id question solution final_answer context image modality difficulty is_multiple_answer unit answer_type error question_type subfield subject language 0 "如图, 在等腰 $\triangle A B C$ 中, $A B=B C, I$ 为内心, $M$ 为 $B I$ 的中点, $P$ 为边 $A C$ 上一点, 满足 $A P=3 P C, P I$ 延长线上一点 $H$ 满足 $M H \perp P H, Q$ 为 $\triangle A B C$ 的外接圆上劣弧 $A B$ 的中点. 证明: $B H \perp Q H$. " ['取 $A C$ 的中点 $N$, 链接 $IN, BQ, QC$, 如下图. \n\n\n\n由 $A P=3 P C$, 可知 $P$ 为 $N C$ 的中点.易知 $B, I, N$ 共线, $\\angle I N C=90^{\\circ}$.由 $I$ 为 $\\triangle A B C$ 的内心, 可知 $C I$ 经过点 $Q$, 且\n\n$$\n\\angle Q I B=\\angle I B C+\\angle I C B=\\angle A B I+\\angle A C Q=\\angle A B I+\\angle A B Q=\\angle Q B I,\n$$\n\n又 $M$ 为 $B I$ 的中点, 所以 $Q M \\perp B I$, 进而 $Q M \\| C N$.\n\n考虑 $\\triangle H M Q$ 和 $\\triangle H I B$. 由于 $M H \\perp P H$, 故\n\n$$\n\\angle H M Q=90^{\\circ}-\\angle H M I=\\angle H I B .\n$$\n\n又 $\\angle I H M=\\angle I N P=90^{\\circ}$, 故 $\\frac{H M}{H I}=\\frac{N P}{N I}$, 于是\n\n$$\n\\frac{H M}{H I}=\\frac{N P}{N I}=\\frac{1}{2} \\cdot \\frac{N C}{N I}=\\frac{1}{2} \\cdot \\frac{M Q}{M I}=\\frac{M Q}{I B}\n$$\n\n所以 $\\triangle H M Q \\sim \\triangle H I B$, 得 $\\angle H Q M=\\angle H B I$. 从而 $H, M, B, Q$ 四点共圆, 于是有\n\n$$\n\\angle B H Q=\\angle B M Q=90^{\\circ} \\text {, }\n$$\n\n即 $B H \\perp Q H$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAhkB/AMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK5nxV4wi8JWcl7eaVqdxZxIHluLVI2SPJ2gEM6nr7d+tAHTUVyGneOpNV0+C+s/CniCW2uEEkT7LddynoRmYdsVPpnjrSdQ1v8AsSZLzTtWK+Ylnfw+W8i4PKEZVhwehPQ+hoA6iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvKvjteyt4TsNAtj/pWs38cCp/eUHJ/8e8uvVa8e8UwR+K/jzoOiSAy2mk2j3k6gkYc8jntyIaAPVrK0h0zTbezh+SC2iWJM8AKowP5V5Fqyv8QfjDoc+hDzNN8PuHu9SX/VuwYMY1bo3QDH+03pmvRrzwR4ev7Z7e6sDJE4wytcSfz3VxXw68QX1t4/1/wNPObuy01TLZTFVDRoGUGNiPvffHJ5+U0Aer0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBQ1K9urK0E1rplzqEmQPJt3jVseuZGUY/HPPSvMPCuneKtM8e+JPFOq+Eb6SXUtsdukF3asY4wfusTKOyx/lXr2BnNFAHG6lrfjG6gMGjeFHtLiT5Rc6neQeXF77Yndm/Sm+A/AcHg2C7uJrptQ1nUJDJe3kgwWOckAemSTnvnPoB2lGBQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRWXq3iLR9BhEmrapaWSkcefMFLY9ATk/hmgDUorjR4+Ooj/invD2s6sGGUnMH2WA/wDA5tufwBox8QdT3fvNC0OJhxhZL2ZT/wCOJ/OgDsScc1FNcw2sRluJo4ox1eRgoH4muU/4Qe7uyj6v4v1+8K8lLedbSNvqIlU/rUtv8NfBtvI0zeH7W5lb70l5uuWP4yFjQBLefELwfYhvP8TaXleqx3Kuw/BST+lV1+JXh2ZWNodTvNpPFtpVy/6+Xj9a6Sz0zT9PQJZWNtbKOghhVB+gq3QBxzeP1O/yPCviqbbjppbR5+nmFaefGt+VDJ4I8SEEZ+ZLdcf+Rq66uG+Kni0+EfAt5dQS7b+5/wBGtcdQ75+Ye6rlh7getAGdo/xgtPEF7dWek+G9bu7m1/1qR+R8vOCf9byM9xmtpvHF3EUEvgrxQu44ylvC4H/fMpOPwrwPwPDfeBNWbxIwdYNNvYrDV4j1WKZRkn/cdenc7a+qEdZI1dGDIwyrA5BHY+9AHKR/EC03ss+heJbYBtpaTR5iv1ygamj4n+EFfy7jVWtX44u7WaDtnq6iuxxSFVIwVBHoRQBjWHizw7qkgjsde025k/uQ3SM35A5/StgHI4NZN94V8PaoSb7QtMuWPO6a1Rz+ZFY3/CtvDkRc6bHfaU5/i02/mgA/4Crbf0oA7GiuOHhnxRp5T+y/GtzLGv8Ayx1azjuA3/A0CN+tA1fxxpu3+0PDtjqkf8U2k3mxsevlTYH/AI+aAOxorkIfiR4fEqQarJdaHcvnEOrW7W3TvvPyH8GNdTBcRXMQlglSWNhkOjBgfxHWgCaiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKztU1rTdDsGvdVvoLO3XrJM+0Z9B6njoOa5n/hIfEviP5fDeljT7Fjj+1NXRl3j1ig4c+oLFR9aAOuvL+1060e5vrqG2t0GWlncIo+pOAK5M+PH1ZjH4U0W91nnH2s/wCj2gP/AF1f72P9lTU1l4A077Sl/rtxca/qC/Ms2okMkZ/6ZxDCIPwJ9664KFAAAAHQDtQBxg8PeK9ZAbXvExsoT1s9CTyh14zO+XP4ba09I8FeHdDnNxYaVALpiWa6mzNMSf8Apo5LfrXQ4ooAKKKKACiiigAooooAK+f/ABPdD4j/AB40zQIyJdK0aQ+dxlWK/NNnvglVj+or1fx/4oHhLwdfamhzdlfJtExnfM3Ccd8ctj0U15z8AfDrQjWvEE7iWWSX7HFNu3l9pDSsG/iVmK8/7NAGt4Q0m213WvidpV4u63u7/wAl+OQCrYI9x1+tbHwq1a5k0K58N6o+dV8PzGzm4xujGRG49QQCAe+3PeoPhvG48YeP5CP3Z1cAH3Ckn+YqHxd/xRnxI0jxehKadqZGmaqAOAcfupT9MYJ7Bcd6APTqKQH0+tLQAUUUUAFFFFAEc9vDcwtDPFHLE4wySKGVh6EGuSm+HOhxTtc6K13oN03Jk0ucwocf3ouYyPqtdjRQBxe/x3oWNyWPiW0UclMWd0D7gkxtx6bauab490S/vV0+4lm0rUj0stTj8iVjnA25+V/+AE11GBVDU9I03WrNrTU7G3u7dusc8YZfY89DQBdBOOadXFf8InrPh9S3hHWmWBfu6XqzNPb49EfPmR/mw9qltfHcNtcR2Pieyl0C+c7YzcMGtpj/ANM5x8p+hw3PSgDsKKaDlc54PcU6gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoormvEHi+10S4j0+3gl1LWZhmDTbU5kb/aYnhE/wBpsdOM0Ab1xcR21u888qRRRqWd5GChQOpJPAArjm8W6t4lkaDwZZpJbA4fWb5WW2HOD5S/emPXphQRy1EHhC+8RXCX3jW4ju0Vt0Wj25P2OEj+/nmZunLYUHOBiu2REjQIiqqqAAoGABQBy2keBrKzv01bVLmbWtbUcX17gmM/9Mox8sQ/3QD711eB6UUUAGBRRRQAUUUUAFFFFABRRRQAUUVh+LfEUPhXwtqGtT4ItoiUQnG9zwi/i2B+NAHkXxX8QPf+JLpbd2ay8MwqQF58zUJvliA9Sg+f/gDDvXrHgrw+vhjwbpej7VEkEA87acgyty5/76JryPw/4dnn8TeFfD18Gmu9z+JtcZz8xmY/u1b0IOAV/wBonvXvuBQB598Ov+Rh8df9hx//AEAV03ivw/b+KfDGoaLcYVLqEqr9djg5VvwYA1zPw6/5GHx1/wBhx/8A0AV6DgelAHEfDDxBca34RW21Hcur6VIbC+Rz83mJxuPrkck9zurt68x1Qf8ACFfFyz1dPk0nxMq2d3/djuU/1bHsNw4H/AjXp1ABRRRQAUUUUAFFFFABRiiigAxxiq93ZWuoWktreW8VxbyjbJFKgZWHoQeDViigDhm8Kat4Z/e+Db8C0By2jX7s8GP+mUnLRHGeOVyegrR0PxnaapeDS7+CbSNbVcvp13w7epjYfLKvB5X07V0+Ae1Zeu+HtK8SWItNVs0uIw26Nujxt/eRhyp9xQBq0VwX2vxH4HBF+bnxDoC/8vSrm9tF/wCmi/8ALVQOdw+brkGuu03VrHWLCG+067jurWYZSWJsg/4EenbvigC/RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUwkAE5wPU/rVe+1C10uxmvL64jgtYFLySyNgKB6muJ8nUfiOwe5+06b4SP3LfmO41Nf7z944j2XqwOTjIoAnuPE2p+Krp9P8HMiWiMUudckXdEmOqwDpK/v9we+a3PD/hfTfDNrItmkktzOd1zezt5k9w3953PXv6AZ4FbFtaW9laxWtrBFDbxKFjijQKqAdAAOAKmxQAYHpRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXmHisjxj8S9K8McNpeihdU1Ns/KX/5ZRn88kdwx9K73XtZtvD+g3urXjYgtYmlbnBbA4Ue5OBXjpN/oHwi1HWJkL+JvGdwFVR94mfIRF9MRliPQtjtQB1XwsQ61eeIvG0qnOsXpitSRyLaL5E/Pof8Adr0qsnw5o0Ph/wAO6dpEGNlpAseQMbiAMt+JyfxrWoA8++HX/Iw+Ov8AsOP/AOgCvQa8++HX/Iw+Ov8AsOP/AOgCvQaAOa8d+GV8W+D7/S8D7QyeZbP/AHJl5Q57c8H2JqD4eeJ38VeDrS9uDi/hzbXsZ4KTJw2R2J4bH+0K6yvMItvgj4wPCcR6P4rUyR54CXqfeHtvB/EsPSgD0+iiigAooooAKKKKACiiigAooooAKKKKADA9K47U/CVzY6jLrnhK4i0/UJDvubST/j0vv99R9x/+mi88nIOa7GjFAHOeHPFttrc8un3EMmna1bLm6024b94n+0p6SR56OPUZxnFdHWB4k8K2XiOOGWR5LXUbU77S/tztmt29j3B7qeDWZovie+stUi8O+K1WDVHyLW9jXFvqCjuv92T1Q/UZBFAHZUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWbq+sWOgaVcalqdysFrCu5nbnPoABySewHXtRrGs2Wg6VPqepXCwWkC7ndsn2AA6kk9h34rmdH0i98U6jB4k8S2jQRwv5mlaTIf+Pcdpph0Mx7D+Ae+cAEdho2oeMb6DW/E9s1tp0TCTTtFf+A9pZx3kPZeij3zjvMAdqKKACiiigAooooAKKKKACiiigAooooAKKKKACiiqeo6hb6Xp11f3kvl21tE0sj/3VUZJ/SgDz3x8x8WeL9E8Bwtutiw1HVsEj/R0I2ocf3m/I7aXVUXxL8aNJ0lcGx8OWpv51A+Xz3wI1I6ZA2sPxp3wyhdtL1jx7rQWG61uRrks/wDywtUBCD6AAnPcBfSpPhJBLf6Vqvi67VlutfvXnAI5SFCVjT8PmwfQigD0fFFFFAHn3w6/5GHx1/2HH/8AQBXoNeffDr/kYfHX/Ycf/wBAFeg0AFcd8SPDcviPwhOllkapZMLyxdfvLNHyAPdhlfxHpXY0UAc94L8TReLfCOn6zHgPPF++QcbJQSrr9NwOPbFdDXmHh7/ii/irqXhxgV0zXwdR08YwqzD/AFsY4x0GfYKvrXp9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABiszXND07xDpcmn6pbrNbvyAeCrdmU9VYdiOa06KAOG0zW9R8LalBoPie5e5tbiTytN1lukp7QzkcLL2B6Pj+9mu4B9PrVHVtKstc0y403UbdLi0uF2SRuOo7cjoQec9q5LStWvfCGqW/h3xBcyXGnXDeXpWrynJc/88Jz0Eg6Bv4/97NAHeUUZzRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVW9vrfTbKe8vJ0htoEMkkrnARQOTU7MFBJPTnrXBKp+ImtCV23eEtOm+RcfLqVwp+9nvEjDjszdyBQA/RrG58Z6rB4m1mF4dLt5N+j6dIMc44uZR3c/wg/cHuc13tIAB0ApaACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzT4nXEuvX+jeArKVkl1aUTXzr/wAsrRDk/TJHHqVx3r0aaaO2gknmkCRRqXd2OAoHUn8K84+GcUniHVda8f3aMDqkv2fT1frHaxnaMem4jkdMrnvQBP8AFW5aw8EW/hzSUSK61maLSrWJeAqNw3H93aNvtmu40vToNI0qz022XEFrCkEYPXaoA/pXAkf8JT8cOgey8LWf1H2qf+mz8ilel4oAKKKKAPPvh1/yMPjr/sOP/wCgCvQa8++HX/Iw+Ov+w4//AKAK9BoAKKKKAOD+KmiXOoeGF1bTBjV9DlGoWjAZJ2cuv0KjOO5UCum8Oa5b+I/D1jrFrkRXcKyAZztJ6qfcHI/CtavMPAzf8Ih461vwPINtlMTqeklugjc/PGvPY9B/ssaAPT6KKKACiiigAooooAKKKKACiiigAooooAKKKKACs/VtJsdc0u503UYFntLhCkiN/MHsQeQR0PNaFGKAOJ0DVb/QNXj8KeILp7hpFJ0vUpiM3iD/AJZuf+eqjGf7w565rtqxvEWgWfiXSZNOvAy5IkhmjOJIJR92RD2YHkHvyDxWX4S1+9nnuPD2vMF1/T1BkYLtW8hJwtxGPQ9GA+62RxwKAOtooooAKKKKACiiigAooooAKKKaTjqe3rQA6iuDj8Waj4u1m403wm8cOn2b+XeazKnmLv7pAvRmH95vlHocjOvP4XuWtSYPEmtRXoHy3LTK43epj27CPbaKAOlorhvAnjG81m81XQNbSOPXdIl8udouEnQnCyKO2ccjtkeuB3NABRRXP+LPEL6BpafZYftOqXcgtrC2/wCeszdM+iqMsx7AGgDH8T3Vx4l1f/hDNMneJDGJdYu4usEDfdiU9pJMcei5PNdfZ2dvp9lDZ2kSQ28CKkcaDARR2ArK8K+Hl8OaR9meY3N7O5uL26ZcNcTtjc59AegHYAVvYHpQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFMLBQSxwBzkmgDz34q39zc6fp3g7TXZdQ8Qz/Z2ZesVuvMr/AExwfUFvSuub+z/CfhclV8rT9Ls8gZ5Eca/qcD8a4jwGG8XeN9a8dTDdZoTpukE94kPzuPZj392FT/Fu5lvdK0rwlaSMt34gvUtyV6pApDSOPYcZHcE0ATfCTTpovCUmu3641DXbmTUZj6BydgHttwR/vV6DVe1tYbK0itbdFjhhRY40XoqjgCrFABRRRQB598Ov+Rh8df8AYcf/ANAFeg1598Ov+Rh8df8AYcf/ANAFeg0AFFFFABXnfxV026g0yx8X6XGX1Pw7P9pABx5lueJUPtt5PsG9a9EqOaGK4heGZFkjkUqysMggjBBHpigCtpeo2+r6XaajZyb7a6iWWNvVSMjPvz07Yq7XmXw1ll8OazrXgG6Y406Q3WmluslpIc9cc7Sefdj6V6bQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAGB6VzHi7w7capBbalpUiQa9prGWymboxPDRP8A7Djg+mQe1dPRQBi+GvEMHiTR47yJGhmVjDc2zn54JlOHjb3B/MEHvW1XB+IUbwf4hHi+1Vv7NuNsGtwoucLnCXIHqmcN32npxXcJIkkayI4ZGAZWByCD3B70ASUUUUAFFFFABRRRQAV5n8bfFE/h/wAD/ZbJyt7qkv2ZGXhlTkuRjv0X/gVemV478dbZkk8JaxKpNhY6jtuTjoGKHJ9BhGGff3oA9C8G+HIfCvhPT9IiVQ8EI85h/FIR8zfnn8MV0FZt7rNrYywxOZpppQWSK3iaVioxliFBwORycDoOpArH8UeNbHQPCjaxGxnlnXZY26qd88x+6gQ4bOeoxkAHjPFAHAeD5ft/7SPi67th/o8VoYZCOm5fJXH1JRj+Br2mvPfhT4MufDGh3F9q/wA2uarJ9pvCeqZyQp9+WJ92I7V6FQBHJIkUTySOEjVSzMxwAB1JPauK8Kwv4o1yXxpdIwtthttFhdSPLgz802D0aQjj0UD1pfGUkmvanZ+CrR2Vb1ftGqSIcGOzU4K57GRvkHXjdXawwxwQpDEipEihURRgKB0AHYUAPwPSiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4L4q61c2XhqPRNMIOr67MNPtlzyA3339gAcZ7Fge1d7Xl/ho/8Jp8UtU8TsVfS9EDabpvo8pGZZBz7kZ7hl9KAO88P6JbeHNAsdItABBaxCMEADJHVj7kkk/WuI0j/iqPjTq2qEbrPw7biwtz2+0PkyMPcDcp+ort/EOsw+HvDuoavPjy7SB5dpONxA4X8TgfjXN/CnR5tK8B2k92S1/qbNqNyzdWeXkZ9Dt25980AdxiiiigAooooA8++HX/ACMPjr/sOP8A+gCvQa8++HX/ACMPjr/sOP8A+gCvQaACiiigAooooA80+J9tLod3o/j2xTM2jzCO9VRzLayEKw9yCeOw3E9q9FtbiK8tYrq3kEkMyCSN1PDKRkH9ajvrGDUrC4sbqMSW9xG0Uqn+JGGCK4P4V3txp8OqeCdSlaS+0Cfy4mbrJbNzE35fkNtAHo1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBHNBFcQyQzRpJFIpR0dQQykYIIPUYNcX4Tlk8OavP4Ku2ZooUNzo8rnmS1zgx5/vRsdvqVKnFdxXL+NdEudU0qK90wBda0yX7XYMe7gcxn2dcqR7j0oA6iisrQNat/EOh2mq2hZY7hAxR/vRt0ZG91YFT7g1q0AFFFFABRRRQAVR1PTLPWdNn07ULdLi0nXbJE44Yde3TBA59qvUUAcTpvgzUtCuGOmeI5TbeQlukV/aidoYkLFFVwy8De2Mg8Yz0rg/C/ijwboV7rN54jvZJtf0/UruKHz1Z32mViPJjA2qWLHOAOc9BXuWB6Vy5+H/AIUPiVvEB0aBtUL+YZizEb/72zO3d3zjOeetAGrok99daPa3GpQCC6mTzWgAI8oMchD/ALSggH3BqbU9RttI0y61G9k8u1tYmlkf0UDJ/Hjp3q7geleW/FLxPpdtqWjaBqsky6Y8y3mqvHE0gEKk+XGwA6PIv5L70AdF4E0+5Fjc+IdSjZNV1txdSq3WGLGIoR7KmMjrlmrsKydG8R6N4htvP0jU7W8TGW8mQEr/ALw6qfrWtQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHG/ErxJceHfB8zWBZtVv3WxsEQ/MZpOAR7gZI9wBWn4O8OQeE/Ctho0JUtbxDzZF/5aSHlm/E5x6DFcfbY8bfGGW8zv0nwqhgjyMrJePkMR67QMH0Kr616fgelAHmvxSZtcu/DvgmJjnWLwSXQU8i2i+dvpnAI91r0lVVFCqoAAwAB0Fea+Ex/wkvxV8TeJWw9ppijR7I4yMqd0pz7N0I6h69LoAKKKKACiiq11dwWVrLdXM6QW8Sl5JZGCqqjqST0xQBw/w6/5GHx1/wBhx/8A0AV6DXmfwm1K21i+8ZajZyeZa3GstJE+Mbl2jB/KvTKAPK/ivZ30Fs1zo2s6xZ3/AJE97KIL+VYxDDEd2E3YGWMfT3rr/AGqS6z4A0K/mleaaSzjEsjHJZwNrEnucg1VuLMa74i8QxHmKHThpqezygvL/wCOmGsT4FXhufhbZwt1tJ5oWz2+cv8AycUAd3ql+bCzMiIZZmYRwwg4Msh+6v09T2AJPAryb4dwap4z1vxPqOqeIdZk0+3vWt7Vba+kgiYgksQFYYAGzAB4z3rstf1gW2g6z4pY4gsbWVdOyOr4x5n/AAJsKP8AZGej1V+DGj/2P8MdM3rtmvN13Jx13n5T/wB8BKAO+UbQBzgep615n8QVbwp4s0Tx7AGFvEw0/Vgo627n5WOP7rfmdtenVna3pNtr2hXmk3a5t7uFom4yVz0I9xwR7igC8rh1DKwZSMgg8EU+uA+FWrXMugz+HdTb/ib6BMbKcE8vGP8AVuP9krwD3257139ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcPZKfCvj+aw3bdK8Q7rq3GPliu1H71B6b1+fnurV3Fc94x0OXXfD00Nowj1G3dbuxlwMpcRnch57E8H2Jqx4Y12PxJ4cstWjUxmeP95GesUgOHQ+6sCPwoA2aKKKACiiigAooooAKKKKAIpp47aCSeZwkUSl3djwoAOSfbArkfANu2oWN/wCJryIfaNem+0KjLylso2wIf+ADd9XNL8QZnvNPsvDNvIVuNeuRaPtYBktwC07D/gCkfVhXXRQxwQxxRIqRxqFRVGAAOgHtQBxms/Cnwpq9z9sisn0u/U7ku9Mf7PIp9QB8uffFZY0r4l+F+dM1i08T2SdLbUl8q4x6LIDgn3Y/hXpdFAHnNr8XdOtLlLLxXpWo+HLtuAbuItC5/wBmReo98Y967qx1Ky1W1W5068gu4G6SwSB1/McVNdWlte2z213bxXEEgw8UqB1YehB4NcHqHwi0Jrl77QLi+8O6gw/12mTFFP8AvJnGPZdtAHoVFeaed8UPCxPmx6f4tsVz80ZFrdbfUr93j0G4mrul/Fzw1dXIstWe60HUO9tq0Jg/HcflA+pFAHfUVDBNHcQrLBKksbcq6MGB98jrU1ABRRRQAUUUUAFFFFABRRRQAVy/j3xQPCfg+91OP57vHk2kYGS8zcKAO/8Aex6Ka6ivMNRB8a/F+004ZbSPC4F1cEH5ZLt+UU/7oGfwYUAdJ8P/AAyfCng6ysJjuvXzcXkjHJed+WJPfH3c9woq3408QDwv4O1XWNwEltAfKDcgynhAf+BEV0GB6V5n8QwPEfi/wt4MUBoZZzqWoKc48iLO1SP7rncPqBQBvfDfw+fDfgLS7KVSLp4xcXJI5Mr/ADHPqRkL+ArrqKKACiiuL8YeP7fw7NFpWn2z6r4iuvlttOgOWGRndJj7qjr6n6ZIANjxN4q0nwnpL6hq115MYyI0HLyt/dRepP8ALqeOa4S18P678TbpdS8Wxy6b4djYNaaIrFXmx0ecjn/gPB9MdW1PDXgG5l1dfFHjO5TU9fJBhhH/AB72A/hWNemR6+vPJ+Y+h0AedfDOCG21nxtb28SRQxayyRxxqFVFCDAAHAFehswVSzMFA5JPYCuA+HX/ACMPjr/sOP8A+gCun17wzpfiWJINVjnmhUEeUl1LEjZxncEZQ3Tv70AVfBbC70KTVQwJ1O6mvAw7ozFYvxEaxj8K85+Gizpe+LfCEAkjjj1qVppVBHlwE7SFI6M20AegLH+GvT/D/hXSfC8LwaRDNBAwA8prqWVFxnG1XZgvU5xVyy0qy02W7ltLdYZLyYz3DLnMjkAZOfoOKAPOfjhcMvg3T/DtiFWbVr6G1jiUYwinPA9NwQV6XY2cWn6fbWVuMQW8SxRj0VRgfyFc3efDPwrqFzFc3tnd3M8Tb45ZtSuXaM9cqTJkcgdK6HT7CHTLJbW3a4aJCSDNO8zcnPLOzMfzoAu0UUUAeYeKh/whnxL0nxcg2adq2NM1X+6rf8spT9MAE9gvvXpwPp9axPFnh+38VeF9Q0W4wFuYiqMf4HHKt+DAGsX4Y+IZ9c8JJb6gSuraXI1hfoxywkj43H1JGCT67vSgDtqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAwK4nSc+HPiFqekMQtjrSnU7PttmGFuE+p+R/wAWrtq474hW0kWh2+v2iFrzQp1v0C8F4lGJk+hjLfiBQB2NFQ21zFd2sNzA4khmRZI3HRlIyD+RqagAooooAKKKKACiiqep38OlaXd6hctiC1heaQ/7KqSf0FAHLaXnW/iZq2pEk2ujQLptucgqZnxJMR3BA8tfwNdrXK/D2wmsvBlnPdIBfagX1C6IGCZJiZCD9AQv/Aa6qgAooooAKMCiigAwPSqOp6PputWv2XVLC2vIc52XESuAfUZHWr1FAHm0vwnh0yY3Hg7XdR8Oz5z5Mchnt2P+1G55/E49qb/wkPxG8LkLrvh638QWKDm90h9suPUxH7zeygD3r0ujHOaAOM0P4o+FNek+zR6mLO96NaX6+RKG9MHgn2BNdipyMg5FY2veFNB8TQmLWdKtbw7dod0xIo/2XHzL+Brjz8NtX8Pkv4J8WXthGORp9/8A6TbY/ujIyn6mgD0uivM/+E68X+Gzt8XeEJZrdc51HRGM0ePUxnlR6kkfSuo8PePfDPigKulaxbyzN/ywdvLl/wC+GwT9QCKAOkopuc9KdQAUUUUAYfizxDD4V8LahrNwVItoiUQnHmSHhF/FiBWL8MfDs2heEkm1FSdX1ORr6/dvvGWT5tp9MDHHrmsXxXjxp8StJ8JLiTTdJxqepjGQzdIoz9c5I9G9q9QxigBM15r8P/8AiovG3irxk3zQvONM09s8eTFjeV9mIVvrmt/4ja+3hvwHql/EzfaWj8i2Cfe81/lUj1Izn8Kt+CPD48L+C9K0fGJIIB53PWVvmf8A8eJoA6GmZwOv51W1DUbTSrGW+v7qO3tYl3PLI2FArzCW8134tTPb6c1xo3gzJSS8Py3GoAHkID91PX175+6ADR1vxzqfiHUpfDngBUubtBtu9Xfm2swfQ8h29hn8cHG94O8Dab4QhlljeS91W55u9SufmlnY8nk9Bnt+ZJ5rZ0TQtM8O6XHpuk2kdrax8hEHJPcknlj7nmtPFABgelFFFAHn3w6/5GHx1/2HH/8AQBXoOK8++HX/ACMPjr/sOP8A+gCvQaADAzmjAHaiigAowPSiigAooooAMD0rzDUR/wAIR8XrXVFxHpHidVtLo4+VLpP9W3tuHH4sa9PrmfHfhlfFnhC90xQoudvm2sh4KTLyhB7c8E+hNAHTUVynw88TnxZ4Os7+UkX0Y+z3qEYKTJw2R2zw2PRhXV0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTJIkljaN0VkYEMpGQQeoNPooA474eO9npF54dnd2m0K6ezUueWg+/C3/ftlH/ATXY1xc5/sb4r2sgwsGv2LQsAOtxbncpJ9TG7D/gA9K7SgAooooAKKKKACuN+Ioa60G10KMuH1q+hsWKHkRlt8p+nlo/512VcZqH/ABMfiro9qd3laTp8182Dx5kreUmf+AiWgDsgqqAFAAAwABS0UUAFFFFABRRRQAUUUUAFFFFABRgUUUAGK5bxD8PfC3igs+p6PbtcMSftMQ8uXPqXXBP0ORXU0UAeaDwZ418NfN4V8XNf26jIsNdUyrj2lX5h7AAD3oHxQv8AQW8vxr4Wv9JUEA3tuftNt9Sy8r7Dk16XgelIVDKVYAg9QaAMnRPE2i+I4PO0fVLW8UDJWJwWX/eU/Mp+oqXXdYtfD+hXurXjEW9rE0rYPLYHAHuTwPrXN618K/Ces3AuksG02+U5S701/IkVv73y/Ln3IrzLxbpHi99ctvAdtrs3ia2Ma6hNa3SrFIIkbhJJs5bcQOuOdvSgD0T4VaRcw+H5/EOpgHVvEEpvpyRyqH/VoPYA5A7bsV39ecW3xZ0/T5ksvFejah4buOFU3ERkt2/3JFHIHrjHvXc2Grafqln9rsL63urfvLDKHUcZ5IOBQBwXi7/ip/ij4Y8MqS1rpu7WL5R0yvyxA/8AAieO4aup8VeMdI8H6YLvUpj5kmVt7aMZlnYY+VV69xk9BkZ6ivIPD3j4vr3iHVdGsW1fxNrt2YbC0RfkhtohtR5SD8o55HBO0EkA5rox4A17RZrfxve3h17xRbP5lxbOoaJocHdHACAVdckqRgZ4xzQBbsPCetePNRh1vx2ht9NjbzLPQEb5FzyGnPVm6HBx6cDKn1GONIo1jjRURQFVVGAAOgA9Kz9I1iz1zSbbVNPmEtrcJvjYfkQR2IPBHrkVpUAGKKKKACiiigDzr4aSrPr/AI7dTwNdkT8VG0/yr0WvNPhR/wAhjx9/2Mdz/wChGvS6ACiiigAooooAKKKKACiiigDzG3P/AAhXxhmt2OzSPFYMsYH3Y71PvD/gYOfcsB2r06uN+JPhybxF4PnWy3jVbFhe2Dp94TR8gD3YZH1IPatPwb4ki8W+EtP1mIBWuIv3sY/gkB2uv/fQP4YoA36KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDjviODa+HrfXEDmTRb2G/wARjlo1bZKPp5bv+VdeGDKGUggjIweD6VU1XTotX0i902f/AFV3A8L/AEYEf1rF+H2oSal4C0eecP8AaI4Ps8+/qJIiY3z/AMCQmgDp6KKKACiiigArjvC3+m+MvGGqbtyrdQ6fH/siKIM3/j0rfl7V2BPvXIfDQrceDl1PaFbUry6vicYyJJnKn/vnbQB2FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBU1C+g0zTrm/u5PLt7aJpZXP8ACoGTXCfCqxuL621PxpqKFb7X5/NjVhzFbLxEn0xznuNpqL4nzza5e6P4DsnYTavMJb1kPMVohyxPpkjg9DtI7120+paL4et7W1ur+x0+EII4I551jG1QBhdx5wCP0oA0Lm1t7y3e3uoIp4JBh45UDKw9CDwa8+1r4O+Hb0z3GivdaBfyoyebp0pjRsjo0ecbfVV2119v4o0C8uY7W11zTZ7mQ4SKK7R3bAzwoOTReeJdBsbprW91rTbedfvwzXUaOAeRkEgigDzr4Mx6f4f/ALT8KXVhFZ+JrKQtdyZybuPPyyITztAI+XAHIPVjXrXA7Ad6848ZabZ+LGh1vwfqtjN4r0YebbNbXCMZE7xPg/dbJAzxliMgMaq6N4j1n4pW7W1mZdA022Kx6pIJR9reXGWijHWNR/fIBPAA4bABd0e5Sw+J99p3hwG70q5DTaskf+qsLodGVuhZ8EMg5BGexFejVn6RpFhoWmQ6dptrHbWkIwkaDv3JJ6knueTWhQAUUUUAFFFFAHmnwo/5DHj7/sY7n/0I16XXmnwo/wCQx4+/7GO5/wDQjXpdABRRRQAUUUUAFFFFABRRRQAYry/w7nwX8VNU8Nt8ml67nUdO9EmA/exj8BnHYKvrXqFcF8U9EuNQ8NR6zpi/8TnQpRf2bAZJC4Lr7ggZ29yqigDvaKyvDut2/iPw9Y6van91dwrIFznaSOVPuDkfhWrQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcd4JzZ6n4q0guD9l1Z50X+7HOizAf99M/+RXY1x1ntsvi7qcIXA1HR4LjPq0Urof0kSgDsaKKKACiiigDL8RX39meGdVv+n2a0mm/FUJ/pVXwZZtp/gjQrN1AeHT4FfH97YM/rVH4lzNB8NtfKAs8lo0KgdSXOwD/AMerqIYxDCkS/dRdoAoAkooooAKKKKACiiigAooooAKKKKACiiigAooooAKimmjt4ZJpZAkUalnZjgKB1J/Cpa86+Kuo3Vxpth4P0uTGpeIZ/s2cZ8u3HMrn2A4I9C3pQBX+GUUniPWNb8fXaMP7TlNtpyt/yztYzjj03MOfdSe9a/xXv4NL+GutXMscbu1uYIw6g/NIdnGf97P4V1OmafbaRpdrptlHstrWJYo19FAwK8r+Okj6ovhjwlbvtm1XUFLEfwqCEBI9MyZ/4CaAOn+FHh6HQ/h1owNvGLqaD7TJJsAYmT5gCeuQrAfhXL/HnbfWnh3w9bxoL3VdRUK+0FsABPyzIv5V3UWg+JIIUhi8VIsaKFUDTY+APxrziO2vtb/aHsrK/wBQ/tBdBtDM7iBYgrFQRwMjO6RD+HtQB7HYabZ6XaR2tlbxwRRoqKsaBeFGB0rzvxppd74M19vHvh6JngwF1ywQcTxD/lsB/eXrn6k8bs+oUjKrqVZQVIwQRwaAKWlanZ61plvqVhMs1rcIHjcdwe31HpV6vJELfCPxXsZyPBWsTfIWPGm3B7f9c25+g/3SW9YVg6gq2QR1B60APooooAKKKKAPNPhR/wAhjx9/2Mdz/wChGvS680+FH/IY8ff9jHc/+hGvS6ACiiigAooooAKKKKACiiigApCAQQQCD1FLRQB5h4EP/CIeN9a8DSkLZyk6lpIJ48pyd6D6EcfRjXp9ed/FTTrq30/T/F+lpu1Pw9P9oIHWS3PEqfTbyfYN613Gmahb6tplpqNpJvtrqJZo29VYZGffnp2oAuUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcdrbm1+JnhScL8tzBe2bt/wFJVH/AJCauxrkPGbeRqnhC7CklNaSIkDOBJDKn5ZIoA6+iiigAooooA5D4kxCfwa9sV3effWUe3pkG6i4rr65L4ggnR9LVSctrWnj/wAmErraACiiigAooooAKKKKACiiigAooooAKKKKACiiigBpbAyTwBzXmfgUf8Jf441rxzKA9lETpukkj/lmn35B/vE8H3YVpfFPW7mw8Mx6Rpjf8TjXJhYWgBxjcQHb2wp69iQa6bw7olt4c8P2Oj2nMFpEIw2MbiOSxHqSST7k0AWr7ULTTLOS8v7qG1toyN80zhEXJxyTwOTXiN14p0LXPj9ZajcaraR6RpNmRFcyyBYnk2noxwOsnr/BXvWB6UYHpQBlap4i0bRII59T1W0tI5QTEZpQvmYGflz16jpXkXwf1vS9Q8aeKdavL63iv9UvNlnbyyBZGjyzYVTyeNg4/u17jgegpcD0oAKKKKAM/WNHste0i60vUYFmtLlNkqH9CD2IIBB7EZrgPBOrXvhLXf8AhX/iGZpNo3aLfP0uYP8AnmT2dR29sdl3en1y/jfwhb+MNE+ymQ29/bt59jdocNbzA8MCOcccj8eoBAB1FFcR4B8YXGuQ3Oj64n2XxLpR8q9tyMeZ6Sr6qwweOOc9CtdvQAUUUUAeafCj/kMePv8AsY7n/wBCNel15p8KP+Qx4+/7GO5/9CNel0AFFFFABRRRQAUUUUAFFFFABRRRQBHNBFcQSQzRrJFIpV0YZDAjBBHcYrzj4ZyyeHdX1rwDdyMzadIbrTmb/lpaSHI+pVjg+7Y7V6XXmvxPt5dCv9G8e2SO0ukyiG+SMcy2khww9ypPHb5ie1AHpVFQ21xFd2sVzBIJIZVDo6nhlIyDU1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXH/EKMNpejy7STBrlhIP+/6r/U/nXYVyXxHLL4SDKSCuoWJyO3+lRUAdbRRRQAUUUUAcl4/IXTNHYnAGuaeT/wCBCV1tcl8RAo8O2kzkhYdVsJOP+vmMf1rraACiiigAooooAKKKKACiiigAooooAKKKKACiiuO+JPiSbw54QnaxLtqt84srBEPzGaTgEe45I9wBQBg+HSfGnxV1TxG4L6XoIbTtPJ+68x/1rj6Dj3DL6V6fXP8Ag3w5F4S8J6fo0JDGCMGVx/HIx3M34sTj0GK6CgAooooAKKKKACiiigAoxRRQBwHj7wvfz3Ft4s8M4TxFpgyEA+W8h/iib14zj8R1wR0HhHxVZeMPD0Or2RKhvkmgJBaCQY3I306+4IPet7A9BXlfiiyuvh74ok8a6NC8uj3bBddsYu3JAuFHqCTn8ezEgA9VoqrY31vqVjBfWU6z2s6CSKVDlWUjgirVAHmnwo/5DHj3j/mY7n/0I16XXnXwrA+0+ODgZPie8GfbK/416LQAUUUUAFFFFABRRRQAUUUUAFFFFABVTULG31PT7mwu03291E0MqnjKsMEflVujA9KAPOfhXfXNjDqngrUpGa98Pz+VGzdZbZsmJvy/IFa9GrzH4gI3hTxfonj2EEW6H+ztWC94HPyuf91sH3O0V6Wrh1DKwZSMgg8EUAPooooAKKKKACiiigAooooAKKKKACiiigArkviQwXwcw7tf2I/8moj/AErra5L4iFG8O2kLgkTarYR8f9fMZ/pQB1tFFFABRRRQBx3xQLJ8O9TnQsDbtBcZUZOI5kfp/wABrsM1z3ju2N58P/EMCqWZ9On2gd2EZI/UCtPRbxdQ0HTr5T8txbRTD/gSg/1oAv0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5fCP+E2+MUlyQH0jwqpjjPVZLx/vH32459Cq+tdT488TL4S8IXuqgg3IXyrWPrvmbhBjv649Aai+Hnhg+FfBtnYzZN8+bi8cnJed/vEnvj7ue+0UAdZgelFFFABRRRQAUUUUAFFFFABRRRQAVHNBFcQyQzxJLFIpV0dQysCMEEHqCOKkooA8m02V/hR4qj0S7kkPhDVZSdPuJCSLGYnJiY9lY88/X+8a9XzxkGsrxFoNh4m0O50nUY/Mtp1wcdVPZlPqD0rjfAmv3+k6xL4C8TTbtSs13afdtwL63/hOe7gdfXB7qSQCX4V/8fHjj/saLz+a16JXnfwr/AOPjxx/2NF5/Na9EoAKKKKACiiigAooooAKKKKACiiigAooooAzdd0e18QaFeaTerut7uIxtxnGehHuDgj3Ark/hVq9zP4fn8P6oQNX0Cb7DcL6oOI3HqCowD32k9677FeYeKiPBXxL0nxaMR6ZqwGm6oRwFb/llIfyAJ7BfegD0+ikzS0AFFFFABRRRQAUUUUAFFFFABRRRQAVx3j4tJ/wjFsm7M3iC0zt9E3SnPt+7rsa47xM/m+NfBdlgFTdXNy3I4Edu6g/nIKAOxooooAKKKKAIZ4FubeSCQZSRWRvoa5j4aXLXHw40MSKVkgt/srqezRExkf8AjldbXH+BN1rJ4k0qTGbPWZ2RfSObbMv/AKMP5GgDsKKKKACiiigAooooAKKKKACiiigAoorE8V+IYPCvhjUNZuOVtoiyITje54VfxYgUAcXqh/4TX4uWmlA+ZpHhhVu7r0e7b/Vqf90Dd6cMK9PwPSuK+GHh+40XwilzqGW1bVZGv76RhhjJJzg+mBjj1zXa0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAGK5Hx34PXxXpUZtpvsms2L+fp12DhopB2yOdrYGfTg9sV11GB6UAeUfBS+uZIPFNvqqpBrJ1iW5vLccbGcLk4543K3evV6848e+HdQstSh8ceGIidasABdW6ni/t/4kI7sB0+gxkhcdb4b8R2HirQrfV9Nm3wTDBXo0b91YdiP/r9CDQBtUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVh+LfD8HinwvqOjT7VFzEVRz/A45RvwYA1uUYHpQBxfwy8RT694SSHUNy6tpkrWN+jn5hLHxk+pYYJPru9K7SvMNRB8FfF+11IZXSfFKraXGB8sd2uBGx4/iBx75YnpXp9ABRRRQAUUUUAFFFFABRRRQAUUUUAFcfcN9r+LtjFjK2GjSyk56NLKigflE9dhXH+HS17498XagTuihe206I5/55x+Y/wD49N+lAHYUUUUAFFFFABXG2QGnfFnVbcIwTVtLhuwexkhZo2H12vF+Qrsq4vxif7P8R+E9cG8LDfmwmx08u4Xbz7CRYqAO0ooooAKKKKACiiigAooooAKKKKACvMPFh/4TP4k6R4QT5tO0vbqmqcZViP8AVRH65yR3DZ7V32t6vbaDod7q12xFvaQtK+DycDoPcnj8a5D4U6TcxaBc+I9TU/2r4gn+3T5zlYzny0HsFOR/vYoA9AxiiiigAooooAKKKKACiiigAooooAKKKKACiiigCjqK6m9pjS57SG53D5rqFpEx6YVlOfxrznwP4z8aeN31NoBoVtbWE/keebeZ/ObnO1fMHbHU967TxvrH9geCdZ1MNteG1fyjnH7wjav/AI8RXN/BPR/7I+GGnF12yXrPdsMf3jhf/HVWgD0TAryfWbeX4W+KX8S2CSN4W1OULq1ogyLWUnAmQdgT1H1HdQvrFV7u0t76zmtLqJJbeZDHJG4yGUjBBHegAt7mK8t4ri3lWSGVBJG6HIZSMgg9wRyKsV5T4eup/hr4pj8H6nK0nh7UHL6LeSHPlPnJgcn3PB9x/eO31bOaACiiigAooooAKKKKACiiigAooooAKKKKAOX8feGR4r8H32mpxdbfNtXBwUmTlCD25+X6Mab8PvE7eLPB1lqE2VvUBgvIzwUmThsjtnhse4rqsCvMLU/8IT8YZ7M5TSvFSm4hz91LxPvgehYHJ9SyjtQB6fRRRQAUUUUAFFFFABRRRQAUUUUANLBQSTgDkk9gK5D4ar53hRtVZCr6ve3OoEN12vI2z/xwJ+FW/H2oy6Z4G1aa3Dm6lh+z24T7xllIjTHvuYH8K2NJ0+PSNFsdNh5jtII4FPqFUL/SgC9RRRQAUUUUAFc9410iTXPBuq2MGftTQ+ZbkHBEyfPHz/vKtdDRgUAZnh/V49e8Padq0XCXduk20HO0lQSv1ByPwrTri/AuNLutd8LnAGmXrTWqgYAtp8ypj1wxkX/gNdpQAUUUUAFFFFABRRRQAUUVVv72DTbC5vruURW9vG0srnoqqMk/lQB538Qi3ivxXongKLc1tKw1DVmVsbbZD8qHH95vyO016aqqihVUKAMAAYxXnPwrs7nUItT8banFsvtem3xIesVsvyxL+X5jaa9HoAKKKKACiiigAooooAKKKKACiiigAooooAKKKhmEpicQuqSlTtLLuAPYkZGfzFAHlvx6vpW8J6doFqc3Wr38cIT+8qnP/oZjr03TrGHTNLtNPgGIbWFIU/3VAA/QVwOu/DnXvEPiHStavvFVr9o0uQSWsUelERK2QSSDMT2HfsK72wS8js40v7iG4uhnfJBCYlPPGFLMRx7mgC5RRRQBh+KvDVj4t0C40i/X93KMpKPvRSD7rr7g/mMjvXMeAPFGoJe3HgzxOxGv6av7ucnK30H8Mqk9TjGe/fruA9DwPSuK8f8Ag+XxDZW+oaTMbXxFpj+dp90CBz1MbZ4Ktjoe59MggHa0VyngbxhH4t0ZpHT7Nqlo/kajZtw0Eozng9FOCQfqOoNdXQAUUUUAFFFFABRRRQAUUUUAFFFFABXG/Evw7P4i8ITGwBGq2DrfWDL94TR84HuRkfUg9q7KigDB8H+JIvFfhTTtaiwpuYgZUB4SQcOv4MD9Rit6vMPDY/4Qr4o6p4ZIEel65nUtNGMBZgMSxj8BnHYKPWvT6ACiiigAooooAKKKKACiiigDjfFP/E08XeFtCALRrcPqlzg9EgH7sEehkdP++a7LFcV4XC6z418SeIT80UUi6RaEjBCxfNKR6gyMR/wCu1oAKKKKACiiigAooooA4vxCP7D8eaDr4wLe9B0e8JJ43nfA2OnDhlyf+eldpWL4p0RfEfhnUNJL+W88Z8qTOPLkBDI+f9lgp/CmeEtcbxD4Ys9QlXy7kqY7qLvFMh2yKR7Mp/DHrQBu0UUUAFFFFABRRRQAV5r8ULmbW7rR/AdjIVn1mYSXrL1jtEO5j7ZI49dpHevRZZUghkmlcJGil3ZjwoHUn8K84+GscniTWta8fXY41CQ2umK3WO0jYjPXjcw591J70Aei2ttDZWkNrbRrFBCgjjjXgKoGAB6YAqeiigAooooAKKKKACiiigAooooAKKKKACiiigApMD0FLRQAYowKKKACiiigAoxRRQB5n440W/8ADmsj4g+G4t91Am3VbJOBeW46t/vKBnPsD2we50LW7HxFottqunT+da3ChkYdR2II7EHII9Qa08CvJbtG+Enin+0II2/4Q3V5/wDS4kGV064bo4HZD0wP6KCAetUVGkiSxrJG4eNhlWU5BGMgj1qSgAooooAKKKKACiiigAooooAKKKKAOB+KujXN54aj1vSwBrGhTDULVsZJC8uvuCvOO+0DvXV6BrVt4i0Cx1ezOYLqESAZyVJHKn3ByPwrSKggggEHrXmXgNm8JeNta8CzMRZuTqWklunlOfnjH0bp9GNAHp1FFFABRRRQAUUUUAFYnivXf+Ed8L6hqoXfLDERCnXfKcKi/i5UfjW3XFa7nXvHujaEh3WumD+1r4YONwJW3XP+9ufH+wKANrwlop8O+FNO0tm3SwQjz3Bzvlb5pGz7sWNbdGKKACiiigAooooAKKKKADA9K4mx/wCKa+I93p+7bYeIVa9th0C3UYAmX/gS7Xz7NXbVzfjTRrjWNAJ09gmq2UqXlg56CdMlQfZuUPs1AHSUVk+Htct/EWg2mq22VjuIwxjb70b9GQ+4YFT7g1rUAFFFFABRRTScAknge9AHnvxV1K5l0yw8I6ZIV1LxFP8AZQwGfLgH+tc+wHB9i3pXb6Vptto+lWmm2i7Le1iWGMeyjH596888DZ8X+Ota8cSZaxgJ0zSc9DGvLuP94ng/7TDtXqGB6UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVS1LTbTVtOuLC+hSa1nQxyRuOGB/kfertHegDy7wlqN34D8SJ4D1yZpNPmy2hX8v8AGmf9Qx/vDIA/Ad1Feo1znjDwpZeMNAl026fypQfMtrheHglH3WH48fTisbwD4svb9rnwz4i2w+JdLws4z/x8x8YmX1zxnHHOeM4oA7yiiigAooooAKKKKACiiigAooooAK86+Kun3NrY6d4x0xGbUfD032gqvWW3bAlQ+2Oc9gG9a9FqKeCK5gkgmjV4pEKOjDIYEYIPrxQBBpmoW+q6Xa6jaOXtrqJZomPdWGR+PNXK80+Gk0nh3VNZ8A3bMW0yQ3Gns55ktJDkfXax5PTLY7V6XQAUUUUAFFFFAFW/voNOsLm9upBHBbxNLK56KqjJP5VzHgG0uH0u68QX0ey/16b7a6kDMcWAsMZx6R7fxY1F4wf/AISDWtO8GREmK5xeaoV422qHhCf+mjgL/uhq7UKAAABgdPagBaKKKACiiigAooooAKKKKACiiigDhrPHhLx5NYt8ukeIZGuLYkYEN4B+8j+kijePcNXc1h+KdBj8R6DcaeZDDMCJba4XrBOp3RuPoQCfUZFQ+EfEEuvaPm8j8jVbOQ2uoW//ADzmXgkf7LcMD6EUAdFRRRQAVwfxU1u507wwulaXltY1uUWFmqnBG/77+2BxnsSDXeV5hoAHjX4ral4ib95pegKdP08/wvOR+9cfTOPcFTQB3HhvRLbw34esNGs/9RaRBA2MFz1LH0JYlj9a16MD0ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4X4geErnVha+INBbyPEulfPayD/AJbJzmFvUHnr6kdCa7qkwPQUAc34L8XWvjHQUv4QYLhD5V3av9+CUY3Kc849+4I6HIHS15d4w0288E+IX8faBA0lu4C65YRDiaIf8tlHZl6k/jwNxPoemapaaxpltqNhcCa1uEDxyL0IP8iOmP60AXqKKKACiiigAooooAKKKKACiiigDzT4m28mg6lo3j6yjZpdJlEN8q/8tLSQ7Wz67S3H+8T2r0W3niuraO5gkEkMqh0dTkMpGQR+dQ6hYW+qadc2F5GJLe5jaKRD3Vhg1wvwqvrmytdT8GalLuv/AA/P5UbHrJbNzE35H8BtoA9GooooAKo6rqdro+l3epXsvlWttG0sjegAzwO59B3q9XC6uf8AhMfGMWgoN2jaPIlzqZwds8/3ooPcLw7Dn+EUAXPA+m3Ys7vxBqsQTVtakW5lQjmCIDEUP0VeT7s1ddRiigAooooAKKKKACiiigAooooAKKKKADHOa4bxPHL4W1xPGVpG7WjKtvrcCDO6EHCTgDq0eTn1Unpiu5pkkUcsbRyRq6MpVlYZBB6gj0oASGaOeGOaGRZIpFDI6nIYHkEGpK4Tw/LJ4N15fCV47HSrrdJos7nO0dWtiT3Xqueq8dgK7ugDj/iP4ln8NeEJpbHLapeutnYRqfmaaTgEe4GT+Aq/4J8NReEfCWn6NGF3wx5mcfxynl2/Mn8AK5GHHjj4wyS/6zSPCilEyPle9c8/Xbj8GUeten0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjIroVdQykYIIyCK8mid/hJ4rED5/4QvWJ/wB0T0064J6Z/wCeZ/QfQ7vWqztZ0ey1/R7nS9RhEtrdJskU9fqPQg8g0AXQ4YDByD3BqSvM/BGr3vhXWz4A8RzmR0Xfo183S6gH8BPZ16Y9AfRS3plABRRRQAUUUUAFFFFABRRRQAYHpXmPj8Hwj4y0Px5Cu22Df2bq20dYHPyuf90857naK9OrN17R7XxDoF9pF4oMF3EYmyM7SehHuDgj3FAF9XDqGU5U8gjkY65p9cD8Ktaubrw/PoOqN/xN9BmNjcg9Soz5b+4KjAPfaT3rs9Qv7bTNPuL+9nWG1t0MkkjHhVA5P+etAGN4u8QzaJp0cNgi3Gs37/Z9Ptz/ABSn+Jv9hB8zH0HbNWfC+gx+G9DisFlNxOzNPdXLD5ridzl5G+p/QAdqxfCllc6zqcnjLVoWhuLmPytMtZOtrankEjtI/wB5uuBgdjXaYHpQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFRySJFE8kjhEQFmZjgADqSe1AGV4j0C08SaPLp9yWiJYSQ3EZxJBKpysiHswOD78iuJvfiRc+HvCGsQ64Ei8UaXGIljx8t2zfLFNGONyMeSByNrDjivR7a4hvLaK4t5kmhkUPHJGwZXB5BBHBFcf8RfAcfjTR0a1