lrOh0Wzt9bu9XjjP227jjilctn5EztAHYZYmgDRpuDmnUUAeZ6L/xQfxDm8OufL0PXi13phPCw3A/1kI9AeGHboBkmvS9wPeua8b+GG8VeF57KN/J1CJhcWNwrbTFOnKMG6juCfQnvSeBvFH/AAlXhqK8mQw6hA7W1/ARgxXC8MCPyI9jjrQB09FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcD8R9Vu54rLwdo8m3VtcYxM4/5d7b/AJayH04yB6845Fdpf6ha6Zp9zfXkqxW1tG0srn+FVGSfyBrhvh1YXGrXV/461WIpeaxhbKJuttZj7i/8CxuPY8HgkigDtNI0m10PSLTS7GLy7a1iEUY6kgdz6k9T7mr9FFAFLULKW+spLeK9uLFnGPPttnmAexdWH6flVDw74bTw1oK6Ta395PEhYxy3BjaRSxJJyFAJySckHrW5RQByGleAINJ8U3viKLW9Wlvr3AuRMYCkqjGFIEQwOAOMHHepPiPqkmleA9Ukt8m7ni+y26jqZJTsXHv82fwrq65XxT4V1DxHfaTImqwW1pp14l6LdrMyebIn3dzeYOBk9qANnQ9Kj0TQNP0uH7lpbpCDjrtAGfxxn8a0aQZwM9aWgAooooAKKKKACiiigAooooAK811zPgT4hweJE40TXSlnqmBhYJx/qpj6A/dPpzzk16VWbrui2niHQrzSL5N9tdxGN8dR6Ee4OCPcCgDR3DOM80tcJ8NtYvXsrzwxrT7tb0KQW8zH/ltER+6lHqCv48DPJru6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApM0tYfizxJbeFPDV5q9zhvJXEUfeWQ8Kg9yf8aAOR8ZO/jTxZZ+BLdj9gh2X2tuv/ADzBBjhz6scE98YIzgivRUiWONY0VVRQAqqMAD29PTFcl8PPDlzoehveap8+uarIbzUJD13tyE+ig49M5xwa7KgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDzn4hWtx4f1Ox8f6bEWl00eRqcKdbizZufqVPzDPHc/drv7W8t760hu7aVZYJ0WSORejKwyD+INLNAlxDJDNGHikUq6NyGB4IP4V574Flfwn4jvvAV4xNvHuvNGlc/ft2JLR59UJ6dSMngYoA9IopMiloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooATcPWvNcHx98TOm7w/4XkwePluL/ANPcRg/gfUNW18QvEdxoehxWuljzNc1SX7Hp8Y6+Y3V/oo5z0zjNafhLwzB4S8MWejWuH8lP3suMGWQ8s5+pz9Bj0oA3cUtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXFfEXQLvUdIg1jRxt17RpPtdicZ8wf8tIjjqHXjHcgds12tNwaAMjwx4gtPFHhyy1mzOIrqMMUPVG6Mp+hBH4Vs15pZL/AMID8SH07lPD/iaQzW3923vf409g4wR74AGATXpW4etAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTWkREZ3dVRQSzE4AA6kmlyK89+I19dapcWHgXSZmjvdY+a7lTn7NZA/Ox/3sFQO/I70AQ+Dlbxn4vvPHNwhOnwbrHREYY/djiSbHqxyB3xkHpXpNU9O0620rTrewsoVhtbeMRRIvQKBgfjx/WrlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAc94z8Mx+LPDF1pbN5c5xJbT55imXlHz1GD1x2Jqn4B8TS+JfDo+3L5Wr2MrWeoRdCkycE/Q8H9O1dbXmvioN4H8b2vjGEFdI1Ix2WtKoOIz0in/AnB9uMEtQB6VRSBlYZByPUc0tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSZHr1oAo6vqtromkXeqX0gjtbWNpJGz0A7D3PTHc8Vx/w40q8njvvGOrpt1bXGEixsOba2H+riH4YJ/DIyKp+KCfHHjm18HxHOkaYUvdZYH5ZDnMVufXP3iPTpytekhQowBgDpjtQA6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqGraVa61pd1pl9EJbS5iaKRfYjsex7g9iM1fooA8/+G+pXVqt74L1iTfqmhkJHKwx9ptT/AKuQfQfKeuOM85r0DNee/EWwutMnsPHGlRF77RiftUS8G4s2/wBYv1Ucj056mu307UbXVNOtr+zmWW2uYxLE47qRkGgC3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXO+NPE0XhTwzcakV8254itbcZzPM33EA788nHOAa6HI9a80sAfH3xHfUyRJ4f8ADUjQWo6rcXn8cnuEGAD64I6mgDofAXhibw14dAv383WL2RrvUZzjLzPyRkdh0444JxzXV0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEbxiRWV1DKwIIPIIPbFec+D2fwX4wvPA1yx/s64DX2iO3ZCSZIMnupywHpknrXpIYHpXl3xwvLXS/CVlqoYx6vaX8b6bKn3lkzlgf9kqpyPXFAHqWaK8G8FftALd3ssHi9LWygKM0d3bRyEA5GEKDcemfmz2Hua7n/AIXb8PP+hh/8krj/AON0AegUV5//AMLt+Hn/AEMP/klcf/G6P+F2/Dz/AKGH/wAkrj/43QB6BRXn/wDwu34ef9DD/wCSVx/8bo/4Xb8PP+hh/wDJK4/+N0AegUV5/wD8Lt+Hn/Qw/wDklcf/ABuj/hdvw8/6GH/ySuP/AI3QB6BRXn//AAu34ef9DD/5JXH/AMbo/wCF2/Dz/oYf/JK4/wDjdAHoFFef/wDC7fh5/wBDD/5JXH/xuj/hdvw8/wChh/8AJK4/+N0AegUV5/8A8Lt+Hn/Qw/8Aklcf/G6P+F2/Dz/oYf8AySuP/jdAHoFFef8A/C7fh5/0MP8A5JXH/wAbo/4Xb8PP+hh/8krj/wCN0AegUmRXAf8AC7fh5/0MP/klcf8Axuud8XfHrQtP0lW8LSx6nfu+0rLFLGkS4J3HKqW5xwCOp54oA6z4ieILrTtJt9F0fnXdakNpZKDzGMfPKfQKp69iQexre8NeH7Xwv4fs9Hsl/c20e3eeC7dWc+5OT+NeQ/CLxY/jn4galqmuqjatBYIlkkakRQxbsSFQScMSyc/7TDgcV7tQAUUZpNw9RQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJkUZFYXijXJNF00fY7d7rU7glLS2jUszHuxA/hUck/QdSMgHJ/EXxlc2Gp6P4c0lmE9/qNvbXVyn/LBHYHYD/eYc+y/7wrqfGHhCw8aeHpNI1FpEjLiSOWLG+Nh0IyCOhIPHQkV5hrBjl8cfD/SUtNQhkS/mu7ia+hEb3Mo2sXOOpyD9MgdK9uLqASTgDuaAPNfh/wDB3T/A2rPq0moS6jfhGjiZohGkanHIGSd2ARnIGCRivS8Vzei/EDwr4i1L+ztI1iK7u9pfy0jf7o6nJGK6WgBMUYpaKAExRilooATFGKWigBMUYpaKAExRilooATFGKWigBMUYpaKAExXI+Pfh9p/j7SoLW9mlt57ZzJb3EYBKEjBBB6qeCRxnaORXX0UAcD8OvhbYfD/7RcR3kl9f3KCOSZ0CKqg5wgGSMnGck52jpXfUUmRQBU1LUbbStOnvrpysMK5OBkk9AoHUkkgADkkgDmuL+GPiLUfFa+IdVvw8ajU2toLfcCIUjRfl44J+bk9zSXHiBNT14X0ml6ndaNpxLWb29vvinlGd0xJIBVeQnbOW/ukU/gSjH4dG6cYe7v55mz65A/8AZaAPTaKr3t/Z6baSXV9dQ21vGMvLM4RVHuTTbHULfUbYXFv5vlk4BkheMnjPAYA4569KALVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBDMJRGzQojygHYHbaCfQnBwPwrm/Dul+II9d1LU/EEemmSfbHam0neQwQj/lnho16nLFs8nHHAx1VFAHneteF/FGo/EvRvE0MOkCz0uOSNIHvJBJLvVlLEiIhfvDjnp15rrfEGnXer+G73TbO8SyuLqExiYx+YEDcNxxnjIz75rXrA1XWNY0/WLa3tvDlzqNhLGS9zbXESvG+cBSjsvGOc7vwoAxfAesapdXms6Fr1taLqmkPGj3Fom2O4jkUsjAduF5H0ruaw9D0eW0vNS1W8VFv9SkRpFRtwjjRdsaZ74GST6se2K3KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5fxfYeJdSsRp+hjT44JSouZbi5kjkMefnRNsbYLDjdnIyeM4NdRRQBiavZ6ifDkljo9rYx3D25gRZZmjjh+TaNpVCSB6YHTtWT8N/Dur+E/CNroWqJYt9lL7JrWdn37nZ+QyLj72O/SuxooA8c/tDVvE+o6r40Wytr7RNDkkTTLCadoxK0X35+FIL8HaT06YzzXqOhavba9oVjqtoHEF3CsqK/DKCOh9x/+quItfD+t6X8O28GafZMtwwmtRfM6+SsLu5M3Xdnax+XGd3t81dzoukwaFollpVruMNpAsKFurBRjJ9+KANCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACk9KWk9KAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAE7ZpaT+GloAKKKKACiiigAooooAKKKKACiiigD//Z'] Multimodal Competition True Theorem proof Combinatorics Math English 37 "An $\boldsymbol{n}$-label is a permutation of the numbers 1 through $n$. For example, $J=35214$ is a 5 -label and $K=132$ is a 3 -label. For a fixed positive integer $p$, where $p \leq n$, consider consecutive blocks of $p$ numbers in an $n$-label. For example, when $p=3$ and $L=263415$, the blocks are 263,634,341, and 415. We can associate to each of these blocks a $p$-label that corresponds to the relative order of the numbers in that block. For $L=263415$, we get the following: $$ \underline{263} 415 \rightarrow 132 ; \quad 2 \underline{63415} \rightarrow 312 ; \quad 26 \underline{341} 5 \rightarrow 231 ; \quad 263 \underline{415} \rightarrow 213 $$ Moving from left to right in the $n$-label, there are $n-p+1$ such blocks, which means we obtain an $(n-p+1)$-tuple of $p$-labels. For $L=263415$, we get the 4 -tuple $(132,312,231,213)$. We will call this $(n-p+1)$-tuple the $\boldsymbol{p}$-signature of $L$ (or signature, if $p$ is clear from the context) and denote it by $S_{p}[L]$; the $p$-labels in the signature are called windows. For $L=263415$, the windows are $132,312,231$, and 213 , and we write $$ S_{3}[263415]=(132,312,231,213) $$ More generally, we will call any $(n-p+1)$-tuple of $p$-labels a $p$-signature, even if we do not know of an $n$-label to which it corresponds (and even if no such label exists). A signature that occurs for exactly one $n$-label is called unique, and a signature that doesn't occur for any $n$-labels is called impossible. A possible signature is one that occurs for at least one $n$-label. In this power question, you will be asked to analyze some of the properties of labels and signatures. We can associate a shape to a given 2-signature: a diagram of up and down steps that indicates the relative order of adjacent numbers. For example, the following shape corresponds to the 2-signature $(12,12,12,21,12,21)$ : A 7-label with this 2-signature corresponds to placing the numbers 1 through 7 at the nodes above so that numbers increase with each up step and decrease with each down step. The 7-label 2347165 is shown below: Prove that the following signature is possible. $(123,132,213)$," ['The signature is possible, because it is the 3 -signature of 12435'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAOwBugMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikYkYwKAFoqnaanZX09zBa3cE01q/lzpG4YxNjowHTv+R9DVygAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKQkjoKqXWqWVjPbQXV3BBLdP5cCSOFaRsdFB6n/EetAFyikUk5zS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTWbbigAZtuK5jxd4pXR4odOsrdr7XL7KWdlG2GY9C7EfdQckn2PTBId4r8VroawWNlbm+1y8ytnZIeT6u3og7nj8OSG+E/CZ0c3Gp6pOL7X70A3d4RjA7Rp/dQYGPXA9BgA860bwXrPwtvk8TSyLq1ps8u/ittweJCFJkXJ+fa24c9ueMnb7Hp+oWmqWMN7Y3Ec9tOm+OVDww/z1HUVZYDvyD1rzu/0+8+Hl/NrGj28k/hyd/M1HTYutqehlhHp0yv8h90A9FBzS1U0/ULTVLGG9sbiOe2nXfHKh4Yf56jqKtA5oAWiiigAooooAKKKKACiiigAooooAKQnHpQTj0qpqWp2mkafPf6hOkFrAu6SRzwB/Uk8AetACanqVnpOnT3+oTrb20C7pJGOMD/E9AOpryDV/BOt/E+8bxN5i6RAU2afbXG4u8YBKu2D8m5sdO3POBu6fTdMvPH2owa7rtu8GhwN5mmaXL1l44mmHfOeF6fUcn0MDPc0Acz4R8UprMc2n3lu1jrljhLyykYkg8AOpJyyHjB9x1yCemVt2a5jxZ4TOsGDU9LnFjr9lk2l4BnI7xv6oecjtk+py7wp4rXXFnsb23Njrlnhbyyc8j0dfVD2PP48EgHT0U1W3Zp1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNZtuKABm24rmvFfitdDWCxsrc32uXmVs7JDyfV29EHc8fhyQeK/Fa6GsFjZW5vtcvMrZ2SHk+rt6IO54/DkhvhPwodGafU9UuPt2v3uDd3ZGAPSNB2QdvX8gAA8J+FDozT6nqlx9u1+9wbu7IwB6RoOyDt6/kB1AUDOM80BQM4zzS0ABGaaQB16Hr706gjNAHnN/p958PL+bWNHt5J/Dk7+ZqOmxdbU9DLCPTplf5D7vd6fqFpqljDe2NxHPbTrvjlQ8MP89R1FWSAOvQ9fevO7/T7z4eX82saPbyT+HJ38zUdNi62p6GWEenTK/yH3QD0UHNLVTT9QtNUsYb2xuI57add8cqHhh/nqOoq0DmgBaKKKACiiigAooooAKQnHpQTj0qpqWp2mkafPf6hOkFrAu6SRzwB/Uk8AetABqWp2mkafPf6hOkFrAu6SRzwB/Uk8AetcNpumXnj7UYNd123eDQ4G8zTNLl6y8cTTDvnPC9PqOSabpl54+1GDXddt3g0OBvM0zS5esvHE0w75zwvT6jk+hj60AA+tOxRiigBCoOM54rl/FnhQ6y0Gp6XcfYdfssm0uwMg+sbjuh7+n5g9TSFQcZzxQBzPhTxWuuLPY3tubHXLPC3lk55Ho6+qHsefx4J6VW3ZrmPFnhQ6y0Gp6XcfYdfssm0uwMg+sbjuh7+n5gu8KeK11xZ7G9tzY65Z4W8snPI9HX1Q9jz+PBIB09FNVt2adQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU1m24oAGbbiua8V+K10NYLGytzfa5eZWzskPJ9Xb0Qdzx+HJB4r8VroawWNlbm+1y8ytnZIeT6u3og7nj8OSG+E/Ch0Zp9T1S4+3a/e4N3dkYA9I0HZB29fyAADwn4UOjNPqeqXH27X73Bu7sjAHpGg7IO3r+QHUBQM4zzQFAzjPNLQAUUUUAFFFFAARmmkAdeh6+9OoIzQB5zf6fefDy/m1jR7eSfw5O/majpsXW1PQywj06ZX+Q+73en6haapYw3tjcRz206745UPDD/PUdRVkgDr0PX3rzu/0+8+Hl/NrGj28k/hyd/M1HTYutqehlhHp0yv8AIfdAPRQc0tVNP1C01SxhvbG4jntp13xyoeGH+eo6irQOaAFooooAKQnHpQTj0qpqWp2mkafPf6hOkFrAu6SRzwB/Uk8AetABqWp2mkafPf6hOkFrAu6SRzwB/Uk8AetcNpumXnj7UYNd123eDQ4G8zTNLl6y8cTTDvnPC9PqOSabpl54+1GDXddt3g0OBvM0zS5esvHE0w75zwvT6jk+hj60AA+tOxRiigAooooAKKKKAEKg4zniuX8WeFDrLQanpdx9h1+yybS7AyD6xuO6Hv6fmD1NIVBxnPFAHM+FPFa64s9je25sdcs8LeWTnkejr6oex5/HgnpVbdmuY8WeFDrLQanpdx9h1+yybS7AyD6xuO6Hv6fmC7wp4rXXFnsb23Njrlnhbyyc8j0dfVD2PP48EgHT0U1W3Zp1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU1m24oAGbbiua8V+K10NYLGytzfa5eZWzskPJ9Xb0Qdzx+HJB4r8VroawWNlbm+1y8ytnZIeT6u3og7nj8OSG+E/Ch0Zp9T1S4+3a/e4N3dkYA9I0HZB29fyAADwn4UOjNPqeqXH27X73Bu7sjAHpGg7IO3r+QHUBQM4zzQFAzjPNLQAUUUUAFFFFABRRRQAUUUUABGaaQB16Hr706gjNAHnN/p958PL+bWNHt5J/Dk7+ZqOmxdbU9DLCPTplf5D7vd6fqFpqljDe2NxHPbTrvjlQ8MP89R1FWSAOvQ9fevO7/T7z4eX82saPbyT+HJ38zUdNi62p6GWEenTK/yH3QD0UHNBOPSqun6haapYw3tjOlxbTrvjlQ8MP8APUdsUmpanZ6Rp8+oX86QWsC7pJHPAH9Sew75oANS1O00jT57/UJ0gtYF3SSOeAP6kngD1rhtN0y88fajBruu27waHA3maZpcvWXjiaYd854Xp9RyTTdMvPH2owa7rtu8GhwN5mmaXL1l44mmHfOeF6fUcn0MfWgAH1p2KMUUAFFFFABRRRQAUUUUAFFFFACFQcZzxXL+LPCh1loNT0u4+w6/ZZNpdgZB9Y3HdD39PzB6mkKg4znigDmfCnitdcWexvbc2OuWeFvLJzyPR19UPY8/jwT0qtuzXMeLPCh1loNT0u4+w6/ZZNpdgZB9Y3HdD39PzBd4U8Vrriz2N7bmx1yzwt5ZOeR6Ovqh7Hn8eCQDp6Karbs06gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiims23FACsSMV5z46+K9p4V1Q6RbWRu7/y8szuUjiZgNgPGT1BOOg9+nQeK/Fi6GkFjZW5vtcvMrZ2SHk9i7eiDuePw5Io+H/h9Z291FrWv7dU8RGTz5LuQnbG+MBUXptUdOPcYwMAF3wn4TOjNPqeqT/btfvcNdXZHA9I09EHT3x24A6cKBnGeaAMUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAARmmkAdeh6+9OoIzQB5b4gkk+FF02s6Yiy6DfzbbjSt+3yZipw8JxgA7eR/8AWwvhtpPindJ4g1VFTRrKYraaVu3K0oUZklOMN97gdO2OufRtR0yy1fTp7C/t0uLWddskbjhv8D3BHINLp+nWmlWENjYwLBawrsjjToo/qe5J5JNAFgfWnYoxRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhUHGc8VzHizwodYMGp6XcCx1+yybS7A4b1jk4OUPQ9cZ6HkHqKQjNAHAeA/ibb+Lr+XSprJrTUIot52tvjkwcMVPYZ6Z7V3xkUHGao2mh6XYaleajaWMMN3eEG4lRcFyPX/PPU1oUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTWbbigAZtuK5rxX4rXQ1gsbK3N9rl5lbOyQ8n1dvRB3PH4ckHivxWuhrBY2Vub7XLzK2dkh5Pq7eiDuePw5Ib4T8KHRmn1PVLj7dr97g3d2RgD0jQdkHb1/IAAPCfhQ6M0+p6pcfbtfvcG7uyMAekaDsg7ev5AdQFAzjPNAUDOM80tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTWbbigAZtuK5rxX4rXQ1gsbK3N9rl5lbOyQ8n1dvRB3PH4ckHivxWuhrBY2Vub7XLzK2dkh5Pq7eiDuePw5Ib4T8KHRmn1PVLj7dr97g3d2RgD0jQdkHb1/IAAPCfhQ6M0+p6pcfbtfvcG7uyMAekaDsg7ev5AdQFAzjPNAUDOM80tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTWbbigAZtuK5rxX4rXQ1gsbK3N9rl5lbOyQ8n1dvRB3PH4ckHivxWuhrBY2Vub7XLzK2dkh5Pq7eiDuePw5Ib4T8KHRmn1PVLj7dr97g3d2RgD0jQdkHb1/IAAPCfhQ6M0+p6pcfbtfvcG7uyMAekaDsg7ev5AdQFAzjPNAUDOM80tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTWbbigBWJGMDNcz4r8VroawWNlb/btbvPls7JDy3q7eiDuf5ckYvxS8WajoekQWGhODq94xwkal5UiUEs6qAfTGT05IHBIsfDfQb2302TXfEEMh8Q6gd08s7ZdY/4E2gARjHOwdO/91QDQ8J+FDozT6nqlx9u1+9wbu7IwB6RoOyDt6/kB1AUDOM80BQM4zzS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNZtuKABm24rmvFfitdDWCxsrc32uXmVs7JDyfV29EHc8fhyQeK/Fa6GsFjZW5vtcvMrZ2SHk+rt6IO54/DkhvhPwodGafU9UuPt2v3uDd3ZGAPSNB2QdvX8gAA8J+Ezo7T6pqdx9u1+95u7sjGB2jQdkGBj1x9AOoChenT+VAUDOM80tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTWbbigAZtuK5rxX4rXQ1gsbK3N9rl5lbOyQ8n1dvRB3PH4ckHivxWuhrBY2Vub7XLzK2dkh5Pq7eiDuePw5Ib4T8KHRmn1PVLj7dr97g3d2RgD0jQdkHb1/IAAPCfhQ6M0+p6pcfbtfvcG7uyMAekaDsg7ev5AdQFAzjPNAUDOM80tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTWbbigAZtuK5rxX4rXQ1gsbK3N9rl5lbOyQ8n1dvRB3PH4ckHivxWuhrBY2Vub7XLzK2dkh5Pq7eiDuePw5Ib4T8KHRmn1PVLj7dr97g3d2RgD0jQdkHb1/IAAPCfhQ6M0+p6pcfbtfvcG7uyMAekaDsg7ev5AdQFAzjPNAUDOM80tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSMcD37UAIzbcVzXivxWuhrBY2Vub7XLzK2dkh5Pq7eiDuePw5Ii8TeM7fSwlhpax6nrly5htrKF8kMOrSY+6q9TnH1HJD/CfhQ6OZ9T1Sf7br97g3d2RwPSNB2QcDHfH0AADwn4UOjNPqeqXH27X73Bu7sjAHpGg7IO3r+QHUBQM4zzQFAzjPNLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFMlXdGy5IBGMg4Ip9BGaAPP8AwJ8NY/B+t6nqUmoSXks5McJYciMkN857tkDpgY+td+BigDGeTz60tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/Z', '/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAQEB0AMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopNwFAC0Um7t39KWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKaHBJA+lADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKADtXKaz4Xk1DVLjUbnxHq9haJCoSKxuzCiBclmbg5Jz+ldXXL+MIbrU7ey0G2hmMWpTCO7mRTtit1+aQFuxYDaP96gCPwBaXEfhwXdxe39yt7K1xB9tnaV44D/AKsZPqoDH3Y11lNRAiKiqoVQAAOAKdQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZuv6vDoOgX2qTgtHawtIVH8RA4H4niuM8O6jpKzaVfa81xJrd+wMV3dW8ghjldc+VCzDaowSAR97nk5rrfFGinxB4Y1HSVkWNrqFlV25AbqCfbIFc1qOn634j0rSNIn0qWxaC5gmvLqSaNkHlkE+XtYsSxHGQOvPpQB3uaKQDH9aWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBG+6c9MelU9R1Gz0jT59Q1C4SC0gBeR25Cj8Opz25JJwKtlwASTjHrxXnOpXM/wASbyXQ9MfZ4at5Auoagqg/anU58qHOeAQMt9MHH3gDqfCnjHSPGOntd6XK+Y22ywTALJGecZAJ4IGQQf1BA368vXw1N8LJjq3h9Lm+0VwBqdm+GlUDOJoyAMkAnK+n6ei6ZqVnrGnQX9jOk9tMu5JEPB9R9QeCOxFAFuiiigAooooAKKKKACiiigAooooAKKKKACiik3Aj69M0AG4Ed+enauXT4geHX8XHw0t6DfLxvx+6Mn/PMPn7/t+Gc8U7xP4nbS5IdL0qBb7XLwf6Na5yqr3lkx0jH64wPbmR8KEiH9sxarN/wlYf7R9ub/VmfJY/IB9052kegGO+QD0zNLXNeGPFH9sefYahB9i1uyO27s2PT0dD/Eh7HtXSZoAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKaXABOcY9aC4AJzjHrXnl9fXfxCv5tF0ad4PDkD+XqGox9blh1hiPp6t37cffAC+vrv4hX82i6NO8HhyB/L1DUY+tyw6wxH09W79uPv91p+m2ul2MFlZQRwW0CbI40HCijT9NtdLsYLKygjgtoF2RxoOFFW6AGlT7cV59qOm3ngDUZ9d0KB5tCmbfqWlxjPlHvNCOxx1Xvj6Y9DppU+3FAFbTNSs9Y06C/sZ0ntpl3JIh4PqPqDwR2Iq3Xnmo6beeANRn13QoHm0KZt+paXGM+Ue80I7HHVe+PpjuNM1Kz1jToL+xnSe2mXckiHg+o+oPBHYigC3RRRQAUUUUAFFFFABRRRQAUUUm4EfXpmgA3Aj69M1zHifxO+lyQ6XpUAvtdvB/o1tn5UXvLIR0QfrjA9jxP4nfS5IdL0qAX2u3g/wBGts/Ki95ZCOiD9cYHtL4Y8MLoaS3V1Ob3WLw7r29kHLtj7q/3UHQAccUAHhjwwuhpLdXU5vdYvDuvb2Qcu2Pur/dQdABxxXQ4P0pcUtAHN+JvC51gQX9hcfYdcshm0vFH4+W4/iQ9x7n8U8MeKP7Y8+w1CD7Frdkdt3Zseno6H+JD2Paulrm/E3hc6wIL+wuPsOuWQzaXij8fLcfxIe49z+IB0eaWua8MeKP7Y8+w1CD7Frdkdt3Zseno6H+JD2PaukzQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNLgAnOMetBcAE5xj1rzy+vrv4hX82i6NO8HhyB/L1DUY+tyw6wxH09W79uPvgBfX138Qr+bRdGneDw5A/l6hqMfW5YdYYj6erd+3H3+60/TbXS7GCysoI4LaBdkcaDhRRp+m2ul2MFlZQRwW0C7I40HCirdABRRRQAUUUUANKn24rz7UdNvPAGoz67oUDzaFM2/UtLjGfKPeaEdjjqvfH0x6HTSp9uKAK2malZ6xp0F/YzpPbTLuSRDwfUfUHgjsRVuvPNR0288AajPruhQPNoUzb9S0uMZ8o95oR2OOq98fTHcaZqVnrGnQX9jOk9tMu5JEPB9R9QeCOxFAFuiiigAooooAKKKTcCPr0zQAbgR9ema5jxP4nfS5IdL0qAX2u3g/0a2z8qL3lkI6IP1xgex4n8TvpckOl6VAL7Xbwf6NbZ+VF7yyEdEH64wPaXwx4YXQ0lurqc3usXh3Xt7IOXbH3V/uoOgA44oAPDHhhdDSW6upze6xeHde3sg5dsfdX+6g6ADjiuixRiloAKKKKACiiigDm/E3hc6wIL+wuPsOuWQzaXij8fLcfxIe49z+KeGPFH9sefYahB9i1uyO27s2PT0dD/ABIex7V0tc34m8LnWBBf2Fx9h1yyGbS8Ufj5bj+JD3HufxAOjzS1zXhjxR/bHn2GoQfYtbsjtu7Nj09HQ/xIex7V0maAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiqF3rOn2OpWWn3NyqXd6zLbxYJL7Rk9OmB3NAF+iiigAppcAE5xj1oLgAnOMeteeX19d/EK/m0XRp3g8OQP5eoajH1uWHWGI+nq3ftx98AL6+u/iFfzaLo07weHIH8vUNRj63LDrDEfT1bv24+/3Wn6ba6XYwWVlBHBbQLsjjQcKKNP0210uxgsrKCOC2gXZHGg4UVboAKKKKACiiigAooooAKKKKAGlT7cV59qOm3ngDUZ9d0KB5tCmbfqWlxjPlHvNCOxx1Xvj6Y9DppU+3FAFbTNSs9Y06C/sZ0ntpl3JIh4PqPqDwR2Iq3Xnmo6beeANRn13QoHm0KZt+paXGM+Ue80I7HHVe+PpjuNM1Kz1jToL+xnSe2mXckiHg+o+oPBHYigC3RRSbgR9emaADcCPr0zXMeJ/E76XJDpelQC+128H+jW2flRe8shHRB+uMD2PE/id9Lkh0vSoBfa7eD/AEa2z8qL3lkI6IP1xge0vhjwwuhpLdXU5vdYvDuvb2Qcu2Pur/dQdABxxQAeGPDC6Gkt1dTm91i8O69vZBy7Y+6v91B0AHHFdFijFLQAUUUUAFFFFABRRRQAUUUUAc34m8LnWBBf2Fx9h1yyGbS8Ufj5bj+JD3HufxTwx4o/tjz7DUIPsWt2R23dmx6ejof4kPY9q6Wub8TeFzrAgv7C4+w65ZDNpeKPx8tx/Eh7j3P4gHR5pa5rwx4o/tjz7DUIPsWt2R23dmx6ejof4kPY9q6TNAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAV728g0+xnvLh9sEEbSSNgnCqMngewryObXtKk8UeGtfvdRtxczXMskyCTebSAQt5cXHcZJb1Zm9q9jIyK5/WvDt1qmu6NqMOoRQR6ZK0nlPbmQyFhtPzbxjgnseefagDbtrmO7tYbmLJjmQOmRjgjI/nUhcAE5xx3pOB3+teJf8ACX6z8QvGtx4WtN9t4faUpPJZlXkMKbgT5gOArnAJBPGAM87gDq76+u/iFfzaLo07weHIH8vUNRj63LDrDEfT1bv24+/3Wn6ba6XYwWVlBHBbQLsjjQcKKNP0210uxgsrKCOC2gXZHGg4UVboAKKKKACiiigAooooAKKKKACiiigAooooAaVPtxXn2o6beeANRn13Qrd59CmbfqWlxjPlHvNCOxx1XjOPpj0OmFT7cUAVtO1Oz1jTYb+wuEuLWdd0ciHg9vwOeCOoNYnifxO+lSQ6VpUIvtdvB/o1rk4Re8sh7IP16D24HxvLrHw21NLzwpbsNP1V/wB/avFvgWcEY2AHKlwCCOBjoSQNvdeDPD7aZpw1HUBLJruoKst/PcYLlsfc4OAqjgAccD8ACx4Y8MLoaS3V1Ob3WLw7r29kHLtj7q/3UHQAccV0WKMUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHN+JvCx1gQX9hcfYdcshm0vFH4+W4/iQ9x7n8U8L+KP7Z86w1CD7Frdkdt3ZsfydD/ABIex7V0p6VyXjXw+99Yf2vpiyx6/p0bPZzQY3Njny2z95D0x7/mAdZu5xg0tcP8NvFeseKdHuJ9Y037NJFOUSZEKJLycqFJJBU/KT0/I47igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAppcAE5xj1oLgAnOMeteeX19d/EK/m0XRp3g8OQP5eoajH1uWHWGI+nq3ftx98AL69u/iHfz6Lo07weHIX8vUNRj63JHWGI+nq3ftx9/udP0yz0uzhtLK3jt7eFBGkaDgKMkfqSc98ml0/TbXS7GCysoI4LaBdkcaDhRVugAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKD0oA4++8S6hb+M9F0X+zBHZX8syG5ncFn8pC2UUHgZ28t+Xr1+K4nxRIi/EXwOC4BMt594jP+px/Ou3zQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFUtWvRpmj32oGPzPstvJNszjdtUtjPvirtUtXhtrrR721vJvItp4Hhll3BdisCpOTwOtAHO6Tr3ijULmzMvhOO0s5iGkuDqMchRCM52qBkniuvrg9Ql1Twjqnh2OPV7jULK9vI7CS1uY4spleGRkRSAu3JBzXeUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU0uACc4x60FwATnGPWvPL6+u/iFfzaLo07weHIH8vUNRj63LDrDEfT1bv24++AF9fXfxCv5tF0ad4PDkD+XqGox9blh1hiPp6t37cff7rT9NtdLsYLKygjgtoF2RxoOFFGn6ba6XYwWVlBHBbQLsjjQcKKt0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUHkEUUUAZF14W0C9umubrQ9MuJnOXkltEZmPuSOa044UhjSOJFSNAAqqMBR6ADpUlFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAHpVW/wBPttUsZrK9hWa2mUpJG3Rh6VaooAxbHwrpVhc29wkU80tspWBrm6ln8kH+4JGbB7ZHOOOlbVFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFNDA+tLmgBaKKKACmlwATnGPWguACc4x6155fX138Qr+bRdGneDw5A/l6hqMfW5YdYYj6erd+3H3wAvr67+IV/NoujTvB4cgfy9Q1GPrcsOsMR9PVu/bj7/AHWn6ba6XYwWVlBHBbQLsjjQcKKNP0210uxgsrKCOC2gXZHGg4UVboAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRvun6UtIehoA8t8ZafoOnafLpcJaTxHez7rW+u/leKRn3Z+0EAKqjooOSBjDEnPplqkiWsKyvvdUAZ/7xxya43W/+Eg17wtqOiXfh0reXQeBJhNH9nAJ+WQ/OX4GDjaTkcV12mWjWGl2lm0hkaCBI2c9WKqBn9KALdNLgAnOMetBdduc155e3138Q7+bRdGnkg8OQvs1DUU4NyR1hhPp/eYfy++AF9fXfxCv5tF0ad4PDkD+XqGox9blh1hiPp6t37cff7rT9NtdLsYLKygjgtoF2RxoOFFGn6ba6XYwWVlBHBbQLsjjQcKKt0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAmMU0kYOenOc0pcAE5xj1rzy+vbv4h6hNoujzyQeG4H8vUNRj63JHWGI+nq35cffAOa8bWWsfFHWUtfDc7No2nSCKW4kcJA85PzMnGX2qevI9Bz83rOh6THoeh2OmQlSlrCse5UCByBy2BwMnJ/GptP0610qxgsbGCOC1gQJHGgwFH/ANf/AD1q3QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTS4AJzjHrQXABOcY9a88vr67+IV/NoujTvB4cgfy9Q1GPrcsOsMR9PVu/bj74AX19d/EK/m0XRp3g8OQP5eoajH1uWHWGI+nq3ftx9/utP0210uxgsrKCOC2gXZHGg4UUafptrpdjBZWUEcFtAuyONBwoq3QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVkal4gg07ULfT0tLu8vrhGkjgtkXOxcAsWYqoGSBye9GheI7PxAt0LeOeC4s5jBc21woWSJ+uDgkHI5BBIoA16KKKACmlwATnGPWguACc4x6155fX138Qr+bRdGneDw5A/l6hqMfW5YdYYj6erd+3H3wAvr67+IV/NoujTvB4cgfy9Q1GPrcsOsMR9PVu/bj7/dafptrpdjBZWUEcFtAuyONBwoo0/TbXS7GCysoI4LaBdkcaDhRVugAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAytY1e30XTzcSq0jlhHDBEAXnkPCoo9SfyxnoDVHwpoc+kw3d5fsj6pqVwbm62fdQngRr/sqOM9+T3pdf8Ix6/f2V4+r6nZS2auIvsciKAWGGb5kY5xx9PxqbQfDSaFNdznU9Rv5rrYHkvpVkKhM4C4UYHzGgDcppcAE5xj1oLgAnOMeteeX19d/EK/m0XRp3g8OQP5eoajH1uWHWGI+nq3ftx98AL6+u/iFfzaLo07weHIH8vUNRj63LDrDEfT1bv24+/3Wn6ba6XYwWVlBHBbQLsjjQcKKNP0210uxgsrKCOC2gXZHGg4UVboAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqrqGpWelWE99fXCW9tAm+SSQ4Cj/ParR6VR1XSLPW9Mm07UIFntphh0b65yD2IPQ9qAOBbWLn4nyHTdEe4s/DiYGo3rLskmbAJgT04xuPv6ff9B0/TbXS7GCysoI4LaBdkcaDhRWf4Y8K6Z4S0pbDTIjtzukmkwZJW9WIHJrboAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9k='] Multimodal Competition True Theorem proof Combinatorics Math English 38 "An $\boldsymbol{n}$-label is a permutation of the numbers 1 through $n$. For example, $J=35214$ is a 5 -label and $K=132$ is a 3 -label. For a fixed positive integer $p$, where $p \leq n$, consider consecutive blocks of $p$ numbers in an $n$-label. For example, when $p=3$ and $L=263415$, the blocks are 263,634,341, and 415. We can associate to each of these blocks a $p$-label that corresponds to the relative order of the numbers in that block. For $L=263415$, we get the following: $$ \underline{263} 415 \rightarrow 132 ; \quad 2 \underline{63415} \rightarrow 312 ; \quad 26 \underline{341} 5 \rightarrow 231 ; \quad 263 \underline{415} \rightarrow 213 $$ Moving from left to right in the $n$-label, there are $n-p+1$ such blocks, which means we obtain an $(n-p+1)$-tuple of $p$-labels. For $L=263415$, we get the 4 -tuple $(132,312,231,213)$. We will call this $(n-p+1)$-tuple the $\boldsymbol{p}$-signature of $L$ (or signature, if $p$ is clear from the context) and denote it by $S_{p}[L]$; the $p$-labels in the signature are called windows. For $L=263415$, the windows are $132,312,231$, and 213 , and we write $$ S_{3}[263415]=(132,312,231,213) $$ More generally, we will call any $(n-p+1)$-tuple of $p$-labels a $p$-signature, even if we do not know of an $n$-label to which it corresponds (and even if no such label exists). A signature that occurs for exactly one $n$-label is called unique, and a signature that doesn't occur for any $n$-labels is called impossible. A possible signature is one that occurs for at least one $n$-label. In this power question, you will be asked to analyze some of the properties of labels and signatures. We can associate a shape to a given 2-signature: a diagram of up and down steps that indicates the relative order of adjacent numbers. For example, the following shape corresponds to the 2-signature $(12,12,12,21,12,21)$ : A 7-label with this 2-signature corresponds to placing the numbers 1 through 7 at the nodes above so that numbers increase with each up step and decrease with each down step. The 7-label 2347165 is shown below: Prove that the following signature is impossible: $(321,312,213)$." ['The signature is impossible. Let a 5 -label be $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$. The second window of (ii) implies $a_{3}a_{4}$, a contradiction.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAOwBugMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikYkYwKAFoqnaanZX09zBa3cE01q/lzpG4YxNjowHTv+R9DVygAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKQkjoKqXWqWVjPbQXV3BBLdP5cCSOFaRsdFB6n/EetAFyikUk5zS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTWbbigAZtuK5jxd4pXR4odOsrdr7XL7KWdlG2GY9C7EfdQckn2PTBId4r8VroawWNlbm+1y8ytnZIeT6u3og7nj8OSG+E/CZ0c3Gp6pOL7X70A3d4RjA7Rp/dQYGPXA9BgA860bwXrPwtvk8TSyLq1ps8u/ittweJCFJkXJ+fa24c9ueMnb7Hp+oWmqWMN7Y3Ec9tOm+OVDww/z1HUVZYDvyD1rzu/0+8+Hl/NrGj28k/hyd/M1HTYutqehlhHp0yv8h90A9FBzS1U0/ULTVLGG9sbiOe2nXfHKh4Yf56jqKtA5oAWiiigAooooAKKKKACiiigAooooAKQnHpQTj0qpqWp2mkafPf6hOkFrAu6SRzwB/Uk8AetACanqVnpOnT3+oTrb20C7pJGOMD/E9AOpryDV/BOt/E+8bxN5i6RAU2afbXG4u8YBKu2D8m5sdO3POBu6fTdMvPH2owa7rtu8GhwN5mmaXL1l44mmHfOeF6fUcn0MDPc0Acz4R8UprMc2n3lu1jrljhLyykYkg8AOpJyyHjB9x1yCemVt2a5jxZ4TOsGDU9LnFjr9lk2l4BnI7xv6oecjtk+py7wp4rXXFnsb23Njrlnhbyyc8j0dfVD2PP48EgHT0U1W3Zp1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNZtuKABm24rmvFfitdDWCxsrc32uXmVs7JDyfV29EHc8fhyQeK/Fa6GsFjZW5vtcvMrZ2SHk+rt6IO54/DkhvhPwodGafU9UuPt2v3uDd3ZGAPSNB2QdvX8gAA8J+FDozT6nqlx9u1+9wbu7IwB6RoOyDt6/kB1AUDOM80BQM4zzS0ABGaaQB16Hr706gjNAHnN/p958PL+bWNHt5J/Dk7+ZqOmxdbU9DLCPTplf5D7vd6fqFpqljDe2NxHPbTrvjlQ8MP89R1FWSAOvQ9fevO7/T7z4eX82saPbyT+HJ38zUdNi62p6GWEenTK/yH3QD0UHNLVTT9QtNUsYb2xuI57add8cqHhh/nqOoq0DmgBaKKKACiiigAooooAKQnHpQTj0qpqWp2mkafPf6hOkFrAu6SRzwB/Uk8AetABqWp2mkafPf6hOkFrAu6SRzwB/Uk8AetcNpumXnj7UYNd123eDQ4G8zTNLl6y8cTTDvnPC9PqOSabpl54+1GDXddt3g0OBvM0zS5esvHE0w75zwvT6jk+hj60AA+tOxRiigBCoOM54rl/FnhQ6y0Gp6XcfYdfssm0uwMg+sbjuh7+n5g9TSFQcZzxQBzPhTxWuuLPY3tubHXLPC3lk55Ho6+qHsefx4J6VW3ZrmPFnhQ6y0Gp6XcfYdfssm0uwMg+sbjuh7+n5gu8KeK11xZ7G9tzY65Z4W8snPI9HX1Q9jz+PBIB09FNVt2adQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU1m24oAGbbiua8V+K10NYLGytzfa5eZWzskPJ9Xb0Qdzx+HJB4r8VroawWNlbm+1y8ytnZIeT6u3og7nj8OSG+E/Ch0Zp9T1S4+3a/e4N3dkYA9I0HZB29fyAADwn4UOjNPqeqXH27X73Bu7sjAHpGg7IO3r+QHUBQM4zzQFAzjPNLQAUUUUAFFFFAARmmkAdeh6+9OoIzQB5zf6fefDy/m1jR7eSfw5O/majpsXW1PQywj06ZX+Q+73en6haapYw3tjcRz206745UPDD/PUdRVkgDr0PX3rzu/0+8+Hl/NrGj28k/hyd/M1HTYutqehlhHp0yv8AIfdAPRQc0tVNP1C01SxhvbG4jntp13xyoeGH+eo6irQOaAFooooAKQnHpQTj0qpqWp2mkafPf6hOkFrAu6SRzwB/Uk8AetABqWp2mkafPf6hOkFrAu6SRzwB/Uk8AetcNpumXnj7UYNd123eDQ4G8zTNLl6y8cTTDvnPC9PqOSabpl54+1GDXddt3g0OBvM0zS5esvHE0w75zwvT6jk+hj60AA+tOxRiigAooooAKKKKAEKg4zniuX8WeFDrLQanpdx9h1+yybS7AyD6xuO6Hv6fmD1NIVBxnPFAHM+FPFa64s9je25sdcs8LeWTnkejr6oex5/HgnpVbdmuY8WeFDrLQanpdx9h1+yybS7AyD6xuO6Hv6fmC7wp4rXXFnsb23Njrlnhbyyc8j0dfVD2PP48EgHT0U1W3Zp1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU1m24oAGbbiua8V+K10NYLGytzfa5eZWzskPJ9Xb0Qdzx+HJB4r8VroawWNlbm+1y8ytnZIeT6u3og7nj8OSG+E/Ch0Zp9T1S4+3a/e4N3dkYA9I0HZB29fyAADwn4UOjNPqeqXH27X73Bu7sjAHpGg7IO3r+QHUBQM4zzQFAzjPNLQAUUUUAFFFFABRRRQAUUUUABGaaQB16Hr706gjNAHnN/p958PL+bWNHt5J/Dk7+ZqOmxdbU9DLCPTplf5D7vd6fqFpqljDe2NxHPbTrvjlQ8MP89R1FWSAOvQ9fevO7/T7z4eX82saPbyT+HJ38zUdNi62p6GWEenTK/yH3QD0UHNBOPSqun6haapYw3tjOlxbTrvjlQ8MP8APUdsUmpanZ6Rp8+oX86QWsC7pJHPAH9Sew75oANS1O00jT57/UJ0gtYF3SSOeAP6kngD1rhtN0y88fajBruu27waHA3maZpcvWXjiaYd854Xp9RyTTdMvPH2owa7rtu8GhwN5mmaXL1l44mmHfOeF6fUcn0MfWgAH1p2KMUUAFFFFABRRRQAUUUUAFFFFACFQcZzxXL+LPCh1loNT0u4+w6/ZZNpdgZB9Y3HdD39PzB6mkKg4znigDmfCnitdcWexvbc2OuWeFvLJzyPR19UPY8/jwT0qtuzXMeLPCh1loNT0u4+w6/ZZNpdgZB9Y3HdD39PzBd4U8Vrriz2N7bmx1yzwt5ZOeR6Ovqh7Hn8eCQDp6Karbs06gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiims23FACsSMV5z46+K9p4V1Q6RbWRu7/y8szuUjiZgNgPGT1BOOg9+nQeK/Fi6GkFjZW5vtcvMrZ2SHk9i7eiDuePw5Io+H/h9Z291FrWv7dU8RGTz5LuQnbG+MBUXptUdOPcYwMAF3wn4TOjNPqeqT/btfvcNdXZHA9I09EHT3x24A6cKBnGeaAMUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAARmmkAdeh6+9OoIzQB5b4gkk+FF02s6Yiy6DfzbbjSt+3yZipw8JxgA7eR/8AWwvhtpPindJ4g1VFTRrKYraaVu3K0oUZklOMN97gdO2OufRtR0yy1fTp7C/t0uLWddskbjhv8D3BHINLp+nWmlWENjYwLBawrsjjToo/qe5J5JNAFgfWnYoxRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhUHGc8VzHizwodYMGp6XcCx1+yybS7A4b1jk4OUPQ9cZ6HkHqKQjNAHAeA/ibb+Lr+XSprJrTUIot52tvjkwcMVPYZ6Z7V3xkUHGao2mh6XYaleajaWMMN3eEG4lRcFyPX/PPU1oUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTWbbigAZtuK5rxX4rXQ1gsbK3N9rl5lbOyQ8n1dvRB3PH4ckHivxWuhrBY2Vub7XLzK2dkh5Pq7eiDuePw5Ib4T8KHRmn1PVLj7dr97g3d2RgD0jQdkHb1/IAAPCfhQ6M0+p6pcfbtfvcG7uyMAekaDsg7ev5AdQFAzjPNAUDOM80tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTWbbigAZtuK5rxX4rXQ1gsbK3N9rl5lbOyQ8n1dvRB3PH4ckHivxWuhrBY2Vub7XLzK2dkh5Pq7eiDuePw5Ib4T8KHRmn1PVLj7dr97g3d2RgD0jQdkHb1/IAAPCfhQ6M0+p6pcfbtfvcG7uyMAekaDsg7ev5AdQFAzjPNAUDOM80tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTWbbigAZtuK5rxX4rXQ1gsbK3N9rl5lbOyQ8n1dvRB3PH4ckHivxWuhrBY2Vub7XLzK2dkh5Pq7eiDuePw5Ib4T8KHRmn1PVLj7dr97g3d2RgD0jQdkHb1/IAAPCfhQ6M0+p6pcfbtfvcG7uyMAekaDsg7ev5AdQFAzjPNAUDOM80tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTWbbigBWJGMDNcz4r8VroawWNlb/btbvPls7JDy3q7eiDuf5ckYvxS8WajoekQWGhODq94xwkal5UiUEs6qAfTGT05IHBIsfDfQb2302TXfEEMh8Q6gd08s7ZdY/4E2gARjHOwdO/91QDQ8J+FDozT6nqlx9u1+9wbu7IwB6RoOyDt6/kB1AUDOM80BQM4zzS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNZtuKABm24rmvFfitdDWCxsrc32uXmVs7JDyfV29EHc8fhyQeK/Fa6GsFjZW5vtcvMrZ2SHk+rt6IO54/DkhvhPwodGafU9UuPt2v3uDd3ZGAPSNB2QdvX8gAA8J+Ezo7T6pqdx9u1+95u7sjGB2jQdkGBj1x9AOoChenT+VAUDOM80tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTWbbigAZtuK5rxX4rXQ1gsbK3N9rl5lbOyQ8n1dvRB3PH4ckHivxWuhrBY2Vub7XLzK2dkh5Pq7eiDuePw5Ib4T8KHRmn1PVLj7dr97g3d2RgD0jQdkHb1/IAAPCfhQ6M0+p6pcfbtfvcG7uyMAekaDsg7ev5AdQFAzjPNAUDOM80tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTWbbigAZtuK5rxX4rXQ1gsbK3N9rl5lbOyQ8n1dvRB3PH4ckHivxWuhrBY2Vub7XLzK2dkh5Pq7eiDuePw5Ib4T8KHRmn1PVLj7dr97g3d2RgD0jQdkHb1/IAAPCfhQ6M0+p6pcfbtfvcG7uyMAekaDsg7ev5AdQFAzjPNAUDOM80tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSMcD37UAIzbcVzXivxWuhrBY2Vub7XLzK2dkh5Pq7eiDuePw5Ii8TeM7fSwlhpax6nrly5htrKF8kMOrSY+6q9TnH1HJD/CfhQ6OZ9T1Sf7br97g3d2RwPSNB2QcDHfH0AADwn4UOjNPqeqXH27X73Bu7sjAHpGg7IO3r+QHUBQM4zzQFAzjPNLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFMlXdGy5IBGMg4Ip9BGaAPP8AwJ8NY/B+t6nqUmoSXks5McJYciMkN857tkDpgY+td+BigDGeTz60tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/Z', '/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAQEB0AMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopNwFAC0Um7t39KWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKaHBJA+lADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKADtXKaz4Xk1DVLjUbnxHq9haJCoSKxuzCiBclmbg5Jz+ldXXL+MIbrU7ey0G2hmMWpTCO7mRTtit1+aQFuxYDaP96gCPwBaXEfhwXdxe39yt7K1xB9tnaV44D/AKsZPqoDH3Y11lNRAiKiqoVQAAOAKdQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZuv6vDoOgX2qTgtHawtIVH8RA4H4niuM8O6jpKzaVfa81xJrd+wMV3dW8ghjldc+VCzDaowSAR97nk5rrfFGinxB4Y1HSVkWNrqFlV25AbqCfbIFc1qOn634j0rSNIn0qWxaC5gmvLqSaNkHlkE+XtYsSxHGQOvPpQB3uaKQDH9aWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBG+6c9MelU9R1Gz0jT59Q1C4SC0gBeR25Cj8Opz25JJwKtlwASTjHrxXnOpXM/wASbyXQ9MfZ4at5Auoagqg/anU58qHOeAQMt9MHH3gDqfCnjHSPGOntd6XK+Y22ywTALJGecZAJ4IGQQf1BA368vXw1N8LJjq3h9Lm+0VwBqdm+GlUDOJoyAMkAnK+n6ei6ZqVnrGnQX9jOk9tMu5JEPB9R9QeCOxFAFuiiigAooooAKKKKACiiigAooooAKKKKACiik3Aj69M0AG4Ed+enauXT4geHX8XHw0t6DfLxvx+6Mn/PMPn7/t+Gc8U7xP4nbS5IdL0qBb7XLwf6Na5yqr3lkx0jH64wPbmR8KEiH9sxarN/wlYf7R9ub/VmfJY/IB9052kegGO+QD0zNLXNeGPFH9sefYahB9i1uyO27s2PT0dD/Eh7HtXSZoAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKaXABOcY9aC4AJzjHrXnl9fXfxCv5tF0ad4PDkD+XqGox9blh1hiPp6t37cffAC+vrv4hX82i6NO8HhyB/L1DUY+tyw6wxH09W79uPv91p+m2ul2MFlZQRwW0CbI40HCijT9NtdLsYLKygjgtoF2RxoOFFW6AGlT7cV59qOm3ngDUZ9d0KB5tCmbfqWlxjPlHvNCOxx1Xvj6Y9DppU+3FAFbTNSs9Y06C/sZ0ntpl3JIh4PqPqDwR2Iq3Xnmo6beeANRn13QoHm0KZt+paXGM+Ue80I7HHVe+PpjuNM1Kz1jToL+xnSe2mXckiHg+o+oPBHYigC3RRRQAUUUUAFFFFABRRRQAUUUm4EfXpmgA3Aj69M1zHifxO+lyQ6XpUAvtdvB/o1tn5UXvLIR0QfrjA9jxP4nfS5IdL0qAX2u3g/wBGts/Ki95ZCOiD9cYHtL4Y8MLoaS3V1Ob3WLw7r29kHLtj7q/3UHQAccUAHhjwwuhpLdXU5vdYvDuvb2Qcu2Pur/dQdABxxXQ4P0pcUtAHN+JvC51gQX9hcfYdcshm0vFH4+W4/iQ9x7n8U8MeKP7Y8+w1CD7Frdkdt3Zseno6H+JD2Paulrm/E3hc6wIL+wuPsOuWQzaXij8fLcfxIe49z+IB0eaWua8MeKP7Y8+w1CD7Frdkdt3Zseno6H+JD2PaukzQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNLgAnOMetBcAE5xj1rzy+vrv4hX82i6NO8HhyB/L1DUY+tyw6wxH09W79uPvgBfX138Qr+bRdGneDw5A/l6hqMfW5YdYYj6erd+3H3+60/TbXS7GCysoI4LaBdkcaDhRRp+m2ul2MFlZQRwW0C7I40HCirdABRRRQAUUUUANKn24rz7UdNvPAGoz67oUDzaFM2/UtLjGfKPeaEdjjqvfH0x6HTSp9uKAK2malZ6xp0F/YzpPbTLuSRDwfUfUHgjsRVuvPNR0288AajPruhQPNoUzb9S0uMZ8o95oR2OOq98fTHcaZqVnrGnQX9jOk9tMu5JEPB9R9QeCOxFAFuiiigAooooAKKKTcCPr0zQAbgR9ema5jxP4nfS5IdL0qAX2u3g/0a2z8qL3lkI6IP1xgex4n8TvpckOl6VAL7Xbwf6NbZ+VF7yyEdEH64wPaXwx4YXQ0lurqc3usXh3Xt7IOXbH3V/uoOgA44oAPDHhhdDSW6upze6xeHde3sg5dsfdX+6g6ADjiuixRiloAKKKKACiiigDm/E3hc6wIL+wuPsOuWQzaXij8fLcfxIe49z+KeGPFH9sefYahB9i1uyO27s2PT0dD/ABIex7V0tc34m8LnWBBf2Fx9h1yyGbS8Ufj5bj+JD3HufxAOjzS1zXhjxR/bHn2GoQfYtbsjtu7Nj09HQ/xIex7V0maAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiqF3rOn2OpWWn3NyqXd6zLbxYJL7Rk9OmB3NAF+iiigAppcAE5xj1oLgAnOMeteeX19d/EK/m0XRp3g8OQP5eoajH1uWHWGI+nq3ftx98AL6+u/iFfzaLo07weHIH8vUNRj63LDrDEfT1bv24+/3Wn6ba6XYwWVlBHBbQLsjjQcKKNP0210uxgsrKCOC2gXZHGg4UVboAKKKKACiiigAooooAKKKKAGlT7cV59qOm3ngDUZ9d0KB5tCmbfqWlxjPlHvNCOxx1Xvj6Y9DppU+3FAFbTNSs9Y06C/sZ0ntpl3JIh4PqPqDwR2Iq3Xnmo6beeANRn13QoHm0KZt+paXGM+Ue80I7HHVe+PpjuNM1Kz1jToL+xnSe2mXckiHg+o+oPBHYigC3RRSbgR9emaADcCPr0zXMeJ/E76XJDpelQC+128H+jW2flRe8shHRB+uMD2PE/id9Lkh0vSoBfa7eD/AEa2z8qL3lkI6IP1xge0vhjwwuhpLdXU5vdYvDuvb2Qcu2Pur/dQdABxxQAeGPDC6Gkt1dTm91i8O69vZBy7Y+6v91B0AHHFdFijFLQAUUUUAFFFFABRRRQAUUUUAc34m8LnWBBf2Fx9h1yyGbS8Ufj5bj+JD3HufxTwx4o/tjz7DUIPsWt2R23dmx6ejof4kPY9q6Wub8TeFzrAgv7C4+w65ZDNpeKPx8tx/Eh7j3P4gHR5pa5rwx4o/tjz7DUIPsWt2R23dmx6ejof4kPY9q6TNAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAV728g0+xnvLh9sEEbSSNgnCqMngewryObXtKk8UeGtfvdRtxczXMskyCTebSAQt5cXHcZJb1Zm9q9jIyK5/WvDt1qmu6NqMOoRQR6ZK0nlPbmQyFhtPzbxjgnseefagDbtrmO7tYbmLJjmQOmRjgjI/nUhcAE5xx3pOB3+teJf8ACX6z8QvGtx4WtN9t4faUpPJZlXkMKbgT5gOArnAJBPGAM87gDq76+u/iFfzaLo07weHIH8vUNRj63LDrDEfT1bv24+/3Wn6ba6XYwWVlBHBbQLsjjQcKKNP0210uxgsrKCOC2gXZHGg4UVboAKKKKACiiigAooooAKKKKACiiigAooooAaVPtxXn2o6beeANRn13Qrd59CmbfqWlxjPlHvNCOxx1XjOPpj0OmFT7cUAVtO1Oz1jTYb+wuEuLWdd0ciHg9vwOeCOoNYnifxO+lSQ6VpUIvtdvB/o1rk4Re8sh7IP16D24HxvLrHw21NLzwpbsNP1V/wB/avFvgWcEY2AHKlwCCOBjoSQNvdeDPD7aZpw1HUBLJruoKst/PcYLlsfc4OAqjgAccD8ACx4Y8MLoaS3V1Ob3WLw7r29kHLtj7q/3UHQAccV0WKMUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHN+JvCx1gQX9hcfYdcshm0vFH4+W4/iQ9x7n8U8L+KP7Z86w1CD7Frdkdt3ZsfydD/ABIex7V0p6VyXjXw+99Yf2vpiyx6/p0bPZzQY3Njny2z95D0x7/mAdZu5xg0tcP8NvFeseKdHuJ9Y037NJFOUSZEKJLycqFJJBU/KT0/I47igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAppcAE5xj1oLgAnOMeteeX19d/EK/m0XRp3g8OQP5eoajH1uWHWGI+nq3ftx98AL69u/iHfz6Lo07weHIX8vUNRj63JHWGI+nq3ftx9/udP0yz0uzhtLK3jt7eFBGkaDgKMkfqSc98ml0/TbXS7GCysoI4LaBdkcaDhRVugAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKD0oA4++8S6hb+M9F0X+zBHZX8syG5ncFn8pC2UUHgZ28t+Xr1+K4nxRIi/EXwOC4BMt594jP+px/Ou3zQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFUtWvRpmj32oGPzPstvJNszjdtUtjPvirtUtXhtrrR721vJvItp4Hhll3BdisCpOTwOtAHO6Tr3ijULmzMvhOO0s5iGkuDqMchRCM52qBkniuvrg9Ql1Twjqnh2OPV7jULK9vI7CS1uY4spleGRkRSAu3JBzXeUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU0uACc4x60FwATnGPWvPL6+u/iFfzaLo07weHIH8vUNRj63LDrDEfT1bv24++AF9fXfxCv5tF0ad4PDkD+XqGox9blh1hiPp6t37cff7rT9NtdLsYLKygjgtoF2RxoOFFGn6ba6XYwWVlBHBbQLsjjQcKKt0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUHkEUUUAZF14W0C9umubrQ9MuJnOXkltEZmPuSOa044UhjSOJFSNAAqqMBR6ADpUlFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAHpVW/wBPttUsZrK9hWa2mUpJG3Rh6VaooAxbHwrpVhc29wkU80tspWBrm6ln8kH+4JGbB7ZHOOOlbVFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFNDA+tLmgBaKKKACmlwATnGPWguACc4x6155fX138Qr+bRdGneDw5A/l6hqMfW5YdYYj6erd+3H3wAvr67+IV/NoujTvB4cgfy9Q1GPrcsOsMR9PVu/bj7/AHWn6ba6XYwWVlBHBbQLsjjQcKKNP0210uxgsrKCOC2gXZHGg4UVboAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRvun6UtIehoA8t8ZafoOnafLpcJaTxHez7rW+u/leKRn3Z+0EAKqjooOSBjDEnPplqkiWsKyvvdUAZ/7xxya43W/+Eg17wtqOiXfh0reXQeBJhNH9nAJ+WQ/OX4GDjaTkcV12mWjWGl2lm0hkaCBI2c9WKqBn9KALdNLgAnOMetBdduc155e3138Q7+bRdGnkg8OQvs1DUU4NyR1hhPp/eYfy++AF9fXfxCv5tF0ad4PDkD+XqGox9blh1hiPp6t37cff7rT9NtdLsYLKygjgtoF2RxoOFFGn6ba6XYwWVlBHBbQLsjjQcKKt0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAmMU0kYOenOc0pcAE5xj1rzy+vbv4h6hNoujzyQeG4H8vUNRj63JHWGI+nq35cffAOa8bWWsfFHWUtfDc7No2nSCKW4kcJA85PzMnGX2qevI9Bz83rOh6THoeh2OmQlSlrCse5UCByBy2BwMnJ/GptP0610qxgsbGCOC1gQJHGgwFH/ANf/AD1q3QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTS4AJzjHrQXABOcY9a88vr67+IV/NoujTvB4cgfy9Q1GPrcsOsMR9PVu/bj74AX19d/EK/m0XRp3g8OQP5eoajH1uWHWGI+nq3ftx9/utP0210uxgsrKCOC2gXZHGg4UUafptrpdjBZWUEcFtAuyONBwoq3QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVkal4gg07ULfT0tLu8vrhGkjgtkXOxcAsWYqoGSBye9GheI7PxAt0LeOeC4s5jBc21woWSJ+uDgkHI5BBIoA16KKKACmlwATnGPWguACc4x6155fX138Qr+bRdGneDw5A/l6hqMfW5YdYYj6erd+3H3wAvr67+IV/NoujTvB4cgfy9Q1GPrcsOsMR9PVu/bj7/dafptrpdjBZWUEcFtAuyONBwoo0/TbXS7GCysoI4LaBdkcaDhRVugAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAytY1e30XTzcSq0jlhHDBEAXnkPCoo9SfyxnoDVHwpoc+kw3d5fsj6pqVwbm62fdQngRr/sqOM9+T3pdf8Ix6/f2V4+r6nZS2auIvsciKAWGGb5kY5xx9PxqbQfDSaFNdznU9Rv5rrYHkvpVkKhM4C4UYHzGgDcppcAE5xj1oLgAnOMeteeX19d/EK/m0XRp3g8OQP5eoajH1uWHWGI+nq3ftx98AL6+u/iFfzaLo07weHIH8vUNRj63LDrDEfT1bv24+/3Wn6ba6XYwWVlBHBbQLsjjQcKKNP0210uxgsrKCOC2gXZHGg4UVboAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqrqGpWelWE99fXCW9tAm+SSQ4Cj/ParR6VR1XSLPW9Mm07UIFntphh0b65yD2IPQ9qAOBbWLn4nyHTdEe4s/DiYGo3rLskmbAJgT04xuPv6ff9B0/TbXS7GCysoI4LaBdkcaDhRWf4Y8K6Z4S0pbDTIjtzukmkwZJW9WIHJrboAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9k='] Multimodal Competition True Theorem proof Combinatorics Math English 39 "An $\boldsymbol{n}$-label is a permutation of the numbers 1 through $n$. For example, $J=35214$ is a 5 -label and $K=132$ is a 3 -label. For a fixed positive integer $p$, where $p \leq n$, consider consecutive blocks of $p$ numbers in an $n$-label. For example, when $p=3$ and $L=263415$, the blocks are 263,634,341, and 415. We can associate to each of these blocks a $p$-label that corresponds to the relative order of the numbers in that block. For $L=263415$, we get the following: $$ \underline{263} 415 \rightarrow 132 ; \quad 2 \underline{63415} \rightarrow 312 ; \quad 26 \underline{341} 5 \rightarrow 231 ; \quad 263 \underline{415} \rightarrow 213 $$ Moving from left to right in the $n$-label, there are $n-p+1$ such blocks, which means we obtain an $(n-p+1)$-tuple of $p$-labels. For $L=263415$, we get the 4 -tuple $(132,312,231,213)$. We will call this $(n-p+1)$-tuple the $\boldsymbol{p}$-signature of $L$ (or signature, if $p$ is clear from the context) and denote it by $S_{p}[L]$; the $p$-labels in the signature are called windows. For $L=263415$, the windows are $132,312,231$, and 213 , and we write $$ S_{3}[263415]=(132,312,231,213) $$ More generally, we will call any $(n-p+1)$-tuple of $p$-labels a $p$-signature, even if we do not know of an $n$-label to which it corresponds (and even if no such label exists). A signature that occurs for exactly one $n$-label is called unique, and a signature that doesn't occur for any $n$-labels is called impossible. A possible signature is one that occurs for at least one $n$-label. In this power question, you will be asked to analyze some of the properties of labels and signatures. We can associate a shape to a given 2-signature: a diagram of up and down steps that indicates the relative order of adjacent numbers. For example, the following shape corresponds to the 2-signature $(12,12,12,21,12,21)$ : A 7-label with this 2-signature corresponds to placing the numbers 1 through 7 at the nodes above so that numbers increase with each up step and decrease with each down step. The 7-label 2347165 is shown below: Show that $(312,231,312,132)$ is not a unique 3 -signature." ['The $p$-signature is not unique because it equals both $S_{3}[625143]$ and $S_{3}[635142]$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAOwBugMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikYkYwKAFoqnaanZX09zBa3cE01q/lzpG4YxNjowHTv+R9DVygAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKQkjoKqXWqWVjPbQXV3BBLdP5cCSOFaRsdFB6n/EetAFyikUk5zS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTWbbigAZtuK5jxd4pXR4odOsrdr7XL7KWdlG2GY9C7EfdQckn2PTBId4r8VroawWNlbm+1y8ytnZIeT6u3og7nj8OSG+E/CZ0c3Gp6pOL7X70A3d4RjA7Rp/dQYGPXA9BgA860bwXrPwtvk8TSyLq1ps8u/ittweJCFJkXJ+fa24c9ueMnb7Hp+oWmqWMN7Y3Ec9tOm+OVDww/z1HUVZYDvyD1rzu/0+8+Hl/NrGj28k/hyd/M1HTYutqehlhHp0yv8h90A9FBzS1U0/ULTVLGG9sbiOe2nXfHKh4Yf56jqKtA5oAWiiigAooooAKKKKACiiigAooooAKQnHpQTj0qpqWp2mkafPf6hOkFrAu6SRzwB/Uk8AetACanqVnpOnT3+oTrb20C7pJGOMD/E9AOpryDV/BOt/E+8bxN5i6RAU2afbXG4u8YBKu2D8m5sdO3POBu6fTdMvPH2owa7rtu8GhwN5mmaXL1l44mmHfOeF6fUcn0MDPc0Acz4R8UprMc2n3lu1jrljhLyykYkg8AOpJyyHjB9x1yCemVt2a5jxZ4TOsGDU9LnFjr9lk2l4BnI7xv6oecjtk+py7wp4rXXFnsb23Njrlnhbyyc8j0dfVD2PP48EgHT0U1W3Zp1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNZtuKABm24rmvFfitdDWCxsrc32uXmVs7JDyfV29EHc8fhyQeK/Fa6GsFjZW5vtcvMrZ2SHk+rt6IO54/DkhvhPwodGafU9UuPt2v3uDd3ZGAPSNB2QdvX8gAA8J+FDozT6nqlx9u1+9wbu7IwB6RoOyDt6/kB1AUDOM80BQM4zzS0ABGaaQB16Hr706gjNAHnN/p958PL+bWNHt5J/Dk7+ZqOmxdbU9DLCPTplf5D7vd6fqFpqljDe2NxHPbTrvjlQ8MP89R1FWSAOvQ9fevO7/T7z4eX82saPbyT+HJ38zUdNi62p6GWEenTK/yH3QD0UHNLVTT9QtNUsYb2xuI57add8cqHhh/nqOoq0DmgBaKKKACiiigAooooAKQnHpQTj0qpqWp2mkafPf6hOkFrAu6SRzwB/Uk8AetABqWp2mkafPf6hOkFrAu6SRzwB/Uk8AetcNpumXnj7UYNd123eDQ4G8zTNLl6y8cTTDvnPC9PqOSabpl54+1GDXddt3g0OBvM0zS5esvHE0w75zwvT6jk+hj60AA+tOxRiigBCoOM54rl/FnhQ6y0Gp6XcfYdfssm0uwMg+sbjuh7+n5g9TSFQcZzxQBzPhTxWuuLPY3tubHXLPC3lk55Ho6+qHsefx4J6VW3ZrmPFnhQ6y0Gp6XcfYdfssm0uwMg+sbjuh7+n5gu8KeK11xZ7G9tzY65Z4W8snPI9HX1Q9jz+PBIB09FNVt2adQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU1m24oAGbbiua8V+K10NYLGytzfa5eZWzskPJ9Xb0Qdzx+HJB4r8VroawWNlbm+1y8ytnZIeT6u3og7nj8OSG+E/Ch0Zp9T1S4+3a/e4N3dkYA9I0HZB29fyAADwn4UOjNPqeqXH27X73Bu7sjAHpGg7IO3r+QHUBQM4zzQFAzjPNLQAUUUUAFFFFAARmmkAdeh6+9OoIzQB5zf6fefDy/m1jR7eSfw5O/majpsXW1PQywj06ZX+Q+73en6haapYw3tjcRz206745UPDD/PUdRVkgDr0PX3rzu/0+8+Hl/NrGj28k/hyd/M1HTYutqehlhHp0yv8AIfdAPRQc0tVNP1C01SxhvbG4jntp13xyoeGH+eo6irQOaAFooooAKQnHpQTj0qpqWp2mkafPf6hOkFrAu6SRzwB/Uk8AetABqWp2mkafPf6hOkFrAu6SRzwB/Uk8AetcNpumXnj7UYNd123eDQ4G8zTNLl6y8cTTDvnPC9PqOSabpl54+1GDXddt3g0OBvM0zS5esvHE0w75zwvT6jk+hj60AA+tOxRiigAooooAKKKKAEKg4zniuX8WeFDrLQanpdx9h1+yybS7AyD6xuO6Hv6fmD1NIVBxnPFAHM+FPFa64s9je25sdcs8LeWTnkejr6oex5/HgnpVbdmuY8WeFDrLQanpdx9h1+yybS7AyD6xuO6Hv6fmC7wp4rXXFnsb23Njrlnhbyyc8j0dfVD2PP48EgHT0U1W3Zp1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU1m24oAGbbiua8V+K10NYLGytzfa5eZWzskPJ9Xb0Qdzx+HJB4r8VroawWNlbm+1y8ytnZIeT6u3og7nj8OSG+E/Ch0Zp9T1S4+3a/e4N3dkYA9I0HZB29fyAADwn4UOjNPqeqXH27X73Bu7sjAHpGg7IO3r+QHUBQM4zzQFAzjPNLQAUUUUAFFFFABRRRQAUUUUABGaaQB16Hr706gjNAHnN/p958PL+bWNHt5J/Dk7+ZqOmxdbU9DLCPTplf5D7vd6fqFpqljDe2NxHPbTrvjlQ8MP89R1FWSAOvQ9fevO7/T7z4eX82saPbyT+HJ38zUdNi62p6GWEenTK/yH3QD0UHNBOPSqun6haapYw3tjOlxbTrvjlQ8MP8APUdsUmpanZ6Rp8+oX86QWsC7pJHPAH9Sew75oANS1O00jT57/UJ0gtYF3SSOeAP6kngD1rhtN0y88fajBruu27waHA3maZpcvWXjiaYd854Xp9RyTTdMvPH2owa7rtu8GhwN5mmaXL1l44mmHfOeF6fUcn0MfWgAH1p2KMUUAFFFFABRRRQAUUUUAFFFFACFQcZzxXL+LPCh1loNT0u4+w6/ZZNpdgZB9Y3HdD39PzB6mkKg4znigDmfCnitdcWexvbc2OuWeFvLJzyPR19UPY8/jwT0qtuzXMeLPCh1loNT0u4+w6/ZZNpdgZB9Y3HdD39PzBd4U8Vrriz2N7bmx1yzwt5ZOeR6Ovqh7Hn8eCQDp6Karbs06gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiims23FACsSMV5z46+K9p4V1Q6RbWRu7/y8szuUjiZgNgPGT1BOOg9+nQeK/Fi6GkFjZW5vtcvMrZ2SHk9i7eiDuePw5Io+H/h9Z291FrWv7dU8RGTz5LuQnbG+MBUXptUdOPcYwMAF3wn4TOjNPqeqT/btfvcNdXZHA9I09EHT3x24A6cKBnGeaAMUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAARmmkAdeh6+9OoIzQB5b4gkk+FF02s6Yiy6DfzbbjSt+3yZipw8JxgA7eR/8AWwvhtpPindJ4g1VFTRrKYraaVu3K0oUZklOMN97gdO2OufRtR0yy1fTp7C/t0uLWddskbjhv8D3BHINLp+nWmlWENjYwLBawrsjjToo/qe5J5JNAFgfWnYoxRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhUHGc8VzHizwodYMGp6XcCx1+yybS7A4b1jk4OUPQ9cZ6HkHqKQjNAHAeA/ibb+Lr+XSprJrTUIot52tvjkwcMVPYZ6Z7V3xkUHGao2mh6XYaleajaWMMN3eEG4lRcFyPX/PPU1oUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTWbbigAZtuK5rxX4rXQ1gsbK3N9rl5lbOyQ8n1dvRB3PH4ckHivxWuhrBY2Vub7XLzK2dkh5Pq7eiDuePw5Ib4T8KHRmn1PVLj7dr97g3d2RgD0jQdkHb1/IAAPCfhQ6M0+p6pcfbtfvcG7uyMAekaDsg7ev5AdQFAzjPNAUDOM80tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTWbbigAZtuK5rxX4rXQ1gsbK3N9rl5lbOyQ8n1dvRB3PH4ckHivxWuhrBY2Vub7XLzK2dkh5Pq7eiDuePw5Ib4T8KHRmn1PVLj7dr97g3d2RgD0jQdkHb1/IAAPCfhQ6M0+p6pcfbtfvcG7uyMAekaDsg7ev5AdQFAzjPNAUDOM80tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTWbbigAZtuK5rxX4rXQ1gsbK3N9rl5lbOyQ8n1dvRB3PH4ckHivxWuhrBY2Vub7XLzK2dkh5Pq7eiDuePw5Ib4T8KHRmn1PVLj7dr97g3d2RgD0jQdkHb1/IAAPCfhQ6M0+p6pcfbtfvcG7uyMAekaDsg7ev5AdQFAzjPNAUDOM80tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTWbbigBWJGMDNcz4r8VroawWNlb/btbvPls7JDy3q7eiDuf5ckYvxS8WajoekQWGhODq94xwkal5UiUEs6qAfTGT05IHBIsfDfQb2302TXfEEMh8Q6gd08s7ZdY/4E2gARjHOwdO/91QDQ8J+FDozT6nqlx9u1+9wbu7IwB6RoOyDt6/kB1AUDOM80BQM4zzS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNZtuKABm24rmvFfitdDWCxsrc32uXmVs7JDyfV29EHc8fhyQeK/Fa6GsFjZW5vtcvMrZ2SHk+rt6IO54/DkhvhPwodGafU9UuPt2v3uDd3ZGAPSNB2QdvX8gAA8J+Ezo7T6pqdx9u1+95u7sjGB2jQdkGBj1x9AOoChenT+VAUDOM80tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTWbbigAZtuK5rxX4rXQ1gsbK3N9rl5lbOyQ8n1dvRB3PH4ckHivxWuhrBY2Vub7XLzK2dkh5Pq7eiDuePw5Ib4T8KHRmn1PVLj7dr97g3d2RgD0jQdkHb1/IAAPCfhQ6M0+p6pcfbtfvcG7uyMAekaDsg7ev5AdQFAzjPNAUDOM80tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTWbbigAZtuK5rxX4rXQ1gsbK3N9rl5lbOyQ8n1dvRB3PH4ckHivxWuhrBY2Vub7XLzK2dkh5Pq7eiDuePw5Ib4T8KHRmn1PVLj7dr97g3d2RgD0jQdkHb1/IAAPCfhQ6M0+p6pcfbtfvcG7uyMAekaDsg7ev5AdQFAzjPNAUDOM80tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSMcD37UAIzbcVzXivxWuhrBY2Vub7XLzK2dkh5Pq7eiDuePw5Ii8TeM7fSwlhpax6nrly5htrKF8kMOrSY+6q9TnH1HJD/CfhQ6OZ9T1Sf7br97g3d2RwPSNB2QcDHfH0AADwn4UOjNPqeqXH27X73Bu7sjAHpGg7IO3r+QHUBQM4zzQFAzjPNLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFMlXdGy5IBGMg4Ip9BGaAPP8AwJ8NY/B+t6nqUmoSXks5McJYciMkN857tkDpgY+td+BigDGeTz60tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/Z', '/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAQEB0AMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopNwFAC0Um7t39KWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKaHBJA+lADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKADtXKaz4Xk1DVLjUbnxHq9haJCoSKxuzCiBclmbg5Jz+ldXXL+MIbrU7ey0G2hmMWpTCO7mRTtit1+aQFuxYDaP96gCPwBaXEfhwXdxe39yt7K1xB9tnaV44D/AKsZPqoDH3Y11lNRAiKiqoVQAAOAKdQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZuv6vDoOgX2qTgtHawtIVH8RA4H4niuM8O6jpKzaVfa81xJrd+wMV3dW8ghjldc+VCzDaowSAR97nk5rrfFGinxB4Y1HSVkWNrqFlV25AbqCfbIFc1qOn634j0rSNIn0qWxaC5gmvLqSaNkHlkE+XtYsSxHGQOvPpQB3uaKQDH9aWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBG+6c9MelU9R1Gz0jT59Q1C4SC0gBeR25Cj8Opz25JJwKtlwASTjHrxXnOpXM/wASbyXQ9MfZ4at5Auoagqg/anU58qHOeAQMt9MHH3gDqfCnjHSPGOntd6XK+Y22ywTALJGecZAJ4IGQQf1BA368vXw1N8LJjq3h9Lm+0VwBqdm+GlUDOJoyAMkAnK+n6ei6ZqVnrGnQX9jOk9tMu5JEPB9R9QeCOxFAFuiiigAooooAKKKKACiiigAooooAKKKKACiik3Aj69M0AG4Ed+enauXT4geHX8XHw0t6DfLxvx+6Mn/PMPn7/t+Gc8U7xP4nbS5IdL0qBb7XLwf6Na5yqr3lkx0jH64wPbmR8KEiH9sxarN/wlYf7R9ub/VmfJY/IB9052kegGO+QD0zNLXNeGPFH9sefYahB9i1uyO27s2PT0dD/Eh7HtXSZoAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKaXABOcY9aC4AJzjHrXnl9fXfxCv5tF0ad4PDkD+XqGox9blh1hiPp6t37cffAC+vrv4hX82i6NO8HhyB/L1DUY+tyw6wxH09W79uPv91p+m2ul2MFlZQRwW0CbI40HCijT9NtdLsYLKygjgtoF2RxoOFFW6AGlT7cV59qOm3ngDUZ9d0KB5tCmbfqWlxjPlHvNCOxx1Xvj6Y9DppU+3FAFbTNSs9Y06C/sZ0ntpl3JIh4PqPqDwR2Iq3Xnmo6beeANRn13QoHm0KZt+paXGM+Ue80I7HHVe+PpjuNM1Kz1jToL+xnSe2mXckiHg+o+oPBHYigC3RRRQAUUUUAFFFFABRRRQAUUUm4EfXpmgA3Aj69M1zHifxO+lyQ6XpUAvtdvB/o1tn5UXvLIR0QfrjA9jxP4nfS5IdL0qAX2u3g/wBGts/Ki95ZCOiD9cYHtL4Y8MLoaS3V1Ob3WLw7r29kHLtj7q/3UHQAccUAHhjwwuhpLdXU5vdYvDuvb2Qcu2Pur/dQdABxxXQ4P0pcUtAHN+JvC51gQX9hcfYdcshm0vFH4+W4/iQ9x7n8U8MeKP7Y8+w1CD7Frdkdt3Zseno6H+JD2Paulrm/E3hc6wIL+wuPsOuWQzaXij8fLcfxIe49z+IB0eaWua8MeKP7Y8+w1CD7Frdkdt3Zseno6H+JD2PaukzQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNLgAnOMetBcAE5xj1rzy+vrv4hX82i6NO8HhyB/L1DUY+tyw6wxH09W79uPvgBfX138Qr+bRdGneDw5A/l6hqMfW5YdYYj6erd+3H3+60/TbXS7GCysoI4LaBdkcaDhRRp+m2ul2MFlZQRwW0C7I40HCirdABRRRQAUUUUANKn24rz7UdNvPAGoz67oUDzaFM2/UtLjGfKPeaEdjjqvfH0x6HTSp9uKAK2malZ6xp0F/YzpPbTLuSRDwfUfUHgjsRVuvPNR0288AajPruhQPNoUzb9S0uMZ8o95oR2OOq98fTHcaZqVnrGnQX9jOk9tMu5JEPB9R9QeCOxFAFuiiigAooooAKKKTcCPr0zQAbgR9ema5jxP4nfS5IdL0qAX2u3g/0a2z8qL3lkI6IP1xgex4n8TvpckOl6VAL7Xbwf6NbZ+VF7yyEdEH64wPaXwx4YXQ0lurqc3usXh3Xt7IOXbH3V/uoOgA44oAPDHhhdDSW6upze6xeHde3sg5dsfdX+6g6ADjiuixRiloAKKKKACiiigDm/E3hc6wIL+wuPsOuWQzaXij8fLcfxIe49z+KeGPFH9sefYahB9i1uyO27s2PT0dD/ABIex7V0tc34m8LnWBBf2Fx9h1yyGbS8Ufj5bj+JD3HufxAOjzS1zXhjxR/bHn2GoQfYtbsjtu7Nj09HQ/xIex7V0maAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiqF3rOn2OpWWn3NyqXd6zLbxYJL7Rk9OmB3NAF+iiigAppcAE5xj1oLgAnOMeteeX19d/EK/m0XRp3g8OQP5eoajH1uWHWGI+nq3ftx98AL6+u/iFfzaLo07weHIH8vUNRj63LDrDEfT1bv24+/3Wn6ba6XYwWVlBHBbQLsjjQcKKNP0210uxgsrKCOC2gXZHGg4UVboAKKKKACiiigAooooAKKKKAGlT7cV59qOm3ngDUZ9d0KB5tCmbfqWlxjPlHvNCOxx1Xvj6Y9DppU+3FAFbTNSs9Y06C/sZ0ntpl3JIh4PqPqDwR2Iq3Xnmo6beeANRn13QoHm0KZt+paXGM+Ue80I7HHVe+PpjuNM1Kz1jToL+xnSe2mXckiHg+o+oPBHYigC3RRSbgR9emaADcCPr0zXMeJ/E76XJDpelQC+128H+jW2flRe8shHRB+uMD2PE/id9Lkh0vSoBfa7eD/AEa2z8qL3lkI6IP1xge0vhjwwuhpLdXU5vdYvDuvb2Qcu2Pur/dQdABxxQAeGPDC6Gkt1dTm91i8O69vZBy7Y+6v91B0AHHFdFijFLQAUUUUAFFFFABRRRQAUUUUAc34m8LnWBBf2Fx9h1yyGbS8Ufj5bj+JD3HufxTwx4o/tjz7DUIPsWt2R23dmx6ejof4kPY9q6Wub8TeFzrAgv7C4+w65ZDNpeKPx8tx/Eh7j3P4gHR5pa5rwx4o/tjz7DUIPsWt2R23dmx6ejof4kPY9q6TNAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAV728g0+xnvLh9sEEbSSNgnCqMngewryObXtKk8UeGtfvdRtxczXMskyCTebSAQt5cXHcZJb1Zm9q9jIyK5/WvDt1qmu6NqMOoRQR6ZK0nlPbmQyFhtPzbxjgnseefagDbtrmO7tYbmLJjmQOmRjgjI/nUhcAE5xx3pOB3+teJf8ACX6z8QvGtx4WtN9t4faUpPJZlXkMKbgT5gOArnAJBPGAM87gDq76+u/iFfzaLo07weHIH8vUNRj63LDrDEfT1bv24+/3Wn6ba6XYwWVlBHBbQLsjjQcKKNP0210uxgsrKCOC2gXZHGg4UVboAKKKKACiiigAooooAKKKKACiiigAooooAaVPtxXn2o6beeANRn13Qrd59CmbfqWlxjPlHvNCOxx1XjOPpj0OmFT7cUAVtO1Oz1jTYb+wuEuLWdd0ciHg9vwOeCOoNYnifxO+lSQ6VpUIvtdvB/o1rk4Re8sh7IP16D24HxvLrHw21NLzwpbsNP1V/wB/avFvgWcEY2AHKlwCCOBjoSQNvdeDPD7aZpw1HUBLJruoKst/PcYLlsfc4OAqjgAccD8ACx4Y8MLoaS3V1Ob3WLw7r29kHLtj7q/3UHQAccV0WKMUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHN+JvCx1gQX9hcfYdcshm0vFH4+W4/iQ9x7n8U8L+KP7Z86w1CD7Frdkdt3ZsfydD/ABIex7V0p6VyXjXw+99Yf2vpiyx6/p0bPZzQY3Njny2z95D0x7/mAdZu5xg0tcP8NvFeseKdHuJ9Y037NJFOUSZEKJLycqFJJBU/KT0/I47igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAppcAE5xj1oLgAnOMeteeX19d/EK/m0XRp3g8OQP5eoajH1uWHWGI+nq3ftx98AL69u/iHfz6Lo07weHIX8vUNRj63JHWGI+nq3ftx9/udP0yz0uzhtLK3jt7eFBGkaDgKMkfqSc98ml0/TbXS7GCysoI4LaBdkcaDhRVugAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKD0oA4++8S6hb+M9F0X+zBHZX8syG5ncFn8pC2UUHgZ28t+Xr1+K4nxRIi/EXwOC4BMt594jP+px/Ou3zQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFUtWvRpmj32oGPzPstvJNszjdtUtjPvirtUtXhtrrR721vJvItp4Hhll3BdisCpOTwOtAHO6Tr3ijULmzMvhOO0s5iGkuDqMchRCM52qBkniuvrg9Ql1Twjqnh2OPV7jULK9vI7CS1uY4spleGRkRSAu3JBzXeUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU0uACc4x60FwATnGPWvPL6+u/iFfzaLo07weHIH8vUNRj63LDrDEfT1bv24++AF9fXfxCv5tF0ad4PDkD+XqGox9blh1hiPp6t37cff7rT9NtdLsYLKygjgtoF2RxoOFFGn6ba6XYwWVlBHBbQLsjjQcKKt0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUHkEUUUAZF14W0C9umubrQ9MuJnOXkltEZmPuSOa044UhjSOJFSNAAqqMBR6ADpUlFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAHpVW/wBPttUsZrK9hWa2mUpJG3Rh6VaooAxbHwrpVhc29wkU80tspWBrm6ln8kH+4JGbB7ZHOOOlbVFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFNDA+tLmgBaKKKACmlwATnGPWguACc4x6155fX138Qr+bRdGneDw5A/l6hqMfW5YdYYj6erd+3H3wAvr67+IV/NoujTvB4cgfy9Q1GPrcsOsMR9PVu/bj7/AHWn6ba6XYwWVlBHBbQLsjjQcKKNP0210uxgsrKCOC2gXZHGg4UVboAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRvun6UtIehoA8t8ZafoOnafLpcJaTxHez7rW+u/leKRn3Z+0EAKqjooOSBjDEnPplqkiWsKyvvdUAZ/7xxya43W/+Eg17wtqOiXfh0reXQeBJhNH9nAJ+WQ/OX4GDjaTkcV12mWjWGl2lm0hkaCBI2c9WKqBn9KALdNLgAnOMetBdduc155e3138Q7+bRdGnkg8OQvs1DUU4NyR1hhPp/eYfy++AF9fXfxCv5tF0ad4PDkD+XqGox9blh1hiPp6t37cff7rT9NtdLsYLKygjgtoF2RxoOFFGn6ba6XYwWVlBHBbQLsjjQcKKt0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAmMU0kYOenOc0pcAE5xj1rzy+vbv4h6hNoujzyQeG4H8vUNRj63JHWGI+nq35cffAOa8bWWsfFHWUtfDc7No2nSCKW4kcJA85PzMnGX2qevI9Bz83rOh6THoeh2OmQlSlrCse5UCByBy2BwMnJ/GptP0610qxgsbGCOC1gQJHGgwFH/ANf/AD1q3QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTS4AJzjHrQXABOcY9a88vr67+IV/NoujTvB4cgfy9Q1GPrcsOsMR9PVu/bj74AX19d/EK/m0XRp3g8OQP5eoajH1uWHWGI+nq3ftx9/utP0210uxgsrKCOC2gXZHGg4UUafptrpdjBZWUEcFtAuyONBwoq3QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVkal4gg07ULfT0tLu8vrhGkjgtkXOxcAsWYqoGSBye9GheI7PxAt0LeOeC4s5jBc21woWSJ+uDgkHI5BBIoA16KKKACmlwATnGPWguACc4x6155fX138Qr+bRdGneDw5A/l6hqMfW5YdYYj6erd+3H3wAvr67+IV/NoujTvB4cgfy9Q1GPrcsOsMR9PVu/bj7/dafptrpdjBZWUEcFtAuyONBwoo0/TbXS7GCysoI4LaBdkcaDhRVugAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAytY1e30XTzcSq0jlhHDBEAXnkPCoo9SfyxnoDVHwpoc+kw3d5fsj6pqVwbm62fdQngRr/sqOM9+T3pdf8Ix6/f2V4+r6nZS2auIvsciKAWGGb5kY5xx9PxqbQfDSaFNdznU9Rv5rrYHkvpVkKhM4C4UYHzGgDcppcAE5xj1oLgAnOMeteeX19d/EK/m0XRp3g8OQP5eoajH1uWHWGI+nq3ftx98AL6+u/iFfzaLo07weHIH8vUNRj63LDrDEfT1bv24+/3Wn6ba6XYwWVlBHBbQLsjjQcKKNP0210uxgsrKCOC2gXZHGg4UVboAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqrqGpWelWE99fXCW9tAm+SSQ4Cj/ParR6VR1XSLPW9Mm07UIFntphh0b65yD2IPQ9qAOBbWLn4nyHTdEe4s/DiYGo3rLskmbAJgT04xuPv6ff9B0/TbXS7GCysoI4LaBdkcaDhRWf4Y8K6Z4S0pbDTIjtzukmkwZJW9WIHJrboAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9k='] Multimodal Competition True Theorem proof Combinatorics Math English 40 "An $\boldsymbol{n}$-label is a permutation of the numbers 1 through $n$. For example, $J=35214$ is a 5 -label and $K=132$ is a 3 -label. For a fixed positive integer $p$, where $p \leq n$, consider consecutive blocks of $p$ numbers in an $n$-label. For example, when $p=3$ and $L=263415$, the blocks are 263,634,341, and 415. We can associate to each of these blocks a $p$-label that corresponds to the relative order of the numbers in that block. For $L=263415$, we get the following: $$ \underline{263} 415 \rightarrow 132 ; \quad 2 \underline{63415} \rightarrow 312 ; \quad 26 \underline{341} 5 \rightarrow 231 ; \quad 263 \underline{415} \rightarrow 213 $$ Moving from left to right in the $n$-label, there are $n-p+1$ such blocks, which means we obtain an $(n-p+1)$-tuple of $p$-labels. For $L=263415$, we get the 4 -tuple $(132,312,231,213)$. We will call this $(n-p+1)$-tuple the $\boldsymbol{p}$-signature of $L$ (or signature, if $p$ is clear from the context) and denote it by $S_{p}[L]$; the $p$-labels in the signature are called windows. For $L=263415$, the windows are $132,312,231$, and 213 , and we write $$ S_{3}[263415]=(132,312,231,213) $$ More generally, we will call any $(n-p+1)$-tuple of $p$-labels a $p$-signature, even if we do not know of an $n$-label to which it corresponds (and even if no such label exists). A signature that occurs for exactly one $n$-label is called unique, and a signature that doesn't occur for any $n$-labels is called impossible. A possible signature is one that occurs for at least one $n$-label. In this power question, you will be asked to analyze some of the properties of labels and signatures. We can associate a shape to a given 2-signature: a diagram of up and down steps that indicates the relative order of adjacent numbers. For example, the following shape corresponds to the 2-signature $(12,12,12,21,12,21)$ : A 7-label with this 2-signature corresponds to placing the numbers 1 through 7 at the nodes above so that numbers increase with each up step and decrease with each down step. The 7-label 2347165 is shown below: Show that $(231,213,123,132)$ is a unique 3 -signature." ['Let $L=a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$. We have $a_{4} A 7-label with this 2-signature corresponds to placing the numbers 1 through 7 at the nodes above so that numbers increase with each up step and decrease with each down step. The 7-label 2347165 is shown below: Prove that $S_{5}[495138627]$ is unique." ['Let $L=a_{1}, \\ldots, a_{9}$ and suppose $S_{5}[L]=S_{5}[495138627]=\\left(\\omega_{1}, \\ldots, \\omega_{5}\\right)$. Then we get the following inequalities:\n\n| $a_{4} A 7-label with this 2-signature corresponds to placing the numbers 1 through 7 at the nodes above so that numbers increase with each up step and decrease with each down step. The 7-label 2347165 is shown below: Show that for each $k \geq 2$, the number of unique $2^{k-1}$-signatures on the set of $2^{k}$-labels is at least $2^{2^{k}-3}$." "[""Let $s_{k}$ denote the number of such unique signatures. We proceed by induction with base case $k=2$. From $8(\\mathrm{c})$, a 2-signature for a label $L$ is unique if and only if consecutive numbers in $L$ appear together in some window. Because $k=2$, the consecutive numbers must be adjacent\n\n\nin the label. The $2^{2}$-labels 1234 and 4321 satisfy this condition, ${ }^{1}$ so their $2^{1}$-signatures are unique. Thus we have shown that $s_{2} \\geq 2=2^{2^{2}-3}$, and the base case is established.\n\nNow suppose $s_{k} \\geq 2^{2^{k}-3}$ for some $k \\geq 2$. Let $L_{k}$ be a $2^{k}$-label with a unique $2^{k-1}$-signature. Write $L_{k}=\\left(a_{1}, a_{2}, \\ldots, a_{2^{k}}\\right)$. We will expand $L_{k}$ to form a $2^{k+1}$ label by replacing each $a_{i}$ above with the numbers $2 a_{i}-1$ and $2 a_{i}$ (in some order). This process produces a valid $2^{k+1}$-label, because the numbers produced are all the integers from 1 to $2^{k+1}$. Furthermore, different $L_{k}$ 's will produce different labels: if the starting labels differ at place $i$, then the new labels will differ at places $2 i-1$ and $2 i$. Therefore, each starting label produces $2^{2^{k}}$ distinct $2^{k+1}$ labels through this process. Summarizing, each valid $2^{k}$-label can be expanded to produce $2^{2^{k}}$ distinct $2^{k+1}$-labels, none of which could be obtained by expanding any other $2^{k}$-label.\n\nIt remains to be shown that the new label has a unique $2^{k-1}$-signature. Because $L_{k}$ has a unique $2^{k-1}$-signature, for all $i \\leq 2^{k}-1$, both $i$ and $i+1$ appeared in some $2^{k-1}$-window. Therefore, there were fewer than $2^{k-1}-1$ numbers between $i$ and $i+1$. When the label is expanded, $2 i$ and $2 i-1$ are adjacent, $2 i+1$ and $2 i+2$ are adjacent, and $2 i$ and $2 i+1$ are fewer than $2 \\cdot\\left(2^{k-1}-1\\right)+2=2^{k}$ places apart. Thus, every pair of adjacent integers is within some $2^{k}$-window.\n\nSince each pair of consecutive integers in our new $2^{k+1}$-label coexists in some $2^{k}$-window for every possible such expansion of $L_{k}$, that means all $2^{2^{k}}$ ways of expanding $L_{k}$ to a $2^{k+1}$-label result in labels with unique $2^{k}$-signatures. We then get\n\n$$\n\\begin{aligned}\ns_{k+1} & \\geq 2^{2^{k}} \\cdot s_{k} \\\\\n& \\geq 2^{2^{k}} \\cdot 2^{2^{k}-3} \\\\\n& =2^{2^{k+1}-3}\n\\end{aligned}\n$$\n\nwhich completes the induction.""]" ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAOwBugMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikYkYwKAFoqnaanZX09zBa3cE01q/lzpG4YxNjowHTv+R9DVygAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKQkjoKqXWqWVjPbQXV3BBLdP5cCSOFaRsdFB6n/EetAFyikUk5zS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTWbbigAZtuK5jxd4pXR4odOsrdr7XL7KWdlG2GY9C7EfdQckn2PTBId4r8VroawWNlbm+1y8ytnZIeT6u3og7nj8OSG+E/CZ0c3Gp6pOL7X70A3d4RjA7Rp/dQYGPXA9BgA860bwXrPwtvk8TSyLq1ps8u/ittweJCFJkXJ+fa24c9ueMnb7Hp+oWmqWMN7Y3Ec9tOm+OVDww/z1HUVZYDvyD1rzu/0+8+Hl/NrGj28k/hyd/M1HTYutqehlhHp0yv8h90A9FBzS1U0/ULTVLGG9sbiOe2nXfHKh4Yf56jqKtA5oAWiiigAooooAKKKKACiiigAooooAKQnHpQTj0qpqWp2mkafPf6hOkFrAu6SRzwB/Uk8AetACanqVnpOnT3+oTrb20C7pJGOMD/E9AOpryDV/BOt/E+8bxN5i6RAU2afbXG4u8YBKu2D8m5sdO3POBu6fTdMvPH2owa7rtu8GhwN5mmaXL1l44mmHfOeF6fUcn0MDPc0Acz4R8UprMc2n3lu1jrljhLyykYkg8AOpJyyHjB9x1yCemVt2a5jxZ4TOsGDU9LnFjr9lk2l4BnI7xv6oecjtk+py7wp4rXXFnsb23Njrlnhbyyc8j0dfVD2PP48EgHT0U1W3Zp1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNZtuKABm24rmvFfitdDWCxsrc32uXmVs7JDyfV29EHc8fhyQeK/Fa6GsFjZW5vtcvMrZ2SHk+rt6IO54/DkhvhPwodGafU9UuPt2v3uDd3ZGAPSNB2QdvX8gAA8J+FDozT6nqlx9u1+9wbu7IwB6RoOyDt6/kB1AUDOM80BQM4zzS0ABGaaQB16Hr706gjNAHnN/p958PL+bWNHt5J/Dk7+ZqOmxdbU9DLCPTplf5D7vd6fqFpqljDe2NxHPbTrvjlQ8MP89R1FWSAOvQ9fevO7/T7z4eX82saPbyT+HJ38zUdNi62p6GWEenTK/yH3QD0UHNLVTT9QtNUsYb2xuI57add8cqHhh/nqOoq0DmgBaKKKACiiigAooooAKQnHpQTj0qpqWp2mkafPf6hOkFrAu6SRzwB/Uk8AetABqWp2mkafPf6hOkFrAu6SRzwB/Uk8AetcNpumXnj7UYNd123eDQ4G8zTNLl6y8cTTDvnPC9PqOSabpl54+1GDXddt3g0OBvM0zS5esvHE0w75zwvT6jk+hj60AA+tOxRiigBCoOM54rl/FnhQ6y0Gp6XcfYdfssm0uwMg+sbjuh7+n5g9TSFQcZzxQBzPhTxWuuLPY3tubHXLPC3lk55Ho6+qHsefx4J6VW3ZrmPFnhQ6y0Gp6XcfYdfssm0uwMg+sbjuh7+n5gu8KeK11xZ7G9tzY65Z4W8snPI9HX1Q9jz+PBIB09FNVt2adQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU1m24oAGbbiua8V+K10NYLGytzfa5eZWzskPJ9Xb0Qdzx+HJB4r8VroawWNlbm+1y8ytnZIeT6u3og7nj8OSG+E/Ch0Zp9T1S4+3a/e4N3dkYA9I0HZB29fyAADwn4UOjNPqeqXH27X73Bu7sjAHpGg7IO3r+QHUBQM4zzQFAzjPNLQAUUUUAFFFFAARmmkAdeh6+9OoIzQB5zf6fefDy/m1jR7eSfw5O/majpsXW1PQywj06ZX+Q+73en6haapYw3tjcRz206745UPDD/PUdRVkgDr0PX3rzu/0+8+Hl/NrGj28k/hyd/M1HTYutqehlhHp0yv8AIfdAPRQc0tVNP1C01SxhvbG4jntp13xyoeGH+eo6irQOaAFooooAKQnHpQTj0qpqWp2mkafPf6hOkFrAu6SRzwB/Uk8AetABqWp2mkafPf6hOkFrAu6SRzwB/Uk8AetcNpumXnj7UYNd123eDQ4G8zTNLl6y8cTTDvnPC9PqOSabpl54+1GDXddt3g0OBvM0zS5esvHE0w75zwvT6jk+hj60AA+tOxRiigAooooAKKKKAEKg4zniuX8WeFDrLQanpdx9h1+yybS7AyD6xuO6Hv6fmD1NIVBxnPFAHM+FPFa64s9je25sdcs8LeWTnkejr6oex5/HgnpVbdmuY8WeFDrLQanpdx9h1+yybS7AyD6xuO6Hv6fmC7wp4rXXFnsb23Njrlnhbyyc8j0dfVD2PP48EgHT0U1W3Zp1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU1m24oAGbbiua8V+K10NYLGytzfa5eZWzskPJ9Xb0Qdzx+HJB4r8VroawWNlbm+1y8ytnZIeT6u3og7nj8OSG+E/Ch0Zp9T1S4+3a/e4N3dkYA9I0HZB29fyAADwn4UOjNPqeqXH27X73Bu7sjAHpGg7IO3r+QHUBQM4zzQFAzjPNLQAUUUUAFFFFABRRRQAUUUUABGaaQB16Hr706gjNAHnN/p958PL+bWNHt5J/Dk7+ZqOmxdbU9DLCPTplf5D7vd6fqFpqljDe2NxHPbTrvjlQ8MP89R1FWSAOvQ9fevO7/T7z4eX82saPbyT+HJ38zUdNi62p6GWEenTK/yH3QD0UHNBOPSqun6haapYw3tjOlxbTrvjlQ8MP8APUdsUmpanZ6Rp8+oX86QWsC7pJHPAH9Sew75oANS1O00jT57/UJ0gtYF3SSOeAP6kngD1rhtN0y88fajBruu27waHA3maZpcvWXjiaYd854Xp9RyTTdMvPH2owa7rtu8GhwN5mmaXL1l44mmHfOeF6fUcn0MfWgAH1p2KMUUAFFFFABRRRQAUUUUAFFFFACFQcZzxXL+LPCh1loNT0u4+w6/ZZNpdgZB9Y3HdD39PzB6mkKg4znigDmfCnitdcWexvbc2OuWeFvLJzyPR19UPY8/jwT0qtuzXMeLPCh1loNT0u4+w6/ZZNpdgZB9Y3HdD39PzBd4U8Vrriz2N7bmx1yzwt5ZOeR6Ovqh7Hn8eCQDp6Karbs06gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiims23FACsSMV5z46+K9p4V1Q6RbWRu7/y8szuUjiZgNgPGT1BOOg9+nQeK/Fi6GkFjZW5vtcvMrZ2SHk9i7eiDuePw5Io+H/h9Z291FrWv7dU8RGTz5LuQnbG+MBUXptUdOPcYwMAF3wn4TOjNPqeqT/btfvcNdXZHA9I09EHT3x24A6cKBnGeaAMUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAARmmkAdeh6+9OoIzQB5b4gkk+FF02s6Yiy6DfzbbjSt+3yZipw8JxgA7eR/8AWwvhtpPindJ4g1VFTRrKYraaVu3K0oUZklOMN97gdO2OufRtR0yy1fTp7C/t0uLWddskbjhv8D3BHINLp+nWmlWENjYwLBawrsjjToo/qe5J5JNAFgfWnYoxRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhUHGc8VzHizwodYMGp6XcCx1+yybS7A4b1jk4OUPQ9cZ6HkHqKQjNAHAeA/ibb+Lr+XSprJrTUIot52tvjkwcMVPYZ6Z7V3xkUHGao2mh6XYaleajaWMMN3eEG4lRcFyPX/PPU1oUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTWbbigAZtuK5rxX4rXQ1gsbK3N9rl5lbOyQ8n1dvRB3PH4ckHivxWuhrBY2Vub7XLzK2dkh5Pq7eiDuePw5Ib4T8KHRmn1PVLj7dr97g3d2RgD0jQdkHb1/IAAPCfhQ6M0+p6pcfbtfvcG7uyMAekaDsg7ev5AdQFAzjPNAUDOM80tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTWbbigAZtuK5rxX4rXQ1gsbK3N9rl5lbOyQ8n1dvRB3PH4ckHivxWuhrBY2Vub7XLzK2dkh5Pq7eiDuePw5Ib4T8KHRmn1PVLj7dr97g3d2RgD0jQdkHb1/IAAPCfhQ6M0+p6pcfbtfvcG7uyMAekaDsg7ev5AdQFAzjPNAUDOM80tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTWbbigAZtuK5rxX4rXQ1gsbK3N9rl5lbOyQ8n1dvRB3PH4ckHivxWuhrBY2Vub7XLzK2dkh5Pq7eiDuePw5Ib4T8KHRmn1PVLj7dr97g3d2RgD0jQdkHb1/IAAPCfhQ6M0+p6pcfbtfvcG7uyMAekaDsg7ev5AdQFAzjPNAUDOM80tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTWbbigBWJGMDNcz4r8VroawWNlb/btbvPls7JDy3q7eiDuf5ckYvxS8WajoekQWGhODq94xwkal5UiUEs6qAfTGT05IHBIsfDfQb2302TXfEEMh8Q6gd08s7ZdY/4E2gARjHOwdO/91QDQ8J+FDozT6nqlx9u1+9wbu7IwB6RoOyDt6/kB1AUDOM80BQM4zzS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNZtuKABm24rmvFfitdDWCxsrc32uXmVs7JDyfV29EHc8fhyQeK/Fa6GsFjZW5vtcvMrZ2SHk+rt6IO54/DkhvhPwodGafU9UuPt2v3uDd3ZGAPSNB2QdvX8gAA8J+Ezo7T6pqdx9u1+95u7sjGB2jQdkGBj1x9AOoChenT+VAUDOM80tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTWbbigAZtuK5rxX4rXQ1gsbK3N9rl5lbOyQ8n1dvRB3PH4ckHivxWuhrBY2Vub7XLzK2dkh5Pq7eiDuePw5Ib4T8KHRmn1PVLj7dr97g3d2RgD0jQdkHb1/IAAPCfhQ6M0+p6pcfbtfvcG7uyMAekaDsg7ev5AdQFAzjPNAUDOM80tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTWbbigAZtuK5rxX4rXQ1gsbK3N9rl5lbOyQ8n1dvRB3PH4ckHivxWuhrBY2Vub7XLzK2dkh5Pq7eiDuePw5Ib4T8KHRmn1PVLj7dr97g3d2RgD0jQdkHb1/IAAPCfhQ6M0+p6pcfbtfvcG7uyMAekaDsg7ev5AdQFAzjPNAUDOM80tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSMcD37UAIzbcVzXivxWuhrBY2Vub7XLzK2dkh5Pq7eiDuePw5Ii8TeM7fSwlhpax6nrly5htrKF8kMOrSY+6q9TnH1HJD/CfhQ6OZ9T1Sf7br97g3d2RwPSNB2QcDHfH0AADwn4UOjNPqeqXH27X73Bu7sjAHpGg7IO3r+QHUBQM4zzQFAzjPNLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFMlXdGy5IBGMg4Ip9BGaAPP8AwJ8NY/B+t6nqUmoSXks5McJYciMkN857tkDpgY+td+BigDGeTz60tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/Z', '/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAQEB0AMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopNwFAC0Um7t39KWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKaHBJA+lADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKADtXKaz4Xk1DVLjUbnxHq9haJCoSKxuzCiBclmbg5Jz+ldXXL+MIbrU7ey0G2hmMWpTCO7mRTtit1+aQFuxYDaP96gCPwBaXEfhwXdxe39yt7K1xB9tnaV44D/AKsZPqoDH3Y11lNRAiKiqoVQAAOAKdQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZuv6vDoOgX2qTgtHawtIVH8RA4H4niuM8O6jpKzaVfa81xJrd+wMV3dW8ghjldc+VCzDaowSAR97nk5rrfFGinxB4Y1HSVkWNrqFlV25AbqCfbIFc1qOn634j0rSNIn0qWxaC5gmvLqSaNkHlkE+XtYsSxHGQOvPpQB3uaKQDH9aWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBG+6c9MelU9R1Gz0jT59Q1C4SC0gBeR25Cj8Opz25JJwKtlwASTjHrxXnOpXM/wASbyXQ9MfZ4at5Auoagqg/anU58qHOeAQMt9MHH3gDqfCnjHSPGOntd6XK+Y22ywTALJGecZAJ4IGQQf1BA368vXw1N8LJjq3h9Lm+0VwBqdm+GlUDOJoyAMkAnK+n6ei6ZqVnrGnQX9jOk9tMu5JEPB9R9QeCOxFAFuiiigAooooAKKKKACiiigAooooAKKKKACiik3Aj69M0AG4Ed+enauXT4geHX8XHw0t6DfLxvx+6Mn/PMPn7/t+Gc8U7xP4nbS5IdL0qBb7XLwf6Na5yqr3lkx0jH64wPbmR8KEiH9sxarN/wlYf7R9ub/VmfJY/IB9052kegGO+QD0zNLXNeGPFH9sefYahB9i1uyO27s2PT0dD/Eh7HtXSZoAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKaXABOcY9aC4AJzjHrXnl9fXfxCv5tF0ad4PDkD+XqGox9blh1hiPp6t37cffAC+vrv4hX82i6NO8HhyB/L1DUY+tyw6wxH09W79uPv91p+m2ul2MFlZQRwW0CbI40HCijT9NtdLsYLKygjgtoF2RxoOFFW6AGlT7cV59qOm3ngDUZ9d0KB5tCmbfqWlxjPlHvNCOxx1Xvj6Y9DppU+3FAFbTNSs9Y06C/sZ0ntpl3JIh4PqPqDwR2Iq3Xnmo6beeANRn13QoHm0KZt+paXGM+Ue80I7HHVe+PpjuNM1Kz1jToL+xnSe2mXckiHg+o+oPBHYigC3RRRQAUUUUAFFFFABRRRQAUUUm4EfXpmgA3Aj69M1zHifxO+lyQ6XpUAvtdvB/o1tn5UXvLIR0QfrjA9jxP4nfS5IdL0qAX2u3g/wBGts/Ki95ZCOiD9cYHtL4Y8MLoaS3V1Ob3WLw7r29kHLtj7q/3UHQAccUAHhjwwuhpLdXU5vdYvDuvb2Qcu2Pur/dQdABxxXQ4P0pcUtAHN+JvC51gQX9hcfYdcshm0vFH4+W4/iQ9x7n8U8MeKP7Y8+w1CD7Frdkdt3Zseno6H+JD2Paulrm/E3hc6wIL+wuPsOuWQzaXij8fLcfxIe49z+IB0eaWua8MeKP7Y8+w1CD7Frdkdt3Zseno6H+JD2PaukzQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNLgAnOMetBcAE5xj1rzy+vrv4hX82i6NO8HhyB/L1DUY+tyw6wxH09W79uPvgBfX138Qr+bRdGneDw5A/l6hqMfW5YdYYj6erd+3H3+60/TbXS7GCysoI4LaBdkcaDhRRp+m2ul2MFlZQRwW0C7I40HCirdABRRRQAUUUUANKn24rz7UdNvPAGoz67oUDzaFM2/UtLjGfKPeaEdjjqvfH0x6HTSp9uKAK2malZ6xp0F/YzpPbTLuSRDwfUfUHgjsRVuvPNR0288AajPruhQPNoUzb9S0uMZ8o95oR2OOq98fTHcaZqVnrGnQX9jOk9tMu5JEPB9R9QeCOxFAFuiiigAooooAKKKTcCPr0zQAbgR9ema5jxP4nfS5IdL0qAX2u3g/0a2z8qL3lkI6IP1xgex4n8TvpckOl6VAL7Xbwf6NbZ+VF7yyEdEH64wPaXwx4YXQ0lurqc3usXh3Xt7IOXbH3V/uoOgA44oAPDHhhdDSW6upze6xeHde3sg5dsfdX+6g6ADjiuixRiloAKKKKACiiigDm/E3hc6wIL+wuPsOuWQzaXij8fLcfxIe49z+KeGPFH9sefYahB9i1uyO27s2PT0dD/ABIex7V0tc34m8LnWBBf2Fx9h1yyGbS8Ufj5bj+JD3HufxAOjzS1zXhjxR/bHn2GoQfYtbsjtu7Nj09HQ/xIex7V0maAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiqF3rOn2OpWWn3NyqXd6zLbxYJL7Rk9OmB3NAF+iiigAppcAE5xj1oLgAnOMeteeX19d/EK/m0XRp3g8OQP5eoajH1uWHWGI+nq3ftx98AL6+u/iFfzaLo07weHIH8vUNRj63LDrDEfT1bv24+/3Wn6ba6XYwWVlBHBbQLsjjQcKKNP0210uxgsrKCOC2gXZHGg4UVboAKKKKACiiigAooooAKKKKAGlT7cV59qOm3ngDUZ9d0KB5tCmbfqWlxjPlHvNCOxx1Xvj6Y9DppU+3FAFbTNSs9Y06C/sZ0ntpl3JIh4PqPqDwR2Iq3Xnmo6beeANRn13QoHm0KZt+paXGM+Ue80I7HHVe+PpjuNM1Kz1jToL+xnSe2mXckiHg+o+oPBHYigC3RRSbgR9emaADcCPr0zXMeJ/E76XJDpelQC+128H+jW2flRe8shHRB+uMD2PE/id9Lkh0vSoBfa7eD/AEa2z8qL3lkI6IP1xge0vhjwwuhpLdXU5vdYvDuvb2Qcu2Pur/dQdABxxQAeGPDC6Gkt1dTm91i8O69vZBy7Y+6v91B0AHHFdFijFLQAUUUUAFFFFABRRRQAUUUUAc34m8LnWBBf2Fx9h1yyGbS8Ufj5bj+JD3HufxTwx4o/tjz7DUIPsWt2R23dmx6ejof4kPY9q6Wub8TeFzrAgv7C4+w65ZDNpeKPx8tx/Eh7j3P4gHR5pa5rwx4o/tjz7DUIPsWt2R23dmx6ejof4kPY9q6TNAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAV728g0+xnvLh9sEEbSSNgnCqMngewryObXtKk8UeGtfvdRtxczXMskyCTebSAQt5cXHcZJb1Zm9q9jIyK5/WvDt1qmu6NqMOoRQR6ZK0nlPbmQyFhtPzbxjgnseefagDbtrmO7tYbmLJjmQOmRjgjI/nUhcAE5xx3pOB3+teJf8ACX6z8QvGtx4WtN9t4faUpPJZlXkMKbgT5gOArnAJBPGAM87gDq76+u/iFfzaLo07weHIH8vUNRj63LDrDEfT1bv24+/3Wn6ba6XYwWVlBHBbQLsjjQcKKNP0210uxgsrKCOC2gXZHGg4UVboAKKKKACiiigAooooAKKKKACiiigAooooAaVPtxXn2o6beeANRn13Qrd59CmbfqWlxjPlHvNCOxx1XjOPpj0OmFT7cUAVtO1Oz1jTYb+wuEuLWdd0ciHg9vwOeCOoNYnifxO+lSQ6VpUIvtdvB/o1rk4Re8sh7IP16D24HxvLrHw21NLzwpbsNP1V/wB/avFvgWcEY2AHKlwCCOBjoSQNvdeDPD7aZpw1HUBLJruoKst/PcYLlsfc4OAqjgAccD8ACx4Y8MLoaS3V1Ob3WLw7r29kHLtj7q/3UHQAccV0WKMUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHN+JvCx1gQX9hcfYdcshm0vFH4+W4/iQ9x7n8U8L+KP7Z86w1CD7Frdkdt3ZsfydD/ABIex7V0p6VyXjXw+99Yf2vpiyx6/p0bPZzQY3Njny2z95D0x7/mAdZu5xg0tcP8NvFeseKdHuJ9Y037NJFOUSZEKJLycqFJJBU/KT0/I47igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAppcAE5xj1oLgAnOMeteeX19d/EK/m0XRp3g8OQP5eoajH1uWHWGI+nq3ftx98AL69u/iHfz6Lo07weHIX8vUNRj63JHWGI+nq3ftx9/udP0yz0uzhtLK3jt7eFBGkaDgKMkfqSc98ml0/TbXS7GCysoI4LaBdkcaDhRVugAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKD0oA4++8S6hb+M9F0X+zBHZX8syG5ncFn8pC2UUHgZ28t+Xr1+K4nxRIi/EXwOC4BMt594jP+px/Ou3zQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFUtWvRpmj32oGPzPstvJNszjdtUtjPvirtUtXhtrrR721vJvItp4Hhll3BdisCpOTwOtAHO6Tr3ijULmzMvhOO0s5iGkuDqMchRCM52qBkniuvrg9Ql1Twjqnh2OPV7jULK9vI7CS1uY4spleGRkRSAu3JBzXeUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU0uACc4x60FwATnGPWvPL6+u/iFfzaLo07weHIH8vUNRj63LDrDEfT1bv24++AF9fXfxCv5tF0ad4PDkD+XqGox9blh1hiPp6t37cff7rT9NtdLsYLKygjgtoF2RxoOFFGn6ba6XYwWVlBHBbQLsjjQcKKt0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUHkEUUUAZF14W0C9umubrQ9MuJnOXkltEZmPuSOa044UhjSOJFSNAAqqMBR6ADpUlFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAHpVW/wBPttUsZrK9hWa2mUpJG3Rh6VaooAxbHwrpVhc29wkU80tspWBrm6ln8kH+4JGbB7ZHOOOlbVFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFNDA+tLmgBaKKKACmlwATnGPWguACc4x6155fX138Qr+bRdGneDw5A/l6hqMfW5YdYYj6erd+3H3wAvr67+IV/NoujTvB4cgfy9Q1GPrcsOsMR9PVu/bj7/AHWn6ba6XYwWVlBHBbQLsjjQcKKNP0210uxgsrKCOC2gXZHGg4UVboAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRvun6UtIehoA8t8ZafoOnafLpcJaTxHez7rW+u/leKRn3Z+0EAKqjooOSBjDEnPplqkiWsKyvvdUAZ/7xxya43W/+Eg17wtqOiXfh0reXQeBJhNH9nAJ+WQ/OX4GDjaTkcV12mWjWGl2lm0hkaCBI2c9WKqBn9KALdNLgAnOMetBdduc155e3138Q7+bRdGnkg8OQvs1DUU4NyR1hhPp/eYfy++AF9fXfxCv5tF0ad4PDkD+XqGox9blh1hiPp6t37cff7rT9NtdLsYLKygjgtoF2RxoOFFGn6ba6XYwWVlBHBbQLsjjQcKKt0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAmMU0kYOenOc0pcAE5xj1rzy+vbv4h6hNoujzyQeG4H8vUNRj63JHWGI+nq35cffAOa8bWWsfFHWUtfDc7No2nSCKW4kcJA85PzMnGX2qevI9Bz83rOh6THoeh2OmQlSlrCse5UCByBy2BwMnJ/GptP0610qxgsbGCOC1gQJHGgwFH/ANf/AD1q3QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTS4AJzjHrQXABOcY9a88vr67+IV/NoujTvB4cgfy9Q1GPrcsOsMR9PVu/bj74AX19d/EK/m0XRp3g8OQP5eoajH1uWHWGI+nq3ftx9/utP0210uxgsrKCOC2gXZHGg4UUafptrpdjBZWUEcFtAuyONBwoq3QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVkal4gg07ULfT0tLu8vrhGkjgtkXOxcAsWYqoGSBye9GheI7PxAt0LeOeC4s5jBc21woWSJ+uDgkHI5BBIoA16KKKACmlwATnGPWguACc4x6155fX138Qr+bRdGneDw5A/l6hqMfW5YdYYj6erd+3H3wAvr67+IV/NoujTvB4cgfy9Q1GPrcsOsMR9PVu/bj7/dafptrpdjBZWUEcFtAuyONBwoo0/TbXS7GCysoI4LaBdkcaDhRVugAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAytY1e30XTzcSq0jlhHDBEAXnkPCoo9SfyxnoDVHwpoc+kw3d5fsj6pqVwbm62fdQngRr/sqOM9+T3pdf8Ix6/f2V4+r6nZS2auIvsciKAWGGb5kY5xx9PxqbQfDSaFNdznU9Rv5rrYHkvpVkKhM4C4UYHzGgDcppcAE5xj1oLgAnOMeteeX19d/EK/m0XRp3g8OQP5eoajH1uWHWGI+nq3ftx98AL6+u/iFfzaLo07weHIH8vUNRj63LDrDEfT1bv24+/3Wn6ba6XYwWVlBHBbQLsjjQcKKNP0210uxgsrKCOC2gXZHGg4UVboAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqrqGpWelWE99fXCW9tAm+SSQ4Cj/ParR6VR1XSLPW9Mm07UIFntphh0b65yD2IPQ9qAOBbWLn4nyHTdEe4s/DiYGo3rLskmbAJgT04xuPv6ff9B0/TbXS7GCysoI4LaBdkcaDhRWf4Y8K6Z4S0pbDTIjtzukmkwZJW9WIHJrboAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9k='] Multimodal Competition True Theorem proof Combinatorics Math English 43 "A king strapped for cash is forced to sell off his kingdom $U=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$. He sells the two circular plots $C$ and $C^{\prime}$ centered at $\left( \pm \frac{1}{2}, 0\right)$ with radius $\frac{1}{2}$. The retained parts of the kingdom form two regions, each bordered by three arcs of circles; in what follows, we will call such regions curvilinear triangles, or $c$-triangles ( $\mathrm{c} \triangle$ ) for short. This sad day marks day 0 of a new fiscal era. Unfortunately, these drastic measures are not enough, and so each day thereafter, court geometers mark off the largest possible circle contained in each c-triangle in the remaining property. This circle is tangent to all three arcs of the c-triangle, and will be referred to as the incircle of the c-triangle. At the end of the day, all incircles demarcated that day are sold off, and the following day, the remaining c-triangles are partitioned in the same manner. Some notation: when discussing mutually tangent circles (or arcs), it is convenient to refer to the curvature of a circle rather than its radius. We define curvature as follows. Suppose that circle $A$ of radius $r_{a}$ is externally tangent to circle $B$ of radius $r_{b}$. Then the curvatures of the circles are simply the reciprocals of their radii, $\frac{1}{r_{a}}$ and $\frac{1}{r_{b}}$. If circle $A$ is internally tangent to circle $B$, however, as in the right diagram below, the curvature of circle $A$ is still $\frac{1}{r_{a}}$, while the curvature of circle $B$ is $-\frac{1}{r_{b}}$, the opposite of the reciprocal of its radius. Circle $A$ has curvature 2; circle $B$ has curvature 1 . Circle $A$ has curvature 2; circle $B$ has curvature -1 . Using these conventions allows us to express a beautiful theorem of Descartes: when four circles $A, B, C, D$ are pairwise tangent, with respective curvatures $a, b, c, d$, then $$ (a+b+c+d)^{2}=2\left(a^{2}+b^{2}+c^{2}+d^{2}\right), $$ where (as before) $a$ is taken to be negative if $B, C, D$ are internally tangent to $A$, and correspondingly for $b, c$, or $d$. Without using Descartes' Circle Formula, Show that the circles marked off and sold on day 1 are centered at $\left(0, \pm \frac{2}{3}\right)$ with radius $\frac{1}{3}$." ['By symmetry, $P_{1}, P_{2}$, the two plots sold on day 1 , are centered on the $y$-axis, say at $(0, \\pm y)$ with $y>0$. Let these plots have radius $r$. Because $P_{1}$ is tangent to $U, y+r=1$. Because $P_{1}$ is tangent to $C$, the distance from $(0,1-r)$ to $\\left(\\frac{1}{2}, 0\\right)$ is $r+\\frac{1}{2}$. Therefore\n\n$$\n\\begin{aligned}\n\\left(\\frac{1}{2}\\right)^{2}+(1-r)^{2} & =\\left(r+\\frac{1}{2}\\right)^{2} \\\\\n1-2 r & =r \\\\\nr & =\\frac{1}{3} \\\\\ny=1-r & =\\frac{2}{3} .\n\\end{aligned}\n$$\n\nThus the plots are centered at $\\left(0, \\pm \\frac{2}{3}\\right)$ and have radius $\\frac{1}{3}$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIATABxwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ8CgBaKztU13StFhEuqanZ2SHobiZY930yefwrlH+LXh+dnTRbbVtekQ4ZdMsJJNp/3iAP1oA7yiuD/wCEr8b3rgaf4BeGJhkT6jqMcWPrGoZqao+K1wTvfwnZxkcBVnlcdOvIHrQB31FcN/YnxFlO5/GWmQHpti0gMPzZ6aPDvxDDs/8AwntqQQMIdFjwv/j2aAO7orhv7I+I8GfL8V6Rc9x5+llB9PlemLP8U7VyZrXwpfxjosEs8Ln/AL6BAoA7yiuB/wCE38VWAZtZ+HupLGvRtNuYrwsPZQQamtfix4UluEtr27n0m6brDqds9uR9SRtH50AdxRVazv7TUbdbiyuoLmBxlZYZFdT+IOKsA84PWgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooPtTXcKpYnAHc9qAFJwKhuLqG0t3uLmWOGGMbpJJGCqo9STgAVxGofEV7+9fSvBennXr9Tte6DbLO3Pq8vRj0O1evOD2qO0+HEuszx33jnVZNbuVYOlkmYrOE/wCygwWxyMt1BORQBJcfE6G+uHs/COk3niS6Q7Glth5dqjejTN8o45GM5qM+HvHfiMf8T3xNHotq3Wz0OPEhXtmd+Q3rtGK7y2tbezt47e2gjghjXakcShVQegA4FS4HpQBx+l/DDwjp0pnfSY7+7bBe51BjcyO3qS5IB+gFdekaRoqIiqqjCqowB9KdRQAhAPUUYFLRQAYowKKKAEwD2pcUUUAJgVDd2drewNBd20M8LcNHKgZT+BqeigDiLz4VeGnuGu9KjutDvSAPtGk3DQED/dHyY/Cqn2b4jeGsNa3lj4qshn9zcj7JdY7AOMofq3NehYpNoNAHF6X8TdEurwadqy3Og6nwPsuqR+Vu7fK/3WGeBzk+ldmDk1R1fRdM12xaz1WxgvIG/gmQNj3BPQ+45riW8G+IfCDGfwPqhmsxnOiapI0kWPSKQ/Mh9Acgk8mgD0aiuQ8P/ECw1a/Gj6lbTaNroGW0684ZveNuki8HGOeDxXWq2SeelADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApCcUprkfFnjVNAlt9L0+1bU/EF3/x7afCfmA/56Of4EGDyf5AkAGl4k8VaV4V043uqXIRSdsUKDdLM/ZUXqxP5euK5BND8R/ET994nMui+HnwYtGgciacf9PD9h/sDHXkArzreGfBD2+pf8JD4mul1bxC4+WUr+5tAf4IVPQDpu6n25z2mBnOOaAKmm6ZY6RYx2WnWkNraxjCxQqFUfh3PvVvFLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJtU54HPX3paKAMbxH4W0bxTp/2PV7GO4Qf6tzkSRH1Rxyp+n45FcZ/aPiT4bYGqyXHiHwwM4v1G67sk/6agf6xMfxDkYOccCvTKawBGMDB4oAq6ZqdnrFhDf6fdxXVpMu6OWI5Df8A1+xH8quV5zqfhTVPCOoT694GRSkjeZfaExxDcju0f/POTH4Hj0weo8L+LNO8WaZ9ssHZWjbZcW8o2yW8g6o47Ec+1AG9RSDOaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPShjhcj+dct408Wnw9ZQ2lhb/bdd1BvJ0+yx99/7zeiLnJPHHcdQAVvGHjC50y6tdC0KCK+8RX5Hk27Z2QJ3llxyEH69ulWvB3g6Hw5FNd3c51DXL0iS+1GUZeVuOF/uoMYCjHQU3wX4PHhyCe7v5/t2u3zebfX7Dl2/ur6IOgHH07DqwMUAJgZzS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADSOK4bxZ4QvF1UeK/CZjt/EMI/fQk4i1CMY/dyf7RAwG9hz0I7sjPWkI4oA57wj4tsvFmltc2yvBdQN5V3ZyjEltIOqsODjg4Pf8CB0I61wXjHw5f2Wqr4z8LR51i3QC7tBwuoQDqh4++APlPtjngV03hnxDYeKNEg1XTZN0EowVbho2HVGHZgf84IJANiiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopCaAFopOc0ZP+RQAtFIKWgAooooAKKKKACiiigApDxS0jHAzQBl+INdsvDeh3Wr6lJstbZN7cZZj2Ue5JAFcz4G0C9uL2bxl4kixrmoJiC3Y5FhbdVjX/AGjnLH1OMA5znon/AAsTx80p+fwz4cnwg/hvL0dT7qn6npkE49JXr+Hf/P1oAUAA5xz0zS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANZeOBz6mvNvEEUvw68SyeLLFCdB1GRU1m2UE+S5OFuVA9zhh3z6nI9KIBGCM1Dd21vdWk1tcxJJbzIySxuPldSDkH2IzQA6CZLiJJonWSJ1DI6kEMDyCD3BqWvOfBdxceEvEVx4Cv5JHtwpudEuJTky2+TuiJ7sh/TsBivRQc0ALRRRQAUUUUAFFFFABRRRQAUh4FDZ4x61zHijxxpvhlorMrLfavcD/RtNtF3zSe5H8K8H5j6HGcYoA6YtjJrkNU+JvhzT7s2FpNPrGpD/lz0qI3Mnv8Ad+UY4zkislfCXiPxkfO8aag1jp78roemybVx1xNKDlz6gHHAI9K7bSND0rQbQWmlafb2cA6pDGFz7n1PuaAOQGs/EjWudN8O6XosOeJNWuTLIy+oSL7p9iaePC3jq7lL33xAMKMP9TY6XEgX6OxLV3uBRigDhh8PdQb5pfHvigyHqUuI0X8tlNbwR4igjIsPiDrEbD7puoIbgfkVH867ujFAHBfY/idpYHkavoOtoB832y1e2kb6eWSufrTB8SLzSBjxf4V1PR0HLXkAF5bKPVnj5XPpg16BikIB6igDP0nXdM12z+16VqFvewdC8Dhtp9CByD7HmtAEnqK4vWfhro95eHU9HeXQNYwdt5p3yBj1+dB8rgnBI4JwOaz4fGOt+EJ47Lx3bxm0ZgkOvWaEwtnp5yAZjY+uNuenAJoA9FoqK3niuYUmgkSSKRQyOhDAg8ggjgipaACiiigBDXHfELXrzTtHt9K0dv8AieazMLOyA6x5+/L7BFyc9jiuxbpXnnhHb4u8cat4vkUNZWedM0kkcFVOZZl/3mOAR2yD3oA63w1oFl4Z8P2ejWC/6PaxhNx6u3UsfcnJ/GtfFGMUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQQD1oooA5H4g+HLjWtCjvNKPl65pUgvNOkAyTIvJQ+oYcY6ZxngVqeE/EVt4r8N2Ws2oCpcxgtHnJjccMh9wQR+RrZPSvPNKx4P+KN7o2CmmeI1a+s/7qXS/65B/vDDfyoA9EopBS0AFFFFABRRRQAUjHC5oPArjfG/ie+042ug6CqzeItUytspGVtk/infrhV7ZByR3wRQBB4o8XX8uqnwr4Thju9edc3E7jMOnxn+OT1bHRe/XHQHS8JeC7Dwwks/myX+r3Q3XmpXBzLOx64P8K+ijsBkkjNT+EPClp4T0n7JDJJcXUredeXkpzJczH7zsTk/QZ49+p6EADtQAmBnNLRRQAUUUUAFFFFABRRRQAYzUN1bw3NtJBcRRzQSKVkjlUMrqRggg8EVNQQD1oA8vn03VPhfO+o6HHcaj4VJLXmlA75bIdTJASeV7lSfx5yPQtJ1ax1zTYNS026jubO4TfHIh6jp+BByCDyCCO1XGAwa8x1CKT4W+IG1izD/8IfqEwGo2wyRYTMcCZB2QkgEe/wDugAHqFIelMilWZFkR1ZHAZWU5BHqDTz0oA5H4k63caL4NuEsedT1CRbCxAOCZpTtBHuBkj3Ara8N6Hb+G/Dtho1qP3VpCI92OXPVmPuSST7muT1If8JF8YdMsfvWnh60a9mxyDcS/JGpHYhQXB969AFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVxfxO0qe78KHVNPX/iaaLMuo2h55aPll46gruGO/FdpTXVWUqwBU8EHofagClouqQa3o1lqlqcwXcCTJk8gMM4PuOh96v15/8MD/AGSdf8IOTnRL5vs4OeLab95Fyep+9n8K9AoAKKKKACiikPTigChrmr2mg6Jd6rfSeXbWsZkc9z6Ae5OAB3JArlvh7o13Il14u1uIDWtaAkKH/l2t+scI9MDBPcnryKqeMVPivxxong771jAv9q6oAOHRW2xR/RnySD2wa9CU5JoAUADoKWiigAooooAKKKKACiiigBGOBWdHrulza22jRX8EmopEZntkYM6ICBlgPu/eHB55rSIzXnYhih/aDURRqgbwyWIUYyftPWgD0GSRYo2d2VUUEsWOAAO+a5/UvHPh3RtNs7/U9UjtIbyNZYBKjB3UgHOzG7oeeOKk8Ws02kppUZYS6rMtkNpwQjZMpB9REsh+oFXk0ewjvp777PG1xKixb3QHbGo4RfRc5OB3JoAfpeq2Gt2Ed7p13Dd2smSssTZGQensR6Hmpr21t72ymtLqJZbedGjljYZDKRggj6Vw/wAMNJSwPiS7slEWkXuqSPYRKMJsX5S6jspYHHqFFd+RkYoA888DXU/hnXL3wFqEzSLap9p0ieQ5MtoT9zPcxnj6ZwABXoX3hzx/SuG+J+nzx6RaeKdOTOp+HpvtaAcGSHpNHn0Kcn/drT8R+IYIfhxqXiGymHlNprXFtIeMlkzH+JJWgDI+GAGqDxD4qYKx1nU5DDIO9vF+7jH4Yau+AArn/Aulf2J4H0XTmQJJDZx+Yo7SEbn/APHia6GgAooooAKKKKACg0UUAcp8RNU1nRvBmo6los9tDNbRGRmmiLnA67eQAeepyOOlanha8n1Dwno97cyeZPcWME0jkAbmaNSTgccknpWR8UBj4Y+Iscf6G3StLwZ/yI3h8/8AUNt//RS0AblFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhGRS0UAef6kf7E+NGjXYLCDXdPlsXA6ebERIrH3KkqK78GuD+LG2y8P6Zr5JUaLq1teOR1Me/Yy/iH/Su8FAC0UUUAFIelLWF401F9J8E63fxuElgspXjY9n2Hb+uKAOb+GYGsT+IfF74Y6vqDJbOB1tocxx/To2a9AAA6Vz/gXTf7H8DaHYFAjxWUW8D++VBf/wAeJroaACiiigAooooAKKKKACiiigBCcV527Tn45R3/ANg1E2X9hmyN19hm8vzvP37d23GMd84969FpMCgDBMUl74zEsiMLbTbXEbEHDTSnkj3VEA4/56msDxh4rnt9S/sRNB8R3NkVzd3OnafI4YH/AJZI/A5H3mB46Dkkr3u0Y6UbQO1AHN+FfEP9ttNDb+HtU0iztI0RBqFr9n3E9FjTn5QByeMZGBXS0gABzS0ARzRRzwPDMgeORSjqwyGB4INeFXcjR/DS+8BzyN50HiKLR4t7ZZoXmEsbH6qCB7LXvJrw/wAWWPlfH/RrNFPk6lPaai+Bx5kCzIPxAGaAPblAHA6CnUgpaACiiigAooooAKRjtGe1LRQBzPjrStU1/wAJ6ho+mLZ+beRGIvdTNGEBI5wEbP6Vc8KWWoaZ4a07TdSS2E9nbRW5a3lZ1fYoXd8yKRnHTmtnApaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOa+IVkNQ+HfiG3K7ibCV1XHVlUsv6gVd8KX51Twjo1+33rmyhlbnoSgJH51o3kC3VnPbsMiWNkP4giuP+EN19s+FegynOVheLn0SRkH8qAO3ooooAK4T4xtJ/wAKt1eOFiJJmgiBH+1MgP6Zru64T4xSCH4Z6hO4ykU9q7fQXEdAHcRoEQKowAAMelPpB1NLQAUUUUAFFFFABSMcUtIxAHJAoA4PxX8W/DPhDWRpV9LczXYK+atvEH8kMAQWyR2IOBzjtXX6TqtnrWmW2pafOJ7S5jEkUgBG4fQ8j6HpXhfxI+DHiDXfGl1rGiNbTWt/IrOksxRoG2gEnI5XjIxk84xxXX+H/gX4RtdDtINb00X2pKn+kXC3Uyq7k54CsBgdBwDgc80AepZozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHf5ozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHf5ozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHfMcCvEPG/jvw1Z/GXw3cyXjldGNzBfyRxlhGzIVVfUkEnOM4+uRXYH4J/DwYx4e7/8AP7cf/HK8Y8WfB6/sfiBZaJplxara6vJO+nmR3AiRF3srnBPAOBjOe+M0AfUNrcxXdvFcQSLJDLGskbqchlYZB+mKmzXm9h8DvA0Njbw3mj/aZ44lWWf7VOvmOAAWwHAGTk4A71Z/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3+aM1wH/Ckvh5/wBC9/5O3H/xyj/hSXw8/wChe/8AJ24/+OUAd/mjNcB/wpL4ef8AQvf+Ttx/8co/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3+aM1wH/Ckvh5/wBC9/5O3H/xyj/hSXw8/wChe/8AJ24/+OUAd/mjNcB/wpL4ef8AQvf+Ttx/8co/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3k0yW8LzSuqRopZmY4CgDJJNefaP8avCOteI00a2nulkldY4J5YNsUznoB1YZJx8wH+KXnwP8BS2U8dtopt5njZY5hdzMY2I4bBfBwecH0rzHw38CPE1n4ttJtSls0060njmeaGckyhTnCDbnPHcDrQB9JAnOPanUxcDp+Vcm/j6H/hJ7nw7DoerzajbxCaRI1hIEZx827zcdxwefagDr6KwvD/izTPEc13b2jSxXlm2y6s7mMxywk9Mj09xkVu0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIa4X4QFB8PoIkXZ5V3dIVAxj9+5x+RFd0elcN8JS0ngk3DgAz6hdyYHbMzf4UAd1RRRQAVyfxNsRqHw08QwEZ22bygYzynzj9VrrKiuYI7q2lt5V3RyoUdfUEYNAFLQNQGreHdN1FTkXVrFMP+BKD/WtKuE+E1xIvg5tGuH33eiXc2nTHGM7HO0j22la7ugAooooAKKKKACqeqala6RplxqF7MIba3QySOewH8z2A75xVpzhe341534pvk17R9b1MyKdG0i1uGthni6uURhvHqiHKj1bJ/hUkA2fh74mm8Y+HJNalhWGGW6lW1iHVIlIVc+/Bz9eOK63AFcJ8G7c23wp0NSOWjkkP/ApXP8AIiu7oAKKKKACiiigAooooAQ4Iwa8f8XagV/aC8IRAKYbaAqzZ6PMJQAfwUGvYG6V4Jqi/wBo6nqHjYsyQw+LrGFGzwYLf90WB9GZz+VAHvSnPI7jNOpB1paACiiigAooooAKKKKACiiigAooooAKKKKACiiigApMClpDntQAHgDAzXivhTxVDa6p4y8b3Ol6reQXV2Yrea0tfMUW8IKg5yMZGCe3HWu7+JHiq18MeCtTna6iS+e3aO1iLgSM7fKCq9TjOfwrm/DHizwt4P8AhxpenW+o22pX0dqD9hsXE8ssz/My7VyR8xIy2KALnw60ebUPEOsePrqa23a0qpb29tKJFiiXA+ZhwX+UA46EH1r0ivPfgz4Z1Lwx4FEGqIYrm6uXuvIP/LFWCgL7H5c4969CoAKKKKACiiigAooooAKKKKACiiigAooooAbIwVCxOAOSa4X4NrKPhZo8kw/eymeVvfdM5B49sV0fi29OneDdbvR96CwnkX6iNiP1qp8P7T7D8PvD0BXaw0+FmHoxUMf1JoA6SiiigApD0paMZ60AefB/+EX+MDBmK6f4otgVJ6LdwDGPQbkP1Jrv1JNcz498NSeJvC8tvZuItTtpFu7Cb/nnOnKn8eR+Oan8F+JYvFfhyDUhGYboEw3kDfegnXh0IPIweR7EUAdDRRRQAUhpaCM0AcH4h8Y6Zf67a+DbLWYI72+YpdSxTANBGPvRqwPEr/dUdRyeoGcD4paP4L8O+AdT8rSNDs9Rkg2WoFvEkxJYDK8bjgZOfY161tGCOxowPSgDkfhjdWFx8PNDjsbqGcw2USzCNwxR9o3BvQ5yPwrr6QADoKWgAooooAKKKKACkNLSN93pQBzPj7xC/hrwde3sALXzgW9nGo+Z55PlQAdyM7segNc14g8HLpnwGu/D68y2en+c7Lk7pkIlYj6sD+dSRN/wnfxLEyHfoXheQhT/AA3F8Rzj1EYP4H1Br0KaKO4gkhlUNFIhV1PdSMYoAq6FqKaxoGn6nGAFu7aOcD03KGx+taFcL8JZ5F8Ff2RcPvutFvJ9OmOMZKOSuPbay13VABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJgUYFLRQAgAHSloooAKKKKACiiigAooooAKKKKACiiigAoNFIaAOH+Lc0h+H11p9u+251O4gsYQf4mkkUEf98hq7S3jSGCOKMYjRAqj0AFcL4v8A+Jv8RfBuhAB4reWXVrkd0ES7Ym+hdiK74d6AFooooAKKKKAEbpXm/iKKbwD4ok8Y2MTvot+Vj1u3QZ8pui3KgenRgOvXGTkek9ajmhingeGWNZIpAVdGAIYHggg9RQAy0uob22iuLeVJYZUEkciHIZTyCPYip68tX7Z8Jb2Tak134JuZdwxlpNJZj6dWhySfUc9/v+l2l3BfWsV1azJNbzIHjljYMrKehBHWgCeiiigAooooAKKKKACiiigAoopD064oAGOBmuG8ceJL4TQeEvDj58Q6kv8ArM8WUHRpmI6eg75xjJwDY8W+NW0q4i0PRLYan4lu1PkWan5YRj/WSn+FBwcHBPt1FjwZ4QXw5bT3V9P9u1y+bzb+9Yfff+6vog6AYHTp0AANPwzoFl4Y0C00ewUi3tk27mHzSN1Z29yST/8AWrWwB0owM0poA8/0onQfjBrOntkW2u2kd/b8YXzYv3cij1YjaxrvwcmuB+KFu+n2Wl+L7aNnuNAu1mkCjLPbv8kyj6gg57YruraaO5gjnhdXikQOjqchgecj2NAEtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLWB418QL4X8H6lq5GZIYsQrjO+VvlQY7/MR+GaAOe8Hn+3fiJ4s8RkBoLZ00e0focR/NKPpvI5r0DGK5vwHoLeG/BemabLk3SxeZcsTkmVzufJ7/ADEj6AV0lABRRRQAUUUUAFIQD1FLRQBHLFHLE0ciK6MNrKwyCD2IPUV53N4W1zwPdy3/AIIC3WmyOXuNAnk2rnqTA5+4fY8fkBXpFIVB6igDmfDPjvRvFO+C2le21KHifT7tPKniPoVPX6iulUk+lc/4m8E6F4qVH1G0xdx8Q3sLGOeLrja454Jzg5Ge1c8mmfEHwuwGmala+JtPTkW+pHybsL/dWYfK31YUAeh0VwP/AAtK207K+JtA1rQygHmTTWpmgB9pI8g/XFa1n8RfB19Grw+JdLG7oJblYifwbBoA6iiqEWt6XOm+HU7KRfVJ1I/MGqlz4u8N2X/H14g0qDBxiS8jXn8TQBtUGuHufi14PiuPs1pqMmp3eMrb6dbvOz/QqNv61WbxP4519dugeE10uFvu3muy7CP+2KfNn0ycUAdxd3tvp9rJdXlxFb20Yy8szhFQepJ6VwE3jLWfG0r2HgW38uyBKT6/eREQp2PkoRmRuvXgcZ4Oas2fw0i1C6iv/GGr3PiK5Q7kgmAjtIz/ALMK/KfTnIPpXdxQxQxJFFGqRoAqIgwFA6ADtQBgeFPCGm+FraYW3mXN9cNvvL+5bfPcP1y7H68Dp+JyejpNoBzjmloAKKKKAK97aQX1jPZ3EayQTxtFIjDIZWBBH5GuL+Gd3cWdnf8AhDUHZr3w/N9nVm6y2zZaF/8Avnj22813Z6V5548STwvr+m+O7ZWMNtiy1ZFGd1q7cPj1RsHjk9M4oA9DBzS1HDKk0aSxsrxuu5WU5BB6EGpKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARuleeeISfFfxK0jw6nzWGi7dU1HHQy8iCPjv1YjoQR6V13iXXrbwz4dvdZvD+5tYy5Xu7dFUe5YgfjWJ8O9CutM0SXUtXGdc1eU3t8SMFGP3YxnkBBxjsc0Adeue/WnUUUAFFFFABRRRQAUUUUAFFFFABSAAdBilooATA9Kyr7wt4e1Ny9/oWmXTnktNaRufzIrWooA5Z/hr4KdizeGNMyeuLcAfkKmg8AeD7bb5fhfSAV6FrONiPxIro6KAIbe1t7SIRW0EcMY6JGgUD8BU2BRRQAgAHSloooAKKKKACiiigAqve2tve2U1ncxLLBOjRSRtyHVhgg/UVYo60Aed+A76fw5ql14A1SdmlsVM+lTyHJuLIngf7yHKkccDgYXNehg9M56d65Px34Xn1zT7a+0mQW+v6VJ9o06boC38Ubf7LgYP4duDd8G+KLfxboSX8UbQXMbGG7tX4e3mX7yEfXp7EfSgDoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkJxihiQOK4rx14lvrQWvhvw+yP4j1X5IfS2i/juG9ABnHvn720igDLu8fED4gpZKvmeHvDcwkuD1S5vR92P3CDk+5wR0r0kCsbwt4dsfCvh+10ewH7qBfmc/ekc8s59yf8BwK2sUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACN0rzvxVpt/wCFddfxvoEDzRsgXWrFOtxCv/LVB/z0QZ+o/HPotNIHXHNAFPSNWstc0u31LTrhLi0uEDxyJ0PsfQjoR2INXq8w1K0vPhjqkuvaNBJceF7uTfqemxrk2jE8zwj+7/eXoPoRs9E0zU7TWNPgv7C4juLSdA8csZyGH+eMHkEGgC3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFI3TrignArE8UeKNP8ACejNqOou2MhIYYxmSeQ9ERe5P6UAReLvFdr4U0j7XMjXF3K4hs7KP/WXMx+6ijr1IyR09+lZ3gfwtdaa11r+vOlx4j1TD3Mi8rAn8MKf7IGOnUjqcCqnhPw1qWo6x/wmHi1E/tV4yllYjlNPiPYeshz8zde3tXe4oAQAA9KWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKCM0UUAIQAOleaXujar8O9Rn1rwtave6DcOZdQ0SMfNEx6y24+g5Tp6cEbfSyAetGMDAoAzNB8Qab4k0qLUtKukubWT+JeqnurDqCMjg1piuC17wTe2WqS+I/BV1Fp+ruQbm0cf6LfY7Oo+63+0PU9NxNaHhjx7Za5ePpN9BJpOvw/67Tbo/Nn1jbpIvfI7c4xQB11FNVtx4ORTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRsgcfyzQTgVwes+Pbi81GXQfBdrHqurIds9yx/0Sy68yuOpGPuj37jBANfxZ4zsPCtpF5wku9RuTss9PtvmluH9AB25GTjj3PByfDXhDULvWE8U+MHSfWAD9lskO6DTlPZexf1b9T1N7wn4Hg0O5l1XU7uTV/EFyP9I1G4AyP9iNeiIPQfywB12KADFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQRmiigBCoOMjpyKwfFHg/RvFlokOp2xMsRzBdRHZNA395H6jnnuOBkcVv0UAebrqXjDwH8msW8viXQkHGoWqf6ZAo/56x/xjp8wOeCSe1djoPibSPE9j9s0XUILyH+Lyz8yH0ZT8yn2IrV2L2H0rkde+HOi6vfNqlo1xo+sYONQ02QwyE9fnA4YHjORntmgDrxS154upePvChC6lp0PinT1HN3poEV2o9WhPDEnPCn3NbGifEbwzrk/wBli1FbW/DbGsb4eRMrf3dr4yfpmgDq6KaCT3z7gU6gAooooAKKKKACiiigAooooAKKjeRYkaSRgiKMlmPAHqfSuN1L4peHra7aw0trjXdRHS10mIzn6lh8oHrzxQB2rHAzXN+I/HOh+F2SG+uxJfSECGwt18y4lJ6BUHPPYnAzxmsE2vxB8WA/bLqDwnprDmG0YT3jj0Mn3U9iBkV0HhnwRoPhUO2nWQ+1SZ828nYyTyk9SXPPPoMCgDmm0zxd48Gdbll8N6A3/MPtnBu7hP8AprIOEBHVRz1Brt9G0bTdB0+PT9Ks4rW1jHypEMc+pPUk+pyT3rQ2jjjp09qWgBAAOAMCloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEwKy9a8NaL4hgEOr6Xa3igFVMsYLID/dbqv4YrVooA8+Pw1l0sbvCvinWNGCgCO2eT7XbRj2jkyf1p/nfE7Sc7rbQdehQceXI9pO/1BygrvcD0pcCgDgT8RNWscLrHgHxFBIcZNiiXqL/wJGH8qc/xg8IWyg6jc32nMeNl3p06kH04QjP413mBSbQe1AHHwfFTwPOCV8S2K4xneSn/AKEBU3/CzfBP/Qz6b/3/ABXRPp9lKQZLSB8dN0YNN/svT/8Anwtf+/K/4UAcrc/FrwJahjJ4ktSF6+Wryf8AoKmoB8W/DlzHv0uDWNWz0Fjpkz7vpuUCu1isrWD/AFNtFHzn5EA/lU2BnOKAOD/4TnxNqCBtG+HurOD1Opzx2ePfDEk01rT4nauSs2p6FoMJ6G1ga6mHsd+EP4Cu+wKMCgDgk+Fel3syz+JdU1XxBKCGC3tyRErD+7GmAOp45612WnaXp+k2wttNsbazgBz5VvEsa5+gAq5RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k=', '/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAS0BMwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACikJwM1zWs/EDwnoJZdR1+yjkQ4aJJPMkH/AEy36UAdNRXBf8LNS9O3RPC3iPUwQCk6WXkwt/wADkI/lSpr/AMRL3cIPBFlYDPyve6qr5+ojU4oA7yiuCRfitLId8ng+CPnaFW5kPtnpUg034kuu5/EGgRsT9xNPkYD6EvmgDuaK4Y2PxMhbMeteHLgHr5tlKmP++XqOKb4qwZNzZ+ErsDGFt5riNj+LAj0oA72iuB/4S7xpZuRqPw9uGiXrLYajFPn6JwaF+Lfh63KjWrbWNCdjhV1PT5I934qGGPfNAHfUVm6T4h0bXUL6VqtlfAfe+zzq5X6gHI/GtKgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiig0AFB6VieI/FWi+FbD7VrF9HAp+5H1eU+iqOSf8muT87xt43OLdJfCWiNn95Koa/nX2XpDkHr94EDGaAOn8ReMvD/hVA2r6nFDIw+S3GXlfnsgyx+vSudHiXxv4kIHh7w2mk2jH/j+11irkd9sCncD3BJwa2/DngTw/4aka4s7MzX78y3903m3EhPUlz698YB9K6fvQB5+3w1k1f5vFvifVdZz962jf7LbH28tP55rpdG8JeHtAA/srRbK0cDHmRxDeR7v94/ia26KADvRRRQAUUUUAFFFFABTXRZEKOoZTwQRkGnUUAclqvw08IatIJpdDt4LgHcs9nm3cH1yhGT9c1lDwn4y0Dnw54ue9gXOLLXkMwP8A22XDgegxXoVFAHnqfEi40WQQ+NfD95ooztF9F/pNo3YZdASpPYEfWu30/UrLVbVLvT7yC6tn+7LDIHU/iDVmRFkjZGVWVhghhkEe9cJqHw1tIb2TU/Cl7N4b1I/eazANvL7PCflbv0x170Ad7RXncXjvVvDE62njzTVtoiwSPWbENJaOe28fejPQc989hXe2tzBeW8dxbTRzwONySxuGVh6gjrQBPRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFQXl1b2NnNdXUyQW8KF5JZGwqKOSSaAJicKTXn+p+Ob/WdQm0LwNbRX9/Gdt1qMmfsdp7bv429APrzhhVBrnV/inK8djNPpXg1WKSXQ+S41LBIIT+5F15PJH1IHf6Po9hoWnQ6dplrFa2kIwkUa4H1JPJPueT3zQBgeHPANjpF6dW1S4k1nX5P9ZqN2MlfaNOka9eB64zjiuvFLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEc8MdzBJDNGkkUilWSRdysD2IPUV57deCtV8K3D6l4AuEjiLF7jQrlj9mnOOsZP+rf9M46AYPo1B6UAcv4T8a6d4nM1qscthq1rxdaZdDbNCfXH8S8jBHqM4ziuorlvFfgqx8TeVdJNLp+sW3NpqVtxLC3of7y+qnsT0rM8OeMb+21ZPDHjGBLPWuRbXScW+oKP4oz2bGMr/LOAAd5RTQeadQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTZHWKNpHZVRQWLMcAAdyfSgCC/vrXTbCe9vp0gtYVLyyyHCqo7mvOLSyvfirfJqeqxzW3g+Ft1nYMdragwPE0nonovfr9UjSX4r60J5Q6eCrCb9yjDH9qTKfvEd4ge3fH1C+nRqEACgAAYAAxigBIkSJEjjRUjUbVVRgADoBjtUlFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAh6VjeJfDOmeLNJfTtUg8yNjujkXh4X7OjdVb/J4raoPSgDzvw54k1Xw/rcPhDxjMHuXX/iW6qeEv0HG1v7so469fyLehDk56VjeJvDWneK9Fl0zUo90bDMcg4eFx0dD2Ydf0PFc94M8Q6haapJ4N8Tyg6zbR77W6OQNQtxwJBk/fGDuHXvzzQB3lFFFABRRRQAUUUUAFFFFABRRSHgUAB6V5t4oup/HHiNvBOl3Dx6bbhZNeu4jyEP3bdT/AHmxz1wOOcEHe8d+J5vDukxwadEJ9b1KQWmnQcfNK38RB42qDkk8dASM5q14M8Mx+FNAi08SGe5djNeXLctcTty7knk5PHPOAOtAGxY2kNhawWdpCkNtCgjjjQYCKBgAVaoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARvumuX8aeFF8UaZG1vP9k1exfz9PvFHzQSjtn+6eAR0PBxxXU0h6Hr+FAHL+B/FLeJdMkS9hFrrNg/2fUbP/nlIO4/2WwSD0PPJxmuprzrxvZXHhjWYPHulQs5t1EOs28Y5uLX/npjuydc+g64GK72zuoL60gu7WVZredFkjkQ5VlIyCPYigCxRRRQAUUUUAFFFFABTXO2NiTgAZz6U49Oa4X4l6hdS6dZeFdMkCal4gmNorA8xQAZmkx7J/6FQBS8GI3jHxZeeObgE2EG+x0NT08sEiSYD1c5APXGQe1ej1R03T7fSNMtdOs4/LtrWJYo0x0VRgfy/Oodc13S/Dumy3+r3sVrap1aQ9T6ADlj7CgDTPSsHxB4z8PeF1B1jVYLZyAVhJLSt24RQWP1xXLLd+MvHgJsRL4V0FulxMmb+5Xp8q9Igcnk89CM10HhzwH4f8NOZ7Oy86/bmW/uj5txIx6kufXvjAPpQBkL478Q6yR/wjXgm/lgPS61SRbNMdmCnLMPoKcNO+J+oqftWu6BpHPy/YbN7hse/mEDP0rvB1paAODTwh40MeJ/iRds56mPSrdB+AwcUknhHxuoBt/iRcK+cZl0m3cEfTjn3rvaKAODa1+J+nlRBqXh3V4xy32q3ktpG+mwlRUR+ImqaQP+Kr8Happ0QPzXdmVvIEH95inKj6ivQaD0oAx9C8TaL4lg8/RtTt71AMt5T/Mn+8vVfxFbFcjr3w70DXLj7csEum6qOU1DTn8iZW9SV6/iDWIPEHirwGwTxVCda0MHH9s2cWJoB6zxAdB/eXPAHUnFAHpNFUtL1Oz1ixiv9Puorm0mGY5YnDK3r9MHj65zV2gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGTRxzQSRSoHjdSrKRkEHqMV594Jlk8KeJ77wLdyH7KFN7oruetux+eLPco2e5OCTwAK9DPQ1w/xL0u5k0a38RaWo/tbQJftsGP+WkY/wBbGcdmQHjvjFAHc0VQ0fU7bWtJs9TsnLW11Cs0Z9mGcH3HQir9ABRRRQAUUUUAIelee+FR/wAJJ8Qtf8USfNaWB/sfTiTwdnMzjPXLcBh1GRXReONfHhnwVqurA4lggIh4z+8b5U/8eYVi2M1l8LvhhZC+y0lvCoMScvcXLncVXuSXJ+g57UAavizxdZ+FbCN5Inur66byrKwh5luZD0VR6cjJ7e5IFY2geCLu+1OPxL41kS/1gZa2swd1tp4JyFRe7jjLHPI6nGTL4L8L3ov38WeKNs3iK9X5I8ZWwhxxDGOxGTuPck+5buqAGjg06iigAooooAKKKKACiiigApHGUIIyPSlooA851PwlqXhK/l1/wMg2yNvvtCJ2w3Q7tF/zzkx+B444weq8L+JtP8V6Umoae7YBMcsEg2yQSDqjr2Yf/qyCDW2eBXnfi7Rr3w1rDeN/DUO+dUxq+nLwL6Aclx6SL1zjkfkwB6LRWdourWeu6Taapp8wmtLmPzI3HXHofQg8EeoPpWjQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIwDKQQCDwQe9LSEZBB5BoA8++HmfD+t694JkYiPT5vtenBu9rMd2F7kI+QT6nFehV5744zoXjXwt4pj+WJpzpN8QOsU33CfZXGfxr0ADnp160AOooooAKQ9KWkPIoA4Dx8P7W8TeDvDWCYrm/a/uMDIMduu7aw9GJA/CqmjRj4g+N5PEUx8zQNElNvpKEZWe4H+suPcA4VTyOMjBBrmfG+r3Vx8RtZtNMdv7TNnbaFaDsj3JMsknttjXk9iRXr+haNaeH9FstJsl2wWsQjU45bA5Y47k5J9zQBoAYNOoooAKKQnAJPQUilWAZTkEcEUAOooooAKKKKACiiigAooooAKRvunnFLQeBQB5raD/hXvxAGnAbPDfiKUtbD+C0ve6D0V+MD14AwDXpCjkVz/jTw2vinwne6ZnbcMnmWsgODHMvKMD25Az7ZpngTxC/ibwlZ6hcLsvQDDeRkYKTodrjHbkZA7BhQB0tFFFABRRRQAUUUUAFIeATS0HpQByHibxufDuvaLpX9k3M39qXkdqtyXVY1LFQcckkjd6Ae9daOteb/FL/AJD/AIB/7D8P8xXpVABRRRQAUUUUAFFFFAHM/EDRf+Eg8BazpyKWle2aSEA4PmJ86f8AjyirnhLWR4h8JaTq2QWurVJJMdA+MMPwYEfhWyfunjPtXB/CoCx0fWNAC7E0fV7m1hXP/LIt5iH8d5/KgDvaKKKACkPApaRiFUknAHJNAHh3w7tX8R/GnxTrlxseDS7qZIGA53ufKU59PLiI/wCBV7lXlvwHtHHgi51abBm1S/luGb2Hy4/NW/OvUqAEPSvO4Vlt/j40H2u6lgk8PNP5U0pZEczqp2r0HCjpXoteeyEf8NBxDPP/AAjB4/7eaAOm8U3M0WgyW1s5S7vmWzgYdUeQ7S4/3VJf/gNZuqeBdP12VIdUkuDpltEkVnYwXDxRoFH322kFm7DJIAAx1NXJ/wDiY+NLaAcw6Vb/AGlv+u0u6NPxCLL/AN9iovEniqy0qaPSl1OxtNSuVLK11KqJAnQyMCRn2Xqx9AGZQDE+Fy6jaDxDo91ezXtjpepPa2VxO259oAJQnvtyPzPoAPQq53wtd+H0g/sjQtRgvfsy+ZM8MwmJZySXkZeN7Nub1PPFdFQAUUUUAFFFFABRRRQAUUUUAIelcB4c/wCJD8V/EehgBbXVYU1i2VRgK/8Aq5vxLbWr0A9K4Lxp/wAS7x34I1rfsQ3kunSc43CaM7Af+BJQB3tFNGc4p1ABRRRQAUUUUAFIehpaKAPMfiYbm41/wf8AZdO1K5Fjq8dzctbWM0ixxgrkkqpB+gJr0iCQTRJIofDLkb0KH8VPI+h5qaigAooooAKKKKACiiigBD0rhPDyGw+L3i+1LYS9trO9jTHAwrRsfzAruz0rhJ4/s/x0s7jkC78Pyw+xKTq354NAHeUUUUAB6VzvjPxPpvhTw3c3+oXXkh0aOAAEmSQqSqrjvx16DvgV0J6V5b8bfBWoeLPDtpdaYwa40xpJWgZ9qyRlcnAPBYbRj6tQBY+B+r6XefDqx02yulkurDcLqLBDRl5HYZyOc54Iz068GvS6+dvhD8LrzUdHk1y513VdKgvFUW39kXnkySKGYMZPlPGQMD6+1ek/8Ks/6nzxx/4OP/sKAPQDWW3h3RDqP9pHR9P+3A7vtP2ZPNz67sZ/WuT/AOFWf9T544/8HH/2FH/CrP8AqfPHH/g4/wDsKAO4jtYIZ5po4lWWdg0rAcuQoUZ/AD8qzL3wn4c1K7ku7/QNKu7mQ/PNPZxu7Y4GWKknAAH4VzX/AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAdfpeh6VowkXS9MsrFZDmRbWBYgxHTO0DPWtA9K4D/AIVZ/wBT544/8HH/ANhR/wAKtx/zPnjj/wAHH/2FAG14u8caH4KtYp9Zumjafd5EUaF3lx1AHTjI5JA5q34Y8U6R4u0z+0dGuvtEAcxvlSrI2M7SCBg4I9vQmvHfiP8ABjWruKzudD1XVdcljVlli1W+EkijjHlkgDHXIz6Ve+H3wa1PT9HlfV9f1vR7ydwTb6RqAjUKBgbyFIZs7uhwBjBNAHt9Fef/APCrP+p88cf+Dj/7Cj/hVn/U+eOP/Bx/9hQB6BRXn/8Awqz/AKnzxx/4OP8A7Cj/AIVZ/wBT544/8HH/ANhQB6BRXn//AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAd+3CnnFeWfGPxLo2lQaJb3V0q6hbana6jHAEJby0chm46cbvrg1pn4W4/5nzxwf8AuMf/AGFeUfFf4W6ppl5a6pZ6ne6tbTGK1MmpXYkuBIzEKNxCjbyMehznigD6G0TW9P8AEOlwanpVytzZzg7JACMkEg5B5BBHQ1pV494M+Dl5pnh2GHUfFPiHTryRmklt9J1DyoVJOBxtOWwBk/gOma6H/hVn/U+eOP8Awcf/AGFAHoFFef8A/CrP+p88cf8Ag4/+wo/4VZ/1Pnjj/wAHH/2FAHoFFef/APCrP+p88cf+Dj/7Cj/hVn/U+eOP/Bx/9hQB6BRXn/8Awqz/AKnzxx/4OP8A7Cj/AIVZ/wBT544/8HH/ANhQB6BRXn//AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAegUV5/wD8Ks/6nzxx/wCDj/7Cj/hVn/U+eOP/AAcf/YUAegUV5/8A8Ks/6nzxx/4OP/sKP+FWf9T544/8HH/2FAHoFFef/wDCrP8AqfPHH/g4/wDsKP8AhVn/AFPnjj/wcf8A2FAHft9015B4p8f+GdO+LmhvNqeBp0N1bX7ojMsbOF2KcDnkHOM4OM4xW+fhbgZ/4TzxwfY6v/8AYV4j4p+EXiG18fR6Tayi8GqPLNa3NxMN7qvLGU/3xkZOPmzkd8AH1TFMssSSRsXjdQysvIIPQ0/efRvyrN8P6Y2ieHNM0rzjL9jtY7fzNv3tqhc/TitHLf3v/HDQBJUVzCtxaywuAVkQowPoRipaQ9KAPOvgbdrdfCrTIw2WtpJon9j5jMB+TCvRq8b+Ct+lj4j8Z+Fiyg2upSzxLnkjeY2/Lan517JQAUUUUAFFFFABRRRQAUUUjfdPOKAKmqalb6Tp0t7clvLjAwqLuZ2JwqqO7EkAD1Irjfhbr2peJrLXdV1IlHbVJIIoA+5YY0RAFH4k5Pc5Pelm1a+1LVxq6aFeX2jWQL2LxzQqsj8hpiHcEgDIXjGCWGcjFL4GRMPhpa3D8tdXM8xOep3lf/ZTQB6VRRRQAUUUUAB6VwXxIVru98HaZG3zz69BM68fNHEGdv6V3p6V5/dFdc+NlhAvzQ+H9NkndgeFmnwgU++wE0Ad8cYrz34v3t1ZeE7caZdXdvq13ew2tm1vcPGS7NkghSN2QCOQeteh9q8u8VW//CWfGDQ9BE8sdvo9pJqU7wttYSMQqc9mB2n6NQBF8QHvvh9oGnatpGtajNfC6jga2u7p7hLzIO4bXJIPHVcEV6lCxaNCy7GKjK+ntXkF/bL4Z+M+g217LPrkOpxnyH1FzLLYuM/NH/CBwM8Z6817Ep56/hQA6iiigAooooAKKKKACiiigAooooAKKKKAA9K4bU8XHxn8Pxct9l0q6nx027mRM+9dwehrhLJFvPjlqdypyLDQobVh6NJK0n8hQB3lFFFABQaKQnAoA8E1GVvB3xp1TXApSyiuoDdnput7mMKzn2SVB+de9j2rzPxnpVtN8SNJS9jLWPiDTbjR7hs8KR+9jP8AvZ3AfStP4bavdNYXPhnV3H9taEwtpuf9dFj91KPUFcDPXjnrQB3VFFFABRRRQAUUUUAB6Vz3ivRdV1/SnsLDWI9NhlG2dvshld17qDvXbkcH2PauhooAx9T06+vPD0mnWd7b2c0sBhM/2YsqgqQSibxjHbJOPeqHgXwvdeD/AA5b6JJqMN7b227ymW1MLjcxY7vnYHlu2K6eigAooooAKKKD0oAhvLmGysp7q5lWKCGNpJJGOAiqMkn6AZriPhdbTXenal4rvIil34gujdKGHzJbr8sKn2C8j/eqH4g3EviDUbDwHp7sr6hifUpUPMFmp5+hcjaPXkd67y2ghtLeK3t41ihiQIkaDCqoGAB6AAUASTBzC4iZVkI+VmXIB7ZGRn8xXB6d4J8Q6Z4l1jXYvEmnSXWqlPN83SXIjVBhVTE4OAMdc9BXf0UAcfongSOz8St4m1fU59X1ryzFFNJGI44EPGI0HTgkZyTz7knsKKKACiiigAooooAKKKKACiiigAooooAKKKKAEPSuC+H4W/8AFPjjWwD+/wBVFkCe4t0CZHtkmuw1nUY9H0S/1OYZjtLd52HqFUnH6Vzfws0+Ww+HWkm5Yvc3aNezOerNKxkyffDD8qAOyooooAKDRRQBw3xVs55PBp1W0TdeaJcxanCM4/1bZb/xwtVXxZY3Nwum+PvCqm41C2twzQIP+P8As2AYx8fxAHcvXnPXiu/uIIrq2lt50WSGVCjo3RlIwQfwrhfhdcS2elaj4UvHZrzw/dtagv8AeeBiXhc+xXp7LQB1Ph/XrDxLo9tq2mTebbXC5GeCh7qR2YHOR+vStWvNtZ0rU/A2t3Pijw3bvdaVdMZNX0pG6t3nhHZxzuHGf1XttE1vTvEWmwanpV0lxaSjKsv6gjqCOhBoA06KKKACiiigAooooAKKKKACiig9KAEPSsDxd4ptPCehPf3MbTzORFa2sfL3MzfdjUe/48Z61L4m8T6Z4U0p7/VJiqk7IokGZJ3PREXqT/Lqa5nwx4d1PW9bTxl4uiEd4EK6bph5WwiPOW9ZD3Pbp6BQDR8CeGrvSLa61bW3WbxDqzie+kHSMY+WJf8AZQcfXPtXYU0dRTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoPSig9KAOB+K00t14fsfDdszC416+isgUPKRZDSP8AQKuD7NXdQxJDGkUahY0UKqjooHAArgrPPiX4xXV5jdYeGrX7LCexuphmQg+yYUj1Ir0GgAooooAKKKKAEb7przvxQT4T+IWj+KF+TTtSUaVqTDOEYnMEhA44OVJPQcd69FrL8SaFa+JfDl/o14P3F3EYy2MlD1Vh7ggEe4oA0TwCAM8dK4PV/BWoaTq0/iDwPcRWd/Md15p0xP2W+PqR/A/+0MZJ5xkk3Phzr11quhyadqxI1zR5DZXyk5LMvCye4ZRnPcg12ZoA4/w78QNN1i9OlahDLo+ux8Sade/KxPrG3Rx3BHbnGK68VjeIvC2ieKbL7LrOnRXSL9wtwyH/AGWHIrlR4f8AHHhVf+Kf1uPXbBOlhrJxMq/7M68k9AA3AFAHolFefL8UI9MBTxX4d1jQXX787QG4tgfQSxg5/Kt2w8feEtTCfZfEemOX+6jXKo5/4CxB/SgDpKKrx3ltMm+O4hdD3VwQf1pJb60gXdNdQRr6vIBQBZorltS+I3g7S0drrxLpuV+8kMwmb/vlMn9KyG+I91qxMfhTwpq+q7uVup0+yWxHqJJP5YFAHft0riNa+IUEOoPonhm0bXtdAwYbdv3NuemZpei8g8ZzxjjIqofCHirxRz4u8QC1sm+9peibokf2eVvmYEcEDj0xXYaJoOleHbBLHSLGCztl/giXqfUk8k+5yaAOa8PeB5l1RfEXiq7XVfEGMRnH+j2Y67YV/wDZjyfbnPbDg06igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsTxZ4gg8LeF7/WbgBhbRlkQ/wDLRzwi/ixA/GtpvumvOdVP/Ca/Eu00aM79J8Nst7fntJdMD5Uf/ARlvzB5FAG58PNAn8O+EreC9JbUrpmvL+RvvPPIctk9yOFz7V1dNHXpTqACiiigAooooAKRvunAyfSlooA868ZxyeEPEdt46s42NmVW11uJF+/Dn5Zsd2QkD1I46V6BbzR3EMc0MiyRSKHR1OQwIyCD3GO9FzBFdWstvPEksMqFJI3GVZSMEEdxivOvCd1N4I8Rf8INqkrvYTbpdCu5Od0fVoGP95O3qPTgUAelUU0dRTqAA8isTUPCPhvVHMl/oOmXEh6vLaIzfnjP61t0UAcXJ8J/Asjlz4bswT12llH5BqWL4U+BoXDp4as8+j7mH6k12dFAGTp/hjQdJfdp2i6dZv8A3oLZIyfxAzWrS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLUN5dQWVnNdXUqw28KGSSR2wFUDJJP0oA5/xv4nPhfw+89vF9o1O5cW2n2wGTNcPwox3A6n2FL4H8Mf8It4ejtJpfP1Cd2ub+4zkzTvyzH6dB7D1zXO+EYLjxp4lPjnUonjsIVeDQrZ+NsZ4edh2Z+3oPXgn0YdaAFooooAKKKKACiiigAooooAD0rn/ABb4WtfFmhmxnkeC4iYTWl1F9+3mXlXU/wCeK6CkbO0460AcZ4H8U3epPcaB4gRLfxJpvFxGOFuI+izx+qnvjofTIFdpXI+MfCD6+ttqWl3C2HiKwO+yvewP/PN/WM85GD1zjkgu8G+MR4i+0afqNqdO8Q2HyX1g55X/AG067kPGDz168gkA6yiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQnAzQAN0NeY6hK3xR159Fs5CfCWmzD+0blDxfTA7hChHVF4JPfj2Jk13WrzxzrMvhXwvdtFp0RxrOrQ4IRf8AnjE3QuehPb867vR9IstC0y30zTbdLeztk2Rov8z6knknqTyetAFqGJIVSONFSNFCqqjAUDgAD2FTUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjHCk+lcl4t8G/2+9vqum3J07xFYg/Y76Mf+Q5B/Eh9D0zx1IPXUjEgZAzQBxvhLxq2qXj6Fr1sNM8SQL+8tWPyXCj/lrCf4lOCcDpz1612dc74o8IaZ4tskivQ8VxC2+2vIG2zQP2ZG7fTpXM2vi/V/Bl1HpXjoK9o7bLXX4UIil9FmUf6t/fofwJIB6RRUUM0U8SSQypJG43I6EEMPUEcYqWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikPQ1keIfEmk+FtNN/rF7HbQg4QE5aQ/wB1R1Y/T8eKANWV1jiZ3YKijLMTgAdzntXmt9rep/Ee6m0bwvNJaeHkYx3+tqMGbsYrf19C/Qcn03KNM1/4kuJtehuNE8LBgY9L3bLm9A6GYj7if7A5/JTXodlZwafaxWlpBHBbQqFjijUKqL2AAoAraJomneH9Ng03S7VLa0hXCog6+5PcnuTye9aVFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVBeWsF7Zy2t1BFPBKu14pVDK49CDwanooA85fwhrvgyVrrwPci404ndJoF7IfLPr5Eh5jb2PGSSegFa/h34g6Trl4dOull0nWk/1mm36+XJn/Zzw478c45IFdeaxPEPhXRPFNp9m1nTorpV+4zDDof9lhyP85oA2hS153/YPjfwkgPh/V18Qaegx/Z+rnbMo/2JxjJ6cMMYqzafFHR4rhLLxFbXnhy/PHl6lGVjc99koyrL75H0oA7uioba4huoUnt5kmicZWSNwysPUEcEVNQAUUUUAFFFFABRRRQAUUUUAFFIelZes+IdI8P24n1bU7WyQ5x50oBb6A8t9BQBq1Fc3ENpbSXFzNHDBGpZ5JGCqgHUkngCuBPxA1bxD+78FeG7m9jbpqeoA21qB/eGfnkHsMGlt/hzca1cJeeOdYk1mRTuTT4gYrKE+yDl8ep7cEGgBLr4g3euzy6d4D08apOp2S6lOCllbnvlushHHCjvnJ6Vd0H4f29rqS654hvJNd17GRc3A/dwf7MMfRAPXr16ZIrr7W2gs7eO3tYI4IIxhI4lCqo9ABwKnoAaOop1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVWvLK01C2e2vbaG5gfhopkDqR7g8GrNFAHCXHwr0SG4a60G71Lw9cu25jplwUjc9t0bZXHsAKYLH4maPtFvq+i6/ADlhe27WsxHYAx5XPuRXfUUAcD/AMJ34i05Sdb+H2spg43aZJHegj1wpBFKfi94RtsLqU2oaXITt8u90+ZGz07KR+td7SNjacjI9KAOUt/iX4KulDR+J9NUEZ/eThP0bGKtDx54PYA/8JVon46hCP8A2atK40bSrobrjTLOYjn95AjfzFZ7+CPCUhMj+F9FZmOSTYREn8dtADH8feDkPPirRfwvoz/Jqzrv4s+BLIEyeJLV/wDriHl/9ABrZg8HeGLbPkeHdIi3dfLsYlz+S1pQWVpaMBb2sMPGP3cYX+QoA4tvirpE6qdJ0fxFq4PRrLTJCv5vtxSN4k8fai23SvBUVihHy3GrXygD6xx5YV31FAHn58KeNtaUjXvGZsYXGGttDtxFg+0z5etHR/hr4W0a5+2Jpq3l+cFru+c3ErEfxZfgH3AFdfRQAgpaKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9k='] Multimodal Competition True Theorem proof Geometry Math English 44 "A king strapped for cash is forced to sell off his kingdom $U=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$. He sells the two circular plots $C$ and $C^{\prime}$ centered at $\left( \pm \frac{1}{2}, 0\right)$ with radius $\frac{1}{2}$. The retained parts of the kingdom form two regions, each bordered by three arcs of circles; in what follows, we will call such regions curvilinear triangles, or $c$-triangles ( $\mathrm{c} \triangle$ ) for short. This sad day marks day 0 of a new fiscal era. Unfortunately, these drastic measures are not enough, and so each day thereafter, court geometers mark off the largest possible circle contained in each c-triangle in the remaining property. This circle is tangent to all three arcs of the c-triangle, and will be referred to as the incircle of the c-triangle. At the end of the day, all incircles demarcated that day are sold off, and the following day, the remaining c-triangles are partitioned in the same manner. Some notation: when discussing mutually tangent circles (or arcs), it is convenient to refer to the curvature of a circle rather than its radius. We define curvature as follows. Suppose that circle $A$ of radius $r_{a}$ is externally tangent to circle $B$ of radius $r_{b}$. Then the curvatures of the circles are simply the reciprocals of their radii, $\frac{1}{r_{a}}$ and $\frac{1}{r_{b}}$. If circle $A$ is internally tangent to circle $B$, however, as in the right diagram below, the curvature of circle $A$ is still $\frac{1}{r_{a}}$, while the curvature of circle $B$ is $-\frac{1}{r_{b}}$, the opposite of the reciprocal of its radius. Circle $A$ has curvature 2; circle $B$ has curvature 1 . Circle $A$ has curvature 2; circle $B$ has curvature -1 . Using these conventions allows us to express a beautiful theorem of Descartes: when four circles $A, B, C, D$ are pairwise tangent, with respective curvatures $a, b, c, d$, then $$ (a+b+c+d)^{2}=2\left(a^{2}+b^{2}+c^{2}+d^{2}\right), $$ where (as before) $a$ is taken to be negative if $B, C, D$ are internally tangent to $A$, and correspondingly for $b, c$, or $d$. Given three mutually tangent circles with curvatures $a, b, c>0$, suppose that $(a, b, c, 0)$ does not satisfy Descartes' Circle Formula. Show that there are two distinct values of $r$ such that there is a circle of radius $r$ tangent to the given circles." "[""Apply Descartes' Circle Formula to yield\n\n$$\n(a+b+c+x)^{2}=2 \\cdot\\left(a^{2}+b^{2}+c^{2}+x^{2}\\right),\n$$\n\na quadratic equation in $x$. Expanding and rewriting in standard form yields the equation\n\n$$\nx^{2}-p x+q=0\n$$\n\nwhere $p=2(a+b+c)$ and $q=2\\left(a^{2}+b^{2}+c^{2}\\right)-(a+b+c)^{2}$.\n\nThe discriminant of this quadratic is\n\n$$\n\\begin{aligned}\np^{2}-4 q & =8(a+b+c)^{2}-8\\left(a^{2}+b^{2}+c^{2}\\right) \\\\\n& =16(a b+a c+b c)\n\\end{aligned}\n$$\n\nThis last expression is positive because it is given that $a, b, c>0$. Therefore the quadratic has two distinct real roots, say $d_{1}$ and $d_{2}$. These usually correspond to two distinct radii, $r_{1}=\\frac{1}{\\left|d_{1}\\right|}$ and $r_{2}=\\frac{1}{\\left|d_{2}\\right|}$.\n\nOne possible exception case to consider is if $r_{2}=r_{1}$, which would occur if $d_{2}=-d_{1}$. This case can be ruled out because $d_{1}+d_{2}=p=2(a+b+c)$, which must be positive if $a, b, c>0$. (Notice too that this inequality rules out the possibility that both circles have negative curvature, so that there cannot be two distinct circles to which the given circles are internally tangent.)\n\nWhen both roots $d_{1}$ and $d_{2}$ are positive, the three given circles are externally tangent to both fourth circles. When one is positive and one is negative, the three given circles are internally tangent to one circle and externally tangent to the other.\n\n\n\nWhile the foregoing answers the question posed, it is interesting to examine the result from a geometric perspective: why are there normally two possible fourth circles? Consider the case when one of $a, b$, and $c$ is negative (i.e., two circles are internally tangent to a third). Let $A$ and $B$ be circles internally tangent to $C$. Then $A$ and $B$ partition the remaining area of $C$ into two c-triangles, each of which has an incircle, providing the two solutions.\n\nIf, as in the given problem, $a, b, c>0$, then all three circles $A, B$, and $C$, are mutually externally tangent. In this case, the given circles bound a c-triangle, which has an incircle, corresponding to one of the two roots. The complementary arcs of the given circles bound an infinite region, and this region normally contains a second circle tangent to the given circles. To demonstrate this fact geometrically, consider shrink-wrapping the circles: the shrink-wrap is the border of the smallest convex region containing all three circles. (This region is called the convex hull of the circles). There are two cases to address. If only two circles are touched by the shrink-wrap, then one circle is wedged between two larger ones and completely enclosed by their common tangents. In such a case, a circle can be drawn so that it is tangent to all three circles as shown in the diagram below (shrink-wrap in bold; locations of fourth circle marked at $D_{1}$ and $D_{2}$ ).\n\n\n\nOn the other hand, if the shrink-wrap touches all three circles, then it can be expanded to make a circle tangent to and containing $A, B$, and $C$, as shown below.\n\n\n\n""]" ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIATABxwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ8CgBaKztU13StFhEuqanZ2SHobiZY930yefwrlH+LXh+dnTRbbVtekQ4ZdMsJJNp/3iAP1oA7yiuD/wCEr8b3rgaf4BeGJhkT6jqMcWPrGoZqao+K1wTvfwnZxkcBVnlcdOvIHrQB31FcN/YnxFlO5/GWmQHpti0gMPzZ6aPDvxDDs/8AwntqQQMIdFjwv/j2aAO7orhv7I+I8GfL8V6Rc9x5+llB9PlemLP8U7VyZrXwpfxjosEs8Ln/AL6BAoA7yiuB/wCE38VWAZtZ+HupLGvRtNuYrwsPZQQamtfix4UluEtr27n0m6brDqds9uR9SRtH50AdxRVazv7TUbdbiyuoLmBxlZYZFdT+IOKsA84PWgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooPtTXcKpYnAHc9qAFJwKhuLqG0t3uLmWOGGMbpJJGCqo9STgAVxGofEV7+9fSvBennXr9Tte6DbLO3Pq8vRj0O1evOD2qO0+HEuszx33jnVZNbuVYOlkmYrOE/wCygwWxyMt1BORQBJcfE6G+uHs/COk3niS6Q7Glth5dqjejTN8o45GM5qM+HvHfiMf8T3xNHotq3Wz0OPEhXtmd+Q3rtGK7y2tbezt47e2gjghjXakcShVQegA4FS4HpQBx+l/DDwjp0pnfSY7+7bBe51BjcyO3qS5IB+gFdekaRoqIiqqjCqowB9KdRQAhAPUUYFLRQAYowKKKAEwD2pcUUUAJgVDd2drewNBd20M8LcNHKgZT+BqeigDiLz4VeGnuGu9KjutDvSAPtGk3DQED/dHyY/Cqn2b4jeGsNa3lj4qshn9zcj7JdY7AOMofq3NehYpNoNAHF6X8TdEurwadqy3Og6nwPsuqR+Vu7fK/3WGeBzk+ldmDk1R1fRdM12xaz1WxgvIG/gmQNj3BPQ+45riW8G+IfCDGfwPqhmsxnOiapI0kWPSKQ/Mh9Acgk8mgD0aiuQ8P/ECw1a/Gj6lbTaNroGW0684ZveNuki8HGOeDxXWq2SeelADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApCcUprkfFnjVNAlt9L0+1bU/EF3/x7afCfmA/56Of4EGDyf5AkAGl4k8VaV4V043uqXIRSdsUKDdLM/ZUXqxP5euK5BND8R/ET994nMui+HnwYtGgciacf9PD9h/sDHXkArzreGfBD2+pf8JD4mul1bxC4+WUr+5tAf4IVPQDpu6n25z2mBnOOaAKmm6ZY6RYx2WnWkNraxjCxQqFUfh3PvVvFLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJtU54HPX3paKAMbxH4W0bxTp/2PV7GO4Qf6tzkSRH1Rxyp+n45FcZ/aPiT4bYGqyXHiHwwM4v1G67sk/6agf6xMfxDkYOccCvTKawBGMDB4oAq6ZqdnrFhDf6fdxXVpMu6OWI5Df8A1+xH8quV5zqfhTVPCOoT694GRSkjeZfaExxDcju0f/POTH4Hj0weo8L+LNO8WaZ9ssHZWjbZcW8o2yW8g6o47Ec+1AG9RSDOaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPShjhcj+dct408Wnw9ZQ2lhb/bdd1BvJ0+yx99/7zeiLnJPHHcdQAVvGHjC50y6tdC0KCK+8RX5Hk27Z2QJ3llxyEH69ulWvB3g6Hw5FNd3c51DXL0iS+1GUZeVuOF/uoMYCjHQU3wX4PHhyCe7v5/t2u3zebfX7Dl2/ur6IOgHH07DqwMUAJgZzS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADSOK4bxZ4QvF1UeK/CZjt/EMI/fQk4i1CMY/dyf7RAwG9hz0I7sjPWkI4oA57wj4tsvFmltc2yvBdQN5V3ZyjEltIOqsODjg4Pf8CB0I61wXjHw5f2Wqr4z8LR51i3QC7tBwuoQDqh4++APlPtjngV03hnxDYeKNEg1XTZN0EowVbho2HVGHZgf84IJANiiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopCaAFopOc0ZP+RQAtFIKWgAooooAKKKKACiiigApDxS0jHAzQBl+INdsvDeh3Wr6lJstbZN7cZZj2Ue5JAFcz4G0C9uL2bxl4kixrmoJiC3Y5FhbdVjX/AGjnLH1OMA5znon/AAsTx80p+fwz4cnwg/hvL0dT7qn6npkE49JXr+Hf/P1oAUAA5xz0zS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANZeOBz6mvNvEEUvw68SyeLLFCdB1GRU1m2UE+S5OFuVA9zhh3z6nI9KIBGCM1Dd21vdWk1tcxJJbzIySxuPldSDkH2IzQA6CZLiJJonWSJ1DI6kEMDyCD3BqWvOfBdxceEvEVx4Cv5JHtwpudEuJTky2+TuiJ7sh/TsBivRQc0ALRRRQAUUUUAFFFFABRRRQAUh4FDZ4x61zHijxxpvhlorMrLfavcD/RtNtF3zSe5H8K8H5j6HGcYoA6YtjJrkNU+JvhzT7s2FpNPrGpD/lz0qI3Mnv8Ad+UY4zkislfCXiPxkfO8aag1jp78roemybVx1xNKDlz6gHHAI9K7bSND0rQbQWmlafb2cA6pDGFz7n1PuaAOQGs/EjWudN8O6XosOeJNWuTLIy+oSL7p9iaePC3jq7lL33xAMKMP9TY6XEgX6OxLV3uBRigDhh8PdQb5pfHvigyHqUuI0X8tlNbwR4igjIsPiDrEbD7puoIbgfkVH867ujFAHBfY/idpYHkavoOtoB832y1e2kb6eWSufrTB8SLzSBjxf4V1PR0HLXkAF5bKPVnj5XPpg16BikIB6igDP0nXdM12z+16VqFvewdC8Dhtp9CByD7HmtAEnqK4vWfhro95eHU9HeXQNYwdt5p3yBj1+dB8rgnBI4JwOaz4fGOt+EJ47Lx3bxm0ZgkOvWaEwtnp5yAZjY+uNuenAJoA9FoqK3niuYUmgkSSKRQyOhDAg8ggjgipaACiiigBDXHfELXrzTtHt9K0dv8AieazMLOyA6x5+/L7BFyc9jiuxbpXnnhHb4u8cat4vkUNZWedM0kkcFVOZZl/3mOAR2yD3oA63w1oFl4Z8P2ejWC/6PaxhNx6u3UsfcnJ/GtfFGMUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQQD1oooA5H4g+HLjWtCjvNKPl65pUgvNOkAyTIvJQ+oYcY6ZxngVqeE/EVt4r8N2Ws2oCpcxgtHnJjccMh9wQR+RrZPSvPNKx4P+KN7o2CmmeI1a+s/7qXS/65B/vDDfyoA9EopBS0AFFFFABRRRQAUjHC5oPArjfG/ie+042ug6CqzeItUytspGVtk/infrhV7ZByR3wRQBB4o8XX8uqnwr4Thju9edc3E7jMOnxn+OT1bHRe/XHQHS8JeC7Dwwks/myX+r3Q3XmpXBzLOx64P8K+ijsBkkjNT+EPClp4T0n7JDJJcXUredeXkpzJczH7zsTk/QZ49+p6EADtQAmBnNLRRQAUUUUAFFFFABRRRQAYzUN1bw3NtJBcRRzQSKVkjlUMrqRggg8EVNQQD1oA8vn03VPhfO+o6HHcaj4VJLXmlA75bIdTJASeV7lSfx5yPQtJ1ax1zTYNS026jubO4TfHIh6jp+BByCDyCCO1XGAwa8x1CKT4W+IG1izD/8IfqEwGo2wyRYTMcCZB2QkgEe/wDugAHqFIelMilWZFkR1ZHAZWU5BHqDTz0oA5H4k63caL4NuEsedT1CRbCxAOCZpTtBHuBkj3Ara8N6Hb+G/Dtho1qP3VpCI92OXPVmPuSST7muT1If8JF8YdMsfvWnh60a9mxyDcS/JGpHYhQXB969AFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVxfxO0qe78KHVNPX/iaaLMuo2h55aPll46gruGO/FdpTXVWUqwBU8EHofagClouqQa3o1lqlqcwXcCTJk8gMM4PuOh96v15/8MD/AGSdf8IOTnRL5vs4OeLab95Fyep+9n8K9AoAKKKKACiikPTigChrmr2mg6Jd6rfSeXbWsZkc9z6Ae5OAB3JArlvh7o13Il14u1uIDWtaAkKH/l2t+scI9MDBPcnryKqeMVPivxxong771jAv9q6oAOHRW2xR/RnySD2wa9CU5JoAUADoKWiigAooooAKKKKACiiigBGOBWdHrulza22jRX8EmopEZntkYM6ICBlgPu/eHB55rSIzXnYhih/aDURRqgbwyWIUYyftPWgD0GSRYo2d2VUUEsWOAAO+a5/UvHPh3RtNs7/U9UjtIbyNZYBKjB3UgHOzG7oeeOKk8Ws02kppUZYS6rMtkNpwQjZMpB9REsh+oFXk0ewjvp777PG1xKixb3QHbGo4RfRc5OB3JoAfpeq2Gt2Ed7p13Dd2smSssTZGQensR6Hmpr21t72ymtLqJZbedGjljYZDKRggj6Vw/wAMNJSwPiS7slEWkXuqSPYRKMJsX5S6jspYHHqFFd+RkYoA888DXU/hnXL3wFqEzSLap9p0ieQ5MtoT9zPcxnj6ZwABXoX3hzx/SuG+J+nzx6RaeKdOTOp+HpvtaAcGSHpNHn0Kcn/drT8R+IYIfhxqXiGymHlNprXFtIeMlkzH+JJWgDI+GAGqDxD4qYKx1nU5DDIO9vF+7jH4Yau+AArn/Aulf2J4H0XTmQJJDZx+Yo7SEbn/APHia6GgAooooAKKKKACg0UUAcp8RNU1nRvBmo6los9tDNbRGRmmiLnA67eQAeepyOOlanha8n1Dwno97cyeZPcWME0jkAbmaNSTgccknpWR8UBj4Y+Iscf6G3StLwZ/yI3h8/8AUNt//RS0AblFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhGRS0UAef6kf7E+NGjXYLCDXdPlsXA6ebERIrH3KkqK78GuD+LG2y8P6Zr5JUaLq1teOR1Me/Yy/iH/Su8FAC0UUUAFIelLWF401F9J8E63fxuElgspXjY9n2Hb+uKAOb+GYGsT+IfF74Y6vqDJbOB1tocxx/To2a9AAA6Vz/gXTf7H8DaHYFAjxWUW8D++VBf/wAeJroaACiiigAooooAKKKKACiiigBCcV527Tn45R3/ANg1E2X9hmyN19hm8vzvP37d23GMd84969FpMCgDBMUl74zEsiMLbTbXEbEHDTSnkj3VEA4/56msDxh4rnt9S/sRNB8R3NkVzd3OnafI4YH/AJZI/A5H3mB46Dkkr3u0Y6UbQO1AHN+FfEP9ttNDb+HtU0iztI0RBqFr9n3E9FjTn5QByeMZGBXS0gABzS0ARzRRzwPDMgeORSjqwyGB4INeFXcjR/DS+8BzyN50HiKLR4t7ZZoXmEsbH6qCB7LXvJrw/wAWWPlfH/RrNFPk6lPaai+Bx5kCzIPxAGaAPblAHA6CnUgpaACiiigAooooAKRjtGe1LRQBzPjrStU1/wAJ6ho+mLZ+beRGIvdTNGEBI5wEbP6Vc8KWWoaZ4a07TdSS2E9nbRW5a3lZ1fYoXd8yKRnHTmtnApaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOa+IVkNQ+HfiG3K7ibCV1XHVlUsv6gVd8KX51Twjo1+33rmyhlbnoSgJH51o3kC3VnPbsMiWNkP4giuP+EN19s+FegynOVheLn0SRkH8qAO3ooooAK4T4xtJ/wAKt1eOFiJJmgiBH+1MgP6Zru64T4xSCH4Z6hO4ykU9q7fQXEdAHcRoEQKowAAMelPpB1NLQAUUUUAFFFFABSMcUtIxAHJAoA4PxX8W/DPhDWRpV9LczXYK+atvEH8kMAQWyR2IOBzjtXX6TqtnrWmW2pafOJ7S5jEkUgBG4fQ8j6HpXhfxI+DHiDXfGl1rGiNbTWt/IrOksxRoG2gEnI5XjIxk84xxXX+H/gX4RtdDtINb00X2pKn+kXC3Uyq7k54CsBgdBwDgc80AepZozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHf5ozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHf5ozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHfMcCvEPG/jvw1Z/GXw3cyXjldGNzBfyRxlhGzIVVfUkEnOM4+uRXYH4J/DwYx4e7/8AP7cf/HK8Y8WfB6/sfiBZaJplxara6vJO+nmR3AiRF3srnBPAOBjOe+M0AfUNrcxXdvFcQSLJDLGskbqchlYZB+mKmzXm9h8DvA0Njbw3mj/aZ44lWWf7VOvmOAAWwHAGTk4A71Z/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3+aM1wH/Ckvh5/wBC9/5O3H/xyj/hSXw8/wChe/8AJ24/+OUAd/mjNcB/wpL4ef8AQvf+Ttx/8co/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3+aM1wH/Ckvh5/wBC9/5O3H/xyj/hSXw8/wChe/8AJ24/+OUAd/mjNcB/wpL4ef8AQvf+Ttx/8co/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3k0yW8LzSuqRopZmY4CgDJJNefaP8avCOteI00a2nulkldY4J5YNsUznoB1YZJx8wH+KXnwP8BS2U8dtopt5njZY5hdzMY2I4bBfBwecH0rzHw38CPE1n4ttJtSls0060njmeaGckyhTnCDbnPHcDrQB9JAnOPanUxcDp+Vcm/j6H/hJ7nw7DoerzajbxCaRI1hIEZx827zcdxwefagDr6KwvD/izTPEc13b2jSxXlm2y6s7mMxywk9Mj09xkVu0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIa4X4QFB8PoIkXZ5V3dIVAxj9+5x+RFd0elcN8JS0ngk3DgAz6hdyYHbMzf4UAd1RRRQAVyfxNsRqHw08QwEZ22bygYzynzj9VrrKiuYI7q2lt5V3RyoUdfUEYNAFLQNQGreHdN1FTkXVrFMP+BKD/WtKuE+E1xIvg5tGuH33eiXc2nTHGM7HO0j22la7ugAooooAKKKKACqeqala6RplxqF7MIba3QySOewH8z2A75xVpzhe341534pvk17R9b1MyKdG0i1uGthni6uURhvHqiHKj1bJ/hUkA2fh74mm8Y+HJNalhWGGW6lW1iHVIlIVc+/Bz9eOK63AFcJ8G7c23wp0NSOWjkkP/ApXP8AIiu7oAKKKKACiiigAooooAQ4Iwa8f8XagV/aC8IRAKYbaAqzZ6PMJQAfwUGvYG6V4Jqi/wBo6nqHjYsyQw+LrGFGzwYLf90WB9GZz+VAHvSnPI7jNOpB1paACiiigAooooAKKKKACiiigAooooAKKKKACiiigApMClpDntQAHgDAzXivhTxVDa6p4y8b3Ol6reQXV2Yrea0tfMUW8IKg5yMZGCe3HWu7+JHiq18MeCtTna6iS+e3aO1iLgSM7fKCq9TjOfwrm/DHizwt4P8AhxpenW+o22pX0dqD9hsXE8ssz/My7VyR8xIy2KALnw60ebUPEOsePrqa23a0qpb29tKJFiiXA+ZhwX+UA46EH1r0ivPfgz4Z1Lwx4FEGqIYrm6uXuvIP/LFWCgL7H5c4969CoAKKKKACiiigAooooAKKKKACiiigAooooAbIwVCxOAOSa4X4NrKPhZo8kw/eymeVvfdM5B49sV0fi29OneDdbvR96CwnkX6iNiP1qp8P7T7D8PvD0BXaw0+FmHoxUMf1JoA6SiiigApD0paMZ60AefB/+EX+MDBmK6f4otgVJ6LdwDGPQbkP1Jrv1JNcz498NSeJvC8tvZuItTtpFu7Cb/nnOnKn8eR+Oan8F+JYvFfhyDUhGYboEw3kDfegnXh0IPIweR7EUAdDRRRQAUhpaCM0AcH4h8Y6Zf67a+DbLWYI72+YpdSxTANBGPvRqwPEr/dUdRyeoGcD4paP4L8O+AdT8rSNDs9Rkg2WoFvEkxJYDK8bjgZOfY161tGCOxowPSgDkfhjdWFx8PNDjsbqGcw2USzCNwxR9o3BvQ5yPwrr6QADoKWgAooooAKKKKACkNLSN93pQBzPj7xC/hrwde3sALXzgW9nGo+Z55PlQAdyM7segNc14g8HLpnwGu/D68y2en+c7Lk7pkIlYj6sD+dSRN/wnfxLEyHfoXheQhT/AA3F8Rzj1EYP4H1Br0KaKO4gkhlUNFIhV1PdSMYoAq6FqKaxoGn6nGAFu7aOcD03KGx+taFcL8JZ5F8Ff2RcPvutFvJ9OmOMZKOSuPbay13VABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJgUYFLRQAgAHSloooAKKKKACiiigAooooAKKKKACiiigAoNFIaAOH+Lc0h+H11p9u+251O4gsYQf4mkkUEf98hq7S3jSGCOKMYjRAqj0AFcL4v8A+Jv8RfBuhAB4reWXVrkd0ES7Ym+hdiK74d6AFooooAKKKKAEbpXm/iKKbwD4ok8Y2MTvot+Vj1u3QZ8pui3KgenRgOvXGTkek9ajmhingeGWNZIpAVdGAIYHggg9RQAy0uob22iuLeVJYZUEkciHIZTyCPYip68tX7Z8Jb2Tak134JuZdwxlpNJZj6dWhySfUc9/v+l2l3BfWsV1azJNbzIHjljYMrKehBHWgCeiiigAooooAKKKKACiiigAoopD064oAGOBmuG8ceJL4TQeEvDj58Q6kv8ArM8WUHRpmI6eg75xjJwDY8W+NW0q4i0PRLYan4lu1PkWan5YRj/WSn+FBwcHBPt1FjwZ4QXw5bT3V9P9u1y+bzb+9Yfff+6vog6AYHTp0AANPwzoFl4Y0C00ewUi3tk27mHzSN1Z29yST/8AWrWwB0owM0poA8/0onQfjBrOntkW2u2kd/b8YXzYv3cij1YjaxrvwcmuB+KFu+n2Wl+L7aNnuNAu1mkCjLPbv8kyj6gg57YruraaO5gjnhdXikQOjqchgecj2NAEtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLWB418QL4X8H6lq5GZIYsQrjO+VvlQY7/MR+GaAOe8Hn+3fiJ4s8RkBoLZ00e0focR/NKPpvI5r0DGK5vwHoLeG/BemabLk3SxeZcsTkmVzufJ7/ADEj6AV0lABRRRQAUUUUAFIQD1FLRQBHLFHLE0ciK6MNrKwyCD2IPUV53N4W1zwPdy3/AIIC3WmyOXuNAnk2rnqTA5+4fY8fkBXpFIVB6igDmfDPjvRvFO+C2le21KHifT7tPKniPoVPX6iulUk+lc/4m8E6F4qVH1G0xdx8Q3sLGOeLrja454Jzg5Ge1c8mmfEHwuwGmala+JtPTkW+pHybsL/dWYfK31YUAeh0VwP/AAtK207K+JtA1rQygHmTTWpmgB9pI8g/XFa1n8RfB19Grw+JdLG7oJblYifwbBoA6iiqEWt6XOm+HU7KRfVJ1I/MGqlz4u8N2X/H14g0qDBxiS8jXn8TQBtUGuHufi14PiuPs1pqMmp3eMrb6dbvOz/QqNv61WbxP4519dugeE10uFvu3muy7CP+2KfNn0ycUAdxd3tvp9rJdXlxFb20Yy8szhFQepJ6VwE3jLWfG0r2HgW38uyBKT6/eREQp2PkoRmRuvXgcZ4Oas2fw0i1C6iv/GGr3PiK5Q7kgmAjtIz/ALMK/KfTnIPpXdxQxQxJFFGqRoAqIgwFA6ADtQBgeFPCGm+FraYW3mXN9cNvvL+5bfPcP1y7H68Dp+JyejpNoBzjmloAKKKKAK97aQX1jPZ3EayQTxtFIjDIZWBBH5GuL+Gd3cWdnf8AhDUHZr3w/N9nVm6y2zZaF/8Avnj22813Z6V5548STwvr+m+O7ZWMNtiy1ZFGd1q7cPj1RsHjk9M4oA9DBzS1HDKk0aSxsrxuu5WU5BB6EGpKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARuleeeISfFfxK0jw6nzWGi7dU1HHQy8iCPjv1YjoQR6V13iXXrbwz4dvdZvD+5tYy5Xu7dFUe5YgfjWJ8O9CutM0SXUtXGdc1eU3t8SMFGP3YxnkBBxjsc0Adeue/WnUUUAFFFFABRRRQAUUUUAFFFFABSAAdBilooATA9Kyr7wt4e1Ny9/oWmXTnktNaRufzIrWooA5Z/hr4KdizeGNMyeuLcAfkKmg8AeD7bb5fhfSAV6FrONiPxIro6KAIbe1t7SIRW0EcMY6JGgUD8BU2BRRQAgAHSloooAKKKKACiiigAqve2tve2U1ncxLLBOjRSRtyHVhgg/UVYo60Aed+A76fw5ql14A1SdmlsVM+lTyHJuLIngf7yHKkccDgYXNehg9M56d65Px34Xn1zT7a+0mQW+v6VJ9o06boC38Ubf7LgYP4duDd8G+KLfxboSX8UbQXMbGG7tX4e3mX7yEfXp7EfSgDoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkJxihiQOK4rx14lvrQWvhvw+yP4j1X5IfS2i/juG9ABnHvn720igDLu8fED4gpZKvmeHvDcwkuD1S5vR92P3CDk+5wR0r0kCsbwt4dsfCvh+10ewH7qBfmc/ekc8s59yf8BwK2sUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACN0rzvxVpt/wCFddfxvoEDzRsgXWrFOtxCv/LVB/z0QZ+o/HPotNIHXHNAFPSNWstc0u31LTrhLi0uEDxyJ0PsfQjoR2INXq8w1K0vPhjqkuvaNBJceF7uTfqemxrk2jE8zwj+7/eXoPoRs9E0zU7TWNPgv7C4juLSdA8csZyGH+eMHkEGgC3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFI3TrignArE8UeKNP8ACejNqOou2MhIYYxmSeQ9ERe5P6UAReLvFdr4U0j7XMjXF3K4hs7KP/WXMx+6ijr1IyR09+lZ3gfwtdaa11r+vOlx4j1TD3Mi8rAn8MKf7IGOnUjqcCqnhPw1qWo6x/wmHi1E/tV4yllYjlNPiPYeshz8zde3tXe4oAQAA9KWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKCM0UUAIQAOleaXujar8O9Rn1rwtave6DcOZdQ0SMfNEx6y24+g5Tp6cEbfSyAetGMDAoAzNB8Qab4k0qLUtKukubWT+JeqnurDqCMjg1piuC17wTe2WqS+I/BV1Fp+ruQbm0cf6LfY7Oo+63+0PU9NxNaHhjx7Za5ePpN9BJpOvw/67Tbo/Nn1jbpIvfI7c4xQB11FNVtx4ORTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRsgcfyzQTgVwes+Pbi81GXQfBdrHqurIds9yx/0Sy68yuOpGPuj37jBANfxZ4zsPCtpF5wku9RuTss9PtvmluH9AB25GTjj3PByfDXhDULvWE8U+MHSfWAD9lskO6DTlPZexf1b9T1N7wn4Hg0O5l1XU7uTV/EFyP9I1G4AyP9iNeiIPQfywB12KADFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQRmiigBCoOMjpyKwfFHg/RvFlokOp2xMsRzBdRHZNA395H6jnnuOBkcVv0UAebrqXjDwH8msW8viXQkHGoWqf6ZAo/56x/xjp8wOeCSe1djoPibSPE9j9s0XUILyH+Lyz8yH0ZT8yn2IrV2L2H0rkde+HOi6vfNqlo1xo+sYONQ02QwyE9fnA4YHjORntmgDrxS154upePvChC6lp0PinT1HN3poEV2o9WhPDEnPCn3NbGifEbwzrk/wBli1FbW/DbGsb4eRMrf3dr4yfpmgDq6KaCT3z7gU6gAooooAKKKKACiiigAooooAKKjeRYkaSRgiKMlmPAHqfSuN1L4peHra7aw0trjXdRHS10mIzn6lh8oHrzxQB2rHAzXN+I/HOh+F2SG+uxJfSECGwt18y4lJ6BUHPPYnAzxmsE2vxB8WA/bLqDwnprDmG0YT3jj0Mn3U9iBkV0HhnwRoPhUO2nWQ+1SZ828nYyTyk9SXPPPoMCgDmm0zxd48Gdbll8N6A3/MPtnBu7hP8AprIOEBHVRz1Brt9G0bTdB0+PT9Ks4rW1jHypEMc+pPUk+pyT3rQ2jjjp09qWgBAAOAMCloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEwKy9a8NaL4hgEOr6Xa3igFVMsYLID/dbqv4YrVooA8+Pw1l0sbvCvinWNGCgCO2eT7XbRj2jkyf1p/nfE7Sc7rbQdehQceXI9pO/1BygrvcD0pcCgDgT8RNWscLrHgHxFBIcZNiiXqL/wJGH8qc/xg8IWyg6jc32nMeNl3p06kH04QjP413mBSbQe1AHHwfFTwPOCV8S2K4xneSn/AKEBU3/CzfBP/Qz6b/3/ABXRPp9lKQZLSB8dN0YNN/svT/8Anwtf+/K/4UAcrc/FrwJahjJ4ktSF6+Wryf8AoKmoB8W/DlzHv0uDWNWz0Fjpkz7vpuUCu1isrWD/AFNtFHzn5EA/lU2BnOKAOD/4TnxNqCBtG+HurOD1Opzx2ePfDEk01rT4nauSs2p6FoMJ6G1ga6mHsd+EP4Cu+wKMCgDgk+Fel3syz+JdU1XxBKCGC3tyRErD+7GmAOp45612WnaXp+k2wttNsbazgBz5VvEsa5+gAq5RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k=', '/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAS0BMwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACikJwM1zWs/EDwnoJZdR1+yjkQ4aJJPMkH/AEy36UAdNRXBf8LNS9O3RPC3iPUwQCk6WXkwt/wADkI/lSpr/AMRL3cIPBFlYDPyve6qr5+ojU4oA7yiuCRfitLId8ng+CPnaFW5kPtnpUg034kuu5/EGgRsT9xNPkYD6EvmgDuaK4Y2PxMhbMeteHLgHr5tlKmP++XqOKb4qwZNzZ+ErsDGFt5riNj+LAj0oA72iuB/4S7xpZuRqPw9uGiXrLYajFPn6JwaF+Lfh63KjWrbWNCdjhV1PT5I934qGGPfNAHfUVm6T4h0bXUL6VqtlfAfe+zzq5X6gHI/GtKgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiig0AFB6VieI/FWi+FbD7VrF9HAp+5H1eU+iqOSf8muT87xt43OLdJfCWiNn95Koa/nX2XpDkHr94EDGaAOn8ReMvD/hVA2r6nFDIw+S3GXlfnsgyx+vSudHiXxv4kIHh7w2mk2jH/j+11irkd9sCncD3BJwa2/DngTw/4aka4s7MzX78y3903m3EhPUlz698YB9K6fvQB5+3w1k1f5vFvifVdZz962jf7LbH28tP55rpdG8JeHtAA/srRbK0cDHmRxDeR7v94/ia26KADvRRRQAUUUUAFFFFABTXRZEKOoZTwQRkGnUUAclqvw08IatIJpdDt4LgHcs9nm3cH1yhGT9c1lDwn4y0Dnw54ue9gXOLLXkMwP8A22XDgegxXoVFAHnqfEi40WQQ+NfD95ooztF9F/pNo3YZdASpPYEfWu30/UrLVbVLvT7yC6tn+7LDIHU/iDVmRFkjZGVWVhghhkEe9cJqHw1tIb2TU/Cl7N4b1I/eazANvL7PCflbv0x170Ad7RXncXjvVvDE62njzTVtoiwSPWbENJaOe28fejPQc989hXe2tzBeW8dxbTRzwONySxuGVh6gjrQBPRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFQXl1b2NnNdXUyQW8KF5JZGwqKOSSaAJicKTXn+p+Ob/WdQm0LwNbRX9/Gdt1qMmfsdp7bv429APrzhhVBrnV/inK8djNPpXg1WKSXQ+S41LBIIT+5F15PJH1IHf6Po9hoWnQ6dplrFa2kIwkUa4H1JPJPueT3zQBgeHPANjpF6dW1S4k1nX5P9ZqN2MlfaNOka9eB64zjiuvFLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEc8MdzBJDNGkkUilWSRdysD2IPUV57deCtV8K3D6l4AuEjiLF7jQrlj9mnOOsZP+rf9M46AYPo1B6UAcv4T8a6d4nM1qscthq1rxdaZdDbNCfXH8S8jBHqM4ziuorlvFfgqx8TeVdJNLp+sW3NpqVtxLC3of7y+qnsT0rM8OeMb+21ZPDHjGBLPWuRbXScW+oKP4oz2bGMr/LOAAd5RTQeadQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTZHWKNpHZVRQWLMcAAdyfSgCC/vrXTbCe9vp0gtYVLyyyHCqo7mvOLSyvfirfJqeqxzW3g+Ft1nYMdragwPE0nonovfr9UjSX4r60J5Q6eCrCb9yjDH9qTKfvEd4ge3fH1C+nRqEACgAAYAAxigBIkSJEjjRUjUbVVRgADoBjtUlFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAh6VjeJfDOmeLNJfTtUg8yNjujkXh4X7OjdVb/J4raoPSgDzvw54k1Xw/rcPhDxjMHuXX/iW6qeEv0HG1v7so469fyLehDk56VjeJvDWneK9Fl0zUo90bDMcg4eFx0dD2Ydf0PFc94M8Q6haapJ4N8Tyg6zbR77W6OQNQtxwJBk/fGDuHXvzzQB3lFFFABRRRQAUUUUAFFFFABRRSHgUAB6V5t4oup/HHiNvBOl3Dx6bbhZNeu4jyEP3bdT/AHmxz1wOOcEHe8d+J5vDukxwadEJ9b1KQWmnQcfNK38RB42qDkk8dASM5q14M8Mx+FNAi08SGe5djNeXLctcTty7knk5PHPOAOtAGxY2kNhawWdpCkNtCgjjjQYCKBgAVaoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARvumuX8aeFF8UaZG1vP9k1exfz9PvFHzQSjtn+6eAR0PBxxXU0h6Hr+FAHL+B/FLeJdMkS9hFrrNg/2fUbP/nlIO4/2WwSD0PPJxmuprzrxvZXHhjWYPHulQs5t1EOs28Y5uLX/npjuydc+g64GK72zuoL60gu7WVZredFkjkQ5VlIyCPYigCxRRRQAUUUUAFFFFABTXO2NiTgAZz6U49Oa4X4l6hdS6dZeFdMkCal4gmNorA8xQAZmkx7J/6FQBS8GI3jHxZeeObgE2EG+x0NT08sEiSYD1c5APXGQe1ej1R03T7fSNMtdOs4/LtrWJYo0x0VRgfy/Oodc13S/Dumy3+r3sVrap1aQ9T6ADlj7CgDTPSsHxB4z8PeF1B1jVYLZyAVhJLSt24RQWP1xXLLd+MvHgJsRL4V0FulxMmb+5Xp8q9Igcnk89CM10HhzwH4f8NOZ7Oy86/bmW/uj5txIx6kufXvjAPpQBkL478Q6yR/wjXgm/lgPS61SRbNMdmCnLMPoKcNO+J+oqftWu6BpHPy/YbN7hse/mEDP0rvB1paAODTwh40MeJ/iRds56mPSrdB+AwcUknhHxuoBt/iRcK+cZl0m3cEfTjn3rvaKAODa1+J+nlRBqXh3V4xy32q3ktpG+mwlRUR+ImqaQP+Kr8Happ0QPzXdmVvIEH95inKj6ivQaD0oAx9C8TaL4lg8/RtTt71AMt5T/Mn+8vVfxFbFcjr3w70DXLj7csEum6qOU1DTn8iZW9SV6/iDWIPEHirwGwTxVCda0MHH9s2cWJoB6zxAdB/eXPAHUnFAHpNFUtL1Oz1ixiv9Puorm0mGY5YnDK3r9MHj65zV2gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGTRxzQSRSoHjdSrKRkEHqMV594Jlk8KeJ77wLdyH7KFN7oruetux+eLPco2e5OCTwAK9DPQ1w/xL0u5k0a38RaWo/tbQJftsGP+WkY/wBbGcdmQHjvjFAHc0VQ0fU7bWtJs9TsnLW11Cs0Z9mGcH3HQir9ABRRRQAUUUUAIelee+FR/wAJJ8Qtf8USfNaWB/sfTiTwdnMzjPXLcBh1GRXReONfHhnwVqurA4lggIh4z+8b5U/8eYVi2M1l8LvhhZC+y0lvCoMScvcXLncVXuSXJ+g57UAavizxdZ+FbCN5Inur66byrKwh5luZD0VR6cjJ7e5IFY2geCLu+1OPxL41kS/1gZa2swd1tp4JyFRe7jjLHPI6nGTL4L8L3ov38WeKNs3iK9X5I8ZWwhxxDGOxGTuPck+5buqAGjg06iigAooooAKKKKACiiigApHGUIIyPSlooA851PwlqXhK/l1/wMg2yNvvtCJ2w3Q7tF/zzkx+B444weq8L+JtP8V6Umoae7YBMcsEg2yQSDqjr2Yf/qyCDW2eBXnfi7Rr3w1rDeN/DUO+dUxq+nLwL6Aclx6SL1zjkfkwB6LRWdourWeu6Taapp8wmtLmPzI3HXHofQg8EeoPpWjQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIwDKQQCDwQe9LSEZBB5BoA8++HmfD+t694JkYiPT5vtenBu9rMd2F7kI+QT6nFehV5744zoXjXwt4pj+WJpzpN8QOsU33CfZXGfxr0ADnp160AOooooAKQ9KWkPIoA4Dx8P7W8TeDvDWCYrm/a/uMDIMduu7aw9GJA/CqmjRj4g+N5PEUx8zQNElNvpKEZWe4H+suPcA4VTyOMjBBrmfG+r3Vx8RtZtNMdv7TNnbaFaDsj3JMsknttjXk9iRXr+haNaeH9FstJsl2wWsQjU45bA5Y47k5J9zQBoAYNOoooAKKQnAJPQUilWAZTkEcEUAOooooAKKKKACiiigAooooAKRvunnFLQeBQB5raD/hXvxAGnAbPDfiKUtbD+C0ve6D0V+MD14AwDXpCjkVz/jTw2vinwne6ZnbcMnmWsgODHMvKMD25Az7ZpngTxC/ibwlZ6hcLsvQDDeRkYKTodrjHbkZA7BhQB0tFFFABRRRQAUUUUAFIeATS0HpQByHibxufDuvaLpX9k3M39qXkdqtyXVY1LFQcckkjd6Ae9daOteb/FL/AJD/AIB/7D8P8xXpVABRRRQAUUUUAFFFFAHM/EDRf+Eg8BazpyKWle2aSEA4PmJ86f8AjyirnhLWR4h8JaTq2QWurVJJMdA+MMPwYEfhWyfunjPtXB/CoCx0fWNAC7E0fV7m1hXP/LIt5iH8d5/KgDvaKKKACkPApaRiFUknAHJNAHh3w7tX8R/GnxTrlxseDS7qZIGA53ufKU59PLiI/wCBV7lXlvwHtHHgi51abBm1S/luGb2Hy4/NW/OvUqAEPSvO4Vlt/j40H2u6lgk8PNP5U0pZEczqp2r0HCjpXoteeyEf8NBxDPP/AAjB4/7eaAOm8U3M0WgyW1s5S7vmWzgYdUeQ7S4/3VJf/gNZuqeBdP12VIdUkuDpltEkVnYwXDxRoFH322kFm7DJIAAx1NXJ/wDiY+NLaAcw6Vb/AGlv+u0u6NPxCLL/AN9iovEniqy0qaPSl1OxtNSuVLK11KqJAnQyMCRn2Xqx9AGZQDE+Fy6jaDxDo91ezXtjpepPa2VxO259oAJQnvtyPzPoAPQq53wtd+H0g/sjQtRgvfsy+ZM8MwmJZySXkZeN7Nub1PPFdFQAUUUUAFFFFABRRRQAUUUUAIelcB4c/wCJD8V/EehgBbXVYU1i2VRgK/8Aq5vxLbWr0A9K4Lxp/wAS7x34I1rfsQ3kunSc43CaM7Af+BJQB3tFNGc4p1ABRRRQAUUUUAFIehpaKAPMfiYbm41/wf8AZdO1K5Fjq8dzctbWM0ixxgrkkqpB+gJr0iCQTRJIofDLkb0KH8VPI+h5qaigAooooAKKKKACiiigBD0rhPDyGw+L3i+1LYS9trO9jTHAwrRsfzAruz0rhJ4/s/x0s7jkC78Pyw+xKTq354NAHeUUUUAB6VzvjPxPpvhTw3c3+oXXkh0aOAAEmSQqSqrjvx16DvgV0J6V5b8bfBWoeLPDtpdaYwa40xpJWgZ9qyRlcnAPBYbRj6tQBY+B+r6XefDqx02yulkurDcLqLBDRl5HYZyOc54Iz068GvS6+dvhD8LrzUdHk1y513VdKgvFUW39kXnkySKGYMZPlPGQMD6+1ek/8Ks/6nzxx/4OP/sKAPQDWW3h3RDqP9pHR9P+3A7vtP2ZPNz67sZ/WuT/AOFWf9T544/8HH/2FH/CrP8AqfPHH/g4/wDsKAO4jtYIZ5po4lWWdg0rAcuQoUZ/AD8qzL3wn4c1K7ku7/QNKu7mQ/PNPZxu7Y4GWKknAAH4VzX/AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAdfpeh6VowkXS9MsrFZDmRbWBYgxHTO0DPWtA9K4D/AIVZ/wBT544/8HH/ANhR/wAKtx/zPnjj/wAHH/2FAG14u8caH4KtYp9Zumjafd5EUaF3lx1AHTjI5JA5q34Y8U6R4u0z+0dGuvtEAcxvlSrI2M7SCBg4I9vQmvHfiP8ABjWruKzudD1XVdcljVlli1W+EkijjHlkgDHXIz6Ve+H3wa1PT9HlfV9f1vR7ydwTb6RqAjUKBgbyFIZs7uhwBjBNAHt9Fef/APCrP+p88cf+Dj/7Cj/hVn/U+eOP/Bx/9hQB6BRXn/8Awqz/AKnzxx/4OP8A7Cj/AIVZ/wBT544/8HH/ANhQB6BRXn//AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAd+3CnnFeWfGPxLo2lQaJb3V0q6hbana6jHAEJby0chm46cbvrg1pn4W4/5nzxwf8AuMf/AGFeUfFf4W6ppl5a6pZ6ne6tbTGK1MmpXYkuBIzEKNxCjbyMehznigD6G0TW9P8AEOlwanpVytzZzg7JACMkEg5B5BBHQ1pV494M+Dl5pnh2GHUfFPiHTryRmklt9J1DyoVJOBxtOWwBk/gOma6H/hVn/U+eOP8Awcf/AGFAHoFFef8A/CrP+p88cf8Ag4/+wo/4VZ/1Pnjj/wAHH/2FAHoFFef/APCrP+p88cf+Dj/7Cj/hVn/U+eOP/Bx/9hQB6BRXn/8Awqz/AKnzxx/4OP8A7Cj/AIVZ/wBT544/8HH/ANhQB6BRXn//AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAegUV5/wD8Ks/6nzxx/wCDj/7Cj/hVn/U+eOP/AAcf/YUAegUV5/8A8Ks/6nzxx/4OP/sKP+FWf9T544/8HH/2FAHoFFef/wDCrP8AqfPHH/g4/wDsKP8AhVn/AFPnjj/wcf8A2FAHft9015B4p8f+GdO+LmhvNqeBp0N1bX7ojMsbOF2KcDnkHOM4OM4xW+fhbgZ/4TzxwfY6v/8AYV4j4p+EXiG18fR6Tayi8GqPLNa3NxMN7qvLGU/3xkZOPmzkd8AH1TFMssSSRsXjdQysvIIPQ0/efRvyrN8P6Y2ieHNM0rzjL9jtY7fzNv3tqhc/TitHLf3v/HDQBJUVzCtxaywuAVkQowPoRipaQ9KAPOvgbdrdfCrTIw2WtpJon9j5jMB+TCvRq8b+Ct+lj4j8Z+Fiyg2upSzxLnkjeY2/Lan517JQAUUUUAFFFFABRRRQAUUUjfdPOKAKmqalb6Tp0t7clvLjAwqLuZ2JwqqO7EkAD1Irjfhbr2peJrLXdV1IlHbVJIIoA+5YY0RAFH4k5Pc5Pelm1a+1LVxq6aFeX2jWQL2LxzQqsj8hpiHcEgDIXjGCWGcjFL4GRMPhpa3D8tdXM8xOep3lf/ZTQB6VRRRQAUUUUAB6VwXxIVru98HaZG3zz69BM68fNHEGdv6V3p6V5/dFdc+NlhAvzQ+H9NkndgeFmnwgU++wE0Ad8cYrz34v3t1ZeE7caZdXdvq13ew2tm1vcPGS7NkghSN2QCOQeteh9q8u8VW//CWfGDQ9BE8sdvo9pJqU7wttYSMQqc9mB2n6NQBF8QHvvh9oGnatpGtajNfC6jga2u7p7hLzIO4bXJIPHVcEV6lCxaNCy7GKjK+ntXkF/bL4Z+M+g217LPrkOpxnyH1FzLLYuM/NH/CBwM8Z6817Ep56/hQA6iiigAooooAKKKKACiiigAooooAKKKKAA9K4bU8XHxn8Pxct9l0q6nx027mRM+9dwehrhLJFvPjlqdypyLDQobVh6NJK0n8hQB3lFFFABQaKQnAoA8E1GVvB3xp1TXApSyiuoDdnput7mMKzn2SVB+de9j2rzPxnpVtN8SNJS9jLWPiDTbjR7hs8KR+9jP8AvZ3AfStP4bavdNYXPhnV3H9taEwtpuf9dFj91KPUFcDPXjnrQB3VFFFABRRRQAUUUUAB6Vz3ivRdV1/SnsLDWI9NhlG2dvshld17qDvXbkcH2PauhooAx9T06+vPD0mnWd7b2c0sBhM/2YsqgqQSibxjHbJOPeqHgXwvdeD/AA5b6JJqMN7b227ymW1MLjcxY7vnYHlu2K6eigAooooAKKKD0oAhvLmGysp7q5lWKCGNpJJGOAiqMkn6AZriPhdbTXenal4rvIil34gujdKGHzJbr8sKn2C8j/eqH4g3EviDUbDwHp7sr6hifUpUPMFmp5+hcjaPXkd67y2ghtLeK3t41ihiQIkaDCqoGAB6AAUASTBzC4iZVkI+VmXIB7ZGRn8xXB6d4J8Q6Z4l1jXYvEmnSXWqlPN83SXIjVBhVTE4OAMdc9BXf0UAcfongSOz8St4m1fU59X1ryzFFNJGI44EPGI0HTgkZyTz7knsKKKACiiigAooooAKKKKACiiigAooooAKKKKAEPSuC+H4W/8AFPjjWwD+/wBVFkCe4t0CZHtkmuw1nUY9H0S/1OYZjtLd52HqFUnH6Vzfws0+Ww+HWkm5Yvc3aNezOerNKxkyffDD8qAOyooooAKDRRQBw3xVs55PBp1W0TdeaJcxanCM4/1bZb/xwtVXxZY3Nwum+PvCqm41C2twzQIP+P8As2AYx8fxAHcvXnPXiu/uIIrq2lt50WSGVCjo3RlIwQfwrhfhdcS2elaj4UvHZrzw/dtagv8AeeBiXhc+xXp7LQB1Ph/XrDxLo9tq2mTebbXC5GeCh7qR2YHOR+vStWvNtZ0rU/A2t3Pijw3bvdaVdMZNX0pG6t3nhHZxzuHGf1XttE1vTvEWmwanpV0lxaSjKsv6gjqCOhBoA06KKKACiiigAooooAKKKKACiig9KAEPSsDxd4ptPCehPf3MbTzORFa2sfL3MzfdjUe/48Z61L4m8T6Z4U0p7/VJiqk7IokGZJ3PREXqT/Lqa5nwx4d1PW9bTxl4uiEd4EK6bph5WwiPOW9ZD3Pbp6BQDR8CeGrvSLa61bW3WbxDqzie+kHSMY+WJf8AZQcfXPtXYU0dRTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoPSig9KAOB+K00t14fsfDdszC416+isgUPKRZDSP8AQKuD7NXdQxJDGkUahY0UKqjooHAArgrPPiX4xXV5jdYeGrX7LCexuphmQg+yYUj1Ir0GgAooooAKKKKAEb7przvxQT4T+IWj+KF+TTtSUaVqTDOEYnMEhA44OVJPQcd69FrL8SaFa+JfDl/o14P3F3EYy2MlD1Vh7ggEe4oA0TwCAM8dK4PV/BWoaTq0/iDwPcRWd/Md15p0xP2W+PqR/A/+0MZJ5xkk3Phzr11quhyadqxI1zR5DZXyk5LMvCye4ZRnPcg12ZoA4/w78QNN1i9OlahDLo+ux8Sade/KxPrG3Rx3BHbnGK68VjeIvC2ieKbL7LrOnRXSL9wtwyH/AGWHIrlR4f8AHHhVf+Kf1uPXbBOlhrJxMq/7M68k9AA3AFAHolFefL8UI9MBTxX4d1jQXX787QG4tgfQSxg5/Kt2w8feEtTCfZfEemOX+6jXKo5/4CxB/SgDpKKrx3ltMm+O4hdD3VwQf1pJb60gXdNdQRr6vIBQBZorltS+I3g7S0drrxLpuV+8kMwmb/vlMn9KyG+I91qxMfhTwpq+q7uVup0+yWxHqJJP5YFAHft0riNa+IUEOoPonhm0bXtdAwYbdv3NuemZpei8g8ZzxjjIqofCHirxRz4u8QC1sm+9peibokf2eVvmYEcEDj0xXYaJoOleHbBLHSLGCztl/giXqfUk8k+5yaAOa8PeB5l1RfEXiq7XVfEGMRnH+j2Y67YV/wDZjyfbnPbDg06igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsTxZ4gg8LeF7/WbgBhbRlkQ/wDLRzwi/ixA/GtpvumvOdVP/Ca/Eu00aM79J8Nst7fntJdMD5Uf/ARlvzB5FAG58PNAn8O+EreC9JbUrpmvL+RvvPPIctk9yOFz7V1dNHXpTqACiiigAooooAKRvunAyfSlooA868ZxyeEPEdt46s42NmVW11uJF+/Dn5Zsd2QkD1I46V6BbzR3EMc0MiyRSKHR1OQwIyCD3GO9FzBFdWstvPEksMqFJI3GVZSMEEdxivOvCd1N4I8Rf8INqkrvYTbpdCu5Od0fVoGP95O3qPTgUAelUU0dRTqAA8isTUPCPhvVHMl/oOmXEh6vLaIzfnjP61t0UAcXJ8J/Asjlz4bswT12llH5BqWL4U+BoXDp4as8+j7mH6k12dFAGTp/hjQdJfdp2i6dZv8A3oLZIyfxAzWrS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLUN5dQWVnNdXUqw28KGSSR2wFUDJJP0oA5/xv4nPhfw+89vF9o1O5cW2n2wGTNcPwox3A6n2FL4H8Mf8It4ejtJpfP1Cd2ub+4zkzTvyzH6dB7D1zXO+EYLjxp4lPjnUonjsIVeDQrZ+NsZ4edh2Z+3oPXgn0YdaAFooooAKKKKACiiigAooooAD0rn/ABb4WtfFmhmxnkeC4iYTWl1F9+3mXlXU/wCeK6CkbO0460AcZ4H8U3epPcaB4gRLfxJpvFxGOFuI+izx+qnvjofTIFdpXI+MfCD6+ttqWl3C2HiKwO+yvewP/PN/WM85GD1zjkgu8G+MR4i+0afqNqdO8Q2HyX1g55X/AG067kPGDz168gkA6yiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQnAzQAN0NeY6hK3xR159Fs5CfCWmzD+0blDxfTA7hChHVF4JPfj2Jk13WrzxzrMvhXwvdtFp0RxrOrQ4IRf8AnjE3QuehPb867vR9IstC0y30zTbdLeztk2Rov8z6knknqTyetAFqGJIVSONFSNFCqqjAUDgAD2FTUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjHCk+lcl4t8G/2+9vqum3J07xFYg/Y76Mf+Q5B/Eh9D0zx1IPXUjEgZAzQBxvhLxq2qXj6Fr1sNM8SQL+8tWPyXCj/lrCf4lOCcDpz1612dc74o8IaZ4tskivQ8VxC2+2vIG2zQP2ZG7fTpXM2vi/V/Bl1HpXjoK9o7bLXX4UIil9FmUf6t/fofwJIB6RRUUM0U8SSQypJG43I6EEMPUEcYqWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikPQ1keIfEmk+FtNN/rF7HbQg4QE5aQ/wB1R1Y/T8eKANWV1jiZ3YKijLMTgAdzntXmt9rep/Ee6m0bwvNJaeHkYx3+tqMGbsYrf19C/Qcn03KNM1/4kuJtehuNE8LBgY9L3bLm9A6GYj7if7A5/JTXodlZwafaxWlpBHBbQqFjijUKqL2AAoAraJomneH9Ng03S7VLa0hXCog6+5PcnuTye9aVFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVBeWsF7Zy2t1BFPBKu14pVDK49CDwanooA85fwhrvgyVrrwPci404ndJoF7IfLPr5Eh5jb2PGSSegFa/h34g6Trl4dOull0nWk/1mm36+XJn/Zzw478c45IFdeaxPEPhXRPFNp9m1nTorpV+4zDDof9lhyP85oA2hS153/YPjfwkgPh/V18Qaegx/Z+rnbMo/2JxjJ6cMMYqzafFHR4rhLLxFbXnhy/PHl6lGVjc99koyrL75H0oA7uioba4huoUnt5kmicZWSNwysPUEcEVNQAUUUUAFFFFABRRRQAUUUUAFFIelZes+IdI8P24n1bU7WyQ5x50oBb6A8t9BQBq1Fc3ENpbSXFzNHDBGpZ5JGCqgHUkngCuBPxA1bxD+78FeG7m9jbpqeoA21qB/eGfnkHsMGlt/hzca1cJeeOdYk1mRTuTT4gYrKE+yDl8ep7cEGgBLr4g3euzy6d4D08apOp2S6lOCllbnvlushHHCjvnJ6Vd0H4f29rqS654hvJNd17GRc3A/dwf7MMfRAPXr16ZIrr7W2gs7eO3tYI4IIxhI4lCqo9ABwKnoAaOop1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVWvLK01C2e2vbaG5gfhopkDqR7g8GrNFAHCXHwr0SG4a60G71Lw9cu25jplwUjc9t0bZXHsAKYLH4maPtFvq+i6/ADlhe27WsxHYAx5XPuRXfUUAcD/AMJ34i05Sdb+H2spg43aZJHegj1wpBFKfi94RtsLqU2oaXITt8u90+ZGz07KR+td7SNjacjI9KAOUt/iX4KulDR+J9NUEZ/eThP0bGKtDx54PYA/8JVon46hCP8A2atK40bSrobrjTLOYjn95AjfzFZ7+CPCUhMj+F9FZmOSTYREn8dtADH8feDkPPirRfwvoz/Jqzrv4s+BLIEyeJLV/wDriHl/9ABrZg8HeGLbPkeHdIi3dfLsYlz+S1pQWVpaMBb2sMPGP3cYX+QoA4tvirpE6qdJ0fxFq4PRrLTJCv5vtxSN4k8fai23SvBUVihHy3GrXygD6xx5YV31FAHn58KeNtaUjXvGZsYXGGttDtxFg+0z5etHR/hr4W0a5+2Jpq3l+cFru+c3ErEfxZfgH3AFdfRQAgpaKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9k='] Multimodal Competition True Theorem proof Geometry Math English 45 "A king strapped for cash is forced to sell off his kingdom $U=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$. He sells the two circular plots $C$ and $C^{\prime}$ centered at $\left( \pm \frac{1}{2}, 0\right)$ with radius $\frac{1}{2}$. The retained parts of the kingdom form two regions, each bordered by three arcs of circles; in what follows, we will call such regions curvilinear triangles, or $c$-triangles ( $\mathrm{c} \triangle$ ) for short. This sad day marks day 0 of a new fiscal era. Unfortunately, these drastic measures are not enough, and so each day thereafter, court geometers mark off the largest possible circle contained in each c-triangle in the remaining property. This circle is tangent to all three arcs of the c-triangle, and will be referred to as the incircle of the c-triangle. At the end of the day, all incircles demarcated that day are sold off, and the following day, the remaining c-triangles are partitioned in the same manner. Some notation: when discussing mutually tangent circles (or arcs), it is convenient to refer to the curvature of a circle rather than its radius. We define curvature as follows. Suppose that circle $A$ of radius $r_{a}$ is externally tangent to circle $B$ of radius $r_{b}$. Then the curvatures of the circles are simply the reciprocals of their radii, $\frac{1}{r_{a}}$ and $\frac{1}{r_{b}}$. If circle $A$ is internally tangent to circle $B$, however, as in the right diagram below, the curvature of circle $A$ is still $\frac{1}{r_{a}}$, while the curvature of circle $B$ is $-\frac{1}{r_{b}}$, the opposite of the reciprocal of its radius. Circle $A$ has curvature 2; circle $B$ has curvature 1 . Circle $A$ has curvature 2; circle $B$ has curvature -1 . Using these conventions allows us to express a beautiful theorem of Descartes: when four circles $A, B, C, D$ are pairwise tangent, with respective curvatures $a, b, c, d$, then $$ (a+b+c+d)^{2}=2\left(a^{2}+b^{2}+c^{2}+d^{2}\right), $$ where (as before) $a$ is taken to be negative if $B, C, D$ are internally tangent to $A$, and correspondingly for $b, c$, or $d$. Algebraically, it is possible for a quadruple $(a, b, c, 0)$ to satisfy Descartes' Circle Formula, as occurs when $a=b=1$ and $c=4$. Find a geometric interpretation for this situation." "['In this case, the fourth ""circle"" is actually a line tangent to all three circles, as shown in the diagram below.