k+ya1ZEy2F2CVKtnO0kcgEgcjoeRnGCAXPh54afwt4OtLK4y9/MTdXsh5LzPy2T3I4XP+zXWV5F4X8KQeJLGVv+E18c2moWsnk31hJrIMlvKOoOF5BwcMPvD8QN3/AIVZ/wBT544/8HH/ANhQB6BRXn//AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAegUV5/wD8Ks/6nzxx/wCDj/7Cj/hVn/U+eOP/AAcf/YUAegUV5/8A8Ks/6nzxx/4OP/sKP+FWf9T544/8HH/2FAHoFFef/wDCrP8AqfPHH/g4/wDsKP8AhVn/AFPnjj/wcf8A2FAHoFFef/8ACrP+p88cf+Dj/wCwo/4VZ/1Pnjj/AMHH/wBhQB6BRXn/APwqz/qfPHH/AIOP/sKP+FWf9T544/8ABx/9hQB6BRXn/wDwqz/qfPHH/g4/+wo/4VZ/1Pnjj/wcf/YUAegUV5//AMKs/wCp88cf+Dj/AOwo/wCFWf8AU+eOP/Bx/wDYUAegUV5//wAKs/6nzxx/4OP/ALCj/hVn/U+eOP8Awcf/AGFAHoFFef8A/CrP+p88cf8Ag4/+wo/4VZ/1Pnjj/wAHH/2FAHoFFef/APCrP+p88cf+Dj/7Cj/hVn/U+eOP/Bx/9hQB6BRXn/8Awqz/AKnzxx/4OP8A7Cj/AIVZ/wBT544/8HH/ANhQB6BRXn//AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAegUV5/wD8Ks/6nzxx/wCDj/7Cj/hVn/U+eOP/AAcf/YUAegUV5/8A8Ks/6nzxx/4OP/sKP+FWf9T544/8HH/2FAGv438IW/jHRPs/mm21C3fz7G8QkNbzLjBBHOOBkD69QDVLwB4xn163udJ1mP7N4k0tvKvrdht3+kq+qt149fQqTU/4VZ/1Pnjj/wAG/wD9hVQ/BfTjqY1M+LfF39oBPLF1/aK+aF/u7/Lzj2zQB6ZRXn//AAqz/qfPHH/g4/8AsKP+FWf9T544/wDBx/8AYUAegUV5/wD8Ks/6nzxx/wCDj/7Cj/hVn/U+eOP/AAcf/YUAegUV5/8A8Ks/6nzxx/4OP/sKP+FWf9T544/8HH/2FAHoFFef/wDCrP8AqfPHH/g4/wDsKP8AhVn/AFPnjj/wcf8A2FAHoFGK8/8A+FWf9T544/8ABx/9hR/wqz/qfPHH/g4/+woAoeKP+KL+J2leKl+TTdYxpmp46LJ/yykP5AZ9FPrWhn/hYevYA3+FNLnyx/h1G5U9v70SH8GYdwK43UPAg8S+JP8AhHLPxT4o1HTrSRW1ia+1HzYUxyIVXaMy8Aknhfc4FezafYWumafBY2UKQ2sCCOKNB8qgcYoAt4FFFU7vU7CwIF5f21tu6edKqZ/M0AXKKhFxEYDP50fkhS3mbht2+ufSpQcjNAC0UUUAFFFFABRRRQAUUUUAFFFFABXmnxc1C9uPC2raRpcnltFZNdahKP4IeQsf+85U/wDAUb1FdzrmsW2g6Nc6ldsfKgXO0Hl2PCqPckgD3NcbeHTV+HuvxXer6dLqup2c8t0yXKHMrREKi88qo2qPZQe9AGl8K7n7Z8LvD8mc7bURf98MU/8AZa7KvNfgTc+f8K7CMnP2eaaP6Zct/wCzV6VQByHibw9ei/TxN4dOzW7dQktuW2x6hEDkxOTwD12t2PXjpq+HPEdl4m0z7ZZmRHRzFcW8w2y28oPzRuvZgePetrAz0rjfEPh2+g1U+J/C4RNZRQtzaudsWpRDoj+jgfdft0PHQA7KisTw54lsvEti89r5sU0LmK6tZxtlt5B1V17H9DW3QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADc8HntS81XvrK11GzktL2CO4t5Rh4pQCrD3FeI/C3wtoXiXxR4u1afS7WbS4rw21jCybo1XLEkA8Zxs/M0Ae6g/X/GnV5p488I6Dong3U9Y0m3Gj39lCZoLmxcwneOinBAYE4HPrW/8ADbX73xN4A0rVdQH+lyo6yMBgOVdl3Y9wufrmgDrKKKKACiiigAooooAK4vxBr19qmqP4W8MzFL8gG/vwNyadEf5ytztXr3OAM0a74j1DVNSm8M+FWX+0FwL3UWG6LT1Pt/HLjon4tgA1t+HvD9j4b0xLCxRgu4vNLIxaSeQ/ekdjyzHqT26DigCTQdEsfD2kw6dYIVhj5LM2Wkc/eZj3Ynqa1cDOcUYrA8aazJ4f8F6xqsR/fW9q7RH0cjC/+PEUAcpq/ivU/FXi6fwf4TuvsqWgJ1XVlXJg5wY488b88Z+uPu102k+B/DukoTFp0VxcOP3l1dqJp5T6s7ZJ/lXI/AbR1sfh6mpyAtc6pcPPI7HJIVii5/In8a9SoA8j+IXhyeDUtC0vRJGstK1vUEg1GzhG2NwPmLKOi5QPuC43YGc8165jFVJrO2ubi2nmiWSW1cyQsf4GKspP5MR+Jq3QAUUUUAFFFFABRRRQAUUUUAFRvIkaFncIoGSzHAFSVWv9OsdUtWtdQsre7t2IJiuIlkQkdDggigDj7PUdL8deJZ44pra80rRjjysq6T3LA5fHRlRSQD0LMT/CK3bvQPD62kvn6ZpkMZQhna3jXbkdckcd6sWHhrQdKuvtWnaJptncbdnm29qkb7fTKgHHAqxqOkabrEKw6np1pexI29UuYVkUN6gMDzyaAPJ/2drxD4M1CxaVTLFqLMFzztMadB9VavZKx7Xwl4bsrqO6tPD+lQXERzHLFZRq6H2IGR1NbFABRgelFFAHJ+IfC9xPfLr3h+4jsPEES7fMcfubtf8AnnMo5K+hHK9qs+G/FcOutNZTwPp+s2vF3p07AvEf7wI++hyMOOOR9K6Oud8R+FbTxB5FyJpLLVbQ7rPUbcASwN6ejKehU8HPY80AdFRXGaV4tu7DUYtC8XRR2WoSHba30Zxa3/ptY/ck9UPPGRkEV2QOaAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAwfGmsf2B4L1jVA217e1cxnOPnIwv/jxFcF8H4tY0T4c2K22gGdbtnujKbtE3bjgHBGfuqtN+PesqnhC10K2njN1qV4kbR7xnYp3c+nz7OtenaTZwado9nYWrBoLWBIEIx0UBR+goA5DXvDXiDx3brp2tNb6Tom8NNb2kxmnudpyAzFQqLkA4G45FdnYWNtplhBZWcSw20EaxxRr0VRwBVujAznFABRRRQAUUVR1LVLLSLCa/1G7jtrWBd0ksjYUD/E+nfoOaALecDr+dcNfa9qPi+7l0jwpcGCwjby77XE5C/wB6O36hpPV+i+5xUZj1b4i/68XGk+E3/wCWZzHdaiue/eOJvT7zD0BFdxZ2Vtp1nFaWdvHb28S7Y4o1Cqo9ABwKAKmh6Hp/h3S49O023WGBPmPdnY9WY/xMe5PNaeB6UYooAKxPFui/8JH4T1TRwwV7u3aNGPAD4yp+m7FbdGKAPN/g9qiL4Sj8NXi/Z9a0d3guLSThgNxZWA7rgjkcZ+oz3Op6taaRbefezrEpO1AclpG7KijlmPZRkmqmseFdD16VJtS0yCe4j+5PjbIo9A64YfnTtO8MaNpM/wBps7CNbjG37RITJIF9N7Etj2zQBHodrctPeatfRGK7vSoWEnJhhTOxD/tfMzHtlyMkDNblGB6UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUmB6UtFAGfq2kWGt6bLp+pWkV1aTDDxSLkH39iDzkdK5If8JD4HYDFzr/hwHAI+e+swf/RyA/8AAwD3xXe4FGB6UAZ+k6zp+u2Ed/pl5FdWz8CSNsgH0I6hvUHke1aFcjq3gwNqUms+HrxtH1l8GV4huhusdpoujd/mGG561DZeOJNPuYtN8YWa6Peu2yO6DlrO5P8A0zkONpPPyvgjjrQB2lFMDZGQcg85HNPoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDCbwV4UZmZvDGjEsckmwi5P8A3zWnp+mWGk232bTrG2s4NxbyreJY1yepwoAzVqigAooooAKKztW1zTNC0+S+1W+itbZOryHqfQDqT7DmuVa+8T+McJpiT+HtEbhr6dP9MuF7+VGeIgezP82CCFGKANbX/GNtpF4NMsreXVdckXdFptr9/H96Ruka8j5m9e9UNP8ACN3qeoQ614wuI7++iYPbWEY/0SzPYqp++/X52554AwK29A8N6X4atGh0638syNvmmdi8szf3nc8sfrWzQAYHpRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABioLuztr+1ktbu3int5RiSKVA6uPQg8Gp6KAOGHhTWPDRMvg7UR9mH/MG1Fmkt+3EUn3ojgHj5lyegq3ZePbJbpLDxBby+H9SbAWG/YCKU8f6qYfI/J9Q3tXXYqrfadZanaPa39pBdW7/eimjDqe/IPFAFjOQDmnVxP/AAhmoaGN/g/W5bGMcjTb/NxaEeignfH/AMBbHtTj42vtEBXxboVzYRrnN/ZA3Vrj1JUb0/4Ev40AdpRVDTNX07WrX7Vpl/b3kBP+st5Q4+nHQ+3Wr9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNPHegB1Fc5rPjbQNEufslxqCy3x4WytVM9wxxnHlplh9SB9azW1Dxt4h407T4fDtk3/AC9aiBNckY6rCp2qc/32P0oA6fUtWsNHs2u9SvoLO3U8yzyBF9hk9/brXLr4o1zxGQvhTSzDZNx/a2qo0cZHHMUXDycE4J2j3NW9N8BaVbXi6jqTXGtamCCLvUmEpT/cT7if8BUGuqwPSgDldI8D2dlfpq2rXU2ta0vIvb3B8o/9Mo/uxDr90Z966vA9KMUUAJgHtS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcvqngLw9qdybwWRsL85IvtOka2nB9dyY3H/eBqoNI8b6OD/ZniC11i3BG231iDZIF9BNFjJ92Q12dFAHG/8JrqOn4HiDwnq1kMnM9mBewgepMfzj8UFaOleOPDOtEJYa7ZSSk/6l5RHL+KNhh+VdDWdqeg6RrSBNU0uyvQOn2iBXwfbI4oAv54/rTq40/DbRLdWGk3Oq6NuOf+JbqMsag/7hJT8NuKf/wjniu1kBsfG8ssa/8ALPUdOimz/wACTy2oA6+iuPDfEW3kO6LwzfRjoVkntmPTsQ49e9N/4SLxlC+J/A4mXI+e01aJ+MdcOEPWgDsqK5H/AITDVIsC48EeIA2M4iNtJ/KWkg8dvKpMnhHxTDj/AJ6WKnP/AHy5oA6+iuW/4Tb/AKljxL/4Af8A2VQL46uXlaOPwX4pfb/EbWJFP4tKKAOworkG8V6/ImbTwJq8hIyPPubWL/2qaRdY8c3O4R+FNNtOcA3Wr7jjjqI4z796AOworjVtfiFeRsJ9W8P6dkcG1s5bhl/F3UfpS/8ACGardoo1Txtrk+DkraGKzU+2Y13D/vqgDqrq8t7KAzXNxFBEvWSVwqj8SQK5if4leGVma3sLyXWLkLkQaTA90x/FAVH4kU63+HHhOC4a6n0iO/uG+9NqMjXbH8ZS2K6iGCG2iWKCJIo14VI1CgfQCgDkDrnjLVQf7K8NQ6ZEcFbnWrgZx3/cxFj+bLR/wheoas27xJ4o1C8Tdk2lifsUGP7p2fOw+r12dFAGVo3h7R/D9v5GkaZa2SH73kRBS3ux6sfrWrRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUYoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/2Q=='] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 1 "如图, $A, B, C, D, E$ 是圆 $\Omega$ 上顺次的五点, 满足 $A B C=B C D=C D E$, 点 $P, Q$ 分别在线段 $A D, B E$ 上, 且 $P$ 在线段 $C Q$ 上. 证明: $\angle P A Q=\angle P E Q$. " ['设 $A D$ 与 $B E$ 交于点 $S, C Q$ 的延长线交圆 $\\Omega$ 于 $T$, 如下图.\n\n\n\n注意到 $A B C=B C D=C D E$, 因此 $A B, C D$ 所对的圆周角相等, 设为 $\\alpha, B C, D E$所对的圆周角相等, 设为 $\\beta$. 于是\n\n$$\n\\begin{aligned}\n& \\angle A T Q=\\angle A T C=\\alpha+\\beta, \\\\\n& \\angle P T E=\\angle C T E=\\alpha+\\beta, \\\\\n& \\angle P S Q=\\angle B D A+\\angle D B E=\\alpha+\\beta .\n\\end{aligned}\n$$\n\n由 $\\angle A T Q=\\angle P S Q$ 可得 $S, A, T, Q$ 四点共圆, 由 $\\angle P T E=\\angle P S Q$ 可得 $P, S, T, E$ 四点共圆. 所以\n\n$$\n\\angle P A Q=\\angle P T S=\\angle P E Q\n$$'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAckB1wMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooyKADOKK5rVvGumabqg0m3judU1YjJsbCMSSIPVySFQf7xFRv4k1azha61TwxdwWijLvBcR3DxL3YovJA7hSx9uKAOpzRXPaJ4t0zxFq9/ZaXKt1HYJG0t1E26Pc+7Cqf4iAOT710A6UALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXnfxX8a3XhfSbbTtHG7XdWk8i0HUoDgFh75IAzgZOe2D6JXinieA6l+0z4atbkfuIbQSxKehKrK4P/AH0o/KgD0TwT4QtvCOgxWqHzr2XEt7duSWuJTyzEnnGent75rpCNwwRkdCD3pwIPeqeqahBpWmXV9c58mCMyMFGWbA6AdyegHcnFAHLfDjwsfDNnre63MJvNXuZY1K4IhDFY/wAMDI/3q7YdKahLICQVJHQ9adQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVw3jzwbeavqGmeI9CeKPXtJbMQm4S4jPWNj274P+0fXI7migDk7XxhdSIEvfCuvW14B80K24lTd6LKp2Ee5I98VaistR1q8gutXtxaWcEglgsN4d2ccq8xU7eDyEXIBG7ceAOizRQAg6CloozQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRkYzmgAooyPWigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKTI9RQAtFIzKoJYgAdSTXK33xC8OWt29pbXkmqXyg/6JpcTXUn0OwFQf8AeIoA6uiuMOt+NNUB/srwxb6bGQCk+s3YB/79Rbjn6sKcfDHifUN39qeM7iFHHMOk2cVuF/4G/mN+OR9BQB2BIAySAB3NY194u8N6a5S+1/TLdx/BLdorflnNZI+GfhqZkfUoLzVZE/i1K+muM+5Vm2/pWxZeF9A0tt1hoem2p9YLVEJ/ELntQBjH4n+DmfZDqxu2zgC0tZp+ev8AAhp5+IGmt80Ol+IbgYyDFotyc/TKCusAwMAYHoKUDj0oA4a4+J9jZ20t1deHPFFvbxKWkln0p0VQPVmIFSQ/Ei1mWN4/DXip4pFDJImkSMpUjIIIzkY9K6DxNpp1jwtq+mLjdd2csK5/vMhAP4HFYnwr1P8AtX4YaBcHgpaiA5PP7smPP47M/jQA/wD4WFpEQY3FjrtuB1MujXIA/JDSRfE7wZKwR9dht2PGLuOS3P8A5EUV13emsiyAq6hgexFAGdp/iTQtVO3T9a067bOMW90khz+BrUyPWsK+8G+GdSJa88PaXM54LNaIW/76xmso/DbRIE26VcavpHcfYNSmRR/wAsV/SgDssj1orjW0PxpYbm03xVb36gYSHVrFc/jLCUP/AI6aQ+J/EulAnW/B9xLEmM3GjTrdAk9f3bbZMfQGgDs6K53SfG3hzWLk2trqkKXgODaXAaCbP/XNwrH8q6HPHNAC0UUUAFFFFAGL4pttJm0C7n1qyhu7Ozia6ZJlyBsUnI9DjPNeWfBfwNpGo+CW1fWNKtrya9uXaJp4w+2NcKAM9PmD11Hxv1j+yfhjforFZb50tEx/tHLf+OK1dX4Q0f8A4R/wfpGlFQr21rGkmP7+MsfxYk0Act4n8AWNlo93qXhUPomr2kbTQyWbsiSFRu2umdrA4xyD179K2Ph54r/4TLwXY6tIipctmO4VeAJFOCR6A8HHvVnx1qyaJ4H1vUGcKYrSQJn++w2oPxYiuX+BmmS6b8MLSSVCpu5pLlVP90kKPzCg/jQB6SOlLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFGaKACjIzjNZmt67pXh6xa91a+itIBwC55Y+ir1ZuOgBNc0NR8W+Kif7LtT4d0pul7exCS7lHrHCeIxweXyeQdtAHR654h0fw9ai51fUILWInCCQ5Zz6KoyWPsATXPf2/4o8QHHh/QBYWjcf2hrWULD/YgX5z6jcVBrT0XwVo+jXJvlhe81RxiTUb5zNO3/Aj90eygD2rol6DNAHGL8Po9Sw/irWL/Xn4LQyv5FqCDkYhjwD/AMCLV1FlpllplsLews7e1gHIigiVFB9cAVcooAQdKWiigAooooAKKKKAEPWvOfhGBY2viXQSAo0zWZ44k/uwsQU/D71ejd6850L/AIlXxx8UWBwF1XT7fUIx2Gz9234kkmgD0eiiigAooooAKQ9e9LRQBmatoGk69b+Rq2m2t7HjAE8QYj6EjI+oxXPf8IXqOkOH8L+IryzRSMWN/m8tsD+EBjvT/gLY9q7SigDif+Ex1TQgF8XaFNaRIBu1LTibm1PHJYACSMZ/vKR711em6nYatZJeadeQXds/3ZYHDqfxFWSDmuT1PwFp0182paPPPoWqnk3VhhVkPbzIyNkgyc8jJ9aAOuzSEgDJIFcN/wAJRrnhddvi/TxNZL/zGdMjZ4gozzNFy0fTkjcuT2rq4JtO1rTBJBJbX1hcIV3KVljlXkEHsR1oA8q+KFxB4i+JPgvwsk0bwrcG8u13ArtBzg+h2o//AH1Xq97qunadC817f2ttEoJZ5plQD8Sayv8AhBfCI/5lXQ/X/kHQ/wDxNSw+DfC9tIstv4b0iKRTw8djGpH4gUAcNrsVx8W76103T1ng8I20omvL51KfbiOkcQPJHXLdM/QZ9RtbeK0tIbaCMRwwoI40HRVAwB+VPCgLgAAegp1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUZGcZozWXrmu6d4d06TUdTukgtlIAJOS7HoqqOWY9gKANIkDqQBXFXPjC8127k03wXbxXsiNsuNUnyLO2PfB/5av8A7K8c8kVD/ZWteO8y6/HPpPh5h8mkI5We6HrcMOVGP+Wa+vJ4rtbS0gsbWK2tYI4LeJQscUahVQDsAOAKAOd0XwTaWN6mq6nPLrGt45vrwA+X6iJPuxD2Xn3NdSOgoHSloAKKKKACiiigAooooAKKKKACiiigArzjxUF0z4x+DdUB2rfQXOnTN7Bd8Y/76avR684+Mf8Aonh/SddHH9javbXbkDJ2btpH4ll/KgD0YdKWkU5UGloAKKKKACiiigAooooAMio5ZEiR5JGVURdzMxwAPUnsKrapqdlo2nT6jqNzHbWkC5klkOAozj9SQAPWvMdmtfF6fLrc6R4IjYgIPkuNTI9f7sfH/wCs/cAJ9R8Tax8RdRm0PwVO1ro0LeXqGu4PzescHqcfxfyGC2nbfDX/AIRizifwVqU+m3sSYdLl2mt7w8cyoejHH3kxj0xxXa6dptnpNjDY2FtHb2sK7Y44xgD/AOv7mrY6UAcnpHjNZdSj0XxBZNo2tNny4ZG3Q3OP4oZMYbsdvDDOMcV1ikbRWfrWi6fr+nS6fqlolzbPg7G4KnsynqrDsRyK5JrzWvASldUkuNZ8NA8X2C91ZL6SgDMsY67x8w5yD1oA76ioLO8tr+ziu7S4int5V3xyxsGVx6gjtU9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRmjNcx4p8T/ANkSw6ZptuL/AF++GLSzBwAB/wAtZCPuxr3PU9B7AE/ibxRa+HVgiWCW91S7JSy0+DHmTt/7Ko7ueAPyOfofhO7k1NfEHimeO+1kf8e8UYP2ewU/wxKerHu55OAOO9rw34UGjSzapqFwdQ167A+1XzjoP+ecY/gjB7Dr1PbHSr90cY9qABfuiloooAKKKKACiiigAooooAKKKKACiiigAooooAK5X4k6cuq/DnxBalSxFm8qqBkloxvX9VFdVUU0azRPHIAUdSrZ7g9RQBj+CtSOr+CNDv2cPJNZRNIw/v7QG/8AHs1u1518GJHj8Bto8xzPpF/cWMoP94OW/wDZq9EHSgBaKKKACiiigAyPWsHxX4q0jwhpL6hq0+xCcRRIMyTN/dRe5/l3IrN8aeObPwt5VnBC+oa7d4W006DmSQnOC2OVXOefr74zPC3gO9k1dPFXjOdL/wAQPzFCv+osF6hYxzkjJ59fXliAZ+m+F9Y+IF/b6/44tzbadG3mWOgAkqvo83Tc2D0wPcclT6jGoSNUVQoUYCjoB6ClX7o6/jS0AFFFFABTWUHIIyD1FOooA4W98P6j4Su5dW8JQ+baSN5l7oe7CS+skGeI5PUdG9jiun0HX9P8R6Wl/p02+MsUkRhtkhkH3kdeqsM8g+3YitIiuQ1/wze2+qnxJ4YMcOr4Au7Vm2w6jGP4H/uuP4ZMcZwcjoAdhRWJ4c8S2PiWxee1EkU0TmK4tpl2y28g6q69v61tDpQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRketBIHU1i+JvENt4b0lr2dGmkZlitraPmS4mbhI1HqT+WCe1AFXxX4mbQ0gtLC2F9rd8THY2YP32HV3PaNepP+QnhfwqNDE97e3LX+t3mGvb5xy5/uIP4Yx0Cj0qHwp4curGS41zWmSfxDfj9/IpytvH1WCP0Re+PvHJOeMdUOnTFAAM45paKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApD16UtFAHnHgUf2Z8SfHei8iM3MOoRAj73mplyPXnaK9HHSvOb3/AIlXx90yfBEesaPJbexkibzCfwUKPxr0YdKACjNFMYhcsSBgcnPagB2R615/4s8c3H9qnwv4Qt01HxFIMSSHmCwXoXlPTI/u/n2Vs3VfFmr+O9Rn8PeBZDDZxsYtQ14j5Ih3WHuze/5YGGrs/CvhDSvB+lCx0qAgt801xIcyTt6s3+QO1AGb4O8BW3hppdRvJ21LxBd83epTcu3+ymfuqPTvgZ6ADsR0FC8KKWgAooooAKKKKACiiigAppGTyDinUUAcf4j8PXkWpf8ACTeG0jXW4kCz27Nsjv4h1jc9nH8L9jgHg8bPhzxBZeJNJS+s9yHcY5oJBiSCUfejdf4WB6j6HoRWsRk9OK4jxHpd7oGrP4u0G3ed9oGq6dF1vIh/Go6eaoHH94cdcZAO4oqnpep2esaXbajYXCXFrcoJIpF/iB/kexHYg1coAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooozQBXu7qCytZru5lSK3gQySyOcKiqMkn0x1rj/AAxZz+J9WXxlq1u0cYVk0a0kHMEJ6ysP+ekmPwXA7mo9Z/4rnxO/h5Pm0DSnWXVHAytxOPmS39CF4Z+vZeK7tRhQBjj0oAFzjkYNLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAQ3V3bWFs9zeXENvbxjLyzOEVR7k8Csj/hNfCmcf8JPov8A4Hxf/FVsyIkilZFVlIwQQCCPfNeOfByyttd8QeL/ABW1tC0F1fGC1+QYRASxwPo0f5GgD1Oy8TaDqUwhsdb026lPRILuN2/IGtSuA+K2l6N/wrzV7u8s7ZZYId9tMIwHjlyAm0gZB3EDj6Ve+Fuoajqnw20W71Vne6aJh5j/AHpEDsEY+uVCnPfr3oAyfih/xL9b8E6+uQ1prKWrsO0c4w/6L+tejDpXC/GGwe/+GGr+TkT2ypdIw6r5bhmI99u6tS/8a6No/g+28R6ncrBa3FvHNGudzyFlBCoO5Of5k8AkAG3qF/aaZZT3t9cx29pCu+SWRtqqPr/nPSvMHl1v4uzNFatc6T4JVirz4KT6l2IUHpH2/nk5Cy2PhzWfiVqEWteL4ZbHQYmD2Gh7iDJ6ST+v+7/IZ3epwxRwQpFFGscaKFRFAAUDgAAdAKAKmlaTY6HpsGnaZax21pAu2ONAcD3Pcn3JyavDpRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTWB7D8qdRQB5/Mp+H3iMzqAPC+r3A89f4bC6c4D/AOzFIcZ7K3PANd8pG0ZIqvqNhbapp9xY3kCzW1xG0csbdGUjBHtXKeEL250vUrnwdq07S3dhGJbG4k5N1Zk4Un/aQ/K30B70AdrRSDpS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXN+MtduNF0pYtOjE2sahKLTT4W6GVv4zwflUZY+y9s5roj1NcT4ZH/CU+JbzxbKN1lBvsdIHBHlg4lmHrvZcA/3U96AOg8NaDB4c0ODTopGmcZknuHyXnlbl5GJ7sxJrYoHSigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQkDJJAA5JoA5r4hax/YPgDXNRDFZEtWSNh2d/kU/99MK5H4VaR4i0r4c6WtmmlrHcqbrM/mbzvOQSBx93b0rC+OHjDSdV8P2egaXq1tcS3F6v2kwyBxEiZ+8RwPmKnn+6a9e0C60u60a2XRry3u7KBBAkkEgdRtAGMjv04oA5y/8ABN74plhXxZqUVxp8LiQabYxNDFIw6GRixZ8c8DA6da7KGOOCGOGJFjjjUKiKMBVHAAHYVJketcF4v8dyWOrL4b8L2y6n4mmHMQ/1dopH35SOnbgnpg+mQCX4leKNL0jQLjSJ0e81HVYHt7bT7f5ppt4K5AHQc9e+MCvM/guuk+JdShk8QX0t3rekxrDp1jcjEUMKgDeg/iYYOfTAPOBj0/wd4Dj8Pyy6vqt0dV8SXfzXN/KM7T/cjHG1e3vjsMKPPtG8Dw63d+LNMtJv7P17RdZe6028QnMUco3IjdyhCn1wSTzzkA90XAUD+tOrh/A/jSfWWuNC16BbHxPYYW5tj0mXtKnqp9s469CK7cUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVy/jTQ7rUrK31LSdq63pUn2mxY/wAZx88Tf7LrlTz3B7V1FNbPpmgDO8P65aeItCtNVsyfKuE3bG4ZGzhlYeoIIPuDWnXDW6nwj4/e2A26P4idpYj2ivgMuvTgSKu7r95DjrXcDpQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFGaKTvQByHj+9um0628P6bJ5epa5L9kjkHWKLGZpf+Apn8WFdNp1hbaXpttp9nGI7a2iWKJB2VRgVyfhwf8ACQ+M9Y8SON1taE6Vp2R/ChzNIP8Aek+XI7R12o6UALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJ36UtFADRwPSk4zkYzUN5eW9hazXd3KkNtCheWVztVFHUk+1eWz32s/FqaWx0hrjSvByuVuNQ27ZtQGSCsQPRDyMn8c8rQBc1nxjqni7VpfDPgNx8p26hrnWG2XuIyPvvzwQfp/eXq/CXgvS/B+mNa2MZknlIe6u5OZbh+u5m+ucDt9STWlouiad4f0uHT9LtI7a2iUAIg6+5J5J9SeTWlQA0Zxz1rzrTwdK+Pes2+MR6xpEN3nPV4mEeB+GT/+uvR6848b40z4oeBNYwFjkmn0+Vs8sZFxGPpuJNAGv428Gf8ACSwQ3+nTnT/ENj89jfp1Vuvlv6oehznGe/INfwR44bxA9xoutW39n+JrH5buybo44/eR+qnIPU4yOoIJ7cdK43xz4GXxKsGp6ZOdO8R2Hz2N8nHP9x/7yHnrnGT2LBgDshjAwc0tcR4I8bPr7XGi6za/2f4lsOLuzYYDjj94nqpyPpkdQQT2wwBjPT1oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigDC8X6D/wAJH4cubGOTyrsYmtJh1inQ7o2H/AgM+2ad4S10+IvDdpfyR+TdENFdQHrFOhKyIR2wwP4YraPWuKtR/wAI38SbmzxtsPEMRu4R2W7jAEigerJtb/gDUAdtRSDpS0AFFFFABRRRQAUUUUAFFFFABRRRQAVz3jbWpdC8K3tzaAtfyBbezQclp5DsjAHf5iD9BXQ1xutAa18RdD0kjdbaXE+q3IK5BkOYoB7HJkb/AIBQBu+HNEg8O+HbDSLfBS1iCFsY3t1Zj7liSfc1q0g6CloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiijNABWT4g8QaX4Z0uXUtWulgtox1PLOeyqOpJ9B/Ks7xj4203wdZo9wHur+4Oyz0+D5prlzgAAdh6np9SQDzegeB9T1/VYvE/j3ZcXqc2WlKd0FkCc5I6M/uc++SBtAKVpomtfFK7i1TxLFPpvhdGElnpIcrJddw8xHQeg9+MdW9StreG1to7e3hjhhiUKkcahVVRwAAOAAO1SgYGKWgAooooAK86+M8bw+CYdZiGZdG1G2v0H94q+3H/AI/+lei1z3jnTTq3gbXLFV3SS2Unlg/3wpK/+PAUAb8brLEkiMGRgCpHQg06uY+HOpDVvhz4fu9+9jZRxu2c5ZBsb9VNdPQBx3jXwUfEBg1XSbj+zvEmn/NZXyjr1/dyf3kOTwQep6gkFngnxuPEguNM1G3+weIrDCXlg3B4x+8TPVDxzk4yOSCCezIrifHPgd9fkt9Z0Sf+zvE1h81neqMB/wDpnJ6qeeoPU9QSCAdsCMdaWuK8EeOB4lE+m6lb/wBn+I7D5LzT34PGPnTP3kORzzjI5IIJ7QEYHNAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAVynxA0+e68NNqFihfUdImTUbUDqzR8snH95Ny475rq6ayhsgjIxg0AV9NvoNU0u01C2bdb3UKTRk91YAj9DVquK+H5Gmx6v4Xdvm0W9ZIQTki2k/ewn8AxX/AIDXaDpQAtFFFABRRRQAUUUUAFFcX498Z6h4J0+TVDo0F5pyFFMn27ypNzHGAhjIP59M1NZa54uvdPt7tfC1hGs0ayLHJq5DKCMgH9zwaAOuorjdL8fRTeK/+EX1nTptJ1ho/NhikkWSOdcHlHHXoeMdj6V2I6dMUAIfT14rjvBCnUdR8R+I2Gft9+1vAwOQYLf90uPq4lP41ueJ9W/sLwvquq8FrS1klUHuwUkD8TimeENJ/sLwdpGmFdslvaosvvIRlz+LEn8aANqiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopCcfnQAuR61wvjLx6NJ1CPQNAtP7X8Tzj91aR8rACPvynPyjvjI46kA5rO1/xtqWv6zL4Y8BbJrxOL7VmG6CyX0B5DP7c454Jzt6Pwf4J07whYulvvub64O67v5/mluH6ksTnjPQZ/XJoAzvB/gH+yr1/EGv3P9reJrgHzbt+UhB6pEOgXBxkAd+ADiu4Gcc0Dp0xS0AFFFFABRRRQAU1huDAgHIxg96dSEf8A1qAPOvg232XwvqOhls/2Nq1zZrnqVDbgfzY16MOBXnHhM/2Z8XvGulE7Uu1t9RgT+9ldsjf99ED8K9HFABSEUtFAHE+N/A7a9Lb63otwNP8AEtgd1pdgYWQf885B/EpyR3xk9QSDP4L8Zp4lSexvrY6fr1kdl7p7n5l/2l/vIcggjPUcnqeuIrhvHPgebWJ4fEHh+cWHiexGbe4HCzr/AM839QemT9DxQB3IPHWlrjvBHjaLxTBNaXkH2HXbL5L6xcYKkcblB5KHt6Z612A6UALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHG32dI+KmnXQLCDW7F7OQAcedCTJGSfUoZR+ArsR0rjviSot/DlvrQVy+jX9vf/J12K4En4eWz12KkFQQcg9/WgBaKKKACiiigAoopDQB5F8apU1TU/CPhVpAsV/qAmuCTgLGuFyfbDuf+A16Rd6/ounW5mudTsoIUHVp1HHtz/Lk9K82hii8VftE3sk0ay2mgacIl3KGUyNjgj1/eP/3zXpU/h7RbmFoZtIsHjb7ytbpg8fSgDzex0fUfHXxYtfF8lpcafoekxCKzadDHJdsNx3bDyq5Zjk9QAO5x64v3RXkPwh1i9k8TeLPD6XEl3o+m3TCylkcuYl8x1CBj1GF4/wB3ivXh0oA474jqt3o2m6Oylhquq2tq6jvGH81//HY2rsQcjrXAeOtEtPFvi7w74f1BTJYCK6vp41coTsCIhyORgyk9R0qt/wAK48QaP83hfx3qtuo6W2ogXcWP7oz90fgTQB6TRXm/9ufE3QuNU8MadrsCjmfSbkxuB/uOMsfYCprX4xeGfPFrrUeo6DdnpDqdo8ZPvkAgD3OKAPQqKo6Zq+m6xb+fpuoWt7FnG+3mWQD2yCavUAFFFFABRRRQAUUUUAFFFFABRRmszW9c03w9pk2p6ndx29pFjc7HqewUdyewFAF64uIbW3luLiWOKCJS8kkhAVFAyST2Ary271nWvineS6X4bll0zwsjbL3VtuJLsd44fbrk/wBOGZb6brHxZmivtYin0vwajCS208HbNfgcq8hB+VT1A9Oh6NXqVpaW9jaxW1pBHBBEoWOKNAqoBwAAOnFAFDQPDum+GtJh0zSrZYLaMZwOSzd2J6lj61rLnHPWgdKWgAooooAKKKKACiiigAooooA841s/2V8dfDd6DhdW024sHH/XP96D9ckCvRh0rzn4tf6CvhbXgSo03WoDM442wvkPk9gcAfjXow6UALRRRQAUhGT0paKAOF8ceB5dXuIfEHh6caf4nsRut7hQAJx/zzk7EHpz688Ve8E+M4fFNpLb3EP2LWrI+Xf2D8NE3TKg8lD1B9+tdWRk9K4Txz4Ku9QuYPEnhqcWfiaxU+U+AFul7xydjnsT+PqADuweKWuT8EeN7XxdZyxPEbPV7M7L6xl4eJhxkA8lSeh/DrXVjpQAtFFFABRRRQAUUUUAFFFFABRRRQBna7py6voOo6a+Nt3bSQH23KV/rWf4F1E6r4E0O8diZXs41lLdTIo2v/48proCea4/4dkQaXq+lquxdN1m7t0X0RpPNX/x2UUAdjRQOBRQAUUUUAFZ2rPqyQL/AGRa2c8xbDC7uGiVRjqCsbk/Tjr1rRooA8t8G+E/GvhbUtc1Ka20G9u9YuftErG/mj8vliFH7luMsf0rc1ax8d63btYrcaRokEo2zXFrLLczhe4TciAE+vUdq7aigDnvCXhDSvBeirpmlQsqE7pZXIMkrdMsRjntxwK6EUUUAcfChuPi/dzbsrZ6HFEB6NLM7H9Ilrrx0FcfoBM3xJ8ZS5JESWNuPlxjETP17/6wV2NACVBd2VrfQNBd20NzA33opow6n8DxViigDgtR+EHg++mNzbafLpV2PuXGmzGBl9wBlR/3zVT/AIRDx/onOgeNxqEAPy2uuQeZx7yrlz+AFekUUAebf8Jt400TjxJ4EubiJc5u9FlW4De4i+8B7kitDS/i34M1OTyDq6WNyPvQ6ghtyh9CzfLn8a7g9azdU0DSdbjEeq6ZaXqjgfaIVcr9Mjj8MUAXreeG5hWWCVJY2GVdGDAj2IqWvOpvg7oVvKZ/D99q2gTkk50+8YKx91YnI9gRUZ0v4p6CCbHW9J8RQL/yzv4Dby49FKHBPuxoA9JozXm3/Cz9S0g48V+CtY0xV+9c2wF3AvuXXGPpzXQaL8RPCPiAoNP1+zaRjhYpZPKkP0V8E/lQB1NGR60ma4vxn49j0C5i0bSLU6r4kuuLawi/g/25D/CoHP8AgMkAGj4v8ZaZ4O04XN6zS3Ex2WtnDzLcPxhVH1Iyf5kgVyujeC9U8W6tD4m8eIp2EtYaGPmhtVPQyDo7nvx2Geyro+EvAUthqbeJPE1yNU8SyjAmbmO1U5+SIY46kZx0JxjJz3g6UAA6dMUtFFABRRRQAUUUUAFFFFABRRRQAUUUUAcZ8WNN/tT4Ya9CPvRW/wBpB9PLIf8AkproPDmpf2x4Z0rU+93aRTnnoWUEj9atX9pHf6fc2cwzFcRPE49Qwwf0NcT8G7uSf4a2NtcFjc2Es1pKD1BRzgfgpUUAd/RQKKACiiigAppGTyDinUUAcD438EXN/exeJ/DMwsvE9mvysMBLtB/yzk7HPQH8DxgjT8EeNIfF+my+ZAbLVrNvKvrGThoZPUA87Tzg/h2rqSMnkHFcL418G3lxex+KfCzraeJ7ReOyXsfeKQdD7H6egIAO7z68Utcp4I8bWXjHTpHSJrTUrU+Xe2EvEkDjtz1UkHB/DqDXVZwOaAFooooAKKKKACiiigAooooAQjmuQ8NMYfHfjOy24Uz2t4mM/wDLSAIT+cRrsK5GyIh+LWsRAgGfR7SYjPJ2yzrn9aAOtHSloooAKKKKACiiigAooooAKSlpO9AHJ+Fkb/hKvGcrY+bUYU/K1h/xrra5bwv/AMjB4w/7Cqf+kkFdTQAUUUUAFFFFABRRRQAUUUZoAaetc/rfgfwv4h3HVNDs53YYMwTy5CPTeuG/Wt6aWOCJ5ZXWONAWd2bAUDkkn0ry2/8AEWtfEq/l0fwfPLYaBE22+1wAqZfWODv9WHp2GNwByt/pTWXitPD3wt1rWRdwtm8U3m/T7Nc/xbgcn257jrkVsaD4X8dfD66vLu10bSfErXLl5roXLx3svOfmeTjt0GecHrXp3hrwxpfhPSI9M0i1EMCcs2cvI3dnPcn9OgGMVsgYAFAHnEfxf02wlWDxPoms+HpDwXu7VniJ9FdRlvriux0fxRoWvKDpWr2V4cZKwzKzD6r1H4itSSNJUKSIroeCrDIP4VyGr/CrwXrJ3zaFb282ciWzzAwPr8mAT9QaAOyorzY/D7xTo2W8MePNQVAOLXVlF0h9AGP3R9BR/wAJH8SdC/5DPhG01eBR81xo1wQwH/XNssx+gFAHpNFef2Pxh8JzXItNTkvdEvDwbfVLVoiPcnlQPqRXa6fqVhqlsJ9Pvra8hJwJLeUSL+YJoAt0UUZFABRRRQAUUUUAFFFFACHvXnPw5H9m+LfHehHI8nVRer/u3C7gB9Ao/OvR684Uf2V8f5QPki1jRQ59HmifH6IP1oA9HFFA6UUAFFFFABRRRQAU0jOev8qdRQB5/wCNfBV7NqUfizwnIlp4mtl+Zekd9GOsUg6E4HB47AkYBXW8E+NrLxlp0kkcTWepWzeXe2EvEkEnoc9QSDg49ehBFdQRnPX+VcJ4y8G3r6mni3wmyW3iW2XDoeI7+PvFJ0544b2HI4ZQDvBS1y/gzxpY+MtKee3Vre9tz5V7Yy8SW8nTaR3GQcH29QQOnHFAC0UUUAFFFFABRRRQAVxzPGnxkWPZ+8l8Pli3stwMD/x812NcVJ/yW+3/AOxcl/8ASlKAO1ooooAKKKKACiiigAooooAKQ0tFAHH+FmC+M/G8IOWW+t3x/vWsWP5V146CuR0VDB8TvFaHpPa2E6jaB2lQnPf7g/KuvHSgAooooAKKKKACiijI9aACs/VtVsND0+fUtSuora1hXc8rnGP8SegA5PbrWf4t8W6V4P0z7dqc2C52wW6DdLO391F79v05rjtK8I6t451KDxH46hMVpG3mafoAPyRjs0wPV+ehx74+6ACtHb618XJlnuxc6T4JVt0dsPkn1MDkFj/DH3/yCvp9jYWumWUNlY26W9tCu2ONBgKKsxrtQKBgDoKdQAg6UtFFABRRRQAUlLRQBUvtNstTtzb39nb3cB6xzxLIv5HIri734PeE57n7Vp8F3ot4M4uNLuWhYfQcqPwFd/RQB5sPC3xG0Ij+xPGNtqsC8Lba1bknHvKuWY/lR/wn3izROPEvgK+Ma/eutIkFyp99g5UfU16TTSDuyKAOM0n4reC9Xby4tbgtZwcGG9Bt2B9MsACfoTXZRSJNEskbq6MMhlOQR7GszVvDWia8m3VdIsrzjAaaFWZfo3UfhXHy/B3SbORpvDWrax4elPO2yu2MTH1ZWJJ+mRQB6NRXm32P4raAP9H1DR/EsC/w3MX2Wcj0BU7fxJNH/C1J9IG3xb4R1nRsHDXMcf2m2X3Mi/0BoA9Jorm9F8eeFfEGxdL12ymkc/LEZBHIf+ANhv0ro8j1FAC15z8Qv+Jb448Ba7t+VNSfT37Z+0JtGfpgmvRq89+M9s7/AA5ur6Fc3Gm3EF5Cf7rK4BP/AHyzfrQB6COlLUNpcR3lnBcxHMc0ayIfUEZFTUAFFFFABRRRQAUUUUAFIetLRQB554y8F366ovjDwgy23iK3H76E8R6hH3jcdM+h9hkjAK7fgzxpYeM9Ke4t0a3vbc+XeWMpIktpP7pHcZBwcDp2IIHTnrXn3jHwZfJqyeMPCLLb+Ibdf38HSPUI+8bjpux0P05HBUA9BGKWub8H+L7DxhpRurVXguYj5d3Zy8SW0g6qw+oODx07HIHRjAAHFAC0UUUAFFFFABXIAh/jDIPK5h0BTv8AZ7huP/IddfXI6Yy3HxU8RPnJttNsYOv95p3/AKigDrqKB0ooAKKKKACiiigAooooAKKKKAOOkV7b4wRv0jvdCZR7tDMD6dcTGuwHSuQ8U4tPGng7Ui4VTdT2D57+bCzKP++olrsB0oAKKKKACiijI9aACuN8Z+O7fw1JDptjbtqfiC74tNOhOWP+0+PuqACc98dhkjO8U+OryfV28LeCoY7/AF9uJrgnMFgvQs55yw/u/oT8p1PBngOz8KLPeTTPqGt3fN5qM/LyEkHC5zhcjOPYZzgYAM7wr4DuU1X/AISnxdOmo+JJB8gxmGyTqEjX1Bzz78dye/XJUZGPb0oXp0I+tLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRketABRRmql7qen6bGZb6+trWMDJeeVUH5k0AW8009eK4zUfiv4G0z/AF3iO1kJPS23T/8AoAYVm/8AC3ba9B/sXwr4l1QH7ksNiREeccsTx+VAHQaz8PvCfiAsdS0GzkkbrLGnlyH/AIGpBP51zv8Awq6+0g7vCnjPWdKCj5bedxdW6j0CN0+pzTz4j+Jmo/Lp/gix00E8TajqKyDHuiYak/sL4p6lk3vi3SNJH93TrHzs/jJg0AJ/aPxT0E4utH0jxFbqPv2M5tpj7sH4z7KKyvEPxR0PUfDmq6Hr2n6poF5d2csCLqFowQuyEAhlByMkckD1rXPwplvhnWvG3ia/J+9Gl2IYm/4AAePxq7YfCDwJp7iRNAimkHVrmV5c/gxI/SgB3wp8QWWs/D3RY4ryCS6trVbeaFZAXQx/INy9RkKCM9QQa7euI1X4TeCtTIk/saKymUfJLYMbcofUBSFz7kGs0+BfGWi5Phvx3dyxjGLXWYluA3sZMZUf7ooA9JzRXm3/AAlfxB0IY13wXHqUIPN1oc+7j2hbLH9Kt6d8YPB95OLW8vJ9IvM4a31OBoWT/eblR+JoA76iq9lfWmoWyz2V1Bcwt0khkDqfxHFWKACiiigAooooAKQ9aWigDznxl4P1K01j/hNPB+I9ciXF3aH/AFd/GOqsP73A/IdCBXReDvGOn+MtI+2WgaK4iIju7STiS2k7qw+oODgZx9QOjPWvOfGHg/UbHWP+Ey8GBYdaiX/SrMDEd/H/AHWH97j8eOhANAHowwB7Utc94S8WWHi/RlvrPMUqny7m2f8A1ltIPvIw9jnsM10A6ZoAWiiigBDXH+EStz4p8Z36nO7UorUc5wIreMfzZq69vriuQ+Gx+0eEm1MKynU7+7vcH0eZtv8A46FoA7EdKKBRQAUUUUAFFFFABRRRQAUUUUAcf8S1ePwdLqUUfmS6VcW+oquccRSqzY/4CGrrkdZEV1IZWGQR3FVtSsodT0y7sLgEw3MLwyD/AGWUg/zrE+H99Ne+BtLFyCt1axmzuATk+bCxiYn6lCfxoA6aijIqnqWpWek2E2oX9zHb2sK7nlkOAo/z2oAsyOsas7sFUDJYnAA+teXal4o1j4hahPoPgiY22lxsI77XuQAO6QerY7/yGCYM638XbgBVuNI8EI3XlJ9Sx29o/wDPJ+76dpel2ejadBp+nW0dtaQLtjijGAB/UnqSeSTQBn+F/Cek+ENJTT9Jttifeklc5kmb+87dz+npitwDAoHApaACijNFABRRUNxdW9pGZLm4ihQDJaRwo/M0ATUVyOo/E3wRpas1x4l09ucEW8nnn8o8msb/AIXHot3xomjeINaz0ew09mX8SSD+lAHo+aK85/4TD4gahxpnw9Nsjfdn1G/Rccd4+D+ppBp3xZ1Rf9I1zw/oykDmytWnf8fMyP1oA9HyPWq93f2dhEZby7gtox1eaQIPzNcCfhnq2oAnXPiB4huc9UsnW0Qj0KjcDU9p8GfBFtMJ5tKe8n6mS7uZJCT7jIB/KgC9qXxT8D6YubjxJZP7WzGc/wDkMGskfGHTL040Tw94i1lT0ltLA+WfxJBH5V1+neF9B0li2n6Jp1o3TdDaojH8QK1wMUAecnxV8R9SG3TvAUFkrdJtR1BCMe6Lhh+tL/ZHxW1I/wCl+JdD0df+ofZmcnjv5gH6GvRqKAPOD8Lr6/Gdc8d+JLwnG5La4FvGcf7AB/Q1asfg54GspRMdEFzNkkvdTSS7uc8hmwfyrvaKAMvT/Dui6T/yDdIsLP8A697ZEz+QrT5paKAAdKKKKACuP1Hxm9z4gk8O+GbVNR1OHm7mdyttZ/8AXRhkluD8g54OSMVX+K3i1/B3gi6vLZgt9csLa1P912By31ABP1Aqf4beGF8LeCrKCRSb+5UXV7I/LNK4BIJ744X8M0AXJNM8UfZy8PiKD7WBlUbT1EBPoQG3gHp97Iqn4M8ZnxHNqOlahaJZa5pcnlXdsrFlYdpEJ5Kn9Mj1BPX5/wAa8a0WYyftP6+LQ5T7AFuCOhISEH8m20Aey8+9U9Q0nT9Wh8nUrG2vIv8AnncQrIufowxV6igDz67+DvhdrhrrSf7Q0O7PPnaXdNEfpg5AHsAKr/8ACPfEzQjnSfFVjrUCj5YNWttjAf76csfqRXpNFAHm3/CxfEejYXxR4C1SBB9650x1u4/qQPuj6kmtjRvih4M1xtltr1tFLnHlXZ8hs+gD4yfpmuwxzmsbWfCXh/xCpGraNZ3bY2iSSIbwPZx8w/AigDYRldAysGU8gg5Bp1ebv8ILHT2aTwrr2teH5CciO3uWkhz6sjHLfi1HlfFbQOI5tG8T269fMX7LcP7DB2D9aAPSKK82HxZTTCE8V+Ftb0M5w05h8+3X/tovX8FNdVovjPw14h2rpWt2VzI3IiWUCTH+4fmH5UAb9IetLRQB5x4w8LappGs/8Jp4NRRqUa4v9PAwl/EPb++APqfqMHp/CXi3TvGGkLf6ezK6nZPbuMSQSd1YfXP1reavN/FvhLUtF1g+NPBiBdRUf6fp3RL6PvwP4/59Rz94A9JB4zS1z/hLxZp3i/RU1GwLIQfLngk4eCQdUat8HIoAw/GeqHRfBms6kj7ZILORo/8Af2kJ/wCPEVZ8N6Z/YvhjStL4JtLSKBiBjJVQCfxIJrA8e/6dJ4f8PqUJ1PU4mlVucwQ/vn/9AUfjXZA5AoAWiiigAooooAKKKKACiiigAoooyB3oAQ5rjPDf/En8deJtDO1Irl49XtRnkrIPLl/KSPP/AAL3rtK89+Jd7c+F5tL8ZWNpJdSWJktbi3RtolimXC7jyeJVi/OgDpfFHirSfCGkSajq1wIYxkRovMkzY4VV7k/p1OACa4jTvC+tfELUIdb8bQPaaRE/mWGgbsD2ef1OOx9wQBkHkdDi8dan4hPibVvA93quqq3+ifbrhbSCyXsEifk4znJOc84JGa7pYfi3qSAPP4b0aJh1jjeaVPwOUJH5UAeixokUSxoqqijaqqMAAdgKJZooIzJNKkaDqzsAPzNed/8ACu/E2of8hv4j61ID/Dp0aWf5lc5/Knw/BbweZBLqMF/qs4x+9vryR2/8dKgigDa1H4keDNLDG58S6bleqwzCZh7bUyawz8ZfDt02NF0/XNbI4P8AZ+nu2P8AvrbXUaf4K8L6Wwax8P6bC6jAdbZd3/fRGa21QIu1RtA6ADj9KAPOz418daj/AMgn4d3EcZ6S6jepAR9UPP60C0+LWp8Tal4c0aMnrawPPIPwfKn869GHSloA84Pw31/UDnW/iHrs/tYKtmv4hSc1LbfBbwXHL515YXWoz5yZr27kdmPvggH8q9CooAxdP8IeG9KcPYaDpls44DxWiBvzxn9a2AuOnSnUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHjn7QFuz6b4bnl/48o9RCznsNw4z+CtXq95qdhpsMcl5dQ26SHbHvcDccZwPXgZqDX9CsPEmjXGk6lB5trcDDAHBU9QwPYg4INcvpfh3xVod5GUv9O1aC3tfstvLeB4Zo0zn5ioYMeFBPGdoJ5GSAdDrXiPTdG8N3GvT3EbWMUPnB0YHzM/dCnoSxOB7muH+D/hy/iTU/GGsxFNT12QyqjA5jhLFgPbOQQPQCsvw8+g6ne6xceMdct3Oh6vdBNOmlWO2hbzC3mhCcvkswXdnHQCvVNA1M61oltqXkNClyDJErdTGWOxjwMFl2tjtnHagDSHAxRRRQAUUUUAFFFFABRRRQA0ruJBGQfWuW1n4beENeLtf6BZmRjkywqYXJ9SyEE/jXV0UAebf8Ky1jRzu8K+ONXsFH3ba923cIHoqtgD64NH9r/FLQf+P/AMPaX4ggA5l024MMmPUq45Psor0migDzu3+Mfh2KdbbXrbVPD90ekepWbru+hXPHucV2ema3pWtQmXS9Ss72MYy1tMsm364PH41aubWC7ge3uYI5oX4aORAyt9QeK4zU/hF4N1Gb7RDpjabdj7lxp0rQMh9QB8oP4UAUfFfhnUvD+qv408GxZvgAdS0sfcv4x3AHSQDJyOTzjnhur8KeKtM8X6HFqelyZjPyyRNgPC/dGHYj9RyODXJHwV450XH/AAj3jiS7hUki11uLzt31mA3fkB0rg9VXx/4L8TyeLo/C8EAILasdOm32t4g5LmPloyBuJc9+cfe3AHqds39sfFa9mzut9CsVtkBXjz5zvcg+ojSMf8Crsh0rkvh3a3C+F11S8jK3uszPqU65J2+YcovP92MIMexrrR0oAWijNGR60AFFFFABRRRQAUUUUAFUdW1O10bS7rUr2URW1tGZZHPYAdvf09SavVw3iq3/AOEtk1LSh82madbubjHSa6ZDsT3CAhyP7xT0NAG14L8TR+L/AAnZa5HbfZlufMAhL7yu12TrgdduenerniDRoPEOgX+kXP8AqruBoicZ2kjhh7g4I+lcD8Abr7R8M0jzn7PeTRfTOH/9nr0/qOnWgDnfBGsy614Xt5L3C6jas1pfJkZSeM7X6euNw9mFdJXEL/xTXxKdT8uneJI94JztS9iXBHoN8fPuYzXbDpQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIaWigDz2/8Ag34U1PxZL4hu4bmSWWTzpLXzB5Dv1JK4ycnkjOD6V6CoAUYGKWigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4v4gO2pR6Z4UhZhJrdxsnKEgraR/PMcjpkYTn+/XZnrzXFeFB/wAJD4l1bxYx32gJ03TO4MMbfvZAehDyDr6IKAO1RVRAqqFUDAAGABWdrGptpVsJ1069vgTgpaIrMoxnJBYcVojpzXMfEXWP7C+H2uX4Yq62rRxkdQ7/ACKfzYUAZeg/E+x8TWcl3o+g67dwRv5bSJbxgBsA45k5OCPzqxqvxDj0Wze81Dwx4iitkGXlFrG6qPU7ZDge5qr8INJXRPhdpPmhUa5ja8kY8DDncCT6bNv5V0KXSeKPCM89tH+7vreVYRIeJFO5UY+zDB/GgDS0rUIdW0iy1G3DiC7gSeMOMNtZQwyPXBFW6p6TZ/2do1jZcf6PbxxcdPlUD+lXKACiiigAozRVa9mltrWWaC1lupUGVgiZQzn0BYhR+JxQBneJtWn0nTCbKEXGpXLCCxgJx5kzA4z6AAMzH+6prE0aTxBo+lQ2KeFmkIy0sz6hFumkY5eRvdmJJ+tVdEl8V6h46lv9d8LyWVisHk2LrdwyC3zkyM4DZLNhBwDgDHck9jqN3dWVk81rp0+oTAgLBC6KzZ93ZQPzoA8o/Z5ZoPD+vaa42vbajlkJztJUL/7JXso6V5B8OdF8V+F/EniC4v8AwxcCy1i7WaMxXdu32f53JLDzBnh+2T8tevDpQBz3jPQZPEHh6a3tW8rUYXW6sZuP3VxGdyEE9MkYPsTVrwtrieIvDlpqQjMMrqUngb70MynbIhzzkMCP1rXI5rh3x4Q8eh8hNG8RSBSDwsF8BwfbzVUD/eUetAHc9aKRT8opaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoyB1opkjhEdmIVVGSW4AHvQByvj3UbqLSotF0uTbq+tSfY7Y55iUjMsvUcImTn1I9a6DSNNtdH0e002yj2W1rEsUa98AY59/X3rlPCKP4l1278Zzo32V1NnpCOCMW6n5pcE8GRhkcfdUetduOlAC15F8eLqW60rQvDNq2LnV9RRVA7quB/6E6flXqt3JJDbSyx28ly6KWWGMqGc+gLEDP1IFeS61pXivXPijoniG48H3o0jSoyI4Ptdr5jSfMQ2PNwOdnf8AhoA6TX/hlodz4VvrCwsJTc/ZWS0BvJQBIF+TOXxgHFdKXt/DWkaXYRozqDBY28ScM3AX/wAdVWY+ymqT+I9cEZMfgjWGfsGurNQfqfPP8qy/D1v4n1rxVJrPiXSl0q2sozHp1ktwkxLP9+VmQ4zgBR7M31IB3I6UtIudozn8aWgAooooAKKKKACiiigAooooAKyvEOiWviLRbrSrwMIp04dfvRuOVdT2ZSARWrRQBy/g3XLnULO50vVtq65pTCC9UH/Wf3Jh/suoDfUkdq6gVxvjDTb2yvrfxdo0LTahYJ5dzaxjJvLQnLx4/vqfnX3BGDmum0rU7PWdKtdRsJ1ntblBJFID94H+R65HYgigC5RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRketABmuI8Y3E2v6pB4LsHdftKedqs6ceRaZxtB7PIcqPRdxxjmtzxR4hh8NaO120ZnuZXWC0tU+9cztwiL9T+QBPaq3hHw/NothLdag6z61qL/aNQnXkNIRjav+wowqj0GaAN+3gitbaK3gjWOGJAkaKMBVAwAB2AFS0DgAUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA1s54B/CuBmP/Cutfe6xt8KapPmb+7p1yxxv9onOM9lY54Br0Cq17Z2+oWc9neQrNbToY5Y3GQynqDQBYHAGT+NLXBaJe3HgzVrfwvrEryaZcMV0W/lbOf+nWQ/3x/CT94DA5GK7teFAoAdRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAHeq19eW+nWc97dzJDbwRmSWRjgIoGcn8jU7MFBJICgZJPQV5+gPxJ1ZZmQ/wDCIWUuUUjjVJlPU/3oVIGB0Zh3AoAteGrO68T6yPGOqxPDAEKaNZuOYYm6zN/00kHQfwrxznjt16UKMKBjFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZ2t6NZa/pVxpuoQ+bbTrhl7j0YHswOCD2Irl9E1vUPD+rw+F/E8zStL8umaq/S8UfwSHtMP/HuvXr3NZuu6HYeItKm03UYRLbyj6MrDoynsw6g0AaK4CgYx7UtcJp2uah4V1KLQfFU5mtpmEena0+As3HEU5/hlHY9H+ua7pcAAUALRQDkZHSigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQkDqRQAtMZgAWyOAcknGKbPNFbwyTzSJHFGpZ3c4VVAySTXBtPe/EecxWonsvCKnE04JSXVP9hO6w9csOW6DqaAEuZ5fiReSadYu8XhOGQpe3akq2osp5iiI58oEYd/4vujua722ghtbWK3t4UhhiQIkSKAqKBgAAcACm2lpb2NpFa2sKQwQqEjijXaqqBgAD0qegAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCnqWnWeq2U9lf2sVzazLtkikXIYf579q4oXGq/Dv8AdXpuNV8KD7l1tMlzpw9JAOZIh2YfMo4OQBXoNNZQ2QRkHsaAIrO6t76ziurWeKeCVd6SxMGVwe4I4IqfNcRdeFtS8N3E2peDDGFkJe40Wd9sE57mJufKc/8AfJOMjjNa/h7xZpviEy28Pm2uo2+Bc6fdrsnh6Yyp6g5GGGQcigDoKKQdOetLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRmgAyB3rN1rWtO0DTpNQ1O5SC3QhQxySzdlUDlmPYDk1ja74xhstSOkaPbPq+usOLSBgFhBGd00nSNeh9Txgd6j0fwhM2ox654muU1TWVyYdqkW1mD/DCh+g+c/McDpQBQj0jU/HcyXfiG3ksfDykPb6M3El0Ryr3PoOhEY743dMV3cUaRRJHGoVEUKqqMAAdAB2pwzjmloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBDWF4h8J6Z4i8qW5SSG+gybe/tXMVxAT3Vxzjk8HIOeRW9RQBwn9u+IfB37vxNA2q6UvTWLCI+ZGPWeEZI7/MmRx0FdfpmqWGr2Ed7p15BdW0gJWWFwyn16d/brVrBLcjp0rlNQ8C2hvJNR0C7n0DU35aeyA8qY8482E/I/XOcBv9qgDraK4j/hKdc8O5TxXo5ktU5Oq6UjTRbeuZIuZI/fG4Z711Olazput2S3el39veW5/wCWkEgcD2OOh9jQBeooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAorH1zxNo3hyNX1XUIbcyHEcRO6ST2RFBZj7AGsE6p4t8SZGj6d/YNg3S+1SMNcEc8pbg8c45kPT+GgDoNd8Q6V4dtBcareJbo7bI16vIx/hRRlmb2ArmgfFPjPgJceGdEfqWx9vuFPoORAPrluO2a19F8FaZo94dRcz6jqz8PqN83mzH2U4wi9sKAK6MdKAMzRNA0zw7ZfY9Ls0t4idzkZLyN/eZjyx68k1qCiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGsPQe9czqngTRdRuzfwRzaZqR/5ftNlMEp/3sfK/wDwINXUUUAcWY/HehAmOSx8S2q5IWTFndYzwNwBjY49kqRPiLo1vOtvrcV9oNwxwBqkBjjY+0oJjb67q7Co5YkmRo5EV0YYZWXIP1HegBlrd217bJcWlxDPC/3ZInDqfoRxU9cldfDjw1LcPdWdlLpV2y4+0aVO9o//AI4QCfqDUQ8N+K9OwNL8YyTxKuFh1ayjnz9Xj8tvzzQB2VFcaNS8f2CYuvDukakc8tp2oNCfrtlTH4bvxpzeOLi1ZVv/AAf4ltyerRWiXKj8YnY/pQB2FFcc/wATPC8BAvLm9sj1P2vTriIDHqSgAqeD4k+C7gAr4n0wcbvnuFT+ZFAHVZornV8feD3BI8VaIPrfxD/2akbx94OU4PirRfwv4z/JqAOjoyPWuTn+JngqAnd4m05iMcRzB859Nuc1GnxI8Pzg/Yl1W+I7W2lXL5+nyYP50AdhRXHDxnqd0jf2Z4I8QSsOhulhtVP/AH3Jkf8AfNH2r4g3wHk6VoWkqev2m7kunH/AUVB/49QB2NUdT1bTdHt/tGqX9rZwdN9xMsan8SRXODwlr1+GGseNNRZSciPTIY7NR7bsM/8A48Kt6d4A8Mabcfao9Ihmu85N1eFriXPrvkLEH6GgCi3xCgvjs8M6Pqeuuc4lghMNvn0M0m1fxG6kOk+NNe51TWLfQ7Q9bXSV8ycgjo07jg5/uL+NdmBjtgfSnUAYGieDtE8PzNcWdiGvX/1l7O7TTyduZHJb8Ace1bwyBzS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSGlooAbjtimNBFKD5kSPkfxKDUtFAFP+ytOPWwtSf+uK/wCFH9l6eGBWwtQR0PlKP6VcooAjSNUGFUL/ALox/KnjIpaKAAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k='] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 2 "如图, 点 $A, B, C, D, E$ 在一条直线上顺次排列, 满足 $B C=C D=\sqrt{A B \cdot D E}$, 点 $P$在该直线外, 满足 $P B=P D$. 点 $K, L$ 分别在线段 $P B, P D$ 上, 满足 $K C$ 平分 $\angle B K E$, $L C$ 平分 $\angle A L D$. 证明: $A, K, L, E$ 四点共圆. " ['令 $A B=1, B C=C D=t(>0)$, 由条件知 $D E=t^{2}$.\n\n注意到 $\\angle B K E<\\angle A B K=\\angle P D E<180^{\\circ}-\\angle D E K$, 可在 $C B$ 延长线上取一点 $A^{\\prime}$,使得 $\\angle A^{\\prime} K E=\\angle A B K=\\angle A^{\\prime} B K$, 并连接 $LE$, 如下图.\n\n\n\n此时有 $\\triangle A^{\\prime} B K \\sim \\triangle A^{\\prime} K E$, 故 $\\frac{A^{\\prime} B}{A^{\\prime} K}=\\frac{A^{\\prime} K}{A^{\\prime} E}=\\frac{B K}{K E}$.\n\n又 $K C$ 平分 $\\angle B K E$, 故 $\\frac{B K}{K E}=\\frac{B C}{C E}=\\frac{1}{t+t^{2}}=\\frac{1}{1+t}$. 于是有\n\n$\\frac{A^{\\prime} B}{A^{\\prime} E}=\\frac{A^{\\prime} B}{A^{\\prime} K} \\cdot \\frac{A^{\\prime} K}{A^{\\prime} E}=\\left(\\frac{B K}{K E}\\right)^{2}=\\frac{1}{1+2 t+t^{2}}=\\frac{A B}{A E}$.\n\n由上式两端减 1 , 得 $\\frac{B E}{A^{\\prime} E}=\\frac{B E}{A E}$, 从而 $A^{\\prime}=A$. 因此 $\\angle A K E=\\angle A^{\\prime} K E=\\angle A B K$.\n\n同理可得 $\\angle A L E=\\angle E D L$.\n\n而 $\\angle A B K=\\angle E D L$, 所以 $\\angle A K E=\\angle A L E$. 因此 $A, K, L, E$ 四点共圆.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAg4DlwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACioJ7y3tnCzXMMRbkB3Ck/TNNjv7WZ9kVzDI3ZVkUk/kaALNFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVHLKsMbySOqIg3MzHAAHUmmtw30PGPjy9vfS6HoUVvHJf3k4O8KC6pkD61jeP7C207xh4U0XwdGsWtwFRObRdpxlcGTb9Cee1SLe6V4++PTC8ls7nS7GMxQxzlWSVgOwOQ3PNe3aZoGj6Mr/ANl6VZWIk++La3WPd9cDmpgvcTYS1bsaK/dANLR0op9WHRBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUjKrKVZQQwwQRwRS0UAVU0ywidXjsrZGU5BWJQR+lWulIxwMk8Dk15ZoPxei1j4n3fhkwxJZbmitZwfmeReoPscED3xR5AeqUUg6c0tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUhoA474n+Jx4W8EX12jYuZk8i3Hq7cfpXjOp+Arrwx8L9D8W2oZdYs7hb2d/4tjkbfrghT+JrqvGrN49+L+leF4WLWGmET3RB4z1P6YFev6lplrqek3OlzxqbaeFoWTttIxQBF4d1qDxD4dsNXtseXdQrJgHO0nqv4HI/CtQdK8a+CmoT6Nf634E1Fv9J024Z4M/xITzj26N/wACr2QdBQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWV4j1mHw94ev9VnYCO2iZ+e5x8o/E4H41q1438atRm1jUdE8C2LnztQmWW429VQHAz/AOPH8BQBY+CGjTPp+o+LdQUm91aZmViOQmc8exNetgDH9aqaVp0GlaTaWFugSG3iWNQPQCrnSgDxT4oQN4N+I2heObYFbeZxbX2Pyz+K/wDoNez28yXNtHPGcpIodT7Hmud8feHE8VeDNR0wrmVoy8PH/LReVx9en41zXwV8SSav4O/sy6Ym+0pzbyAnkqOhoA9LooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAinmjgieaVwkcalmY9AB1P0FeL/C6KTxp8Q9e8d3Kn7Okn2eyDdhjA/JQv4sa6D43eJH0bwU2m2pJvtWb7LGqfe2n72B9OP+BCup8CeGl8KeDdO0naolji3Tkd5W5f68kj8KAOkHSiiigBCMnrXiM3/FvPjmso/d6Vr4APZVcn+hr2+vOPjP4abXfBUl5bITe6Y32mIr1wOtAHow6Utcr8O/EyeK/BVhqIYGYJ5Uw9HXg/0P411VABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFITg9aWuV+IniRfCvgrUNR3Ym2GOEersMCgDzmAn4ifHjz/9ZpPh1cj0Mg6f+P4/74r28dK85+DPht9D8EpeXKn7dqjm5mJHOD90f1/GvR6ACiiigAqOaJJ4nikG5HUqw9QRipKMUAeJ/DiR/BPxQ1vwVOxW0uz9pssn8QB+GR/wGvbK8e+N+l3GnHR/G+nLi70q4USkd0JGM+2eP+BGvU9H1S31rRrPU7Vt0F1CsqH2IzigC9RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAITXifxGlfxt8T9F8GW7E2towuLwjoO5/SvXda1SHRNGvNTuG2xW0RkPvjoPxOB+NeXfBPS59QfV/GmoLm51OZhEWHIQHnH+e1AHr0MSQwxxRrtRFCqo7AcAU+gdKKACiiigAooooAzdd0m313RL3S7oZhu4Wib2yOv1HUV5j8ENWubSHVvBmpNi90i4YIvqhY5x7Bs/gwr18gGvE/iDGfA3xZ0bxlANllf4tr3HTIGCT+G0/8BNAHtg6etLTIpFliSRDlGAYH1Bp9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTXYIpZmAVRkn0oA8j+OGrTXUWkeDbBj9r1WcNIB1EYOB+uT/wABr03QtJg0PQ7LTLdQI7aJUGPYc15F8P1Pj34ra34zmBexsW+zWOemMYBH/Aef+BmvbR0oAUcDFFFFABRRRQAUUUUAFcl8SPDS+KvBOoWAXNwi+dAfR15H5jI/Gutpp60AeffBvxM3iDwPDBcOTe6efs0248nHQ/lXodeIWJHw7+OU1mfk0rXhuj7BXP8A9fivbh0GaAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzv4zeJ28PeBLiG3ci91E/ZYQOvP3iP8AgOfxIr0Mk5rxG+z8Q/jtb2g/eaT4dXzZO6tICD+rbR9AaAPQvhv4YXwn4H07TmUC5KebcH1kbk/lnH4V1opAOMUtABRRRQAUUUUAFFFFABRRRQB5j8bfDsmp+Ek1e0Ui+0mQToyjnZ3/AJV1ngfxEninwfp2qqfnkiCyj0ccH9Rmty6t47u2lt5gGjkQowPoeK8b+FdxL4S8e694EuiREzm5s89x3A9tpz/wE0Ae1UUCigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQmgDnfHPiGPwv4Q1HVHPzJEViX+85GAP8+lcp8EvD0mm+EZNYvATf6vKbh2YYO3naP1J/GsP4qXEni7x1ofga0YmMSC4vNvYe/wCGa9ltreK0tYreFQsUSBEUdgBgCgCUcUUUUAFFFFABRRRQAUUUUAFFFFABjNeM/Giwn0HV9C8eaeh82wuFjuQv8SE8Z9jyv/Aq9mrJ8S6JB4k8O3+j3H+ruoWTPdT2P4HBoAuadfwapplrf2rh4LmJZY2HdWGR/OrVeSfAzXLhtFvvCuo5S/0ado9h6hCx4/Btw+mK9bHSgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKqalfw6Xptzf3DBYbeMyOT6AVbryb4463ONIsPCuntm+1idUKjtGCP5tjn0BoAp/Bmwm1zV9a8c36/vb2Zo7fI6LnnH8q9kHQVk+GdEg8O+G7HSoFwlvEFPucc1r0AFFFFABRRRQAUUUUAFFFFABRRRQAUYzRRQB4j4wU+APjRpniWIbNO1lfIugOBv4B/wDZW/OvbEYMgYHIIyD6iuM+KnhkeKfAt9bRpuurcfabc99yjkD6jP6VD8JfFH/CTeBbR5nzd2n+j3APXK9D+IxQB3dFIOlLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYvibxHD4W0mTVLu0u57WHmU2yqxQY6kEjj6VtV5N8e9bey8HQ6PbAm51SdYgq9Si8n8ztH41Mm9luxq27N2y+KWm6h4el1210jWpLCNwgcW6Zck4+Ub8nniuo0XWTrVl9qGnX1khxtW8RUZge+AxI/HFeW/CfVGfXrvwnqNosEmhxLHbR56kEh3x6k4P417KOlaNLdEq+z3ELY5J4HWvEfCGfiD8Z9V8TyfPpukf6PZk8hiMgEfUbmP+8K7T4u+KP+EY8A3skT7by8H2WDB5BYYJH0GTU/wt8LDwr4EsLaRNt3Ov2i49nbnH4DA/CpGdqOlFIOBS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANIBzkcV4l4cz8PvjZf6G/yabrQ8229Ax5AH6ivb8V5T8cNBluPD9r4isQRe6RKJdy9dmefwHX8aAPVR0paxPCWvReJvC2n6vGR+/iBcDs44YfnW2OlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhODXjfivw/wCLfEHxN0jWJfDckujaXIDHF9qg3yEHO7BfGCQpwfTn0r2XApMChaNS7B0a7njGp+GfFtp8ZW8W6LoMklg+2OYG6gUzLtwSAXGBwDzzXssbM8asylGIyVPOKdj/ADmsXxbrsPhrwvf6rMcCCIlRn7zdgPxoWi5ewPV3PDPib4w0vUfi7pdjqjudE0iVTcbBnLnDE47jhR69a+gtP1C01SxhvLGeOa3lXcjxsCpH4fyr5N1DwzLZeGNH8cavG0/9oakxuYWPDxE5/DO1x+Nej3WheJPhLeNrHhiSTVvC0xEk9k+WMYPOR6/7w/H1oA92HSlrnPCPjXR/Gemi70y4BcACW3Y/PGfQjv8AUcV0YoAKKKKACiiigAooooAKKKKACiiigAooooAKrX9nFqNjcWU6hop42jcH0IqzRigDxf4QXkvhzxNr/gO+bDW8pntMnqvcD8Cp/A17QK8V+L1rN4V8XaB4+sUP+jyiC7A/iX3+oLL+Ir2Ozuob2zgurdw8M0ayRuP4lYZB/I0AT0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACZrxn4v3k3iTxNofgaybJuJVmusc7Vzxn+dev3t1FY2U95O22GCMyOfRVGTXj/wAI7SbxP4t1zx1ernzJTBaZ7LnnH4cUAdV8TPDUN38JtQ021jwLK2EsIHbysNx9QpH41Y+FmrJr3w00eZ8O0cH2aQNzkplefqB+tdjPEk8EkEi7kdCrKe4IwRXj3wNkk0m98UeEp2+fTr1mQnuMlOP++c/jQBZ8XfC680/Uz4m8CzGy1JDuktVOEm9cf4Vr+A/ina+IpTo+sx/2brsXyvBL8olI7rn+VeijpXDeO/hppvjKP7QhNjq0QzBeRcHP+1jr/P8AlQB3VFeMeHPiNrHg3VE8MfEKJo9vy2+pgZSRc4BY9x79fUV7HDNHcRJLDIrxuMqynII9jQBJRSDpS0AFFFFABRRRQAUUUUAFFFFABRRRQBg+MfD0XijwrqOjy4H2iIhGI+645VvwIFcT8DvEMt94Wn0C+JW/0aY27I33gmTjP0IK/gK9TIBrxLXB/wAK9+Olnqy/u9K8QL5cxHRZCQGP57T/AMDNAHt1FIpyoPrS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNJwaAPLvjhr8tn4atvD9i2b/WJRCqA87MjP5kgfnXbeDvD8Phnwnp+kxAfuYhvb+8x5J/OvLdFP/CxPjle6uT5mlaEPKtyeVZxkAj6nc35V7cOQKAFxXi15/wAUt+0jDN9y2121APpuxg/jlM/8Cr2mvH/jvatZ22geJ4VJk029AbHUgkMB/wCOn86APYByKMVW0+6W+062u0IKzRq4I9xmrNAGN4j8MaV4q0t9P1a1WeE52no0Zx1U9Qa8gSTxT8FbzZJ5mseEWbg4y9uPr/D/ACNe8YqG4tobqB4J4llicYZHGQRQBn+H/EemeJ9Lj1DSrpZ4XHOOqH0YdjWtXiuv/D/W/AuqSeJfAUjeSMvc6YeQw77R3rtPAvxJ0rxpb+UpNpqcfE1pLwwPtnrQB21FIOlLQAUUUUAFFFFABRRRQAUUUUAFcD8X/DB8SeBLryVJvLE/aoCOuVHzDP0yfqBXfU11VlKsMqRgg9CKAOO+GPiceKfA1ldu2bmFfJnHfcvH612deIeCmbwF8YNU8LSnbYamfOtAegPUAfqPwr24dBQAtFIeKM8//WoAWigc0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXG/FDxOPCngXULxH23cq+RbY6+Ywxn8Blvwrsa8S8an/hP/AIw6T4UjPmabpf8ApN8ByCepB/Dav/A6AOv+EHhdvDPgO085Nt5ff6VPnqCw+UH6LgfnXfjpTVUBQAAABjA6CnUAFcp8SdHGufD7WLTGXWAzJ7FPm4/AEfjXV0yRFkRkcZRgQQe4oA4P4N6wdW+G2nbzmS13WzA9fl6Zrv68X+D7toXjLxZ4Ulb/AFVwZ489+ccfnXtFABRRRQAYFeaeO/hZBrlz/bPh+b+y9ei+dJIvlWU+jY6fX869LowDQB5N4O+KdxDqX/CM+N4f7O1iP5EncbY5/TnoCfXoa9XByMgg1zfjLwNo/jbTTa6jCBMo/c3KD95EfY+ntXmWm+JvEnwkv4tG8VLLqHh18JbagnLQjsOew9D+BwMUAe50VT07U7PVrGK90+6jubaUbkkjOQf8D9auUAFFFFABRRRQAUUUUAFGKKKAPI/jhosyafp/iywBF5pMqs7L18vP+Nej+HNZi8QeHbHVYGBS5hVzjoG6MPwINWNV06HVtLu9PuV3Q3ETRsp9COteT/BfUJtG1HW/Al++JtPmaW3DdWQ9f5qfxNF7Be2p7GeQRkjNeJaHqniPxD8WtT0Sz8T340WwZmkbbEW4/hB2dM5FeseJNXj0Hw5qOqSEAW0DOMnGWx8o/EkCvOfgPpbQ+Gr/AF24B83Urhm3t3Uf0oh8d39kJJ8tluz1uMFY1BJJAxk9T9adVa1vre+R2tZ45kRijMhyNw96s0a9Q06BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSUAZfiPWYfD3h++1W4bEdtEXx6nHA/OvOfgfo07aZqXi2/B+2axOShI5EYJ/QnI/4CKrfGnUJ9Y1HRfBFgxM9/Msk4B6LnAB/U16xpemwaTpVrp9uoWG3iWNQPQCgC4OlFFFABR1oooA8W8R/8Uv8AtBaPqY+WDVofJf0B+6Sf517SOleSfHrT3/4RvT9bhB83TbtXLDrg8V6Zouopq2h2OoRkFbmBJePUjJ/WgC/RRRQAUUUUAGKp6npllq9jNZX9slxbyrteNxkEVcoxmgDwy/8ADXiX4R6g+reF3l1Hw+7brixfLGIeuPT3/OvTfCHjjR/GmnC502ceao/e27H54z7juPeulKqwIIBB6g968m8Y/C65tNRPiTwLN9g1ZDve1Q4jm9cds+3egD1odKK828CfFS38QXH9ia5F/ZviCI7Ggk+UTH/Zz3/2evpmvSBnHPWgBaKaSRWfquvaVoUHn6rqFtZx9mnlC59hmgDSpM15PrHx68PwTG10K0vNYuicIIoiqE/jyfwBrO+2/F/xkcW9nB4csn6PMMP+R+b/AMdoA9c1DWNO0qEy399b20a9TLIB+lee6z8c/DVi5g0qO51e5HAW2X5T/wACqlYfAu0uJlufFOuX+rTk5KbyqA/U54/KvQ9F8JaBoESrpek2tvjoyplv++jk0AeWv4g+K/i5GbTtMh0GxIz58w2tt9QTmvKdF1nV/D/jdfFdzcTX0FpfLbXd2c/vAQQw9/lBx9BX0D8X/E58OeDJYbdsX2oH7PAB156ms2w+GcQ+DMnhx0H2+5h+0s5HIuPvLz6A4B/H1oA7LxB4a0rxtpUUF9LcSWTgSKtvOyLIDggnHUVmRfDTRYdJGlxXmrx2IGBAl+4UD8Kxvgl4kfWfBI026Zvt2kP9mkVvvBB9zj6ZX/gNemDoM0fqFyhoui2WgaTDpunxGO2hztUtk8nJJPc1oUUUN33BaBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUVxcRWsEs8zhI4lLux7ADk1LXmfxs8RPpPg4aXaHN9q0gto0HXb/ER+g/GgDA+F8EnjD4g6343u0zFG5t7PI4A6cfhXtY4Fc14D8OR+FvB2n6YoAkWMPKfVzySa6WgAooooAKKKKAOe8b6QNc8G6tp/wDFLbttPoQM5rlvgdq7al8OLe2kP72wle3YHrj7w/8AQv0r0hlDKVIyDwRXjPwxZvD3xV8W+F3JWOZjdQj8QcD8H/SgD2gdKKKKACiiigAopMnNYeteMvD3h+MtqerWsB7KXBY+wAoA3aQ4z05ryG++OcV5N9l8KaDe6rMThXZCqZ+g/wAaqf2V8W/GXN/qEWgWbf8ALOPhsehxzQBufFTw94N1iyNxq2p2ulatCuYLsOPMHoGUcsv8q848PfHvVdA0+XTNSt49aeElLa880xl1HQtkc/Xg+teg6P8AArw7ayC41i4utWuM5Jnc7c/Qdfxrr73wJ4avtDk0Z9ItY7N+ixxhSp/vAjoaAPN4X+LvjuGOZLm08P6dMNytCRvZT0IIJb9RWjpXwG0QXAvPEOo32tXR5cyyFFJ98Hd/49WJt8T/AAWvCR5useFJHyR1aAH+X8q9f8O+JdL8UaWl/pV0k0TD5gDlkPoRQBLo/h3RtAh8rSdLtLJSMHyYlUt9SOT+NaeKB0ooAMCkJpa5H4leKE8JeCr6/DAXDr5NuPV2yP0GT+FAHnzf8XJ+N2Pv6P4fHP8AdZwf/iq9ux6jB61598IPC7eHfBcU9ypF9fn7TOT1Geg/KvQcD0oA8RuAfh58eVn+5pHiRfnPQLKTz+O7n/gde3DoK86+NHhttc8DyXlsCL7S3F1Ew6gD7w/Ln/gNbnw88Sr4p8FWGokjz9nlzgdpF4NAHVUUCigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBCTnivEYf+LifHiab/WaV4dXy1xyGkBx/6Fu/75FeifETxOPCXgrUdTVwJ/L8u2B7yt8o+uM5/A1hfBfwy2geBIbq4Ui+1M/apS3XB+4D+GD9TQB6OOnvS0DpRQAUUUUAFFFJQAteLeOs+GPjl4V8QAbYL/FpKewydhJ/CTP/AAGvZycAknAHc14n8etX0G/8MwQW+r2r6ra3SyxRQyBnIwVI46dc8+lAHtw6UhOPpXicPxo8Ra9aw2/hbwjPeXRjUPcTZ8sPj5uBgdc/xVJ/whPxP8YHd4k8Uf2Vatz9lsuDj+6duP1JoA9F13x54Z8NBhqms2sMoGfJDb5P++V5/SvP7r433Or3DWng3wzf6nL0ErxkKPfAzx9cVuaD8EvBujMslxZyancDnfevvH/fAwp/EGvQrWztrKBYLW3ighXhY4kCqPwFAHjf/CMfFfxlzretQ6HaMeYLflsf8BJ/VhW7ovwP8LadL5+o/adWuepe5fgn1wP6mvTcCkwKAKtjpdhpkPlWNnBbJ/dhjC5+uOtWsClooAMUYFFFAEU8EVzC8E8SSxSDDo4yGH0rxzxD8O9a8Gao/iX4fyvx89xpZ+YOO+0dx7dfQ9q9opMDOaAOI8B/EvS/Glv5P/Hnq0Y/fWUpwwPcr6j9fau3HI5615x49+Flr4iuBrWiS/2X4ghO9LiH5RK3bdjv/tfnmszwj8Uryx1EeGfHkBsNVQhI7pxtjm7cnpn3HBoA9aJxXiXi1m+Ifxj0/wAMxHfpmijz7zHIMnBI/wDQV/76r0/xf4kg8L+E7/WZCreTETGM8O54UZ9zgVxXwR8OTWXhq48RagC2o63Ibhnf7xTJK+3OS340AepIipGqKAFAwAPSnUg6UtAEc0aTRvFIoZHUqynowPBH5V4t8OpH8EfE7WfBlwxFrdN59mT0Pp+Yr23FePfGzSprB9I8Z6epW50yZVmK9THnI/qKAPYRyKKz9E1WHW9EstTt2BiuYlkGD0z1H4HI/CtAUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhJFLWfreqwaJo15qVy4SG2iMjE+woA8h+Izv45+KWh+CoGJs7V/tN7g8DjJz9FBH/AxXtcaJHEqRqFRQAoHQCvIfgjpU9+2seNdQU/atUmZId3O2MHnH44H/Aa9goAWio3lWJC8jqqjksxx/OuI174veDtBLI+qpdzr/yxtB5hz6ZHAP1NAHd0ySVIkLyOqIOrMcAfnXjLfE/xv4rJj8HeEpY4WOFu7sfLj6nC/rSp8LPGXiZxL4v8WyRxtz9ltDwPbjA/nQB2mvfFPwj4e3Lc6tHLMv8Ayyt/nb9K4yX4teKPEkhg8HeFJ3U8C5uQcD3xwK6/QfhN4P8AD5WSHTFuZ16TXZ8w/l0/Su1ihjhjEcUaog6KowB+AoA8YHw58feLCG8V+KDawMcm1tD/AIcVuL8EvCtpod9bxWrXN9NbuiXFy5Yq5UgMB2PSvTcCk74xxigDyr4Bal9p8CS6bKNtxp91JE4PXk7ufxYj8K9WHSvF/BGfDHx08U6B92C/H2uL05IYAfhIR+Fe00AGKKKKACiiigAooooAKKKKACiiigBMA1zfi/wTpHjPTWtNRgHmKP3U6jDxn1Brpaztc1a30PRLzU7pwsNtEZGJ9ug/OgD5c8WzavoeqQeB9f1h7vRLS5jmeSMbmSInGD9Aen0r6j0W+02/0i1m0iaKSx8tREYjkBQMAe1eTfCbwxH4ltdb8VeILSO4fWZGSOOUZxHnnHp/CAf9moNS8LeJfhPqEuteEmkv9BY77nTmyzRj1AHUe45Hf1oA9xHSiuX8GeOtH8baaLnTpws6j99bORvjP07j3rqB0oAKztd0mDXdEvdMuFDR3MRQ59+laNGKAPIPgjq0tomreDb9iLvSZ2MQbgmMnB/XB/4FXrw6V4l8QlPgT4raL4yhUrY3rC2vsdOeCfrjn/gNe2I6yIrqQVYZBHcUAOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopO9AC0VWu9QtLCIy3l1DAgGS0jhR+tef658bfCmluYbKaXVLjoI7Rcg/jQB6Qc1478dNdL2um+E7aVUn1KZWmJbaFjBxyarSeNfid4qjZtD0KPSLLaW+1XS4O3ucnoRiuN8B+Cbn4oa5qOpeJdSubm3tWEXmhv8AWH0B9KAPS2+KPgfwNolpo1pePfPaRCIR2SbskDkkkgcnn8ayT8QfiP4tOzwt4VGnW5PF1eDJA7H5gB+SmvQdB+Hvhbw6AdO0i3WQD/Wuu9vzNdMFVQAoAA6YoA8Yj+D3iLxLIJvGvi+7uEJybW1PyD6Z+Uf9813Ph/4YeD/Dm17LRYJJ16T3I858+oLdPwArr8CloAQAAYAx9KXAoooAMUUUUAFFFFAHi/xSX/hHvil4Q8Tp8qSv9llI6dcZP4P+lezIwdAynIYZBrzj446OdT+HFxOg/e2Eq3II645U/wDoQP4V1HgjWBrvgrStRyC0luu//eAwaAOhooooAKKKKACiiigAooooAKKKKAEJwa8e+Mupz6zqWj+BdOYme/lD3O0/dTsD+pr1q+u4bCyuLy4bbDBGZHJ7BRk14/8ACi0m8V+L9a8d3yfK8hgs8jOFB7fhxQB63pOmQaPpFpp1suIbaJY198d/x61cKgggjIPWlHSigDyfxn8LJl1I+JfBE/8AZusxne0EZ2xzevHQE/kaueBvipFrV0dD8RRf2Xr8R2NFINqzH/Zz0Pt+VemYrivHfw30nxrahpB9l1GIfuLyMYZSOmfUUAdoOnXNLXiugeP9d8B6mnhzx9G7WwwttqgGV29ix7j9RXsltcw3duk9vKksTjKuhyGH1oA5n4j+GB4t8EahpqJuuQnm2/r5i8gfj0/Gsf4M+KG8ReAreG4cm800/ZJs9SF+4T/wHAPuDXoR5/HivErP/i3nx4ntD8mk+Ih5kfZVkJz+Hzbh/wACHtQB7fRSDoM0tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFISR9KAForO1PXtK0WEy6nqNtaoOf3sgBP0HU153q3x20CGc2mg2N9rd2R8q28ZVSfxG78loA9U5qnqGq2OlWxuNQvLe0hH8c8gQfrivIjqHxg8Z8WlraeHLF/wCNwPMK/juOfwWrWn/AmyubhbvxXruoazdd1aQop9sklvyIoAv638dvC2nyGDTRc6tc9AtrH8ufTccZ/DNY39v/ABa8ZcaVo0eg2bj/AF1zw49/mwfyU16honhLw/4djC6RpFpaEDHmRxjefqx+Y/ia2cD0oA8ftPghJqUq3Hi/xJe6pLnJijYqgP49voBXoGh+B/DXh5B/ZukW8Tj/AJaMu5/zPI/CuhxSdOOlAHnnxk8SnQPBE1tbkm+1Jvs0KL1wcbiPw4/4FWv8OPDK+FvBNhYkAXDIJZ2A6u3J/nXnt8T8Q/jvHaD59J8OjL+hlB5/8e4+iV7cBxQAtFFFABRRRQAUUUUAFFFFABRRRQBQ1rT11XRb6wcArcwPHz7jArzL4Dag3/CO6loUxPm6beOgU9dpP+NetmvFvD4/4Rf9oPV9OPywavF5sfpn7wA/UUAe1CikHQUtABRRRQAUUUUAFFFFABRRTXdY0LuwVQMknoB60AeVfG7Xp49JsvCunHOoa1Mse0HkR5A/Vsc+gNd94V0GDwz4ZsdJgXCwRAMfVu5/OvK/AoPxC+LGreMpgW07Tj9msQ3I4BAx+GW/4HXtg6UALRRRQAUYoooAydf8PaX4l0yTT9VtEuIGzgEfMp9VPY1488Pij4LXplg8zVvCTt8y/wAduP6dfoa93pksUc0bRyxrIjjayMMgj0IoAyPDfifSvFelpqGk3KzRN94D70Z/usOxri/jZ4dk1TwfHq9oD9v0eUXCOo52ZG4fhwfwrG8SfDfV/COrSeJ/h7KYpB81zpnVJV6kKD1Ht+VdR4M+ImkePLGbTbuH7HqgQxXVhN8pPUNtzyR146j9aANzwN4ij8UeDtO1RGBeSILKB/C44YfmK6OvFPhXcSeEPHeueBrtm8syG4tCwxuHt9QQa9qHQc596AFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiimknPSgB1FYWt+MfD3hxN2q6vaWxxkI0g3t9FHJ/CvPb746Q3k5tPCegahrFyeFIiKqfwwW/QUAevE1k6v4n0XQoTJqWqW1sB2dxn8q8sOl/F3xlzfXtv4esn/gjI3kfQZOfyrW0j4GeH7eUXOt3V3rVz/E1w5Cn8Mk/rQBDqXx10xpjbeHNKvdXuM4BRCEzVDZ8XvGX3ng8O2T9hw4/rXrOmaJpejwiLTrC3tlAx+7jAP59TV/AznHNAHk+mfArSPOF14h1G91e4Jywkkwuf54r0TSfDei6HAIdM0y1tk/6ZxgZrVooAMUYoooAKKKKACue8b+I08KeENR1diPMhiIhB/ikPCD8yK6DvXivxVmk8Y+PdA8B2jnyjILi9Kn7qjJP5KGOD3xQBt/BDw5Jpfgz+1rsE3urubh2Yc7P4fzHP416hUVvBHbW0UEShIo1CIo6AAYA/KpaACiiigAooooAKKKKACiiigAooooAMV4x8ZI20Txd4V8VQggwziGTHpnPNez1wPxj0c6v8ONR2rmW1AuEx1+X0oA7yN1liSRDlGAZT6g06uT+Gus/258PdHvM5cQCF/Yr8v8gDXWUAFFFFABRRRQAUUUUAFecfGfxQ2g+DHsbVj/aGqt9lhA64P3iPwOPqRXoxOBnsK8SsP+Lj/HCa9P7zR/Dw2p3VpATg/wDfQz9FoA9G+H/hdPCPgyw0vaPPEYe4YD70rct+R4+grqBwMUgpaACiiigAooooAKKKKAEIB6ivO/HnwutPEsv9raRJ/ZuvRfMlzF8vmEdN2O/vXotGKAPk7xJ4n1/SvF2kXmvWTW+uaW4SS4AwLiMH73ua+ptM1CHVdLtb+2YNDcRrIp+orE8aeDNM8Y6NLaXtuhnCkwTY+aNu3NeD+AvibqngG+m0HXIJbjSraYwuyr81uQeo9R7elAH09RVDStXsdb06K/026iubWUZWSNsj/PtwavDpQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRSUjMFUsxAA5JPQUAOorlNe+I3hbw4p+36vB5g/5ZxHex/AVw0/xl1jXJWt/B3hW6vG7TzqQuPWgD2MnHrXOa3488MeHUY6lrVrG4/5Zo298+mFya86Pgr4l+MDu8R+Il0y1frbWhxke4HGa6LQ/gr4R0pxLdW8mp3I6yXbbgf8AgPSgDEuvjfc6rK1t4N8LX2qSZwJpVIRT7hc8fVhVf/hHPiz4z+bWddh0CyfnyLPhwPT5eT+L17FaWVrZQrFa20UMajAWNAoAqxigDzDRPgZ4T06Tz9RW51e5JyXu5PlJ/wB1cZ/HNei2Gm2OmW4t7Cyt7WEfwQRBB+Qq1RQAUYHpRRQAUUUUAFFFFABRRRQAUUUUAU9T1CDS9Nur64YLFbxNI5PoBmvJfgxp82t6vrvju+X97fTGG23D7qAgnH5KM+xq58cNbm/sux8LWBzeavMqEDrszzXofhjRIfDvhrT9KgUBbaEKfdupP5k0Aa4ooHAxRQAUUUUAFFFFABRRRQAUUUUAFFFFABVa/tUvbC4tXAKzRtGc+4xVmkNAHj3wIunsoPEHhiYkSadekoD1KnIJ/wDHR+dewjgCvFrbHhb9pCWL7lvrlqfpuxkD65QfnXtVABRRRQAUUUUAFFFITQBxfxR8U/8ACK+C7u4ib/S7geRbAdd57/lUHwn8Lf8ACMeBrZZl/wBNvf8ASp2PXLD5QT9P5muN13PxF+M9poyHfpWh/vJyPutIOv454r21QAoAGBjgUAA6UtFFABRRRQAUUUUAFFFFABRRRQAhHPNeFePrG28I/Few1u6gSXQ9aX7LqEciboznglvoMN/wE17tXFfFPwuPFXgW+tY4913APtFvxzvXt+IyKAOD1Pwj4i+Feoy674KeW90NjvutLclyo9u5Hv1HvXo/g3x5o/jWwEthL5dyo/fWshG+M/1HuKzPhJ4n/wCEp8BWck777yz/ANFuNxySyjAJ+q4P1JrH8Z/C2R78+I/B0/8AZutR/OY4zhJj349f0oA9VHSivMvA/wAU01S7/sHxLF/ZmuxfKVkG1Zfpnv8A5Femc45oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikNMlmSGJpJnWNF5LMcAUASUlcNr3xd8HaAGWTU1u5h/yytB5h/Pp+tck/xR8b+KGEXg7we8cTdLq96Y9Rnav/AKFQB7IzhASxCj1JrkNe+KXhDw9uS61iCSZTgxW581gfQhc4/GuIX4WeNPFTb/GfjCYQt96zseF/ov8A46a7HQPhJ4M8P7JIdIjup1/5bXh80/XB+UfgBQByD/FzxP4lcw+C/CNzMhO37Vcqdin3xx+Zpo+HfxB8VESeKvFX2GAnm1szyPbjA/U17OkaIgRECqOAoGAKdQB59oPwc8H6IRIbE31wOTLdNu59cdPzrvLe2gtYhFbwxxRjosahQPwFS4ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmswUEkgAckmnVwnxb8Tnw14FumhfF5ef6NAB1yw5P5Z/EigDjPCAPj/4x6n4llG/TtK/cWuem4cA/zNe2jpzXF/Czwx/wi/gWxtpFxdTr59x67m5xn2rtR0oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPGfjpBJpV34Z8WQKd+nXqq2PTIYZ/75x+NexW86XNtFPEwaOVA6kdwRkVyHxV0b+2/hvrNuozJFCbiPjndH8+B9dpH41F8I9Z/tr4Z6PKWzJbxfZnHceWdoz9QAfxoA7iigdKKACiiigArm/HfiSPwp4P1DVWYCSOPbCP70jcL/AI/hXRk14r8Q5m8c/E/R/BFs260smFzf49eCQfYLtH/AjQBv/Bjw3LpXhVtWvQf7Q1ZzcOW6hT0H9a9MqOGFILeOGNQqIoVQOwFSUAFFFFABRRRQAUUUUAFFFFABRRRQAU0jJ9qdRjNAHh/h7/i3fxw1DQ2OzS9dXz7b0DHJAH471/AV7fXlfxx0GW58O2niOxBF/oswmDL12EjP5HafzrufCWvxeJvC9hq0JGJ4gWH91u4/OgDJ8c/DrSfGtpmZfs2oR8w3kYwyntn1FcJofjvXvh1qcXhzx7G8lmx22uqgbgV/2j3HbPUd/WvbazNc0LTfEWmS6dqtpHc20n8LDlT6qeoPuKALlrdQ3ltHcW8qSxSDcrocgj6ip68JksvFHwWvWubHzdY8Ju2ZITy9uP6c/gf1r1vw14r0nxZpiX2lXSyIR86fxxn0YdqANuigHNFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUhyKr3d9bWFu1xd3EUEK/eklcKq/iaALNITXm+u/G/wAIaQTFbXMmp3A6JZruB/4F0/WsD/hMfif4w48PeHF0qzbpc3XXHqN2B+WaAPYp7qC0iMlzPHEg6tIwArhNc+MnhDRmMUd8b+46CO0Xfz6ZrnIPgzqmtyi48Z+Kru9Y/egt2IT8yAB+Vd3oXw78K+HlX7Do9v5g/wCWsq73Pvk/0oA4D/hYPxD8W5Twt4Y+w27cC6ux0/Pj9KdF8IvEfiKQT+MfFd1MvX7Pbsdo9ueK9lCgAADAHQelLgUAcdoHwx8JeHdr2ekwvMORNN875+prr0REUKihVHYDAp2KKADFGKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEJNeJeIi3xA+N9joiHdpuhDzLj+6XGCfx3YX/gJr1Pxbr8XhfwvqGszYItoSyKT95+ir+JIH41wnwO8Py2vhm58Q3w3X2symYuw+Ypk4/PJP40AeqKoVAoGABgD0p1AooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAI5Y0mjeOQbkdSrA9x3rxz4IO+iax4q8Iykg2V4ZI8nqMlMj/AL5B/GvZ68W1Mf8ACLftIWd2Dtt9ctgjHsGxtP6oD/wKgD2gdBS0dqKACiikzQBl+I9at/Dvh++1e6OIrWIyEepHQfUnA/GvOPglotzLp+o+MdTBa/1qZnQntGCfyySfwAqr8YL2fxL4i0PwBp8h33kyy3ZX+FAe/wBAGb/gNeu2Fjb6dp9tZW0YSC3jWONRxgAYFAFkcCiiigAooooAKKKKACiiigAooooAKKKKACiiigCtf2cOoWNxZ3ChoZ4zG6nuCMf1ryD4P3k3hvxNrngS+Y7reUy2pb+Je+Pwwfxr2ivF/i7aS+GPFmheOrJceVIILvHQjsT+HH4UAe0DpRUFndw31lBd27boZkDo3qCMip6AI5Yo5kaORFdGGCrDII714/4l+G+qeF9VfxN4AlaCdfmn08cpIO+B0x7flXsmKTAoA4PwH8TtO8XJ9iuV/s/WouJrOXjJHXbnt7da70dK898efDCy8Tt/aemS/wBm69EN0V1FxvPYPj+dYXhX4nahompr4Z8fwmzv1ISK8biOUepP9RwaAPX6KYjh0DKwZSMgr3HtTx0oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKQms/U9d0vR4Wm1HULe2RevmOB+nWgDRpCcV5Zq3x00GCU22iWl3q9z0xChC/ge9ZX9ofFzxl/x6WsHh+yf+N/v49QTzQB65f6tYaVCZtQvbe1j/vTSBR+vWvPtZ+OfhexlNvpi3OsXR4VLVPlJ9Mnn8gaz7D4GWtzP9q8U63e6vcHl18wqpP869E0XwloHh+ER6XpVtbjuyoNx+poA8wPiL4t+MTjR9HtvD9m/wDy3uAPMA992T/47Utn8Dn1S4W78Y+JtQ1aYHPlo5VB6jJJOPpivY8D0owKAOf0HwP4Z8Nqp0rRrWCRekxXfJ/322W/WuhwKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkJxS1XvbqKxs57udgsUKF3JPQAZoA8e+MN1N4m8TaB4BsZCDdTrNeMv8CDOD+A3t/wEV7FZWkNhZQWlugSGCNY41HZQMAV478IbSXxN4t1/x5eqT50ht7QN2XjOPoAo/E17TQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXkHx6sng0zQ/EcCnztMvRkjrtOG/mn616/XL/ETRxrngHWrIDLm2Z0/wB5fmH8sUAb2mXqajpdrexsGSeJZAR7jNWq89+DGsNqvw4sY3OJbMtbMO429K9CHIoAKqalfwaXp1zf3LBYLeMyOfQDmrdeSfGvWZ57bTvB+nEm+1aUB1U9I845+tAFb4P2M/iHxDrnjzUFJe7lMFpkfdQHkj8AB+J9a9jHSszw7otv4e8P2OlW4xHbRBM9Nx7n8Tk1qUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWF4w0CLxP4W1DSZAMzxHYf7r4+U/nW7SHrQB5Z8EfEEt34ZuPD98xF/o8phKk5OzJx+RyPyr1QdK8Q1tf8AhX3xvsdXU+XpeujyZyOFVzgEn8drfga9voAKKKKAEwDWB4r8H6P4w0xrHVLZX4/dyrw8R9VP9OldBRQB4Vaav4n+DV4ljrYk1bwq7Yhuk5e39v8A6x4Pb0r2XR9Z0/XdNiv9Muo7m2kGVeNs/gfQ/Wp72xttRtJbW8gSeCVSrxuuQwPbFeM6t4N8QfDDUZde8FySXWlMd11pjkttHcgdx+ooA9vFFcn4K8f6R41sRJZyeVeJxNayHDoe/HcV1g6UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUmTk1iaz4v8P+H1Y6pq1tbkf8sy+5z/AMBGT+