\n\n']" ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIATABxwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ8CgBaKztU13StFhEuqanZ2SHobiZY930yefwrlH+LXh+dnTRbbVtekQ4ZdMsJJNp/3iAP1oA7yiuD/wCEr8b3rgaf4BeGJhkT6jqMcWPrGoZqao+K1wTvfwnZxkcBVnlcdOvIHrQB31FcN/YnxFlO5/GWmQHpti0gMPzZ6aPDvxDDs/8AwntqQQMIdFjwv/j2aAO7orhv7I+I8GfL8V6Rc9x5+llB9PlemLP8U7VyZrXwpfxjosEs8Ln/AL6BAoA7yiuB/wCE38VWAZtZ+HupLGvRtNuYrwsPZQQamtfix4UluEtr27n0m6brDqds9uR9SRtH50AdxRVazv7TUbdbiyuoLmBxlZYZFdT+IOKsA84PWgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooPtTXcKpYnAHc9qAFJwKhuLqG0t3uLmWOGGMbpJJGCqo9STgAVxGofEV7+9fSvBennXr9Tte6DbLO3Pq8vRj0O1evOD2qO0+HEuszx33jnVZNbuVYOlkmYrOE/wCygwWxyMt1BORQBJcfE6G+uHs/COk3niS6Q7Glth5dqjejTN8o45GM5qM+HvHfiMf8T3xNHotq3Wz0OPEhXtmd+Q3rtGK7y2tbezt47e2gjghjXakcShVQegA4FS4HpQBx+l/DDwjp0pnfSY7+7bBe51BjcyO3qS5IB+gFdekaRoqIiqqjCqowB9KdRQAhAPUUYFLRQAYowKKKAEwD2pcUUUAJgVDd2drewNBd20M8LcNHKgZT+BqeigDiLz4VeGnuGu9KjutDvSAPtGk3DQED/dHyY/Cqn2b4jeGsNa3lj4qshn9zcj7JdY7AOMofq3NehYpNoNAHF6X8TdEurwadqy3Og6nwPsuqR+Vu7fK/3WGeBzk+ldmDk1R1fRdM12xaz1WxgvIG/gmQNj3BPQ+45riW8G+IfCDGfwPqhmsxnOiapI0kWPSKQ/Mh9Acgk8mgD0aiuQ8P/ECw1a/Gj6lbTaNroGW0684ZveNuki8HGOeDxXWq2SeelADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApCcUprkfFnjVNAlt9L0+1bU/EF3/x7afCfmA/56Of4EGDyf5AkAGl4k8VaV4V043uqXIRSdsUKDdLM/ZUXqxP5euK5BND8R/ET994nMui+HnwYtGgciacf9PD9h/sDHXkArzreGfBD2+pf8JD4mul1bxC4+WUr+5tAf4IVPQDpu6n25z2mBnOOaAKmm6ZY6RYx2WnWkNraxjCxQqFUfh3PvVvFLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJtU54HPX3paKAMbxH4W0bxTp/2PV7GO4Qf6tzkSRH1Rxyp+n45FcZ/aPiT4bYGqyXHiHwwM4v1G67sk/6agf6xMfxDkYOccCvTKawBGMDB4oAq6ZqdnrFhDf6fdxXVpMu6OWI5Df8A1+xH8quV5zqfhTVPCOoT694GRSkjeZfaExxDcju0f/POTH4Hj0weo8L+LNO8WaZ9ssHZWjbZcW8o2yW8g6o47Ec+1AG9RSDOaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPShjhcj+dct408Wnw9ZQ2lhb/bdd1BvJ0+yx99/7zeiLnJPHHcdQAVvGHjC50y6tdC0KCK+8RX5Hk27Z2QJ3llxyEH69ulWvB3g6Hw5FNd3c51DXL0iS+1GUZeVuOF/uoMYCjHQU3wX4PHhyCe7v5/t2u3zebfX7Dl2/ur6IOgHH07DqwMUAJgZzS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADSOK4bxZ4QvF1UeK/CZjt/EMI/fQk4i1CMY/dyf7RAwG9hz0I7sjPWkI4oA57wj4tsvFmltc2yvBdQN5V3ZyjEltIOqsODjg4Pf8CB0I61wXjHw5f2Wqr4z8LR51i3QC7tBwuoQDqh4++APlPtjngV03hnxDYeKNEg1XTZN0EowVbho2HVGHZgf84IJANiiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopCaAFopOc0ZP+RQAtFIKWgAooooAKKKKACiiigApDxS0jHAzQBl+INdsvDeh3Wr6lJstbZN7cZZj2Ue5JAFcz4G0C9uL2bxl4kixrmoJiC3Y5FhbdVjX/AGjnLH1OMA5znon/AAsTx80p+fwz4cnwg/hvL0dT7qn6npkE49JXr+Hf/P1oAUAA5xz0zS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANZeOBz6mvNvEEUvw68SyeLLFCdB1GRU1m2UE+S5OFuVA9zhh3z6nI9KIBGCM1Dd21vdWk1tcxJJbzIySxuPldSDkH2IzQA6CZLiJJonWSJ1DI6kEMDyCD3BqWvOfBdxceEvEVx4Cv5JHtwpudEuJTky2+TuiJ7sh/TsBivRQc0ALRRRQAUUUUAFFFFABRRRQAUh4FDZ4x61zHijxxpvhlorMrLfavcD/RtNtF3zSe5H8K8H5j6HGcYoA6YtjJrkNU+JvhzT7s2FpNPrGpD/lz0qI3Mnv8Ad+UY4zkislfCXiPxkfO8aag1jp78roemybVx1xNKDlz6gHHAI9K7bSND0rQbQWmlafb2cA6pDGFz7n1PuaAOQGs/EjWudN8O6XosOeJNWuTLIy+oSL7p9iaePC3jq7lL33xAMKMP9TY6XEgX6OxLV3uBRigDhh8PdQb5pfHvigyHqUuI0X8tlNbwR4igjIsPiDrEbD7puoIbgfkVH867ujFAHBfY/idpYHkavoOtoB832y1e2kb6eWSufrTB8SLzSBjxf4V1PR0HLXkAF5bKPVnj5XPpg16BikIB6igDP0nXdM12z+16VqFvewdC8Dhtp9CByD7HmtAEnqK4vWfhro95eHU9HeXQNYwdt5p3yBj1+dB8rgnBI4JwOaz4fGOt+EJ47Lx3bxm0ZgkOvWaEwtnp5yAZjY+uNuenAJoA9FoqK3niuYUmgkSSKRQyOhDAg8ggjgipaACiiigBDXHfELXrzTtHt9K0dv8AieazMLOyA6x5+/L7BFyc9jiuxbpXnnhHb4u8cat4vkUNZWedM0kkcFVOZZl/3mOAR2yD3oA63w1oFl4Z8P2ejWC/6PaxhNx6u3UsfcnJ/GtfFGMUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQQD1oooA5H4g+HLjWtCjvNKPl65pUgvNOkAyTIvJQ+oYcY6ZxngVqeE/EVt4r8N2Ws2oCpcxgtHnJjccMh9wQR+RrZPSvPNKx4P+KN7o2CmmeI1a+s/7qXS/65B/vDDfyoA9EopBS0AFFFFABRRRQAUjHC5oPArjfG/ie+042ug6CqzeItUytspGVtk/infrhV7ZByR3wRQBB4o8XX8uqnwr4Thju9edc3E7jMOnxn+OT1bHRe/XHQHS8JeC7Dwwks/myX+r3Q3XmpXBzLOx64P8K+ijsBkkjNT+EPClp4T0n7JDJJcXUredeXkpzJczH7zsTk/QZ49+p6EADtQAmBnNLRRQAUUUUAFFFFABRRRQAYzUN1bw3NtJBcRRzQSKVkjlUMrqRggg8EVNQQD1oA8vn03VPhfO+o6HHcaj4VJLXmlA75bIdTJASeV7lSfx5yPQtJ1ax1zTYNS026jubO4TfHIh6jp+BByCDyCCO1XGAwa8x1CKT4W+IG1izD/8IfqEwGo2wyRYTMcCZB2QkgEe/wDugAHqFIelMilWZFkR1ZHAZWU5BHqDTz0oA5H4k63caL4NuEsedT1CRbCxAOCZpTtBHuBkj3Ara8N6Hb+G/Dtho1qP3VpCI92OXPVmPuSST7muT1If8JF8YdMsfvWnh60a9mxyDcS/JGpHYhQXB969AFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVxfxO0qe78KHVNPX/iaaLMuo2h55aPll46gruGO/FdpTXVWUqwBU8EHofagClouqQa3o1lqlqcwXcCTJk8gMM4PuOh96v15/8MD/AGSdf8IOTnRL5vs4OeLab95Fyep+9n8K9AoAKKKKACiikPTigChrmr2mg6Jd6rfSeXbWsZkc9z6Ae5OAB3JArlvh7o13Il14u1uIDWtaAkKH/l2t+scI9MDBPcnryKqeMVPivxxong771jAv9q6oAOHRW2xR/RnySD2wa9CU5JoAUADoKWiigAooooAKKKKACiiigBGOBWdHrulza22jRX8EmopEZntkYM6ICBlgPu/eHB55rSIzXnYhih/aDURRqgbwyWIUYyftPWgD0GSRYo2d2VUUEsWOAAO+a5/UvHPh3RtNs7/U9UjtIbyNZYBKjB3UgHOzG7oeeOKk8Ws02kppUZYS6rMtkNpwQjZMpB9REsh+oFXk0ewjvp777PG1xKixb3QHbGo4RfRc5OB3JoAfpeq2Gt2Ed7p13Dd2smSssTZGQensR6Hmpr21t72ymtLqJZbedGjljYZDKRggj6Vw/wAMNJSwPiS7slEWkXuqSPYRKMJsX5S6jspYHHqFFd+RkYoA888DXU/hnXL3wFqEzSLap9p0ieQ5MtoT9zPcxnj6ZwABXoX3hzx/SuG+J+nzx6RaeKdOTOp+HpvtaAcGSHpNHn0Kcn/drT8R+IYIfhxqXiGymHlNprXFtIeMlkzH+JJWgDI+GAGqDxD4qYKx1nU5DDIO9vF+7jH4Yau+AArn/Aulf2J4H0XTmQJJDZx+Yo7SEbn/APHia6GgAooooAKKKKACg0UUAcp8RNU1nRvBmo6los9tDNbRGRmmiLnA67eQAeepyOOlanha8n1Dwno97cyeZPcWME0jkAbmaNSTgccknpWR8UBj4Y+Iscf6G3StLwZ/yI3h8/8AUNt//RS0AblFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhGRS0UAef6kf7E+NGjXYLCDXdPlsXA6ebERIrH3KkqK78GuD+LG2y8P6Zr5JUaLq1teOR1Me/Yy/iH/Su8FAC0UUUAFIelLWF401F9J8E63fxuElgspXjY9n2Hb+uKAOb+GYGsT+IfF74Y6vqDJbOB1tocxx/To2a9AAA6Vz/gXTf7H8DaHYFAjxWUW8D++VBf/wAeJroaACiiigAooooAKKKKACiiigBCcV527Tn45R3/ANg1E2X9hmyN19hm8vzvP37d23GMd84969FpMCgDBMUl74zEsiMLbTbXEbEHDTSnkj3VEA4/56msDxh4rnt9S/sRNB8R3NkVzd3OnafI4YH/AJZI/A5H3mB46Dkkr3u0Y6UbQO1AHN+FfEP9ttNDb+HtU0iztI0RBqFr9n3E9FjTn5QByeMZGBXS0gABzS0ARzRRzwPDMgeORSjqwyGB4INeFXcjR/DS+8BzyN50HiKLR4t7ZZoXmEsbH6qCB7LXvJrw/wAWWPlfH/RrNFPk6lPaai+Bx5kCzIPxAGaAPblAHA6CnUgpaACiiigAooooAKRjtGe1LRQBzPjrStU1/wAJ6ho+mLZ+beRGIvdTNGEBI5wEbP6Vc8KWWoaZ4a07TdSS2E9nbRW5a3lZ1fYoXd8yKRnHTmtnApaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOa+IVkNQ+HfiG3K7ibCV1XHVlUsv6gVd8KX51Twjo1+33rmyhlbnoSgJH51o3kC3VnPbsMiWNkP4giuP+EN19s+FegynOVheLn0SRkH8qAO3ooooAK4T4xtJ/wAKt1eOFiJJmgiBH+1MgP6Zru64T4xSCH4Z6hO4ykU9q7fQXEdAHcRoEQKowAAMelPpB1NLQAUUUUAFFFFABSMcUtIxAHJAoA4PxX8W/DPhDWRpV9LczXYK+atvEH8kMAQWyR2IOBzjtXX6TqtnrWmW2pafOJ7S5jEkUgBG4fQ8j6HpXhfxI+DHiDXfGl1rGiNbTWt/IrOksxRoG2gEnI5XjIxk84xxXX+H/gX4RtdDtINb00X2pKn+kXC3Uyq7k54CsBgdBwDgc80AepZozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHf5ozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHf5ozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHfMcCvEPG/jvw1Z/GXw3cyXjldGNzBfyRxlhGzIVVfUkEnOM4+uRXYH4J/DwYx4e7/8AP7cf/HK8Y8WfB6/sfiBZaJplxara6vJO+nmR3AiRF3srnBPAOBjOe+M0AfUNrcxXdvFcQSLJDLGskbqchlYZB+mKmzXm9h8DvA0Njbw3mj/aZ44lWWf7VOvmOAAWwHAGTk4A71Z/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3+aM1wH/Ckvh5/wBC9/5O3H/xyj/hSXw8/wChe/8AJ24/+OUAd/mjNcB/wpL4ef8AQvf+Ttx/8co/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3+aM1wH/Ckvh5/wBC9/5O3H/xyj/hSXw8/wChe/8AJ24/+OUAd/mjNcB/wpL4ef8AQvf+Ttx/8co/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3k0yW8LzSuqRopZmY4CgDJJNefaP8avCOteI00a2nulkldY4J5YNsUznoB1YZJx8wH+KXnwP8BS2U8dtopt5njZY5hdzMY2I4bBfBwecH0rzHw38CPE1n4ttJtSls0060njmeaGckyhTnCDbnPHcDrQB9JAnOPanUxcDp+Vcm/j6H/hJ7nw7DoerzajbxCaRI1hIEZx827zcdxwefagDr6KwvD/izTPEc13b2jSxXlm2y6s7mMxywk9Mj09xkVu0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIa4X4QFB8PoIkXZ5V3dIVAxj9+5x+RFd0elcN8JS0ngk3DgAz6hdyYHbMzf4UAd1RRRQAVyfxNsRqHw08QwEZ22bygYzynzj9VrrKiuYI7q2lt5V3RyoUdfUEYNAFLQNQGreHdN1FTkXVrFMP+BKD/WtKuE+E1xIvg5tGuH33eiXc2nTHGM7HO0j22la7ugAooooAKKKKACqeqala6RplxqF7MIba3QySOewH8z2A75xVpzhe341534pvk17R9b1MyKdG0i1uGthni6uURhvHqiHKj1bJ/hUkA2fh74mm8Y+HJNalhWGGW6lW1iHVIlIVc+/Bz9eOK63AFcJ8G7c23wp0NSOWjkkP/ApXP8AIiu7oAKKKKACiiigAooooAQ4Iwa8f8XagV/aC8IRAKYbaAqzZ6PMJQAfwUGvYG6V4Jqi/wBo6nqHjYsyQw+LrGFGzwYLf90WB9GZz+VAHvSnPI7jNOpB1paACiiigAooooAKKKKACiiigAooooAKKKKACiiigApMClpDntQAHgDAzXivhTxVDa6p4y8b3Ol6reQXV2Yrea0tfMUW8IKg5yMZGCe3HWu7+JHiq18MeCtTna6iS+e3aO1iLgSM7fKCq9TjOfwrm/DHizwt4P8AhxpenW+o22pX0dqD9hsXE8ssz/My7VyR8xIy2KALnw60ebUPEOsePrqa23a0qpb29tKJFiiXA+ZhwX+UA46EH1r0ivPfgz4Z1Lwx4FEGqIYrm6uXuvIP/LFWCgL7H5c4969CoAKKKKACiiigAooooAKKKKACiiigAooooAbIwVCxOAOSa4X4NrKPhZo8kw/eymeVvfdM5B49sV0fi29OneDdbvR96CwnkX6iNiP1qp8P7T7D8PvD0BXaw0+FmHoxUMf1JoA6SiiigApD0paMZ60AefB/+EX+MDBmK6f4otgVJ6LdwDGPQbkP1Jrv1JNcz498NSeJvC8tvZuItTtpFu7Cb/nnOnKn8eR+Oan8F+JYvFfhyDUhGYboEw3kDfegnXh0IPIweR7EUAdDRRRQAUhpaCM0AcH4h8Y6Zf67a+DbLWYI72+YpdSxTANBGPvRqwPEr/dUdRyeoGcD4paP4L8O+AdT8rSNDs9Rkg2WoFvEkxJYDK8bjgZOfY161tGCOxowPSgDkfhjdWFx8PNDjsbqGcw2USzCNwxR9o3BvQ5yPwrr6QADoKWgAooooAKKKKACkNLSN93pQBzPj7xC/hrwde3sALXzgW9nGo+Z55PlQAdyM7segNc14g8HLpnwGu/D68y2en+c7Lk7pkIlYj6sD+dSRN/wnfxLEyHfoXheQhT/AA3F8Rzj1EYP4H1Br0KaKO4gkhlUNFIhV1PdSMYoAq6FqKaxoGn6nGAFu7aOcD03KGx+taFcL8JZ5F8Ff2RcPvutFvJ9OmOMZKOSuPbay13VABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJgUYFLRQAgAHSloooAKKKKACiiigAooooAKKKKACiiigAoNFIaAOH+Lc0h+H11p9u+251O4gsYQf4mkkUEf98hq7S3jSGCOKMYjRAqj0AFcL4v8A+Jv8RfBuhAB4reWXVrkd0ES7Ym+hdiK74d6AFooooAKKKKAEbpXm/iKKbwD4ok8Y2MTvot+Vj1u3QZ8pui3KgenRgOvXGTkek9ajmhingeGWNZIpAVdGAIYHggg9RQAy0uob22iuLeVJYZUEkciHIZTyCPYip68tX7Z8Jb2Tak134JuZdwxlpNJZj6dWhySfUc9/v+l2l3BfWsV1azJNbzIHjljYMrKehBHWgCeiiigAooooAKKKKACiiigAoopD064oAGOBmuG8ceJL4TQeEvDj58Q6kv8ArM8WUHRpmI6eg75xjJwDY8W+NW0q4i0PRLYan4lu1PkWan5YRj/WSn+FBwcHBPt1FjwZ4QXw5bT3V9P9u1y+bzb+9Yfff+6vog6AYHTp0AANPwzoFl4Y0C00ewUi3tk27mHzSN1Z29yST/8AWrWwB0owM0poA8/0onQfjBrOntkW2u2kd/b8YXzYv3cij1YjaxrvwcmuB+KFu+n2Wl+L7aNnuNAu1mkCjLPbv8kyj6gg57YruraaO5gjnhdXikQOjqchgecj2NAEtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLWB418QL4X8H6lq5GZIYsQrjO+VvlQY7/MR+GaAOe8Hn+3fiJ4s8RkBoLZ00e0focR/NKPpvI5r0DGK5vwHoLeG/BemabLk3SxeZcsTkmVzufJ7/ADEj6AV0lABRRRQAUUUUAFIQD1FLRQBHLFHLE0ciK6MNrKwyCD2IPUV53N4W1zwPdy3/AIIC3WmyOXuNAnk2rnqTA5+4fY8fkBXpFIVB6igDmfDPjvRvFO+C2le21KHifT7tPKniPoVPX6iulUk+lc/4m8E6F4qVH1G0xdx8Q3sLGOeLrja454Jzg5Ge1c8mmfEHwuwGmala+JtPTkW+pHybsL/dWYfK31YUAeh0VwP/AAtK207K+JtA1rQygHmTTWpmgB9pI8g/XFa1n8RfB19Grw+JdLG7oJblYifwbBoA6iiqEWt6XOm+HU7KRfVJ1I/MGqlz4u8N2X/H14g0qDBxiS8jXn8TQBtUGuHufi14PiuPs1pqMmp3eMrb6dbvOz/QqNv61WbxP4519dugeE10uFvu3muy7CP+2KfNn0ycUAdxd3tvp9rJdXlxFb20Yy8szhFQepJ6VwE3jLWfG0r2HgW38uyBKT6/eREQp2PkoRmRuvXgcZ4Oas2fw0i1C6iv/GGr3PiK5Q7kgmAjtIz/ALMK/KfTnIPpXdxQxQxJFFGqRoAqIgwFA6ADtQBgeFPCGm+FraYW3mXN9cNvvL+5bfPcP1y7H68Dp+JyejpNoBzjmloAKKKKAK97aQX1jPZ3EayQTxtFIjDIZWBBH5GuL+Gd3cWdnf8AhDUHZr3w/N9nVm6y2zZaF/8Avnj22813Z6V5548STwvr+m+O7ZWMNtiy1ZFGd1q7cPj1RsHjk9M4oA9DBzS1HDKk0aSxsrxuu5WU5BB6EGpKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARuleeeISfFfxK0jw6nzWGi7dU1HHQy8iCPjv1YjoQR6V13iXXrbwz4dvdZvD+5tYy5Xu7dFUe5YgfjWJ8O9CutM0SXUtXGdc1eU3t8SMFGP3YxnkBBxjsc0Adeue/WnUUUAFFFFABRRRQAUUUUAFFFFABSAAdBilooATA9Kyr7wt4e1Ny9/oWmXTnktNaRufzIrWooA5Z/hr4KdizeGNMyeuLcAfkKmg8AeD7bb5fhfSAV6FrONiPxIro6KAIbe1t7SIRW0EcMY6JGgUD8BU2BRRQAgAHSloooAKKKKACiiigAqve2tve2U1ncxLLBOjRSRtyHVhgg/UVYo60Aed+A76fw5ql14A1SdmlsVM+lTyHJuLIngf7yHKkccDgYXNehg9M56d65Px34Xn1zT7a+0mQW+v6VJ9o06boC38Ubf7LgYP4duDd8G+KLfxboSX8UbQXMbGG7tX4e3mX7yEfXp7EfSgDoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkJxihiQOK4rx14lvrQWvhvw+yP4j1X5IfS2i/juG9ABnHvn720igDLu8fED4gpZKvmeHvDcwkuD1S5vR92P3CDk+5wR0r0kCsbwt4dsfCvh+10ewH7qBfmc/ekc8s59yf8BwK2sUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACN0rzvxVpt/wCFddfxvoEDzRsgXWrFOtxCv/LVB/z0QZ+o/HPotNIHXHNAFPSNWstc0u31LTrhLi0uEDxyJ0PsfQjoR2INXq8w1K0vPhjqkuvaNBJceF7uTfqemxrk2jE8zwj+7/eXoPoRs9E0zU7TWNPgv7C4juLSdA8csZyGH+eMHkEGgC3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFI3TrignArE8UeKNP8ACejNqOou2MhIYYxmSeQ9ERe5P6UAReLvFdr4U0j7XMjXF3K4hs7KP/WXMx+6ijr1IyR09+lZ3gfwtdaa11r+vOlx4j1TD3Mi8rAn8MKf7IGOnUjqcCqnhPw1qWo6x/wmHi1E/tV4yllYjlNPiPYeshz8zde3tXe4oAQAA9KWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKCM0UUAIQAOleaXujar8O9Rn1rwtave6DcOZdQ0SMfNEx6y24+g5Tp6cEbfSyAetGMDAoAzNB8Qab4k0qLUtKukubWT+JeqnurDqCMjg1piuC17wTe2WqS+I/BV1Fp+ruQbm0cf6LfY7Oo+63+0PU9NxNaHhjx7Za5ePpN9BJpOvw/67Tbo/Nn1jbpIvfI7c4xQB11FNVtx4ORTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRsgcfyzQTgVwes+Pbi81GXQfBdrHqurIds9yx/0Sy68yuOpGPuj37jBANfxZ4zsPCtpF5wku9RuTss9PtvmluH9AB25GTjj3PByfDXhDULvWE8U+MHSfWAD9lskO6DTlPZexf1b9T1N7wn4Hg0O5l1XU7uTV/EFyP9I1G4AyP9iNeiIPQfywB12KADFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQRmiigBCoOMjpyKwfFHg/RvFlokOp2xMsRzBdRHZNA395H6jnnuOBkcVv0UAebrqXjDwH8msW8viXQkHGoWqf6ZAo/56x/xjp8wOeCSe1djoPibSPE9j9s0XUILyH+Lyz8yH0ZT8yn2IrV2L2H0rkde+HOi6vfNqlo1xo+sYONQ02QwyE9fnA4YHjORntmgDrxS154upePvChC6lp0PinT1HN3poEV2o9WhPDEnPCn3NbGifEbwzrk/wBli1FbW/DbGsb4eRMrf3dr4yfpmgDq6KaCT3z7gU6gAooooAKKKKACiiigAooooAKKjeRYkaSRgiKMlmPAHqfSuN1L4peHra7aw0trjXdRHS10mIzn6lh8oHrzxQB2rHAzXN+I/HOh+F2SG+uxJfSECGwt18y4lJ6BUHPPYnAzxmsE2vxB8WA/bLqDwnprDmG0YT3jj0Mn3U9iBkV0HhnwRoPhUO2nWQ+1SZ828nYyTyk9SXPPPoMCgDmm0zxd48Gdbll8N6A3/MPtnBu7hP8AprIOEBHVRz1Brt9G0bTdB0+PT9Ks4rW1jHypEMc+pPUk+pyT3rQ2jjjp09qWgBAAOAMCloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEwKy9a8NaL4hgEOr6Xa3igFVMsYLID/dbqv4YrVooA8+Pw1l0sbvCvinWNGCgCO2eT7XbRj2jkyf1p/nfE7Sc7rbQdehQceXI9pO/1BygrvcD0pcCgDgT8RNWscLrHgHxFBIcZNiiXqL/wJGH8qc/xg8IWyg6jc32nMeNl3p06kH04QjP413mBSbQe1AHHwfFTwPOCV8S2K4xneSn/AKEBU3/CzfBP/Qz6b/3/ABXRPp9lKQZLSB8dN0YNN/svT/8Anwtf+/K/4UAcrc/FrwJahjJ4ktSF6+Wryf8AoKmoB8W/DlzHv0uDWNWz0Fjpkz7vpuUCu1isrWD/AFNtFHzn5EA/lU2BnOKAOD/4TnxNqCBtG+HurOD1Opzx2ePfDEk01rT4nauSs2p6FoMJ6G1ga6mHsd+EP4Cu+wKMCgDgk+Fel3syz+JdU1XxBKCGC3tyRErD+7GmAOp45612WnaXp+k2wttNsbazgBz5VvEsa5+gAq5RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k=', '/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAS0BMwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACikJwM1zWs/EDwnoJZdR1+yjkQ4aJJPMkH/AEy36UAdNRXBf8LNS9O3RPC3iPUwQCk6WXkwt/wADkI/lSpr/AMRL3cIPBFlYDPyve6qr5+ojU4oA7yiuCRfitLId8ng+CPnaFW5kPtnpUg034kuu5/EGgRsT9xNPkYD6EvmgDuaK4Y2PxMhbMeteHLgHr5tlKmP++XqOKb4qwZNzZ+ErsDGFt5riNj+LAj0oA72iuB/4S7xpZuRqPw9uGiXrLYajFPn6JwaF+Lfh63KjWrbWNCdjhV1PT5I934qGGPfNAHfUVm6T4h0bXUL6VqtlfAfe+zzq5X6gHI/GtKgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiig0AFB6VieI/FWi+FbD7VrF9HAp+5H1eU+iqOSf8muT87xt43OLdJfCWiNn95Koa/nX2XpDkHr94EDGaAOn8ReMvD/hVA2r6nFDIw+S3GXlfnsgyx+vSudHiXxv4kIHh7w2mk2jH/j+11irkd9sCncD3BJwa2/DngTw/4aka4s7MzX78y3903m3EhPUlz698YB9K6fvQB5+3w1k1f5vFvifVdZz962jf7LbH28tP55rpdG8JeHtAA/srRbK0cDHmRxDeR7v94/ia26KADvRRRQAUUUUAFFFFABTXRZEKOoZTwQRkGnUUAclqvw08IatIJpdDt4LgHcs9nm3cH1yhGT9c1lDwn4y0Dnw54ue9gXOLLXkMwP8A22XDgegxXoVFAHnqfEi40WQQ+NfD95ooztF9F/pNo3YZdASpPYEfWu30/UrLVbVLvT7yC6tn+7LDIHU/iDVmRFkjZGVWVhghhkEe9cJqHw1tIb2TU/Cl7N4b1I/eazANvL7PCflbv0x170Ad7RXncXjvVvDE62njzTVtoiwSPWbENJaOe28fejPQc989hXe2tzBeW8dxbTRzwONySxuGVh6gjrQBPRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFQXl1b2NnNdXUyQW8KF5JZGwqKOSSaAJicKTXn+p+Ob/WdQm0LwNbRX9/Gdt1qMmfsdp7bv429APrzhhVBrnV/inK8djNPpXg1WKSXQ+S41LBIIT+5F15PJH1IHf6Po9hoWnQ6dplrFa2kIwkUa4H1JPJPueT3zQBgeHPANjpF6dW1S4k1nX5P9ZqN2MlfaNOka9eB64zjiuvFLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEc8MdzBJDNGkkUilWSRdysD2IPUV57deCtV8K3D6l4AuEjiLF7jQrlj9mnOOsZP+rf9M46AYPo1B6UAcv4T8a6d4nM1qscthq1rxdaZdDbNCfXH8S8jBHqM4ziuorlvFfgqx8TeVdJNLp+sW3NpqVtxLC3of7y+qnsT0rM8OeMb+21ZPDHjGBLPWuRbXScW+oKP4oz2bGMr/LOAAd5RTQeadQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTZHWKNpHZVRQWLMcAAdyfSgCC/vrXTbCe9vp0gtYVLyyyHCqo7mvOLSyvfirfJqeqxzW3g+Ft1nYMdragwPE0nonovfr9UjSX4r60J5Q6eCrCb9yjDH9qTKfvEd4ge3fH1C+nRqEACgAAYAAxigBIkSJEjjRUjUbVVRgADoBjtUlFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAh6VjeJfDOmeLNJfTtUg8yNjujkXh4X7OjdVb/J4raoPSgDzvw54k1Xw/rcPhDxjMHuXX/iW6qeEv0HG1v7so469fyLehDk56VjeJvDWneK9Fl0zUo90bDMcg4eFx0dD2Ydf0PFc94M8Q6haapJ4N8Tyg6zbR77W6OQNQtxwJBk/fGDuHXvzzQB3lFFFABRRRQAUUUUAFFFFABRRSHgUAB6V5t4oup/HHiNvBOl3Dx6bbhZNeu4jyEP3bdT/AHmxz1wOOcEHe8d+J5vDukxwadEJ9b1KQWmnQcfNK38RB42qDkk8dASM5q14M8Mx+FNAi08SGe5djNeXLctcTty7knk5PHPOAOtAGxY2kNhawWdpCkNtCgjjjQYCKBgAVaoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARvumuX8aeFF8UaZG1vP9k1exfz9PvFHzQSjtn+6eAR0PBxxXU0h6Hr+FAHL+B/FLeJdMkS9hFrrNg/2fUbP/nlIO4/2WwSD0PPJxmuprzrxvZXHhjWYPHulQs5t1EOs28Y5uLX/npjuydc+g64GK72zuoL60gu7WVZredFkjkQ5VlIyCPYigCxRRRQAUUUUAFFFFABTXO2NiTgAZz6U49Oa4X4l6hdS6dZeFdMkCal4gmNorA8xQAZmkx7J/6FQBS8GI3jHxZeeObgE2EG+x0NT08sEiSYD1c5APXGQe1ej1R03T7fSNMtdOs4/LtrWJYo0x0VRgfy/Oodc13S/Dumy3+r3sVrap1aQ9T6ADlj7CgDTPSsHxB4z8PeF1B1jVYLZyAVhJLSt24RQWP1xXLLd+MvHgJsRL4V0FulxMmb+5Xp8q9Igcnk89CM10HhzwH4f8NOZ7Oy86/bmW/uj5txIx6kufXvjAPpQBkL478Q6yR/wjXgm/lgPS61SRbNMdmCnLMPoKcNO+J+oqftWu6BpHPy/YbN7hse/mEDP0rvB1paAODTwh40MeJ/iRds56mPSrdB+AwcUknhHxuoBt/iRcK+cZl0m3cEfTjn3rvaKAODa1+J+nlRBqXh3V4xy32q3ktpG+mwlRUR+ImqaQP+Kr8Happ0QPzXdmVvIEH95inKj6ivQaD0oAx9C8TaL4lg8/RtTt71AMt5T/Mn+8vVfxFbFcjr3w70DXLj7csEum6qOU1DTn8iZW9SV6/iDWIPEHirwGwTxVCda0MHH9s2cWJoB6zxAdB/eXPAHUnFAHpNFUtL1Oz1ixiv9Puorm0mGY5YnDK3r9MHj65zV2gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGTRxzQSRSoHjdSrKRkEHqMV594Jlk8KeJ77wLdyH7KFN7oruetux+eLPco2e5OCTwAK9DPQ1w/xL0u5k0a38RaWo/tbQJftsGP+WkY/wBbGcdmQHjvjFAHc0VQ0fU7bWtJs9TsnLW11Cs0Z9mGcH3HQir9ABRRRQAUUUUAIelee+FR/wAJJ8Qtf8USfNaWB/sfTiTwdnMzjPXLcBh1GRXReONfHhnwVqurA4lggIh4z+8b5U/8eYVi2M1l8LvhhZC+y0lvCoMScvcXLncVXuSXJ+g57UAavizxdZ+FbCN5Inur66byrKwh5luZD0VR6cjJ7e5IFY2geCLu+1OPxL41kS/1gZa2swd1tp4JyFRe7jjLHPI6nGTL4L8L3ov38WeKNs3iK9X5I8ZWwhxxDGOxGTuPck+5buqAGjg06iigAooooAKKKKACiiigApHGUIIyPSlooA851PwlqXhK/l1/wMg2yNvvtCJ2w3Q7tF/zzkx+B444weq8L+JtP8V6Umoae7YBMcsEg2yQSDqjr2Yf/qyCDW2eBXnfi7Rr3w1rDeN/DUO+dUxq+nLwL6Aclx6SL1zjkfkwB6LRWdourWeu6Taapp8wmtLmPzI3HXHofQg8EeoPpWjQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIwDKQQCDwQe9LSEZBB5BoA8++HmfD+t694JkYiPT5vtenBu9rMd2F7kI+QT6nFehV5744zoXjXwt4pj+WJpzpN8QOsU33CfZXGfxr0ADnp160AOooooAKQ9KWkPIoA4Dx8P7W8TeDvDWCYrm/a/uMDIMduu7aw9GJA/CqmjRj4g+N5PEUx8zQNElNvpKEZWe4H+suPcA4VTyOMjBBrmfG+r3Vx8RtZtNMdv7TNnbaFaDsj3JMsknttjXk9iRXr+haNaeH9FstJsl2wWsQjU45bA5Y47k5J9zQBoAYNOoooAKKQnAJPQUilWAZTkEcEUAOooooAKKKKACiiigAooooAKRvunnFLQeBQB5raD/hXvxAGnAbPDfiKUtbD+C0ve6D0V+MD14AwDXpCjkVz/jTw2vinwne6ZnbcMnmWsgODHMvKMD25Az7ZpngTxC/ibwlZ6hcLsvQDDeRkYKTodrjHbkZA7BhQB0tFFFABRRRQAUUUUAFIeATS0HpQByHibxufDuvaLpX9k3M39qXkdqtyXVY1LFQcckkjd6Ae9daOteb/FL/AJD/AIB/7D8P8xXpVABRRRQAUUUUAFFFFAHM/EDRf+Eg8BazpyKWle2aSEA4PmJ86f8AjyirnhLWR4h8JaTq2QWurVJJMdA+MMPwYEfhWyfunjPtXB/CoCx0fWNAC7E0fV7m1hXP/LIt5iH8d5/KgDvaKKKACkPApaRiFUknAHJNAHh3w7tX8R/GnxTrlxseDS7qZIGA53ufKU59PLiI/wCBV7lXlvwHtHHgi51abBm1S/luGb2Hy4/NW/OvUqAEPSvO4Vlt/j40H2u6lgk8PNP5U0pZEczqp2r0HCjpXoteeyEf8NBxDPP/AAjB4/7eaAOm8U3M0WgyW1s5S7vmWzgYdUeQ7S4/3VJf/gNZuqeBdP12VIdUkuDpltEkVnYwXDxRoFH322kFm7DJIAAx1NXJ/wDiY+NLaAcw6Vb/AGlv+u0u6NPxCLL/AN9iovEniqy0qaPSl1OxtNSuVLK11KqJAnQyMCRn2Xqx9AGZQDE+Fy6jaDxDo91ezXtjpepPa2VxO259oAJQnvtyPzPoAPQq53wtd+H0g/sjQtRgvfsy+ZM8MwmJZySXkZeN7Nub1PPFdFQAUUUUAFFFFABRRRQAUUUUAIelcB4c/wCJD8V/EehgBbXVYU1i2VRgK/8Aq5vxLbWr0A9K4Lxp/wAS7x34I1rfsQ3kunSc43CaM7Af+BJQB3tFNGc4p1ABRRRQAUUUUAFIehpaKAPMfiYbm41/wf8AZdO1K5Fjq8dzctbWM0ixxgrkkqpB+gJr0iCQTRJIofDLkb0KH8VPI+h5qaigAooooAKKKKACiiigBD0rhPDyGw+L3i+1LYS9trO9jTHAwrRsfzAruz0rhJ4/s/x0s7jkC78Pyw+xKTq354NAHeUUUUAB6VzvjPxPpvhTw3c3+oXXkh0aOAAEmSQqSqrjvx16DvgV0J6V5b8bfBWoeLPDtpdaYwa40xpJWgZ9qyRlcnAPBYbRj6tQBY+B+r6XefDqx02yulkurDcLqLBDRl5HYZyOc54Iz068GvS6+dvhD8LrzUdHk1y513VdKgvFUW39kXnkySKGYMZPlPGQMD6+1ek/8Ks/6nzxx/4OP/sKAPQDWW3h3RDqP9pHR9P+3A7vtP2ZPNz67sZ/WuT/AOFWf9T544/8HH/2FH/CrP8AqfPHH/g4/wDsKAO4jtYIZ5po4lWWdg0rAcuQoUZ/AD8qzL3wn4c1K7ku7/QNKu7mQ/PNPZxu7Y4GWKknAAH4VzX/AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAdfpeh6VowkXS9MsrFZDmRbWBYgxHTO0DPWtA9K4D/AIVZ/wBT544/8HH/ANhR/wAKtx/zPnjj/wAHH/2FAG14u8caH4KtYp9Zumjafd5EUaF3lx1AHTjI5JA5q34Y8U6R4u0z+0dGuvtEAcxvlSrI2M7SCBg4I9vQmvHfiP8ABjWruKzudD1XVdcljVlli1W+EkijjHlkgDHXIz6Ve+H3wa1PT9HlfV9f1vR7ydwTb6RqAjUKBgbyFIZs7uhwBjBNAHt9Fef/APCrP+p88cf+Dj/7Cj/hVn/U+eOP/Bx/9hQB6BRXn/8Awqz/AKnzxx/4OP8A7Cj/AIVZ/wBT544/8HH/ANhQB6BRXn//AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAd+3CnnFeWfGPxLo2lQaJb3V0q6hbana6jHAEJby0chm46cbvrg1pn4W4/5nzxwf8AuMf/AGFeUfFf4W6ppl5a6pZ6ne6tbTGK1MmpXYkuBIzEKNxCjbyMehznigD6G0TW9P8AEOlwanpVytzZzg7JACMkEg5B5BBHQ1pV494M+Dl5pnh2GHUfFPiHTryRmklt9J1DyoVJOBxtOWwBk/gOma6H/hVn/U+eOP8Awcf/AGFAHoFFef8A/CrP+p88cf8Ag4/+wo/4VZ/1Pnjj/wAHH/2FAHoFFef/APCrP+p88cf+Dj/7Cj/hVn/U+eOP/Bx/9hQB6BRXn/8Awqz/AKnzxx/4OP8A7Cj/AIVZ/wBT544/8HH/ANhQB6BRXn//AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAegUV5/wD8Ks/6nzxx/wCDj/7Cj/hVn/U+eOP/AAcf/YUAegUV5/8A8Ks/6nzxx/4OP/sKP+FWf9T544/8HH/2FAHoFFef/wDCrP8AqfPHH/g4/wDsKP8AhVn/AFPnjj/wcf8A2FAHft9015B4p8f+GdO+LmhvNqeBp0N1bX7ojMsbOF2KcDnkHOM4OM4xW+fhbgZ/4TzxwfY6v/8AYV4j4p+EXiG18fR6Tayi8GqPLNa3NxMN7qvLGU/3xkZOPmzkd8AH1TFMssSSRsXjdQysvIIPQ0/efRvyrN8P6Y2ieHNM0rzjL9jtY7fzNv3tqhc/TitHLf3v/HDQBJUVzCtxaywuAVkQowPoRipaQ9KAPOvgbdrdfCrTIw2WtpJon9j5jMB+TCvRq8b+Ct+lj4j8Z+Fiyg2upSzxLnkjeY2/Lan517JQAUUUUAFFFFABRRRQAUUUjfdPOKAKmqalb6Tp0t7clvLjAwqLuZ2JwqqO7EkAD1Irjfhbr2peJrLXdV1IlHbVJIIoA+5YY0RAFH4k5Pc5Pelm1a+1LVxq6aFeX2jWQL2LxzQqsj8hpiHcEgDIXjGCWGcjFL4GRMPhpa3D8tdXM8xOep3lf/ZTQB6VRRRQAUUUUAB6VwXxIVru98HaZG3zz69BM68fNHEGdv6V3p6V5/dFdc+NlhAvzQ+H9NkndgeFmnwgU++wE0Ad8cYrz34v3t1ZeE7caZdXdvq13ew2tm1vcPGS7NkghSN2QCOQeteh9q8u8VW//CWfGDQ9BE8sdvo9pJqU7wttYSMQqc9mB2n6NQBF8QHvvh9oGnatpGtajNfC6jga2u7p7hLzIO4bXJIPHVcEV6lCxaNCy7GKjK+ntXkF/bL4Z+M+g217LPrkOpxnyH1FzLLYuM/NH/CBwM8Z6817Ep56/hQA6iiigAooooAKKKKACiiigAooooAKKKKAA9K4bU8XHxn8Pxct9l0q6nx027mRM+9dwehrhLJFvPjlqdypyLDQobVh6NJK0n8hQB3lFFFABQaKQnAoA8E1GVvB3xp1TXApSyiuoDdnput7mMKzn2SVB+de9j2rzPxnpVtN8SNJS9jLWPiDTbjR7hs8KR+9jP8AvZ3AfStP4bavdNYXPhnV3H9taEwtpuf9dFj91KPUFcDPXjnrQB3VFFFABRRRQAUUUUAB6Vz3ivRdV1/SnsLDWI9NhlG2dvshld17qDvXbkcH2PauhooAx9T06+vPD0mnWd7b2c0sBhM/2YsqgqQSibxjHbJOPeqHgXwvdeD/AA5b6JJqMN7b227ymW1MLjcxY7vnYHlu2K6eigAooooAKKKD0oAhvLmGysp7q5lWKCGNpJJGOAiqMkn6AZriPhdbTXenal4rvIil34gujdKGHzJbr8sKn2C8j/eqH4g3EviDUbDwHp7sr6hifUpUPMFmp5+hcjaPXkd67y2ghtLeK3t41ihiQIkaDCqoGAB6AAUASTBzC4iZVkI+VmXIB7ZGRn8xXB6d4J8Q6Z4l1jXYvEmnSXWqlPN83SXIjVBhVTE4OAMdc9BXf0UAcfongSOz8St4m1fU59X1ryzFFNJGI44EPGI0HTgkZyTz7knsKKKACiiigAooooAKKKKACiiigAooooAKKKKAEPSuC+H4W/8AFPjjWwD+/wBVFkCe4t0CZHtkmuw1nUY9H0S/1OYZjtLd52HqFUnH6Vzfws0+Ww+HWkm5Yvc3aNezOerNKxkyffDD8qAOyooooAKDRRQBw3xVs55PBp1W0TdeaJcxanCM4/1bZb/xwtVXxZY3Nwum+PvCqm41C2twzQIP+P8As2AYx8fxAHcvXnPXiu/uIIrq2lt50WSGVCjo3RlIwQfwrhfhdcS2elaj4UvHZrzw/dtagv8AeeBiXhc+xXp7LQB1Ph/XrDxLo9tq2mTebbXC5GeCh7qR2YHOR+vStWvNtZ0rU/A2t3Pijw3bvdaVdMZNX0pG6t3nhHZxzuHGf1XttE1vTvEWmwanpV0lxaSjKsv6gjqCOhBoA06KKKACiiigAooooAKKKKACiig9KAEPSsDxd4ptPCehPf3MbTzORFa2sfL3MzfdjUe/48Z61L4m8T6Z4U0p7/VJiqk7IokGZJ3PREXqT/Lqa5nwx4d1PW9bTxl4uiEd4EK6bph5WwiPOW9ZD3Pbp6BQDR8CeGrvSLa61bW3WbxDqzie+kHSMY+WJf8AZQcfXPtXYU0dRTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoPSig9KAOB+K00t14fsfDdszC416+isgUPKRZDSP8AQKuD7NXdQxJDGkUahY0UKqjooHAArgrPPiX4xXV5jdYeGrX7LCexuphmQg+yYUj1Ir0GgAooooAKKKKAEb7przvxQT4T+IWj+KF+TTtSUaVqTDOEYnMEhA44OVJPQcd69FrL8SaFa+JfDl/o14P3F3EYy2MlD1Vh7ggEe4oA0TwCAM8dK4PV/BWoaTq0/iDwPcRWd/Md15p0xP2W+PqR/A/+0MZJ5xkk3Phzr11quhyadqxI1zR5DZXyk5LMvCye4ZRnPcg12ZoA4/w78QNN1i9OlahDLo+ux8Sade/KxPrG3Rx3BHbnGK68VjeIvC2ieKbL7LrOnRXSL9wtwyH/AGWHIrlR4f8AHHhVf+Kf1uPXbBOlhrJxMq/7M68k9AA3AFAHolFefL8UI9MBTxX4d1jQXX787QG4tgfQSxg5/Kt2w8feEtTCfZfEemOX+6jXKo5/4CxB/SgDpKKrx3ltMm+O4hdD3VwQf1pJb60gXdNdQRr6vIBQBZorltS+I3g7S0drrxLpuV+8kMwmb/vlMn9KyG+I91qxMfhTwpq+q7uVup0+yWxHqJJP5YFAHft0riNa+IUEOoPonhm0bXtdAwYbdv3NuemZpei8g8ZzxjjIqofCHirxRz4u8QC1sm+9peibokf2eVvmYEcEDj0xXYaJoOleHbBLHSLGCztl/giXqfUk8k+5yaAOa8PeB5l1RfEXiq7XVfEGMRnH+j2Y67YV/wDZjyfbnPbDg06igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsTxZ4gg8LeF7/WbgBhbRlkQ/wDLRzwi/ixA/GtpvumvOdVP/Ca/Eu00aM79J8Nst7fntJdMD5Uf/ARlvzB5FAG58PNAn8O+EreC9JbUrpmvL+RvvPPIctk9yOFz7V1dNHXpTqACiiigAooooAKRvunAyfSlooA868ZxyeEPEdt46s42NmVW11uJF+/Dn5Zsd2QkD1I46V6BbzR3EMc0MiyRSKHR1OQwIyCD3GO9FzBFdWstvPEksMqFJI3GVZSMEEdxivOvCd1N4I8Rf8INqkrvYTbpdCu5Od0fVoGP95O3qPTgUAelUU0dRTqAA8isTUPCPhvVHMl/oOmXEh6vLaIzfnjP61t0UAcXJ8J/Asjlz4bswT12llH5BqWL4U+BoXDp4as8+j7mH6k12dFAGTp/hjQdJfdp2i6dZv8A3oLZIyfxAzWrS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLUN5dQWVnNdXUqw28KGSSR2wFUDJJP0oA5/xv4nPhfw+89vF9o1O5cW2n2wGTNcPwox3A6n2FL4H8Mf8It4ejtJpfP1Cd2ub+4zkzTvyzH6dB7D1zXO+EYLjxp4lPjnUonjsIVeDQrZ+NsZ4edh2Z+3oPXgn0YdaAFooooAKKKKACiiigAooooAD0rn/ABb4WtfFmhmxnkeC4iYTWl1F9+3mXlXU/wCeK6CkbO0460AcZ4H8U3epPcaB4gRLfxJpvFxGOFuI+izx+qnvjofTIFdpXI+MfCD6+ttqWl3C2HiKwO+yvewP/PN/WM85GD1zjkgu8G+MR4i+0afqNqdO8Q2HyX1g55X/AG067kPGDz168gkA6yiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQnAzQAN0NeY6hK3xR159Fs5CfCWmzD+0blDxfTA7hChHVF4JPfj2Jk13WrzxzrMvhXwvdtFp0RxrOrQ4IRf8AnjE3QuehPb867vR9IstC0y30zTbdLeztk2Rov8z6knknqTyetAFqGJIVSONFSNFCqqjAUDgAD2FTUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjHCk+lcl4t8G/2+9vqum3J07xFYg/Y76Mf+Q5B/Eh9D0zx1IPXUjEgZAzQBxvhLxq2qXj6Fr1sNM8SQL+8tWPyXCj/lrCf4lOCcDpz1612dc74o8IaZ4tskivQ8VxC2+2vIG2zQP2ZG7fTpXM2vi/V/Bl1HpXjoK9o7bLXX4UIil9FmUf6t/fofwJIB6RRUUM0U8SSQypJG43I6EEMPUEcYqWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikPQ1keIfEmk+FtNN/rF7HbQg4QE5aQ/wB1R1Y/T8eKANWV1jiZ3YKijLMTgAdzntXmt9rep/Ee6m0bwvNJaeHkYx3+tqMGbsYrf19C/Qcn03KNM1/4kuJtehuNE8LBgY9L3bLm9A6GYj7if7A5/JTXodlZwafaxWlpBHBbQqFjijUKqL2AAoAraJomneH9Ng03S7VLa0hXCog6+5PcnuTye9aVFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVBeWsF7Zy2t1BFPBKu14pVDK49CDwanooA85fwhrvgyVrrwPci404ndJoF7IfLPr5Eh5jb2PGSSegFa/h34g6Trl4dOull0nWk/1mm36+XJn/Zzw478c45IFdeaxPEPhXRPFNp9m1nTorpV+4zDDof9lhyP85oA2hS153/YPjfwkgPh/V18Qaegx/Z+rnbMo/2JxjJ6cMMYqzafFHR4rhLLxFbXnhy/PHl6lGVjc99koyrL75H0oA7uioba4huoUnt5kmicZWSNwysPUEcEVNQAUUUUAFFFFABRRRQAUUUUAFFIelZes+IdI8P24n1bU7WyQ5x50oBb6A8t9BQBq1Fc3ENpbSXFzNHDBGpZ5JGCqgHUkngCuBPxA1bxD+78FeG7m9jbpqeoA21qB/eGfnkHsMGlt/hzca1cJeeOdYk1mRTuTT4gYrKE+yDl8ep7cEGgBLr4g3euzy6d4D08apOp2S6lOCllbnvlushHHCjvnJ6Vd0H4f29rqS654hvJNd17GRc3A/dwf7MMfRAPXr16ZIrr7W2gs7eO3tYI4IIxhI4lCqo9ABwKnoAaOop1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVWvLK01C2e2vbaG5gfhopkDqR7g8GrNFAHCXHwr0SG4a60G71Lw9cu25jplwUjc9t0bZXHsAKYLH4maPtFvq+i6/ADlhe27WsxHYAx5XPuRXfUUAcD/AMJ34i05Sdb+H2spg43aZJHegj1wpBFKfi94RtsLqU2oaXITt8u90+ZGz07KR+td7SNjacjI9KAOUt/iX4KulDR+J9NUEZ/eThP0bGKtDx54PYA/8JVon46hCP8A2atK40bSrobrjTLOYjn95AjfzFZ7+CPCUhMj+F9FZmOSTYREn8dtADH8feDkPPirRfwvoz/Jqzrv4s+BLIEyeJLV/wDriHl/9ABrZg8HeGLbPkeHdIi3dfLsYlz+S1pQWVpaMBb2sMPGP3cYX+QoA4tvirpE6qdJ0fxFq4PRrLTJCv5vtxSN4k8fai23SvBUVihHy3GrXygD6xx5YV31FAHn58KeNtaUjXvGZsYXGGttDtxFg+0z5etHR/hr4W0a5+2Jpq3l+cFru+c3ErEfxZfgH3AFdfRQAgpaKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9k='] Multimodal Competition True Theorem proof Geometry Math English 46 "A king strapped for cash is forced to sell off his kingdom $U=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$. He sells the two circular plots $C$ and $C^{\prime}$ centered at $\left( \pm \frac{1}{2}, 0\right)$ with radius $\frac{1}{2}$. The retained parts of the kingdom form two regions, each bordered by three arcs of circles; in what follows, we will call such regions curvilinear triangles, or $c$-triangles ( $\mathrm{c} \triangle$ ) for short. This sad day marks day 0 of a new fiscal era. Unfortunately, these drastic measures are not enough, and so each day thereafter, court geometers mark off the largest possible circle contained in each c-triangle in the remaining property. This circle is tangent to all three arcs of the c-triangle, and will be referred to as the incircle of the c-triangle. At the end of the day, all incircles demarcated that day are sold off, and the following day, the remaining c-triangles are partitioned in the same manner. Some notation: when discussing mutually tangent circles (or arcs), it is convenient to refer to the curvature of a circle rather than its radius. We define curvature as follows. Suppose that circle $A$ of radius $r_{a}$ is externally tangent to circle $B$ of radius $r_{b}$. Then the curvatures of the circles are simply the reciprocals of their radii, $\frac{1}{r_{a}}$ and $\frac{1}{r_{b}}$. If circle $A$ is internally tangent to circle $B$, however, as in the right diagram below, the curvature of circle $A$ is still $\frac{1}{r_{a}}$, while the curvature of circle $B$ is $-\frac{1}{r_{b}}$, the opposite of the reciprocal of its radius. Circle $A$ has curvature 2; circle $B$ has curvature 1 . Circle $A$ has curvature 2; circle $B$ has curvature -1 . Using these conventions allows us to express a beautiful theorem of Descartes: when four circles $A, B, C, D$ are pairwise tangent, with respective curvatures $a, b, c, d$, then $$ (a+b+c+d)^{2}=2\left(a^{2}+b^{2}+c^{2}+d^{2}\right), $$ where (as before) $a$ is taken to be negative if $B, C, D$ are internally tangent to $A$, and correspondingly for $b, c$, or $d$. Let $\phi=\frac{1+\sqrt{5}}{2}$, and let $\rho=\phi+\sqrt{\phi}$. Prove that $\rho^{4}=2 \rho^{3}+2 \rho^{2}+2 \rho-1$." ['Note that\n\n$$\n\\begin{aligned}\n\\frac{1}{\\rho} & =\\frac{\\phi^{2}-\\phi}{\\phi+\\sqrt{\\phi}} \\\\\n& =\\phi-\\sqrt{\\phi}\n\\end{aligned}\n$$\n\n\n\nTherefore\n\n$$\n\\begin{aligned}\n\\left(\\rho-\\frac{1}{\\rho}\\right)^{2} & =(2 \\sqrt{\\phi})^{2}=4 \\phi \\\\\n& =2\\left(\\rho+\\frac{1}{\\rho}\\right) .\n\\end{aligned}\n$$\n\nMultiplying both sides of the equation by $\\rho^{2}$ gives $\\left(\\rho^{2}-1\\right)^{2}=2\\left(\\rho^{3}+\\rho\\right)$. Expand and isolate $\\rho^{4}$ to obtain $\\rho^{4}=2 \\rho^{3}+2 \\rho^{2}+2 \\rho-1$.\n\nAlternate Proof: Because $\\phi^{2}=\\phi+1$, any power of $\\rho$ can be expressed as an integer plus integer multiples of $\\sqrt{\\phi}, \\phi$, and $\\phi \\sqrt{\\phi}$. In particular,\n\n$$\n\\begin{aligned}\n\\rho^{2} & =\\phi^{2}+2 \\phi \\sqrt{\\phi}+\\phi \\\\\n& =2 \\phi \\sqrt{\\phi}+2 \\phi+1, \\\\\n\\rho^{3} & =4 \\phi \\sqrt{\\phi}+5 \\phi+3 \\sqrt{\\phi}+4, \\text { and } \\\\\n\\rho^{4} & =12 \\phi \\sqrt{\\phi}+16 \\phi+8 \\sqrt{\\phi}+9 .\n\\end{aligned}\n$$\n\nTherefore\n\n$$\n\\begin{aligned}\n2 \\rho^{3}+2 \\rho^{2}+2 \\rho-1 & =2(4 \\phi \\sqrt{\\phi}+5 \\phi+3 \\sqrt{\\phi}+4)+2(2 \\phi \\sqrt{\\phi}+2 \\phi+1)+2 \\rho-1 \\\\\n& =12 \\phi \\sqrt{\\phi}+16 \\phi+8 \\sqrt{\\phi}+9 \\\\\n& =\\rho^{4}\n\\end{aligned}\n$$'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIATABxwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ8CgBaKztU13StFhEuqanZ2SHobiZY930yefwrlH+LXh+dnTRbbVtekQ4ZdMsJJNp/3iAP1oA7yiuD/wCEr8b3rgaf4BeGJhkT6jqMcWPrGoZqao+K1wTvfwnZxkcBVnlcdOvIHrQB31FcN/YnxFlO5/GWmQHpti0gMPzZ6aPDvxDDs/8AwntqQQMIdFjwv/j2aAO7orhv7I+I8GfL8V6Rc9x5+llB9PlemLP8U7VyZrXwpfxjosEs8Ln/AL6BAoA7yiuB/wCE38VWAZtZ+HupLGvRtNuYrwsPZQQamtfix4UluEtr27n0m6brDqds9uR9SRtH50AdxRVazv7TUbdbiyuoLmBxlZYZFdT+IOKsA84PWgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooPtTXcKpYnAHc9qAFJwKhuLqG0t3uLmWOGGMbpJJGCqo9STgAVxGofEV7+9fSvBennXr9Tte6DbLO3Pq8vRj0O1evOD2qO0+HEuszx33jnVZNbuVYOlkmYrOE/wCygwWxyMt1BORQBJcfE6G+uHs/COk3niS6Q7Glth5dqjejTN8o45GM5qM+HvHfiMf8T3xNHotq3Wz0OPEhXtmd+Q3rtGK7y2tbezt47e2gjghjXakcShVQegA4FS4HpQBx+l/DDwjp0pnfSY7+7bBe51BjcyO3qS5IB+gFdekaRoqIiqqjCqowB9KdRQAhAPUUYFLRQAYowKKKAEwD2pcUUUAJgVDd2drewNBd20M8LcNHKgZT+BqeigDiLz4VeGnuGu9KjutDvSAPtGk3DQED/dHyY/Cqn2b4jeGsNa3lj4qshn9zcj7JdY7AOMofq3NehYpNoNAHF6X8TdEurwadqy3Og6nwPsuqR+Vu7fK/3WGeBzk+ldmDk1R1fRdM12xaz1WxgvIG/gmQNj3BPQ+45riW8G+IfCDGfwPqhmsxnOiapI0kWPSKQ/Mh9Acgk8mgD0aiuQ8P/ECw1a/Gj6lbTaNroGW0684ZveNuki8HGOeDxXWq2SeelADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApCcUprkfFnjVNAlt9L0+1bU/EF3/x7afCfmA/56Of4EGDyf5AkAGl4k8VaV4V043uqXIRSdsUKDdLM/ZUXqxP5euK5BND8R/ET994nMui+HnwYtGgciacf9PD9h/sDHXkArzreGfBD2+pf8JD4mul1bxC4+WUr+5tAf4IVPQDpu6n25z2mBnOOaAKmm6ZY6RYx2WnWkNraxjCxQqFUfh3PvVvFLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJtU54HPX3paKAMbxH4W0bxTp/2PV7GO4Qf6tzkSRH1Rxyp+n45FcZ/aPiT4bYGqyXHiHwwM4v1G67sk/6agf6xMfxDkYOccCvTKawBGMDB4oAq6ZqdnrFhDf6fdxXVpMu6OWI5Df8A1+xH8quV5zqfhTVPCOoT694GRSkjeZfaExxDcju0f/POTH4Hj0weo8L+LNO8WaZ9ssHZWjbZcW8o2yW8g6o47Ec+1AG9RSDOaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPShjhcj+dct408Wnw9ZQ2lhb/bdd1BvJ0+yx99/7zeiLnJPHHcdQAVvGHjC50y6tdC0KCK+8RX5Hk27Z2QJ3llxyEH69ulWvB3g6Hw5FNd3c51DXL0iS+1GUZeVuOF/uoMYCjHQU3wX4PHhyCe7v5/t2u3zebfX7Dl2/ur6IOgHH07DqwMUAJgZzS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADSOK4bxZ4QvF1UeK/CZjt/EMI/fQk4i1CMY/dyf7RAwG9hz0I7sjPWkI4oA57wj4tsvFmltc2yvBdQN5V3ZyjEltIOqsODjg4Pf8CB0I61wXjHw5f2Wqr4z8LR51i3QC7tBwuoQDqh4++APlPtjngV03hnxDYeKNEg1XTZN0EowVbho2HVGHZgf84IJANiiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopCaAFopOc0ZP+RQAtFIKWgAooooAKKKKACiiigApDxS0jHAzQBl+INdsvDeh3Wr6lJstbZN7cZZj2Ue5JAFcz4G0C9uL2bxl4kixrmoJiC3Y5FhbdVjX/AGjnLH1OMA5znon/AAsTx80p+fwz4cnwg/hvL0dT7qn6npkE49JXr+Hf/P1oAUAA5xz0zS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANZeOBz6mvNvEEUvw68SyeLLFCdB1GRU1m2UE+S5OFuVA9zhh3z6nI9KIBGCM1Dd21vdWk1tcxJJbzIySxuPldSDkH2IzQA6CZLiJJonWSJ1DI6kEMDyCD3BqWvOfBdxceEvEVx4Cv5JHtwpudEuJTky2+TuiJ7sh/TsBivRQc0ALRRRQAUUUUAFFFFABRRRQAUh4FDZ4x61zHijxxpvhlorMrLfavcD/RtNtF3zSe5H8K8H5j6HGcYoA6YtjJrkNU+JvhzT7s2FpNPrGpD/lz0qI3Mnv8Ad+UY4zkislfCXiPxkfO8aag1jp78roemybVx1xNKDlz6gHHAI9K7bSND0rQbQWmlafb2cA6pDGFz7n1PuaAOQGs/EjWudN8O6XosOeJNWuTLIy+oSL7p9iaePC3jq7lL33xAMKMP9TY6XEgX6OxLV3uBRigDhh8PdQb5pfHvigyHqUuI0X8tlNbwR4igjIsPiDrEbD7puoIbgfkVH867ujFAHBfY/idpYHkavoOtoB832y1e2kb6eWSufrTB8SLzSBjxf4V1PR0HLXkAF5bKPVnj5XPpg16BikIB6igDP0nXdM12z+16VqFvewdC8Dhtp9CByD7HmtAEnqK4vWfhro95eHU9HeXQNYwdt5p3yBj1+dB8rgnBI4JwOaz4fGOt+EJ47Lx3bxm0ZgkOvWaEwtnp5yAZjY+uNuenAJoA9FoqK3niuYUmgkSSKRQyOhDAg8ggjgipaACiiigBDXHfELXrzTtHt9K0dv8AieazMLOyA6x5+/L7BFyc9jiuxbpXnnhHb4u8cat4vkUNZWedM0kkcFVOZZl/3mOAR2yD3oA63w1oFl4Z8P2ejWC/6PaxhNx6u3UsfcnJ/GtfFGMUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQQD1oooA5H4g+HLjWtCjvNKPl65pUgvNOkAyTIvJQ+oYcY6ZxngVqeE/EVt4r8N2Ws2oCpcxgtHnJjccMh9wQR+RrZPSvPNKx4P+KN7o2CmmeI1a+s/7qXS/65B/vDDfyoA9EopBS0AFFFFABRRRQAUjHC5oPArjfG/ie+042ug6CqzeItUytspGVtk/infrhV7ZByR3wRQBB4o8XX8uqnwr4Thju9edc3E7jMOnxn+OT1bHRe/XHQHS8JeC7Dwwks/myX+r3Q3XmpXBzLOx64P8K+ijsBkkjNT+EPClp4T0n7JDJJcXUredeXkpzJczH7zsTk/QZ49+p6EADtQAmBnNLRRQAUUUUAFFFFABRRRQAYzUN1bw3NtJBcRRzQSKVkjlUMrqRggg8EVNQQD1oA8vn03VPhfO+o6HHcaj4VJLXmlA75bIdTJASeV7lSfx5yPQtJ1ax1zTYNS026jubO4TfHIh6jp+BByCDyCCO1XGAwa8x1CKT4W+IG1izD/8IfqEwGo2wyRYTMcCZB2QkgEe/wDugAHqFIelMilWZFkR1ZHAZWU5BHqDTz0oA5H4k63caL4NuEsedT1CRbCxAOCZpTtBHuBkj3Ara8N6Hb+G/Dtho1qP3VpCI92OXPVmPuSST7muT1If8JF8YdMsfvWnh60a9mxyDcS/JGpHYhQXB969AFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVxfxO0qe78KHVNPX/iaaLMuo2h55aPll46gruGO/FdpTXVWUqwBU8EHofagClouqQa3o1lqlqcwXcCTJk8gMM4PuOh96v15/8MD/AGSdf8IOTnRL5vs4OeLab95Fyep+9n8K9AoAKKKKACiikPTigChrmr2mg6Jd6rfSeXbWsZkc9z6Ae5OAB3JArlvh7o13Il14u1uIDWtaAkKH/l2t+scI9MDBPcnryKqeMVPivxxong771jAv9q6oAOHRW2xR/RnySD2wa9CU5JoAUADoKWiigAooooAKKKKACiiigBGOBWdHrulza22jRX8EmopEZntkYM6ICBlgPu/eHB55rSIzXnYhih/aDURRqgbwyWIUYyftPWgD0GSRYo2d2VUUEsWOAAO+a5/UvHPh3RtNs7/U9UjtIbyNZYBKjB3UgHOzG7oeeOKk8Ws02kppUZYS6rMtkNpwQjZMpB9REsh+oFXk0ewjvp777PG1xKixb3QHbGo4RfRc5OB3JoAfpeq2Gt2Ed7p13Dd2smSssTZGQensR6Hmpr21t72ymtLqJZbedGjljYZDKRggj6Vw/wAMNJSwPiS7slEWkXuqSPYRKMJsX5S6jspYHHqFFd+RkYoA888DXU/hnXL3wFqEzSLap9p0ieQ5MtoT9zPcxnj6ZwABXoX3hzx/SuG+J+nzx6RaeKdOTOp+HpvtaAcGSHpNHn0Kcn/drT8R+IYIfhxqXiGymHlNprXFtIeMlkzH+JJWgDI+GAGqDxD4qYKx1nU5DDIO9vF+7jH4Yau+AArn/Aulf2J4H0XTmQJJDZx+Yo7SEbn/APHia6GgAooooAKKKKACg0UUAcp8RNU1nRvBmo6los9tDNbRGRmmiLnA67eQAeepyOOlanha8n1Dwno97cyeZPcWME0jkAbmaNSTgccknpWR8UBj4Y+Iscf6G3StLwZ/yI3h8/8AUNt//RS0AblFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhGRS0UAef6kf7E+NGjXYLCDXdPlsXA6ebERIrH3KkqK78GuD+LG2y8P6Zr5JUaLq1teOR1Me/Yy/iH/Su8FAC0UUUAFIelLWF401F9J8E63fxuElgspXjY9n2Hb+uKAOb+GYGsT+IfF74Y6vqDJbOB1tocxx/To2a9AAA6Vz/gXTf7H8DaHYFAjxWUW8D++VBf/wAeJroaACiiigAooooAKKKKACiiigBCcV527Tn45R3/ANg1E2X9hmyN19hm8vzvP37d23GMd84969FpMCgDBMUl74zEsiMLbTbXEbEHDTSnkj3VEA4/56msDxh4rnt9S/sRNB8R3NkVzd3OnafI4YH/AJZI/A5H3mB46Dkkr3u0Y6UbQO1AHN+FfEP9ttNDb+HtU0iztI0RBqFr9n3E9FjTn5QByeMZGBXS0gABzS0ARzRRzwPDMgeORSjqwyGB4INeFXcjR/DS+8BzyN50HiKLR4t7ZZoXmEsbH6qCB7LXvJrw/wAWWPlfH/RrNFPk6lPaai+Bx5kCzIPxAGaAPblAHA6CnUgpaACiiigAooooAKRjtGe1LRQBzPjrStU1/wAJ6ho+mLZ+beRGIvdTNGEBI5wEbP6Vc8KWWoaZ4a07TdSS2E9nbRW5a3lZ1fYoXd8yKRnHTmtnApaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOa+IVkNQ+HfiG3K7ibCV1XHVlUsv6gVd8KX51Twjo1+33rmyhlbnoSgJH51o3kC3VnPbsMiWNkP4giuP+EN19s+FegynOVheLn0SRkH8qAO3ooooAK4T4xtJ/wAKt1eOFiJJmgiBH+1MgP6Zru64T4xSCH4Z6hO4ykU9q7fQXEdAHcRoEQKowAAMelPpB1NLQAUUUUAFFFFABSMcUtIxAHJAoA4PxX8W/DPhDWRpV9LczXYK+atvEH8kMAQWyR2IOBzjtXX6TqtnrWmW2pafOJ7S5jEkUgBG4fQ8j6HpXhfxI+DHiDXfGl1rGiNbTWt/IrOksxRoG2gEnI5XjIxk84xxXX+H/gX4RtdDtINb00X2pKn+kXC3Uyq7k54CsBgdBwDgc80AepZozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHf5ozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHf5ozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHfMcCvEPG/jvw1Z/GXw3cyXjldGNzBfyRxlhGzIVVfUkEnOM4+uRXYH4J/DwYx4e7/8AP7cf/HK8Y8WfB6/sfiBZaJplxara6vJO+nmR3AiRF3srnBPAOBjOe+M0AfUNrcxXdvFcQSLJDLGskbqchlYZB+mKmzXm9h8DvA0Njbw3mj/aZ44lWWf7VOvmOAAWwHAGTk4A71Z/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3+aM1wH/Ckvh5/wBC9/5O3H/xyj/hSXw8/wChe/8AJ24/+OUAd/mjNcB/wpL4ef8AQvf+Ttx/8co/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3+aM1wH/Ckvh5/wBC9/5O3H/xyj/hSXw8/wChe/8AJ24/+OUAd/mjNcB/wpL4ef8AQvf+Ttx/8co/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3k0yW8LzSuqRopZmY4CgDJJNefaP8avCOteI00a2nulkldY4J5YNsUznoB1YZJx8wH+KXnwP8BS2U8dtopt5njZY5hdzMY2I4bBfBwecH0rzHw38CPE1n4ttJtSls0060njmeaGckyhTnCDbnPHcDrQB9JAnOPanUxcDp+Vcm/j6H/hJ7nw7DoerzajbxCaRI1hIEZx827zcdxwefagDr6KwvD/izTPEc13b2jSxXlm2y6s7mMxywk9Mj09xkVu0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIa4X4QFB8PoIkXZ5V3dIVAxj9+5x+RFd0elcN8JS0ngk3DgAz6hdyYHbMzf4UAd1RRRQAVyfxNsRqHw08QwEZ22bygYzynzj9VrrKiuYI7q2lt5V3RyoUdfUEYNAFLQNQGreHdN1FTkXVrFMP+BKD/WtKuE+E1xIvg5tGuH33eiXc2nTHGM7HO0j22la7ugAooooAKKKKACqeqala6RplxqF7MIba3QySOewH8z2A75xVpzhe341534pvk17R9b1MyKdG0i1uGthni6uURhvHqiHKj1bJ/hUkA2fh74mm8Y+HJNalhWGGW6lW1iHVIlIVc+/Bz9eOK63AFcJ8G7c23wp0NSOWjkkP/ApXP8AIiu7oAKKKKACiiigAooooAQ4Iwa8f8XagV/aC8IRAKYbaAqzZ6PMJQAfwUGvYG6V4Jqi/wBo6nqHjYsyQw+LrGFGzwYLf90WB9GZz+VAHvSnPI7jNOpB1paACiiigAooooAKKKKACiiigAooooAKKKKACiiigApMClpDntQAHgDAzXivhTxVDa6p4y8b3Ol6reQXV2Yrea0tfMUW8IKg5yMZGCe3HWu7+JHiq18MeCtTna6iS+e3aO1iLgSM7fKCq9TjOfwrm/DHizwt4P8AhxpenW+o22pX0dqD9hsXE8ssz/My7VyR8xIy2KALnw60ebUPEOsePrqa23a0qpb29tKJFiiXA+ZhwX+UA46EH1r0ivPfgz4Z1Lwx4FEGqIYrm6uXuvIP/LFWCgL7H5c4969CoAKKKKACiiigAooooAKKKKACiiigAooooAbIwVCxOAOSa4X4NrKPhZo8kw/eymeVvfdM5B49sV0fi29OneDdbvR96CwnkX6iNiP1qp8P7T7D8PvD0BXaw0+FmHoxUMf1JoA6SiiigApD0paMZ60AefB/+EX+MDBmK6f4otgVJ6LdwDGPQbkP1Jrv1JNcz498NSeJvC8tvZuItTtpFu7Cb/nnOnKn8eR+Oan8F+JYvFfhyDUhGYboEw3kDfegnXh0IPIweR7EUAdDRRRQAUhpaCM0AcH4h8Y6Zf67a+DbLWYI72+YpdSxTANBGPvRqwPEr/dUdRyeoGcD4paP4L8O+AdT8rSNDs9Rkg2WoFvEkxJYDK8bjgZOfY161tGCOxowPSgDkfhjdWFx8PNDjsbqGcw2USzCNwxR9o3BvQ5yPwrr6QADoKWgAooooAKKKKACkNLSN93pQBzPj7xC/hrwde3sALXzgW9nGo+Z55PlQAdyM7segNc14g8HLpnwGu/D68y2en+c7Lk7pkIlYj6sD+dSRN/wnfxLEyHfoXheQhT/AA3F8Rzj1EYP4H1Br0KaKO4gkhlUNFIhV1PdSMYoAq6FqKaxoGn6nGAFu7aOcD03KGx+taFcL8JZ5F8Ff2RcPvutFvJ9OmOMZKOSuPbay13VABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJgUYFLRQAgAHSloooAKKKKACiiigAooooAKKKKACiiigAoNFIaAOH+Lc0h+H11p9u+251O4gsYQf4mkkUEf98hq7S3jSGCOKMYjRAqj0AFcL4v8A+Jv8RfBuhAB4reWXVrkd0ES7Ym+hdiK74d6AFooooAKKKKAEbpXm/iKKbwD4ok8Y2MTvot+Vj1u3QZ8pui3KgenRgOvXGTkek9ajmhingeGWNZIpAVdGAIYHggg9RQAy0uob22iuLeVJYZUEkciHIZTyCPYip68tX7Z8Jb2Tak134JuZdwxlpNJZj6dWhySfUc9/v+l2l3BfWsV1azJNbzIHjljYMrKehBHWgCeiiigAooooAKKKKACiiigAoopD064oAGOBmuG8ceJL4TQeEvDj58Q6kv8ArM8WUHRpmI6eg75xjJwDY8W+NW0q4i0PRLYan4lu1PkWan5YRj/WSn+FBwcHBPt1FjwZ4QXw5bT3V9P9u1y+bzb+9Yfff+6vog6AYHTp0AANPwzoFl4Y0C00ewUi3tk27mHzSN1Z29yST/8AWrWwB0owM0poA8/0onQfjBrOntkW2u2kd/b8YXzYv3cij1YjaxrvwcmuB+KFu+n2Wl+L7aNnuNAu1mkCjLPbv8kyj6gg57YruraaO5gjnhdXikQOjqchgecj2NAEtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLWB418QL4X8H6lq5GZIYsQrjO+VvlQY7/MR+GaAOe8Hn+3fiJ4s8RkBoLZ00e0focR/NKPpvI5r0DGK5vwHoLeG/BemabLk3SxeZcsTkmVzufJ7/ADEj6AV0lABRRRQAUUUUAFIQD1FLRQBHLFHLE0ciK6MNrKwyCD2IPUV53N4W1zwPdy3/AIIC3WmyOXuNAnk2rnqTA5+4fY8fkBXpFIVB6igDmfDPjvRvFO+C2le21KHifT7tPKniPoVPX6iulUk+lc/4m8E6F4qVH1G0xdx8Q3sLGOeLrja454Jzg5Ge1c8mmfEHwuwGmala+JtPTkW+pHybsL/dWYfK31YUAeh0VwP/AAtK207K+JtA1rQygHmTTWpmgB9pI8g/XFa1n8RfB19Grw+JdLG7oJblYifwbBoA6iiqEWt6XOm+HU7KRfVJ1I/MGqlz4u8N2X/H14g0qDBxiS8jXn8TQBtUGuHufi14PiuPs1pqMmp3eMrb6dbvOz/QqNv61WbxP4519dugeE10uFvu3muy7CP+2KfNn0ycUAdxd3tvp9rJdXlxFb20Yy8szhFQepJ6VwE3jLWfG0r2HgW38uyBKT6/eREQp2PkoRmRuvXgcZ4Oas2fw0i1C6iv/GGr3PiK5Q7kgmAjtIz/ALMK/KfTnIPpXdxQxQxJFFGqRoAqIgwFA6ADtQBgeFPCGm+FraYW3mXN9cNvvL+5bfPcP1y7H68Dp+JyejpNoBzjmloAKKKKAK97aQX1jPZ3EayQTxtFIjDIZWBBH5GuL+Gd3cWdnf8AhDUHZr3w/N9nVm6y2zZaF/8Avnj22813Z6V5548STwvr+m+O7ZWMNtiy1ZFGd1q7cPj1RsHjk9M4oA9DBzS1HDKk0aSxsrxuu5WU5BB6EGpKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARuleeeISfFfxK0jw6nzWGi7dU1HHQy8iCPjv1YjoQR6V13iXXrbwz4dvdZvD+5tYy5Xu7dFUe5YgfjWJ8O9CutM0SXUtXGdc1eU3t8SMFGP3YxnkBBxjsc0Adeue/WnUUUAFFFFABRRRQAUUUUAFFFFABSAAdBilooATA9Kyr7wt4e1Ny9/oWmXTnktNaRufzIrWooA5Z/hr4KdizeGNMyeuLcAfkKmg8AeD7bb5fhfSAV6FrONiPxIro6KAIbe1t7SIRW0EcMY6JGgUD8BU2BRRQAgAHSloooAKKKKACiiigAqve2tve2U1ncxLLBOjRSRtyHVhgg/UVYo60Aed+A76fw5ql14A1SdmlsVM+lTyHJuLIngf7yHKkccDgYXNehg9M56d65Px34Xn1zT7a+0mQW+v6VJ9o06boC38Ubf7LgYP4duDd8G+KLfxboSX8UbQXMbGG7tX4e3mX7yEfXp7EfSgDoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkJxihiQOK4rx14lvrQWvhvw+yP4j1X5IfS2i/juG9ABnHvn720igDLu8fED4gpZKvmeHvDcwkuD1S5vR92P3CDk+5wR0r0kCsbwt4dsfCvh+10ewH7qBfmc/ekc8s59yf8BwK2sUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACN0rzvxVpt/wCFddfxvoEDzRsgXWrFOtxCv/LVB/z0QZ+o/HPotNIHXHNAFPSNWstc0u31LTrhLi0uEDxyJ0PsfQjoR2INXq8w1K0vPhjqkuvaNBJceF7uTfqemxrk2jE8zwj+7/eXoPoRs9E0zU7TWNPgv7C4juLSdA8csZyGH+eMHkEGgC3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFI3TrignArE8UeKNP8ACejNqOou2MhIYYxmSeQ9ERe5P6UAReLvFdr4U0j7XMjXF3K4hs7KP/WXMx+6ijr1IyR09+lZ3gfwtdaa11r+vOlx4j1TD3Mi8rAn8MKf7IGOnUjqcCqnhPw1qWo6x/wmHi1E/tV4yllYjlNPiPYeshz8zde3tXe4oAQAA9KWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKCM0UUAIQAOleaXujar8O9Rn1rwtave6DcOZdQ0SMfNEx6y24+g5Tp6cEbfSyAetGMDAoAzNB8Qab4k0qLUtKukubWT+JeqnurDqCMjg1piuC17wTe2WqS+I/BV1Fp+ruQbm0cf6LfY7Oo+63+0PU9NxNaHhjx7Za5ePpN9BJpOvw/67Tbo/Nn1jbpIvfI7c4xQB11FNVtx4ORTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRsgcfyzQTgVwes+Pbi81GXQfBdrHqurIds9yx/0Sy68yuOpGPuj37jBANfxZ4zsPCtpF5wku9RuTss9PtvmluH9AB25GTjj3PByfDXhDULvWE8U+MHSfWAD9lskO6DTlPZexf1b9T1N7wn4Hg0O5l1XU7uTV/EFyP9I1G4AyP9iNeiIPQfywB12KADFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQRmiigBCoOMjpyKwfFHg/RvFlokOp2xMsRzBdRHZNA395H6jnnuOBkcVv0UAebrqXjDwH8msW8viXQkHGoWqf6ZAo/56x/xjp8wOeCSe1djoPibSPE9j9s0XUILyH+Lyz8yH0ZT8yn2IrV2L2H0rkde+HOi6vfNqlo1xo+sYONQ02QwyE9fnA4YHjORntmgDrxS154upePvChC6lp0PinT1HN3poEV2o9WhPDEnPCn3NbGifEbwzrk/wBli1FbW/DbGsb4eRMrf3dr4yfpmgDq6KaCT3z7gU6gAooooAKKKKACiiigAooooAKKjeRYkaSRgiKMlmPAHqfSuN1L4peHra7aw0trjXdRHS10mIzn6lh8oHrzxQB2rHAzXN+I/HOh+F2SG+uxJfSECGwt18y4lJ6BUHPPYnAzxmsE2vxB8WA/bLqDwnprDmG0YT3jj0Mn3U9iBkV0HhnwRoPhUO2nWQ+1SZ828nYyTyk9SXPPPoMCgDmm0zxd48Gdbll8N6A3/MPtnBu7hP8AprIOEBHVRz1Brt9G0bTdB0+PT9Ks4rW1jHypEMc+pPUk+pyT3rQ2jjjp09qWgBAAOAMCloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEwKy9a8NaL4hgEOr6Xa3igFVMsYLID/dbqv4YrVooA8+Pw1l0sbvCvinWNGCgCO2eT7XbRj2jkyf1p/nfE7Sc7rbQdehQceXI9pO/1BygrvcD0pcCgDgT8RNWscLrHgHxFBIcZNiiXqL/wJGH8qc/xg8IWyg6jc32nMeNl3p06kH04QjP413mBSbQe1AHHwfFTwPOCV8S2K4xneSn/AKEBU3/CzfBP/Qz6b/3/ABXRPp9lKQZLSB8dN0YNN/svT/8Anwtf+/K/4UAcrc/FrwJahjJ4ktSF6+Wryf8AoKmoB8W/DlzHv0uDWNWz0Fjpkz7vpuUCu1isrWD/AFNtFHzn5EA/lU2BnOKAOD/4TnxNqCBtG+HurOD1Opzx2ePfDEk01rT4nauSs2p6FoMJ6G1ga6mHsd+EP4Cu+wKMCgDgk+Fel3syz+JdU1XxBKCGC3tyRErD+7GmAOp45612WnaXp+k2wttNsbazgBz5VvEsa5+gAq5RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k=', '/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAS0BMwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACikJwM1zWs/EDwnoJZdR1+yjkQ4aJJPMkH/AEy36UAdNRXBf8LNS9O3RPC3iPUwQCk6WXkwt/wADkI/lSpr/AMRL3cIPBFlYDPyve6qr5+ojU4oA7yiuCRfitLId8ng+CPnaFW5kPtnpUg034kuu5/EGgRsT9xNPkYD6EvmgDuaK4Y2PxMhbMeteHLgHr5tlKmP++XqOKb4qwZNzZ+ErsDGFt5riNj+LAj0oA72iuB/4S7xpZuRqPw9uGiXrLYajFPn6JwaF+Lfh63KjWrbWNCdjhV1PT5I934qGGPfNAHfUVm6T4h0bXUL6VqtlfAfe+zzq5X6gHI/GtKgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiig0AFB6VieI/FWi+FbD7VrF9HAp+5H1eU+iqOSf8muT87xt43OLdJfCWiNn95Koa/nX2XpDkHr94EDGaAOn8ReMvD/hVA2r6nFDIw+S3GXlfnsgyx+vSudHiXxv4kIHh7w2mk2jH/j+11irkd9sCncD3BJwa2/DngTw/4aka4s7MzX78y3903m3EhPUlz698YB9K6fvQB5+3w1k1f5vFvifVdZz962jf7LbH28tP55rpdG8JeHtAA/srRbK0cDHmRxDeR7v94/ia26KADvRRRQAUUUUAFFFFABTXRZEKOoZTwQRkGnUUAclqvw08IatIJpdDt4LgHcs9nm3cH1yhGT9c1lDwn4y0Dnw54ue9gXOLLXkMwP8A22XDgegxXoVFAHnqfEi40WQQ+NfD95ooztF9F/pNo3YZdASpPYEfWu30/UrLVbVLvT7yC6tn+7LDIHU/iDVmRFkjZGVWVhghhkEe9cJqHw1tIb2TU/Cl7N4b1I/eazANvL7PCflbv0x170Ad7RXncXjvVvDE62njzTVtoiwSPWbENJaOe28fejPQc989hXe2tzBeW8dxbTRzwONySxuGVh6gjrQBPRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFQXl1b2NnNdXUyQW8KF5JZGwqKOSSaAJicKTXn+p+Ob/WdQm0LwNbRX9/Gdt1qMmfsdp7bv429APrzhhVBrnV/inK8djNPpXg1WKSXQ+S41LBIIT+5F15PJH1IHf6Po9hoWnQ6dplrFa2kIwkUa4H1JPJPueT3zQBgeHPANjpF6dW1S4k1nX5P9ZqN2MlfaNOka9eB64zjiuvFLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEc8MdzBJDNGkkUilWSRdysD2IPUV57deCtV8K3D6l4AuEjiLF7jQrlj9mnOOsZP+rf9M46AYPo1B6UAcv4T8a6d4nM1qscthq1rxdaZdDbNCfXH8S8jBHqM4ziuorlvFfgqx8TeVdJNLp+sW3NpqVtxLC3of7y+qnsT0rM8OeMb+21ZPDHjGBLPWuRbXScW+oKP4oz2bGMr/LOAAd5RTQeadQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTZHWKNpHZVRQWLMcAAdyfSgCC/vrXTbCe9vp0gtYVLyyyHCqo7mvOLSyvfirfJqeqxzW3g+Ft1nYMdragwPE0nonovfr9UjSX4r60J5Q6eCrCb9yjDH9qTKfvEd4ge3fH1C+nRqEACgAAYAAxigBIkSJEjjRUjUbVVRgADoBjtUlFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAh6VjeJfDOmeLNJfTtUg8yNjujkXh4X7OjdVb/J4raoPSgDzvw54k1Xw/rcPhDxjMHuXX/iW6qeEv0HG1v7so469fyLehDk56VjeJvDWneK9Fl0zUo90bDMcg4eFx0dD2Ydf0PFc94M8Q6haapJ4N8Tyg6zbR77W6OQNQtxwJBk/fGDuHXvzzQB3lFFFABRRRQAUUUUAFFFFABRRSHgUAB6V5t4oup/HHiNvBOl3Dx6bbhZNeu4jyEP3bdT/AHmxz1wOOcEHe8d+J5vDukxwadEJ9b1KQWmnQcfNK38RB42qDkk8dASM5q14M8Mx+FNAi08SGe5djNeXLctcTty7knk5PHPOAOtAGxY2kNhawWdpCkNtCgjjjQYCKBgAVaoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARvumuX8aeFF8UaZG1vP9k1exfz9PvFHzQSjtn+6eAR0PBxxXU0h6Hr+FAHL+B/FLeJdMkS9hFrrNg/2fUbP/nlIO4/2WwSD0PPJxmuprzrxvZXHhjWYPHulQs5t1EOs28Y5uLX/npjuydc+g64GK72zuoL60gu7WVZredFkjkQ5VlIyCPYigCxRRRQAUUUUAFFFFABTXO2NiTgAZz6U49Oa4X4l6hdS6dZeFdMkCal4gmNorA8xQAZmkx7J/6FQBS8GI3jHxZeeObgE2EG+x0NT08sEiSYD1c5APXGQe1ej1R03T7fSNMtdOs4/LtrWJYo0x0VRgfy/Oodc13S/Dumy3+r3sVrap1aQ9T6ADlj7CgDTPSsHxB4z8PeF1B1jVYLZyAVhJLSt24RQWP1xXLLd+MvHgJsRL4V0FulxMmb+5Xp8q9Igcnk89CM10HhzwH4f8NOZ7Oy86/bmW/uj5txIx6kufXvjAPpQBkL478Q6yR/wjXgm/lgPS61SRbNMdmCnLMPoKcNO+J+oqftWu6BpHPy/YbN7hse/mEDP0rvB1paAODTwh40MeJ/iRds56mPSrdB+AwcUknhHxuoBt/iRcK+cZl0m3cEfTjn3rvaKAODa1+J+nlRBqXh3V4xy32q3ktpG+mwlRUR+ImqaQP+Kr8Happ0QPzXdmVvIEH95inKj6ivQaD0oAx9C8TaL4lg8/RtTt71AMt5T/Mn+8vVfxFbFcjr3w70DXLj7csEum6qOU1DTn8iZW9SV6/iDWIPEHirwGwTxVCda0MHH9s2cWJoB6zxAdB/eXPAHUnFAHpNFUtL1Oz1ixiv9Puorm0mGY5YnDK3r9MHj65zV2gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGTRxzQSRSoHjdSrKRkEHqMV594Jlk8KeJ77wLdyH7KFN7oruetux+eLPco2e5OCTwAK9DPQ1w/xL0u5k0a38RaWo/tbQJftsGP+WkY/wBbGcdmQHjvjFAHc0VQ0fU7bWtJs9TsnLW11Cs0Z9mGcH3HQir9ABRRRQAUUUUAIelee+FR/wAJJ8Qtf8USfNaWB/sfTiTwdnMzjPXLcBh1GRXReONfHhnwVqurA4lggIh4z+8b5U/8eYVi2M1l8LvhhZC+y0lvCoMScvcXLncVXuSXJ+g57UAavizxdZ+FbCN5Inur66byrKwh5luZD0VR6cjJ7e5IFY2geCLu+1OPxL41kS/1gZa2swd1tp4JyFRe7jjLHPI6nGTL4L8L3ov38WeKNs3iK9X5I8ZWwhxxDGOxGTuPck+5buqAGjg06iigAooooAKKKKACiiigApHGUIIyPSlooA851PwlqXhK/l1/wMg2yNvvtCJ2w3Q7tF/zzkx+B444weq8L+JtP8V6Umoae7YBMcsEg2yQSDqjr2Yf/qyCDW2eBXnfi7Rr3w1rDeN/DUO+dUxq+nLwL6Aclx6SL1zjkfkwB6LRWdourWeu6Taapp8wmtLmPzI3HXHofQg8EeoPpWjQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIwDKQQCDwQe9LSEZBB5BoA8++HmfD+t694JkYiPT5vtenBu9rMd2F7kI+QT6nFehV5744zoXjXwt4pj+WJpzpN8QOsU33CfZXGfxr0ADnp160AOooooAKQ9KWkPIoA4Dx8P7W8TeDvDWCYrm/a/uMDIMduu7aw9GJA/CqmjRj4g+N5PEUx8zQNElNvpKEZWe4H+suPcA4VTyOMjBBrmfG+r3Vx8RtZtNMdv7TNnbaFaDsj3JMsknttjXk9iRXr+haNaeH9FstJsl2wWsQjU45bA5Y47k5J9zQBoAYNOoooAKKQnAJPQUilWAZTkEcEUAOooooAKKKKACiiigAooooAKRvunnFLQeBQB5raD/hXvxAGnAbPDfiKUtbD+C0ve6D0V+MD14AwDXpCjkVz/jTw2vinwne6ZnbcMnmWsgODHMvKMD25Az7ZpngTxC/ibwlZ6hcLsvQDDeRkYKTodrjHbkZA7BhQB0tFFFABRRRQAUUUUAFIeATS0HpQByHibxufDuvaLpX9k3M39qXkdqtyXVY1LFQcckkjd6Ae9daOteb/FL/AJD/AIB/7D8P8xXpVABRRRQAUUUUAFFFFAHM/EDRf+Eg8BazpyKWle2aSEA4PmJ86f8AjyirnhLWR4h8JaTq2QWurVJJMdA+MMPwYEfhWyfunjPtXB/CoCx0fWNAC7E0fV7m1hXP/LIt5iH8d5/KgDvaKKKACkPApaRiFUknAHJNAHh3w7tX8R/GnxTrlxseDS7qZIGA53ufKU59PLiI/wCBV7lXlvwHtHHgi51abBm1S/luGb2Hy4/NW/OvUqAEPSvO4Vlt/j40H2u6lgk8PNP5U0pZEczqp2r0HCjpXoteeyEf8NBxDPP/AAjB4/7eaAOm8U3M0WgyW1s5S7vmWzgYdUeQ7S4/3VJf/gNZuqeBdP12VIdUkuDpltEkVnYwXDxRoFH322kFm7DJIAAx1NXJ/wDiY+NLaAcw6Vb/AGlv+u0u6NPxCLL/AN9iovEniqy0qaPSl1OxtNSuVLK11KqJAnQyMCRn2Xqx9AGZQDE+Fy6jaDxDo91ezXtjpepPa2VxO259oAJQnvtyPzPoAPQq53wtd+H0g/sjQtRgvfsy+ZM8MwmJZySXkZeN7Nub1PPFdFQAUUUUAFFFFABRRRQAUUUUAIelcB4c/wCJD8V/EehgBbXVYU1i2VRgK/8Aq5vxLbWr0A9K4Lxp/wAS7x34I1rfsQ3kunSc43CaM7Af+BJQB3tFNGc4p1ABRRRQAUUUUAFIehpaKAPMfiYbm41/wf8AZdO1K5Fjq8dzctbWM0ixxgrkkqpB+gJr0iCQTRJIofDLkb0KH8VPI+h5qaigAooooAKKKKACiiigBD0rhPDyGw+L3i+1LYS9trO9jTHAwrRsfzAruz0rhJ4/s/x0s7jkC78Pyw+xKTq354NAHeUUUUAB6VzvjPxPpvhTw3c3+oXXkh0aOAAEmSQqSqrjvx16DvgV0J6V5b8bfBWoeLPDtpdaYwa40xpJWgZ9qyRlcnAPBYbRj6tQBY+B+r6XefDqx02yulkurDcLqLBDRl5HYZyOc54Iz068GvS6+dvhD8LrzUdHk1y513VdKgvFUW39kXnkySKGYMZPlPGQMD6+1ek/8Ks/6nzxx/4OP/sKAPQDWW3h3RDqP9pHR9P+3A7vtP2ZPNz67sZ/WuT/AOFWf9T544/8HH/2FH/CrP8AqfPHH/g4/wDsKAO4jtYIZ5po4lWWdg0rAcuQoUZ/AD8qzL3wn4c1K7ku7/QNKu7mQ/PNPZxu7Y4GWKknAAH4VzX/AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAdfpeh6VowkXS9MsrFZDmRbWBYgxHTO0DPWtA9K4D/AIVZ/wBT544/8HH/ANhR/wAKtx/zPnjj/wAHH/2FAG14u8caH4KtYp9Zumjafd5EUaF3lx1AHTjI5JA5q34Y8U6R4u0z+0dGuvtEAcxvlSrI2M7SCBg4I9vQmvHfiP8ABjWruKzudD1XVdcljVlli1W+EkijjHlkgDHXIz6Ve+H3wa1PT9HlfV9f1vR7ydwTb6RqAjUKBgbyFIZs7uhwBjBNAHt9Fef/APCrP+p88cf+Dj/7Cj/hVn/U+eOP/Bx/9hQB6BRXn/8Awqz/AKnzxx/4OP8A7Cj/AIVZ/wBT544/8HH/ANhQB6BRXn//AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAd+3CnnFeWfGPxLo2lQaJb3V0q6hbana6jHAEJby0chm46cbvrg1pn4W4/5nzxwf8AuMf/AGFeUfFf4W6ppl5a6pZ6ne6tbTGK1MmpXYkuBIzEKNxCjbyMehznigD6G0TW9P8AEOlwanpVytzZzg7JACMkEg5B5BBHQ1pV494M+Dl5pnh2GHUfFPiHTryRmklt9J1DyoVJOBxtOWwBk/gOma6H/hVn/U+eOP8Awcf/AGFAHoFFef8A/CrP+p88cf8Ag4/+wo/4VZ/1Pnjj/wAHH/2FAHoFFef/APCrP+p88cf+Dj/7Cj/hVn/U+eOP/Bx/9hQB6BRXn/8Awqz/AKnzxx/4OP8A7Cj/AIVZ/wBT544/8HH/ANhQB6BRXn//AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAegUV5/wD8Ks/6nzxx/wCDj/7Cj/hVn/U+eOP/AAcf/YUAegUV5/8A8Ks/6nzxx/4OP/sKP+FWf9T544/8HH/2FAHoFFef/wDCrP8AqfPHH/g4/wDsKP8AhVn/AFPnjj/wcf8A2FAHft9015B4p8f+GdO+LmhvNqeBp0N1bX7ojMsbOF2KcDnkHOM4OM4xW+fhbgZ/4TzxwfY6v/8AYV4j4p+EXiG18fR6Tayi8GqPLNa3NxMN7qvLGU/3xkZOPmzkd8AH1TFMssSSRsXjdQysvIIPQ0/efRvyrN8P6Y2ieHNM0rzjL9jtY7fzNv3tqhc/TitHLf3v/HDQBJUVzCtxaywuAVkQowPoRipaQ9KAPOvgbdrdfCrTIw2WtpJon9j5jMB+TCvRq8b+Ct+lj4j8Z+Fiyg2upSzxLnkjeY2/Lan517JQAUUUUAFFFFABRRRQAUUUjfdPOKAKmqalb6Tp0t7clvLjAwqLuZ2JwqqO7EkAD1Irjfhbr2peJrLXdV1IlHbVJIIoA+5YY0RAFH4k5Pc5Pelm1a+1LVxq6aFeX2jWQL2LxzQqsj8hpiHcEgDIXjGCWGcjFL4GRMPhpa3D8tdXM8xOep3lf/ZTQB6VRRRQAUUUUAB6VwXxIVru98HaZG3zz69BM68fNHEGdv6V3p6V5/dFdc+NlhAvzQ+H9NkndgeFmnwgU++wE0Ad8cYrz34v3t1ZeE7caZdXdvq13ew2tm1vcPGS7NkghSN2QCOQeteh9q8u8VW//CWfGDQ9BE8sdvo9pJqU7wttYSMQqc9mB2n6NQBF8QHvvh9oGnatpGtajNfC6jga2u7p7hLzIO4bXJIPHVcEV6lCxaNCy7GKjK+ntXkF/bL4Z+M+g217LPrkOpxnyH1FzLLYuM/NH/CBwM8Z6817Ep56/hQA6iiigAooooAKKKKACiiigAooooAKKKKAA9K4bU8XHxn8Pxct9l0q6nx027mRM+9dwehrhLJFvPjlqdypyLDQobVh6NJK0n8hQB3lFFFABQaKQnAoA8E1GVvB3xp1TXApSyiuoDdnput7mMKzn2SVB+de9j2rzPxnpVtN8SNJS9jLWPiDTbjR7hs8KR+9jP8AvZ3AfStP4bavdNYXPhnV3H9taEwtpuf9dFj91KPUFcDPXjnrQB3VFFFABRRRQAUUUUAB6Vz3ivRdV1/SnsLDWI9NhlG2dvshld17qDvXbkcH2PauhooAx9T06+vPD0mnWd7b2c0sBhM/2YsqgqQSibxjHbJOPeqHgXwvdeD/AA5b6JJqMN7b227ymW1MLjcxY7vnYHlu2K6eigAooooAKKKD0oAhvLmGysp7q5lWKCGNpJJGOAiqMkn6AZriPhdbTXenal4rvIil34gujdKGHzJbr8sKn2C8j/eqH4g3EviDUbDwHp7sr6hifUpUPMFmp5+hcjaPXkd67y2ghtLeK3t41ihiQIkaDCqoGAB6AAUASTBzC4iZVkI+VmXIB7ZGRn8xXB6d4J8Q6Z4l1jXYvEmnSXWqlPN83SXIjVBhVTE4OAMdc9BXf0UAcfongSOz8St4m1fU59X1ryzFFNJGI44EPGI0HTgkZyTz7knsKKKACiiigAooooAKKKKACiiigAooooAKKKKAEPSuC+H4W/8AFPjjWwD+/wBVFkCe4t0CZHtkmuw1nUY9H0S/1OYZjtLd52HqFUnH6Vzfws0+Ww+HWkm5Yvc3aNezOerNKxkyffDD8qAOyooooAKDRRQBw3xVs55PBp1W0TdeaJcxanCM4/1bZb/xwtVXxZY3Nwum+PvCqm41C2twzQIP+P8As2AYx8fxAHcvXnPXiu/uIIrq2lt50WSGVCjo3RlIwQfwrhfhdcS2elaj4UvHZrzw/dtagv8AeeBiXhc+xXp7LQB1Ph/XrDxLo9tq2mTebbXC5GeCh7qR2YHOR+vStWvNtZ0rU/A2t3Pijw3bvdaVdMZNX0pG6t3nhHZxzuHGf1XttE1vTvEWmwanpV0lxaSjKsv6gjqCOhBoA06KKKACiiigAooooAKKKKACiig9KAEPSsDxd4ptPCehPf3MbTzORFa2sfL3MzfdjUe/48Z61L4m8T6Z4U0p7/VJiqk7IokGZJ3PREXqT/Lqa5nwx4d1PW9bTxl4uiEd4EK6bph5WwiPOW9ZD3Pbp6BQDR8CeGrvSLa61bW3WbxDqzie+kHSMY+WJf8AZQcfXPtXYU0dRTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoPSig9KAOB+K00t14fsfDdszC416+isgUPKRZDSP8AQKuD7NXdQxJDGkUahY0UKqjooHAArgrPPiX4xXV5jdYeGrX7LCexuphmQg+yYUj1Ir0GgAooooAKKKKAEb7przvxQT4T+IWj+KF+TTtSUaVqTDOEYnMEhA44OVJPQcd69FrL8SaFa+JfDl/o14P3F3EYy2MlD1Vh7ggEe4oA0TwCAM8dK4PV/BWoaTq0/iDwPcRWd/Md15p0xP2W+PqR/A/+0MZJ5xkk3Phzr11quhyadqxI1zR5DZXyk5LMvCye4ZRnPcg12ZoA4/w78QNN1i9OlahDLo+ux8Sade/KxPrG3Rx3BHbnGK68VjeIvC2ieKbL7LrOnRXSL9wtwyH/AGWHIrlR4f8AHHhVf+Kf1uPXbBOlhrJxMq/7M68k9AA3AFAHolFefL8UI9MBTxX4d1jQXX787QG4tgfQSxg5/Kt2w8feEtTCfZfEemOX+6jXKo5/4CxB/SgDpKKrx3ltMm+O4hdD3VwQf1pJb60gXdNdQRr6vIBQBZorltS+I3g7S0drrxLpuV+8kMwmb/vlMn9KyG+I91qxMfhTwpq+q7uVup0+yWxHqJJP5YFAHft0riNa+IUEOoPonhm0bXtdAwYbdv3NuemZpei8g8ZzxjjIqofCHirxRz4u8QC1sm+9peibokf2eVvmYEcEDj0xXYaJoOleHbBLHSLGCztl/giXqfUk8k+5yaAOa8PeB5l1RfEXiq7XVfEGMRnH+j2Y67YV/wDZjyfbnPbDg06igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsTxZ4gg8LeF7/WbgBhbRlkQ/wDLRzwi/ixA/GtpvumvOdVP/Ca/Eu00aM79J8Nst7fntJdMD5Uf/ARlvzB5FAG58PNAn8O+EreC9JbUrpmvL+RvvPPIctk9yOFz7V1dNHXpTqACiiigAooooAKRvunAyfSlooA868ZxyeEPEdt46s42NmVW11uJF+/Dn5Zsd2QkD1I46V6BbzR3EMc0MiyRSKHR1OQwIyCD3GO9FzBFdWstvPEksMqFJI3GVZSMEEdxivOvCd1N4I8Rf8INqkrvYTbpdCu5Od0fVoGP95O3qPTgUAelUU0dRTqAA8isTUPCPhvVHMl/oOmXEh6vLaIzfnjP61t0UAcXJ8J/Asjlz4bswT12llH5BqWL4U+BoXDp4as8+j7mH6k12dFAGTp/hjQdJfdp2i6dZv8A3oLZIyfxAzWrS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLUN5dQWVnNdXUqw28KGSSR2wFUDJJP0oA5/xv4nPhfw+89vF9o1O5cW2n2wGTNcPwox3A6n2FL4H8Mf8It4ejtJpfP1Cd2ub+4zkzTvyzH6dB7D1zXO+EYLjxp4lPjnUonjsIVeDQrZ+NsZ4edh2Z+3oPXgn0YdaAFooooAKKKKACiiigAooooAD0rn/ABb4WtfFmhmxnkeC4iYTWl1F9+3mXlXU/wCeK6CkbO0460AcZ4H8U3epPcaB4gRLfxJpvFxGOFuI+izx+qnvjofTIFdpXI+MfCD6+ttqWl3C2HiKwO+yvewP/PN/WM85GD1zjkgu8G+MR4i+0afqNqdO8Q2HyX1g55X/AG067kPGDz168gkA6yiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQnAzQAN0NeY6hK3xR159Fs5CfCWmzD+0blDxfTA7hChHVF4JPfj2Jk13WrzxzrMvhXwvdtFp0RxrOrQ4IRf8AnjE3QuehPb867vR9IstC0y30zTbdLeztk2Rov8z6knknqTyetAFqGJIVSONFSNFCqqjAUDgAD2FTUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjHCk+lcl4t8G/2+9vqum3J07xFYg/Y76Mf+Q5B/Eh9D0zx1IPXUjEgZAzQBxvhLxq2qXj6Fr1sNM8SQL+8tWPyXCj/lrCf4lOCcDpz1612dc74o8IaZ4tskivQ8VxC2+2vIG2zQP2ZG7fTpXM2vi/V/Bl1HpXjoK9o7bLXX4UIil9FmUf6t/fofwJIB6RRUUM0U8SSQypJG43I6EEMPUEcYqWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikPQ1keIfEmk+FtNN/rF7HbQg4QE5aQ/wB1R1Y/T8eKANWV1jiZ3YKijLMTgAdzntXmt9rep/Ee6m0bwvNJaeHkYx3+tqMGbsYrf19C/Qcn03KNM1/4kuJtehuNE8LBgY9L3bLm9A6GYj7if7A5/JTXodlZwafaxWlpBHBbQqFjijUKqL2AAoAraJomneH9Ng03S7VLa0hXCog6+5PcnuTye9aVFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVBeWsF7Zy2t1BFPBKu14pVDK49CDwanooA85fwhrvgyVrrwPci404ndJoF7IfLPr5Eh5jb2PGSSegFa/h34g6Trl4dOull0nWk/1mm36+XJn/Zzw478c45IFdeaxPEPhXRPFNp9m1nTorpV+4zDDof9lhyP85oA2hS153/YPjfwkgPh/V18Qaegx/Z+rnbMo/2JxjJ6cMMYqzafFHR4rhLLxFbXnhy/PHl6lGVjc99koyrL75H0oA7uioba4huoUnt5kmicZWSNwysPUEcEVNQAUUUUAFFFFABRRRQAUUUUAFFIelZes+IdI8P24n1bU7WyQ5x50oBb6A8t9BQBq1Fc3ENpbSXFzNHDBGpZ5JGCqgHUkngCuBPxA1bxD+78FeG7m9jbpqeoA21qB/eGfnkHsMGlt/hzca1cJeeOdYk1mRTuTT4gYrKE+yDl8ep7cEGgBLr4g3euzy6d4D08apOp2S6lOCllbnvlushHHCjvnJ6Vd0H4f29rqS654hvJNd17GRc3A/dwf7MMfRAPXr16ZIrr7W2gs7eO3tYI4IIxhI4lCqo9ABwKnoAaOop1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVWvLK01C2e2vbaG5gfhopkDqR7g8GrNFAHCXHwr0SG4a60G71Lw9cu25jplwUjc9t0bZXHsAKYLH4maPtFvq+i6/ADlhe27WsxHYAx5XPuRXfUUAcD/AMJ34i05Sdb+H2spg43aZJHegj1wpBFKfi94RtsLqU2oaXITt8u90+ZGz07KR+td7SNjacjI9KAOUt/iX4KulDR+J9NUEZ/eThP0bGKtDx54PYA/8JVon46hCP8A2atK40bSrobrjTLOYjn95AjfzFZ7+CPCUhMj+F9FZmOSTYREn8dtADH8feDkPPirRfwvoz/Jqzrv4s+BLIEyeJLV/wDriHl/9ABrZg8HeGLbPkeHdIi3dfLsYlz+S1pQWVpaMBb2sMPGP3cYX+QoA4tvirpE6qdJ0fxFq4PRrLTJCv5vtxSN4k8fai23SvBUVihHy3GrXygD6xx5YV31FAHn58KeNtaUjXvGZsYXGGttDtxFg+0z5etHR/hr4W0a5+2Jpq3l+cFru+c3ErEfxZfgH3AFdfRQAgpaKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9k='] Multimodal Competition True Theorem proof Geometry Math English 47 "A king strapped for cash is forced to sell off his kingdom $U=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$. He sells the two circular plots $C$ and $C^{\prime}$ centered at $\left( \pm \frac{1}{2}, 0\right)$ with radius $\frac{1}{2}$. The retained parts of the kingdom form two regions, each bordered by three arcs of circles; in what follows, we will call such regions curvilinear triangles, or $c$-triangles ( $\mathrm{c} \triangle$ ) for short. This sad day marks day 0 of a new fiscal era. Unfortunately, these drastic measures are not enough, and so each day thereafter, court geometers mark off the largest possible circle contained in each c-triangle in the remaining property. This circle is tangent to all three arcs of the c-triangle, and will be referred to as the incircle of the c-triangle. At the end of the day, all incircles demarcated that day are sold off, and the following day, the remaining c-triangles are partitioned in the same manner. Some notation: when discussing mutually tangent circles (or arcs), it is convenient to refer to the curvature of a circle rather than its radius. We define curvature as follows. Suppose that circle $A$ of radius $r_{a}$ is externally tangent to circle $B$ of radius $r_{b}$. Then the curvatures of the circles are simply the reciprocals of their radii, $\frac{1}{r_{a}}$ and $\frac{1}{r_{b}}$. If circle $A$ is internally tangent to circle $B$, however, as in the right diagram below, the curvature of circle $A$ is still $\frac{1}{r_{a}}$, while the curvature of circle $B$ is $-\frac{1}{r_{b}}$, the opposite of the reciprocal of its radius. Circle $A$ has curvature 2; circle $B$ has curvature 1 . Circle $A$ has curvature 2; circle $B$ has curvature -1 . Using these conventions allows us to express a beautiful theorem of Descartes: when four circles $A, B, C, D$ are pairwise tangent, with respective curvatures $a, b, c, d$, then $$ (a+b+c+d)^{2}=2\left(a^{2}+b^{2}+c^{2}+d^{2}\right), $$ where (as before) $a$ is taken to be negative if $B, C, D$ are internally tangent to $A$, and correspondingly for $b, c$, or $d$. Let $\phi=\frac{1+\sqrt{5}}{2}$, and let $\rho=\phi+\sqrt{\phi}$. Show that four pairwise externally tangent circles with nonequal radii in geometric progression must have common ratio $\rho$." "[""If the radii are in geometric progression, then so are their reciprocals (i.e., curvatures). Without loss of generality, let $(a, b, c, d)=\\left(a, a r, a r^{2}, a r^{3}\\right)$ for $r>1$. By Descartes' Circle Formula,\n\n$$\n\\left(a+a r+a r^{2}+a r^{3}\\right)^{2}=2\\left(a^{2}+a^{2} r^{2}+a^{2} r^{4}+a^{2} r^{6}\\right)\n$$\n\nCancel $a^{2}$ from both sides of the equation to obtain\n\n$$\n\\left(1+r+r^{2}+r^{3}\\right)^{2}=2\\left(1+r^{2}+r^{4}+r^{6}\\right) .\n$$\n\nBecause $1+r+r^{2}+r^{3}=(1+r)\\left(1+r^{2}\\right)$ and $1+r^{2}+r^{4}+r^{6}=\\left(1+r^{2}\\right)\\left(1+r^{4}\\right)$, the equation can be rewritten as follows:\n\n$$\n\\begin{aligned}\n(1+r)^{2}\\left(1+r^{2}\\right)^{2} & =2\\left(1+r^{2}\\right)\\left(1+r^{4}\\right) \\\\\n(1+r)^{2}\\left(1+r^{2}\\right) & =2\\left(1+r^{4}\\right) \\\\\nr^{4}-2 r^{3}-2 r^{2}-2 r+1 & =0 .\n\\end{aligned}\n$$\n\nUsing the identity from 4a, $r=\\rho$ is one solution; because the polynomial is palindromic, another real solution is $r=\\rho^{-1}=\\phi-\\sqrt{\\phi}$, but this value is less than 1 . The product of the corresponding linear factors is $r^{2}-2 \\phi r+\\phi^{2}-\\phi=r^{2}-2 \\phi r+1$. Division verifies that the other quadratic factor of the polynomial is $r^{2}+(2 \\phi-2) r+1$, which has no real roots because $(\\sqrt{5}-1)^{2}<1$.""]" ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIATABxwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ8CgBaKztU13StFhEuqanZ2SHobiZY930yefwrlH+LXh+dnTRbbVtekQ4ZdMsJJNp/3iAP1oA7yiuD/wCEr8b3rgaf4BeGJhkT6jqMcWPrGoZqao+K1wTvfwnZxkcBVnlcdOvIHrQB31FcN/YnxFlO5/GWmQHpti0gMPzZ6aPDvxDDs/8AwntqQQMIdFjwv/j2aAO7orhv7I+I8GfL8V6Rc9x5+llB9PlemLP8U7VyZrXwpfxjosEs8Ln/AL6BAoA7yiuB/wCE38VWAZtZ+HupLGvRtNuYrwsPZQQamtfix4UluEtr27n0m6brDqds9uR9SRtH50AdxRVazv7TUbdbiyuoLmBxlZYZFdT+IOKsA84PWgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooPtTXcKpYnAHc9qAFJwKhuLqG0t3uLmWOGGMbpJJGCqo9STgAVxGofEV7+9fSvBennXr9Tte6DbLO3Pq8vRj0O1evOD2qO0+HEuszx33jnVZNbuVYOlkmYrOE/wCygwWxyMt1BORQBJcfE6G+uHs/COk3niS6Q7Glth5dqjejTN8o45GM5qM+HvHfiMf8T3xNHotq3Wz0OPEhXtmd+Q3rtGK7y2tbezt47e2gjghjXakcShVQegA4FS4HpQBx+l/DDwjp0pnfSY7+7bBe51BjcyO3qS5IB+gFdekaRoqIiqqjCqowB9KdRQAhAPUUYFLRQAYowKKKAEwD2pcUUUAJgVDd2drewNBd20M8LcNHKgZT+BqeigDiLz4VeGnuGu9KjutDvSAPtGk3DQED/dHyY/Cqn2b4jeGsNa3lj4qshn9zcj7JdY7AOMofq3NehYpNoNAHF6X8TdEurwadqy3Og6nwPsuqR+Vu7fK/3WGeBzk+ldmDk1R1fRdM12xaz1WxgvIG/gmQNj3BPQ+45riW8G+IfCDGfwPqhmsxnOiapI0kWPSKQ/Mh9Acgk8mgD0aiuQ8P/ECw1a/Gj6lbTaNroGW0684ZveNuki8HGOeDxXWq2SeelADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApCcUprkfFnjVNAlt9L0+1bU/EF3/x7afCfmA/56Of4EGDyf5AkAGl4k8VaV4V043uqXIRSdsUKDdLM/ZUXqxP5euK5BND8R/ET994nMui+HnwYtGgciacf9PD9h/sDHXkArzreGfBD2+pf8JD4mul1bxC4+WUr+5tAf4IVPQDpu6n25z2mBnOOaAKmm6ZY6RYx2WnWkNraxjCxQqFUfh3PvVvFLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJtU54HPX3paKAMbxH4W0bxTp/2PV7GO4Qf6tzkSRH1Rxyp+n45FcZ/aPiT4bYGqyXHiHwwM4v1G67sk/6agf6xMfxDkYOccCvTKawBGMDB4oAq6ZqdnrFhDf6fdxXVpMu6OWI5Df8A1+xH8quV5zqfhTVPCOoT694GRSkjeZfaExxDcju0f/POTH4Hj0weo8L+LNO8WaZ9ssHZWjbZcW8o2yW8g6o47Ec+1AG9RSDOaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPShjhcj+dct408Wnw9ZQ2lhb/bdd1BvJ0+yx99/7zeiLnJPHHcdQAVvGHjC50y6tdC0KCK+8RX5Hk27Z2QJ3llxyEH69ulWvB3g6Hw5FNd3c51DXL0iS+1GUZeVuOF/uoMYCjHQU3wX4PHhyCe7v5/t2u3zebfX7Dl2/ur6IOgHH07DqwMUAJgZzS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADSOK4bxZ4QvF1UeK/CZjt/EMI/fQk4i1CMY/dyf7RAwG9hz0I7sjPWkI4oA57wj4tsvFmltc2yvBdQN5V3ZyjEltIOqsODjg4Pf8CB0I61wXjHw5f2Wqr4z8LR51i3QC7tBwuoQDqh4++APlPtjngV03hnxDYeKNEg1XTZN0EowVbho2HVGHZgf84IJANiiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopCaAFopOc0ZP+RQAtFIKWgAooooAKKKKACiiigApDxS0jHAzQBl+INdsvDeh3Wr6lJstbZN7cZZj2Ue5JAFcz4G0C9uL2bxl4kixrmoJiC3Y5FhbdVjX/AGjnLH1OMA5znon/AAsTx80p+fwz4cnwg/hvL0dT7qn6npkE49JXr+Hf/P1oAUAA5xz0zS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANZeOBz6mvNvEEUvw68SyeLLFCdB1GRU1m2UE+S5OFuVA9zhh3z6nI9KIBGCM1Dd21vdWk1tcxJJbzIySxuPldSDkH2IzQA6CZLiJJonWSJ1DI6kEMDyCD3BqWvOfBdxceEvEVx4Cv5JHtwpudEuJTky2+TuiJ7sh/TsBivRQc0ALRRRQAUUUUAFFFFABRRRQAUh4FDZ4x61zHijxxpvhlorMrLfavcD/RtNtF3zSe5H8K8H5j6HGcYoA6YtjJrkNU+JvhzT7s2FpNPrGpD/lz0qI3Mnv8Ad+UY4zkislfCXiPxkfO8aag1jp78roemybVx1xNKDlz6gHHAI9K7bSND0rQbQWmlafb2cA6pDGFz7n1PuaAOQGs/EjWudN8O6XosOeJNWuTLIy+oSL7p9iaePC3jq7lL33xAMKMP9TY6XEgX6OxLV3uBRigDhh8PdQb5pfHvigyHqUuI0X8tlNbwR4igjIsPiDrEbD7puoIbgfkVH867ujFAHBfY/idpYHkavoOtoB832y1e2kb6eWSufrTB8SLzSBjxf4V1PR0HLXkAF5bKPVnj5XPpg16BikIB6igDP0nXdM12z+16VqFvewdC8Dhtp9CByD7HmtAEnqK4vWfhro95eHU9HeXQNYwdt5p3yBj1+dB8rgnBI4JwOaz4fGOt+EJ47Lx3bxm0ZgkOvWaEwtnp5yAZjY+uNuenAJoA9FoqK3niuYUmgkSSKRQyOhDAg8ggjgipaACiiigBDXHfELXrzTtHt9K0dv8AieazMLOyA6x5+/L7BFyc9jiuxbpXnnhHb4u8cat4vkUNZWedM0kkcFVOZZl/3mOAR2yD3oA63w1oFl4Z8P2ejWC/6PaxhNx6u3UsfcnJ/GtfFGMUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQQD1oooA5H4g+HLjWtCjvNKPl65pUgvNOkAyTIvJQ+oYcY6ZxngVqeE/EVt4r8N2Ws2oCpcxgtHnJjccMh9wQR+RrZPSvPNKx4P+KN7o2CmmeI1a+s/7qXS/65B/vDDfyoA9EopBS0AFFFFABRRRQAUjHC5oPArjfG/ie+042ug6CqzeItUytspGVtk/infrhV7ZByR3wRQBB4o8XX8uqnwr4Thju9edc3E7jMOnxn+OT1bHRe/XHQHS8JeC7Dwwks/myX+r3Q3XmpXBzLOx64P8K+ijsBkkjNT+EPClp4T0n7JDJJcXUredeXkpzJczH7zsTk/QZ49+p6EADtQAmBnNLRRQAUUUUAFFFFABRRRQAYzUN1bw3NtJBcRRzQSKVkjlUMrqRggg8EVNQQD1oA8vn03VPhfO+o6HHcaj4VJLXmlA75bIdTJASeV7lSfx5yPQtJ1ax1zTYNS026jubO4TfHIh6jp+BByCDyCCO1XGAwa8x1CKT4W+IG1izD/8IfqEwGo2wyRYTMcCZB2QkgEe/wDugAHqFIelMilWZFkR1ZHAZWU5BHqDTz0oA5H4k63caL4NuEsedT1CRbCxAOCZpTtBHuBkj3Ara8N6Hb+G/Dtho1qP3VpCI92OXPVmPuSST7muT1If8JF8YdMsfvWnh60a9mxyDcS/JGpHYhQXB969AFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVxfxO0qe78KHVNPX/iaaLMuo2h55aPll46gruGO/FdpTXVWUqwBU8EHofagClouqQa3o1lqlqcwXcCTJk8gMM4PuOh96v15/8MD/AGSdf8IOTnRL5vs4OeLab95Fyep+9n8K9AoAKKKKACiikPTigChrmr2mg6Jd6rfSeXbWsZkc9z6Ae5OAB3JArlvh7o13Il14u1uIDWtaAkKH/l2t+scI9MDBPcnryKqeMVPivxxong771jAv9q6oAOHRW2xR/RnySD2wa9CU5JoAUADoKWiigAooooAKKKKACiiigBGOBWdHrulza22jRX8EmopEZntkYM6ICBlgPu/eHB55rSIzXnYhih/aDURRqgbwyWIUYyftPWgD0GSRYo2d2VUUEsWOAAO+a5/UvHPh3RtNs7/U9UjtIbyNZYBKjB3UgHOzG7oeeOKk8Ws02kppUZYS6rMtkNpwQjZMpB9REsh+oFXk0ewjvp777PG1xKixb3QHbGo4RfRc5OB3JoAfpeq2Gt2Ed7p13Dd2smSssTZGQensR6Hmpr21t72ymtLqJZbedGjljYZDKRggj6Vw/wAMNJSwPiS7slEWkXuqSPYRKMJsX5S6jspYHHqFFd+RkYoA888DXU/hnXL3wFqEzSLap9p0ieQ5MtoT9zPcxnj6ZwABXoX3hzx/SuG+J+nzx6RaeKdOTOp+HpvtaAcGSHpNHn0Kcn/drT8R+IYIfhxqXiGymHlNprXFtIeMlkzH+JJWgDI+GAGqDxD4qYKx1nU5DDIO9vF+7jH4Yau+AArn/Aulf2J4H0XTmQJJDZx+Yo7SEbn/APHia6GgAooooAKKKKACg0UUAcp8RNU1nRvBmo6los9tDNbRGRmmiLnA67eQAeepyOOlanha8n1Dwno97cyeZPcWME0jkAbmaNSTgccknpWR8UBj4Y+Iscf6G3StLwZ/yI3h8/8AUNt//RS0AblFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhGRS0UAef6kf7E+NGjXYLCDXdPlsXA6ebERIrH3KkqK78GuD+LG2y8P6Zr5JUaLq1teOR1Me/Yy/iH/Su8FAC0UUUAFIelLWF401F9J8E63fxuElgspXjY9n2Hb+uKAOb+GYGsT+IfF74Y6vqDJbOB1tocxx/To2a9AAA6Vz/gXTf7H8DaHYFAjxWUW8D++VBf/wAeJroaACiiigAooooAKKKKACiiigBCcV527Tn45R3/ANg1E2X9hmyN19hm8vzvP37d23GMd84969FpMCgDBMUl74zEsiMLbTbXEbEHDTSnkj3VEA4/56msDxh4rnt9S/sRNB8R3NkVzd3OnafI4YH/AJZI/A5H3mB46Dkkr3u0Y6UbQO1AHN+FfEP9ttNDb+HtU0iztI0RBqFr9n3E9FjTn5QByeMZGBXS0gABzS0ARzRRzwPDMgeORSjqwyGB4INeFXcjR/DS+8BzyN50HiKLR4t7ZZoXmEsbH6qCB7LXvJrw/wAWWPlfH/RrNFPk6lPaai+Bx5kCzIPxAGaAPblAHA6CnUgpaACiiigAooooAKRjtGe1LRQBzPjrStU1/wAJ6ho+mLZ+beRGIvdTNGEBI5wEbP6Vc8KWWoaZ4a07TdSS2E9nbRW5a3lZ1fYoXd8yKRnHTmtnApaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOa+IVkNQ+HfiG3K7ibCV1XHVlUsv6gVd8KX51Twjo1+33rmyhlbnoSgJH51o3kC3VnPbsMiWNkP4giuP+EN19s+FegynOVheLn0SRkH8qAO3ooooAK4T4xtJ/wAKt1eOFiJJmgiBH+1MgP6Zru64T4xSCH4Z6hO4ykU9q7fQXEdAHcRoEQKowAAMelPpB1NLQAUUUUAFFFFABSMcUtIxAHJAoA4PxX8W/DPhDWRpV9LczXYK+atvEH8kMAQWyR2IOBzjtXX6TqtnrWmW2pafOJ7S5jEkUgBG4fQ8j6HpXhfxI+DHiDXfGl1rGiNbTWt/IrOksxRoG2gEnI5XjIxk84xxXX+H/gX4RtdDtINb00X2pKn+kXC3Uyq7k54CsBgdBwDgc80AepZozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHf5ozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHf5ozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHfMcCvEPG/jvw1Z/GXw3cyXjldGNzBfyRxlhGzIVVfUkEnOM4+uRXYH4J/DwYx4e7/8AP7cf/HK8Y8WfB6/sfiBZaJplxara6vJO+nmR3AiRF3srnBPAOBjOe+M0AfUNrcxXdvFcQSLJDLGskbqchlYZB+mKmzXm9h8DvA0Njbw3mj/aZ44lWWf7VOvmOAAWwHAGTk4A71Z/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3+aM1wH/Ckvh5/wBC9/5O3H/xyj/hSXw8/wChe/8AJ24/+OUAd/mjNcB/wpL4ef8AQvf+Ttx/8co/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3+aM1wH/Ckvh5/wBC9/5O3H/xyj/hSXw8/wChe/8AJ24/+OUAd/mjNcB/wpL4ef8AQvf+Ttx/8co/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3k0yW8LzSuqRopZmY4CgDJJNefaP8avCOteI00a2nulkldY4J5YNsUznoB1YZJx8wH+KXnwP8BS2U8dtopt5njZY5hdzMY2I4bBfBwecH0rzHw38CPE1n4ttJtSls0060njmeaGckyhTnCDbnPHcDrQB9JAnOPanUxcDp+Vcm/j6H/hJ7nw7DoerzajbxCaRI1hIEZx827zcdxwefagDr6KwvD/izTPEc13b2jSxXlm2y6s7mMxywk9Mj09xkVu0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIa4X4QFB8PoIkXZ5V3dIVAxj9+5x+RFd0elcN8JS0ngk3DgAz6hdyYHbMzf4UAd1RRRQAVyfxNsRqHw08QwEZ22bygYzynzj9VrrKiuYI7q2lt5V3RyoUdfUEYNAFLQNQGreHdN1FTkXVrFMP+BKD/WtKuE+E1xIvg5tGuH33eiXc2nTHGM7HO0j22la7ugAooooAKKKKACqeqala6RplxqF7MIba3QySOewH8z2A75xVpzhe341534pvk17R9b1MyKdG0i1uGthni6uURhvHqiHKj1bJ/hUkA2fh74mm8Y+HJNalhWGGW6lW1iHVIlIVc+/Bz9eOK63AFcJ8G7c23wp0NSOWjkkP/ApXP8AIiu7oAKKKKACiiigAooooAQ4Iwa8f8XagV/aC8IRAKYbaAqzZ6PMJQAfwUGvYG6V4Jqi/wBo6nqHjYsyQw+LrGFGzwYLf90WB9GZz+VAHvSnPI7jNOpB1paACiiigAooooAKKKKACiiigAooooAKKKKACiiigApMClpDntQAHgDAzXivhTxVDa6p4y8b3Ol6reQXV2Yrea0tfMUW8IKg5yMZGCe3HWu7+JHiq18MeCtTna6iS+e3aO1iLgSM7fKCq9TjOfwrm/DHizwt4P8AhxpenW+o22pX0dqD9hsXE8ssz/My7VyR8xIy2KALnw60ebUPEOsePrqa23a0qpb29tKJFiiXA+ZhwX+UA46EH1r0ivPfgz4Z1Lwx4FEGqIYrm6uXuvIP/LFWCgL7H5c4969CoAKKKKACiiigAooooAKKKKACiiigAooooAbIwVCxOAOSa4X4NrKPhZo8kw/eymeVvfdM5B49sV0fi29OneDdbvR96CwnkX6iNiP1qp8P7T7D8PvD0BXaw0+FmHoxUMf1JoA6SiiigApD0paMZ60AefB/+EX+MDBmK6f4otgVJ6LdwDGPQbkP1Jrv1JNcz498NSeJvC8tvZuItTtpFu7Cb/nnOnKn8eR+Oan8F+JYvFfhyDUhGYboEw3kDfegnXh0IPIweR7EUAdDRRRQAUhpaCM0AcH4h8Y6Zf67a+DbLWYI72+YpdSxTANBGPvRqwPEr/dUdRyeoGcD4paP4L8O+AdT8rSNDs9Rkg2WoFvEkxJYDK8bjgZOfY161tGCOxowPSgDkfhjdWFx8PNDjsbqGcw2USzCNwxR9o3BvQ5yPwrr6QADoKWgAooooAKKKKACkNLSN93pQBzPj7xC/hrwde3sALXzgW9nGo+Z55PlQAdyM7segNc14g8HLpnwGu/D68y2en+c7Lk7pkIlYj6sD+dSRN/wnfxLEyHfoXheQhT/AA3F8Rzj1EYP4H1Br0KaKO4gkhlUNFIhV1PdSMYoAq6FqKaxoGn6nGAFu7aOcD03KGx+taFcL8JZ5F8Ff2RcPvutFvJ9OmOMZKOSuPbay13VABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJgUYFLRQAgAHSloooAKKKKACiiigAooooAKKKKACiiigAoNFIaAOH+Lc0h+H11p9u+251O4gsYQf4mkkUEf98hq7S3jSGCOKMYjRAqj0AFcL4v8A+Jv8RfBuhAB4reWXVrkd0ES7Ym+hdiK74d6AFooooAKKKKAEbpXm/iKKbwD4ok8Y2MTvot+Vj1u3QZ8pui3KgenRgOvXGTkek9ajmhingeGWNZIpAVdGAIYHggg9RQAy0uob22iuLeVJYZUEkciHIZTyCPYip68tX7Z8Jb2Tak134JuZdwxlpNJZj6dWhySfUc9/v+l2l3BfWsV1azJNbzIHjljYMrKehBHWgCeiiigAooooAKKKKACiiigAoopD064oAGOBmuG8ceJL4TQeEvDj58Q6kv8ArM8WUHRpmI6eg75xjJwDY8W+NW0q4i0PRLYan4lu1PkWan5YRj/WSn+FBwcHBPt1FjwZ4QXw5bT3V9P9u1y+bzb+9Yfff+6vog6AYHTp0AANPwzoFl4Y0C00ewUi3tk27mHzSN1Z29yST/8AWrWwB0owM0poA8/0onQfjBrOntkW2u2kd/b8YXzYv3cij1YjaxrvwcmuB+KFu+n2Wl+L7aNnuNAu1mkCjLPbv8kyj6gg57YruraaO5gjnhdXikQOjqchgecj2NAEtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLWB418QL4X8H6lq5GZIYsQrjO+VvlQY7/MR+GaAOe8Hn+3fiJ4s8RkBoLZ00e0focR/NKPpvI5r0DGK5vwHoLeG/BemabLk3SxeZcsTkmVzufJ7/ADEj6AV0lABRRRQAUUUUAFIQD1FLRQBHLFHLE0ciK6MNrKwyCD2IPUV53N4W1zwPdy3/AIIC3WmyOXuNAnk2rnqTA5+4fY8fkBXpFIVB6igDmfDPjvRvFO+C2le21KHifT7tPKniPoVPX6iulUk+lc/4m8E6F4qVH1G0xdx8Q3sLGOeLrja454Jzg5Ge1c8mmfEHwuwGmala+JtPTkW+pHybsL/dWYfK31YUAeh0VwP/AAtK207K+JtA1rQygHmTTWpmgB9pI8g/XFa1n8RfB19Grw+JdLG7oJblYifwbBoA6iiqEWt6XOm+HU7KRfVJ1I/MGqlz4u8N2X/H14g0qDBxiS8jXn8TQBtUGuHufi14PiuPs1pqMmp3eMrb6dbvOz/QqNv61WbxP4519dugeE10uFvu3muy7CP+2KfNn0ycUAdxd3tvp9rJdXlxFb20Yy8szhFQepJ6VwE3jLWfG0r2HgW38uyBKT6/eREQp2PkoRmRuvXgcZ4Oas2fw0i1C6iv/GGr3PiK5Q7kgmAjtIz/ALMK/KfTnIPpXdxQxQxJFFGqRoAqIgwFA6ADtQBgeFPCGm+FraYW3mXN9cNvvL+5bfPcP1y7H68Dp+JyejpNoBzjmloAKKKKAK97aQX1jPZ3EayQTxtFIjDIZWBBH5GuL+Gd3cWdnf8AhDUHZr3w/N9nVm6y2zZaF/8Avnj22813Z6V5548STwvr+m+O7ZWMNtiy1ZFGd1q7cPj1RsHjk9M4oA9DBzS1HDKk0aSxsrxuu5WU5BB6EGpKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARuleeeISfFfxK0jw6nzWGi7dU1HHQy8iCPjv1YjoQR6V13iXXrbwz4dvdZvD+5tYy5Xu7dFUe5YgfjWJ8O9CutM0SXUtXGdc1eU3t8SMFGP3YxnkBBxjsc0Adeue/WnUUUAFFFFABRRRQAUUUUAFFFFABSAAdBilooATA9Kyr7wt4e1Ny9/oWmXTnktNaRufzIrWooA5Z/hr4KdizeGNMyeuLcAfkKmg8AeD7bb5fhfSAV6FrONiPxIro6KAIbe1t7SIRW0EcMY6JGgUD8BU2BRRQAgAHSloooAKKKKACiiigAqve2tve2U1ncxLLBOjRSRtyHVhgg/UVYo60Aed+A76fw5ql14A1SdmlsVM+lTyHJuLIngf7yHKkccDgYXNehg9M56d65Px34Xn1zT7a+0mQW+v6VJ9o06boC38Ubf7LgYP4duDd8G+KLfxboSX8UbQXMbGG7tX4e3mX7yEfXp7EfSgDoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkJxihiQOK4rx14lvrQWvhvw+yP4j1X5IfS2i/juG9ABnHvn720igDLu8fED4gpZKvmeHvDcwkuD1S5vR92P3CDk+5wR0r0kCsbwt4dsfCvh+10ewH7qBfmc/ekc8s59yf8BwK2sUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACN0rzvxVpt/wCFddfxvoEDzRsgXWrFOtxCv/LVB/z0QZ+o/HPotNIHXHNAFPSNWstc0u31LTrhLi0uEDxyJ0PsfQjoR2INXq8w1K0vPhjqkuvaNBJceF7uTfqemxrk2jE8zwj+7/eXoPoRs9E0zU7TWNPgv7C4juLSdA8csZyGH+eMHkEGgC3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFI3TrignArE8UeKNP8ACejNqOou2MhIYYxmSeQ9ERe5P6UAReLvFdr4U0j7XMjXF3K4hs7KP/WXMx+6ijr1IyR09+lZ3gfwtdaa11r+vOlx4j1TD3Mi8rAn8MKf7IGOnUjqcCqnhPw1qWo6x/wmHi1E/tV4yllYjlNPiPYeshz8zde3tXe4oAQAA9KWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKCM0UUAIQAOleaXujar8O9Rn1rwtave6DcOZdQ0SMfNEx6y24+g5Tp6cEbfSyAetGMDAoAzNB8Qab4k0qLUtKukubWT+JeqnurDqCMjg1piuC17wTe2WqS+I/BV1Fp+ruQbm0cf6LfY7Oo+63+0PU9NxNaHhjx7Za5ePpN9BJpOvw/67Tbo/Nn1jbpIvfI7c4xQB11FNVtx4ORTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRsgcfyzQTgVwes+Pbi81GXQfBdrHqurIds9yx/0Sy68yuOpGPuj37jBANfxZ4zsPCtpF5wku9RuTss9PtvmluH9AB25GTjj3PByfDXhDULvWE8U+MHSfWAD9lskO6DTlPZexf1b9T1N7wn4Hg0O5l1XU7uTV/EFyP9I1G4AyP9iNeiIPQfywB12KADFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQRmiigBCoOMjpyKwfFHg/RvFlokOp2xMsRzBdRHZNA395H6jnnuOBkcVv0UAebrqXjDwH8msW8viXQkHGoWqf6ZAo/56x/xjp8wOeCSe1djoPibSPE9j9s0XUILyH+Lyz8yH0ZT8yn2IrV2L2H0rkde+HOi6vfNqlo1xo+sYONQ02QwyE9fnA4YHjORntmgDrxS154upePvChC6lp0PinT1HN3poEV2o9WhPDEnPCn3NbGifEbwzrk/wBli1FbW/DbGsb4eRMrf3dr4yfpmgDq6KaCT3z7gU6gAooooAKKKKACiiigAooooAKKjeRYkaSRgiKMlmPAHqfSuN1L4peHra7aw0trjXdRHS10mIzn6lh8oHrzxQB2rHAzXN+I/HOh+F2SG+uxJfSECGwt18y4lJ6BUHPPYnAzxmsE2vxB8WA/bLqDwnprDmG0YT3jj0Mn3U9iBkV0HhnwRoPhUO2nWQ+1SZ828nYyTyk9SXPPPoMCgDmm0zxd48Gdbll8N6A3/MPtnBu7hP8AprIOEBHVRz1Brt9G0bTdB0+PT9Ks4rW1jHypEMc+pPUk+pyT3rQ2jjjp09qWgBAAOAMCloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEwKy9a8NaL4hgEOr6Xa3igFVMsYLID/dbqv4YrVooA8+Pw1l0sbvCvinWNGCgCO2eT7XbRj2jkyf1p/nfE7Sc7rbQdehQceXI9pO/1BygrvcD0pcCgDgT8RNWscLrHgHxFBIcZNiiXqL/wJGH8qc/xg8IWyg6jc32nMeNl3p06kH04QjP413mBSbQe1AHHwfFTwPOCV8S2K4xneSn/AKEBU3/CzfBP/Qz6b/3/ABXRPp9lKQZLSB8dN0YNN/svT/8Anwtf+/K/4UAcrc/FrwJahjJ4ktSF6+Wryf8AoKmoB8W/DlzHv0uDWNWz0Fjpkz7vpuUCu1isrWD/AFNtFHzn5EA/lU2BnOKAOD/4TnxNqCBtG+HurOD1Opzx2ePfDEk01rT4nauSs2p6FoMJ6G1ga6mHsd+EP4Cu+wKMCgDgk+Fel3syz+JdU1XxBKCGC3tyRErD+7GmAOp45612WnaXp+k2wttNsbazgBz5VvEsa5+gAq5RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k=', '/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAS0BMwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACikJwM1zWs/EDwnoJZdR1+yjkQ4aJJPMkH/AEy36UAdNRXBf8LNS9O3RPC3iPUwQCk6WXkwt/wADkI/lSpr/AMRL3cIPBFlYDPyve6qr5+ojU4oA7yiuCRfitLId8ng+CPnaFW5kPtnpUg034kuu5/EGgRsT9xNPkYD6EvmgDuaK4Y2PxMhbMeteHLgHr5tlKmP++XqOKb4qwZNzZ+ErsDGFt5riNj+LAj0oA72iuB/4S7xpZuRqPw9uGiXrLYajFPn6JwaF+Lfh63KjWrbWNCdjhV1PT5I934qGGPfNAHfUVm6T4h0bXUL6VqtlfAfe+zzq5X6gHI/GtKgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiig0AFB6VieI/FWi+FbD7VrF9HAp+5H1eU+iqOSf8muT87xt43OLdJfCWiNn95Koa/nX2XpDkHr94EDGaAOn8ReMvD/hVA2r6nFDIw+S3GXlfnsgyx+vSudHiXxv4kIHh7w2mk2jH/j+11irkd9sCncD3BJwa2/DngTw/4aka4s7MzX78y3903m3EhPUlz698YB9K6fvQB5+3w1k1f5vFvifVdZz962jf7LbH28tP55rpdG8JeHtAA/srRbK0cDHmRxDeR7v94/ia26KADvRRRQAUUUUAFFFFABTXRZEKOoZTwQRkGnUUAclqvw08IatIJpdDt4LgHcs9nm3cH1yhGT9c1lDwn4y0Dnw54ue9gXOLLXkMwP8A22XDgegxXoVFAHnqfEi40WQQ+NfD95ooztF9F/pNo3YZdASpPYEfWu30/UrLVbVLvT7yC6tn+7LDIHU/iDVmRFkjZGVWVhghhkEe9cJqHw1tIb2TU/Cl7N4b1I/eazANvL7PCflbv0x170Ad7RXncXjvVvDE62njzTVtoiwSPWbENJaOe28fejPQc989hXe2tzBeW8dxbTRzwONySxuGVh6gjrQBPRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFQXl1b2NnNdXUyQW8KF5JZGwqKOSSaAJicKTXn+p+Ob/WdQm0LwNbRX9/Gdt1qMmfsdp7bv429APrzhhVBrnV/inK8djNPpXg1WKSXQ+S41LBIIT+5F15PJH1IHf6Po9hoWnQ6dplrFa2kIwkUa4H1JPJPueT3zQBgeHPANjpF6dW1S4k1nX5P9ZqN2MlfaNOka9eB64zjiuvFLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEc8MdzBJDNGkkUilWSRdysD2IPUV57deCtV8K3D6l4AuEjiLF7jQrlj9mnOOsZP+rf9M46AYPo1B6UAcv4T8a6d4nM1qscthq1rxdaZdDbNCfXH8S8jBHqM4ziuorlvFfgqx8TeVdJNLp+sW3NpqVtxLC3of7y+qnsT0rM8OeMb+21ZPDHjGBLPWuRbXScW+oKP4oz2bGMr/LOAAd5RTQeadQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTZHWKNpHZVRQWLMcAAdyfSgCC/vrXTbCe9vp0gtYVLyyyHCqo7mvOLSyvfirfJqeqxzW3g+Ft1nYMdragwPE0nonovfr9UjSX4r60J5Q6eCrCb9yjDH9qTKfvEd4ge3fH1C+nRqEACgAAYAAxigBIkSJEjjRUjUbVVRgADoBjtUlFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAh6VjeJfDOmeLNJfTtUg8yNjujkXh4X7OjdVb/J4raoPSgDzvw54k1Xw/rcPhDxjMHuXX/iW6qeEv0HG1v7so469fyLehDk56VjeJvDWneK9Fl0zUo90bDMcg4eFx0dD2Ydf0PFc94M8Q6haapJ4N8Tyg6zbR77W6OQNQtxwJBk/fGDuHXvzzQB3lFFFABRRRQAUUUUAFFFFABRRSHgUAB6V5t4oup/HHiNvBOl3Dx6bbhZNeu4jyEP3bdT/AHmxz1wOOcEHe8d+J5vDukxwadEJ9b1KQWmnQcfNK38RB42qDkk8dASM5q14M8Mx+FNAi08SGe5djNeXLctcTty7knk5PHPOAOtAGxY2kNhawWdpCkNtCgjjjQYCKBgAVaoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARvumuX8aeFF8UaZG1vP9k1exfz9PvFHzQSjtn+6eAR0PBxxXU0h6Hr+FAHL+B/FLeJdMkS9hFrrNg/2fUbP/nlIO4/2WwSD0PPJxmuprzrxvZXHhjWYPHulQs5t1EOs28Y5uLX/npjuydc+g64GK72zuoL60gu7WVZredFkjkQ5VlIyCPYigCxRRRQAUUUUAFFFFABTXO2NiTgAZz6U49Oa4X4l6hdS6dZeFdMkCal4gmNorA8xQAZmkx7J/6FQBS8GI3jHxZeeObgE2EG+x0NT08sEiSYD1c5APXGQe1ej1R03T7fSNMtdOs4/LtrWJYo0x0VRgfy/Oodc13S/Dumy3+r3sVrap1aQ9T6ADlj7CgDTPSsHxB4z8PeF1B1jVYLZyAVhJLSt24RQWP1xXLLd+MvHgJsRL4V0FulxMmb+5Xp8q9Igcnk89CM10HhzwH4f8NOZ7Oy86/bmW/uj5txIx6kufXvjAPpQBkL478Q6yR/wjXgm/lgPS61SRbNMdmCnLMPoKcNO+J+oqftWu6BpHPy/YbN7hse/mEDP0rvB1paAODTwh40MeJ/iRds56mPSrdB+AwcUknhHxuoBt/iRcK+cZl0m3cEfTjn3rvaKAODa1+J+nlRBqXh3V4xy32q3ktpG+mwlRUR+ImqaQP+Kr8Happ0QPzXdmVvIEH95inKj6ivQaD0oAx9C8TaL4lg8/RtTt71AMt5T/Mn+8vVfxFbFcjr3w70DXLj7csEum6qOU1DTn8iZW9SV6/iDWIPEHirwGwTxVCda0MHH9s2cWJoB6zxAdB/eXPAHUnFAHpNFUtL1Oz1ixiv9Puorm0mGY5YnDK3r9MHj65zV2gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGTRxzQSRSoHjdSrKRkEHqMV594Jlk8KeJ77wLdyH7KFN7oruetux+eLPco2e5OCTwAK9DPQ1w/xL0u5k0a38RaWo/tbQJftsGP+WkY/wBbGcdmQHjvjFAHc0VQ0fU7bWtJs9TsnLW11Cs0Z9mGcH3HQir9ABRRRQAUUUUAIelee+FR/wAJJ8Qtf8USfNaWB/sfTiTwdnMzjPXLcBh1GRXReONfHhnwVqurA4lggIh4z+8b5U/8eYVi2M1l8LvhhZC+y0lvCoMScvcXLncVXuSXJ+g57UAavizxdZ+FbCN5Inur66byrKwh5luZD0VR6cjJ7e5IFY2geCLu+1OPxL41kS/1gZa2swd1tp4JyFRe7jjLHPI6nGTL4L8L3ov38WeKNs3iK9X5I8ZWwhxxDGOxGTuPck+5buqAGjg06iigAooooAKKKKACiiigApHGUIIyPSlooA851PwlqXhK/l1/wMg2yNvvtCJ2w3Q7tF/zzkx+B444weq8L+JtP8V6Umoae7YBMcsEg2yQSDqjr2Yf/qyCDW2eBXnfi7Rr3w1rDeN/DUO+dUxq+nLwL6Aclx6SL1zjkfkwB6LRWdourWeu6Taapp8wmtLmPzI3HXHofQg8EeoPpWjQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIwDKQQCDwQe9LSEZBB5BoA8++HmfD+t694JkYiPT5vtenBu9rMd2F7kI+QT6nFehV5744zoXjXwt4pj+WJpzpN8QOsU33CfZXGfxr0ADnp160AOooooAKQ9KWkPIoA4Dx8P7W8TeDvDWCYrm/a/uMDIMduu7aw9GJA/CqmjRj4g+N5PEUx8zQNElNvpKEZWe4H+suPcA4VTyOMjBBrmfG+r3Vx8RtZtNMdv7TNnbaFaDsj3JMsknttjXk9iRXr+haNaeH9FstJsl2wWsQjU45bA5Y47k5J9zQBoAYNOoooAKKQnAJPQUilWAZTkEcEUAOooooAKKKKACiiigAooooAKRvunnFLQeBQB5raD/hXvxAGnAbPDfiKUtbD+C0ve6D0V+MD14AwDXpCjkVz/jTw2vinwne6ZnbcMnmWsgODHMvKMD25Az7ZpngTxC/ibwlZ6hcLsvQDDeRkYKTodrjHbkZA7BhQB0tFFFABRRRQAUUUUAFIeATS0HpQByHibxufDuvaLpX9k3M39qXkdqtyXVY1LFQcckkjd6Ae9daOteb/FL/AJD/AIB/7D8P8xXpVABRRRQAUUUUAFFFFAHM/EDRf+Eg8BazpyKWle2aSEA4PmJ86f8AjyirnhLWR4h8JaTq2QWurVJJMdA+MMPwYEfhWyfunjPtXB/CoCx0fWNAC7E0fV7m1hXP/LIt5iH8d5/KgDvaKKKACkPApaRiFUknAHJNAHh3w7tX8R/GnxTrlxseDS7qZIGA53ufKU59PLiI/wCBV7lXlvwHtHHgi51abBm1S/luGb2Hy4/NW/OvUqAEPSvO4Vlt/j40H2u6lgk8PNP5U0pZEczqp2r0HCjpXoteeyEf8NBxDPP/AAjB4/7eaAOm8U3M0WgyW1s5S7vmWzgYdUeQ7S4/3VJf/gNZuqeBdP12VIdUkuDpltEkVnYwXDxRoFH322kFm7DJIAAx1NXJ/wDiY+NLaAcw6Vb/AGlv+u0u6NPxCLL/AN9iovEniqy0qaPSl1OxtNSuVLK11KqJAnQyMCRn2Xqx9AGZQDE+Fy6jaDxDo91ezXtjpepPa2VxO259oAJQnvtyPzPoAPQq53wtd+H0g/sjQtRgvfsy+ZM8MwmJZySXkZeN7Nub1PPFdFQAUUUUAFFFFABRRRQAUUUUAIelcB4c/wCJD8V/EehgBbXVYU1i2VRgK/8Aq5vxLbWr0A9K4Lxp/wAS7x34I1rfsQ3kunSc43CaM7Af+BJQB3tFNGc4p1ABRRRQAUUUUAFIehpaKAPMfiYbm41/wf8AZdO1K5Fjq8dzctbWM0ixxgrkkqpB+gJr0iCQTRJIofDLkb0KH8VPI+h5qaigAooooAKKKKACiiigBD0rhPDyGw+L3i+1LYS9trO9jTHAwrRsfzAruz0rhJ4/s/x0s7jkC78Pyw+xKTq354NAHeUUUUAB6VzvjPxPpvhTw3c3+oXXkh0aOAAEmSQqSqrjvx16DvgV0J6V5b8bfBWoeLPDtpdaYwa40xpJWgZ9qyRlcnAPBYbRj6tQBY+B+r6XefDqx02yulkurDcLqLBDRl5HYZyOc54Iz068GvS6+dvhD8LrzUdHk1y513VdKgvFUW39kXnkySKGYMZPlPGQMD6+1ek/8Ks/6nzxx/4OP/sKAPQDWW3h3RDqP9pHR9P+3A7vtP2ZPNz67sZ/WuT/AOFWf9T544/8HH/2FH/CrP8AqfPHH/g4/wDsKAO4jtYIZ5po4lWWdg0rAcuQoUZ/AD8qzL3wn4c1K7ku7/QNKu7mQ/PNPZxu7Y4GWKknAAH4VzX/AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAdfpeh6VowkXS9MsrFZDmRbWBYgxHTO0DPWtA9K4D/AIVZ/wBT544/8HH/ANhR/wAKtx/zPnjj/wAHH/2FAG14u8caH4KtYp9Zumjafd5EUaF3lx1AHTjI5JA5q34Y8U6R4u0z+0dGuvtEAcxvlSrI2M7SCBg4I9vQmvHfiP8ABjWruKzudD1XVdcljVlli1W+EkijjHlkgDHXIz6Ve+H3wa1PT9HlfV9f1vR7ydwTb6RqAjUKBgbyFIZs7uhwBjBNAHt9Fef/APCrP+p88cf+Dj/7Cj/hVn/U+eOP/Bx/9hQB6BRXn/8Awqz/AKnzxx/4OP8A7Cj/AIVZ/wBT544/8HH/ANhQB6BRXn//AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAd+3CnnFeWfGPxLo2lQaJb3V0q6hbana6jHAEJby0chm46cbvrg1pn4W4/5nzxwf8AuMf/AGFeUfFf4W6ppl5a6pZ6ne6tbTGK1MmpXYkuBIzEKNxCjbyMehznigD6G0TW9P8AEOlwanpVytzZzg7JACMkEg5B5BBHQ1pV494M+Dl5pnh2GHUfFPiHTryRmklt9J1DyoVJOBxtOWwBk/gOma6H/hVn/U+eOP8Awcf/AGFAHoFFef8A/CrP+p88cf8Ag4/+wo/4VZ/1Pnjj/wAHH/2FAHoFFef/APCrP+p88cf+Dj/7Cj/hVn/U+eOP/Bx/9hQB6BRXn/8Awqz/AKnzxx/4OP8A7Cj/AIVZ/wBT544/8HH/ANhQB6BRXn//AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAegUV5/wD8Ks/6nzxx/wCDj/7Cj/hVn/U+eOP/AAcf/YUAegUV5/8A8Ks/6nzxx/4OP/sKP+FWf9T544/8HH/2FAHoFFef/wDCrP8AqfPHH/g4/wDsKP8AhVn/AFPnjj/wcf8A2FAHft9015B4p8f+GdO+LmhvNqeBp0N1bX7ojMsbOF2KcDnkHOM4OM4xW+fhbgZ/4TzxwfY6v/8AYV4j4p+EXiG18fR6Tayi8GqPLNa3NxMN7qvLGU/3xkZOPmzkd8AH1TFMssSSRsXjdQysvIIPQ0/efRvyrN8P6Y2ieHNM0rzjL9jtY7fzNv3tqhc/TitHLf3v/HDQBJUVzCtxaywuAVkQowPoRipaQ9KAPOvgbdrdfCrTIw2WtpJon9j5jMB+TCvRq8b+Ct+lj4j8Z+Fiyg2upSzxLnkjeY2/Lan517JQAUUUUAFFFFABRRRQAUUUjfdPOKAKmqalb6Tp0t7clvLjAwqLuZ2JwqqO7EkAD1Irjfhbr2peJrLXdV1IlHbVJIIoA+5YY0RAFH4k5Pc5Pelm1a+1LVxq6aFeX2jWQL2LxzQqsj8hpiHcEgDIXjGCWGcjFL4GRMPhpa3D8tdXM8xOep3lf/ZTQB6VRRRQAUUUUAB6VwXxIVru98HaZG3zz69BM68fNHEGdv6V3p6V5/dFdc+NlhAvzQ+H9NkndgeFmnwgU++wE0Ad8cYrz34v3t1ZeE7caZdXdvq13ew2tm1vcPGS7NkghSN2QCOQeteh9q8u8VW//CWfGDQ9BE8sdvo9pJqU7wttYSMQqc9mB2n6NQBF8QHvvh9oGnatpGtajNfC6jga2u7p7hLzIO4bXJIPHVcEV6lCxaNCy7GKjK+ntXkF/bL4Z+M+g217LPrkOpxnyH1FzLLYuM/NH/CBwM8Z6817Ep56/hQA6iiigAooooAKKKKACiiigAooooAKKKKAA9K4bU8XHxn8Pxct9l0q6nx027mRM+9dwehrhLJFvPjlqdypyLDQobVh6NJK0n8hQB3lFFFABQaKQnAoA8E1GVvB3xp1TXApSyiuoDdnput7mMKzn2SVB+de9j2rzPxnpVtN8SNJS9jLWPiDTbjR7hs8KR+9jP8AvZ3AfStP4bavdNYXPhnV3H9taEwtpuf9dFj91KPUFcDPXjnrQB3VFFFABRRRQAUUUUAB6Vz3ivRdV1/SnsLDWI9NhlG2dvshld17qDvXbkcH2PauhooAx9T06+vPD0mnWd7b2c0sBhM/2YsqgqQSibxjHbJOPeqHgXwvdeD/AA5b6JJqMN7b227ymW1MLjcxY7vnYHlu2K6eigAooooAKKKD0oAhvLmGysp7q5lWKCGNpJJGOAiqMkn6AZriPhdbTXenal4rvIil34gujdKGHzJbr8sKn2C8j/eqH4g3EviDUbDwHp7sr6hifUpUPMFmp5+hcjaPXkd67y2ghtLeK3t41ihiQIkaDCqoGAB6AAUASTBzC4iZVkI+VmXIB7ZGRn8xXB6d4J8Q6Z4l1jXYvEmnSXWqlPN83SXIjVBhVTE4OAMdc9BXf0UAcfongSOz8St4m1fU59X1ryzFFNJGI44EPGI0HTgkZyTz7knsKKKACiiigAooooAKKKKACiiigAooooAKKKKAEPSuC+H4W/8AFPjjWwD+/wBVFkCe4t0CZHtkmuw1nUY9H0S/1OYZjtLd52HqFUnH6Vzfws0+Ww+HWkm5Yvc3aNezOerNKxkyffDD8qAOyooooAKDRRQBw3xVs55PBp1W0TdeaJcxanCM4/1bZb/xwtVXxZY3Nwum+PvCqm41C2twzQIP+P8As2AYx8fxAHcvXnPXiu/uIIrq2lt50WSGVCjo3RlIwQfwrhfhdcS2elaj4UvHZrzw/dtagv8AeeBiXhc+xXp7LQB1Ph/XrDxLo9tq2mTebbXC5GeCh7qR2YHOR+vStWvNtZ0rU/A2t3Pijw3bvdaVdMZNX0pG6t3nhHZxzuHGf1XttE1vTvEWmwanpV0lxaSjKsv6gjqCOhBoA06KKKACiiigAooooAKKKKACiig9KAEPSsDxd4ptPCehPf3MbTzORFa2sfL3MzfdjUe/48Z61L4m8T6Z4U0p7/VJiqk7IokGZJ3PREXqT/Lqa5nwx4d1PW9bTxl4uiEd4EK6bph5WwiPOW9ZD3Pbp6BQDR8CeGrvSLa61bW3WbxDqzie+kHSMY+WJf8AZQcfXPtXYU0dRTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoPSig9KAOB+K00t14fsfDdszC416+isgUPKRZDSP8AQKuD7NXdQxJDGkUahY0UKqjooHAArgrPPiX4xXV5jdYeGrX7LCexuphmQg+yYUj1Ir0GgAooooAKKKKAEb7przvxQT4T+IWj+KF+TTtSUaVqTDOEYnMEhA44OVJPQcd69FrL8SaFa+JfDl/o14P3F3EYy2MlD1Vh7ggEe4oA0TwCAM8dK4PV/BWoaTq0/iDwPcRWd/Md15p0xP2W+PqR/A/+0MZJ5xkk3Phzr11quhyadqxI1zR5DZXyk5LMvCye4ZRnPcg12ZoA4/w78QNN1i9OlahDLo+ux8Sade/KxPrG3Rx3BHbnGK68VjeIvC2ieKbL7LrOnRXSL9wtwyH/AGWHIrlR4f8AHHhVf+Kf1uPXbBOlhrJxMq/7M68k9AA3AFAHolFefL8UI9MBTxX4d1jQXX787QG4tgfQSxg5/Kt2w8feEtTCfZfEemOX+6jXKo5/4CxB/SgDpKKrx3ltMm+O4hdD3VwQf1pJb60gXdNdQRr6vIBQBZorltS+I3g7S0drrxLpuV+8kMwmb/vlMn9KyG+I91qxMfhTwpq+q7uVup0+yWxHqJJP5YFAHft0riNa+IUEOoPonhm0bXtdAwYbdv3NuemZpei8g8ZzxjjIqofCHirxRz4u8QC1sm+9peibokf2eVvmYEcEDj0xXYaJoOleHbBLHSLGCztl/giXqfUk8k+5yaAOa8PeB5l1RfEXiq7XVfEGMRnH+j2Y67YV/wDZjyfbnPbDg06igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsTxZ4gg8LeF7/WbgBhbRlkQ/wDLRzwi/ixA/GtpvumvOdVP/Ca/Eu00aM79J8Nst7fntJdMD5Uf/ARlvzB5FAG58PNAn8O+EreC9JbUrpmvL+RvvPPIctk9yOFz7V1dNHXpTqACiiigAooooAKRvunAyfSlooA868ZxyeEPEdt46s42NmVW11uJF+/Dn5Zsd2QkD1I46V6BbzR3EMc0MiyRSKHR1OQwIyCD3GO9FzBFdWstvPEksMqFJI3GVZSMEEdxivOvCd1N4I8Rf8INqkrvYTbpdCu5Od0fVoGP95O3qPTgUAelUU0dRTqAA8isTUPCPhvVHMl/oOmXEh6vLaIzfnjP61t0UAcXJ8J/Asjlz4bswT12llH5BqWL4U+BoXDp4as8+j7mH6k12dFAGTp/hjQdJfdp2i6dZv8A3oLZIyfxAzWrS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLUN5dQWVnNdXUqw28KGSSR2wFUDJJP0oA5/xv4nPhfw+89vF9o1O5cW2n2wGTNcPwox3A6n2FL4H8Mf8It4ejtJpfP1Cd2ub+4zkzTvyzH6dB7D1zXO+EYLjxp4lPjnUonjsIVeDQrZ+NsZ4edh2Z+3oPXgn0YdaAFooooAKKKKACiiigAooooAD0rn/ABb4WtfFmhmxnkeC4iYTWl1F9+3mXlXU/wCeK6CkbO0460AcZ4H8U3epPcaB4gRLfxJpvFxGOFuI+izx+qnvjofTIFdpXI+MfCD6+ttqWl3C2HiKwO+yvewP/PN/WM85GD1zjkgu8G+MR4i+0afqNqdO8Q2HyX1g55X/AG067kPGDz168gkA6yiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQnAzQAN0NeY6hK3xR159Fs5CfCWmzD+0blDxfTA7hChHVF4JPfj2Jk13WrzxzrMvhXwvdtFp0RxrOrQ4IRf8AnjE3QuehPb867vR9IstC0y30zTbdLeztk2Rov8z6knknqTyetAFqGJIVSONFSNFCqqjAUDgAD2FTUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjHCk+lcl4t8G/2+9vqum3J07xFYg/Y76Mf+Q5B/Eh9D0zx1IPXUjEgZAzQBxvhLxq2qXj6Fr1sNM8SQL+8tWPyXCj/lrCf4lOCcDpz1612dc74o8IaZ4tskivQ8VxC2+2vIG2zQP2ZG7fTpXM2vi/V/Bl1HpXjoK9o7bLXX4UIil9FmUf6t/fofwJIB6RRUUM0U8SSQypJG43I6EEMPUEcYqWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikPQ1keIfEmk+FtNN/rF7HbQg4QE5aQ/wB1R1Y/T8eKANWV1jiZ3YKijLMTgAdzntXmt9rep/Ee6m0bwvNJaeHkYx3+tqMGbsYrf19C/Qcn03KNM1/4kuJtehuNE8LBgY9L3bLm9A6GYj7if7A5/JTXodlZwafaxWlpBHBbQqFjijUKqL2AAoAraJomneH9Ng03S7VLa0hXCog6+5PcnuTye9aVFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVBeWsF7Zy2t1BFPBKu14pVDK49CDwanooA85fwhrvgyVrrwPci404ndJoF7IfLPr5Eh5jb2PGSSegFa/h34g6Trl4dOull0nWk/1mm36+XJn/Zzw478c45IFdeaxPEPhXRPFNp9m1nTorpV+4zDDof9lhyP85oA2hS153/YPjfwkgPh/V18Qaegx/Z+rnbMo/2JxjJ6cMMYqzafFHR4rhLLxFbXnhy/PHl6lGVjc99koyrL75H0oA7uioba4huoUnt5kmicZWSNwysPUEcEVNQAUUUUAFFFFABRRRQAUUUUAFFIelZes+IdI8P24n1bU7WyQ5x50oBb6A8t9BQBq1Fc3ENpbSXFzNHDBGpZ5JGCqgHUkngCuBPxA1bxD+78FeG7m9jbpqeoA21qB/eGfnkHsMGlt/hzca1cJeeOdYk1mRTuTT4gYrKE+yDl8ep7cEGgBLr4g3euzy6d4D08apOp2S6lOCllbnvlushHHCjvnJ6Vd0H4f29rqS654hvJNd17GRc3A/dwf7MMfRAPXr16ZIrr7W2gs7eO3tYI4IIxhI4lCqo9ABwKnoAaOop1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVWvLK01C2e2vbaG5gfhopkDqR7g8GrNFAHCXHwr0SG4a60G71Lw9cu25jplwUjc9t0bZXHsAKYLH4maPtFvq+i6/ADlhe27WsxHYAx5XPuRXfUUAcD/AMJ34i05Sdb+H2spg43aZJHegj1wpBFKfi94RtsLqU2oaXITt8u90+ZGz07KR+td7SNjacjI9KAOUt/iX4KulDR+J9NUEZ/eThP0bGKtDx54PYA/8JVon46hCP8A2atK40bSrobrjTLOYjn95AjfzFZ7+CPCUhMj+F9FZmOSTYREn8dtADH8feDkPPirRfwvoz/Jqzrv4s+BLIEyeJLV/wDriHl/9ABrZg8HeGLbPkeHdIi3dfLsYlz+S1pQWVpaMBb2sMPGP3cYX+QoA4tvirpE6qdJ0fxFq4PRrLTJCv5vtxSN4k8fai23SvBUVihHy3GrXygD6xx5YV31FAHn58KeNtaUjXvGZsYXGGttDtxFg+0z5etHR/hr4W0a5+2Jpq3l+cFru+c3ErEfxZfgH3AFdfRQAgpaKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9k='] Multimodal Competition True Theorem proof Geometry Math English 48 "A king strapped for cash is forced to sell off his kingdom $U=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$. He sells the two circular plots $C$ and $C^{\prime}$ centered at $\left( \pm \frac{1}{2}, 0\right)$ with radius $\frac{1}{2}$. The retained parts of the kingdom form two regions, each bordered by three arcs of circles; in what follows, we will call such regions curvilinear triangles, or $c$-triangles ( $\mathrm{c} \triangle$ ) for short. This sad day marks day 0 of a new fiscal era. Unfortunately, these drastic measures are not enough, and so each day thereafter, court geometers mark off the largest possible circle contained in each c-triangle in the remaining property. This circle is tangent to all three arcs of the c-triangle, and will be referred to as the incircle of the c-triangle. At the end of the day, all incircles demarcated that day are sold off, and the following day, the remaining c-triangles are partitioned in the same manner. Some notation: when discussing mutually tangent circles (or arcs), it is convenient to refer to the curvature of a circle rather than its radius. We define curvature as follows. Suppose that circle $A$ of radius $r_{a}$ is externally tangent to circle $B$ of radius $r_{b}$. Then the curvatures of the circles are simply the reciprocals of their radii, $\frac{1}{r_{a}}$ and $\frac{1}{r_{b}}$. If circle $A$ is internally tangent to circle $B$, however, as in the right diagram below, the curvature of circle $A$ is still $\frac{1}{r_{a}}$, while the curvature of circle $B$ is $-\frac{1}{r_{b}}$, the opposite of the reciprocal of its radius. Circle $A$ has curvature 2; circle $B$ has curvature 1 . Circle $A$ has curvature 2; circle $B$ has curvature -1 . Using these conventions allows us to express a beautiful theorem of Descartes: when four circles $A, B, C, D$ are pairwise tangent, with respective curvatures $a, b, c, d$, then $$ (a+b+c+d)^{2}=2\left(a^{2}+b^{2}+c^{2}+d^{2}\right), $$ where (as before) $a$ is taken to be negative if $B, C, D$ are internally tangent to $A$, and correspondingly for $b, c$, or $d$. Given $A, B, C, D$ as above with $s=a+b+c+d$, if there is a second circle $A^{\prime}$ with curvature $a^{\prime}$ also tangent to $B, C$, and $D$. We can describe $A$ and $A^{\prime}$ as conjugate circles. Use Descartes' Circle Formula to show that $a^{\prime}=2 s-3 a$ and therefore $s^{\prime}=a^{\prime}+b+c+d=$ $3 s-4 a$." ['The equation $(x+b+c+d)^{2}=2\\left(x^{2}+b^{2}+c^{2}+d^{2}\\right)$ is quadratic with two solutions. Call them $a$ and $a^{\\prime}$. These are the curvatures of the two circles which are tangent to circles with curvatures $b, c$, and $d$. Rewrite the equation in standard form to obtain $x^{2}-2(b+c+d) x+$ $\\ldots=0$. Using the sum of the roots formula, $a+a^{\\prime}=2(b+c+d)=2(s-a)$. So $a^{\\prime}=2 s-3 a$, and therefore\n\n$$\n\\begin{aligned}\ns^{\\prime} & =a^{\\prime}+b+c+d \\\\\n& =2 s-3 a+s-a \\\\\n& =3 s-4 a .