lAG5SE9cV5HffHS3u5mtfCmgX+sXGcB9hVB78ZOPriqZ034weMz/pmoW3huxfrHAP3g/Ilv/HhQB6nq/iTR9Bi8zVdTtbReo82QKT9B3rzvU/jvpJn+y+HNMvdYuTwvlxlVP8AU/gKl0f4EeG7af7Vrdxe61dHl2uJSFJ+gOT+JNejaZoul6NB5Omafa2cfcQRBM/XHWgDyXHxf8ZHkW/hyyfoW4kx6Ecn9BWhpvwM0kyrdeI9UvdZuc5PmyFU+nUn9a9YwPSloAytI8NaLoUQj0zTLa1A7pGN359a1cUUUAGKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8s+N/iCWz8NwaBZHN9q8qwhV6hM8/meK9RJwevTrXiWhf8XC+N11rDZk0vQxsgJ6FxwMfjzQB6n4P0CLwz4U0/SY1wYIh5h9XPLH8ya3KQdKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmuodSrDIIwQe4p1FAHi3wjY6B488V+FZGIVJjNFnvzjj8K9prxbxXnwx8fND1gDbb6nF5Erdgfuk17SOlAEU8yW8Mk0rBY41LMx7Ack/lXjXw6ik8cfEfV/GtypNnbN9nsQenHp+H61u/GvxHLpXhWLRrEk6lrMv2aJVPOzjcR+JUfia6vwR4bi8K+ErDSowN0cYMp7s55JNAHQjpS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBwPxf8MHxL4EuxBGWvbIfaYMdSV5IHuVyBVv4X+Kf+Er8B6feO4a6hX7Pc/wDXRMDJ+o2t/wACrsSoOQRnIrxLwWT4A+Mmr+E5Dt03Vf8ASbIdFB5IA/Dcv/ABQB7eKKB0ooAKKKKACkIB60tFAHlvjb4WG5vv+Eh8IT/2ZrkXzbIztSY+mOx/Sn+B/ip/aF9/wjvimH+zNeiOzEg2rP6Y9D/PtXp+M1yHjn4eaP44sdl2nkX0Y/0e8jHzxn0P94e1AHXKSVBPWlrxLR/HHiH4a6jH4d8dLJc6afltNWVd2F7bj/EB6feGO4xXs1peW99aR3VrMk0EgysiHII+tAE9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRTS2MknAHc1zGvfETwt4cDDUdYgWVf+WMZ3v/3yOaAOppDxXjc3xo1TXZWtvBnhW9vj08+VCFX3wM8fXFRnwZ8TfF3PiLxBFpFq3W3tD8wH/Af/AIqgD0fW/HPhvw8pOo6vbRMP+WYYMx/AVwF38bZ9Tm+zeEfDl5qUx+7JIhCfp/jWzofwV8JaU4muoJdTuc5Ml25IJ9cV6BaWNpYwiG0toYIx/DEgUfpQB48fDnxW8YHOsa1Folm3PkW5w2PQ4/rW3ovwO8Lae4m1ET6tcd2uXyv/AHz0Nem4pcCgCpYaZYaZAsNjaQ28SjAWJAoq1gelLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSGgDjfij4mHhbwLfXavtuJl+zwc87mB6fhmqnwk8MHw54Gg89SL29/0icnrk9B+Fcf4zc+PfjFpXhaI77DSR592R0LcEj/0EfnXtiIscaoowqgAD2oAdRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5P8etNaTwnZ6xED5um3SycdSDwa9F0LUxq/h/T9RRg32mBJCR6kDI/PNVfGWkrrnhDVdOYZM1u4X2OCa8T0b4gNo3wEmtkcrqkcz6fAhPzKW5z+ALY91oA29Az8RvjTe66x8zR9C/cWp6q7jIB/E7m/wC+a9tHSuM+F/hMeEfA9lZyptvJlFxdeu9ucH6DA/Cu0oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAMV5J8cdGmTTdN8WaeMXujzqWI6+WSP6jH/AjXrdUtV0+HVtLu9OuV3Q3MTRN9CMfp1oAr+HNah8Q+HrHVbc5S5iD4HY45FateNfBfUJ9G1HWvA9+xE9hMzwAnqueQP517LQAUUUUAFFFFABSYB7UtFAGdrWh6d4g02XT9TtY7i3kGCrjOD6j0NeOT6b4o+DV813pZm1bws5zLbsNzQj29O9e6UySOOWNo5EV0YYZWGQR70AYnhfxbpPi7TFvtKuVkGB5kR+9GfQit6vHvFHw01TQNTbxN8P5mt7xDvm08H5Jh/sg8HPp+VdD4B+KFh4uzp93GdP1yLKzWcoIJI6lc8n6dR+tAHoFFIM45paACiiigAooooAKKKKACimSSLErO7BUUZJPYd64fwl8QF8XeMdb0+zXGnadGirIRzI+SGPsOMUdbBsrndd68o8dfEzxVourXGl6B4Qu7kx4AvHgkljbPoqD+vavVxyAT170YFAHyTrGtfE3xFPt1e28RtaH79va2zwKR6YVMH8Qa1NAk0zQtsh+EOsahOOfNvpJJP/HfJ2/pX1HijFAHi8Pxj1y2hWKH4W6rFGowqIXAA+ghqT/hdPiHGP8AhWOs/wDfcn/xmvZMUUAeN/8AC6vEP/RMtZ/77k/+M0f8Lq8Q/wDRMdZ/77k/+M17JRQB43/wurxD/wBEy1n/AL7k/wDjNH/C6vEP/RMtZ/77k/8AjNeyUUAeN/8AC6vEP/RMtZ/77k/+M0f8Lq8Q/wDRMtZ/77k/+M17JRQB43/wurxD/wBEy1n/AL7k/wDjNH/C6vEP/RMtZ/77k/8AjNeyUUAeN/8AC6vEP/RMtZ/77k/+M0f8Lq8Q/wDRMtZ/77k/+M17JRQB43/wurxD/wBEy1n/AL7k/wDjNH/C6vEP/RMtZ/77k/8AjNeyUUAeN/8AC6vEP/RMtZ/77k/+M0f8Lq8Q/wDRMtZ/77k/+M17JRQB43/wurxD/wBEy1n/AL7k/wDjNH/C6vEP/RMtZ/77k/8AjNeyUUAeN/8AC6vEP/RMtZ/77k/+M0f8Lq8Q/wDRMtZ/77k/+M17JRQB43/wurxD/wBEy1n/AL7k/wDjNH/C6vEP/RMtZ/77k/8AjNeyUUAeN/8AC6vEP/RMtZ/77k/+M0f8Lq8Q/wDRMtZ/77k/+M17JRQB43/wurxD/wBEy1n/AL7k/wDjNH/C6vEP/RMtZ/77k/8AjNeyUUAeN/8AC6vEP/RMtZ/77k/+M0f8Lq8Q/wDRMtZ/77k/+M17JRQB43/wurxD/wBEy1n/AL7k/wDjNH/C6vEP/RMtZ/77k/8AjNeyUUAeN/8AC6vEP/RMtZ/77k/+M0f8Lq8Q/wDRMtZ/77k/+M17JRQB43/wurxD/wBEy1n/AL7k/wDjNH/C6vEP/RMtZ/77k/8AjNeyUUAeN/8AC6vEP/RMtZ/77k/+M0f8Lq8Q/wDRMtZ/77k/+M17JRQB43/wurxD/wBEy1n/AL7k/wDjNH/C6vEP/RMtZ/77k/8AjNeyUUAeN/8AC6vEP/RMtZ/77k/+M0f8Lq8Q/wDRMtZ/77k/+M17JRQB43/wurxD/wBEy1n/AL7k/wDjNH/C6vEP/RMtZ/77k/8AjNeyUUAeN/8AC6vEP/RMtZ/77k/+M0jfGnxERx8M9YBxwS0n/wAar0vW/FeheHXRdX1OGzLjK+bnB/Sq9p448NX95FZ2usW73MwBijJKmTPTGRz+FC1A8G8DeJ/EXhDUdW1K78C6xqGo6lLveYpJHgZJIA8s9yemK7f/AIXV4h7fDLWcf78n/wAZr2MAAUtHkB43/wALq8Q/9Ey1n/vuT/4zR/wurxD/ANEy1n/vuT/4zXslFAHjf/C6vEP/AETLWf8AvuT/AOM0f8Lq8Q/9Ey1n/vuT/wCM17JRQB43/wALq8Q/9Ey1n/vuT/4zR/wurxD/ANEy1n/vuT/4zXslFAHjf/C6vEP/AETLWf8AvuT/AOM0f8Lq8Q/9Ey1n/vuT/wCM17JRQB43/wALq8Q/9Ey1n/vuT/4zR/wurxD/ANEy1n/vuT/4zXslFAHjf/C6vEP/AETLWf8AvuT/AOM0f8Lq8Q/9Ey1n/vuT/wCM17JRQB43/wALq8Q/9Ey1n/vuT/4zR/wurxD/ANEy1n/vuT/4zXslFAHjf/C6vEP/AETLWf8AvuT/AOM0f8Lq8Q/9Ey1n/vuT/wCM17JRQB43/wALq8Q/9Ey1n/vuT/4zR/wurxD/ANEy1n/vuT/4zXslFAHjf/C6vEP/AETLWf8AvuT/AOM0f8Lq8Q/9Ey1n/vuT/wCM17JRQB42fjT4gYYPwz1jnjG6Q/8AtKvILSz1iDxoNbm8G6xLYreG7+wmGQDdncAW2Y4J9K+wu+Kaf09qAPHv+F0+IR/zTLWf++5P/jNH/C6vEP8A0TLWf++5P/jNexjpS0AeN/8AC6vEP/RMtZ/77k/+M0f8Lq8Q/wDRMtZ/77k/+M17JRQB43/wurxD/wBEy1n/AL7k/wDjNH/C6vEP/RMtZ/77k/8AjNeyUUAeN/8AC6vEP/RMtZ/77k/+M0f8Lq8Q/wDRMtZ/77k/+M17JRQB43/wurxD/wBEy1n/AL7k/wDjNH/C6vEP/RMtZ/77k/8AjNeyUUAeN/8AC6vEP/RMtZ/77k/+M0f8Lq8Q/wDRMtZ/77k/+M17JRQB43/wurxD/wBEy1n/AL7k/wDjNH/C6vEP/RMtZ/77k/8AjNeyUUAeN/8AC6vEP/RMtZ/77k/+M0f8Lq8Q/wDRMtZ/77k/+M17JRQB43/wurxD/wBEy1n/AL7k/wDjNH/C6vEP/RMtZ/77k/8AjNeyUUAeN/8AC6vEP/RMtZ/77k/+M0f8Lq8Q/wDRMtZ/77k/+M17JRQB43/wurxD/wBEy1n/AL7k/wDjNH/C6vEOf+SY6z/33J/8Zr2SigD5k1LxP4jufiLZeMLDwLrFnJCoS4gMcj+eOn3vLG3jHY12/wDwurxFj/kmWs/99yf/ABmvW768ttPtXurqVYoYxlnIJ2j8K5+D4jeELpiIdftHx1IJwv1OMChdh7HCf8Lq8Q/9Ey1n/vuT/wCM0f8AC6vEP/RMtZ/77k/+M17BFNHNGkkTq6OMqynII9jTxQI8c/4XV4h/6JlrP/fcn/xmj/hdXiH/AKJlrP8A33J/8Zr2SigDxv8A4XV4h/6JlrP/AH3J/wDGaP8AhdXiH/omWs/99yf/ABmvZKKAPG/+F1eIf+iZaz/33J/8Zo/4XV4h/wCiZaz/AN9yf/Ga9kooA8b/AOF0+IT1+GOsf99yf/Ga4TxxrF94wmjv4Phzrel6zEQY72AyZOOm4CIbiOxzn3xX0/SYFAHmHwn8XeKdZhl0zxLo95DLbRgrfT27RebzjDZAG76V6gKTA9KaziNSScKo5PWjbUB9FcsvxG8JPctbLrlu06EhogGLAjrxjNX9K8W6FrV9JZadqcVxcxrueJQQyj1IIoA2qKB0ooAKQnFLVDWNNGr6Vc6e1zcWwnTYZrdgHX3BIIoA53WNT1HUb5YbHRrq+0uInzZIZooxK4PC/O6naO5FcD8DS0/i3xzO0Ri3XS7ojj5SXl+XjjjGOOK9Zt9Fa30BNKi1K7Xy4/LW6Cxeb9fubc/8Brn/AAd8NtO8Fald32nanqkzXY/fx3LxsrnJO7iMEHJPQ96cXyybYS1ikdqOlLSDpS0gCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiop5lghklfOxFLNtUscAeg5NAPZ2PGfjpff2jf6B4YhSSV7ifzZVijaRtuQMBQCSe/GaqXumL8QfiHotrppXT7Pw6ieZ9o/d3LbWU4EZ+bHyjkgdaTTr06j8aLvxPqen6tBp9rEY7Mtps7eYcbQQApx1zV7SdG1vxV8Z4/F40240zSbWPy0a4BjecBSB8vB5LZ57CinpyN9bt/oOe7t0PaF+6KWkHApaPPuJbBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSUtIetAeR5T408eapd+MrbwT4XdYr2UgXF2Ru8oHrgd8CulufAkB0eWKC/v/AO1TEdl8blt/mY4O3O3GfavN/B9qdD+P2sprDeTPdB2tXfgSgnsfpXuEl7ClwluG3zNzsTlgPU+g96Ir93F9XuD+OS7EWh2cun6FYWc8jSTQwIkju24swAySfrV+kHSlouAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUPYDG8WatFofhbUtRmxshgY4Pc44FeWfCvw3BN8LNav9RjQnVxM7FhwECnn8yau/HLUL++0eHw7penalcvNKr3LwWcjqqDkfMFwfwNTalNqN74AtfCXhDTLt5JrZbea6uYHt47dCPnJ3gEnk/dB/oZ1ak+uyL0UknstSn+zvqd5eeFNQtJ5HeG1usQ7jnaGUHaPxyfxr2UdK5jwJ4OtPBPhmLS7ZjLKT5lxMeDJIep9h2A9B6109azavoZQvbUKKKKgoKKKKACiiigAooooAKjmkWGN5HOFUZJqSuE+K2tXWn+Dryx060vbjUL6IwxC2t3faDwxyowMA9zUzb5XYcbX1PLfAfiSyh8WeL/AB5e2V7LAWZLZ4LR3QDOcMwGFOBH19a9y0awimaHXJrZItRubZUlK9x1APuM1514Bv8ASfCvwyg0690zV5bt1eS6tU0ucuzsTxygHAAGc9q9H8NandavosV/d6e9iZslLeT76Jnjd6HFaSSXurpoRdv3n1NkdKKB0oqSwoxRRQIMCjFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhAPWlooATAo2j0paKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoxRRQBnapoOk60iLqen292EOV85A2Kl0/SrDSoPJsbWK3jznbGMVcooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAwKTA9KWigAxRRRQAUUUUAFFFFABRRRQAUUUUAFJgUtFACYFLiiigAooooA//2Q=='] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 3 "如图, $\triangle A B C$ 为锐角三角形, $A B" ['作辅助线如下图.\n\n\n\n\n由条件知, $D E$ 为 $\\triangle A B C$ 外接圆的直径, $D E \\perp B C$ 于 $M, A E \\perp A D$. 记 $I$ 为 $\\triangle A B C$的内心, 则 $I$ 在 $A E$ 上, $I F \\perp A B$. 由 $N B \\perp A B$ 可知 $\\angle N B E=\\angle A B E-\\angle A B N=$ $\\left(180^{\\circ}-\\angle A D E\\right)-90^{\\circ}=90^{\\circ}-\\angle A D E=\\angle M E I$. (1)\n\n又根据内心的性质, 有 $\\angle E B I=\\angle E B C+\\angle C B I=\\angle E A C+\\angle A B I=\\angle E A B+$ $\\angle A B I=\\angle E I B$, 从而 $B E=E I$. 结合 $B N=E M$ 及 (1) 知, $\\triangle N B E \\cong \\triangle M E I$. 于是 $\\angle E M I=\\angle B N E=90^{\\circ}+\\angle B F E=180^{\\circ}-\\angle E F I$, 故 $E, F, I, M$ 四点共圆. 进而可知 $\\angle A F M=90^{\\circ}+\\angle I F M=90^{\\circ}+\\angle I E M=\\angle A G M$, 从而 $A, F, G, M$ 四点共圆.再由 $\\angle D A G=\\angle D M G=90^{\\circ}$ 知, $A, G, M, D$ 四点共圆, 所以 $A, F, G, M, D$ 五点共圆.从而 $\\angle D F G=\\angle D A G=90^{\\circ}$ ,即 $D F \\perp F G$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAm8CfQMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqOQO0bCNgjkcMRnB+lSVi+K9Zj8P8AhbUtUkPFvAzAepxwKUnZXHFXdjzbw74v8b+I/GuuaDa6hpgt9MV8XYsiQ7ggKpG/jJz+Rrpfh98QW8XS3+mahaC01fTn2TxK2VbBxuH4g8VgfBCyGk+BNQ8Sakyo9/M9zLM3H7tM8n8d5rH+CNldan4r8ReKjA0VldSssRP8RLFjj1xkVSjZqL6R19SJS0bXWWh7rRRRSKCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikLAdSB9aq3GpWNoCbi8giAGTvkAoAt1yfjfwYfG2nLp82r3NlZ5zJFAinzCDxknn8Ku3HjbwtaEi48RaXEQcYe7Qf1qifiZ4KB/5GXTf+/60rJ7hqtjPT4bq+hW2gX+u31xo0C7PsiKsPmDsGZACRnnHtXZadptnpNjFZWFvHb20S7UjjGABXLzfFbwRBgHxFZtn+427+VTL8TvBLKCPEunDPrMBVXfX5iSSVvuOtorl4fiN4NnOF8T6UD/tXSL/ADNadv4k0O7x9n1exlz02Tqf60hmrRUaTRyKGSRWUjIIOc1JQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFc34k1yayCWdhbXVzdSY8w2sXmNAh/iI9fSgClfePLKHx5YeFLULPdzZa4bPEIAyB9a7GvAdGaKf9oqAQWtzbqlocpdJskJCckj3r36nFe4mEvjYUUUUgCioLi6gtYTNczxwxryWkYKB+def678afCmkO0FrPJqd0OBFaLuBPpmgD0eo5ZY4Y2kldUReSzHAH4141/wmPxO8Xf8i94fTTLRvu3F0OSPxp0fwe8Q6+4l8W+LrqcZz5MDHA9uaAO31X4neDtFBF3rtszj+CAmUn/vnI/WuPuvjzY3LtF4d8Papqsg44TaP/HQx/lXS6R8IPBmkBSukpcyDnfcnzDn15rsbXT7OyQJa2sMKjoI0AoA8k/4TH4t61zpvhG0sYW6SXHLD82/9lo/4RT4w6uM6j4vtrFD0W1UAgf8BVf517LRQB42Pglq99/yGvH2r3gPUBmH/oTNVm3/AGevCMZDT3WqXDdWMkyjJ/BRXrdZ+r6zYaFp8l9qd1HbW0YyXc4/AepoA4eD4G+AYR+80uabA6yXco/HhhXAeMrb4eaZdf2H4Y8LRavrj/IqxyyvHGfchuT/AJzWte+KPFPxXu5NM8KxS6doAbbPfyDa0g9v8BXongz4f6N4KtAtnF5t44/e3cgy7n69hQB554F+BFpboNR8Wolxcv8AMthGSsUX+8R94+3T613DfB/wGzFj4ehyTniWQf8As1dxRQBwE3wX8ATDnQQp7FLmVf5NWbcfAPwRMD5cF7Bxj5Lkn/0LNeo0UAeOv+z9pFuS+leINXsnPORIpA/IA/rTP+FW+PdN50r4jXsgH3Y7jeQPzZh+ley0UAeNZ+N2iDltL1pR0XaoJHpwE/nSD4teMdHIHiLwFcBf45LQttHv0YfrXs1NZVYYYAg9iKAPNdK+OngzUCEubi506XoVuYTgH6rmu30vxFo2tKG03VLW6zztilBb8utV9U8H+HtaUjUNHs5892iGRXDan8CPDsz+do91e6VPnIMMhK5+h6UAerUV4r/wjnxZ8KHOla3DrNqvSKc5OPQBv6VYtfjTd6RMLXxj4bu9OkHDTRISn5UAexUVzug+OPDniVAdL1W3lfHMZba4/A10VABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXP+HNDvdGs7iO81MX91PI0huWt/LYk+o3HOO3TiugooA85tfhneweP/8AhMH8R+ZeEkNF9iAQoRjaPn44716NWD4j8X6H4VtDPq+oRQcZWPOXf6KOa8W1f436t4o1SPRvDJttGinfyxe3jjdj1zghPyP1o6JA+p7br/inRPDNqbjWNRgtVxlVdvmf/dXqfwrzC4+LXiHxTcvZeAvDs9yAdpvbhcIvv6D8SPpWh4f+Cekpcrqvia+n8Qag+HZp3JjJ+mct+JI9q9RtbS3sbZLe0gjggQYWOJQqqPYCgDx+2+EfiLxPMLvxz4lnmUnJsrVvlHsT0H5GvQ9C8CeGfDiKNN0i3Rx/y1dd7k+uT/SulooAKKKKACiiigAoqC4uIbS3ee4lSKGMbnkdgFUepJryDXvibrHi3U5PD3w7t3lf7s2qMMJGPVc9PqefQUAdb44+JmkeDU+zZ+2as4xFZRHLZPTd6CuL0jwD4i+IWoR654/nkgsgd9vpUZ24HbcOw/Xr0rqfA/wr03wvINU1B/7T1yQ7pLqf5tjHrtB7+/WvRKAK1jYWmmWcdpZW8cFvGNqRxrgAVZoooAKKKKACiiigAooooAKKKKACiiigAqtd2VpfwGG8tobiI9UlQMPyNWaKAPM9f+CXhnVZPtWmedo98OVltWO0H125/kRXOi3+K/gHmF08SaZH/Dy0gX6fez+Br26igDzPwz8afDmsSiz1Qvo2oA7Wiu/lXd6Bug/HFekxyJNGskbq6MMhlOQRXO+JvAvh3xbEV1fTYpZcYW4UbJV+jDn8Oleay+A/HPw8kN14K1iTUdNXltNuznj2HT8RtNAHt9FeW+GPjTpV/ONN8RW8uh6oDtZZwRGT9TyPx/OvTYpY54llidXjYZVlOQR7GgCWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiuD8cfFDR/B/wDoaZv9XfiOzhOWBPTd6fzoA7K/1Cz0uzku764jt7eMZaSRsACvI9W+KmseKbx9H+HumyTvna+oSphE9xnp9TVex8CeK/iNdx6r47upLHTc7odLhO1sdsjt+OT7CvURBovgnw5NJBbw2Wn2cRdggxwB3PcnpzQB88+NfBUumS2VlqWoS6v4s1WQADcSsKk8nHepIvhrpml/FG18JaqXe31GwzHOpwUm2k5U/wC8hGPQ13Hwt0268XeKNQ+IOrxnEjmLT426Ko4yPoOKPjaG0XXPCXi2MECxvRHKR/EMhsfkrD8aAM5Z/G3wdmCTiTXPDO7hxktCP6fyr1fwv4z0XxfYLc6XdK7Y+eFjh0PoRW4ViubfDBZIpF5BGQwNeUeKfhC8V8dd8EXbaXqiHeYVbEch9B6fQ8UAeuUV5D4Z+L72moDQPHtqdJ1NOBcOu2J/Qn+79envXrUcqSxrJG6sjDKspyCPWgCSiiigArm/FvjbRvBtgbnU7gCQj91Ahy8h9AK47xh8WVgv/wDhHvB8B1fW5DszEN0cR78jqR+Q7mm+EvhPI9+PEHja5Oqas53iBzujh9vf6dPrQBgw6X4t+MN2lzqzS6P4YDZS3Xh5h/X6/WvX9A8O6V4Z05LDSbRLeFRzgcsfUnua01VUUKoCqBgADAAp9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBznibwRoHi22MWq2KSPj5ZlG11+hrzKXw746+F0jXPh65fW9DU5ezl5dB7D+or3CigDhvBvxR0Pxdi1Dmy1NR89ncfK2f9n1rua8+8bfCrR/FZN9bZ03WF+ZLyDjJHTcB/Mc1yWnePfFHw6vY9J8eWklxp5OyHU4V3DHue/8AP2oA9uoqlpmq2OsWEV7p1zHcW0oykkbZBq7QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVDPPFbQPPPIkcUYLO7tgKB3Jqjruvad4c0yXUdTuEgt4xnLHlj6AdzXjZfxN8ar4onm6T4RifBbo0+P5n9BQBoa98R9b8YarJ4d+HsDsudk+qNwqDvtPYe/X0xXUeBvhbpfhJv7Qum/tHWn+aS8mGSpPXbnp9etdR4d8NaX4W0qPTtKtlhhQcn+Jz6se5rYoAK8Y+KWpXPi3xXp3w80mQ4kcTajIh+4vUA/Qc/UivRvGPie38IeF73WLnBMSYij/wCekh4Vfz/SuM+Dnhm5g0648Waxl9X1pjMWccrGTkfTOc/lQB6PpWmW2jaXbadZoI7e3jEaKB2Fcd8ZNH/tf4Y6qFXMtqoukPpsOW/8d3V31Vb+0i1HT7mynGYriJonHqrDB/nQBznw11Y638PNFvGbdJ9mWKRvVk+Un8wa62vHvgJdyW+ka14euT+/0y+Zdv8AdB4/9CDV7DQBz3ijwhovi/T/ALHrFkJgM+XKOJIz6q3UfyPevKWsfG/wdmL2Ej654XDZMLcvCv8A7L9Rx7V7vXn/AI6+J+leFgdOt0Go6vL8qWcXzYJ/vf4UATaV8WfCWp6DJqrailsIlzLBMcSKfQDv+FcJd654u+MF0+n+H1k0fwyDtmvZAQ8w7jjr/ujj1NYUPwV8Q+J7W712/a10y/uG82GyWPC+uGx0rqPCnxNn8KTw+F/G2m/2ZJCBHFdRpiJh0BOOPxFAHoPg3wHofgqw+z6ZbAzsMTXUgBll+p9PYcV1NQ29zBdwJPbypLE4yrocgipqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqepaZZavYy2WoW0dzbSjDxyLkGrlFAHh+p+CfEvwz1CXWvA88l3pbHdcaXIS3HsO/16/Wu/wDA/wARNJ8bWpEDfZ9QjGJ7KU/Oh7keorsa8w8c/CxdRu/+Eg8LTf2br0XzgxnasxHr6H3oA9Pory3wN8UJL2+PhzxZB/Z+uxHZlxtWYj09DXqVABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVznjDxjpXgvRm1DUpeTlYYVPzyt6AfzPaofG/jbTPBGivfXzB52BFvbqfmlb09h6mvPfCHgrVfHOtJ408cqShIax05gQiL1BK9h7d+poAg0TwtrvxV1aPxF4uEltoiHdZ6eCRvHYkenv3r2u0tYLG2jtrWJIoI1CpGgwFFSqoVQqgAAYAHanUAFFFcJ8U/GB8KeFHFsc6ne/uLVBydx6n8KAOK8QMfip8VLfw9CxbQNFbzb1lPyyOOCM/+O/i3pXtqIsaKiKFRRgADAArifhd4PHhHwnGtwv/ABMr0i4u3b7xY9FP0z+ZNdzQAUUxnVFLOwVQMkk4Ari/EPxX8IeG9yXGprczr/yxtR5jfn0/WgDjtDH/AAjP7RWsWP3LbWIPPT/ac4b+ZevYLu7t7G1kurueOCCNdzySMFVR7k18u+Ovib/anjfSPEmlaXNZ3NhHtja6/wCWy5ODgY4+Y9625/DvxP8AivZpdajPDZ6YTuigkJiU+4QDJ/4FQB0es/EbXfHWpSeHvh5A/lA7bjVXG1UX1BPQdeTyewrrvA/wu0rwiPttyTqGsyfNLeTckE9duen161xmlfBXxTY2Qtk8dXNlB3t7NXRM+vDgE/hV3/hSWpynddeOtWmccA7m6fiTQB7JWN4h8M6R4p05rLV7JLiIj5WIwyH1U9Qa81/4UvrkJAtPH+rRIOQN7cH8GFIfh98TtLy2m/ECW8bqFu9xH/jxagDMn8PeNPhHcPeeH5pNa8O53S2cmS8S/Tt9Rx6ivRvBfxG0PxvbAWc/k3yjMtnKcSL9PUe4riW1X40eH/nvNO0/Woh94xKoOP8AgO3+Vee+KtW0XUr3+0bnQdS8Ka8jbhcwKfLd/UjAx9QfzoA+qaK+f/BHx1e3lTS/FrpNH91NShGfbLjuPfGfY17vY31pqVpHd2VxHPbyDKSRtkEUAWaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOL8efDvTfGtnub/RtTiGbe8QYZSOgPqK4zwn8QNV8J6xH4R8eqYZB8trqLH5JB0G5vT3/ADr2eub8ZeDNL8a6O9hqEYDjmGdR88TeoP8ASgDowQQCDkHvS14f4V8Xav8ADjWo/B3jVmexY7dP1E52hegBP939V6dMV7ajrIiujBlYZBByCKAH0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXOeMfF+neDdEk1C/fLdIYQfmkbsBV3xDr9h4Z0W41XUphHbwrn3c9lA7k15H4T0HUfil4l/4THxLE0ejxNjT7JujgHg/T370AWPBXg/UfG+uDxv4xQtGTmwsWHyqueCR6fz617SAAAAMAdqaqhFCqAFAwABwBT6ACiiigCKWaOCF5ZXCIilmYngAdTXivhyN/ih8UbjxFcKW0PR28u0Rh8rsOh/rW18YvE1xHa2fg/SCW1bWWCEKeUiJxk/Xn8Aa2YLnw98JPA1rbXtwsflp90YMk8nfA780Ady7rGhd2CqBkknAFeY+JvjNpunXZ0vw9aya1qedoWAZjVvQkdfwrmYofG3xjkMskr6D4VLYVRnfOv/s36L9cV31rpXgz4T6A1yRFaoBhriQ7ppm9B3J9hQBxC+C/Hnjs/bPF+sNpGnfeFpAcED3Hb8awbqTwxoGoDQfAOiLrfiBjta+mXzViPcjPH9K2JNS8X/GS5e30pZdF8LK217l+HnH9foOPU16l4S8FaJ4MsBbaVbgOR+9ncZkkPuf6UAeK+KPhFc2HgHUvEOs3z3WvJtmYIfkRc4Kj16/pXtXgPVRrXgfSL4EFnt1DexAxitTWrBNV0S+sGAIuIHj59SCB+tea/AW/LeF9Q0eRj5mnXjphuuCf/rUAetUUUUAFFFFABVW806y1CJory1hnRhgiRA3FWqKAPLPEfwJ8LazvlsFk0yc9PJ5T/vk155HofxD+EF21zYA6hpOcyLHlo2HuvVTX0tSEAggjIPagDhPBHxT0PxkiwLILPUgPntZjgk/7J713leZeNPg7pPiN21DSSNJ1dTuWWEYRm9wOh9x+tcpo/wASvEfw81RNA+INpLJb/dgv4xuJUcZz/GvTp8w7gk0Ae8UVR03VbLWLCK+066iubWUZSSJsg/8A1/ar1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHP+LvCWm+MdEl03UIwcjMUoHzRP2YV5l4N8Van8PtdHgrxe5NqTiwvm+7t7An0/lXttcx438GWHjXQ5LC8ULMoLW84HzRP6/SgDpQQyhlIIPII706vHfhx4zv9E1lvAXi0mLUIDssrhzxMvYZ757Hv0617FQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVBc3MFnbS3NxKsUMSl3djgKB1JqevE/H+t3/j/wAVR/D/AMOyFbVWDaldL91VHUZ9B+pwKAKcMd18bPGzzy+ZF4Q0yTEadPtDf4nv6DAr3G3t4bS2jt7eNY4Y1CoijAUDtVHw/oNj4a0S20rTohHbwLtHqx7sfUk81X8S+K9O8J2Yu9US6Ft/FLDA0ip9SOlJtJXYK7N2iuNi+JGjz6P/AGvFZau+nbDJ9pWwcptHU5/Cum03UINU0y2v7bf5FzGsse9dp2sMjI7VTTXyDQuVR1XU7XRdKutSvZAltbRmSRvYD+dXq+e/j941M88PhKwckKRJd7e5/hT+v5UgMjSvGMVpq2ofEHWI/tOsX7NDpFgOSq9N3sBwo7nB9a7bwj8Nr3xJqA8V+PS11dynfDYufkiHbI/p0qt8N/h9beHdPTxd4xaKO5WMNBFOcLaxgccHvjt2pdW8eeIviJqEmheBYJILDO2fU3G3A9j2/nQB03jX4p6b4VK6RpEP9p60w2RWsAysZ6Ddj+Q/Suf0D4Y6v4r1NPEfxEuGuJT80Om7vkjHUBgOAPYfjmuv8D/DTSPBsf2gj7ZqzjMt5KMtnvtz0FdxQBDb28NrAkFvEkUUY2oiDAUegFTUUUAFeL+EceG/jz4h0c/LDqMfnxL2H8Ve0V4v8T/+Ke+KPhPxKPlieQQTt689PyoA9oooooAKKKKACiiigAooooAKyte0DS/EumSadq1mlzbv2YcqfVT1B9xWrRQB8z65oPir4LawdT0G7muNElbkP8y/7si9M/7Qr1PwL8XNE8YxpbTMtjqeOYJW+Vz/ALJ7/Su9vbK21CzltLuFJoJVKvG4yCK+XviL8M/+EK1tNQtzN/YU7/LNF962Y9j/AEoA+qaK8C8PfEfxD4Jhs4fEiNqvh+cD7NqsHzHb9e+O4PIr2rRtd03xBp6X2l3cdzA4+8jZx7H0NAGnRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHC/EnwDB4z0gS2xEOsWoL2lwODnrtJ9DVD4W+PJtftZtB1wGHxDp37uZJODKo43fX1/PvXpNeSfFTwdeW93D468NAxavp/wA9wiD/AF0Y6kjuQOvqPpQB63RXNeCPF1p4z8OQanbkLLjbPFnmNx1FdLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFZ+s6raaJpN1qd7IEt7eMu5Pf2HuelAHGfFTxs3hjR007Tf3mtaj+6to1GSoPBbFWfhn4HXwd4fDXX7zV70+beSnk5PO3Pt/OuP8AhtpV1438WXXxA1qM+UHKafCw4UDuPpXtVABXjvx61aU6Ppvhu0DPc6jOCY0PzFQePzNevSN5cbOFZyoJ2r1PsK8Y1HT/ABFrfxe0/Xr7wxqI0exAWEHyywP94jd680uXmlGL2HflTa6HV+F7m9iurHwo+hXenWVjp++d7ho2ExPy7RsZhySW6546c13UEMdtBHBCgSKNQiKOigcAU4RRiUzBFEhG0tjnHpUlVzX367/iSl/X3HO+NfFNv4Q8L3WrTkbkXbCnd3PQV87+FLvSdEuJfHfjCT7XfTyNJp9gOXmfP+sIP3VHQE+ntir/AMTtb1L4k+OE8PeH4nuraxYooT7rP0ZyfTtXo/gL4P2Ph+SLVddddS1gAFS4zHBjptB6kevbHGKQzBsfCfir4rXsereL5JNL0INug02PKs69sg9PqefQDNexaTo+n6Hp8dhptrHbW0YwEQY/E+p960KKACiiigAooooAK8x+OemNe/D57yNd01hOk6n0GeT+VenVk+JdNTWPDWpafIMrcW7pj8KAIfCGqLrXg/SdRVt3nWyFj/tAYb9Qa3K8s+A2pvc+BZdMmOJ9MunhK/3VPI/XdXqdABRRRQAUUUUAFFFFABRRRQAVT1LTrTV9OnsL6FZraZSrowyCKuUUAeBaKR8N/F8/gjxIi3XhfVm3WUtwuUQk4Gc9OcA+hweM1pax8Mte8HX7a78Orx1X70umSNkOP9nPDfQ8+hNd98Q/Btv418K3Gnsqi8QeZaSnqkg6c+h6H61gfCDxhNreiy6Hqu5dZ0k+RKsn3nUcAn34wfpQAvgr4u6Z4guBpOsxnSNbQ7GguPlV29FJ6H2PP1r0uuM8Z/DfQvGsBe6h8i/Ufu7yIYdT2z6j2NeeW3iXxn8JrhLHxNDJrPh7O2K9jyXjHbk/yP4GgD3aisfQPEmk+KNOW+0m7S4iI5APzIfQjsa2KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAppUMpVgCCMEHvTqKAPCdWtp/g/8AEBdYs43PhjVX23ES9IGJ/THUe30r2+2uYbu2iubeRZIZVDo69CD0NZ3iTQLTxNoN1pN6gaKdCAe6t2I+leafCnX7zQtXu/h7rzkXVmxNk7fxp1wPw5H40Aex0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeJ/Ea9n8eePLDwBpkrfZIGE2pyJ0GOcH6A/m3tXonj7xZD4N8JXeqvgzgeXbRn+OU/dH07n2Brmvg54Sm0fw/Jr2qbn1jWW+0yu/3lQ8qD7nO4/XHagD0LTtPttK063sLSMR28CBEUDoBVuiigAooooAK8++LvjIeE/B0qwPjUb/MFuo6gEfM34A/mRXeySJDE0kjBEQFmZjgADua+crG7Pxd+NiTsGbRdPy8SHIBjQ/KT7sxz9OO1AHM/YNe+EusaDr7FmN7CJZUPTn7yH3xzX1D4e16y8TaJbarp8geCdc4zyp7qfcVy/wAW/Co8TeArqOGINdWY8+3AHPA5A+orxr4UeM5vBN5bC9cnw7qb+W8mci3mHc+nUZ9j3xQB9R0UxWV1DKQVIyCDwRT6ACiiigAooooAKQjIwaWigDxf4ek+HfjT4t8PN8sV4PtUX+0chuPwdvyr2ivF/HufDfxv8I+IBlYb3/Q5SOnJ2En8JM/8Br2igAooooAKKKKACiiigAooooAKKKKACvEviNaSeBPiDpfjqwQraXMgg1BV6EnufqOfqK9trn/GXh6HxR4Uv9KmUEyxkxH+645U/n/OgDZtriO7tYriJg0UqB1I7gjNFzawXlu9vcxJLC4wyOMgivNvgjrs1/4Um0i8Ym70qYwMD129q9QoA8a1/wCFOo+H9RfX/h9ePaXC/M9gW+R/UD/A1peD/i9a6jdjRvE9udI1hDsIlG1JG9iehr1OuU8YeANC8a2nl6lbbblR+7uouJE/HuPY0AdSrBlDKQQehHenV4OupeN/g7MIdRik13wuGwtwmS8K/X+H6HjoARXrfhrxbo3i2wF5pF4ky4+eMnEkZ9GXqKAN2iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAryv4xeFbieyg8WaMGTVtJIlLJ1eMHJ/LrXqlMdFkjZHUMrDBB7igDn/BPiiDxf4Ws9XgIDyLtmQfwSDhh+fP0Iro68N0Nn+Fnxal0GVivh/XW8yzJ+7HITwPz+X8UNe5UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVy3xB8Sp4U8G3+pEgTbDHCp/iduBQB5x4iJ+J/xcs9AiPmaHop828I+67A8j+S/ia9uACgADAHQCvOvg34YfQvB41C7U/2hqrfaZmbrg/dH6k/jXo9ABRRRQAUUVn6zq1roekXWp3jhILeMuxPt2oA8v+OnjJtL0L/hHNPf/TdQQmcr1jgH3s/Xp9M1B+zx4fFl4UudckX97fzFEP8A0zTI/wDQt1ec6291qXhfW/HmqqRc6vOLHTlb+CMnLEf8ABX8TX0d4K0f+wfBWj6Yy7XgtUEg/wBsjLfqTQBusodSrAFSMEHvXzs/hiysviFrfgPU/wB3puuL9psJcf6mfkqV/HcuO+QK+i68n+OGhTvoVl4o04FdQ0WZZg6jnZkZ/IhT9AaAK/ws8VX+lajL4A8SkpqNhlbSRzxLGOgB78dPb6V7BXj/AIu0RfiD4M0rxr4f/da3bQrPGY/vNjlkPuDn9a6v4ceN4vGnh5ZJcR6nbfu7uE9Qw749DQB2tFFFABRRRQAUUUUAeUfH3TXufAkWpwZWbTbuObcOoB+X+bKfwr0Pw9qa614d07U0wBdW0c2PTcoOKr+MNI/t7wfq+mBdz3FrIsY/28Hb+uK474E6sdR+HEFszbpLCZ7dvpncP0YUAem0UUUAFFFFABRRRQAUUUUAFFFFABRRRQB4rbL/AMIZ+0C8CfJY69FkDtvPp+OK9qrx345W8mnyeHfE9uv72wvFVm9FJyP1r1u1uEu7SC5j5SaNZF+hGRQBPRRRQBFLFHPE0UqK8bgqysMgj0NeS+JfhDNYX51/wFdNpmpISxtlbEb+w9Pp0r1+igDyXwt8X9t8ND8a2raVqqHZ5zLiOQ+vt/KvVo5EljWSNldGGQynII9jWB4q8E6J4xsTb6paqzgfu51GHQ+oNeVlPG/wdm3KZNd8LhuR1eEf+y/yoA93ormvCfjjRPGVkJ9LulMg/wBZA/EiH3FdLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB598XPCTeKPB7y2qkalppNzbMv3uPvKPqBn6gVf+Gfi1fF/g+2unYfbYB5N0vo47/j1rsSMjBrxLTP+LcfGq400/u9H14eZDn7quew/HI/KgD26iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8S8dO/jr4r6T4PgYmw08i4vCp4z1I/AcYr13WdUh0XRr3UrggRWsLSHJ64HA/E8V5h8EdMmvYtX8YXwJutVuG8tmHOwH/GgD1uONIo1jjUKigKqjoAO1SUUUAFFFFABXi3xM1C58aeMLD4f6VIfKDibUJF5Cgc4P0Fei+OfFMHg/wrd6tMV8xF2QIf45D0H9fwrk/g94WuLDS7jxJqwLatq7eazP95UPIH40AYHxasLZLzwH4QtIwtrJeKqxjsAVTn/vs/rXt46V454yxc/tAeD7duRFGZAPQ8n/ANlr2OgAqtfWVvqFhcWV1GJLe4jaKRD/ABKRgj8qs0UAeMfB68n8OeIde8Aag5L2UzTWhb+JCecegIKt/wACNV/HejXvw68Wx+PNAiLWMzhdStU+7g9Tj0P6GrHxctJfDPi3QfHlkpAhlFvebR1XsT+BI/AV6uVsvEGi7ZESeyvIeVPIZWFADdF1iz17SLbVNPlWW2uEDqR29QfcdK0q8L0G6ufg/wCO28PajI58Mam+60nc8QufU/ofwPavcgQwBBBB5BFADqKKKACiiigArxf4Wj/hHvif4v8AC7HbEZTc26f7OTz/AN8sle0V4v4tH/CN/H/QNXBCQapCIJm9SPlx+iUAe0UUUUAFFFFABRRRQAUUUUAFFFFABRRRQBwHxlsPt/ww1UAZMIWf6bTmtf4d3w1H4eaFchs5tEjz/ufJ/wCy1P46hE/gXW4iMhrOQYx7VznwQl834V6Yuc+W8q/+Pk/1oA9EooooAKKKKACmOqyIUdQysMEEZBFPooA8o8WfB9Zb0674Nuzo2rp8wjjO2KQ/h939R7VV8NfFy60zUV8P+P7KTTdQU7VvCv7uT3Pp9RkfSvYaw/EnhXR/FmnNZ6vZpMn8L4w6H1U9QaANaGaK4hWaGRJInG5XRgVYeoI61NXg8mk+NfhBcNcaLJJrfhstl7V8loh3OB0PuPxFeleDviFofjW1DWNwI7sD95aynDqf6igDrqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzX4z+G31fwiNTswRqGlOLiJl67R1H8q9KqGeCO5tpYJV3RyIUYeoIwaAOf8B+I08V+DdP1QEGV49kwznEi8H/H8a6avFvhVM/hTx34g8EXLbY/MNxZg9COuB+B/8dr2mgAooooAKKKKACiiigAooooAKKKKACiiigAooooA8l+OuqzDQdN8N2bf6VrF0seB/cBHX/gRX8q9H8P6VDoWgWOmQLtjtoVQD3A5rylB/wAJn+0RKx+ew8PQbB6eZ3B99zN/3zXtNABRRRQAUUVwHxY8ZN4U8KPFZMf7W1D/AEe0VeWBPBYfQdPfFAHHavI/xU+LEekxMX8PaC264YfdlkB5/UY+in1r21EWKNY0UKqjAA7CuM+GXg1fBfhGC1mUf2jcfv7x+p3n+HPoBx+BPeu2oA8b1zn9pzw8G+4LBiPrsl/+tXsleOeLv9H/AGhfCU+ceZCY/wBGH/s1ex0AFFFFAGH4t0CLxN4X1DSZVB8+IhCezjlT+dcP8E9emufD1x4dvyRfaPKYSrddmePyr1SvEvEw/wCFf/Giw19Bs0vWv3N1j7oc8En370AejeOfCFl408Nz6ZdALLjdbzY5ikHQ/T19q4z4VeLryOafwR4jYx6xppMcLSH/AF0Y6c98fqMV6yCCAQcg968w+K/gq41GGDxXoIMeu6XiQGPrMg7e5H6jI9KAPUKK5D4e+Nbbxt4dS7Xal7D+7uoO6P8A4GuvoAKKKKACvJPj3YsPDel65CuZ9MvVcEdgef5qK9brmvH+kjW/Aes2JGS1szr9V+YfyoA1tGvU1LRbK9Rtyzwq+fXIq/XnXwV1U6n8N7KOQ/vbNmt2B6gKeK9FoAKKKKACiiigAooooAKKKKACiiigDI8UBT4W1QN937M+fyriPgMSfhjBu7XMuPpxXXeN5fJ8Ea1J/ds5D+lcx8D4/L+Fmnn+/JK3/jxH9KAPR6KKKACiiigAooooAKKKKAGkBgQQCDwQa8x8Y/CGz1S6bWPDcx0jWVO9WiO1HPuB0NeoUUAeMaF8VNU8M6gug/EKze2lHyx36r8rj1P+Ir1+0u7e/tY7m0nSaCQbkkjbIYfWqOveHdK8Tac1jq9nHcwN03D5lPqp6g14/c+FvGnwpun1DwnPJq+gbt0uny8vGO/A/wDQl/EcUAe7UVxPgj4l6D40hEdtN9m1AD95ZTkBwe+3+8Pp+QrtqACiiigAooooAKKKKACiiigAooooAKKKKACiiigDxj4uQnwx4x8OeNrZSBFOILrb/EvXn8Mj8a9iiljnhSaJg0cihlYdCDyDXMfEbw//AMJL4E1TT0XdP5Rlh/31+Zf1FZnwc8Qf8JB8ONPaR91xZZs5P+AY2/8AjpWgDv6KKKACiiigAooooAKKKKACiiigAooooAKparqEWlaReahOcQ20LyufZQSf5VdrzX45awdL+G9zAj7Zb+VLZfcE5Yf98g0AZXwFsJZNC1bxLd83WrXruX/vKpPP/fRevX657wRo66B4K0fTQu14bVPMH+2Rlv8Ax4muhoAKKKKAIp547aCSeZgkcalmY9gK8W8JQP8AEv4oXPiy6Uto2kP5VgjdGcdD+H3v++a1vjF4juXitPBmjktqerOEkCdUjJ/rXeeE/Dtt4V8N2ekWoG2FPnYfxufvH86ANyiiigDxr4yf8Szxh4J14fKtvfBJD6jcrY/JTXsteX/HjSjqHw5ku0BMmn3EdwMdcZ2n9Gz+Fdv4W1Ya74V0vVAQTdWscjD0YqMj8DmgDZooooAK4j4qeGf+En8D3kMS5vLYfaLcjqGXnH4129NIDKVIyCMEUAcP8KPE/wDwlHgSzllbN3aD7NcA9dy9D+Ix+td1XiXh4n4ffG2+0Jzs0vXh5tvn7ok5IH57h/wIV7bQB4d4v0y7+FvjRPGOixFtHvH2ahbJ91cnk4/X617HpWq2mtaZb6jZSiW2nQOjD+X1p2pada6vp09hexLLbzoUdWHUGvGfCuoXXwq8cN4R1iRm0LUH36fcOflRieBn8gffBoA9yopAcjIpaACmOiyIyOMqwIIPcU+igDxj4PudE8Z+LPC8hI8q4M0YPpnHH517PXi+sbfDX7ROl3n3IdXg8ojsWPy5/OvaKACiiigAooooAKKKKACiiigAooooA4X4wX/2D4Yaw2cedGIP++jir/w0sP7N+G+hW2Mf6KJP++yX/wDZq4v473bXGnaL4eg+abUbxcp6qD/jXq1jaJY6fbWcf+rt4liX6KAB/KgCzRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHm/jX4S6X4kmOp6U/wDZWtKdy3EHyh2/2gO/v1rm9I+JXiDwRfx6H4/s5Ghzti1KMZBHqT3/AJ17ZWdq+i6drthJY6nax3Nu4wVcZx9D2oAm0/UbPVbOO8sLmO4t5BlZI2yDVuvDtQ8C+Kvhrevq3ge6lvtMJ3TabIdxC+w7/Uc12fgj4qaL4uAtJD9h1VeHtZjgk99p70Ad9RRRQAUUUUAFFFFABRRRQAUUUUAFFFFADWUMpU9CMGvGPhaT4a+KHi/wi52xPJ9rtk7Bc54/4C6f9817TXi3xAH/AAjXxs8J+IU+SK/H2SbHRiDtyfwkX/vmgD2mikByMiloAKKKKACiiigAooooAKKKKACiiigArxf4s/8AE/8AiH4P8LDDxvcCe4T/AGcgZ/75317RXjOmY1v9pO/uCNy6TZFAew4x/wC1KAPZqKKKACs7W9XtdB0a61S9cJb20ZdiTjPoB7k4H41o14t8Sr+fxx410/4faW5+zxuJ9TkQ8KBztP0B/Nh6UATfCjSbnxHreo/ELWVPn3bmOyRh9yPpkfyFex1U06wt9L063sbSNY4IEEaKowABVugAooooAyvEOkrrvh3UdKbAF3bSQgnsWUgH8K87+A2rNN4RudBugUvNJuXieNuqqxJ/nuH4V6zXiUzDwF8fzK37rTPEUeSeiiU9fx3A/wDfdAHttFFFABRRRQB5Z8cNAmvPC8PiDT8rqGiyi4R0+8EyN35EBv8AgNdv4Q8QQ+KPCun6xDgfaIgXUfwOOGX8CCK1bq2hvLWa1uEDwzIY3Q9GUjBFePfCa4m8J+L9d8BXrnbFKbizLH7yH0+o2n8TQB7RXJ/EDwVa+N/DU+ny7Y7pPntZyM+XIOmfY9D7V1lFAHlnwo8aXd4k/hHxFuj13S/3f7w/NMg4znuR69xg969Tryj4r+Drt5YPGfh0FNa03DyBOs0Y/mQP0rr/AAL4wtPGnh2HUICFuFGy4h7xv3oA6iiiigDx/wCPFo9vp2ieIIRiTT7xdz+in/69er2F2l/p9texf6u4iWVfowBH865r4maR/bXw81i0VN0ggMkY/wBpeRVH4Pax/bHw00ty26S3DW8n1U8foRQB3lFFFABRRRQAUUUUAFFFFABRRWT4k1qDw/4evdVuGCpbxFhnu3YfnigDyu8b/hL/ANoW1ij+e00GLe57K45/nivaq8m+B2kS/wBiX/iS8U/atWuGcFuuwH+R/pXrNABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5/42+FejeLib2HOnauvKXluMZbtuA6/XrXoFFAHh2nePPFXw4vYtH8eWcl3pxOyHVIRuOO2T/F9Dg/WvYNI1nTtc06O/wBMvIrq2kHyyRnP4EdQfY81LqWmWWr2MllqFtFc20gw8ci5Brx3Vfhv4i8Cai+t/D28kaAndNpkjZDAdhn7w+vI9aAPbqK858FfFnSvEsg07UkOl6yvyvbzfKGP+yT/ACNejUAFFFFABRRRQAUUUUAFFFFABXlHx7055/A9vqkHE+m3iSh/7qnI/wDQtter1zfj7ThqvgHXLMruLWjuB6lRuH6qKANHw/qKat4f0/UIzlLi3SQfiK0688+Cuom/+GenK5+e2LwEegU4H6V6HQAUUUUAFFFFABRRRQAUUUUAFFFFADHcIjO3RRk1498GUbUPFXjLXJOTJeeSjeq7m/8AiVr1TXLlbTQr+4Y4Edu7Z/4Ca85+ANuyeAZruQfvLq9kcn1GB/XNAHq1FFITgZNAHNeOvFUHg/wrd6tLtaRF2wRn+OQ8KPz6+2a5b4O+FbjTdGm8Ratl9Y1lvtEjuPmVDyB+Oc/iPSud1It8Vvi1Fpikv4b0Jt9wR92WQHp75Py/TdXt4AUAAAAcACgB1FFFABRRRQAV578YPC7eIvBktxbKf7Q00/abdl+