\n\\end{aligned}\n$$'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIATABxwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ8CgBaKztU13StFhEuqanZ2SHobiZY930yefwrlH+LXh+dnTRbbVtekQ4ZdMsJJNp/3iAP1oA7yiuD/wCEr8b3rgaf4BeGJhkT6jqMcWPrGoZqao+K1wTvfwnZxkcBVnlcdOvIHrQB31FcN/YnxFlO5/GWmQHpti0gMPzZ6aPDvxDDs/8AwntqQQMIdFjwv/j2aAO7orhv7I+I8GfL8V6Rc9x5+llB9PlemLP8U7VyZrXwpfxjosEs8Ln/AL6BAoA7yiuB/wCE38VWAZtZ+HupLGvRtNuYrwsPZQQamtfix4UluEtr27n0m6brDqds9uR9SRtH50AdxRVazv7TUbdbiyuoLmBxlZYZFdT+IOKsA84PWgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooPtTXcKpYnAHc9qAFJwKhuLqG0t3uLmWOGGMbpJJGCqo9STgAVxGofEV7+9fSvBennXr9Tte6DbLO3Pq8vRj0O1evOD2qO0+HEuszx33jnVZNbuVYOlkmYrOE/wCygwWxyMt1BORQBJcfE6G+uHs/COk3niS6Q7Glth5dqjejTN8o45GM5qM+HvHfiMf8T3xNHotq3Wz0OPEhXtmd+Q3rtGK7y2tbezt47e2gjghjXakcShVQegA4FS4HpQBx+l/DDwjp0pnfSY7+7bBe51BjcyO3qS5IB+gFdekaRoqIiqqjCqowB9KdRQAhAPUUYFLRQAYowKKKAEwD2pcUUUAJgVDd2drewNBd20M8LcNHKgZT+BqeigDiLz4VeGnuGu9KjutDvSAPtGk3DQED/dHyY/Cqn2b4jeGsNa3lj4qshn9zcj7JdY7AOMofq3NehYpNoNAHF6X8TdEurwadqy3Og6nwPsuqR+Vu7fK/3WGeBzk+ldmDk1R1fRdM12xaz1WxgvIG/gmQNj3BPQ+45riW8G+IfCDGfwPqhmsxnOiapI0kWPSKQ/Mh9Acgk8mgD0aiuQ8P/ECw1a/Gj6lbTaNroGW0684ZveNuki8HGOeDxXWq2SeelADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApCcUprkfFnjVNAlt9L0+1bU/EF3/x7afCfmA/56Of4EGDyf5AkAGl4k8VaV4V043uqXIRSdsUKDdLM/ZUXqxP5euK5BND8R/ET994nMui+HnwYtGgciacf9PD9h/sDHXkArzreGfBD2+pf8JD4mul1bxC4+WUr+5tAf4IVPQDpu6n25z2mBnOOaAKmm6ZY6RYx2WnWkNraxjCxQqFUfh3PvVvFLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJtU54HPX3paKAMbxH4W0bxTp/2PV7GO4Qf6tzkSRH1Rxyp+n45FcZ/aPiT4bYGqyXHiHwwM4v1G67sk/6agf6xMfxDkYOccCvTKawBGMDB4oAq6ZqdnrFhDf6fdxXVpMu6OWI5Df8A1+xH8quV5zqfhTVPCOoT694GRSkjeZfaExxDcju0f/POTH4Hj0weo8L+LNO8WaZ9ssHZWjbZcW8o2yW8g6o47Ec+1AG9RSDOaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPShjhcj+dct408Wnw9ZQ2lhb/bdd1BvJ0+yx99/7zeiLnJPHHcdQAVvGHjC50y6tdC0KCK+8RX5Hk27Z2QJ3llxyEH69ulWvB3g6Hw5FNd3c51DXL0iS+1GUZeVuOF/uoMYCjHQU3wX4PHhyCe7v5/t2u3zebfX7Dl2/ur6IOgHH07DqwMUAJgZzS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADSOK4bxZ4QvF1UeK/CZjt/EMI/fQk4i1CMY/dyf7RAwG9hz0I7sjPWkI4oA57wj4tsvFmltc2yvBdQN5V3ZyjEltIOqsODjg4Pf8CB0I61wXjHw5f2Wqr4z8LR51i3QC7tBwuoQDqh4++APlPtjngV03hnxDYeKNEg1XTZN0EowVbho2HVGHZgf84IJANiiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopCaAFopOc0ZP+RQAtFIKWgAooooAKKKKACiiigApDxS0jHAzQBl+INdsvDeh3Wr6lJstbZN7cZZj2Ue5JAFcz4G0C9uL2bxl4kixrmoJiC3Y5FhbdVjX/AGjnLH1OMA5znon/AAsTx80p+fwz4cnwg/hvL0dT7qn6npkE49JXr+Hf/P1oAUAA5xz0zS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANZeOBz6mvNvEEUvw68SyeLLFCdB1GRU1m2UE+S5OFuVA9zhh3z6nI9KIBGCM1Dd21vdWk1tcxJJbzIySxuPldSDkH2IzQA6CZLiJJonWSJ1DI6kEMDyCD3BqWvOfBdxceEvEVx4Cv5JHtwpudEuJTky2+TuiJ7sh/TsBivRQc0ALRRRQAUUUUAFFFFABRRRQAUh4FDZ4x61zHijxxpvhlorMrLfavcD/RtNtF3zSe5H8K8H5j6HGcYoA6YtjJrkNU+JvhzT7s2FpNPrGpD/lz0qI3Mnv8Ad+UY4zkislfCXiPxkfO8aag1jp78roemybVx1xNKDlz6gHHAI9K7bSND0rQbQWmlafb2cA6pDGFz7n1PuaAOQGs/EjWudN8O6XosOeJNWuTLIy+oSL7p9iaePC3jq7lL33xAMKMP9TY6XEgX6OxLV3uBRigDhh8PdQb5pfHvigyHqUuI0X8tlNbwR4igjIsPiDrEbD7puoIbgfkVH867ujFAHBfY/idpYHkavoOtoB832y1e2kb6eWSufrTB8SLzSBjxf4V1PR0HLXkAF5bKPVnj5XPpg16BikIB6igDP0nXdM12z+16VqFvewdC8Dhtp9CByD7HmtAEnqK4vWfhro95eHU9HeXQNYwdt5p3yBj1+dB8rgnBI4JwOaz4fGOt+EJ47Lx3bxm0ZgkOvWaEwtnp5yAZjY+uNuenAJoA9FoqK3niuYUmgkSSKRQyOhDAg8ggjgipaACiiigBDXHfELXrzTtHt9K0dv8AieazMLOyA6x5+/L7BFyc9jiuxbpXnnhHb4u8cat4vkUNZWedM0kkcFVOZZl/3mOAR2yD3oA63w1oFl4Z8P2ejWC/6PaxhNx6u3UsfcnJ/GtfFGMUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQQD1oooA5H4g+HLjWtCjvNKPl65pUgvNOkAyTIvJQ+oYcY6ZxngVqeE/EVt4r8N2Ws2oCpcxgtHnJjccMh9wQR+RrZPSvPNKx4P+KN7o2CmmeI1a+s/7qXS/65B/vDDfyoA9EopBS0AFFFFABRRRQAUjHC5oPArjfG/ie+042ug6CqzeItUytspGVtk/infrhV7ZByR3wRQBB4o8XX8uqnwr4Thju9edc3E7jMOnxn+OT1bHRe/XHQHS8JeC7Dwwks/myX+r3Q3XmpXBzLOx64P8K+ijsBkkjNT+EPClp4T0n7JDJJcXUredeXkpzJczH7zsTk/QZ49+p6EADtQAmBnNLRRQAUUUUAFFFFABRRRQAYzUN1bw3NtJBcRRzQSKVkjlUMrqRggg8EVNQQD1oA8vn03VPhfO+o6HHcaj4VJLXmlA75bIdTJASeV7lSfx5yPQtJ1ax1zTYNS026jubO4TfHIh6jp+BByCDyCCO1XGAwa8x1CKT4W+IG1izD/8IfqEwGo2wyRYTMcCZB2QkgEe/wDugAHqFIelMilWZFkR1ZHAZWU5BHqDTz0oA5H4k63caL4NuEsedT1CRbCxAOCZpTtBHuBkj3Ara8N6Hb+G/Dtho1qP3VpCI92OXPVmPuSST7muT1If8JF8YdMsfvWnh60a9mxyDcS/JGpHYhQXB969AFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVxfxO0qe78KHVNPX/iaaLMuo2h55aPll46gruGO/FdpTXVWUqwBU8EHofagClouqQa3o1lqlqcwXcCTJk8gMM4PuOh96v15/8MD/AGSdf8IOTnRL5vs4OeLab95Fyep+9n8K9AoAKKKKACiikPTigChrmr2mg6Jd6rfSeXbWsZkc9z6Ae5OAB3JArlvh7o13Il14u1uIDWtaAkKH/l2t+scI9MDBPcnryKqeMVPivxxong771jAv9q6oAOHRW2xR/RnySD2wa9CU5JoAUADoKWiigAooooAKKKKACiiigBGOBWdHrulza22jRX8EmopEZntkYM6ICBlgPu/eHB55rSIzXnYhih/aDURRqgbwyWIUYyftPWgD0GSRYo2d2VUUEsWOAAO+a5/UvHPh3RtNs7/U9UjtIbyNZYBKjB3UgHOzG7oeeOKk8Ws02kppUZYS6rMtkNpwQjZMpB9REsh+oFXk0ewjvp777PG1xKixb3QHbGo4RfRc5OB3JoAfpeq2Gt2Ed7p13Dd2smSssTZGQensR6Hmpr21t72ymtLqJZbedGjljYZDKRggj6Vw/wAMNJSwPiS7slEWkXuqSPYRKMJsX5S6jspYHHqFFd+RkYoA888DXU/hnXL3wFqEzSLap9p0ieQ5MtoT9zPcxnj6ZwABXoX3hzx/SuG+J+nzx6RaeKdOTOp+HpvtaAcGSHpNHn0Kcn/drT8R+IYIfhxqXiGymHlNprXFtIeMlkzH+JJWgDI+GAGqDxD4qYKx1nU5DDIO9vF+7jH4Yau+AArn/Aulf2J4H0XTmQJJDZx+Yo7SEbn/APHia6GgAooooAKKKKACg0UUAcp8RNU1nRvBmo6los9tDNbRGRmmiLnA67eQAeepyOOlanha8n1Dwno97cyeZPcWME0jkAbmaNSTgccknpWR8UBj4Y+Iscf6G3StLwZ/yI3h8/8AUNt//RS0AblFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhGRS0UAef6kf7E+NGjXYLCDXdPlsXA6ebERIrH3KkqK78GuD+LG2y8P6Zr5JUaLq1teOR1Me/Yy/iH/Su8FAC0UUUAFIelLWF401F9J8E63fxuElgspXjY9n2Hb+uKAOb+GYGsT+IfF74Y6vqDJbOB1tocxx/To2a9AAA6Vz/gXTf7H8DaHYFAjxWUW8D++VBf/wAeJroaACiiigAooooAKKKKACiiigBCcV527Tn45R3/ANg1E2X9hmyN19hm8vzvP37d23GMd84969FpMCgDBMUl74zEsiMLbTbXEbEHDTSnkj3VEA4/56msDxh4rnt9S/sRNB8R3NkVzd3OnafI4YH/AJZI/A5H3mB46Dkkr3u0Y6UbQO1AHN+FfEP9ttNDb+HtU0iztI0RBqFr9n3E9FjTn5QByeMZGBXS0gABzS0ARzRRzwPDMgeORSjqwyGB4INeFXcjR/DS+8BzyN50HiKLR4t7ZZoXmEsbH6qCB7LXvJrw/wAWWPlfH/RrNFPk6lPaai+Bx5kCzIPxAGaAPblAHA6CnUgpaACiiigAooooAKRjtGe1LRQBzPjrStU1/wAJ6ho+mLZ+beRGIvdTNGEBI5wEbP6Vc8KWWoaZ4a07TdSS2E9nbRW5a3lZ1fYoXd8yKRnHTmtnApaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOa+IVkNQ+HfiG3K7ibCV1XHVlUsv6gVd8KX51Twjo1+33rmyhlbnoSgJH51o3kC3VnPbsMiWNkP4giuP+EN19s+FegynOVheLn0SRkH8qAO3ooooAK4T4xtJ/wAKt1eOFiJJmgiBH+1MgP6Zru64T4xSCH4Z6hO4ykU9q7fQXEdAHcRoEQKowAAMelPpB1NLQAUUUUAFFFFABSMcUtIxAHJAoA4PxX8W/DPhDWRpV9LczXYK+atvEH8kMAQWyR2IOBzjtXX6TqtnrWmW2pafOJ7S5jEkUgBG4fQ8j6HpXhfxI+DHiDXfGl1rGiNbTWt/IrOksxRoG2gEnI5XjIxk84xxXX+H/gX4RtdDtINb00X2pKn+kXC3Uyq7k54CsBgdBwDgc80AepZozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHf5ozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHf5ozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHfMcCvEPG/jvw1Z/GXw3cyXjldGNzBfyRxlhGzIVVfUkEnOM4+uRXYH4J/DwYx4e7/8AP7cf/HK8Y8WfB6/sfiBZaJplxara6vJO+nmR3AiRF3srnBPAOBjOe+M0AfUNrcxXdvFcQSLJDLGskbqchlYZB+mKmzXm9h8DvA0Njbw3mj/aZ44lWWf7VOvmOAAWwHAGTk4A71Z/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3+aM1wH/Ckvh5/wBC9/5O3H/xyj/hSXw8/wChe/8AJ24/+OUAd/mjNcB/wpL4ef8AQvf+Ttx/8co/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3+aM1wH/Ckvh5/wBC9/5O3H/xyj/hSXw8/wChe/8AJ24/+OUAd/mjNcB/wpL4ef8AQvf+Ttx/8co/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3k0yW8LzSuqRopZmY4CgDJJNefaP8avCOteI00a2nulkldY4J5YNsUznoB1YZJx8wH+KXnwP8BS2U8dtopt5njZY5hdzMY2I4bBfBwecH0rzHw38CPE1n4ttJtSls0060njmeaGckyhTnCDbnPHcDrQB9JAnOPanUxcDp+Vcm/j6H/hJ7nw7DoerzajbxCaRI1hIEZx827zcdxwefagDr6KwvD/izTPEc13b2jSxXlm2y6s7mMxywk9Mj09xkVu0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIa4X4QFB8PoIkXZ5V3dIVAxj9+5x+RFd0elcN8JS0ngk3DgAz6hdyYHbMzf4UAd1RRRQAVyfxNsRqHw08QwEZ22bygYzynzj9VrrKiuYI7q2lt5V3RyoUdfUEYNAFLQNQGreHdN1FTkXVrFMP+BKD/WtKuE+E1xIvg5tGuH33eiXc2nTHGM7HO0j22la7ugAooooAKKKKACqeqala6RplxqF7MIba3QySOewH8z2A75xVpzhe341534pvk17R9b1MyKdG0i1uGthni6uURhvHqiHKj1bJ/hUkA2fh74mm8Y+HJNalhWGGW6lW1iHVIlIVc+/Bz9eOK63AFcJ8G7c23wp0NSOWjkkP/ApXP8AIiu7oAKKKKACiiigAooooAQ4Iwa8f8XagV/aC8IRAKYbaAqzZ6PMJQAfwUGvYG6V4Jqi/wBo6nqHjYsyQw+LrGFGzwYLf90WB9GZz+VAHvSnPI7jNOpB1paACiiigAooooAKKKKACiiigAooooAKKKKACiiigApMClpDntQAHgDAzXivhTxVDa6p4y8b3Ol6reQXV2Yrea0tfMUW8IKg5yMZGCe3HWu7+JHiq18MeCtTna6iS+e3aO1iLgSM7fKCq9TjOfwrm/DHizwt4P8AhxpenW+o22pX0dqD9hsXE8ssz/My7VyR8xIy2KALnw60ebUPEOsePrqa23a0qpb29tKJFiiXA+ZhwX+UA46EH1r0ivPfgz4Z1Lwx4FEGqIYrm6uXuvIP/LFWCgL7H5c4969CoAKKKKACiiigAooooAKKKKACiiigAooooAbIwVCxOAOSa4X4NrKPhZo8kw/eymeVvfdM5B49sV0fi29OneDdbvR96CwnkX6iNiP1qp8P7T7D8PvD0BXaw0+FmHoxUMf1JoA6SiiigApD0paMZ60AefB/+EX+MDBmK6f4otgVJ6LdwDGPQbkP1Jrv1JNcz498NSeJvC8tvZuItTtpFu7Cb/nnOnKn8eR+Oan8F+JYvFfhyDUhGYboEw3kDfegnXh0IPIweR7EUAdDRRRQAUhpaCM0AcH4h8Y6Zf67a+DbLWYI72+YpdSxTANBGPvRqwPEr/dUdRyeoGcD4paP4L8O+AdT8rSNDs9Rkg2WoFvEkxJYDK8bjgZOfY161tGCOxowPSgDkfhjdWFx8PNDjsbqGcw2USzCNwxR9o3BvQ5yPwrr6QADoKWgAooooAKKKKACkNLSN93pQBzPj7xC/hrwde3sALXzgW9nGo+Z55PlQAdyM7segNc14g8HLpnwGu/D68y2en+c7Lk7pkIlYj6sD+dSRN/wnfxLEyHfoXheQhT/AA3F8Rzj1EYP4H1Br0KaKO4gkhlUNFIhV1PdSMYoAq6FqKaxoGn6nGAFu7aOcD03KGx+taFcL8JZ5F8Ff2RcPvutFvJ9OmOMZKOSuPbay13VABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJgUYFLRQAgAHSloooAKKKKACiiigAooooAKKKKACiiigAoNFIaAOH+Lc0h+H11p9u+251O4gsYQf4mkkUEf98hq7S3jSGCOKMYjRAqj0AFcL4v8A+Jv8RfBuhAB4reWXVrkd0ES7Ym+hdiK74d6AFooooAKKKKAEbpXm/iKKbwD4ok8Y2MTvot+Vj1u3QZ8pui3KgenRgOvXGTkek9ajmhingeGWNZIpAVdGAIYHggg9RQAy0uob22iuLeVJYZUEkciHIZTyCPYip68tX7Z8Jb2Tak134JuZdwxlpNJZj6dWhySfUc9/v+l2l3BfWsV1azJNbzIHjljYMrKehBHWgCeiiigAooooAKKKKACiiigAoopD064oAGOBmuG8ceJL4TQeEvDj58Q6kv8ArM8WUHRpmI6eg75xjJwDY8W+NW0q4i0PRLYan4lu1PkWan5YRj/WSn+FBwcHBPt1FjwZ4QXw5bT3V9P9u1y+bzb+9Yfff+6vog6AYHTp0AANPwzoFl4Y0C00ewUi3tk27mHzSN1Z29yST/8AWrWwB0owM0poA8/0onQfjBrOntkW2u2kd/b8YXzYv3cij1YjaxrvwcmuB+KFu+n2Wl+L7aNnuNAu1mkCjLPbv8kyj6gg57YruraaO5gjnhdXikQOjqchgecj2NAEtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLWB418QL4X8H6lq5GZIYsQrjO+VvlQY7/MR+GaAOe8Hn+3fiJ4s8RkBoLZ00e0focR/NKPpvI5r0DGK5vwHoLeG/BemabLk3SxeZcsTkmVzufJ7/ADEj6AV0lABRRRQAUUUUAFIQD1FLRQBHLFHLE0ciK6MNrKwyCD2IPUV53N4W1zwPdy3/AIIC3WmyOXuNAnk2rnqTA5+4fY8fkBXpFIVB6igDmfDPjvRvFO+C2le21KHifT7tPKniPoVPX6iulUk+lc/4m8E6F4qVH1G0xdx8Q3sLGOeLrja454Jzg5Ge1c8mmfEHwuwGmala+JtPTkW+pHybsL/dWYfK31YUAeh0VwP/AAtK207K+JtA1rQygHmTTWpmgB9pI8g/XFa1n8RfB19Grw+JdLG7oJblYifwbBoA6iiqEWt6XOm+HU7KRfVJ1I/MGqlz4u8N2X/H14g0qDBxiS8jXn8TQBtUGuHufi14PiuPs1pqMmp3eMrb6dbvOz/QqNv61WbxP4519dugeE10uFvu3muy7CP+2KfNn0ycUAdxd3tvp9rJdXlxFb20Yy8szhFQepJ6VwE3jLWfG0r2HgW38uyBKT6/eREQp2PkoRmRuvXgcZ4Oas2fw0i1C6iv/GGr3PiK5Q7kgmAjtIz/ALMK/KfTnIPpXdxQxQxJFFGqRoAqIgwFA6ADtQBgeFPCGm+FraYW3mXN9cNvvL+5bfPcP1y7H68Dp+JyejpNoBzjmloAKKKKAK97aQX1jPZ3EayQTxtFIjDIZWBBH5GuL+Gd3cWdnf8AhDUHZr3w/N9nVm6y2zZaF/8Avnj22813Z6V5548STwvr+m+O7ZWMNtiy1ZFGd1q7cPj1RsHjk9M4oA9DBzS1HDKk0aSxsrxuu5WU5BB6EGpKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARuleeeISfFfxK0jw6nzWGi7dU1HHQy8iCPjv1YjoQR6V13iXXrbwz4dvdZvD+5tYy5Xu7dFUe5YgfjWJ8O9CutM0SXUtXGdc1eU3t8SMFGP3YxnkBBxjsc0Adeue/WnUUUAFFFFABRRRQAUUUUAFFFFABSAAdBilooATA9Kyr7wt4e1Ny9/oWmXTnktNaRufzIrWooA5Z/hr4KdizeGNMyeuLcAfkKmg8AeD7bb5fhfSAV6FrONiPxIro6KAIbe1t7SIRW0EcMY6JGgUD8BU2BRRQAgAHSloooAKKKKACiiigAqve2tve2U1ncxLLBOjRSRtyHVhgg/UVYo60Aed+A76fw5ql14A1SdmlsVM+lTyHJuLIngf7yHKkccDgYXNehg9M56d65Px34Xn1zT7a+0mQW+v6VJ9o06boC38Ubf7LgYP4duDd8G+KLfxboSX8UbQXMbGG7tX4e3mX7yEfXp7EfSgDoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkJxihiQOK4rx14lvrQWvhvw+yP4j1X5IfS2i/juG9ABnHvn720igDLu8fED4gpZKvmeHvDcwkuD1S5vR92P3CDk+5wR0r0kCsbwt4dsfCvh+10ewH7qBfmc/ekc8s59yf8BwK2sUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACN0rzvxVpt/wCFddfxvoEDzRsgXWrFOtxCv/LVB/z0QZ+o/HPotNIHXHNAFPSNWstc0u31LTrhLi0uEDxyJ0PsfQjoR2INXq8w1K0vPhjqkuvaNBJceF7uTfqemxrk2jE8zwj+7/eXoPoRs9E0zU7TWNPgv7C4juLSdA8csZyGH+eMHkEGgC3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFI3TrignArE8UeKNP8ACejNqOou2MhIYYxmSeQ9ERe5P6UAReLvFdr4U0j7XMjXF3K4hs7KP/WXMx+6ijr1IyR09+lZ3gfwtdaa11r+vOlx4j1TD3Mi8rAn8MKf7IGOnUjqcCqnhPw1qWo6x/wmHi1E/tV4yllYjlNPiPYeshz8zde3tXe4oAQAA9KWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKCM0UUAIQAOleaXujar8O9Rn1rwtave6DcOZdQ0SMfNEx6y24+g5Tp6cEbfSyAetGMDAoAzNB8Qab4k0qLUtKukubWT+JeqnurDqCMjg1piuC17wTe2WqS+I/BV1Fp+ruQbm0cf6LfY7Oo+63+0PU9NxNaHhjx7Za5ePpN9BJpOvw/67Tbo/Nn1jbpIvfI7c4xQB11FNVtx4ORTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRsgcfyzQTgVwes+Pbi81GXQfBdrHqurIds9yx/0Sy68yuOpGPuj37jBANfxZ4zsPCtpF5wku9RuTss9PtvmluH9AB25GTjj3PByfDXhDULvWE8U+MHSfWAD9lskO6DTlPZexf1b9T1N7wn4Hg0O5l1XU7uTV/EFyP9I1G4AyP9iNeiIPQfywB12KADFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQRmiigBCoOMjpyKwfFHg/RvFlokOp2xMsRzBdRHZNA395H6jnnuOBkcVv0UAebrqXjDwH8msW8viXQkHGoWqf6ZAo/56x/xjp8wOeCSe1djoPibSPE9j9s0XUILyH+Lyz8yH0ZT8yn2IrV2L2H0rkde+HOi6vfNqlo1xo+sYONQ02QwyE9fnA4YHjORntmgDrxS154upePvChC6lp0PinT1HN3poEV2o9WhPDEnPCn3NbGifEbwzrk/wBli1FbW/DbGsb4eRMrf3dr4yfpmgDq6KaCT3z7gU6gAooooAKKKKACiiigAooooAKKjeRYkaSRgiKMlmPAHqfSuN1L4peHra7aw0trjXdRHS10mIzn6lh8oHrzxQB2rHAzXN+I/HOh+F2SG+uxJfSECGwt18y4lJ6BUHPPYnAzxmsE2vxB8WA/bLqDwnprDmG0YT3jj0Mn3U9iBkV0HhnwRoPhUO2nWQ+1SZ828nYyTyk9SXPPPoMCgDmm0zxd48Gdbll8N6A3/MPtnBu7hP8AprIOEBHVRz1Brt9G0bTdB0+PT9Ks4rW1jHypEMc+pPUk+pyT3rQ2jjjp09qWgBAAOAMCloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEwKy9a8NaL4hgEOr6Xa3igFVMsYLID/dbqv4YrVooA8+Pw1l0sbvCvinWNGCgCO2eT7XbRj2jkyf1p/nfE7Sc7rbQdehQceXI9pO/1BygrvcD0pcCgDgT8RNWscLrHgHxFBIcZNiiXqL/wJGH8qc/xg8IWyg6jc32nMeNl3p06kH04QjP413mBSbQe1AHHwfFTwPOCV8S2K4xneSn/AKEBU3/CzfBP/Qz6b/3/ABXRPp9lKQZLSB8dN0YNN/svT/8Anwtf+/K/4UAcrc/FrwJahjJ4ktSF6+Wryf8AoKmoB8W/DlzHv0uDWNWz0Fjpkz7vpuUCu1isrWD/AFNtFHzn5EA/lU2BnOKAOD/4TnxNqCBtG+HurOD1Opzx2ePfDEk01rT4nauSs2p6FoMJ6G1ga6mHsd+EP4Cu+wKMCgDgk+Fel3syz+JdU1XxBKCGC3tyRErD+7GmAOp45612WnaXp+k2wttNsbazgBz5VvEsa5+gAq5RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k=', '/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAS0BMwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACikJwM1zWs/EDwnoJZdR1+yjkQ4aJJPMkH/AEy36UAdNRXBf8LNS9O3RPC3iPUwQCk6WXkwt/wADkI/lSpr/AMRL3cIPBFlYDPyve6qr5+ojU4oA7yiuCRfitLId8ng+CPnaFW5kPtnpUg034kuu5/EGgRsT9xNPkYD6EvmgDuaK4Y2PxMhbMeteHLgHr5tlKmP++XqOKb4qwZNzZ+ErsDGFt5riNj+LAj0oA72iuB/4S7xpZuRqPw9uGiXrLYajFPn6JwaF+Lfh63KjWrbWNCdjhV1PT5I934qGGPfNAHfUVm6T4h0bXUL6VqtlfAfe+zzq5X6gHI/GtKgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiig0AFB6VieI/FWi+FbD7VrF9HAp+5H1eU+iqOSf8muT87xt43OLdJfCWiNn95Koa/nX2XpDkHr94EDGaAOn8ReMvD/hVA2r6nFDIw+S3GXlfnsgyx+vSudHiXxv4kIHh7w2mk2jH/j+11irkd9sCncD3BJwa2/DngTw/4aka4s7MzX78y3903m3EhPUlz698YB9K6fvQB5+3w1k1f5vFvifVdZz962jf7LbH28tP55rpdG8JeHtAA/srRbK0cDHmRxDeR7v94/ia26KADvRRRQAUUUUAFFFFABTXRZEKOoZTwQRkGnUUAclqvw08IatIJpdDt4LgHcs9nm3cH1yhGT9c1lDwn4y0Dnw54ue9gXOLLXkMwP8A22XDgegxXoVFAHnqfEi40WQQ+NfD95ooztF9F/pNo3YZdASpPYEfWu30/UrLVbVLvT7yC6tn+7LDIHU/iDVmRFkjZGVWVhghhkEe9cJqHw1tIb2TU/Cl7N4b1I/eazANvL7PCflbv0x170Ad7RXncXjvVvDE62njzTVtoiwSPWbENJaOe28fejPQc989hXe2tzBeW8dxbTRzwONySxuGVh6gjrQBPRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFQXl1b2NnNdXUyQW8KF5JZGwqKOSSaAJicKTXn+p+Ob/WdQm0LwNbRX9/Gdt1qMmfsdp7bv429APrzhhVBrnV/inK8djNPpXg1WKSXQ+S41LBIIT+5F15PJH1IHf6Po9hoWnQ6dplrFa2kIwkUa4H1JPJPueT3zQBgeHPANjpF6dW1S4k1nX5P9ZqN2MlfaNOka9eB64zjiuvFLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEc8MdzBJDNGkkUilWSRdysD2IPUV57deCtV8K3D6l4AuEjiLF7jQrlj9mnOOsZP+rf9M46AYPo1B6UAcv4T8a6d4nM1qscthq1rxdaZdDbNCfXH8S8jBHqM4ziuorlvFfgqx8TeVdJNLp+sW3NpqVtxLC3of7y+qnsT0rM8OeMb+21ZPDHjGBLPWuRbXScW+oKP4oz2bGMr/LOAAd5RTQeadQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTZHWKNpHZVRQWLMcAAdyfSgCC/vrXTbCe9vp0gtYVLyyyHCqo7mvOLSyvfirfJqeqxzW3g+Ft1nYMdragwPE0nonovfr9UjSX4r60J5Q6eCrCb9yjDH9qTKfvEd4ge3fH1C+nRqEACgAAYAAxigBIkSJEjjRUjUbVVRgADoBjtUlFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAh6VjeJfDOmeLNJfTtUg8yNjujkXh4X7OjdVb/J4raoPSgDzvw54k1Xw/rcPhDxjMHuXX/iW6qeEv0HG1v7so469fyLehDk56VjeJvDWneK9Fl0zUo90bDMcg4eFx0dD2Ydf0PFc94M8Q6haapJ4N8Tyg6zbR77W6OQNQtxwJBk/fGDuHXvzzQB3lFFFABRRRQAUUUUAFFFFABRRSHgUAB6V5t4oup/HHiNvBOl3Dx6bbhZNeu4jyEP3bdT/AHmxz1wOOcEHe8d+J5vDukxwadEJ9b1KQWmnQcfNK38RB42qDkk8dASM5q14M8Mx+FNAi08SGe5djNeXLctcTty7knk5PHPOAOtAGxY2kNhawWdpCkNtCgjjjQYCKBgAVaoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARvumuX8aeFF8UaZG1vP9k1exfz9PvFHzQSjtn+6eAR0PBxxXU0h6Hr+FAHL+B/FLeJdMkS9hFrrNg/2fUbP/nlIO4/2WwSD0PPJxmuprzrxvZXHhjWYPHulQs5t1EOs28Y5uLX/npjuydc+g64GK72zuoL60gu7WVZredFkjkQ5VlIyCPYigCxRRRQAUUUUAFFFFABTXO2NiTgAZz6U49Oa4X4l6hdS6dZeFdMkCal4gmNorA8xQAZmkx7J/6FQBS8GI3jHxZeeObgE2EG+x0NT08sEiSYD1c5APXGQe1ej1R03T7fSNMtdOs4/LtrWJYo0x0VRgfy/Oodc13S/Dumy3+r3sVrap1aQ9T6ADlj7CgDTPSsHxB4z8PeF1B1jVYLZyAVhJLSt24RQWP1xXLLd+MvHgJsRL4V0FulxMmb+5Xp8q9Igcnk89CM10HhzwH4f8NOZ7Oy86/bmW/uj5txIx6kufXvjAPpQBkL478Q6yR/wjXgm/lgPS61SRbNMdmCnLMPoKcNO+J+oqftWu6BpHPy/YbN7hse/mEDP0rvB1paAODTwh40MeJ/iRds56mPSrdB+AwcUknhHxuoBt/iRcK+cZl0m3cEfTjn3rvaKAODa1+J+nlRBqXh3V4xy32q3ktpG+mwlRUR+ImqaQP+Kr8Happ0QPzXdmVvIEH95inKj6ivQaD0oAx9C8TaL4lg8/RtTt71AMt5T/Mn+8vVfxFbFcjr3w70DXLj7csEum6qOU1DTn8iZW9SV6/iDWIPEHirwGwTxVCda0MHH9s2cWJoB6zxAdB/eXPAHUnFAHpNFUtL1Oz1ixiv9Puorm0mGY5YnDK3r9MHj65zV2gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGTRxzQSRSoHjdSrKRkEHqMV594Jlk8KeJ77wLdyH7KFN7oruetux+eLPco2e5OCTwAK9DPQ1w/xL0u5k0a38RaWo/tbQJftsGP+WkY/wBbGcdmQHjvjFAHc0VQ0fU7bWtJs9TsnLW11Cs0Z9mGcH3HQir9ABRRRQAUUUUAIelee+FR/wAJJ8Qtf8USfNaWB/sfTiTwdnMzjPXLcBh1GRXReONfHhnwVqurA4lggIh4z+8b5U/8eYVi2M1l8LvhhZC+y0lvCoMScvcXLncVXuSXJ+g57UAavizxdZ+FbCN5Inur66byrKwh5luZD0VR6cjJ7e5IFY2geCLu+1OPxL41kS/1gZa2swd1tp4JyFRe7jjLHPI6nGTL4L8L3ov38WeKNs3iK9X5I8ZWwhxxDGOxGTuPck+5buqAGjg06iigAooooAKKKKACiiigApHGUIIyPSlooA851PwlqXhK/l1/wMg2yNvvtCJ2w3Q7tF/zzkx+B444weq8L+JtP8V6Umoae7YBMcsEg2yQSDqjr2Yf/qyCDW2eBXnfi7Rr3w1rDeN/DUO+dUxq+nLwL6Aclx6SL1zjkfkwB6LRWdourWeu6Taapp8wmtLmPzI3HXHofQg8EeoPpWjQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIwDKQQCDwQe9LSEZBB5BoA8++HmfD+t694JkYiPT5vtenBu9rMd2F7kI+QT6nFehV5744zoXjXwt4pj+WJpzpN8QOsU33CfZXGfxr0ADnp160AOooooAKQ9KWkPIoA4Dx8P7W8TeDvDWCYrm/a/uMDIMduu7aw9GJA/CqmjRj4g+N5PEUx8zQNElNvpKEZWe4H+suPcA4VTyOMjBBrmfG+r3Vx8RtZtNMdv7TNnbaFaDsj3JMsknttjXk9iRXr+haNaeH9FstJsl2wWsQjU45bA5Y47k5J9zQBoAYNOoooAKKQnAJPQUilWAZTkEcEUAOooooAKKKKACiiigAooooAKRvunnFLQeBQB5raD/hXvxAGnAbPDfiKUtbD+C0ve6D0V+MD14AwDXpCjkVz/jTw2vinwne6ZnbcMnmWsgODHMvKMD25Az7ZpngTxC/ibwlZ6hcLsvQDDeRkYKTodrjHbkZA7BhQB0tFFFABRRRQAUUUUAFIeATS0HpQByHibxufDuvaLpX9k3M39qXkdqtyXVY1LFQcckkjd6Ae9daOteb/FL/AJD/AIB/7D8P8xXpVABRRRQAUUUUAFFFFAHM/EDRf+Eg8BazpyKWle2aSEA4PmJ86f8AjyirnhLWR4h8JaTq2QWurVJJMdA+MMPwYEfhWyfunjPtXB/CoCx0fWNAC7E0fV7m1hXP/LIt5iH8d5/KgDvaKKKACkPApaRiFUknAHJNAHh3w7tX8R/GnxTrlxseDS7qZIGA53ufKU59PLiI/wCBV7lXlvwHtHHgi51abBm1S/luGb2Hy4/NW/OvUqAEPSvO4Vlt/j40H2u6lgk8PNP5U0pZEczqp2r0HCjpXoteeyEf8NBxDPP/AAjB4/7eaAOm8U3M0WgyW1s5S7vmWzgYdUeQ7S4/3VJf/gNZuqeBdP12VIdUkuDpltEkVnYwXDxRoFH322kFm7DJIAAx1NXJ/wDiY+NLaAcw6Vb/AGlv+u0u6NPxCLL/AN9iovEniqy0qaPSl1OxtNSuVLK11KqJAnQyMCRn2Xqx9AGZQDE+Fy6jaDxDo91ezXtjpepPa2VxO259oAJQnvtyPzPoAPQq53wtd+H0g/sjQtRgvfsy+ZM8MwmJZySXkZeN7Nub1PPFdFQAUUUUAFFFFABRRRQAUUUUAIelcB4c/wCJD8V/EehgBbXVYU1i2VRgK/8Aq5vxLbWr0A9K4Lxp/wAS7x34I1rfsQ3kunSc43CaM7Af+BJQB3tFNGc4p1ABRRRQAUUUUAFIehpaKAPMfiYbm41/wf8AZdO1K5Fjq8dzctbWM0ixxgrkkqpB+gJr0iCQTRJIofDLkb0KH8VPI+h5qaigAooooAKKKKACiiigBD0rhPDyGw+L3i+1LYS9trO9jTHAwrRsfzAruz0rhJ4/s/x0s7jkC78Pyw+xKTq354NAHeUUUUAB6VzvjPxPpvhTw3c3+oXXkh0aOAAEmSQqSqrjvx16DvgV0J6V5b8bfBWoeLPDtpdaYwa40xpJWgZ9qyRlcnAPBYbRj6tQBY+B+r6XefDqx02yulkurDcLqLBDRl5HYZyOc54Iz068GvS6+dvhD8LrzUdHk1y513VdKgvFUW39kXnkySKGYMZPlPGQMD6+1ek/8Ks/6nzxx/4OP/sKAPQDWW3h3RDqP9pHR9P+3A7vtP2ZPNz67sZ/WuT/AOFWf9T544/8HH/2FH/CrP8AqfPHH/g4/wDsKAO4jtYIZ5po4lWWdg0rAcuQoUZ/AD8qzL3wn4c1K7ku7/QNKu7mQ/PNPZxu7Y4GWKknAAH4VzX/AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAdfpeh6VowkXS9MsrFZDmRbWBYgxHTO0DPWtA9K4D/AIVZ/wBT544/8HH/ANhR/wAKtx/zPnjj/wAHH/2FAG14u8caH4KtYp9Zumjafd5EUaF3lx1AHTjI5JA5q34Y8U6R4u0z+0dGuvtEAcxvlSrI2M7SCBg4I9vQmvHfiP8ABjWruKzudD1XVdcljVlli1W+EkijjHlkgDHXIz6Ve+H3wa1PT9HlfV9f1vR7ydwTb6RqAjUKBgbyFIZs7uhwBjBNAHt9Fef/APCrP+p88cf+Dj/7Cj/hVn/U+eOP/Bx/9hQB6BRXn/8Awqz/AKnzxx/4OP8A7Cj/AIVZ/wBT544/8HH/ANhQB6BRXn//AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAd+3CnnFeWfGPxLo2lQaJb3V0q6hbana6jHAEJby0chm46cbvrg1pn4W4/5nzxwf8AuMf/AGFeUfFf4W6ppl5a6pZ6ne6tbTGK1MmpXYkuBIzEKNxCjbyMehznigD6G0TW9P8AEOlwanpVytzZzg7JACMkEg5B5BBHQ1pV494M+Dl5pnh2GHUfFPiHTryRmklt9J1DyoVJOBxtOWwBk/gOma6H/hVn/U+eOP8Awcf/AGFAHoFFef8A/CrP+p88cf8Ag4/+wo/4VZ/1Pnjj/wAHH/2FAHoFFef/APCrP+p88cf+Dj/7Cj/hVn/U+eOP/Bx/9hQB6BRXn/8Awqz/AKnzxx/4OP8A7Cj/AIVZ/wBT544/8HH/ANhQB6BRXn//AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAegUV5/wD8Ks/6nzxx/wCDj/7Cj/hVn/U+eOP/AAcf/YUAegUV5/8A8Ks/6nzxx/4OP/sKP+FWf9T544/8HH/2FAHoFFef/wDCrP8AqfPHH/g4/wDsKP8AhVn/AFPnjj/wcf8A2FAHft9015B4p8f+GdO+LmhvNqeBp0N1bX7ojMsbOF2KcDnkHOM4OM4xW+fhbgZ/4TzxwfY6v/8AYV4j4p+EXiG18fR6Tayi8GqPLNa3NxMN7qvLGU/3xkZOPmzkd8AH1TFMssSSRsXjdQysvIIPQ0/efRvyrN8P6Y2ieHNM0rzjL9jtY7fzNv3tqhc/TitHLf3v/HDQBJUVzCtxaywuAVkQowPoRipaQ9KAPOvgbdrdfCrTIw2WtpJon9j5jMB+TCvRq8b+Ct+lj4j8Z+Fiyg2upSzxLnkjeY2/Lan517JQAUUUUAFFFFABRRRQAUUUjfdPOKAKmqalb6Tp0t7clvLjAwqLuZ2JwqqO7EkAD1Irjfhbr2peJrLXdV1IlHbVJIIoA+5YY0RAFH4k5Pc5Pelm1a+1LVxq6aFeX2jWQL2LxzQqsj8hpiHcEgDIXjGCWGcjFL4GRMPhpa3D8tdXM8xOep3lf/ZTQB6VRRRQAUUUUAB6VwXxIVru98HaZG3zz69BM68fNHEGdv6V3p6V5/dFdc+NlhAvzQ+H9NkndgeFmnwgU++wE0Ad8cYrz34v3t1ZeE7caZdXdvq13ew2tm1vcPGS7NkghSN2QCOQeteh9q8u8VW//CWfGDQ9BE8sdvo9pJqU7wttYSMQqc9mB2n6NQBF8QHvvh9oGnatpGtajNfC6jga2u7p7hLzIO4bXJIPHVcEV6lCxaNCy7GKjK+ntXkF/bL4Z+M+g217LPrkOpxnyH1FzLLYuM/NH/CBwM8Z6817Ep56/hQA6iiigAooooAKKKKACiiigAooooAKKKKAA9K4bU8XHxn8Pxct9l0q6nx027mRM+9dwehrhLJFvPjlqdypyLDQobVh6NJK0n8hQB3lFFFABQaKQnAoA8E1GVvB3xp1TXApSyiuoDdnput7mMKzn2SVB+de9j2rzPxnpVtN8SNJS9jLWPiDTbjR7hs8KR+9jP8AvZ3AfStP4bavdNYXPhnV3H9taEwtpuf9dFj91KPUFcDPXjnrQB3VFFFABRRRQAUUUUAB6Vz3ivRdV1/SnsLDWI9NhlG2dvshld17qDvXbkcH2PauhooAx9T06+vPD0mnWd7b2c0sBhM/2YsqgqQSibxjHbJOPeqHgXwvdeD/AA5b6JJqMN7b227ymW1MLjcxY7vnYHlu2K6eigAooooAKKKD0oAhvLmGysp7q5lWKCGNpJJGOAiqMkn6AZriPhdbTXenal4rvIil34gujdKGHzJbr8sKn2C8j/eqH4g3EviDUbDwHp7sr6hifUpUPMFmp5+hcjaPXkd67y2ghtLeK3t41ihiQIkaDCqoGAB6AAUASTBzC4iZVkI+VmXIB7ZGRn8xXB6d4J8Q6Z4l1jXYvEmnSXWqlPN83SXIjVBhVTE4OAMdc9BXf0UAcfongSOz8St4m1fU59X1ryzFFNJGI44EPGI0HTgkZyTz7knsKKKACiiigAooooAKKKKACiiigAooooAKKKKAEPSuC+H4W/8AFPjjWwD+/wBVFkCe4t0CZHtkmuw1nUY9H0S/1OYZjtLd52HqFUnH6Vzfws0+Ww+HWkm5Yvc3aNezOerNKxkyffDD8qAOyooooAKDRRQBw3xVs55PBp1W0TdeaJcxanCM4/1bZb/xwtVXxZY3Nwum+PvCqm41C2twzQIP+P8As2AYx8fxAHcvXnPXiu/uIIrq2lt50WSGVCjo3RlIwQfwrhfhdcS2elaj4UvHZrzw/dtagv8AeeBiXhc+xXp7LQB1Ph/XrDxLo9tq2mTebbXC5GeCh7qR2YHOR+vStWvNtZ0rU/A2t3Pijw3bvdaVdMZNX0pG6t3nhHZxzuHGf1XttE1vTvEWmwanpV0lxaSjKsv6gjqCOhBoA06KKKACiiigAooooAKKKKACiig9KAEPSsDxd4ptPCehPf3MbTzORFa2sfL3MzfdjUe/48Z61L4m8T6Z4U0p7/VJiqk7IokGZJ3PREXqT/Lqa5nwx4d1PW9bTxl4uiEd4EK6bph5WwiPOW9ZD3Pbp6BQDR8CeGrvSLa61bW3WbxDqzie+kHSMY+WJf8AZQcfXPtXYU0dRTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoPSig9KAOB+K00t14fsfDdszC416+isgUPKRZDSP8AQKuD7NXdQxJDGkUahY0UKqjooHAArgrPPiX4xXV5jdYeGrX7LCexuphmQg+yYUj1Ir0GgAooooAKKKKAEb7przvxQT4T+IWj+KF+TTtSUaVqTDOEYnMEhA44OVJPQcd69FrL8SaFa+JfDl/o14P3F3EYy2MlD1Vh7ggEe4oA0TwCAM8dK4PV/BWoaTq0/iDwPcRWd/Md15p0xP2W+PqR/A/+0MZJ5xkk3Phzr11quhyadqxI1zR5DZXyk5LMvCye4ZRnPcg12ZoA4/w78QNN1i9OlahDLo+ux8Sade/KxPrG3Rx3BHbnGK68VjeIvC2ieKbL7LrOnRXSL9wtwyH/AGWHIrlR4f8AHHhVf+Kf1uPXbBOlhrJxMq/7M68k9AA3AFAHolFefL8UI9MBTxX4d1jQXX787QG4tgfQSxg5/Kt2w8feEtTCfZfEemOX+6jXKo5/4CxB/SgDpKKrx3ltMm+O4hdD3VwQf1pJb60gXdNdQRr6vIBQBZorltS+I3g7S0drrxLpuV+8kMwmb/vlMn9KyG+I91qxMfhTwpq+q7uVup0+yWxHqJJP5YFAHft0riNa+IUEOoPonhm0bXtdAwYbdv3NuemZpei8g8ZzxjjIqofCHirxRz4u8QC1sm+9peibokf2eVvmYEcEDj0xXYaJoOleHbBLHSLGCztl/giXqfUk8k+5yaAOa8PeB5l1RfEXiq7XVfEGMRnH+j2Y67YV/wDZjyfbnPbDg06igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsTxZ4gg8LeF7/WbgBhbRlkQ/wDLRzwi/ixA/GtpvumvOdVP/Ca/Eu00aM79J8Nst7fntJdMD5Uf/ARlvzB5FAG58PNAn8O+EreC9JbUrpmvL+RvvPPIctk9yOFz7V1dNHXpTqACiiigAooooAKRvunAyfSlooA868ZxyeEPEdt46s42NmVW11uJF+/Dn5Zsd2QkD1I46V6BbzR3EMc0MiyRSKHR1OQwIyCD3GO9FzBFdWstvPEksMqFJI3GVZSMEEdxivOvCd1N4I8Rf8INqkrvYTbpdCu5Od0fVoGP95O3qPTgUAelUU0dRTqAA8isTUPCPhvVHMl/oOmXEh6vLaIzfnjP61t0UAcXJ8J/Asjlz4bswT12llH5BqWL4U+BoXDp4as8+j7mH6k12dFAGTp/hjQdJfdp2i6dZv8A3oLZIyfxAzWrS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLUN5dQWVnNdXUqw28KGSSR2wFUDJJP0oA5/xv4nPhfw+89vF9o1O5cW2n2wGTNcPwox3A6n2FL4H8Mf8It4ejtJpfP1Cd2ub+4zkzTvyzH6dB7D1zXO+EYLjxp4lPjnUonjsIVeDQrZ+NsZ4edh2Z+3oPXgn0YdaAFooooAKKKKACiiigAooooAD0rn/ABb4WtfFmhmxnkeC4iYTWl1F9+3mXlXU/wCeK6CkbO0460AcZ4H8U3epPcaB4gRLfxJpvFxGOFuI+izx+qnvjofTIFdpXI+MfCD6+ttqWl3C2HiKwO+yvewP/PN/WM85GD1zjkgu8G+MR4i+0afqNqdO8Q2HyX1g55X/AG067kPGDz168gkA6yiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQnAzQAN0NeY6hK3xR159Fs5CfCWmzD+0blDxfTA7hChHVF4JPfj2Jk13WrzxzrMvhXwvdtFp0RxrOrQ4IRf8AnjE3QuehPb867vR9IstC0y30zTbdLeztk2Rov8z6knknqTyetAFqGJIVSONFSNFCqqjAUDgAD2FTUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjHCk+lcl4t8G/2+9vqum3J07xFYg/Y76Mf+Q5B/Eh9D0zx1IPXUjEgZAzQBxvhLxq2qXj6Fr1sNM8SQL+8tWPyXCj/lrCf4lOCcDpz1612dc74o8IaZ4tskivQ8VxC2+2vIG2zQP2ZG7fTpXM2vi/V/Bl1HpXjoK9o7bLXX4UIil9FmUf6t/fofwJIB6RRUUM0U8SSQypJG43I6EEMPUEcYqWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikPQ1keIfEmk+FtNN/rF7HbQg4QE5aQ/wB1R1Y/T8eKANWV1jiZ3YKijLMTgAdzntXmt9rep/Ee6m0bwvNJaeHkYx3+tqMGbsYrf19C/Qcn03KNM1/4kuJtehuNE8LBgY9L3bLm9A6GYj7if7A5/JTXodlZwafaxWlpBHBbQqFjijUKqL2AAoAraJomneH9Ng03S7VLa0hXCog6+5PcnuTye9aVFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVBeWsF7Zy2t1BFPBKu14pVDK49CDwanooA85fwhrvgyVrrwPci404ndJoF7IfLPr5Eh5jb2PGSSegFa/h34g6Trl4dOull0nWk/1mm36+XJn/Zzw478c45IFdeaxPEPhXRPFNp9m1nTorpV+4zDDof9lhyP85oA2hS153/YPjfwkgPh/V18Qaegx/Z+rnbMo/2JxjJ6cMMYqzafFHR4rhLLxFbXnhy/PHl6lGVjc99koyrL75H0oA7uioba4huoUnt5kmicZWSNwysPUEcEVNQAUUUUAFFFFABRRRQAUUUUAFFIelZes+IdI8P24n1bU7WyQ5x50oBb6A8t9BQBq1Fc3ENpbSXFzNHDBGpZ5JGCqgHUkngCuBPxA1bxD+78FeG7m9jbpqeoA21qB/eGfnkHsMGlt/hzca1cJeeOdYk1mRTuTT4gYrKE+yDl8ep7cEGgBLr4g3euzy6d4D08apOp2S6lOCllbnvlushHHCjvnJ6Vd0H4f29rqS654hvJNd17GRc3A/dwf7MMfRAPXr16ZIrr7W2gs7eO3tYI4IIxhI4lCqo9ABwKnoAaOop1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVWvLK01C2e2vbaG5gfhopkDqR7g8GrNFAHCXHwr0SG4a60G71Lw9cu25jplwUjc9t0bZXHsAKYLH4maPtFvq+i6/ADlhe27WsxHYAx5XPuRXfUUAcD/AMJ34i05Sdb+H2spg43aZJHegj1wpBFKfi94RtsLqU2oaXITt8u90+ZGz07KR+td7SNjacjI9KAOUt/iX4KulDR+J9NUEZ/eThP0bGKtDx54PYA/8JVon46hCP8A2atK40bSrobrjTLOYjn95AjfzFZ7+CPCUhMj+F9FZmOSTYREn8dtADH8feDkPPirRfwvoz/Jqzrv4s+BLIEyeJLV/wDriHl/9ABrZg8HeGLbPkeHdIi3dfLsYlz+S1pQWVpaMBb2sMPGP3cYX+QoA4tvirpE6qdJ0fxFq4PRrLTJCv5vtxSN4k8fai23SvBUVihHy3GrXygD6xx5YV31FAHn58KeNtaUjXvGZsYXGGttDtxFg+0z5etHR/hr4W0a5+2Jpq3l+cFru+c3ErEfxZfgH3AFdfRQAgpaKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9k='] Multimodal Competition True Theorem proof Geometry Math English 49 "A king strapped for cash is forced to sell off his kingdom $U=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$. He sells the two circular plots $C$ and $C^{\prime}$ centered at $\left( \pm \frac{1}{2}, 0\right)$ with radius $\frac{1}{2}$. The retained parts of the kingdom form two regions, each bordered by three arcs of circles; in what follows, we will call such regions curvilinear triangles, or $c$-triangles ( $\mathrm{c} \triangle$ ) for short. This sad day marks day 0 of a new fiscal era. Unfortunately, these drastic measures are not enough, and so each day thereafter, court geometers mark off the largest possible circle contained in each c-triangle in the remaining property. This circle is tangent to all three arcs of the c-triangle, and will be referred to as the incircle of the c-triangle. At the end of the day, all incircles demarcated that day are sold off, and the following day, the remaining c-triangles are partitioned in the same manner. Some notation: when discussing mutually tangent circles (or arcs), it is convenient to refer to the curvature of a circle rather than its radius. We define curvature as follows. Suppose that circle $A$ of radius $r_{a}$ is externally tangent to circle $B$ of radius $r_{b}$. Then the curvatures of the circles are simply the reciprocals of their radii, $\frac{1}{r_{a}}$ and $\frac{1}{r_{b}}$. If circle $A$ is internally tangent to circle $B$, however, as in the right diagram below, the curvature of circle $A$ is still $\frac{1}{r_{a}}$, while the curvature of circle $B$ is $-\frac{1}{r_{b}}$, the opposite of the reciprocal of its radius. Circle $A$ has curvature 2; circle $B$ has curvature 1 . Circle $A$ has curvature 2; circle $B$ has curvature -1 . Using these conventions allows us to express a beautiful theorem of Descartes: when four circles $A, B, C, D$ are pairwise tangent, with respective curvatures $a, b, c, d$, then $$ (a+b+c+d)^{2}=2\left(a^{2}+b^{2}+c^{2}+d^{2}\right), $$ where (as before) $a$ is taken to be negative if $B, C, D$ are internally tangent to $A$, and correspondingly for $b, c$, or $d$. Show that by area, $12 \%$ of the kingdom is sold on day 2 ." ['On day 2, six plots are sold: two with curvature 15 from the configuration $(2,2,3,15)$, and four with curvature 6 from the configuration $(-1,2,3,6)$. The total area sold on day 2 is therefore\n\n$$\n2 \\cdot \\frac{\\pi}{15^{2}}+4 \\cdot \\frac{\\pi}{6^{2}}=\\frac{3}{25} \\pi\n$$\n\nwhich is exactly $12 \\%$ of the unit circle.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIATABxwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ8CgBaKztU13StFhEuqanZ2SHobiZY930yefwrlH+LXh+dnTRbbVtekQ4ZdMsJJNp/3iAP1oA7yiuD/wCEr8b3rgaf4BeGJhkT6jqMcWPrGoZqao+K1wTvfwnZxkcBVnlcdOvIHrQB31FcN/YnxFlO5/GWmQHpti0gMPzZ6aPDvxDDs/8AwntqQQMIdFjwv/j2aAO7orhv7I+I8GfL8V6Rc9x5+llB9PlemLP8U7VyZrXwpfxjosEs8Ln/AL6BAoA7yiuB/wCE38VWAZtZ+HupLGvRtNuYrwsPZQQamtfix4UluEtr27n0m6brDqds9uR9SRtH50AdxRVazv7TUbdbiyuoLmBxlZYZFdT+IOKsA84PWgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooPtTXcKpYnAHc9qAFJwKhuLqG0t3uLmWOGGMbpJJGCqo9STgAVxGofEV7+9fSvBennXr9Tte6DbLO3Pq8vRj0O1evOD2qO0+HEuszx33jnVZNbuVYOlkmYrOE/wCygwWxyMt1BORQBJcfE6G+uHs/COk3niS6Q7Glth5dqjejTN8o45GM5qM+HvHfiMf8T3xNHotq3Wz0OPEhXtmd+Q3rtGK7y2tbezt47e2gjghjXakcShVQegA4FS4HpQBx+l/DDwjp0pnfSY7+7bBe51BjcyO3qS5IB+gFdekaRoqIiqqjCqowB9KdRQAhAPUUYFLRQAYowKKKAEwD2pcUUUAJgVDd2drewNBd20M8LcNHKgZT+BqeigDiLz4VeGnuGu9KjutDvSAPtGk3DQED/dHyY/Cqn2b4jeGsNa3lj4qshn9zcj7JdY7AOMofq3NehYpNoNAHF6X8TdEurwadqy3Og6nwPsuqR+Vu7fK/3WGeBzk+ldmDk1R1fRdM12xaz1WxgvIG/gmQNj3BPQ+45riW8G+IfCDGfwPqhmsxnOiapI0kWPSKQ/Mh9Acgk8mgD0aiuQ8P/ECw1a/Gj6lbTaNroGW0684ZveNuki8HGOeDxXWq2SeelADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApCcUprkfFnjVNAlt9L0+1bU/EF3/x7afCfmA/56Of4EGDyf5AkAGl4k8VaV4V043uqXIRSdsUKDdLM/ZUXqxP5euK5BND8R/ET994nMui+HnwYtGgciacf9PD9h/sDHXkArzreGfBD2+pf8JD4mul1bxC4+WUr+5tAf4IVPQDpu6n25z2mBnOOaAKmm6ZY6RYx2WnWkNraxjCxQqFUfh3PvVvFLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJtU54HPX3paKAMbxH4W0bxTp/2PV7GO4Qf6tzkSRH1Rxyp+n45FcZ/aPiT4bYGqyXHiHwwM4v1G67sk/6agf6xMfxDkYOccCvTKawBGMDB4oAq6ZqdnrFhDf6fdxXVpMu6OWI5Df8A1+xH8quV5zqfhTVPCOoT694GRSkjeZfaExxDcju0f/POTH4Hj0weo8L+LNO8WaZ9ssHZWjbZcW8o2yW8g6o47Ec+1AG9RSDOaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPShjhcj+dct408Wnw9ZQ2lhb/bdd1BvJ0+yx99/7zeiLnJPHHcdQAVvGHjC50y6tdC0KCK+8RX5Hk27Z2QJ3llxyEH69ulWvB3g6Hw5FNd3c51DXL0iS+1GUZeVuOF/uoMYCjHQU3wX4PHhyCe7v5/t2u3zebfX7Dl2/ur6IOgHH07DqwMUAJgZzS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADSOK4bxZ4QvF1UeK/CZjt/EMI/fQk4i1CMY/dyf7RAwG9hz0I7sjPWkI4oA57wj4tsvFmltc2yvBdQN5V3ZyjEltIOqsODjg4Pf8CB0I61wXjHw5f2Wqr4z8LR51i3QC7tBwuoQDqh4++APlPtjngV03hnxDYeKNEg1XTZN0EowVbho2HVGHZgf84IJANiiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopCaAFopOc0ZP+RQAtFIKWgAooooAKKKKACiiigApDxS0jHAzQBl+INdsvDeh3Wr6lJstbZN7cZZj2Ue5JAFcz4G0C9uL2bxl4kixrmoJiC3Y5FhbdVjX/AGjnLH1OMA5znon/AAsTx80p+fwz4cnwg/hvL0dT7qn6npkE49JXr+Hf/P1oAUAA5xz0zS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANZeOBz6mvNvEEUvw68SyeLLFCdB1GRU1m2UE+S5OFuVA9zhh3z6nI9KIBGCM1Dd21vdWk1tcxJJbzIySxuPldSDkH2IzQA6CZLiJJonWSJ1DI6kEMDyCD3BqWvOfBdxceEvEVx4Cv5JHtwpudEuJTky2+TuiJ7sh/TsBivRQc0ALRRRQAUUUUAFFFFABRRRQAUh4FDZ4x61zHijxxpvhlorMrLfavcD/RtNtF3zSe5H8K8H5j6HGcYoA6YtjJrkNU+JvhzT7s2FpNPrGpD/lz0qI3Mnv8Ad+UY4zkislfCXiPxkfO8aag1jp78roemybVx1xNKDlz6gHHAI9K7bSND0rQbQWmlafb2cA6pDGFz7n1PuaAOQGs/EjWudN8O6XosOeJNWuTLIy+oSL7p9iaePC3jq7lL33xAMKMP9TY6XEgX6OxLV3uBRigDhh8PdQb5pfHvigyHqUuI0X8tlNbwR4igjIsPiDrEbD7puoIbgfkVH867ujFAHBfY/idpYHkavoOtoB832y1e2kb6eWSufrTB8SLzSBjxf4V1PR0HLXkAF5bKPVnj5XPpg16BikIB6igDP0nXdM12z+16VqFvewdC8Dhtp9CByD7HmtAEnqK4vWfhro95eHU9HeXQNYwdt5p3yBj1+dB8rgnBI4JwOaz4fGOt+EJ47Lx3bxm0ZgkOvWaEwtnp5yAZjY+uNuenAJoA9FoqK3niuYUmgkSSKRQyOhDAg8ggjgipaACiiigBDXHfELXrzTtHt9K0dv8AieazMLOyA6x5+/L7BFyc9jiuxbpXnnhHb4u8cat4vkUNZWedM0kkcFVOZZl/3mOAR2yD3oA63w1oFl4Z8P2ejWC/6PaxhNx6u3UsfcnJ/GtfFGMUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQQD1oooA5H4g+HLjWtCjvNKPl65pUgvNOkAyTIvJQ+oYcY6ZxngVqeE/EVt4r8N2Ws2oCpcxgtHnJjccMh9wQR+RrZPSvPNKx4P+KN7o2CmmeI1a+s/7qXS/65B/vDDfyoA9EopBS0AFFFFABRRRQAUjHC5oPArjfG/ie+042ug6CqzeItUytspGVtk/infrhV7ZByR3wRQBB4o8XX8uqnwr4Thju9edc3E7jMOnxn+OT1bHRe/XHQHS8JeC7Dwwks/myX+r3Q3XmpXBzLOx64P8K+ijsBkkjNT+EPClp4T0n7JDJJcXUredeXkpzJczH7zsTk/QZ49+p6EADtQAmBnNLRRQAUUUUAFFFFABRRRQAYzUN1bw3NtJBcRRzQSKVkjlUMrqRggg8EVNQQD1oA8vn03VPhfO+o6HHcaj4VJLXmlA75bIdTJASeV7lSfx5yPQtJ1ax1zTYNS026jubO4TfHIh6jp+BByCDyCCO1XGAwa8x1CKT4W+IG1izD/8IfqEwGo2wyRYTMcCZB2QkgEe/wDugAHqFIelMilWZFkR1ZHAZWU5BHqDTz0oA5H4k63caL4NuEsedT1CRbCxAOCZpTtBHuBkj3Ara8N6Hb+G/Dtho1qP3VpCI92OXPVmPuSST7muT1If8JF8YdMsfvWnh60a9mxyDcS/JGpHYhQXB969AFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVxfxO0qe78KHVNPX/iaaLMuo2h55aPll46gruGO/FdpTXVWUqwBU8EHofagClouqQa3o1lqlqcwXcCTJk8gMM4PuOh96v15/8MD/AGSdf8IOTnRL5vs4OeLab95Fyep+9n8K9AoAKKKKACiikPTigChrmr2mg6Jd6rfSeXbWsZkc9z6Ae5OAB3JArlvh7o13Il14u1uIDWtaAkKH/l2t+scI9MDBPcnryKqeMVPivxxong771jAv9q6oAOHRW2xR/RnySD2wa9CU5JoAUADoKWiigAooooAKKKKACiiigBGOBWdHrulza22jRX8EmopEZntkYM6ICBlgPu/eHB55rSIzXnYhih/aDURRqgbwyWIUYyftPWgD0GSRYo2d2VUUEsWOAAO+a5/UvHPh3RtNs7/U9UjtIbyNZYBKjB3UgHOzG7oeeOKk8Ws02kppUZYS6rMtkNpwQjZMpB9REsh+oFXk0ewjvp777PG1xKixb3QHbGo4RfRc5OB3JoAfpeq2Gt2Ed7p13Dd2smSssTZGQensR6Hmpr21t72ymtLqJZbedGjljYZDKRggj6Vw/wAMNJSwPiS7slEWkXuqSPYRKMJsX5S6jspYHHqFFd+RkYoA888DXU/hnXL3wFqEzSLap9p0ieQ5MtoT9zPcxnj6ZwABXoX3hzx/SuG+J+nzx6RaeKdOTOp+HpvtaAcGSHpNHn0Kcn/drT8R+IYIfhxqXiGymHlNprXFtIeMlkzH+JJWgDI+GAGqDxD4qYKx1nU5DDIO9vF+7jH4Yau+AArn/Aulf2J4H0XTmQJJDZx+Yo7SEbn/APHia6GgAooooAKKKKACg0UUAcp8RNU1nRvBmo6los9tDNbRGRmmiLnA67eQAeepyOOlanha8n1Dwno97cyeZPcWME0jkAbmaNSTgccknpWR8UBj4Y+Iscf6G3StLwZ/yI3h8/8AUNt//RS0AblFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhGRS0UAef6kf7E+NGjXYLCDXdPlsXA6ebERIrH3KkqK78GuD+LG2y8P6Zr5JUaLq1teOR1Me/Yy/iH/Su8FAC0UUUAFIelLWF401F9J8E63fxuElgspXjY9n2Hb+uKAOb+GYGsT+IfF74Y6vqDJbOB1tocxx/To2a9AAA6Vz/gXTf7H8DaHYFAjxWUW8D++VBf/wAeJroaACiiigAooooAKKKKACiiigBCcV527Tn45R3/ANg1E2X9hmyN19hm8vzvP37d23GMd84969FpMCgDBMUl74zEsiMLbTbXEbEHDTSnkj3VEA4/56msDxh4rnt9S/sRNB8R3NkVzd3OnafI4YH/AJZI/A5H3mB46Dkkr3u0Y6UbQO1AHN+FfEP9ttNDb+HtU0iztI0RBqFr9n3E9FjTn5QByeMZGBXS0gABzS0ARzRRzwPDMgeORSjqwyGB4INeFXcjR/DS+8BzyN50HiKLR4t7ZZoXmEsbH6qCB7LXvJrw/wAWWPlfH/RrNFPk6lPaai+Bx5kCzIPxAGaAPblAHA6CnUgpaACiiigAooooAKRjtGe1LRQBzPjrStU1/wAJ6ho+mLZ+beRGIvdTNGEBI5wEbP6Vc8KWWoaZ4a07TdSS2E9nbRW5a3lZ1fYoXd8yKRnHTmtnApaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOa+IVkNQ+HfiG3K7ibCV1XHVlUsv6gVd8KX51Twjo1+33rmyhlbnoSgJH51o3kC3VnPbsMiWNkP4giuP+EN19s+FegynOVheLn0SRkH8qAO3ooooAK4T4xtJ/wAKt1eOFiJJmgiBH+1MgP6Zru64T4xSCH4Z6hO4ykU9q7fQXEdAHcRoEQKowAAMelPpB1NLQAUUUUAFFFFABSMcUtIxAHJAoA4PxX8W/DPhDWRpV9LczXYK+atvEH8kMAQWyR2IOBzjtXX6TqtnrWmW2pafOJ7S5jEkUgBG4fQ8j6HpXhfxI+DHiDXfGl1rGiNbTWt/IrOksxRoG2gEnI5XjIxk84xxXX+H/gX4RtdDtINb00X2pKn+kXC3Uyq7k54CsBgdBwDgc80AepZozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHf5ozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHf5ozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHfMcCvEPG/jvw1Z/GXw3cyXjldGNzBfyRxlhGzIVVfUkEnOM4+uRXYH4J/DwYx4e7/8AP7cf/HK8Y8WfB6/sfiBZaJplxara6vJO+nmR3AiRF3srnBPAOBjOe+M0AfUNrcxXdvFcQSLJDLGskbqchlYZB+mKmzXm9h8DvA0Njbw3mj/aZ44lWWf7VOvmOAAWwHAGTk4A71Z/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3+aM1wH/Ckvh5/wBC9/5O3H/xyj/hSXw8/wChe/8AJ24/+OUAd/mjNcB/wpL4ef8AQvf+Ttx/8co/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3+aM1wH/Ckvh5/wBC9/5O3H/xyj/hSXw8/wChe/8AJ24/+OUAd/mjNcB/wpL4ef8AQvf+Ttx/8co/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3k0yW8LzSuqRopZmY4CgDJJNefaP8avCOteI00a2nulkldY4J5YNsUznoB1YZJx8wH+KXnwP8BS2U8dtopt5njZY5hdzMY2I4bBfBwecH0rzHw38CPE1n4ttJtSls0060njmeaGckyhTnCDbnPHcDrQB9JAnOPanUxcDp+Vcm/j6H/hJ7nw7DoerzajbxCaRI1hIEZx827zcdxwefagDr6KwvD/izTPEc13b2jSxXlm2y6s7mMxywk9Mj09xkVu0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIa4X4QFB8PoIkXZ5V3dIVAxj9+5x+RFd0elcN8JS0ngk3DgAz6hdyYHbMzf4UAd1RRRQAVyfxNsRqHw08QwEZ22bygYzynzj9VrrKiuYI7q2lt5V3RyoUdfUEYNAFLQNQGreHdN1FTkXVrFMP+BKD/WtKuE+E1xIvg5tGuH33eiXc2nTHGM7HO0j22la7ugAooooAKKKKACqeqala6RplxqF7MIba3QySOewH8z2A75xVpzhe341534pvk17R9b1MyKdG0i1uGthni6uURhvHqiHKj1bJ/hUkA2fh74mm8Y+HJNalhWGGW6lW1iHVIlIVc+/Bz9eOK63AFcJ8G7c23wp0NSOWjkkP/ApXP8AIiu7oAKKKKACiiigAooooAQ4Iwa8f8XagV/aC8IRAKYbaAqzZ6PMJQAfwUGvYG6V4Jqi/wBo6nqHjYsyQw+LrGFGzwYLf90WB9GZz+VAHvSnPI7jNOpB1paACiiigAooooAKKKKACiiigAooooAKKKKACiiigApMClpDntQAHgDAzXivhTxVDa6p4y8b3Ol6reQXV2Yrea0tfMUW8IKg5yMZGCe3HWu7+JHiq18MeCtTna6iS+e3aO1iLgSM7fKCq9TjOfwrm/DHizwt4P8AhxpenW+o22pX0dqD9hsXE8ssz/My7VyR8xIy2KALnw60ebUPEOsePrqa23a0qpb29tKJFiiXA+ZhwX+UA46EH1r0ivPfgz4Z1Lwx4FEGqIYrm6uXuvIP/LFWCgL7H5c4969CoAKKKKACiiigAooooAKKKKACiiigAooooAbIwVCxOAOSa4X4NrKPhZo8kw/eymeVvfdM5B49sV0fi29OneDdbvR96CwnkX6iNiP1qp8P7T7D8PvD0BXaw0+FmHoxUMf1JoA6SiiigApD0paMZ60AefB/+EX+MDBmK6f4otgVJ6LdwDGPQbkP1Jrv1JNcz498NSeJvC8tvZuItTtpFu7Cb/nnOnKn8eR+Oan8F+JYvFfhyDUhGYboEw3kDfegnXh0IPIweR7EUAdDRRRQAUhpaCM0AcH4h8Y6Zf67a+DbLWYI72+YpdSxTANBGPvRqwPEr/dUdRyeoGcD4paP4L8O+AdT8rSNDs9Rkg2WoFvEkxJYDK8bjgZOfY161tGCOxowPSgDkfhjdWFx8PNDjsbqGcw2USzCNwxR9o3BvQ5yPwrr6QADoKWgAooooAKKKKACkNLSN93pQBzPj7xC/hrwde3sALXzgW9nGo+Z55PlQAdyM7segNc14g8HLpnwGu/D68y2en+c7Lk7pkIlYj6sD+dSRN/wnfxLEyHfoXheQhT/AA3F8Rzj1EYP4H1Br0KaKO4gkhlUNFIhV1PdSMYoAq6FqKaxoGn6nGAFu7aOcD03KGx+taFcL8JZ5F8Ff2RcPvutFvJ9OmOMZKOSuPbay13VABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJgUYFLRQAgAHSloooAKKKKACiiigAooooAKKKKACiiigAoNFIaAOH+Lc0h+H11p9u+251O4gsYQf4mkkUEf98hq7S3jSGCOKMYjRAqj0AFcL4v8A+Jv8RfBuhAB4reWXVrkd0ES7Ym+hdiK74d6AFooooAKKKKAEbpXm/iKKbwD4ok8Y2MTvot+Vj1u3QZ8pui3KgenRgOvXGTkek9ajmhingeGWNZIpAVdGAIYHggg9RQAy0uob22iuLeVJYZUEkciHIZTyCPYip68tX7Z8Jb2Tak134JuZdwxlpNJZj6dWhySfUc9/v+l2l3BfWsV1azJNbzIHjljYMrKehBHWgCeiiigAooooAKKKKACiiigAoopD064oAGOBmuG8ceJL4TQeEvDj58Q6kv8ArM8WUHRpmI6eg75xjJwDY8W+NW0q4i0PRLYan4lu1PkWan5YRj/WSn+FBwcHBPt1FjwZ4QXw5bT3V9P9u1y+bzb+9Yfff+6vog6AYHTp0AANPwzoFl4Y0C00ewUi3tk27mHzSN1Z29yST/8AWrWwB0owM0poA8/0onQfjBrOntkW2u2kd/b8YXzYv3cij1YjaxrvwcmuB+KFu+n2Wl+L7aNnuNAu1mkCjLPbv8kyj6gg57YruraaO5gjnhdXikQOjqchgecj2NAEtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLWB418QL4X8H6lq5GZIYsQrjO+VvlQY7/MR+GaAOe8Hn+3fiJ4s8RkBoLZ00e0focR/NKPpvI5r0DGK5vwHoLeG/BemabLk3SxeZcsTkmVzufJ7/ADEj6AV0lABRRRQAUUUUAFIQD1FLRQBHLFHLE0ciK6MNrKwyCD2IPUV53N4W1zwPdy3/AIIC3WmyOXuNAnk2rnqTA5+4fY8fkBXpFIVB6igDmfDPjvRvFO+C2le21KHifT7tPKniPoVPX6iulUk+lc/4m8E6F4qVH1G0xdx8Q3sLGOeLrja454Jzg5Ge1c8mmfEHwuwGmala+JtPTkW+pHybsL/dWYfK31YUAeh0VwP/AAtK207K+JtA1rQygHmTTWpmgB9pI8g/XFa1n8RfB19Grw+JdLG7oJblYifwbBoA6iiqEWt6XOm+HU7KRfVJ1I/MGqlz4u8N2X/H14g0qDBxiS8jXn8TQBtUGuHufi14PiuPs1pqMmp3eMrb6dbvOz/QqNv61WbxP4519dugeE10uFvu3muy7CP+2KfNn0ycUAdxd3tvp9rJdXlxFb20Yy8szhFQepJ6VwE3jLWfG0r2HgW38uyBKT6/eREQp2PkoRmRuvXgcZ4Oas2fw0i1C6iv/GGr3PiK5Q7kgmAjtIz/ALMK/KfTnIPpXdxQxQxJFFGqRoAqIgwFA6ADtQBgeFPCGm+FraYW3mXN9cNvvL+5bfPcP1y7H68Dp+JyejpNoBzjmloAKKKKAK97aQX1jPZ3EayQTxtFIjDIZWBBH5GuL+Gd3cWdnf8AhDUHZr3w/N9nVm6y2zZaF/8Avnj22813Z6V5548STwvr+m+O7ZWMNtiy1ZFGd1q7cPj1RsHjk9M4oA9DBzS1HDKk0aSxsrxuu5WU5BB6EGpKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARuleeeISfFfxK0jw6nzWGi7dU1HHQy8iCPjv1YjoQR6V13iXXrbwz4dvdZvD+5tYy5Xu7dFUe5YgfjWJ8O9CutM0SXUtXGdc1eU3t8SMFGP3YxnkBBxjsc0Adeue/WnUUUAFFFFABRRRQAUUUUAFFFFABSAAdBilooATA9Kyr7wt4e1Ny9/oWmXTnktNaRufzIrWooA5Z/hr4KdizeGNMyeuLcAfkKmg8AeD7bb5fhfSAV6FrONiPxIro6KAIbe1t7SIRW0EcMY6JGgUD8BU2BRRQAgAHSloooAKKKKACiiigAqve2tve2U1ncxLLBOjRSRtyHVhgg/UVYo60Aed+A76fw5ql14A1SdmlsVM+lTyHJuLIngf7yHKkccDgYXNehg9M56d65Px34Xn1zT7a+0mQW+v6VJ9o06boC38Ubf7LgYP4duDd8G+KLfxboSX8UbQXMbGG7tX4e3mX7yEfXp7EfSgDoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkJxihiQOK4rx14lvrQWvhvw+yP4j1X5IfS2i/juG9ABnHvn720igDLu8fED4gpZKvmeHvDcwkuD1S5vR92P3CDk+5wR0r0kCsbwt4dsfCvh+10ewH7qBfmc/ekc8s59yf8BwK2sUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACN0rzvxVpt/wCFddfxvoEDzRsgXWrFOtxCv/LVB/z0QZ+o/HPotNIHXHNAFPSNWstc0u31LTrhLi0uEDxyJ0PsfQjoR2INXq8w1K0vPhjqkuvaNBJceF7uTfqemxrk2jE8zwj+7/eXoPoRs9E0zU7TWNPgv7C4juLSdA8csZyGH+eMHkEGgC3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFI3TrignArE8UeKNP8ACejNqOou2MhIYYxmSeQ9ERe5P6UAReLvFdr4U0j7XMjXF3K4hs7KP/WXMx+6ijr1IyR09+lZ3gfwtdaa11r+vOlx4j1TD3Mi8rAn8MKf7IGOnUjqcCqnhPw1qWo6x/wmHi1E/tV4yllYjlNPiPYeshz8zde3tXe4oAQAA9KWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKCM0UUAIQAOleaXujar8O9Rn1rwtave6DcOZdQ0SMfNEx6y24+g5Tp6cEbfSyAetGMDAoAzNB8Qab4k0qLUtKukubWT+JeqnurDqCMjg1piuC17wTe2WqS+I/BV1Fp+ruQbm0cf6LfY7Oo+63+0PU9NxNaHhjx7Za5ePpN9BJpOvw/67Tbo/Nn1jbpIvfI7c4xQB11FNVtx4ORTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRsgcfyzQTgVwes+Pbi81GXQfBdrHqurIds9yx/0Sy68yuOpGPuj37jBANfxZ4zsPCtpF5wku9RuTss9PtvmluH9AB25GTjj3PByfDXhDULvWE8U+MHSfWAD9lskO6DTlPZexf1b9T1N7wn4Hg0O5l1XU7uTV/EFyP9I1G4AyP9iNeiIPQfywB12KADFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQRmiigBCoOMjpyKwfFHg/RvFlokOp2xMsRzBdRHZNA395H6jnnuOBkcVv0UAebrqXjDwH8msW8viXQkHGoWqf6ZAo/56x/xjp8wOeCSe1djoPibSPE9j9s0XUILyH+Lyz8yH0ZT8yn2IrV2L2H0rkde+HOi6vfNqlo1xo+sYONQ02QwyE9fnA4YHjORntmgDrxS154upePvChC6lp0PinT1HN3poEV2o9WhPDEnPCn3NbGifEbwzrk/wBli1FbW/DbGsb4eRMrf3dr4yfpmgDq6KaCT3z7gU6gAooooAKKKKACiiigAooooAKKjeRYkaSRgiKMlmPAHqfSuN1L4peHra7aw0trjXdRHS10mIzn6lh8oHrzxQB2rHAzXN+I/HOh+F2SG+uxJfSECGwt18y4lJ6BUHPPYnAzxmsE2vxB8WA/bLqDwnprDmG0YT3jj0Mn3U9iBkV0HhnwRoPhUO2nWQ+1SZ828nYyTyk9SXPPPoMCgDmm0zxd48Gdbll8N6A3/MPtnBu7hP8AprIOEBHVRz1Brt9G0bTdB0+PT9Ks4rW1jHypEMc+pPUk+pyT3rQ2jjjp09qWgBAAOAMCloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEwKy9a8NaL4hgEOr6Xa3igFVMsYLID/dbqv4YrVooA8+Pw1l0sbvCvinWNGCgCO2eT7XbRj2jkyf1p/nfE7Sc7rbQdehQceXI9pO/1BygrvcD0pcCgDgT8RNWscLrHgHxFBIcZNiiXqL/wJGH8qc/xg8IWyg6jc32nMeNl3p06kH04QjP413mBSbQe1AHHwfFTwPOCV8S2K4xneSn/AKEBU3/CzfBP/Qz6b/3/ABXRPp9lKQZLSB8dN0YNN/svT/8Anwtf+/K/4UAcrc/FrwJahjJ4ktSF6+Wryf8AoKmoB8W/DlzHv0uDWNWz0Fjpkz7vpuUCu1isrWD/AFNtFHzn5EA/lU2BnOKAOD/4TnxNqCBtG+HurOD1Opzx2ePfDEk01rT4nauSs2p6FoMJ6G1ga6mHsd+EP4Cu+wKMCgDgk+Fel3syz+JdU1XxBKCGC3tyRErD+7GmAOp45612WnaXp+k2wttNsbazgBz5VvEsa5+gAq5RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k=', '/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAS0BMwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACikJwM1zWs/EDwnoJZdR1+yjkQ4aJJPMkH/AEy36UAdNRXBf8LNS9O3RPC3iPUwQCk6WXkwt/wADkI/lSpr/AMRL3cIPBFlYDPyve6qr5+ojU4oA7yiuCRfitLId8ng+CPnaFW5kPtnpUg034kuu5/EGgRsT9xNPkYD6EvmgDuaK4Y2PxMhbMeteHLgHr5tlKmP++XqOKb4qwZNzZ+ErsDGFt5riNj+LAj0oA72iuB/4S7xpZuRqPw9uGiXrLYajFPn6JwaF+Lfh63KjWrbWNCdjhV1PT5I934qGGPfNAHfUVm6T4h0bXUL6VqtlfAfe+zzq5X6gHI/GtKgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiig0AFB6VieI/FWi+FbD7VrF9HAp+5H1eU+iqOSf8muT87xt43OLdJfCWiNn95Koa/nX2XpDkHr94EDGaAOn8ReMvD/hVA2r6nFDIw+S3GXlfnsgyx+vSudHiXxv4kIHh7w2mk2jH/j+11irkd9sCncD3BJwa2/DngTw/4aka4s7MzX78y3903m3EhPUlz698YB9K6fvQB5+3w1k1f5vFvifVdZz962jf7LbH28tP55rpdG8JeHtAA/srRbK0cDHmRxDeR7v94/ia26KADvRRRQAUUUUAFFFFABTXRZEKOoZTwQRkGnUUAclqvw08IatIJpdDt4LgHcs9nm3cH1yhGT9c1lDwn4y0Dnw54ue9gXOLLXkMwP8A22XDgegxXoVFAHnqfEi40WQQ+NfD95ooztF9F/pNo3YZdASpPYEfWu30/UrLVbVLvT7yC6tn+7LDIHU/iDVmRFkjZGVWVhghhkEe9cJqHw1tIb2TU/Cl7N4b1I/eazANvL7PCflbv0x170Ad7RXncXjvVvDE62njzTVtoiwSPWbENJaOe28fejPQc989hXe2tzBeW8dxbTRzwONySxuGVh6gjrQBPRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFQXl1b2NnNdXUyQW8KF5JZGwqKOSSaAJicKTXn+p+Ob/WdQm0LwNbRX9/Gdt1qMmfsdp7bv429APrzhhVBrnV/inK8djNPpXg1WKSXQ+S41LBIIT+5F15PJH1IHf6Po9hoWnQ6dplrFa2kIwkUa4H1JPJPueT3zQBgeHPANjpF6dW1S4k1nX5P9ZqN2MlfaNOka9eB64zjiuvFLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEc8MdzBJDNGkkUilWSRdysD2IPUV57deCtV8K3D6l4AuEjiLF7jQrlj9mnOOsZP+rf9M46AYPo1B6UAcv4T8a6d4nM1qscthq1rxdaZdDbNCfXH8S8jBHqM4ziuorlvFfgqx8TeVdJNLp+sW3NpqVtxLC3of7y+qnsT0rM8OeMb+21ZPDHjGBLPWuRbXScW+oKP4oz2bGMr/LOAAd5RTQeadQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTZHWKNpHZVRQWLMcAAdyfSgCC/vrXTbCe9vp0gtYVLyyyHCqo7mvOLSyvfirfJqeqxzW3g+Ft1nYMdragwPE0nonovfr9UjSX4r60J5Q6eCrCb9yjDH9qTKfvEd4ge3fH1C+nRqEACgAAYAAxigBIkSJEjjRUjUbVVRgADoBjtUlFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAh6VjeJfDOmeLNJfTtUg8yNjujkXh4X7OjdVb/J4raoPSgDzvw54k1Xw/rcPhDxjMHuXX/iW6qeEv0HG1v7so469fyLehDk56VjeJvDWneK9Fl0zUo90bDMcg4eFx0dD2Ydf0PFc94M8Q6haapJ4N8Tyg6zbR77W6OQNQtxwJBk/fGDuHXvzzQB3lFFFABRRRQAUUUUAFFFFABRRSHgUAB6V5t4oup/HHiNvBOl3Dx6bbhZNeu4jyEP3bdT/AHmxz1wOOcEHe8d+J5vDukxwadEJ9b1KQWmnQcfNK38RB42qDkk8dASM5q14M8Mx+FNAi08SGe5djNeXLctcTty7knk5PHPOAOtAGxY2kNhawWdpCkNtCgjjjQYCKBgAVaoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARvumuX8aeFF8UaZG1vP9k1exfz9PvFHzQSjtn+6eAR0PBxxXU0h6Hr+FAHL+B/FLeJdMkS9hFrrNg/2fUbP/nlIO4/2WwSD0PPJxmuprzrxvZXHhjWYPHulQs5t1EOs28Y5uLX/npjuydc+g64GK72zuoL60gu7WVZredFkjkQ5VlIyCPYigCxRRRQAUUUUAFFFFABTXO2NiTgAZz6U49Oa4X4l6hdS6dZeFdMkCal4gmNorA8xQAZmkx7J/6FQBS8GI3jHxZeeObgE2EG+x0NT08sEiSYD1c5APXGQe1ej1R03T7fSNMtdOs4/LtrWJYo0x0VRgfy/Oodc13S/Dumy3+r3sVrap1aQ9T6ADlj7CgDTPSsHxB4z8PeF1B1jVYLZyAVhJLSt24RQWP1xXLLd+MvHgJsRL4V0FulxMmb+5Xp8q9Igcnk89CM10HhzwH4f8NOZ7Oy86/bmW/uj5txIx6kufXvjAPpQBkL478Q6yR/wjXgm/lgPS61SRbNMdmCnLMPoKcNO+J+oqftWu6BpHPy/YbN7hse/mEDP0rvB1paAODTwh40MeJ/iRds56mPSrdB+AwcUknhHxuoBt/iRcK+cZl0m3cEfTjn3rvaKAODa1+J+nlRBqXh3V4xy32q3ktpG+mwlRUR+ImqaQP+Kr8Happ0QPzXdmVvIEH95inKj6ivQaD0oAx9C8TaL4lg8/RtTt71AMt5T/Mn+8vVfxFbFcjr3w70DXLj7csEum6qOU1DTn8iZW9SV6/iDWIPEHirwGwTxVCda0MHH9s2cWJoB6zxAdB/eXPAHUnFAHpNFUtL1Oz1ixiv9Puorm0mGY5YnDK3r9MHj65zV2gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGTRxzQSRSoHjdSrKRkEHqMV594Jlk8KeJ77wLdyH7KFN7oruetux+eLPco2e5OCTwAK9DPQ1w/xL0u5k0a38RaWo/tbQJftsGP+WkY/wBbGcdmQHjvjFAHc0VQ0fU7bWtJs9TsnLW11Cs0Z9mGcH3HQir9ABRRRQAUUUUAIelee+FR/wAJJ8Qtf8USfNaWB/sfTiTwdnMzjPXLcBh1GRXReONfHhnwVqurA4lggIh4z+8b5U/8eYVi2M1l8LvhhZC+y0lvCoMScvcXLncVXuSXJ+g57UAavizxdZ+FbCN5Inur66byrKwh5luZD0VR6cjJ7e5IFY2geCLu+1OPxL41kS/1gZa2swd1tp4JyFRe7jjLHPI6nGTL4L8L3ov38WeKNs3iK9X5I8ZWwhxxDGOxGTuPck+5buqAGjg06iigAooooAKKKKACiiigApHGUIIyPSlooA851PwlqXhK/l1/wMg2yNvvtCJ2w3Q7tF/zzkx+B444weq8L+JtP8V6Umoae7YBMcsEg2yQSDqjr2Yf/qyCDW2eBXnfi7Rr3w1rDeN/DUO+dUxq+nLwL6Aclx6SL1zjkfkwB6LRWdourWeu6Taapp8wmtLmPzI3HXHofQg8EeoPpWjQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIwDKQQCDwQe9LSEZBB5BoA8++HmfD+t694JkYiPT5vtenBu9rMd2F7kI+QT6nFehV5744zoXjXwt4pj+WJpzpN8QOsU33CfZXGfxr0ADnp160AOooooAKQ9KWkPIoA4Dx8P7W8TeDvDWCYrm/a/uMDIMduu7aw9GJA/CqmjRj4g+N5PEUx8zQNElNvpKEZWe4H+suPcA4VTyOMjBBrmfG+r3Vx8RtZtNMdv7TNnbaFaDsj3JMsknttjXk9iRXr+haNaeH9FstJsl2wWsQjU45bA5Y47k5J9zQBoAYNOoooAKKQnAJPQUilWAZTkEcEUAOooooAKKKKACiiigAooooAKRvunnFLQeBQB5raD/hXvxAGnAbPDfiKUtbD+C0ve6D0V+MD14AwDXpCjkVz/jTw2vinwne6ZnbcMnmWsgODHMvKMD25Az7ZpngTxC/ibwlZ6hcLsvQDDeRkYKTodrjHbkZA7BhQB0tFFFABRRRQAUUUUAFIeATS0HpQByHibxufDuvaLpX9k3M39qXkdqtyXVY1LFQcckkjd6Ae9daOteb/FL/AJD/AIB/7D8P8xXpVABRRRQAUUUUAFFFFAHM/EDRf+Eg8BazpyKWle2aSEA4PmJ86f8AjyirnhLWR4h8JaTq2QWurVJJMdA+MMPwYEfhWyfunjPtXB/CoCx0fWNAC7E0fV7m1hXP/LIt5iH8d5/KgDvaKKKACkPApaRiFUknAHJNAHh3w7tX8R/GnxTrlxseDS7qZIGA53ufKU59PLiI/wCBV7lXlvwHtHHgi51abBm1S/luGb2Hy4/NW/OvUqAEPSvO4Vlt/j40H2u6lgk8PNP5U0pZEczqp2r0HCjpXoteeyEf8NBxDPP/AAjB4/7eaAOm8U3M0WgyW1s5S7vmWzgYdUeQ7S4/3VJf/gNZuqeBdP12VIdUkuDpltEkVnYwXDxRoFH322kFm7DJIAAx1NXJ/wDiY+NLaAcw6Vb/AGlv+u0u6NPxCLL/AN9iovEniqy0qaPSl1OxtNSuVLK11KqJAnQyMCRn2Xqx9AGZQDE+Fy6jaDxDo91ezXtjpepPa2VxO259oAJQnvtyPzPoAPQq53wtd+H0g/sjQtRgvfsy+ZM8MwmJZySXkZeN7Nub1PPFdFQAUUUUAFFFFABRRRQAUUUUAIelcB4c/wCJD8V/EehgBbXVYU1i2VRgK/8Aq5vxLbWr0A9K4Lxp/wAS7x34I1rfsQ3kunSc43CaM7Af+BJQB3tFNGc4p1ABRRRQAUUUUAFIehpaKAPMfiYbm41/wf8AZdO1K5Fjq8dzctbWM0ixxgrkkqpB+gJr0iCQTRJIofDLkb0KH8VPI+h5qaigAooooAKKKKACiiigBD0rhPDyGw+L3i+1LYS9trO9jTHAwrRsfzAruz0rhJ4/s/x0s7jkC78Pyw+xKTq354NAHeUUUUAB6VzvjPxPpvhTw3c3+oXXkh0aOAAEmSQqSqrjvx16DvgV0J6V5b8bfBWoeLPDtpdaYwa40xpJWgZ9qyRlcnAPBYbRj6tQBY+B+r6XefDqx02yulkurDcLqLBDRl5HYZyOc54Iz068GvS6+dvhD8LrzUdHk1y513VdKgvFUW39kXnkySKGYMZPlPGQMD6+1ek/8Ks/6nzxx/4OP/sKAPQDWW3h3RDqP9pHR9P+3A7vtP2ZPNz67sZ/WuT/AOFWf9T544/8HH/2FH/CrP8AqfPHH/g4/wDsKAO4jtYIZ5po4lWWdg0rAcuQoUZ/AD8qzL3wn4c1K7ku7/QNKu7mQ/PNPZxu7Y4GWKknAAH4VzX/AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAdfpeh6VowkXS9MsrFZDmRbWBYgxHTO0DPWtA9K4D/AIVZ/wBT544/8HH/ANhR/wAKtx/zPnjj/wAHH/2FAG14u8caH4KtYp9Zumjafd5EUaF3lx1AHTjI5JA5q34Y8U6R4u0z+0dGuvtEAcxvlSrI2M7SCBg4I9vQmvHfiP8ABjWruKzudD1XVdcljVlli1W+EkijjHlkgDHXIz6Ve+H3wa1PT9HlfV9f1vR7ydwTb6RqAjUKBgbyFIZs7uhwBjBNAHt9Fef/APCrP+p88cf+Dj/7Cj/hVn/U+eOP/Bx/9hQB6BRXn/8Awqz/AKnzxx/4OP8A7Cj/AIVZ/wBT544/8HH/ANhQB6BRXn//AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAd+3CnnFeWfGPxLo2lQaJb3V0q6hbana6jHAEJby0chm46cbvrg1pn4W4/5nzxwf8AuMf/AGFeUfFf4W6ppl5a6pZ6ne6tbTGK1MmpXYkuBIzEKNxCjbyMehznigD6G0TW9P8AEOlwanpVytzZzg7JACMkEg5B5BBHQ1pV494M+Dl5pnh2GHUfFPiHTryRmklt9J1DyoVJOBxtOWwBk/gOma6H/hVn/U+eOP8Awcf/AGFAHoFFef8A/CrP+p88cf8Ag4/+wo/4VZ/1Pnjj/wAHH/2FAHoFFef/APCrP+p88cf+Dj/7Cj/hVn/U+eOP/Bx/9hQB6BRXn/8Awqz/AKnzxx/4OP8A7Cj/AIVZ/wBT544/8HH/ANhQB6BRXn//AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAegUV5/wD8Ks/6nzxx/wCDj/7Cj/hVn/U+eOP/AAcf/YUAegUV5/8A8Ks/6nzxx/4OP/sKP+FWf9T544/8HH/2FAHoFFef/wDCrP8AqfPHH/g4/wDsKP8AhVn/AFPnjj/wcf8A2FAHft9015B4p8f+GdO+LmhvNqeBp0N1bX7ojMsbOF2KcDnkHOM4OM4xW+fhbgZ/4TzxwfY6v/8AYV4j4p+EXiG18fR6Tayi8GqPLNa3NxMN7qvLGU/3xkZOPmzkd8AH1TFMssSSRsXjdQysvIIPQ0/efRvyrN8P6Y2ieHNM0rzjL9jtY7fzNv3tqhc/TitHLf3v/HDQBJUVzCtxaywuAVkQowPoRipaQ9KAPOvgbdrdfCrTIw2WtpJon9j5jMB+TCvRq8b+Ct+lj4j8Z+Fiyg2upSzxLnkjeY2/Lan517JQAUUUUAFFFFABRRRQAUUUjfdPOKAKmqalb6Tp0t7clvLjAwqLuZ2JwqqO7EkAD1Irjfhbr2peJrLXdV1IlHbVJIIoA+5YY0RAFH4k5Pc5Pelm1a+1LVxq6aFeX2jWQL2LxzQqsj8hpiHcEgDIXjGCWGcjFL4GRMPhpa3D8tdXM8xOep3lf/ZTQB6VRRRQAUUUUAB6VwXxIVru98HaZG3zz69BM68fNHEGdv6V3p6V5/dFdc+NlhAvzQ+H9NkndgeFmnwgU++wE0Ad8cYrz34v3t1ZeE7caZdXdvq13ew2tm1vcPGS7NkghSN2QCOQeteh9q8u8VW//CWfGDQ9BE8sdvo9pJqU7wttYSMQqc9mB2n6NQBF8QHvvh9oGnatpGtajNfC6jga2u7p7hLzIO4bXJIPHVcEV6lCxaNCy7GKjK+ntXkF/bL4Z+M+g217LPrkOpxnyH1FzLLYuM/NH/CBwM8Z6817Ep56/hQA6iiigAooooAKKKKACiiigAooooAKKKKAA9K4bU8XHxn8Pxct9l0q6nx027mRM+9dwehrhLJFvPjlqdypyLDQobVh6NJK0n8hQB3lFFFABQaKQnAoA8E1GVvB3xp1TXApSyiuoDdnput7mMKzn2SVB+de9j2rzPxnpVtN8SNJS9jLWPiDTbjR7hs8KR+9jP8AvZ3AfStP4bavdNYXPhnV3H9taEwtpuf9dFj91KPUFcDPXjnrQB3VFFFABRRRQAUUUUAB6Vz3ivRdV1/SnsLDWI9NhlG2dvshld17qDvXbkcH2PauhooAx9T06+vPD0mnWd7b2c0sBhM/2YsqgqQSibxjHbJOPeqHgXwvdeD/AA5b6JJqMN7b227ymW1MLjcxY7vnYHlu2K6eigAooooAKKKD0oAhvLmGysp7q5lWKCGNpJJGOAiqMkn6AZriPhdbTXenal4rvIil34gujdKGHzJbr8sKn2C8j/eqH4g3EviDUbDwHp7sr6hifUpUPMFmp5+hcjaPXkd67y2ghtLeK3t41ihiQIkaDCqoGAB6AAUASTBzC4iZVkI+VmXIB7ZGRn8xXB6d4J8Q6Z4l1jXYvEmnSXWqlPN83SXIjVBhVTE4OAMdc9BXf0UAcfongSOz8St4m1fU59X1ryzFFNJGI44EPGI0HTgkZyTz7knsKKKACiiigAooooAKKKKACiiigAooooAKKKKAEPSuC+H4W/8AFPjjWwD+/wBVFkCe4t0CZHtkmuw1nUY9H0S/1OYZjtLd52HqFUnH6Vzfws0+Ww+HWkm5Yvc3aNezOerNKxkyffDD8qAOyooooAKDRRQBw3xVs55PBp1W0TdeaJcxanCM4/1bZb/xwtVXxZY3Nwum+PvCqm41C2twzQIP+P8As2AYx8fxAHcvXnPXiu/uIIrq2lt50WSGVCjo3RlIwQfwrhfhdcS2elaj4UvHZrzw/dtagv8AeeBiXhc+xXp7LQB1Ph/XrDxLo9tq2mTebbXC5GeCh7qR2YHOR+vStWvNtZ0rU/A2t3Pijw3bvdaVdMZNX0pG6t3nhHZxzuHGf1XttE1vTvEWmwanpV0lxaSjKsv6gjqCOhBoA06KKKACiiigAooooAKKKKACiig9KAEPSsDxd4ptPCehPf3MbTzORFa2sfL3MzfdjUe/48Z61L4m8T6Z4U0p7/VJiqk7IokGZJ3PREXqT/Lqa5nwx4d1PW9bTxl4uiEd4EK6bph5WwiPOW9ZD3Pbp6BQDR8CeGrvSLa61bW3WbxDqzie+kHSMY+WJf8AZQcfXPtXYU0dRTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoPSig9KAOB+K00t14fsfDdszC416+isgUPKRZDSP8AQKuD7NXdQxJDGkUahY0UKqjooHAArgrPPiX4xXV5jdYeGrX7LCexuphmQg+yYUj1Ir0GgAooooAKKKKAEb7przvxQT4T+IWj+KF+TTtSUaVqTDOEYnMEhA44OVJPQcd69FrL8SaFa+JfDl/o14P3F3EYy2MlD1Vh7ggEe4oA0TwCAM8dK4PV/BWoaTq0/iDwPcRWd/Md15p0xP2W+PqR/A/+0MZJ5xkk3Phzr11quhyadqxI1zR5DZXyk5LMvCye4ZRnPcg12ZoA4/w78QNN1i9OlahDLo+ux8Sade/KxPrG3Rx3BHbnGK68VjeIvC2ieKbL7LrOnRXSL9wtwyH/AGWHIrlR4f8AHHhVf+Kf1uPXbBOlhrJxMq/7M68k9AA3AFAHolFefL8UI9MBTxX4d1jQXX787QG4tgfQSxg5/Kt2w8feEtTCfZfEemOX+6jXKo5/4CxB/SgDpKKrx3ltMm+O4hdD3VwQf1pJb60gXdNdQRr6vIBQBZorltS+I3g7S0drrxLpuV+8kMwmb/vlMn9KyG+I91qxMfhTwpq+q7uVup0+yWxHqJJP5YFAHft0riNa+IUEOoPonhm0bXtdAwYbdv3NuemZpei8g8ZzxjjIqofCHirxRz4u8QC1sm+9peibokf2eVvmYEcEDj0xXYaJoOleHbBLHSLGCztl/giXqfUk8k+5yaAOa8PeB5l1RfEXiq7XVfEGMRnH+j2Y67YV/wDZjyfbnPbDg06igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsTxZ4gg8LeF7/WbgBhbRlkQ/wDLRzwi/ixA/GtpvumvOdVP/Ca/Eu00aM79J8Nst7fntJdMD5Uf/ARlvzB5FAG58PNAn8O+EreC9JbUrpmvL+RvvPPIctk9yOFz7V1dNHXpTqACiiigAooooAKRvunAyfSlooA868ZxyeEPEdt46s42NmVW11uJF+/Dn5Zsd2QkD1I46V6BbzR3EMc0MiyRSKHR1OQwIyCD3GO9FzBFdWstvPEksMqFJI3GVZSMEEdxivOvCd1N4I8Rf8INqkrvYTbpdCu5Od0fVoGP95O3qPTgUAelUU0dRTqAA8isTUPCPhvVHMl/oOmXEh6vLaIzfnjP61t0UAcXJ8J/Asjlz4bswT12llH5BqWL4U+BoXDp4as8+j7mH6k12dFAGTp/hjQdJfdp2i6dZv8A3oLZIyfxAzWrS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLUN5dQWVnNdXUqw28KGSSR2wFUDJJP0oA5/xv4nPhfw+89vF9o1O5cW2n2wGTNcPwox3A6n2FL4H8Mf8It4ejtJpfP1Cd2ub+4zkzTvyzH6dB7D1zXO+EYLjxp4lPjnUonjsIVeDQrZ+NsZ4edh2Z+3oPXgn0YdaAFooooAKKKKACiiigAooooAD0rn/ABb4WtfFmhmxnkeC4iYTWl1F9+3mXlXU/wCeK6CkbO0460AcZ4H8U3epPcaB4gRLfxJpvFxGOFuI+izx+qnvjofTIFdpXI+MfCD6+ttqWl3C2HiKwO+yvewP/PN/WM85GD1zjkgu8G+MR4i+0afqNqdO8Q2HyX1g55X/AG067kPGDz168gkA6yiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQnAzQAN0NeY6hK3xR159Fs5CfCWmzD+0blDxfTA7hChHVF4JPfj2Jk13WrzxzrMvhXwvdtFp0RxrOrQ4IRf8AnjE3QuehPb867vR9IstC0y30zTbdLeztk2Rov8z6knknqTyetAFqGJIVSONFSNFCqqjAUDgAD2FTUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjHCk+lcl4t8G/2+9vqum3J07xFYg/Y76Mf+Q5B/Eh9D0zx1IPXUjEgZAzQBxvhLxq2qXj6Fr1sNM8SQL+8tWPyXCj/lrCf4lOCcDpz1612dc74o8IaZ4tskivQ8VxC2+2vIG2zQP2ZG7fTpXM2vi/V/Bl1HpXjoK9o7bLXX4UIil9FmUf6t/fofwJIB6RRUUM0U8SSQypJG43I6EEMPUEcYqWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikPQ1keIfEmk+FtNN/rF7HbQg4QE5aQ/wB1R1Y/T8eKANWV1jiZ3YKijLMTgAdzntXmt9rep/Ee6m0bwvNJaeHkYx3+tqMGbsYrf19C/Qcn03KNM1/4kuJtehuNE8LBgY9L3bLm9A6GYj7if7A5/JTXodlZwafaxWlpBHBbQqFjijUKqL2AAoAraJomneH9Ng03S7VLa0hXCog6+5PcnuTye9aVFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVBeWsF7Zy2t1BFPBKu14pVDK49CDwanooA85fwhrvgyVrrwPci404ndJoF7IfLPr5Eh5jb2PGSSegFa/h34g6Trl4dOull0nWk/1mm36+XJn/Zzw478c45IFdeaxPEPhXRPFNp9m1nTorpV+4zDDof9lhyP85oA2hS153/YPjfwkgPh/V18Qaegx/Z+rnbMo/2JxjJ6cMMYqzafFHR4rhLLxFbXnhy/PHl6lGVjc99koyrL75H0oA7uioba4huoUnt5kmicZWSNwysPUEcEVNQAUUUUAFFFFABRRRQAUUUUAFFIelZes+IdI8P24n1bU7WyQ5x50oBb6A8t9BQBq1Fc3ENpbSXFzNHDBGpZ5JGCqgHUkngCuBPxA1bxD+78FeG7m9jbpqeoA21qB/eGfnkHsMGlt/hzca1cJeeOdYk1mRTuTT4gYrKE+yDl8ep7cEGgBLr4g3euzy6d4D08apOp2S6lOCllbnvlushHHCjvnJ6Vd0H4f29rqS654hvJNd17GRc3A/dwf7MMfRAPXr16ZIrr7W2gs7eO3tYI4IIxhI4lCqo9ABwKnoAaOop1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVWvLK01C2e2vbaG5gfhopkDqR7g8GrNFAHCXHwr0SG4a60G71Lw9cu25jplwUjc9t0bZXHsAKYLH4maPtFvq+i6/ADlhe27WsxHYAx5XPuRXfUUAcD/AMJ34i05Sdb+H2spg43aZJHegj1wpBFKfi94RtsLqU2oaXITt8u90+ZGz07KR+td7SNjacjI9KAOUt/iX4KulDR+J9NUEZ/eThP0bGKtDx54PYA/8JVon46hCP8A2atK40bSrobrjTLOYjn95AjfzFZ7+CPCUhMj+F9FZmOSTYREn8dtADH8feDkPPirRfwvoz/Jqzrv4s+BLIEyeJLV/wDriHl/9ABrZg8HeGLbPkeHdIi3dfLsYlz+S1pQWVpaMBb2sMPGP3cYX+QoA4tvirpE6qdJ0fxFq4PRrLTJCv5vtxSN4k8fai23SvBUVihHy3GrXygD6xx5YV31FAHn58KeNtaUjXvGZsYXGGttDtxFg+0z5etHR/hr4W0a5+2Jpq3l+cFru+c3ErEfxZfgH3AFdfRQAgpaKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9k='] Multimodal Competition True Theorem proof Geometry Math English 50 "A king strapped for cash is forced to sell off his kingdom $U=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$. He sells the two circular plots $C$ and $C^{\prime}$ centered at $\left( \pm \frac{1}{2}, 0\right)$ with radius $\frac{1}{2}$. The retained parts of the kingdom form two regions, each bordered by three arcs of circles; in what follows, we will call such regions curvilinear triangles, or $c$-triangles ( $\mathrm{c} \triangle$ ) for short. This sad day marks day 0 of a new fiscal era. Unfortunately, these drastic measures are not enough, and so each day thereafter, court geometers mark off the largest possible circle contained in each c-triangle in the remaining property. This circle is tangent to all three arcs of the c-triangle, and will be referred to as the incircle of the c-triangle. At the end of the day, all incircles demarcated that day are sold off, and the following day, the remaining c-triangles are partitioned in the same manner. Some notation: when discussing mutually tangent circles (or arcs), it is convenient to refer to the curvature of a circle rather than its radius. We define curvature as follows. Suppose that circle $A$ of radius $r_{a}$ is externally tangent to circle $B$ of radius $r_{b}$. Then the curvatures of the circles are simply the reciprocals of their radii, $\frac{1}{r_{a}}$ and $\frac{1}{r_{b}}$. If circle $A$ is internally tangent to circle $B$, however, as in the right diagram below, the curvature of circle $A$ is still $\frac{1}{r_{a}}$, while the curvature of circle $B$ is $-\frac{1}{r_{b}}$, the opposite of the reciprocal of its radius. Circle $A$ has curvature 2; circle $B$ has curvature 1 . Circle $A$ has curvature 2; circle $B$ has curvature -1 . Using these conventions allows us to express a beautiful theorem of Descartes: when four circles $A, B, C, D$ are pairwise tangent, with respective curvatures $a, b, c, d$, then $$ (a+b+c+d)^{2}=2\left(a^{2}+b^{2}+c^{2}+d^{2}\right), $$ where (as before) $a$ is taken to be negative if $B, C, D$ are internally tangent to $A$, and correspondingly for $b, c$, or $d$. Show that the plots sold on day 3 have mean curvature of 23." ['Because 18 plots were sold on day 3 , the mean curvature is\n\n$$\n\\frac{2(38+38+35)+4(23+14+11)}{18}=23 .\n$$'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIATABxwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ8CgBaKztU13StFhEuqanZ2SHobiZY930yefwrlH+LXh+dnTRbbVtekQ4ZdMsJJNp/3iAP1oA7yiuD/wCEr8b3rgaf4BeGJhkT6jqMcWPrGoZqao+K1wTvfwnZxkcBVnlcdOvIHrQB31FcN/YnxFlO5/GWmQHpti0gMPzZ6aPDvxDDs/8AwntqQQMIdFjwv/j2aAO7orhv7I+I8GfL8V6Rc9x5+llB9PlemLP8U7VyZrXwpfxjosEs8Ln/AL6BAoA7yiuB/wCE38VWAZtZ+HupLGvRtNuYrwsPZQQamtfix4UluEtr27n0m6brDqds9uR9SRtH50AdxRVazv7TUbdbiyuoLmBxlZYZFdT+IOKsA84PWgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooPtTXcKpYnAHc9qAFJwKhuLqG0t3uLmWOGGMbpJJGCqo9STgAVxGofEV7+9fSvBennXr9Tte6DbLO3Pq8vRj0O1evOD2qO0+HEuszx33jnVZNbuVYOlkmYrOE/wCygwWxyMt1BORQBJcfE6G+uHs/COk3niS6Q7Glth5dqjejTN8o45GM5qM+HvHfiMf8T3xNHotq3Wz0OPEhXtmd+Q3rtGK7y2tbezt47e2gjghjXakcShVQegA4FS4HpQBx+l/DDwjp0pnfSY7+7bBe51BjcyO3qS5IB+gFdekaRoqIiqqjCqowB9KdRQAhAPUUYFLRQAYowKKKAEwD2pcUUUAJgVDd2drewNBd20M8LcNHKgZT+BqeigDiLz4VeGnuGu9KjutDvSAPtGk3DQED/dHyY/Cqn2b4jeGsNa3lj4qshn9zcj7JdY7AOMofq3NehYpNoNAHF6X8TdEurwadqy3Og6nwPsuqR+Vu7fK/3WGeBzk+ldmDk1R1fRdM12xaz1WxgvIG/gmQNj3BPQ+45riW8G+IfCDGfwPqhmsxnOiapI0kWPSKQ/Mh9Acgk8mgD0aiuQ8P/ECw1a/Gj6lbTaNroGW0684ZveNuki8HGOeDxXWq2SeelADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApCcUprkfFnjVNAlt9L0+1bU/EF3/x7afCfmA/56Of4EGDyf5AkAGl4k8VaV4V043uqXIRSdsUKDdLM/ZUXqxP5euK5BND8R/ET994nMui+HnwYtGgciacf9PD9h/sDHXkArzreGfBD2+pf8JD4mul1bxC4+WUr+5tAf4IVPQDpu6n25z2mBnOOaAKmm6ZY6RYx2WnWkNraxjCxQqFUfh3PvVvFLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJtU54HPX3paKAMbxH4W0bxTp/2PV7GO4Qf6tzkSRH1Rxyp+n45FcZ/aPiT4bYGqyXHiHwwM4v1G67sk/6agf6xMfxDkYOccCvTKawBGMDB4oAq6ZqdnrFhDf6fdxXVpMu6OWI5Df8A1+xH8quV5zqfhTVPCOoT694GRSkjeZfaExxDcju0f/POTH4Hj0weo8L+LNO8WaZ9ssHZWjbZcW8o2yW8g6o47Ec+1AG9RSDOaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPShjhcj+dct408Wnw9ZQ2lhb/bdd1BvJ0+yx99/7zeiLnJPHHcdQAVvGHjC50y6tdC0KCK+8RX5Hk27Z2QJ3llxyEH69ulWvB3g6Hw5FNd3c51DXL0iS+1GUZeVuOF/uoMYCjHQU3wX4PHhyCe7v5/t2u3zebfX7Dl2/ur6IOgHH07DqwMUAJgZzS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADSOK4bxZ4QvF1UeK/CZjt/EMI/fQk4i1CMY/dyf7RAwG9hz0I7sjPWkI4oA57wj4tsvFmltc2yvBdQN5V3ZyjEltIOqsODjg4Pf8CB0I61wXjHw5f2Wqr4z8LR51i3QC7tBwuoQDqh4++APlPtjngV03hnxDYeKNEg1XTZN0EowVbho2HVGHZgf84IJANiiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopCaAFopOc0ZP+RQAtFIKWgAooooAKKKKACiiigApDxS0jHAzQBl+INdsvDeh3Wr6lJstbZN7cZZj2Ue5JAFcz4G0C9uL2bxl4kixrmoJiC3Y5FhbdVjX/AGjnLH1OMA5znon/AAsTx80p+fwz4cnwg/hvL0dT7qn6npkE49JXr+Hf/P1oAUAA5xz0zS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANZeOBz6mvNvEEUvw68SyeLLFCdB1GRU1m2UE+S5OFuVA9zhh3z6nI9KIBGCM1Dd21vdWk1tcxJJbzIySxuPldSDkH2IzQA6CZLiJJonWSJ1DI6kEMDyCD3BqWvOfBdxceEvEVx4Cv5JHtwpudEuJTky2+TuiJ7sh/TsBivRQc0ALRRRQAUUUUAFFFFABRRRQAUh4FDZ4x61zHijxxpvhlorMrLfavcD/RtNtF3zSe5H8K8H5j6HGcYoA6YtjJrkNU+JvhzT7s2FpNPrGpD/lz0qI3Mnv8Ad+UY4zkislfCXiPxkfO8aag1jp78roemybVx1xNKDlz6gHHAI9K7bSND0rQbQWmlafb2cA6pDGFz7n1PuaAOQGs/EjWudN8O6XosOeJNWuTLIy+oSL7p9iaePC3jq7lL33xAMKMP9TY6XEgX6OxLV3uBRigDhh8PdQb5pfHvigyHqUuI0X8tlNbwR4igjIsPiDrEbD7puoIbgfkVH867ujFAHBfY/idpYHkavoOtoB832y1e2kb6eWSufrTB8SLzSBjxf4V1PR0HLXkAF5bKPVnj5XPpg16BikIB6igDP0nXdM12z+16VqFvewdC8Dhtp9CByD7HmtAEnqK4vWfhro95eHU9HeXQNYwdt5p3yBj1+dB8rgnBI4JwOaz4fGOt+EJ47Lx3bxm0ZgkOvWaEwtnp5yAZjY+uNuenAJoA9FoqK3niuYUmgkSSKRQyOhDAg8ggjgipaACiiigBDXHfELXrzTtHt9K0dv8AieazMLOyA6x5+/L7BFyc9jiuxbpXnnhHb4u8cat4vkUNZWedM0kkcFVOZZl/3mOAR2yD3oA63w1oFl4Z8P2ejWC/6PaxhNx6u3UsfcnJ/GtfFGMUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQQD1oooA5H4g+HLjWtCjvNKPl65pUgvNOkAyTIvJQ+oYcY6ZxngVqeE/EVt4r8N2Ws2oCpcxgtHnJjccMh9wQR+RrZPSvPNKx4P+KN7o2CmmeI1a+s/7qXS/65B/vDDfyoA9EopBS0AFFFFABRRRQAUjHC5oPArjfG/ie+042ug6CqzeItUytspGVtk/infrhV7ZByR3wRQBB4o8XX8uqnwr4Thju9edc3E7jMOnxn+OT1bHRe/XHQHS8JeC7Dwwks/myX+r3Q3XmpXBzLOx64P8K+ijsBkkjNT+EPClp4T0n7JDJJcXUredeXkpzJczH7zsTk/QZ49+p6EADtQAmBnNLRRQAUUUUAFFFFABRRRQAYzUN1bw3NtJBcRRzQSKVkjlUMrqRggg8EVNQQD1oA8vn03VPhfO+o6HHcaj4VJLXmlA75bIdTJASeV7lSfx5yPQtJ1ax1zTYNS026jubO4TfHIh6jp+BByCDyCCO1XGAwa8x1CKT4W+IG1izD/8IfqEwGo2wyRYTMcCZB2QkgEe/wDugAHqFIelMilWZFkR1ZHAZWU5BHqDTz0oA5H4k63caL4NuEsedT1CRbCxAOCZpTtBHuBkj3Ara8N6Hb+G/Dtho1qP3VpCI92OXPVmPuSST7muT1If8JF8YdMsfvWnh60a9mxyDcS/JGpHYhQXB969AFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVxfxO0qe78KHVNPX/iaaLMuo2h55aPll46gruGO/FdpTXVWUqwBU8EHofagClouqQa3o1lqlqcwXcCTJk8gMM4PuOh96v15/8MD/AGSdf8IOTnRL5vs4OeLab95Fyep+9n8K9AoAKKKKACiikPTigChrmr2mg6Jd6rfSeXbWsZkc9z6Ae5OAB3JArlvh7o13Il14u1uIDWtaAkKH/l2t+scI9MDBPcnryKqeMVPivxxong771jAv9q6oAOHRW2xR/RnySD2wa9CU5JoAUADoKWiigAooooAKKKKACiiigBGOBWdHrulza22jRX8EmopEZntkYM6ICBlgPu/eHB55rSIzXnYhih/aDURRqgbwyWIUYyftPWgD0GSRYo2d2VUUEsWOAAO+a5/UvHPh3RtNs7/U9UjtIbyNZYBKjB3UgHOzG7oeeOKk8Ws02kppUZYS6rMtkNpwQjZMpB9REsh+oFXk0ewjvp777PG1xKixb3QHbGo4RfRc5OB3JoAfpeq2Gt2Ed7p13Dd2smSssTZGQensR6Hmpr21t72ymtLqJZbedGjljYZDKRggj6Vw/wAMNJSwPiS7slEWkXuqSPYRKMJsX5S6jspYHHqFFd+RkYoA888DXU/hnXL3wFqEzSLap9p0ieQ5MtoT9zPcxnj6ZwABXoX3hzx/SuG+J+nzx6RaeKdOTOp+HpvtaAcGSHpNHn0Kcn/drT8R+IYIfhxqXiGymHlNprXFtIeMlkzH+JJWgDI+GAGqDxD4qYKx1nU5DDIO9vF+7jH4Yau+AArn/Aulf2J4H0XTmQJJDZx+Yo7SEbn/APHia6GgAooooAKKKKACg0UUAcp8RNU1nRvBmo6los9tDNbRGRmmiLnA67eQAeepyOOlanha8n1Dwno97cyeZPcWME0jkAbmaNSTgccknpWR8UBj4Y+Iscf6G3StLwZ/yI3h8/8AUNt//RS0AblFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhGRS0UAef6kf7E+NGjXYLCDXdPlsXA6ebERIrH3KkqK78GuD+LG2y8P6Zr5JUaLq1teOR1Me/Yy/iH/Su8FAC0UUUAFIelLWF401F9J8E63fxuElgspXjY9n2Hb+uKAOb+GYGsT+IfF74Y6vqDJbOB1tocxx/To2a9AAA6Vz/gXTf7H8DaHYFAjxWUW8D++VBf/wAeJroaACiiigAooooAKKKKACiiigBCcV527Tn45R3/ANg1E2X9hmyN19hm8vzvP37d23GMd84969FpMCgDBMUl74zEsiMLbTbXEbEHDTSnkj3VEA4/56msDxh4rnt9S/sRNB8R3NkVzd3OnafI4YH/AJZI/A5H3mB46Dkkr3u0Y6UbQO1AHN+FfEP9ttNDb+HtU0iztI0RBqFr9n3E9FjTn5QByeMZGBXS0gABzS0ARzRRzwPDMgeORSjqwyGB4INeFXcjR/DS+8BzyN50HiKLR4t7ZZoXmEsbH6qCB7LXvJrw/wAWWPlfH/RrNFPk6lPaai+Bx5kCzIPxAGaAPblAHA6CnUgpaACiiigAooooAKRjtGe1LRQBzPjrStU1/wAJ6ho+mLZ+beRGIvdTNGEBI5wEbP6Vc8KWWoaZ4a07TdSS2E9nbRW5a3lZ1fYoXd8yKRnHTmtnApaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOa+IVkNQ+HfiG3K7ibCV1XHVlUsv6gVd8KX51Twjo1+33rmyhlbnoSgJH51o3kC3VnPbsMiWNkP4giuP+EN19s+FegynOVheLn0SRkH8qAO3ooooAK4T4xtJ/wAKt1eOFiJJmgiBH+1MgP6Zru64T4xSCH4Z6hO4ykU9q7fQXEdAHcRoEQKowAAMelPpB1NLQAUUUUAFFFFABSMcUtIxAHJAoA4PxX8W/DPhDWRpV9LczXYK+atvEH8kMAQWyR2IOBzjtXX6TqtnrWmW2pafOJ7S5jEkUgBG4fQ8j6HpXhfxI+DHiDXfGl1rGiNbTWt/IrOksxRoG2gEnI5XjIxk84xxXX+H/gX4RtdDtINb00X2pKn+kXC3Uyq7k54CsBgdBwDgc80AepZozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHf5ozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHf5ozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHfMcCvEPG/jvw1Z/GXw3cyXjldGNzBfyRxlhGzIVVfUkEnOM4+uRXYH4J/DwYx4e7/8AP7cf/HK8Y8WfB6/sfiBZaJplxara6vJO+nmR3AiRF3srnBPAOBjOe+M0AfUNrcxXdvFcQSLJDLGskbqchlYZB+mKmzXm9h8DvA0Njbw3mj/aZ44lWWf7VOvmOAAWwHAGTk4A71Z/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3+aM1wH/Ckvh5/wBC9/5O3H/xyj/hSXw8/wChe/8AJ24/+OUAd/mjNcB/wpL4ef8AQvf+Ttx/8co/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3+aM1wH/Ckvh5/wBC9/5O3H/xyj/hSXw8/wChe/8AJ24/+OUAd/mjNcB/wpL4ef8AQvf+Ttx/8co/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3k0yW8LzSuqRopZmY4CgDJJNefaP8avCOteI00a2nulkldY4J5YNsUznoB1YZJx8wH+KXnwP8BS2U8dtopt5njZY5hdzMY2I4bBfBwecH0rzHw38CPE1n4ttJtSls0060njmeaGckyhTnCDbnPHcDrQB9JAnOPanUxcDp+Vcm/j6H/hJ7nw7DoerzajbxCaRI1hIEZx827zcdxwefagDr6KwvD/izTPEc13b2jSxXlm2y6s7mMxywk9Mj09xkVu0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIa4X4QFB8PoIkXZ5V3dIVAxj9+5x+RFd0elcN8JS0ngk3DgAz6hdyYHbMzf4UAd1RRRQAVyfxNsRqHw08QwEZ22bygYzynzj9VrrKiuYI7q2lt5V3RyoUdfUEYNAFLQNQGreHdN1FTkXVrFMP+BKD/WtKuE+E1xIvg5tGuH33eiXc2nTHGM7HO0j22la7ugAooooAKKKKACqeqala6RplxqF7MIba3QySOewH8z2A75xVpzhe341534pvk17R9b1MyKdG0i1uGthni6uURhvHqiHKj1bJ/hUkA2fh74mm8Y+HJNalhWGGW6lW1iHVIlIVc+/Bz9eOK63AFcJ8G7c23wp0NSOWjkkP/ApXP8AIiu7oAKKKKACiiigAooooAQ4Iwa8f8XagV/aC8IRAKYbaAqzZ6PMJQAfwUGvYG6V4Jqi/wBo6nqHjYsyQw+LrGFGzwYLf90WB9GZz+VAHvSnPI7jNOpB1paACiiigAooooAKKKKACiiigAooooAKKKKACiiigApMClpDntQAHgDAzXivhTxVDa6p4y8b3Ol6reQXV2Yrea0tfMUW8IKg5yMZGCe3HWu7+JHiq18MeCtTna6iS+e3aO1iLgSM7fKCq9TjOfwrm/DHizwt4P8AhxpenW+o22pX0dqD9hsXE8ssz/My7VyR8xIy2KALnw60ebUPEOsePrqa23a0qpb29tKJFiiXA+ZhwX+UA46EH1r0ivPfgz4Z1Lwx4FEGqIYrm6uXuvIP/LFWCgL7H5c4969CoAKKKKACiiigAooooAKKKKACiiigAooooAbIwVCxOAOSa4X4NrKPhZo8kw/eymeVvfdM5B49sV0fi29OneDdbvR96CwnkX6iNiP1qp8P7T7D8PvD0BXaw0+FmHoxUMf1JoA6SiiigApD0paMZ60AefB/+EX+MDBmK6f4otgVJ6LdwDGPQbkP1Jrv1JNcz498NSeJvC8tvZuItTtpFu7Cb/nnOnKn8eR+Oan8F+JYvFfhyDUhGYboEw3kDfegnXh0IPIweR7EUAdDRRRQAUhpaCM0AcH4h8Y6Zf67a+DbLWYI72+YpdSxTANBGPvRqwPEr/dUdRyeoGcD4paP4L8O+AdT8rSNDs9Rkg2WoFvEkxJYDK8bjgZOfY161tGCOxowPSgDkfhjdWFx8PNDjsbqGcw2USzCNwxR9o3BvQ5yPwrr6QADoKWgAooooAKKKKACkNLSN93pQBzPj7xC/hrwde3sALXzgW9nGo+Z55PlQAdyM7segNc14g8HLpnwGu/D68y2en+c7Lk7pkIlYj6sD+dSRN/wnfxLEyHfoXheQhT/AA3F8Rzj1EYP4H1Br0KaKO4gkhlUNFIhV1PdSMYoAq6FqKaxoGn6nGAFu7aOcD03KGx+taFcL8JZ5F8Ff2RcPvutFvJ9OmOMZKOSuPbay13VABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJgUYFLRQAgAHSloooAKKKKACiiigAooooAKKKKACiiigAoNFIaAOH+Lc0h+H11p9u+251O4gsYQf4mkkUEf98hq7S3jSGCOKMYjRAqj0AFcL4v8A+Jv8RfBuhAB4reWXVrkd0ES7Ym+hdiK74d6AFooooAKKKKAEbpXm/iKKbwD4ok8Y2MTvot+Vj1u3QZ8pui3KgenRgOvXGTkek9ajmhingeGWNZIpAVdGAIYHggg9RQAy0uob22iuLeVJYZUEkciHIZTyCPYip68tX7Z8Jb2Tak134JuZdwxlpNJZj6dWhySfUc9/v+l2l3BfWsV1azJNbzIHjljYMrKehBHWgCeiiigAooooAKKKKACiiigAoopD064oAGOBmuG8ceJL4TQeEvDj58Q6kv8ArM8WUHRpmI6eg75xjJwDY8W+NW0q4i0PRLYan4lu1PkWan5YRj/WSn+FBwcHBPt1FjwZ4QXw5bT3V9P9u1y+bzb+9Yfff+6vog6AYHTp0AANPwzoFl4Y0C00ewUi3tk27mHzSN1Z29yST/8AWrWwB0owM0poA8/0onQfjBrOntkW2u2kd/b8YXzYv3cij1YjaxrvwcmuB+KFu+n2Wl+L7aNnuNAu1mkCjLPbv8kyj6gg57YruraaO5gjnhdXikQOjqchgecj2NAEtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLWB418QL4X8H6lq5GZIYsQrjO+VvlQY7/MR+GaAOe8Hn+3fiJ4s8RkBoLZ00e0focR/NKPpvI5r0DGK5vwHoLeG/BemabLk3SxeZcsTkmVzufJ7/ADEj6AV0lABRRRQAUUUUAFIQD1FLRQBHLFHLE0ciK6MNrKwyCD2IPUV53N4W1zwPdy3/AIIC3WmyOXuNAnk2rnqTA5+4fY8fkBXpFIVB6igDmfDPjvRvFO+C2le21KHifT7tPKniPoVPX6iulUk+lc/4m8E6F4qVH1G0xdx8Q3sLGOeLrja454Jzg5Ge1c8mmfEHwuwGmala+JtPTkW+pHybsL/dWYfK31YUAeh0VwP/AAtK207K+JtA1rQygHmTTWpmgB9pI8g/XFa1n8RfB19Grw+JdLG7oJblYifwbBoA6iiqEWt6XOm+HU7KRfVJ1I/MGqlz4u8N2X/H14g0qDBxiS8jXn8TQBtUGuHufi14PiuPs1pqMmp3eMrb6dbvOz/QqNv61WbxP4519dugeE10uFvu3muy7CP+2KfNn0ycUAdxd3tvp9rJdXlxFb20Yy8szhFQepJ6VwE3jLWfG0r2HgW38uyBKT6/eREQp2PkoRmRuvXgcZ4Oas2fw0i1C6iv/GGr3PiK5Q7kgmAjtIz/ALMK/KfTnIPpXdxQxQxJFFGqRoAqIgwFA6ADtQBgeFPCGm+FraYW3mXN9cNvvL+5bfPcP1y7H68Dp+JyejpNoBzjmloAKKKKAK97aQX1jPZ3EayQTxtFIjDIZWBBH5GuL+Gd3cWdnf8AhDUHZr3w/N9nVm6y2zZaF/8Avnj22813Z6V5548STwvr+m+O7ZWMNtiy1ZFGd1q7cPj1RsHjk9M4oA9DBzS1HDKk0aSxsrxuu5WU5BB6EGpKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARuleeeISfFfxK0jw6nzWGi7dU1HHQy8iCPjv1YjoQR6V13iXXrbwz4dvdZvD+5tYy5Xu7dFUe5YgfjWJ8O9CutM0SXUtXGdc1eU3t8SMFGP3YxnkBBxjsc0Adeue/WnUUUAFFFFABRRRQAUUUUAFFFFABSAAdBilooATA9Kyr7wt4e1Ny9/oWmXTnktNaRufzIrWooA5Z/hr4KdizeGNMyeuLcAfkKmg8AeD7bb5fhfSAV6FrONiPxIro6KAIbe1t7SIRW0EcMY6JGgUD8BU2BRRQAgAHSloooAKKKKACiiigAqve2tve2U1ncxLLBOjRSRtyHVhgg/UVYo60Aed+A76fw5ql14A1SdmlsVM+lTyHJuLIngf7yHKkccDgYXNehg9M56d65Px34Xn1zT7a+0mQW+v6VJ9o06boC38Ubf7LgYP4duDd8G+KLfxboSX8UbQXMbGG7tX4e3mX7yEfXp7EfSgDoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkJxihiQOK4rx14lvrQWvhvw+yP4j1X5IfS2i/juG9ABnHvn720igDLu8fED4gpZKvmeHvDcwkuD1S5vR92P3CDk+5wR0r0kCsbwt4dsfCvh+10ewH7qBfmc/ekc8s59yf8BwK2sUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACN0rzvxVpt/wCFddfxvoEDzRsgXWrFOtxCv/LVB/z0QZ+o/HPotNIHXHNAFPSNWstc0u31LTrhLi0uEDxyJ0PsfQjoR2INXq8w1K0vPhjqkuvaNBJceF7uTfqemxrk2jE8zwj+7/eXoPoRs9E0zU7TWNPgv7C4juLSdA8csZyGH+eMHkEGgC3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFI3TrignArE8UeKNP8ACejNqOou2MhIYYxmSeQ9ERe5P6UAReLvFdr4U0j7XMjXF3K4hs7KP/WXMx+6ijr1IyR09+lZ3gfwtdaa11r+vOlx4j1TD3Mi8rAn8MKf7IGOnUjqcCqnhPw1qWo6x/wmHi1E/tV4yllYjlNPiPYeshz8zde3tXe4oAQAA9KWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKCM0UUAIQAOleaXujar8O9Rn1rwtave6DcOZdQ0SMfNEx6y24+g5Tp6cEbfSyAetGMDAoAzNB8Qab4k0qLUtKukubWT+JeqnurDqCMjg1piuC17wTe2WqS+I/BV1Fp+ruQbm0cf6LfY7Oo+63+0PU9NxNaHhjx7Za5ePpN9BJpOvw/67Tbo/Nn1jbpIvfI7c4xQB11FNVtx4ORTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRsgcfyzQTgVwes+Pbi81GXQfBdrHqurIds9yx/0Sy68yuOpGPuj37jBANfxZ4zsPCtpF5wku9RuTss9PtvmluH9AB25GTjj3PByfDXhDULvWE8U+MHSfWAD9lskO6DTlPZexf1b9T1N7wn4Hg0O5l1XU7uTV/EFyP9I1G4AyP9iNeiIPQfywB12KADFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQRmiigBCoOMjpyKwfFHg/RvFlokOp2xMsRzBdRHZNA395H6jnnuOBkcVv0UAebrqXjDwH8msW8viXQkHGoWqf6ZAo/56x/xjp8wOeCSe1djoPibSPE9j9s0XUILyH+Lyz8yH0ZT8yn2IrV2L2H0rkde+HOi6vfNqlo1xo+sYONQ02QwyE9fnA4YHjORntmgDrxS154upePvChC6lp0PinT1HN3poEV2o9WhPDEnPCn3NbGifEbwzrk/wBli1FbW/DbGsb4eRMrf3dr4yfpmgDq6KaCT3z7gU6gAooooAKKKKACiiigAooooAKKjeRYkaSRgiKMlmPAHqfSuN1L4peHra7aw0trjXdRHS10mIzn6lh8oHrzxQB2rHAzXN+I/HOh+F2SG+uxJfSECGwt18y4lJ6BUHPPYnAzxmsE2vxB8WA/bLqDwnprDmG0YT3jj0Mn3U9iBkV0HhnwRoPhUO2nWQ+1SZ828nYyTyk9SXPPPoMCgDmm0zxd48Gdbll8N6A3/MPtnBu7hP8AprIOEBHVRz1Brt9G0bTdB0+PT9Ks4rW1jHypEMc+pPUk+pyT3rQ2jjjp09qWgBAAOAMCloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEwKy9a8NaL4hgEOr6Xa3igFVMsYLID/dbqv4YrVooA8+Pw1l0sbvCvinWNGCgCO2eT7XbRj2jkyf1p/nfE7Sc7rbQdehQceXI9pO/1BygrvcD0pcCgDgT8RNWscLrHgHxFBIcZNiiXqL/wJGH8qc/xg8IWyg6jc32nMeNl3p06kH04QjP413mBSbQe1AHHwfFTwPOCV8S2K4xneSn/AKEBU3/CzfBP/Qz6b/3/ABXRPp9lKQZLSB8dN0YNN/svT/8Anwtf+/K/4UAcrc/FrwJahjJ4ktSF6+Wryf8AoKmoB8W/DlzHv0uDWNWz0Fjpkz7vpuUCu1isrWD/AFNtFHzn5EA/lU2BnOKAOD/4TnxNqCBtG+HurOD1Opzx2ePfDEk01rT4nauSs2p6FoMJ6G1ga6mHsd+EP4Cu+wKMCgDgk+Fel3syz+JdU1XxBKCGC3tyRErD+7GmAOp45612WnaXp+k2wttNsbazgBz5VvEsa5+gAq5RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k=', '/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAS0BMwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACikJwM1zWs/EDwnoJZdR1+yjkQ4aJJPMkH/AEy36UAdNRXBf8LNS9O3RPC3iPUwQCk6WXkwt/wADkI/lSpr/AMRL3cIPBFlYDPyve6qr5+ojU4oA7yiuCRfitLId8ng+CPnaFW5kPtnpUg034kuu5/EGgRsT9xNPkYD6EvmgDuaK4Y2PxMhbMeteHLgHr5tlKmP++XqOKb4qwZNzZ+ErsDGFt5riNj+LAj0oA72iuB/4S7xpZuRqPw9uGiXrLYajFPn6JwaF+Lfh63KjWrbWNCdjhV1PT5I934qGGPfNAHfUVm6T4h0bXUL6VqtlfAfe+zzq5X6gHI/GtKgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiig0AFB6VieI/FWi+FbD7VrF9HAp+5H1eU+iqOSf8muT87xt43OLdJfCWiNn95Koa/nX2XpDkHr94EDGaAOn8ReMvD/hVA2r6nFDIw+S3GXlfnsgyx+vSudHiXxv4kIHh7w2mk2jH/j+11irkd9sCncD3BJwa2/DngTw/4aka4s7MzX78y3903m3EhPUlz698YB9K6fvQB5+3w1k1f5vFvifVdZz962jf7LbH28tP55rpdG8JeHtAA/srRbK0cDHmRxDeR7v94/ia26KADvRRRQAUUUUAFFFFABTXRZEKOoZTwQRkGnUUAclqvw08IatIJpdDt4LgHcs9nm3cH1yhGT9c1lDwn4y0Dnw54ue9gXOLLXkMwP8A22XDgegxXoVFAHnqfEi40WQQ+NfD95ooztF9F/pNo3YZdASpPYEfWu30/UrLVbVLvT7yC6tn+7LDIHU/iDVmRFkjZGVWVhghhkEe9cJqHw1tIb2TU/Cl7N4b1I/eazANvL7PCflbv0x170Ad7RXncXjvVvDE62njzTVtoiwSPWbENJaOe28fejPQc989hXe2tzBeW8dxbTRzwONySxuGVh6gjrQBPRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFQXl1b2NnNdXUyQW8KF5JZGwqKOSSaAJicKTXn+p+Ob/WdQm0LwNbRX9/Gdt1qMmfsdp7bv429APrzhhVBrnV/inK8djNPpXg1WKSXQ+S41LBIIT+5F15PJH1IHf6Po9hoWnQ6dplrFa2kIwkUa4H1JPJPueT3zQBgeHPANjpF6dW1S4k1nX5P9ZqN2MlfaNOka9eB64zjiuvFLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEc8MdzBJDNGkkUilWSRdysD2IPUV57deCtV8K3D6l4AuEjiLF7jQrlj9mnOOsZP+rf9M46AYPo1B6UAcv4T8a6d4nM1qscthq1rxdaZdDbNCfXH8S8jBHqM4ziuorlvFfgqx8TeVdJNLp+sW3NpqVtxLC3of7y+qnsT0rM8OeMb+21ZPDHjGBLPWuRbXScW+oKP4oz2bGMr/LOAAd5RTQeadQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTZHWKNpHZVRQWLMcAAdyfSgCC/vrXTbCe9vp0gtYVLyyyHCqo7mvOLSyvfirfJqeqxzW3g+Ft1nYMdragwPE0nonovfr9UjSX4r60J5Q6eCrCb9yjDH9qTKfvEd4ge3fH1C+nRqEACgAAYAAxigBIkSJEjjRUjUbVVRgADoBjtUlFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAh6VjeJfDOmeLNJfTtUg8yNjujkXh4X7OjdVb/J4raoPSgDzvw54k1Xw/rcPhDxjMHuXX/iW6qeEv0HG1v7so469fyLehDk56VjeJvDWneK9Fl0zUo90bDMcg4eFx0dD2Ydf0PFc94M8Q6haapJ4N8Tyg6zbR77W6OQNQtxwJBk/fGDuHXvzzQB3lFFFABRRRQAUUUUAFFFFABRRSHgUAB6V5t4oup/HHiNvBOl3Dx6bbhZNeu4jyEP3bdT/AHmxz1wOOcEHe8d+J5vDukxwadEJ9b1KQWmnQcfNK38RB42qDkk8dASM5q14M8Mx+FNAi08SGe5djNeXLctcTty7knk5PHPOAOtAGxY2kNhawWdpCkNtCgjjjQYCKBgAVaoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARvumuX8aeFF8UaZG1vP9k1exfz9PvFHzQSjtn+6eAR0PBxxXU0h6Hr+FAHL+B/FLeJdMkS9hFrrNg/2fUbP/nlIO4/2WwSD0PPJxmuprzrxvZXHhjWYPHulQs5t1EOs28Y5uLX/npjuydc+g64GK72zuoL60gu7WVZredFkjkQ5VlIyCPYigCxRRRQAUUUUAFFFFABTXO2NiTgAZz6U49Oa4X4l6hdS6dZeFdMkCal4gmNorA8xQAZmkx7J/6FQBS8GI3jHxZeeObgE2EG+x0NT08sEiSYD1c5APXGQe1ej1R03T7fSNMtdOs4/LtrWJYo0x0VRgfy/Oodc13S/Dumy3+r3sVrap1aQ9T6ADlj7CgDTPSsHxB4z8PeF1B1jVYLZyAVhJLSt24RQWP1xXLLd+MvHgJsRL4V0FulxMmb+5Xp8q9Igcnk89CM10HhzwH4f8NOZ7Oy86/bmW/uj5txIx6kufXvjAPpQBkL478Q6yR/wjXgm/lgPS61SRbNMdmCnLMPoKcNO+J+oqftWu6BpHPy/YbN7hse/mEDP0rvB1paAODTwh40MeJ/iRds56mPSrdB+AwcUknhHxuoBt/iRcK+cZl0m3cEfTjn3rvaKAODa1+J+nlRBqXh3V4xy32q3ktpG+mwlRUR+ImqaQP+Kr8Happ0QPzXdmVvIEH95inKj6ivQaD0oAx9C8TaL4lg8/RtTt71AMt5T/Mn+8vVfxFbFcjr3w70DXLj7csEum6qOU1DTn8iZW9SV6/iDWIPEHirwGwTxVCda0MHH9s2cWJoB6zxAdB/eXPAHUnFAHpNFUtL1Oz1ixiv9Puorm0mGY5YnDK3r9MHj65zV2gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGTRxzQSRSoHjdSrKRkEHqMV594Jlk8KeJ77wLdyH7KFN7oruetux+eLPco2e5OCTwAK9DPQ1w/xL0u5k0a38RaWo/tbQJftsGP+WkY/wBbGcdmQHjvjFAHc0VQ0fU7bWtJs9TsnLW11Cs0Z9mGcH3HQir9ABRRRQAUUUUAIelee+FR/wAJJ8Qtf8USfNaWB/sfTiTwdnMzjPXLcBh1GRXReONfHhnwVqurA4lggIh4z+8b5U/8eYVi2M1l8LvhhZC+y0lvCoMScvcXLncVXuSXJ+g57UAavizxdZ+FbCN5Inur66byrKwh5luZD0VR6cjJ7e5IFY2geCLu+1OPxL41kS/1gZa2swd1tp4JyFRe7jjLHPI6nGTL4L8L3ov38WeKNs3iK9X5I8ZWwhxxDGOxGTuPck+5buqAGjg06iigAooooAKKKKACiiigApHGUIIyPSlooA851PwlqXhK/l1/wMg2yNvvtCJ2w3Q7tF/zzkx+B444weq8L+JtP8V6Umoae7YBMcsEg2yQSDqjr2Yf/qyCDW2eBXnfi7Rr3w1rDeN/DUO+dUxq+nLwL6Aclx6SL1zjkfkwB6LRWdourWeu6Taapp8wmtLmPzI3HXHofQg8EeoPpWjQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIwDKQQCDwQe9LSEZBB5BoA8++HmfD+t694JkYiPT5vtenBu9rMd2F7kI+QT6nFehV5744zoXjXwt4pj+WJpzpN8QOsU33CfZXGfxr0ADnp160AOooooAKQ9KWkPIoA4Dx8P7W8TeDvDWCYrm/a/uMDIMduu7aw9GJA/CqmjRj4g+N5PEUx8zQNElNvpKEZWe4H+suPcA4VTyOMjBBrmfG+r3Vx8RtZtNMdv7TNnbaFaDsj3JMsknttjXk9iRXr+haNaeH9FstJsl2wWsQjU45bA5Y47k5J9zQBoAYNOoooAKKQnAJPQUilWAZTkEcEUAOooooAKKKKACiiigAooooAKRvunnFLQeBQB5raD/hXvxAGnAbPDfiKUtbD+C0ve6D0V+MD14AwDXpCjkVz/jTw2vinwne6ZnbcMnmWsgODHMvKMD25Az7ZpngTxC/ibwlZ6hcLsvQDDeRkYKTodrjHbkZA7BhQB0tFFFABRRRQAUUUUAFIeATS0HpQByHibxufDuvaLpX9k3M39qXkdqtyXVY1LFQcckkjd6Ae9daOteb/FL/AJD/AIB/7D8P8xXpVABRRRQAUUUUAFFFFAHM/EDRf+Eg8BazpyKWle2aSEA4PmJ86f8AjyirnhLWR4h8JaTq2QWurVJJMdA+MMPwYEfhWyfunjPtXB/CoCx0fWNAC7E0fV7m1hXP/LIt5iH8d5/KgDvaKKKACkPApaRiFUknAHJNAHh3w7tX8R/GnxTrlxseDS7qZIGA53ufKU59PLiI/wCBV7lXlvwHtHHgi51abBm1S/luGb2Hy4/NW/OvUqAEPSvO4Vlt/j40H2u6lgk8PNP5U0pZEczqp2r0HCjpXoteeyEf8NBxDPP/AAjB4/7eaAOm8U3M0WgyW1s5S7vmWzgYdUeQ7S4/3VJf/gNZuqeBdP12VIdUkuDpltEkVnYwXDxRoFH322kFm7DJIAAx1NXJ/wDiY+NLaAcw6Vb/AGlv+u0u6NPxCLL/AN9iovEniqy0qaPSl1OxtNSuVLK11KqJAnQyMCRn2Xqx9AGZQDE+Fy6jaDxDo91ezXtjpepPa2VxO259oAJQnvtyPzPoAPQq53wtd+H0g/sjQtRgvfsy+ZM8MwmJZySXkZeN7Nub1PPFdFQAUUUUAFFFFABRRRQAUUUUAIelcB4c/wCJD8V/EehgBbXVYU1i2VRgK/8Aq5vxLbWr0A9K4Lxp/wAS7x34I1rfsQ3kunSc43CaM7Af+BJQB3tFNGc4p1ABRRRQAUUUUAFIehpaKAPMfiYbm41/wf8AZdO1K5Fjq8dzctbWM0ixxgrkkqpB+gJr0iCQTRJIofDLkb0KH8VPI+h5qaigAooooAKKKKACiiigBD0rhPDyGw+L3i+1LYS9trO9jTHAwrRsfzAruz0rhJ4/s/x0s7jkC78Pyw+xKTq354NAHeUUUUAB6VzvjPxPpvhTw3c3+oXXkh0aOAAEmSQqSqrjvx16DvgV0J6V5b8bfBWoeLPDtpdaYwa40xpJWgZ9qyRlcnAPBYbRj6tQBY+B+r6XefDqx02yulkurDcLqLBDRl5HYZyOc54Iz068GvS6+dvhD8LrzUdHk1y513VdKgvFUW39kXnkySKGYMZPlPGQMD6+1ek/8Ks/6nzxx/4OP/sKAPQDWW3h3RDqP9pHR9P+3A7vtP2ZPNz67sZ/WuT/AOFWf9T544/8HH/2FH/CrP8AqfPHH/g4/wDsKAO4jtYIZ5po4lWWdg0rAcuQoUZ/AD8qzL3wn4c1K7ku7/QNKu7mQ/PNPZxu7Y4GWKknAAH4VzX/AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAdfpeh6VowkXS9MsrFZDmRbWBYgxHTO0DPWtA9K4D/AIVZ/wBT544/8HH/ANhR/wAKtx/zPnjj/wAHH/2FAG14u8caH4KtYp9Zumjafd5EUaF3lx1AHTjI5JA5q34Y8U6R4u0z+0dGuvtEAcxvlSrI2M7SCBg4I9vQmvHfiP8ABjWruKzudD1XVdcljVlli1W+EkijjHlkgDHXIz6Ve+H3wa1PT9HlfV9f1vR7ydwTb6RqAjUKBgbyFIZs7uhwBjBNAHt9Fef/APCrP+p88cf+Dj/7Cj/hVn/U+eOP/Bx/9hQB6BRXn/8Awqz/AKnzxx/4OP8A7Cj/AIVZ/wBT544/8HH/ANhQB6BRXn//AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAd+3CnnFeWfGPxLo2lQaJb3V0q6hbana6jHAEJby0chm46cbvrg1pn4W4/5nzxwf8AuMf/AGFeUfFf4W6ppl5a6pZ6ne6tbTGK1MmpXYkuBIzEKNxCjbyMehznigD6G0TW9P8AEOlwanpVytzZzg7JACMkEg5B5BBHQ1pV494M+Dl5pnh2GHUfFPiHTryRmklt9J1DyoVJOBxtOWwBk/gOma6H/hVn/U+eOP8Awcf/AGFAHoFFef8A/CrP+p88cf8Ag4/+wo/4VZ/1Pnjj/wAHH/2FAHoFFef/APCrP+p88cf+Dj/7Cj/hVn/U+eOP/Bx/9hQB6BRXn/8Awqz/AKnzxx/4OP8A7Cj/AIVZ/wBT544/8HH/ANhQB6BRXn//AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAegUV5/wD8Ks/6nzxx/wCDj/7Cj/hVn/U+eOP/AAcf/YUAegUV5/8A8Ks/6nzxx/4OP/sKP+FWf9T544/8HH/2FAHoFFef/wDCrP8AqfPHH/g4/wDsKP8AhVn/AFPnjj/wcf8A2FAHft9015B4p8f+GdO+LmhvNqeBp0N1bX7ojMsbOF2KcDnkHOM4OM4xW+fhbgZ/4TzxwfY6v/8AYV4j4p+EXiG18fR6Tayi8GqPLNa3NxMN7qvLGU/3xkZOPmzkd8AH1TFMssSSRsXjdQysvIIPQ0/efRvyrN8P6Y2ieHNM0rzjL9jtY7fzNv3tqhc/TitHLf3v/HDQBJUVzCtxaywuAVkQowPoRipaQ9KAPOvgbdrdfCrTIw2WtpJon9j5jMB+TCvRq8b+Ct+lj4j8Z+Fiyg2upSzxLnkjeY2/Lan517JQAUUUUAFFFFABRRRQAUUUjfdPOKAKmqalb6Tp0t7clvLjAwqLuZ2JwqqO7EkAD1Irjfhbr2peJrLXdV1IlHbVJIIoA+5YY0RAFH4k5Pc5Pelm1a+1LVxq6aFeX2jWQL2LxzQqsj8hpiHcEgDIXjGCWGcjFL4GRMPhpa3D8tdXM8xOep3lf/ZTQB6VRRRQAUUUUAB6VwXxIVru98HaZG3zz69BM68fNHEGdv6V3p6V5/dFdc+NlhAvzQ+H9NkndgeFmnwgU++wE0Ad8cYrz34v3t1ZeE7caZdXdvq13ew2tm1vcPGS7NkghSN2QCOQeteh9q8u8VW//CWfGDQ9BE8sdvo9pJqU7wttYSMQqc9mB2n6NQBF8QHvvh9oGnatpGtajNfC6jga2u7p7hLzIO4bXJIPHVcEV6lCxaNCy7GKjK+ntXkF/bL4Z+M+g217LPrkOpxnyH1FzLLYuM/NH/CBwM8Z6817Ep56/hQA6iiigAooooAKKKKACiiigAooooAKKKKAA9K4bU8XHxn8Pxct9l0q6nx027mRM+9dwehrhLJFvPjlqdypyLDQobVh6NJK0n8hQB3lFFFABQaKQnAoA8E1GVvB3xp1TXApSyiuoDdnput7mMKzn2SVB+de9j2rzPxnpVtN8SNJS9jLWPiDTbjR7hs8KR+9jP8AvZ3AfStP4bavdNYXPhnV3H9taEwtpuf9dFj91KPUFcDPXjnrQB3VFFFABRRRQAUUUUAB6Vz3ivRdV1/SnsLDWI9NhlG2dvshld17qDvXbkcH2PauhooAx9T06+vPD0mnWd7b2c0sBhM/2YsqgqQSibxjHbJOPeqHgXwvdeD/AA5b6JJqMN7b227ymW1MLjcxY7vnYHlu2K6eigAooooAKKKD0oAhvLmGysp7q5lWKCGNpJJGOAiqMkn6AZriPhdbTXenal4rvIil34gujdKGHzJbr8sKn2C8j/eqH4g3EviDUbDwHp7sr6hifUpUPMFmp5+hcjaPXkd67y2ghtLeK3t41ihiQIkaDCqoGAB6AAUASTBzC4iZVkI+VmXIB7ZGRn8xXB6d4J8Q6Z4l1jXYvEmnSXWqlPN83SXIjVBhVTE4OAMdc9BXf0UAcfongSOz8St4m1fU59X1ryzFFNJGI44EPGI0HTgkZyTz7knsKKKACiiigAooooAKKKKACiiigAooooAKKKKAEPSuC+H4W/8AFPjjWwD+/wBVFkCe4t0CZHtkmuw1nUY9H0S/1OYZjtLd52HqFUnH6Vzfws0+Ww+HWkm5Yvc3aNezOerNKxkyffDD8qAOyooooAKDRRQBw3xVs55PBp1W0TdeaJcxanCM4/1bZb/xwtVXxZY3Nwum+PvCqm41C2twzQIP+P8As2AYx8fxAHcvXnPXiu/uIIrq2lt50WSGVCjo3RlIwQfwrhfhdcS2elaj4UvHZrzw/dtagv8AeeBiXhc+xXp7LQB1Ph/XrDxLo9tq2mTebbXC5GeCh7qR2YHOR+vStWvNtZ0rU/A2t3Pijw3bvdaVdMZNX0pG6t3nhHZxzuHGf1XttE1vTvEWmwanpV0lxaSjKsv6gjqCOhBoA06KKKACiiigAooooAKKKKACiig9KAEPSsDxd4ptPCehPf3MbTzORFa2sfL3MzfdjUe/48Z61L4m8T6Z4U0p7/VJiqk7IokGZJ3PREXqT/Lqa5nwx4d1PW9bTxl4uiEd4EK6bph5WwiPOW9ZD3Pbp6BQDR8CeGrvSLa61bW3WbxDqzie+kHSMY+WJf8AZQcfXPtXYU0dRTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoPSig9KAOB+K00t14fsfDdszC416+isgUPKRZDSP8AQKuD7NXdQxJDGkUahY0UKqjooHAArgrPPiX4xXV5jdYeGrX7LCexuphmQg+yYUj1Ir0GgAooooAKKKKAEb7przvxQT4T+IWj+KF+TTtSUaVqTDOEYnMEhA44OVJPQcd69FrL8SaFa+JfDl/o14P3F3EYy2MlD1Vh7ggEe4oA0TwCAM8dK4PV/BWoaTq0/iDwPcRWd/Md15p0xP2W+PqR/A/+0MZJ5xkk3Phzr11quhyadqxI1zR5DZXyk5LMvCye4ZRnPcg12ZoA4/w78QNN1i9OlahDLo+ux8Sade/KxPrG3Rx3BHbnGK68VjeIvC2ieKbL7LrOnRXSL9wtwyH/AGWHIrlR4f8AHHhVf+Kf1uPXbBOlhrJxMq/7M68k9AA3AFAHolFefL8UI9MBTxX4d1jQXX787QG4tgfQSxg5/Kt2w8feEtTCfZfEemOX+6jXKo5/4CxB/SgDpKKrx3ltMm+O4hdD3VwQf1pJb60gXdNdQRr6vIBQBZorltS+I3g7S0drrxLpuV+8kMwmb/vlMn9KyG+I91qxMfhTwpq+q7uVup0+yWxHqJJP5YFAHft0riNa+IUEOoPonhm0bXtdAwYbdv3NuemZpei8g8ZzxjjIqofCHirxRz4u8QC1sm+9peibokf2eVvmYEcEDj0xXYaJoOleHbBLHSLGCztl/giXqfUk8k+5yaAOa8PeB5l1RfEXiq7XVfEGMRnH+j2Y67YV/wDZjyfbnPbDg06igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsTxZ4gg8LeF7/WbgBhbRlkQ/wDLRzwi/ixA/GtpvumvOdVP/Ca/Eu00aM79J8Nst7fntJdMD5Uf/ARlvzB5FAG58PNAn8O+EreC9JbUrpmvL+RvvPPIctk9yOFz7V1dNHXpTqACiiigAooooAKRvunAyfSlooA868ZxyeEPEdt46s42NmVW11uJF+/Dn5Zsd2QkD1I46V6BbzR3EMc0MiyRSKHR1OQwIyCD3GO9FzBFdWstvPEksMqFJI3GVZSMEEdxivOvCd1N4I8Rf8INqkrvYTbpdCu5Od0fVoGP95O3qPTgUAelUU0dRTqAA8isTUPCPhvVHMl/oOmXEh6vLaIzfnjP61t0UAcXJ8J/Asjlz4bswT12llH5BqWL4U+BoXDp4as8+j7mH6k12dFAGTp/hjQdJfdp2i6dZv8A3oLZIyfxAzWrS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLUN5dQWVnNdXUqw28KGSSR2wFUDJJP0oA5/xv4nPhfw+89vF9o1O5cW2n2wGTNcPwox3A6n2FL4H8Mf8It4ejtJpfP1Cd2ub+4zkzTvyzH6dB7D1zXO+EYLjxp4lPjnUonjsIVeDQrZ+NsZ4edh2Z+3oPXgn0YdaAFooooAKKKKACiiigAooooAD0rn/ABb4WtfFmhmxnkeC4iYTWl1F9+3mXlXU/wCeK6CkbO0460AcZ4H8U3epPcaB4gRLfxJpvFxGOFuI+izx+qnvjofTIFdpXI+MfCD6+ttqWl3C2HiKwO+yvewP/PN/WM85GD1zjkgu8G+MR4i+0afqNqdO8Q2HyX1g55X/AG067kPGDz168gkA6yiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQnAzQAN0NeY6hK3xR159Fs5CfCWmzD+0blDxfTA7hChHVF4JPfj2Jk13WrzxzrMvhXwvdtFp0RxrOrQ4IRf8AnjE3QuehPb867vR9IstC0y30zTbdLeztk2Rov8z6knknqTyetAFqGJIVSONFSNFCqqjAUDgAD2FTUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjHCk+lcl4t8G/2+9vqum3J07xFYg/Y76Mf+Q5B/Eh9D0zx1IPXUjEgZAzQBxvhLxq2qXj6Fr1sNM8SQL+8tWPyXCj/lrCf4lOCcDpz1612dc74o8IaZ4tskivQ8VxC2+2vIG2zQP2ZG7fTpXM2vi/V/Bl1HpXjoK9o7bLXX4UIil9FmUf6t/fofwJIB6RRUUM0U8SSQypJG43I6EEMPUEcYqWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikPQ1keIfEmk+FtNN/rF7HbQg4QE5aQ/wB1R1Y/T8eKANWV1jiZ3YKijLMTgAdzntXmt9rep/Ee6m0bwvNJaeHkYx3+tqMGbsYrf19C/Qcn03KNM1/4kuJtehuNE8LBgY9L3bLm9A6GYj7if7A5/JTXodlZwafaxWlpBHBbQqFjijUKqL2AAoAraJomneH9Ng03S7VLa0hXCog6+5PcnuTye9aVFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVBeWsF7Zy2t1BFPBKu14pVDK49CDwanooA85fwhrvgyVrrwPci404ndJoF7IfLPr5Eh5jb2PGSSegFa/h34g6Trl4dOull0nWk/1mm36+XJn/Zzw478c45IFdeaxPEPhXRPFNp9m1nTorpV+4zDDof9lhyP85oA2hS153/YPjfwkgPh/V18Qaegx/Z+rnbMo/2JxjJ6cMMYqzafFHR4rhLLxFbXnhy/PHl6lGVjc99koyrL75H0oA7uioba4huoUnt5kmicZWSNwysPUEcEVNQAUUUUAFFFFABRRRQAUUUUAFFIelZes+IdI8P24n1bU7WyQ5x50oBb6A8t9BQBq1Fc3ENpbSXFzNHDBGpZ5JGCqgHUkngCuBPxA1bxD+78FeG7m9jbpqeoA21qB/eGfnkHsMGlt/hzca1cJeeOdYk1mRTuTT4gYrKE+yDl8ep7cEGgBLr4g3euzy6d4D08apOp2S6lOCllbnvlushHHCjvnJ6Vd0H4f29rqS654hvJNd17GRc3A/dwf7MMfRAPXr16ZIrr7W2gs7eO3tYI4IIxhI4lCqo9ABwKnoAaOop1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVWvLK01C2e2vbaG5gfhopkDqR7g8GrNFAHCXHwr0SG4a60G71Lw9cu25jplwUjc9t0bZXHsAKYLH4maPtFvq+i6/ADlhe27WsxHYAx5XPuRXfUUAcD/AMJ34i05Sdb+H2spg43aZJHegj1wpBFKfi94RtsLqU2oaXITt8u90+ZGz07KR+td7SNjacjI9KAOUt/iX4KulDR+J9NUEZ/eThP0bGKtDx54PYA/8JVon46hCP8A2atK40bSrobrjTLOYjn95AjfzFZ7+CPCUhMj+F9FZmOSTYREn8dtADH8feDkPPirRfwvoz/Jqzrv4s+BLIEyeJLV/wDriHl/9ABrZg8HeGLbPkeHdIi3dfLsYlz+S1pQWVpaMBb2sMPGP3cYX+QoA4tvirpE6qdJ0fxFq4PRrLTJCv5vtxSN4k8fai23SvBUVihHy3GrXygD6xx5YV31FAHn58KeNtaUjXvGZsYXGGttDtxFg+0z5etHR/hr4W0a5+2Jpq3l+cFru+c3ErEfxZfgH3AFdfRQAgpaKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9k='] Multimodal Competition True Theorem proof Geometry Math English 51 "A king strapped for cash is forced to sell off his kingdom $U=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$. He sells the two circular plots $C$ and $C^{\prime}$ centered at $\left( \pm \frac{1}{2}, 0\right)$ with radius $\frac{1}{2}$. The retained parts of the kingdom form two regions, each bordered by three arcs of circles; in what follows, we will call such regions curvilinear triangles, or $c$-triangles ( $\mathrm{c} \triangle$ ) for short. This sad day marks day 0 of a new fiscal era. Unfortunately, these drastic measures are not enough, and so each day thereafter, court geometers mark off the largest possible circle contained in each c-triangle in the remaining property. This circle is tangent to all three arcs of the c-triangle, and will be referred to as the incircle of the c-triangle. At the end of the day, all incircles demarcated that day are sold off, and the following day, the remaining c-triangles are partitioned in the same manner. Some notation: when discussing mutually tangent circles (or arcs), it is convenient to refer to the curvature of a circle rather than its radius. We define curvature as follows. Suppose that circle $A$ of radius $r_{a}$ is externally tangent to circle $B$ of radius $r_{b}$. Then the curvatures of the circles are simply the reciprocals of their radii, $\frac{1}{r_{a}}$ and $\frac{1}{r_{b}}$. If circle $A$ is internally tangent to circle $B$, however, as in the right diagram below, the curvature of circle $A$ is still $\frac{1}{r_{a}}$, while the curvature of circle $B$ is $-\frac{1}{r_{b}}$, the opposite of the reciprocal of its radius. Circle $A$ has curvature 2; circle $B$ has curvature 1 . Circle $A$ has curvature 2; circle $B$ has curvature -1 . Using these conventions allows us to express a beautiful theorem of Descartes: when four circles $A, B, C, D$ are pairwise tangent, with respective curvatures $a, b, c, d$, then $$ (a+b+c+d)^{2}=2\left(a^{2}+b^{2}+c^{2}+d^{2}\right), $$ where (as before) $a$ is taken to be negative if $B, C, D$ are internally tangent to $A$, and correspondingly for $b, c$, or $d$. Prove that the curvature of each circular plot is an integer." ['Proceed by induction. The base case, that all curvatures prior to day 2 are integers. Using the formula $a^{\\prime}=2 s-3 a$, if $a, b, c, d$, and $s$ are integers on day $n$, then $a^{\\prime}, b^{\\prime}, c^{\\prime}$, and $d^{\\prime}$ are integer curvatures on day $n+1$, proving inductively that all curvatures are integers.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIATABxwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ8CgBaKztU13StFhEuqanZ2SHobiZY930yefwrlH+LXh+dnTRbbVtekQ4ZdMsJJNp/3iAP1oA7yiuD/wCEr8b3rgaf4BeGJhkT6jqMcWPrGoZqao+K1wTvfwnZxkcBVnlcdOvIHrQB31FcN/YnxFlO5/GWmQHpti0gMPzZ6aPDvxDDs/8AwntqQQMIdFjwv/j2aAO7orhv7I+I8GfL8V6Rc9x5+llB9PlemLP8U7VyZrXwpfxjosEs8Ln/AL6BAoA7yiuB/wCE38VWAZtZ+HupLGvRtNuYrwsPZQQamtfix4UluEtr27n0m6brDqds9uR9SRtH50AdxRVazv7TUbdbiyuoLmBxlZYZFdT+IOKsA84PWgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooPtTXcKpYnAHc9qAFJwKhuLqG0t3uLmWOGGMbpJJGCqo9STgAVxGofEV7+9fSvBennXr9Tte6DbLO3Pq8vRj0O1evOD2qO0+HEuszx33jnVZNbuVYOlkmYrOE/wCygwWxyMt1BORQBJcfE6G+uHs/COk3niS6Q7Glth5dqjejTN8o45GM5qM+HvHfiMf8T3xNHotq3Wz0OPEhXtmd+Q3rtGK7y2tbezt47e2gjghjXakcShVQegA4FS4HpQBx+l/DDwjp0pnfSY7+7bBe51BjcyO3qS5IB+gFdekaRoqIiqqjCqowB9KdRQAhAPUUYFLRQAYowKKKAEwD2pcUUUAJgVDd2drewNBd20M8LcNHKgZT+BqeigDiLz4VeGnuGu9KjutDvSAPtGk3DQED/dHyY/Cqn2b4jeGsNa3lj4qshn9zcj7JdY7AOMofq3NehYpNoNAHF6X8TdEurwadqy3Og6nwPsuqR+Vu7fK/3WGeBzk+ldmDk1R1fRdM12xaz1WxgvIG/gmQNj3BPQ+45riW8G+IfCDGfwPqhmsxnOiapI0kWPSKQ/Mh9Acgk8mgD0aiuQ8P/ECw1a/Gj6lbTaNroGW0684ZveNuki8HGOeDxXWq2SeelADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApCcUprkfFnjVNAlt9L0+1bU/EF3/x7afCfmA/56Of4EGDyf5AkAGl4k8VaV4V043uqXIRSdsUKDdLM/ZUXqxP5euK5BND8R/ET994nMui+HnwYtGgciacf9PD9h/sDHXkArzreGfBD2+pf8JD4mul1bxC4+WUr+5tAf4IVPQDpu6n25z2mBnOOaAKmm6ZY6RYx2WnWkNraxjCxQqFUfh3PvVvFLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJtU54HPX3paKAMbxH4W0bxTp/2PV7GO4Qf6tzkSRH1Rxyp+n45FcZ/aPiT4bYGqyXHiHwwM4v1G67sk/6agf6xMfxDkYOccCvTKawBGMDB4oAq6ZqdnrFhDf6fdxXVpMu6OWI5Df8A1+xH8quV5zqfhTVPCOoT694GRSkjeZfaExxDcju0f/POTH4Hj0weo8L+LNO8WaZ9ssHZWjbZcW8o2yW8g6o47Ec+1AG9RSDOaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPShjhcj+dct408Wnw9ZQ2lhb/bdd1BvJ0+yx99/7zeiLnJPHHcdQAVvGHjC50y6tdC0KCK+8RX5Hk27Z2QJ3llxyEH69ulWvB3g6Hw5FNd3c51DXL0iS+1GUZeVuOF/uoMYCjHQU3wX4PHhyCe7v5/t2u3zebfX7Dl2/ur6IOgHH07DqwMUAJgZzS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADSOK4bxZ4QvF1UeK/CZjt/EMI/fQk4i1CMY/dyf7RAwG9hz0I7sjPWkI4oA57wj4tsvFmltc2yvBdQN5V3ZyjEltIOqsODjg4Pf8CB0I61wXjHw5f2Wqr4z8LR51i3QC7tBwuoQDqh4++APlPtjngV03hnxDYeKNEg1XTZN0EowVbho2HVGHZgf84IJANiiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopCaAFopOc0ZP+RQAtFIKWgAooooAKKKKACiiigApDxS0jHAzQBl+INdsvDeh3Wr6lJstbZN7cZZj2Ue5JAFcz4G0C9uL2bxl4kixrmoJiC3Y5FhbdVjX/AGjnLH1OMA5znon/AAsTx80p+fwz4cnwg/hvL0dT7qn6npkE49JXr+Hf/P1oAUAA5xz0zS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANZeOBz6mvNvEEUvw68SyeLLFCdB1GRU1m2UE+S5OFuVA9zhh3z6nI9KIBGCM1Dd21vdWk1tcxJJbzIySxuPldSDkH2IzQA6CZLiJJonWSJ1DI6kEMDyCD3BqWvOfBdxceEvEVx4Cv5JHtwpudEuJTky2+TuiJ7sh/TsBivRQc0ALRRRQAUUUUAFFFFABRRRQAUh4FDZ4x61zHijxxpvhlorMrLfavcD/RtNtF3zSe5H8K8H5j6HGcYoA6YtjJrkNU+JvhzT7s2FpNPrGpD/lz0qI3Mnv8Ad+UY4zkislfCXiPxkfO8aag1jp78roemybVx1xNKDlz6gHHAI9K7bSND0rQbQWmlafb2cA6pDGFz7n1PuaAOQGs/EjWudN8O6XosOeJNWuTLIy+oSL7p9iaePC3jq7lL33xAMKMP9TY6XEgX6OxLV3uBRigDhh8PdQb5pfHvigyHqUuI0X8tlNbwR4igjIsPiDrEbD7puoIbgfkVH867ujFAHBfY/idpYHkavoOtoB832y1e2kb6eWSufrTB8SLzSBjxf4V1PR0HLXkAF5bKPVnj5XPpg16BikIB6igDP0nXdM12z+16VqFvewdC8Dhtp9CByD7HmtAEnqK4vWfhro95eHU9HeXQNYwdt5p3yBj1+dB8rgnBI4JwOaz4fGOt+EJ47Lx3bxm0ZgkOvWaEwtnp5yAZjY+uNuenAJoA9FoqK3niuYUmgkSSKRQyOhDAg8ggjgipaACiiigBDXHfELXrzTtHt9K0dv8AieazMLOyA6x5+/L7BFyc9jiuxbpXnnhHb4u8cat4vkUNZWedM0kkcFVOZZl/3mOAR2yD3oA63w1oFl4Z8P2ejWC/6PaxhNx6u3UsfcnJ/GtfFGMUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQQD1oooA5H4g+HLjWtCjvNKPl65pUgvNOkAyTIvJQ+oYcY6ZxngVqeE/EVt4r8N2Ws2oCpcxgtHnJjccMh9wQR+RrZPSvPNKx4P+KN7o2CmmeI1a+s/7qXS/65B/vDDfyoA9EopBS0AFFFFABRRRQAUjHC5oPArjfG/ie+042ug6CqzeItUytspGVtk/infrhV7ZByR3wRQBB4o8XX8uqnwr4Thju9edc3E7jMOnxn+OT1bHRe/XHQHS8JeC7Dwwks/myX+r3Q3XmpXBzLOx64P8K+ijsBkkjNT+EPClp4T0n7JDJJcXUredeXkpzJczH7zsTk/QZ49+p6EADtQAmBnNLRRQAUUUUAFFFFABRRRQAYzUN1bw3NtJBcRRzQSKVkjlUMrqRggg8EVNQQD1oA8vn03VPhfO+o6HHcaj4VJLXmlA75bIdTJASeV7lSfx5yPQtJ1ax1zTYNS026jubO4TfHIh6jp+BByCDyCCO1XGAwa8x1CKT4W+IG1izD/8IfqEwGo2wyRYTMcCZB2QkgEe/wDugAHqFIelMilWZFkR1ZHAZWU5BHqDTz0oA5H4k63caL4NuEsedT1CRbCxAOCZpTtBHuBkj3Ara8N6Hb+G/Dtho1qP3VpCI92OXPVmPuSST7muT1If8JF8YdMsfvWnh60a9mxyDcS/JGpHYhQXB969AFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVxfxO0qe78KHVNPX/iaaLMuo2h55aPll46gruGO/FdpTXVWUqwBU8EHofagClouqQa3o1lqlqcwXcCTJk8gMM4PuOh96v15/8MD/AGSdf8IOTnRL5vs4OeLab95Fyep+9n8K9AoAKKKKACiikPTigChrmr2mg6Jd6rfSeXbWsZkc9z6Ae5OAB3JArlvh7o13Il14u1uIDWtaAkKH/l2t+scI9MDBPcnryKqeMVPivxxong771jAv9q6oAOHRW2xR/RnySD2wa9CU5JoAUADoKWiigAooooAKKKKACiiigBGOBWdHrulza22jRX8EmopEZntkYM6ICBlgPu/eHB55rSIzXnYhih/aDURRqgbwyWIUYyftPWgD0GSRYo2d2VUUEsWOAAO+a5/UvHPh3RtNs7/U9UjtIbyNZYBKjB3UgHOzG7oeeOKk8Ws02kppUZYS6rMtkNpwQjZMpB9REsh+oFXk0ewjvp777PG1xKixb3QHbGo4RfRc5OB3JoAfpeq2Gt2Ed7p13Dd2smSssTZGQensR6Hmpr21t72ymtLqJZbedGjljYZDKRggj6Vw/wAMNJSwPiS7slEWkXuqSPYRKMJsX5S6jspYHHqFFd+RkYoA888DXU/hnXL3wFqEzSLap9p0ieQ5MtoT9zPcxnj6ZwABXoX3hzx/SuG+J+nzx6RaeKdOTOp+HpvtaAcGSHpNHn0Kcn/drT8R+IYIfhxqXiGymHlNprXFtIeMlkzH+JJWgDI+GAGqDxD4qYKx1nU5DDIO9vF+7jH4Yau+AArn/Aulf2J4H0XTmQJJDZx+Yo7SEbn/APHia6GgAooooAKKKKACg0UUAcp8RNU1nRvBmo6los9tDNbRGRmmiLnA67eQAeepyOOlanha8n1Dwno97cyeZPcWME0jkAbmaNSTgccknpWR8UBj4Y+Iscf6G3StLwZ/yI3h8/8AUNt//RS0AblFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhGRS0UAef6kf7E+NGjXYLCDXdPlsXA6ebERIrH3KkqK78GuD+LG2y8P6Zr5JUaLq1teOR1Me/Yy/iH/Su8FAC0UUUAFIelLWF401F9J8E63fxuElgspXjY9n2Hb+uKAOb+GYGsT+IfF74Y6vqDJbOB1tocxx/To2a9AAA6Vz/gXTf7H8DaHYFAjxWUW8D++VBf/wAeJroaACiiigAooooAKKKKACiiigBCcV527Tn45R3/ANg1E2X9hmyN19hm8vzvP37d23GMd84969FpMCgDBMUl74zEsiMLbTbXEbEHDTSnkj3VEA4/56msDxh4rnt9S/sRNB8R3NkVzd3OnafI4YH/AJZI/A5H3mB46Dkkr3u0Y6UbQO1AHN+FfEP9ttNDb+HtU0iztI0RBqFr9n3E9FjTn5QByeMZGBXS0gABzS0ARzRRzwPDMgeORSjqwyGB4INeFXcjR/DS+8BzyN50HiKLR4t7ZZoXmEsbH6qCB7LXvJrw/wAWWPlfH/RrNFPk6lPaai+Bx5kCzIPxAGaAPblAHA6CnUgpaACiiigAooooAKRjtGe1LRQBzPjrStU1/wAJ6ho+mLZ+beRGIvdTNGEBI5wEbP6Vc8KWWoaZ4a07TdSS2E9nbRW5a3lZ1fYoXd8yKRnHTmtnApaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOa+IVkNQ+HfiG3K7ibCV1XHVlUsv6gVd8KX51Twjo1+33rmyhlbnoSgJH51o3kC3VnPbsMiWNkP4giuP+EN19s+FegynOVheLn0SRkH8qAO3ooooAK4T4xtJ/wAKt1eOFiJJmgiBH+1MgP6Zru64T4xSCH4Z6hO4ykU9q7fQXEdAHcRoEQKowAAMelPpB1NLQAUUUUAFFFFABSMcUtIxAHJAoA4PxX8W/DPhDWRpV9LczXYK+atvEH8kMAQWyR2IOBzjtXX6TqtnrWmW2pafOJ7S5jEkUgBG4fQ8j6HpXhfxI+DHiDXfGl1rGiNbTWt/IrOksxRoG2gEnI5XjIxk84xxXX+H/gX4RtdDtINb00X2pKn+kXC3Uyq7k54CsBgdBwDgc80AepZozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHf5ozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHf5ozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHfMcCvEPG/jvw1Z/GXw3cyXjldGNzBfyRxlhGzIVVfUkEnOM4+uRXYH4J/DwYx4e7/8AP7cf/HK8Y8WfB6/sfiBZaJplxara6vJO+nmR3AiRF3srnBPAOBjOe+M0AfUNrcxXdvFcQSLJDLGskbqchlYZB+mKmzXm9h8DvA0Njbw3mj/aZ44lWWf7VOvmOAAWwHAGTk4A71Z/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3+aM1wH/Ckvh5/wBC9/5O3H/xyj/hSXw8/wChe/8AJ24/+OUAd/mjNcB/wpL4ef8AQvf+Ttx/8co/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3+aM1wH/Ckvh5/wBC9/5O3H/xyj/hSXw8/wChe/8AJ24/+OUAd/mjNcB/wpL4ef8AQvf+Ttx/8co/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3k0yW8LzSuqRopZmY4CgDJJNefaP8avCOteI00a2nulkldY4J5YNsUznoB1YZJx8wH+KXnwP8BS2U8dtopt5njZY5hdzMY2I4bBfBwecH0rzHw38CPE1n4ttJtSls0060njmeaGckyhTnCDbnPHcDrQB9JAnOPanUxcDp+Vcm/j6H/hJ7nw7DoerzajbxCaRI1hIEZx827zcdxwefagDr6KwvD/izTPEc13b2jSxXlm2y6s7mMxywk9Mj09xkVu0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIa4X4QFB8PoIkXZ5V3dIVAxj9+5x+RFd0elcN8JS0ngk3DgAz6hdyYHbMzf4UAd1RRRQAVyfxNsRqHw08QwEZ22bygYzynzj9VrrKiuYI7q2lt5V3RyoUdfUEYNAFLQNQGreHdN1FTkXVrFMP+BKD/WtKuE+E1xIvg5tGuH33eiXc2nTHGM7HO0j22la7ugAooooAKKKKACqeqala6RplxqF7MIba3QySOewH8z2A75xVpzhe341534pvk17R9b1MyKdG0i1uGthni6uURhvHqiHKj1bJ/hUkA2fh74mm8Y+HJNalhWGGW6lW1iHVIlIVc+/Bz9eOK63AFcJ8G7c23wp0NSOWjkkP/ApXP8AIiu7oAKKKKACiiigAooooAQ4Iwa8f8XagV/aC8IRAKYbaAqzZ6PMJQAfwUGvYG6V4Jqi/wBo6nqHjYsyQw+LrGFGzwYLf90WB9GZz+VAHvSnPI7jNOpB1paACiiigAooooAKKKKACiiigAooooAKKKKACiiigApMClpDntQAHgDAzXivhTxVDa6p4y8b3Ol6reQXV2Yrea0tfMUW8IKg5yMZGCe3HWu7+JHiq18MeCtTna6iS+e3aO1iLgSM7fKCq9TjOfwrm/DHizwt4P8AhxpenW+o22pX0dqD9hsXE8ssz/My7VyR8xIy2KALnw60ebUPEOsePrqa23a0qpb29tKJFiiXA+ZhwX+UA46EH1r0ivPfgz4Z1Lwx4FEGqIYrm6uXuvIP/LFWCgL7H5c4969CoAKKKKACiiigAooooAKKKKACiiigAooooAbIwVCxOAOSa4X4NrKPhZo8kw/eymeVvfdM5B49sV0fi29OneDdbvR96CwnkX6iNiP1qp8P7T7D8PvD0BXaw0+FmHoxUMf1JoA6SiiigApD0paMZ60AefB/+EX+MDBmK6f4otgVJ6LdwDGPQbkP1Jrv1JNcz498NSeJvC8tvZuItTtpFu7Cb/nnOnKn8eR+Oan8F+JYvFfhyDUhGYboEw3kDfegnXh0IPIweR7EUAdDRRRQAUhpaCM0AcH4h8Y6Zf67a+DbLWYI72+YpdSxTANBGPvRqwPEr/dUdRyeoGcD4paP4L8O+AdT8rSNDs9Rkg2WoFvEkxJYDK8bjgZOfY161tGCOxowPSgDkfhjdWFx8PNDjsbqGcw2USzCNwxR9o3BvQ5yPwrr6QADoKWgAooooAKKKKACkNLSN93pQBzPj7xC/hrwde3sALXzgW9nGo+Z55PlQAdyM7segNc14g8HLpnwGu/D68y2en+c7Lk7pkIlYj6sD+dSRN/wnfxLEyHfoXheQhT/AA3F8Rzj1EYP4H1Br0KaKO4gkhlUNFIhV1PdSMYoAq6FqKaxoGn6nGAFu7aOcD03KGx+taFcL8JZ5F8Ff2RcPvutFvJ9OmOMZKOSuPbay13VABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJgUYFLRQAgAHSloooAKKKKACiiigAooooAKKKKACiiigAoNFIaAOH+Lc0h+H11p9u+251O4gsYQf4mkkUEf98hq7S3jSGCOKMYjRAqj0AFcL4v8A+Jv8RfBuhAB4reWXVrkd0ES7Ym+hdiK74d6AFooooAKKKKAEbpXm/iKKbwD4ok8Y2MTvot+Vj1u3QZ8pui3KgenRgOvXGTkek9ajmhingeGWNZIpAVdGAIYHggg9RQAy0uob22iuLeVJYZUEkciHIZTyCPYip68tX7Z8Jb2Tak134JuZdwxlpNJZj6dWhySfUc9/v+l2l3BfWsV1azJNbzIHjljYMrKehBHWgCeiiigAooooAKKKKACiiigAoopD064oAGOBmuG8ceJL4TQeEvDj58Q6kv8ArM8WUHRpmI6eg75xjJwDY8W+NW0q4i0PRLYan4lu1PkWan5YRj/WSn+FBwcHBPt1FjwZ4QXw5bT3V9P9u1y+bzb+9Yfff+6vog6AYHTp0AANPwzoFl4Y0C00ewUi3tk27mHzSN1Z29yST/8AWrWwB0owM0poA8/0onQfjBrOntkW2u2kd/b8YXzYv3cij1YjaxrvwcmuB+KFu+n2Wl+L7aNnuNAu1mkCjLPbv8kyj6gg57YruraaO5gjnhdXikQOjqchgecj2NAEtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLWB418QL4X8H6lq5GZIYsQrjO+VvlQY7/MR+GaAOe8Hn+3fiJ4s8RkBoLZ00e0focR/NKPpvI5r0DGK5vwHoLeG/BemabLk3SxeZcsTkmVzufJ7/ADEj6AV0lABRRRQAUUUUAFIQD1FLRQBHLFHLE0ciK6MNrKwyCD2IPUV53N4W1zwPdy3/AIIC3WmyOXuNAnk2rnqTA5+4fY8fkBXpFIVB6igDmfDPjvRvFO+C2le21KHifT7tPKniPoVPX6iulUk+lc/4m8E6F4qVH1G0xdx8Q3sLGOeLrja454Jzg5Ge1c8mmfEHwuwGmala+JtPTkW+pHybsL/dWYfK31YUAeh0VwP/AAtK207K+JtA1rQygHmTTWpmgB9pI8g/XFa1n8RfB19Grw+JdLG7oJblYifwbBoA6iiqEWt6XOm+HU7KRfVJ1I/MGqlz4u8N2X/H14g0qDBxiS8jXn8TQBtUGuHufi14PiuPs1pqMmp3eMrb6dbvOz/QqNv61WbxP4519dugeE10uFvu3muy7CP+2KfNn0ycUAdxd3tvp9rJdXlxFb20Yy8szhFQepJ6VwE3jLWfG0r2HgW38uyBKT6/eREQp2PkoRmRuvXgcZ4Oas2fw0i1C6iv/GGr3PiK5Q7kgmAjtIz/ALMK/KfTnIPpXdxQxQxJFFGqRoAqIgwFA6ADtQBgeFPCGm+FraYW3mXN9cNvvL+5bfPcP1y7H68Dp+JyejpNoBzjmloAKKKKAK97aQX1jPZ3EayQTxtFIjDIZWBBH5GuL+Gd3cWdnf8AhDUHZr3w/N9nVm6y2zZaF/8Avnj22813Z6V5548STwvr+m+O7ZWMNtiy1ZFGd1q7cPj1RsHjk9M4oA9DBzS1HDKk0aSxsrxuu5WU5BB6EGpKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARuleeeISfFfxK0jw6nzWGi7dU1HHQy8iCPjv1YjoQR6V13iXXrbwz4dvdZvD+5tYy5Xu7dFUe5YgfjWJ8O9CutM0SXUtXGdc1eU3t8SMFGP3YxnkBBxjsc0Adeue/WnUUUAFFFFABRRRQAUUUUAFFFFABSAAdBilooATA9Kyr7wt4e1Ny9/oWmXTnktNaRufzIrWooA5Z/hr4KdizeGNMyeuLcAfkKmg8AeD7bb5fhfSAV6FrONiPxIro6KAIbe1t7SIRW0EcMY6JGgUD8BU2BRRQAgAHSloooAKKKKACiiigAqve2tve2U1ncxLLBOjRSRtyHVhgg/UVYo60Aed+A76fw5ql14A1SdmlsVM+lTyHJuLIngf7yHKkccDgYXNehg9M56d65Px34Xn1zT7a+0mQW+v6VJ9o06boC38Ubf7LgYP4duDd8G+KLfxboSX8UbQXMbGG7tX4e3mX7yEfXp7EfSgDoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkJxihiQOK4rx14lvrQWvhvw+yP4j1X5IfS2i/juG9ABnHvn720igDLu8fED4gpZKvmeHvDcwkuD1S5vR92P3CDk+5wR0r0kCsbwt4dsfCvh+10ewH7qBfmc/ekc8s59yf8BwK2sUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACN0rzvxVpt/wCFddfxvoEDzRsgXWrFOtxCv/LVB/z0QZ+o/HPotNIHXHNAFPSNWstc0u31LTrhLi0uEDxyJ0PsfQjoR2INXq8w1K0vPhjqkuvaNBJceF7uTfqemxrk2jE8zwj+7/eXoPoRs9E0zU7TWNPgv7C4juLSdA8csZyGH+eMHkEGgC3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFI3TrignArE8UeKNP8ACejNqOou2MhIYYxmSeQ9ERe5P6UAReLvFdr4U0j7XMjXF3K4hs7KP/WXMx+6ijr1IyR09+lZ3gfwtdaa11r+vOlx4j1TD3Mi8rAn8MKf7IGOnUjqcCqnhPw1qWo6x/wmHi1E/tV4yllYjlNPiPYeshz8zde3tXe4oAQAA9KWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKCM0UUAIQAOleaXujar8O9Rn1rwtave6DcOZdQ0SMfNEx6y24+g5Tp6cEbfSyAetGMDAoAzNB8Qab4k0qLUtKukubWT+JeqnurDqCMjg1piuC17wTe2WqS+I/BV1Fp+ruQbm0cf6LfY7Oo+63+0PU9NxNaHhjx7Za5ePpN9BJpOvw/67Tbo/Nn1jbpIvfI7c4xQB11FNVtx4ORTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRsgcfyzQTgVwes+Pbi81GXQfBdrHqurIds9yx/0Sy68yuOpGPuj37jBANfxZ4zsPCtpF5wku9RuTss9PtvmluH9AB25GTjj3PByfDXhDULvWE8U+MHSfWAD9lskO6DTlPZexf1b9T1N7wn4Hg0O5l1XU7uTV/EFyP9I1G4AyP9iNeiIPQfywB12KADFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQRmiigBCoOMjpyKwfFHg/RvFlokOp2xMsRzBdRHZNA395H6jnnuOBkcVv0UAebrqXjDwH8msW8viXQkHGoWqf6ZAo/56x/xjp8wOeCSe1djoPibSPE9j9s0XUILyH+Lyz8yH0ZT8yn2IrV2L2H0rkde+HOi6vfNqlo1xo+sYONQ02QwyE9fnA4YHjORntmgDrxS154upePvChC6lp0PinT1HN3poEV2o9WhPDEnPCn3NbGifEbwzrk/wBli1FbW/DbGsb4eRMrf3dr4yfpmgDq6KaCT3z7gU6gAooooAKKKKACiiigAooooAKKjeRYkaSRgiKMlmPAHqfSuN1L4peHra7aw0trjXdRHS10mIzn6lh8oHrzxQB2rHAzXN+I/HOh+F2SG+uxJfSECGwt18y4lJ6BUHPPYnAzxmsE2vxB8WA/bLqDwnprDmG0YT3jj0Mn3U9iBkV0HhnwRoPhUO2nWQ+1SZ828nYyTyk9SXPPPoMCgDmm0zxd48Gdbll8N6A3/MPtnBu7hP8AprIOEBHVRz1Brt9G0bTdB0+PT9Ks4rW1jHypEMc+pPUk+pyT3rQ2jjjp09qWgBAAOAMCloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEwKy9a8NaL4hgEOr6Xa3igFVMsYLID/dbqv4YrVooA8+Pw1l0sbvCvinWNGCgCO2eT7XbRj2jkyf1p/nfE7Sc7rbQdehQceXI9pO/1BygrvcD0pcCgDgT8RNWscLrHgHxFBIcZNiiXqL/wJGH8qc/xg8IWyg6jc32nMeNl3p06kH04QjP413mBSbQe1AHHwfFTwPOCV8S2K4xneSn/AKEBU3/CzfBP/Qz6b/3/ABXRPp9lKQZLSB8dN0YNN/svT/8Anwtf+/K/4UAcrc/FrwJahjJ4ktSF6+Wryf8AoKmoB8W/DlzHv0uDWNWz0Fjpkz7vpuUCu1isrWD/AFNtFHzn5EA/lU2BnOKAOD/4TnxNqCBtG+HurOD1Opzx2ePfDEk01rT4nauSs2p6FoMJ6G1ga6mHsd+EP4Cu+wKMCgDgk+Fel3syz+JdU1XxBKCGC3tyRErD+7GmAOp45612WnaXp+k2wttNsbazgBz5VvEsa5+gAq5RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k=', '/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAS0BMwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACikJwM1zWs/EDwnoJZdR1+yjkQ4aJJPMkH/AEy36UAdNRXBf8LNS9O3RPC3iPUwQCk6WXkwt/wADkI/lSpr/AMRL3cIPBFlYDPyve6qr5+ojU4oA7yiuCRfitLId8ng+CPnaFW5kPtnpUg034kuu5/EGgRsT9xNPkYD6EvmgDuaK4Y2PxMhbMeteHLgHr5tlKmP++XqOKb4qwZNzZ+ErsDGFt5riNj+LAj0oA72iuB/4S7xpZuRqPw9uGiXrLYajFPn6JwaF+Lfh63KjWrbWNCdjhV1PT5I934qGGPfNAHfUVm6T4h0bXUL6VqtlfAfe+zzq5X6gHI/GtKgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiig0AFB6VieI/FWi+FbD7VrF9HAp+5H1eU+iqOSf8muT87xt43OLdJfCWiNn95Koa/nX2XpDkHr94EDGaAOn8ReMvD/hVA2r6nFDIw+S3GXlfnsgyx+vSudHiXxv4kIHh7w2mk2jH/j+11irkd9sCncD3BJwa2/DngTw/4aka4s7MzX78y3903m3EhPUlz698YB9K6fvQB5+3w1k1f5vFvifVdZz962jf7LbH28tP55rpdG8JeHtAA/srRbK0cDHmRxDeR7v94/ia26KADvRRRQAUUUUAFFFFABTXRZEKOoZTwQRkGnUUAclqvw08IatIJpdDt4LgHcs9nm3cH1yhGT9c1lDwn4y0Dnw54ue9gXOLLXkMwP8A22XDgegxXoVFAHnqfEi40WQQ+NfD95ooztF9F/pNo3YZdASpPYEfWu30/UrLVbVLvT7yC6tn+7LDIHU/iDVmRFkjZGVWVhghhkEe9cJqHw1tIb2TU/Cl7N4b1I/eazANvL7PCflbv0x170Ad7RXncXjvVvDE62njzTVtoiwSPWbENJaOe28fejPQc989hXe2tzBeW8dxbTRzwONySxuGVh6gjrQBPRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFQXl1b2NnNdXUyQW8KF5JZGwqKOSSaAJicKTXn+p+Ob/WdQm0LwNbRX9/Gdt1qMmfsdp7bv429APrzhhVBrnV/inK8djNPpXg1WKSXQ+S41LBIIT+5F15PJH1IHf6Po9hoWnQ6dplrFa2kIwkUa4H1JPJPueT3zQBgeHPANjpF6dW1S4k1nX5P9ZqN2MlfaNOka9eB64zjiuvFLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEc8MdzBJDNGkkUilWSRdysD2IPUV57deCtV8K3D6l4AuEjiLF7jQrlj9mnOOsZP+rf9M46AYPo1B6UAcv4T8a6d4nM1qscthq1rxdaZdDbNCfXH8S8jBHqM4ziuorlvFfgqx8TeVdJNLp+sW3NpqVtxLC3of7y+qnsT0rM8OeMb+21ZPDHjGBLPWuRbXScW+oKP4oz2bGMr/LOAAd5RTQeadQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTZHWKNpHZVRQWLMcAAdyfSgCC/vrXTbCe9vp0gtYVLyyyHCqo7mvOLSyvfirfJqeqxzW3g+Ft1nYMdragwPE0nonovfr9UjSX4r60J5Q6eCrCb9yjDH9qTKfvEd4ge3fH1C+nRqEACgAAYAAxigBIkSJEjjRUjUbVVRgADoBjtUlFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAh6VjeJfDOmeLNJfTtUg8yNjujkXh4X7OjdVb/J4raoPSgDzvw54k1Xw/rcPhDxjMHuXX/iW6qeEv0HG1v7so469fyLehDk56VjeJvDWneK9Fl0zUo90bDMcg4eFx0dD2Ydf0PFc94M8Q6haapJ4N8Tyg6zbR77W6OQNQtxwJBk/fGDuHXvzzQB3lFFFABRRRQAUUUUAFFFFABRRSHgUAB6V5t4oup/HHiNvBOl3Dx6bbhZNeu4jyEP3bdT/AHmxz1wOOcEHe8d+J5vDukxwadEJ9b1KQWmnQcfNK38RB42qDkk8dASM5q14M8Mx+FNAi08SGe5djNeXLctcTty7knk5PHPOAOtAGxY2kNhawWdpCkNtCgjjjQYCKBgAVaoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARvumuX8aeFF8UaZG1vP9k1exfz9PvFHzQSjtn+6eAR0PBxxXU0h6Hr+FAHL+B/FLeJdMkS9hFrrNg/2fUbP/nlIO4/2WwSD0PPJxmuprzrxvZXHhjWYPHulQs5t1EOs28Y5uLX/npjuydc+g64GK72zuoL60gu7WVZredFkjkQ5VlIyCPYigCxRRRQAUUUUAFFFFABTXO2NiTgAZz6U49Oa4X4l6hdS6dZeFdMkCal4gmNorA8xQAZmkx7J/6FQBS8GI3jHxZeeObgE2EG+x0NT08sEiSYD1c5APXGQe1ej1R03T7fSNMtdOs4/LtrWJYo0x0VRgfy/Oodc13S/Dumy3+r3sVrap1aQ9T6ADlj7CgDTPSsHxB4z8PeF1B1jVYLZyAVhJLSt24RQWP1xXLLd+MvHgJsRL4V0FulxMmb+5Xp8q9Igcnk89CM10HhzwH4f8NOZ7Oy86/bmW/uj5txIx6kufXvjAPpQBkL478Q6yR/wjXgm/lgPS61SRbNMdmCnLMPoKcNO+J+oqftWu6BpHPy/YbN7hse/mEDP0rvB1paAODTwh40MeJ/iRds56mPSrdB+AwcUknhHxuoBt/iRcK+cZl0m3cEfTjn3rvaKAODa1+J+nlRBqXh3V4xy32q3ktpG+mwlRUR+ImqaQP+Kr8Happ0QPzXdmVvIEH95inKj6ivQaD0oAx9C8TaL4lg8/RtTt71AMt5T/Mn+8vVfxFbFcjr3w70DXLj7csEum6qOU1DTn8iZW9SV6/iDWIPEHirwGwTxVCda0MHH9s2cWJoB6zxAdB/eXPAHUnFAHpNFUtL1Oz1ixiv9Puorm0mGY5YnDK3r9MHj65zV2gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGTRxzQSRSoHjdSrKRkEHqMV594Jlk8KeJ77wLdyH7KFN7oruetux+eLPco2e5OCTwAK9DPQ1w/xL0u5k0a38RaWo/tbQJftsGP+WkY/wBbGcdmQHjvjFAHc0VQ0fU7bWtJs9TsnLW11Cs0Z9mGcH3HQir9ABRRRQAUUUUAIelee+FR/wAJJ8Qtf8USfNaWB/sfTiTwdnMzjPXLcBh1GRXReONfHhnwVqurA4lggIh4z+8b5U/8eYVi2M1l8LvhhZC+y0lvCoMScvcXLncVXuSXJ+g57UAavizxdZ+FbCN5Inur66byrKwh5luZD0VR6cjJ7e5IFY2geCLu+1OPxL41kS/1gZa2swd1tp4JyFRe7jjLHPI6nGTL4L8L3ov38WeKNs3iK9X5I8ZWwhxxDGOxGTuPck+5buqAGjg06iigAooooAKKKKACiiigApHGUIIyPSlooA851PwlqXhK/l1/wMg2yNvvtCJ2w3Q7tF/zzkx+B444weq8L+JtP8V6Umoae7YBMcsEg2yQSDqjr2Yf/qyCDW2eBXnfi7Rr3w1rDeN/DUO+dUxq+nLwL6Aclx6SL1zjkfkwB6LRWdourWeu6Taapp8wmtLmPzI3HXHofQg8EeoPpWjQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIwDKQQCDwQe9LSEZBB5BoA8++HmfD+t694JkYiPT5vtenBu9rMd2F7kI+QT6nFehV5744zoXjXwt4pj+WJpzpN8QOsU33CfZXGfxr0ADnp160AOooooAKQ9KWkPIoA4Dx8P7W8TeDvDWCYrm/a/uMDIMduu7aw9GJA/CqmjRj4g+N5PEUx8zQNElNvpKEZWe4H+suPcA4VTyOMjBBrmfG+r3Vx8RtZtNMdv7TNnbaFaDsj3JMsknttjXk9iRXr+haNaeH9FstJsl2wWsQjU45bA5Y47k5J9zQBoAYNOoooAKKQnAJPQUilWAZTkEcEUAOooooAKKKKACiiigAooooAKRvunnFLQeBQB5raD/hXvxAGnAbPDfiKUtbD+C0ve6D0V+MD14AwDXpCjkVz/jTw2vinwne6ZnbcMnmWsgODHMvKMD25Az7ZpngTxC/ibwlZ6hcLsvQDDeRkYKTodrjHbkZA7BhQB0tFFFABRRRQAUUUUAFIeATS0HpQByHibxufDuvaLpX9k3M39qXkdqtyXVY1LFQcckkjd6Ae9daOteb/FL/AJD/AIB/7D8P8xXpVABRRRQAUUUUAFFFFAHM/EDRf+Eg8BazpyKWle2aSEA4PmJ86f8AjyirnhLWR4h8JaTq2QWurVJJMdA+MMPwYEfhWyfunjPtXB/CoCx0fWNAC7E0fV7m1hXP/LIt5iH8d5/KgDvaKKKACkPApaRiFUknAHJNAHh3w7tX8R/GnxTrlxseDS7qZIGA53ufKU59PLiI/wCBV7lXlvwHtHHgi51abBm1S/luGb2Hy4/NW/OvUqAEPSvO4Vlt/j40H2u6lgk8PNP5U0pZEczqp2r0HCjpXoteeyEf8NBxDPP/AAjB4/7eaAOm8U3M0WgyW1s5S7vmWzgYdUeQ7S4/3VJf/gNZuqeBdP12VIdUkuDpltEkVnYwXDxRoFH322kFm7DJIAAx1NXJ/wDiY+NLaAcw6Vb/AGlv+u0u6NPxCLL/AN9iovEniqy0qaPSl1OxtNSuVLK11KqJAnQyMCRn2Xqx9AGZQDE+Fy6jaDxDo91ezXtjpepPa2VxO259oAJQnvtyPzPoAPQq53wtd+H0g/sjQtRgvfsy+ZM8MwmJZySXkZeN7Nub1PPFdFQAUUUUAFFFFABRRRQAUUUUAIelcB4c/wCJD8V/EehgBbXVYU1i2VRgK/8Aq5vxLbWr0A9K4Lxp/wAS7x34I1rfsQ3kunSc43CaM7Af+BJQB3tFNGc4p1ABRRRQAUUUUAFIehpaKAPMfiYbm41/wf8AZdO1K5Fjq8dzctbWM0ixxgrkkqpB+gJr0iCQTRJIofDLkb0KH8VPI+h5qaigAooooAKKKKACiiigBD0rhPDyGw+L3i+1LYS9trO9jTHAwrRsfzAruz0rhJ4/s/x0s7jkC78Pyw+xKTq354NAHeUUUUAB6VzvjPxPpvhTw3c3+oXXkh0aOAAEmSQqSqrjvx16DvgV0J6V5b8bfBWoeLPDtpdaYwa40xpJWgZ9qyRlcnAPBYbRj6tQBY+B+r6XefDqx02yulkurDcLqLBDRl5HYZyOc54Iz068GvS6+dvhD8LrzUdHk1y513VdKgvFUW39kXnkySKGYMZPlPGQMD6+1ek/8Ks/6nzxx/4OP/sKAPQDWW3h3RDqP9pHR9P+3A7vtP2ZPNz67sZ/WuT/AOFWf9T544/8HH/2FH/CrP8AqfPHH/g4/wDsKAO4jtYIZ5po4lWWdg0rAcuQoUZ/AD8qzL3wn4c1K7ku7/QNKu7mQ/PNPZxu7Y4GWKknAAH4VzX/AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAdfpeh6VowkXS9MsrFZDmRbWBYgxHTO0DPWtA9K4D/AIVZ/wBT544/8HH/ANhR/wAKtx/zPnjj/wAHH/2FAG14u8caH4KtYp9Zumjafd5EUaF3lx1AHTjI5JA5q34Y8U6R4u0z+0dGuvtEAcxvlSrI2M7SCBg4I9vQmvHfiP8ABjWruKzudD1XVdcljVlli1W+EkijjHlkgDHXIz6Ve+H3wa1PT9HlfV9f1vR7ydwTb6RqAjUKBgbyFIZs7uhwBjBNAHt9Fef/APCrP+p88cf+Dj/7Cj/hVn/U+eOP/Bx/9hQB6BRXn/8Awqz/AKnzxx/4OP8A7Cj/AIVZ/wBT544/8HH/ANhQB6BRXn//AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAd+3CnnFeWfGPxLo2lQaJb3V0q6hbana6jHAEJby0chm46cbvrg1pn4W4/5nzxwf8AuMf/AGFeUfFf4W6ppl5a6pZ6ne6tbTGK1MmpXYkuBIzEKNxCjbyMehznigD6G0TW9P8AEOlwanpVytzZzg7JACMkEg5B5BBHQ1pV494M+Dl5pnh2GHUfFPiHTryRmklt9J1DyoVJOBxtOWwBk/gOma6H/hVn/U+eOP8Awcf/AGFAHoFFef8A/CrP+p88cf8Ag4/+wo/4VZ/1Pnjj/wAHH/2FAHoFFef/APCrP+p88cf+Dj/7Cj/hVn/U+eOP/Bx/9hQB6BRXn/8Awqz/AKnzxx/4OP8A7Cj/AIVZ/wBT544/8HH/ANhQB6BRXn//AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAegUV5/wD8Ks/6nzxx/wCDj/7Cj/hVn/U+eOP/AAcf/YUAegUV5/8A8Ks/6nzxx/4OP/sKP+FWf9T544/8HH/2FAHoFFef/wDCrP8AqfPHH/g4/wDsKP8AhVn/AFPnjj/wcf8A2FAHft9015B4p8f+GdO+LmhvNqeBp0N1bX7ojMsbOF2KcDnkHOM4OM4xW+fhbgZ/4TzxwfY6v/8AYV4j4p+EXiG18fR6Tayi8GqPLNa3NxMN7qvLGU/3xkZOPmzkd8AH1TFMssSSRsXjdQysvIIPQ0/efRvyrN8P6Y2ieHNM0rzjL9jtY7fzNv3tqhc/TitHLf3v/HDQBJUVzCtxaywuAVkQowPoRipaQ9KAPOvgbdrdfCrTIw2WtpJon9j5jMB+TCvRq8b+Ct+lj4j8Z+Fiyg2upSzxLnkjeY2/Lan517JQAUUUUAFFFFABRRRQAUUUjfdPOKAKmqalb6Tp0t7clvLjAwqLuZ2JwqqO7EkAD1Irjfhbr2peJrLXdV1IlHbVJIIoA+5YY0RAFH4k5Pc5Pelm1a+1LVxq6aFeX2jWQL2LxzQqsj8hpiHcEgDIXjGCWGcjFL4GRMPhpa3D8tdXM8xOep3lf/ZTQB6VRRRQAUUUUAB6VwXxIVru98HaZG3zz69BM68fNHEGdv6V3p6V5/dFdc+NlhAvzQ+H9NkndgeFmnwgU++wE0Ad8cYrz34v3t1ZeE7caZdXdvq13ew2tm1vcPGS7NkghSN2QCOQeteh9q8u8VW//CWfGDQ9BE8sdvo9pJqU7wttYSMQqc9mB2n6NQBF8QHvvh9oGnatpGtajNfC6jga2u7p7hLzIO4bXJIPHVcEV6lCxaNCy7GKjK+ntXkF/bL4Z+M+g217LPrkOpxnyH1FzLLYuM/NH/CBwM8Z6817Ep56/hQA6iiigAooooAKKKKACiiigAooooAKKKKAA9K4bU8XHxn8Pxct9l0q6nx027mRM+9dwehrhLJFvPjlqdypyLDQobVh6NJK0n8hQB3lFFFABQaKQnAoA8E1GVvB3xp1TXApSyiuoDdnput7mMKzn2SVB+de9j2rzPxnpVtN8SNJS9jLWPiDTbjR7hs8KR+9jP8AvZ3AfStP4bavdNYXPhnV3H9taEwtpuf9dFj91KPUFcDPXjnrQB3VFFFABRRRQAUUUUAB6Vz3ivRdV1/SnsLDWI9NhlG2dvshld17qDvXbkcH2PauhooAx9T06+vPD0mnWd7b2c0sBhM/2YsqgqQSibxjHbJOPeqHgXwvdeD/AA5b6JJqMN7b227ymW1MLjcxY7vnYHlu2K6eigAooooAKKKD0oAhvLmGysp7q5lWKCGNpJJGOAiqMkn6AZriPhdbTXenal4rvIil34gujdKGHzJbr8sKn2C8j/eqH4g3EviDUbDwHp7sr6hifUpUPMFmp5+hcjaPXkd67y2ghtLeK3t41ihiQIkaDCqoGAB6AAUASTBzC4iZVkI+VmXIB7ZGRn8xXB6d4J8Q6Z4l1jXYvEmnSXWqlPN83SXIjVBhVTE4OAMdc9BXf0UAcfongSOz8St4m1fU59X1ryzFFNJGI44EPGI0HTgkZyTz7knsKKKACiiigAooooAKKKKACiiigAooooAKKKKAEPSuC+H4W/8AFPjjWwD+/wBVFkCe4t0CZHtkmuw1nUY9H0S/1OYZjtLd52HqFUnH6Vzfws0+Ww+HWkm5Yvc3aNezOerNKxkyffDD8qAOyooooAKDRRQBw3xVs55PBp1W0TdeaJcxanCM4/1bZb/xwtVXxZY3Nwum+PvCqm41C2twzQIP+P8As2AYx8fxAHcvXnPXiu/uIIrq2lt50WSGVCjo3RlIwQfwrhfhdcS2elaj4UvHZrzw/dtagv8AeeBiXhc+xXp7LQB1Ph/XrDxLo9tq2mTebbXC5GeCh7qR2YHOR+vStWvNtZ0rU/A2t3Pijw3bvdaVdMZNX0pG6t3nhHZxzuHGf1XttE1vTvEWmwanpV0lxaSjKsv6gjqCOhBoA06KKKACiiigAooooAKKKKACiig9KAEPSsDxd4ptPCehPf3MbTzORFa2sfL3MzfdjUe/48Z61L4m8T6Z4U0p7/VJiqk7IokGZJ3PREXqT/Lqa5nwx4d1PW9bTxl4uiEd4EK6bph5WwiPOW9ZD3Pbp6BQDR8CeGrvSLa61bW3WbxDqzie+kHSMY+WJf8AZQcfXPtXYU0dRTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoPSig9KAOB+K00t14fsfDdszC416+isgUPKRZDSP8AQKuD7NXdQxJDGkUahY0UKqjooHAArgrPPiX4xXV5jdYeGrX7LCexuphmQg+yYUj1Ir0GgAooooAKKKKAEb7przvxQT4T+IWj+KF+TTtSUaVqTDOEYnMEhA44OVJPQcd69FrL8SaFa+JfDl/o14P3F3EYy2MlD1Vh7ggEe4oA0TwCAM8dK4PV/BWoaTq0/iDwPcRWd/Md15p0xP2W+PqR/A/+0MZJ5xkk3Phzr11quhyadqxI1zR5DZXyk5LMvCye4ZRnPcg12ZoA4/w78QNN1i9OlahDLo+ux8Sade/KxPrG3Rx3BHbnGK68VjeIvC2ieKbL7LrOnRXSL9wtwyH/AGWHIrlR4f8AHHhVf+Kf1uPXbBOlhrJxMq/7M68k9AA3AFAHolFefL8UI9MBTxX4d1jQXX787QG4tgfQSxg5/Kt2w8feEtTCfZfEemOX+6jXKo5/4CxB/SgDpKKrx3ltMm+O4hdD3VwQf1pJb60gXdNdQRr6vIBQBZorltS+I3g7S0drrxLpuV+8kMwmb/vlMn9KyG+I91qxMfhTwpq+q7uVup0+yWxHqJJP5YFAHft0riNa+IUEOoPonhm0bXtdAwYbdv3NuemZpei8g8ZzxjjIqofCHirxRz4u8QC1sm+9peibokf2eVvmYEcEDj0xXYaJoOleHbBLHSLGCztl/giXqfUk8k+5yaAOa8PeB5l1RfEXiq7XVfEGMRnH+j2Y67YV/wDZjyfbnPbDg06igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsTxZ4gg8LeF7/WbgBhbRlkQ/wDLRzwi/ixA/GtpvumvOdVP/Ca/Eu00aM79J8Nst7fntJdMD5Uf/ARlvzB5FAG58PNAn8O+EreC9JbUrpmvL+RvvPPIctk9yOFz7V1dNHXpTqACiiigAooooAKRvunAyfSlooA868ZxyeEPEdt46s42NmVW11uJF+/Dn5Zsd2QkD1I46V6BbzR3EMc0MiyRSKHR1OQwIyCD3GO9FzBFdWstvPEksMqFJI3GVZSMEEdxivOvCd1N4I8Rf8INqkrvYTbpdCu5Od0fVoGP95O3qPTgUAelUU0dRTqAA8isTUPCPhvVHMl/oOmXEh6vLaIzfnjP61t0UAcXJ8J/Asjlz4bswT12llH5BqWL4U+BoXDp4as8+j7mH6k12dFAGTp/hjQdJfdp2i6dZv8A3oLZIyfxAzWrS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLUN5dQWVnNdXUqw28KGSSR2wFUDJJP0oA5/xv4nPhfw+89vF9o1O5cW2n2wGTNcPwox3A6n2FL4H8Mf8It4ejtJpfP1Cd2ub+4zkzTvyzH6dB7D1zXO+EYLjxp4lPjnUonjsIVeDQrZ+NsZ4edh2Z+3oPXgn0YdaAFooooAKKKKACiiigAooooAD0rn/ABb4WtfFmhmxnkeC4iYTWl1F9+3mXlXU/wCeK6CkbO0460AcZ4H8U3epPcaB4gRLfxJpvFxGOFuI+izx+qnvjofTIFdpXI+MfCD6+ttqWl3C2HiKwO+yvewP/PN/WM85GD1zjkgu8G+MR4i+0afqNqdO8Q2HyX1g55X/AG067kPGDz168gkA6yiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQnAzQAN0NeY6hK3xR159Fs5CfCWmzD+0blDxfTA7hChHVF4JPfj2Jk13WrzxzrMvhXwvdtFp0RxrOrQ4IRf8AnjE3QuehPb867vR9IstC0y30zTbdLeztk2Rov8z6knknqTyetAFqGJIVSONFSNFCqqjAUDgAD2FTUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjHCk+lcl4t8G/2+9vqum3J07xFYg/Y76Mf+Q5B/Eh9D0zx1IPXUjEgZAzQBxvhLxq2qXj6Fr1sNM8SQL+8tWPyXCj/lrCf4lOCcDpz1612dc74o8IaZ4tskivQ8VxC2+2vIG2zQP2ZG7fTpXM2vi/V/Bl1HpXjoK9o7bLXX4UIil9FmUf6t/fofwJIB6RRUUM0U8SSQypJG43I6EEMPUEcYqWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikPQ1keIfEmk+FtNN/rF7HbQg4QE5aQ/wB1R1Y/T8eKANWV1jiZ3YKijLMTgAdzntXmt9rep/Ee6m0bwvNJaeHkYx3+tqMGbsYrf19C/Qcn03KNM1/4kuJtehuNE8LBgY9L3bLm9A6GYj7if7A5/JTXodlZwafaxWlpBHBbQqFjijUKqL2AAoAraJomneH9Ng03S7VLa0hXCog6+5PcnuTye9aVFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVBeWsF7Zy2t1BFPBKu14pVDK49CDwanooA85fwhrvgyVrrwPci404ndJoF7IfLPr5Eh5jb2PGSSegFa/h34g6Trl4dOull0nWk/1mm36+XJn/Zzw478c45IFdeaxPEPhXRPFNp9m1nTorpV+4zDDof9lhyP85oA2hS153/YPjfwkgPh/V18Qaegx/Z+rnbMo/2JxjJ6cMMYqzafFHR4rhLLxFbXnhy/PHl6lGVjc99koyrL75H0oA7uioba4huoUnt5kmicZWSNwysPUEcEVNQAUUUUAFFFFABRRRQAUUUUAFFIelZes+IdI8P24n1bU7WyQ5x50oBb6A8t9BQBq1Fc3ENpbSXFzNHDBGpZ5JGCqgHUkngCuBPxA1bxD+78FeG7m9jbpqeoA21qB/eGfnkHsMGlt/hzca1cJeeOdYk1mRTuTT4gYrKE+yDl8ep7cEGgBLr4g3euzy6d4D08apOp2S6lOCllbnvlushHHCjvnJ6Vd0H4f29rqS654hvJNd17GRc3A/dwf7MMfRAPXr16ZIrr7W2gs7eO3tYI4IIxhI4lCqo9ABwKnoAaOop1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVWvLK01C2e2vbaG5gfhopkDqR7g8GrNFAHCXHwr0SG4a60G71Lw9cu25jplwUjc9t0bZXHsAKYLH4maPtFvq+i6/ADlhe27WsxHYAx5XPuRXfUUAcD/AMJ34i05Sdb+H2spg43aZJHegj1wpBFKfi94RtsLqU2oaXITt8u90+ZGz07KR+td7SNjacjI9KAOUt/iX4KulDR+J9NUEZ/eThP0bGKtDx54PYA/8JVon46hCP8A2atK40bSrobrjTLOYjn95AjfzFZ7+CPCUhMj+F9FZmOSTYREn8dtADH8feDkPPirRfwvoz/Jqzrv4s+BLIEyeJLV/wDriHl/9ABrZg8HeGLbPkeHdIi3dfLsYlz+S1pQWVpaMBb2sMPGP3cYX+QoA4tvirpE6qdJ0fxFq4PRrLTJCv5vtxSN4k8fai23SvBUVihHy3GrXygD6xx5YV31FAHn58KeNtaUjXvGZsYXGGttDtxFg+0z5etHR/hr4W0a5+2Jpq3l+cFru+c3ErEfxZfgH3AFdfRQAgpaKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9k='] Multimodal Competition True Theorem proof Geometry Math English 52 "A king strapped for cash is forced to sell off his kingdom $U=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$. He sells the two circular plots $C$ and $C^{\prime}$ centered at $\left( \pm \frac{1}{2}, 0\right)$ with radius $\frac{1}{2}$. The retained parts of the kingdom form two regions, each bordered by three arcs of circles; in what follows, we will call such regions curvilinear triangles, or $c$-triangles ( $\mathrm{c} \triangle$ ) for short. This sad day marks day 0 of a new fiscal era. Unfortunately, these drastic measures are not enough, and so each day thereafter, court geometers mark off the largest possible circle contained in each c-triangle in the remaining property. This circle is tangent to all three arcs of the c-triangle, and will be referred to as the incircle of the c-triangle. At the end of the day, all incircles demarcated that day are sold off, and the following day, the remaining c-triangles are partitioned in the same manner. Some notation: when discussing mutually tangent circles (or arcs), it is convenient to refer to the curvature of a circle rather than its radius. We define curvature as follows. Suppose that circle $A$ of radius $r_{a}$ is externally tangent to circle $B$ of radius $r_{b}$. Then the curvatures of the circles are simply the reciprocals of their radii, $\frac{1}{r_{a}}$ and $\frac{1}{r_{b}}$. If circle $A$ is internally tangent to circle $B$, however, as in the right diagram below, the curvature of circle $A$ is still $\frac{1}{r_{a}}$, while the curvature of circle $B$ is $-\frac{1}{r_{b}}$, the opposite of the reciprocal of its radius. Circle $A$ has curvature 2; circle $B$ has curvature 1 . Circle $A$ has curvature 2; circle $B$ has curvature -1 . Using these conventions allows us to express a beautiful theorem of Descartes: when four circles $A, B, C, D$ are pairwise tangent, with respective curvatures $a, b, c, d$, then $$ (a+b+c+d)^{2}=2\left(a^{2}+b^{2}+c^{2}+d^{2}\right), $$ where (as before) $a$ is taken to be negative if $B, C, D$ are internally tangent to $A$, and correspondingly for $b, c$, or $d$. Descartes' Circle Formula can be extended by interpreting the coordinates of points on the plane as complex numbers in the usual way: the point $(x, y)$ represents the complex number $x+y i$. On the complex plane, let $z_{A}, z_{B}, z_{C}, z_{D}$ be the centers of circles $A, B, C, D$ respectively; as before, $a, b, c, d$ are the curvatures of their respective circles. Then Descartes' Extended Circle Formula states $$ \left(a \cdot z_{A}+b \cdot z_{B}+c \cdot z_{C}+d \cdot z_{D}\right)^{2}=2\left(a^{2} z_{A}^{2}+b^{2} z_{B}^{2}+c^{2} z_{C}^{2}+d^{2} z_{D}^{2}\right) . $$ Prove that the center of each circular plot has coordinates $\left(\frac{u}{c}, \frac{v}{c}\right)$ where $u$ and $v$ are integers, and $c$ is the curvature of the plot." ['It suffices to show that for each circle $C$ with curvature $c$ and center $z_{C}$ (in the complex plane), $c z_{C}$ is of the form $u+i v$ where $u$ and $v$ are integers. If this is the case, then each center is of the form $\\left(\\frac{u}{c}, \\frac{v}{c}\\right)$.\n\nProceed by induction. To check the base case, check the original kingdom and the first four plots: $U, C, C^{\\prime}, P_{1}$, and $P_{2}$. Circle $U$ is centered at $(0,0)$, yielding $-1 \\cdot z_{U}=0+0 i$. Circles $C$ and $C^{\\prime}$ are symmetric about the $y$-axis, so it suffices to check just one of them. Circle $C$ has radius $\\frac{1}{2}$ and therefore curvature 2 . It is centered at $\\left(\\frac{1}{2}, \\frac{0}{2}\\right)$, yielding $2 z_{C}=2\\left(\\frac{1}{2}+0 i\\right)=1$. Circles $P_{1}$ and $P_{2}$ are symmetric about the $x$-axis, so it suffices to check just one of them. Circle $P_{1}$ has radius $\\frac{1}{3}$ and therefore curvature 3 . It is centered at $\\left(\\frac{0}{3}, \\frac{2}{3}\\right)$, yielding $3 z_{P_{3}}=0+2 i$.\n\nFor the inductive step, suppose that $a z_{A}, b z_{B}, c z_{C}, d z_{D}$ have integer real and imaginary parts. Then by closure of addition and multiplication in the integers, $a^{\\prime} z_{A^{\\prime}}=2 \\hat{s}-3 a z_{A}$ also has integer real and imaginary parts, and similarly for $b^{\\prime} z_{B^{\\prime}}, c^{\\prime} z_{C^{\\prime}}, d^{\\prime} z_{D^{\\prime}}$.\n\nSo for all plots $A$ sold, $a z_{A}$ has integer real and imaginary parts, so each is centered at $\\left(\\frac{u}{c}, \\frac{v}{c}\\right)$ where $u$ and $v$ are integers, and $c$ is the curvature.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIATABxwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ8CgBaKztU13StFhEuqanZ2SHobiZY930yefwrlH+LXh+dnTRbbVtekQ4ZdMsJJNp/3iAP1oA7yiuD/wCEr8b3rgaf4BeGJhkT6jqMcWPrGoZqao+K1wTvfwnZxkcBVnlcdOvIHrQB31FcN/YnxFlO5/GWmQHpti0gMPzZ6aPDvxDDs/8AwntqQQMIdFjwv/j2aAO7orhv7I+I8GfL8V6Rc9x5+llB9PlemLP8U7VyZrXwpfxjosEs8Ln/AL6BAoA7yiuB/wCE38VWAZtZ+HupLGvRtNuYrwsPZQQamtfix4UluEtr27n0m6brDqds9uR9SRtH50AdxRVazv7TUbdbiyuoLmBxlZYZFdT+IOKsA84PWgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooPtTXcKpYnAHc9qAFJwKhuLqG0t3uLmWOGGMbpJJGCqo9STgAVxGofEV7+9fSvBennXr9Tte6DbLO3Pq8vRj0O1evOD2qO0+HEuszx33jnVZNbuVYOlkmYrOE/wCygwWxyMt1BORQBJcfE6G+uHs/COk3niS6Q7Glth5dqjejTN8o45GM5qM+HvHfiMf8T3xNHotq3Wz0OPEhXtmd+Q3rtGK7y2tbezt47e2gjghjXakcShVQegA4FS4HpQBx+l/DDwjp0pnfSY7+7bBe51BjcyO3qS5IB+gFdekaRoqIiqqjCqowB9KdRQAhAPUUYFLRQAYowKKKAEwD2pcUUUAJgVDd2drewNBd20M8LcNHKgZT+BqeigDiLz4VeGnuGu9KjutDvSAPtGk3DQED/dHyY/Cqn2b4jeGsNa3lj4qshn9zcj7JdY7AOMofq3NehYpNoNAHF6X8TdEurwadqy3Og6nwPsuqR+Vu7fK/3WGeBzk+ldmDk1R1fRdM12xaz1WxgvIG/gmQNj3BPQ+45riW8G+IfCDGfwPqhmsxnOiapI0kWPSKQ/Mh9Acgk8mgD0aiuQ8P/ECw1a/Gj6lbTaNroGW0684ZveNuki8HGOeDxXWq2SeelADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApCcUprkfFnjVNAlt9L0+1bU/EF3/x7afCfmA/56Of4EGDyf5AkAGl4k8VaV4V043uqXIRSdsUKDdLM/ZUXqxP5euK5BND8R/ET994nMui+HnwYtGgciacf9PD9h/sDHXkArzreGfBD2+pf8JD4mul1bxC4+WUr+5tAf4IVPQDpu6n25z2mBnOOaAKmm6ZY6RYx2WnWkNraxjCxQqFUfh3PvVvFLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJtU54HPX3paKAMbxH4W0bxTp/2PV7GO4Qf6tzkSRH1Rxyp+n45FcZ/aPiT4bYGqyXHiHwwM4v1G67sk/6agf6xMfxDkYOccCvTKawBGMDB4oAq6ZqdnrFhDf6fdxXVpMu6OWI5Df8A1+xH8quV5zqfhTVPCOoT694GRSkjeZfaExxDcju0f/POTH4Hj0weo8L+LNO8WaZ9ssHZWjbZcW8o2yW8g6o47Ec+1AG9RSDOaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPShjhcj+dct408Wnw9ZQ2lhb/bdd1BvJ0+yx99/7zeiLnJPHHcdQAVvGHjC50y6tdC0KCK+8RX5Hk27Z2QJ3llxyEH69ulWvB3g6Hw5FNd3c51DXL0iS+1GUZeVuOF/uoMYCjHQU3wX4PHhyCe7v5/t2u3zebfX7Dl2/ur6IOgHH07DqwMUAJgZzS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADSOK4bxZ4QvF1UeK/CZjt/EMI/fQk4i1CMY/dyf7RAwG9hz0I7sjPWkI4oA57wj4tsvFmltc2yvBdQN5V3ZyjEltIOqsODjg4Pf8CB0I61wXjHw5f2Wqr4z8LR51i3QC7tBwuoQDqh4++APlPtjngV03hnxDYeKNEg1XTZN0EowVbho2HVGHZgf84IJANiiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopCaAFopOc0ZP+RQAtFIKWgAooooAKKKKACiiigApDxS0jHAzQBl+INdsvDeh3Wr6lJstbZN7cZZj2Ue5JAFcz4G0C9uL2bxl4kixrmoJiC3Y5FhbdVjX/AGjnLH1OMA5znon/AAsTx80p+fwz4cnwg/hvL0dT7qn6npkE49JXr+Hf/P1oAUAA5xz0zS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANZeOBz6mvNvEEUvw68SyeLLFCdB1GRU1m2UE+S5OFuVA9zhh3z6nI9KIBGCM1Dd21vdWk1tcxJJbzIySxuPldSDkH2IzQA6CZLiJJonWSJ1DI6kEMDyCD3BqWvOfBdxceEvEVx4Cv5JHtwpudEuJTky2+TuiJ7sh/TsBivRQc0ALRRRQAUUUUAFFFFABRRRQAUh4FDZ4x61zHijxxpvhlorMrLfavcD/RtNtF3zSe5H8K8H5j6HGcYoA6YtjJrkNU+JvhzT7s2FpNPrGpD/lz0qI3Mnv8Ad+UY4zkislfCXiPxkfO8aag1jp78roemybVx1xNKDlz6gHHAI9K7bSND0rQbQWmlafb2cA6pDGFz7n1PuaAOQGs/EjWudN8O6XosOeJNWuTLIy+oSL7p9iaePC3jq7lL33xAMKMP9TY6XEgX6OxLV3uBRigDhh8PdQb5pfHvigyHqUuI0X8tlNbwR4igjIsPiDrEbD7puoIbgfkVH867ujFAHBfY/idpYHkavoOtoB832y1e2kb6eWSufrTB8SLzSBjxf4V1PR0HLXkAF5bKPVnj5XPpg16BikIB6igDP0nXdM12z+16VqFvewdC8Dhtp9CByD7HmtAEnqK4vWfhro95eHU9HeXQNYwdt5p3yBj1+dB8rgnBI4JwOaz4fGOt+EJ47Lx3bxm0ZgkOvWaEwtnp5yAZjY+uNuenAJoA9FoqK3niuYUmgkSSKRQyOhDAg8ggjgipaACiiigBDXHfELXrzTtHt9K0dv8AieazMLOyA6x5+/L7BFyc9jiuxbpXnnhHb4u8cat4vkUNZWedM0kkcFVOZZl/3mOAR2yD3oA63w1oFl4Z8P2ejWC/6PaxhNx6u3UsfcnJ/GtfFGMUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQQD1oooA5H4g+HLjWtCjvNKPl65pUgvNOkAyTIvJQ+oYcY6ZxngVqeE/EVt4r8N2Ws2oCpcxgtHnJjccMh9wQR+RrZPSvPNKx4P+KN7o2CmmeI1a+s/7qXS/65B/vDDfyoA9EopBS0AFFFFABRRRQAUjHC5oPArjfG/ie+042ug6CqzeItUytspGVtk/infrhV7ZByR3wRQBB4o8XX8uqnwr4Thju9edc3E7jMOnxn+OT1bHRe/XHQHS8JeC7Dwwks/myX+r3Q3XmpXBzLOx64P8K+ijsBkkjNT+EPClp4T0n7JDJJcXUredeXkpzJczH7zsTk/QZ49+p6EADtQAmBnNLRRQAUUUUAFFFFABRRRQAYzUN1bw3NtJBcRRzQSKVkjlUMrqRggg8EVNQQD1oA8vn03VPhfO+o6HHcaj4VJLXmlA75bIdTJASeV7lSfx5yPQtJ1ax1zTYNS026jubO4TfHIh6jp+BByCDyCCO1XGAwa8x1CKT4W+IG1izD/8IfqEwGo2wyRYTMcCZB2QkgEe/wDugAHqFIelMilWZFkR1ZHAZWU5BHqDTz0oA5H4k63caL4NuEsedT1CRbCxAOCZpTtBHuBkj3Ara8N6Hb+G/Dtho1qP3VpCI92OXPVmPuSST7muT1If8JF8YdMsfvWnh60a9mxyDcS/JGpHYhQXB969AFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVxfxO0qe78KHVNPX/iaaLMuo2h55aPll46gruGO/FdpTXVWUqwBU8EHofagClouqQa3o1lqlqcwXcCTJk8gMM4PuOh96v15/8MD/AGSdf8IOTnRL5vs4OeLab95Fyep+9n8K9AoAKKKKACiikPTigChrmr2mg6Jd6rfSeXbWsZkc9z6Ae5OAB3JArlvh7o13Il14u1uIDWtaAkKH/l2t+scI9MDBPcnryKqeMVPivxxong771jAv9q6oAOHRW2xR/RnySD2wa9CU5JoAUADoKWiigAooooAKKKKACiiigBGOBWdHrulza22jRX8EmopEZntkYM6ICBlgPu/eHB55rSIzXnYhih/aDURRqgbwyWIUYyftPWgD0GSRYo2d2VUUEsWOAAO+a5/UvHPh3RtNs7/U9UjtIbyNZYBKjB3UgHOzG7oeeOKk8Ws02kppUZYS6rMtkNpwQjZMpB9REsh+oFXk0ewjvp777PG1xKixb3QHbGo4RfRc5OB3JoAfpeq2Gt2Ed7p13Dd2smSssTZGQensR6Hmpr21t72ymtLqJZbedGjljYZDKRggj6Vw/wAMNJSwPiS7slEWkXuqSPYRKMJsX5S6jspYHHqFFd+RkYoA888DXU/hnXL3wFqEzSLap9p0ieQ5MtoT9zPcxnj6ZwABXoX3hzx/SuG+J+nzx6RaeKdOTOp+HpvtaAcGSHpNHn0Kcn/drT8R+IYIfhxqXiGymHlNprXFtIeMlkzH+JJWgDI+GAGqDxD4qYKx1nU5DDIO9vF+7jH4Yau+AArn/Aulf2J4H0XTmQJJDZx+Yo7SEbn/APHia6GgAooooAKKKKACg0UUAcp8RNU1nRvBmo6los9tDNbRGRmmiLnA67eQAeepyOOlanha8n1Dwno97cyeZPcWME0jkAbmaNSTgccknpWR8UBj4Y+Iscf6G3StLwZ/yI3h8/8AUNt//RS0AblFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhGRS0UAef6kf7E+NGjXYLCDXdPlsXA6ebERIrH3KkqK78GuD+LG2y8P6Zr5JUaLq1teOR1Me/Yy/iH/Su8FAC0UUUAFIelLWF401F9J8E63fxuElgspXjY9n2Hb+uKAOb+GYGsT+IfF74Y6vqDJbOB1tocxx/To2a9AAA6Vz/gXTf7H8DaHYFAjxWUW8D++VBf/wAeJroaACiiigAooooAKKKKACiiigBCcV527Tn45R3/ANg1E2X9hmyN19hm8vzvP37d23GMd84969FpMCgDBMUl74zEsiMLbTbXEbEHDTSnkj3VEA4/56msDxh4rnt9S/sRNB8R3NkVzd3OnafI4YH/AJZI/A5H3mB46Dkkr3u0Y6UbQO1AHN+FfEP9ttNDb+HtU0iztI0RBqFr9n3E9FjTn5QByeMZGBXS0gABzS0ARzRRzwPDMgeORSjqwyGB4INeFXcjR/DS+8BzyN50HiKLR4t7ZZoXmEsbH6qCB7LXvJrw/wAWWPlfH/RrNFPk6lPaai+Bx5kCzIPxAGaAPblAHA6CnUgpaACiiigAooooAKRjtGe1LRQBzPjrStU1/wAJ6ho+mLZ+beRGIvdTNGEBI5wEbP6Vc8KWWoaZ4a07TdSS2E9nbRW5a3lZ1fYoXd8yKRnHTmtnApaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOa+IVkNQ+HfiG3K7ibCV1XHVlUsv6gVd8KX51Twjo1+33rmyhlbnoSgJH51o3kC3VnPbsMiWNkP4giuP+EN19s+FegynOVheLn0SRkH8qAO3ooooAK4T4xtJ/wAKt1eOFiJJmgiBH+1MgP6Zru64T4xSCH4Z6hO4ykU9q7fQXEdAHcRoEQKowAAMelPpB1NLQAUUUUAFFFFABSMcUtIxAHJAoA4PxX8W/DPhDWRpV9LczXYK+atvEH8kMAQWyR2IOBzjtXX6TqtnrWmW2pafOJ7S5jEkUgBG4fQ8j6HpXhfxI+DHiDXfGl1rGiNbTWt/IrOksxRoG2gEnI5XjIxk84xxXX+H/gX4RtdDtINb00X2pKn+kXC3Uyq7k54CsBgdBwDgc80AepZozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHf5ozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHf5ozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHfMcCvEPG/jvw1Z/GXw3cyXjldGNzBfyRxlhGzIVVfUkEnOM4+uRXYH4J/DwYx4e7/8AP7cf/HK8Y8WfB6/sfiBZaJplxara6vJO+nmR3AiRF3srnBPAOBjOe+M0AfUNrcxXdvFcQSLJDLGskbqchlYZB+mKmzXm9h8DvA0Njbw3mj/aZ44lWWf7VOvmOAAWwHAGTk4A71Z/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3+aM1wH/Ckvh5/wBC9/5O3H/xyj/hSXw8/wChe/8AJ24/+OUAd/mjNcB/wpL4ef8AQvf+Ttx/8co/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3+aM1wH/Ckvh5/wBC9/5O3H/xyj/hSXw8/wChe/8AJ24/+OUAd/mjNcB/wpL4ef8AQvf+Ttx/8co/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3k0yW8LzSuqRopZmY4CgDJJNefaP8avCOteI00a2nulkldY4J5YNsUznoB1YZJx8wH+KXnwP8BS2U8dtopt5njZY5hdzMY2I4bBfBwecH0rzHw38CPE1n4ttJtSls0060njmeaGckyhTnCDbnPHcDrQB9JAnOPanUxcDp+Vcm/j6H/hJ7nw7DoerzajbxCaRI1hIEZx827zcdxwefagDr6KwvD/izTPEc13b2jSxXlm2y6s7mMxywk9Mj09xkVu0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIa4X4QFB8PoIkXZ5V3dIVAxj9+5x+RFd0elcN8JS0ngk3DgAz6hdyYHbMzf4UAd1RRRQAVyfxNsRqHw08QwEZ22bygYzynzj9VrrKiuYI7q2lt5V3RyoUdfUEYNAFLQNQGreHdN1FTkXVrFMP+BKD/WtKuE+E1xIvg5tGuH33eiXc2nTHGM7HO0j22la7ugAooooAKKKKACqeqala6RplxqF7MIba3QySOewH8z2A75xVpzhe341534pvk17R9b1MyKdG0i1uGthni6uURhvHqiHKj1bJ/hUkA2fh74mm8Y+HJNalhWGGW6lW1iHVIlIVc+/Bz9eOK63AFcJ8G7c23wp0NSOWjkkP/ApXP8AIiu7oAKKKKACiiigAooooAQ4Iwa8f8XagV/aC8IRAKYbaAqzZ6PMJQAfwUGvYG6V4Jqi/wBo6nqHjYsyQw+LrGFGzwYLf90WB9GZz+VAHvSnPI7jNOpB1paACiiigAooooAKKKKACiiigAooooAKKKKACiiigApMClpDntQAHgDAzXivhTxVDa6p4y8b3Ol6reQXV2Yrea0tfMUW8IKg5yMZGCe3HWu7+JHiq18MeCtTna6iS+e3aO1iLgSM7fKCq9TjOfwrm/DHizwt4P8AhxpenW+o22pX0dqD9hsXE8ssz/My7VyR8xIy2KALnw60ebUPEOsePrqa23a0qpb29tKJFiiXA+ZhwX+UA46EH1r0ivPfgz4Z1Lwx4FEGqIYrm6uXuvIP/LFWCgL7H5c4969CoAKKKKACiiigAooooAKKKKACiiigAooooAbIwVCxOAOSa4X4NrKPhZo8kw/eymeVvfdM5B49sV0fi29OneDdbvR96CwnkX6iNiP1qp8P7T7D8PvD0BXaw0+FmHoxUMf1JoA6SiiigApD0paMZ60AefB/+EX+MDBmK6f4otgVJ6LdwDGPQbkP1Jrv1JNcz498NSeJvC8tvZuItTtpFu7Cb/nnOnKn8eR+Oan8F+JYvFfhyDUhGYboEw3kDfegnXh0IPIweR7EUAdDRRRQAUhpaCM0AcH4h8Y6Zf67a+DbLWYI72+YpdSxTANBGPvRqwPEr/dUdRyeoGcD4paP4L8O+AdT8rSNDs9Rkg2WoFvEkxJYDK8bjgZOfY161tGCOxowPSgDkfhjdWFx8PNDjsbqGcw2USzCNwxR9o3BvQ5yPwrr6QADoKWgAooooAKKKKACkNLSN93pQBzPj7xC/hrwde3sALXzgW9nGo+Z55PlQAdyM7segNc14g8HLpnwGu/D68y2en+c7Lk7pkIlYj6sD+dSRN/wnfxLEyHfoXheQhT/AA3F8Rzj1EYP4H1Br0KaKO4gkhlUNFIhV1PdSMYoAq6FqKaxoGn6nGAFu7aOcD03KGx+taFcL8JZ5F8Ff2RcPvutFvJ9OmOMZKOSuPbay13VABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJgUYFLRQAgAHSloooAKKKKACiiigAooooAKKKKACiiigAoNFIaAOH+Lc0h+H11p9u+251O4gsYQf4mkkUEf98hq7S3jSGCOKMYjRAqj0AFcL4v8A+Jv8RfBuhAB4reWXVrkd0ES7Ym+hdiK74d6AFooooAKKKKAEbpXm/iKKbwD4ok8Y2MTvot+Vj1u3QZ8pui3KgenRgOvXGTkek9ajmhingeGWNZIpAVdGAIYHggg9RQAy0uob22iuLeVJYZUEkciHIZTyCPYip68tX7Z8Jb2Tak134JuZdwxlpNJZj6dWhySfUc9/v+l2l3BfWsV1azJNbzIHjljYMrKehBHWgCeiiigAooooAKKKKACiiigAoopD064oAGOBmuG8ceJL4TQeEvDj58Q6kv8ArM8WUHRpmI6eg75xjJwDY8W+NW0q4i0PRLYan4lu1PkWan5YRj/WSn+FBwcHBPt1FjwZ4QXw5bT3V9P9u1y+bzb+9Yfff+6vog6AYHTp0AANPwzoFl4Y0C00ewUi3tk27mHzSN1Z29yST/8AWrWwB0owM0poA8/0onQfjBrOntkW2u2kd/b8YXzYv3cij1YjaxrvwcmuB+KFu+n2Wl+L7aNnuNAu1mkCjLPbv8kyj6gg57YruraaO5gjnhdXikQOjqchgecj2NAEtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLWB418QL4X8H6lq5GZIYsQrjO+VvlQY7/MR+GaAOe8Hn+3fiJ4s8RkBoLZ00e0focR/NKPpvI5r0DGK5vwHoLeG/BemabLk3SxeZcsTkmVzufJ7/ADEj6AV0lABRRRQAUUUUAFIQD1FLRQBHLFHLE0ciK6MNrKwyCD2IPUV53N4W1zwPdy3/AIIC3WmyOXuNAnk2rnqTA5+4fY8fkBXpFIVB6igDmfDPjvRvFO+C2le21KHifT7tPKniPoVPX6iulUk+lc/4m8E6F4qVH1G0xdx8Q3sLGOeLrja454Jzg5Ge1c8mmfEHwuwGmala+JtPTkW+pHybsL/dWYfK31YUAeh0VwP/AAtK207K+JtA1rQygHmTTWpmgB9pI8g/XFa1n8RfB19Grw+JdLG7oJblYifwbBoA6iiqEWt6XOm+HU7KRfVJ1I/MGqlz4u8N2X/H14g0qDBxiS8jXn8TQBtUGuHufi14PiuPs1pqMmp3eMrb6dbvOz/QqNv61WbxP4519dugeE10uFvu3muy7CP+2KfNn0ycUAdxd3tvp9rJdXlxFb20Yy8szhFQepJ6VwE3jLWfG0r2HgW38uyBKT6/eREQp2PkoRmRuvXgcZ4Oas2fw0i1C6iv/GGr3PiK5Q7kgmAjtIz/ALMK/KfTnIPpXdxQxQxJFFGqRoAqIgwFA6ADtQBgeFPCGm+FraYW3mXN9cNvvL+5bfPcP1y7H68Dp+JyejpNoBzjmloAKKKKAK97aQX1jPZ3EayQTxtFIjDIZWBBH5GuL+Gd3cWdnf8AhDUHZr3w/N9nVm6y2zZaF/8Avnj22813Z6V5548STwvr+m+O7ZWMNtiy1ZFGd1q7cPj1RsHjk9M4oA9DBzS1HDKk0aSxsrxuu5WU5BB6EGpKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARuleeeISfFfxK0jw6nzWGi7dU1HHQy8iCPjv1YjoQR6V13iXXrbwz4dvdZvD+5tYy5Xu7dFUe5YgfjWJ8O9CutM0SXUtXGdc1eU3t8SMFGP3YxnkBBxjsc0Adeue/WnUUUAFFFFABRRRQAUUUUAFFFFABSAAdBilooATA9Kyr7wt4e1Ny9/oWmXTnktNaRufzIrWooA5Z/hr4KdizeGNMyeuLcAfkKmg8AeD7bb5fhfSAV6FrONiPxIro6KAIbe1t7SIRW0EcMY6JGgUD8BU2BRRQAgAHSloooAKKKKACiiigAqve2tve2U1ncxLLBOjRSRtyHVhgg/UVYo60Aed+A76fw5ql14A1SdmlsVM+lTyHJuLIngf7yHKkccDgYXNehg9M56d65Px34Xn1zT7a+0mQW+v6VJ9o06boC38Ubf7LgYP4duDd8G+KLfxboSX8UbQXMbGG7tX4e3mX7yEfXp7EfSgDoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkJxihiQOK4rx14lvrQWvhvw+yP4j1X5IfS2i/juG9ABnHvn720igDLu8fED4gpZKvmeHvDcwkuD1S5vR92P3CDk+5wR0r0kCsbwt4dsfCvh+10ewH7qBfmc/ekc8s59yf8BwK2sUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACN0rzvxVpt/wCFddfxvoEDzRsgXWrFOtxCv/LVB/z0QZ+o/HPotNIHXHNAFPSNWstc0u31LTrhLi0uEDxyJ0PsfQjoR2INXq8w1K0vPhjqkuvaNBJceF7uTfqemxrk2jE8zwj+7/eXoPoRs9E0zU7TWNPgv7C4juLSdA8csZyGH+eMHkEGgC3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFI3TrignArE8UeKNP8ACejNqOou2MhIYYxmSeQ9ERe5P6UAReLvFdr4U0j7XMjXF3K4hs7KP/WXMx+6ijr1IyR09+lZ3gfwtdaa11r+vOlx4j1TD3Mi8rAn8MKf7IGOnUjqcCqnhPw1qWo6x/wmHi1E/tV4yllYjlNPiPYeshz8zde3tXe4oAQAA9KWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKCM0UUAIQAOleaXujar8O9Rn1rwtave6DcOZdQ0SMfNEx6y24+g5Tp6cEbfSyAetGMDAoAzNB8Qab4k0qLUtKukubWT+JeqnurDqCMjg1piuC17wTe2WqS+I/BV1Fp+ruQbm0cf6LfY7Oo+63+0PU9NxNaHhjx7Za5ePpN9BJpOvw/67Tbo/Nn1jbpIvfI7c4xQB11FNVtx4ORTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRsgcfyzQTgVwes+Pbi81GXQfBdrHqurIds9yx/0Sy68yuOpGPuj37jBANfxZ4zsPCtpF5wku9RuTss9PtvmluH9AB25GTjj3PByfDXhDULvWE8U+MHSfWAD9lskO6DTlPZexf1b9T1N7wn4Hg0O5l1XU7uTV/EFyP9I1G4AyP9iNeiIPQfywB12KADFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQRmiigBCoOMjpyKwfFHg/RvFlokOp2xMsRzBdRHZNA395H6jnnuOBkcVv0UAebrqXjDwH8msW8viXQkHGoWqf6ZAo/56x/xjp8wOeCSe1djoPibSPE9j9s0XUILyH+Lyz8yH0ZT8yn2IrV2L2H0rkde+HOi6vfNqlo1xo+sYONQ02QwyE9fnA4YHjORntmgDrxS154upePvChC6lp0PinT1HN3poEV2o9WhPDEnPCn3NbGifEbwzrk/wBli1FbW/DbGsb4eRMrf3dr4yfpmgDq6KaCT3z7gU6gAooooAKKKKACiiigAooooAKKjeRYkaSRgiKMlmPAHqfSuN1L4peHra7aw0trjXdRHS10mIzn6lh8oHrzxQB2rHAzXN+I/HOh+F2SG+uxJfSECGwt18y4lJ6BUHPPYnAzxmsE2vxB8WA/bLqDwnprDmG0YT3jj0Mn3U9iBkV0HhnwRoPhUO2nWQ+1SZ828nYyTyk9SXPPPoMCgDmm0zxd48Gdbll8N6A3/MPtnBu7hP8AprIOEBHVRz1Brt9G0bTdB0+PT9Ks4rW1jHypEMc+pPUk+pyT3rQ2jjjp09qWgBAAOAMCloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEwKy9a8NaL4hgEOr6Xa3igFVMsYLID/dbqv4YrVooA8+Pw1l0sbvCvinWNGCgCO2eT7XbRj2jkyf1p/nfE7Sc7rbQdehQceXI9pO/1BygrvcD0pcCgDgT8RNWscLrHgHxFBIcZNiiXqL/wJGH8qc/xg8IWyg6jc32nMeNl3p06kH04QjP413mBSbQe1AHHwfFTwPOCV8S2K4xneSn/AKEBU3/CzfBP/Qz6b/3/ABXRPp9lKQZLSB8dN0YNN/svT/8Anwtf+/K/4UAcrc/FrwJahjJ4ktSF6+Wryf8AoKmoB8W/DlzHv0uDWNWz0Fjpkz7vpuUCu1isrWD/AFNtFHzn5EA/lU2BnOKAOD/4TnxNqCBtG+HurOD1Opzx2ePfDEk01rT4nauSs2p6FoMJ6G1ga6mHsd+EP4Cu+wKMCgDgk+Fel3syz+JdU1XxBKCGC3tyRErD+7GmAOp45612WnaXp+k2wttNsbazgBz5VvEsa5+gAq5RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k=', '/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAS0BMwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACikJwM1zWs/EDwnoJZdR1+yjkQ4aJJPMkH/AEy36UAdNRXBf8LNS9O3RPC3iPUwQCk6WXkwt/wADkI/lSpr/AMRL3cIPBFlYDPyve6qr5+ojU4oA7yiuCRfitLId8ng+CPnaFW5kPtnpUg034kuu5/EGgRsT9xNPkYD6EvmgDuaK4Y2PxMhbMeteHLgHr5tlKmP++XqOKb4qwZNzZ+ErsDGFt5riNj+LAj0oA72iuB/4S7xpZuRqPw9uGiXrLYajFPn6JwaF+Lfh63KjWrbWNCdjhV1PT5I934qGGPfNAHfUVm6T4h0bXUL6VqtlfAfe+zzq5X6gHI/GtKgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiig0AFB6VieI/FWi+FbD7VrF9HAp+5H1eU+iqOSf8muT87xt43OLdJfCWiNn95Koa/nX2XpDkHr94EDGaAOn8ReMvD/hVA2r6nFDIw+S3GXlfnsgyx+vSudHiXxv4kIHh7w2mk2jH/j+11irkd9sCncD3BJwa2/DngTw/4aka4s7MzX78y3903m3EhPUlz698YB9K6fvQB5+3w1k1f5vFvifVdZz962jf7LbH28tP55rpdG8JeHtAA/srRbK0cDHmRxDeR7v94/ia26KADvRRRQAUUUUAFFFFABTXRZEKOoZTwQRkGnUUAclqvw08IatIJpdDt4LgHcs9nm3cH1yhGT9c1lDwn4y0Dnw54ue9gXOLLXkMwP8A22XDgegxXoVFAHnqfEi40WQQ+NfD95ooztF9F/pNo3YZdASpPYEfWu30/UrLVbVLvT7yC6tn+7LDIHU/iDVmRFkjZGVWVhghhkEe9cJqHw1tIb2TU/Cl7N4b1I/eazANvL7PCflbv0x170Ad7RXncXjvVvDE62njzTVtoiwSPWbENJaOe28fejPQc989hXe2tzBeW8dxbTRzwONySxuGVh6gjrQBPRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFQXl1b2NnNdXUyQW8KF5JZGwqKOSSaAJicKTXn+p+Ob/WdQm0LwNbRX9/Gdt1qMmfsdp7bv429APrzhhVBrnV/inK8djNPpXg1WKSXQ+S41LBIIT+5F15PJH1IHf6Po9hoWnQ6dplrFa2kIwkUa4H1JPJPueT3zQBgeHPANjpF6dW1S4k1nX5P9ZqN2MlfaNOka9eB64zjiuvFLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEc8MdzBJDNGkkUilWSRdysD2IPUV57deCtV8K3D6l4AuEjiLF7jQrlj9mnOOsZP+rf9M46AYPo1B6UAcv4T8a6d4nM1qscthq1rxdaZdDbNCfXH8S8jBHqM4ziuorlvFfgqx8TeVdJNLp+sW3NpqVtxLC3of7y+qnsT0rM8OeMb+21ZPDHjGBLPWuRbXScW+oKP4oz2bGMr/LOAAd5RTQeadQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTZHWKNpHZVRQWLMcAAdyfSgCC/vrXTbCe9vp0gtYVLyyyHCqo7mvOLSyvfirfJqeqxzW3g+Ft1nYMdragwPE0nonovfr9UjSX4r60J5Q6eCrCb9yjDH9qTKfvEd4ge3fH1C+nRqEACgAAYAAxigBIkSJEjjRUjUbVVRgADoBjtUlFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAh6VjeJfDOmeLNJfTtUg8yNjujkXh4X7OjdVb/J4raoPSgDzvw54k1Xw/rcPhDxjMHuXX/iW6qeEv0HG1v7so469fyLehDk56VjeJvDWneK9Fl0zUo90bDMcg4eFx0dD2Ydf0PFc94M8Q6haapJ4N8Tyg6zbR77W6OQNQtxwJBk/fGDuHXvzzQB3lFFFABRRRQAUUUUAFFFFABRRSHgUAB6V5t4oup/HHiNvBOl3Dx6bbhZNeu4jyEP3bdT/AHmxz1wOOcEHe8d+J5vDukxwadEJ9b1KQWmnQcfNK38RB42qDkk8dASM5q14M8Mx+FNAi08SGe5djNeXLctcTty7knk5PHPOAOtAGxY2kNhawWdpCkNtCgjjjQYCKBgAVaoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARvumuX8aeFF8UaZG1vP9k1exfz9PvFHzQSjtn+6eAR0PBxxXU0h6Hr+FAHL+B/FLeJdMkS9hFrrNg/2fUbP/nlIO4/2WwSD0PPJxmuprzrxvZXHhjWYPHulQs5t1EOs28Y5uLX/npjuydc+g64GK72zuoL60gu7WVZredFkjkQ5VlIyCPYigCxRRRQAUUUUAFFFFABTXO2NiTgAZz6U49Oa4X4l6hdS6dZeFdMkCal4gmNorA8xQAZmkx7J/6FQBS8GI3jHxZeeObgE2EG+x0NT08sEiSYD1c5APXGQe1ej1R03T7fSNMtdOs4/LtrWJYo0x0VRgfy/Oodc13S/Dumy3+r3sVrap1aQ9T6ADlj7CgDTPSsHxB4z8PeF1B1jVYLZyAVhJLSt24RQWP1xXLLd+MvHgJsRL4V0FulxMmb+5Xp8q9Igcnk89CM10HhzwH4f8NOZ7Oy86/bmW/uj5txIx6kufXvjAPpQBkL478Q6yR/wjXgm/lgPS61SRbNMdmCnLMPoKcNO+J+oqftWu6BpHPy/YbN7hse/mEDP0rvB1paAODTwh40MeJ/iRds56mPSrdB+AwcUknhHxuoBt/iRcK+cZl0m3cEfTjn3rvaKAODa1+J+nlRBqXh3V4xy32q3ktpG+mwlRUR+ImqaQP+Kr8Happ0QPzXdmVvIEH95inKj6ivQaD0oAx9C8TaL4lg8/RtTt71AMt5T/Mn+8vVfxFbFcjr3w70DXLj7csEum6qOU1DTn8iZW9SV6/iDWIPEHirwGwTxVCda0MHH9s2cWJoB6zxAdB/eXPAHUnFAHpNFUtL1Oz1ixiv9Puorm0mGY5YnDK3r9MHj65zV2gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGTRxzQSRSoHjdSrKRkEHqMV594Jlk8KeJ77wLdyH7KFN7oruetux+eLPco2e5OCTwAK9DPQ1w/xL0u5k0a38RaWo/tbQJftsGP+WkY/wBbGcdmQHjvjFAHc0VQ0fU7bWtJs9TsnLW11Cs0Z9mGcH3HQir9ABRRRQAUUUUAIelee+FR/wAJJ8Qtf8USfNaWB/sfTiTwdnMzjPXLcBh1GRXReONfHhnwVqurA4lggIh4z+8b5U/8eYVi2M1l8LvhhZC+y0lvCoMScvcXLncVXuSXJ+g57UAavizxdZ+FbCN5Inur66byrKwh5luZD0VR6cjJ7e5IFY2geCLu+1OPxL41kS/1gZa2swd1tp4JyFRe7jjLHPI6nGTL4L8L3ov38WeKNs3iK9X5I8ZWwhxxDGOxGTuPck+5buqAGjg06iigAooooAKKKKACiiigApHGUIIyPSlooA851PwlqXhK/l1/wMg2yNvvtCJ2w3Q7tF/zzkx+B444weq8L+JtP8V6Umoae7YBMcsEg2yQSDqjr2Yf/qyCDW2eBXnfi7Rr3w1rDeN/DUO+dUxq+nLwL6Aclx6SL1zjkfkwB6LRWdourWeu6Taapp8wmtLmPzI3HXHofQg8EeoPpWjQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIwDKQQCDwQe9LSEZBB5BoA8++HmfD+t694JkYiPT5vtenBu9rMd2F7kI+QT6nFehV5744zoXjXwt4pj+WJpzpN8QOsU33CfZXGfxr0ADnp160AOooooAKQ9KWkPIoA4Dx8P7W8TeDvDWCYrm/a/uMDIMduu7aw9GJA/CqmjRj4g+N5PEUx8zQNElNvpKEZWe4H+suPcA4VTyOMjBBrmfG+r3Vx8RtZtNMdv7TNnbaFaDsj3JMsknttjXk9iRXr+haNaeH9FstJsl2wWsQjU45bA5Y47k5J9zQBoAYNOoooAKKQnAJPQUilWAZTkEcEUAOooooAKKKKACiiigAooooAKRvunnFLQeBQB5raD/hXvxAGnAbPDfiKUtbD+C0ve6D0V+MD14AwDXpCjkVz/jTw2vinwne6ZnbcMnmWsgODHMvKMD25Az7ZpngTxC/ibwlZ6hcLsvQDDeRkYKTodrjHbkZA7BhQB0tFFFABRRRQAUUUUAFIeATS0HpQByHibxufDuvaLpX9k3M39qXkdqtyXVY1LFQcckkjd6Ae9daOteb/FL/AJD/AIB/7D8P8xXpVABRRRQAUUUUAFFFFAHM/EDRf+Eg8BazpyKWle2aSEA4PmJ86f8AjyirnhLWR4h8JaTq2QWurVJJMdA+MMPwYEfhWyfunjPtXB/CoCx0fWNAC7E0fV7m1hXP/LIt5iH8d5/KgDvaKKKACkPApaRiFUknAHJNAHh3w7tX8R/GnxTrlxseDS7qZIGA53ufKU59PLiI/wCBV7lXlvwHtHHgi51abBm1S/luGb2Hy4/NW/OvUqAEPSvO4Vlt/j40H2u6lgk8PNP5U0pZEczqp2r0HCjpXoteeyEf8NBxDPP/AAjB4/7eaAOm8U3M0WgyW1s5S7vmWzgYdUeQ7S4/3VJf/gNZuqeBdP12VIdUkuDpltEkVnYwXDxRoFH322kFm7DJIAAx1NXJ/wDiY+NLaAcw6Vb/AGlv+u0u6NPxCLL/AN9iovEniqy0qaPSl1OxtNSuVLK11KqJAnQyMCRn2Xqx9AGZQDE+Fy6jaDxDo91ezXtjpepPa2VxO259oAJQnvtyPzPoAPQq53wtd+H0g/sjQtRgvfsy+ZM8MwmJZySXkZeN7Nub1PPFdFQAUUUUAFFFFABRRRQAUUUUAIelcB4c/wCJD8V/EehgBbXVYU1i2VRgK/8Aq5vxLbWr0A9K4Lxp/wAS7x34I1rfsQ3kunSc43CaM7Af+BJQB3tFNGc4p1ABRRRQAUUUUAFIehpaKAPMfiYbm41/wf8AZdO1K5Fjq8dzctbWM0ixxgrkkqpB+gJr0iCQTRJIofDLkb0KH8VPI+h5qaigAooooAKKKKACiiigBD0rhPDyGw+L3i+1LYS9trO9jTHAwrRsfzAruz0rhJ4/s/x0s7jkC78Pyw+xKTq354NAHeUUUUAB6VzvjPxPpvhTw3c3+oXXkh0aOAAEmSQqSqrjvx16DvgV0J6V5b8bfBWoeLPDtpdaYwa40xpJWgZ9qyRlcnAPBYbRj6tQBY+B+r6XefDqx02yulkurDcLqLBDRl5HYZyOc54Iz068GvS6+dvhD8LrzUdHk1y513VdKgvFUW39kXnkySKGYMZPlPGQMD6+1ek/8Ks/6nzxx/4OP/sKAPQDWW3h3RDqP9pHR9P+3A7vtP2ZPNz67sZ/WuT/AOFWf9T544/8HH/2FH/CrP8AqfPHH/g4/wDsKAO4jtYIZ5po4lWWdg0rAcuQoUZ/AD8qzL3wn4c1K7ku7/QNKu7mQ/PNPZxu7Y4GWKknAAH4VzX/AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAdfpeh6VowkXS9MsrFZDmRbWBYgxHTO0DPWtA9K4D/AIVZ/wBT544/8HH/ANhR/wAKtx/zPnjj/wAHH/2FAG14u8caH4KtYp9Zumjafd5EUaF3lx1AHTjI5JA5q34Y8U6R4u0z+0dGuvtEAcxvlSrI2M7SCBg4I9vQmvHfiP8ABjWruKzudD1XVdcljVlli1W+EkijjHlkgDHXIz6Ve+H3wa1PT9HlfV9f1vR7ydwTb6RqAjUKBgbyFIZs7uhwBjBNAHt9Fef/APCrP+p88cf+Dj/7Cj/hVn/U+eOP/Bx/9hQB6BRXn/8Awqz/AKnzxx/4OP8A7Cj/AIVZ/wBT544/8HH/ANhQB6BRXn//AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAd+3CnnFeWfGPxLo2lQaJb3V0q6hbana6jHAEJby0chm46cbvrg1pn4W4/5nzxwf8AuMf/AGFeUfFf4W6ppl5a6pZ6ne6tbTGK1MmpXYkuBIzEKNxCjbyMehznigD6G0TW9P8AEOlwanpVytzZzg7JACMkEg5B5BBHQ1pV494M+Dl5pnh2GHUfFPiHTryRmklt9J1DyoVJOBxtOWwBk/gOma6H/hVn/U+eOP8Awcf/AGFAHoFFef8A/CrP+p88cf8Ag4/+wo/4VZ/1Pnjj/wAHH/2FAHoFFef/APCrP+p88cf+Dj/7Cj/hVn/U+eOP/Bx/9hQB6BRXn/8Awqz/AKnzxx/4OP8A7Cj/AIVZ/wBT544/8HH/ANhQB6BRXn//AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAegUV5/wD8Ks/6nzxx/wCDj/7Cj/hVn/U+eOP/AAcf/YUAegUV5/8A8Ks/6nzxx/4OP/sKP+FWf9T544/8HH/2FAHoFFef/wDCrP8AqfPHH/g4/wDsKP8AhVn/AFPnjj/wcf8A2FAHft9015B4p8f+GdO+LmhvNqeBp0N1bX7ojMsbOF2KcDnkHOM4OM4xW+fhbgZ/4TzxwfY6v/8AYV4j4p+EXiG18fR6Tayi8GqPLNa3NxMN7qvLGU/3xkZOPmzkd8AH1TFMssSSRsXjdQysvIIPQ0/efRvyrN8P6Y2ieHNM0rzjL9jtY7fzNv3tqhc/TitHLf3v/HDQBJUVzCtxaywuAVkQowPoRipaQ9KAPOvgbdrdfCrTIw2WtpJon9j5jMB+TCvRq8b+Ct+lj4j8Z+Fiyg2upSzxLnkjeY2/Lan517JQAUUUUAFFFFABRRRQAUUUjfdPOKAKmqalb6Tp0t7clvLjAwqLuZ2JwqqO7EkAD1Irjfhbr2peJrLXdV1IlHbVJIIoA+5YY0RAFH4k5Pc5Pelm1a+1LVxq6aFeX2jWQL2LxzQqsj8hpiHcEgDIXjGCWGcjFL4GRMPhpa3D8tdXM8xOep3lf/ZTQB6VRRRQAUUUUAB6VwXxIVru98HaZG3zz69BM68fNHEGdv6V3p6V5/dFdc+NlhAvzQ+H9NkndgeFmnwgU++wE0Ad8cYrz34v3t1ZeE7caZdXdvq13ew2tm1vcPGS7NkghSN2QCOQeteh9q8u8VW//CWfGDQ9BE8sdvo9pJqU7wttYSMQqc9mB2n6NQBF8QHvvh9oGnatpGtajNfC6jga2u7p7hLzIO4bXJIPHVcEV6lCxaNCy7GKjK+ntXkF/bL4Z+M+g217LPrkOpxnyH1FzLLYuM/NH/CBwM8Z6817Ep56/hQA6iiigAooooAKKKKACiiigAooooAKKKKAA9K4bU8XHxn8Pxct9l0q6nx027mRM+9dwehrhLJFvPjlqdypyLDQobVh6NJK0n8hQB3lFFFABQaKQnAoA8E1GVvB3xp1TXApSyiuoDdnput7mMKzn2SVB+de9j2rzPxnpVtN8SNJS9jLWPiDTbjR7hs8KR+9jP8AvZ3AfStP4bavdNYXPhnV3H9taEwtpuf9dFj91KPUFcDPXjnrQB3VFFFABRRRQAUUUUAB6Vz3ivRdV1/SnsLDWI9NhlG2dvshld17qDvXbkcH2PauhooAx9T06+vPD0mnWd7b2c0sBhM/2YsqgqQSibxjHbJOPeqHgXwvdeD/AA5b6JJqMN7b227ymW1MLjcxY7vnYHlu2K6eigAooooAKKKD0oAhvLmGysp7q5lWKCGNpJJGOAiqMkn6AZriPhdbTXenal4rvIil34gujdKGHzJbr8sKn2C8j/eqH4g3EviDUbDwHp7sr6hifUpUPMFmp5+hcjaPXkd67y2ghtLeK3t41ihiQIkaDCqoGAB6AAUASTBzC4iZVkI+VmXIB7ZGRn8xXB6d4J8Q6Z4l1jXYvEmnSXWqlPN83SXIjVBhVTE4OAMdc9BXf0UAcfongSOz8St4m1fU59X1ryzFFNJGI44EPGI0HTgkZyTz7knsKKKACiiigAooooAKKKKACiiigAooooAKKKKAEPSuC+H4W/8AFPjjWwD+/wBVFkCe4t0CZHtkmuw1nUY9H0S/1OYZjtLd52HqFUnH6Vzfws0+Ww+HWkm5Yvc3aNezOerNKxkyffDD8qAOyooooAKDRRQBw3xVs55PBp1W0TdeaJcxanCM4/1bZb/xwtVXxZY3Nwum+PvCqm41C2twzQIP+P8As2AYx8fxAHcvXnPXiu/uIIrq2lt50WSGVCjo3RlIwQfwrhfhdcS2elaj4UvHZrzw/dtagv8AeeBiXhc+xXp7LQB1Ph/XrDxLo9tq2mTebbXC5GeCh7qR2YHOR+vStWvNtZ0rU/A2t3Pijw3bvdaVdMZNX0pG6t3nhHZxzuHGf1XttE1vTvEWmwanpV0lxaSjKsv6gjqCOhBoA06KKKACiiigAooooAKKKKACiig9KAEPSsDxd4ptPCehPf3MbTzORFa2sfL3MzfdjUe/48Z61L4m8T6Z4U0p7/VJiqk7IokGZJ3PREXqT/Lqa5nwx4d1PW9bTxl4uiEd4EK6bph5WwiPOW9ZD3Pbp6BQDR8CeGrvSLa61bW3WbxDqzie+kHSMY+WJf8AZQcfXPtXYU0dRTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoPSig9KAOB+K00t14fsfDdszC416+isgUPKRZDSP8AQKuD7NXdQxJDGkUahY0UKqjooHAArgrPPiX4xXV5jdYeGrX7LCexuphmQg+yYUj1Ir0GgAooooAKKKKAEb7przvxQT4T+IWj+KF+TTtSUaVqTDOEYnMEhA44OVJPQcd69FrL8SaFa+JfDl/o14P3F3EYy2MlD1Vh7ggEe4oA0TwCAM8dK4PV/BWoaTq0/iDwPcRWd/Md15p0xP2W+PqR/A/+0MZJ5xkk3Phzr11quhyadqxI1zR5DZXyk5LMvCye4ZRnPcg12ZoA4/w78QNN1i9OlahDLo+ux8Sade/KxPrG3Rx3BHbnGK68VjeIvC2ieKbL7LrOnRXSL9wtwyH/AGWHIrlR4f8AHHhVf+Kf1uPXbBOlhrJxMq/7M68k9AA3AFAHolFefL8UI9MBTxX4d1jQXX787QG4tgfQSxg5/Kt2w8feEtTCfZfEemOX+6jXKo5/4CxB/SgDpKKrx3ltMm+O4hdD3VwQf1pJb60gXdNdQRr6vIBQBZorltS+I3g7S0drrxLpuV+8kMwmb/vlMn9KyG+I91qxMfhTwpq+q7uVup0+yWxHqJJP5YFAHft0riNa+IUEOoPonhm0bXtdAwYbdv3NuemZpei8g8ZzxjjIqofCHirxRz4u8QC1sm+9peibokf2eVvmYEcEDj0xXYaJoOleHbBLHSLGCztl/giXqfUk8k+5yaAOa8PeB5l1RfEXiq7XVfEGMRnH+j2Y67YV/wDZjyfbnPbDg06igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsTxZ4gg8LeF7/WbgBhbRlkQ/wDLRzwi/ixA/GtpvumvOdVP/Ca/Eu00aM79J8Nst7fntJdMD5Uf/ARlvzB5FAG58PNAn8O+EreC9JbUrpmvL+RvvPPIctk9yOFz7V1dNHXpTqACiiigAooooAKRvunAyfSlooA868ZxyeEPEdt46s42NmVW11uJF+/Dn5Zsd2QkD1I46V6BbzR3EMc0MiyRSKHR1OQwIyCD3GO9FzBFdWstvPEksMqFJI3GVZSMEEdxivOvCd1N4I8Rf8INqkrvYTbpdCu5Od0fVoGP95O3qPTgUAelUU0dRTqAA8isTUPCPhvVHMl/oOmXEh6vLaIzfnjP61t0UAcXJ8J/Asjlz4bswT12llH5BqWL4U+BoXDp4as8+j7mH6k12dFAGTp/hjQdJfdp2i6dZv8A3oLZIyfxAzWrS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLUN5dQWVnNdXUqw28KGSSR2wFUDJJP0oA5/xv4nPhfw+89vF9o1O5cW2n2wGTNcPwox3A6n2FL4H8Mf8It4ejtJpfP1Cd2ub+4zkzTvyzH6dB7D1zXO+EYLjxp4lPjnUonjsIVeDQrZ+NsZ4edh2Z+3oPXgn0YdaAFooooAKKKKACiiigAooooAD0rn/ABb4WtfFmhmxnkeC4iYTWl1F9+3mXlXU/wCeK6CkbO0460AcZ4H8U3epPcaB4gRLfxJpvFxGOFuI+izx+qnvjofTIFdpXI+MfCD6+ttqWl3C2HiKwO+yvewP/PN/WM85GD1zjkgu8G+MR4i+0afqNqdO8Q2HyX1g55X/AG067kPGDz168gkA6yiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQnAzQAN0NeY6hK3xR159Fs5CfCWmzD+0blDxfTA7hChHVF4JPfj2Jk13WrzxzrMvhXwvdtFp0RxrOrQ4IRf8AnjE3QuehPb867vR9IstC0y30zTbdLeztk2Rov8z6knknqTyetAFqGJIVSONFSNFCqqjAUDgAD2FTUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjHCk+lcl4t8G/2+9vqum3J07xFYg/Y76Mf+Q5B/Eh9D0zx1IPXUjEgZAzQBxvhLxq2qXj6Fr1sNM8SQL+8tWPyXCj/lrCf4lOCcDpz1612dc74o8IaZ4tskivQ8VxC2+2vIG2zQP2ZG7fTpXM2vi/V/Bl1HpXjoK9o7bLXX4UIil9FmUf6t/fofwJIB6RRUUM0U8SSQypJG43I6EEMPUEcYqWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikPQ1keIfEmk+FtNN/rF7HbQg4QE5aQ/wB1R1Y/T8eKANWV1jiZ3YKijLMTgAdzntXmt9rep/Ee6m0bwvNJaeHkYx3+tqMGbsYrf19C/Qcn03KNM1/4kuJtehuNE8LBgY9L3bLm9A6GYj7if7A5/JTXodlZwafaxWlpBHBbQqFjijUKqL2AAoAraJomneH9Ng03S7VLa0hXCog6+5PcnuTye9aVFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVBeWsF7Zy2t1BFPBKu14pVDK49CDwanooA85fwhrvgyVrrwPci404ndJoF7IfLPr5Eh5jb2PGSSegFa/h34g6Trl4dOull0nWk/1mm36+XJn/Zzw478c45IFdeaxPEPhXRPFNp9m1nTorpV+4zDDof9lhyP85oA2hS153/YPjfwkgPh/V18Qaegx/Z+rnbMo/2JxjJ6cMMYqzafFHR4rhLLxFbXnhy/PHl6lGVjc99koyrL75H0oA7uioba4huoUnt5kmicZWSNwysPUEcEVNQAUUUUAFFFFABRRRQAUUUUAFFIelZes+IdI8P24n1bU7WyQ5x50oBb6A8t9BQBq1Fc3ENpbSXFzNHDBGpZ5JGCqgHUkngCuBPxA1bxD+78FeG7m9jbpqeoA21qB/eGfnkHsMGlt/hzca1cJeeOdYk1mRTuTT4gYrKE+yDl8ep7cEGgBLr4g3euzy6d4D08apOp2S6lOCllbnvlushHHCjvnJ6Vd0H4f29rqS654hvJNd17GRc3A/dwf7MMfRAPXr16ZIrr7W2gs7eO3tYI4IIxhI4lCqo9ABwKnoAaOop1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVWvLK01C2e2vbaG5gfhopkDqR7g8GrNFAHCXHwr0SG4a60G71Lw9cu25jplwUjc9t0bZXHsAKYLH4maPtFvq+i6/ADlhe27WsxHYAx5XPuRXfUUAcD/AMJ34i05Sdb+H2spg43aZJHegj1wpBFKfi94RtsLqU2oaXITt8u90+ZGz07KR+td7SNjacjI9KAOUt/iX4KulDR+J9NUEZ/eThP0bGKtDx54PYA/8JVon46hCP8A2atK40bSrobrjTLOYjn95AjfzFZ7+CPCUhMj+F9FZmOSTYREn8dtADH8feDkPPirRfwvoz/Jqzrv4s+BLIEyeJLV/wDriHl/9ABrZg8HeGLbPkeHdIi3dfLsYlz+S1pQWVpaMBb2sMPGP3cYX+QoA4tvirpE6qdJ0fxFq4PRrLTJCv5vtxSN4k8fai23SvBUVihHy3GrXygD6xx5YV31FAHn58KeNtaUjXvGZsYXGGttDtxFg+0z5etHR/hr4W0a5+2Jpq3l+cFru+c3ErEfxZfgH3AFdfRQAgpaKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9k='] Multimodal