9x94D8Bn8K9CppAYEEAg8EGgDkPht4qTxZ4NtLtnH2qJfJuV7q44/WuxrwucP8I/imLhcr4Z1tsOP4YXP+B/SvcEkWRFdGDIwyrA5BHrQBJRRRQAV418YrGXw/r2hePLBSHs5lgutv8Sds/huH5V7LWP4l0SHxH4cv9InAK3MJQE9m6qfwOKALunX0Op6db31uwaKeMSKQexFW68n+CWtzHSb7wtqBIvtIlKBW6+Xnj8q9YoAaQGBBAIPBB714b4isrn4R+OE8TaXG7eHtQfZewL0jJP+SK90rP1jSLPXNKuNNv4hLbToUdT/ADHvQBNYX9tqlhBfWcqy286B43U8EGrVeH+CNXu/hp4zk8C69KTpd0+/TLt+gJPC59D09j7GvcKAIp4xPBJE3R1Kn8RXkHwSlOl6z4r8Ky/L9jvDNCn+ySVJ/LZ+deyV4vIf+EZ/aUic/Lb65aFGbtuxwPzjT86APaKKKKACiiigAooooAKKKKACvF/i3qEvijxRo/gHTnLNLKs19sP3V7A/hk/iK9I8ZeKbTwh4ZutYuip8pcQxE4Msh+6o/Hr6DJ7Vw3wd8MXXkXXjPXBv1bV2MiFxzHETnj0z1+mKAPTtOsINL0+3sbZAkMEYjQAdhVuiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDifGnwz0XxjGZnj+yakvMd5CMMD7+tcDaeLfF3wquo9O8W28mp6ITthv4vmKj6/wBDzXulVruzt7+1ktbyCOe3kG145FDKw9waAKeheINL8R6al/pV2lxA46qeVPoR2PtWrXi2ufCvV/CuoPr/AMOb2S3lB3S6dI2UkHoueCPZvwIra8GfF+x1i6OkeIoDo2todjRTZWNz7E/dPsfzNAHp9FICCMg5BpaACiiigAooooAKimjSeGSJxlHUqw9QeKlooA8d+BUj2S+JNDlPz2d8SB6A8fzFexV454DH9m/HHxlZHgXJ85R/wIn+tex0AFFFFABRRRQAUUUUAFFFFABRRRQByXxLums/hxr0ynDC1YL9TVP4Q2wtfhfooxhpI2dvqWP/ANaq3xquPs/wv1LnHmFI/wAzW/4Cg+zeA9EixjFoh/MZ/rQB0def/Ffxe/hnwybWyOdV1E+RbIvUZ4LV3U88VrbyXEzBIolLux6KAMk14v4Qgf4l/Eq78W3aMdJ0x/KsI26Mw6H+tAHd/DTwgvg/wlBbSDN9cHzrpz1Lnt+H+NdnRRQAUUUUAFFFFABRRRQBz3jLwrZ+MPDtxpd2oBYbopO8b9iK8/8Ahb4rvdK1ObwD4lcpqFmSLSVz/rU/ug9+OR+Vew1578Svh6viyzTUdMf7Nr1n89tOp2l8c7Sf5GgD0KivNfhr8RT4hR9C11fs3iOyJjmikG0y44LAevqK9KoAKKKKAPE/GSnwF8X9L8URApp2qHyLvHTceCfr3r2pWV1DKQVIyCO4rkPiZ4ZHinwRfWaLm6iXzrc+jrzVH4Q+JT4j8C26zt/ptgfss6nr8v3Sfw4/A0Ad/RRRQBxfxF8D2/jfw5JbLtj1CHMlpN0Kv6E+h6H/AOtWN8KPHFxrNpL4e1wNFr2mfu5Fk4aVRxu+vr+fevTa8j+KnhS9sr+Dx54bUpqljg3Uaf8ALaMdyO/HB9vpQB65XjPx0ifS5vC/iuFSX02/AbHcEhxn/vjH416H4L8WWnjHw7BqdsQHI2zRd43HUGsv4taQdZ+GeswquZIIvtKe3lkOf0BH40AdlBOlxBHNGwZJFDKR3BqWuK+Fer/2z8NtFuGbdJHB5Dk9cxnZk/lmu1oAKKKKACiiigAqC5uYbS3kuLiRY4o1LO7HAAFPkkSKNpJGCooyzE4AFeJeJ9d1D4reIj4U8NytHokDZv71fuuB1GfT+dAFaCO4+NXj77VMHXwlpL4RD0nb/wCv39B9a93jjSKNY41CoowoHQCszw9oFh4Z0W30rTYRHbwj8WPdj7mtagAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuR8ZfDzQ/Glvi+g8q8Ufu7uIYkX8e49q66igDwiHWvGnwjnW11qKTWfDgOEuVyWiX69voeK9c8OeKtH8V6et5pF4k6EfMmcOh9GHatW4t4bq3eC4iSWJxhkdcgj3FeR+I/hLe6RqDa98PrxtPvQdzWe7CSewzx+BoA9iorynwl8X4ri9GieLrZtI1hDsJlG2Nz+PQ16orq6hlIZSMgg9aAHUUUUAFFFFAHjZH2D9pksOFu7ADHqdo/wr2SvHPFn+h/tCeF5en2m32/Xkj+lex0AFFFFABRRRQAUUUUAFFFFABRRRQB5d8fGx8M5V/vXcX867zw0oTwtpCjHFlD0/3BXAfH0n/hX0a9mvIs/nXYrq1p4e8CW+p3rhLe1sI3b3wgwB7npQBxPxi8Q3M4sPBGjMW1PV3Am29Y4s9/rgn6KfWu+8LeHrXwt4ds9ItAAkCAM2OXbuT9TXm/wk0i68QavqPxE1lM3N9IyWaN/wAs4xxkfkFHsPevY6ACiiigAooooAKKKKACiiigAooooA84+Inw0j8Ssmt6NIbHxHbYaKdDtEuOgb39D+B46UvAfxSN3c/8I54uT+z9egPl5kG1J/8AA/oe1eqVx/jb4eaP42tD9pj8i/QfubuMYdD/AFFAHYUV4ZYeMPFPwtuU0nxfbTX+jA7YNRiBYqv17/Q16/oniDS/EVil5pV5HcQsM5Q8r7EdqANMgEYPIrxPS8/Dz46T6cx2aT4jXdF2VZSeB9d2R/wMV7bXmPxu8OSap4OXWLIEaho8guY3T7wQfex9OG/4DQB6dRXPeCfEkfivwjp+roRvmiAlUfwyDhh+YNdDQAUxlV1KsoZSMEEZBFPooA8J1W3uvg549Gs2Su/hfVJNtxCvSFj/AIdvyr2pWtNY0vKMs9pdw8Mp4dGH+Bqvr+h2fiLRbnS7+MPBOhU+oPYj3ryj4f61feAvFUvgDxDIfszsW0y5fowJ4XPof0P1oAsfAiaXT4vEPhi5OZtNvm49AflI/NSfxr2OvF7IHwz+0feQfdt9at/MUf3nIBJ/MPXtFABRRRQAVVvr+00yzlvL24jt7aJdzyyNhVFcv4w+JOg+DYilzP8AaL4j93aQHc7H39K89tvDfiv4uahHf+JzLpfh2Nt0NinytKP89z74oATVvEWt/F/WZNA8LmSz8ORNi8v2BBlHp9PRfxPpXrHhjwppfhLRk03S4fLQDLyHl5G/vE1d0jRrDQtOisNMto7a2jGFRBj8T6mptQukstPuLqRgqxRliT9KT0GtWeM6l4w8S6R8Y9O0VdcubjRLi6WIrNBDlicblDKgOAWUetd58R/GJ8IeGrm5tlEl8yHyVPRO28/T07/nXl3xDtJ9J8S/D69EEsty85nkjjGXdzIjso9/mIqz8X/tVyui6I7B9V1i4WS4VefLQHCIP9kZb68mhJuCit72Hdc9+lrnefCybxHq3hmDW/EGtT3Ml0CY7cwxIir2PyoGJ/GvQKo6RYJpWj2dhGMLbxLGPwFXquXxaGcdgoooqSgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOY8XeBtD8Z2Rg1S0UzAYjuY/llj+h7j2PFeXLP44+DkwW4La94XB++c74F/Ur+q/SveKZJGk0bJIqujDBVhkGgDn/CvjPRPGOni50m7WQgfvIH4kiPoy/1HFdHXkfin4QGPUDr3gi7bStVQ7/JRtsch9vTP5U3wv8XZrXUBoXjmzfTNSU7RcMuI5D7+n4cUAevUVHDNHcRLLC6vGwyrKcgipKAPG/iRmP4z+CJgenGP+BNXsleNfFX938S/BMp6ebj9a9loAKKKKACiiigAooooAKKKildoomdI2kKjIRMZb2GSBQBLRXn9r8VtOv8AU77TrXQtbmvLFC9zEsUOYwOvPm4PXtmt3wh4y0rxrpLahpLy7FcxyRypteNvQjJHTB4J60LW/wAn8g2372OO+PoP/CvUfst5Fn865jxTfz+PdU8OeAdLkYWqW8M+pSr0VQgOD9Bz9SK6r4+L/wAWxlbnK3UOPzrzL4WfEPwp4I0+6l1KDU7jV7psSSxwoyrGOiglwfr9B6UAfSllZW+m2EFlaRiK3gjEcaDoqgYFWq8j/wCGivBv/PnrP/gPH/8AHKP+GivBv/PnrP8A4Dx//HKAPXKK8j/4aK8G/wDPnrP/AIDx/wDxyj/horwb/wA+es/+A8f/AMcoA9coryP/AIaK8G/8+es/+A8f/wAco/4aK8G/8+es/wDgPH/8coA9coryP/horwb/AM+es/8AgPH/APHKP+GivBv/AD56z/4Dx/8AxygD1yivI/8Ahorwb/z56z/4Dx//AByj/horwb/z56z/AOA8f/xygD1yivI/+GivBv8Az56z/wCA8f8A8co/4aK8G/8APnrP/gPH/wDHKAPXKK8j/wCGivBv/PnrP/gPH/8AHKP+GivBv/PnrP8A4Dx//HKAPVLyytdQtXtbyCOeBxho5FyDXk2r/B++0e/fVvAWrSabcH5jZu37tvYH/H86l/4aK8G/8+es/wDgPH/8co/4aK8G/wDPnrP/AIDx/wDxygCpY/F7V/DN0um+PtEntZBwLuBMo/vjv+Ga9F0nxR4c8W2Tpp+o2t5HIhWSHcN208EMp5H4155efHvwHqNu1te6VqdzA33o5rSJ1P4F68613V/hNqE4u9JtvEWi3gO5ZLSNNoPrtMnH/ASKAO/+Fs0ngzx7r3gS7c+Q0hubEt/Ev/11Kn8DXtdfE9z4nvbTxHZ6vY63fahc2mPJuL6La4AzwfnbI5PevSdP/aS1eIKNR0KzuMdTBK0RP57qAPo+ivE7f9o/Q3izc6NfxSf3Y3Vx+Zx/KryftFeECoL2WsBu4EEZ/wDZ6APXq4b4l+BY/GugkW5EWrWmZbOYHB3D+En0P6HBrl5f2i/CigeVp+rOe+6KNf8A2c1l3/7SWnx5Gn+H7ib0M1wI/wBADQBxmpeM577UPC+qagDDr2i3Qs74OMFkDcN+r596+oo543gSbICOoYEnsRmvivxr4qHjHX31b+zoLGWRQJFiYneR/Ec9/pWnB4qGr28cPifxX4g+zIoQ2tnApUqOMZMij81NAH0f4j+K3hHw2Xjn1JLm6Xj7Pa/vGz6HHA/GuIPib4ifEgmPw5p50TSH4+2T8Mw9Qf8ADNc74d8ZfB7w2qPb+H9Vurlf+Xi8t45Wz64L7QfoBXaD9ojwYoAFlrAA6AW8f/xygDY8IfCPRvDsw1DUHbVtVJ3NcXPIU+wP9a9ExgYFeSf8NFeDf+fPWf8AwHj/APjlH/DRXg3/AJ89Z/8AAeP/AOOUAeuVi+I/Dtv4m04WN1dXkEG7cwtpQhf2JweK89/4aK8G/wDPnrP/AIDx/wDxyj/horwb/wA+es/+A8f/AMco6DWjPRB4esnutPurlpLq509HWCachmG7GW6dcDGa5y6+Fej3uvRa7c6jq8upREGOdrlcrjpgbcVz3/DRXg3/AJ89Z/8AAeP/AOOUf8NFeDf+fPWf/AeP/wCOULRpk20t5W+R6yi7EVdzNgY3N1P1p9eR/wDDRXg3/nz1n/wHj/8AjlH/AA0V4N/589Z/8B4//jlAz1yivI/+GivBv/PnrP8A4Dx//HKP+GivBv8Az56z/wCA8f8A8coA9coryP8A4aK8G/8APnrP/gPH/wDHKP8Ahorwb/z56z/4Dx//ABygD1yivI/+GivBv/PnrP8A4Dx//HKP+GivBv8Az56z/wCA8f8A8coA9coryP8A4aK8G/8APnrP/gPH/wDHKP8Ahorwb/z56z/4Dx//ABygD1yivI/+GivBv/PnrP8A4Dx//HKP+GivBv8Az56z/wCA8f8A8coA9coryP8A4aK8G/8APnrP/gPH/wDHKP8Ahorwb/z56z/4Dx//ABygD1yivI/+GivBv/PnrP8A4Dx//HKP+GivBv8Az56z/wCA8f8A8coA9coryP8A4aK8G/8APnrP/gPH/wDHKP8Ahorwb/z56z/4Dx//ABygD1yivI/+GivBv/PnrP8A4Dx//HKP+GivBv8Az56z/wCA8f8A8coA9coryP8A4aK8G/8APnrP/gPH/wDHKP8Ahorwb/z56z/4Dx//ABygD1yivI/+GivBv/PnrP8A4Dx//HKP+GivBv8Az56z/wCA8f8A8coA9coryP8A4aK8G/8APnrP/gPH/wDHKP8Ahorwb/z56z/4Dx//ABygD1yivI/+GivBv/PnrP8A4Dx//HKP+GivBv8Az56z/wCA8f8A8coA9crA8UeDtG8X2BtNVtVk4+SVeHQ+oNcF/wANFeDf+fPWf/AeP/45R/w0V4N/589Z/wDAeP8A+OUAYb2fjb4PytNYl9b8MA7njOS0K/zX69K9O8H+PdC8Z2Xm6ZdAXCjMtrJxJH9R6e44rjD+0R4MYEGy1gg9QbeP/wCOV5f4s8T+BL68Gt+E01nRNaRt4MUKLFIfcCT5fw49Qc0Aek/FX5/iX4JjP3fOz+teyV8p6L431Xxv8QvCX9qLG9zaTCPzkG3zRyckdM/SvqeWWOCJ5ZXVEQFmZjgADuaVx2JaK87sPH2oeMdZns/Btpb/AGG1cLcatfKzRE8/LHGpUsehyWHGeOmdez1HxRB4ph0rUodOns5Iml+3WyPF0/g8tmbBznnceO1Ult/X9aEtnW0UUUhhRRRQAVna3qUej6Je6jKwVLeFnJPsOK0a4D4qWHiPW/DUmieH9MNwbvHnTtPHGqLnlcMQSTUzu46FR+LU8u8G3mt6V4M8Q+LI9PGNTlIe/L7jbx5+ZvLHLYznr2r0/wCEPh/SNF8Fw3Gk3pvlvyJpbgjblsYK47YxjFYF7oXi1vhxaeDdJ8PGzWSIQXV3c3UJVVJ+cgKxJ6n8K7rwL4XXwb4Rs9GE3myRAtJJ2Z2OTj2ya0WnMl5L5Ge9n3bfzMb4z2/2j4Yapxny9sn5GvOtM+Ft43hvSfFfg29+zam9uHkt5OUlPcDPrjoeK9a+I9ob34d67AoyzWrY+orN+Dt0Lr4XaPzkxI0Z+oYn+tSUc14Y+KNkt8NE8aaTHpGqKdvmPCBHIfy4/lXqsVvp88SyxQWzxsMqyopBFZnifwdovi6yNvq1okpx8koGHT6GvKpNK8dfCWVrjSHfXfDinL27ZLxL9Oo+oyKAPa/sFp/z6wf9+xR9gtP+fWD/AL9iuY8G/EbQfGsAWyuBDfBcyWcx2yL64Hce4rsKAK32C0/59YP+/Yo+wWn/AD6wf9+xVmigCt9gtP8An1g/79ij7Baf8+sH/fsVZooArfYLT/n1g/79ij7Baf8APrB/37FWaKAK32C0/wCfWD/v2KPsFp/z6wf9+xVmigCt9gtP+fWD/v2KPsFp/wA+sH/fsVZooArfYLT/AJ9YP+/Yo+wWn/PrB/37FWaKAK32C0/59YP+/Yo+wWn/AD6wf9+xVmigDF1zw7Ya1od7pklvCFuYmTcEAwex/A4rzf4K3ixQan4S1KCI3ulTNt3oCxQmvYq8T8eo3gX4qaP4vgUrZX7fZ7wDpnof05oA9j+wWn/PrB/37FH2C0/59YP+/YqVJFljWRGDIwBUjoQakoApS22nwRNLLBbRxqMszIoAHua5iDxj4dvruWDS9OuNU8kfvJbGzEiKckY3cc8Vwnxt1i/vdc0bwfZTNFFfMDPtON+TgAn0r0K51Dw/8NPDVrb3KzW2nQqE82K2eRQeBlyoOCSe/WkmuXmfcbXvcq7DrO70PxhpOpWtnbKCEa3mWSAI0Tlfun0IzXDfApof7I1jQ7iCNpdPvGADoCdpP/1q9B8Kaho2s2t1q2iLN5N5N5jySQPGJG2gZXcBkcDkV514e2+G/wBoPWNO+7DqsHnIO2fvf0ptNadSb32PX/sFp/z6wf8AfsUfYLT/AJ9YP+/YqzRQMrfYLT/n1g/79ij7Baf8+sH/AH7FWaKAK32C0/59YP8Av2KPsFp/z6wf9+xVmigDxf4520MUnhTy4Y03akoO1AM9K9dSxtPLX/RYOg/5ZivJ/jv/AKzwl/2E1/pXsKfcX6CgCD7Baf8APrB/37FH2C0/59YP+/YqzRQBW+wWn/PrB/37FH2C0/59YP8Av2Ks0UAVvsFp/wA+sH/fsUfYLT/n1g/79irNFAFb7Baf8+sH/fsUfYLT/n1g/wC/YqzRQBW+wWn/AD6wf9+xR9gtP+fWD/v2Ks0UAVvsFp/z6wf9+xR9gtP+fWD/AL9irNFAFb7Baf8APrB/37FH2C0/59YP+/YqzRQBW+wWn/PrB/37FH2C0/59YP8Av2Ks0UAVvsFp/wA+sH/fsUfYLT/n1g/79irNFAFb7Baf8+sH/fsUfYLT/n1g/wC/YqzRQBW+wWn/AD6wf9+xR9gtP+fWD/v2Ks0UAVvsFp/z6wf9+xR9gtP+fWD/AL9irNFAFb7Baf8APrB/37FH2C0/59YP+/YqzRQBW+wWn/PrB/37FH2C0/59YP8Av2Ks0UAVvsFp/wA+sH/fsUfYLT/n1g/79irNFAFb7Baf8+sH/fsUfYLT/n1g/wC/YqzRQB4z4ogim/aC8MQxRIgt4N5CqB3J/rW/8bdQubD4Z3xtiVMzJE7DsrMAf8KwlJ1D9piQAZjs7Ec+h2j+teq6tpVnrel3GnahEJradSrp7f41M9VoVB6nKfCHS4NK+GekCJQGuYzcSMP4mY/4YH4V24KM5wVLLwfUVxmheCtV8N2P9maZ4lcaashMUVxaCSSJD/CH3D35x3rqrCxj0+38qNnck7nkkOWdu5JrSTTbZnFWVi5RRRUlBRRRQAUUUUAFFFFAdSjrEAudGvoCMiSB1x/wE15r8AZz/wAIPd2Mhy9pfSKfYED/AANerMoZSp5BGDXjvwhY6V478a6A5+Zbj7Qq+g3H/wCLFAHslFFFAHm3jL4RaT4hnOp6VI2ja0h3pc2vyqzerAY59xg/Wuc0/wCI3ijwFeR6R8QbB57XO2LVYBncPfoG/Q+xr2yqeo6ZZavZSWeoW0VxbyDDJIuQaAI9K1jTtcsUvdMu4rq3ccPG2cex9D7GtCvF9V+GOu+Dr19Z+Ht9Iq53SadI2VYegz1+hra8I/F6x1a6Gk+IIDo+sKdpjm+VHPsT0oA9OopqsGUMpBBGQR3p1ABRRRQAUUUUAFFFFABRRRQAUUUUAFcp8RPDKeK/BV/pwA88J5kJ9HXkV1dFAHnfwb8Str3giK1uSft+mN9lnVvvYH3SR9OP+A16JXiMB/4V38djCf3ekeJF+Xsqyk8fjux/33Xt1AHnPxH8C32vahpfiHRXj/tbTHDLDKcLMoOcZ7Gsj4iWvi3x54bsdGsPDd5YPLcI9291PD5agA8ZVySA2D93t0r12ilbS3S47u9+tijpGmw6Po1npsCgRWsKxKB6AYryb4tD+wfH3hHxOoKok4hlI/i5zz+Fez15v8btKOo/Di6nRcy2TrcKfQA8/pVNtu7JirKx6MCGAIOQeQRTq53wLqq634H0a/DbjJaqrH/aX5T+oNdFSGFFFFABRRRQB458d/8AWeEv+wmv9K9hT7i/QV498d/9Z4S/7Ca/0r2FPuL9BQA6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiobmdLa1muJDhIkLt9AM0AeQ/D0nUvjT411A8rA/ko3tuI/kK9krx74DQPcafr2szcyXl82G9QP/r17DR1DoFFFFABRRRQAUUUUAFFFFABRRRQAV4zF/wASL9pZkPyx6vZEk9idpOPzQV7NXjHxnH9h+KfCHipflW1vBHKR/EMhsfkrfnQB7PRTQQwBBBB6EU6gAooooAK5Txd8P9B8aWpTUrULcgfu7qIbZFP17j2NdXRQB4X9o8d/CJ8XAfX/AAyp/wBYMmSFffuv48e9en+FPG+heMbTz9Ku1aRR+8t3O2SP6r/WuiZVdSrAFSMEEcEV5f4r+DlrdXv9s+ErptD1hDuBgJWNz9B938OPagD1OivGdG+K2r+GL9NE+Itg9rNnbHqMSfI49SBwfqPyr1yyvrXUrSO6sriO4gkGUkjYMp/EUAWqKKKACiiigAooooAKKKKACiiigDzb40+Gm1zwTJf2oIvtJb7XEy/e2j74H4c/VRXQ+AvEieLPBunaqGHnPGEnA/hkXhv1H5V0kiJLG0cihkYEMrDII9DXi/w3dvA3xK1zwROWFncubmwLHqOw9yVx/wB8mgD2yiiigArO13T49V0K/sJV3JPA6EeuRWjRQB5P8BL95PCN9o85/wBI0y8aNl/ug9P1Vq9YrxfwUf8AhG/jx4l0M/JBqUX2mEf3mGG/rJ+Ve0UAFFFFABRRRQB458d/9Z4S/wCwmv8ASvYU+4v0FePfHf8A1nhL/sJr/SvYU+4v0FADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5f4i6iNJ+Huu3ZO3Fo0YPu/yD/0KuoryX4+38g8Jadotuf9I1S+SML/AHlXqP8AvpkoA2vgzpx074Y6XuGDOGnz6hjkV6BVDRrGPTNFsrGIYSCFIwPoKv0AFFFFABRRRQAUUUUAFFFFABRRRQAV558adGbV/hrqLRruls9t0vsFPzf+O5r0Oq17aRX9hcWc67op42jdT3BGDQBgfDzWh4g8AaLqG7dI1sscp/20+Vv1U11FeO/Ai7lsLfxB4TumzPpV82AfQkqcf8CQn8a9ioAKKKKACiiigAooooAzNa0LTPENi9lqlnFcwP8Awuuce4PY15Je+BPFfw4upNU8D3cl7pud0umzHcce3r9ete3UUAee+Dfivo/idxY3udM1dfle2n+XJ/2Sa9CrifGXwy0LxghmliNpqI5S8gGGB9/WuCi8SeNvhRMtr4ltpNY0DdtS+i5aMdsn+hx9aAPc6KxfDvijR/FVgLzR76O4j/jUHDxn0ZeoP1raoAKKKKACiiigAooooAK8g+NWlz2LaR4109T9q0qZVmK9WjJyPw6j/gVev1n61pcGtaNe6bcgGG5iaNsjpkcH8DzQAaJqkGt6LZ6lbMGiuYlkBHuK0K8g+C2qT6dJq3grUGIutLmYxBjyUzXr9ABRRRQB4v8AEsnw78XfBviZRtjmf7JM/opO05/4DI35V7ODkA15f8etJa/+HT3kYPmadcxzgr1wTsP/AKFn8K7jwrqw1zwppWqA83NtHIw9GKjI/OgDZooooAKKKKAPHPjv/rPCX/YTX+lewp9xfoK8e+O/+s8Jf9hNf6V7Cn3F+goAdRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXivjA/8JT8e/Duhp89vpMf2qYf3W+//AEj/ADr2d3EcbOeigk14z8HlPiLxv4u8ZSDck1x9mtn/ANnOcf8AfIjoA9pooooAKKKKACiiigAooooAKKKKACiiigAooooA8W1E/wDCGftCW14PksPEEAR/7ok6fnlQf+B17TXl3xy0aS78I2+tWi/6ZpFws6sOoUkZ/ULXb+FNch8R+F9P1SI5E8Klh6NjkUAbVFFFABRRRQAUUUUAFFFFABUM0MVxC8M0ayROCrI6ghgeoIPWpqKAPIfEXwglsdQOu+Ab59I1JfmNsrYik9h6fQ5HsKXw58X5bK/XQ/Hdg2lakvyi524ik9z6fUZH0r12sPxH4U0fxVYNaatZxzqR8r4w6H1B7UAa0E8VzCk0EqSxOMq6MCGHqCKmrwyfw742+FU7Xfhyd9Z0AHdJZScsg+n9RXe+DfiZoPjCMRQy/ZNQH+ss5ztcHvj1oA7aiiigAooooAKKKKAPFPiPFJ4L+JOi+NrVCLa4YW96F7jp+o717NFNHPDHNEweORQysOhBGQa57x54bj8VeDdQ0xlBkaMvCT/C45Brm/gt4kk1nwb/AGbdsRqGkyG2lVuu0fdJ/Ij8KAPSqKKKAMjxNpY1zwxqmlkAm6tZIlz2YqQD+Bwa4L4C6qb3wAbGQnzNOuXgIbrgncP/AELH4V6pXi3w7B8O/GPxb4cb5YrhjdQL2AzuH6Ov5UAe00UUUAFFFFAHjnx3/wBZ4S/7Ca/0r2FPuL9BXj3x3/1nhL/sJr/SvYU+4v0FADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA4r4q6//wAI78PtSuI3K3EyfZ4cddz8ZH0zn8KT4UeH/wDhHvh1pduybZ7hPtU3GCWfkZ9wu0fhXF/FBz4v+I/hzwZAS0McgubvHYf/ALO6vaFVUUKoAUDAA7CgB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFXULGHUtOubG4XdDcRtG49iMV5J8Gb6bRNW13wPfNiWxnaS3B7rnnHr617LXivxOt5fB3j/RvHVop8l3FvegcAjpz9RQB7VRUNvcRXdtFcQOHilQOjDuCMg1NQAUUUUAFFFFABRRRQAUUUUAFFFFABXnnjP4TaP4mY39iTpesKdyXVuNoLf7QH8xz9a9DooA8Qs/Hniv4b3cel+OrOS704nbDqcA3ce57/AE4NeuaLrumeINOS/wBKvIrq3f8AijbOD6EdQfY1avbG11K0ktL23iuLeUbXilUMrD3BryHWfhTq3hfUX134dajJaTfek053ykg9Bngj2b8xQB7PRXlnhT4w217djRvFVqdE1lTtYSArE59ifu/jke9eoI6yIHRgykZBByCKAH0UUUAFeJXH/Fu/jtDKP3ekeI12N2VZSQP/AELb/wB9mvba86+MnhhvEPgS4nt1P27TT9rgK/ewv3gP+A5P1AoA9Forkvh14nHi3wTp+pMwNyE8q5HpIvB/Pr9DXW0AFeL+OgfDnxv8Ma8Dsgv0FtMf7zfdx+qV7RXlPx6055fBtpq8C5uNMu1lU/3Qep/MLQB6tRWX4e1BNW8Paffo25Z7dHz6nHNalABRRRQB458d/wDWeEv+wmv9K9hT7i/QV498d/8AWeEv+wmv9K9hT7i/QUAOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACq19eRafYT3k7BYoI2kYn0AzVmvK/jZr01toNr4csDnUNYlEQVeojzz+Z/lQBm/B20l8ReINf8c3iktdTGG2J7L3x6cYH4mvZqwvCWgReGfC2n6REP9REA59XPJP51u0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXP+MfD0XinwrfaTKBmaM+WcfdcdCK6CigDy34KeI5b7w9ceHdQYjUtGkMLKx5KZ4P4HI/KvUq8R8ewv8OfiXpvjazQjTr9/s+ooo456n6kDI91r2mKaOeJJonV43UMrKcgg9CKAJaKKKACiiigAooooAKKKKACiiigAooooAKKKKAOa8WeBtD8Y2hh1O0Uygfu7hBiRD7GvMDF45+Ebloi+veGlPKnJeJf6fyr3SmsoZSrAEHgg96AOX8I+PtC8ZWu/TrkLcqP3lrIcSIfp3rqq8w8XfB+x1W6Or+G5zoutId6yQkrG7e4HT6j8jWLpfxQ13wdfx6J8Q7CSME7YtTiXKyD1OOD9R+QoA9pprKrqVYAqRgg96rafqNnqtlHeafdRXNvIMpLEwZT+Iq3QB4l4DY+AvivrHg6UlNPv2+02OenqAPw4/wCA17bXkfxt0iaCx03xhp6kXukTKXK8Exk9/YHj/gVej+HtYg8QaBY6rbsDHcxK/wBD3H50Aatc/wCNdLXWvBer6ewz5tsxA9wNw/UV0FNIDKQRkHgigDzf4H6ob/4eQW0jfvrGVoGX0APFelV4x8Kj/YHxH8XeGGJCeb58QPfnt+Br2egAooooA8c+O/8ArPCX/YTX+lewp9xfoK8e+O/+s8Jf9hNf6V7Cn3F+goAdRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAMd1jRndgqqMknoBXivhAH4h/FzUfFMoLaXpX7izDDgt0BH8/xroPjN4pm0fw1HounZbVdYf7NEq/eCHAYj65C/ifSun8CeF4fCPhOz0uMDzggedx/HIeSaAOmooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDC8XeG7bxb4ZvdGueBOnyPjlHHKt+BxXB/BnxLdfZLrwZrOU1XRWMSKx5aIHAA9dvT6ba9Zrxz4raRd+G/EOn/ABC0aI+bbMI79E/jToCfw4/KgD2OisvQdatfEWi2up2UgeC4QMMdj3BrUoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACs/VtH07XLCSx1K0iubaT70ci5H1HofetCigDxK/+HfibwBeSat4AvpZrQndLpczbgw9Bng/z966bwf8XNJ8QzDTNWQ6PrKna9vcfKrN/sk/yP616PXHeMfhvoXjKAtdQeRegfu7uEYdT7+tAHSapp8Gr6VdafcKGhuYmjb6Eda8p+DOoT6NqWteB9QYiewmaS3Dd0J5x+hrPi1fxx8JpVt9YifXPDoO1LlMl4h9e30NZnizxRpS+LdC+IXh65WSIuLe/iHDqP8AaHbjigD6GoqG3uIru2iuIHDxSoHRh3BGQamoA8X8T48N/tAaDqnKQ6pF5Dntn7uT+de0V5F8erEjw7puuRZWTTrxGLDrtJx/OvUNKv01PR7K/jI23MCSjH+0Af60AXaKKKAPHPjv/rPCX/YTX+lewp9xfoK8e+O/+s8Jf9hNf6V7Cn3F+goAdRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVBc3MVnbS3M8ixxRKXdmOAAOpqevIPi54hutVurXwFoRL3+osBclD/AKuP0Ppnv7ZoAzvA9vN8SPiVe+OL9G/srTm+z6bGw4JGcH8ASx929q9wrH8NaBaeF/Dtlo9ooEVvGFLY++3VmP1OTWxQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVWvrK31Gyms7qMSW8yGORD0INWaKAPD/Bt7P8MfH9x4N1KQ/wBkX7mXT5n6AnoP6H3r3CuK+JPgmLxn4caOLEepW3720mHUMO2fQ1mfCjxvL4h0uXR9WzHrmmfu50f70ijgN9ex/D1oA9IooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACioLgSmCTyGjWXadrSKSoPuARkfjXlnh34p6pc/EMeGdctrKO3nDraXUEbp5rAkA4Zm4JVh9cULV8oPRXPVZYo54miljV43GGVhkEehFePeO/gZYarHNfeGnFhdkbntTnype/H90/p9K7nWdS8SQ+K9O0zSv7LNrco0krXEUjSRKuMnhwDknj6V1a52jdgnHOKFqHU8x+CXiGbU/Cc2jX5I1DRpjbyI33gnO3P0IYfgK9QrxHVf+LefHO01Nf3ekeIF8mf+6shIGfQfNsOfdq9u6igDmPiDpP8AbngPWLFV3SNbs0Y/2gMisT4LauNW+GWngtuktGe2c+4OR+jCu/kjWSJ42+6wKn8a8c+DUh0bxf4w8LSDb5Nz9ogT0TcR/JkoA9mooooA8c+O/wDrPCX/AGE1/pXsKfcX6CvHvjv/AKzwl/2E1/pXsKfcX6CgB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFRTTx28LzTOqRRqWd2OAoHUmgDD8aeKbXwh4ZutVuGBZF2wx55kc9AK4j4ReF7oi58aa6C+raoS0W8cxxn+Wf5fWsGBZvjL8QjcyK48K6O+I1PSd//r/yxXuSRrFGsaKFRQAqgYAAoAkooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvHvid4X1DQdYi+IPhhcXlpzewKOJY+7Ed+OD7fSvYaY6LIjI6hlYYIIyCKAMPwh4qsfGPh+DVbFsBxiWIn5on7qa368J1mzvPg14yOu6XE8vhXUpALq3XkQMfT9SPbjtmvatM1K01jToL+xmWa2nQOjqcgg0AXKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMnxHfnTtCuZl5lZfLjHqzcAV5Z8YfCMth4U0nX9MO2+0EpukUfMy5Hzfg2D+Jr0TxL4f1LXLrTpLLWEsYbSYTtC9p5wlYHIyd64HtW1dWMWoabNY3qiWKeIxSjGAwIweO1J3XvLcaetnscl4C1X/hLTN4pMZRJ4Y7eFT/CFGX/8fZh+FdxWR4b0K38NeH7LSLUlorWMJvIwWPcke55rXq52v7pMdtTgPi94WPifwHdrAm69sf8ASrfHUlR8wH1XP44q78MfE/8AwlfgexvZH3Xca+Rc+u9eCfx6/jXYkAggjIPavE/CB/4V/wDGPVPC8n7vTNW/0iyz0BPIA/DK/wDAakZ7bXi2qH/hGf2kNNu8bLbWrXyXb+8+CAPzWP8AOvaa8d+PVtJZ2Xh/xLbpmfS79TkdgcMP/HkUfjQB7FRVezuY7yyguYm3Ryxq6n1BGasUAeOfHf8A1nhL/sJr/SvYU+4v0FePfHf/AFnhL/sJr/SvYU+4v0FADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8Z+I/iW+8Wa/H8PfC77pJW/wCJjcqeI07rn27/AICtz4n/ABBfw/FHoGiA3HiC/wARwxxjcYg3G4j19BV/4a+Ak8F6K0l1ibWr395eTk5OTzsB9B3Pc5PpQB0Phfw5ZeFNAttJsEAjhX5mxy7d2Pua2qKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAKep6baavps+n30KzW06FJEYcEV4npl5ffBfxWdI1F5J/Cl9IWt5jz5JP+efWveKyPEXh/T/ABPo82malCskMo4OOUPYj3oA0be4hu7eO4t5FlhkUMjqchge9TV4VoOvap8IvES+GfEsjzeHp2/0K+IyI/r7eo7da9wiljniWWJ1eNwGVlOQR60AS0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAdQryj426JM+j2XijT1Iv9GmEhZepjz/IH+Zr1equoWUOpafcWM67oZ42jcexGKAKPhjW4fEfhux1aAgrcRBiPRu4/Osf4oaR/bfw31u0VcyLbmdPXMZD8fXbj8a4n4P3s3h3xBrfgS/Yh7WVprXPde+Pw5r2KWJJonikUMjqVYHuD1oA4n4Q6v/bHwz0h2bMlvH9mb1+Q7R+gFd1XjPwOlk0nUPFHhSZjvsL0sufTJU4/75z+NezUAeOfHf8A1nhL/sJr/SvYU+4v0FePfHf/AFnhL/sJr/SvYU+4v0FADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArifiH4/tPBelYTE+qXA221sOSSe5HpU3j3x5YeB9J8+Uia+myttaqfmkb1PsK5H4feA7/VNTPjbxnmfU7j57a2kHEC9jjsfQdqALXwx8CXFnNJ4u8TZn169y6+ZyYFP8jj8hXqlFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAY3iTw1pvivRptM1OASQyD5WH3o27Mp7EV5Fouuax8HtdTw74leS78NztiyvwMiMeh9AO69u2RXu1ZWv6Bp3ibSZtN1S3Wa3kHQ9VPYg9jQBft7iG7t47i3lSWGRQyOhyGB7g1NXgsVx4h+Cmqi3uTNqfhCd/kfq0Gf5H9DXtWkaxYa7psWoabcJcW0oyrKensfQ0AaFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB4x8WrWbwv4t0Px3YpgQyrBeY43L2z7Y4r1+0uob6zgurdw8M8ayRsO6kZBrL8W6BD4m8L3+kzY/fxkIf7rdj+dcR8ENemuvDd14dvzjUNFmMLKTzsJOPyIYflQBlNnw1+0jj7tvrdqCF7Fscn81b869orxz43wPpuoeGPE8Q2mzuxFK/8Askggf+hV67bzrcWsU6fdkQOPoRmgDyL47/6zwl/2E1/pXsKfcX6CvHvjv/rPCX/YTX+lewp9xfoKAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcV8QPiHp/gfTcti41OYYt7VT8zH1PoKzviB8TYfDbjRtGi+3+IJ/kjgjG4Rk929/aqHgP4aTw6iPFPi+U32vSHzESQ7lgP8AiP0oAqeA/h7qOq6t/wAJn45JuNTmIe1s3Hy269QSOx9F7dTz09goooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAK19Y2upWUtneQJNbyrtdHGQRXi2q+GfEXwo1GXXPCjSXuhE7rrTmJOwdyPYeo6V7lSEAjB5FAHM+DvHGkeNdNFzp8wWdQPOtnP7yI+hH9a6evJ/F/wAKZBqZ8R+Cro6ZrCHe0CHbFMf5An06H2p3g34spcX48P8AjC2Oka5Gdm6UbY5T9T90n8j60AerUUgIIyDkGloAKKKKACiiigAooooAKKKKACiiigAooooAK8R8SA/D3426dr6fJpWuj7PdY+6rnAJP47G/A17dXD/Fbwv/AMJV4CvraNN15bD7Tbccl0GSB9V3D8aAE+LekDW/htqkarukhUXEf1X/AOsTVj4Xauda+HekXLNukWLypD/tLxVD4b6+njf4axx3L77pIWsrvPJ3BcZP1GD+Nc98Cbl7S31/w7Mdr2F4Sif7JJyf5UAN+O/+s8Jf9hNf6V7Cn3F+grx747/6zwl/2E1/pXsKfcX6CgB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVjeIvE+keFdNa/1e8S3iH3VPLOfRV6k0AazusaF3YKqjJJOAK8h8VfEzUdc1R/C3gKI3V6+UmvV+5COhwenHrWU974v+M1w0Ngk2ieFA2Hnbh5x6e/0HHqa9V8K+D9I8HaWtjpVsEB5kmbmSU+rH+nSgDA8BfDKy8JA6heyfb9bm5lupOdpPULn+degUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcv4v8CaL40svJ1O3xMo/dXMfEkZ9j6e1dRRQB4Ul743+EEgivFfXvDIOFkGS8K/X+H9R16V6p4Y8Z6J4usludJvEkOMvCxxInsVrdljSaNo5EV0YYZWGQR9K8t8T/ByB7w6x4Qu30fVVO4LGxEbn+lAHq1FeMaZ8VtZ8J3i6T8QdMlgYcLfxJlXHqcdfwr1fSta03XLNLvTbyK6hYZDRsDQBoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB4j4c/4t78ar/Qm/d6TrY861HRVY5IA9P4h+AqbTAPDX7Rl9bfcg1i33+xbGcfmK1fjZoM134dtvEFgCL/RpRMrL1KZGfyOP1rkPG+uR3n/CCePrY8iVYptvZupB/KgDf+O/+s8Jf9hNf6V7Cn3F+grxz46Osn/CIuhBVtSUgjuOK9jT7i/QUAOooooAKKKKACiiigAooooAKKKKACiiigAoopCcDJ6UALTHdI0Z5GCooyWJwAK4jxb8VfDvhTdA0/23UOgtbY7mz7+lcOml+Pfiqyy6pK+geH2OVgTIeRfp1P48UAbvi34vRW17/YnhG1Osaw/ygxjdHGfw6/yql4e+E17rOorr/wAQLxtQvW+ZbPd+7j9j/gOK77wp4H0LwfaiLSrNVkI+ed+ZH+prpKAIYIIraBIYY1jiQbVRRgAegFTUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAUdT0qx1iza01C0hurduqSoGH4eh968p1T4OX+h3jat8Ptam025HzGzmcmN/bPP5MD9RXslFAHjFj8YNY8N3Sad8QfD9xYyZ2i9t03Rt74yQfqpP0r1LRfEWkeIbUXOk6jBdx4yfLflfqOo/Grd9YWep2r219axXMDjDRyoGB/A15frPwRsFuzqHhPUrnRL0HKiNyY8+3cfgaAPWqK8T/4Sn4n+BPl8QaUuu2C/wDLzb/fA+oHX6g11egfGLwjrhWJ71rC6PBhu128+men8qAPQaKhguIbqISwTRyxno0bBgfxFTUAFFFFABRRRQAUUUUAV7u1hvrKe0uFDQzIY3U9wRg18wX1nNpWieLPAt2T5lhJ/aFi3qqnLbfqv8q+p68P+OeiPYXWneLrSPPln7NdgdGQ8DPt2oAxPGeqjW/AXw5vQ2WN0kbeu5MKc/8AfNfRKfcX6Cvj2w1ZbnwtomleZvNjrwZT/sOBj9Vb86+wk+4v0FADqKKKACiiigAooooAKKKKACiisbWfFOh6BEX1TVLa2A7M+W/Ic0AbNISACScAdSa8g1L43JeXBsfBuh3WrXRO0SMhEYP0Hb8RVIeCfiN45IfxVrh0uwfk2dqcHHoQOM/XNAHW+Kfi94W8Ms0H2o6hfDgW1nhzn0LdB+efauPZvid8TTtVD4X0J+pYkSuv6Mf/AB0H1Nd/4W+GnhjwntksrBZbsdbq4+eQn2J6fhXY0AcJ4S+FHhrwkFmitvt1+OTd3QDNn/ZHQfz967uiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAaQCCCMg9Qa5bXvhx4U8SKxv9JhEp/wCWsI2OPxFdXRQB41P8Hdc0OUz+DfFlzaY6QXBJUewPP8qiPiv4reEhjWvD0er2q9ZrbkgepK5/WvaqKAPKdM+PPhm4xHqlve6ZNnBEsRYZ+ort9J8aeHNcwNO1mznY/wACyjcPwq3qXh7RtXUjUdKs7rP8UsKsfzxmuH1b4GeCtRBaG0uNPkPO61mPX6Nu/SgD0lXVxlWDD1BzT68bb4L67pp3aB4+1K3A+7DMGK/jhsf+O03+yvjZo2BDq2l6sg6B8A/jlV/nQB7NRXjX/CbfFvTP+Ql4Gt7lR1Nq/J/75d6cvxr1q341H4d6xbkfeK7yPrzGKAPY6x/E2iQeI/Dl9pNwMpcRFQfQ9j+decD9oPQof+P/AEHW7YjqPJQ4P4sKlj/aH8GyL81tq8Z9Gt0/o5oA+drO1udL8VwaZcjbJDqEaSL/ALSvj+pr7hT7i/QV8gePPEvh/WviBB4h0ZblYHeOS5jljCtvUjJHJHIA/KvaF/aD8GBADHqmQP8An3X/AOLoA9ZoryE/tEeESxSPT9adui4gj5/8iZpjfHiOb/kH+D9ZucjjKYyfwBoA9horxs/FfxvqJ26V8OL1M/de5ZwD+aKP1pP7V+N2qf6vRNK01D0ZmUkf+Pt/KgD2Wqt1qNlZRNLdXcMKL1Z3AAryMfD/AOKOtf8AIb8dpaKT0sgcgf8AAQn86sW3wB0eVxLreu6tqcoOctIEB/Pcf1oA6PVfi/4K0ncr6zHcOP4bYGXn04rlZvjVqWsTG38JeE769kHHmSqQB74H9a7bSvhl4N0YD7LoFozD+OcGUn3+bNdVDDFbxCOGJIkHRUUKB+AoA8bOh/FzxWc6jqtvodq3WOE/Nj0wMnP5Vr6P8DvD1tKtzrM91q911LXDnafwr1KigCjp2kadpMAh0+ygtowMYiQCr1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU0qrdQD9RTqKAIjbwt1hjP1UVBJpdhM26Szt2b1MYq5RQBnnRdMbGbC1ODkfuhS/2Npv/AD4W3/foV5GNQ17V/jdceG7DxFqSaTbRma7CyLlOM4U7eBlkFdzpmk3/APwkVtf2fiS/vdJRZYp4LiRXBkU4BBAGe/5UR1Sfk/wB6Nr0/E6pLO2jUKlvEoHQBBxUoijXoij6Cn0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVLVtQi0rSbu/nYLHbxNIxPbAq7WN4h8Oaf4o07+z9S+0G2Jy0cM7Rh/ZtpGR7Gk07WQ09bs8e+EvhWPxVZ6/4o1JruK41G4eOCS3upIWQcknKEZGSvXI+XpXrfhW3stJ0W30SzuUnbTo1gmKc4cDnJ6Z7kdazbL4b6Fpumtp1nNq1vZEMDBFqUyoc9eA3etnw/wCHNM8LaULDS4DFbhy53OXYknJJJ5NU3sltp+BNt299fxNiiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//Z'] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 4 "如图所示, 在平面直角坐标系 $x O y$ 中, $A, B$ 与 $C, D$ 分别是椭圆 $\Gamma: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a>$ $b>0)$ 的左右顶点与上下顶点. 设 $P, Q$ 是 $\Gamma$ 上且位于第一象限的两点, 满足 $O Q \| A P$, $M$ 是线段 $A P$ 的中点, 射线 $O M$ 与椭圆交于点 $R$. 证明: 线段 $O Q, O R, B C$ 能构成一个直角三角形. " ['设点 $P$ 坐标为 $\\left(x_{0}, y_{0}\\right)$. 由于 $\\overrightarrow{O Q}\\|\\overrightarrow{A P}, \\overrightarrow{A P}=\\overrightarrow{O P}-\\overrightarrow{O A} ; \\overrightarrow{O R}\\| \\overrightarrow{O M}, \\overrightarrow{O M}=\\frac{1}{2}(\\overrightarrow{O P}+$ $\\overrightarrow{O A})$, 故存在实数 $\\lambda, \\mu$, 使得 $\\overrightarrow{O Q}=\\lambda(\\overrightarrow{O P}-\\overrightarrow{O A}), \\overrightarrow{O R}=\\mu(\\overrightarrow{O P}+\\overrightarrow{O A})$. 此时点 $Q, R$的坐标可分别表示是 $\\left(\\lambda\\left(x_{0}+a\\right), \\lambda y_{0}\\right),\\left(\\mu\\left(x_{0}-a\\right), \\mu y_{0}\\right)$. 由于点 $Q, R$ 都在椭圆上, 所以 $\\lambda^{2}\\left(\\frac{\\left(x_{0}+a\\right)^{2}}{a^{2}}+\\frac{y_{0}^{2}}{b^{2}}\\right)=\\mu^{2}\\left(\\frac{\\left(x_{0}-a\\right)^{2}}{a^{2}}+\\frac{y_{0}^{2}}{b^{2}}\\right)=1$.\n\n结合 $\\frac{x_{0}^{2}}{a^{2}}+\\frac{y_{0}^{2}}{b^{2}}=1$ 知, 上式可化为 $\\lambda^{2}\\left(2+\\frac{2 x_{0}}{a}\\right)=\\mu^{2}\\left(2-\\frac{2 x_{0}}{a}\\right)=1$, 解得 $\\lambda^{2}=$ $\\frac{a}{2\\left(a+x_{0}\\right)}, \\mu^{2}=\\frac{a}{2\\left(a-x_{0}\\right)}$.\n\n\n\n因此 $|O Q|^{2}+|O R|^{2}=\\lambda^{2}\\left(\\left(x_{0}+a\\right)^{2}+y_{0}^{2}\\right)+\\mu^{2}\\left(\\left(x_{0}-a\\right)^{2}+y_{0}^{2}\\right)$\n\n$=\\frac{a}{2\\left(a+x_{0}\\right)}\\left(\\left(x_{0}+a\\right)^{2}+y_{0}^{2}\\right)+\\frac{a}{2\\left(a-x_{0}\\right)}\\left(\\left(x_{0}-a\\right)^{2}+y_{0}^{2}\\right)$\n\n$=\\frac{a\\left(a+x_{0}\\right)}{2}+\\frac{a y_{0}^{2}}{2\\left(a+x_{0}\\right)}+\\frac{a\\left(a-x_{0}\\right)}{2}+\\frac{a y_{0}^{2}}{2\\left(a-x_{0}\\right)}$\n\n$=a^{2}+\\frac{a y_{0}^{2}}{2}\\left(\\frac{1}{a+x_{0}}+\\frac{1}{a-x_{0}}\\right)$\n\n$=a^{2}+\\frac{a y_{0}^{2}}{2} \\cdot \\frac{2 a}{a^{2}-x_{0}^{2}}=a^{2}+\\frac{a^{2} \\cdot b^{2}\\left(1-\\frac{x_{0}^{2}}{a^{2}}\\right)}{a^{2}-x_{0}^{2}}=a^{2}+b^{2}=|B C|^{2}$.\n\n从而线段 $O Q, O R, B C$ 能构成一个直角三角形.