Competition True Theorem proof Combinatorics Math English 53 "A king strapped for cash is forced to sell off his kingdom $U=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$. He sells the two circular plots $C$ and $C^{\prime}$ centered at $\left( \pm \frac{1}{2}, 0\right)$ with radius $\frac{1}{2}$. The retained parts of the kingdom form two regions, each bordered by three arcs of circles; in what follows, we will call such regions curvilinear triangles, or $c$-triangles ( $\mathrm{c} \triangle$ ) for short. This sad day marks day 0 of a new fiscal era. Unfortunately, these drastic measures are not enough, and so each day thereafter, court geometers mark off the largest possible circle contained in each c-triangle in the remaining property. This circle is tangent to all three arcs of the c-triangle, and will be referred to as the incircle of the c-triangle. At the end of the day, all incircles demarcated that day are sold off, and the following day, the remaining c-triangles are partitioned in the same manner. Some notation: when discussing mutually tangent circles (or arcs), it is convenient to refer to the curvature of a circle rather than its radius. We define curvature as follows. Suppose that circle $A$ of radius $r_{a}$ is externally tangent to circle $B$ of radius $r_{b}$. Then the curvatures of the circles are simply the reciprocals of their radii, $\frac{1}{r_{a}}$ and $\frac{1}{r_{b}}$. If circle $A$ is internally tangent to circle $B$, however, as in the right diagram below, the curvature of circle $A$ is still $\frac{1}{r_{a}}$, while the curvature of circle $B$ is $-\frac{1}{r_{b}}$, the opposite of the reciprocal of its radius. Circle $A$ has curvature 2; circle $B$ has curvature 1 . Circle $A$ has curvature 2; circle $B$ has curvature -1 . Using these conventions allows us to express a beautiful theorem of Descartes: when four circles $A, B, C, D$ are pairwise tangent, with respective curvatures $a, b, c, d$, then $$ (a+b+c+d)^{2}=2\left(a^{2}+b^{2}+c^{2}+d^{2}\right), $$ where (as before) $a$ is taken to be negative if $B, C, D$ are internally tangent to $A$, and correspondingly for $b, c$, or $d$. Descartes' Circle Formula can be extended by interpreting the coordinates of points on the plane as complex numbers in the usual way: the point $(x, y)$ represents the complex number $x+y i$. On the complex plane, let $z_{A}, z_{B}, z_{C}, z_{D}$ be the centers of circles $A, B, C, D$ respectively; as before, $a, b, c, d$ are the curvatures of their respective circles. Then Descartes' Extended Circle Formula states $$ \left(a \cdot z_{A}+b \cdot z_{B}+c \cdot z_{C}+d \cdot z_{D}\right)^{2}=2\left(a^{2} z_{A}^{2}+b^{2} z_{B}^{2}+c^{2} z_{C}^{2}+d^{2} z_{D}^{2}\right) . $$ Given a c-triangle $T$, let $a, b$, and $c$ be the curvatures of the three $\operatorname{arcs}$ bounding $T$, with $a \leq b \leq c$, and let $d$ be the curvature of the incircle of $T$. Define the circle configuration associated with $T$ to be $\mathcal{C}(T)=(a, b, c, d)$. Define the c-triangle $T$ to be proper if $c \leq d$. For example, circles of curvatures $-1,2$, and 3 determine two c-triangles. The incircle of one has curvature 6 , so it is proper; the incircle of the other has curvature 2 , so it is not proper. Let $P$ and $Q$ be two c-triangles, with associated configurations $\mathcal{C}(P)=(a, b, c, d)$ and $\mathcal{C}(Q)=$ $(w, x, y, z)$. We say that $P$ dominates $Q$ if $a \leq w, b \leq x, c \leq y$, and $d \leq z$. (The term ""dominates"" refers to the fact that the radii of the arcs defining $Q$ cannot be larger than the radii of the arcs defining $P$.) Removing the incircle from $T$ gives three c-triangles, $T^{(1)}, T^{(2)}, T^{(3)}$, each bounded by the incircle of $T$ and two of the arcs that bound $T$. These triangles have associated configurations $$ \begin{aligned} \mathcal{C}\left(T^{(1)}\right) & =\left(b, c, d, a^{\prime}\right), \\ \mathcal{C}\left(T^{(2)}\right) & =\left(a, c, d, b^{\prime}\right), \\ \mathcal{C}\left(T^{(3)}\right) & =\left(a, b, d, c^{\prime}\right), \end{aligned} $$ Let $P$ and $Q$ be two proper c-triangles such that $P$ dominates $Q$. Let $\mathcal{C}(P)=(a, b, c, d)$ and $\mathcal{C}(Q)=(w, x, y, z)$. Show that $P^{(3)}$ dominates $P^{(2)}$ and that $P^{(2)}$ dominates $P^{(1)}$." ['The equation $(x+b+c+d)^{2}=2\\left(x^{2}+b^{2}+c^{2}+d^{2}\\right)$ is quadratic with two solutions. Call them $a$ and $a^{\\prime}$. These are the curvatures of the two circles which are tangent to circles with curvatures $b, c$, and $d$. Rewrite the equation in standard form to obtain $x^{2}-2(b+c+d) x+$ $\\ldots=0$. Using the sum of the roots formula, $a+a^{\\prime}=2(b+c+d)=2(s-a)$. So $a^{\\prime}=2 s-3 a$, and therefore\n\n$$\n\\begin{aligned}\ns^{\\prime} & =a^{\\prime}+b+c+d \\\\\n& =2 s-3 a+s-a \\\\\n& =3 s-4 a .\n\\end{aligned}\n$$\n\n\nLet $s=a+b+c+d$. From above induction, it follows that\n\n$$\n\\begin{aligned}\n\\mathcal{C}\\left(P^{(1)}\\right) & =\\left(b, c, d, a^{\\prime}\\right) \\\\\n\\mathcal{C}\\left(P^{(2)}\\right) & =\\left(a, c, d, b^{\\prime}\\right) \\\\\n\\mathcal{C}\\left(P^{(3)}\\right) & =\\left(a, b, d, c^{\\prime}\\right)\n\\end{aligned}\n$$\n\nwhere $a^{\\prime}=2 s-3 a, b^{\\prime}=2 s-3 b$, and $c^{\\prime}=2 s-3 c$. Because $a \\leq b \\leq c$, it follows that $c^{\\prime} \\leq b^{\\prime} \\leq a^{\\prime}$. Therefore $P^{(3)}$ dominates $P^{(2)}$ and $P^{(2)}$ dominates $P^{(1)}$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIATABxwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ8CgBaKztU13StFhEuqanZ2SHobiZY930yefwrlH+LXh+dnTRbbVtekQ4ZdMsJJNp/3iAP1oA7yiuD/wCEr8b3rgaf4BeGJhkT6jqMcWPrGoZqao+K1wTvfwnZxkcBVnlcdOvIHrQB31FcN/YnxFlO5/GWmQHpti0gMPzZ6aPDvxDDs/8AwntqQQMIdFjwv/j2aAO7orhv7I+I8GfL8V6Rc9x5+llB9PlemLP8U7VyZrXwpfxjosEs8Ln/AL6BAoA7yiuB/wCE38VWAZtZ+HupLGvRtNuYrwsPZQQamtfix4UluEtr27n0m6brDqds9uR9SRtH50AdxRVazv7TUbdbiyuoLmBxlZYZFdT+IOKsA84PWgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooPtTXcKpYnAHc9qAFJwKhuLqG0t3uLmWOGGMbpJJGCqo9STgAVxGofEV7+9fSvBennXr9Tte6DbLO3Pq8vRj0O1evOD2qO0+HEuszx33jnVZNbuVYOlkmYrOE/wCygwWxyMt1BORQBJcfE6G+uHs/COk3niS6Q7Glth5dqjejTN8o45GM5qM+HvHfiMf8T3xNHotq3Wz0OPEhXtmd+Q3rtGK7y2tbezt47e2gjghjXakcShVQegA4FS4HpQBx+l/DDwjp0pnfSY7+7bBe51BjcyO3qS5IB+gFdekaRoqIiqqjCqowB9KdRQAhAPUUYFLRQAYowKKKAEwD2pcUUUAJgVDd2drewNBd20M8LcNHKgZT+BqeigDiLz4VeGnuGu9KjutDvSAPtGk3DQED/dHyY/Cqn2b4jeGsNa3lj4qshn9zcj7JdY7AOMofq3NehYpNoNAHF6X8TdEurwadqy3Og6nwPsuqR+Vu7fK/3WGeBzk+ldmDk1R1fRdM12xaz1WxgvIG/gmQNj3BPQ+45riW8G+IfCDGfwPqhmsxnOiapI0kWPSKQ/Mh9Acgk8mgD0aiuQ8P/ECw1a/Gj6lbTaNroGW0684ZveNuki8HGOeDxXWq2SeelADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApCcUprkfFnjVNAlt9L0+1bU/EF3/x7afCfmA/56Of4EGDyf5AkAGl4k8VaV4V043uqXIRSdsUKDdLM/ZUXqxP5euK5BND8R/ET994nMui+HnwYtGgciacf9PD9h/sDHXkArzreGfBD2+pf8JD4mul1bxC4+WUr+5tAf4IVPQDpu6n25z2mBnOOaAKmm6ZY6RYx2WnWkNraxjCxQqFUfh3PvVvFLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJtU54HPX3paKAMbxH4W0bxTp/2PV7GO4Qf6tzkSRH1Rxyp+n45FcZ/aPiT4bYGqyXHiHwwM4v1G67sk/6agf6xMfxDkYOccCvTKawBGMDB4oAq6ZqdnrFhDf6fdxXVpMu6OWI5Df8A1+xH8quV5zqfhTVPCOoT694GRSkjeZfaExxDcju0f/POTH4Hj0weo8L+LNO8WaZ9ssHZWjbZcW8o2yW8g6o47Ec+1AG9RSDOaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPShjhcj+dct408Wnw9ZQ2lhb/bdd1BvJ0+yx99/7zeiLnJPHHcdQAVvGHjC50y6tdC0KCK+8RX5Hk27Z2QJ3llxyEH69ulWvB3g6Hw5FNd3c51DXL0iS+1GUZeVuOF/uoMYCjHQU3wX4PHhyCe7v5/t2u3zebfX7Dl2/ur6IOgHH07DqwMUAJgZzS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADSOK4bxZ4QvF1UeK/CZjt/EMI/fQk4i1CMY/dyf7RAwG9hz0I7sjPWkI4oA57wj4tsvFmltc2yvBdQN5V3ZyjEltIOqsODjg4Pf8CB0I61wXjHw5f2Wqr4z8LR51i3QC7tBwuoQDqh4++APlPtjngV03hnxDYeKNEg1XTZN0EowVbho2HVGHZgf84IJANiiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopCaAFopOc0ZP+RQAtFIKWgAooooAKKKKACiiigApDxS0jHAzQBl+INdsvDeh3Wr6lJstbZN7cZZj2Ue5JAFcz4G0C9uL2bxl4kixrmoJiC3Y5FhbdVjX/AGjnLH1OMA5znon/AAsTx80p+fwz4cnwg/hvL0dT7qn6npkE49JXr+Hf/P1oAUAA5xz0zS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANZeOBz6mvNvEEUvw68SyeLLFCdB1GRU1m2UE+S5OFuVA9zhh3z6nI9KIBGCM1Dd21vdWk1tcxJJbzIySxuPldSDkH2IzQA6CZLiJJonWSJ1DI6kEMDyCD3BqWvOfBdxceEvEVx4Cv5JHtwpudEuJTky2+TuiJ7sh/TsBivRQc0ALRRRQAUUUUAFFFFABRRRQAUh4FDZ4x61zHijxxpvhlorMrLfavcD/RtNtF3zSe5H8K8H5j6HGcYoA6YtjJrkNU+JvhzT7s2FpNPrGpD/lz0qI3Mnv8Ad+UY4zkislfCXiPxkfO8aag1jp78roemybVx1xNKDlz6gHHAI9K7bSND0rQbQWmlafb2cA6pDGFz7n1PuaAOQGs/EjWudN8O6XosOeJNWuTLIy+oSL7p9iaePC3jq7lL33xAMKMP9TY6XEgX6OxLV3uBRigDhh8PdQb5pfHvigyHqUuI0X8tlNbwR4igjIsPiDrEbD7puoIbgfkVH867ujFAHBfY/idpYHkavoOtoB832y1e2kb6eWSufrTB8SLzSBjxf4V1PR0HLXkAF5bKPVnj5XPpg16BikIB6igDP0nXdM12z+16VqFvewdC8Dhtp9CByD7HmtAEnqK4vWfhro95eHU9HeXQNYwdt5p3yBj1+dB8rgnBI4JwOaz4fGOt+EJ47Lx3bxm0ZgkOvWaEwtnp5yAZjY+uNuenAJoA9FoqK3niuYUmgkSSKRQyOhDAg8ggjgipaACiiigBDXHfELXrzTtHt9K0dv8AieazMLOyA6x5+/L7BFyc9jiuxbpXnnhHb4u8cat4vkUNZWedM0kkcFVOZZl/3mOAR2yD3oA63w1oFl4Z8P2ejWC/6PaxhNx6u3UsfcnJ/GtfFGMUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQQD1oooA5H4g+HLjWtCjvNKPl65pUgvNOkAyTIvJQ+oYcY6ZxngVqeE/EVt4r8N2Ws2oCpcxgtHnJjccMh9wQR+RrZPSvPNKx4P+KN7o2CmmeI1a+s/7qXS/65B/vDDfyoA9EopBS0AFFFFABRRRQAUjHC5oPArjfG/ie+042ug6CqzeItUytspGVtk/infrhV7ZByR3wRQBB4o8XX8uqnwr4Thju9edc3E7jMOnxn+OT1bHRe/XHQHS8JeC7Dwwks/myX+r3Q3XmpXBzLOx64P8K+ijsBkkjNT+EPClp4T0n7JDJJcXUredeXkpzJczH7zsTk/QZ49+p6EADtQAmBnNLRRQAUUUUAFFFFABRRRQAYzUN1bw3NtJBcRRzQSKVkjlUMrqRggg8EVNQQD1oA8vn03VPhfO+o6HHcaj4VJLXmlA75bIdTJASeV7lSfx5yPQtJ1ax1zTYNS026jubO4TfHIh6jp+BByCDyCCO1XGAwa8x1CKT4W+IG1izD/8IfqEwGo2wyRYTMcCZB2QkgEe/wDugAHqFIelMilWZFkR1ZHAZWU5BHqDTz0oA5H4k63caL4NuEsedT1CRbCxAOCZpTtBHuBkj3Ara8N6Hb+G/Dtho1qP3VpCI92OXPVmPuSST7muT1If8JF8YdMsfvWnh60a9mxyDcS/JGpHYhQXB969AFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVxfxO0qe78KHVNPX/iaaLMuo2h55aPll46gruGO/FdpTXVWUqwBU8EHofagClouqQa3o1lqlqcwXcCTJk8gMM4PuOh96v15/8MD/AGSdf8IOTnRL5vs4OeLab95Fyep+9n8K9AoAKKKKACiikPTigChrmr2mg6Jd6rfSeXbWsZkc9z6Ae5OAB3JArlvh7o13Il14u1uIDWtaAkKH/l2t+scI9MDBPcnryKqeMVPivxxong771jAv9q6oAOHRW2xR/RnySD2wa9CU5JoAUADoKWiigAooooAKKKKACiiigBGOBWdHrulza22jRX8EmopEZntkYM6ICBlgPu/eHB55rSIzXnYhih/aDURRqgbwyWIUYyftPWgD0GSRYo2d2VUUEsWOAAO+a5/UvHPh3RtNs7/U9UjtIbyNZYBKjB3UgHOzG7oeeOKk8Ws02kppUZYS6rMtkNpwQjZMpB9REsh+oFXk0ewjvp777PG1xKixb3QHbGo4RfRc5OB3JoAfpeq2Gt2Ed7p13Dd2smSssTZGQensR6Hmpr21t72ymtLqJZbedGjljYZDKRggj6Vw/wAMNJSwPiS7slEWkXuqSPYRKMJsX5S6jspYHHqFFd+RkYoA888DXU/hnXL3wFqEzSLap9p0ieQ5MtoT9zPcxnj6ZwABXoX3hzx/SuG+J+nzx6RaeKdOTOp+HpvtaAcGSHpNHn0Kcn/drT8R+IYIfhxqXiGymHlNprXFtIeMlkzH+JJWgDI+GAGqDxD4qYKx1nU5DDIO9vF+7jH4Yau+AArn/Aulf2J4H0XTmQJJDZx+Yo7SEbn/APHia6GgAooooAKKKKACg0UUAcp8RNU1nRvBmo6los9tDNbRGRmmiLnA67eQAeepyOOlanha8n1Dwno97cyeZPcWME0jkAbmaNSTgccknpWR8UBj4Y+Iscf6G3StLwZ/yI3h8/8AUNt//RS0AblFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhGRS0UAef6kf7E+NGjXYLCDXdPlsXA6ebERIrH3KkqK78GuD+LG2y8P6Zr5JUaLq1teOR1Me/Yy/iH/Su8FAC0UUUAFIelLWF401F9J8E63fxuElgspXjY9n2Hb+uKAOb+GYGsT+IfF74Y6vqDJbOB1tocxx/To2a9AAA6Vz/gXTf7H8DaHYFAjxWUW8D++VBf/wAeJroaACiiigAooooAKKKKACiiigBCcV527Tn45R3/ANg1E2X9hmyN19hm8vzvP37d23GMd84969FpMCgDBMUl74zEsiMLbTbXEbEHDTSnkj3VEA4/56msDxh4rnt9S/sRNB8R3NkVzd3OnafI4YH/AJZI/A5H3mB46Dkkr3u0Y6UbQO1AHN+FfEP9ttNDb+HtU0iztI0RBqFr9n3E9FjTn5QByeMZGBXS0gABzS0ARzRRzwPDMgeORSjqwyGB4INeFXcjR/DS+8BzyN50HiKLR4t7ZZoXmEsbH6qCB7LXvJrw/wAWWPlfH/RrNFPk6lPaai+Bx5kCzIPxAGaAPblAHA6CnUgpaACiiigAooooAKRjtGe1LRQBzPjrStU1/wAJ6ho+mLZ+beRGIvdTNGEBI5wEbP6Vc8KWWoaZ4a07TdSS2E9nbRW5a3lZ1fYoXd8yKRnHTmtnApaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOa+IVkNQ+HfiG3K7ibCV1XHVlUsv6gVd8KX51Twjo1+33rmyhlbnoSgJH51o3kC3VnPbsMiWNkP4giuP+EN19s+FegynOVheLn0SRkH8qAO3ooooAK4T4xtJ/wAKt1eOFiJJmgiBH+1MgP6Zru64T4xSCH4Z6hO4ykU9q7fQXEdAHcRoEQKowAAMelPpB1NLQAUUUUAFFFFABSMcUtIxAHJAoA4PxX8W/DPhDWRpV9LczXYK+atvEH8kMAQWyR2IOBzjtXX6TqtnrWmW2pafOJ7S5jEkUgBG4fQ8j6HpXhfxI+DHiDXfGl1rGiNbTWt/IrOksxRoG2gEnI5XjIxk84xxXX+H/gX4RtdDtINb00X2pKn+kXC3Uyq7k54CsBgdBwDgc80AepZozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHf5ozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHf5ozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHfMcCvEPG/jvw1Z/GXw3cyXjldGNzBfyRxlhGzIVVfUkEnOM4+uRXYH4J/DwYx4e7/8AP7cf/HK8Y8WfB6/sfiBZaJplxara6vJO+nmR3AiRF3srnBPAOBjOe+M0AfUNrcxXdvFcQSLJDLGskbqchlYZB+mKmzXm9h8DvA0Njbw3mj/aZ44lWWf7VOvmOAAWwHAGTk4A71Z/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3+aM1wH/Ckvh5/wBC9/5O3H/xyj/hSXw8/wChe/8AJ24/+OUAd/mjNcB/wpL4ef8AQvf+Ttx/8co/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3+aM1wH/Ckvh5/wBC9/5O3H/xyj/hSXw8/wChe/8AJ24/+OUAd/mjNcB/wpL4ef8AQvf+Ttx/8co/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3k0yW8LzSuqRopZmY4CgDJJNefaP8avCOteI00a2nulkldY4J5YNsUznoB1YZJx8wH+KXnwP8BS2U8dtopt5njZY5hdzMY2I4bBfBwecH0rzHw38CPE1n4ttJtSls0060njmeaGckyhTnCDbnPHcDrQB9JAnOPanUxcDp+Vcm/j6H/hJ7nw7DoerzajbxCaRI1hIEZx827zcdxwefagDr6KwvD/izTPEc13b2jSxXlm2y6s7mMxywk9Mj09xkVu0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIa4X4QFB8PoIkXZ5V3dIVAxj9+5x+RFd0elcN8JS0ngk3DgAz6hdyYHbMzf4UAd1RRRQAVyfxNsRqHw08QwEZ22bygYzynzj9VrrKiuYI7q2lt5V3RyoUdfUEYNAFLQNQGreHdN1FTkXVrFMP+BKD/WtKuE+E1xIvg5tGuH33eiXc2nTHGM7HO0j22la7ugAooooAKKKKACqeqala6RplxqF7MIba3QySOewH8z2A75xVpzhe341534pvk17R9b1MyKdG0i1uGthni6uURhvHqiHKj1bJ/hUkA2fh74mm8Y+HJNalhWGGW6lW1iHVIlIVc+/Bz9eOK63AFcJ8G7c23wp0NSOWjkkP/ApXP8AIiu7oAKKKKACiiigAooooAQ4Iwa8f8XagV/aC8IRAKYbaAqzZ6PMJQAfwUGvYG6V4Jqi/wBo6nqHjYsyQw+LrGFGzwYLf90WB9GZz+VAHvSnPI7jNOpB1paACiiigAooooAKKKKACiiigAooooAKKKKACiiigApMClpDntQAHgDAzXivhTxVDa6p4y8b3Ol6reQXV2Yrea0tfMUW8IKg5yMZGCe3HWu7+JHiq18MeCtTna6iS+e3aO1iLgSM7fKCq9TjOfwrm/DHizwt4P8AhxpenW+o22pX0dqD9hsXE8ssz/My7VyR8xIy2KALnw60ebUPEOsePrqa23a0qpb29tKJFiiXA+ZhwX+UA46EH1r0ivPfgz4Z1Lwx4FEGqIYrm6uXuvIP/LFWCgL7H5c4969CoAKKKKACiiigAooooAKKKKACiiigAooooAbIwVCxOAOSa4X4NrKPhZo8kw/eymeVvfdM5B49sV0fi29OneDdbvR96CwnkX6iNiP1qp8P7T7D8PvD0BXaw0+FmHoxUMf1JoA6SiiigApD0paMZ60AefB/+EX+MDBmK6f4otgVJ6LdwDGPQbkP1Jrv1JNcz498NSeJvC8tvZuItTtpFu7Cb/nnOnKn8eR+Oan8F+JYvFfhyDUhGYboEw3kDfegnXh0IPIweR7EUAdDRRRQAUhpaCM0AcH4h8Y6Zf67a+DbLWYI72+YpdSxTANBGPvRqwPEr/dUdRyeoGcD4paP4L8O+AdT8rSNDs9Rkg2WoFvEkxJYDK8bjgZOfY161tGCOxowPSgDkfhjdWFx8PNDjsbqGcw2USzCNwxR9o3BvQ5yPwrr6QADoKWgAooooAKKKKACkNLSN93pQBzPj7xC/hrwde3sALXzgW9nGo+Z55PlQAdyM7segNc14g8HLpnwGu/D68y2en+c7Lk7pkIlYj6sD+dSRN/wnfxLEyHfoXheQhT/AA3F8Rzj1EYP4H1Br0KaKO4gkhlUNFIhV1PdSMYoAq6FqKaxoGn6nGAFu7aOcD03KGx+taFcL8JZ5F8Ff2RcPvutFvJ9OmOMZKOSuPbay13VABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJgUYFLRQAgAHSloooAKKKKACiiigAooooAKKKKACiiigAoNFIaAOH+Lc0h+H11p9u+251O4gsYQf4mkkUEf98hq7S3jSGCOKMYjRAqj0AFcL4v8A+Jv8RfBuhAB4reWXVrkd0ES7Ym+hdiK74d6AFooooAKKKKAEbpXm/iKKbwD4ok8Y2MTvot+Vj1u3QZ8pui3KgenRgOvXGTkek9ajmhingeGWNZIpAVdGAIYHggg9RQAy0uob22iuLeVJYZUEkciHIZTyCPYip68tX7Z8Jb2Tak134JuZdwxlpNJZj6dWhySfUc9/v+l2l3BfWsV1azJNbzIHjljYMrKehBHWgCeiiigAooooAKKKKACiiigAoopD064oAGOBmuG8ceJL4TQeEvDj58Q6kv8ArM8WUHRpmI6eg75xjJwDY8W+NW0q4i0PRLYan4lu1PkWan5YRj/WSn+FBwcHBPt1FjwZ4QXw5bT3V9P9u1y+bzb+9Yfff+6vog6AYHTp0AANPwzoFl4Y0C00ewUi3tk27mHzSN1Z29yST/8AWrWwB0owM0poA8/0onQfjBrOntkW2u2kd/b8YXzYv3cij1YjaxrvwcmuB+KFu+n2Wl+L7aNnuNAu1mkCjLPbv8kyj6gg57YruraaO5gjnhdXikQOjqchgecj2NAEtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLWB418QL4X8H6lq5GZIYsQrjO+VvlQY7/MR+GaAOe8Hn+3fiJ4s8RkBoLZ00e0focR/NKPpvI5r0DGK5vwHoLeG/BemabLk3SxeZcsTkmVzufJ7/ADEj6AV0lABRRRQAUUUUAFIQD1FLRQBHLFHLE0ciK6MNrKwyCD2IPUV53N4W1zwPdy3/AIIC3WmyOXuNAnk2rnqTA5+4fY8fkBXpFIVB6igDmfDPjvRvFO+C2le21KHifT7tPKniPoVPX6iulUk+lc/4m8E6F4qVH1G0xdx8Q3sLGOeLrja454Jzg5Ge1c8mmfEHwuwGmala+JtPTkW+pHybsL/dWYfK31YUAeh0VwP/AAtK207K+JtA1rQygHmTTWpmgB9pI8g/XFa1n8RfB19Grw+JdLG7oJblYifwbBoA6iiqEWt6XOm+HU7KRfVJ1I/MGqlz4u8N2X/H14g0qDBxiS8jXn8TQBtUGuHufi14PiuPs1pqMmp3eMrb6dbvOz/QqNv61WbxP4519dugeE10uFvu3muy7CP+2KfNn0ycUAdxd3tvp9rJdXlxFb20Yy8szhFQepJ6VwE3jLWfG0r2HgW38uyBKT6/eREQp2PkoRmRuvXgcZ4Oas2fw0i1C6iv/GGr3PiK5Q7kgmAjtIz/ALMK/KfTnIPpXdxQxQxJFFGqRoAqIgwFA6ADtQBgeFPCGm+FraYW3mXN9cNvvL+5bfPcP1y7H68Dp+JyejpNoBzjmloAKKKKAK97aQX1jPZ3EayQTxtFIjDIZWBBH5GuL+Gd3cWdnf8AhDUHZr3w/N9nVm6y2zZaF/8Avnj22813Z6V5548STwvr+m+O7ZWMNtiy1ZFGd1q7cPj1RsHjk9M4oA9DBzS1HDKk0aSxsrxuu5WU5BB6EGpKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARuleeeISfFfxK0jw6nzWGi7dU1HHQy8iCPjv1YjoQR6V13iXXrbwz4dvdZvD+5tYy5Xu7dFUe5YgfjWJ8O9CutM0SXUtXGdc1eU3t8SMFGP3YxnkBBxjsc0Adeue/WnUUUAFFFFABRRRQAUUUUAFFFFABSAAdBilooATA9Kyr7wt4e1Ny9/oWmXTnktNaRufzIrWooA5Z/hr4KdizeGNMyeuLcAfkKmg8AeD7bb5fhfSAV6FrONiPxIro6KAIbe1t7SIRW0EcMY6JGgUD8BU2BRRQAgAHSloooAKKKKACiiigAqve2tve2U1ncxLLBOjRSRtyHVhgg/UVYo60Aed+A76fw5ql14A1SdmlsVM+lTyHJuLIngf7yHKkccDgYXNehg9M56d65Px34Xn1zT7a+0mQW+v6VJ9o06boC38Ubf7LgYP4duDd8G+KLfxboSX8UbQXMbGG7tX4e3mX7yEfXp7EfSgDoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkJxihiQOK4rx14lvrQWvhvw+yP4j1X5IfS2i/juG9ABnHvn720igDLu8fED4gpZKvmeHvDcwkuD1S5vR92P3CDk+5wR0r0kCsbwt4dsfCvh+10ewH7qBfmc/ekc8s59yf8BwK2sUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACN0rzvxVpt/wCFddfxvoEDzRsgXWrFOtxCv/LVB/z0QZ+o/HPotNIHXHNAFPSNWstc0u31LTrhLi0uEDxyJ0PsfQjoR2INXq8w1K0vPhjqkuvaNBJceF7uTfqemxrk2jE8zwj+7/eXoPoRs9E0zU7TWNPgv7C4juLSdA8csZyGH+eMHkEGgC3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFI3TrignArE8UeKNP8ACejNqOou2MhIYYxmSeQ9ERe5P6UAReLvFdr4U0j7XMjXF3K4hs7KP/WXMx+6ijr1IyR09+lZ3gfwtdaa11r+vOlx4j1TD3Mi8rAn8MKf7IGOnUjqcCqnhPw1qWo6x/wmHi1E/tV4yllYjlNPiPYeshz8zde3tXe4oAQAA9KWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKCM0UUAIQAOleaXujar8O9Rn1rwtave6DcOZdQ0SMfNEx6y24+g5Tp6cEbfSyAetGMDAoAzNB8Qab4k0qLUtKukubWT+JeqnurDqCMjg1piuC17wTe2WqS+I/BV1Fp+ruQbm0cf6LfY7Oo+63+0PU9NxNaHhjx7Za5ePpN9BJpOvw/67Tbo/Nn1jbpIvfI7c4xQB11FNVtx4ORTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRsgcfyzQTgVwes+Pbi81GXQfBdrHqurIds9yx/0Sy68yuOpGPuj37jBANfxZ4zsPCtpF5wku9RuTss9PtvmluH9AB25GTjj3PByfDXhDULvWE8U+MHSfWAD9lskO6DTlPZexf1b9T1N7wn4Hg0O5l1XU7uTV/EFyP9I1G4AyP9iNeiIPQfywB12KADFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQRmiigBCoOMjpyKwfFHg/RvFlokOp2xMsRzBdRHZNA395H6jnnuOBkcVv0UAebrqXjDwH8msW8viXQkHGoWqf6ZAo/56x/xjp8wOeCSe1djoPibSPE9j9s0XUILyH+Lyz8yH0ZT8yn2IrV2L2H0rkde+HOi6vfNqlo1xo+sYONQ02QwyE9fnA4YHjORntmgDrxS154upePvChC6lp0PinT1HN3poEV2o9WhPDEnPCn3NbGifEbwzrk/wBli1FbW/DbGsb4eRMrf3dr4yfpmgDq6KaCT3z7gU6gAooooAKKKKACiiigAooooAKKjeRYkaSRgiKMlmPAHqfSuN1L4peHra7aw0trjXdRHS10mIzn6lh8oHrzxQB2rHAzXN+I/HOh+F2SG+uxJfSECGwt18y4lJ6BUHPPYnAzxmsE2vxB8WA/bLqDwnprDmG0YT3jj0Mn3U9iBkV0HhnwRoPhUO2nWQ+1SZ828nYyTyk9SXPPPoMCgDmm0zxd48Gdbll8N6A3/MPtnBu7hP8AprIOEBHVRz1Brt9G0bTdB0+PT9Ks4rW1jHypEMc+pPUk+pyT3rQ2jjjp09qWgBAAOAMCloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEwKy9a8NaL4hgEOr6Xa3igFVMsYLID/dbqv4YrVooA8+Pw1l0sbvCvinWNGCgCO2eT7XbRj2jkyf1p/nfE7Sc7rbQdehQceXI9pO/1BygrvcD0pcCgDgT8RNWscLrHgHxFBIcZNiiXqL/wJGH8qc/xg8IWyg6jc32nMeNl3p06kH04QjP413mBSbQe1AHHwfFTwPOCV8S2K4xneSn/AKEBU3/CzfBP/Qz6b/3/ABXRPp9lKQZLSB8dN0YNN/svT/8Anwtf+/K/4UAcrc/FrwJahjJ4ktSF6+Wryf8AoKmoB8W/DlzHv0uDWNWz0Fjpkz7vpuUCu1isrWD/AFNtFHzn5EA/lU2BnOKAOD/4TnxNqCBtG+HurOD1Opzx2ePfDEk01rT4nauSs2p6FoMJ6G1ga6mHsd+EP4Cu+wKMCgDgk+Fel3syz+JdU1XxBKCGC3tyRErD+7GmAOp45612WnaXp+k2wttNsbazgBz5VvEsa5+gAq5RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k=', '/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAS0BMwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACikJwM1zWs/EDwnoJZdR1+yjkQ4aJJPMkH/AEy36UAdNRXBf8LNS9O3RPC3iPUwQCk6WXkwt/wADkI/lSpr/AMRL3cIPBFlYDPyve6qr5+ojU4oA7yiuCRfitLId8ng+CPnaFW5kPtnpUg034kuu5/EGgRsT9xNPkYD6EvmgDuaK4Y2PxMhbMeteHLgHr5tlKmP++XqOKb4qwZNzZ+ErsDGFt5riNj+LAj0oA72iuB/4S7xpZuRqPw9uGiXrLYajFPn6JwaF+Lfh63KjWrbWNCdjhV1PT5I934qGGPfNAHfUVm6T4h0bXUL6VqtlfAfe+zzq5X6gHI/GtKgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiig0AFB6VieI/FWi+FbD7VrF9HAp+5H1eU+iqOSf8muT87xt43OLdJfCWiNn95Koa/nX2XpDkHr94EDGaAOn8ReMvD/hVA2r6nFDIw+S3GXlfnsgyx+vSudHiXxv4kIHh7w2mk2jH/j+11irkd9sCncD3BJwa2/DngTw/4aka4s7MzX78y3903m3EhPUlz698YB9K6fvQB5+3w1k1f5vFvifVdZz962jf7LbH28tP55rpdG8JeHtAA/srRbK0cDHmRxDeR7v94/ia26KADvRRRQAUUUUAFFFFABTXRZEKOoZTwQRkGnUUAclqvw08IatIJpdDt4LgHcs9nm3cH1yhGT9c1lDwn4y0Dnw54ue9gXOLLXkMwP8A22XDgegxXoVFAHnqfEi40WQQ+NfD95ooztF9F/pNo3YZdASpPYEfWu30/UrLVbVLvT7yC6tn+7LDIHU/iDVmRFkjZGVWVhghhkEe9cJqHw1tIb2TU/Cl7N4b1I/eazANvL7PCflbv0x170Ad7RXncXjvVvDE62njzTVtoiwSPWbENJaOe28fejPQc989hXe2tzBeW8dxbTRzwONySxuGVh6gjrQBPRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFQXl1b2NnNdXUyQW8KF5JZGwqKOSSaAJicKTXn+p+Ob/WdQm0LwNbRX9/Gdt1qMmfsdp7bv429APrzhhVBrnV/inK8djNPpXg1WKSXQ+S41LBIIT+5F15PJH1IHf6Po9hoWnQ6dplrFa2kIwkUa4H1JPJPueT3zQBgeHPANjpF6dW1S4k1nX5P9ZqN2MlfaNOka9eB64zjiuvFLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEc8MdzBJDNGkkUilWSRdysD2IPUV57deCtV8K3D6l4AuEjiLF7jQrlj9mnOOsZP+rf9M46AYPo1B6UAcv4T8a6d4nM1qscthq1rxdaZdDbNCfXH8S8jBHqM4ziuorlvFfgqx8TeVdJNLp+sW3NpqVtxLC3of7y+qnsT0rM8OeMb+21ZPDHjGBLPWuRbXScW+oKP4oz2bGMr/LOAAd5RTQeadQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTZHWKNpHZVRQWLMcAAdyfSgCC/vrXTbCe9vp0gtYVLyyyHCqo7mvOLSyvfirfJqeqxzW3g+Ft1nYMdragwPE0nonovfr9UjSX4r60J5Q6eCrCb9yjDH9qTKfvEd4ge3fH1C+nRqEACgAAYAAxigBIkSJEjjRUjUbVVRgADoBjtUlFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAh6VjeJfDOmeLNJfTtUg8yNjujkXh4X7OjdVb/J4raoPSgDzvw54k1Xw/rcPhDxjMHuXX/iW6qeEv0HG1v7so469fyLehDk56VjeJvDWneK9Fl0zUo90bDMcg4eFx0dD2Ydf0PFc94M8Q6haapJ4N8Tyg6zbR77W6OQNQtxwJBk/fGDuHXvzzQB3lFFFABRRRQAUUUUAFFFFABRRSHgUAB6V5t4oup/HHiNvBOl3Dx6bbhZNeu4jyEP3bdT/AHmxz1wOOcEHe8d+J5vDukxwadEJ9b1KQWmnQcfNK38RB42qDkk8dASM5q14M8Mx+FNAi08SGe5djNeXLctcTty7knk5PHPOAOtAGxY2kNhawWdpCkNtCgjjjQYCKBgAVaoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARvumuX8aeFF8UaZG1vP9k1exfz9PvFHzQSjtn+6eAR0PBxxXU0h6Hr+FAHL+B/FLeJdMkS9hFrrNg/2fUbP/nlIO4/2WwSD0PPJxmuprzrxvZXHhjWYPHulQs5t1EOs28Y5uLX/npjuydc+g64GK72zuoL60gu7WVZredFkjkQ5VlIyCPYigCxRRRQAUUUUAFFFFABTXO2NiTgAZz6U49Oa4X4l6hdS6dZeFdMkCal4gmNorA8xQAZmkx7J/6FQBS8GI3jHxZeeObgE2EG+x0NT08sEiSYD1c5APXGQe1ej1R03T7fSNMtdOs4/LtrWJYo0x0VRgfy/Oodc13S/Dumy3+r3sVrap1aQ9T6ADlj7CgDTPSsHxB4z8PeF1B1jVYLZyAVhJLSt24RQWP1xXLLd+MvHgJsRL4V0FulxMmb+5Xp8q9Igcnk89CM10HhzwH4f8NOZ7Oy86/bmW/uj5txIx6kufXvjAPpQBkL478Q6yR/wjXgm/lgPS61SRbNMdmCnLMPoKcNO+J+oqftWu6BpHPy/YbN7hse/mEDP0rvB1paAODTwh40MeJ/iRds56mPSrdB+AwcUknhHxuoBt/iRcK+cZl0m3cEfTjn3rvaKAODa1+J+nlRBqXh3V4xy32q3ktpG+mwlRUR+ImqaQP+Kr8Happ0QPzXdmVvIEH95inKj6ivQaD0oAx9C8TaL4lg8/RtTt71AMt5T/Mn+8vVfxFbFcjr3w70DXLj7csEum6qOU1DTn8iZW9SV6/iDWIPEHirwGwTxVCda0MHH9s2cWJoB6zxAdB/eXPAHUnFAHpNFUtL1Oz1ixiv9Puorm0mGY5YnDK3r9MHj65zV2gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGTRxzQSRSoHjdSrKRkEHqMV594Jlk8KeJ77wLdyH7KFN7oruetux+eLPco2e5OCTwAK9DPQ1w/xL0u5k0a38RaWo/tbQJftsGP+WkY/wBbGcdmQHjvjFAHc0VQ0fU7bWtJs9TsnLW11Cs0Z9mGcH3HQir9ABRRRQAUUUUAIelee+FR/wAJJ8Qtf8USfNaWB/sfTiTwdnMzjPXLcBh1GRXReONfHhnwVqurA4lggIh4z+8b5U/8eYVi2M1l8LvhhZC+y0lvCoMScvcXLncVXuSXJ+g57UAavizxdZ+FbCN5Inur66byrKwh5luZD0VR6cjJ7e5IFY2geCLu+1OPxL41kS/1gZa2swd1tp4JyFRe7jjLHPI6nGTL4L8L3ov38WeKNs3iK9X5I8ZWwhxxDGOxGTuPck+5buqAGjg06iigAooooAKKKKACiiigApHGUIIyPSlooA851PwlqXhK/l1/wMg2yNvvtCJ2w3Q7tF/zzkx+B444weq8L+JtP8V6Umoae7YBMcsEg2yQSDqjr2Yf/qyCDW2eBXnfi7Rr3w1rDeN/DUO+dUxq+nLwL6Aclx6SL1zjkfkwB6LRWdourWeu6Taapp8wmtLmPzI3HXHofQg8EeoPpWjQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIwDKQQCDwQe9LSEZBB5BoA8++HmfD+t694JkYiPT5vtenBu9rMd2F7kI+QT6nFehV5744zoXjXwt4pj+WJpzpN8QOsU33CfZXGfxr0ADnp160AOooooAKQ9KWkPIoA4Dx8P7W8TeDvDWCYrm/a/uMDIMduu7aw9GJA/CqmjRj4g+N5PEUx8zQNElNvpKEZWe4H+suPcA4VTyOMjBBrmfG+r3Vx8RtZtNMdv7TNnbaFaDsj3JMsknttjXk9iRXr+haNaeH9FstJsl2wWsQjU45bA5Y47k5J9zQBoAYNOoooAKKQnAJPQUilWAZTkEcEUAOooooAKKKKACiiigAooooAKRvunnFLQeBQB5raD/hXvxAGnAbPDfiKUtbD+C0ve6D0V+MD14AwDXpCjkVz/jTw2vinwne6ZnbcMnmWsgODHMvKMD25Az7ZpngTxC/ibwlZ6hcLsvQDDeRkYKTodrjHbkZA7BhQB0tFFFABRRRQAUUUUAFIeATS0HpQByHibxufDuvaLpX9k3M39qXkdqtyXVY1LFQcckkjd6Ae9daOteb/FL/AJD/AIB/7D8P8xXpVABRRRQAUUUUAFFFFAHM/EDRf+Eg8BazpyKWle2aSEA4PmJ86f8AjyirnhLWR4h8JaTq2QWurVJJMdA+MMPwYEfhWyfunjPtXB/CoCx0fWNAC7E0fV7m1hXP/LIt5iH8d5/KgDvaKKKACkPApaRiFUknAHJNAHh3w7tX8R/GnxTrlxseDS7qZIGA53ufKU59PLiI/wCBV7lXlvwHtHHgi51abBm1S/luGb2Hy4/NW/OvUqAEPSvO4Vlt/j40H2u6lgk8PNP5U0pZEczqp2r0HCjpXoteeyEf8NBxDPP/AAjB4/7eaAOm8U3M0WgyW1s5S7vmWzgYdUeQ7S4/3VJf/gNZuqeBdP12VIdUkuDpltEkVnYwXDxRoFH322kFm7DJIAAx1NXJ/wDiY+NLaAcw6Vb/AGlv+u0u6NPxCLL/AN9iovEniqy0qaPSl1OxtNSuVLK11KqJAnQyMCRn2Xqx9AGZQDE+Fy6jaDxDo91ezXtjpepPa2VxO259oAJQnvtyPzPoAPQq53wtd+H0g/sjQtRgvfsy+ZM8MwmJZySXkZeN7Nub1PPFdFQAUUUUAFFFFABRRRQAUUUUAIelcB4c/wCJD8V/EehgBbXVYU1i2VRgK/8Aq5vxLbWr0A9K4Lxp/wAS7x34I1rfsQ3kunSc43CaM7Af+BJQB3tFNGc4p1ABRRRQAUUUUAFIehpaKAPMfiYbm41/wf8AZdO1K5Fjq8dzctbWM0ixxgrkkqpB+gJr0iCQTRJIofDLkb0KH8VPI+h5qaigAooooAKKKKACiiigBD0rhPDyGw+L3i+1LYS9trO9jTHAwrRsfzAruz0rhJ4/s/x0s7jkC78Pyw+xKTq354NAHeUUUUAB6VzvjPxPpvhTw3c3+oXXkh0aOAAEmSQqSqrjvx16DvgV0J6V5b8bfBWoeLPDtpdaYwa40xpJWgZ9qyRlcnAPBYbRj6tQBY+B+r6XefDqx02yulkurDcLqLBDRl5HYZyOc54Iz068GvS6+dvhD8LrzUdHk1y513VdKgvFUW39kXnkySKGYMZPlPGQMD6+1ek/8Ks/6nzxx/4OP/sKAPQDWW3h3RDqP9pHR9P+3A7vtP2ZPNz67sZ/WuT/AOFWf9T544/8HH/2FH/CrP8AqfPHH/g4/wDsKAO4jtYIZ5po4lWWdg0rAcuQoUZ/AD8qzL3wn4c1K7ku7/QNKu7mQ/PNPZxu7Y4GWKknAAH4VzX/AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAdfpeh6VowkXS9MsrFZDmRbWBYgxHTO0DPWtA9K4D/AIVZ/wBT544/8HH/ANhR/wAKtx/zPnjj/wAHH/2FAG14u8caH4KtYp9Zumjafd5EUaF3lx1AHTjI5JA5q34Y8U6R4u0z+0dGuvtEAcxvlSrI2M7SCBg4I9vQmvHfiP8ABjWruKzudD1XVdcljVlli1W+EkijjHlkgDHXIz6Ve+H3wa1PT9HlfV9f1vR7ydwTb6RqAjUKBgbyFIZs7uhwBjBNAHt9Fef/APCrP+p88cf+Dj/7Cj/hVn/U+eOP/Bx/9hQB6BRXn/8Awqz/AKnzxx/4OP8A7Cj/AIVZ/wBT544/8HH/ANhQB6BRXn//AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAd+3CnnFeWfGPxLo2lQaJb3V0q6hbana6jHAEJby0chm46cbvrg1pn4W4/5nzxwf8AuMf/AGFeUfFf4W6ppl5a6pZ6ne6tbTGK1MmpXYkuBIzEKNxCjbyMehznigD6G0TW9P8AEOlwanpVytzZzg7JACMkEg5B5BBHQ1pV494M+Dl5pnh2GHUfFPiHTryRmklt9J1DyoVJOBxtOWwBk/gOma6H/hVn/U+eOP8Awcf/AGFAHoFFef8A/CrP+p88cf8Ag4/+wo/4VZ/1Pnjj/wAHH/2FAHoFFef/APCrP+p88cf+Dj/7Cj/hVn/U+eOP/Bx/9hQB6BRXn/8Awqz/AKnzxx/4OP8A7Cj/AIVZ/wBT544/8HH/ANhQB6BRXn//AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAegUV5/wD8Ks/6nzxx/wCDj/7Cj/hVn/U+eOP/AAcf/YUAegUV5/8A8Ks/6nzxx/4OP/sKP+FWf9T544/8HH/2FAHoFFef/wDCrP8AqfPHH/g4/wDsKP8AhVn/AFPnjj/wcf8A2FAHft9015B4p8f+GdO+LmhvNqeBp0N1bX7ojMsbOF2KcDnkHOM4OM4xW+fhbgZ/4TzxwfY6v/8AYV4j4p+EXiG18fR6Tayi8GqPLNa3NxMN7qvLGU/3xkZOPmzkd8AH1TFMssSSRsXjdQysvIIPQ0/efRvyrN8P6Y2ieHNM0rzjL9jtY7fzNv3tqhc/TitHLf3v/HDQBJUVzCtxaywuAVkQowPoRipaQ9KAPOvgbdrdfCrTIw2WtpJon9j5jMB+TCvRq8b+Ct+lj4j8Z+Fiyg2upSzxLnkjeY2/Lan517JQAUUUUAFFFFABRRRQAUUUjfdPOKAKmqalb6Tp0t7clvLjAwqLuZ2JwqqO7EkAD1Irjfhbr2peJrLXdV1IlHbVJIIoA+5YY0RAFH4k5Pc5Pelm1a+1LVxq6aFeX2jWQL2LxzQqsj8hpiHcEgDIXjGCWGcjFL4GRMPhpa3D8tdXM8xOep3lf/ZTQB6VRRRQAUUUUAB6VwXxIVru98HaZG3zz69BM68fNHEGdv6V3p6V5/dFdc+NlhAvzQ+H9NkndgeFmnwgU++wE0Ad8cYrz34v3t1ZeE7caZdXdvq13ew2tm1vcPGS7NkghSN2QCOQeteh9q8u8VW//CWfGDQ9BE8sdvo9pJqU7wttYSMQqc9mB2n6NQBF8QHvvh9oGnatpGtajNfC6jga2u7p7hLzIO4bXJIPHVcEV6lCxaNCy7GKjK+ntXkF/bL4Z+M+g217LPrkOpxnyH1FzLLYuM/NH/CBwM8Z6817Ep56/hQA6iiigAooooAKKKKACiiigAooooAKKKKAA9K4bU8XHxn8Pxct9l0q6nx027mRM+9dwehrhLJFvPjlqdypyLDQobVh6NJK0n8hQB3lFFFABQaKQnAoA8E1GVvB3xp1TXApSyiuoDdnput7mMKzn2SVB+de9j2rzPxnpVtN8SNJS9jLWPiDTbjR7hs8KR+9jP8AvZ3AfStP4bavdNYXPhnV3H9taEwtpuf9dFj91KPUFcDPXjnrQB3VFFFABRRRQAUUUUAB6Vz3ivRdV1/SnsLDWI9NhlG2dvshld17qDvXbkcH2PauhooAx9T06+vPD0mnWd7b2c0sBhM/2YsqgqQSibxjHbJOPeqHgXwvdeD/AA5b6JJqMN7b227ymW1MLjcxY7vnYHlu2K6eigAooooAKKKD0oAhvLmGysp7q5lWKCGNpJJGOAiqMkn6AZriPhdbTXenal4rvIil34gujdKGHzJbr8sKn2C8j/eqH4g3EviDUbDwHp7sr6hifUpUPMFmp5+hcjaPXkd67y2ghtLeK3t41ihiQIkaDCqoGAB6AAUASTBzC4iZVkI+VmXIB7ZGRn8xXB6d4J8Q6Z4l1jXYvEmnSXWqlPN83SXIjVBhVTE4OAMdc9BXf0UAcfongSOz8St4m1fU59X1ryzFFNJGI44EPGI0HTgkZyTz7knsKKKACiiigAooooAKKKKACiiigAooooAKKKKAEPSuC+H4W/8AFPjjWwD+/wBVFkCe4t0CZHtkmuw1nUY9H0S/1OYZjtLd52HqFUnH6Vzfws0+Ww+HWkm5Yvc3aNezOerNKxkyffDD8qAOyooooAKDRRQBw3xVs55PBp1W0TdeaJcxanCM4/1bZb/xwtVXxZY3Nwum+PvCqm41C2twzQIP+P8As2AYx8fxAHcvXnPXiu/uIIrq2lt50WSGVCjo3RlIwQfwrhfhdcS2elaj4UvHZrzw/dtagv8AeeBiXhc+xXp7LQB1Ph/XrDxLo9tq2mTebbXC5GeCh7qR2YHOR+vStWvNtZ0rU/A2t3Pijw3bvdaVdMZNX0pG6t3nhHZxzuHGf1XttE1vTvEWmwanpV0lxaSjKsv6gjqCOhBoA06KKKACiiigAooooAKKKKACiig9KAEPSsDxd4ptPCehPf3MbTzORFa2sfL3MzfdjUe/48Z61L4m8T6Z4U0p7/VJiqk7IokGZJ3PREXqT/Lqa5nwx4d1PW9bTxl4uiEd4EK6bph5WwiPOW9ZD3Pbp6BQDR8CeGrvSLa61bW3WbxDqzie+kHSMY+WJf8AZQcfXPtXYU0dRTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoPSig9KAOB+K00t14fsfDdszC416+isgUPKRZDSP8AQKuD7NXdQxJDGkUahY0UKqjooHAArgrPPiX4xXV5jdYeGrX7LCexuphmQg+yYUj1Ir0GgAooooAKKKKAEb7przvxQT4T+IWj+KF+TTtSUaVqTDOEYnMEhA44OVJPQcd69FrL8SaFa+JfDl/o14P3F3EYy2MlD1Vh7ggEe4oA0TwCAM8dK4PV/BWoaTq0/iDwPcRWd/Md15p0xP2W+PqR/A/+0MZJ5xkk3Phzr11quhyadqxI1zR5DZXyk5LMvCye4ZRnPcg12ZoA4/w78QNN1i9OlahDLo+ux8Sade/KxPrG3Rx3BHbnGK68VjeIvC2ieKbL7LrOnRXSL9wtwyH/AGWHIrlR4f8AHHhVf+Kf1uPXbBOlhrJxMq/7M68k9AA3AFAHolFefL8UI9MBTxX4d1jQXX787QG4tgfQSxg5/Kt2w8feEtTCfZfEemOX+6jXKo5/4CxB/SgDpKKrx3ltMm+O4hdD3VwQf1pJb60gXdNdQRr6vIBQBZorltS+I3g7S0drrxLpuV+8kMwmb/vlMn9KyG+I91qxMfhTwpq+q7uVup0+yWxHqJJP5YFAHft0riNa+IUEOoPonhm0bXtdAwYbdv3NuemZpei8g8ZzxjjIqofCHirxRz4u8QC1sm+9peibokf2eVvmYEcEDj0xXYaJoOleHbBLHSLGCztl/giXqfUk8k+5yaAOa8PeB5l1RfEXiq7XVfEGMRnH+j2Y67YV/wDZjyfbnPbDg06igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsTxZ4gg8LeF7/WbgBhbRlkQ/wDLRzwi/ixA/GtpvumvOdVP/Ca/Eu00aM79J8Nst7fntJdMD5Uf/ARlvzB5FAG58PNAn8O+EreC9JbUrpmvL+RvvPPIctk9yOFz7V1dNHXpTqACiiigAooooAKRvunAyfSlooA868ZxyeEPEdt46s42NmVW11uJF+/Dn5Zsd2QkD1I46V6BbzR3EMc0MiyRSKHR1OQwIyCD3GO9FzBFdWstvPEksMqFJI3GVZSMEEdxivOvCd1N4I8Rf8INqkrvYTbpdCu5Od0fVoGP95O3qPTgUAelUU0dRTqAA8isTUPCPhvVHMl/oOmXEh6vLaIzfnjP61t0UAcXJ8J/Asjlz4bswT12llH5BqWL4U+BoXDp4as8+j7mH6k12dFAGTp/hjQdJfdp2i6dZv8A3oLZIyfxAzWrS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLUN5dQWVnNdXUqw28KGSSR2wFUDJJP0oA5/xv4nPhfw+89vF9o1O5cW2n2wGTNcPwox3A6n2FL4H8Mf8It4ejtJpfP1Cd2ub+4zkzTvyzH6dB7D1zXO+EYLjxp4lPjnUonjsIVeDQrZ+NsZ4edh2Z+3oPXgn0YdaAFooooAKKKKACiiigAooooAD0rn/ABb4WtfFmhmxnkeC4iYTWl1F9+3mXlXU/wCeK6CkbO0460AcZ4H8U3epPcaB4gRLfxJpvFxGOFuI+izx+qnvjofTIFdpXI+MfCD6+ttqWl3C2HiKwO+yvewP/PN/WM85GD1zjkgu8G+MR4i+0afqNqdO8Q2HyX1g55X/AG067kPGDz168gkA6yiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQnAzQAN0NeY6hK3xR159Fs5CfCWmzD+0blDxfTA7hChHVF4JPfj2Jk13WrzxzrMvhXwvdtFp0RxrOrQ4IRf8AnjE3QuehPb867vR9IstC0y30zTbdLeztk2Rov8z6knknqTyetAFqGJIVSONFSNFCqqjAUDgAD2FTUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjHCk+lcl4t8G/2+9vqum3J07xFYg/Y76Mf+Q5B/Eh9D0zx1IPXUjEgZAzQBxvhLxq2qXj6Fr1sNM8SQL+8tWPyXCj/lrCf4lOCcDpz1612dc74o8IaZ4tskivQ8VxC2+2vIG2zQP2ZG7fTpXM2vi/V/Bl1HpXjoK9o7bLXX4UIil9FmUf6t/fofwJIB6RRUUM0U8SSQypJG43I6EEMPUEcYqWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikPQ1keIfEmk+FtNN/rF7HbQg4QE5aQ/wB1R1Y/T8eKANWV1jiZ3YKijLMTgAdzntXmt9rep/Ee6m0bwvNJaeHkYx3+tqMGbsYrf19C/Qcn03KNM1/4kuJtehuNE8LBgY9L3bLm9A6GYj7if7A5/JTXodlZwafaxWlpBHBbQqFjijUKqL2AAoAraJomneH9Ng03S7VLa0hXCog6+5PcnuTye9aVFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVBeWsF7Zy2t1BFPBKu14pVDK49CDwanooA85fwhrvgyVrrwPci404ndJoF7IfLPr5Eh5jb2PGSSegFa/h34g6Trl4dOull0nWk/1mm36+XJn/Zzw478c45IFdeaxPEPhXRPFNp9m1nTorpV+4zDDof9lhyP85oA2hS153/YPjfwkgPh/V18Qaegx/Z+rnbMo/2JxjJ6cMMYqzafFHR4rhLLxFbXnhy/PHl6lGVjc99koyrL75H0oA7uioba4huoUnt5kmicZWSNwysPUEcEVNQAUUUUAFFFFABRRRQAUUUUAFFIelZes+IdI8P24n1bU7WyQ5x50oBb6A8t9BQBq1Fc3ENpbSXFzNHDBGpZ5JGCqgHUkngCuBPxA1bxD+78FeG7m9jbpqeoA21qB/eGfnkHsMGlt/hzca1cJeeOdYk1mRTuTT4gYrKE+yDl8ep7cEGgBLr4g3euzy6d4D08apOp2S6lOCllbnvlushHHCjvnJ6Vd0H4f29rqS654hvJNd17GRc3A/dwf7MMfRAPXr16ZIrr7W2gs7eO3tYI4IIxhI4lCqo9ABwKnoAaOop1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVWvLK01C2e2vbaG5gfhopkDqR7g8GrNFAHCXHwr0SG4a60G71Lw9cu25jplwUjc9t0bZXHsAKYLH4maPtFvq+i6/ADlhe27WsxHYAx5XPuRXfUUAcD/AMJ34i05Sdb+H2spg43aZJHegj1wpBFKfi94RtsLqU2oaXITt8u90+ZGz07KR+td7SNjacjI9KAOUt/iX4KulDR+J9NUEZ/eThP0bGKtDx54PYA/8JVon46hCP8A2atK40bSrobrjTLOYjn95AjfzFZ7+CPCUhMj+F9FZmOSTYREn8dtADH8feDkPPirRfwvoz/Jqzrv4s+BLIEyeJLV/wDriHl/9ABrZg8HeGLbPkeHdIi3dfLsYlz+S1pQWVpaMBb2sMPGP3cYX+QoA4tvirpE6qdJ0fxFq4PRrLTJCv5vtxSN4k8fai23SvBUVihHy3GrXygD6xx5YV31FAHn58KeNtaUjXvGZsYXGGttDtxFg+0z5etHR/hr4W0a5+2Jpq3l+cFru+c3ErEfxZfgH3AFdfRQAgpaKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9k='] Multimodal Competition True Theorem proof Combinatorics Math English 54 "A king strapped for cash is forced to sell off his kingdom $U=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$. He sells the two circular plots $C$ and $C^{\prime}$ centered at $\left( \pm \frac{1}{2}, 0\right)$ with radius $\frac{1}{2}$. The retained parts of the kingdom form two regions, each bordered by three arcs of circles; in what follows, we will call such regions curvilinear triangles, or $c$-triangles ( $\mathrm{c} \triangle$ ) for short. This sad day marks day 0 of a new fiscal era. Unfortunately, these drastic measures are not enough, and so each day thereafter, court geometers mark off the largest possible circle contained in each c-triangle in the remaining property. This circle is tangent to all three arcs of the c-triangle, and will be referred to as the incircle of the c-triangle. At the end of the day, all incircles demarcated that day are sold off, and the following day, the remaining c-triangles are partitioned in the same manner. Some notation: when discussing mutually tangent circles (or arcs), it is convenient to refer to the curvature of a circle rather than its radius. We define curvature as follows. Suppose that circle $A$ of radius $r_{a}$ is externally tangent to circle $B$ of radius $r_{b}$. Then the curvatures of the circles are simply the reciprocals of their radii, $\frac{1}{r_{a}}$ and $\frac{1}{r_{b}}$. If circle $A$ is internally tangent to circle $B$, however, as in the right diagram below, the curvature of circle $A$ is still $\frac{1}{r_{a}}$, while the curvature of circle $B$ is $-\frac{1}{r_{b}}$, the opposite of the reciprocal of its radius. Circle $A$ has curvature 2; circle $B$ has curvature 1 . Circle $A$ has curvature 2; circle $B$ has curvature -1 . Using these conventions allows us to express a beautiful theorem of Descartes: when four circles $A, B, C, D$ are pairwise tangent, with respective curvatures $a, b, c, d$, then $$ (a+b+c+d)^{2}=2\left(a^{2}+b^{2}+c^{2}+d^{2}\right), $$ where (as before) $a$ is taken to be negative if $B, C, D$ are internally tangent to $A$, and correspondingly for $b, c$, or $d$. Descartes' Circle Formula can be extended by interpreting the coordinates of points on the plane as complex numbers in the usual way: the point $(x, y)$ represents the complex number $x+y i$. On the complex plane, let $z_{A}, z_{B}, z_{C}, z_{D}$ be the centers of circles $A, B, C, D$ respectively; as before, $a, b, c, d$ are the curvatures of their respective circles. Then Descartes' Extended Circle Formula states $$ \left(a \cdot z_{A}+b \cdot z_{B}+c \cdot z_{C}+d \cdot z_{D}\right)^{2}=2\left(a^{2} z_{A}^{2}+b^{2} z_{B}^{2}+c^{2} z_{C}^{2}+d^{2} z_{D}^{2}\right) . $$ Given a c-triangle $T$, let $a, b$, and $c$ be the curvatures of the three $\operatorname{arcs}$ bounding $T$, with $a \leq b \leq c$, and let $d$ be the curvature of the incircle of $T$. Define the circle configuration associated with $T$ to be $\mathcal{C}(T)=(a, b, c, d)$. Define the c-triangle $T$ to be proper if $c \leq d$. For example, circles of curvatures $-1,2$, and 3 determine two c-triangles. The incircle of one has curvature 6 , so it is proper; the incircle of the other has curvature 2 , so it is not proper. Let $P$ and $Q$ be two c-triangles, with associated configurations $\mathcal{C}(P)=(a, b, c, d)$ and $\mathcal{C}(Q)=$ $(w, x, y, z)$. We say that $P$ dominates $Q$ if $a \leq w, b \leq x, c \leq y$, and $d \leq z$. (The term ""dominates"" refers to the fact that the radii of the arcs defining $Q$ cannot be larger than the radii of the arcs defining $P$.) Removing the incircle from $T$ gives three c-triangles, $T^{(1)}, T^{(2)}, T^{(3)}$, each bounded by the incircle of $T$ and two of the arcs that bound $T$. These triangles have associated configurations $$ \begin{aligned} \mathcal{C}\left(T^{(1)}\right) & =\left(b, c, d, a^{\prime}\right), \\ \mathcal{C}\left(T^{(2)}\right) & =\left(a, c, d, b^{\prime}\right), \\ \mathcal{C}\left(T^{(3)}\right) & =\left(a, b, d, c^{\prime}\right), \end{aligned} $$ Let $P$ and $Q$ be two proper c-triangles such that $P$ dominates $Q$. Let $\mathcal{C}(P)=(a, b, c, d)$ and $\mathcal{C}(Q)=(w, x, y, z)$. Prove that $P^{(1)}$ dominates $Q^{(1)}$." "[""Because $\\mathcal{C}\\left(P^{(1)}\\right)=\\left(b, c, d, a^{\\prime}\\right)$ and $\\mathcal{C}\\left(Q^{(1)}\\right)=\\left(x, y, z, w^{\\prime}\\right)$, it is enough to show that $a^{\\prime} \\leq w^{\\prime}$. $a$ and $a^{\\prime}$ are the two roots of the quadratic given by Descartes' Circle Formula:\n\n$$\n(X+b+c+d)^{2}=2\\left(X^{2}+b^{2}+c^{2}+d^{2}\\right)\n$$\n\nSolve by completing the square:\n\n$$\n\\begin{aligned}\nX^{2}-2(b+c+d) X+2\\left(b^{2}+c^{2}+d^{2}\\right) & =(b+c+d)^{2} \\\\\n(X-(b+c+d))^{2} & =2(b+c+d)^{2}-2\\left(b^{2}+c^{2}+d^{2}\\right) \\\\\n& =4(b c+b d+c d) .\n\\end{aligned}\n$$\n\nThus $a, a^{\\prime}=b+c+d \\pm 2 \\sqrt{b c+b d+c d}$.\n\nBecause $a \\leq b \\leq c \\leq d$, and only $a$ can be less than zero, $a$ must get the minus sign, and $a^{\\prime}$ gets the plus sign:\n\n$$\na^{\\prime}=b+c+d+2 \\sqrt{b c+b d+c d} \\text {. }\n$$\n\nSimilarly,\n\n$$\nw^{\\prime}=x+y+z+2 \\sqrt{x y+x z+y z} .\n$$\n\nBecause $P$ dominates $Q$, each term in the expression for $a^{\\prime}$ is less than or equal to the corresponding term in the expression for $w^{\\prime}$, thus $a^{\\prime} \\leq w^{\\prime}$.""]" ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIATABxwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ8CgBaKztU13StFhEuqanZ2SHobiZY930yefwrlH+LXh+dnTRbbVtekQ4ZdMsJJNp/3iAP1oA7yiuD/wCEr8b3rgaf4BeGJhkT6jqMcWPrGoZqao+K1wTvfwnZxkcBVnlcdOvIHrQB31FcN/YnxFlO5/GWmQHpti0gMPzZ6aPDvxDDs/8AwntqQQMIdFjwv/j2aAO7orhv7I+I8GfL8V6Rc9x5+llB9PlemLP8U7VyZrXwpfxjosEs8Ln/AL6BAoA7yiuB/wCE38VWAZtZ+HupLGvRtNuYrwsPZQQamtfix4UluEtr27n0m6brDqds9uR9SRtH50AdxRVazv7TUbdbiyuoLmBxlZYZFdT+IOKsA84PWgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooPtTXcKpYnAHc9qAFJwKhuLqG0t3uLmWOGGMbpJJGCqo9STgAVxGofEV7+9fSvBennXr9Tte6DbLO3Pq8vRj0O1evOD2qO0+HEuszx33jnVZNbuVYOlkmYrOE/wCygwWxyMt1BORQBJcfE6G+uHs/COk3niS6Q7Glth5dqjejTN8o45GM5qM+HvHfiMf8T3xNHotq3Wz0OPEhXtmd+Q3rtGK7y2tbezt47e2gjghjXakcShVQegA4FS4HpQBx+l/DDwjp0pnfSY7+7bBe51BjcyO3qS5IB+gFdekaRoqIiqqjCqowB9KdRQAhAPUUYFLRQAYowKKKAEwD2pcUUUAJgVDd2drewNBd20M8LcNHKgZT+BqeigDiLz4VeGnuGu9KjutDvSAPtGk3DQED/dHyY/Cqn2b4jeGsNa3lj4qshn9zcj7JdY7AOMofq3NehYpNoNAHF6X8TdEurwadqy3Og6nwPsuqR+Vu7fK/3WGeBzk+ldmDk1R1fRdM12xaz1WxgvIG/gmQNj3BPQ+45riW8G+IfCDGfwPqhmsxnOiapI0kWPSKQ/Mh9Acgk8mgD0aiuQ8P/ECw1a/Gj6lbTaNroGW0684ZveNuki8HGOeDxXWq2SeelADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApCcUprkfFnjVNAlt9L0+1bU/EF3/x7afCfmA/56Of4EGDyf5AkAGl4k8VaV4V043uqXIRSdsUKDdLM/ZUXqxP5euK5BND8R/ET994nMui+HnwYtGgciacf9PD9h/sDHXkArzreGfBD2+pf8JD4mul1bxC4+WUr+5tAf4IVPQDpu6n25z2mBnOOaAKmm6ZY6RYx2WnWkNraxjCxQqFUfh3PvVvFLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJtU54HPX3paKAMbxH4W0bxTp/2PV7GO4Qf6tzkSRH1Rxyp+n45FcZ/aPiT4bYGqyXHiHwwM4v1G67sk/6agf6xMfxDkYOccCvTKawBGMDB4oAq6ZqdnrFhDf6fdxXVpMu6OWI5Df8A1+xH8quV5zqfhTVPCOoT694GRSkjeZfaExxDcju0f/POTH4Hj0weo8L+LNO8WaZ9ssHZWjbZcW8o2yW8g6o47Ec+1AG9RSDOaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPShjhcj+dct408Wnw9ZQ2lhb/bdd1BvJ0+yx99/7zeiLnJPHHcdQAVvGHjC50y6tdC0KCK+8RX5Hk27Z2QJ3llxyEH69ulWvB3g6Hw5FNd3c51DXL0iS+1GUZeVuOF/uoMYCjHQU3wX4PHhyCe7v5/t2u3zebfX7Dl2/ur6IOgHH07DqwMUAJgZzS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADSOK4bxZ4QvF1UeK/CZjt/EMI/fQk4i1CMY/dyf7RAwG9hz0I7sjPWkI4oA57wj4tsvFmltc2yvBdQN5V3ZyjEltIOqsODjg4Pf8CB0I61wXjHw5f2Wqr4z8LR51i3QC7tBwuoQDqh4++APlPtjngV03hnxDYeKNEg1XTZN0EowVbho2HVGHZgf84IJANiiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopCaAFopOc0ZP+RQAtFIKWgAooooAKKKKACiiigApDxS0jHAzQBl+INdsvDeh3Wr6lJstbZN7cZZj2Ue5JAFcz4G0C9uL2bxl4kixrmoJiC3Y5FhbdVjX/AGjnLH1OMA5znon/AAsTx80p+fwz4cnwg/hvL0dT7qn6npkE49JXr+Hf/P1oAUAA5xz0zS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANZeOBz6mvNvEEUvw68SyeLLFCdB1GRU1m2UE+S5OFuVA9zhh3z6nI9KIBGCM1Dd21vdWk1tcxJJbzIySxuPldSDkH2IzQA6CZLiJJonWSJ1DI6kEMDyCD3BqWvOfBdxceEvEVx4Cv5JHtwpudEuJTky2+TuiJ7sh/TsBivRQc0ALRRRQAUUUUAFFFFABRRRQAUh4FDZ4x61zHijxxpvhlorMrLfavcD/RtNtF3zSe5H8K8H5j6HGcYoA6YtjJrkNU+JvhzT7s2FpNPrGpD/lz0qI3Mnv8Ad+UY4zkislfCXiPxkfO8aag1jp78roemybVx1xNKDlz6gHHAI9K7bSND0rQbQWmlafb2cA6pDGFz7n1PuaAOQGs/EjWudN8O6XosOeJNWuTLIy+oSL7p9iaePC3jq7lL33xAMKMP9TY6XEgX6OxLV3uBRigDhh8PdQb5pfHvigyHqUuI0X8tlNbwR4igjIsPiDrEbD7puoIbgfkVH867ujFAHBfY/idpYHkavoOtoB832y1e2kb6eWSufrTB8SLzSBjxf4V1PR0HLXkAF5bKPVnj5XPpg16BikIB6igDP0nXdM12z+16VqFvewdC8Dhtp9CByD7HmtAEnqK4vWfhro95eHU9HeXQNYwdt5p3yBj1+dB8rgnBI4JwOaz4fGOt+EJ47Lx3bxm0ZgkOvWaEwtnp5yAZjY+uNuenAJoA9FoqK3niuYUmgkSSKRQyOhDAg8ggjgipaACiiigBDXHfELXrzTtHt9K0dv8AieazMLOyA6x5+/L7BFyc9jiuxbpXnnhHb4u8cat4vkUNZWedM0kkcFVOZZl/3mOAR2yD3oA63w1oFl4Z8P2ejWC/6PaxhNx6u3UsfcnJ/GtfFGMUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQQD1oooA5H4g+HLjWtCjvNKPl65pUgvNOkAyTIvJQ+oYcY6ZxngVqeE/EVt4r8N2Ws2oCpcxgtHnJjccMh9wQR+RrZPSvPNKx4P+KN7o2CmmeI1a+s/7qXS/65B/vDDfyoA9EopBS0AFFFFABRRRQAUjHC5oPArjfG/ie+042ug6CqzeItUytspGVtk/infrhV7ZByR3wRQBB4o8XX8uqnwr4Thju9edc3E7jMOnxn+OT1bHRe/XHQHS8JeC7Dwwks/myX+r3Q3XmpXBzLOx64P8K+ijsBkkjNT+EPClp4T0n7JDJJcXUredeXkpzJczH7zsTk/QZ49+p6EADtQAmBnNLRRQAUUUUAFFFFABRRRQAYzUN1bw3NtJBcRRzQSKVkjlUMrqRggg8EVNQQD1oA8vn03VPhfO+o6HHcaj4VJLXmlA75bIdTJASeV7lSfx5yPQtJ1ax1zTYNS026jubO4TfHIh6jp+BByCDyCCO1XGAwa8x1CKT4W+IG1izD/8IfqEwGo2wyRYTMcCZB2QkgEe/wDugAHqFIelMilWZFkR1ZHAZWU5BHqDTz0oA5H4k63caL4NuEsedT1CRbCxAOCZpTtBHuBkj3Ara8N6Hb+G/Dtho1qP3VpCI92OXPVmPuSST7muT1If8JF8YdMsfvWnh60a9mxyDcS/JGpHYhQXB969AFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVxfxO0qe78KHVNPX/iaaLMuo2h55aPll46gruGO/FdpTXVWUqwBU8EHofagClouqQa3o1lqlqcwXcCTJk8gMM4PuOh96v15/8MD/AGSdf8IOTnRL5vs4OeLab95Fyep+9n8K9AoAKKKKACiikPTigChrmr2mg6Jd6rfSeXbWsZkc9z6Ae5OAB3JArlvh7o13Il14u1uIDWtaAkKH/l2t+scI9MDBPcnryKqeMVPivxxong771jAv9q6oAOHRW2xR/RnySD2wa9CU5JoAUADoKWiigAooooAKKKKACiiigBGOBWdHrulza22jRX8EmopEZntkYM6ICBlgPu/eHB55rSIzXnYhih/aDURRqgbwyWIUYyftPWgD0GSRYo2d2VUUEsWOAAO+a5/UvHPh3RtNs7/U9UjtIbyNZYBKjB3UgHOzG7oeeOKk8Ws02kppUZYS6rMtkNpwQjZMpB9REsh+oFXk0ewjvp777PG1xKixb3QHbGo4RfRc5OB3JoAfpeq2Gt2Ed7p13Dd2smSssTZGQensR6Hmpr21t72ymtLqJZbedGjljYZDKRggj6Vw/wAMNJSwPiS7slEWkXuqSPYRKMJsX5S6jspYHHqFFd+RkYoA888DXU/hnXL3wFqEzSLap9p0ieQ5MtoT9zPcxnj6ZwABXoX3hzx/SuG+J+nzx6RaeKdOTOp+HpvtaAcGSHpNHn0Kcn/drT8R+IYIfhxqXiGymHlNprXFtIeMlkzH+JJWgDI+GAGqDxD4qYKx1nU5DDIO9vF+7jH4Yau+AArn/Aulf2J4H0XTmQJJDZx+Yo7SEbn/APHia6GgAooooAKKKKACg0UUAcp8RNU1nRvBmo6los9tDNbRGRmmiLnA67eQAeepyOOlanha8n1Dwno97cyeZPcWME0jkAbmaNSTgccknpWR8UBj4Y+Iscf6G3StLwZ/yI3h8/8AUNt//RS0AblFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhGRS0UAef6kf7E+NGjXYLCDXdPlsXA6ebERIrH3KkqK78GuD+LG2y8P6Zr5JUaLq1teOR1Me/Yy/iH/Su8FAC0UUUAFIelLWF401F9J8E63fxuElgspXjY9n2Hb+uKAOb+GYGsT+IfF74Y6vqDJbOB1tocxx/To2a9AAA6Vz/gXTf7H8DaHYFAjxWUW8D++VBf/wAeJroaACiiigAooooAKKKKACiiigBCcV527Tn45R3/ANg1E2X9hmyN19hm8vzvP37d23GMd84969FpMCgDBMUl74zEsiMLbTbXEbEHDTSnkj3VEA4/56msDxh4rnt9S/sRNB8R3NkVzd3OnafI4YH/AJZI/A5H3mB46Dkkr3u0Y6UbQO1AHN+FfEP9ttNDb+HtU0iztI0RBqFr9n3E9FjTn5QByeMZGBXS0gABzS0ARzRRzwPDMgeORSjqwyGB4INeFXcjR/DS+8BzyN50HiKLR4t7ZZoXmEsbH6qCB7LXvJrw/wAWWPlfH/RrNFPk6lPaai+Bx5kCzIPxAGaAPblAHA6CnUgpaACiiigAooooAKRjtGe1LRQBzPjrStU1/wAJ6ho+mLZ+beRGIvdTNGEBI5wEbP6Vc8KWWoaZ4a07TdSS2E9nbRW5a3lZ1fYoXd8yKRnHTmtnApaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOa+IVkNQ+HfiG3K7ibCV1XHVlUsv6gVd8KX51Twjo1+33rmyhlbnoSgJH51o3kC3VnPbsMiWNkP4giuP+EN19s+FegynOVheLn0SRkH8qAO3ooooAK4T4xtJ/wAKt1eOFiJJmgiBH+1MgP6Zru64T4xSCH4Z6hO4ykU9q7fQXEdAHcRoEQKowAAMelPpB1NLQAUUUUAFFFFABSMcUtIxAHJAoA4PxX8W/DPhDWRpV9LczXYK+atvEH8kMAQWyR2IOBzjtXX6TqtnrWmW2pafOJ7S5jEkUgBG4fQ8j6HpXhfxI+DHiDXfGl1rGiNbTWt/IrOksxRoG2gEnI5XjIxk84xxXX+H/gX4RtdDtINb00X2pKn+kXC3Uyq7k54CsBgdBwDgc80AepZozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHf5ozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHf5ozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHfMcCvEPG/jvw1Z/GXw3cyXjldGNzBfyRxlhGzIVVfUkEnOM4+uRXYH4J/DwYx4e7/8AP7cf/HK8Y8WfB6/sfiBZaJplxara6vJO+nmR3AiRF3srnBPAOBjOe+M0AfUNrcxXdvFcQSLJDLGskbqchlYZB+mKmzXm9h8DvA0Njbw3mj/aZ44lWWf7VOvmOAAWwHAGTk4A71Z/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3+aM1wH/Ckvh5/wBC9/5O3H/xyj/hSXw8/wChe/8AJ24/+OUAd/mjNcB/wpL4ef8AQvf+Ttx/8co/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3+aM1wH/Ckvh5/wBC9/5O3H/xyj/hSXw8/wChe/8AJ24/+OUAd/mjNcB/wpL4ef8AQvf+Ttx/8co/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3k0yW8LzSuqRopZmY4CgDJJNefaP8avCOteI00a2nulkldY4J5YNsUznoB1YZJx8wH+KXnwP8BS2U8dtopt5njZY5hdzMY2I4bBfBwecH0rzHw38CPE1n4ttJtSls0060njmeaGckyhTnCDbnPHcDrQB9JAnOPanUxcDp+Vcm/j6H/hJ7nw7DoerzajbxCaRI1hIEZx827zcdxwefagDr6KwvD/izTPEc13b2jSxXlm2y6s7mMxywk9Mj09xkVu0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIa4X4QFB8PoIkXZ5V3dIVAxj9+5x+RFd0elcN8JS0ngk3DgAz6hdyYHbMzf4UAd1RRRQAVyfxNsRqHw08QwEZ22bygYzynzj9VrrKiuYI7q2lt5V3RyoUdfUEYNAFLQNQGreHdN1FTkXVrFMP+BKD/WtKuE+E1xIvg5tGuH33eiXc2nTHGM7HO0j22la7ugAooooAKKKKACqeqala6RplxqF7MIba3QySOewH8z2A75xVpzhe341534pvk17R9b1MyKdG0i1uGthni6uURhvHqiHKj1bJ/hUkA2fh74mm8Y+HJNalhWGGW6lW1iHVIlIVc+/Bz9eOK63AFcJ8G7c23wp0NSOWjkkP/ApXP8AIiu7oAKKKKACiiigAooooAQ4Iwa8f8XagV/aC8IRAKYbaAqzZ6PMJQAfwUGvYG6V4Jqi/wBo6nqHjYsyQw+LrGFGzwYLf90WB9GZz+VAHvSnPI7jNOpB1paACiiigAooooAKKKKACiiigAooooAKKKKACiiigApMClpDntQAHgDAzXivhTxVDa6p4y8b3Ol6reQXV2Yrea0tfMUW8IKg5yMZGCe3HWu7+JHiq18MeCtTna6iS+e3aO1iLgSM7fKCq9TjOfwrm/DHizwt4P8AhxpenW+o22pX0dqD9hsXE8ssz/My7VyR8xIy2KALnw60ebUPEOsePrqa23a0qpb29tKJFiiXA+ZhwX+UA46EH1r0ivPfgz4Z1Lwx4FEGqIYrm6uXuvIP/LFWCgL7H5c4969CoAKKKKACiiigAooooAKKKKACiiigAooooAbIwVCxOAOSa4X4NrKPhZo8kw/eymeVvfdM5B49sV0fi29OneDdbvR96CwnkX6iNiP1qp8P7T7D8PvD0BXaw0+FmHoxUMf1JoA6SiiigApD0paMZ60AefB/+EX+MDBmK6f4otgVJ6LdwDGPQbkP1Jrv1JNcz498NSeJvC8tvZuItTtpFu7Cb/nnOnKn8eR+Oan8F+JYvFfhyDUhGYboEw3kDfegnXh0IPIweR7EUAdDRRRQAUhpaCM0AcH4h8Y6Zf67a+DbLWYI72+YpdSxTANBGPvRqwPEr/dUdRyeoGcD4paP4L8O+AdT8rSNDs9Rkg2WoFvEkxJYDK8bjgZOfY161tGCOxowPSgDkfhjdWFx8PNDjsbqGcw2USzCNwxR9o3BvQ5yPwrr6QADoKWgAooooAKKKKACkNLSN93pQBzPj7xC/hrwde3sALXzgW9nGo+Z55PlQAdyM7segNc14g8HLpnwGu/D68y2en+c7Lk7pkIlYj6sD+dSRN/wnfxLEyHfoXheQhT/AA3F8Rzj1EYP4H1Br0KaKO4gkhlUNFIhV1PdSMYoAq6FqKaxoGn6nGAFu7aOcD03KGx+taFcL8JZ5F8Ff2RcPvutFvJ9OmOMZKOSuPbay13VABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJgUYFLRQAgAHSloooAKKKKACiiigAooooAKKKKACiiigAoNFIaAOH+Lc0h+H11p9u+251O4gsYQf4mkkUEf98hq7S3jSGCOKMYjRAqj0AFcL4v8A+Jv8RfBuhAB4reWXVrkd0ES7Ym+hdiK74d6AFooooAKKKKAEbpXm/iKKbwD4ok8Y2MTvot+Vj1u3QZ8pui3KgenRgOvXGTkek9ajmhingeGWNZIpAVdGAIYHggg9RQAy0uob22iuLeVJYZUEkciHIZTyCPYip68tX7Z8Jb2Tak134JuZdwxlpNJZj6dWhySfUc9/v+l2l3BfWsV1azJNbzIHjljYMrKehBHWgCeiiigAooooAKKKKACiiigAoopD064oAGOBmuG8ceJL4TQeEvDj58Q6kv8ArM8WUHRpmI6eg75xjJwDY8W+NW0q4i0PRLYan4lu1PkWan5YRj/WSn+FBwcHBPt1FjwZ4QXw5bT3V9P9u1y+bzb+9Yfff+6vog6AYHTp0AANPwzoFl4Y0C00ewUi3tk27mHzSN1Z29yST/8AWrWwB0owM0poA8/0onQfjBrOntkW2u2kd/b8YXzYv3cij1YjaxrvwcmuB+KFu+n2Wl+L7aNnuNAu1mkCjLPbv8kyj6gg57YruraaO5gjnhdXikQOjqchgecj2NAEtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLWB418QL4X8H6lq5GZIYsQrjO+VvlQY7/MR+GaAOe8Hn+3fiJ4s8RkBoLZ00e0focR/NKPpvI5r0DGK5vwHoLeG/BemabLk3SxeZcsTkmVzufJ7/ADEj6AV0lABRRRQAUUUUAFIQD1FLRQBHLFHLE0ciK6MNrKwyCD2IPUV53N4W1zwPdy3/AIIC3WmyOXuNAnk2rnqTA5+4fY8fkBXpFIVB6igDmfDPjvRvFO+C2le21KHifT7tPKniPoVPX6iulUk+lc/4m8E6F4qVH1G0xdx8Q3sLGOeLrja454Jzg5Ge1c8mmfEHwuwGmala+JtPTkW+pHybsL/dWYfK31YUAeh0VwP/AAtK207K+JtA1rQygHmTTWpmgB9pI8g/XFa1n8RfB19Grw+JdLG7oJblYifwbBoA6iiqEWt6XOm+HU7KRfVJ1I/MGqlz4u8N2X/H14g0qDBxiS8jXn8TQBtUGuHufi14PiuPs1pqMmp3eMrb6dbvOz/QqNv61WbxP4519dugeE10uFvu3muy7CP+2KfNn0ycUAdxd3tvp9rJdXlxFb20Yy8szhFQepJ6VwE3jLWfG0r2HgW38uyBKT6/eREQp2PkoRmRuvXgcZ4Oas2fw0i1C6iv/GGr3PiK5Q7kgmAjtIz/ALMK/KfTnIPpXdxQxQxJFFGqRoAqIgwFA6ADtQBgeFPCGm+FraYW3mXN9cNvvL+5bfPcP1y7H68Dp+JyejpNoBzjmloAKKKKAK97aQX1jPZ3EayQTxtFIjDIZWBBH5GuL+Gd3cWdnf8AhDUHZr3w/N9nVm6y2zZaF/8Avnj22813Z6V5548STwvr+m+O7ZWMNtiy1ZFGd1q7cPj1RsHjk9M4oA9DBzS1HDKk0aSxsrxuu5WU5BB6EGpKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARuleeeISfFfxK0jw6nzWGi7dU1HHQy8iCPjv1YjoQR6V13iXXrbwz4dvdZvD+5tYy5Xu7dFUe5YgfjWJ8O9CutM0SXUtXGdc1eU3t8SMFGP3YxnkBBxjsc0Adeue/WnUUUAFFFFABRRRQAUUUUAFFFFABSAAdBilooATA9Kyr7wt4e1Ny9/oWmXTnktNaRufzIrWooA5Z/hr4KdizeGNMyeuLcAfkKmg8AeD7bb5fhfSAV6FrONiPxIro6KAIbe1t7SIRW0EcMY6JGgUD8BU2BRRQAgAHSloooAKKKKACiiigAqve2tve2U1ncxLLBOjRSRtyHVhgg/UVYo60Aed+A76fw5ql14A1SdmlsVM+lTyHJuLIngf7yHKkccDgYXNehg9M56d65Px34Xn1zT7a+0mQW+v6VJ9o06boC38Ubf7LgYP4duDd8G+KLfxboSX8UbQXMbGG7tX4e3mX7yEfXp7EfSgDoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkJxihiQOK4rx14lvrQWvhvw+yP4j1X5IfS2i/juG9ABnHvn720igDLu8fED4gpZKvmeHvDcwkuD1S5vR92P3CDk+5wR0r0kCsbwt4dsfCvh+10ewH7qBfmc/ekc8s59yf8BwK2sUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACN0rzvxVpt/wCFddfxvoEDzRsgXWrFOtxCv/LVB/z0QZ+o/HPotNIHXHNAFPSNWstc0u31LTrhLi0uEDxyJ0PsfQjoR2INXq8w1K0vPhjqkuvaNBJceF7uTfqemxrk2jE8zwj+7/eXoPoRs9E0zU7TWNPgv7C4juLSdA8csZyGH+eMHkEGgC3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFI3TrignArE8UeKNP8ACejNqOou2MhIYYxmSeQ9ERe5P6UAReLvFdr4U0j7XMjXF3K4hs7KP/WXMx+6ijr1IyR09+lZ3gfwtdaa11r+vOlx4j1TD3Mi8rAn8MKf7IGOnUjqcCqnhPw1qWo6x/wmHi1E/tV4yllYjlNPiPYeshz8zde3tXe4oAQAA9KWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKCM0UUAIQAOleaXujar8O9Rn1rwtave6DcOZdQ0SMfNEx6y24+g5Tp6cEbfSyAetGMDAoAzNB8Qab4k0qLUtKukubWT+JeqnurDqCMjg1piuC17wTe2WqS+I/BV1Fp+ruQbm0cf6LfY7Oo+63+0PU9NxNaHhjx7Za5ePpN9BJpOvw/67Tbo/Nn1jbpIvfI7c4xQB11FNVtx4ORTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRsgcfyzQTgVwes+Pbi81GXQfBdrHqurIds9yx/0Sy68yuOpGPuj37jBANfxZ4zsPCtpF5wku9RuTss9PtvmluH9AB25GTjj3PByfDXhDULvWE8U+MHSfWAD9lskO6DTlPZexf1b9T1N7wn4Hg0O5l1XU7uTV/EFyP9I1G4AyP9iNeiIPQfywB12KADFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQRmiigBCoOMjpyKwfFHg/RvFlokOp2xMsRzBdRHZNA395H6jnnuOBkcVv0UAebrqXjDwH8msW8viXQkHGoWqf6ZAo/56x/xjp8wOeCSe1djoPibSPE9j9s0XUILyH+Lyz8yH0ZT8yn2IrV2L2H0rkde+HOi6vfNqlo1xo+sYONQ02QwyE9fnA4YHjORntmgDrxS154upePvChC6lp0PinT1HN3poEV2o9WhPDEnPCn3NbGifEbwzrk/wBli1FbW/DbGsb4eRMrf3dr4yfpmgDq6KaCT3z7gU6gAooooAKKKKACiiigAooooAKKjeRYkaSRgiKMlmPAHqfSuN1L4peHra7aw0trjXdRHS10mIzn6lh8oHrzxQB2rHAzXN+I/HOh+F2SG+uxJfSECGwt18y4lJ6BUHPPYnAzxmsE2vxB8WA/bLqDwnprDmG0YT3jj0Mn3U9iBkV0HhnwRoPhUO2nWQ+1SZ828nYyTyk9SXPPPoMCgDmm0zxd48Gdbll8N6A3/MPtnBu7hP8AprIOEBHVRz1Brt9G0bTdB0+PT9Ks4rW1jHypEMc+pPUk+pyT3rQ2jjjp09qWgBAAOAMCloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEwKy9a8NaL4hgEOr6Xa3igFVMsYLID/dbqv4YrVooA8+Pw1l0sbvCvinWNGCgCO2eT7XbRj2jkyf1p/nfE7Sc7rbQdehQceXI9pO/1BygrvcD0pcCgDgT8RNWscLrHgHxFBIcZNiiXqL/wJGH8qc/xg8IWyg6jc32nMeNl3p06kH04QjP413mBSbQe1AHHwfFTwPOCV8S2K4xneSn/AKEBU3/CzfBP/Qz6b/3/ABXRPp9lKQZLSB8dN0YNN/svT/8Anwtf+/K/4UAcrc/FrwJahjJ4ktSF6+Wryf8AoKmoB8W/DlzHv0uDWNWz0Fjpkz7vpuUCu1isrWD/AFNtFHzn5EA/lU2BnOKAOD/4TnxNqCBtG+HurOD1Opzx2ePfDEk01rT4nauSs2p6FoMJ6G1ga6mHsd+EP4Cu+wKMCgDgk+Fel3syz+JdU1XxBKCGC3tyRErD+7GmAOp45612WnaXp+k2wttNsbazgBz5VvEsa5+gAq5RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k=', '/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAS0BMwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACikJwM1zWs/EDwnoJZdR1+yjkQ4aJJPMkH/AEy36UAdNRXBf8LNS9O3RPC3iPUwQCk6WXkwt/wADkI/lSpr/AMRL3cIPBFlYDPyve6qr5+ojU4oA7yiuCRfitLId8ng+CPnaFW5kPtnpUg034kuu5/EGgRsT9xNPkYD6EvmgDuaK4Y2PxMhbMeteHLgHr5tlKmP++XqOKb4qwZNzZ+ErsDGFt5riNj+LAj0oA72iuB/4S7xpZuRqPw9uGiXrLYajFPn6JwaF+Lfh63KjWrbWNCdjhV1PT5I934qGGPfNAHfUVm6T4h0bXUL6VqtlfAfe+zzq5X6gHI/GtKgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiig0AFB6VieI/FWi+FbD7VrF9HAp+5H1eU+iqOSf8muT87xt43OLdJfCWiNn95Koa/nX2XpDkHr94EDGaAOn8ReMvD/hVA2r6nFDIw+S3GXlfnsgyx+vSudHiXxv4kIHh7w2mk2jH/j+11irkd9sCncD3BJwa2/DngTw/4aka4s7MzX78y3903m3EhPUlz698YB9K6fvQB5+3w1k1f5vFvifVdZz962jf7LbH28tP55rpdG8JeHtAA/srRbK0cDHmRxDeR7v94/ia26KADvRRRQAUUUUAFFFFABTXRZEKOoZTwQRkGnUUAclqvw08IatIJpdDt4LgHcs9nm3cH1yhGT9c1lDwn4y0Dnw54ue9gXOLLXkMwP8A22XDgegxXoVFAHnqfEi40WQQ+NfD95ooztF9F/pNo3YZdASpPYEfWu30/UrLVbVLvT7yC6tn+7LDIHU/iDVmRFkjZGVWVhghhkEe9cJqHw1tIb2TU/Cl7N4b1I/eazANvL7PCflbv0x170Ad7RXncXjvVvDE62njzTVtoiwSPWbENJaOe28fejPQc989hXe2tzBeW8dxbTRzwONySxuGVh6gjrQBPRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFQXl1b2NnNdXUyQW8KF5JZGwqKOSSaAJicKTXn+p+Ob/WdQm0LwNbRX9/Gdt1qMmfsdp7bv429APrzhhVBrnV/inK8djNPpXg1WKSXQ+S41LBIIT+5F15PJH1IHf6Po9hoWnQ6dplrFa2kIwkUa4H1JPJPueT3zQBgeHPANjpF6dW1S4k1nX5P9ZqN2MlfaNOka9eB64zjiuvFLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEc8MdzBJDNGkkUilWSRdysD2IPUV57deCtV8K3D6l4AuEjiLF7jQrlj9mnOOsZP+rf9M46AYPo1B6UAcv4T8a6d4nM1qscthq1rxdaZdDbNCfXH8S8jBHqM4ziuorlvFfgqx8TeVdJNLp+sW3NpqVtxLC3of7y+qnsT0rM8OeMb+21ZPDHjGBLPWuRbXScW+oKP4oz2bGMr/LOAAd5RTQeadQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTZHWKNpHZVRQWLMcAAdyfSgCC/vrXTbCe9vp0gtYVLyyyHCqo7mvOLSyvfirfJqeqxzW3g+Ft1nYMdragwPE0nonovfr9UjSX4r60J5Q6eCrCb9yjDH9qTKfvEd4ge3fH1C+nRqEACgAAYAAxigBIkSJEjjRUjUbVVRgADoBjtUlFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAh6VjeJfDOmeLNJfTtUg8yNjujkXh4X7OjdVb/J4raoPSgDzvw54k1Xw/rcPhDxjMHuXX/iW6qeEv0HG1v7so469fyLehDk56VjeJvDWneK9Fl0zUo90bDMcg4eFx0dD2Ydf0PFc94M8Q6haapJ4N8Tyg6zbR77W6OQNQtxwJBk/fGDuHXvzzQB3lFFFABRRRQAUUUUAFFFFABRRSHgUAB6V5t4oup/HHiNvBOl3Dx6bbhZNeu4jyEP3bdT/AHmxz1wOOcEHe8d+J5vDukxwadEJ9b1KQWmnQcfNK38RB42qDkk8dASM5q14M8Mx+FNAi08SGe5djNeXLctcTty7knk5PHPOAOtAGxY2kNhawWdpCkNtCgjjjQYCKBgAVaoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARvumuX8aeFF8UaZG1vP9k1exfz9PvFHzQSjtn+6eAR0PBxxXU0h6Hr+FAHL+B/FLeJdMkS9hFrrNg/2fUbP/nlIO4/2WwSD0PPJxmuprzrxvZXHhjWYPHulQs5t1EOs28Y5uLX/npjuydc+g64GK72zuoL60gu7WVZredFkjkQ5VlIyCPYigCxRRRQAUUUUAFFFFABTXO2NiTgAZz6U49Oa4X4l6hdS6dZeFdMkCal4gmNorA8xQAZmkx7J/6FQBS8GI3jHxZeeObgE2EG+x0NT08sEiSYD1c5APXGQe1ej1R03T7fSNMtdOs4/LtrWJYo0x0VRgfy/Oodc13S/Dumy3+r3sVrap1aQ9T6ADlj7CgDTPSsHxB4z8PeF1B1jVYLZyAVhJLSt24RQWP1xXLLd+MvHgJsRL4V0FulxMmb+5Xp8q9Igcnk89CM10HhzwH4f8NOZ7Oy86/bmW/uj5txIx6kufXvjAPpQBkL478Q6yR/wjXgm/lgPS61SRbNMdmCnLMPoKcNO+J+oqftWu6BpHPy/YbN7hse/mEDP0rvB1paAODTwh40MeJ/iRds56mPSrdB+AwcUknhHxuoBt/iRcK+cZl0m3cEfTjn3rvaKAODa1+J+nlRBqXh3V4xy32q3ktpG+mwlRUR+ImqaQP+Kr8Happ0QPzXdmVvIEH95inKj6ivQaD0oAx9C8TaL4lg8/RtTt71AMt5T/Mn+8vVfxFbFcjr3w70DXLj7csEum6qOU1DTn8iZW9SV6/iDWIPEHirwGwTxVCda0MHH9s2cWJoB6zxAdB/eXPAHUnFAHpNFUtL1Oz1ixiv9Puorm0mGY5YnDK3r9MHj65zV2gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGTRxzQSRSoHjdSrKRkEHqMV594Jlk8KeJ77wLdyH7KFN7oruetux+eLPco2e5OCTwAK9DPQ1w/xL0u5k0a38RaWo/tbQJftsGP+WkY/wBbGcdmQHjvjFAHc0VQ0fU7bWtJs9TsnLW11Cs0Z9mGcH3HQir9ABRRRQAUUUUAIelee+FR/wAJJ8Qtf8USfNaWB/sfTiTwdnMzjPXLcBh1GRXReONfHhnwVqurA4lggIh4z+8b5U/8eYVi2M1l8LvhhZC+y0lvCoMScvcXLncVXuSXJ+g57UAavizxdZ+FbCN5Inur66byrKwh5luZD0VR6cjJ7e5IFY2geCLu+1OPxL41kS/1gZa2swd1tp4JyFRe7jjLHPI6nGTL4L8L3ov38WeKNs3iK9X5I8ZWwhxxDGOxGTuPck+5buqAGjg06iigAooooAKKKKACiiigApHGUIIyPSlooA851PwlqXhK/l1/wMg2yNvvtCJ2w3Q7tF/zzkx+B444weq8L+JtP8V6Umoae7YBMcsEg2yQSDqjr2Yf/qyCDW2eBXnfi7Rr3w1rDeN/DUO+dUxq+nLwL6Aclx6SL1zjkfkwB6LRWdourWeu6Taapp8wmtLmPzI3HXHofQg8EeoPpWjQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIwDKQQCDwQe9LSEZBB5BoA8++HmfD+t694JkYiPT5vtenBu9rMd2F7kI+QT6nFehV5744zoXjXwt4pj+WJpzpN8QOsU33CfZXGfxr0ADnp160AOooooAKQ9KWkPIoA4Dx8P7W8TeDvDWCYrm/a/uMDIMduu7aw9GJA/CqmjRj4g+N5PEUx8zQNElNvpKEZWe4H+suPcA4VTyOMjBBrmfG+r3Vx8RtZtNMdv7TNnbaFaDsj3JMsknttjXk9iRXr+haNaeH9FstJsl2wWsQjU45bA5Y47k5J9zQBoAYNOoooAKKQnAJPQUilWAZTkEcEUAOooooAKKKKACiiigAooooAKRvunnFLQeBQB5raD/hXvxAGnAbPDfiKUtbD+C0ve6D0V+MD14AwDXpCjkVz/jTw2vinwne6ZnbcMnmWsgODHMvKMD25Az7ZpngTxC/ibwlZ6hcLsvQDDeRkYKTodrjHbkZA7BhQB0tFFFABRRRQAUUUUAFIeATS0HpQByHibxufDuvaLpX9k3M39qXkdqtyXVY1LFQcckkjd6Ae9daOteb/FL/AJD/AIB/7D8P8xXpVABRRRQAUUUUAFFFFAHM/EDRf+Eg8BazpyKWle2aSEA4PmJ86f8AjyirnhLWR4h8JaTq2QWurVJJMdA+MMPwYEfhWyfunjPtXB/CoCx0fWNAC7E0fV7m1hXP/LIt5iH8d5/KgDvaKKKACkPApaRiFUknAHJNAHh3w7tX8R/GnxTrlxseDS7qZIGA53ufKU59PLiI/wCBV7lXlvwHtHHgi51abBm1S/luGb2Hy4/NW/OvUqAEPSvO4Vlt/j40H2u6lgk8PNP5U0pZEczqp2r0HCjpXoteeyEf8NBxDPP/AAjB4/7eaAOm8U3M0WgyW1s5S7vmWzgYdUeQ7S4/3VJf/gNZuqeBdP12VIdUkuDpltEkVnYwXDxRoFH322kFm7DJIAAx1NXJ/wDiY+NLaAcw6Vb/AGlv+u0u6NPxCLL/AN9iovEniqy0qaPSl1OxtNSuVLK11KqJAnQyMCRn2Xqx9AGZQDE+Fy6jaDxDo91ezXtjpepPa2VxO259oAJQnvtyPzPoAPQq53wtd+H0g/sjQtRgvfsy+ZM8MwmJZySXkZeN7Nub1PPFdFQAUUUUAFFFFABRRRQAUUUUAIelcB4c/wCJD8V/EehgBbXVYU1i2VRgK/8Aq5vxLbWr0A9K4Lxp/wAS7x34I1rfsQ3kunSc43CaM7Af+BJQB3tFNGc4p1ABRRRQAUUUUAFIehpaKAPMfiYbm41/wf8AZdO1K5Fjq8dzctbWM0ixxgrkkqpB+gJr0iCQTRJIofDLkb0KH8VPI+h5qaigAooooAKKKKACiiigBD0rhPDyGw+L3i+1LYS9trO9jTHAwrRsfzAruz0rhJ4/s/x0s7jkC78Pyw+xKTq354NAHeUUUUAB6VzvjPxPpvhTw3c3+oXXkh0aOAAEmSQqSqrjvx16DvgV0J6V5b8bfBWoeLPDtpdaYwa40xpJWgZ9qyRlcnAPBYbRj6tQBY+B+r6XefDqx02yulkurDcLqLBDRl5HYZyOc54Iz068GvS6+dvhD8LrzUdHk1y513VdKgvFUW39kXnkySKGYMZPlPGQMD6+1ek/8Ks/6nzxx/4OP/sKAPQDWW3h3RDqP9pHR9P+3A7vtP2ZPNz67sZ/WuT/AOFWf9T544/8HH/2FH/CrP8AqfPHH/g4/wDsKAO4jtYIZ5po4lWWdg0rAcuQoUZ/AD8qzL3wn4c1K7ku7/QNKu7mQ/PNPZxu7Y4GWKknAAH4VzX/AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAdfpeh6VowkXS9MsrFZDmRbWBYgxHTO0DPWtA9K4D/AIVZ/wBT544/8HH/ANhR/wAKtx/zPnjj/wAHH/2FAG14u8caH4KtYp9Zumjafd5EUaF3lx1AHTjI5JA5q34Y8U6R4u0z+0dGuvtEAcxvlSrI2M7SCBg4I9vQmvHfiP8ABjWruKzudD1XVdcljVlli1W+EkijjHlkgDHXIz6Ve+H3wa1PT9HlfV9f1vR7ydwTb6RqAjUKBgbyFIZs7uhwBjBNAHt9Fef/APCrP+p88cf+Dj/7Cj/hVn/U+eOP/Bx/9hQB6BRXn/8Awqz/AKnzxx/4OP8A7Cj/AIVZ/wBT544/8HH/ANhQB6BRXn//AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAd+3CnnFeWfGPxLo2lQaJb3V0q6hbana6jHAEJby0chm46cbvrg1pn4W4/5nzxwf8AuMf/AGFeUfFf4W6ppl5a6pZ6ne6tbTGK1MmpXYkuBIzEKNxCjbyMehznigD6G0TW9P8AEOlwanpVytzZzg7JACMkEg5B5BBHQ1pV494M+Dl5pnh2GHUfFPiHTryRmklt9J1DyoVJOBxtOWwBk/gOma6H/hVn/U+eOP8Awcf/AGFAHoFFef8A/CrP+p88cf8Ag4/+wo/4VZ/1Pnjj/wAHH/2FAHoFFef/APCrP+p88cf+Dj/7Cj/hVn/U+eOP/Bx/9hQB6BRXn/8Awqz/AKnzxx/4OP8A7Cj/AIVZ/wBT544/8HH/ANhQB6BRXn//AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAegUV5/wD8Ks/6nzxx/wCDj/7Cj/hVn/U+eOP/AAcf/YUAegUV5/8A8Ks/6nzxx/4OP/sKP+FWf9T544/8HH/2FAHoFFef/wDCrP8AqfPHH/g4/wDsKP8AhVn/AFPnjj/wcf8A2FAHft9015B4p8f+GdO+LmhvNqeBp0N1bX7ojMsbOF2KcDnkHOM4OM4xW+fhbgZ/4TzxwfY6v/8AYV4j4p+EXiG18fR6Tayi8GqPLNa3NxMN7qvLGU/3xkZOPmzkd8AH1TFMssSSRsXjdQysvIIPQ0/efRvyrN8P6Y2ieHNM0rzjL9jtY7fzNv3tqhc/TitHLf3v/HDQBJUVzCtxaywuAVkQowPoRipaQ9KAPOvgbdrdfCrTIw2WtpJon9j5jMB+TCvRq8b+Ct+lj4j8Z+Fiyg2upSzxLnkjeY2/Lan517JQAUUUUAFFFFABRRRQAUUUjfdPOKAKmqalb6Tp0t7clvLjAwqLuZ2JwqqO7EkAD1Irjfhbr2peJrLXdV1IlHbVJIIoA+5YY0RAFH4k5Pc5Pelm1a+1LVxq6aFeX2jWQL2LxzQqsj8hpiHcEgDIXjGCWGcjFL4GRMPhpa3D8tdXM8xOep3lf/ZTQB6VRRRQAUUUUAB6VwXxIVru98HaZG3zz69BM68fNHEGdv6V3p6V5/dFdc+NlhAvzQ+H9NkndgeFmnwgU++wE0Ad8cYrz34v3t1ZeE7caZdXdvq13ew2tm1vcPGS7NkghSN2QCOQeteh9q8u8VW//CWfGDQ9BE8sdvo9pJqU7wttYSMQqc9mB2n6NQBF8QHvvh9oGnatpGtajNfC6jga2u7p7hLzIO4bXJIPHVcEV6lCxaNCy7GKjK+ntXkF/bL4Z+M+g217LPrkOpxnyH1FzLLYuM/NH/CBwM8Z6817Ep56/hQA6iiigAooooAKKKKACiiigAooooAKKKKAA9K4bU8XHxn8Pxct9l0q6nx027mRM+9dwehrhLJFvPjlqdypyLDQobVh6NJK0n8hQB3lFFFABQaKQnAoA8E1GVvB3xp1TXApSyiuoDdnput7mMKzn2SVB+de9j2rzPxnpVtN8SNJS9jLWPiDTbjR7hs8KR+9jP8AvZ3AfStP4bavdNYXPhnV3H9taEwtpuf9dFj91KPUFcDPXjnrQB3VFFFABRRRQAUUUUAB6Vz3ivRdV1/SnsLDWI9NhlG2dvshld17qDvXbkcH2PauhooAx9T06+vPD0mnWd7b2c0sBhM/2YsqgqQSibxjHbJOPeqHgXwvdeD/AA5b6JJqMN7b227ymW1MLjcxY7vnYHlu2K6eigAooooAKKKD0oAhvLmGysp7q5lWKCGNpJJGOAiqMkn6AZriPhdbTXenal4rvIil34gujdKGHzJbr8sKn2C8j/eqH4g3EviDUbDwHp7sr6hifUpUPMFmp5+hcjaPXkd67y2ghtLeK3t41ihiQIkaDCqoGAB6AAUASTBzC4iZVkI+VmXIB7ZGRn8xXB6d4J8Q6Z4l1jXYvEmnSXWqlPN83SXIjVBhVTE4OAMdc9BXf0UAcfongSOz8St4m1fU59X1ryzFFNJGI44EPGI0HTgkZyTz7knsKKKACiiigAooooAKKKKACiiigAooooAKKKKAEPSuC+H4W/8AFPjjWwD+/wBVFkCe4t0CZHtkmuw1nUY9H0S/1OYZjtLd52HqFUnH6Vzfws0+Ww+HWkm5Yvc3aNezOerNKxkyffDD8qAOyooooAKDRRQBw3xVs55PBp1W0TdeaJcxanCM4/1bZb/xwtVXxZY3Nwum+PvCqm41C2twzQIP+P8As2AYx8fxAHcvXnPXiu/uIIrq2lt50WSGVCjo3RlIwQfwrhfhdcS2elaj4UvHZrzw/dtagv8AeeBiXhc+xXp7LQB1Ph/XrDxLo9tq2mTebbXC5GeCh7qR2YHOR+vStWvNtZ0rU/A2t3Pijw3bvdaVdMZNX0pG6t3nhHZxzuHGf1XttE1vTvEWmwanpV0lxaSjKsv6gjqCOhBoA06KKKACiiigAooooAKKKKACiig9KAEPSsDxd4ptPCehPf3MbTzORFa2sfL3MzfdjUe/48Z61L4m8T6Z4U0p7/VJiqk7IokGZJ3PREXqT/Lqa5nwx4d1PW9bTxl4uiEd4EK6bph5WwiPOW9ZD3Pbp6BQDR8CeGrvSLa61bW3WbxDqzie+kHSMY+WJf8AZQcfXPtXYU0dRTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoPSig9KAOB+K00t14fsfDdszC416+isgUPKRZDSP8AQKuD7NXdQxJDGkUahY0UKqjooHAArgrPPiX4xXV5jdYeGrX7LCexuphmQg+yYUj1Ir0GgAooooAKKKKAEb7przvxQT4T+IWj+KF+TTtSUaVqTDOEYnMEhA44OVJPQcd69FrL8SaFa+JfDl/o14P3F3EYy2MlD1Vh7ggEe4oA0TwCAM8dK4PV/BWoaTq0/iDwPcRWd/Md15p0xP2W+PqR/A/+0MZJ5xkk3Phzr11quhyadqxI1zR5DZXyk5LMvCye4ZRnPcg12ZoA4/w78QNN1i9OlahDLo+ux8Sade/KxPrG3Rx3BHbnGK68VjeIvC2ieKbL7LrOnRXSL9wtwyH/AGWHIrlR4f8AHHhVf+Kf1uPXbBOlhrJxMq/7M68k9AA3AFAHolFefL8UI9MBTxX4d1jQXX787QG4tgfQSxg5/Kt2w8feEtTCfZfEemOX+6jXKo5/4CxB/SgDpKKrx3ltMm+O4hdD3VwQf1pJb60gXdNdQRr6vIBQBZorltS+I3g7S0drrxLpuV+8kMwmb/vlMn9KyG+I91qxMfhTwpq+q7uVup0+yWxHqJJP5YFAHft0riNa+IUEOoPonhm0bXtdAwYbdv3NuemZpei8g8ZzxjjIqofCHirxRz4u8QC1sm+9peibokf2eVvmYEcEDj0xXYaJoOleHbBLHSLGCztl/giXqfUk8k+5yaAOa8PeB5l1RfEXiq7XVfEGMRnH+j2Y67YV/wDZjyfbnPbDg06igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsTxZ4gg8LeF7/WbgBhbRlkQ/wDLRzwi/ixA/GtpvumvOdVP/Ca/Eu00aM79J8Nst7fntJdMD5Uf/ARlvzB5FAG58PNAn8O+EreC9JbUrpmvL+RvvPPIctk9yOFz7V1dNHXpTqACiiigAooooAKRvunAyfSlooA868ZxyeEPEdt46s42NmVW11uJF+/Dn5Zsd2QkD1I46V6BbzR3EMc0MiyRSKHR1OQwIyCD3GO9FzBFdWstvPEksMqFJI3GVZSMEEdxivOvCd1N4I8Rf8INqkrvYTbpdCu5Od0fVoGP95O3qPTgUAelUU0dRTqAA8isTUPCPhvVHMl/oOmXEh6vLaIzfnjP61t0UAcXJ8J/Asjlz4bswT12llH5BqWL4U+BoXDp4as8+j7mH6k12dFAGTp/hjQdJfdp2i6dZv8A3oLZIyfxAzWrS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLUN5dQWVnNdXUqw28KGSSR2wFUDJJP0oA5/xv4nPhfw+89vF9o1O5cW2n2wGTNcPwox3A6n2FL4H8Mf8It4ejtJpfP1Cd2ub+4zkzTvyzH6dB7D1zXO+EYLjxp4lPjnUonjsIVeDQrZ+NsZ4edh2Z+3oPXgn0YdaAFooooAKKKKACiiigAooooAD0rn/ABb4WtfFmhmxnkeC4iYTWl1F9+3mXlXU/wCeK6CkbO0460AcZ4H8U3epPcaB4gRLfxJpvFxGOFuI+izx+qnvjofTIFdpXI+MfCD6+ttqWl3C2HiKwO+yvewP/PN/WM85GD1zjkgu8G+MR4i+0afqNqdO8Q2HyX1g55X/AG067kPGDz168gkA6yiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQnAzQAN0NeY6hK3xR159Fs5CfCWmzD+0blDxfTA7hChHVF4JPfj2Jk13WrzxzrMvhXwvdtFp0RxrOrQ4IRf8AnjE3QuehPb867vR9IstC0y30zTbdLeztk2Rov8z6knknqTyetAFqGJIVSONFSNFCqqjAUDgAD2FTUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjHCk+lcl4t8G/2+9vqum3J07xFYg/Y76Mf+Q5B/Eh9D0zx1IPXUjEgZAzQBxvhLxq2qXj6Fr1sNM8SQL+8tWPyXCj/lrCf4lOCcDpz1612dc74o8IaZ4tskivQ8VxC2+2vIG2zQP2ZG7fTpXM2vi/V/Bl1HpXjoK9o7bLXX4UIil9FmUf6t/fofwJIB6RRUUM0U8SSQypJG43I6EEMPUEcYqWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikPQ1keIfEmk+FtNN/rF7HbQg4QE5aQ/wB1R1Y/T8eKANWV1jiZ3YKijLMTgAdzntXmt9rep/Ee6m0bwvNJaeHkYx3+tqMGbsYrf19C/Qcn03KNM1/4kuJtehuNE8LBgY9L3bLm9A6GYj7if7A5/JTXodlZwafaxWlpBHBbQqFjijUKqL2AAoAraJomneH9Ng03S7VLa0hXCog6+5PcnuTye9aVFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVBeWsF7Zy2t1BFPBKu14pVDK49CDwanooA85fwhrvgyVrrwPci404ndJoF7IfLPr5Eh5jb2PGSSegFa/h34g6Trl4dOull0nWk/1mm36+XJn/Zzw478c45IFdeaxPEPhXRPFNp9m1nTorpV+4zDDof9lhyP85oA2hS153/YPjfwkgPh/V18Qaegx/Z+rnbMo/2JxjJ6cMMYqzafFHR4rhLLxFbXnhy/PHl6lGVjc99koyrL75H0oA7uioba4huoUnt5kmicZWSNwysPUEcEVNQAUUUUAFFFFABRRRQAUUUUAFFIelZes+IdI8P24n1bU7WyQ5x50oBb6A8t9BQBq1Fc3ENpbSXFzNHDBGpZ5JGCqgHUkngCuBPxA1bxD+78FeG7m9jbpqeoA21qB/eGfnkHsMGlt/hzca1cJeeOdYk1mRTuTT4gYrKE+yDl8ep7cEGgBLr4g3euzy6d4D08apOp2S6lOCllbnvlushHHCjvnJ6Vd0H4f29rqS654hvJNd17GRc3A/dwf7MMfRAPXr16ZIrr7W2gs7eO3tYI4IIxhI4lCqo9ABwKnoAaOop1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVWvLK01C2e2vbaG5gfhopkDqR7g8GrNFAHCXHwr0SG4a60G71Lw9cu25jplwUjc9t0bZXHsAKYLH4maPtFvq+i6/ADlhe27WsxHYAx5XPuRXfUUAcD/AMJ34i05Sdb+H2spg43aZJHegj1wpBFKfi94RtsLqU2oaXITt8u90+ZGz07KR+td7SNjacjI9KAOUt/iX4KulDR+J9NUEZ/eThP0bGKtDx54PYA/8JVon46hCP8A2atK40bSrobrjTLOYjn95AjfzFZ7+CPCUhMj+F9FZmOSTYREn8dtADH8feDkPPirRfwvoz/Jqzrv4s+BLIEyeJLV/wDriHl/9ABrZg8HeGLbPkeHdIi3dfLsYlz+S1pQWVpaMBb2sMPGP3cYX+QoA4tvirpE6qdJ0fxFq4PRrLTJCv5vtxSN4k8fai23SvBUVihHy3GrXygD6xx5YV31FAHn58KeNtaUjXvGZsYXGGttDtxFg+0z5etHR/hr4W0a5+2Jpq3l+cFru+c3ErEfxZfgH3AFdfRQAgpaKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9k='] Multimodal Competition True Theorem proof Combinatorics Math English 55 "A king strapped for cash is forced to sell off his kingdom $U=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$. He sells the two circular plots $C$ and $C^{\prime}$ centered at $\left( \pm \frac{1}{2}, 0\right)$ with radius $\frac{1}{2}$. The retained parts of the kingdom form two regions, each bordered by three arcs of circles; in what follows, we will call such regions curvilinear triangles, or $c$-triangles ( $\mathrm{c} \triangle$ ) for short. This sad day marks day 0 of a new fiscal era. Unfortunately, these drastic measures are not enough, and so each day thereafter, court geometers mark off the largest possible circle contained in each c-triangle in the remaining property. This circle is tangent to all three arcs of the c-triangle, and will be referred to as the incircle of the c-triangle. At the end of the day, all incircles demarcated that day are sold off, and the following day, the remaining c-triangles are partitioned in the same manner. Some notation: when discussing mutually tangent circles (or arcs), it is convenient to refer to the curvature of a circle rather than its radius. We define curvature as follows. Suppose that circle $A$ of radius $r_{a}$ is externally tangent to circle $B$ of radius $r_{b}$. Then the curvatures of the circles are simply the reciprocals of their radii, $\frac{1}{r_{a}}$ and $\frac{1}{r_{b}}$. If circle $A$ is internally tangent to circle $B$, however, as in the right diagram below, the curvature of circle $A$ is still $\frac{1}{r_{a}}$, while the curvature of circle $B$ is $-\frac{1}{r_{b}}$, the opposite of the reciprocal of its radius. Circle $A$ has curvature 2; circle $B$ has curvature 1 . Circle $A$ has curvature 2; circle $B$ has curvature -1 . Using these conventions allows us to express a beautiful theorem of Descartes: when four circles $A, B, C, D$ are pairwise tangent, with respective curvatures $a, b, c, d$, then $$ (a+b+c+d)^{2}=2\left(a^{2}+b^{2}+c^{2}+d^{2}\right), $$ where (as before) $a$ is taken to be negative if $B, C, D$ are internally tangent to $A$, and correspondingly for $b, c$, or $d$. Descartes' Circle Formula can be extended by interpreting the coordinates of points on the plane as complex numbers in the usual way: the point $(x, y)$ represents the complex number $x+y i$. On the complex plane, let $z_{A}, z_{B}, z_{C}, z_{D}$ be the centers of circles $A, B, C, D$ respectively; as before, $a, b, c, d$ are the curvatures of their respective circles. Then Descartes' Extended Circle Formula states $$ \left(a \cdot z_{A}+b \cdot z_{B}+c \cdot z_{C}+d \cdot z_{D}\right)^{2}=2\left(a^{2} z_{A}^{2}+b^{2} z_{B}^{2}+c^{2} z_{C}^{2}+d^{2} z_{D}^{2}\right) . $$ Given a c-triangle $T$, let $a, b$, and $c$ be the curvatures of the three $\operatorname{arcs}$ bounding $T$, with $a \leq b \leq c$, and let $d$ be the curvature of the incircle of $T$. Define the circle configuration associated with $T$ to be $\mathcal{C}(T)=(a, b, c, d)$. Define the c-triangle $T$ to be proper if $c \leq d$. For example, circles of curvatures $-1,2$, and 3 determine two c-triangles. The incircle of one has curvature 6 , so it is proper; the incircle of the other has curvature 2 , so it is not proper. Let $P$ and $Q$ be two c-triangles, with associated configurations $\mathcal{C}(P)=(a, b, c, d)$ and $\mathcal{C}(Q)=$ $(w, x, y, z)$. We say that $P$ dominates $Q$ if $a \leq w, b \leq x, c \leq y$, and $d \leq z$. (The term ""dominates"" refers to the fact that the radii of the arcs defining $Q$ cannot be larger than the radii of the arcs defining $P$.) Removing the incircle from $T$ gives three c-triangles, $T^{(1)}, T^{(2)}, T^{(3)}$, each bounded by the incircle of $T$ and two of the arcs that bound $T$. These triangles have associated configurations $$ \begin{aligned} \mathcal{C}\left(T^{(1)}\right) & =\left(b, c, d, a^{\prime}\right), \\ \mathcal{C}\left(T^{(2)}\right) & =\left(a, c, d, b^{\prime}\right), \\ \mathcal{C}\left(T^{(3)}\right) & =\left(a, b, d, c^{\prime}\right), \end{aligned} $$ Let $P$ and $Q$ be two proper c-triangles such that $P$ dominates $Q$. Let $\mathcal{C}(P)=(a, b, c, d)$ and $\mathcal{C}(Q)=(w, x, y, z)$. Prove that $P^{(3)}$ dominates $Q^{(3)}$." ['Because $\\mathcal{C}\\left(P^{(3)}\\right)=\\left(a, b, d, c^{\\prime}\\right)$ and $\\mathcal{C}\\left(Q^{(3)}\\right)=\\left(w, x, z, y^{\\prime}\\right)$, it suffices to show that $c^{\\prime} \\leq y^{\\prime}$. If $a \\geq 0$, but if $a<0$, then there is more to be done.