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAfYCWAMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACig0mR69KAFopAQehpaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoNFI3SgBAy7wmRuIzjPOKdXm+r+LY7T43aJohKgSWE0bHPAZyrr+OYgP8AgVejD0otcL2GzIJIWQ7sMMHaxB/AjkfUV4r4IEGneM/iDo11c3TWTKNxeZnlbI24DklicPgHrz9K9Q8SeLdH8JxWsurztDHcy+UjBSwB98dq5Hwr4OW48da14xnZxbXjqLODoHUADzGHccZAojq7+THLRW80dX4I0R/DnhHTtKkleR4IgGLtkgnnGfQdK6GkFLQ30El1CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApG6UtFAHzd4i8LeLb/AOKD+J7a0PnRyte2lsW/eSRWzxIcDtu3AgdxmvoyBxJEkgBAZQcEYP8An2rCuf8Ako2l/wDYJvP/AEdbV0VAFa6srW9VVuraG4VDkCRA2D6jPQ1YUADgADpxS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAc7c/8lG0v/sE3n/o62roq525/wCSjaX/ANgm8/8AR1tXRUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHO3P/JRtL/7BN5/6Otq6Kuduf+SjaX/2Cbz/ANHW1dFQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAc7c/8AJRtL/wCwTef+jraty7uobKzmurlxHBEhd2PQAdaw7n/ko2l/9gm8/wDR1tWX8W1vH+GesCyDmTywWCZztyM4xUydldFRV3ZmBofizXPiVq9yNFnOleH7Rgsl2qgzztnomeFBHrXTLpHiDT/FGnfZ9aurrR3Lm6S5Ad1YIdoDAD5SSM57gVkfBKC2h+Gdg1uUZpGdpSv97POfeu/huoJ5ZYopA7RHDgc7T6GraUWrEJ8ydyYdaWiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooADWFrXi/QPDs6RavqkNm7jKiQHmt2vBfjZqsGoeN/D+gT7zZWp+2XmyMuVTqxwOSAisaX2kimr3Z67pvjDw/q979isNUhmugofyuQ2D0OCK3BXiWlaZcfEH4nWXjLSYxbaBYjyknLAPOU4OE6r+PYCvbRVNWRCeotFFFIYUUVBc3dvZwtLcTxwxqMsztgAfWgCeivP9Z+MngzRyyDVBezD/AJZ2imTJ9MjiuZPxj8Q66SvhTwXfXKHjzplOF9+Mj9aAPZqa7BF3MwUDqTXjf2P406+P311Y6KjdNpXIH4FqVfg1r2pOJNc8cX0h7pbltp/UfyoA9Tude0izXNzqlnGB13TL/LNYl18TPBlmxWXxDZBgOgYmuYtvgH4TRg93NqN3J3MkwAP4Yratfg/4FtR/yAopT6yMxP8AOgCCf40+B4dw/tUybf8AnnGTn6VRk+PXgeMgfab18/3bcnH611cPgHwpBgRaDZDb0zHn+dXIvDGgw5CaLYAH/p3Q/wBKAPLpvjd4PfxdY6kJL77NDYXFu3+j873khZeM9MRtWx/wvjwLchonlvNjDBEltwR+db9xoWkD4gabENKsfLbS7tyv2dMFhLbgHGOvJ/OtyXwzoUqbX0awIz2t1H8hQB5RYeKvhXbzTSadquo6Yty++SG3nlhQn1KqcV22k/ETwFFbR21jrtjEg+7Hyv58da1ZvAvhackyaDZNng/uwKyrn4R+BroHOgW6E/xRsyn+dAPU6K28R6LejNtq1nIPaZa0o5ElXdG6svqpzXmN18BfB0rb7cX9tJ2Mc/A/MVmSfBLUrFvM0TxrqMJH3UlJKj8if5UAeyUV4z/Y3xk0H5rTV7LWUB4WQjp+O2k/4Wv4x0A48T+CrpYl63FuDtP04x+tAHs9Fec6R8bPBupSiGa9ewl/u3aFAP8AgXT9a7ux1Ky1KBZ7G7huYm6PE4YH8qALdFFFAFTUdQtNLsZLy9lEVvH99yCQPyrnV+JXg6SJpk1+2MSNtZxuwD6E4460/wCJGu/8I78P9XvwcS+SYov99/lH88/hXjGj32l6b8EDolp5eoa7rDk/ZLf95KGJyNw9lApKWrG1oj6LtriG7gSe3mWaFxuV1IIIPoRU1cd8L9B1Dw54DsNP1PIulBZoyc+Xk8L/AJ9a7GrcbOxK1QUUUVIwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigaILy5SytJLmUOY4huYRoXbHsoBJNeHeDbabxH8Wde1fXtJ1KCC9ge2tEuLKVVZGG3BO3C/ID1x96veKKVtWF9NDxj4Nf2j4YutV8L6rp+oxKLpjaztayGJ8cHDbcAcZ645r2VTwPpTZ54reFpZpEjjUZLO2APxryvxX8cdG0qc2GhxHVb8nYpU4jDZ4ye/NU3dEpWdz1Z2VELMwVRySTgCuD8R/F/wl4dZoTffbrsceRZDec+hbIFcengr4gfEAibxZrDaVprHIsrc8ke4HH55rvvDXwz8LeFwr2WnJJcjrcXH7x89+T0/CkM4U+MPih41bZ4b0CPRLJul3eD5wPX5h/JT9amt/gjdaxMt1408U3+pyZ3eRExVEPoC2eOvQLXsSgDgDAHSnUAcpovw48IaAF+waFah15EkymV/rlyf0rqVVVAVQAB0A6CnUUAFFFFABRRRQAUUUUAc7c/8lG0v/sE3n/o62roq525/wCSjaX/ANgm8/8AR1tXRUAFFFFABRRRQAUjDIxS0UAc5rPgXwvryt/aWh2crP1kWPY5/wCBLg/rXBXvwKtrK4N54T8Q6lo9znIXeXT6ZBU4+pP4169I6xoXdgqjkknAFeb+KfjLoOiytY6Wr6vqR+VYbbld3uaAOdbXPiz4FBOrafbeItNj5aaAfvAPqACPxU10Ph342+E9eZbe5mk0u7PBjuxhM9wH6fniuaHhv4ifElvM8RXv9iaO5z9jh4Zl9x3+p9a623+C/gqLRzp76Z5rMMtcu583PqG7fQUIDk/jPfXXiZNK0LSLTULmzNwJru7trSWSJVwAuGVSHGGJ+XPSvYtJ+zjSbQWiutuIVEYeMxkKBx8pAI/ECvIp/hr4v8FStd+BtdlmgzuNhdHIb29D+PNXdC+NCWt4ul+NNMm0i9ztMpU+Wx9faiPurlHJ8z5j12iq1jfWuo2qXNncRzwOMrJG2Qas0CCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiqOrarY6Lp0l/qV1HbWsYy0kjYH/ANc+w5oAunpzXAeNPivonhNzZRFtR1Y8LaW5yQT03HtXHX/jLxX8TryTSvBEEmn6Op2z6pMNpYe3p9Bz64rt/BXwv0Lwci3CxfbdUPMl7ONzbv8AZB4X69frQBxlv4S8b/Etxd+Lbt9I0piGjsYflYj3H9TzXQa/8HPD9x4RfTNItVtb2L95b3OcuXHqe4NemClNAHl/wq8c3GpJN4W1/MWvab+7IkPMqLxn3I4+vWvTx1ryn4q+CruZ4fGfhvdDrum/vHEQ5mQdfqwHbuMius8AeNbTxv4ejvocR3SDZdW+f9XJ3/DuD70AdXRRRQAUUUUAFFFFABRRRQAUUUUAc7c/8lG0v/sE3n/o62roq525/wCSjaX/ANgm8/8AR1tXRUAFFFFABRTJHWNC7uEReSzHAA96818UfGfQ9InOn6NHJrmpk7VhtQSm70LAHd/wEGgD0t3WNCzsFUdSTgCvNfFXxl0LRpTY6SH1nUidqw2vKhvQt/hk1zi+E/iJ8SX83xTqR0LR35+wW333X0IB/wDQifpXo/hfwD4c8IRKulacizAfNcS/PK3/AAI/0wKAPN18L/ET4jusviO9/sPSWORaQ5Dlfdf8cV6L4W+H3h3wjEv9m2KmfvcSjdIx+p6fhXVCloAQUtFFAAayNc8N6R4jtDbarYxXMZGAWXkfQ9q16KAPFb34ceKfA1y+peAtSlmtwdz6bcHO4egz1/nW74R+MGnaxdjSdegbR9YU7DFOCEdvYn+RxXpprlPGHw/0DxraGPUrQC6A/d3cWFlQ/Xv9DxQB1KkEZByPWnV4TFqfjP4PXAt9YEmu+Fg2I7pfvxA9OvI/3Tkehr1/w74k0rxRpq3+k3aTxN94A4ZD6MOoNAGvRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVwvxC+I1n4MsxBCv2rWLgbbe1XnJPQn2oA0fGnjrSPBOmG51CTdOwPkW0Z+eU/wBPrXm2l+EfEXxU1GLXvGMklnowO6201Mrlfof5nrWp4J+G19qWp/8ACW+OWN1qkuHhtX5WAdsjpx6dq9cUAAADAAwABigCtpunWelWUdnY28dvbxDasca7QBVuiigAooooARuleHeLtJvPhZ4xTxloUZOjXbhdQtVHyrk8nHp3Hvmvcqq6jYW2p6fPZXkSy28yFHRhnIoAh0bV7PXdLt9SsJRJbzoGVgc/h9a0K8J0W8u/g/42Ohai7P4Z1GQtazN0iYn1/mK90jZXRXVgysMhh3BoAdRRRQAUUUUAFFFFABRRRQBztz/yUbS/+wTef+jrauirmr6SOH4g6bJK6oi6ReEsxwB+9tq5TxJ8adG065On6FDJrWok7VS2yU3eme/4UAemzSpDE0kjqiKMlmOAPxrzTxN8Z9G0u4On6JDJrWpH5VjtuUB9z3/CufTwb49+Iki3HivUG0jTGORYwcMR6Ef416V4Z8DeH/CcCx6XYRpLjmZxudvqaAPNU8I+P/iNIJ/Feoto+ktyLG34JHuPX3Oa9I8L+A/D3hKAJpdhGsuPnncbpG+prpRS0AIKWiigAooooAKKKKACiiigAooooAiubeG6t3gniSWJxtZHGQQfUV454h+HOr+DdSfxL4AmaMr80+ndVcdwB3HtXtFIaAOI8B/EjTvGVsYGAs9Wi4ns5Dg5Hdfau3FeZ+P/AIXjV5x4g8Ny/wBn+Ibf50eP5VlI7H3PT07Hgmn/AA7+JR12VtB8QQmw8Q23ySRONolI6ke/qPfigD0qikFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIaDwK5nxx4zsPBPh+XUbsh5mylvADzK/Yew7k+lAGZ8RviDbeC9NSKBTcaxdfLaWwGTk8biPTNYvw6+HdzDeHxZ4sY3WvXJ8xEfkW4PT8f5VU+G3gq91XVG8d+LAZdTuj5lrDIDiFT0OO3sOw+tevDigAFLRRQAUUUUAFFFFABQaKKAOd8Z+ErHxl4em0u8XaWGYZgPmicdCK4L4XeLr7StTm8AeKCI9StOLKVjxNH2UfQcj244xXrx6V518U/ALeJ9Ni1TSmaHXtOIktpFO0yY52k9j3B9R70Aei+1c744SNvCl4S9wswXEP2e4eFzIeF+ZSD17dKxvhn49TxjophvAItZs/wB3dwkYJYcbse/p2NbWrNHqHiLTtKDBvKzdzKD0A4X/AMexUzV1YqNlqzgPgXquo3Wna/barf3V5PaXSoXuJmkI+8CAWPHT9axfF/iTWfF3xO0jw7pV9d2WnHD5tZmjeRDzvYjsQAQD2Pr0X4YaPe/294xiuEWHRDfE3UzNt3hGc7B7HcCT6AjvU3wphHij4m+JfFzAtBFI0NsTxwTwMeyha0+KSb7XItyqS87HtVhZRafaR2sDStHGMBppWkY/VmJJq1UU88VtC0s0iRxoMs7tgAfWvMvEfxq0mzuDp3hy2l1rUidqiEExg+5HWk2m9ASaWp6dNNHBE0ssiRxqMs7tgKPUmvMfEvxr0bT7g6d4ftpdd1M8KlsD5efqASfwB+tYcfgXxz8QpRc+MtUfTtOYgrp9vwcfTp69cmvTPDXgrQfClt5WlafHExHzykbnf6seTSGeQHwl4z+IXimyTxretpVtLZzTR2lqBu8pXiDIeeMl1PzFvu9BXr3hjwR4f8IwCLSdOjifGGnYb5G+rUtz/wAlG0v/ALBN5/6Otq6KgBB9aWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQ9K88+I/w5j8VQrqulMLPxFa4eCdTt8zHRWPr6HtXolIelAHmvw2+IkuuvL4f8Qp9l8RWfyPG/wAvnAfxAevr+lekjr+FeafE74fS60E8R6CTb+ILHEiPHwZgO3uR2rS+Gvj2LxlpLR3QWHWrTEd3B05zjcB6fyNAHXavqlpo2lXGo30oitoF3yOew/xrh/C+s678QrefVYruXQ9GEpS0W2jRp5scbmaQMoHsF/GsP9oa4uIvBNlFEWEEt0BLj2HArsdPubHwX8Mba4kZIoLSzDZzjLY/xpX0lJ9NBtaqPfUwvhz45v8AVvE2t+FdXnW7utNZjFeLGEMqBsHcAAMgsOgFemivHfgj4YvUl1XxfqkTRXGqufJRhghC24n8Tj/vmvYqprRN9ib62QUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSHpQBV1K/ttL02e+vJVitoEMkjscAAV4t4X067+LXjd/FerxkeH9PkKWNs44dh7fqT64FWfiPql5468YWvw/0WYrArh9RmXoAOoP0FeuaNpNnoelW2mWMYjtrZAiKP5n3PU+9AF1QAAoHSnUUUAFFFFABRRRQAUUUUAFFFFABSHpS0UAeM/Efw3feE9fj+IHhpMPGw/tC3TpIp6t+PFdn4Vj8L+KUg8X6daIb2fmSUO29G7qRnt6V1d89rHYzNevElrtIlaZgE2ng5J4r5kbxta/DXxrqS+ELuHU9HuQT9mYsEik7YPQ4Pp2oA+iNT0LQ59Ke31C2hWxDmWRWcohJzktgjP415Tc+OvBfhG+ez8BaGL/VJcp/oe4xZ7Z5O78KbY+BPGHxKWHU/Geum00qUCWLT7FgQynp0JUDocncfpXqnhzwdoPhW3EOkabDAcYaUjdI/1Y8n88ULQHqeYQ+AvG/j+dbvxnqr6dYE5Wwtzg49CBwPxr07w54M0HwrbCHStPiibHzSkZdvqa3xS0AIKWiigDnbn/ko2l/9gm8/9HW1dFXO3P8AyUbS/wDsE3n/AKOtq6KgAooooAKKKKACiiigAooooAKKKKACiorieG2hMs8scUa8l5GCgfia5PVvil4K0XIudftZHH8FtmYn/vgED8TQB2NFePXPx7srqVofDnhvVdWmHAATaD/3yGP6VB/b/wAZPEh/4l+g2WjW7/dluCN6/Xcc/wDjlAHs7MFGWIA9SaxdU8X+HtFBOo6xZ25H8LyjJ/CvNB8KPGuuEP4n8ezj+9DZBthH/jo/8dNLdfDH4YeCLT7Z4guJJ+N2Ly4JZz/sqgUmgDS1L48eE7QtHYi81KQdoIiAT9TXLa58b/EyWvn2XhoWFsw+S4vWPP4cfzqO38V3uuTtp/wt8G29pEPkbVZrdFK+4PQfiWPtXSaF8FoZ7wat401ObW9RY7jEWYRKfTPU/ko9qAPM7HxT8U/iBdGDTbi4MTHDm3QRxL9WPT861br4feJ/hbDaeNLW+F7d28ub+FckGNuCCe47Me2Qe1fRdlZW2n2yW1nbRW8CDCxxIFVfwFPuIYri3kgnjWSKRSjowyGU8EEfSgDh9X17SfFnw2/tCLSLjW7e7jwtnBEXfzO+cfdIOea860nxZ4e06a10nxXpfiNDaLuWK/TzIom7YReT+NXtCkl+EfxMk0G5dh4b1l99pIx4ifsP/ZT+Br3JfYjHtRFWdxyd0Zeh6vHrFuJrWyuYLPYpieeLyt4Poh5xjHOMHtWtRRTbuJIKKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXK/EHxZD4P8I3eokg3DDy7dB1aRun5dfwrqT0rxHxDu+I3xmttBjYvpGhfvLnH3WkyMj654/A0AdJ8HfCcui6FLrWogtq2rHzpWYcqpOQPx616XTUVY1VFGFAwB6AU6gAooooAKKKKACiiigAooooAKKhubmC0gae5mSKJOWd22gfU15b4g+NVkt3/ZnhKyl1rUWO1WjU+WD/X8KAPUrq6gs7dp7maOGJeWeRtoH415f4i+NVjFdHTPCtlJrepE7V8tSYwfw5P4Vk2/w48X+Op0vvHOrSW1oTldPtzjA9CBwP516f4e8I6H4WthBpFhFAMfNJjLt7k0AeXQfDrxl48mS88c6vJa2eQy6dbEDA9PQfqa71Php4Vh8N3Gi2+lRRW86bXkx+8Y9mLHnIrsBQaAPFPAWu3vgDxS/gHxHIxtXYtpl0/3SCeFz2B9Oxz617UvWuN+I/gSDxv4faFNsWp2+ZLSfptfrtJ9D/8AXrG+FfjqfWLebw7r2Ydf0393IsnBlUcbvqOh/D1oA9NopBS0AFFFFAHO3P8AyUbS/wDsE3n/AKOtq6Kuduf+SjaX/wBgm8/9HW1dFQAUUU2R1jXc7BVHcnAoAdRXN6t4+8LaJuF/rdnHIP8AlmJAzfkK4q/+Pfh1G8vSbHUNSkJwPLi2gn8aAPWaK8X/AOE4+KPiDjRPCK2MR+7NdAjP/fRFL/wgHxK8QjOveLxaQt96C1J4+m3j9aAPVL/X9I0tWa+1K1g29RJKoI/DrXF6p8bfBemtsivpb5+gFtGSM/U4/lVCw+AvhyN1l1W8vtTlX+KWQqD+GTXaaX4G8MaKALDQ7OM+vl7j+tAHnj/F/wATaw/l+GvBN3IegkuA2D7jgU3+z/jL4jP+kajaaJbt/DFgOv5c/rXsqIsahEVVUdAowBTqAPG4fgV9vmWfxJ4p1LUZc8hWwD+Jya6zSvhL4K0nBi0SCZx/Fc5lOf8AgRNdxWJ4g8V6J4XtTPq9/FbrjKqW+ZvoO5oA0raytbOMRW1vFCg4CogAFZviDxXo3hi1Nxq1/FbjGQjNl2+ijrXl918SvFnje4ex8CaPLDbZ2tqFwuAPfngfzrS8P/Be1N2NT8XX0us6gTuKOx8tT6c9aAM27+JvivxrcPYeAtGkigJ2nULhcYHr6D9a0NB+CtvJeDVPGN/NreoMdzLIx8sH+bfjxXqlpaW9lbpBawxwxKMKka7QPwqegCCztLaxtkt7SCOGGMYWONQoUfQVPRRQAUhpaKAOL+Jfg+Pxh4RntkTF9b5mtWHBDjt9DVH4R+LpPEnhj7JekjU9NPkXCnqcdD/SvQT0rxPX8/Db4vWWsRKItG1o+Vchfuq+eSffv+FAHttFNXBAI5BHBp1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSHpQBieMdfTwx4R1PWHI3W8JMYPeQ8IPxYiuK+B+gSWHhOTW7vLX2sSG4Z3+8UydufryfxrN+N1zJq954c8F2rkSandrJMV/hQHaCfb5mb/gFet2NpFYWUFpAgSKGNY0UdAAMUAWKKKKACiiigAooooAKKgvLy2sLV7m7njghQZZ5G2gV5Zr3xpge7OleDtNm1rUD8odVPlqf5mgD1S7uoLK2e4up44IYxl5JGCqo9ya8s8QfGq0+1/2T4O0+bXdSb5VaNT5Sn145b8MD3rNtfhl4q8bXC3/j3WpY4Cdy6fbNgKPQ9h+Ga9R8P+FtF8MWgttI0+K2T+IgZZvck8mgDy62+Gni3xzcJfeP9akt7UncumWjAAD0OMqD/wB9H6V6h4e8J6J4XtRb6Rp8NsuMM4GXf6seTW3RQAUUUUAFFFFACGvKfin4NvFuYfGvhoGPWdP+eZYxjzox1J9eOMelerHgZPSsXVPFegaTGWv9Xs4AOoaQE/kOaAKXgPxlZ+NfDsWoW5CXCgJcwd437jHp6V1FfL9/430XwZ8R21rwfcG6027yb20UFUJJ52k/nXaxfFjxp4liD+FPBxaBiQJ52Lj6gjaOPxoA9rNVby+tLCEy3l1BbRj+OWQIPzPFeRf8I18XvEY/4mXiSDSYG/hteGUeh2gfzqxZ/ATTJZhca7repanOfvB5Nqn8eW/WgC3rvxR8IaX40sr1tWjuYYdPuoHNoDL87SQMo446I3OccVnSfHSfVGMfhbwfqupEnAeRdoB/4Bv/AJituy+HfhTRPHOm2lno1uYm026lImBlJZZbcK3zZ5AZh+NejRQxQqFijVFAwAq4AoA8bF38a/EnENpp2gQt915CN2PfJc/+Oinr8GNd1ht/ijxvfXKt9+3t8hPwyQP/AB2vZaKAPO9J+CngjStpbTZL115D3cxb9BgfpXaafoul6UoXT9NtLQf9MYVTP5CtCigBB1paKKACig1heIfF+h+FrUz6tqEUHHEecu30Uc0AbprD8Q+LND8LWpuNY1GG1UDKxscu/wDuqMk15fcfETxl48nez8D6Q9lZE7W1G5ABA9Rngfqa1/DvwW0+G7/tPxTdy63qTHc3nMTGD9D1/GgDIufiT4w8eTyWXgHRZLa0ztbUrsAbfcZyo+nJ9q1vD/wVskuxqvi2/m13UmO5hIT5Sn6Hlv0HtXqFtbw2sKQ28SRRIMKka7VA+gqagCG1tYLO3S3toI4YUGFjjUKoHsBU1FFABRRRQAUUUUAFFFFACHpXFfFPwx/wk/gW+gjUG7tx59uR13Lzj8eldtSModSrDIPBFAHEfCbxL/wk3gKynkbN1aj7LPnruXGCfqMfrXcV4t8PifCXxg8R+FXO22vx9rtR2JHzYH4F/wDvmvaAOaAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApD0pahvJhbWc87EARozHPsKAPHdFB8U/tF6pqBO+20O2MUR7BiNuPzeT8q9nFeP/AADgN3YeIvEMg/eajqBGT1wvzflmSvYaACiiigAoqvfXtrp1q91e3MNtbx8vLM4VVHuTXlOufGpLq9Ok+B9Kn1vUCcCUKREvbI7sPc4HvQB6teXttp9s9xdzxwQoMs8hwAPrXlmu/GiOe8OleDNOm1i/J2iVVPlg+vvVCz+FfifxjcJqHxA1yXy87l021YYX2P8ACPwBPvXqeg+G9H8NWotdI0+C1jxyUHzP/vE8n8aAPLLT4YeKPGVwl9471qVISdy2Fs2AB6HsK9S0Hwvo3hq0FtpNhFbJjBKj5m+p71sUhoAWiqGoaxpekoX1HUbS0TqTPMqfzNcRq3xs8EaXkLqb3si/wWkTN+pwp/OgD0aivGW+M+u60dnhXwNqN0jfdnnBCj67Rj/x6kFp8a/EfM1zpugwt1VSpbH4Bzn8RQB7FLcQwKWmlSMDqWOBXLat8TfB+jbhda5bF16xxNvb8hXExfAybUWD+JvF+p6jk5MSEqB9CxP8hXU6T8IfBGkbGTRUuJB/y0uXMhP4E4/SgDnLz486bK/k6Domo6lI33GEe1T9c81WHiT4u+IuNN8OwaTC38dzwQPUbq9ds9Ps9Oj8qytILaP+5DGEH5CrVAHjB+F3jjXzu8R+NZUjb/llbE4X27CtjTfgX4StHEl8t1qM/wDE9xIcH8K9PooA52PwP4Zt9NlsYNFs4oJUKMFiGSD715b4ev7v4QeNT4Z1SR38N6k++yuW6QsT0z+QP4GvdDXOeNfCFh408OT6XeDa5G6CYD5onHRvf6ehNAHQoQwBBBBHBB4p1eR/C7xfe2OoTeAvFBMerWB2W8jHiaMdBnufQ9wR6V62KAOeuf8Ako2l/wDYJvP/AEdbV0Vc7c/8lG0v/sE3n/o62roqACiiigAopDntWB4k8ZaB4TtvN1jUY4DjKQg7pH+ijk0Ab5rC8ReMdC8K2pn1a/ih4ysecu30Ary+Xx945+IUzWvgjSG0/TidrandYHHqCcgfQBjW14c+C2mWl0NT8TXk2u6mx3M0xPlg+w6n8fyoAxp/iB408ezPZ+CdJksrEna2oXAxgeoJ6fhWz4c+C+n210NS8T3cutaiTuPmkmNT9D1r0+3ghtoVhgiSKNBhURQoA9gKloAht7eG1hWG3hSKJRhURcAfgKmoooAKKKKACiiigAooooAKKKKACiiigApDS0UAeL/Flf8AhHfiJ4P8XJ8iLOLW5f8A2c//ABLSV7OpDDI7815n8d9MF98MbqfGXspop1/762H9HNdj4O1L+2PB2j6gW3PPaRu5/wBoqMj86ANyiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACua+IN4dP+H+uXKnDJZybfriulrgvjLOYPhfqxB5cKn5kCgCP4J2YtPhZpbYwZzJKf++yP5CvQa47wVdWWhfDHRJr25itrdLJHZ5G2gZGf61xXiL45QyXLab4QsjqFz0+0yfLEPcZ60AeuahqNnplo9ze3MVvCgy0kjbQK8q1v40G9u20rwPpU2r3xO0TlD5Sn+v1JArz+4l0rVrsah8Q/GYuiDkadp5Mm3/ZOOBXU6X8UdL0uAad4H8FXUpAwD5e3d9ccmgC5Z/CrxH4vuk1Dx/rk0idVsLdsKo9MjAH/AR+Nep6L4f0bwxYfZ9LsoLKBR8xUYz7sT1+pry/+0PjJ4jH7jT7TRIG4PmAB19+eaVPg94k1lw/ibxrdzHqUt84PtzigD0PVPHXhfRQft+t2cZHYPvP/jua4zUPjz4bjcw6VZahqcw6LDFtB/H/AOtWhpfwS8GaeweWykvZOpa5k3ZP0rtLDQNJ0tAljptrAo6bIgCPxoA8p/4T/wCJniA40HwelnC3SW6GSvvyR/Kj/hB/il4h51zxiLCNj80VmSAR6fKAK9nFLQB5Np/wC8ORyedq15f6nKxy3my7Afy5/Wu00nwD4V0Ta1hoVjHIvSQxBnH/AAI810tFADVVV4VQo9BTqKKACiiigAooooAKKKKACkPSlooA84+KPgWTxFZRa1o+YNe04B4JE4Z1HO369cVe+GvjqPxlopFwoi1e0AjvIcY59QPT+RruDXjHxD8O33g3xCnj7w1Fwp/4mNsg+V1PVseh70AejXP/ACUbS/8AsE3n/o62roq4XQ/ENh4o8T6Fqunyb4ptHvCRnlG822yp9CK1vE3jjw/4TtjLquoRxvjKQod0j/QCgDpDXOeJfGvh/wAJ2xm1bUI43xlYVIaR/ov+NeaP438efEKZrbwhpj6ZppO1r+4GDj1yen4VveG/gxpFhONQ8QTy61qRO4vcElAevAPWgDBl8c+OviDM1r4N0t9L05jtbULnhiPUEj+WfrW34b+C2k2Vz/aXiOeXXNTY7ma5JKA/Qk5/EmvT4YYreNYoY1jjUYVFGAB7YqSgCKCKOCNYoY1jjUYVUGABUtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAc749s/t/w/1+2C7mawmKL6sEJX9QK5z4H3pu/hbpqs254GliPsA5x+mK72/gFzp1zARkSRMmPqDXlX7PE/m+BLyPPEV86gemVVv60Aeu0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNfO07QCewNOooA55rnxeJGEek6GUB+UtqcoJHuBb8fnSfavGX/AECNB/8ABpN/8j10VFAHO/avGX/QI0H/AMGk3/yPR9q8Zf8AQI0H/wAGk3/yPXRUUAc79q8Zf9AjQf8AwaTf/I9H2rxl/wBAjQf/AAaTf/I9dFSHpQBzxuvGWP8AkD6Efb+1Jv8A5Hrn/F/jfX/B2iSalqGk6QyrgLHDqMruxJABx5AGASOpA7d67bUdQi062M0uWYnbHGv3pGPRR7mvHfij/b0fw+1i51bSrRGuXhVrhL3eY0EgKoqbBx3PPXt0xL1RUdzsfCOu+M9Z8LafqLabo0xuYhJvlv5ImOfVVgIH5mue+MUviWX4cXy6hp2lQ2wkjLPbX8kjjDDorRKP1rtfhvH5fw58Pj1sYj+aiqPxdh8/4Ya0MZ2w7/y5rWfxMzjrFHi9l8KvH/jbQ9Pu7vVbRbMQoLWK6uGwqAYXCopA49cH1rX0v9n7VLfA1I6fernO2LUpIV/9ENXrnwym8/4b6FJnP+jBfyJH9K6yoKPLtJ+HC6Nta28FeGXcdXuNVnlJ/wC+rfH6V1VufFVrGIrbQfD0MY6LHqUqgfgLfFdPRQBzv2rxl/0CNB/8Gk3/AMj0favGX/QI0H/waTf/ACPXRUUAc79q8Zf9AjQf/BpN/wDI9H2rxl/0CNB/8Gk3/wAj10VFAHO/avGX/QI0H/waTf8AyPR9q8Zf9AjQf/BpN/8AI9dFRQBzv2rxl/0CNB/8Gk3/AMj0favGX/QI0H/waTf/ACPXRUUAc79q8Zf9AjQf/BpN/wDI9H2rxl/0CNB/8Gk3/wAj10VFAHO/avGX/QI0H/waTf8AyPR9q8Zf9AjQf/BpN/8AI9dFRQBzv2rxl/0CNB/8Gk3/AMj0favGX/QI0H/waTf/ACPXRUUAc79q8Zf9AjQf/BpN/wDI9H2rxl/0CNB/8Gk3/wAj10VFAHO/avGX/QI0H/waTf8AyPR9q8Zf9AjQf/BpN/8AI9dFRQBzv2rxl/0CNB/8Gk3/AMj1HPJ4uuIHhm0XQHjcbWU6nMQQeCP+PeumooA+cE8AeO/DvjaSy8Ny2ViNTtpnQx3RkS2i3x7wCyhsg+WMhSSCPTjovD3wg1TTL06hrWn6Rr2oFtxmu9UmC59dvkHn6k16Vdf8lF0v/sE3n/o62rl/FHjq+n8Z23gvwwyrqEhzdXZUOLZepwDxn60aXS6h0bOmhk8WwRrFDomgRxqMKi6nMAB6AfZ+Kf8AavGX/QI0H/waTf8AyPXAfEu6v/h7YaXrOl61qklwbjy5o7q7eaOZep+RiVHttAxXqulXo1LSrO+CbBcQJKEz93cAcfrQtVdA276mT9q8Zf8AQI0H/wAGk3/yPR9q8Zf9AjQf/BpN/wDI9dFRQBzv2rxl/wBAjQf/AAaTf/I9H2rxl/0CNB/8Gk3/AMj10VFAHO/avGX/AECNB/8ABpN/8j0favGX/QI0H/waTf8AyPXRUUAc79q8Zf8AQI0H/wAGk3/yPR9q8Zf9AjQf/BpN/wDI9dFRQBzv2rxl/wBAjQf/AAaTf/I9H2rxl/0CNB/8Gk3/AMj10VFAHO/avGX/AECNB/8ABpN/8j0favGX/QI0H/waTf8AyPXRUUAc79q8Zf8AQI0H/wAGk3/yPR9q8Zf9AjQf/BpN/wDI9dFRQBzv2rxl/wBAjQf/AAaTf/I9H2rxl/0CNB/8Gk3/AMj10VFAHO/avGX/AECNB/8ABpN/8j0favGX/QI0H/waTf8AyPXRUUAc79q8Zf8AQI0H/wAGk3/yPR9q8Zf9AjQf/BpN/wDI9dFRQBzjXfjFVLNpGg4H/UVmH/tvXlfwFl1+LwlqQ0ux02eE6gxZrq7khbdsTgBYnyPcn1/H2rWZvs+iX82ceXbyN+SmvNP2fIfL+H0smP8AW3sjfXAA/pQB232rxl/0CNB/8Gk3/wAj0favGX/QI0H/AMGk3/yPW3d3trYxebd3EUEWcb5XCj8zVEeJNDLADWtOJzjAukz+WaAKX2rxl/0CNB/8Gk3/AMj0favGX/QI0H/waTf/ACPXQqQQCDxjjHSloA537V4y/wCgRoP/AINJv/kej7V4y/6BGg/+DSb/AOR66KigDnTdeMv+gRoX/g0m/wDkevGvH3iPxppPjaOHQZmTUJYw1xY6dPJfIp7Eq0Q259B+Q7/Q9RpDFGzMkaqW5JA60AeZeENd+Kd7Gv8Aa/hrT1jI4luLg27fioDtn8BXpkBlMSGdESXaN6oxZQe+DgZ/IVLSHpQAtFec+N/iBqng7X9IhuNKg/se7uBFLeeaWYDjPygDaRnPU5xW9Y6v4iu/FAibSYY9Ae3MkV2ZD5hbPG4dBkc4xQtgej5TqKKQdaWgEFFFFABRRRQAUUUUAFIelLRQBj6j4etNS1ix1OWW6Sezz5Qil2qc9cjvVPxX4M0zxjbJa6tJdm2Q7jDFOURj2JHrXSUUbgZfh/Q7Xw5pEOmWUk720C7Y/OfeVHpms34h2zXnw81+BBl3spAv1xXTVW1CBbrTrm3YZWSNlI9eKNw2OK+C9ytx8K9IAOWiEkbfXzGP8iK76vIvgDcNDoGt6HKSZdN1BgwPYNx/NGr12gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOduv+Si6Z/2Cbz/ANHW1eUfCKzkb4reLbnUOL6GRxh+vzO2cfkK9Wuv+Si6X/2Cbz/0dbU/UPBug6pqZ1K5sP8ATSnltPDK8LsvoShGfxpRdpcy7DavHlPMPiDFN8SPiBp/hfTG32OnN5t7OoJWM+59e1e020EdtbxW8ShYokCIB2AGBVXSNF07Q7YWum2cVtF1IQcsfVieWPuc1oVS92PKiX70uYKKKKQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDA8c3AtPAXiCcnBXTp8H38tsfrXL/AAOtzB8LNOZhgyvK/wCBkbFO+N2pfYPhfqKK22S7aOBfxYFv/HQ1dF4F006T4D0OyZcPHZx7x/tlct+tAGd8VNVt9I+HuqTzxpIzx+VErrkb24FeMW1hZ3PwlsfDWkWyX/iLULgXLGNRm3G8YLNjjgKMe9dL8atfsNY1zRfC8Wo26BbkPeSNKoSH2YngH61W+KN/ZeLb7QPD/gorqOpWUgcXVkdy26DAX94vAAODnOBgUoq9/N2Kk7W8lf7z2Xwlpt3o/hTTNOvp/Oure3SORwc5IH+fyraqG1SSO2iSZ98qoA7YxubHJqarlq7kRVo2CiiipGFFFFABSN0paKAZ5Z400fXviD4L1Kzl0n7DNZzO1sHOWuGRjtKjqAy+vOSK6XwBd69eeHLP+29PksJoIVhZJsb5GXjdjsMCuuopp2DcKKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFIaWkPSgDxnwkR4Y+PviDRW/dwatD9pgH95x8x/9q17MMZ4rxj4xxv4c8X+FPG0S4W2uBb3JHdeSB+K+YK9kglSaFJY2DI6hgR3yKAJKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDnbn/ko2l/9gm8/9HW1dFXO3P8AyUbS/wDsE3n/AKOtq6KgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQ4xzS0jEBSSeKAPGvjMx1/wAT+EfB8Z3fa7wTTgH7qg7c/wDfJc/hXsaKEUKBhQAAPSvGfCmfGHx51rXuXtNGiNtA3oxyuP8A0ZXtAHJPegBPLQnJVfypQiqchQPoKWigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDmPiF4cHirwNqelKu6d4vMg9fMT5l/MjH41g/BjxI2veBYLa4b/TNNP2WYHrgfdJ+ox+Rr0Q9K8QB/4Vp8bXBBTRfEPI/upITn9GJ/BqAPcKKavt0xTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDnbn/ko2l/9gm8/wDR1tXRVztz/wAlG0v/ALBN5/6Otq6KgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5f4heI08L+CtR1EnEoj8uEHu7cAV056V4p4+kk8ffE3SfBto+bGxYXF86889cZ9hkfjQB1HwY8OvofgSK5uV/wBM1NvtcxP3sH7ufw5/4FXolRwRpDCkUahURQFUdAOwqSgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQ9K4f4p+Ef+Es8ISrbjGoWZNxasOu4DlfxruaQ9KAOG+Ffi8eKvCsaznGo2X7i5Q9QR0P6fpXdV4b4pgm+FfxGg8U2Ubf2Hqb+XfRKMhGPX/EV7XaXMF5bRXVtIssMyB45FOQynkH9aAJ6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOduf+SjaX/wBgm8/9HW1dFXO3P/JRtL/7BN5/6Otq6KgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApD0paRjgZPQc0Ac7438U2/hDwtd6rMw8xV2wIf4pD0H9fwrkvgz4YuLHRrjxHqgJ1PV381i3VUzkD8ev4CuavJW+L/xOjs4WL+F9EfMkg+5O+efrk8D2HvXuUUaRRLHGoVVGAo7D0oAfRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGX4h0Ky8SaHc6Vfxh4J12n/ZPYj3Bryj4c6/e+CfEkvw98RyYQMTply33XBPC/j+hBFe1GuI+JHgGHxrowaFhDq9pmSzuBwQRztJ9D/PFAHbLTq8y+F/xAk1pJPD2vA2/iGx/dyLJx5oHce47j3969MFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBztz/wAlG0v/ALBN5/6Otq6Kuduf+SjaX/2Cbz/0dbV0VABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFBoAQ9K8n+K3jG8eWHwP4bJl1rU8RSlD/AKqM9ee2R1PYZrofiP4+g8GaT5cAE2rXI22tuOSSf4iPQVl/C7wJNo8c3iTXiZvEGo/O7ycmJTzj6njP0FAHT+BfCFn4L8NQaZbANL9+4mxzLIepP8h9K6WkAx+VLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh6UtFAHmXxJ+Hk2sSxeJPDrfZ/ENnh1ZOPOA7H3q98OfiLb+LLVtPv1Frr1qNlxbONpYj+Jf88V3xrzL4h/DaTVLpfEnhqUWPiG2O8Onyicj1x396APTB1/CnV5v8PfiZH4ikbRdcjOn+Irc7JIJPlExHdff1H5V6OP6UALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAc7c/wDJRtL/AOwTef8Ao62roq525/5KNpf/AGCbz/0dbV0VABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUh6UAB6Vyfjzx3p3gfRzcXBEt7KCLa2U/NI3r7Cqnj34j6d4JsgmPterTjFtZofmJPQsByB+prl/BHw81HV9a/4TLxyxuNSkO+2s3GVhHbK9OOwH86AF+H3gfUNX1c+NvGIMmoTfNa2sg4hXsSO3tXrw60g606gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPSlooA4D4gfDSy8XRi/s5PsWuQcw3SfLkjoGx/Ouc8K/E7UNB1JfDHj6FrW9QhIr5vuSjoCx/qOtewnpWD4p8I6R4u01rPVbVZOMRygfPGfVTQBtxSJLGskbKyMMhlOQRUleEeb4y+DdwVlWXW/Cobhx9+Bf6fjx6V6x4W8YaL4wsBd6ReLLgfvIicSRn0ZeooA36KKKACiiigAooooAKKKKACiiigAooooAKKKKAOduf8Ako2l/wDYJvP/AEdbV0Vc7c/8lG0v/sE3n/o62roqACiiigAooooAKKKKACiiigAooooAKKKKACig1la94g0rw3pr3+rXkVtAvd25Y+ijuT6CgDUJwMkgD3ry3xt8VDbXf/CP+EoTqWtSnZujG5Yj7+9c9deJvFvxZuH07wrby6V4fzsm1CX5WkHoD/QZr0fwX8P9G8FWeyyi827cfvruUZdz/QfSgDnvAfwv/sy8PiLxNL/aGvzHfukO5YSew9/evTR/SgfWloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBkqJLG0ciB0YYKsMgj3FeUeJ/g4q6gdc8E3raLqyHcI4ztikPoAPu9vUe1etUUAeN6R8XdT8PXiaP8AELS5LK4B2rfRJ8knuQOPxX8hXrGm6pY6vaJdafdRXMDjKyRtkf8A1qi1fRNN12ze01OziuYWGCsi5/KvKtR+E2ueGryTUvAWsy25zuNlK3yn2Hb86APZqK8c0/4x32iXQ07x3oc9hMDg3MSEofcj/CvTtH8RaRr9stxpeoW91GR/yzYEj6jtQBq0UgpaACiiigAooooAKKKKACiiigDnbn/ko2l/9gm8/wDR1tXRVztz/wAlG0v/ALBN5/6Otq6KgAooooAKKKKACiiigAooooAKKD0qjqOrafpFu1xqF5DbRKMl5XxQBeqC7uoLK2e4uZo4YUGXkkYKFH1rynWfjZDc3J03wdpdzrF6flWQIRGD/M1Rt/hv4v8AHE6XvjnWXgtSdw0+3PAHoewoA0PEHxmWa8Oj+CtOl1jUW+US7D5SH1x1P1OBVfRvhJqHiDU01z4iajJqFz95LFHxFGOu047ewx+NelaB4X0bwxZi20mwjt0A5IX5m+p71s0AV7O0t7G3jt7WGOCCNdqRRrtVR6AVYoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACg0UUAUtR0uw1a1a21C1huYWGCsqZH/wBavMtX+CFgt0b/AMK6pdaJeZyqoxMefT1A/OvWqKAPFBrvxW8Djbqukr4gsI/+W9vkvj1JAJ/MCtzQ/jn4T1J1hv3n0q5zhlukwoP+8M4/HFenmsLXPB/h7xIpGr6PaXRIx5jJiQD/AHxhh+BoA0NP1XT9VgFxp99b3UJ6PBIHB/KrteQ6h8BNIS4N14d1jUtGuf4THIWVfochv/Hqqrofxk8M/LYa5a63bL0S5wXP4sM/+PUAe0UV4yPit430Y7PEXgGdiOslmWwPfjeP1rQtPj74Ukk8q+ttRsZR94SQggfrn9KAPVqK42y+Kngm/wAeT4htQx6iQMmP++gK2rfxPoF1gwa3p8gP925T+WaANiioIrq3n5iuIpM/3HB/lU9AHO3P/JRtL/7BN5/6Otq6Kuduf+SjaX/2Cbz/ANHW1dFQAUVFJPDD/rZUj/3mxVCfxHodrnz9Z0+PHXfdIP60AalFcje/E/wXYZ8/xDaf9s9z5/75Brm7349+Drdilt9vvZOiiGAYJ+pI/lQB6lRXjTfF/wAU6sdnh7wHeOT92W63bT+ij9aabT40+JeJ72x0C3bhkiC7gPYgMf8Ax4UAevXd9a2ELTXdzDBEvLPI4UD8TXA678a/Buj7kgvm1GcdI7Jd4b/gXC/rWJa/AaC9mW58UeJNT1eYHJBcqD7ZYk/kRXfaH4C8L+G9raXotrFKvSZk3yf99Nk/rQB5wfGfxM8a/J4a8O/2TZPwLu74OP7wJx+gNW9O+Cb6jcrfeNNeudXnzkwIxWP6Z6/livXxS0AZmj6BpWg24g0vT4LWMDH7tcE/U9T+JrToooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEYBhgjIPas+80PSr9St3p9rMD1DxA5rRooA4q9+FHgi9zv0C2iJ7wrs/lWJP8BfBkhzBHeW5P9y4YivUKKAPH5f2f9HP+o17VYf91wfwqL/hQ5i+W38XaqsfoSK9looA8Gm+DMy+KrPT/wDhK9RLTWM8/nZ+ZdjwrtHsfMz+ArVPwJkk+WXxhqpQ9QDXoVz/AMlG0v8A7BN5/wCjraugcZXAOPcUAeQR/s/aUP8AXeIdWm/3nAq/B8BfB6EfaBfXH+9cMM/lWJpl/wCI9c+Lmp+H7TxPqS6RZKWlZdhdTjAGduOtbngLxzqc/jbVPBeuutxdWe5re6UAGRRjhvVsEHI96I+9bzB+7fyNmz+EPgezxt0OCXH/AD2+f+ddHZeG9F01QtnpdpAo6BIgK1BS0ANRVQYVQo9AMCnUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHO3P/JRtL/7BN5/6Otq0PEOqx6J4fvtTlYBbaFnGTwTjgfnis66/5KLpn/YJvP8A0dbVP4l8Lad4rshY6oblrXOWjinaMP0+9jrSkrqw07M82+Cdutn4b1nxbqTiP7bO0jSSHGEXnJPpn+VUfhTp154j+JOt+OpImi0+QvHbMwx5pJA49cKvPua9Btvhn4dtrCLT9t9Np8bbhZz3bvCfqpODXV2lrb2VvHbWsKQwxrtSNFACgcYwKu6UuZdNEidbcvfUmFLRRUj9AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOduf+SjaX/wBgm8/9HW1dFXO3P/JRtL/7BN5/6Otq6KgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA525/wCSjaX/ANgm8/8AR1tXRVztz/yUbS/+wTef+jrauioAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOduf+SjaX/2Cbz/ANHW1dFXO3P/ACUbS/8AsE3n/o62roqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPSlpD1FAEX2aFrxLsxqZ0jaNZO4VipI+hKr+VTUi9KWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9k='] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 5 "如图所示, 在等腰 $\triangle A B C$ 中, $A B=A C$, 边 $A C$ 上一点 $D$ 及 $B C$ 延长线上一点 $E$满足 $\frac{A D}{D C}=\frac{B C}{2 C E}$, 以 $A B$ 为直径的圆 $w$ 与线段 $D E$ 交于一点 $F$. 证明: $B, C, F, D$ 四点共圆. " ['如下图, 取 $B C$ 中点 $H$, 则由 $A B=A C$ 知 $A H \\perp B C$, 故 $H$ 在圆 $w$ 上.\n\n\n\n延长 $F D$ 至 $G$, 使得 $A G \\| B C$, 结合已知条件得, $\\frac{A G}{C E}=\\frac{A D}{D C}=\\frac{B C}{2 C E}$, 故 $A G=$ $\\frac{1}{2} B C=B H=H C$, 从而 $A G B H$ 为矩形, $A G H C$ 为平行四边形. 由 $A G B H$ 为矩形知, $G$ 亦在圆 $w$ 上. 故 $\\angle H G F=\\angle H B F$. 又 $A G H C$ 为平行四边形, 由 $A C \\| G H$,得 $\\angle C D F=\\angle H G F$. 所以 $\\angle C D F=\\angle H B F=\\angle C B F$, 故 $B, C, F, D$ 四点共圆.