\n\nArguing as in 9b, $c, c^{\\prime}=a+b+d \\pm 2 \\sqrt{a b+a d+b d}$. If $a<0$, then the other three circles are internally tangent to the circle of curvature $a$, so this circle has the largest radius. In particular, $\\frac{1}{|a|}>\\frac{1}{b}$. Thus $b>|a|=-a$, which shows that $a+b>0$. Therefore $c$ must get the minus sign, and $c^{\\prime}$ gets the plus sign. The same argument applies to $y$ and $y^{\\prime}$.\n\nWhen $a<0$, it is also worth considering whether the square roots are defined (and real). In fact, they are. Consider the diameters of the circles with curvatures $b$ and $d$ along the line through the centers of these circles. These two diameters form a single segment inside the circle with curvature $a$, so the sum of the diameters is at most the diameter of that circle: $\\frac{2}{b}+\\frac{2}{d} \\leq \\frac{2}{|a|}$. It follows that $-a d-a b=|a| d+|a| b \\leq b d$, or $a b+a d+b d \\geq 0$. This is the argument of the square root in the expressions for $c$ and $c^{\\prime}$. An analogous argument shows that the radicands are nonnegative in the expressions for $b$ and $b^{\\prime}$.\n\nThe foregoing shows that\n\n$$\nc^{\\prime}=a+b+d+2 \\sqrt{a b+a d+b d}\n$$\n\nand, by an analogous argument for $w<0$,\n\n$$\ny^{\\prime}=w+x+z+2 \\sqrt{w x+w z+x z} .\n$$\n\nIt remains to prove that $c^{\\prime} \\leq y^{\\prime}$. Note that only $a$ and $w$ may be negative; $b, c, d, x, y$, and $z$ are all positive. There are three cases.\n\n\n\n(i) If $0 \\leq a \\leq w$, then $a b \\leq w x, a d \\leq w z$, and $b d \\leq x z$, so $c^{\\prime} \\leq y^{\\prime}$.\n\n(ii) If $a<0 \\leq w$, then $a b+a d+b d \\leq b d$, and $b d \\leq x z \\leq w x+w z+x z$, so $c^{\\prime} \\leq y^{\\prime}$. (As noted above, both radicands are nonnegative.)\n\n(iii) If $a \\leq w<0$, then it has already been established that $a+b$ is positive. Analogously, $a+d, w+x$, and $w+z$ are positive. Furthermore, $a^{2} \\geq w^{2}$. Thus $(a+b)(a+d)-a^{2} \\leq$ $(w+x)(w+z)-w^{2}$, which establishes that $a b+a d+b d \\leq w x+w z+x z$, so $c^{\\prime} \\leq y^{\\prime}$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIATABxwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ8CgBaKztU13StFhEuqanZ2SHobiZY930yefwrlH+LXh+dnTRbbVtekQ4ZdMsJJNp/3iAP1oA7yiuD/wCEr8b3rgaf4BeGJhkT6jqMcWPrGoZqao+K1wTvfwnZxkcBVnlcdOvIHrQB31FcN/YnxFlO5/GWmQHpti0gMPzZ6aPDvxDDs/8AwntqQQMIdFjwv/j2aAO7orhv7I+I8GfL8V6Rc9x5+llB9PlemLP8U7VyZrXwpfxjosEs8Ln/AL6BAoA7yiuB/wCE38VWAZtZ+HupLGvRtNuYrwsPZQQamtfix4UluEtr27n0m6brDqds9uR9SRtH50AdxRVazv7TUbdbiyuoLmBxlZYZFdT+IOKsA84PWgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooPtTXcKpYnAHc9qAFJwKhuLqG0t3uLmWOGGMbpJJGCqo9STgAVxGofEV7+9fSvBennXr9Tte6DbLO3Pq8vRj0O1evOD2qO0+HEuszx33jnVZNbuVYOlkmYrOE/wCygwWxyMt1BORQBJcfE6G+uHs/COk3niS6Q7Glth5dqjejTN8o45GM5qM+HvHfiMf8T3xNHotq3Wz0OPEhXtmd+Q3rtGK7y2tbezt47e2gjghjXakcShVQegA4FS4HpQBx+l/DDwjp0pnfSY7+7bBe51BjcyO3qS5IB+gFdekaRoqIiqqjCqowB9KdRQAhAPUUYFLRQAYowKKKAEwD2pcUUUAJgVDd2drewNBd20M8LcNHKgZT+BqeigDiLz4VeGnuGu9KjutDvSAPtGk3DQED/dHyY/Cqn2b4jeGsNa3lj4qshn9zcj7JdY7AOMofq3NehYpNoNAHF6X8TdEurwadqy3Og6nwPsuqR+Vu7fK/3WGeBzk+ldmDk1R1fRdM12xaz1WxgvIG/gmQNj3BPQ+45riW8G+IfCDGfwPqhmsxnOiapI0kWPSKQ/Mh9Acgk8mgD0aiuQ8P/ECw1a/Gj6lbTaNroGW0684ZveNuki8HGOeDxXWq2SeelADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApCcUprkfFnjVNAlt9L0+1bU/EF3/x7afCfmA/56Of4EGDyf5AkAGl4k8VaV4V043uqXIRSdsUKDdLM/ZUXqxP5euK5BND8R/ET994nMui+HnwYtGgciacf9PD9h/sDHXkArzreGfBD2+pf8JD4mul1bxC4+WUr+5tAf4IVPQDpu6n25z2mBnOOaAKmm6ZY6RYx2WnWkNraxjCxQqFUfh3PvVvFLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJtU54HPX3paKAMbxH4W0bxTp/2PV7GO4Qf6tzkSRH1Rxyp+n45FcZ/aPiT4bYGqyXHiHwwM4v1G67sk/6agf6xMfxDkYOccCvTKawBGMDB4oAq6ZqdnrFhDf6fdxXVpMu6OWI5Df8A1+xH8quV5zqfhTVPCOoT694GRSkjeZfaExxDcju0f/POTH4Hj0weo8L+LNO8WaZ9ssHZWjbZcW8o2yW8g6o47Ec+1AG9RSDOaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPShjhcj+dct408Wnw9ZQ2lhb/bdd1BvJ0+yx99/7zeiLnJPHHcdQAVvGHjC50y6tdC0KCK+8RX5Hk27Z2QJ3llxyEH69ulWvB3g6Hw5FNd3c51DXL0iS+1GUZeVuOF/uoMYCjHQU3wX4PHhyCe7v5/t2u3zebfX7Dl2/ur6IOgHH07DqwMUAJgZzS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADSOK4bxZ4QvF1UeK/CZjt/EMI/fQk4i1CMY/dyf7RAwG9hz0I7sjPWkI4oA57wj4tsvFmltc2yvBdQN5V3ZyjEltIOqsODjg4Pf8CB0I61wXjHw5f2Wqr4z8LR51i3QC7tBwuoQDqh4++APlPtjngV03hnxDYeKNEg1XTZN0EowVbho2HVGHZgf84IJANiiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopCaAFopOc0ZP+RQAtFIKWgAooooAKKKKACiiigApDxS0jHAzQBl+INdsvDeh3Wr6lJstbZN7cZZj2Ue5JAFcz4G0C9uL2bxl4kixrmoJiC3Y5FhbdVjX/AGjnLH1OMA5znon/AAsTx80p+fwz4cnwg/hvL0dT7qn6npkE49JXr+Hf/P1oAUAA5xz0zS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANZeOBz6mvNvEEUvw68SyeLLFCdB1GRU1m2UE+S5OFuVA9zhh3z6nI9KIBGCM1Dd21vdWk1tcxJJbzIySxuPldSDkH2IzQA6CZLiJJonWSJ1DI6kEMDyCD3BqWvOfBdxceEvEVx4Cv5JHtwpudEuJTky2+TuiJ7sh/TsBivRQc0ALRRRQAUUUUAFFFFABRRRQAUh4FDZ4x61zHijxxpvhlorMrLfavcD/RtNtF3zSe5H8K8H5j6HGcYoA6YtjJrkNU+JvhzT7s2FpNPrGpD/lz0qI3Mnv8Ad+UY4zkislfCXiPxkfO8aag1jp78roemybVx1xNKDlz6gHHAI9K7bSND0rQbQWmlafb2cA6pDGFz7n1PuaAOQGs/EjWudN8O6XosOeJNWuTLIy+oSL7p9iaePC3jq7lL33xAMKMP9TY6XEgX6OxLV3uBRigDhh8PdQb5pfHvigyHqUuI0X8tlNbwR4igjIsPiDrEbD7puoIbgfkVH867ujFAHBfY/idpYHkavoOtoB832y1e2kb6eWSufrTB8SLzSBjxf4V1PR0HLXkAF5bKPVnj5XPpg16BikIB6igDP0nXdM12z+16VqFvewdC8Dhtp9CByD7HmtAEnqK4vWfhro95eHU9HeXQNYwdt5p3yBj1+dB8rgnBI4JwOaz4fGOt+EJ47Lx3bxm0ZgkOvWaEwtnp5yAZjY+uNuenAJoA9FoqK3niuYUmgkSSKRQyOhDAg8ggjgipaACiiigBDXHfELXrzTtHt9K0dv8AieazMLOyA6x5+/L7BFyc9jiuxbpXnnhHb4u8cat4vkUNZWedM0kkcFVOZZl/3mOAR2yD3oA63w1oFl4Z8P2ejWC/6PaxhNx6u3UsfcnJ/GtfFGMUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQQD1oooA5H4g+HLjWtCjvNKPl65pUgvNOkAyTIvJQ+oYcY6ZxngVqeE/EVt4r8N2Ws2oCpcxgtHnJjccMh9wQR+RrZPSvPNKx4P+KN7o2CmmeI1a+s/7qXS/65B/vDDfyoA9EopBS0AFFFFABRRRQAUjHC5oPArjfG/ie+042ug6CqzeItUytspGVtk/infrhV7ZByR3wRQBB4o8XX8uqnwr4Thju9edc3E7jMOnxn+OT1bHRe/XHQHS8JeC7Dwwks/myX+r3Q3XmpXBzLOx64P8K+ijsBkkjNT+EPClp4T0n7JDJJcXUredeXkpzJczH7zsTk/QZ49+p6EADtQAmBnNLRRQAUUUUAFFFFABRRRQAYzUN1bw3NtJBcRRzQSKVkjlUMrqRggg8EVNQQD1oA8vn03VPhfO+o6HHcaj4VJLXmlA75bIdTJASeV7lSfx5yPQtJ1ax1zTYNS026jubO4TfHIh6jp+BByCDyCCO1XGAwa8x1CKT4W+IG1izD/8IfqEwGo2wyRYTMcCZB2QkgEe/wDugAHqFIelMilWZFkR1ZHAZWU5BHqDTz0oA5H4k63caL4NuEsedT1CRbCxAOCZpTtBHuBkj3Ara8N6Hb+G/Dtho1qP3VpCI92OXPVmPuSST7muT1If8JF8YdMsfvWnh60a9mxyDcS/JGpHYhQXB969AFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVxfxO0qe78KHVNPX/iaaLMuo2h55aPll46gruGO/FdpTXVWUqwBU8EHofagClouqQa3o1lqlqcwXcCTJk8gMM4PuOh96v15/8MD/AGSdf8IOTnRL5vs4OeLab95Fyep+9n8K9AoAKKKKACiikPTigChrmr2mg6Jd6rfSeXbWsZkc9z6Ae5OAB3JArlvh7o13Il14u1uIDWtaAkKH/l2t+scI9MDBPcnryKqeMVPivxxong771jAv9q6oAOHRW2xR/RnySD2wa9CU5JoAUADoKWiigAooooAKKKKACiiigBGOBWdHrulza22jRX8EmopEZntkYM6ICBlgPu/eHB55rSIzXnYhih/aDURRqgbwyWIUYyftPWgD0GSRYo2d2VUUEsWOAAO+a5/UvHPh3RtNs7/U9UjtIbyNZYBKjB3UgHOzG7oeeOKk8Ws02kppUZYS6rMtkNpwQjZMpB9REsh+oFXk0ewjvp777PG1xKixb3QHbGo4RfRc5OB3JoAfpeq2Gt2Ed7p13Dd2smSssTZGQensR6Hmpr21t72ymtLqJZbedGjljYZDKRggj6Vw/wAMNJSwPiS7slEWkXuqSPYRKMJsX5S6jspYHHqFFd+RkYoA888DXU/hnXL3wFqEzSLap9p0ieQ5MtoT9zPcxnj6ZwABXoX3hzx/SuG+J+nzx6RaeKdOTOp+HpvtaAcGSHpNHn0Kcn/drT8R+IYIfhxqXiGymHlNprXFtIeMlkzH+JJWgDI+GAGqDxD4qYKx1nU5DDIO9vF+7jH4Yau+AArn/Aulf2J4H0XTmQJJDZx+Yo7SEbn/APHia6GgAooooAKKKKACg0UUAcp8RNU1nRvBmo6los9tDNbRGRmmiLnA67eQAeepyOOlanha8n1Dwno97cyeZPcWME0jkAbmaNSTgccknpWR8UBj4Y+Iscf6G3StLwZ/yI3h8/8AUNt//RS0AblFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhGRS0UAef6kf7E+NGjXYLCDXdPlsXA6ebERIrH3KkqK78GuD+LG2y8P6Zr5JUaLq1teOR1Me/Yy/iH/Su8FAC0UUUAFIelLWF401F9J8E63fxuElgspXjY9n2Hb+uKAOb+GYGsT+IfF74Y6vqDJbOB1tocxx/To2a9AAA6Vz/gXTf7H8DaHYFAjxWUW8D++VBf/wAeJroaACiiigAooooAKKKKACiiigBCcV527Tn45R3/ANg1E2X9hmyN19hm8vzvP37d23GMd84969FpMCgDBMUl74zEsiMLbTbXEbEHDTSnkj3VEA4/56msDxh4rnt9S/sRNB8R3NkVzd3OnafI4YH/AJZI/A5H3mB46Dkkr3u0Y6UbQO1AHN+FfEP9ttNDb+HtU0iztI0RBqFr9n3E9FjTn5QByeMZGBXS0gABzS0ARzRRzwPDMgeORSjqwyGB4INeFXcjR/DS+8BzyN50HiKLR4t7ZZoXmEsbH6qCB7LXvJrw/wAWWPlfH/RrNFPk6lPaai+Bx5kCzIPxAGaAPblAHA6CnUgpaACiiigAooooAKRjtGe1LRQBzPjrStU1/wAJ6ho+mLZ+beRGIvdTNGEBI5wEbP6Vc8KWWoaZ4a07TdSS2E9nbRW5a3lZ1fYoXd8yKRnHTmtnApaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOa+IVkNQ+HfiG3K7ibCV1XHVlUsv6gVd8KX51Twjo1+33rmyhlbnoSgJH51o3kC3VnPbsMiWNkP4giuP+EN19s+FegynOVheLn0SRkH8qAO3ooooAK4T4xtJ/wAKt1eOFiJJmgiBH+1MgP6Zru64T4xSCH4Z6hO4ykU9q7fQXEdAHcRoEQKowAAMelPpB1NLQAUUUUAFFFFABSMcUtIxAHJAoA4PxX8W/DPhDWRpV9LczXYK+atvEH8kMAQWyR2IOBzjtXX6TqtnrWmW2pafOJ7S5jEkUgBG4fQ8j6HpXhfxI+DHiDXfGl1rGiNbTWt/IrOksxRoG2gEnI5XjIxk84xxXX+H/gX4RtdDtINb00X2pKn+kXC3Uyq7k54CsBgdBwDgc80AepZozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHf5ozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHf5ozXAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlAHfMcCvEPG/jvw1Z/GXw3cyXjldGNzBfyRxlhGzIVVfUkEnOM4+uRXYH4J/DwYx4e7/8AP7cf/HK8Y8WfB6/sfiBZaJplxara6vJO+nmR3AiRF3srnBPAOBjOe+M0AfUNrcxXdvFcQSLJDLGskbqchlYZB+mKmzXm9h8DvA0Njbw3mj/aZ44lWWf7VOvmOAAWwHAGTk4A71Z/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3+aM1wH/Ckvh5/wBC9/5O3H/xyj/hSXw8/wChe/8AJ24/+OUAd/mjNcB/wpL4ef8AQvf+Ttx/8co/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3+aM1wH/Ckvh5/wBC9/5O3H/xyj/hSXw8/wChe/8AJ24/+OUAd/mjNcB/wpL4ef8AQvf+Ttx/8co/4Ul8PP8AoXv/ACduP/jlAHf5ozXAf8KS+Hn/AEL3/k7cf/HKP+FJfDz/AKF7/wAnbj/45QB3k0yW8LzSuqRopZmY4CgDJJNefaP8avCOteI00a2nulkldY4J5YNsUznoB1YZJx8wH+KXnwP8BS2U8dtopt5njZY5hdzMY2I4bBfBwecH0rzHw38CPE1n4ttJtSls0060njmeaGckyhTnCDbnPHcDrQB9JAnOPanUxcDp+Vcm/j6H/hJ7nw7DoerzajbxCaRI1hIEZx827zcdxwefagDr6KwvD/izTPEc13b2jSxXlm2y6s7mMxywk9Mj09xkVu0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIa4X4QFB8PoIkXZ5V3dIVAxj9+5x+RFd0elcN8JS0ngk3DgAz6hdyYHbMzf4UAd1RRRQAVyfxNsRqHw08QwEZ22bygYzynzj9VrrKiuYI7q2lt5V3RyoUdfUEYNAFLQNQGreHdN1FTkXVrFMP+BKD/WtKuE+E1xIvg5tGuH33eiXc2nTHGM7HO0j22la7ugAooooAKKKKACqeqala6RplxqF7MIba3QySOewH8z2A75xVpzhe341534pvk17R9b1MyKdG0i1uGthni6uURhvHqiHKj1bJ/hUkA2fh74mm8Y+HJNalhWGGW6lW1iHVIlIVc+/Bz9eOK63AFcJ8G7c23wp0NSOWjkkP/ApXP8AIiu7oAKKKKACiiigAooooAQ4Iwa8f8XagV/aC8IRAKYbaAqzZ6PMJQAfwUGvYG6V4Jqi/wBo6nqHjYsyQw+LrGFGzwYLf90WB9GZz+VAHvSnPI7jNOpB1paACiiigAooooAKKKKACiiigAooooAKKKKACiiigApMClpDntQAHgDAzXivhTxVDa6p4y8b3Ol6reQXV2Yrea0tfMUW8IKg5yMZGCe3HWu7+JHiq18MeCtTna6iS+e3aO1iLgSM7fKCq9TjOfwrm/DHizwt4P8AhxpenW+o22pX0dqD9hsXE8ssz/My7VyR8xIy2KALnw60ebUPEOsePrqa23a0qpb29tKJFiiXA+ZhwX+UA46EH1r0ivPfgz4Z1Lwx4FEGqIYrm6uXuvIP/LFWCgL7H5c4969CoAKKKKACiiigAooooAKKKKACiiigAooooAbIwVCxOAOSa4X4NrKPhZo8kw/eymeVvfdM5B49sV0fi29OneDdbvR96CwnkX6iNiP1qp8P7T7D8PvD0BXaw0+FmHoxUMf1JoA6SiiigApD0paMZ60AefB/+EX+MDBmK6f4otgVJ6LdwDGPQbkP1Jrv1JNcz498NSeJvC8tvZuItTtpFu7Cb/nnOnKn8eR+Oan8F+JYvFfhyDUhGYboEw3kDfegnXh0IPIweR7EUAdDRRRQAUhpaCM0AcH4h8Y6Zf67a+DbLWYI72+YpdSxTANBGPvRqwPEr/dUdRyeoGcD4paP4L8O+AdT8rSNDs9Rkg2WoFvEkxJYDK8bjgZOfY161tGCOxowPSgDkfhjdWFx8PNDjsbqGcw2USzCNwxR9o3BvQ5yPwrr6QADoKWgAooooAKKKKACkNLSN93pQBzPj7xC/hrwde3sALXzgW9nGo+Z55PlQAdyM7segNc14g8HLpnwGu/D68y2en+c7Lk7pkIlYj6sD+dSRN/wnfxLEyHfoXheQhT/AA3F8Rzj1EYP4H1Br0KaKO4gkhlUNFIhV1PdSMYoAq6FqKaxoGn6nGAFu7aOcD03KGx+taFcL8JZ5F8Ff2RcPvutFvJ9OmOMZKOSuPbay13VABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJgUYFLRQAgAHSloooAKKKKACiiigAooooAKKKKACiiigAoNFIaAOH+Lc0h+H11p9u+251O4gsYQf4mkkUEf98hq7S3jSGCOKMYjRAqj0AFcL4v8A+Jv8RfBuhAB4reWXVrkd0ES7Ym+hdiK74d6AFooooAKKKKAEbpXm/iKKbwD4ok8Y2MTvot+Vj1u3QZ8pui3KgenRgOvXGTkek9ajmhingeGWNZIpAVdGAIYHggg9RQAy0uob22iuLeVJYZUEkciHIZTyCPYip68tX7Z8Jb2Tak134JuZdwxlpNJZj6dWhySfUc9/v+l2l3BfWsV1azJNbzIHjljYMrKehBHWgCeiiigAooooAKKKKACiiigAoopD064oAGOBmuG8ceJL4TQeEvDj58Q6kv8ArM8WUHRpmI6eg75xjJwDY8W+NW0q4i0PRLYan4lu1PkWan5YRj/WSn+FBwcHBPt1FjwZ4QXw5bT3V9P9u1y+bzb+9Yfff+6vog6AYHTp0AANPwzoFl4Y0C00ewUi3tk27mHzSN1Z29yST/8AWrWwB0owM0poA8/0onQfjBrOntkW2u2kd/b8YXzYv3cij1YjaxrvwcmuB+KFu+n2Wl+L7aNnuNAu1mkCjLPbv8kyj6gg57YruraaO5gjnhdXikQOjqchgecj2NAEtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLWB418QL4X8H6lq5GZIYsQrjO+VvlQY7/MR+GaAOe8Hn+3fiJ4s8RkBoLZ00e0focR/NKPpvI5r0DGK5vwHoLeG/BemabLk3SxeZcsTkmVzufJ7/ADEj6AV0lABRRRQAUUUUAFIQD1FLRQBHLFHLE0ciK6MNrKwyCD2IPUV53N4W1zwPdy3/AIIC3WmyOXuNAnk2rnqTA5+4fY8fkBXpFIVB6igDmfDPjvRvFO+C2le21KHifT7tPKniPoVPX6iulUk+lc/4m8E6F4qVH1G0xdx8Q3sLGOeLrja454Jzg5Ge1c8mmfEHwuwGmala+JtPTkW+pHybsL/dWYfK31YUAeh0VwP/AAtK207K+JtA1rQygHmTTWpmgB9pI8g/XFa1n8RfB19Grw+JdLG7oJblYifwbBoA6iiqEWt6XOm+HU7KRfVJ1I/MGqlz4u8N2X/H14g0qDBxiS8jXn8TQBtUGuHufi14PiuPs1pqMmp3eMrb6dbvOz/QqNv61WbxP4519dugeE10uFvu3muy7CP+2KfNn0ycUAdxd3tvp9rJdXlxFb20Yy8szhFQepJ6VwE3jLWfG0r2HgW38uyBKT6/eREQp2PkoRmRuvXgcZ4Oas2fw0i1C6iv/GGr3PiK5Q7kgmAjtIz/ALMK/KfTnIPpXdxQxQxJFFGqRoAqIgwFA6ADtQBgeFPCGm+FraYW3mXN9cNvvL+5bfPcP1y7H68Dp+JyejpNoBzjmloAKKKKAK97aQX1jPZ3EayQTxtFIjDIZWBBH5GuL+Gd3cWdnf8AhDUHZr3w/N9nVm6y2zZaF/8Avnj22813Z6V5548STwvr+m+O7ZWMNtiy1ZFGd1q7cPj1RsHjk9M4oA9DBzS1HDKk0aSxsrxuu5WU5BB6EGpKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARuleeeISfFfxK0jw6nzWGi7dU1HHQy8iCPjv1YjoQR6V13iXXrbwz4dvdZvD+5tYy5Xu7dFUe5YgfjWJ8O9CutM0SXUtXGdc1eU3t8SMFGP3YxnkBBxjsc0Adeue/WnUUUAFFFFABRRRQAUUUUAFFFFABSAAdBilooATA9Kyr7wt4e1Ny9/oWmXTnktNaRufzIrWooA5Z/hr4KdizeGNMyeuLcAfkKmg8AeD7bb5fhfSAV6FrONiPxIro6KAIbe1t7SIRW0EcMY6JGgUD8BU2BRRQAgAHSloooAKKKKACiiigAqve2tve2U1ncxLLBOjRSRtyHVhgg/UVYo60Aed+A76fw5ql14A1SdmlsVM+lTyHJuLIngf7yHKkccDgYXNehg9M56d65Px34Xn1zT7a+0mQW+v6VJ9o06boC38Ubf7LgYP4duDd8G+KLfxboSX8UbQXMbGG7tX4e3mX7yEfXp7EfSgDoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkJxihiQOK4rx14lvrQWvhvw+yP4j1X5IfS2i/juG9ABnHvn720igDLu8fED4gpZKvmeHvDcwkuD1S5vR92P3CDk+5wR0r0kCsbwt4dsfCvh+10ewH7qBfmc/ekc8s59yf8BwK2sUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACN0rzvxVpt/wCFddfxvoEDzRsgXWrFOtxCv/LVB/z0QZ+o/HPotNIHXHNAFPSNWstc0u31LTrhLi0uEDxyJ0PsfQjoR2INXq8w1K0vPhjqkuvaNBJceF7uTfqemxrk2jE8zwj+7/eXoPoRs9E0zU7TWNPgv7C4juLSdA8csZyGH+eMHkEGgC3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFI3TrignArE8UeKNP8ACejNqOou2MhIYYxmSeQ9ERe5P6UAReLvFdr4U0j7XMjXF3K4hs7KP/WXMx+6ijr1IyR09+lZ3gfwtdaa11r+vOlx4j1TD3Mi8rAn8MKf7IGOnUjqcCqnhPw1qWo6x/wmHi1E/tV4yllYjlNPiPYeshz8zde3tXe4oAQAA9KWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKCM0UUAIQAOleaXujar8O9Rn1rwtave6DcOZdQ0SMfNEx6y24+g5Tp6cEbfSyAetGMDAoAzNB8Qab4k0qLUtKukubWT+JeqnurDqCMjg1piuC17wTe2WqS+I/BV1Fp+ruQbm0cf6LfY7Oo+63+0PU9NxNaHhjx7Za5ePpN9BJpOvw/67Tbo/Nn1jbpIvfI7c4xQB11FNVtx4ORTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRsgcfyzQTgVwes+Pbi81GXQfBdrHqurIds9yx/0Sy68yuOpGPuj37jBANfxZ4zsPCtpF5wku9RuTss9PtvmluH9AB25GTjj3PByfDXhDULvWE8U+MHSfWAD9lskO6DTlPZexf1b9T1N7wn4Hg0O5l1XU7uTV/EFyP9I1G4AyP9iNeiIPQfywB12KADFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQRmiigBCoOMjpyKwfFHg/RvFlokOp2xMsRzBdRHZNA395H6jnnuOBkcVv0UAebrqXjDwH8msW8viXQkHGoWqf6ZAo/56x/xjp8wOeCSe1djoPibSPE9j9s0XUILyH+Lyz8yH0ZT8yn2IrV2L2H0rkde+HOi6vfNqlo1xo+sYONQ02QwyE9fnA4YHjORntmgDrxS154upePvChC6lp0PinT1HN3poEV2o9WhPDEnPCn3NbGifEbwzrk/wBli1FbW/DbGsb4eRMrf3dr4yfpmgDq6KaCT3z7gU6gAooooAKKKKACiiigAooooAKKjeRYkaSRgiKMlmPAHqfSuN1L4peHra7aw0trjXdRHS10mIzn6lh8oHrzxQB2rHAzXN+I/HOh+F2SG+uxJfSECGwt18y4lJ6BUHPPYnAzxmsE2vxB8WA/bLqDwnprDmG0YT3jj0Mn3U9iBkV0HhnwRoPhUO2nWQ+1SZ828nYyTyk9SXPPPoMCgDmm0zxd48Gdbll8N6A3/MPtnBu7hP8AprIOEBHVRz1Brt9G0bTdB0+PT9Ks4rW1jHypEMc+pPUk+pyT3rQ2jjjp09qWgBAAOAMCloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEwKy9a8NaL4hgEOr6Xa3igFVMsYLID/dbqv4YrVooA8+Pw1l0sbvCvinWNGCgCO2eT7XbRj2jkyf1p/nfE7Sc7rbQdehQceXI9pO/1BygrvcD0pcCgDgT8RNWscLrHgHxFBIcZNiiXqL/wJGH8qc/xg8IWyg6jc32nMeNl3p06kH04QjP413mBSbQe1AHHwfFTwPOCV8S2K4xneSn/AKEBU3/CzfBP/Qz6b/3/ABXRPp9lKQZLSB8dN0YNN/svT/8Anwtf+/K/4UAcrc/FrwJahjJ4ktSF6+Wryf8AoKmoB8W/DlzHv0uDWNWz0Fjpkz7vpuUCu1isrWD/AFNtFHzn5EA/lU2BnOKAOD/4TnxNqCBtG+HurOD1Opzx2ePfDEk01rT4nauSs2p6FoMJ6G1ga6mHsd+EP4Cu+wKMCgDgk+Fel3syz+JdU1XxBKCGC3tyRErD+7GmAOp45612WnaXp+k2wttNsbazgBz5VvEsa5+gAq5RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k=', '/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAS0BMwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACikJwM1zWs/EDwnoJZdR1+yjkQ4aJJPMkH/AEy36UAdNRXBf8LNS9O3RPC3iPUwQCk6WXkwt/wADkI/lSpr/AMRL3cIPBFlYDPyve6qr5+ojU4oA7yiuCRfitLId8ng+CPnaFW5kPtnpUg034kuu5/EGgRsT9xNPkYD6EvmgDuaK4Y2PxMhbMeteHLgHr5tlKmP++XqOKb4qwZNzZ+ErsDGFt5riNj+LAj0oA72iuB/4S7xpZuRqPw9uGiXrLYajFPn6JwaF+Lfh63KjWrbWNCdjhV1PT5I934qGGPfNAHfUVm6T4h0bXUL6VqtlfAfe+zzq5X6gHI/GtKgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiig0AFB6VieI/FWi+FbD7VrF9HAp+5H1eU+iqOSf8muT87xt43OLdJfCWiNn95Koa/nX2XpDkHr94EDGaAOn8ReMvD/hVA2r6nFDIw+S3GXlfnsgyx+vSudHiXxv4kIHh7w2mk2jH/j+11irkd9sCncD3BJwa2/DngTw/4aka4s7MzX78y3903m3EhPUlz698YB9K6fvQB5+3w1k1f5vFvifVdZz962jf7LbH28tP55rpdG8JeHtAA/srRbK0cDHmRxDeR7v94/ia26KADvRRRQAUUUUAFFFFABTXRZEKOoZTwQRkGnUUAclqvw08IatIJpdDt4LgHcs9nm3cH1yhGT9c1lDwn4y0Dnw54ue9gXOLLXkMwP8A22XDgegxXoVFAHnqfEi40WQQ+NfD95ooztF9F/pNo3YZdASpPYEfWu30/UrLVbVLvT7yC6tn+7LDIHU/iDVmRFkjZGVWVhghhkEe9cJqHw1tIb2TU/Cl7N4b1I/eazANvL7PCflbv0x170Ad7RXncXjvVvDE62njzTVtoiwSPWbENJaOe28fejPQc989hXe2tzBeW8dxbTRzwONySxuGVh6gjrQBPRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFQXl1b2NnNdXUyQW8KF5JZGwqKOSSaAJicKTXn+p+Ob/WdQm0LwNbRX9/Gdt1qMmfsdp7bv429APrzhhVBrnV/inK8djNPpXg1WKSXQ+S41LBIIT+5F15PJH1IHf6Po9hoWnQ6dplrFa2kIwkUa4H1JPJPueT3zQBgeHPANjpF6dW1S4k1nX5P9ZqN2MlfaNOka9eB64zjiuvFLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEc8MdzBJDNGkkUilWSRdysD2IPUV57deCtV8K3D6l4AuEjiLF7jQrlj9mnOOsZP+rf9M46AYPo1B6UAcv4T8a6d4nM1qscthq1rxdaZdDbNCfXH8S8jBHqM4ziuorlvFfgqx8TeVdJNLp+sW3NpqVtxLC3of7y+qnsT0rM8OeMb+21ZPDHjGBLPWuRbXScW+oKP4oz2bGMr/LOAAd5RTQeadQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTZHWKNpHZVRQWLMcAAdyfSgCC/vrXTbCe9vp0gtYVLyyyHCqo7mvOLSyvfirfJqeqxzW3g+Ft1nYMdragwPE0nonovfr9UjSX4r60J5Q6eCrCb9yjDH9qTKfvEd4ge3fH1C+nRqEACgAAYAAxigBIkSJEjjRUjUbVVRgADoBjtUlFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAh6VjeJfDOmeLNJfTtUg8yNjujkXh4X7OjdVb/J4raoPSgDzvw54k1Xw/rcPhDxjMHuXX/iW6qeEv0HG1v7so469fyLehDk56VjeJvDWneK9Fl0zUo90bDMcg4eFx0dD2Ydf0PFc94M8Q6haapJ4N8Tyg6zbR77W6OQNQtxwJBk/fGDuHXvzzQB3lFFFABRRRQAUUUUAFFFFABRRSHgUAB6V5t4oup/HHiNvBOl3Dx6bbhZNeu4jyEP3bdT/AHmxz1wOOcEHe8d+J5vDukxwadEJ9b1KQWmnQcfNK38RB42qDkk8dASM5q14M8Mx+FNAi08SGe5djNeXLctcTty7knk5PHPOAOtAGxY2kNhawWdpCkNtCgjjjQYCKBgAVaoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARvumuX8aeFF8UaZG1vP9k1exfz9PvFHzQSjtn+6eAR0PBxxXU0h6Hr+FAHL+B/FLeJdMkS9hFrrNg/2fUbP/nlIO4/2WwSD0PPJxmuprzrxvZXHhjWYPHulQs5t1EOs28Y5uLX/npjuydc+g64GK72zuoL60gu7WVZredFkjkQ5VlIyCPYigCxRRRQAUUUUAFFFFABTXO2NiTgAZz6U49Oa4X4l6hdS6dZeFdMkCal4gmNorA8xQAZmkx7J/6FQBS8GI3jHxZeeObgE2EG+x0NT08sEiSYD1c5APXGQe1ej1R03T7fSNMtdOs4/LtrWJYo0x0VRgfy/Oodc13S/Dumy3+r3sVrap1aQ9T6ADlj7CgDTPSsHxB4z8PeF1B1jVYLZyAVhJLSt24RQWP1xXLLd+MvHgJsRL4V0FulxMmb+5Xp8q9Igcnk89CM10HhzwH4f8NOZ7Oy86/bmW/uj5txIx6kufXvjAPpQBkL478Q6yR/wjXgm/lgPS61SRbNMdmCnLMPoKcNO+J+oqftWu6BpHPy/YbN7hse/mEDP0rvB1paAODTwh40MeJ/iRds56mPSrdB+AwcUknhHxuoBt/iRcK+cZl0m3cEfTjn3rvaKAODa1+J+nlRBqXh3V4xy32q3ktpG+mwlRUR+ImqaQP+Kr8Happ0QPzXdmVvIEH95inKj6ivQaD0oAx9C8TaL4lg8/RtTt71AMt5T/Mn+8vVfxFbFcjr3w70DXLj7csEum6qOU1DTn8iZW9SV6/iDWIPEHirwGwTxVCda0MHH9s2cWJoB6zxAdB/eXPAHUnFAHpNFUtL1Oz1ixiv9Puorm0mGY5YnDK3r9MHj65zV2gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGTRxzQSRSoHjdSrKRkEHqMV594Jlk8KeJ77wLdyH7KFN7oruetux+eLPco2e5OCTwAK9DPQ1w/xL0u5k0a38RaWo/tbQJftsGP+WkY/wBbGcdmQHjvjFAHc0VQ0fU7bWtJs9TsnLW11Cs0Z9mGcH3HQir9ABRRRQAUUUUAIelee+FR/wAJJ8Qtf8USfNaWB/sfTiTwdnMzjPXLcBh1GRXReONfHhnwVqurA4lggIh4z+8b5U/8eYVi2M1l8LvhhZC+y0lvCoMScvcXLncVXuSXJ+g57UAavizxdZ+FbCN5Inur66byrKwh5luZD0VR6cjJ7e5IFY2geCLu+1OPxL41kS/1gZa2swd1tp4JyFRe7jjLHPI6nGTL4L8L3ov38WeKNs3iK9X5I8ZWwhxxDGOxGTuPck+5buqAGjg06iigAooooAKKKKACiiigApHGUIIyPSlooA851PwlqXhK/l1/wMg2yNvvtCJ2w3Q7tF/zzkx+B444weq8L+JtP8V6Umoae7YBMcsEg2yQSDqjr2Yf/qyCDW2eBXnfi7Rr3w1rDeN/DUO+dUxq+nLwL6Aclx6SL1zjkfkwB6LRWdourWeu6Taapp8wmtLmPzI3HXHofQg8EeoPpWjQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIwDKQQCDwQe9LSEZBB5BoA8++HmfD+t694JkYiPT5vtenBu9rMd2F7kI+QT6nFehV5744zoXjXwt4pj+WJpzpN8QOsU33CfZXGfxr0ADnp160AOooooAKQ9KWkPIoA4Dx8P7W8TeDvDWCYrm/a/uMDIMduu7aw9GJA/CqmjRj4g+N5PEUx8zQNElNvpKEZWe4H+suPcA4VTyOMjBBrmfG+r3Vx8RtZtNMdv7TNnbaFaDsj3JMsknttjXk9iRXr+haNaeH9FstJsl2wWsQjU45bA5Y47k5J9zQBoAYNOoooAKKQnAJPQUilWAZTkEcEUAOooooAKKKKACiiigAooooAKRvunnFLQeBQB5raD/hXvxAGnAbPDfiKUtbD+C0ve6D0V+MD14AwDXpCjkVz/jTw2vinwne6ZnbcMnmWsgODHMvKMD25Az7ZpngTxC/ibwlZ6hcLsvQDDeRkYKTodrjHbkZA7BhQB0tFFFABRRRQAUUUUAFIeATS0HpQByHibxufDuvaLpX9k3M39qXkdqtyXVY1LFQcckkjd6Ae9daOteb/FL/AJD/AIB/7D8P8xXpVABRRRQAUUUUAFFFFAHM/EDRf+Eg8BazpyKWle2aSEA4PmJ86f8AjyirnhLWR4h8JaTq2QWurVJJMdA+MMPwYEfhWyfunjPtXB/CoCx0fWNAC7E0fV7m1hXP/LIt5iH8d5/KgDvaKKKACkPApaRiFUknAHJNAHh3w7tX8R/GnxTrlxseDS7qZIGA53ufKU59PLiI/wCBV7lXlvwHtHHgi51abBm1S/luGb2Hy4/NW/OvUqAEPSvO4Vlt/j40H2u6lgk8PNP5U0pZEczqp2r0HCjpXoteeyEf8NBxDPP/AAjB4/7eaAOm8U3M0WgyW1s5S7vmWzgYdUeQ7S4/3VJf/gNZuqeBdP12VIdUkuDpltEkVnYwXDxRoFH322kFm7DJIAAx1NXJ/wDiY+NLaAcw6Vb/AGlv+u0u6NPxCLL/AN9iovEniqy0qaPSl1OxtNSuVLK11KqJAnQyMCRn2Xqx9AGZQDE+Fy6jaDxDo91ezXtjpepPa2VxO259oAJQnvtyPzPoAPQq53wtd+H0g/sjQtRgvfsy+ZM8MwmJZySXkZeN7Nub1PPFdFQAUUUUAFFFFABRRRQAUUUUAIelcB4c/wCJD8V/EehgBbXVYU1i2VRgK/8Aq5vxLbWr0A9K4Lxp/wAS7x34I1rfsQ3kunSc43CaM7Af+BJQB3tFNGc4p1ABRRRQAUUUUAFIehpaKAPMfiYbm41/wf8AZdO1K5Fjq8dzctbWM0ixxgrkkqpB+gJr0iCQTRJIofDLkb0KH8VPI+h5qaigAooooAKKKKACiiigBD0rhPDyGw+L3i+1LYS9trO9jTHAwrRsfzAruz0rhJ4/s/x0s7jkC78Pyw+xKTq354NAHeUUUUAB6VzvjPxPpvhTw3c3+oXXkh0aOAAEmSQqSqrjvx16DvgV0J6V5b8bfBWoeLPDtpdaYwa40xpJWgZ9qyRlcnAPBYbRj6tQBY+B+r6XefDqx02yulkurDcLqLBDRl5HYZyOc54Iz068GvS6+dvhD8LrzUdHk1y513VdKgvFUW39kXnkySKGYMZPlPGQMD6+1ek/8Ks/6nzxx/4OP/sKAPQDWW3h3RDqP9pHR9P+3A7vtP2ZPNz67sZ/WuT/AOFWf9T544/8HH/2FH/CrP8AqfPHH/g4/wDsKAO4jtYIZ5po4lWWdg0rAcuQoUZ/AD8qzL3wn4c1K7ku7/QNKu7mQ/PNPZxu7Y4GWKknAAH4VzX/AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAdfpeh6VowkXS9MsrFZDmRbWBYgxHTO0DPWtA9K4D/AIVZ/wBT544/8HH/ANhR/wAKtx/zPnjj/wAHH/2FAG14u8caH4KtYp9Zumjafd5EUaF3lx1AHTjI5JA5q34Y8U6R4u0z+0dGuvtEAcxvlSrI2M7SCBg4I9vQmvHfiP8ABjWruKzudD1XVdcljVlli1W+EkijjHlkgDHXIz6Ve+H3wa1PT9HlfV9f1vR7ydwTb6RqAjUKBgbyFIZs7uhwBjBNAHt9Fef/APCrP+p88cf+Dj/7Cj/hVn/U+eOP/Bx/9hQB6BRXn/8Awqz/AKnzxx/4OP8A7Cj/AIVZ/wBT544/8HH/ANhQB6BRXn//AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAd+3CnnFeWfGPxLo2lQaJb3V0q6hbana6jHAEJby0chm46cbvrg1pn4W4/5nzxwf8AuMf/AGFeUfFf4W6ppl5a6pZ6ne6tbTGK1MmpXYkuBIzEKNxCjbyMehznigD6G0TW9P8AEOlwanpVytzZzg7JACMkEg5B5BBHQ1pV494M+Dl5pnh2GHUfFPiHTryRmklt9J1DyoVJOBxtOWwBk/gOma6H/hVn/U+eOP8Awcf/AGFAHoFFef8A/CrP+p88cf8Ag4/+wo/4VZ/1Pnjj/wAHH/2FAHoFFef/APCrP+p88cf+Dj/7Cj/hVn/U+eOP/Bx/9hQB6BRXn/8Awqz/AKnzxx/4OP8A7Cj/AIVZ/wBT544/8HH/ANhQB6BRXn//AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAegUV5/wD8Ks/6nzxx/wCDj/7Cj/hVn/U+eOP/AAcf/YUAegUV5/8A8Ks/6nzxx/4OP/sKP+FWf9T544/8HH/2FAHoFFef/wDCrP8AqfPHH/g4/wDsKP8AhVn/AFPnjj/wcf8A2FAHft9015B4p8f+GdO+LmhvNqeBp0N1bX7ojMsbOF2KcDnkHOM4OM4xW+fhbgZ/4TzxwfY6v/8AYV4j4p+EXiG18fR6Tayi8GqPLNa3NxMN7qvLGU/3xkZOPmzkd8AH1TFMssSSRsXjdQysvIIPQ0/efRvyrN8P6Y2ieHNM0rzjL9jtY7fzNv3tqhc/TitHLf3v/HDQBJUVzCtxaywuAVkQowPoRipaQ9KAPOvgbdrdfCrTIw2WtpJon9j5jMB+TCvRq8b+Ct+lj4j8Z+Fiyg2upSzxLnkjeY2/Lan517JQAUUUUAFFFFABRRRQAUUUjfdPOKAKmqalb6Tp0t7clvLjAwqLuZ2JwqqO7EkAD1Irjfhbr2peJrLXdV1IlHbVJIIoA+5YY0RAFH4k5Pc5Pelm1a+1LVxq6aFeX2jWQL2LxzQqsj8hpiHcEgDIXjGCWGcjFL4GRMPhpa3D8tdXM8xOep3lf/ZTQB6VRRRQAUUUUAB6VwXxIVru98HaZG3zz69BM68fNHEGdv6V3p6V5/dFdc+NlhAvzQ+H9NkndgeFmnwgU++wE0Ad8cYrz34v3t1ZeE7caZdXdvq13ew2tm1vcPGS7NkghSN2QCOQeteh9q8u8VW//CWfGDQ9BE8sdvo9pJqU7wttYSMQqc9mB2n6NQBF8QHvvh9oGnatpGtajNfC6jga2u7p7hLzIO4bXJIPHVcEV6lCxaNCy7GKjK+ntXkF/bL4Z+M+g217LPrkOpxnyH1FzLLYuM/NH/CBwM8Z6817Ep56/hQA6iiigAooooAKKKKACiiigAooooAKKKKAA9K4bU8XHxn8Pxct9l0q6nx027mRM+9dwehrhLJFvPjlqdypyLDQobVh6NJK0n8hQB3lFFFABQaKQnAoA8E1GVvB3xp1TXApSyiuoDdnput7mMKzn2SVB+de9j2rzPxnpVtN8SNJS9jLWPiDTbjR7hs8KR+9jP8AvZ3AfStP4bavdNYXPhnV3H9taEwtpuf9dFj91KPUFcDPXjnrQB3VFFFABRRRQAUUUUAB6Vz3ivRdV1/SnsLDWI9NhlG2dvshld17qDvXbkcH2PauhooAx9T06+vPD0mnWd7b2c0sBhM/2YsqgqQSibxjHbJOPeqHgXwvdeD/AA5b6JJqMN7b227ymW1MLjcxY7vnYHlu2K6eigAooooAKKKD0oAhvLmGysp7q5lWKCGNpJJGOAiqMkn6AZriPhdbTXenal4rvIil34gujdKGHzJbr8sKn2C8j/eqH4g3EviDUbDwHp7sr6hifUpUPMFmp5+hcjaPXkd67y2ghtLeK3t41ihiQIkaDCqoGAB6AAUASTBzC4iZVkI+VmXIB7ZGRn8xXB6d4J8Q6Z4l1jXYvEmnSXWqlPN83SXIjVBhVTE4OAMdc9BXf0UAcfongSOz8St4m1fU59X1ryzFFNJGI44EPGI0HTgkZyTz7knsKKKACiiigAooooAKKKKACiiigAooooAKKKKAEPSuC+H4W/8AFPjjWwD+/wBVFkCe4t0CZHtkmuw1nUY9H0S/1OYZjtLd52HqFUnH6Vzfws0+Ww+HWkm5Yvc3aNezOerNKxkyffDD8qAOyooooAKDRRQBw3xVs55PBp1W0TdeaJcxanCM4/1bZb/xwtVXxZY3Nwum+PvCqm41C2twzQIP+P8As2AYx8fxAHcvXnPXiu/uIIrq2lt50WSGVCjo3RlIwQfwrhfhdcS2elaj4UvHZrzw/dtagv8AeeBiXhc+xXp7LQB1Ph/XrDxLo9tq2mTebbXC5GeCh7qR2YHOR+vStWvNtZ0rU/A2t3Pijw3bvdaVdMZNX0pG6t3nhHZxzuHGf1XttE1vTvEWmwanpV0lxaSjKsv6gjqCOhBoA06KKKACiiigAooooAKKKKACiig9KAEPSsDxd4ptPCehPf3MbTzORFa2sfL3MzfdjUe/48Z61L4m8T6Z4U0p7/VJiqk7IokGZJ3PREXqT/Lqa5nwx4d1PW9bTxl4uiEd4EK6bph5WwiPOW9ZD3Pbp6BQDR8CeGrvSLa61bW3WbxDqzie+kHSMY+WJf8AZQcfXPtXYU0dRTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoPSig9KAOB+K00t14fsfDdszC416+isgUPKRZDSP8AQKuD7NXdQxJDGkUahY0UKqjooHAArgrPPiX4xXV5jdYeGrX7LCexuphmQg+yYUj1Ir0GgAooooAKKKKAEb7przvxQT4T+IWj+KF+TTtSUaVqTDOEYnMEhA44OVJPQcd69FrL8SaFa+JfDl/o14P3F3EYy2MlD1Vh7ggEe4oA0TwCAM8dK4PV/BWoaTq0/iDwPcRWd/Md15p0xP2W+PqR/A/+0MZJ5xkk3Phzr11quhyadqxI1zR5DZXyk5LMvCye4ZRnPcg12ZoA4/w78QNN1i9OlahDLo+ux8Sade/KxPrG3Rx3BHbnGK68VjeIvC2ieKbL7LrOnRXSL9wtwyH/AGWHIrlR4f8AHHhVf+Kf1uPXbBOlhrJxMq/7M68k9AA3AFAHolFefL8UI9MBTxX4d1jQXX787QG4tgfQSxg5/Kt2w8feEtTCfZfEemOX+6jXKo5/4CxB/SgDpKKrx3ltMm+O4hdD3VwQf1pJb60gXdNdQRr6vIBQBZorltS+I3g7S0drrxLpuV+8kMwmb/vlMn9KyG+I91qxMfhTwpq+q7uVup0+yWxHqJJP5YFAHft0riNa+IUEOoPonhm0bXtdAwYbdv3NuemZpei8g8ZzxjjIqofCHirxRz4u8QC1sm+9peibokf2eVvmYEcEDj0xXYaJoOleHbBLHSLGCztl/giXqfUk8k+5yaAOa8PeB5l1RfEXiq7XVfEGMRnH+j2Y67YV/wDZjyfbnPbDg06igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsTxZ4gg8LeF7/WbgBhbRlkQ/wDLRzwi/ixA/GtpvumvOdVP/Ca/Eu00aM79J8Nst7fntJdMD5Uf/ARlvzB5FAG58PNAn8O+EreC9JbUrpmvL+RvvPPIctk9yOFz7V1dNHXpTqACiiigAooooAKRvunAyfSlooA868ZxyeEPEdt46s42NmVW11uJF+/Dn5Zsd2QkD1I46V6BbzR3EMc0MiyRSKHR1OQwIyCD3GO9FzBFdWstvPEksMqFJI3GVZSMEEdxivOvCd1N4I8Rf8INqkrvYTbpdCu5Od0fVoGP95O3qPTgUAelUU0dRTqAA8isTUPCPhvVHMl/oOmXEh6vLaIzfnjP61t0UAcXJ8J/Asjlz4bswT12llH5BqWL4U+BoXDp4as8+j7mH6k12dFAGTp/hjQdJfdp2i6dZv8A3oLZIyfxAzWrS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLUN5dQWVnNdXUqw28KGSSR2wFUDJJP0oA5/xv4nPhfw+89vF9o1O5cW2n2wGTNcPwox3A6n2FL4H8Mf8It4ejtJpfP1Cd2ub+4zkzTvyzH6dB7D1zXO+EYLjxp4lPjnUonjsIVeDQrZ+NsZ4edh2Z+3oPXgn0YdaAFooooAKKKKACiiigAooooAD0rn/ABb4WtfFmhmxnkeC4iYTWl1F9+3mXlXU/wCeK6CkbO0460AcZ4H8U3epPcaB4gRLfxJpvFxGOFuI+izx+qnvjofTIFdpXI+MfCD6+ttqWl3C2HiKwO+yvewP/PN/WM85GD1zjkgu8G+MR4i+0afqNqdO8Q2HyX1g55X/AG067kPGDz168gkA6yiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQnAzQAN0NeY6hK3xR159Fs5CfCWmzD+0blDxfTA7hChHVF4JPfj2Jk13WrzxzrMvhXwvdtFp0RxrOrQ4IRf8AnjE3QuehPb867vR9IstC0y30zTbdLeztk2Rov8z6knknqTyetAFqGJIVSONFSNFCqqjAUDgAD2FTUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjHCk+lcl4t8G/2+9vqum3J07xFYg/Y76Mf+Q5B/Eh9D0zx1IPXUjEgZAzQBxvhLxq2qXj6Fr1sNM8SQL+8tWPyXCj/lrCf4lOCcDpz1612dc74o8IaZ4tskivQ8VxC2+2vIG2zQP2ZG7fTpXM2vi/V/Bl1HpXjoK9o7bLXX4UIil9FmUf6t/fofwJIB6RRUUM0U8SSQypJG43I6EEMPUEcYqWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikPQ1keIfEmk+FtNN/rF7HbQg4QE5aQ/wB1R1Y/T8eKANWV1jiZ3YKijLMTgAdzntXmt9rep/Ee6m0bwvNJaeHkYx3+tqMGbsYrf19C/Qcn03KNM1/4kuJtehuNE8LBgY9L3bLm9A6GYj7if7A5/JTXodlZwafaxWlpBHBbQqFjijUKqL2AAoAraJomneH9Ng03S7VLa0hXCog6+5PcnuTye9aVFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVBeWsF7Zy2t1BFPBKu14pVDK49CDwanooA85fwhrvgyVrrwPci404ndJoF7IfLPr5Eh5jb2PGSSegFa/h34g6Trl4dOull0nWk/1mm36+XJn/Zzw478c45IFdeaxPEPhXRPFNp9m1nTorpV+4zDDof9lhyP85oA2hS153/YPjfwkgPh/V18Qaegx/Z+rnbMo/2JxjJ6cMMYqzafFHR4rhLLxFbXnhy/PHl6lGVjc99koyrL75H0oA7uioba4huoUnt5kmicZWSNwysPUEcEVNQAUUUUAFFFFABRRRQAUUUUAFFIelZes+IdI8P24n1bU7WyQ5x50oBb6A8t9BQBq1Fc3ENpbSXFzNHDBGpZ5JGCqgHUkngCuBPxA1bxD+78FeG7m9jbpqeoA21qB/eGfnkHsMGlt/hzca1cJeeOdYk1mRTuTT4gYrKE+yDl8ep7cEGgBLr4g3euzy6d4D08apOp2S6lOCllbnvlushHHCjvnJ6Vd0H4f29rqS654hvJNd17GRc3A/dwf7MMfRAPXr16ZIrr7W2gs7eO3tYI4IIxhI4lCqo9ABwKnoAaOop1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVWvLK01C2e2vbaG5gfhopkDqR7g8GrNFAHCXHwr0SG4a60G71Lw9cu25jplwUjc9t0bZXHsAKYLH4maPtFvq+i6/ADlhe27WsxHYAx5XPuRXfUUAcD/AMJ34i05Sdb+H2spg43aZJHegj1wpBFKfi94RtsLqU2oaXITt8u90+ZGz07KR+td7SNjacjI9KAOUt/iX4KulDR+J9NUEZ/eThP0bGKtDx54PYA/8JVon46hCP8A2atK40bSrobrjTLOYjn95AjfzFZ7+CPCUhMj+F9FZmOSTYREn8dtADH8feDkPPirRfwvoz/Jqzrv4s+BLIEyeJLV/wDriHl/9ABrZg8HeGLbPkeHdIi3dfLsYlz+S1pQWVpaMBb2sMPGP3cYX+QoA4tvirpE6qdJ0fxFq4PRrLTJCv5vtxSN4k8fai23SvBUVihHy3GrXygD6xx5YV31FAHn58KeNtaUjXvGZsYXGGttDtxFg+0z5etHR/hr4W0a5+2Jpq3l+cFru+c3ErEfxZfgH3AFdfRQAgpaKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9k='] Multimodal Competition True Theorem proof Combinatorics Math English 56 "The arrangement of numbers known as Pascal's Triangle has fascinated mathematicians for centuries. In fact, about 700 years before Pascal, the Indian mathematician Halayudha wrote about it in his commentaries to a then-1000-year-old treatise on verse structure by the Indian poet and mathematician Pingala, who called it the Meruprastāra, or ""Mountain of Gems"". In this Power Question, we'll explore some properties of Pingala's/Pascal's Triangle (""PT"") and its variants. Unless otherwise specified, the only definition, notation, and formulas you may use for PT are the definition, notation, and formulas given below. PT consists of an infinite number of rows, numbered from 0 onwards. The $n^{\text {th }}$ row contains $n+1$ numbers, identified as $\mathrm{Pa}(n, k)$, where $0 \leq k \leq n$. For all $n$, define $\mathrm{Pa}(n, 0)=\operatorname{Pa}(n, n)=1$. Then for $n>1$ and $1 \leq k \leq n-1$, define $\mathrm{Pa}(n, k)=\mathrm{Pa}(n-1, k-1)+\mathrm{Pa}(n-1, k)$. It is convenient to define $\mathrm{Pa}(n, k)=0$ when $k<0$ or $k>n$. We write the nonzero values of $\mathrm{PT}$ in the familiar pyramid shown below. As is well known, $\mathrm{Pa}(n, k)$ gives the number of ways of choosing a committee of $k$ people from a set of $n$ people, so a simple formula for $\mathrm{Pa}(n, k)$ is $\mathrm{Pa}(n, k)=\frac{n !}{k !(n-k) !}$. You may use this formula or the recursive definition above throughout this Power Question. Consider the parity of each entry: define $$ \operatorname{PaP}(n, k)= \begin{cases}1 & \text { if } \mathrm{Pa}(n, k) \text { is odd } \\ 0 & \text { if } \mathrm{Pa}(n, k) \text { is even }\end{cases} $$ Prove that $\operatorname{PaP}(n, 0)=\operatorname{PaP}(n, n)=1$ for all nonnegative integers $n$." ['By definition of $\\mathrm{Pa}, \\operatorname{Pa}(n, 0)=\\operatorname{Pa}(n, n)=1$ for all nonnegative integers $n$, and this value is odd, so $\\operatorname{PaP}(n, 0)=\\operatorname{PaP}(n, n)=1$ by definition.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAaQEsQMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCpqGoWulWE99eziG2gUvJI3RRXn2v8Axw8J6TYPPYSzarLyqJBGyoW9DIwwPwz9K9LZFdSrKGB6gjNeK/tIDb4R0cLwPtx4H/XNqAPU/DGst4h8M6brBg8g3lukxi37tue2eM/lWxXJ/DL/AJJn4d/68o/5V1lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeK/tJf8AIp6P/wBfx/8ARbV7DfXX2GwuLswzziGNpPKgTfI+Bnaq92OMAdzXhnxc1HUvHWhWFnpXhHxOkkFyZWNxpbqMbSO2fWgD1D4Zf8kz8O/9eMf8q6yvMfAXiqbTfDug+H7vwr4niuI44raSZ9MYQoScbi2eFGckkcCvTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAO1Yuu+JLbw8iyXVpqM0ZVnZ7SzkmCAdS20cDFbVVdSA/su84/5Yv8A+gmgDktL+KGha3A8+lW2s3sKNsaS202aRVbjjIXrgg496uJ8QdCS7itL57zS5pW2Rf2lZy26ufQO6hf1ri/2cxn4e33r/aknP/bKKu/8aadaap4L1i1vYo3hNnI2HH3SFJDD3BAI+lAG6jblBByDyDx/Sn15T8AtXv8AU/AEkV67yJZ3bQW8j85Tarbc98Fj+BA7V6dNdwQOiTTxRs/3FdwC30z1oAsUHpTQc4wcj19q5/xv4hPhbwZqesDmWCL9yDzmRsKgx/vEH8DQA+312XUvEcthpqxyWlidl9ctkjzSuREmP4gCGY9BkDkk7dqWeO3haaaRY4kG53c4Cj1JPArF8G6IfD3hSw0+Ri9yE8y5kY5aSZzukYnv8xNcb42vv7c+KXhbwW4LaewOo3ydpggcxow7rlOQeu4UAdrbeLdBupoYotUtyZiFhJO1ZiegRjgOT7E1tA+9ZniDRLbxBoF7pVzGrRzxMgOPuNj5WHoQcEe4rl/hB4mn8UfD60uLxzJeWsjWk8h6sUAKk++0rk+uaAO9oPTiikPQ0AU7/UrLSrU3WoXcVtbggeZM4VcnoMnqT6darWHiLStSujaWt9G90E3+SwKOV/vBWwce9cJpN5/wlXxr1bzx5lj4btxDbI3KrO5+aTH97hl/Ctb4sWZbwPcatbExalpDre2k6j5o2DDd+BXOR0PFAHWalJfrYStpqwvdqN0cc2drkHJXORgkcA8gHnBxiodB1q317TUvIA8ZyY54JRiSCVTho3HYg8Y/pjLfDWrrr/hvTdXUBftdukrKP4WI+ZfwORXMeb/wjfxdS2Vttj4ltmkEeOBdQgZI9N0eM+pFAHfUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFVdS/wCQVef9cH/9BNWqqanxpV4SePIfP/fJoA8W+As2uR+Br1dLtNPmhGpOWa5unibd5cfACxsMYx3rvta0PxV4osJdLvr7T9K0yddlz9hLyzyp3UM4UJnoflNcn+zlj/hA9RHf+1H4/wC2UVew4/OgDH0bQLPwx4fj0rRYEjjhjPlhj998feY9yT1Ncv4N0uceFZZfHmkaXBqE8ri4kmKSeenZnYlhySeAcAYwAOK6PxhrM3hzwfqusW8XmzWtu0kaEZG7GAT7A8n2rlfhx4fs9T8N2HibWmTWNavl897q6xJ5OT9yNTxHjgHAHOe2AACn8M9UNt4y8UeFra++16TYuk9gfMEgiR+SitzlRlQB2wfWrvxizLo/hyw4K3uv2kLg9GX5jj8wKw/CN7DH8aPHd1FgxR2qMn8IYIFBwfTIPIrS+Kk73HhDw1rrxGEWurWV7KpPManPB6dCwFAHqBxnmvHZST+1HAG6Lph2/wDfB/xNexY6Y5rynxRZto3x28K+IH+WzvoHsHkPQS7XC59Ml0H4GgD1evHP2eGP/CMa2g+4NTbB/wCAL/gK9W1W/j0rSbzUJm2xWsLzMT6KCf6VwHwN0SbR/hzFNcKVl1G4e72nqFICrn6hQw9moA9MorE0nxXomt6nfadp2oR3F3YPsuY1BGw5I4JGGGQRkZxW3QB478IyT8SviVu6/wBpf+1Z67b4lgf8K08RZ/58ZMflXKeErJvDvxw8V2EuVTV4V1C2Y8eZ8x3AepDO/HoM1u/F29W0+Gerxg5muVS2hQcs7OyjAHc4yfwoAd8H2Z/hRoDOORE4/ASOB+lZ/wAUmNpqvga/X70Wvwwk99rggj8hXU+C9Hfw/wCC9I0qUYmt7VFkH+2Rlv1Jrl/icDea74E0xDl5dcjudvXKRDLH8moA9GBpaQUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAAelY2t+GtL8QqqanHcyIqldkd3LCrA9QwR1DfjmtmjGKAOT0j4beFdBuEm0qwuLN0kWTEV/cBWYdNy+ZhvoQQa6yiigBk0Uc8LxSxrJG6lWRlyGB6gjvXOWfgbRtNjeHTjfWlm7FmtIL2VIsk84UN8ufQYHtXTUUAc5deCPDt7fQXr6cFngh+zAwyvGGh/55sqkB0/2WyKn8WeH4vE/hPUtEbav2qApGxHCuOUP0DAGtykPQ0Ac54I1mTW/CtnJdK0V/ADa3sTn5knj+VwfrjP0YVqavo+n67p0lhqVslxbuclG6gjoQRyCOxHI7VUTRBbeJG1eymEH2ldl9Bsys+BhH9nHTd3Xg9FI26AOan8GW1/BHaapqOpalYxlSLS6lUxtjpv2qGkGcHDsw45zXRKiogRVVQAAFHQAdKfgUUAcXpfhvRdL+I1ze6PYJb3ElnI+ourMdzyyIU4zgH93IcADqPWu0PSqtpZW9m0xgi2tPKZpWySXY4BJJ9gAPYAdqtUAZOs+HtP1w2z3Ubpc2rF7a5hcpLCx6lWHr3HQjggiqqeFbR9Stb/Ubu81S4tTut/tjrtiPTcERVXd/tEZ966CkOAKADgCuEtIT4k+Kkuqbc2Hh6BrOB+z3MgBkx/uphT7muv1KK7uLCWGyuvs074UTFN3ljPJA9cZxnjOKZpGk2mi6bDYWcZSGLgbjlmJ5LMe7E5JPqTQBoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUHgVzGtv42a/MegRaEtmUBE1+8u8Hv8iDn8SKAOmpa8C+G3i7xLrvxlvbPWtVedLeCeLyIspCCjAZCDj15PPNe+0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJgYxjpS0UUAFFFFABRRRQAUUUUAGB6UmB6ClooAKKKKACiiigAooooAKKKKACiiigAoooPAoAKSuZ1t/GzX5j0CLQlsygImv3l3g9/kQc/iRXlPw28XeJdd+Mt7Z61qrzpbwTxeRFlIQUYDIQcevJ55oA99ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD5q+Ev/JedY+t5/wCjBX0rXzV8Jf8AkvOsfW8/9GCvpWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvmr4S/wDJedY+t5/6MFfStfNXwl/5LzrH1vP/AEYKAPpWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAD0rmde0nxPqGoLNo/itNKtVjCtAdOS43Nk/NuZhjjAx7V01FAHj2jfBfV9A8Qz67p3jURajPv3yNpSsDvOW4MmOTXpXh+y1jT7KSLWtZXVrgylknW0W32oQMJtUnODk59616MUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQelFFAHM69pPifUNQWbR/FaaVarGFaA6clxubJ+bczDHGBj2rhNG+C+r6B4hn13TvGoi1GffvkbSlYHectwZMcmvYaKAMjw/Zaxp9lJFrWsrq1wZSyTraLb7UIGE2qTnByc+9a9GKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikcFkZQxUkY3DqPegBaK8S8c3HiLw5458LaNZeLtYNprFwkU3mmEugMiqdp2Ds3cGvRG8I3u07PGXiFXxwTJAefp5VAHU0V5jaeN9W8MePbXwh4quIb2K+ANjqscYiZyxIVZEHygkgrkY/hOOePTaAFoooPSgAPSq9vcxXIZoZo5QrlH2MCFYHBHHcHqO1cz4v1a6e903wvpc7xX+qljLPH962tl/wBZIPRjnap9TntXRWFlb6bY29naQrBbwII4406KAP8AP40AXKK878bePNe8O+GdQ1K18M3EK2+IxcXs8QXLMFDKiMxYZPfFdpoV3Lf+H9NvJyPOuLWOV8DAyygnj8aANCiiigAoqjq+q2mh6Rd6pfSGO1tYzLI3U4HYD17Cuc0S58TeI9Ig1d72DSUu4xLa2q2wlKo3KmRifmJHJC7cUAdielQRXUM00sUUyO8TbZFVwSjYBwR24IP4iuc8K+KZtXu9T0bU4Y7fW9LkWO6jiz5bqwykiZ52sOcHJHrVbxiJtC2+MLBWMtkqrfxL0ubTPzAj+9Hkup6/eHQmgDs6KgtbmG8tYbm3kEkEyCSNweGUgEGp6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikcFkZQxUkY3DqPevE/HNx4i8OeOfC2jWXi7WDaaxcJFN5phLoDIqnadg7N3BoA9torlm8I3u07PGXiFXxwTJAefp5Vc1aeN9W8MePbXwh4quIb2K+ANjqscYiZyxIVZEHygkgrkY/hOOeAD06ikpaACg9KD0rj/FupXF3q+m+EtPlkiudR3S3c8Zw0Fov3yCOhY/ID2JJ7UAdRBcxXC+ZDMkqBihKMCAynDDI7ggg/SrFV7S0gsLOG1tYUht4ECRxoMBVHAAA6V5747+IHiDw54ZutStfDU9qqMsa3F/NFgMxwCscbOT6/MQP5UAelUVU02d7rTLO4kx5k0CSNjpkqCat0AFFFQXk7WtpNOlvLcNGhYQxY3OQOg3EDJ9yBQBPQeleY+I/iD4g0zxH4Y00aEdOg1fUEgaS7mSSUoHQOAkZYLkOOSx+gr049DQBBFdQzTSxRTI7xNtkVXBKNgHBHbgg/iKnrjPGIm0Lb4wsFYy2Sqt/EvS5tM/MCP70eS6nr94dCa6y1uYby1hubeQSQTIJI3B4ZSAQaAJ6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPFfi2QvxV+HRJAAvkJJ7fv4q9gkv7OJGaS7gRQMktIAAPzrxv4xwxXHxN+H0M0aSRSXio6OoKspmjBBB6givVV8I+GgQR4e0kEcgiyj/wDiaAPK9fspPiT8XdGuNGzLoui7GudRT/VFw+8ojDhjwBxnkn0r0/XPEcGi3On2O6A32ouY7SKeYQoxGMksc/3lAABJLAAdSNuOGOCFYoY1jjQbVRAAAPQAdK4Px5d+GoNZ0EahpcmreII5zJpVnbsRJuJBLHkAICoJLZHGexoAt674v1Hwh9nu9esLd9JllWKW7spSWtmb7pdGHK56sD+FdhG6yIjo4ZWAYMp4IPevK/is3iG4+FWsyapBptrDthJt4Wedx++T+MhADn/ZP9a77wo5fwjobNnLafA3PX/Vr1oA5Xwo/wDbHxZ8Yao5yunpBplv3wAC0n/jwr0SvNfhfx4j8fBhiX+3ZSf93nbXpVAHnXxy/wCSTar/AL8H/o1a67wsAPCOif8AXhB/6LFcj8cv+STar/vwf+jVrrvC3/Io6J/14wf+ixQBr0UUUAeU/tBXslp8NVhQkC7vooXwewDv/NBXpthAttYW0CABYolRcegAFeW/tEWzzfDm3kQZEGoxO/sCjr/NhXqdnIs9lBKhyrxqwPsRmgDysTmy/abEUZwL7SNsg9cAkf8AoAr1a6toru0mtpl3RTRtG6+qkYIrySaM3f7UFs0fItNLLSe2UYf+zivYaAOA+D15NL4DjsLlzJPpV3Np7ue/ltx+SlR+Fd/Xm3wiwYvF7r/qm8SXez6fJ/iK9JoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8V+LZC/FX4dEkAC+Qknt+/ir2qvEfjHDFcfE34fQzRpJFJeKjo6gqymaMEEHqCKAPZJL+ziRmku4EUDJLSAAD868b1+yk+JPxc0a40bMui6Jsa51FP9UXD7yiMOGPAHGeSa9VXwj4aBBHh7SQRyCLKP/wCJrVjhjggWKGNI40XaqoAAo9AO1AGJrXiSHSr2w0yL7M2pagWFtFcTiJMLjJLYJ7gAAEknpgEjK1rxjfeEZ7SbxDZQDSbmUQm+tZWIt3OceYjDO3/aBOMdKp+N7zw1b+JdB+16RJq/iZH36XawOVZe5duQAoK5ywPTgcHGD8Xjr8/wt1OXVYtMtohJC3kW7PM4Pmrj94doz64X/GgD1tWDKGBypGQQeK8+8FOdX+JPjbWHO4W00WlwD+4sYJcfQtg12Whuz6DpzO2Xa1iLH1OwZNcR8JeLjxqrjEw8SXW/9Mf1oA9JrzL48/8AJK7v/r4h/wDQq9NrzL49f8ksu/8Ar4h/9CoA77Rf+QFp3/XtH/6CKv1Q0X/kBad/16x/+gir9ABRgde9FFAHknxb/wCR9+Gn/YX/APakFet15J8W/wDkffhp/wBhf/2pBXrdAEN1bRXdpNbTLuimjaN19VIwRXDfB68ml8Bx2Fy5kn0q7m093Pfy24/JSo/Cu/rzb4RYMXi91/1TeJLvZ9Pk/wARQB6TRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTXJWNmCliASADjNOooA8W8c6P4y8TeMvDes2fhCdIdHmWUpNfWwaUiRWI4kOPu9cmvWNJvry+tjJeaXcadKH2+TPJG7EYHzAxswxnjnHQ/jo4FGKAA9DXm3iLw1rFp8UdM8aadaHUraG2NrcWqSKssYw3zx7iFP3umc8H1r0mjFAHBeM9K1bx34WvdGtbSbTopI95e82gyuvzJGoBJA3AEsew4zk4seDrHVhFo8mq6Y+nvpul/YNjzRyea58vc67GI2/ulxkg/MeOBntcDGMcUhAx0oA888ORnRfjD4o09xti1a3g1K3z325ST8dxzj0r0Q9K5Xxdo9zcy6frulRh9X0mQyxRhtv2mJhiSHPQbh0J6MB6mtvStVt9Z06C+tGbypRna42shHBVlPRgRgjsc0Aef8AxMg8T+K/Ct94f03wpdlppVAuJry3VSqOGDACQnnb3x17dK6Lwjfa7FpumaXqnhi7sjb2yQyXP2mCSPKoB0Vy3OPSutpMADp0FAHJeP8A/hMTosH/AAhbQ/2h9oUy+YUyYsHON429due+K29A1CTVvDumahKFWS6tIp3VDlQzoGOD3GScUayt/Jpz2+nALcT4iExYYgB4aTHcgZIHOTgcDJFu0torO0gtIFCRQxrHGPRVGAPyFAGb4p8O23irw1faLdkrHcpgOBkow5Vh9CBWL4e1fUdG8PW+ma5pV+1/ZQrCJbS3a4jugowroycDcAOH24PtzXaYpMAHOBQBxHhDw3eReJdZ8X6zCIdS1RliitQwb7LAoAVSwyCx2qWwcZFdffXsWn6fcXtw2yC3iaWRj0CqMn9BVjHHAFcd4rjfxRcL4UtmIt3ZZNVnQ4EcOQRFn+/JwMdlyT1GQCt8I9Ons/AFrdXa7brUppL+UY7yMSv/AI7tP413dRRRRxRpHGiqiAKqr0UDoKloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAa5KxswUsQCQAcZrxjxzo/jLxN4y8N6zZ+EJ0h0eZZSk19bBpSJFYjiQ4+71ya9powKAM7Sb68vrYyXml3GnSh9vkzyRuxGB8wMbMMZ45x0P46J4BNGKKAPNdZ8N6xpnxWg8aWNmdUs3tPstxbROqzQ/7SBiAw9s561Y8d6Pq/j3wreaTaWsunxbfNDXZVTO6kFYwATtXPJZvQAAgkj0KkAA6AUAch4StdUlazvNU0yTTpLXTksfKklRy7gjcwKEjb8oAzg8ngcZy/CUTaJ8UvGGkSDbHf8Ak6raj++Gysp/77wPwr0Mgd65XxXo9y15p/iPSYPN1XSyx8gEA3UDf6yLPr/Euf4h70AdXXlfxOtPFXjDwvNoem+ErpS86sZ57y2VSFOQQBITz74r0fTdSttVsYb20l3wTDKnGCPVSDyCDkEdQQQeRirtAHMeGdQ1prWysdT8NXenmK3VHna5gkjyoAwNrlufpUHj/wD4TE6LB/whbQ/2h9oUy+YUyYsHON429due+K608DOKzdZW/k057fTgFuJ8RCYsMQA8NJjuQMkDnJwOBkgAPD+oSar4e0zUJVVZLq1indUOVDOgY4PcZJxV65kkhtZpYoHnkRGZIUIDSEDhQSQAT05IFMtLaKztILSBQkUMaxxj0VRgD8hVigDx3xzp/jLxN4n8L6nZeELiOHRbr7Syz31sGm+eNsDDnHCfrXpmkajqF/5v27RLvTNm3b58sT7yc5x5btwOOuOta2B6UhHBwKAK99exafp9xe3DbILeJpZGPQKoyf0Fcb8I9Ons/AFrdXa7brUppL+UY7yMSv8A47tP41Z8Vxv4ouF8KWzEW7ssmqzocCOHIIiz/fk4GOy5J6jPWxRRxRpHGiqiAKqr0UDoKAJaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqOWaOCJ5ZZFjjQbmdzgAdySaAJKK5HXfiV4S8P2sk11rdrK6gkW9rKssjH0CqTj8cCtjw5rlv4l0Cy1m1SSOC7TeiyYDAZI5wT6UAa1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIFVc4AGTk4HWlooAKKKKADFGBRRQAUUUUAFIFUEkKAScnA6npS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUHoaACiq9zdQ2dtLcXMyQwRKXkldgoUDqST0FcZL8TbV7drnSvDviLVrNel3aWP7tx3Kl2Bb8BQB3dFcd4S+JXhvxjMbbT7qSG+XJNldJ5cvHXjJB78AnGK7GgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACjAoooAQKq9AB34FLRRQAUYoooAMCiiigAooooAQKoJIUAk5OB1PSloooAKKKKACiiigAooooAKKKKACiiigAooqGeeK3haaeVIol+87ttVR7n60ATUVxniD4o+EfDlq8txrNtczKOLazkWaRj6YBwPxxXSaPqcWtaLY6pbq6Q3kCTosnUKygjOO+D60AX6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACorq1gvbWW2uoUmglQpJHIoZWUjBBB6jFS0UAeF/HrQNG0XwFp50vSbGyLakis1tbpGWHlScEgDPQflXoHwm5+Fvh//AK9v/Z2rkf2jf+RB03/sJp/6KkrrvhN/yS3w/wD9ex/9DagDtKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDiPiroGr+JfAN5p2iYa6kkjYw7gvmoGBK5JABzg8+mKf8LtL8QaL4ItrLxJIWvUdgiNIHaKP+FCwznH1PBA7V2ZAIPFcz4y8YWvhLTFlMT3WoXLeVY2MQLSXEvoFAJwMjJ9/UgEA+fPiio0j43GfQvkvfNt5tkXGJyBxx6/KT/vGvqkda8e8GfD1tL1Wfx548vIBq0r+eqSSBYrZmOAWY8bhkKB0XjqcY9fUg4/zmgB9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAAelVr6xtNSspLO+t4rm2lGHilQMrDryDwas0UAfP37QOiaTo3h/Q00vTLOxVrmQMLaBY8/KOuAM1698PwP+Fd+Gz3/sy3/wDRa15h+0p/yAtB/wCvmX/0EV6f8P8A/knXhv8A7Blv/wCixQB0dFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUN3dQWNlPeXMnl28EbSyvgnaqjJPHPQVNRQB89/Gzxz4b8VeELOy0XU1u7iK/WVo1idcKI3GfmUdyK6n4Y/EPwrY+CtB0S41ZU1IIITB5UhO9nOBkLjuK9bwPSjA9KAGg5wQeDz9adRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUHpRRQBz3jHxXaeDfDU+sXoaRY8LHEnWVz0GewPr2r5ptPjFrNr4iu9fl03TbzUJvkiluUdvs0X/ADyjAYBR79TnknpX1viigD5dk+K/iL4hX+meGb2106G0vtQt0l+zxOGYeap53ORjIB6dq+ofelowKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqpqOo2ulafcX97L5VtboZJXIJ2qOvAGTVukwPSgD5w+OXjPw/wCLNK0iHQ9SW8kgnkaRVjddoKgD7wFeifD/AOInhX/hG/Dmhf2un9pfZLe28jypM+btVduduOvHWvTMUYHpQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUh6GgBaKxtc8QwaDEktxa6hOjhmLWlo8/lgYJ3bc7evf0NYGl/FLQdcikl0q31i9jjba722mzSBT1wSFxnHagDuKK5T/AIWDoUVxHb37X2lvK2yJtRspbeNm9A7Lt/M11COGVWVgytggg8EdjQA+iiigAooPQ56VgR65Lf8AiSTTNNRJILIj+0Ll84RiMrEmOr4IZieFGB1PABv0VBdXdvY20lzdzxQQRgs8srhFUDuSelYln458M398llba5aNcyHEcbtsMn+7nGfwzQB0VFN59adQAUUVUvtQtdMs3u766itrdMbpZmCKPxP8AKgC3RWTZeJNIv7sWdvfxm5K71gfKSMvqqsAWHuOKtag16LGY6d5Ju1UmNZwdjEc4OCMZ6Z7Zzg9KALlFZOg67b6/p4uoleKVHaG4tpPv28y8Mje4P4EEEdRWtQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUdqxdd8SW3h5FkurTUZoyrOz2lnJMEA6lto4GKANqiuI0v4oaFrcDz6Vbazewo2xpLbTZpFVuOMheuCDj3q4nxB0JLuK0vnvNLmlbZF/aVnLbq59A7qF/WgDq6KYjblBByDyDx/Sn0AFFFB6UAFFYFtrsupeJJdP05Uks7E7L65bJHmlciJMfxAEMx6DIHJJ27F1d29jbSXN3PFBBGCzyyuEVQO5J6UAT0Vztn458M398llba5aNcyHEcbtsMn+7nGfwzXQc+tADqKKKACimk8deap2WqWWpNcrZXcU5tpfJm8tg2x8A7T78igC9RVDUpL9bCVtNWF7tRujjmztcg5K5yMEjgHkA84OMVDoOtW+vaal5AHjOTHPBKMSQSqcNG47EHjH9MZANWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiig9KACisPXfFFp4dj828tdRlh2F2ltbN5kjA6lio4/GsbTPidomtW7XGlWms3sAbYZbfTJnUNxkZC4zyKAO1orlYviDoJvobO8lu9NuJziJdStJbYSH0DOoBPtmuoVgwDA5BGRjoaAHUUUUAFFB6VgW+uy6l4jlsNOVHs7E7L65bJHmlciJMcbgCGYngZA5JO0A36Kq3d9bafayXV7cxW8ES7pJZXCIg9ST0FZFj438NalfLY2us2r3T/6uJm2M/8Au7sbvwzQB0NFNyc06gAooPANZ2qazp+iWyz6lfQWsTNtVpXClj/dA6k+wyaANGisXSfFeha7cSW+m6rbXE8X34VbEi/VTzj3q3qsmoRadLLpcUU10gDrDKxUSAdVz/CT0BPAPWgC/RWZomtWuvaZFf2Zfy3JV45F2vE4OGR1/hYEEEGtOgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBsgHltx2NeNfs3/wDImap/2ET/AOi0r2V/9W30NeD/AACm1uPwlqa6Xa6fNF9uyzXNy8TBti8AKjDsO9AHsnibTbPVfDGpWV9Gj28ts4bcBx8pwfYjqD2rzf8AZ91e+1HwVd2t0zyQWV15du7HOFKglM+xOf8AgX0rqta0nxf4ispNNur3TdKsJ1KXD2Zead0PBVS4VVyCRkg1t+HvDuneFdDh0rSYfLgiBPzHmRscsx7k0AaM13BAyCa4ijLnChnA3fT1qUMCAQeDjnPauA8G6bejQLufx5pWlw6jJcyCWaUpJ50Z6FiSwxncAuQAAMAVl/DvUhZfETxN4Usr1bnRbdEurFVl8xYAwUsiN/dy+MdtvHegDu/F2vr4Y8KanrLgMbWBmRW6M54QfiSBVXwNoz6H4QsYJyz3ky/aryRvvPPJ87k/icfgK5z40kv4PsLEDK32rW1u4PQgktj81Fej7R6UAeb+IvEcSfF3QvD2oafNc2ktt51uEG5BOWYeYw/iChBj03E+ldB8QPDtj4j8GanbXkKM8VvJNbyEDdFIqkqynt059q6ggHnuB19K4P4ma3dJpP8Awi+iobjXdaRoIYU6xREYeVvRQCRk/wBDQBU+CXiC98QfD2J7+RpZrO4e0ErnJkVQrKT64D4/4DXpFc14H8LW/gzwraaLFIJXjy00vTzJCfmYD06AewHfNdLQAHkGvL7a9/4Sn45XdpOBJp/hy03QRnlftL7cyEeoBYD0K16hXjnwyJb4w/EIsfm+0YH08xv8BQB1vxS0/wC0+BL++g/dX2lr9ttZ14eJ4yGOD15AOa2vCOt/8JJ4R0vV8Ya6t1dwP73RsfiDVfx+B/wrvxJn/oF3H/otqw/gmzN8I9D3dvPA/wC/8lAC3U3/AAjfxdsmViLLxLbtFKg+6LmEDa+exKYXHfHtXf15v8XHNrD4S1FOJLbxDanP+yQ2R+gr0fvQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFVdSA/su84/5Yv/AOgmrVVdS/5BV5/1wf8A9BNAHlX7OYz8Pb71/tSTn/tlFXf+NNOtNU8F6xa3sUbwmzkbDj7pCkhh7ggEfSvK/gLNrkfga9XS7TT5oRqTlmubp4m3eXHwAsbDGMd677WtD8VeKLCXS76+0/StMnXZc/YS8s8qd1DOFCZ6H5TQBz/wC1e/1PwBJFeu8iWd20FvI/OU2q23PfBY/gQO1enTXcEDok08UbP9xXcAt9M9aztG0Cz8MeH49K0WBI44Yz5YY/ffH3mPck9TXL+DdLnHhWWXx5pGlwahPK4uJJiknnp2Z2JYckngHAGMADigDvwc4wcj19q5/wAb+IT4W8GanrA5lgi/cg85kbCoMf7xB/A1xvwz1Q23jLxR4Wtr77XpNi6T2B8wSCJH5KK3OVGVAHbB9au/GLMuj+HLDgre6/aQuD0ZfmOPzAoA6fwdoh8O+E7CwkYvchPNuZG5aSZzukYnqfmJrlvEXiOJPi7oXh7UNPmubSW2863CDcgnLMPMYfxBQgx6bifSvSDjoRQQDz3A6+lAHL/EDw7Y+I/Bmp215CjPFbyTW8hA3RSKpKsp7dOfasD4JeIL3xB8PYnv5Glms7h7QSucmRVCspPrgPj/AIDVv4ma3dJpP/CL6KhuNd1pGghhTrFERh5W9FAJGT/Q1seB/C1v4M8K2mixSCV48tNL08yQn5mA9OgHsB3zQB0tB6GiigDF1Xwzp+t3ST35vHCps8hbyWOFhk/ejVgrdecg8V558AUSPw5ryKoCLq8igDoBsSvXa8k+Af8AyAPEP/YYl/8AQEoA9brgfN/4Rv4upbK22x8S2zSCPHAuoQMkem6PGfUiu+rzf4pMbTVfA1+v3otfhhJ77XBBH5CgD0iikBpaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAM3xCAfDWq5HWzm/9ANedfs9/wDJNZD3+3y/+gpXoviH/kWtV/685v8A0A15J8C59eX4fyrptppssAvpBuubp423bU7LGwxz60AejfELTrPUvh/r0N5GjxrZTTKWH3HRCysPcECuX+BGsX+rfDof2hI8ptLt7eGRySWjCqw5PXBYj8Mdq1te8P8AijxXZSaZqd9YaXpU3FwlgXmmlT+4HcKFB7naa6Cw0aDw54bGmaDbpEtvCwt42JwzYJBY+pbqaANGW7ghlWOW4iR3OFVnAJ+g71MDnvXBeFNII8ID/hOdK0yHUZmZbozlHM4/vOxLAk8nGcDjAUcDL+FOqyDX/FXhtL77Zpmm3Kvp8hk8zbE5b5Q3cDAxz60Adj438Qnwt4M1PWBzLBF+5B5zI2FQY/3iD+Bp3g7RG8PeE7DT3YvchPMuZH5MkzndIxPU/MTXMfGLMuj+HLDgre6/aQuD0ZfmOPzAr0buKAPN9W8RQn4z6V4ev9OmuITa+bZnblEmO8tKw74CAA/wnd+Gz8S/D9lr/gTVVuYUaa1tpLm2lIG6KRFLAg9RnGDjtXX7VznAyOM4rz74m6td3WmL4P0JPP1rWo9nljpBbHiSRz2XGV98nHSgB/wc1688Q/Dqynv5GluLd3tjK3JkCfdJPc4IGfau/rA8HeGbbwj4XstFt38wQJmST/no5JLNjtyePYD0rfoAK828IeIotb+J3ieyu9OmGoWEhjguHGUjt1O0KufuliS2R97Poor0mk2gZwAM9aAPJ/jnpcUHhiDxRZk22raXcRmK6jO1yrNjbkc9SD+deheF9Tl1rwppOqTLtlvLSKdwBj5mQE4/EmvPviDFc/EPXbXwRpLkWdrKtzq94OUhAHyxg9Gfknb/ALvocenWFpBYWNtZW0fl29vEsUaddqqNoH4AAUAcXazDw58XJtMUlbLxFbG8iTsLqPiTb/vIAx9xXfV5x8SGNr4v+H98nDDV/s+R1xKAp/lXo9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFB6UARyn90+emD14rxv9nA/8Ulqwz/y//wDtNf8AP4V6hrXh3TvEMcaailw8aBl2w3csIYHGQ3lsu7p3zjn1NZOlfDPwnodws+lafcWcgdX/AHOoXChivTI8zDfQgigDrccVkeKNWfQPC2qatFCJpLS2kmVD0ZlBIz7cc1r47UjxpJGyOisjAhlIyCD1BoA80+GmiWuveG7TxXrxXWNXvi8nnXQ3rAAxASNTlUxjsAcms7wzcQv+0F4tlhZRCNNQIw4U7PKVsewZWHHcGu3s/A2i6cJY9OF7Y2srFntba9ljiJPXChvl/wCA4qS98EeHb+7trqXTwk1tCbeN4JXi/df8822Ebl9myKAOO+KN1JqPwv0jX2haEwXdlqDx5/1ecDByB0L16irBlDKQVIyCO47VleI9Cg8Q+GL/AEWXakV1A0SkDhDj5SPoQD+FZ3gLVJtS8KW0V4pTUtPH2C9jY8rNH8pP/AgFYezCgCfxV4rsvDFjHJPcWy3Vy3l2sVxOsSu3qzMQFUAgk9u2SQDh+H9V8H6O1xfXXi7RbrWLwhru9a+iG70RAWO2Nf4V/E5OTWp4i+HvhfxbqCXuuaa13cRxiKNjcyoFTJOMKwHUmsn/AIUn8Pe3h/8A8nLj/wCOUAdJ4d1yPX4766t5YZbJLtobSWE5EiKqhmzkg/PvAI4xj8V0zxXomr63faRYalHPf2LEXEKhgUwcHkjBweDgnHfmp9D0PTvDmkw6VpNt9msoSxSMOXxuYseWJJ5J6+tc/ZeGtG0/4kvf6XYxw30ttLNqMsbN8xkZdgIJwNxWRuB1X3oA7SvJ9As28PfH7X4Jv3cOtWS3dsT/AMtGBXeo9wd5+gr1g9Kyda0DTtdjh+2RsJraTzLe5icpLA/95WHI9x0PfIoAwvirfJYfDTW2ZiHngNtGo5LtIdgAHc8n8jV3wBoknh3wHo+lzLtmhtw0qj+F2Jdh+BYj8KlXwnaTX9reand3upyWjB7dbxl2RMOjBEVVLDPDEEj1roe1AHnHxZT7YfB+locyXPiC3baOpRQ24/QZFejd64RYf+El+Ksd0F3af4ZgaJXzw93Mo3D32x4/FhXeUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFVNT40q8JPHkPn/vk1bPSsbW/DWl+IVVNTjuZEVSuyO7lhVgeoYI6hvxzQB5t+zlj/AIQPUR3/ALUfj/tlFXsOPzrlNI+G3hXQbhJtKsLizdJFkxFf3AVmHTcvmYb6EEGusoAwfGGszeHPB+q6xbxebNa27SRoRkbsYBPsDyfauV+HHh+z1Pw3YeJtaZNY1q+Xz3urrEnk5P3I1PEeOAcAc57YA9FmijnheKWNZI3UqyMuQwPUEd65yz8DaNpsbw6cb60s3Ys1pBeypFknnChvlz6DA9qAOC8I3sMfxo8d3UWDFHaoyfwhggUHB9Mg8itL4qTvceEPDWuvEYRa6tZXsqk8xqc8Hp0LAV1114I8O3t9BevpwWeCH7MDDK8YaH/nmyqQHT/ZbIqfxZ4fi8T+E9S0Rtq/aoCkbEcK45Q/QMAaANvHTFc94q8V2XhixjknuLZbq5by7WK4nWJXb1ZmICqAQSe3bJIBb4J1mTW/ClpJcq0d/ADa3sLn5knj+VwfrjP0YVD4i+HvhfxbqCXuuaa13cRxiKNjcyoFTJOMKwHUmgDL8P6r4P0dri+uvF2i3WsXhDXd619EN3oiAsdsa/wr+Jycmui8O67Hr8V9dW8kMtkl20NpLCciRFVQzZyQfn3gEcYx+PN/8KT+Hvbw/wD+Tlx/8crrND0LTvDmkw6VpNt9msoSxSLez43MWPLEk8k9fWgCDSfFeia3qd9p2nahHcXdg+y5jUEbDkjgkYYZBGRnFbdcXpfhvRdL+I1ze6PYJb3ElnI+ourMdzyyIU4zgH93IcADqPWu0oATPFeR/ARh/YHiD5h/yF5M89PlWvQ9X8M6ZrsobUFu3Krs2xX00KsPdY3UHr1IrHsfhd4Q0su2nafdWbP942+pXMZP1xJzQB2PbvXnPxOBvNd8CaYhy8uuR3O3rlIhlj+TV6GqqiKozhQAMkk4/HmuHtIT4k+Kkuqbc2Hh6BrOB+z3MgBkx/uphT7mgDuxS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUdqKD0NAGZ4i/wCRZ1Uk4H2ObP8A3wa84/Z5x/wrqcdxqMuf++I69A1zwtpPiMKuqxXMyBSmxLyaJWB6hlRwG/EVnaP8OfC+gXCTaVY3FoyuJNsd/cBGYdCy78N+INAHV4HpXN+OdeuPDHgnVdYtYhJcW0OYwRkBiQoYjuATk+wrpKiuIIbm3kgniSWGRSrxuoZWBGCCD1FAHBfDzw3YXnhzTvEWrbdW1i/gW5ku7wCUx7vm2JnIQLwOMdK5vwVqUNr8SfiRqEahooY0mUZ2h1RX6H0OOo9j0r0Cy8DaLpkLW1ib62sWYsbOO+lEIJOThd3AOTkDAOelPuvBPh281OPUZNOC3CQrbkxSvGkkQxhHRSFdegwwI4A6UAcr8Wmf/hGPD+ruhjFjrNpdS852Lkg5PHdhXpZ6ZHYVi+LtAj8UeE9S0VyAbqEqjNyEccoT7BgKr+CdZk1vwpaSXKtFfwA2t7E5+aOeP5XB+uM/RhQAnivxXZ+GrSJJLmzW+vGMdrHdXCxRkjq7sTwi9/wAGSBWR4e1XwZoaz3Uvi7RbzVLw+ZeX8l9CGmbpgfN8qDGAo4AHc8nR8Q/Djwp4q1IX+taWbu5CCMObqZMKOgAVwMcmso/BT4e9f8AhHzn/r8uP/jlAHS+HNbXX7G4v4Xiks/tUsVrJH0kRDtLZyc5YNz6UaN4r0PxBe31ppeox3M1jJ5c6KGGw5I7gZGQRkZHHWrWi6NYeH9Kg0rS7fyLO3BEce8ttycnkkk8k9a5zRPDWi6N49vbjRbCO2Y2zNfMjHDySurKMEnGAjHAAA3j1oA7SuM8WeLrSzvF0C31uw02/mTfNdXU6ILSI/xAMfmkPO1eg6ngYPZHoa4jUfhJ4J1fUrjUNQ0Vp7u5kaWaQ3k43MTzwHwPYCgB+k+IPAfhjSPsll4i0dYY90jkX8byzP1Z2OdzufXrXR6DeXGo+HtNvruNUuLm1imlVAcBmUEgfnXI/wDCk/h7g48Pkcf8/lx/8cruo40hiSOMBURQFHoAMCgDz74hp9s8a+ANPQ5c6m11gf3YlDE16PXBaTF/wkfxQv8AXdp+w6JCdNtW7STtzMw/3eE9+fSu9oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopM0ALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAGKKKKAEOMGsVtCEPiRdaspvIkmURX0W3KXKgfK3s6no3dSQR0K7dGB6UAFFFFACYGOnFVrayt7WWeWGMLJPJvlbJJZsAck+gAAFWqMUAFFFFACYAB4qpfpdy2MsdlcLb3DDCTMnmBPUhe5A5APGauUYB7UAZ2j6TaaHp8VjZghFJZ2c7nkc8s7N3Ykkk1o0YHpRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUmeaWgAooooAKKKKACiiigAooooAKKKKACjGKKKACiiigAooooAKQ9DS0UAYiaILbxI2r2Uwg+0rsvoNmVnwMI/s46bu68HopG3SYGMY6UtABSY4paKAKtpZW9m0xgi2tPKZpWySXY4BJJ9gAPYAdqtUUUAFBOASaKKAKWpQ3dxYSw2V0LaeTCiYpu8sZ5YD1x0zxnFM0jSbTRdNhsLOMpDFwNxyzE8lmPdickn1JrQwPSkwPQUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSZ5oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEIGDWKmiC28SNq9lMIPtK7L6DZlZ8DCP7OOm7uvB6KRt0mBjGOlAC4ooooAOgqraWVvZCUQRBDNK00hySXc9SSfwHsAB0Aq1RgUAFGAO1FFAAelUNUt7q5sJILS8FnJIApn27mRe5UE43Y6E5APY1fooAo6Tplpo2m2+nWUXlW8C7UXOT7knuScknuSTV6jAooAKKKKACiiigAooooAKKKKACiiigAooooAKKT/ADiloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKD0oooA5nXpPGf28R+H4dEFp5YLTX8kpcPk5wiDkYx3ryXwL4t8Uav8cZNN1rVWmS1+027QQEpBlMjITvyOp5r6AxXzV8O/wDk4/Vx2+13/wD6E1AH0rRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAB6V4z8RPiLdWfxCsfCazXtlpzGMXk9i6rO5kxgKxB2qMjkYJ5GRXsx6GsfVNH0qW4XWZ9FgvtRskLW7eSjTZXJAQtjBz05HJ6igDzP4n6Ne+DPDA8QaD4k1yC6t50V0n1CSdJQxxyrkjI6+nWur+FXjC78a+DI9Rv41S8hna2mZRhZCArBgO2Qw/HNed/FfW9X8RRafo+qadceGNBe4Dz394vnB3A+Vf3O4D+IgE846jbXq/gXRtE0LwlY2mg3CXNjt3i5Rw3nMTyxI7n07dO1AHTUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFB6UUHoaAPGfiJ8Rbqz+IVj4TWa9stOYxi8nsXVZ3MmMBWIO1RkcjBPIyKd8T9GvfBnhgeINB8Sa5BdW86K6T6hJOkoY45VyRkdfTrXpmqaPpUtwusz6LBfajZIWt28lGmyuSAhbGDnpyOT1FeNfFfW9X8RRafo+qadceGNBe4Dz394vnB3A+Vf3O4D+IgE846jbQB6J8KvGF3418GR6jfxql5DO1tMyjCyEBWDAdshh+Oa7muZ8C6NomheErG00G4S5sdu8XKOG85ieWJHc+nbp2rpqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArltafxw+oPHocegx2OBtmvnmaTpz8ijHX1NdTRigDwP4TeLfEfiL4sanDrWqTXCxWUqiFTthVlkQZCDgd+evNe+V81fA3/ksOtf9etz/wCjkr6VoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvmr4d/8AJyGr/wDX3f8A/oTV7jr+k+JdQvEl0bxSmkW6x7WibTkuNzZPzbmYY4IGPauC034MavpHiafxHZeNRFqkzSO8p0pWBaQkt8pkxzmgD2Gisbw9Ya1p9tLHrWtjVpmfdHKLRbfYuB8uFJzzk5rZoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKADtXk0Hxl874pHwn/Y7C2+2NZfafMO/wAwEjdsx93Ix16c57V6yelcJqvw5ik8VN4p0C+XStacYkd7VLiKTjBOw4KsRwWVgevqaAH/ABeigl+Fmu/aACqwqy57MJF2/rivPf2bLu9kt9ftHLNYxPDJHn7qyNuDY+oUZ+grrPEXgTxh4ytBp2u+KLKDTC4aWKwsWBlwcjO9z357jPauw8K+FdK8H6LHpmkxFIQ293c5eVyMFmPrwB+GKAN6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo7UUHpQB5NB8ZfO+KR8J/2OwtvtjWX2nzDv8wEjdsx93Ix16c57V0Pxeigl+Fmu/aACqwqy57MJF2/rimar8OYpPFTeKdAvl0rWnGJHe1S4ik4wTsOCrEcFlYHr6mszxF4E8YeMrQadrviiyg0wuGlisLFgZcHIzvc9+e4z2oA5P9my7vZLfX7RyzWMTwyR5+6sjbg2PqFGfoK96rB8K+FdK8H6LHpmkxFIQ293c5eVyMFmPrwB+GK3qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooPSuY1zR/FN9qPnaR4tTS7XYF+znTI5/m7nczA0AeI/A3/ksOtf9etz/wCjkr6Vrx3Qfgxq/hjWrjWNK8aiG+nVkkkfSlcFWYMeDJjqor0zQbPVrCxaDWdYXVbkyFhOLZYMLgYXapPQgnPvQBrUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUHpQAUYpgOTkHvin0AFFFFABRRRQAUUUdqACimKcnrnntT6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooPSmKd3IPQ4PfmgB9GB6UUUAFFFFABRRRQAUUHpTA3OAeKAH0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFHagAopgOcHt0p9ABgelFFFABRRRQAUUUHpQAUUwNzgHin0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRSHoaQHPOc80AOooooAKKKKACiiigAooPQ0xTknk0APooooAKKKKACiiigAPSvH/G3ijxv4Q13w/py6xpt0urzGFZDpxQxEMi5x5h3ffB6jpXsFeL/Gr/kePh3j/n/b/wBGwUAd+2l+MguV8U6du9G0g4/9HVkWHj690zxhB4U8XWtvbX90oazvLQnyLgEkAYbJRsgjGTz+Ge+PQ449/evD/iTbyeL/AIueGtG0ZvMuNNxNeSxci2G8H5j2IC5we7KO9AHuNLWZqWrQ6YbeLypbi6uCVgtoAN8uBk4yQAAOpJAHAzkgHHv/ABomh3VpHr+nXGnW91L5Ud3vWWEOeiuVOVJ+mPegDqz0rmvFuvXGlwWenacVbWNVn+zWYcZCcZeVh3VF5I78etdGDkAggg8/WvPtKc638bNanbDQaDYRWcQPIEk37xmHvhSpNAHZaRpsGk6dHawtI+MvJNK2Xlc/edz3Ynn09MACsaz8R6h4iWS48PR2DWKO0Qurmct5jKcHaiDIX3Zgec4xjPUsqlSCOMYrmPCXgzRfAlhdwaWZkgnk82Rp5d23jAAPYD/9dAFLSPHbN4xk8Ja9ZLYaxs8y3aKUyQ3SYJypIBB4PBHY12teO2thJ43+OUXiSyXdoeiQCAXYB2XEo3cIf4sGQ5PT5fcZ9ioAKgubmG0tZbm4lWKCJDJJI5wqKBkkn6VPXm/xy1KTT/hffLExV7uWO3yOuCcsPxCkfQ0AbWkeIdb8TWH9qaRZWlvp0hP2Vr528y5AJG7av+rU44zuOOcVc8N+J49dmvrGa3ay1XTpBFeWbSByhIyrKf4kYchsDPoKveHbVbPwzpNqg+WCzhjH0VAK85uLk6b+0vZwxcJqmj7Zh0yV3sD/AOQgKAOp8VyS+GbgeLLPebePamq2yg4lhyB5oHZ4xznuoIPRcdZBPHcwxzwuJIpFDoynhlPQ/jSXdrDe2c9rOgeGeNo5FP8AErDBH5GuI+EV7PP4IGm3T77nRruXTZD/ANc2+X8lKj8KAO9ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApGzsbacHHBxnFLRQB4/4u8U+OPC/i3w9og1jTLhdYmWETf2cUMRLqhO3zDuxuB6jNds+l+M1QsnijT2YDO19IIU/iJq4D4tf8lX+HX/X+n/o+KvZyePT3oA4LSfHt3Z+MU8IeLLWG01SVd9pdWxJt7sc4wDyh4IwSeQR6Z7+vDfHFvL4u+OHh6w0f96+kiOa9nTkW4Em/BI7gAcerCvXtS1iLTXt4PKluby43eRawld7hQCx5IAUZGSSByB1IBANSiuWvPGkWjX9pba9p9xpsV3J5UN2zpJAZD0RmU5Un3GPeunGfxoA5vxZrdzY/YNH0twNY1aUw2zEbvJQDMkxHcIvOO5Kj1rX0zTrfR9OjtIN2yMEtI7Fmdicl2Y8kk5JJ9a4zQJP7b+MXiW+b5odHtYdOt+4DPmSQ/XIxXfTRJPC8UihkdSpB4yDQBzFj4h1PxHbte+H4tPOnbisdzdTsTKRwSEQfKvoS2cHO2quiePPtXi648J61Zrp+tQrvjWOXzIblMZ3IxAPTsR6+hxf8KeENG8BaRcWmnPKtvJKZ5HuJM4JAHXgAAAVwejadP4x+OMvi22Q/2JpMRtobr+G5lCFTsP8AEoLt83TgetAHsVFFFAEVzcR2trNcS7/LiQu2xC7YAycKoJJ9gCTXA678UotMvNHtrXRtRYaleR2y3F5bvbRgFlDEBwGJwfTHvXodeSfGb/kPeAv+wwv/AKFHQB61/nFcd4nlfwpeL4pt2f7CWSLV4AMgxnCicD++mRn1X/dFdiKrajYw6npl3YXChobmFoZBjqrAg/zoAnjcOqujBkYAgg5BHsafXDfCXUpr/wAAWdvdNuutNkk0+Y+8TEAf987a7mgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBGzsbacHHBxnFeQeLvFPjjwv4t8PaINY0y4XWJlhE39nFDES6oTt8w7sbgeozXsFeLfFr/kq/w6/6/wBP/R8VAHfvpfjNULJ4o09mAztfSCFP4iasrSfHt3Z+MU8IeLLWG01SVd9pdWxJt7sc4wDyh4IwSeQR6Z70nj0968P8cW8vi744eHrDR/3r6SI5r2dORbgSb8EjuABx6sKAPcqKy9S1iLTXt4PKluby43eRawld7hQCx5IAUZGSSByB1IByrzxpFo1/aW2vafcabFdyeVDds6SQGQ9EZlOVJ9xj3oA6muW8W61dW9xp2g6VJs1bVXZUkxu+zxKMyS47kDgA9WIrpxmvP/Csn9t/FTxbqzjdHpyw6VbHrtwC0v0+bFAHaWFla6NpyWtuCkEKk7nYsT1LMxPJJJJJPJJNYdjr+reIbYX2hQaeunOSIZ7udmeUDuEQHaDjIy2cHlRXSXVvFeWc9tOu6GaNo3GcZUjB/Q1geFfCuj+AtDlsbCSSO1MrXEklzID8xABJOAAMAUAUPDnjwaj4ovPC2sWf9na7ajd5SyeZFOmM7o2wD0IOCAfyOO0rx7wzps3iv40XvjWFHXRbGP7NZzsCBcvs8tmX1Xlzu78e+PYaACqOp6nbaTp8t7dOwijxwg3MxJwFUDkknAA9TV49K474jeHNZ8S+HoLbQL6Oyv4LyO5SWR2VflB7qCepBHHUD0oAdc6j44a1a8tNF0oKAWSynvW89x1ClgmxW9skDue9SeC/HWn+Mra4EEM9rf2b+Vd2dxxJE/T6EZB546dBW/p0dzFptrHfTLPdpCizyhcCRwAGbHYE5OPevH/Aa/av2g/GN3Y5+xRxvFMRypk3IOfcsrkfQ0Ad14nlfwpeL4pt2f7CWSLV4AMgxnCicD++mRn1X/dFdfG4dVdGDIwBBByCPY1BqNjDqemXdhcKGhuYWhkGOqsCD/OuQ+EupTX/AIAs7e6bddabJJp8x94mIA/7520AdzRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTZQ5icRuEcqdrEZCnscd6dRQB494l8U+N/D3jvQ/Dg1jTZ01VlC3B04qYsvtPy+Yd2OvUda7d9L8ZhMxeKdOZx/C+kHB9uJcivP/iV/wAlv8BD/bT/ANG17QTgeooA4TQ/H1yni7/hEPFNnFZayU3281u5a3ulIJyu7lScHg5+6ec4Fd7Xhnim2k8X/H/Q10dhKmirC99cJykRSRpChbpnBAx6k+hx6/qOsR6fNBapDNdXk4ZoraHG5lGNzEsQFUEjJJ7gDJIFAGpRXK3HjSLStVstP12wn0z7Y/l29y7rJbyP/c3g5Vv94DPODXUc556UAct4r1m6Goaf4a0mYxalqm4tOBn7Lbr9+X/e5Crnufat6ys7TSdPS2t1EVvbqSMkkjrliTySeSSeScmuK8FyHWviL4y1yTDJazR6TbdygiBMgz6FiDXeXVtDeWc1tOu6GaNo3HTKkYNAHN2Ov6t4hthfaFBp66c5Ihnu52Z5QO4RAdoOMjLZweVFVfDnjwaj4ovPC2sWf9na7ajd5SyeZFOmM7o2wD0IOCAfyOL/AIV8K6P4C0OWxsJJI7UytcSSXMgPzEAEk4AAwBXB+GdNm8V/Gi98awo66LYx/ZrOdgQLl9nlsy+q8ud3fj3wAew0UUUAZ+savaaHpFzqd/J5Vtbpuc9/YD3JIFY66h4ru7QXtnp+kojr5kdvNdszOpHGXRSqk+24e/etDxL4esfFXh660TUPMFrcBd5jbawIYMCDz3UdjUMA0bwP4Xihe6W202wh2K875OAM/ix9B1z0oApeCvHNl4ytrsRQS2d/Yy+TeWcxy0L8jqOoyCO3Q1W8Rzv4Q1GPxNEx/sqeRIdWh6hdxCrcr6MDtDeq47qK5z4PeHtQhvfEHizUbZ7RtbuTLb28gw4jLM+SPcsMfT3Fek61pkWs6Hf6ZMAY7u3eFsjONykZ/WgC2jBlBBBB5BByKfXFfCnVptX+HWlvdHN1bK1pMepzGxUZ99oU12tABRRRQAUUUUAFeJfHWNZvFngGJ9217yRTtYqcGSDoRyPqOa9tPSvCPijdX3iTxJ4TvNK8OeIJ4NLuGmnc6XMuQXjOBuAOfkPXANAHqr+C9FkUq637KeobU7kg/hvrR0nRNL0G0NtpenwWcJO5lhQDcfUnqT7mk0jV4dZt3nitr63CPsKXlq8D5xno4GRz1FaJHBoA4H4gWfhn+0fD2r69eXkV3p91vsLW0O57mQlTsCAFm5VeRj9RWL8V9R1PU/hTrD3GgSWVviFg13cJ5o/epj5E3D8Cwx+lS+KtN1DTvjBoviy6srm90SG0NuWt4jK1q53/ADFBkkfMOQD39BWh4/8AtfjXwVqOjaBbzTNLGJHmliaNCEIcIhYDc7MqjjgDOSOAQDrfDEjT+E9GmdizSWMDEk5JJjU1xvw5+bxz8Qmb/Wf2mikf7IVsVo+CLq8vLPRM2mo2UFhpK2lzDdwvCDP+7xhWA3bRG3zD+/7nFLw7H/ZHxn8V2Dgquq2tvqMHodmY3/Hc2aAPQZZEhheSRlVEUszMcAD3zWRLZeHPFlrb3MtrpesWy7jDI8cdwoz12nBxyBnHpVjxBpK674d1LSmkMQvLaSDzB/BuUrnHfrXE+Cp9D+H3hyLQtT+06Xcxu0kxvctHK54LRygbWU4GBwQOozQBi61rtx8MfiRo+n280z+GdWVU+xyOWFq27aTFn7qjKnaOOTjtXsXpzXjOraRdfFH4kaVqNvazx+GdIxm7njMYuX37iI1PzEHCgnGOG9q7vx9rfiDQPDyXnhrSP7VvTcKjQ7Gk2oQcttUgnkAe2c9qAOsryn9oKJ5PhqHUcRX0TN7DDD+ZH516JoWpNrGhWOoPF5L3MKyPDnPlsR8y574ORn2qn4x8Ox+LPCWoaJI4Q3MWI3IyEkB3KfpuAoA0NGdZNFsHU5VraMj3G0V5Xramb9qDw6EyRDpjF8fwjbP/AFYfnXU+EvEtvpnhqz0zxHJ/Zeq6fCtvLFcnb5mwbQ8Z6SBgAflzyaqeFdHuNV+IOq+OLy3ktoJoVs9MhnQrIYhjdIVOCu4g4B5wTQB6JXm/ws41jx2i8xjxDOR9T1r0Z3WONndgqqCSScACvP8A4PwPJ4VvdakQq2tapcX6gjB2s20f+gk/jQB6FRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSM21GbBOBnAGTQB4l8ZIUuPiZ8P4ZN2yS7VG2OVODNGDgggg+4Oa9MfwVociFJEv3UjlX1K5YH8DJXlXxEur7XvHvhLVNN8OeIZ7TSp0muH/suZSQJUbABUEnCn0z617NpOrR6vam4it7yBVfyyl5avA+cA/dcA45HPTr6GgB2l6Npuh2f2XS7G3s4M5KQoFBPqfU+5rj/Hlv4Zh17w9rms3l6NRspj9gs7M73uXJB2hACTzjoQOcHtXf9BxXlOu6df6V8arHxXeWVze6N9jNss1vEZjZvg8si5YA5PIH8VAFX4v3up6l8Lb6S50FrG3SSBlNzcIZlO9QPkTcOh5+YYz+Feo6LI0+hafK5LM9tGxJPUlQa4T4jR33jbwVfaVoFrLOdqzvJJC8QfYdwRNwG5iQOnAAOTkgVseDry61JLCf7Nf2dtbabHbSQXcTxZm43fK2M7QuNwyPm6nBwAY/wv8Am8ReP2b/AFn9uyKc+gztr0WaeK3geaaVY4Y1Lu7sAqqO5J6CvPvCSHSfiv4z0t1IF8LfUoO24EFZD/32cfhXW+KNE/4SLwvqej+b5RvLd4lkxnaxHynHcZoAbPpvhzxZbQXdxaaVrEGCIZmjjuFA77W57+npXnN94gufhz8VNM0KOeWfw5q6oI7aRy/2N2YpiMnkJkKdvQAnHStvwbfaF4E8OW+hah9p0meHLSi/yyu56skoGxlPYDBx1ANc/daNdfEv4p6ZrsdpPD4b0cJ5c88ZjN06sX+RTyV3YGcYwp+lAHso+uaWuR8f674j0DRILnwzov8Aa129wsckexn2IQfm2qQeoAz0Ga39G1EavothqQQxi7t45wjdV3KDj9aAL9eSfGb/AJD/AIB/7DC/+hx16xNKIIJJmV2EaliEQsxwM8Ack+wrxb4m6ld+INX8LTaV4c8Q3Eem3wup2OlTJ8oZOAGUEnj0oA9rFLWRo+vway0gitNStmjALLe2Mtv1zwC4AJ+ladxPHbW0s8zBYokLux7KBkmgDzv4RfLF4wjT/VJ4kuwh/wC+K9Irz/4PWssfgcajPGUm1e9n1BlIxje2B+YUH8a9AoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8R+MkKXHxM+H8Mm7ZJdqjbHKnBmjBwQQQfcHNe2s21GbBOBnAGTXhPxEur7XvHvhLVNN8OeIZ7TSp0muH/suZSQJUbABUEnCn0z60Aeqv4K0ORCkiX7qRyr6lcsD+BkrT0vRtN0Oz+y6XY29nBnJSFAoJ9T6n3NN0nVo9XtTcRW95Aqv5ZS8tXgfOAfuuAccjnp19DWj0HFAHAePLfwzDr3h7XNZvL0ajZTH7BZ2Z3vcuSDtCAEnnHQgc4Paue+L97qepfC2+kudBaxt0kgZTc3CGZTvUD5E3DoefmGM/hVrXdOv9K+NVj4rvLK5vdG+xm2Wa3iMxs3weWRcsAcnkD+KrnxGjvvG3gq+0rQLWWc7VneSSF4g+w7gibgNzEgdOAAcnJAoA7vRZGn0LT5XYlnto2JJ6kqDXC/CbmfxtI5/enxJdbgewGMf1rX8HXd3qUdhOLa/sra202O2kgu4XizPxu+VsZ2hcbhkfN1OCBmeB4/7J+I3jfRnG3z7mPU4Sf41lB3EfRuKAO/uLmG0t5J7mZIII1LPJIwVUUdyT0rLudJ8OeKYIru5sNL1aIqRFM8Uc64zyFbB7+lM8YaEfE/hHUtGWURSXcJRJDnCuORnHbIGa5rwpqvh/wAE+G7XQr03OkS2oJaLUeSzEliVkACSDJONp9iAeKAMBvEV34B+Ldj4YNzNc+H9XWM2sMrmRrSR2KBUY87Ny9OgDcdDXsNeNJot58RPizZeKvsc9t4e0lYxbTXEZRrt0YuGVTzt3tnJHIUevHb+P9d8R+H9Et7nwzov9q3T3KxvHsZ9qEHnapB6gc9B3oA66kPQ1Q0bURq2iWGpBDGLu3jnCHqu5Q2PrzWb4w16+8PeHpr3TtLu9Uvi3lwW1tA0pLkHDMF5CjBJPHp1NAFTxXrt+kq+H/DyCXXbxCVY/cs4jwZpD2A5AHdhgdKs+DfCFh4L0ZdPs90krt5lxcv9+eQ9WP8Ah2/M15hovxB8TaNDKV+Fuvz3dw/mXV3J5nmTvjqf3HAHQKOABgV1vg3xDrvi3xY19q3ha80G3sbJ4olug/715XQkgsi9BH29aAPRq83+EXyxeMI0/wBUniS7CH/vivRLieO2tpZ5mCxRIXdj2UDJNcH8HrWWPwONRnjKTavez6gykYxvbA/MKD+NAHoFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFMlkEUTyMGIRSxCKWJx6Ack+woA8S+K0CXPxk8DQSb/AC5XRGKOUbBlwcEEEfUGvTZPBOhzIUljvpFP8MmpXDA/UGSvK/HN1f6z8TfC2tWHhvxBNYaY8bzyHS5lPEm44UqCcD6V7PpeqR6ta/aIoLyFd2wpd2zwPn/dcA4/+vQAumaTp+i2QtNMsoLO3ByI4Y9gz6nHU+9cZ41g8M2ni3QNd1W5vzq9sWSwsLP53uSe2wDPU9cgepr0EjINeVajp9/ovxv/AOEp1CyubzRriy+zwT28LTfY3wAdyqCwBw3OMfP9aAKHxmvtUv8A4bSzXOiGxiS6idDcXKNKpyQDtTcB1/vfn0r16zfzbKCRuS8at+Yrzb4nwX/jfwVc6f4ftZ5xHtuXkeJkE20/6uMMAWJzuyAR8uM5IrpfC19c6tcLei3v7SzSxhhWC7heI+dli/yNg/KNo3cg54PBoAwfg2d2k+JnYnzG8Q3bPn1wleh3FzDaW8k9zMkEEalnkkYKqKO5J6VwHw9Q6T4x8caGw2gakuoxdtyTrnj2BUCuo8YaEfE/hHUtGWURSXcJRJDnCuORnHbIGaAH3Ok+HPFMEV3c2Gl6tEVIimeKOdcZ5Ctg9/SvOG8RXfgH4t2Phg3M1z4f1dYzawyuZGtJHYoFRjzs3L06ANx0Nb/hTVfD/gnw3a6Fem50iW1BLRajyWYksSsgASQZJxtPsQDxXOJol58Rfi1ZeKfsc9t4e0lYxbTXEZja7ZGLhlU8hd7ZyR0UevAB7LQehrjvH+v+JvD+m2c3hrQv7VnkuBHNHsd9iY64UgjnjJ4FdJpd8mp6VZ6hGGVLqBJlVuoDKGAP50AF9qNnpcAnv7y2tYdwXzLiVY13HoMk9TzxWfqPhTw7rMrXd3pFlNcyAH7WsSibgDawlX5gRgYIPGBWH8TvB/8AwmPh22tgksrWt0lwYIpVjeVQGDKrMNobBJGcDIHI61Yg8b+F9J0yK3kuprZraIILSeCQXAwMbdhGWP0yD645oA5f4f8Ai3U7fx9rHgPWbuW9Nm7tY3c3MrICDtdv4iVYHPXg+1es15J8O/Cmp3fjvWPH2s2clj9tLrZWkv8ArAjEfMw7HaAMHHU8dCfUr68i0/T7m9nbENvE0rknoqgk/oKAPP8A4MgDQNeReY0166WM/wCz8n/169Jrg/g/p8tl8O7Ke4TZcX8kl64x/fYkf+Oha7ygAooooAKKKKACiiigAxRRRQAUUUUAJgelcj4x0q6W60zxPpkLS6jpDkvBH965tn4ljA7tgbl91966+g0AU7DULXVLC3v7KZZrW4QPHIvRlPf/AOt25q3gegqG2tLezDrbQxxLI5kYIoUFick8dyanoAQjINZ+rXd1aafI9lbNcXbYSFMfLvPALEdFGck+ma0aMUAUdKsE0vSrTT0ZnW2iSIO3Vtoxk+/Gfxq9gelGKKAEIB6ijHpilo7UAcj42uLnULFfDGlykahqgMcsi8/ZrbpLK3pxlR6seOhx0mnWNvpen21haR+Xb20SxRr6KowKdHaW8VzNcRwos05XzZABufbwMnvjt9asAAdBQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAGB6UUUUAFJgYxjilooAKD0oooA47xdptxa6lpni3Tonlu9M3R3UMS5a4tG++oA6lTh1HqPeunsby31CygvLSZZredFkjkQ5VlIyCKtYHpUFtaW9nGY7aGOKMszlUXA3E5JwO5JyaAJ8CkIG08cYpaKAMzWbq7g0+RdPheW9mxFD8uVRm/jf0VRknPXGByQKsadZRadptpYwEmK2hSKMsckqqgA/WrWB6ClxQAUYHpRRQAhHHauP8AGz3GrwR+EtPldbrUhi6lT/l3tM4kcn1bBRR3JPoa7GoIrS3gnnnihRJZ2DSuBy5AwMnvgcUANsrSGxs4LS2QR28CLHGg6KoGAB+AqzRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUYHpRRQAUUUUAJgYxjiloooAD0rjPFljNputad4xsonllsEaC/hiGWmtGOWwO5Q/OB3+auzoxQBXtLmG8torm3lWWCZFeORDlWBGQQfcEGrGAO1QWtpb2UIgtYY4YgSQkahQCTk4A9SSfxqegBDgA1m6zdXcGnuunwtLey4ih+XKozdGb0VRknPXGByQK06TA9BQBV06yi07TbSxgJMVtCkUZY5JVVAB+tW8A0YooAKTHHGKWigDjvGz3GrwR+EtPldbrUhi6lT/l3tM4kcn1bBRR3JPoa6iytIbGzgtLZBHbwIscaDoqgYAH4CnRWlvBPPPFCiSzsGlcDlyBgZPfA4qegAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAMAdBRiiigAowPSiigAxSY4paKAOK8U2cmj+IbHxlaRu628TWuqRRjcz2pJIcDuY2+b1KlhXXQTx3EMU8MivDKodGU5DKeQQfcVNjjpUNraW9jbpb2sMcMCZ2xxqFUZOTgD3oAnwB2ooooAydelvF0xoNPRmu7k/Z4nUcRFgcyMewUAt74wOSKvWdtFZWcFpANsUCLEi+iqMAfkBVjA9KMD0oAKKKKAE4Fcd40E3iDyvCFkzK17h9QmQ8W9oD82T/efGxR3BY9FrsqggtLe3lmlhhjSSdt0rquC5xjJPfjigBbeCO1giggRUhiQIiKMBVAwAPwFTUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9k='] Multimodal Competition True Theorem proof Combinatorics Math English 57 "The arrangement of numbers known as Pascal's Triangle has fascinated mathematicians for centuries. In fact, about 700 years before Pascal, the Indian mathematician Halayudha wrote about it in his commentaries to a then-1000-year-old treatise on verse structure by the Indian poet and mathematician Pingala, who called it the Meruprastāra, or ""Mountain of Gems"". In this Power Question, we'll explore some properties of Pingala's/Pascal's Triangle (""PT"") and its variants. Unless otherwise specified, the only definition, notation, and formulas you may use for PT are the definition, notation, and formulas given below. PT consists of an infinite number of rows, numbered from 0 onwards. The $n^{\text {th }}$ row contains $n+1$ numbers, identified as $\mathrm{Pa}(n, k)$, where $0 \leq k \leq n$. For all $n$, define $\mathrm{Pa}(n, 0)=\operatorname{Pa}(n, n)=1$. Then for $n>1$ and $1 \leq k \leq n-1$, define $\mathrm{Pa}(n, k)=\mathrm{Pa}(n-1, k-1)+\mathrm{Pa}(n-1, k)$. It is convenient to define $\mathrm{Pa}(n, k)=0$ when $k<0$ or $k>n$. We write the nonzero values of $\mathrm{PT}$ in the familiar pyramid shown below. As is well known, $\mathrm{Pa}(n, k)$ gives the number of ways of choosing a committee of $k$ people from a set of $n$ people, so a simple formula for $\mathrm{Pa}(n, k)$ is $\mathrm{Pa}(n, k)=\frac{n !}{k !(n-k) !}$. You may use this formula or the recursive definition above throughout this Power Question. Consider the parity of each entry: define $$ \operatorname{PaP}(n, k)= \begin{cases}1 & \text { if } \mathrm{Pa}(n, k) \text { is odd } \\ 0 & \text { if } \mathrm{Pa}(n, k) \text { is even }\end{cases} $$ If $n=2^{j}$ for some nonnegative integer $j$, and $01$ and $1 \leq k \leq n-1$, define $\mathrm{Pa}(n, k)=\mathrm{Pa}(n-1, k-1)+\mathrm{Pa}(n-1, k)$. It is convenient to define $\mathrm{Pa}(n, k)=0$ when $k<0$ or $k>n$. We write the nonzero values of $\mathrm{PT}$ in the familiar pyramid shown below. As is well known, $\mathrm{Pa}(n, k)$ gives the number of ways of choosing a committee of $k$ people from a set of $n$ people, so a simple formula for $\mathrm{Pa}(n, k)$ is $\mathrm{Pa}(n, k)=\frac{n !}{k !(n-k) !