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAgEDcAMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACijI9aMigAooozQAUUUZFABRRmjNABRRRkHpQAUUUUAFFGaKACiiigAzVPUdUs9Js2ur2dIYVYKWY9z0FT3FxDawSTzyLHFGpd3YgBQBnqa8L+Md5f3tx4YknklgtLi9zHa5wSoK7XYHuc9D0pX1SGlue7o4kjV16MARTqjgAFvGB2QdPpUlU1ZtEp3VwooopDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKM0mR60ALRVDU9Y07RrZrnUb2G1hUZLSuFrzfV/jno0UxtfD9jdaxdE7V8lCEz9e/4UAerZHrVe71GysI995dwW6+s0gT+deP+Z8YPF/zRx2/h2zfpu4kA/n+lWbL4Fx3kgn8T+IL7U5SctGHIQ/nQB0urfF/wVo+8Pq63Ei9Y7dS5/wAK5if46rdNt0Lwpql/nhXKkL+OAf512mk/DLwhoxVrXRbcuv8AHKN5P511ENrBbJtggiiX0RAo/SgDx8eMPizqxzp/hO1soj915uv6k/ypw0n406n/AK/WtPsYz2iVdw/Ja9jxS0AeOH4Z/ES7Gbr4i3UeTkrFvAOfowH6Un/ClNYk+afxzqbOfvEMef1r2SigDxv/AIURJNzd+L9UkbsQf8c0f8KPvl+WLxpqixj7q7un617JRQB43/wp7xTa86d8QtRhI6bmf+jUv/CDfFWw5s/HIuSOguMnP/fWa9jooA8a87426WT5qaZqSj+6qgn8gtH/AAtPx1pH/Ie8CSlR1a13c+/8VeyYox1zzQB5VZfHnw28iRanZahpkp6iWLIH1PB/Su00rx54W1lV+xa5ZuT/AAtJsP8A49itG/0HSdTjZL3TbWcN13xAn864rVvgl4N1Il4bKSxl6q9tIVAPrigD0RXV1DKwZTyCOc07NeLt8LfGvhtjJ4V8XyyRg5+z3RPze3pQPiP478JER+LvC7XECHDXdmOD+WQaAO9u47nX/EdxpGp6TONEhQOruqmG8bjhuc4U9AR1GfSvNPiN4LuZ/Emjnwv4OeOCxmEk81tFHGJfmB45B7frXe+Hfiv4T8RusMOoC1uiceRdDy2z6DPB/Cu2VldQykEHnI70dUx3G20jTW0cjRPEzKCUfqvHQ+9S0nGOtLQ3d3ElZWCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooozQAZpNwzjNYniPxXovhWxN1q17HCoGVjzl3+i968sm8aeOfiNK9r4PsDpekk7Tfz8My+oPb8B+NAHpnifxx4d8JQF9X1KKKTGVt1+eV/oo5/E8V5s/wAQvHPjyQ2/gjQn0+yY7TqN5jI9xn5Rj0G41v8Ahj4MaLpU41DW5H1rU2O55bolkB9lPX8c16RHEkEaxxRqiKMBUG0AewHSgDyXTPgeL65XUPGmu3er3edxiRysa+2Tzj6ba9L0jw7o+gwLDpenW9ooGMxoMke7dT+dalFADcYp1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1kDgqwBU8EHvTqKAOJ8SfCzwl4lVmudNjtrk9Lm0AjcfXjB/EGvnuy8YeI/CPim407w1q9ze6el01vAt1zHLg8Dk8duhHWvof4o+J/wDhFvAmoXkb7bqZfs1v/vvxkfQZP4V5nP8ADVofgTDMkZTWIj/aRYfeBIyV+oGP++aAOl0L43WX2tdN8X6bcaFfjgtIjGJv6j64I969Ss721vrWO4tLmK4hcZSSJgyt9CK4Xwt/YvxM+H1jPq9lDdvs8qbzFyyOvBIPr71y938LfEvgu4fUPAOtSiLO59PuGyre3o34jPvQB7TketLXlHhr4yQvfLo/i6ybRtTB2lmH7tz069q9ThninhSWGRJI2GVZG3A/QjrQBJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFGaTI9axvE3inSfCekvqOrXSQx9I0z88rdlUdSaANeWaOCJpZXVI0GWZjgAV5N4l+Lc19qJ0DwLZtqeouSpuAp8uPtkev16VigeL/jPc7j5mh+Eg2R/z0nH/ALNkfh9a9Y8M+EtH8JactnpFmkIwA8vV5D6s3U0AcF4b+D7XN2Nb8b3r6tqbnf5LNmKPvg+v4cV6rb28VrEsUESRRKMKiDAH4VMOnPWigAHSiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAozRWZr+rQ6FoV9qlwcRWsLSE/QcCgDyTxu3/Ce/GPRvCcZ36fpf+lXoHQngnP4bV/4Ea9peFJIDEyho2XaVPQjHSvJvgdpE09lqvjG/GbzWbhimeqxhiTj2LH8lFevUAeKfDuRvBXxQ1vwbO2La6Y3Fpk8dyAPqK9qxXj3xs0yfTpdH8aWAIudMuFEpA6rkYJ/GvVdI1O31nR7PUrY5guollXnoCOn1HSgDN8TeDdE8W2Rt9WsklOPllAw6/Q15XNo3jX4Szvd6LLLrfh4NmS2fLPGv06j8K9zppXPBxigDk/BvxD0PxpbE2c4iu0H7y0lOHX8O49xXW5Hc15n40+Elrq10Nb8NzDR9eiJkSWH5I5G/2sdCfUe+QazPC3xTvtK1ZfDPj+1NhqKnZFekYjmPYnHAz/eHH0oA9gopqSI6KyMGUjIIOQRTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKTcM4zzXnfxE+JcHhgDStKUXmvXGFigTny93Qt7+1AF/x/8RNP8F2XlgfatVn+W3tEPJJ6E+grjvDHw41Xxdqi+KfiBKZpGw1tpxPyRr1G4en+z9c1p+APhpPb3x8UeLWN5rs53qknIgzzjHrz+Fep46UAMjjWKNY40CRqMKqjAA9AKkoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAzXj/wAbNUm1B9H8F2DE3OqXCmUA9EBGP1/lXrksiRRvJIcIoJY+g614v8PUfxt8Uta8YzrutLNjb2mR9Rx+GaAPXdH0uDRdGs9MtlAhtYliXHfA61foHSigDL8QaRDr2gX+mXIzFcwsh/Lj9a83+B2rTwWGqeENQbF5o1wyoD3jJ5x9GB/76Fet14n40DeAfjJpHiqMbNP1bNteEcAHgEn8Np/4CaAPbaKRWDKGByCMg0tABXP+K/B+k+MdMax1S2DAZ8qZfvxn1U9vpXQUUAeE2WseI/g5qUWl68X1LwxK22G6HJhGePp9D+Fe2afqNpqthDe2M6T28qhkkQ5BFR6rpNlrWnTWGoW6T20qlWRxkfX614pLDrvwR1kz24m1Hwhcv88fVrfJ/Q/ofrQB7zRWdomuaf4h0uHUdNuUntpVyrKensR2NaNABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSZGcUZArg/iR8QYfB+nrbWii51q7+S2txyQTxuI9KAKXxO+Icnh/wArQNBU3XiO+wkUca5MAPRj/tHsPxOB1f8ADr4Zp4aB1nWZBfeIbn55Z3O4RE8kKT3z1NQfDL4eT6S0nifxExufEV/mRmk5MAbsP9ojg+nSvTqAAdBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRmgDz34x+JW8P8AgaeG3J+26gfs0IHXB+8fy4/GtT4ceGV8LeBrDTyg85082c+rtyf0rgNVJ+IHx0t9NX59L0Ab5O4Mg6/+Pcf8Br20dBigAooooAK4r4p+GR4p8A6haJHuuoF+02+Ou9OSB7kbh+NdrTSDk0AcN8JfE58TeA7N5pN15aD7NcZ67l4yfqMH8a7uvEfDP/Fv/jTqXh9js0zWR59qM/KrdQB+o/AV7bQAtFFFABUF3aQX1rLa3USywSqUdHGQQfap6KAPB9Y0jVvgxr/9u6EJbrwvcyj7XZZz5P8Ans34H1r2bQ9csPEOkQanp06zW8y5BHUHuD6EVau7OC+tJrW6iWaCZSrxuMhgexrw+eHUvgn4pNxbCW58JahJ+8T/AJ4HP6Y7HvQB7xRVXT9StNU0+G+sp1mtpkDpIvQg1aoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACjIoqpqOoW2lWFxfXkoitreMySOeyjk/wCfpQBheOvGVn4L8PS6hOQ07fLbw55d/wDAVxXw18EXeoXx8beK8zand/PbwyD/AFK9jisnwtp118WfGcni3WI2XQrGTZYWrdHIPf19T717iFAGAABjHHpQA6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArC8Ya/F4Y8K6lrEpGbeElB/ec8KPzIrdzXi3xhupfE3irw94BsnObmYXN2V/hUZAz9AHbHstAGt8DtAlsvCk2uXuTfavKZ2dhzs/h/PJP416nVeztIrGygtLdAkMMYjRR0CgY4qxQAUUUUAFFFFAHk/xw0SZtFsvE9iCL3R5g+4dSmf5A/wAzXoHhjW4fEfhux1SE5W4hVmx2bHI/Orup2EOp6ZdWNwuYriJo2zzwRivJvg1fTaJq2u+Br1iJbKZpbYMeq55x69jQB7JRQOlFABRRRQAVR1XSrTWtNn0+/hWa2mUq6MM/jV6igDwjSL29+DXjRdC1OZ5fC2ouTa3DciFie/pjgH2wa91SRHjV0YMrDII5BFYXi/wpY+MfD9xpV+vD/NFLjmKQfdYf19Rkd68++Fvie+0fVrj4f+JXxqFkxFnK54ljHQA9/Ue1AHsFFGaKA06hRTJJY4YnkldUjQFmZjgADqSaxNO8Z6Dq91cwabePeNbkiR7e2leMEdQJAu1vwJoWoO6RvUVg6J4z8P8AiG9uLLTdQ8y7t/8AW28sMkMi/wDAXVT+lb1HmHVoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKM0AJkV4n4/wBTu/iH43g8AaNKVsIGEup3Ccjj+HPoMj6sfau1+KHjMeD/AAu72/zald5htEHXcf4se1V/hT4Jbwp4cNzfDdrGonz7uRvvDPIT8M5PuTQB2WlaVaaLpVtp1jCIra3jCIq+n+NXqKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCC6uo7O0muZ2CxQoXYn0HNeO/CK2l8U+MPEPj28QnzZTa2eey9yPooQfia2fjd4gk07wmmjWjE3mrSCBVXrsP3sfXpXY+DPD0fhfwjp2kIoDQxAykfxSHlj+ZoA3x0ooooAKKKKACiiigArxT4oQSeDviHoXje1QiF3Fvdhe4/+uOK9rrmfHvhyPxT4O1DTGUGVoy8JP8LjlT+dAHRQTx3FvHPEwaORQ6MO4IyDUleafBXxG+s+CFsLkkX2kv8AZZVbqF/gJ/Uf8Br0ugAooooAKKKKACvNPiz4Mm1iwj8Q6OfJ1vTP3scijl0HOPqP5Zr0umlc5yAc+tAHI/DrxnF4z8MRXZwl7F+6uYe6uO/0NdhXhmvQTfCf4kR67aRv/wAI/q77LqNeiOf/ANea9vhniuIklhcPG6hlZeQQRkH8qA8jyn42anfFND8OW0jQwatc+XcSg4yoIG3PbOaoajolndfFDw34f07UIItO0i28+W1jbHzL1yB1J/SvV9Y0HSvEFukGq2MV3Ejb0Eg+6fUHtWc3gXwzJGiNotv+7csrc7skcndnJz05ojohvVnnPhu3/wCEl+POp+IdOXbpmnxGBrhPuzyFdpAPfqf++RXtNVNP0yy0mzS00+1itrdBhUiXAFWxwKPsqPYXVvuFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFRTSpBE8srBY0BZmPYAVLmvL/AI0eJZtP8PxaBp2W1LWG8lFXqIzgN+fSgDnvDsL/ABT+Kdx4iukLaFozeXaRsOHcdD78jJ+gFe4jpXN+B/DMXhLwnY6VGo8xF3zN/ecj5j/n0rpKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApCQBS1ynxG8Rp4W8EajqGR5xQwwg93YYGP1P4UAeeaf8A8XB+O016f3ml6AMR5HDODxj/AIFz+Fe3dq86+DnhttD8Dx3Fyp+26kxuZy3XB6D/AD616LQAUUUUAFFFFABRRRQAUmKWigDxGPPw9+PRQDZpXiROOyrKT/Pd/wCjK9tHSvM/jd4ck1jwUdStARfaRILqNl67P4gP0b/gNdT4G8Rr4r8HafqykeZLEFmA7SDhh+eaAOkooooAKKKKACiiigDC8XeG7bxX4avdJuhxMmY3/uOOjD3FcJ8HPEdytve+C9ZymqaMzKm7q8OccfQ/+Ola9XxXi/xXsZ/B/jDR/iHpynCSrb36p/GpBGT9RlfrtoA9pHSiq9jewajYW95bSLJBPGJI2U5BBGasUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADHZY1Z2ICgZJJ6CvFvBqN8QPi3qniqYb9M0s/Z7IHkZ6Aj+f411nxi8SN4d8AXYgYi8v2FpAFPPzD5jj/AHQfzFaXw18Mjwp4IsLEoBcOgmuCO7tyfyoA66iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooATIrxX4jyP40+J2i+DIDutbUi4vMdB3OfwwPxNeu6tqMGj6TealdMFgtYXlfPGQoJwPc9K8q+Cmm3GqT6z421EE3Op3DLFnsoOSR6c5H4UAevxQpDEkUYwiKFUegFSUUUAFFFFABRRRQAUUUUAFJkUtUtTUtptztupLU+Wx8+PbuTA6jcCPzFJsaJ54o7qCW3lUNHIpR1PcEYI/I1418KppPCHjvXvAt0x8rzDcWZP8S+31Xafzqv4D1Txt4v0bxDqq+KLkLZuU0/NvDtlYAkhxs6EbRwR96uS1Pxhc66uj/EBLZINT0m6FrfiIHYynlWA69CRzVWEz6goqtp99DqOn295A26KeMSKfYirNIAooooAKKKKACsrxHolv4i8P32kXQzDdQsmf7rdj+BwfwrVpMUAeS/BPWriGz1HwdqR232jTsiKTyY8ngewIP4EV63XifxARvBHxX0Xxfbgraagfs17tHBPAyfw2n8DXtSOskauhyrAEEdxQA6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACjNFU9TvotM0u6vpmCxW8TSMx7AA0AeP+Jc+OvjxpuhZLadoMf2idexfhj+pjH4GvawAAABwK8g+BtjLfW+u+L7tT9o1e8YIT2RSSce2Wx/wEV7BQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNdwisx4Cgk0AeS/HPWZ30vTPCOnkm91q4VWVef3YI4P1Yr+CmvSPD2jQeH9AsdKtx+6tYVjB9SBya8l8GqfHnxo1fxTJ8+n6OPs1p3BblQR+G8/iK9uoAKKKKACiiigAooooAKKKKACuA+MOv8A9g/D2+8t8XF2Ps8YB5+bqR9BXf1yXiv4eaP4yuIpdXmv2WIgxxRT7EU+oGOtKSvoNO2pzOgyW/w5+BqXN0UWY2zTBSeZJZB8q+56fgKwPhh8Pbi6+GGsR6pCUbWQXhRxhlA+6fbkZ/GvR18AaQ89tLqBu9TFqB9njvp/MSIggggYAzwOtdSqhQAoAAGBjoBVt+82Tb3bHlXwP1yWbQbvw3fN/pukTGLB67M8H6ZFerZFeC+Nr2X4X/FuLxNb27Pp2qRkXEacBj3/AB6GvWvC/jPQ/F9iLnSr1JSBl4ScSIfdetSM6Gik7UtABRRRQAUUUUAcb8T/AA4PE3gTUbNVzPEnnwn0Zef5Zqr8JPETeIfANm8zZurT/R5gTzlehP1Fd0yhlKsMqeCPUV4z8Pz/AMIn8W/EPhR/lt70m5tx6nr/ACzQB7RRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXmvxw1o6Z8PLi1jOJtQkW2T3B+9+ma9Krxf4l/wDFQ/Frwl4bHzQxuLi4T1XPX8gaAPSPBOjDw/4L0jTAm1obZd49HYbm/wDHia6CjtRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcN8WPE3/CM+BbyWFyt5dD7Pb467m4z+AOa7nNeJeKv+K++NOm+H0/eabo+Jrrn5Sw5I/p+NAHb/Crwx/wi/gGwtnTbdXA+0z5HO5gMA/RcD8K7agcADGKKACiiigAooooAKKKKACiiigAooooAKKKKAOB+L3hj/hJfAl2Iow13Z/6TB6kr1X8RkV5t4Y8CReLfCVh4o8Iag+j+IIB5NwqsfLkkXHXuMjBxyOelfQjIHVlYZVhgg9xXingZm8B/GDWvCUx2WOqD7TZk8DcMsAPwLj/AICKALWh/FnUvD9+mhfEPTZLC6BCpfRpmOTtk4/mufoK9cs721v7WO5s7iKeCQZSSJgysPYiqeueHtL8R6e1lq1nFcwsDgMOVPqD1BryW88D+LvhtdSal4JvZL3S87pdNnOcDvgdD+GD70Ae25FLXnvg74saN4lcWN6DpWrL8r2tydoJ/wBkn+Rr0EHj3oAWijIooAK8X+LKnw54/wDC3i2NcIsvkTkdWGf5Yz+de0V578aNJ/tP4bag6j95aYuFOORtIJ/SgD0FXVlDAgqRkEdxS1zHw91X+2fAGi3udzNbLGx90+U/yrp6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQ14z4T/4n/7QHiHU3AaPToTDCw/Bf6tXsF1OLa1mnPSJGc/gM15N8CYDcW/iPWn+Y3t+wVvYE/4igD2CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAx/E2tQ+HvDmoarMQFt4SwyepxwPzNeffBDRZl0a+8UXyk3mrzNICeuzP8AU/yqp8aL+fWtT0TwNYEma+mEtwF7J0H9T+Ves6Zp8Ol6XbWFuMRW8axrxjoKALdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXkPxx0me1s9J8ZacpF7o1yhdh/zzLDGf+BYH/AjXr1UNY0uDWtIvNMu1zBdRNE/fAIxke/f6igBmhavBruhWWq2xzFdQrIvtkdPqOlaNeP8AwQ1S409dX8F6kcXelXDGMZ6oSQQPxBP4ivYaAOJ8ZfDHQvGEbSyw/ZNQHMd5ANrg9s+tcFHr/jf4Uypa+IIX1rQA22O8QZZB7ntx2Ne51FNClxE8M0avG4IZWGQR9KAMfwz4u0XxbYC60i9ScD78ecOh/wBpeorcyAMk15N4l+Dvk37a34Ivn0fU0+byVYiKTvjvjPpyPaoNB+L13o+oLoXxC0+TTL4Hat6qfuZe2TjoP9pcj6UAew1R1iyTUdHvLOQApPC0ZB6cirFtcwXdvHPbTRzROAVeNgwI9iKkyD70AeT/AACvJP8AhEtR0iY5m06+eMj0B7fmrV6zkV438M/+JP8AGHxtoXQSkXYH/As/+1a9cvF32ko+0Pbgqf3qYynfPII/MUmwLNGa8T+Hes+JvF+q64954r1CPSbFykUsUNsrtz/ETER09q9G8M2Os295fy3+szanp8wiexM0UasqkEtnaozzjsPpVW0TDqzpqKB05opAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAYHjW9/s/wXrF0Tjy7V/1GK5f4IWX2P4Y2Bx/r5Hmz65P/wBarXxkuTbfDDV8HBkVY/zP/wBatX4dWosvh7okAGAtsp/PmgDqB0ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKimmSCKSaVtscalmY9gMkn9Klrzb41+I30PwNJZWxJvtVf7LEq/e2n75H4fL/AMCFAHO/DGJ/GXxE17xxdKTBHIbeyz2H/wBZQBXtdcx4B8Nr4V8F6dpYA81Iw8zDvI3LH866egAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPE/iDG/gj4r6N4wgG20vyLa829M8A5/Dafwr2mOVJYlkRgUYBgR3Fcp8SvDQ8U+BtQsFXNwi+dAfR15H6ZH41l/B/xKfEPgeCKcn7ZYH7NMD146UAehUUUUAJWRr/hnSfE1g9lq9jFcwtyCw+ZT6qeoPvWxRQB4fc+DvGPwwuHvvB95JqWjbt0unTclRnnA6H6jB+tdn4N+KuieKitpMTp2qL8r2lwcHPfBPWu8IrhvGXws0PxcDc+X9i1McpdwDDbh0z60AcrJjS/2nbcZx/aemnJ/vHax/wDaQrsfilrn9g/D7VLhX2zSx+REO5LcfyzXhmtnxH8PviLoF94pnN9DZkrBcqdxlhHDD6gN+texXWk+Evi3Yx3f9rXl1arhhbRXGxY2xjJTHBqZK+hUXbU53wZ8Mlm+Gtkr3l9BdXbLczxpdOsbLkcFM7c49q9lVQiBVAAAwAO1Z+j6VDo2nR2ME9xNFEMIbh97KvYZ9K0e1aSZCQUUUVIwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDy34+zFPhwYlOGlu4l/Dmu+8Ow+R4a0uIDG20iH/jozXnfx+OfBllH/evo69M0kbdGsR6W8Y/8dFAFyiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAzXiM2PiH8fI4wfM0nw2m5j1Uyg/z3Y/79mvTPHHiKPwt4Q1DVWYB4oyIgf4nPCj865P4I+HX0nwWdUugTf6vKbmR26lei/wBW/wCBUAenDpRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADSMjBHHpXiWkZ+H/wAc7rTG/d6Xrq74f7queR+vH417fXlfxx0CS88Mwa7ZqRfaTKJlYddmeR/X8KAPU80tYXhHX4/E/hTT9WjYEzwjfjtIOGH55rdoAKKKKACiiigDxj42wQ/8JN4GuJ40kiXUdjo4yHUvGSCP+A1Z8QfCCfT74674C1B9K1AfM1pvPlSd8A9vocj6VD8ePll8JSf3dSHP5f4V7En3F+lAHkXhz4wS2OoDQvHunvpOpKdouNp8qTtk46Z9RkV63BPDcwJNBKksTgFHRgysPUEdayPEfhXSPFWntZ6vZRzxnO1jw6H1U9RXlE3hfxt8K53u/C1y+r6FndLYSnLIO+B/UY+lAHuWaK4bwZ8UdC8XKIA5sdRXh7Oc4bPfHrXcZFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5N8ff+RS08+l8lenaX/yCLL/AK4J/wCgivNPj+p/4QO3k7JfR5P516RozBtC09geDbREf98igC9RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRmiqt/exadYXN5OwWKCNnYnsAM0AePfFeaTxd450HwPZtlDKJ7sjsPf6DmvZbeCO1toreBAsMSBEQdlAwBXj/AMHLOXX9e17x1eoS93MYbbd2XuR+GB+dezUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFV760ivrG4tJ1DRTIUYH0IxViigDxj4PXcvhvxP4g8B3jkNbSm4tNx6rxn8wUP517PXivxct5fCfjPw94+s1O2GYW94FHVef5rvHPfFeyW1xFdWsVxC6vFKgdGU5BBHBFAE1FFFABRRRQB458e/nh8LxDq2prz+H/wBevYU/1a/QV498cv3mpeDIOu/Uxx+Kj+texIMIo9qAFppGadRQBwPjL4U6L4qLXkC/2dqq/Ml1bjBJ7bgOtcba+MvGHwyuEsPGNrJqOkZ2RajF8xUdOT3+h5r3CoLq0gvbd7e6hSaGQEMki5BFAFDQfEmk+JdPW+0m8juITwdp5U+jDqD7GtXINeP678Ib3RdQfXfh5qL6beDlrFn/AHUg7gH0/wBlgR7ipvDPxhWLUF0PxvYNourIQvmuCIZD0zn+HPryD60Aet0VHDLHNCksUiyRsAVZTkMPUYqSgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA81+Odv9o+GN5/0ymjk/Imuu8Hz/afB2jy/wB60j/QAf0rK+Kdn9t+GutxAZYQbx+BFR/Ca8+2fDLRXJy6QlG+oJ/+tQB2tFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeVfHDXpLfw9a+HLMk3usTCPaOuwEZ/M/wAq9UJrxLQP+Lg/HC+1lvn0vQx5Vuf4WYZAP55P4igD1PwnoMXhrwxp+kxKP9HiAYju2OT+ZNbdFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBz/jTw9H4p8Ialo78NPEfKb+7IOVP/fQFcd8EPEMmpeD30a7JF9pEhtmU9Qn8P5dPwr1DHJrxG+H/CvvjtHdjEeleIVxJ/dDk85/4Fk/8CoA9vopBS0AFFFFAHjfxZ/0v4m/D2zHRb3zGHqBJEf6GvZK8a8TH+0v2j/DNl1jtLRpj7NtkP8A7Ktey0AFFFFABRRRQAlYfiXwjo3i2wNpq9kk6gHY44dP91uordooA8Ml0Hxx8KJnuNBuH1vw+Due0l5dB7AfzGK77wZ8S9C8ZIIoJvst+vD2c/Dg98etdoRkYrz3xl8JdH8TOb6xJ0rV1+ZLmAYBb/aA/nQB6GOlFeI2XjvxZ8ObqPTPG9nJfadnZFqcOW4HHJ7/AM69b0TX9L8Rael7pV5FcwMOqHkexHY0AadFJkUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZuv2wvfD+o2xGfMtpFx744rz34C3ZfwFLYuf3tldyRsPTPT+Rr1IgEHIyK8b+Eh/sj4geM/D54Kz/aFH4/8A2VAHs1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUmRQBx/wATvEw8K+A9Rvkk2XMq/Z7b18x+M/gMt+FUfhD4Y/4RzwHa+cm27vv9Jnz1BboD7hcCuQ8esfHfxg0TwfGS9hpx+1XoHIJ6kH/gO1f+B17YihEVQAAowMUAO7UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXnPxm8NtrvgmW7t1P27TG+0wsBzgfeH5c/hXo1RzQpPDJFIN0bqVZT3BoA5j4d+JF8U+CtP1HOZtgimHo68GurHSvE/hvK/gz4la34LuGK21yxuLPcevXp9R/KvbKACiio5XEcUjnoikn8qAPH/AA6f7W/aP8QXY+aKwsvLRvRsIP8A2Z/yr2QdK8b+B6HUNT8YeIGywvL/AGRt7Asf5MteyUAFFFFABRRRQAUUUUAFFFFAFa9sLXUbWS1vbeO4t5Bh45VDKR9DXkmt/CfVPDmoPrvw81F7K4B3Sae7/u5B1IBPX6N+deyUmM0AeU+F/jHby3w0TxjaNourodpaUYhkPrn+HPbt6GvVY5EkjV0cOjAFWByCOxzWB4o8F6J4wsjb6tZJIR9yZflkj/3Wry19M8dfCWYy6XK2u+HActbPnfEPYDp9R17igD3PNFcd4O+I+g+MoQlpOIL0ffs5+HU+w712AOaAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8Y1D/AIpz9o6wuPuwavb+We25yMfz217PXj3x1tZbKDQfFFsMT6ZeLlv7oJyP1AoA9hoqvY3kV/p9teQnMVxEsqH2YAj+dWKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArO13VodD0S81O4YCK2iaRs+wrRrx/43apPfJpHgzTyTdarcL5gB6IDx+v8qAF+B+lT3Vtq/jPUFJvNXuGEZPURg549i3/oIr1+s/RdKh0TRLLTLZQsNrCsS8dcDk/jWgOBQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB458atOm0q80bxvYLi406dVmIHJXIxn27fjXq+lalBq2k2mo27Aw3MSyKR7jpVbxHo0Gv8Ah++0u4A8u5iZM+hxwfzrzn4G6xOml6l4S1AkXujTsoU94yccfQg/99CgD1uuZ+IGrf2L4F1i9Bw6W7BPdjwK6avI/jxqDvoWm+H7f5p9Tu0XYDztBz/OgDZ+Culf2V8MtPLriS7d7hx9Tgfoo/OvQ6paTp6aVo1lp8eNttAkQI77QB/SrtABRRRQAUUUUAFFFFABRRRQAUUUUAFNIyCCAQeoPSnUUAeceMPhHpevzHUtKc6Tq6nck8Hyqzf7QH9K5qx+Ifif4f3qaT48sZLizzsi1OFd2R6nsf517ZVW/wBOs9Vs5LS/torm3kBDRyqGU/gaAIdH1vTdesI73S7yK6t3GQ0bZ/A+lX8ivGdX+Fes+E799b+HWovbsDvk0yZyUcDsCeD9G59DWp4T+MVle3X9j+KrdtE1lDsYTArE56dT93Pvx6E0Aep0U1XVkDKwZSMgjkGnZoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArmfiBon/CReBtX01V3SPAzRg/315X9RXTU1lDKQRkHgj1oA89+C2uf2z8N7KN2zPYO1pKD145X/wAdIH4V6IOleK+Bm/4Q340+IvC8h2Wupj7Xag8AnlsD8Cw/4BXtVABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBHJIsUbu5wiglj6ADNeL+AUbxv8WNZ8XzLus7Am2tM8jOCBj8Mmus+MHiVvD3ga4SBiL2/b7NAF689f0/nWh8M/DI8LeB7CyZcTyJ503HJduaAOwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooATHNeJeMAfAPxp0nxPH8mnawDbXmOgbgEn/xw/wDATXt1cR8VvC//AAlPgG/to0zdW4+025x/EmSR+K7h+IoA7YMGXIORXjF8f+Eu/aEtLdfntNChMjEdnHP88V0Pw/8AHMWofCoavdyj7RpsDR3G49WQcE/Xj86yvgdp0s+n6r4pulP2jVLltrMOQg/+vj8qAPXKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBMda5vxX4G0TxjaeVqdoplUfu7hOJEPs3X8K6WigDws23jv4RylrUtr/hpTkxNzJEvt6fhx7V6R4Q+IOgeM7cHT7ny7rHz2svyyKfp3H0rqmUMCCAQcgg9DXm3i74QabrNw2qaFK2j6up3LJBwjt7gdPwoA9KzjrS14pp3xJ8R+B75NH8f2Ehhzsi1KJchh6k9/wr17S9Y0/WrFL3TbuK5t3GRJG2RQBdopMiloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPHfjbp82l3OheOLBT9o0u5WKcr1MZO4fhncP8AgderaXqMGq6Xa39s4eG5iWVGHcEVV8SaLB4h8O3+k3OPLuoWTOOh/hP4HB/CvO/gnrVxHp+oeEdROL/SJWQAnnZn+hFAHrVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFYni3X4vDHhbUdYlPFtCSg/vOeFH5kUAeWa2f+FgfHO00pD5ml6Cu+bupkHJ/Xj/AIDXtwGAAK8q+Bugy2vhm48QXuWvtYlMzMw52Z4/Mkn8a9VHSgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQ85FLTWYKCScADJNAHyt4y03VfC3i7V/BumZGn67cRSxJ/sE5wPx4P+6K+l/D2jxaD4fsdKhGEtolTjuR1P5181+L7/AFfxd4i1jxvppJsNDuYooCM4KKTyPx5P+9X0l4a1uHxD4dsdVhO5LiJXOOxxz+tAGtRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBS1LSrLWLKSz1G1huraQYMcqgivItT+F/iHwXfvrPw61GTYDvk0qdsq/qBng/jg+9e1UhHPT3oA8x8I/GLTdWuBpXiKFtE1lDsaO5ysbN7Meh9jj2zXpwZSoIIIIyCOhrl/F3gDQvGVts1G0UXCj93dR4WRD/vdx7HIrzQN47+EcoVt2v+GlPGcmSIfzH6igD3TNFcv4R8eaF4ytQ+mXSicD95bSHbIn4d/wAK6cEY60ALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACV4p8QIpfAfxN0zxraxH7DeHyL4KOM9CT+GD+Br2ysLxd4eh8UeGb7SZwMTodh/uuBkH86ANi3uIrq2juIHDxSKGVh3BGalryb4L+JJmsbrwhqxKanpDlFVjy0f8AXH8jXrNABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAGa8X+Ml5N4j8SeHvANix3Xc4nuiv8KjIGfoA7fgK9iubiO1tpriZgsUSF2YnGAOa8a+EtvL4r8beIfHt2u5XkNtZbuy9CR6YUKP8AgRoA9isrOLT7G3s7dAsMCLGijoFHFWaB0ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvOPjJ4rfw94PaxsizalqxNrAqfeAPDED6HH1YV6JJIkcbu52qoJZjwAK8R8OA/E74wXPiKRWbRNC/d2obpJIPun88t+C5oA7rwh4Ft9G+HSeHrlFZ7iAm7OODI4yfyzj8BXJfBfUJtH1HW/BF8+JrCdpIM91zzj9DXseK8V+JsUngz4jaF42tkbyJXFvehR94dP1U0Ae1jpRTIpo54Y5omDRyKGVh0IPINPoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmuiyKUdQysMEHkEfSnUUAeX+Lfg9ZaldnV/Dlw2jaup3K0JxG5HqB0/CsfSvifr3g6+j0b4hafLGM7Y9RjXKuOmSeh+or2iqGraNp+uWEtlqVnDdW8nVJFz+I7g+9AEmnapY6tZR3mn3UVzbyDKyRMGBq1kYzmvFdR+G3ibwHePq3w+1GSa2zum0udshh7Z4b9D710Hg74v6Trk/wDZetRHRdaQ7HguPlRm9FY9D7H8M0Ael0UmemaXNABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhGaWigDxf4qaVdeFPE2n/ELR4zuhcR30aj7y9Mn6jivWtH1a01zSLTUrGQPb3MYdCO3sfcHI/Cn6jp9vqmnXFjdxCS3uEMciHuCK8b8B6hcfDfx5deA9WlJ027czaZO3ABJPGfQ4x/vL70Ae30UmeOaWgAooooAKKKKACiiigAooooAKKKKACiiigAooozigDzD43eIX0vwgNJtGP2zVpBbqq8tsP3sD9PxrrvBPhxPCvg/TtJVQJIYgZSO8h5Y/ma8ytf+Lg/HaS4P7zS/D4+XPQuDgY/4Fg/hXt1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVk+I9etPDehXeq3rhYYFJAP8TdlHuTQBwPxi8VT21hB4V0cs+q6swjIT7yRnr+ddj4J8KweD/CtppEABdF3TOP45D94/nwPYCvP/AIVaFd+ItZu/iDriEz3TEWSOP9WnqPw4r2MdKACuX+IHhxfFPg3UdN2jzjHvhJ7OvKn866ikIoA84+C3iNtb8Dx2V0f9N0uQ2sqt1wPun8sj/gNekV4hb/8AFvfj08BPl6V4jTKnoolycf8Aj4x/20r27igBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQjNcl4w+HeheM4D9vtRHdgfu7uLAkQ/XuPY5rrqKAPC0vPHnwkkWG8D6/wCHAcLIMmSJf5jj1yPpXqHhTxvofjCzE2lXas+Pnt3OJI/qK6GSNJY2jkQOjDDK3II+leX+Kvg9b3N22seFbptH1ZTvAjOI3PXoOlAHqWRjOeKWvGdH+Kmr+F7+PRPiFp8trIDtj1BFyj9sse49xXrtjf2mpWkd1ZXEU9vIAUkjbII+tAFmikyKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArhvid4GXxn4dP2YCPV7LM1lMODuHOzPocD6HBruaTHNAHnnwq8ct4p0ZtP1MmPW9OPlXMbcM4HAfH869DBHSvHfiX4Xv/AA7rcfj/AMMqUuoDm9gQcSrnliPp1r0Twj4qsfGGgQ6pYsBuGJIz1jfuDQBv0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAVy3xC8Rp4X8F6jqJYCbyzHCCertwK6nOK8T+Jcj+NPiTofgu2ObeBvtF5jt3OfwA/OgDpfgx4cfRPBCXlyM32pubmViOcH7oP6n8a9HqOGFIII4Y12pGoRR6AVJQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUmRQAMyqpZjgDkk9q8L1eef4w/EJdGtGb/hF9JkzcTKeJ29j74wPbJ71r/FHxffajqMXgPwsfM1K9O27lQ8Qx/wASk9sjr6DjvXdeCvB9l4L8OwaXZrlgN082OZZD1Y/yFAG9bW0NpaxW1vGscMShEVeAAKmoooAKKKKAPMPjh4dfVfBg1a0BF/o8guY2XrsyN+PoMN/wCut8EeIk8VeD9O1ZSN80QEqj+GQcMPzzW5cW0V1by286B4pVKOh6FSMEfka8a+E80nhHxtr/AIEvHPlpKZ7QsfvL7fVdpoA9rooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAM3WNB03xBYSWOq2UN1bv/AAyL0PqD1B+leSX3w/8AFnw7upNU8BX8l3p+d02lTnJx147H8MH617bSHNAHnXg74uaR4jl/s/U0Okayh2yW1ydoLdwrH37HBr0UEYA/lXHeMfhtoPjKEvdQC3vwP3d5CMSKR0+orz6PV/HPwnmW31eN9e8PA7UnTJeJf5jHvn8KAPc80Vz/AIX8Z6J4usRc6VepJgfPExw8f1Fb+RQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUARyxJNG8UiBkdSGU9CPSvDvEGk6l8IfFB8SaJG03h26fF5ajpFk8/h6Gvdar3dpDfWstrcwrLBKpR0YZDA+ooAraHrdh4h0e31PTpxNbTrlWHUHuCOxHcVo9q8Fmh1D4HeKzPCJbrwZqUn7xBybZz/Uf+PD3Ar3DT9QtNUsIb2yuEnt5lDpIhyCKALVFFFABRRRQAUUUUAFFFFABRRRQBS1XUINK0u71C5YLBbRNK5J7AZxXlHwV0+fWL3WfG+oKTcajOywk9kB5x+PH4VZ+Omtzf2Rp3hTTzuvtZuFQqOvlqR1+rFfyNejeHNEg8O+HrHSbYYjtoVTPdiByT9aANWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBMivNvib8Qn0FU0DQ0Nz4gvvkjjQbvKB7kevpV74j/EGDwfYLaWY+0a5d/LbW6ckE8BiP8AOaz/AIZ/D2bSC/iTxEftPiC9+dmc58hW5wPfn8OlAFz4a/D0eEbKS/1Fxc67e/Nczsc7ATkoD+pPr7V6BRRQAUUUUAFFFFABXjPxis5fDviLQvHdmp3W0oguto6rzjP4ZH5V7NWH4t0GLxL4W1HSZVz58J2ezjlT+YFAGnYXsOoafb3lu4eKeMOjDuCKs15V8ENelufDd14fvCRe6RKYirdSnb8sYr1WgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACo5YUniaKVFeNhhlYZBHvUlFAHlHif4PJ9uOt+DrxtH1VSX8tGIjc+nHTNU9D+LOoaDfpofj+wksbkHat6q/I/ufr6ivYqy9c8O6X4ksHstWs47qBh0ccqfUHqD9KAL1ne2t/ax3NpcRzwSAFJI2BVh7GpsivEbzwP4x+Gt1JqXge9fUNK3FpdMn+YgZ5wOh+owfY11vgv4s6L4pcWN0Dperqdr2dycZYdQrHGeexwfagD0KikB4FLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFHVdLtNa0240/ULdJ7WZdro3f3+teKPFr3wS1kyQ+bqPhK5k+ZDyYD/Q/oa95qveWdvqFpLa3cKzQSqVdHGQRQBW0TXNP8QaXDqGm3Cz28qghh1HsR2NaOa8K1bQtc+D+sPrfh1ZLzw5M+bmyyT5Q7n6eh/OvWPC/izSfF2kx6hpdyrqf9ZGT88bejDtQBu0UmR60tABRRRQAUUUUAFNZgqlj0UEmnVxHxW8Tf8Iz4FvZonxd3I+z2+DzubjP4A5oA4jwkp8f/ABs1XxLIN+m6KPs9p6b+VBH/AI+34rXt3auH+E/hj/hGPANjDJHtu7ofarjPXc2MA/RcCu4oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopNw9aAFyBXnfxD+JUHhfbpWlIL7X7n5IbdPm8snu2O/tVHx98Tmsrr/hG/Cifb9euD5YMQ3LETxzjv/Krnw7+GaeGmbWdak+3+Ibn5pJ5Du8rPJC+/qaAKfgD4a3FpfnxX4rkN74huD5iiQ5Fvn0/2u3tXqVA4AooAKKKKACiiigAooooAKTFLRQB4hrh/4V98cLPVl/d6Zrg8uc9lcnBP54Ne3ZGK4D4weGj4i8DXLQJm8sT9ogI65HUflmr/AMM/Eo8U+BNPvmfdcRr5E/rvXA5+owfxoA7GigdKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAENcV40+GGheMkM00ItdSA+S9gAV8jpn1H1rtqKAPDIfEPjf4WTraeIYH1rQQQqXkeWdF6cnr07GvVvDXi3RfFliLvSb1Jlx88ecOn+8vatie3iuYXhniSWJxhkcZBH0rynxJ8H2t74654Ivm0nU1O/yAxEbn0HpQB60CKWvH/D/wAXbrSr8aH49sW02+UhRdYxG/ufTPqOK9atrqC7t457eZJYpBlXRgQw9iKAJqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBksSTRvHIitG42srDII9DXj3in4bar4X1WTxT8PZmt5wd1zpuf3cq9TtH/sp9eCMCvZKSgDz7wJ8U9M8Wf6Ber/Z2tR/LLaTfLuI67CevPY816CCK4Txz8MNL8Wj7bB/oOsR/NFdw8HI6bvWuP034g+JfAF7Ho3j20kns87YtUiG7joMnofxwaAPbKKpaXq1hrNjHe6ddR3NtJ92SM5H/ANY1dzQAUUUUAGcV4j4uJ8ffGbS/DaEtp2knzrr0LdSP0x+NeseJNZh8P+Hb/VZ2AS3hLc9z2H51518D9FmOmah4rvgTe6vMzAt18vOf1P8AKgD1odBgY9qWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKMikyPWuN8Z/EnRPB0Riml+1aieI7OH5nJ7Z9KAOrvL610+0lurueOCCJSzySMFCgepNeM654/134hajJ4d8BQyxWOdl1qrgoAvfBP3R+p9KjtfC/i74sXkd/4rmfS9AVg8OnxcNJ6Ej1x3OT6Yr2DR9D0/QNNjsNLtY7a3QcJGMZPqfegDnvA3w60rwTZloF+06jKP395KAWY9wPQe1dnQOlFABRRRQAUUUUAFFFFABRRRQAUUUUAMeNZFZWAZWGCD3HpXivgBm8DfF3W/B0pK2WoZurPPTPLDH/Ady/8AABXttePfHHS57OLR/GenqReaRcoJCO6FsjPsGGP+BmgD2AdBS1n6Jq0GuaJZanbMGiuYVlUj3AOK0KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApMUtFAGRr/hnSPE+ntZavZR3MRztLDDIfVT1BryW58H+M/hdcPfeELx9V0TO6XTpzllHsO/HdcfSvcabjmgDhPBnxV0HxaVtXb+ztVB2vZ3J2sWHUKe/Pbr7V3mQByfzrhvGfws0LxcGufLNlqYGUu4AFbI6bh3FcRbeKvGvwuuEsPFVs+r6KDiK/i5dB9evTsfzoA9xorF8PeKNH8T2CXek3sc6EcrnDL7Edq2sigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKpalpVlq9lJZ6hax3EDg5SQZFXaKAPFtS+GPiLwXfSax8PtRk8v70mmytkMPQZ4P04Na3hj4zadeXH9l+J4G0XVIzscTArGT06np+NepEZrn/EvgjQPFtuYtX0+OV8YSdRtlT6MOfwPFAG7DNFPGskMiyIwyGU5B/Gn5HrXikvgfx78PJTceDNVOq6avzHTrs5YD0APB/AitbQfjfpM1x/Z3imyuNA1FTtdZ1Yx9++Mrn3GPegCl8atQn1e+0XwRYEmfUJhJNjsnQf1NeraVp0Ok6Va6fbqFht4ljUD2rw7wFrmkeIPidrfjHWNVsbWOM+TYpdXCRkr0BAYjooHIr2H/hNfCmB/xU+jc/8AT/F/8VQBu0Vh/wDCaeFcf8jLo/8A4HRf/FUf8Jp4V/6GbRv/AAPi/wDiqANyisP/AITTwr/0Mujf+B8X/wAVR/wmnhX/AKGXRv8AwPi/+KoA3KKw/wDhNPCv/Qy6N/4Hxf8AxVH/AAmnhX/oZdG/8D4v/iqANyisP/hNPCv/AEMujf8AgfF/8VR/wmnhX/oZdG/8D4v/AIqgDcorD/4TTwr/ANDLo3/gfF/8VR/wmnhX/oZdG/8AA+L/AOKoA3KKw/8AhNPCv/Qy6N/4Hxf/ABVH/CaeFf8AoZdG/wDA+L/4qgDcorD/AOE08K/9DLo3/gfF/wDFUf8ACaeFf+hl0b/wPi/+KoA3KKw/+E08K/8AQy6N/wCB8X/xVH/CaeFf+hl0b/wPi/8AiqANyisP/hNPCv8A0M2jf+B8X/xVB8a+FQMnxNo2PX7fF/8AFUAblGaw/wDhNPCuM/8ACTaN6f8AH9F/8VVHVfiP4P0iza5uPEFhIF/gt5lmcn0CqTQB1VY/iDxRo3hmzNzq9/FbJ2DN8zH0A6mvGdU+N2reJbt9M8JQWemxtwb7U7mOMgeoDEAf+PGrGgeB/Br3g1Xxn430zXNRbDMjajGIl9vvbm+nA9qAJ7rx54v+I1zJp3giwlsdOJ2yalNxx3we3866rwd8JNK8PSjUdSf+1tWb5muJxuVT/sg/zNdDaeKPBtjbpb2uvaFBCgwscV7EoH4BqsDxn4Wx/wAjLo3/AIHxf/FUAbYzS1h/8Jp4V/6GXRv/AAPi/wDiqP8AhNPCv/Qy6N/4Hxf/ABVAG5RWH/wmnhX/AKGXRv8AwPi/+Ko/4TTwr/0Mujf+B8X/AMVQBuUVh/8ACaeFf+hl0b/wPi/+Ko/4TTwr/wBDLo3/AIHxf/FUAblFYf8AwmnhX/oZdG/8D4v/AIqj/hNPCv8A0Mujf+B8X/xVAG5RWH/wmnhX/oZdG/8AA+L/AOKo/wCE08K/9DLo3/gfF/8AFUAblFYf/CaeFf8AoZdG/wDA+L/4qj/hNPCv/Qy6N/4Hxf8AxVAG5RWH/wAJp4V/6GXRv/A+L/4qj/hNPCv/AEMujf8AgfF/8VQBuVna5pNvruiX2lXS5hu4WifjoCMZ+o6j3FVP+E08K/8AQy6N/wCB8X/xVJ/wmfhb/oZdG/8AA+L/AOKoA87+B+qz2UGreDdQOLzSbhtik9Uycgfjk/iK9hrwLxdrmkeG/jDpHivSNVsLq1vx5F+trco5HRSTg8DG059jXsC+NfCpUH/hJtG5H/P9F/8AFUAbtFYf/CaeFf8AoZtG/wDA6L/4qk/4TXwrnH/CTaN/4HRf/FUAbtFYf/CaeFf+hl0b/wAD4v8A4qj/AITTwr/0Mujf+B8X/wAVQBuUVh/8Jp4V/wChl0b/AMD4v/iqP+E08K/9DLo3/gfF/wDFUAblFYf/AAmnhX/oZdG/8D4v/iqP+E08K/8AQy6N/wCB8X/xVAG5RWH/AMJp4V/6GXRv/A+L/wCKo/4TTwr/ANDLo3/gfF/8VQBuUVh/8Jp4V/6GXRv/AAPi/wDiqP8AhNPCv/Qy6N/4Hxf/ABVAG5RWH/wmnhX/AKGXRv8AwPi/+Ko/4TTwr/0Mujf+B8X/AMVQBuUVh/8ACaeFf+hl0b/wPi/+Ko/4TTwr/wBDLo3/AIHxf/FUAblFYf8AwmnhX/oZdG/8D4v/AIqj/hNPCv8A0Mujf+B8X/xVAG5RWH/wmnhX/oZdG/8AA+L/AOKo/wCE08K/9DLo3/gfF/8AFUAblFYf/CaeFf8AoZdG/wDA+L/4qj/hNPCv/Qy6N/4Hxf8AxVAG5RWH/wAJp4V/6GXRv/A+L/4qj/hNPCv/AEMujf8AgfF/8VQBuUVh/wDCaeFf+hl0b/wPi/8AiqP+E08K/wDQy6N/4Hxf/FUAblFYf/CaeFf+hl0b/wAD4v8A4qj/AITTwr/0Mujf+B8X/wAVQBuUVh/8Jp4V/wChl0b/AMD4v/iqP+E08K/9DLo3/gfF/wDFUAblFYf/AAmnhX/oZdG/8D4v/iqP+E08K/8AQy6N/wCB8X/xVAG5RWH/AMJp4V/6GXRv/A+L/wCKo/4TTwr/ANDLo3/gfF/8VQBuUVh/8Jp4V/6GXRv/AAPi/wDiqP8AhNPCv/Qy6N/4Hxf/ABVAG5UNzaw3kDwXMSSwuMMjjIIrJ/4TTwr/ANDLo3/gfF/8VR/wmnhX/oZdG/8AA+L/AOKoA898QfCK402+bW/Ad++mXw+Y2ociOTvj/wCtS+HPjBJZ340Tx1ZNpWoqQPtBXET+59M+vSvQP+Ez8LZ/5GXRv/A+L/4qsXxHc/D3xXYGz1jWNCnTB2P9uiDxn1Vg2R+dAHZwXENxCksEqSRuMq6HII9jUma+cpbu/wDhZcm58K+LdK1vQd2X0+a+jaRB7AN+q/iteqeCfil4e8axLHBL9k1DGXtJyA2f9k9G/n7UAdzRSZx1oyKAFopMg0tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADTycZ5/lWNr/AIU0TxRafZ9Y0+K5XBCuw+dM9drdV/A1ynxY8Waz4P0q0vdIvIFlmmEK28sG/eT3zkEVha5478VeEta8LW9/c2l+NVVTc2y24jeJiVHBBPdv0oWo5aGP4m/Z3jbfceHNQaNuSLa5+YfgwwfzzXFp4Wj8KOIvF3gO5uoAfmurO7lAI9eCRj8BX1apyoOOooZFkUq6hlPUEZBpsR4BoWkfBDXtqostrOePKurmWM5+u7H612lv8FPhzdxCW2smmjP8cd9Iw/MNW7rvww8JeISz3mjwpK3WWAeW36Vxc/wU1LSpTP4T8V3lkw+5FOxZV/L/AApAbn/Ci/AH/QLn/wDAuX/4qj/hRfgD/oFz/wDgXL/8VWB53xl8N8yQ2et26dSMF2/XP6U5fjbqmlYTxJ4M1GzbuUB/9mxQBu/8KK8A/wDQLn/8C5f/AIqj/hRXgH/oFz/+Bcv/AMVUVj8dvBdzhbi5ubRz/DNA3H4gYrorL4k+Db8gQ+IrDceiNMFJ/A0AYX/CivAP/QLn/wDAuX/4qj/hRXgH/oFz/wDgXL/8VXcW+u6TdYEGpWshPGFlFWhdW56XEX/fYoA89/4UV4B/6Bc//gXL/wDFUf8ACivAP/QLn/8AAuX/AOKr0QXEJ6Sof+BCkNzADgzRg/7woA88/wCFFeAf+gXP/wCBcv8A8VR/worwD/0C5/8AwLl/+Kr0F720jUs9zCAO5cVmXXi7w7ZAm61uwhA6751FAHI/8KK8A/8AQLn/APAuX/4qj/hRXgH/AKBc/wD4Fy//ABVX734veBrHO7XYJcf88AZM/lXO3vx+8PI3l6bp2pag7fd8uHaD+eDQBp/8KL8Af9Aub/wLl/8AiqP+FFeAP+gXN/4Fy/8AxVYB+JHxD10+XoPgmWBW+7Pcg4HpnPFIfCHxY8Sc6x4kg0uF/vwW5zx7bcj9aALuqfC34UaLGz6kEtwvUPfyZ/LdmvPtXHwnila10Dw7qWs3ROAIbiUJn65z+lej6V8CPD1vKJ9Yu7zVpxzmd8L+XOa9A0nw3o2hRLFpmmW1qq9DHGM/n1oA+btP+DXiDxPeLcJpEPh6xP8ADLK8jEeoDEnP4ivTNG/Z+8KWdrt1I3OoTHq/mtGB9AuP1zXrIBpaAPN/+FF+Af8AoFT/APgXJ/jR/wAKK8A/9Auf/wAC5P8A4qvSKKAPN/8AhRXgH/oFz/8AgXL/APFUf8KK8A/9Auf/AMC5f/iq9IooA83/AOFFeAf+gXP/AOBcv/xVH/CivAP/AEC5/wDwLl/+Kr0iigDzf/hRXgH/AKBc/wD4Fy//ABVH/CivAP8A0C5//AuX/wCKr0iigDzf/hRXgH/oFz/+Bcv/AMVR/wAKK8A/9Auf/wAC5f8A4qvSKKAPN/8AhRXgH/oFz/8AgXL/APFUf8KK8A/9Auf/AMC5f/iq9IooA83/AOFFeAf+gXP/AOBcv/xVH/CivAP/AEC5/wDwLl/+Kr0iigDzf/hRXgH/AKBc/wD4Fy//ABVH/CivAP8A0C5//AuX/wCKr0iigDzf/hRXgH/oFz/+Bcv/AMVR/wAKK8A/9Auf/wAC5f8A4qvSKKAPN/8AhRXgH/oFz/8AgXL/APFUf8KK8A/9Auf/AMC5f/iq9IooA83HwL8Bj/mGT/8AgXJ/jTJvgh8PYInlm06VI0GWZryQAD3O6vS682+OOp3OnfDi6W2YobiRYXcf3T1H41MnZDSucFYeCvB3izWJrHwj4dMtrbNifUry7mEPf5VQMGY52859eK1bD4SaLH4pTR9U8PQtCYGnF5bXc4VgMAIULkg5zznHSu5+E2kQaP8ADjSkiUK1wn2iQ/3mbnP5Y/Ku1AQvuwNwGMnqBWklyvlJTvr0POv+FFeAf+gXP/4Fy/8AxVH/AAorwD/0C5//AALl/wDiq9IoqRnm/wDworwD/wBAuf8A8C5f/iqP+FFeAf8AoFz/APgXL/8AFV6RRQB5v/worwD/ANAuf/wLl/8AiqP+FFeAf+gXP/4Fy/8AxVekUUAeb/8ACivAP/QLn/8AAuX/AOKo/wCFFeAf+gXP/wCBcv8A8VXpFFAHm/8AworwD/0C5/8AwLl/+Ko/4UV4B/6Bc/8A4Fy//FV6RRQB5v8A8KK8A/8AQLn/APAuX/4qj/hRXgH/AKBc/wD4Fy//ABVekUUAeb/8KK8A/wDQLn/8C5f/AIqj/hRXgH/oFz/+Bcv/AMVXpFFAHm//AAorwD/0C5//AALl/wDiqP8AhRXgH/oFz/8AgXL/APFV6RRQB5v/AMKK8A/9Auf/AMC5f/iqP+FFeAf+gXP/AOBcv/xVekUUAeb/APCivAP/AEC5/wDwLl/+Ko/4UV4B/wCgXP8A+Bcv/wAVXpFFAHm//CivAP8A0C5//AuX/wCKo/4UV4B/6Bc//gXL/wDFV6RRQB5v/wAKK8A/9Auf/wAC5f8A4qj/AIUV4B/6Bc//AIFy/wDxVekUUAeb/wDCivAP/QLn/wDAuX/4qj/hRXgH/oFz/wDgXL/8VXpFFAHm/wDworwD/wBAuf8A8C5f/iqP+FFeAf8AoFz/APgXL/8AFV6RRQB5v/worwD/ANAuf/wLl/8AiqP+FFeAf+gXP/4Fy/8AxVekUUAeb/8ACivAP/QLn/8AAuX/AOKo/wCFFeAf+gXP/wCBcv8A8VXpFFAHm/8AworwD/0C5/8AwLl/+Ko/4UV4B/6Bc/8A4Fy//FV6RRQB5v8A8KK8A/8AQLn/APAuX/4qj/hRXgH/AKBc/wD4Fy//ABVekUUAeb/8KK8A/wDQLn/8C5f/AIqj/hRXgH/oFz/+Bcv/AMVXpFFAHm//AAovwCP+YVP/AOBcv/xVX9H+Efg/QtXt9UsNOkS7t23RO9w7hT64JruaKAZjeJriWy8N395FfNZPbwvN54RX2hRkjDAg9K87+HOr+LfF3haTW9Y8StYxmcxQeXaQYYAgZJKf3sj8Ks/HfXW0/wADDTICTcanMIFC9do5b88bfxqfRfh2+jaN4bR9Vu1tbAi4vLaWQeTv2kkhe2HJpQs25dNhz0tHqdd4Vi16GwmXxBeLd3KzuscixqgMYPynCjuK3x0pkciSxK6MGRgCCDkEU+quIKKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUZGcUVHLG0kTormNmBAZQCVPrzxQB4l48RvGnxn0bwwsskdvZJ50rx7SVP3sjcCMjHcUR3MWh/HqDS9SRdbnuYgbe+uSTcW2RkKACIwPkJ4RT8/59fp3wubSvEV5rtr4m1EajdgiWVoYWyD6ArgdulXvDvw20vQdcuNdluLrUtXmLE3d24LKCAMKAAB0wPQcdKIaNBPW52g6UUAYAFFHcNkgooooASk2AqVIyD1z3p1FAGNe+E/D2okteaHp87H+J7dS354zXPXnwe8C3uS+gxxsf4opZE/QNj9K7qigDyy4+AHgqf7g1GD/AK53A/8AZlNVD+z34fHyx61rKIOi+ahx/wCOivXqKAPHz8ArCPi28UazCp6jeOfyxSj9n3R2GZPEGstIereYvP6V6/RQB5Gn7PPhUsGudR1idh/enQDH/fGf1rTtvgV4FgIL2FxPjtLcNz/3zivSaKAOTsvhl4LsMeR4cseOnmqZP/QifQV0FnpWn6cm2ysLW2X0hhVB+gFXKKAEx2paKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACs3XNEsfEOkXGl6jD5trOuHGcEe4PrWlRSaurAcToPhDxD4b00aVY+J4JdORm8kXWnF5okJztDiUAkc8sp+hHFdVp9gmn2whR5JGJLPJK25nY9STgfoAKuUVTdwCiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcN4m+GGneLNbh1TUdV1cSW7BoI4pYhHF0Pygxk9QDyan1PwB/bSwx6n4m1+5gicP5HnQxpJg5w4SJdw4/8A1V2VFADI41jjWNQFVQAAOwp9FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/2Q=='] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 6 "如图, 在 $\triangle A B C$ 中, $A B=A C, I$ 为 $\triangle A B C$ 的内心. 