}$. You may use this formula or the recursive definition above throughout this Power Question. Consider the parity of each entry: define $$ \operatorname{PaP}(n, k)= \begin{cases}1 & \text { if } \mathrm{Pa}(n, k) \text { is odd } \\ 0 & \text { if } \mathrm{Pa}(n, k) \text { is even }\end{cases} $$ Let $j \geq 0$, and suppose $n \geq 2^{j}$. Prove that $\mathrm{Pa}(n, k)$ has the same parity as the sum $\operatorname{Pa}\left(n-2^{j}, k-2^{j}\right)+\operatorname{Pa}\left(n-2^{j}, k\right)$, i.e., either both $\operatorname{Pa}(n, k)$ and the given sum are even, or both are odd." ['Proceed by induction on $j$. The claim is that $\\mathrm{Pa}(n, k) \\equiv \\mathrm{Pa}\\left(n-2^{j}, k-2^{j}\\right)+\\mathrm{Pa}\\left(n-2^{j}, k\\right) \\bmod 2$. If $j=0$, so that\n\n\n\n$2^{j}=1$, then this congruence is exactly the recursive definition of $\\mathrm{Pa}(n, k)$ when $01$ and $1 \leq k \leq n-1$, define $\mathrm{Pa}(n, k)=\mathrm{Pa}(n-1, k-1)+\mathrm{Pa}(n-1, k)$. It is convenient to define $\mathrm{Pa}(n, k)=0$ when $k<0$ or $k>n$. We write the nonzero values of $\mathrm{PT}$ in the familiar pyramid shown below. As is well known, $\mathrm{Pa}(n, k)$ gives the number of ways of choosing a committee of $k$ people from a set of $n$ people, so a simple formula for $\mathrm{Pa}(n, k)$ is $\mathrm{Pa}(n, k)=\frac{n !}{k !(n-k) !}$. You may use this formula or the recursive definition above throughout this Power Question. Consider the parity of each entry: define $$ \operatorname{PaP}(n, k)= \begin{cases}1 & \text { if } \mathrm{Pa}(n, k) \text { is odd } \\ 0 & \text { if } \mathrm{Pa}(n, k) \text { is even }\end{cases} $$ If $j$ is an integer such that $2^{j} \leq n<2^{j+1}$, and $k<2^{j}$, prove that $$ \operatorname{PaP}(n, k)=\operatorname{PaP}\left(n-2^{j}, k\right) . $$" "['Proceed by induction on $j$. The claim is that $\\mathrm{Pa}(n, k) \\equiv \\mathrm{Pa}\\left(n-2^{j}, k-2^{j}\\right)+\\mathrm{Pa}\\left(n-2^{j}, k\\right) \\bmod 2$. If $j=0$, so that\n\n\n\n$2^{j}=1$, then this congruence is exactly the recursive definition of $\\mathrm{Pa}(n, k)$ when $01$ and $1 \leq k \leq n-1$, define $\mathrm{Pa}(n, k)=\mathrm{Pa}(n-1, k-1)+\mathrm{Pa}(n-1, k)$. It is convenient to define $\mathrm{Pa}(n, k)=0$ when $k<0$ or $k>n$. We write the nonzero values of $\mathrm{PT}$ in the familiar pyramid shown below. As is well known, $\mathrm{Pa}(n, k)$ gives the number of ways of choosing a committee of $k$ people from a set of $n$ people, so a simple formula for $\mathrm{Pa}(n, k)$ is $\mathrm{Pa}(n, k)=\frac{n !}{k !(n-k) !}$. You may use this formula or the recursive definition above throughout this Power Question. Clark's Triangle: If the left side of PT is replaced with consecutive multiples of 6 , starting with 0 , but the right entries (except the first) and the generating rule are left unchanged, the result is called Clark's Triangle. If the $k^{\text {th }}$ entry of the $n^{\text {th }}$ row is denoted by $\mathrm{Cl}(n, k)$, then the formal rule is: $$ \begin{cases}\mathrm{Cl}(n, 0)=6 n & \text { for all } n \\ \mathrm{Cl}(n, n)=1 & \text { for } n \geq 1 \\ \mathrm{Cl}(n, k)=\mathrm{Cl}(n-1, k-1)+\mathrm{Cl}(n-1, k) & \text { for } n \geq 1 \text { and } 1 \leq k \leq n-1\end{cases} $$ The first four rows of Clark's Triangle are given below. Prove the formula $\mathrm{Cl}(n, 1)=3 n^{2}-3 n+1$." ['Use induction on $n$. For $n=1,2,3$, the values above demonstrate the theorem. If $\\mathrm{Cl}(n, 1)=$ $3 n^{2}-3 n+1$, then $\\mathrm{Cl}(n+1,1)=\\mathrm{Cl}(n, 0)+\\mathrm{Cl}(n, 1)=6 n+\\left(3 n^{2}-3 n+1\\right)=\\left(3 n^{2}+6 n+3\\right)-$ $(3 n+3)+1=3(n+1)^{2}-3(n+1)+1$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAaQEsQMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCpqGoWulWE99eziG2gUvJI3RRXn2v8Axw8J6TYPPYSzarLyqJBGyoW9DIwwPwz9K9LZFdSrKGB6gjNeK/tIDb4R0cLwPtx4H/XNqAPU/DGst4h8M6brBg8g3lukxi37tue2eM/lWxXJ/DL/AJJn4d/68o/5V1lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeK/tJf8AIp6P/wBfx/8ARbV7DfXX2GwuLswzziGNpPKgTfI+Bnaq92OMAdzXhnxc1HUvHWhWFnpXhHxOkkFyZWNxpbqMbSO2fWgD1D4Zf8kz8O/9eMf8q6yvMfAXiqbTfDug+H7vwr4niuI44raSZ9MYQoScbi2eFGckkcCvTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAO1Yuu+JLbw8iyXVpqM0ZVnZ7SzkmCAdS20cDFbVVdSA/su84/5Yv8A+gmgDktL+KGha3A8+lW2s3sKNsaS202aRVbjjIXrgg496uJ8QdCS7itL57zS5pW2Rf2lZy26ufQO6hf1ri/2cxn4e33r/aknP/bKKu/8aadaap4L1i1vYo3hNnI2HH3SFJDD3BAI+lAG6jblBByDyDx/Sn15T8AtXv8AU/AEkV67yJZ3bQW8j85Tarbc98Fj+BA7V6dNdwQOiTTxRs/3FdwC30z1oAsUHpTQc4wcj19q5/xv4hPhbwZqesDmWCL9yDzmRsKgx/vEH8DQA+312XUvEcthpqxyWlidl9ctkjzSuREmP4gCGY9BkDkk7dqWeO3haaaRY4kG53c4Cj1JPArF8G6IfD3hSw0+Ri9yE8y5kY5aSZzukYnv8xNcb42vv7c+KXhbwW4LaewOo3ydpggcxow7rlOQeu4UAdrbeLdBupoYotUtyZiFhJO1ZiegRjgOT7E1tA+9ZniDRLbxBoF7pVzGrRzxMgOPuNj5WHoQcEe4rl/hB4mn8UfD60uLxzJeWsjWk8h6sUAKk++0rk+uaAO9oPTiikPQ0AU7/UrLSrU3WoXcVtbggeZM4VcnoMnqT6darWHiLStSujaWt9G90E3+SwKOV/vBWwce9cJpN5/wlXxr1bzx5lj4btxDbI3KrO5+aTH97hl/Ctb4sWZbwPcatbExalpDre2k6j5o2DDd+BXOR0PFAHWalJfrYStpqwvdqN0cc2drkHJXORgkcA8gHnBxiodB1q317TUvIA8ZyY54JRiSCVTho3HYg8Y/pjLfDWrrr/hvTdXUBftdukrKP4WI+ZfwORXMeb/wjfxdS2Vttj4ltmkEeOBdQgZI9N0eM+pFAHfUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFVdS/wCQVef9cH/9BNWqqanxpV4SePIfP/fJoA8W+As2uR+Br1dLtNPmhGpOWa5unibd5cfACxsMYx3rvta0PxV4osJdLvr7T9K0yddlz9hLyzyp3UM4UJnoflNcn+zlj/hA9RHf+1H4/wC2UVew4/OgDH0bQLPwx4fj0rRYEjjhjPlhj998feY9yT1Ncv4N0uceFZZfHmkaXBqE8ri4kmKSeenZnYlhySeAcAYwAOK6PxhrM3hzwfqusW8XmzWtu0kaEZG7GAT7A8n2rlfhx4fs9T8N2HibWmTWNavl897q6xJ5OT9yNTxHjgHAHOe2AACn8M9UNt4y8UeFra++16TYuk9gfMEgiR+SitzlRlQB2wfWrvxizLo/hyw4K3uv2kLg9GX5jj8wKw/CN7DH8aPHd1FgxR2qMn8IYIFBwfTIPIrS+Kk73HhDw1rrxGEWurWV7KpPManPB6dCwFAHqBxnmvHZST+1HAG6Lph2/wDfB/xNexY6Y5rynxRZto3x28K+IH+WzvoHsHkPQS7XC59Ml0H4GgD1evHP2eGP/CMa2g+4NTbB/wCAL/gK9W1W/j0rSbzUJm2xWsLzMT6KCf6VwHwN0SbR/hzFNcKVl1G4e72nqFICrn6hQw9moA9MorE0nxXomt6nfadp2oR3F3YPsuY1BGw5I4JGGGQRkZxW3QB478IyT8SviVu6/wBpf+1Z67b4lgf8K08RZ/58ZMflXKeErJvDvxw8V2EuVTV4V1C2Y8eZ8x3AepDO/HoM1u/F29W0+Gerxg5muVS2hQcs7OyjAHc4yfwoAd8H2Z/hRoDOORE4/ASOB+lZ/wAUmNpqvga/X70Wvwwk99rggj8hXU+C9Hfw/wCC9I0qUYmt7VFkH+2Rlv1Jrl/icDea74E0xDl5dcjudvXKRDLH8moA9GBpaQUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAAelY2t+GtL8QqqanHcyIqldkd3LCrA9QwR1DfjmtmjGKAOT0j4beFdBuEm0qwuLN0kWTEV/cBWYdNy+ZhvoQQa6yiigBk0Uc8LxSxrJG6lWRlyGB6gjvXOWfgbRtNjeHTjfWlm7FmtIL2VIsk84UN8ufQYHtXTUUAc5deCPDt7fQXr6cFngh+zAwyvGGh/55sqkB0/2WyKn8WeH4vE/hPUtEbav2qApGxHCuOUP0DAGtykPQ0Ac54I1mTW/CtnJdK0V/ADa3sTn5knj+VwfrjP0YVqavo+n67p0lhqVslxbuclG6gjoQRyCOxHI7VUTRBbeJG1eymEH2ldl9Bsys+BhH9nHTd3Xg9FI26AOan8GW1/BHaapqOpalYxlSLS6lUxtjpv2qGkGcHDsw45zXRKiogRVVQAAFHQAdKfgUUAcXpfhvRdL+I1ze6PYJb3ElnI+ourMdzyyIU4zgH93IcADqPWu0PSqtpZW9m0xgi2tPKZpWySXY4BJJ9gAPYAdqtUAZOs+HtP1w2z3Ubpc2rF7a5hcpLCx6lWHr3HQjggiqqeFbR9Stb/Ubu81S4tTut/tjrtiPTcERVXd/tEZ966CkOAKADgCuEtIT4k+Kkuqbc2Hh6BrOB+z3MgBkx/uphT7muv1KK7uLCWGyuvs074UTFN3ljPJA9cZxnjOKZpGk2mi6bDYWcZSGLgbjlmJ5LMe7E5JPqTQBoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUHgVzGtv42a/MegRaEtmUBE1+8u8Hv8iDn8SKAOmpa8C+G3i7xLrvxlvbPWtVedLeCeLyIspCCjAZCDj15PPNe+0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJgYxjpS0UUAFFFFABRRRQAUUUUAGB6UmB6ClooAKKKKACiiigAooooAKKKKACiiigAoooPAoAKSuZ1t/GzX5j0CLQlsygImv3l3g9/kQc/iRXlPw28XeJdd+Mt7Z61qrzpbwTxeRFlIQUYDIQcevJ55oA99ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD5q+Ev/JedY+t5/wCjBX0rXzV8Jf8AkvOsfW8/9GCvpWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvmr4S/wDJedY+t5/6MFfStfNXwl/5LzrH1vP/AEYKAPpWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAD0rmde0nxPqGoLNo/itNKtVjCtAdOS43Nk/NuZhjjAx7V01FAHj2jfBfV9A8Qz67p3jURajPv3yNpSsDvOW4MmOTXpXh+y1jT7KSLWtZXVrgylknW0W32oQMJtUnODk59616MUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQelFFAHM69pPifUNQWbR/FaaVarGFaA6clxubJ+bczDHGBj2rhNG+C+r6B4hn13TvGoi1GffvkbSlYHectwZMcmvYaKAMjw/Zaxp9lJFrWsrq1wZSyTraLb7UIGE2qTnByc+9a9GKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikcFkZQxUkY3DqPegBaK8S8c3HiLw5458LaNZeLtYNprFwkU3mmEugMiqdp2Ds3cGvRG8I3u07PGXiFXxwTJAefp5VAHU0V5jaeN9W8MePbXwh4quIb2K+ANjqscYiZyxIVZEHygkgrkY/hOOePTaAFoooPSgAPSq9vcxXIZoZo5QrlH2MCFYHBHHcHqO1cz4v1a6e903wvpc7xX+qljLPH962tl/wBZIPRjnap9TntXRWFlb6bY29naQrBbwII4406KAP8AP40AXKK878bePNe8O+GdQ1K18M3EK2+IxcXs8QXLMFDKiMxYZPfFdpoV3Lf+H9NvJyPOuLWOV8DAyygnj8aANCiiigAoqjq+q2mh6Rd6pfSGO1tYzLI3U4HYD17Cuc0S58TeI9Ig1d72DSUu4xLa2q2wlKo3KmRifmJHJC7cUAdielQRXUM00sUUyO8TbZFVwSjYBwR24IP4iuc8K+KZtXu9T0bU4Y7fW9LkWO6jiz5bqwykiZ52sOcHJHrVbxiJtC2+MLBWMtkqrfxL0ubTPzAj+9Hkup6/eHQmgDs6KgtbmG8tYbm3kEkEyCSNweGUgEGp6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikcFkZQxUkY3DqPevE/HNx4i8OeOfC2jWXi7WDaaxcJFN5phLoDIqnadg7N3BoA9torlm8I3u07PGXiFXxwTJAefp5Vc1aeN9W8MePbXwh4quIb2K+ANjqscYiZyxIVZEHygkgrkY/hOOeAD06ikpaACg9KD0rj/FupXF3q+m+EtPlkiudR3S3c8Zw0Fov3yCOhY/ID2JJ7UAdRBcxXC+ZDMkqBihKMCAynDDI7ggg/SrFV7S0gsLOG1tYUht4ECRxoMBVHAAA6V5747+IHiDw54ZutStfDU9qqMsa3F/NFgMxwCscbOT6/MQP5UAelUVU02d7rTLO4kx5k0CSNjpkqCat0AFFFQXk7WtpNOlvLcNGhYQxY3OQOg3EDJ9yBQBPQeleY+I/iD4g0zxH4Y00aEdOg1fUEgaS7mSSUoHQOAkZYLkOOSx+gr049DQBBFdQzTSxRTI7xNtkVXBKNgHBHbgg/iKnrjPGIm0Lb4wsFYy2Sqt/EvS5tM/MCP70eS6nr94dCa6y1uYby1hubeQSQTIJI3B4ZSAQaAJ6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPFfi2QvxV+HRJAAvkJJ7fv4q9gkv7OJGaS7gRQMktIAAPzrxv4xwxXHxN+H0M0aSRSXio6OoKspmjBBB6givVV8I+GgQR4e0kEcgiyj/wDiaAPK9fspPiT8XdGuNGzLoui7GudRT/VFw+8ojDhjwBxnkn0r0/XPEcGi3On2O6A32ouY7SKeYQoxGMksc/3lAABJLAAdSNuOGOCFYoY1jjQbVRAAAPQAdK4Px5d+GoNZ0EahpcmreII5zJpVnbsRJuJBLHkAICoJLZHGexoAt674v1Hwh9nu9esLd9JllWKW7spSWtmb7pdGHK56sD+FdhG6yIjo4ZWAYMp4IPevK/is3iG4+FWsyapBptrDthJt4Wedx++T+MhADn/ZP9a77wo5fwjobNnLafA3PX/Vr1oA5Xwo/wDbHxZ8Yao5yunpBplv3wAC0n/jwr0SvNfhfx4j8fBhiX+3ZSf93nbXpVAHnXxy/wCSTar/AL8H/o1a67wsAPCOif8AXhB/6LFcj8cv+STar/vwf+jVrrvC3/Io6J/14wf+ixQBr0UUUAeU/tBXslp8NVhQkC7vooXwewDv/NBXpthAttYW0CABYolRcegAFeW/tEWzzfDm3kQZEGoxO/sCjr/NhXqdnIs9lBKhyrxqwPsRmgDysTmy/abEUZwL7SNsg9cAkf8AoAr1a6toru0mtpl3RTRtG6+qkYIrySaM3f7UFs0fItNLLSe2UYf+zivYaAOA+D15NL4DjsLlzJPpV3Np7ue/ltx+SlR+Fd/Xm3wiwYvF7r/qm8SXez6fJ/iK9JoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8V+LZC/FX4dEkAC+Qknt+/ir2qvEfjHDFcfE34fQzRpJFJeKjo6gqymaMEEHqCKAPZJL+ziRmku4EUDJLSAAD868b1+yk+JPxc0a40bMui6Jsa51FP9UXD7yiMOGPAHGeSa9VXwj4aBBHh7SQRyCLKP/wCJrVjhjggWKGNI40XaqoAAo9AO1AGJrXiSHSr2w0yL7M2pagWFtFcTiJMLjJLYJ7gAAEknpgEjK1rxjfeEZ7SbxDZQDSbmUQm+tZWIt3OceYjDO3/aBOMdKp+N7zw1b+JdB+16RJq/iZH36XawOVZe5duQAoK5ywPTgcHGD8Xjr8/wt1OXVYtMtohJC3kW7PM4Pmrj94doz64X/GgD1tWDKGBypGQQeK8+8FOdX+JPjbWHO4W00WlwD+4sYJcfQtg12Whuz6DpzO2Xa1iLH1OwZNcR8JeLjxqrjEw8SXW/9Mf1oA9JrzL48/8AJK7v/r4h/wDQq9NrzL49f8ksu/8Ar4h/9CoA77Rf+QFp3/XtH/6CKv1Q0X/kBad/16x/+gir9ABRgde9FFAHknxb/wCR9+Gn/YX/APakFet15J8W/wDkffhp/wBhf/2pBXrdAEN1bRXdpNbTLuimjaN19VIwRXDfB68ml8Bx2Fy5kn0q7m093Pfy24/JSo/Cu/rzb4RYMXi91/1TeJLvZ9Pk/wARQB6TRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTXJWNmCliASADjNOooA8W8c6P4y8TeMvDes2fhCdIdHmWUpNfWwaUiRWI4kOPu9cmvWNJvry+tjJeaXcadKH2+TPJG7EYHzAxswxnjnHQ/jo4FGKAA9DXm3iLw1rFp8UdM8aadaHUraG2NrcWqSKssYw3zx7iFP3umc8H1r0mjFAHBeM9K1bx34WvdGtbSbTopI95e82gyuvzJGoBJA3AEsew4zk4seDrHVhFo8mq6Y+nvpul/YNjzRyea58vc67GI2/ulxkg/MeOBntcDGMcUhAx0oA888ORnRfjD4o09xti1a3g1K3z325ST8dxzj0r0Q9K5Xxdo9zcy6frulRh9X0mQyxRhtv2mJhiSHPQbh0J6MB6mtvStVt9Z06C+tGbypRna42shHBVlPRgRgjsc0Aef8AxMg8T+K/Ct94f03wpdlppVAuJry3VSqOGDACQnnb3x17dK6Lwjfa7FpumaXqnhi7sjb2yQyXP2mCSPKoB0Vy3OPSutpMADp0FAHJeP8A/hMTosH/AAhbQ/2h9oUy+YUyYsHON429due+K29A1CTVvDumahKFWS6tIp3VDlQzoGOD3GScUayt/Jpz2+nALcT4iExYYgB4aTHcgZIHOTgcDJFu0torO0gtIFCRQxrHGPRVGAPyFAGb4p8O23irw1faLdkrHcpgOBkow5Vh9CBWL4e1fUdG8PW+ma5pV+1/ZQrCJbS3a4jugowroycDcAOH24PtzXaYpMAHOBQBxHhDw3eReJdZ8X6zCIdS1RliitQwb7LAoAVSwyCx2qWwcZFdffXsWn6fcXtw2yC3iaWRj0CqMn9BVjHHAFcd4rjfxRcL4UtmIt3ZZNVnQ4EcOQRFn+/JwMdlyT1GQCt8I9Ons/AFrdXa7brUppL+UY7yMSv/AI7tP413dRRRRxRpHGiqiAKqr0UDoKloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAa5KxswUsQCQAcZrxjxzo/jLxN4y8N6zZ+EJ0h0eZZSk19bBpSJFYjiQ4+71ya9powKAM7Sb68vrYyXml3GnSh9vkzyRuxGB8wMbMMZ45x0P46J4BNGKKAPNdZ8N6xpnxWg8aWNmdUs3tPstxbROqzQ/7SBiAw9s561Y8d6Pq/j3wreaTaWsunxbfNDXZVTO6kFYwATtXPJZvQAAgkj0KkAA6AUAch4StdUlazvNU0yTTpLXTksfKklRy7gjcwKEjb8oAzg8ngcZy/CUTaJ8UvGGkSDbHf8Ak6raj++Gysp/77wPwr0Mgd65XxXo9y15p/iPSYPN1XSyx8gEA3UDf6yLPr/Euf4h70AdXXlfxOtPFXjDwvNoem+ErpS86sZ57y2VSFOQQBITz74r0fTdSttVsYb20l3wTDKnGCPVSDyCDkEdQQQeRirtAHMeGdQ1prWysdT8NXenmK3VHna5gkjyoAwNrlufpUHj/wD4TE6LB/whbQ/2h9oUy+YUyYsHON429due+K608DOKzdZW/k057fTgFuJ8RCYsMQA8NJjuQMkDnJwOBkgAPD+oSar4e0zUJVVZLq1indUOVDOgY4PcZJxV65kkhtZpYoHnkRGZIUIDSEDhQSQAT05IFMtLaKztILSBQkUMaxxj0VRgD8hVigDx3xzp/jLxN4n8L6nZeELiOHRbr7Syz31sGm+eNsDDnHCfrXpmkajqF/5v27RLvTNm3b58sT7yc5x5btwOOuOta2B6UhHBwKAK99exafp9xe3DbILeJpZGPQKoyf0Fcb8I9Ons/AFrdXa7brUppL+UY7yMSv8A47tP41Z8Vxv4ouF8KWzEW7ssmqzocCOHIIiz/fk4GOy5J6jPWxRRxRpHGiqiAKqr0UDoKAJaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqOWaOCJ5ZZFjjQbmdzgAdySaAJKK5HXfiV4S8P2sk11rdrK6gkW9rKssjH0CqTj8cCtjw5rlv4l0Cy1m1SSOC7TeiyYDAZI5wT6UAa1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIFVc4AGTk4HWlooAKKKKADFGBRRQAUUUUAFIFUEkKAScnA6npS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUHoaACiq9zdQ2dtLcXMyQwRKXkldgoUDqST0FcZL8TbV7drnSvDviLVrNel3aWP7tx3Kl2Bb8BQB3dFcd4S+JXhvxjMbbT7qSG+XJNldJ5cvHXjJB78AnGK7GgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACjAoooAQKq9AB34FLRRQAUYoooAMCiiigAooooAQKoJIUAk5OB1PSloooAKKKKACiiigAooooAKKKKACiiigAooqGeeK3haaeVIol+87ttVR7n60ATUVxniD4o+EfDlq8txrNtczKOLazkWaRj6YBwPxxXSaPqcWtaLY6pbq6Q3kCTosnUKygjOO+D60AX6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACorq1gvbWW2uoUmglQpJHIoZWUjBBB6jFS0UAeF/HrQNG0XwFp50vSbGyLakis1tbpGWHlScEgDPQflXoHwm5+Fvh//AK9v/Z2rkf2jf+RB03/sJp/6KkrrvhN/yS3w/wD9ex/9DagDtKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDiPiroGr+JfAN5p2iYa6kkjYw7gvmoGBK5JABzg8+mKf8LtL8QaL4ItrLxJIWvUdgiNIHaKP+FCwznH1PBA7V2ZAIPFcz4y8YWvhLTFlMT3WoXLeVY2MQLSXEvoFAJwMjJ9/UgEA+fPiio0j43GfQvkvfNt5tkXGJyBxx6/KT/vGvqkda8e8GfD1tL1Wfx548vIBq0r+eqSSBYrZmOAWY8bhkKB0XjqcY9fUg4/zmgB9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAAelVr6xtNSspLO+t4rm2lGHilQMrDryDwas0UAfP37QOiaTo3h/Q00vTLOxVrmQMLaBY8/KOuAM1698PwP+Fd+Gz3/sy3/wDRa15h+0p/yAtB/wCvmX/0EV6f8P8A/knXhv8A7Blv/wCixQB0dFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUN3dQWNlPeXMnl28EbSyvgnaqjJPHPQVNRQB89/Gzxz4b8VeELOy0XU1u7iK/WVo1idcKI3GfmUdyK6n4Y/EPwrY+CtB0S41ZU1IIITB5UhO9nOBkLjuK9bwPSjA9KAGg5wQeDz9adRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUHpRRQBz3jHxXaeDfDU+sXoaRY8LHEnWVz0GewPr2r5ptPjFrNr4iu9fl03TbzUJvkiluUdvs0X/ADyjAYBR79TnknpX1viigD5dk+K/iL4hX+meGb2106G0vtQt0l+zxOGYeap53ORjIB6dq+ofelowKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqpqOo2ulafcX97L5VtboZJXIJ2qOvAGTVukwPSgD5w+OXjPw/wCLNK0iHQ9SW8kgnkaRVjddoKgD7wFeifD/AOInhX/hG/Dmhf2un9pfZLe28jypM+btVduduOvHWvTMUYHpQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUh6GgBaKxtc8QwaDEktxa6hOjhmLWlo8/lgYJ3bc7evf0NYGl/FLQdcikl0q31i9jjba722mzSBT1wSFxnHagDuKK5T/AIWDoUVxHb37X2lvK2yJtRspbeNm9A7Lt/M11COGVWVgytggg8EdjQA+iiigAooPQ56VgR65Lf8AiSTTNNRJILIj+0Ll84RiMrEmOr4IZieFGB1PABv0VBdXdvY20lzdzxQQRgs8srhFUDuSelYln458M398llba5aNcyHEcbtsMn+7nGfwzQB0VFN59adQAUUVUvtQtdMs3u766itrdMbpZmCKPxP8AKgC3RWTZeJNIv7sWdvfxm5K71gfKSMvqqsAWHuOKtag16LGY6d5Ju1UmNZwdjEc4OCMZ6Z7Zzg9KALlFZOg67b6/p4uoleKVHaG4tpPv28y8Mje4P4EEEdRWtQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUdqxdd8SW3h5FkurTUZoyrOz2lnJMEA6lto4GKANqiuI0v4oaFrcDz6Vbazewo2xpLbTZpFVuOMheuCDj3q4nxB0JLuK0vnvNLmlbZF/aVnLbq59A7qF/WgDq6KYjblBByDyDx/Sn0AFFFB6UAFFYFtrsupeJJdP05Uks7E7L65bJHmlciJMfxAEMx6DIHJJ27F1d29jbSXN3PFBBGCzyyuEVQO5J6UAT0Vztn458M398llba5aNcyHEcbtsMn+7nGfwzXQc+tADqKKKACimk8deap2WqWWpNcrZXcU5tpfJm8tg2x8A7T78igC9RVDUpL9bCVtNWF7tRujjmztcg5K5yMEjgHkA84OMVDoOtW+vaal5AHjOTHPBKMSQSqcNG47EHjH9MZANWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiig9KACisPXfFFp4dj828tdRlh2F2ltbN5kjA6lio4/GsbTPidomtW7XGlWms3sAbYZbfTJnUNxkZC4zyKAO1orlYviDoJvobO8lu9NuJziJdStJbYSH0DOoBPtmuoVgwDA5BGRjoaAHUUUUAFFB6VgW+uy6l4jlsNOVHs7E7L65bJHmlciJMcbgCGYngZA5JO0A36Kq3d9bafayXV7cxW8ES7pJZXCIg9ST0FZFj438NalfLY2us2r3T/6uJm2M/8Au7sbvwzQB0NFNyc06gAooPANZ2qazp+iWyz6lfQWsTNtVpXClj/dA6k+wyaANGisXSfFeha7cSW+m6rbXE8X34VbEi/VTzj3q3qsmoRadLLpcUU10gDrDKxUSAdVz/CT0BPAPWgC/RWZomtWuvaZFf2Zfy3JV45F2vE4OGR1/hYEEEGtOgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBsgHltx2NeNfs3/wDImap/2ET/AOi0r2V/9W30NeD/AACm1uPwlqa6Xa6fNF9uyzXNy8TBti8AKjDsO9AHsnibTbPVfDGpWV9Gj28ts4bcBx8pwfYjqD2rzf8AZ91e+1HwVd2t0zyQWV15du7HOFKglM+xOf8AgX0rqta0nxf4ispNNur3TdKsJ1KXD2Zead0PBVS4VVyCRkg1t+HvDuneFdDh0rSYfLgiBPzHmRscsx7k0AaM13BAyCa4ijLnChnA3fT1qUMCAQeDjnPauA8G6bejQLufx5pWlw6jJcyCWaUpJ50Z6FiSwxncAuQAAMAVl/DvUhZfETxN4Usr1bnRbdEurFVl8xYAwUsiN/dy+MdtvHegDu/F2vr4Y8KanrLgMbWBmRW6M54QfiSBVXwNoz6H4QsYJyz3ky/aryRvvPPJ87k/icfgK5z40kv4PsLEDK32rW1u4PQgktj81Fej7R6UAeb+IvEcSfF3QvD2oafNc2ktt51uEG5BOWYeYw/iChBj03E+ldB8QPDtj4j8GanbXkKM8VvJNbyEDdFIqkqynt059q6ggHnuB19K4P4ma3dJpP8Awi+iobjXdaRoIYU6xREYeVvRQCRk/wBDQBU+CXiC98QfD2J7+RpZrO4e0ErnJkVQrKT64D4/4DXpFc14H8LW/gzwraaLFIJXjy00vTzJCfmYD06AewHfNdLQAHkGvL7a9/4Sn45XdpOBJp/hy03QRnlftL7cyEeoBYD0K16hXjnwyJb4w/EIsfm+0YH08xv8BQB1vxS0/wC0+BL++g/dX2lr9ttZ14eJ4yGOD15AOa2vCOt/8JJ4R0vV8Ya6t1dwP73RsfiDVfx+B/wrvxJn/oF3H/otqw/gmzN8I9D3dvPA/wC/8lAC3U3/AAjfxdsmViLLxLbtFKg+6LmEDa+exKYXHfHtXf15v8XHNrD4S1FOJLbxDanP+yQ2R+gr0fvQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFVdSA/su84/5Yv/AOgmrVVdS/5BV5/1wf8A9BNAHlX7OYz8Pb71/tSTn/tlFXf+NNOtNU8F6xa3sUbwmzkbDj7pCkhh7ggEfSvK/gLNrkfga9XS7TT5oRqTlmubp4m3eXHwAsbDGMd677WtD8VeKLCXS76+0/StMnXZc/YS8s8qd1DOFCZ6H5TQBz/wC1e/1PwBJFeu8iWd20FvI/OU2q23PfBY/gQO1enTXcEDok08UbP9xXcAt9M9aztG0Cz8MeH49K0WBI44Yz5YY/ffH3mPck9TXL+DdLnHhWWXx5pGlwahPK4uJJiknnp2Z2JYckngHAGMADigDvwc4wcj19q5/wAb+IT4W8GanrA5lgi/cg85kbCoMf7xB/A1xvwz1Q23jLxR4Wtr77XpNi6T2B8wSCJH5KK3OVGVAHbB9au/GLMuj+HLDgre6/aQuD0ZfmOPzAoA6fwdoh8O+E7CwkYvchPNuZG5aSZzukYnqfmJrlvEXiOJPi7oXh7UNPmubSW2863CDcgnLMPMYfxBQgx6bifSvSDjoRQQDz3A6+lAHL/EDw7Y+I/Bmp215CjPFbyTW8hA3RSKpKsp7dOfasD4JeIL3xB8PYnv5Glms7h7QSucmRVCspPrgPj/AIDVv4ma3dJpP/CL6KhuNd1pGghhTrFERh5W9FAJGT/Q1seB/C1v4M8K2mixSCV48tNL08yQn5mA9OgHsB3zQB0tB6GiigDF1Xwzp+t3ST35vHCps8hbyWOFhk/ejVgrdecg8V558AUSPw5ryKoCLq8igDoBsSvXa8k+Af8AyAPEP/YYl/8AQEoA9brgfN/4Rv4upbK22x8S2zSCPHAuoQMkem6PGfUiu+rzf4pMbTVfA1+v3otfhhJ77XBBH5CgD0iikBpaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAM3xCAfDWq5HWzm/9ANedfs9/wDJNZD3+3y/+gpXoviH/kWtV/685v8A0A15J8C59eX4fyrptppssAvpBuubp423bU7LGwxz60AejfELTrPUvh/r0N5GjxrZTTKWH3HRCysPcECuX+BGsX+rfDof2hI8ptLt7eGRySWjCqw5PXBYj8Mdq1te8P8AijxXZSaZqd9YaXpU3FwlgXmmlT+4HcKFB7naa6Cw0aDw54bGmaDbpEtvCwt42JwzYJBY+pbqaANGW7ghlWOW4iR3OFVnAJ+g71MDnvXBeFNII8ID/hOdK0yHUZmZbozlHM4/vOxLAk8nGcDjAUcDL+FOqyDX/FXhtL77Zpmm3Kvp8hk8zbE5b5Q3cDAxz60Adj438Qnwt4M1PWBzLBF+5B5zI2FQY/3iD+Bp3g7RG8PeE7DT3YvchPMuZH5MkzndIxPU/MTXMfGLMuj+HLDgre6/aQuD0ZfmOPzAr0buKAPN9W8RQn4z6V4ev9OmuITa+bZnblEmO8tKw74CAA/wnd+Gz8S/D9lr/gTVVuYUaa1tpLm2lIG6KRFLAg9RnGDjtXX7VznAyOM4rz74m6td3WmL4P0JPP1rWo9nljpBbHiSRz2XGV98nHSgB/wc1688Q/Dqynv5GluLd3tjK3JkCfdJPc4IGfau/rA8HeGbbwj4XstFt38wQJmST/no5JLNjtyePYD0rfoAK828IeIotb+J3ieyu9OmGoWEhjguHGUjt1O0KufuliS2R97Poor0mk2gZwAM9aAPJ/jnpcUHhiDxRZk22raXcRmK6jO1yrNjbkc9SD+deheF9Tl1rwppOqTLtlvLSKdwBj5mQE4/EmvPviDFc/EPXbXwRpLkWdrKtzq94OUhAHyxg9Gfknb/ALvocenWFpBYWNtZW0fl29vEsUaddqqNoH4AAUAcXazDw58XJtMUlbLxFbG8iTsLqPiTb/vIAx9xXfV5x8SGNr4v+H98nDDV/s+R1xKAp/lXo9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFB6UARyn90+emD14rxv9nA/8Ulqwz/y//wDtNf8AP4V6hrXh3TvEMcaailw8aBl2w3csIYHGQ3lsu7p3zjn1NZOlfDPwnodws+lafcWcgdX/AHOoXChivTI8zDfQgigDrccVkeKNWfQPC2qatFCJpLS2kmVD0ZlBIz7cc1r47UjxpJGyOisjAhlIyCD1BoA80+GmiWuveG7TxXrxXWNXvi8nnXQ3rAAxASNTlUxjsAcms7wzcQv+0F4tlhZRCNNQIw4U7PKVsewZWHHcGu3s/A2i6cJY9OF7Y2srFntba9ljiJPXChvl/wCA4qS98EeHb+7trqXTwk1tCbeN4JXi/df8822Ebl9myKAOO+KN1JqPwv0jX2haEwXdlqDx5/1ecDByB0L16irBlDKQVIyCO47VleI9Cg8Q+GL/AEWXakV1A0SkDhDj5SPoQD+FZ3gLVJtS8KW0V4pTUtPH2C9jY8rNH8pP/AgFYezCgCfxV4rsvDFjHJPcWy3Vy3l2sVxOsSu3qzMQFUAgk9u2SQDh+H9V8H6O1xfXXi7RbrWLwhru9a+iG70RAWO2Nf4V/E5OTWp4i+HvhfxbqCXuuaa13cRxiKNjcyoFTJOMKwHUmsn/AIUn8Pe3h/8A8nLj/wCOUAdJ4d1yPX4766t5YZbJLtobSWE5EiKqhmzkg/PvAI4xj8V0zxXomr63faRYalHPf2LEXEKhgUwcHkjBweDgnHfmp9D0PTvDmkw6VpNt9msoSxSMOXxuYseWJJ5J6+tc/ZeGtG0/4kvf6XYxw30ttLNqMsbN8xkZdgIJwNxWRuB1X3oA7SvJ9As28PfH7X4Jv3cOtWS3dsT/AMtGBXeo9wd5+gr1g9Kyda0DTtdjh+2RsJraTzLe5icpLA/95WHI9x0PfIoAwvirfJYfDTW2ZiHngNtGo5LtIdgAHc8n8jV3wBoknh3wHo+lzLtmhtw0qj+F2Jdh+BYj8KlXwnaTX9reand3upyWjB7dbxl2RMOjBEVVLDPDEEj1roe1AHnHxZT7YfB+locyXPiC3baOpRQ24/QZFejd64RYf+El+Ksd0F3af4ZgaJXzw93Mo3D32x4/FhXeUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFVNT40q8JPHkPn/vk1bPSsbW/DWl+IVVNTjuZEVSuyO7lhVgeoYI6hvxzQB5t+zlj/AIQPUR3/ALUfj/tlFXsOPzrlNI+G3hXQbhJtKsLizdJFkxFf3AVmHTcvmYb6EEGusoAwfGGszeHPB+q6xbxebNa27SRoRkbsYBPsDyfauV+HHh+z1Pw3YeJtaZNY1q+Xz3urrEnk5P3I1PEeOAcAc57YA9FmijnheKWNZI3UqyMuQwPUEd65yz8DaNpsbw6cb60s3Ys1pBeypFknnChvlz6DA9qAOC8I3sMfxo8d3UWDFHaoyfwhggUHB9Mg8itL4qTvceEPDWuvEYRa6tZXsqk8xqc8Hp0LAV1114I8O3t9BevpwWeCH7MDDK8YaH/nmyqQHT/ZbIqfxZ4fi8T+E9S0Rtq/aoCkbEcK45Q/QMAaANvHTFc94q8V2XhixjknuLZbq5by7WK4nWJXb1ZmICqAQSe3bJIBb4J1mTW/ClpJcq0d/ADa3sLn5knj+VwfrjP0YVD4i+HvhfxbqCXuuaa13cRxiKNjcyoFTJOMKwHUmgDL8P6r4P0dri+uvF2i3WsXhDXd619EN3oiAsdsa/wr+Jycmui8O67Hr8V9dW8kMtkl20NpLCciRFVQzZyQfn3gEcYx+PN/8KT+Hvbw/wD+Tlx/8crrND0LTvDmkw6VpNt9msoSxSLez43MWPLEk8k9fWgCDSfFeia3qd9p2nahHcXdg+y5jUEbDkjgkYYZBGRnFbdcXpfhvRdL+I1ze6PYJb3ElnI+ourMdzyyIU4zgH93IcADqPWu0oATPFeR/ARh/YHiD5h/yF5M89PlWvQ9X8M6ZrsobUFu3Krs2xX00KsPdY3UHr1IrHsfhd4Q0su2nafdWbP942+pXMZP1xJzQB2PbvXnPxOBvNd8CaYhy8uuR3O3rlIhlj+TV6GqqiKozhQAMkk4/HmuHtIT4k+Kkuqbc2Hh6BrOB+z3MgBkx/uphT7mgDuxS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUdqKD0NAGZ4i/wCRZ1Uk4H2ObP8A3wa84/Z5x/wrqcdxqMuf++I69A1zwtpPiMKuqxXMyBSmxLyaJWB6hlRwG/EVnaP8OfC+gXCTaVY3FoyuJNsd/cBGYdCy78N+INAHV4HpXN+OdeuPDHgnVdYtYhJcW0OYwRkBiQoYjuATk+wrpKiuIIbm3kgniSWGRSrxuoZWBGCCD1FAHBfDzw3YXnhzTvEWrbdW1i/gW5ku7wCUx7vm2JnIQLwOMdK5vwVqUNr8SfiRqEahooY0mUZ2h1RX6H0OOo9j0r0Cy8DaLpkLW1ib62sWYsbOO+lEIJOThd3AOTkDAOelPuvBPh281OPUZNOC3CQrbkxSvGkkQxhHRSFdegwwI4A6UAcr8Wmf/hGPD+ruhjFjrNpdS852Lkg5PHdhXpZ6ZHYVi+LtAj8UeE9S0VyAbqEqjNyEccoT7BgKr+CdZk1vwpaSXKtFfwA2t7E5+aOeP5XB+uM/RhQAnivxXZ+GrSJJLmzW+vGMdrHdXCxRkjq7sTwi9/wAGSBWR4e1XwZoaz3Uvi7RbzVLw+ZeX8l9CGmbpgfN8qDGAo4AHc8nR8Q/Djwp4q1IX+taWbu5CCMObqZMKOgAVwMcmso/BT4e9f8AhHzn/r8uP/jlAHS+HNbXX7G4v4Xiks/tUsVrJH0kRDtLZyc5YNz6UaN4r0PxBe31ppeox3M1jJ5c6KGGw5I7gZGQRkZHHWrWi6NYeH9Kg0rS7fyLO3BEce8ttycnkkk8k9a5zRPDWi6N49vbjRbCO2Y2zNfMjHDySurKMEnGAjHAAA3j1oA7SuM8WeLrSzvF0C31uw02/mTfNdXU6ILSI/xAMfmkPO1eg6ngYPZHoa4jUfhJ4J1fUrjUNQ0Vp7u5kaWaQ3k43MTzwHwPYCgB+k+IPAfhjSPsll4i0dYY90jkX8byzP1Z2OdzufXrXR6DeXGo+HtNvruNUuLm1imlVAcBmUEgfnXI/wDCk/h7g48Pkcf8/lx/8cruo40hiSOMBURQFHoAMCgDz74hp9s8a+ANPQ5c6m11gf3YlDE16PXBaTF/wkfxQv8AXdp+w6JCdNtW7STtzMw/3eE9+fSu9oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopM0ALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAGKKKKAEOMGsVtCEPiRdaspvIkmURX0W3KXKgfK3s6no3dSQR0K7dGB6UAFFFFACYGOnFVrayt7WWeWGMLJPJvlbJJZsAck+gAAFWqMUAFFFFACYAB4qpfpdy2MsdlcLb3DDCTMnmBPUhe5A5APGauUYB7UAZ2j6TaaHp8VjZghFJZ2c7nkc8s7N3Ykkk1o0YHpRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUmeaWgAooooAKKKKACiiigAooooAKKKKACjGKKKACiiigAooooAKQ9DS0UAYiaILbxI2r2Uwg+0rsvoNmVnwMI/s46bu68HopG3SYGMY6UtABSY4paKAKtpZW9m0xgi2tPKZpWySXY4BJJ9gAPYAdqtUUUAFBOASaKKAKWpQ3dxYSw2V0LaeTCiYpu8sZ5YD1x0zxnFM0jSbTRdNhsLOMpDFwNxyzE8lmPdickn1JrQwPSkwPQUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSZ5oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEIGDWKmiC28SNq9lMIPtK7L6DZlZ8DCP7OOm7uvB6KRt0mBjGOlAC4ooooAOgqraWVvZCUQRBDNK00hySXc9SSfwHsAB0Aq1RgUAFGAO1FFAAelUNUt7q5sJILS8FnJIApn27mRe5UE43Y6E5APY1fooAo6Tplpo2m2+nWUXlW8C7UXOT7knuScknuSTV6jAooAKKKKACiiigAooooAKKKKACiiigAooooAKKT/ADiloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKD0oooA5nXpPGf28R+H4dEFp5YLTX8kpcPk5wiDkYx3ryXwL4t8Uav8cZNN1rVWmS1+027QQEpBlMjITvyOp5r6AxXzV8O/wDk4/Vx2+13/wD6E1AH0rRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAB6V4z8RPiLdWfxCsfCazXtlpzGMXk9i6rO5kxgKxB2qMjkYJ5GRXsx6GsfVNH0qW4XWZ9FgvtRskLW7eSjTZXJAQtjBz05HJ6igDzP4n6Ne+DPDA8QaD4k1yC6t50V0n1CSdJQxxyrkjI6+nWur+FXjC78a+DI9Rv41S8hna2mZRhZCArBgO2Qw/HNed/FfW9X8RRafo+qadceGNBe4Dz394vnB3A+Vf3O4D+IgE846jbXq/gXRtE0LwlY2mg3CXNjt3i5Rw3nMTyxI7n07dO1AHTUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFB6UUHoaAPGfiJ8Rbqz+IVj4TWa9stOYxi8nsXVZ3MmMBWIO1RkcjBPIyKd8T9GvfBnhgeINB8Sa5BdW86K6T6hJOkoY45VyRkdfTrXpmqaPpUtwusz6LBfajZIWt28lGmyuSAhbGDnpyOT1FeNfFfW9X8RRafo+qadceGNBe4Dz394vnB3A+Vf3O4D+IgE846jbQB6J8KvGF3418GR6jfxql5DO1tMyjCyEBWDAdshh+Oa7muZ8C6NomheErG00G4S5sdu8XKOG85ieWJHc+nbp2rpqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArltafxw+oPHocegx2OBtmvnmaTpz8ijHX1NdTRigDwP4TeLfEfiL4sanDrWqTXCxWUqiFTthVlkQZCDgd+evNe+V81fA3/ksOtf9etz/wCjkr6VoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvmr4d/8AJyGr/wDX3f8A/oTV7jr+k+JdQvEl0bxSmkW6x7WibTkuNzZPzbmYY4IGPauC034MavpHiafxHZeNRFqkzSO8p0pWBaQkt8pkxzmgD2Gisbw9Ya1p9tLHrWtjVpmfdHKLRbfYuB8uFJzzk5rZoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKADtXk0Hxl874pHwn/Y7C2+2NZfafMO/wAwEjdsx93Ix16c57V6yelcJqvw5ik8VN4p0C+XStacYkd7VLiKTjBOw4KsRwWVgevqaAH/ABeigl+Fmu/aACqwqy57MJF2/rivPf2bLu9kt9ftHLNYxPDJHn7qyNuDY+oUZ+grrPEXgTxh4ytBp2u+KLKDTC4aWKwsWBlwcjO9z357jPauw8K+FdK8H6LHpmkxFIQ293c5eVyMFmPrwB+GKAN6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo7UUHpQB5NB8ZfO+KR8J/2OwtvtjWX2nzDv8wEjdsx93Ix16c57V0Pxeigl+Fmu/aACqwqy57MJF2/rimar8OYpPFTeKdAvl0rWnGJHe1S4ik4wTsOCrEcFlYHr6mszxF4E8YeMrQadrviiyg0wuGlisLFgZcHIzvc9+e4z2oA5P9my7vZLfX7RyzWMTwyR5+6sjbg2PqFGfoK96rB8K+FdK8H6LHpmkxFIQ293c5eVyMFmPrwB+GK3qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooPSuY1zR/FN9qPnaR4tTS7XYF+znTI5/m7nczA0AeI/A3/ksOtf9etz/wCjkr6Vrx3Qfgxq/hjWrjWNK8aiG+nVkkkfSlcFWYMeDJjqor0zQbPVrCxaDWdYXVbkyFhOLZYMLgYXapPQgnPvQBrUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUHpQAUYpgOTkHvin0AFFFFABRRRQAUUUdqACimKcnrnntT6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooPSmKd3IPQ4PfmgB9GB6UUUAFFFFABRRRQAUUHpTA3OAeKAH0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFHagAopgOcHt0p9ABgelFFFABRRRQAUUUHpQAUUwNzgHin0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRSHoaQHPOc80AOooooAKKKKACiiigAooPQ0xTknk0APooooAKKKKACiiigAPSvH/G3ijxv4Q13w/py6xpt0urzGFZDpxQxEMi5x5h3ffB6jpXsFeL/Gr/kePh3j/n/b/wBGwUAd+2l+MguV8U6du9G0g4/9HVkWHj690zxhB4U8XWtvbX90oazvLQnyLgEkAYbJRsgjGTz+Ge+PQ449/evD/iTbyeL/AIueGtG0ZvMuNNxNeSxci2G8H5j2IC5we7KO9AHuNLWZqWrQ6YbeLypbi6uCVgtoAN8uBk4yQAAOpJAHAzkgHHv/ABomh3VpHr+nXGnW91L5Ud3vWWEOeiuVOVJ+mPegDqz0rmvFuvXGlwWenacVbWNVn+zWYcZCcZeVh3VF5I78etdGDkAggg8/WvPtKc638bNanbDQaDYRWcQPIEk37xmHvhSpNAHZaRpsGk6dHawtI+MvJNK2Xlc/edz3Ynn09MACsaz8R6h4iWS48PR2DWKO0Qurmct5jKcHaiDIX3Zgec4xjPUsqlSCOMYrmPCXgzRfAlhdwaWZkgnk82Rp5d23jAAPYD/9dAFLSPHbN4xk8Ja9ZLYaxs8y3aKUyQ3SYJypIBB4PBHY12teO2thJ43+OUXiSyXdoeiQCAXYB2XEo3cIf4sGQ5PT5fcZ9ioAKgubmG0tZbm4lWKCJDJJI5wqKBkkn6VPXm/xy1KTT/hffLExV7uWO3yOuCcsPxCkfQ0AbWkeIdb8TWH9qaRZWlvp0hP2Vr528y5AJG7av+rU44zuOOcVc8N+J49dmvrGa3ay1XTpBFeWbSByhIyrKf4kYchsDPoKveHbVbPwzpNqg+WCzhjH0VAK85uLk6b+0vZwxcJqmj7Zh0yV3sD/AOQgKAOp8VyS+GbgeLLPebePamq2yg4lhyB5oHZ4xznuoIPRcdZBPHcwxzwuJIpFDoynhlPQ/jSXdrDe2c9rOgeGeNo5FP8AErDBH5GuI+EV7PP4IGm3T77nRruXTZD/ANc2+X8lKj8KAO9ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApGzsbacHHBxnFLRQB4/4u8U+OPC/i3w9og1jTLhdYmWETf2cUMRLqhO3zDuxuB6jNds+l+M1QsnijT2YDO19IIU/iJq4D4tf8lX+HX/X+n/o+KvZyePT3oA4LSfHt3Z+MU8IeLLWG01SVd9pdWxJt7sc4wDyh4IwSeQR6Z7+vDfHFvL4u+OHh6w0f96+kiOa9nTkW4Em/BI7gAcerCvXtS1iLTXt4PKluby43eRawld7hQCx5IAUZGSSByB1IBANSiuWvPGkWjX9pba9p9xpsV3J5UN2zpJAZD0RmU5Un3GPeunGfxoA5vxZrdzY/YNH0twNY1aUw2zEbvJQDMkxHcIvOO5Kj1rX0zTrfR9OjtIN2yMEtI7Fmdicl2Y8kk5JJ9a4zQJP7b+MXiW+b5odHtYdOt+4DPmSQ/XIxXfTRJPC8UihkdSpB4yDQBzFj4h1PxHbte+H4tPOnbisdzdTsTKRwSEQfKvoS2cHO2quiePPtXi648J61Zrp+tQrvjWOXzIblMZ3IxAPTsR6+hxf8KeENG8BaRcWmnPKtvJKZ5HuJM4JAHXgAAAVwejadP4x+OMvi22Q/2JpMRtobr+G5lCFTsP8AEoLt83TgetAHsVFFFAEVzcR2trNcS7/LiQu2xC7YAycKoJJ9gCTXA678UotMvNHtrXRtRYaleR2y3F5bvbRgFlDEBwGJwfTHvXodeSfGb/kPeAv+wwv/AKFHQB61/nFcd4nlfwpeL4pt2f7CWSLV4AMgxnCicD++mRn1X/dFdiKrajYw6npl3YXChobmFoZBjqrAg/zoAnjcOqujBkYAgg5BHsafXDfCXUpr/wAAWdvdNuutNkk0+Y+8TEAf987a7mgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBGzsbacHHBxnFeQeLvFPjjwv4t8PaINY0y4XWJlhE39nFDES6oTt8w7sbgeozXsFeLfFr/kq/w6/6/wBP/R8VAHfvpfjNULJ4o09mAztfSCFP4iasrSfHt3Z+MU8IeLLWG01SVd9pdWxJt7sc4wDyh4IwSeQR6Z70nj0968P8cW8vi744eHrDR/3r6SI5r2dORbgSb8EjuABx6sKAPcqKy9S1iLTXt4PKluby43eRawld7hQCx5IAUZGSSByB1IByrzxpFo1/aW2vafcabFdyeVDds6SQGQ9EZlOVJ9xj3oA6muW8W61dW9xp2g6VJs1bVXZUkxu+zxKMyS47kDgA9WIrpxmvP/Csn9t/FTxbqzjdHpyw6VbHrtwC0v0+bFAHaWFla6NpyWtuCkEKk7nYsT1LMxPJJJJJPJJNYdjr+reIbYX2hQaeunOSIZ7udmeUDuEQHaDjIy2cHlRXSXVvFeWc9tOu6GaNo3GcZUjB/Q1geFfCuj+AtDlsbCSSO1MrXEklzID8xABJOAAMAUAUPDnjwaj4ovPC2sWf9na7ajd5SyeZFOmM7o2wD0IOCAfyOO0rx7wzps3iv40XvjWFHXRbGP7NZzsCBcvs8tmX1Xlzu78e+PYaACqOp6nbaTp8t7dOwijxwg3MxJwFUDkknAA9TV49K474jeHNZ8S+HoLbQL6Oyv4LyO5SWR2VflB7qCepBHHUD0oAdc6j44a1a8tNF0oKAWSynvW89x1ClgmxW9skDue9SeC/HWn+Mra4EEM9rf2b+Vd2dxxJE/T6EZB546dBW/p0dzFptrHfTLPdpCizyhcCRwAGbHYE5OPevH/Aa/av2g/GN3Y5+xRxvFMRypk3IOfcsrkfQ0Ad14nlfwpeL4pt2f7CWSLV4AMgxnCicD++mRn1X/dFdfG4dVdGDIwBBByCPY1BqNjDqemXdhcKGhuYWhkGOqsCD/OuQ+EupTX/AIAs7e6bddabJJp8x94mIA/7520AdzRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTZQ5icRuEcqdrEZCnscd6dRQB494l8U+N/D3jvQ/Dg1jTZ01VlC3B04qYsvtPy+Yd2OvUda7d9L8ZhMxeKdOZx/C+kHB9uJcivP/iV/wAlv8BD/bT/ANG17QTgeooA4TQ/H1yni7/hEPFNnFZayU3281u5a3ulIJyu7lScHg5+6ec4Fd7Xhnim2k8X/H/Q10dhKmirC99cJykRSRpChbpnBAx6k+hx6/qOsR6fNBapDNdXk4ZoraHG5lGNzEsQFUEjJJ7gDJIFAGpRXK3HjSLStVstP12wn0z7Y/l29y7rJbyP/c3g5Vv94DPODXUc556UAct4r1m6Goaf4a0mYxalqm4tOBn7Lbr9+X/e5Crnufat6ys7TSdPS2t1EVvbqSMkkjrliTySeSSeScmuK8FyHWviL4y1yTDJazR6TbdygiBMgz6FiDXeXVtDeWc1tOu6GaNo3HTKkYNAHN2Ov6t4hthfaFBp66c5Ihnu52Z5QO4RAdoOMjLZweVFVfDnjwaj4ovPC2sWf9na7ajd5SyeZFOmM7o2wD0IOCAfyOL/AIV8K6P4C0OWxsJJI7UytcSSXMgPzEAEk4AAwBXB+GdNm8V/Gi98awo66LYx/ZrOdgQLl9nlsy+q8ud3fj3wAew0UUUAZ+savaaHpFzqd/J5Vtbpuc9/YD3JIFY66h4ru7QXtnp+kojr5kdvNdszOpHGXRSqk+24e/etDxL4esfFXh660TUPMFrcBd5jbawIYMCDz3UdjUMA0bwP4Xihe6W202wh2K875OAM/ix9B1z0oApeCvHNl4ytrsRQS2d/Yy+TeWcxy0L8jqOoyCO3Q1W8Rzv4Q1GPxNEx/sqeRIdWh6hdxCrcr6MDtDeq47qK5z4PeHtQhvfEHizUbZ7RtbuTLb28gw4jLM+SPcsMfT3Fek61pkWs6Hf6ZMAY7u3eFsjONykZ/WgC2jBlBBBB5BByKfXFfCnVptX+HWlvdHN1bK1pMepzGxUZ99oU12tABRRRQAUUUUAFeJfHWNZvFngGJ9217yRTtYqcGSDoRyPqOa9tPSvCPijdX3iTxJ4TvNK8OeIJ4NLuGmnc6XMuQXjOBuAOfkPXANAHqr+C9FkUq637KeobU7kg/hvrR0nRNL0G0NtpenwWcJO5lhQDcfUnqT7mk0jV4dZt3nitr63CPsKXlq8D5xno4GRz1FaJHBoA4H4gWfhn+0fD2r69eXkV3p91vsLW0O57mQlTsCAFm5VeRj9RWL8V9R1PU/hTrD3GgSWVviFg13cJ5o/epj5E3D8Cwx+lS+KtN1DTvjBoviy6srm90SG0NuWt4jK1q53/ADFBkkfMOQD39BWh4/8AtfjXwVqOjaBbzTNLGJHmliaNCEIcIhYDc7MqjjgDOSOAQDrfDEjT+E9GmdizSWMDEk5JJjU1xvw5+bxz8Qmb/Wf2mikf7IVsVo+CLq8vLPRM2mo2UFhpK2lzDdwvCDP+7xhWA3bRG3zD+/7nFLw7H/ZHxn8V2Dgquq2tvqMHodmY3/Hc2aAPQZZEhheSRlVEUszMcAD3zWRLZeHPFlrb3MtrpesWy7jDI8cdwoz12nBxyBnHpVjxBpK674d1LSmkMQvLaSDzB/BuUrnHfrXE+Cp9D+H3hyLQtT+06Xcxu0kxvctHK54LRygbWU4GBwQOozQBi61rtx8MfiRo+n280z+GdWVU+xyOWFq27aTFn7qjKnaOOTjtXsXpzXjOraRdfFH4kaVqNvazx+GdIxm7njMYuX37iI1PzEHCgnGOG9q7vx9rfiDQPDyXnhrSP7VvTcKjQ7Gk2oQcttUgnkAe2c9qAOsryn9oKJ5PhqHUcRX0TN7DDD+ZH516JoWpNrGhWOoPF5L3MKyPDnPlsR8y574ORn2qn4x8Ox+LPCWoaJI4Q3MWI3IyEkB3KfpuAoA0NGdZNFsHU5VraMj3G0V5Xramb9qDw6EyRDpjF8fwjbP/AFYfnXU+EvEtvpnhqz0zxHJ/Zeq6fCtvLFcnb5mwbQ8Z6SBgAflzyaqeFdHuNV+IOq+OLy3ktoJoVs9MhnQrIYhjdIVOCu4g4B5wTQB6JXm/ws41jx2i8xjxDOR9T1r0Z3WONndgqqCSScACvP8A4PwPJ4VvdakQq2tapcX6gjB2s20f+gk/jQB6FRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSM21GbBOBnAGTQB4l8ZIUuPiZ8P4ZN2yS7VG2OVODNGDgggg+4Oa9MfwVociFJEv3UjlX1K5YH8DJXlXxEur7XvHvhLVNN8OeIZ7TSp0muH/suZSQJUbABUEnCn0z617NpOrR6vam4it7yBVfyyl5avA+cA/dcA45HPTr6GgB2l6Npuh2f2XS7G3s4M5KQoFBPqfU+5rj/Hlv4Zh17w9rms3l6NRspj9gs7M73uXJB2hACTzjoQOcHtXf9BxXlOu6df6V8arHxXeWVze6N9jNss1vEZjZvg8si5YA5PIH8VAFX4v3up6l8Lb6S50FrG3SSBlNzcIZlO9QPkTcOh5+YYz+Feo6LI0+hafK5LM9tGxJPUlQa4T4jR33jbwVfaVoFrLOdqzvJJC8QfYdwRNwG5iQOnAAOTkgVseDry61JLCf7Nf2dtbabHbSQXcTxZm43fK2M7QuNwyPm6nBwAY/wv8Am8ReP2b/AFn9uyKc+gztr0WaeK3geaaVY4Y1Lu7sAqqO5J6CvPvCSHSfiv4z0t1IF8LfUoO24EFZD/32cfhXW+KNE/4SLwvqej+b5RvLd4lkxnaxHynHcZoAbPpvhzxZbQXdxaaVrEGCIZmjjuFA77W57+npXnN94gufhz8VNM0KOeWfw5q6oI7aRy/2N2YpiMnkJkKdvQAnHStvwbfaF4E8OW+hah9p0meHLSi/yyu56skoGxlPYDBx1ANc/daNdfEv4p6ZrsdpPD4b0cJ5c88ZjN06sX+RTyV3YGcYwp+lAHso+uaWuR8f674j0DRILnwzov8Aa129wsckexn2IQfm2qQeoAz0Ga39G1EavothqQQxi7t45wjdV3KDj9aAL9eSfGb/AJD/AIB/7DC/+hx16xNKIIJJmV2EaliEQsxwM8Ack+wrxb4m6ld+INX8LTaV4c8Q3Eem3wup2OlTJ8oZOAGUEnj0oA9rFLWRo+vway0gitNStmjALLe2Mtv1zwC4AJ+ladxPHbW0s8zBYokLux7KBkmgDzv4RfLF4wjT/VJ4kuwh/wC+K9Irz/4PWssfgcajPGUm1e9n1BlIxje2B+YUH8a9AoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8R+MkKXHxM+H8Mm7ZJdqjbHKnBmjBwQQQfcHNe2s21GbBOBnAGTXhPxEur7XvHvhLVNN8OeIZ7TSp0muH/suZSQJUbABUEnCn0z60Aeqv4K0ORCkiX7qRyr6lcsD+BkrT0vRtN0Oz+y6XY29nBnJSFAoJ9T6n3NN0nVo9XtTcRW95Aqv5ZS8tXgfOAfuuAccjnp19DWj0HFAHAePLfwzDr3h7XNZvL0ajZTH7BZ2Z3vcuSDtCAEnnHQgc4Paue+L97qepfC2+kudBaxt0kgZTc3CGZTvUD5E3DoefmGM/hVrXdOv9K+NVj4rvLK5vdG+xm2Wa3iMxs3weWRcsAcnkD+KrnxGjvvG3gq+0rQLWWc7VneSSF4g+w7gibgNzEgdOAAcnJAoA7vRZGn0LT5XYlnto2JJ6kqDXC/CbmfxtI5/enxJdbgewGMf1rX8HXd3qUdhOLa/sra202O2kgu4XizPxu+VsZ2hcbhkfN1OCBmeB4/7J+I3jfRnG3z7mPU4Sf41lB3EfRuKAO/uLmG0t5J7mZIII1LPJIwVUUdyT0rLudJ8OeKYIru5sNL1aIqRFM8Uc64zyFbB7+lM8YaEfE/hHUtGWURSXcJRJDnCuORnHbIGa5rwpqvh/wAE+G7XQr03OkS2oJaLUeSzEliVkACSDJONp9iAeKAMBvEV34B+Ldj4YNzNc+H9XWM2sMrmRrSR2KBUY87Ny9OgDcdDXsNeNJot58RPizZeKvsc9t4e0lYxbTXEZRrt0YuGVTzt3tnJHIUevHb+P9d8R+H9Et7nwzov9q3T3KxvHsZ9qEHnapB6gc9B3oA66kPQ1Q0bURq2iWGpBDGLu3jnCHqu5Q2PrzWb4w16+8PeHpr3TtLu9Uvi3lwW1tA0pLkHDMF5CjBJPHp1NAFTxXrt+kq+H/DyCXXbxCVY/cs4jwZpD2A5AHdhgdKs+DfCFh4L0ZdPs90krt5lxcv9+eQ9WP8Ah2/M15hovxB8TaNDKV+Fuvz3dw/mXV3J5nmTvjqf3HAHQKOABgV1vg3xDrvi3xY19q3ha80G3sbJ4olug/715XQkgsi9BH29aAPRq83+EXyxeMI0/wBUniS7CH/vivRLieO2tpZ5mCxRIXdj2UDJNcH8HrWWPwONRnjKTavez6gykYxvbA/MKD+NAHoFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFMlkEUTyMGIRSxCKWJx6Ack+woA8S+K0CXPxk8DQSb/AC5XRGKOUbBlwcEEEfUGvTZPBOhzIUljvpFP8MmpXDA/UGSvK/HN1f6z8TfC2tWHhvxBNYaY8bzyHS5lPEm44UqCcD6V7PpeqR6ta/aIoLyFd2wpd2zwPn/dcA4/+vQAumaTp+i2QtNMsoLO3ByI4Y9gz6nHU+9cZ41g8M2ni3QNd1W5vzq9sWSwsLP53uSe2wDPU9cgepr0EjINeVajp9/ovxv/AOEp1CyubzRriy+zwT28LTfY3wAdyqCwBw3OMfP9aAKHxmvtUv8A4bSzXOiGxiS6idDcXKNKpyQDtTcB1/vfn0r16zfzbKCRuS8at+Yrzb4nwX/jfwVc6f4ftZ5xHtuXkeJkE20/6uMMAWJzuyAR8uM5IrpfC19c6tcLei3v7SzSxhhWC7heI+dli/yNg/KNo3cg54PBoAwfg2d2k+JnYnzG8Q3bPn1wleh3FzDaW8k9zMkEEalnkkYKqKO5J6VwHw9Q6T4x8caGw2gakuoxdtyTrnj2BUCuo8YaEfE/hHUtGWURSXcJRJDnCuORnHbIGaAH3Ok+HPFMEV3c2Gl6tEVIimeKOdcZ5Ctg9/SvOG8RXfgH4t2Phg3M1z4f1dYzawyuZGtJHYoFRjzs3L06ANx0Nb/hTVfD/gnw3a6Fem50iW1BLRajyWYksSsgASQZJxtPsQDxXOJol58Rfi1ZeKfsc9t4e0lYxbTXEZja7ZGLhlU8hd7ZyR0UevAB7LQehrjvH+v+JvD+m2c3hrQv7VnkuBHNHsd9iY64UgjnjJ4FdJpd8mp6VZ6hGGVLqBJlVuoDKGAP50AF9qNnpcAnv7y2tYdwXzLiVY13HoMk9TzxWfqPhTw7rMrXd3pFlNcyAH7WsSibgDawlX5gRgYIPGBWH8TvB/8AwmPh22tgksrWt0lwYIpVjeVQGDKrMNobBJGcDIHI61Yg8b+F9J0yK3kuprZraIILSeCQXAwMbdhGWP0yD645oA5f4f8Ai3U7fx9rHgPWbuW9Nm7tY3c3MrICDtdv4iVYHPXg+1es15J8O/Cmp3fjvWPH2s2clj9tLrZWkv8ArAjEfMw7HaAMHHU8dCfUr68i0/T7m9nbENvE0rknoqgk/oKAPP8A4MgDQNeReY0166WM/wCz8n/169Jrg/g/p8tl8O7Ke4TZcX8kl64x/fYkf+Oha7ygAooooAKKKKACiiigAxRRRQAUUUUAJgelcj4x0q6W60zxPpkLS6jpDkvBH965tn4ljA7tgbl91966+g0AU7DULXVLC3v7KZZrW4QPHIvRlPf/AOt25q3gegqG2tLezDrbQxxLI5kYIoUFick8dyanoAQjINZ+rXd1aafI9lbNcXbYSFMfLvPALEdFGck+ma0aMUAUdKsE0vSrTT0ZnW2iSIO3Vtoxk+/Gfxq9gelGKKAEIB6ijHpilo7UAcj42uLnULFfDGlykahqgMcsi8/ZrbpLK3pxlR6seOhx0mnWNvpen21haR+Xb20SxRr6KowKdHaW8VzNcRwos05XzZABufbwMnvjt9asAAdBQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAGB6UUUUAFJgYxjilooAKD0oooA47xdptxa6lpni3Tonlu9M3R3UMS5a4tG++oA6lTh1HqPeunsby31CygvLSZZredFkjkQ5VlIyCKtYHpUFtaW9nGY7aGOKMszlUXA3E5JwO5JyaAJ8CkIG08cYpaKAMzWbq7g0+RdPheW9mxFD8uVRm/jf0VRknPXGByQKsadZRadptpYwEmK2hSKMsckqqgA/WrWB6ClxQAUYHpRRQAhHHauP8AGz3GrwR+EtPldbrUhi6lT/l3tM4kcn1bBRR3JPoa7GoIrS3gnnnihRJZ2DSuBy5AwMnvgcUANsrSGxs4LS2QR28CLHGg6KoGAB+AqzRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUYHpRRQAUUUUAJgYxjiloooAD0rjPFljNputad4xsonllsEaC/hiGWmtGOWwO5Q/OB3+auzoxQBXtLmG8torm3lWWCZFeORDlWBGQQfcEGrGAO1QWtpb2UIgtYY4YgSQkahQCTk4A9SSfxqegBDgA1m6zdXcGnuunwtLey4ih+XKozdGb0VRknPXGByQK06TA9BQBV06yi07TbSxgJMVtCkUZY5JVVAB+tW8A0YooAKTHHGKWigDjvGz3GrwR+EtPldbrUhi6lT/l3tM4kcn1bBRR3JPoa6iytIbGzgtLZBHbwIscaDoqgYAH4CnRWlvBPPPFCiSzsGlcDlyBgZPfA4qegAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAMAdBRiiigAowPSiigAxSY4paKAOK8U2cmj+IbHxlaRu628TWuqRRjcz2pJIcDuY2+b1KlhXXQTx3EMU8MivDKodGU5DKeQQfcVNjjpUNraW9jbpb2sMcMCZ2xxqFUZOTgD3oAnwB2ooooAydelvF0xoNPRmu7k/Z4nUcRFgcyMewUAt74wOSKvWdtFZWcFpANsUCLEi+iqMAfkBVjA9KMD0oAKKKKAE4Fcd40E3iDyvCFkzK17h9QmQ8W9oD82T/efGxR3BY9FrsqggtLe3lmlhhjSSdt0rquC5xjJPfjigBbeCO1giggRUhiQIiKMBVAwAPwFTUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9k=', '/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAZwEgAMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKTIpA6MxUMCR1APSgB1FICDnHaloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQjNLSGgDwzxJ4huvHnxht/A0V5cW+h2zut4tu5RrhkQswYjnGRtx9T6EdJ46+HWi2Hg6+1Lw/ZLpGp6ZbtcwXNkxjYhF3ENg/NkAjJ5zzn18z+F0jXHx/v5ZCC7TXrk+5LZ/ma+gvF+D4L10HkHTrj/wBFtQBzPwi8bT+NPCPm37K2pWcnkXDqMeZxlXx2yOvuD06V6BXz5+zTKwn8Sx/wlLduvfMn+NfQY70AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLSEZFAHzj4ZsG8M/tM3FpcDy0uJ7h4SeAyyIzpj9B9RivbPHd1HafD/xBMzAY0+dV/3mQhR+ZH51F4r8CaR4v+zzXyzQX1qc217ayeXNCc54bHrzgjrWZf8Aw3k123hs/EHijVtT0+JgwtD5UKyY6CQogZvzoA439nHRZrXw/q+ryoypezRxRZH3ljByw9suR+Br22q2n2FtpljFZWUEcFrCoSKKMYCr6VZoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikyPWmpLG4yjqw6ZBzQA+ikDKTgEZ9KM0ALRSZFVbvUrOyltoriYLJdSeVAgBZpGxngDnAAJJ6ADJwKALdFGaTIoAWigEHpRQAUUE4pNw45oAWikyD3qK7u4bK1luZ2YRRKXcqhYgDrwASfwoAmoqK3uIbq3juLeVJYZVDpIh3KynoQR1FS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc1458X2Xgnw3Nq12DI4Pl28AOPNlIO1c9hxknsAevQ9Ia8J+MUp1T4r+CvD82WtDJFI6dm8yfYf0T9aAOx8P+DbrxPZxa147mlvrm5USx6WXZLa1U8hTGDhm9S2fTtk78vgfR4E83RreLRL5f8AV3OnxiLntvQfLIPUMD1PIPNdMvT3ob/9VAHl3w0u9Z1Pxb46TxFt+2RzQQNHESEVAsgUJzkAjnOc85rP0vSLbQP2g00+wa4W1fSTP5ck7y4YnBOWJP8ADXptjolvY69qmrRO3m6isIlQ9B5YIBH1B/SuBm/5OVt/+wEf/Q2oA9PkkWGNpJGCIgyzE8AAZJNcb4HeTxJLdeMrpCPtrNDpyP8A8sbRTgcdi7Auf+A+lHxb1N9J+F+tzxnEkkItx9JGCHH4E102h6emkaDp2mxj5LS2jgH/AAFQP6UAc/448U3GgR6bpunLG+saxci1tPMGUjzjdIR3C5HHfP1qW98O6zFpry6d4ivn1dF3K9wUaGZgM7WixtVT0+XBA5zxzxXiyZp/2jPBtm/MUVk8yg9mImyf/Ia168Rx60Ac/wCCPFUPjHwvb6vHGYZWJjuISc+VKvDL9O49iK6KvIfgfMVvPGliD+7h1ZnVfTcWH/sg/KvXqAEP/wCuuJ17xHfXfjay8HaNcC2uXgN5fXgUO1vCDgBFYFS7HAyQcA5xXbGvIPBkpu/2gvGk74Lx26RKfQDy1/8AZRQB03ikat4P0SXX9M1G7vY7LbLd2V5IJBNF0cqxGUcDJGDjrkHjHW6ZqEGraTa6jZvut7qJZojjHysMjj156VneNEV/AfiFGHynTLkf+Qmrmvglcvc/CjSA5JaIzR5PoJWwPyIoAtaVN/winjp/DWCmk6pG93po7QyrzNEPReQ4HQZYV3CnOeK86+Lbf2fZ+HNeU7ZdN1mBifWN8q6/Q8Z9q9FU5oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAA14n8ctNn03XfDHjWGFpE0+5jjnA6ja4dPzO8fUj1r2yqupadaatp89hfQJPa3CGOWJxwymgCS1uoby1iureVZYJkWSORTlWUjII9iCDUhIxnt/OvP9I8P+KvAqtZaI0Gt6EGLQ2d3N5NxbAn7qvgqy/XFbf2zxVqK+TBo0OkhuGuby5Wcp7rHHkN+LKPr0oA0NP1KW813V7YbDa2ZiiVh1MpUu4/BWjrg5v+TlYPbQT/AOhtXoenaYmkaaLW1LSMNzNJM3zSyMSSzn1JJJ478ADivPn8K+OX+I8fjDyvD25bX7J9lN5Njbyc7vK68+lAFn45An4X3jgZWK4gdx7eYB/MivRlYMqkfxDNc5400ObxH4D1XSmRftNzanaqtlfNXDKMnH8SjnineBtXGueCNHvy2ZXtlSYHqJUG1wf+BKeKAOC8YRNbftDeC9QYERT2r26k/wB4eb/8cH5169kfSuZ8Z+FP+Ens7Ka0nW21XTblbuwuHXcqSKQdrDujYAP4emKZeXniu80l7O00VLHUpEMf2uS6RreHIxvXad7Y6gFF5xn1oA4r4FxM7eL9UxiK71Qqh9du5v8A2cV6/uHrWF4T8M2ng/w5a6PZ7nSEEvI3WRzyzH6nPH0Fc3pum+KdI+KFzc3+uC80bU/MFvZbmJhCgMDtPC44XIPOcmgD0HNeQeD4TYftC+MbeQEefaLcIT3UmM5/NsV68K5LxD4Wu38Uaf4s0Tyf7VtIzbzwTMVS7gPJQsB8rAnKnpnrxQBe8czrB4B8RSHqNNuBj1PltWB8FbOSz+FOkCVdrzebNg+jSNg/iMGrXiTTdc8ZaUdDFg+j2FwVF7czyxvKYwQSkSozDLYxlsADPBzXW2FnDpthBZW0Yjt7eNYokHO1VGAPyAoA4D44jf8ADiSED55byBEx678/0r0cc15/4/j/ALc8U+EPDcZDBr7+0roD+GGAZGfZmbH1r0AdKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoozRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACHqK5GysJ/CnieZbeFn0TWJzLiNcm0um+9wP+Wb4zkdG64BzXX0jDNAAowO9LSCloARhnisyLTp216fUrl42Cx+RaRrn92hwXY/7TMFH0RfU1qUUAIKWiigAqC8uY7OzluZQ5SJC5CIWY49AAST7Cp6RgSOKAOY8N6Nc/2rf+I9VhEepX4WOOEnP2W3U5SLPTcTlmwSNx44FdOOlCjFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRQTigAoozRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFVdQv7TS7Ga+vriO3tYVLSSyHCqPerJrwP9o3xDPGNJ8OwyFIZFa7uB/e52oPoMPx9D2oA7vTPiDqnioyS+FfC73emxsU+3X90LWNyOu1drMR15xx3rS8I+PrXxLq+paLNbpaatp5/ewx3CzxsucEpIoGcHgggEE/XFDS/Fvh7wv4fstJijvJotOt0iuXs7KWeOBgo3CR0UqGycnnOTz1qp8OPCfg211S+8U+GNTlv/tgaMqzgiAMwYrtwGByB97nAH1IB6UDmikHOaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBCQBknFcFqfxj8FWNpLNFqb3rRDLR2sDsfoWICjn1Nd6c4461wfxhjWP4Ta4EVVURx8Af9NU/z+NAGh8PPGv/AAnmgXGrCx+xql28CxmTeSFCkE8DBO7pXW15J+zt/wAk5uf+wlLx/wAAjr1ugAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooADXzL+0bE6eOtNnIPlvpqop91kkJ/9CFfTRrzj4v8Aw/m8ceHoZNPC/wBq2BZ4FZgokVgN0eegJwuCeOPfIAOu8MadDpPhjTbGBRsit05HVjtG5j7kkkn3NfP3gDUJdA+P+o6VaMUsrq/u7V4V4G1WcocdiCB+GfWvTdD+JA0/w9bWmuaDrtvrNrCIpLZNPkfz2UAZRgMEHryR1PsTzvwt+H2sP41vfHHiCzNi80s01tav98NKSSxH8IAYgA880Ae3L0paBRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVwnxkIPwl17kfci/9GpXcu23/D1ryb4ieKLnxH4N1fQ9P8JeKTdTbEjd9LcRnbIrE5BPGAe1ACfs7ED4c3WSP+QlL/6Ljr1yvDPhTrN/4J8JzaZqnhHxS073jTKbfSnYbSqAZzjn5TXt1tN9ot45vLePegbZIu1lz2I7GgCWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKTcPX8qAFopAwIyDkUuc0AFIRSkgdaQHPSgBADjmlAx/+ulJxRQAUUUUAFFFGaACijIFJuBoAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooyPWgAoozSbh+maAFooozigAxSAGlzSZFAAR7UAYpaKACiiigAooJx1ozQAUUE4pAQSfagBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEJA61y2veOdP0nVY9Fs7e41XW5F3LYWQBZB/ekYkKg6dT3qXx94k/4RLwXqOsKFaaGPbACMgysdq59snJ9hXNfBfQfsng5deuyZtV1p2ubieT5nZSxCrn0x831Y0AdDHqvi8IJ5/DNh5XeCHVd0/wCAMSoT7b/xqsPiHpNx4h0XQ7YO19qEkqSwSfJJa+XGzHzF7EkAAdCDkHGM9ftOCOfzrgfEfhhf+Fr+EfEtvbHzN89rdOq5BHkSFGOPT5hk+w7UAS+MfiDdeDry3W58N3M1lcTpbxXouYwjORnG3lh0PUDpXdA+teW/Hfnwnof/AGHLf/0CSvUz2oAwPEeuS2M9lpenKkusX7Mtuj/djRRl5X/2VHbI3HA78bVrHJBaxRTTtPIiBWldQC5A6kAADPsK4XwTL/wkXjHxR4lf5lhuf7IsyeixRYL4/wB5zn8BXdzQpcwPDPGJIpFKOjAEMCOQaAMXXfGOheHmhjv9RhW4mlWKO3Rt0rsxAHyjnHPXpW8ueQa8V+Luh6Vodv4UTStMs7FW1iPIt4FTd6ZwOa9qAOTQAtFFHSgCK4uIbW3knuJY4oY1LPJIwVVUdSSegrnh4201rI6ilrqTaZjcb1bJzHt/vYxuK99wGMc5xXKfGTUJJT4Y8LIxVNc1NIp8HG6JWQFT7Eup/D3r0wRIsYjVQsYG0KBwB6Y9KAGW9xBe2sV1aTRz28qh45YmDK6noQR1FYEWsXeleKRo+qsrwagWk026wF3MBloXxxuA5U4G5euSCTynwnvWs9e8YeE8n7Npeos9op/gidm+UegG0f8AfRrpPiXp0l94Gv7i3JW+00f2haSL1SWL5gR9QGX6MaAOtFLWb4f1WPXfD2n6rEoVLy3SYL/d3KDj8M4rSoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoziimt0P0oAo6xrOnaHpk2paneRWtpCPnlc8fQdyfYcmucsfFfiHX4xc6J4X2WD8xXWrXf2YyD1WNUdtp7E46iuEvrk/EX47JoU/7zRPDwaaS3Y/LLKmASw7/OyjHop9TXtirgdKAOYl8XrpKsPFFmNJKozpOJfOgk2qWIV8A7sAkKygnBxnBwuneKbrV/Blnr+maJNdyXI3pZrOiMFyRncxA7evetLxJoNr4l8P3ukXigw3MRjyRnY38LAeoOCPpWR8NLSey+HOi21xG0U0UBVkbgghmoAXwF41Txxpl5epp8lj9mumtmikkDtkKCTwP9r9K6a5mS3t5J5ZFjijUu7scBVAySfwrzL4IY/snxOf8AqPT/APoKVq/E+5a7g0TwrE7K2vX6QT7ThvsyYaXH4YH4mgDc8Nahe69E+tSZg064H+gW2wB2i7SucZy/BCjGBjOSeNm6u7eyhaa6uIoIxkl5XCgD6mpI4liiWKNFSNRtVQOAB0AHp7VnXXhvRL/UF1C80exuL1VCrPNbo7qB0wSDjGaAG+HfEul+KLa6udIuRc29vcNbtKoIVmABJXPUfMOelbFeSfs8/wDIh6if+otL/wCi4q9boAKQkClpGGcUAUNW1zS9DtHutUv7e0hQElpZAufoO59hS6Lq1rruj22qWTM1tcoHjLAgkfQ9K434j+HNFtfAviXUoNIsEvpLV3e5EC+YT67sZ/WtL4Xf8ky8Pf8AXmv9aANTxLNqllZpqOmJ9o+ykvcWW0ZuIv4gpPIcDlecHkEcgrf0vUrXV9MttRspRNbXMYkjde4I9Ox9u1W2GRXn/gaUaN4v8U+EQNttbzrf2S5+7FMMsoHYK+f++qAPQaKQUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHmHx9glm+GEzx52w3cLyY/u5K/wA2FdL8Npo5fhr4daPGBYRLx6hcH9Qa2tc0i11/RLzSrxN9vdRNE49Mjgj3BwR7gV5n8PdUn8Azt4E8UOLcJK7aVeyfLFcxs2doboGyScf7WPSgD1zIqGa4hheBZJFR5nMcSscb22lsD3wpP0Bp5ZVGSQBjqfSuahuI/EviK1vLUiXStM8xkuF5Se4ZTH8h7hFMgJHGXwOQcAHJ/Hc58J6J/wBhy3/9Akr1GZ/Lid8Z2qTj1ryj483dsnhjRYXuIxKNagcoWG7aEky2PTkc+4r1VJ4biLfFKkiH+JSCKAPP/geCfhfY3DnL3E88rnuT5jDn8q9Frzn4KqbTwRcaS+RLpmpXNpIp6qwbOP8Ax6vRSQOpxQB5L8c/ueEf+wxH/SvW68b+OeoWWfCifa4N6aosrL5gyqDGWPtXr0N3b3KhoJ4pVIyDG4bj14oAmzikyK5Xxb8QND8G3um2mrNOrX7FUaJARGAQCz5IwMkdMnrXUr1IPOKAPHfirn/hanw5LH5ftw/PzYv/AK1ex9j3rzL4x6VO1poPie3iklbQNQS5mWMZYQ7lLn8Ci/QZNeiJf2ktgt+lzG1m8fnCcMNhTGd2fTHOaAPJvh2WHxu8fY+7uyfrv4/rXrV9CtzYXNu/3ZY2Q59CMV5x8I9MluLrxP4tljeOPXL9pLQOMEwBmKt64O7H/Aa7/Xr1NO8PaleyMFS3tZZWJ7BUJoA5H4KTtP8ACfRt5JKecmT7Svj9MD8K7+uK+Edg+m/CzQYJAQ7QNNg+kjs4/RhXa0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhpaQjPTrQB4P8Kla0+OXjW2uBidjcOM9WH2gHI+oYGveB/KvJ/HHh3UPDPjuz+IuiWr3UaARaraRDLtFjaXUdztxx6gH1r0bQ9e0zxDpkeoaVeRXNs6g7kPK/7LDqpHcGgDSaora5hu4RNbyrLGxOHU5BwcH9Qazde1pdOgFtagXGq3AK2lop+Z26bmx91BkEt0A98Ay6RZQ6DoNpYvOpS2hVGlchdxA5b2ycn8aAPP8A4H/8gjxP/wBh24/9BSrfiBjP8dvCULHKW9hdTLnsWUqf5Cs34G3ds+meJI1njZ31uZ1UOMlSq4OPQ4P5Vp+LEFl8YfA+pucQzpdWbMegYx5QfiTQB6MO9LSZA61DcXtraIz3FzDCijcWkcKAPXmgDyv9nj/kQdR/7C0v/ouKvWiQK8d/Z7v7OPwRqUL3UKSjU5HKM4B2mOPBx6cH8jXrGp6hb6Xpd3qN0zLb2kLzysoyQqgk8d+AeKALeaK57wd4w0vxtozanpXnLEkpheKZQrxuADggEjoQcg966AkDrQByfxP/AOSZeIv+vN6T4Xf8kx8Pf9ea1D8U760h+GviCOS5hR2tWRVZwCWOMAD1pvwqvbSX4a6BHHcwu62yoyq4JDDOQR6+1AHanpXnFwTbftEWuzGLrw8Ub8Jic/oBXo+QRxXnNugv/wBoC8uEBZNM0JIJD/dkklLgf98k/lQB6MKWkFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhqpqGl2OrWjWeo2Vvd2zdYp4w6n3wauUUAcxD8PfC8ChE0lTEOfIeaR4v8Av2WK/pXRxxLFGscaKiKAqqowABwABUlFAGLd+E/D1/dyXV5oGl3FxJy8s1nG7scYGSRk4FXtP0rT9Jt2t9NsbazhZy5jtoljUscZOAAMnA5q5RQBwlrB/wAIn8SLwEBNM8SATRn+FLxFwyfV1+YepVq7eSNJo3jkRXRgVZWAIIPUH2qrq+kWmt6c9jexlonIYFWKsjA5VlYcqwIBBHIIqxaxPBbRRyStM6IFaRgAXI7kDjJ68UAYw8D+EwCP+EX0UZ6gWEX/AMTVzTvD2jaO7yaZpFhYySDa7WtukRYdcEqB3rTooA5fxtYWGoaN9iubS2uL27JtbHzYlkZJJAQXQHptXLkjshPaumQYGKa8MbypKY1MiAhWI5AOMjPocD8hTlBAwfzoASRQ67SoZSOQRnNYJ8E6AUMX9nj7MW3m081/s5Oc8xbth5Pda6GigCOJEhRY0RY0AAVVGAAPbt/+quO+ITS6vZ2nhGxb/SdZk2Tuv/LC1Ugyufwwgz1L12h9QM4rMsdFhsr+71Bmae9ujh5pMErGCSka/wB1Vz07nJOSSaAL1tBHa20dvCgSGJFSNB0VQMAVNSAYpaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEIzXO3fgXw1e3pvX0iGK7Jy01szQO3rloypP410dFAGXpfh/S9FLnTbCC3eT/AFkirl5PTcx+Y9+pqxf6ZY6rbfZtRsba8g3b/KuYlkXcOhwQRVyigDEtPCPh2xuY7m08P6Tb3ERzHLDZRoyHHYgZrP8AiBoN1rfhwSacF/tXTZ47+wz3ljOQv4jI+pFdXTWBIwDigDO0TV7bX9FtNUs2/c3EYfGclD/Ep9weCPUGmah4a0PV7gXGpaLp17Mq7FkubZJWVeTtywJxknj3NOsdEg03Ury8tXeJb1vMntwf3Zl7uB2Y9/XAPXOdMUAYH/CD+FP+hX0U/Wwi/wDia25I0dCsqqynghuhGOc/hUtMljEsbIwDKwIIIyCD2oA53wdZ2UMWo3Wm20Ftp9zc/wCix28YjQxoipuCjjDMHII6gg10hpsUYiQIqhUUBVVRgACn0AYt14Q8N3tzJc3Xh7SZ7iQ5eWWyjdmPqSRk0W3hDw3ZXMdza+HtJguIzlJYrKNGU+oIGRW1RQBWvby30+ynvLuZYreCNpZJGPCqoyTXK/D7TboWupeI9RhMWoa7c/amjYYaKEDEMbe4X+ddDq2jQ6w1qt2zvbQSCVrbOEmYEFd/qARnHQnGelaK570AApaKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBCQKAwPQ0EZxXOa83jL7aieHrfRDbGMbpdQllDB8nICoORjHcUAdHkUZAr5+8K+LfFOqfHqLR9Z1dpYrSW6ga3t8x27FEfnZ35Gctk19AY9uKAF3Dj3o3D1rxrW/H51n4pnwWdUvtJ09ZBb+dYhRLPOcfKZDyi5OPlHOPSjx/4Y17wbo0nibw14r11jalWuLa9uzcIykgbsNwSM8g5BB4xigD2YEHpRXBfCnx+/j3w7NNdxJFqNm4juBGMK2RlWHpnB49Qa72gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikNABketLXzf4707xprvxa12XwgL/dZRwW8s1pc+R1jDbS2VzyTxWdPpPxrsbWS4nu9XighUu7yapHhVA5JJk4AoA+oM/X8qWvHvgvZ+MNRgfxH4g1m/ms5Yylpa3EpbzOeZDnoOOPXn2r2ADGaAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAozjrRWdrb6wmnM2hw2ct9uG1byRkj298lQTQBoZFLXzt8XvFfxB0GOxsb/U7CzF6jvt0jzFICkdZG+bv2wK9+0tmfS7R3JZmgQsScknaKALdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRSEgDJ6UZoA+a/CP/J0N7/1/33/oElfSZHFfNfhH/k6G9/6/77/0CSvpUGgDm28CeGz4pXxI2lxnVgcife3XGM7c7c++K5b43+JbbRvAdxpgcNf6piGGIH5tmQXbHpjj6sK6rxj4y07wfpIurtle4mby7W28wI00h6DJwFX1Y8D68VxPhq28Mpqx8VeLPFehX/iCQAxqL6IwWCjokQLY4/vflySSAWfgf4JvfCfhm6utTjaG91J0cwMMNHGoO0MOx+Zj7ZAPNeo1yfhHxYPFGs+IY7RrWXS7CeKG1uICSZWKbpCTnBAY4BFdZQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSEGlooAztP0ay0m4vp7SIpJfzm4nJcnfJtAzyeOFFcBrmoDx78QT4KhkP9jaYoudXKH/j4YEbYc+mTk+uCOorv9d1NNG0LUNScZFpbST7f72xScf0/GvHP2dTLeHxVqlyxkurmeIyORyzfvGJ/EtQB7hDEkMaxRoqRoAqoowFA4AA7CpKQUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSE4oA+dv2lv+Qr4f8A+uE3/oS17/pX/IIsv+uEf/oIrwD9pXnVfD5H/PCb/wBCWvftKI/siyGR/qE/9BFAFyiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBD9K57xBpHiPULmKTRfEyaTEiYeM6clxvbP3sswxxxiuiooA8es/gtq9h4sk8TW3jUJqrySStKdKUgs4IY7fMx/Efzr0bw9puuadBMmta6mruxHlutmttsGORhSQc1t0UAeQ+M/grfeNfEU+rXni141f5YYDY7hCnZQRIM+5wM1z//AAzP/wBTZ/5Tf/tte/UUAcf8OfAq/D/w/Ppgv/tzTXLTmbyfK6qq4xub+71z3rsKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMzxFpC6/4d1HSWlMQvLd4PMAzt3KQDjvj0rmPhj8Pn+H+k3ltNfreT3UwkZkjKKoAwAASfeu6ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACs/W7TUb3S5YNK1EadeNjy7owCbZyCfkJAORkfjWhRQB5F4o+Dmt+Mp7ebXPGy3D2yssRXSUTAOM/dcZ6d667Q/DnivTb+1a+8Yrf6fCu1rT+y44i42kD5wxIwcH8K6+igBBS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFITj+lABketG4eorgvF3ji8h8Q2vhDwvDDc+ILobnkm5itI8ZLtjqccgf4gG/ZeBvkEmseINc1K8PLyLfyWqBvVI4WUKPbmgDrsigkAZJwK8w+IN/4l8CeD7+50y5m1CzkTylluH3T2LMcB9+MyLzj5ssDjJIzjX1uzv774cwX9rreo2F1a6WbkPbSKBK4iDDfkEkZHYjr3oA7mgnHWuM+FGo3mq/DTR77ULmS5upVlLyytuZsSuBk/QCrnjbXrjRtMtrbTQraxqdwtnYqwyFdurt/souWP0A70AdFHcwSySxxzI8kRCyKrZKEjIBHY4INSbh61naNpFvoemRWVuXYL80kshy80h5Z3PdietYsd5rfiQPPo97a6dpiu0cVy9v58lyVJBdV3BVTIOCclsZ4GCQDq8jOO9LXmj+N9Z8JeLrLQPFotri01JttjqttGYssSBtkjJIByRkg45+uPSl/CgBaQkDrS0yV1jQu7BVUElicAAdTmgB24GgsB3ridA1rVfG8U+qafcR6bovmvDaP5IkmudpIMh3cKmRwuMnB5HexpPiW7h8WzeFNcEP2/yBc2d1ApVLqLkHKkna4IORkg9RigDqRdW5ujaiaM3CoHMW4bwpON2OuM96mzXOeLNHuL3T0v8ASyI9a0/M9kx6MccxN/sOBtI+h6irvhnXbbxL4dstXtAViuY9xRuqMOGU+4YEfhQBrUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVj+J/Een+FNBuNX1OQrbwj7q8tIx6Ko7kn/IGSADXyKXIrznQLHxN43tItb17UrvSNPuMPa6Xp0phfyz0aWUfOSRzgFf1wN5/Ctxp0fm6BquoQXC8iK8vJbqCT2YSMzAH1UqR156EA6cEHpRketea/DrxJrHifxJ4yXVY5bJrWaG3jtBJuFtgSA7T0JJGd2OeO2Kp6VJq+kfHJdAl1/U9Q099Ma5WO7lDYYnH8IA7Ht3oA9XqKa6t7ZUaeeOIO4RTIwXcxOABnqSegp5xjnj3ri/C058XarceKZstp8Mr22jxt90IPle4/wB5zuUHsoI/iNAHa7l556daMisTWtWuLO4tdO02GOfVLsOYklcrHEi43SyY52gsowOSWUcckc9rp8c6Dp0urWmp2GrfZgZJ7FrLyN8Y5by2VyQQM8HPT16gHe0Vz3gvxbY+NPDkOr2CtGrEpLC/LROOqk9+oIPoR34HQ0ABOKM0h5xWRq2q6hZSxw2WhXmovIpO6KWJI0PoxdwR+ANAGxkHvUc9xDawPPcSxwwoNzySMFVR6knpXDfDrxlqnizVPE0OpW8FsNNu1t44Yju2Ebg2W/i5XrgV3UqJLG0bqHRwVZWGQQeDxQA4MpAIIIPT3pc5ritAu38PeKZvB0zsbR4ftekO5yRFnDwZ77D93vtIH8NdoPbtxQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAGaTIzig9q841LxhqvibxdP4T8HyxQfZBnUdWkTzBb9tsanhnzkc8fkaAPRwwNGRXKW/gW2SPdca14gurrr9ok1adCD3wqMqAe2K5Hx3rXijwq2jaUtw1zZX+pQIupE7JggcEwybcAk/3hjK5BGeSAes7hnGaWvNfjDHqmneD77xDpmv6nYzWixKILeRVifdKFLH5d27D/AN7HA4ruPD8sk/hzTJpnLyyWkTO5OSxKDJPvQBok4qOG4guYzJBNHKgZlLIwYZUkEZHcEEH6Vyvi3U57vV9N8JadM8V1qO6W7njOGt7VfvkHszHCA9sk9hXQxpaaPpgREhtbG0i46Kkcajn6AAUAXdw9RS5rkon8UeILZdQtL6DRbOZN9vDJaedOyno0mWAXIwdoBIzyc8DH0Tx3qNj41HgvxXb2yajIpe0vbUFYblcEjKnJVjg98ZGPTIB6LRSCloAKTIqhrWpxaPpcl9MjSBCESJBlpXYhURc8bmYhRn1rCnsfG1zA11HremWVzjKWS2RmjU9drSFgzHtkBfpQB1mRnGeajjuYJpZYo5o3khYLIisCUJAIBHbgg/Q1xPgbx8/iS/1HQtWslsdf01itzAjFo5ADguhPOM449x1qx4zSXQtnjCxVmksQo1CBP+Xm0z83HdkzvU9sMOc0AdkDmlqG1uIry2iuYHEkMyLJG46MpGQfyqagAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApkrBELscKoJP0p9NkVXQo4yrDBB9KAPDfgPI+veI/Fnii7+a7nkRVb+6rszFfp8qD6CvcxXhvwNik8N+K/FnhS8yt1FIkkatxvVCykj2IZCPY5r3EMOf88UAZ3iHSYte8P6hpMpAS8t3h3EZ27hgH8Dg/hVDV7Q2Hw6v7NnDtb6TJEWAxkrERn9K1tVv00vSL3UJMFLWB5mycDCqW/pWbr0zz+BNVlkj8uR9MmZkznaTESRn2oAwPgzz8JNCH+zL/6Oeq8kh1b47xQs2YND0hpVHpNMwBP/AHxgfhU/wZYf8Kl0L/dm6f8AXZ6p+HMf8L28ZBx8zWVoU/3di5/WgD0dkDqy8gHjIPIrj/h74Hl8B6Xd2D6xNqEc03mR712iIYxgDJ9s12Q/nWT4h16DQrBZmhkubqVvLtLOL/WXEpHCqPzJPQAEnpQB5V8dYm1vWfCfhuxBbUri4eQBesaHC7vYcMc/7Br2sd64rw34WOk3l74s8S3FvLrl0hM0xbENnCB/qoyeigDlj1x7mu0Bx1NADq5H4oXr6f8ADPxBPGSrG0aLI7byEP6NXXZzXGfFm3a5+FviCNASwt/MwPRWDH9AaAHfCyFIPhf4eVBgG1Dke7Esf1JrlPiZOdP+K3w6u4ztklu3tyf9lnjUj8naut+F8qy/DHw8ykEC0VePVSQf5VxvxWQ3fxP+HNtHy6X5lIHXAkhJP5KfyoA9fI5Fee/DqT+z/FPjfw7u/d2mpi7iHZVuF37R7DH616HXm/hnH/C8vHBT7otrMP8A73lgj9KAPSaKQUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAI3SvDPjVcHWfiB4P8JyM32SeeKSZVP3vMl8vP1AVv++jXuleGfG2zfR/G/hDxeyMbW2njhmZR93y5PMA/EF/++TQB7igCqFAAA4AA6UppqSI6h1dWVgCpB4IPSnH3oAw9K8Ppp3ifXdYjkUjVRblkA+60aspP4gj8q4mb/k5W3/7AR/8AQ2r0Cz1Q3WtajYCP5LNYQZd33ncFiuO2BsP/AAKvP5SP+Glbf/sBH/0NqAOk+KGrPonw21u9iYrJ9n8lSDggyER5HuN2fwrY8MaYNG8LaVpgA/0W0iibAwCQoBP4nJrjPjpz8L7zglRcQbx7bxXpCkEZHQ9KAON8TeBX17xlofiGPWZ7I6aRvijUnzlD7tucjGeh4OQa6XVtQt9I0a91C6YLb20LyyZ9AM//AFgKusQK891S0n+JV4LFHaLwjay/6RMvDajIp+4n/TJTjLfxEcdMgAxf2eNLurLwNd3k6Mkd7eF4FPQoqhdw+pBH/Aa9eqtZizgjFlaeSi2yqnkxkfulx8owOgx09qsZB70ALSGlooA8k+Df/Iy/EH/sMN/6HJXrRryX4N8eJfiD/wBhhv8A0OSvW85oA87+KTHSp/CviKM4fT9Xjjf/AK4yjbIB9QB+dehjvXnHxxAb4byqP9Yby3CEf3t4/wDr16OKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDC8Z6rJofg3WNThOJra0keM+j7Tt/XFcF+z9YJF4DudQILXF7eu0kjclgoAHPfncfqTXoHi7SW17whq2lx48y6tZI48/wB7adv64rz79n7UFbwPd6XLmO6sL11kjbggNggkf7wcf8BNAHrQ4rE8V+H08SaTFaNIsckN3BdRyFd20xyBjge6hh+Nbe4Yzms7XNU/sqwScRiWSS4hgSPONzSSKg/Ldn8KAOR+NX/JIdd6f8sP/R8ddX4b/wCRV0f/AK8of/QFrlPjV/ySPXQcciDv/wBN466vw0f+KV0f/ryh/wDQBQBx/gtzrHxI8a6wxyLeaLTIM9UWMEuPxbBrs9d0oa5oOoaU0rQLeW8luZVGSm9Sucd+priPhKcT+Nkf/XDxJdbj+WP616QSBQBzngnwzN4P8MQ6RPqUuovG7P50i7cAnO0Ak4A+tebeN4zr3x/8KWFgpeXTUjuLp1/5Zorl8N6cAf8AfYHevTfE/iCTSoorLTbcXutXmVs7XOBx1kc/wxr3P0A5Iqj4V8K2fhK3uL6/vI7nWNRmVr3UJiFMsjMNqLnouSAqjrx9KAOtHc0tNUjkZpQQelAHM+PPCJ8a+GzpS37WMgmSZJ1Tfgqe4yMjk9+uD2rZ0mxfTdIsrGS5lunt4EiaeU5eQquNxPqauk4rkPFOq6lqF03hnw3II9RkUG8viMpYRH+I+shGdq/icDGQDg/ByNrn7Q3ifXLME6faxfZ3lX7rSBUTGe+TGx/CvZbq2ivLOW1mUNFMhjdT0KkYI/I1keHNA0fwfpFtounhIgckeYw8yd/4nY9z/LgccCtzj9aAOD+Dt3LL4DSwncvNpV1Np7N67Gyv5Kyj8K76vOPhD/qvGBQYiPiW72D/AL5/+tXo9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSHmlooA4Xxf4EuNS1q08UeHrqOx8R2XCvICYrlOmyXHPQkZ9OPQi1aeL76KJYtZ8KaxaXa/fFtD9qhJ9VdCePqAa680gGP88UAcwYdR8Uyxpd6fNpujxuHeK5ZfPuipyoKqSETIBOSS2MEAZzL4yfVX8P3llpWiz6jPeW00IMc8UaxErgFi7A457A9DmujAxzS0AcD8LbLXtC8K2Xh7WdCnszaJIftP2mGSN8yFgAFcsDhvTHH0qG6jOjfHKwvGUC31zS3tS3YTxEP/6DgD8a9ErnvGHh9/EGkRrbSJDqVnMt3Y3DdI5kOV3f7J5U+xoA3myF+VdxHavGZrn4v/8ACR3WrQ+DNNdmBjthdXcbm3i/uriYDJwCxxknvgAD1Tw/rK61pwmaF7a6jby7q1l+/BKOqn19QehBBHBrVoA8dkufjBrpj0rVvDGl2mmXUqRXk0EyF0hLDfjMzZ+XPGDnJr0XxaNeHhW+/wCEaEY1nYPswk24zuGfvcZ25xnjOM1u1XvnuIrKaS1gFxcKh8uIuFDN2BJ6D3/nQBieB77WL/wvA2vqi6tC7wXWzGC6MRn5eOmM44z0rcvLWG+sp7S4QPBPG0Uin+JWGCPyNVtF09tM0uK2kkEs2WkmkAwHkdi7sB2BZicdq0KAPP8AwdBf+A9Nbw5qVpd3FhayubC+tbdpxJEzbgrqgLK4LHtgjoeKfp2gX2vfENfF2qWcllaWFubbTLWYjzCTndKyjIXO4gDOcdQK7wj/ADmjp9KAE6djzXn/AMNojqGs+MPEx5j1LUzBAw5DwwDYrA9wcn8q3fFuoXTWf9iaQ3/E2v0KI/JFrGeGnf0Cg8erYHrjU0LR7TQNFtNKsV221rGI0z1PqT7k5J9yaANGiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsvxDoFh4m0W40nUofMtp1wfVT1DKexB5rUooA850T/hKvAlqmjX+nT6/o0A2Wl9YlTcRx/wpJESCceqk8Ct3/hJL/UEEWkeHtQM7cebqEX2aGI+rbvnIHoqnPqK6g5o5oAzNI0v+yNOkXe11dSs09xKQA08pAyevHQKBnhQozxXnEll4vf4sxeLf+EPuhZLY/YzCb228zuc/6zGMn1r1sUUAcn8QdIm8RfDbWLFYWW4ktfNjhyCwkTEgXjjOVxwa0PCOrLrng7R9SBDG4tI2cg9H2gMPwOR+FbZGa4vRLc+DNen0Z026LqM7XGnS/wAMMrcvAx7ZOWT1yR1wKAK3xJbxpc2tvp3hXREvYZvmvJpLlIwU/wCeQBdW57kHpx3rm4dZ+NdvbpBB4I0KKJFCIiyoFRRwAALjgAdq9hU9qWgDkPAVr4hXTNQvvFVpFa6tfXhleGFlKoixoiAFWbjCZ696oaXfeNrb4l3lrrSWx8OXTOunmPZuUqNwPHzdAQd3c8cV3pB7VkR2V1ceJHv7mNY4LaMwWi7gS+/aZJDj/dVR34b1oA1xzWVrGo6jYGIWOhXWplgdxhnhjCdMZ8x1PPtnpWqKWgDx7wDp3jLwtq3iO7v/AAfcSx6vdm6UQX1sWjJZyVO6QZ+9Xrlu7yW8ckkLQuyhmiYglCeoJBIJHsalqG7uIbS2kubiVIoIlLySOcKqjkkntQBwfxKT+2NU8JeG4+Wu9UW7mA7QwqWb89wr0Fc85rkfDmmz6n4iu/F2oRPE80QtdOglXDQ2wOdzA9Hkb5sdQNoPORXXD6UALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADWBI4rz3WPBWqaP4sm8XeDTALu4XF/ps7bIrweqt/A/v69+Tn0SkNAHKW3jOYqI7rwvr9vdAYaMWgkGfaRCU/Ekf4WLO01LWdTt9S1W2+xW1qS9pYFwz7yCvmSkEruAJAUEgbick4x0eKUUAeffFOw1/XvCl74e0bQp7trtYm+1faIY402yKxXDOGJwnpjnrW/4Ok1QaDa2eq6NPptxaW8UJ8yeKVZSFwSpRiccd8da6KkNAHnnhKNtH+KPjDSWGEv8AydVtv9oNlZD/AN94FdzfzTw2NxNZ2xu7mJGaKAOF8xscLkkAZ9TXP+LdGuWu9P8AEmlQmXU9LZiYQcG6t2H7yLPr0K57j3rf0u/ttU06G+tJN8My5XjBXsVIPIIOQQeQQQaAPHbKf4y2N9d3yeDdJlu7pvnnmuELBAfljGJwAig8AAc5JySTWxpcvxT13X9Lt/Evh/TtP0eK5FxPLbSqWJQFkBHnMSN4XoOuPSvVqKAOR8fjxj/Ylv8A8IWIf7Q+0r5vmbP9Vg5A38dcZ7+lbnh++k1Tw7puoTKFlurWKd1U5AZlDHHtk0utpfzaa9vp3y3E5EXnEj9wp6yYPUgcgdzjtki1Z2sVlZw2sCBIYUWNFBzhVGAPyFAGT4uuddtfD1w/hvThfaq3yQI0iIqE/wAZLkA49O/HbNeX6VdfGXR7L7Na+C9GwzGSWSS4RnmkJyzuftHLH1/oAB7bRQB5z4OHj7U/FI1HxlpFnp0FpZyRWy20isGeR0LE4kc8BPbqa7y/u4tPsLi8nIWGCJpZCf7qgk/oP0qyxxXH+LY28Tzr4UtSwt3ZZNWnXOI4AQ3lZ/vvgDHZck9VyAVvhFYT2ngC2urpSt1qcsmoSgjHMjZU/ioU/jXdVHDGsMSxIoREAVVHYAcCpKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKM1Dc3dtZQma6nigiBwXlcKo/E1xnib4teD/DduWk1OK/nzgW9iyysT7kHaPxIoA7kHNFRW0y3FtFMgIWRAyg9cEZqDVNTstG02fUdRuY7a0gXdJLIeFH9T2AHXNAFvI9aXNcYPHss0H2m08H+Jbq0PKzLbRrvHYqjuHI/CtTwx4y0XxZDO2mXDGW3bZcW00Zjlhb0ZT06EZ6cH0oA36KKKACiiigAooooAKKKKACiiigAooooAKKKKACmsM4xjj1p1FADUQKSQoBPf1p1FFABRRRQAUUUUAFIRznFLRQBGYgX37RuxjOPypyjHWnUUAFFFFABRRRQAUUUUAFFFFABRRR0oAKKw9T8Y+GtISQ3+vabAYyQyPcrvBHUbQck+2KpeDPHek+OF1CTSVuPJspREZJUCiTIJBUdccd8UAdTRSE4rjdT+JOjWevNoWnwXus6qufMttOiD+X6lmYhRjvzx0OKAOzzRXGWPxI0qXXotD1S01DRdSmx5MOoRBRNnptZSyn069eK7IHI4oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigApkiBwAQCAc4I7joafRQAijAxS0UUAFFFFABRRRQAU2RA6lSAQfWnUUAIucc0tFFABRRRQAUUUUAFFFFABRRRQAUUUUAFGaQ8c1y2oeOrKDVJ9L03T9Q1q+tztnj0+IMsJ9Hdiqg+2c+1AHVZozXFwfEjTI9Wt9L1mw1PRLm4YLAdQgVY5mPZXQsv5kdRXZKQRkHNADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBrAnGAMj1oRAgIAwMk06igAooooAKKKKACiiigBCCelNWMKzEKAWO5iO5xjn14AH4U+igBBmloooAKKKKACiiigAooooAKKKKACiiigAzSZFUr/AFjS9MI/tDUrO0yN3+kTrHkevJFcra/FPwzqPi+y8N6bcvfXVzvHnW4BhjKqWwWPXIHbNAHcUUgHWloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAKepaXYaxZm01Kzgu7YkMYp4w6kjpwa+df2hNK07SL/QIdNsLWyiMMxKW0KxqeV7KBX0tXzr+0t/yFfD/wD1wm/9CWgD37Sf+QPZf9e8f/oIry/9oKS+g8IaXc2y7reHUUeYEZXIVtm4f3c5/HFeoaV/yCLL/rhH/wCgiuJ+Kfi2HSLC00CHS4dW1PWn8iCznGYiCQMuMjPJGBkeuRigCLwV8YfDniuNILidNL1LGWt7lwqse+x+h+nB9qxvBKDXPjV4l8T6Sv8AxI/s62n2lARHcTARglex+63I7EH+KuL179nrV7PSYrrSb+G/vFTNxaY8vnuI2PX0+bBOM+1XPg5481fSfEMHgfXY5RExaK3SaPbJbSAFth77TgjHbjHGaAPodeRS0gpaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApCM0tFAHC+NfCugWngvxPfwaJp0d42n3MhuFtkD7ijEtuxnOcmuH/AGbDnRtewMf6RFx/wFq9Q8ff8k78S/8AYMuf/RbV5d+zV/yBde/6+Iv/AEFqAPV/GWoXGleC9a1C0JFzbWU0sTAZ2sEJB/DrXjP7NsSS3niW7cFplW3UOTzhjIT+ZUc+1e9XtpDf2U9ncxrJbzxtFIh/iVhgj8ia8a8HeFPEPwn8Uans0u61nQr5QFnsSrSoVJKb0JBzhiDjj69KAD9o2CMeHtFu+BPFeMiMPvYZNxx+Kj9K9H+Huty+IvAOjapO5eea3Cyuf4nQlGP4lSfxrx347XOqavoem6ldWU2m2CXRitra5K+dKWUlpHVSQoG1QBnPJzjivTPgzbvbfCfQ0kUqzLLJg+jTOQfpgg0Ad5RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADJd3lsIyA5B256Z7V82fC74pW3g177QvE8E8YlvHmkuwN7JKcK4kGMkZXORkjmvovVNQttK0u61C8cJbW0TSyt6KBk/U+1eDx+CJfjTPfeLTHb6FbSlorIJFvkuSpx5kvIB6FeO4/2eQDe+MOr6X4r8MaXomhTw6tqmoXaSWiWrCQooBy5I+6Occ47+hx67ZRyRWUMUsnmSIiq8mc7mA5P518myWPjT4M+I0vfKEat+7EyjzLe5TrtJ/DOOCK+pPDGuQeJfDdhrVspSK8iEgRjkqehB+hyPwoA1qKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQ0tFAGVqPhvRNYuo7nVNIsb2WNdkb3MCyFRnPG4HHNfPmgwxW/7URhhiSKNL24VUjUBVHkvgAADFfTBr5q0f/k6mT/r+uP/AES9AH0rRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAUNZ1rT/D+ly6lqlyLazixvlKlgMkAcAE9SK+bPjn4q0XxZqOjSaHfC8SCKVZCsbrtJK4+8B6GvqEjOKQA96AOO8M/EPwrq7afo9jqyzag8IVYfJkUkqmTyVA4APeuV+LGiarb+LPDvjTTbGXUItLdVureFdzhA27cB9Cwz2wK9bKjIwooxQBx1p8UvBV3ZfaR4htIePmjuG8uRT3BVsHP0rkLLTo/H/wAYLHxbptpLHoelW4QXssRjF5KC+NgOCQN3Uj+H3FesSadZTTLNLZ27yjo7RgsPx61ZAx9KAADApaKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopGGelAHm3j74ieFD4a8SaENXU6kbS4tfIEMmfNKMu3O3HXvnFec/Azxn4f8J6Xq8WuagLN55o2iDRO24AEH7qnuRX0cFxS470AVLHUbTVtOt9QsZhNazoJI5ACNynocHBH414v8N/E+r6F4j1238feJltmVtqWuoTEHdnO+PcMCPGfunnjivcSufaoriytrsAXVtDOByBLGG59eRQB4X40Nx8Z/FGm6V4cjlbQdPZjc6o0ZEZZiN23ON2AuB6kntzXuOm2MGl6db6fapst7aJYY1znCqAB+gqwECqFUAKOAMcU4CgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAxPF+jP4h8Jaro8Ugjlu7Z442boGxxn2zjNeb/AA08aWHhHw9D4T8W79E1GxaQR/a0KpMjOWyr4xxux1weMZr2OoZreK5QpPFHKn911BH5GgDyz4h+LNF8WeGbvwv4cI17Vb3ascVmpdIsMD5jOPlUDHr19s13ng3Qf+EX8I6ZopkDvaQhZGXoXJLMR7bia1oLWG1QJbwxQp/djQKP0qcUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGB4h8a+HvCssEWtakto84LRBo3bcBjP3QfUV856b4m0iD9oN/Ecl4F0hruaQXJjbG1omUHGM9SO1fVWKTBoAxvD3i7QvFa3DaJqC3Ytyol2oy7d2cfeA/un8q26BRQAUUUUAFFFFABRRRQAUUUUAFFFNZlVSxICgZJJ4oAdmjNcifiDpt3fTWWh2Woa7NC2yVtPiUxRt6GVyqfkTV218UwtdQ2eqabf6TcTNshF4iFJG7KskbMm49gSCfSgDoMilrn7HxZp+o6dqd/ZLcXUGn3L2zm3iMjSsoXJRV5YZbHHoag8LeOtK8XX2o2enw3sU2nlFuEuofKKltwxgnOflOc4oA6fOKQEHpRWBp+tS6vrVzFYJH/AGZYsYZrhskyzDqkfPRf4m55OB0OADoKKq3V7a6ZaSXV9cw21vGPmllYIqj3J6VnW/jDw9dXkdnHq1sLiXPlRyNsMn+7uxu/DNAG3RQCD0ooAKKKp6hqthpNuJ9QvIbaMsFVpWA3MegHqfYUAXKMgVm2HiDStTne3tL6N7hAGaBspIqnuUbDY98Yp2sz38GmyT6ZBHcXMWH+zyEjzVHVVPZiAcE8Z6+tAGh1orO0TV7XXNLh1GzkLQzDoy7WRhwysOzA8EeorRBzQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVheIPF2jeGzDFf3JN1OcQWcCGWeU/wCyi8n69PegDcyM4zQSB1rl4vF100Ynm8J6/Da/89WSFmUe8aSl/wANpPtVk+MNGe+0W1t7pbiXVnkS3EXUBEZnLDqMbdpB5BPTg4AN/Ipa47xH8RtH8LailnqNpqitJIsSTLZt5TsQDhXOAevOK69Twc0AOJx1oznpWN4g11dHit44YvtOoXknk2lqG2+Y+Mkk9kUAszYOAPXAOlaeettGLpo3uAoEjRKVUtjkgEkgZ7ZNAE9FYd34x8O2M0sVxq9srwkiYBt3lEdQ5H3ce+K1bO+tNQtUurK5iuLeQZSWJwyt9CKAJ6KKKACijNU59VsLbULWwmu4ku7osIIS3zybVLNgewBoAtkgYz3pc01uRxWFZa5KniObQ9SiSKdwZ7GaPIS5iHUDOcOnAYZ5GGHBIUA36KQHIzS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFGagurq3tLaS4uZ44YI13PJI21VHqSeAK5W28f2+quT4f0TV9ZgBK/a7aFIoCQcHa8rIG6dsigDsM0bgO9YNr4qsJZHgvorjSrqONpTBfoqEooyzKwJRgBydrHHGcVHD4vsrjwrB4it7TULi0nGY47e2aWUjJGdi844z7UAdHRmue8IeMNM8Z6fc3ulLcLDbzm3bz49h3AA9Mn+8K33IUbiQAOST6UALkUtYOhazPr8k99AkaaRny7WQg+ZcYPMg54TP3eMnk9MZ0L/AFbTtIi83UL2C1R2wplcLvPsOpP0oAvUVkaf4o0PVLtrSz1O3kulG425bbJj12HBx+FawIPQ5oAWiijNABRWTq3ibRNCdE1PUoLeRwWWNmy5A7hRk498VJpHiDSNet2n0rUra8jQ4cwyBih9GHUH60AaJIFLmsTxHqt3olpHqUUAuLKAk3saqTKkWP8AWJzg7epXGSM4IIw2rbTw3NvHcW8iyQyqJI3Q5DKRkEexFAE1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFGcUAFJkVzuueN9G0S+TTnee91SQZTT7GIzTEepUcKP94iol8WzQqJtR8M61YWnUzyJDKE92WKR2UDucYHegDp8ijIrEi8UaVdeILfRrW5W4uZrJr8NGQyiEMqgk5/iLcf7p9s5J+I2kL4qtPDktpqsN9dOUi8+0MaPjPzAtjI46igDsqCcUg464rC1nW5YdTtdG0tI5dUuFMh8wEx28Q4MjgEE88BQQWPcAEgA3QQelLTRhc5rCm8b+Gbct5utWiorbGlL/u1bOMF/ug57E0Ab9FRwzxXEKSwyJJG6hkdGyGB6EHuPepKACiiori5gtIJJ7maOGGNSzySMFVQOpJPQUAS0EgdawY/GvhqWeKEazaK0xxEXfYsp/wBljgN+BNbb5ZSEIDdiRkA+9ADgQaWsHQNde+nu9M1GNLfV7LHnxrnbKh+7NHnko3pyVIKknGTvUAFFFFACGvIvivr97qXiLRvh7pVw8EuqupvZo/vLCTjaPwDEjuAB0NeuntXg0+4ftZQGfOwx/uc9MfZD/Xd+NAHtWjaPZaFpNvpmnW6wWtugSNF9u59SeST3JqTUtNtdV0+exvYllt50KOp7++R0PcEcg1bFDUAec/B3Rn0Dw/rekSFm+ya1cRBzwXUKgDfiMVT+HeB8WPiKP+m9v2/369PjWNWfywgJbL7QOWwOvvjFeYfDz/krPxF/672/8noA6n4i+IJvDfgq+vLTm+lxbWgHXzZDtUj6Zz+Favh3RIfDvh6x0mA7ktogpc/8tG6sx9yxJP1rjPigxn13wJp5wY5ddjmYHv5fP/sxr0fIHXigDhvEeleKLr4j+Hr7T4rSbRLZG+0C4wTE5J3OozndtwAR05HQmqfxtt7OT4XalLcxo0sLxNbswyyv5ijjj0LD6E16DP5jQuIHRJcHazruVT2JGQSPxFeW+PbDU7KK31vxWYvEGg2EqyS2FlD9mERzgSMjM/mgZ6FwBknpnAB2Xw+n1C68AaHcao7veS2iPI753MCPlJz3IwT710tUNH1Sy1rSrfUtOmWazuEDRuO4/mCOmDyMVfoAQ9q8w8I3n/CX/FTxPqlwPMg0MrYWCEZEZLN5jD/aJTr6EV6ea8e+BLFrnxkzffOp5b65egDe+L8cmn+FI/FFkRFqei3Mc8Mo67WcIyH1U7hkd8V2+l38eq6TZajCCIrqBJ0B7BlDD+dcj8ZcH4Ta7/uRf+jkrT+HLtJ8N/DjN1/s+EfgFA/pQBkaXL/wjvxY1HQwSLHW7f8AtO3T+GO4B2ygf7ww5/Gu+FecePma1+Inw9vkG1/tk9u3usiKCP516OKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDE8X+IYvCvhXUNalUP8AZYiyITgO54VfxJArifhBosl9pkvjbWGNzrWsOzCaQcxQglQq/wB0HBOB2wO1Hx/Ep+GMnl52i8hMn+7z/XFdT8OCh+G/h3y+n9nw5+u0Z/XNAHTYYY747eteZa/4VhsvjR4T8RWsYQXb3EF0o6GQQOVb6kZB/wB0V6fUUqxM8RkCl1bMeeobB6e+M/hmgDy/46j/AIpTRfbXLcDr/ckr1PH/ANavLfjv/wAipon/AGHLf/0CWvUnYIjOeijJoA4LwxL/AMJN8QfEGuuS9tpT/wBkWQ7KRhpm+pbaM+gxXSeLbbVrvwpqdvocnl6nJbssDb9pDex7HGQDxzXKfBAGT4a2944Hm3t1cXEh9WMhXP8A47XorDvxQBzvgmy1Ow8GabaavbWtvfxRbZIbUARrgnaBjjO3bnHfNecfCxpbX4seN9O04ldChldvKUfu45vMwNoHA4Dj6KPQV6T4gsPEt9FKmj61ZWKOmF32TPKGx2k8zC/XYceh6VzHww1TQrb+0PC9tp76ZrNhKzXsE0vmvM2eZfNwPMB4OcDGRxigD0cd6WkFLQBT1PT49UsntJZbiNHwS1vO8L8HPDoQw98HpXkF3o1lov7R3ha3sIWRH06WRzJM8jO2y4GSzksTwOp7V7XXkniH/k5nwl/2C5f/AEG4oA9ZIzXHfEuzmPhOTWLI7NR0VxqFs4/2PvqfZkLjHfiuzqrqdut5pd3auAVmheMg9wVIoAZpGow6vo9nqduSYbyBJ0z1AZQQP1q7XBfBi6e7+FGiNISWRZY8n0WVwP0ArvaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQ9KWkNAHjHie+f4h/Fu38ELIw0LTB9o1FFJHnsuPlOOcZZVx6knsK9iggjt4EhhiSOKNQqIigKoHQADoK8M+FG5fjh41Wfi4LXJ564+0jP8ASveBjHHpQBgeMvDNt4t8MXek3CrvkjJgkPWOTB2sO/fnHUEjvWb8LY2j+GWhRshV1g2spGMEMa7FqZAsaxgQqgQdAgwKAPMPgfxpHib0/t2f/wBBStv4majMukWGgWcrR3evXiWAkQ4aOI8yuPomR/wKsP4If8gjxN/2Hrj/ANBSrviNjdfHHwdbNgpa2d3cgH1ZSuf0FAHf2lpDY2UFpaxrHBbxrFFGOAiqMAD8K4200rxQnxbv9SuYrWTw+9qqW8rsDJGQB8qDquWLE9iMegrueB1qtfLdS2kiWE8ENz/C88JlQeuVDKTxn+IUAeS/H4i20rw/f2JZNbj1ELayRcS7drEgd/vBOPX6167aGY2kRuNvnlFMm3puxzj2zXlXiRv+EV8V6Z4i8cY1iyEnk2d5bp5cVg5GcmDLZJx9/cx+UcAgV6xDIk0SyxyLJG4DI6kEEHkEEdRQBJUN3IYbWWUIXMaM2xTy2BnFTUjDIoA88+EWvQeJPD13qjWUsWpPclb64lGfOk4Pyt/cUEKF/hAA965X4oqfBXxB8M+J9HH2ee+lMF7FHwtyAy/eUdSQxBPqFr2vhQSSAOp7D8a8kl05vil8RrXVcH/hFtAYrDKeBdz5Bbb/ALGVUE9DtwOtAHrOAwKYDKeCD3rh/h9OdK1bxF4Nd2ZNIuRLZ7u1tMN6r77SSPyFd2O+R1Necu5s/wBoaMKMLfeHvnHqyzHn8lxQB6RRSDvS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVx3xO8Yt4J8GXGpQbTeysILUMMjzG5yR6ABj74A712NeH/tJrMdC0IqCYhdSBuON20Y/QNQB2vws8LrofhSDUbrM2s6qi3V5cynLsWG5VJPoDj65ruCDxn6YqHTzGdOtjF/q/KTb9MDH6VYJxQB5hpXhaDw/wDHe4vLKPy7TUtHlmEY4VJBLEHA9jkH6saj8eDHxi+Hv/XS55/Ba9PYRGVWIQyhSFP8QHGQD6Zxn8K8w8ef8lh+Hn/XS5/ktAHqEkiQxPLIwVEBZiewAya4f4ZltZsNR8X3AY3GtXLNEG6x20bFIk/Rj7lq1viDdPZ/DvxFPGcONPmUEdiUIz+tP8A262vw98OxKoXGnQEgepQE/qTQBU+JGm69qvg25svDoja9kdN0UjKBLHnLId3GD0IPUZHQ1t2Nq7+Hra11WC1ErWqx3cMS/ut23DgD+7kkfStJv1rj/Fmi+KNXsbuCx1e0W1kUg2sVu0M0qd088uwXPTd5f5daAOM/Z9mu30nX4RI76RDehbLdnAJ3FwM+xQ49/evZK4f4Ya74f1Lw19g0SybTW05vJubCT78L85LH+LJB+bvjt0ruM0AFcN490vxRqOs+GpNBjtZrO2ujJexXJGzHyhWIPXaN5GOQcEeo7mmScqRkcjHPIoA5P4mwWU/w218XyIY1s3kTd2lAzGR77gtUfg7PqN18MdJk1J3eTDrG0n3jEGIXPtgce2Kz/H2j69No73ms3EGsaHaHz7zSrGJrNpUXnJYs5fbjO3K5x1yAK7PwpreleIPDlpf6IUFgUCRxqoXytoxsKjhcdMDj04oA5n4hSnw7f6F4wjyn2O6WzviP47WY4O7/AHW2ke9d+vP0rjvivbrc/C/X42XcBbeZj/dYN/StzwvdPfeE9GvJCS9xYwSsT3LRqT/OgDWooooAQ15P8WPDV/b6xpHjzRbdp7vSGH2q3TrJCpJyMegLA+ze1es0jDIoAzdB17T/ABJo8GqabcLNbTKCCOqnupHYjoRVq+vbbT7OW8u5lit4VLu7dFFc7P8AD/RzqMuoaf8Aa9HvJjmWXTLgwiX3ZOUJ68kd6tWvhGyiuI7m9ub3U54iGia/n8xYz6rGMID6NtyMdaAJfC8E8enXF7dxtFcahcvdtE/3o1bARSOxCKmR65rh/h4wHxZ+IvI5nt/5PXpV7YxahZy2lwJPKlGG8uVo2/BlII/A1zVj8MvCumah9vsrC5guywdpU1C5y5zn5v3nzc+uR60AY3xSQwat4I1MnEdtrsMch/urJxk/9816Kea5zx34cbxR4Nv9MiO26ZRLatnG2ZDuX6cjH0Jq34X11fEPhuz1Mp5UsibbiI8GKVeHQjthgRz7UActDq3i+f4z3GmKYF8NW9ssrI4QMwZDhl/iJ8zIOOABz1Gdf4lXVvZ/DXxDJcMoR7GWJcnq7LtXH4kVr6roFjrJie5idZ4M+TcwOY5os9drjBAPGR0OBnNY8/w+07UZoG1q+1LWIoG3x219cBoQ3qUVVDf8CB6mgDD+Bdheaf8ADO2N4GUXM8k8CMMYiOMfgSCw9Q2a7HQ/FmheJZLyPR9Siu3s5PLnVAQUPPqBkcHkZHHWtVYxGirGoVV6ADAHtgVyHhzwzouieMtUfQrFLWMQKLsxsSrzO28LyTgqoBwMDEg9aAOyNeU/De1bw58SvHGh3HyfaZo9QtARjfEzOSR6gblH4H0Neq44A59KyNV8N2Gr3NveSrLBf22fIvLd9ksYPUA9CD/dII9qAOS+Nk7t8OJ9Mt1Ml3qdzBa28S8tI5kV8AfRDXaeH9NGi+HNM0sEN9jtYoCw7lVAJ/SqcHhW0XVodUvZrnUr6AEQTXjKRBnqURQqqT3OM8da2wMc4oA888dL9u+JXw/sYzkrc3F0+OyxopB/pXoo557VwegQt4h+JGq+JSh+xadD/ZNi/aRg26Zx9G+XI64PpXeCgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAx/FOg2/ifwzf6LckrHdxlA4/gYcq34MAfwrhPhJrU2j2svgPX1FprGmO3kI5OLiFiWDIT94Akj6Y969SIPGKxtd8K6N4khjj1WwjnMRzFKpMckR/2HUhl/OgDYYgjnp3rnZ5v7Z8XWUFu2630dnuLmRTwJ2jaNI/c7ZJGI7fL6ioovBSogik8Q+IJrfGPKe/I49N6gP/49W9Y6fa6ZZx2llbxwW6D5Y0GAD3P19T1Oc0Aea/Hc/wDFJ6J/2HLf/wBAlr1JwsilTyCMGuZ1z4eeGvEl2bnWLGe7csGAe9nCqQMfKocKOPQVs6Vo9rotn9ksxMId27E1xJMfwLsxx7ZoA4n4JboPh2unyn97YXtxbSAjlWDliD/31Wl8UdW1/RvBj3fhxkS9+0RxtI4QiNGbBY7/AJQM4BJ4AJPHWquhwnwx8SdZ0t122WvZ1OzPbzlAE6e7HKt9Poa7ieGO5heKWNZYnUq6OAVYEYIIPBB9PegCnop1D+xLH+1/KGotAn2kRfd8zA3Y/GvG9Ohk1X9qTUL3TtzW9lGRdyL0BFuI8H33EDH+yfSvTW8EQRxNBY6zrWn2h4Fta3h2KPRdwYoPZSAO1aXh/wAM6T4XsPsekWaQRsd0jcl5W/vOx5Y/X8KAGax4r0Pw7d2Vrq+oxWk19J5durgnccgdQOByOTgc1tA5rjPiJ4Z0bXdDaXULGO4v41MOnOzEFZ5MKnQjPzbTg8cZ7V2CDAoAea8j8QsP+GmPCZz/AMwuX/0G4r1HUtPg1Sye0ufO8p8bvJneF+CCMMhDDkdjXKyfCnwhNffbpdNne7B4nbULkycDj5vMyKAO161S1i6Wx0W+u3YKsFvJIzHoAqk5/Sm6TpFpots9taef5buZD51zJOc4A4MjEgYA46fma5r4lXM1x4fj8OWJzqGuyiyjx/yziPMshH91Uzn/AHhQBD8HLN7L4U6GkgwzxyS8+jyMw/Qiu6qtp9lDp2nW1jbLtgtolhjX0VRgD8hVmgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPalooA8b8W6bceAvilbePreCSTRr0eRqoiUsYdwC7yBztyEb6qfUV65aXltfWkV1aTxz28yB45Y23KynoQR2qSaJJ4jHIiSRsCGRxkEH1FcrF8PdLsZnfRrvUtGR3LvDp9ztiJPfy2DKPwAoA3da1aHR9Ne6dTLISI7eFPvzytwqL7k/kMk8AmmeHtPfSdAsbGeQSTxRASuOjSHliP+BE1Bp3hiy0+7F6z3F7fhSou72YyyKD1CZ4QHuFC575xVzVNJttYsza3gmMJYNiG4eE5H+0jA468Zx7UAedfA8j+yPE3P8AzHZz/wCOpVzxOhtPjZ4KvW4iube7tSx6ZCFgPxLVvaJ8PPDXh27F1pFjPaSA7mCXs5VzjHzKXw34iq3xI0i5vdBttV0+Ezalol1HqNvEvWUIfnj9eVzx3IFAHYFsHr83Jx3NcB4H1XxfqXjDxNFrZgGk2d01vaxgIHQg5XAHzYKENluuRiu106/t9V0621Czk8y3uYhLE3qrDI49eao6n4YsdTu/tm64s74KEF3ZzGKQr1CtjhwOeGBAzQBw/wAfJ4Yvho8EmDNcXcSQr3LAljx9Aa6rwXHL4f8AhvpKaw/kPZWCtcGTjyVVSSG9No4/Ci38B6WNXh1bUZrzV76AfuJNRkEiw9DlEACqeByBniugu7SC9tJrS5hWWCdGjkiblXVhgg+xGRQBV0HxDpPifTF1HRr1Lu0LFN6grhh1BBAIPI6jvWke1cn4F0TTNEj1iHRbYW+mG9KwqHZwxVFWRssSSd4dev8ABXUzRCaF4mJCuCp2kg4PHBHSgDz7xB4n0TX9SuNAm8R6bYaXbts1F3vo4pbg94EywIXs7f8AAQc7saF34y8M6XosdpoOraLNc5jtrOztrlHBZmCKAqnOBkZ+lVP+FKfD5uW8Pkn/AK/bj/45VnT/AIReBtK1G21Cy0Pyrq2kWWJ/tUzbWByDguQfyoA7UcV50F+2/tBmVDlLDw8Ff/ZdpiQPqVbNehSSJBE8sriONFLO7EAKB1J9B3rivh5aS38uteL7iIxya7cK9ujDBFrGNkOR2JGW/EUAdyKWkFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXJ/EfwivjXwbdaWpVboETWrv0WVemfQEEr/wKuspDntQBwPws8UjVPD0Wh6lm217SEFrdWsvDkJwr4PUEAZPr9RXelgenXrWDrfg3RvEFzHd3tqUvof9VeW0jQzx/R1IPHociq48FROoivdb1u+tu8E94VRvZtgUsPqTnvmgB1g41jxbLqUJDWWn272UMg6SSu6mXae4Xy0XPrvHauR8ekD4xfDzkffuP5LXpsFrDa28dvbwxwwxqFSNFAVVHQADoK5e++GfhXUtQF/eWNzPdhtyzPqFwWQ5z8p8z5fwxjtigC548s21D4f6/axgmSSwmKKOpYISB+Ypvw8ulvPh14dlVg2NPhQkeqoFP6g1tWtjDZWMdnEHMKKVAlkaQke7MST17k1x3w4jPh86p4NmBU6ZcNNZEn/WWkrFkIPfDblPuKAI/ijq3i3TIdEi8JtEk15eeRK8oTbnblVJfgA4b0OQAOTXdxlvLHmEbsfNjpnHOPao7+wtdTs5LO9gjuLaQYeKRcg+n5HB+uK5y48CwXFs9m2ua6tg42tai9ypXupcgyYxxjd0oA82+EsMt/8AF/xprdoT/ZbSzxhwfld3m3KR68Kx9t3vXrc3izQrbxLD4dn1GKPVp08yO2IOWHPfGM8HjOas6To2n6BpsVhpdnFa2sQ+WOIYHuT6n1J5Nc54l8N6Ld+JtH1P7Eh15rqIRXAY7ljibzHJUHBG1duSDjeB3oA7IsMZFefa5q3i9fi3o2kaY0CaG9t59yJAg8wBiHwT8xI+XAX+8M8V6CBkVQ1XRbHWoEivrfeY33wyIxSSFum5HGGVvcGgCPxDdW9n4b1S5uiot4rWQyFjxjac15n+zrYXtr4Lv7q4Vkt7q83QKw6hVAZh9Tx/wGuyu/h9Y6mscOrapq+pWSMG+x3N0PKbHQNtUMwBAPJPIrqba3is7eO3giSKGNQqRxqAqgdgBwB7UAcj8WroWnwu15ycF4BEPcu6qB/49XQ+HLNtP8MaTZMCGt7OGEg+qoB/SuW8bxf8JL4h0LwnEu+Hz11LUT2WCI/Kp/334H+6a7taAFooooAKKKKACiiigAooooAQjJFYtpoJ0/X7nUbKYQ297811a7fkeXtKv91iOG7NgHqK26KAEHeloooARhmq9lZQWMciQRCMSSNK+Dks7HLEnvyas0UAFFFFABVHV7S7vtPe2s7xrOSQhWnRcui99meA2OAT0znmr1FAFTTNNtdI0+GwsYFgtYECRRr0A/qc5JPU1boooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApD2paKAMjXtCh12wS3kdoZ4pBNbXMeN8Eozh1z+RHQgkHrWlbCdbaIXLI84QeY0a7VLY5IGTgZ7ZNS0UAFFFFAFa4sYLm5t7iWIPLbFjEWPCFhtJx64JGfQkdzVhc45paKACiiigBDk1j2Wh+XrVzrF7N9pvXBigO3alvDnIVR6nqzdSfQAAbNFACKMUtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFI2SMClooAxdG0H+w7u7Wzmxps7mVLQjiCQklth7IxOdvY5I64GyBS0UAFMkQSIVOcEYODg4+van0UAQWdpDY2kVrbRLFBCgREXoAKnoooAKKKKAMjXtFbXYYbKWcx6ezE3cSj5p17R7uyk/e9Rx3NakcaxIERQqKMKoGAB6U+igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBCM1jaxoA1C6tdRtZvsup2ZPkz43BkP3onH8SNgcdiARyK2qKAGqMCnUUUAIQT0qsLGAagb7ys3Jj8nfk/Kmc4Azxz1x1wM9KtUUAIBiloooAKbICyELjOOM06igDH0TQxpX2q5nm+1ajeOJLq6K4LkDAUD+FFHAXt7kknXFLRQB/9k='] Multimodal Competition True Theorem proof Combinatorics Math English 61 "Leibniz's Harmonic Triangle: Consider the triangle formed by the rule $$ \begin{cases}\operatorname{Le}(n, 0)=\frac{1}{n+1} & \text { for all } n \\ \operatorname{Le}(n, n)=\frac{1}{n+1} & \text { for all } n \\ \operatorname{Le}(n, k)=\operatorname{Le}(n+1, k)+\operatorname{Le}(n+1, k+1) & \text { for all } n \text { and } 0 \leq k \leq n\end{cases} $$ This triangle, discovered first by Leibniz, consists of reciprocals of integers as shown below. For this contest, you may assume that $\operatorname{Le}(n, k)>0$ whenever $0 \leq k \leq n$, and that $\operatorname{Le}(n, k)$ is undefined if $k<0$ or $k>n$. If $\sum_{i=m}^{\infty} \operatorname{Le}(i, m)=\operatorname{Le}(n, k)$, prove that $n=k=m-1$." "[""Because in general $\\operatorname{Le}(i, m)=\\operatorname{Le}(i-1, m-1)-\\operatorname{Le}(i, m-1)$, a partial sum can be rewritten as follows:\n\n$$\n\\begin{aligned}\n\\sum_{i=m}^{n} \\operatorname{Le}(i, m)= & \\sum_{i=m}^{n}(\\operatorname{Le}(i-1, m-1)-\\operatorname{Le}(i, m-1)) \\\\\n= & (\\operatorname{Le}(m-1, m-1)-\\operatorname{Le}(m, m-1))+(\\operatorname{Le}(m, m-1)-\\operatorname{Le}(m+1, m-1))+ \\\\\n& \\cdots+(\\operatorname{Le}(n-1, m-1)-\\operatorname{Le}(n, m-1)) \\\\\n= & \\operatorname{Le}(m-1, m-1)-\\operatorname{Le}(n, m-1) .\n\\end{aligned}\n$$\n\nBecause the values of $\\operatorname{Le}(n, m-1)$ get arbitrarily small as $n$ increases (proof: $\\operatorname{Le}(i, j)<$ $\\operatorname{Le}(i-1, j-1)$ by construction, so $\\left.\\operatorname{Le}(n, m-1)<\\operatorname{Le}(n-m+1,0)=\\frac{1}{n-m+1}\\right)$, the limit of these partial sums is $\\operatorname{Le}(m-1, m-1)$. So $n=k=m-1$.\n\n\n\nNote: This result can be extended even further. In fact, for every value of $k