以 $A$ 为圆心, $A B$ 为半径作圆 $\Gamma_{1}$, 以 $I$ 为圆心, $I B$ 为半径作圆 $\Gamma_{2}$, 过点 $B, I$ 的圆 $\Gamma_{3}$ 与 $\Gamma_{1}, \Gamma_{2}$ 分别交于点 $P, Q$ (不同于点 $B$ ). 设 $I P$ 与 $B Q$ 交于点 $R$. 证明: $B R \perp C R$. " ['如下图, 连接 $I B, I C, I Q, P B, P C$.\n\n\n\n由于点 $Q$ 在圆 $\\Gamma_{2}$ 上, 故 $I B=I Q$, 所以\n\n$$\n\\angle I B Q=\\angle I Q B .\n$$\n\n又 $B, I, P, Q$ 四点共圆, 所以 $\\angle I Q B=\\angle I P B$, 于是 $\\angle I B Q=\\angle I P B$, 故 $\\triangle I B P$ 与\n$\\triangle I R B$ 相似, 从而有 $\\angle I R B=\\angle I B P$, 且\n\n$$\n\\frac{I B}{I R}=\\frac{I P}{I B}\n$$\n\n注意到 $A B=A C$, 且 $I$ 为 $\\triangle A B C$ 的内心, 故 $I B=I C$, 所以\n\n$$\n\\frac{I C}{I R}=\\frac{I P}{I C}\n$$\n\n于是 $\\triangle I C P$ 与 $\\triangle I R C$ 相似, 故\n\n$$\n\\angle I R C=\\angle I C P .\n$$\n\n又点 $P$ 在圆 $\\Gamma_{1}$ 的弧 $B C$ 上, 故\n\n$$\n\\angle B P C=180^{\\circ}-\\frac{1}{2} \\angle A,\n$$\n\n因此\n\n$$\n\\begin{aligned}\n\\angle B R C & =\\angle I R B+\\angle I R C \\\\\n& =\\angle I B P+\\angle I C P \\\\\n& =360^{\\circ}-\\left(90^{\\circ}+\\frac{1}{2} \\angle A\\right)-\\left(180^{\\circ}-\\frac{1}{2} \\angle A\\right) \\\\\n& =90^{\\circ},\n\\end{aligned}\n$$\n\n故 $B R \\perp C R$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAicB1AMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKSo5ZkhQvLIiIBnLsAPzoAlorn7rxv4Vsiy3HiTSY2UZKm8j3flnP6VnN8UvBvzeXraXG1gp+zQSzYJ/3FNAHY0VyafETQpSRFHrEhH9zR7o/wDtOmH4iaaGIGleIW56ro1xj/0GgDr6K5R/iFokQBlg1qPP9/Rrof8AtOoT8UPCEbOJ9UktymN32mynhxn/AH0FAHY0Vzdv4+8I3W3yvE+kZY4VWvI1Y9uhOa3La8tryLzLW5inU/xRSBh+lAFiikByP5UtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRVHUtWsNIs2u9Svbezt1OPNnkCLnsMk9fauYHjbUNaAXwnoFzfxNjGoX2bS1x/eUsN7j/dX8aAO0zisbWfFeg+Hl/4m2r2lqxHyxySDe30QfMfwBrFXwt4g1cBvEfii4CZDGy0ZTaxAjqDJzI4/wCBL9K2dG8J6B4f+bTNJtbeUj5p9m6Vu/zOfmb8TQBjt44vL/P/AAj/AIU1nUBwVmuEFlCw9Q0uGI+imneT8QdS3eZeaHosTfd8iKS8lH4sUX/x012NGKAOPHgi6uWR9V8X+ILxl5ZIrhbWMn6Qqpx7Zp8Xw08HxyebJocN3L3kvne5Y/jITXW0UAZ1loGjaaALDSbC1A6eRbImPyHufzrQAA6AClooAKKKKACjA9KKKAKl1pWnXylbuwtbhT1EsKuP1Fc/d/DfwZdj5/DdhCR/FbR/Z2H0aPaa6uigDjz4CjtnEml+I/EWnkdEW/aeP/vmYOKaNO8facv+i69pWrLnO3UbNoHx6b4jj8dldlRQBxv/AAl2u6cT/bfg3UEj3bRPpcq3qn3KjbIPwU1oaT448N63P9ns9Yt/tW4qbWYmGYH08twG/SuirM1fQNI1628nVdNtb2Pt58Stt9wSMigDR7U6uLHga50na3hfxFqGmIpAFpcsby2wOwSQ7l/4Cwpo8TeJtEwPEXh5ruANhr/QyZkHPVoT+8XjrjdQB21FZGieJdH8R25m0jUre6A+8qNh0z2ZDhlPsQK16ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoqC4njtbd555kiijXc7yMFVR6kngCuMbxXrHilmt/Blqgs8lH1u9UiBecEwp96U9eeFBA5NAHTa14g0rw9Z/bNWv4bSDOFMjcufRQOWPsATXOtrHivxKSuh2P9h6ef8AmI6pETM455jt+CO3Lkcdqu6J4KsNNvRql7LNq+sn72oXzB3U9xGo+WNQeygcdzXU4HpQByem+AtJtb5dS1Dz9Y1QHIvNRfzWU9fkX7sYB/ugV1lGB6UUAGKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoxRRQAYowKKKAOd1vwZoniCYXdxbNBqCjEeoWbmC4T0xIuCfocj2rLB8aeGjyU8T6Yv+7DfIv6Ry4H+6T7122BRgUAYOgeLdJ8SeZHY3BW6h4ns50MU8Lejo3I/Ue9b1YGu+EtI8R+XLeQNFeQ8wX1s5iuIT6rIOR9OR7VinVPE/hH5dWgl8QaOv/MQtIsXUI/6awj74HHzJzgElaAO5orP0rWdP12wiv8AS7yK6tZfuSRNke4I7EdweR3FaFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTScDk0AOrnvEHiyz8PtFbCOa/1W5H+jadajdLL74/hT1c8Dn6Vlal4o1DW76bRPBojknjcxXeryrutrJu4X/nrKAR8o4BI3cZrW8OeFNP8OLNLEZLnULr5ru/uDvnuG/2m7AdlHAoAxofCN94kniv/ABrNHOqnzIdFgP8AosJ7eZ3mbgcn5Qc4BFduiJGioihUUYVQMAD0pcD0FLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFGB6UUUAchq3g3bqEms+Grv+x9YcgyFVzb3Z7LNH0PpuGGGc5NP0PxkbnUF0TX7RtI10glIXbdDdAdXgk6OMYO3hhzxwTXVkAjBAIrN1zQdM8R6cbHVLVbiEkMueGRh0ZWHKsPUc0AadFcDHq+r+BJI7bxFNNqWgEhINZI3S2/oLkDqO3mjjpuwTXcQzJcRLLFIJI3G5XVgQw9QR2oAmooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKhnmjt4XmmkWOJFLM7NgKB3J9KAHSSpDG0krqkajLMxwAB6muCkvr/4hytb6VNNY+FkYibUUJSa/55SHjKxg8M/foO5pfKu/iPdpLKJbbwfG26NOVfVT6sOqw+gP3+vTFd5FBDbwpDDEkcUahURFAVQBgAAdABQBV0vTLLRdOhsNOto7a1hXbHFGMAD+pJ5z3zV7FGBRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUYoooAbJGksbRyIro4KsrDIIPUEVwM2nal8P5pL3RYZb7w2zF7nSkBaW0Pd7f1X1j7YO3rgegUYFAFHTdTstZ0+G/067jubWYbklibII/p9DyPrV6uE1XR7/wnqM/iDwxbvcW0r+bqmjR9Js9ZoR/DKB1UcP8AXGep0jWLHX9Kt9S0y5We1mXcrrxj1BB5BHcHp3oA0qKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooozigBjuI0LO21QMkk4AHcmvP1MvxLv9+54/BttLhRghtUkU9T/ANMAeP8AaOc9OJdUll8e61PoFpI6+HLKTZq1zGxBupBz9mRh0A4Lkf7vGTXdQwRW8CQQxokUahERVAVVHAAHYUAPVVVQqqAB0AFLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAYFcJrGk3nhPVZvE3h63lntZn36tpMIH74d54h2lA6j+Meh5Pd0YHpQBR03U7PWdNttQsLlZ7W5QPHIncH+XpzyPrV6vP76B/h7rEus2iM3hm9lzqVrGv/HjIf+XhB/cPRwOmd3sO8ilSaJZY3DxuNyspyGHUEGgCSiiigAooooAKKKKACiiigAooooAKKKKACiiigArjfFWr3t5qMHhPQpni1K7XzLu7T/lxts4L/wC+33UHXPPGK1fFPiGPw3o7XZjae6kcQWdqp+a4mb7qL9T1PYZqDwj4ek0SwmnvpVuNZv5Bcajcj+OTHCL6Ig+VR0wPc0Aamj6RZ6DpNtpmnQiG0tk2RoP1JPckkknuTWhRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADJIo5onjljV43BVlYZDAjBBHfiuF0iV/AviCHw5dSMdC1ByNHnkOfs8nU2rN6d489sryQK72snxBolp4i0W40y8DeVMvyupw0bg5V1PZgeRQBrUVyfg/XLy6S60PWmH9u6WwjuCBhbiP+CdPZh19GBHFdZQAUUUUAFFFFABRRRQAUUUUAFFFFABTC4UElsADkmn1xXjS6m1S5s/BtjIy3GqAtfSx/et7NeJG9i3CDj+IntQBD4ez4v8SSeLJlzploWttFUjhxnElx9WxtX/AGRnHNd3Ve0tILK0htbaJYoIUEccaDAVQMAD04AqxQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUYHpRRQBx3jPTbyF7bxTo8W/VtJUl4QCDd2x5kh9z/EvX5gPWuj0vU7XWdLtdSsZhLa3MYkjcdwR39D6jtV7A9K4XSB/wiHjOXQT8uj6w0l3pv92GfrNAOwB++o/3hQB3VFFFABRRRQAUUUUAFFFFABRRRQBVvLyCxs57y5mEVvAjSSyN0RQMkn2Arl/A1nPdQ3firUUZL7W3WZI3629qoxDH9dp3H3Y1H4xY69rGleDoiTFdt9s1Pafu2kZB2nuPMfav0DV2oUAAADA6UALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc/4v0F/EHh6W3tpBDfwutzZTkf6qdDlG59+D7E10FFAGJ4W19PEvh621FYzDM2Y7iE9YZlJWRD9GB+owa264a3H/CMfEia3XK6b4kDTRgfdjvY1+cdMDzIwG56mP3ruaACiiigAooooAKKKKACmO6ohdmCqoySTgAetPrj/iFczP4fj0O0cpe65cJp0bKASiNzK+M/wxq/PrigCPwGj6qNT8Wzhg2sz5tQ4IKWkeViGD03fNIf9+u0qvaWkFjaQ2lsgjhgjWONB/CqjAH5VYoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5nxvo02s+GpUscLqdoy3lg+MlZ4zuTH1+6fZjWl4f1qDxDoFhq1txHdwrJtJyUP8SnHcHIP0rUxXFeFSNE8Va94XY7Yd/wDalguf+WMxPmKB0AWUN/32KAO1ooooAKKKKACiiigAriov+J58VbiYjdbeHrMQJlelzcYZiD7RKg/4HXYTSpbwSTSuEjRS7segA6n8hXKfDmKSTwr/AGxcRmO41q5l1J1JztWQ/ux+EYQUAdhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVxnjMHSda8PeJo1wttdfYbxug8i4wuT6hZPLP512dZHifR01/wAManpLYzdW7RoSPuuR8rfg2D+FAGvRWF4O1k6/4Q0vU3J86aBfOHTEo+Vx7YYGt2gAooooAKKKKAOU+ItxLH4KvLS3cJdak0enQE92mcR/oGJ/CujtLWGytIbWBNkMMaxxoOyqMAVy3iUf2h448JaXtDxxTT6lKPTyo9iH/vuYfiK7GgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKbnv2rA1Xxx4X0Vmj1DXrGKZThoRKHl/wC+Fy36UAdDRXHf8LDtLjb/AGZoXiLUlYfLJBprxof+BS7BSt4l8WTMBZ+BbgKej3mpQRDr6KXPT2oA7CiuRN/4+lAMegaFBzyJdUlf/wBBhp/2j4gf9A3wz/4MJ/8A4zQB1dFciL7x8jNu0Xw/KAOkepyj+cNMPiHxlBJifwOJY+Pns9Wift6SLH/k0AdjRXIHx4beTZqPhfxJZY6yfYftCfnCz1PZfEPwlfymGPXrSKYHaYbpvs8gPpsk2tn8KAOoopiyK6bkYMp6FTmn0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJgelLRQBxvgs/YNa8U6CSxFpqJu4QRgCK4XzMD2D+YK7KuNuP+Jd8WrGXcBFq2lSwbR3kgcOp/wC+ZX/L2rsqACiiigAooooA43T9t98WdYmDFv7M0q3tQOytK7yN+OEj/SuyrjvBJW71bxdqO3Bm1l4AfVYY44v/AEJWrsaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopmT60APppPB5rktQ8dQtfSab4cs5de1OM7ZIrVgsMJ/6aTH5V6dAS3tVZfCGseIFL+MdYaWFuulaYzQWwHo7A+ZJ+JA9qAL+o+PtEs717C0efVtSXrZaZGZ5FOcHcR8qf8CIqp53jzWz+6g07w3asCN05+2XPsQqkRr+Jaun03S9P0e0W002zt7S3XOIoIwi5PU4FXaAOM/4V3ZXpZ/EGq6trjMQTHd3RSDI9IY9qY+oNdDpmgaPoqFNL0uysgev2eBUJ+uBzWlRQAUUUUAFFZp1zTxr40M3K/2k1uboQAHPlAhd2cYHJx1z+RrSoAKMD0oooAKq32mWGqQGDULG2u4T1juIlkX8iDVqigDjpPhvoMTPJo7X2hzMcl9LunhXPvHkxkf8Bpv2bx1ooJttQ0/xFAMnyrxPslxjsBIgKH8UX612dFAHHQ/ELTradbXxFaXnh+7ZtijUEAhdsZ+WdSYz+YPtXWxSpLGskciujDcrKcgj1BpLi2gu7d7e5gjmhkXa8ciBlYehB4IrjpPAQ0uZrrwhqU+iTFtzWg/e2Uhzk7oT93OOqFcUAdtRXFJ42udFkjtvGWmnSyzBU1KBzLYyN2+f70ZJzgOO3U118M8dxFHLFIskcihldGBDA9CCOoNAE1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBxvjkG1vvC2qIuWtdZiiZh1WOdWhJ/wC+nWuyrkfiZC7/AA71aWL/AFtoiXiZ9YnWX/2SuqjkWWJJEOVcBgfYjNAElFFFABRRUU8ohgkkJA2qWye2BmgDlfhu3n+EBelWVry+vLk7hg/NcyEH8sV19cp8NYBb/DXw6gAXNjG/H+0N39a6ugAooooAKKKKACiiigAooooAKKKKACiiigAoorkdb8WTrqbeH/DcCahroUNL5hIt7JT0aZh074QfMcdutAGnr/ifTvDdok1/K5klbZBbQoZJrh/7saDlj/Lviue/sXxB4zG/xHK+kaOSSukWc2JZl/6byr0H+wnryTitXw/4Qt9IvH1W+uX1TXZ0An1Gdfmx/cjUcRp1+UfiTXTYHpQBV0/TbLSrKOz0+1htraMYWKFAqj8BVuiigAooooAKKKKACs/V9Uh0fS7i/uN5jhXO1BlnYnCqo7sSQB6kitCuA1TxPo114xFtfXnl2ejkPs8p2Et0Qe6gjEa5/wCBN6pQBxOjxahpn7RVqdWnDXuqac0sqhsrGSrHy0/2V8vAPfGe9e614X4i1vT734/eDtS06485Gh+zOdjLgkyDuP8AppXulABRRRQAUUUUAFFFFABRgelFFADJYYp4XhmjSSKRSro6ghgeoIPUVxM3hC/8OSve+CrpLZC2+TRrpibSXJ58vvCxycY+XOMjFdzRgDtQBzXh/wAYWmt3L6dcQTabrUI3T6bd8SAZI3IejpkfeXPviulrC8ReF9N8SWqJeq8dxAS9teW7eXPbP2ZH6qeB7HHNYln4l1Lw3fxaR4wdGilISy1uNdkU57JMOkUnHH8Lc4xjFAHcUUwHPQ0+gAooooAKKKKACiiigAooooAKKKKACiiigDJ8TWf9o+FNYsj/AMvFjND/AN9IR/WofB90194K0G6c5ebT7d257mNSf1radA6FD0YYNcn8MZHf4a6B5isrJaiIhuoKkrj9KAOuooooAKz9cmWDQNSmYErHayM2PZCa0KyfEw/4pTWPX7DN/wCgGgCp4DAHw88NY/6BVr/6KWuhrn/An/JPfDX/AGCrX/0UtdBQAUUUUAFFFFABRRRQAUUUUAFFFFABRnFFcRrmq6h4j1aXwt4euntvJ41XU4xzbKf+WUR6eaw7/wAA564FABqmvah4j1O48PeFpzEsDBNS1fAK2vrFF/fmx+C/XArodB0Gw8N6Ythp0JjjyXkdjueWQ/ed26sx7k1Louj2GgaTb6ZplukFpAu1EXn6knqSTyT3rRwPSgAxRRRQAUUUUAFFFFABRRRQBwfjn4laP4ZglsYtSgbWGYRJEPnEBbH7yTHRVBzjgnjHrXTeHrewttBso9LnW5tPLDRzhg/m55Llu5Ykkn1Na2KKAPB/i34k0Y+PPBl1aalbzyaZfsbzyn3+UBJGcNjoeH46+1e16dqljq9ot3p15DdWzcLLA4dTj3FWWZY1ZmKqqjJJOMDqc15Ff/EzxHPc3fiDQdKju/B2lzCK5k2/vboc+ZJH/srx/MnGdoB7DRVHS9UtNZ0y31GwuVmtLhA8Ug6EHt7EHj9KvUAFFFFABRRRQAUUUUAFFFFABVS+sLXU7GayvbeOe2nUrJFIoIYe4q3RgelAHn0V1efDiZbe/llvPCLNiG9cl5dNJPEcp6tFyAr9V6HjBrvY5EmjWSNw6MAVZTkHPoaWWGK4ieKaNJI3Uo6OoIZTwQQeoNcBDJJ8Nr5LWZ5H8IXUoSCZ23f2XIxwI3J58ljwGP3TweCDQB6FRTAdwyDkHoR3p9ABRRRQAUUUUAFFFFABRRRQAUUUUAFcf8MUki8BWkUrl3jubtCSc/duZQP5V2Fcp8Of+RNj/wCv6+/9K5qAOrooooAKpaqgk0i9jK7w0EgKnnOVPFXaa6h0KnuMUAc94BcP8PPDR6f8Su2H5RqK6OuR+GMhk+Gughhho7byWGc4KMUI/Na66gAooooAKKKKACiiigAooooAKKKw/E/iGPw3or3zRm4nZ1gtbVD89xMxwka+5P1wATg4oAzfFWuXzXcHhrQJAutXq72mI3LZQZwZmHc9Qqnq3sDWv4f0Kz8OaRDplijLFHyzucvK5+87n+JieSfw6VR8IeH5dGs5rzUpEn1zUnE9/cLyC+PljXP8CD5VHsT3rpcD0oAMDOcUUUUAFFFFABRRRQAUUUUAFFFFABRRXB+PvF17p7W3hnw4Fm8TaoCsAP8Ay7JzmVvTHOM8cZ5xigDK8XaneeOPED+AtBmeK0jwdcvoiMRR/wDPFT3ZsEEfUdA1ehabpVlpGk2+l2VukVlBGI44h02+/qTyST1zWX4O8KWfg7QY9OtXMszN5lzcty88p+8zfjx9OK6OgDyRGf4ReKvLYsfBWrzfKTyNNuD2/wCubfyH+yd3q6uHUFSCCOCDnPpVPV9Istc0m60vUYBPaXKbJEbv9D2IIBB7EZrz/wAG6te+DtfHgDxFM0kWN2iag/S4i/55Mezr0x+HTbkA9QooooAKKKKACiiigAooooAKKKKACoLq0gvrSW1uoUmt5kKSROoKsp6gg9RU9FAHB6DcXHg3WbfwnqUryaZPkaNeyHJxyfszk/xqPun+IcDkYrvKx/EegWviTRJ9NusoH+aKZDh4JB92RD1DKeR+I6Gs7whr15ex3Oj60UXXtLcRXQUYWdT9yZP9ll59jkYFAHU0UUUAFFFFABRRRQAUUUUAFFFFABXHfC8OPh9p7PIJGkluZd6nO4PcSNn9a6u4mEFtLMTgRoXJ+gzXNfDW3Fv8NfDsYAGbGJ+P9obv60AdXRRRQAUUUUAcf8OdsXh+9sEAAsdWvrfAGMD7Q7D9GH512Fcd4S2WnivxnpirjbqEV6PcTQJk/wDfSNXY0AFFFFABRRRQAUUUUAFFFFADScDk1w2gf8Vl4ofxRMQ2lae0lro6HGJH6S3H44KL7AnAzVrxzd3VzDZeGNNkZL/WnMTTJ1gtlwZpQccEAgD3YV01hY2+mWFvZWcax21vGsUSL0VVGAKALdFFFABRRRQAUUUUAFFFFABRRRQAUUVnavq9noWkXWp6jcLBaWyl5JGPQdgPUkkADuSAKAMrxn4vtfB+hveyKbi7lbybO0Tl7iY/dUAdskZPYepwDl/D/wAJXWkC617XmE/ibVcPdyHnyV/hhT0A4HHHHUgCsvwZpV74u18eP/EUbRrtK6Jp78C2h/56kd3YHOffPTbt9NwB2FAC0UUUAFcx418JWnjLQWspnaC7icS2V2nD28w+6wI7evqPcAjp6MD0oA4XwB4vu9XF14f14CDxNpWEuozx56cbZl9QQRnHHIPQiu6rgvH/AITvNRa28SeHWEHifSvmgb/n5j53Qt7H5sZ9SOASRteDfFlp4w0GPULfMUyHy7q2c/PBKPvKc8/j6EUAdHRRRQAUUUUAFFFFABRRRQAUUUUAGK4zxpp91aTW3i7SITJqWlqRPCnW8tCcyRe5H3l/2h3zXZ0m0egoAq6bqFtqunW1/ZzCW2uY1kicd1IyPx5q3XC+Hf8AilPFl14VZtmm3we/0cY4TnM8C/7rEMB6MfSu6oAKKKKACiiigAooooAKKKKAMLxjdtYeCNeu0bDxafO6nOPmEZx+uKs+G7L+zfC+k2J/5drOGH/vlAP6Vh/EwGbwRc2CvtfULi3sl9/NmRD/AOOk12GAO1ABRRRQAUUUUAceu6x+Lrj5RDqmjA57tJBL0/75m/SuwrjfGmLDXPCeuFSRbal9kkYHGI7hGjyfbf5ZrsqACiiigAooooAKKKKACmlsDJPAHNOrkviBezx+Hk0mxkKahrU66dbuASU8z78nHICoHbPqBQBV8GA67quqeMph8t4/2TTSR92zjJww7je+5znttrt6qWFjb6Zp1tYWqeXb20SxRKD91VGB+lW6ACiiigAooooAKKKKACiiigAooooAY7hFZnYKqjJJOMDvmvKFV/i34pWZ1P8AwhOkT/u1YcalcDvjvGvT8fc7bPi7U7zxx4gfwFoMzxWkeDrl9ERiKP8A54qe7Nggj6joGr0PStLs9F0u207T4FgtLdBHEi9AP6k8kn1OaALoUAAAAAdBS0UUAFFFFABRRRQAmB6CvLvF+m3fgfxC/jzQIHktZABrlhF0mjGf3wHZl5JP1PALE+pUjIrqVZQykYIIyDQBS0vVLTWdMt9RsLlZrS4QPFIOhB7exB4/Sr1eSIz/AAi8VeWxY+CtXm+UnkabcHt/1zb+Q/2Tu9XVw6gqQQRwQc59KAJKKKKACiiigAooooAKKKKACiiigDlfHek3F9oa6hpy51bSZRfWeOrsn3o/o6Flx7j0ra0fVLfXNGs9Us3LW13CssZ74IBwfcdCK0K4nwhjQvEWu+FCQkMMg1DT04H+jzEllUDskocfRhQB21FFFABRRRQAUUUUAFFFFAHG+Lwt94n8H6SQSH1Fr58dlgiZhn/gbJ+OK7KuNg/4mXxZvJN4aHR9Kjh24+7LPIXb8dsSf99V2VABRRRQAUUUUAc5460yTV/BGrWkAP2kQedb7evmxnen/jyitPQ9Tj1rQdP1SIER3lvHOoJ6blBx+Gav4HoK434f/wDEug1fw02FOj38iQpnOLeX97EfoFcr/wABoA7OiiigAooooAKKKKACuLj/AOJ58VpX4Nt4esgi5U/8fNxySD7RqB/20rsWcIrM5AVRkk9B3zXI/DdDceGpdbkVhLrV5NqBDdVRmxGPp5apQB2NFFFABRRRQAUUUUAFFFFABRRRQAVwfj7xde6e1t4Z8OBZvE2qArAD/wAuyc5lb0xzjPHGecYrW8Z+L7Xwfob3sim4u5W8mztE5e4mP3VAHbJGT2HqcA5fw/8ACV1pAute15hP4m1XD3ch58lf4YU9AOBxxx1IAoA1/B3hSz8HaDHp1q5lmZvMubluXnlP3mb8ePpxXR0UUAFFFFABRRRQAUVn6nq9rpFsLm78/wAsuE/c28kzDg/woCccHnGKwLH4l+FNSlMVhqU13IpAZYLG4kKn0O1Djp3oA6+iiigDP1fSLLXNJutL1GAT2lymyRG7/Q9iCAQexGa8/wDBurXvg7Xx4A8RTNJFjdomoP0uIv8Ankx7OvTH4dNufUK5jxr4StPGWgtZTO0F3E4lsrtOHt5h91gR29fUe4BAB09FcL4A8X3eri68P68BB4m0rCXUZ489ONsy+oIIzjjkHoRXdUAFFFFABRRRQAUUUUAFFFFABXGeMM6Tr/hzxHGCEiuv7PuyvA8i4wAWPosgjP4muzrE8W6N/wAJD4T1XSlCmS6tnWMntJjKH8GCn8KANuisXwnrJ8QeEtK1YkF7m2R5Av8ADJjDj8GDD8K2qACiiigAooooAKTpS1zfjnVJtJ8G6lcWoY3kifZrUKeTPIRHHj6MwP4GgCj8PiL+01fxCWD/ANr6lNNEwHWBD5MX/jsef+BV2VZ+i6ZHomhafpUHMdpbpAp9QoAz+laFABRRRQAUUUUAFcXqWdE+Jul6gNwtdbt20646BRNHukhYnuSplX8BXaVzfjfRp9Y8K3MVkB/aNuVu7FsZKzxEMmPrjH0Y0AdJRWXoGtQeIdBsdWtiPLuoVk25yUJ+8p9wcg/StSgAooooAKKKKAOX+IV9Lp/gLWJYN5uJbc20ITr5kpEa4/4E4/KtzTLCLS9Is9OgGIbWBIEz/dUAD9BXN+OVN1P4Z0xW4u9ahZ1z1SJXmP6xrXYYFABRRRQAUUUUAFFFFABRRRQAVnavq9noWkXWp6jcLBaWyl5JGPQdgPUkkADuSAKvO4RWZ2CqoySTjA75ryhVf4t+KVmdT/whOkT/ALtWHGpXA747xr0/H3O0AueDNKvfF2vjx/4ijaNdpXRNPfgW0P8Az1I7uwOc++em3b6bgDsKAoAAAAA6CloAKKKKACiiigAooooAzNf1RNE8Palqr4K2dtJPgnqVUnH44xXAfAbSns/h7/aMvM2p3UlwWPXaDsH6qT+NP+O2rNp/w4ls4zmbUriO2QL1IzvOPwXH/Aq7nw1pK6F4Z0zSlAH2W2jibHdgoyfxOTQBrUUUUAFGB6UUUAcF4/8ACd5qLW3iTw6wg8T6V80Df8/MfO6FvY/NjPqRwCSNrwb4stPGGgx6hb5imQ+XdWzn54JR95Tnn8fQiuiwPQV5d4v0278D+IX8eaBA8lrIANcsIuk0Yz++A7MvJJ+p4BYkA9SoqjpeqWms6Zb6jYXKzWlwgeKQdCD29iDx+lXqACiiigAooooAKKKKACjFFFAHHeAg1kNf0RwijTtWnEKL2hlxOn/o0j8K7GuO04JZfFjW7cZH9o6ZbXg9C0byRN+ODH+ldjQAUUUUAFFFFABXF66RrXxA0HRAN0GnK2r3XB+8P3cA+u4u2P8AYFdizhFLMwVQMkk4AFcd4BRtSTVfFcqsr61c77fcCpW1jGyHg9MgM/8AwOgDtMUUUUAFFFFABRRRQAUYHpRRQBxPhlv+Ef8AFur+GHOLWcnVNNB6CORv30Y4/hky2PSSu2rj/HdjPFYWfiPT4jJqOhStdIgGTLCRtmjH+8nI91WumsL2DUbC2vrWUS29zGssTjoykZB/KgC1RRRQAUUUUAcfrSG5+JnhWH+G2tr67I99scYP/kRvzrsK49wZfjDD86bYNBk+Q9QXnXn/AMhmuwoAKKKKACiiigAooooAKKK4Px94uvdPa28M+HAs3ibVAVgB/wCXZOcyt6Y5xnjjPOMUAZXi7U7zxx4gfwFoMzxWkeDrl9ERiKP/AJ4qe7Nggj6joGr0PStLs9F0u207T4FgtLdBHEi9AP6k8kn1OayvB3hWz8H6DHptsxkmZvMubl/v3Ep6uevXtzwKfq3jfwvojtFqOuWMUy8GASh5f++Fy36UAdBRXH/8LAhncLpvh7xHqA7SRae0SdP70xSiTxL4rkbFr4EucEEhrrUreME56fKzn9KAOwori/8AhIfHmP8AkQ7X/wAHif8AxqpE8TeLI/8Aj68CXOAAWa21K3kAPp8zIf0oA7CiuOHxAihkK6j4c8Saeo6ySaeZk/76hL/0q/pPjnwvrbJHYa7ZSTMcCF5RHLn/AHGw36UAdFVee4WC3kmYSMkalyI0LsQBzhVBJPsAT7VMCcZp2KAPEfHl3eeKPHHhRo9A19tD02f7RcynSpxubcDjYV3EYQdv4q9jsryO+tI7mJJ0STos8LxOOcco4DD8QKt4HpRgUAFFFFABRRRQAUjIrqVZQykYIIyDS0UAeSIz/CLxV5bFj4K1eb5SeRptwe3/AFzb+Q/2Tu9XVw6gqQQRwQc59Kp6vpFlrmk3Wl6jAJ7S5TZIjd/oexBAIPYjNef+DdWvfB2vjwB4imaSLG7RNQfpcRf88mPZ16Y/DptyAeoUUUUAFFFFABRRRQAUUUUAcfqpFt8U/DkuObvT722Jx/daGQD9D+RrsK4/xOgXxp4KuApyL64jyOmGtpf8B+VdhQAUUUUAFFFIT6/WgDjvH95NPpdr4cspNt/r832NWXG6OHGZ5Md9sYI+pFdVaWsNjZwWltGI4II1jjReiqowB+Vch4YI8S+KdT8Vlt9nDu03S/Qxof3so7Hc4wD6JXb0AFFFFABRRRQAUUUUAFFFFACYB7CuH8Kk+GPEV94QlYraNuvtIJ6eSzfPCP8Acc8DrtYV3Ncx400W61TS4r3ScJremSfarBz3YDDRk/3XUlSOnI9KAOnorK8P65beItDttVtd6xzr80bjDROOGRh2KkEH3FatABRRRQBxUf8AyW65/wCxci/9KZK7WuNxGnxmyd3mzeH8D0wlx/8AbBXZUAFFFFABRRRQAUU0nHf868/8Q/EdUt7/AP4R0QXEViD9s1a4Y/Y7X2BXmZzkAIvcjJHSgDa8c+NLLwR4dk1K6IkuGylrbZ+aaTHA+ncn098A+d+A4PFk32rXbbRVOt6qd93rGsZjjiTIxFDCPnZQuOSVBIxyFBqz8NPCWo69qQ8d+Lbie9uZB/xLIroY8tM8SbB8qZ6qoGBnPOQa9jxQBxX/AAgLan83ijxBqesbgQ1skn2W2IJ/55xEE8cfMzV0WleH9H0OLZpel2dmvfyIVQn3JAya08CigAxRiiigAooooAKzNU0DSNbj8vVNLs71e32iFXI9wSOK06KAOM/4QE6WufDGv6lo2OFt2kN1bdc/6qXJH/AWWsy/+IGqeDLmztvGemxtBdyGOLUtLLOhPo8RG5T7AtnnGcV6NXPeM/DNv4u8K3ujzlUaVN0Mp/5ZSryrfgevqCaAL+k63puvWEd9pV9Dd2z9JImzz6EdQfY8jvWlXkfg+xi8X6U96s0uheNNMkNpqNxaYDSSLkAzR/dlVsfxDqCAeK6a18X3+iXkWm+M7eK0eRtlvqsGTaXB7BieYnPo3BwcE0AdtRTM5HB/z2p9ABRRRQAUUUUAFcx418JWnjLQWspnaC7icS2V2nD28w+6wI7evqPcAjp6MD0oA4XwB4vu9XF14f14CDxNpWEuozx56cbZl9QQRnHHIPQiu6rgvH/hO81FrbxJ4dYQeJ9K+aBv+fmPndC3sfmxn1I4BJG14N8WWnjDQY9Qt8xTIfLurZz88Eo+8pzz+PoRQB0dFFFABRRRQAUUUUAcj4wdk1zwcUHJ1gg/Q20wP6E111cl4okJ8U+DYQAc6lM55/u2s3+JrraACiiigArkPHOp3i2Nr4f0qUpq+tObaGQdYIwMyzdvur0x/EVrp7m5is7WS4uJVihiRpJJGbAVQMkn2rkfBkM2t6hd+M72Jke/QRabE4w0NmDkH2Mh+c9eCozxQB1OmadbaRplrptlGEt7WJYol7hQMCrtGM0UAFFFFABRRRQAUUUUAFFFFABRiiigDg7s/wDCEeLjqCkJ4f1yYJd54W0vD8qynHRZMBSf72CSM13fWqWp6Zaaxplzp19Cs1pcIY5UboQRj8D3BrmvCWqXthfTeEtcnMuo2KCS0unP/H9ak4Vzn+MH5WHrg85oA7OiiigDkdRZbb4p+H5DkG6029t/++XgcD9D+VddXHeMiln4g8Hak2f3eqm1JHYTwyIM/wDAttdjQAUUUUAFVru7gsbSW6up0gt4ULySyNhVUdST2pbi5jtIJLi4lSKGJC8jucBVHJJJ6ADqa4WxtZfiNfJqupwyR+FoiGsLCZcfbz2nlX/nn/cQ9fvH3AEP2/4jKZZnn0zwcRlVJMU+pJ13E8GKE9v4mGc4BrB0+wg+JWuwwWtrHb+AdDk228CJtTUJweTjp5Y/XPuduh4u1O88b+IH8BaDM8VpGM65fREARRn/AJYqe7Nggj6joGr0PS9Ls9F0u202wgSC0t0CRIvQD+pPUn3oAugAAAAADsKWiigAooooAKKKKACiiigAooooAKTA9KWigDy3xaD4E8f2fjODcukantsdZC/dQ8COYj26E+g9Wr0i6tbXUrKS1u4Iri1mXbJHIodHHuDwRUGt6PaeINFvNKvk3211GY3GOmehHuDyD61x3wv1i7W0vPCOsv8A8TjQHEBLf8toD/qpB6jGB9MZ60ABi1L4ckSW5uNT8JA/vIDmS400Z4ZD1kiHdfvKORkA13FjfW2o2UV3Z3EdxbTKHjljO5XU9watV57f2dx8Pb2bWdKjMvhmd9+o6egybMn71xCB/DjlkHbkewB6FRVe0uob21huraUSwTIHjkU5DqRkEfUGrFABRRRQAUUUUAJgegry7xfpt34H8Qv480CB5LWQAa5YRdJoxn98B2ZeST9TwCxPqVIyK6lWUMpGCCMg0AUtL1S01nTLfUbC5Wa0uEDxSDoQe3sQeP0q9XkiM/wi8V+WxP8AwhesTfKSeNNuD2/65n9AP9k7vWAwdQVOQR1B60APooooAKKKKAON15DcfErwjGACLeG+uScHg7I4x7f8tG612VcfEpu/i9cSA5j0/REjYejzTFv5Qj867CgAoormvFviKbQ7GG20+NbnW9QfyNPt2P35Mcu3oij5mPoMcZFAGR4id/F3iRfCFuT/AGda7LnW5FP3lPMdtnrl8Zbp8oxnmu7VFRAiqAoGAAOAKxPC/h+Lw3oqWYlNxcu5nu7ph81xM3LSN9Tx7AAdq3KACiiigAooooAKKKKACiiigAooooAKKKKADGK53xb4cbXbKCazmFpq9hJ9o0+7/wCecmOVbHVGHysvQg+wroqTA9KAOf8AC3iQeINOk86E2ep2j+Tf2bn5oJfT3U9VPcGuhrjvE+h30OpR+KPDkanWbZRHPbFtiahAOTEx6Bx1V+x4PHTb0HxBY+JNIh1GwlYpIdrI4w8Lj70br2YHgj/9dAGP8So5f+EFvby3VWuNOeLUI8+sMiyH/wAdVh+NdTDKk8Mc0T7o5FDKw6EEZB/Wor2zh1CwuLO4QNDcRNFICOqsMEVz3w5u5bjwPp9vcEG70/fp9wAckPCxjOfqFB/GgDq6KK5LxprF7Bb2mh6RIY9b1hzBbv1+zoBmWY9OFXp6krxQBm3+fiB4hk0pefDOlzYvm7X1wpBEI9UQnLdicCnePPFd3pv2Xwv4aVJPEmpgpbr2to+cysOwAzjPHGecYqfWNW0j4XeCbe2tLZpGjAt7Gzj5kuZj06dcscsffoSQDH8P/CV1pAute15hP4m1XD3ch58lf4YU9AOBxxx1IAoA1/B3hSz8HaDHp1q5lmZvMubluXnlP3mb8ePpxXR0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeZfEe2uPDms6b8QtMjZ30/8A0fU4Y/8AltaMeT7lSc/kei16bVe6tIL20mtbmJJYJkMckbjIZSMEH1zQAlpeQ31pBd2sqy286LJE69HVhkEexHIqwQCMEAivMvhvdT+G9a1L4e6jIzNY5udMlfkzWrMcA+6k/wAx0WvTqAPP7T/i33iGPTSMeFtVmP2Ru1hcscmL2jc5K9gcjvmvQKz9Z0iz17R7rS7+LzLa6jKOO49CPQggEHsQDWF4K1e9livPD+szb9Z0dlimlP8Ay8xEZjmH+8OvoQaAOtooooAKKKKACiiigDP1fSbLXNJutL1GATWlymySNu/0PYggEHsRmuB8G6te+D9eXwB4hmaRQN2i379LiH/nkT2demPTj+7u9OrmPGvhK08Y6E1lK7W93E4lsruM4e3mH3WBHb19QexAIAOnorhvAPi+61hbrQNeAt/E2lHy7uLp5y8bZl9QRgnHHIPQiu5oAKKKo6tqMWkaPe6ncZ8m0ged8HqFUk/yoA5zwbi+8QeL9ZCkCfUhZxsecpbxqnHtvMn45rsa5rwDYTaf4G0lLjP2qaL7Tcbhz5kpMj5+hcj8K3Lu8t7G0mu7udYbeFS8kjnCooGSSe1AFbXNas/D+j3GqX8pS3gGTtGSxPAUDuSSAB6kVg+FNGvZr2fxTr8YTV71BHDb9RY2+ciIerE8se5OB0qlo1rceNdXtvE+qW8kWkWrb9GsZhguSP8Aj6kU/wARz8gP3Qcjkg13uB6UAGB6UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXEa7o2o6Dq8vijw1D5zuP+Jnpa8C8Qfxp6Sgf99dOvXt6KAMzRNbsPEGlQ6jp04lglHBxhlburDqGHcVz+hkaN8RNf0g4WHUo01e2CjA3cRTD67lRv+B1HrOh6hoOrT+JfC0SySzfNqOk52pegf8ALRP7so9ejd+eudr+vadqOm6L460qZnTR7vZeIQRJFBJhJkdOzL8rYP8Adz3BoA9FZwilmYBQMkk8Aetee6HqtmRrXxG1eUQWcqGCxZxzHZRtgEcZzI+Wx1PyVqfEK6lbw7Fo9lLsutbnWxSVefLjYEyyfRY1c5+lcfY2SfEzXYIYYRH4C0BhFbxAYF/Mg2jj/nmo4/8A1naAafgzSr7xdrw8feIo2jTaV0TT36W0P/PUju7DnPvnpt2+m4A7CgKAAAAAOgpaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8++KGjXQsbPxbo6Z1jQHNwgGf3sH/LSM/wDAcn8x3rrtB1m18Q6HaatZSFra7jEiZ6r6qfcHIPuDWkVBGCAR7ivL/CjHwJ4/vfBkxZNI1QtfaMx+6jdZIR9Ow9snl6APUcD0rifGkZ0W/wBO8aW6EnTj9n1EKOZLNz8x6ZOxtsg+jetdtUFzawXlrNa3ESyQTIY5I2HDKRgg+vFAEiOsiK6MGRhlWByCOx96fXH/AA+uJIdIufD11Iz3ehXLWRaQjdJEPmhfj1jZR9Qa7CgAooooAKKKKACjA9KKKAOE8e+FLy/e28S+HWEXiXSgWgbHFzHzuhb1zk4z3JHGcjY8G+LLTxhoMeo2ytFKp8q5tXPz28o+8jf56EcCujwPSvLfF2mXngbxC/j3QYHltJBjXLCIcTRj/lsB/eXkk/U8AsSAepVxvxD/AOJhYad4aTJfW72OCTa2Ctun7yZv++U2/wDAq6TTNTtNY0231GwuBPa3CB45F6EH+RHTH9a4+C/tbzx1rXiG+uEj0rw9AbCKVz8iyth7hs9iB5afmKAO2uLiG0t5Z5pFihhUvI7kBVUDJJPYAc1wlvFL8Sr9L28gePwjbuHtbaUYbUnU8SyD/niOqofvcE+lENpd/EaeO71OCW08KRSBraxkUpJqJHIlmU9Is4Kp1bqeMZ9CVFRQqqAo6ADpQAAADAAHaloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorj5/iZ4Vtb9LKfULqK7kzsgbT7kO/0Xy8noelAHX4HoK4nxR4Ne7ku9W0Exw6jcwtDe2sv/HvqURGCko7NjIDjkdDx0vS/EHw7BEZbi4vYIgPmlm025jRfqzR4Fbun6jZ6tZpeWF1DdW0gyk0ThlP4jvQB8t6r4iu7/VdF8MeJrqfRINItWsb2eSJmlCE8ldgYktEsa5xg5bJIavZNL+K/wAMdG0y203T9YWG0tkCRRLZXGFA/wC2fJ6knvmuA8R+D7DxFaP411GVktL/AFa4gubhTg20Bk8mCXBIGFaMbs9Q56YBF+xu/iH8PtRTSbjU4L6J222kWpOfJuumFhuD9x+P9W+AO27NAHef8Lt+Hn/Qw/8Akncf/G6P+F2/Dz/oYf8AyTuP/jdGl/FfSJLxdN8R29z4b1THMGojbGfdJfulfc7c+9d5HKkkYkRwyEZDA5BHqKAOD/4Xb8PP+hh/8k7j/wCN0f8AC7fh5/0MP/kncf8AxuvQKKAPP/8Ahdvw8/6GH/yTuP8A43R/wu34ef8AQw/+Sdx/8br0CigDz/8A4Xb8PP8AoYf/ACTuP/jdH/C7fh5/0MP/AJJ3H/xuvQKKAPP/APhdvw8/6GH/AMk7j/43R/wu34ef9DD/AOSdx/8AG69AooA8/wD+F2/Dz/oYf/JO4/8AjdH/AAu34ef9DD/5J3H/AMbr0CigDz//AIXb8PP+hh/8k7j/AON0f8Lt+Hn/AEMP/kncf/G69AooA8//AOF2/Dz/AKGH/wAk7j/43R/wu34ef9DD/wCSdx/8br0CigDz/wD4Xb8PP+hh/wDJO4/+N0f8Lt+Hn/Qw/wDkncf/ABuvQKKAPP8A/hdvw8/6GH/yTuP/AI3XIfEP4g+BfE3h9H07xF5etafKt5p0n2OcESrztyY+jDj64Pavb6MD0oA8y0n44+DLnSbSbUtUNnfNEpuLf7LM4jfHzAMqkEZ6HPSrv/C7fh5/0MP/AJJXH/xus1GPw++KhjI2+H/FL7gf4be97j0AfP4kjstepUAeMr8U/BVl8RX1e21oHT9Q08Q3rC0mBWaJ8xMRsycq7rwONo6V03/C7fh5/wBDD/5J3H/xur/xEAtdH07Wt5T+ydTtrlioz+7L+U/4bJWP4V2NAHn/APwu34ef9DD/AOSdx/8AG6P+F2/Dz/oYf/JO4/8AjddlqOrafpMSzalqFrZxO2xXuJljDN1wCTyeOlZ3/Ca+FQP+Rn0bjjm/i/8AiqAOe/4Xb8PP+hh/8k7j/wCN0f8AC7fh5/0MP/kncf8AxuuvsNc0rViRp2qWV4V6/Z7hJMf98k1o0Aef/wDC7fh5/wBDD/5J3H/xuj/hdvw8/wChh/8AJO4/+N16BRQB5/8A8Lt+Hn/Qw/8Akncf/G6a3xq+HTKVbXwVYYINlcYP/kOvQq5bXvGCaffDR9Itn1XXnAK2cLYWFT/HM/SNfrycjANAHjlj8StF8Da7qNp4VvG1bQL+N5rW0WGRGs7rHyqNyjKM2OBnj3B3dx4L8CX93pVhL4uANvbt58WlH5g87Es89wf45CWJCdEGByc1gaXol54o+NMbazqI1NtAjFzevGNttFcMcpBCueFQ4OTyxRt3PFe54Gc96AEwPQUtVb2+tdNs5Lq+uYra3iXc8sr7VA9yawIPHVhfjfpunaxfW3a5gsH8o+4LY3fhmgDqaK58+MdF+yWtwL3P2q7WyiiKFZTMSBsKMAykZycgYHWugoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAryKzH/AAkn7R95cHD2/h/TxEjDkeY3b65kk/75r1iaVLeCSaVwkcalmY9Ao6n8hXjvwd0mXXbLX/Fc15eW02q6lIwEEgXcinIzwe7sPwoA9b1G+tNN0+e9v5khtYY2eV5OgUdf/wBXevIPg8LzSfC/ivX3je20aaR7qwic7QqIHLEDPA+4M/7NbnxF8NPZ+HbjX4r+41B9MAuDY6o3n2sqjGcpgDdjofw71duvEcXif4GanrVvCIEudIuQYh0RlR0YD2yDigDV8HaPbv8AC/RtKurdWgm0uNJ4iMbt8fzg/wDfRrO8NRxT2eoeAvEiLey6egERuACLyzJxFJ2+ZcBGPZl65Oa7LTIRbaVaW4CgRwomF6cKBxWD4w0W8ultdb0bA1zSmaS3UnAuEI+eBvZgOPQ4NAHP6n4av9DsntfsA8V+GBknTboCS7tB/wBMWb/WADOFOGHGGNZGjeGcQtf/AAu8VyW0aPibSL8tLCjDqjKw3xHIOcgk9jXpmga1aeIdGttTsy3lTLyjjDxuOGRh2ZTkEeorO1zwdp+r3q6lBJNpusIMJqNkQkhHBw/USLwBhgR6UAc1F8T77QZVtPHugXGjuSFXULYGa0kPPORkqT2Hze+K73TdVsNXsku9OvYLu3bgSwyB1z6cZ59q5GXxBq/h2B7fxnpq3umFSr6tYwl4ivOTPByye5G5ee1Z7fDfQNR2674H1mTRbqTkXOlShreTno0edpGR90ED1FAHplFeYf8ACW+OPBw2eLNB/tfT04/tXRxlseskRxz6kbVHbNdj4d8ZeH/FcPmaLqsFyQuWiB2yJ7lDhgPfGKAN6iiigAooooAKKKKACiiigAooooAKKKKACiiigDm/G3haHxf4Wu9KYqkzDzbaYjmKZeVYenofYn1ql8OfFE3ibwyo1DMWsafIbPUIX4ZZk4JI9xz9cjtXY4B7V5b4lz4D+Itp4ui+XRdZZbLV+yxyf8spj6DsT04PdqAOw8d2f2/wDr9sF3u+nzFF9WCEj9QK0tCvhqfh/TdQDZFzaxTZ9dyg/wBanu0WexnjJ+V42Un2IxmsH4dyed8OPDbc8adAvPsgH9KALni7UINJ8JarqU8cbra2skirIoILBTtHPqSB+NcX8D/D0Fh8NbS5nto2nv5HuGLoCdudqjPphc/iaj+PWpva+AE0yDJn1S7jt1QH5iAdxx+KqPxrpdK03xTpGiWWmWx0RY7S3jgTIlbhQBk8j0zQBxHx0hstF0HS9Z06KOz1yO/Vbe5t1CSkbWJBI6jgcH1Hqa9b06W4n0y0lu08u4eFGlQfwuVBI/PNctF4G/tHX7bXfE96uqX1oc2kCReVbWx4OVQklmz/ABMew44FdbNNHBE8ssqRxoNzO52hR6knpQBNVDUtVstIsZb3UbuK1tohl5JXCgf/AFzjp37VzE3je41qR7TwXYf2rIDsfUZSY7KE+79ZCDj5U656ip9O8ERvqEWq+JLx9c1OM5iM6Bbe3P8A0yh+6vT7xy3HWgCmdS8ReNj5eji40LQX4bUpo9t1crn/AJYRt9xSOjsM4IIHFQeJr/RvhN4Eup9NtkS6mJSEOS8lxO2fnkY8tjljnsMDtXdXNzDZ201zPIscMKGSSRjgKo5JPsBya8E1WG5+KPxI0WG6R10+RTdx27Agw6ercOw7NMw+oAj5OaAPQvhF4cm0PwVBeX299T1Vje3TyHLsX5UEnnhTk57s1dvfXsGnWE99dSiK3t42lkdjwqqMk1ZCgAAAADpXmvx1vZrP4XXqQkj7TNFC5H90tk/+ggfjQBl+D4ZvirrEvivXoydCtJzHpOmPzGWHWVx0Y845zzn0GfXgoAwAMYxiub8AabHpXw/0CzjUALZRu2BwWZQzfmzGuloA851rwrHefGrw/rKQ/JDZTTTnHys6YRCf9r94PwQelejVUt72C8muY4JA7W0ohlABwr7VbGe/DD6GrdABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcB8R/ENxH4X1fSdK0vWL3Uri3MCfZtOmeMbwAT5gXacKSeCfSqvgLVrHwx4G0nSZdN19bi3gzOo0S7OJGO5xkR/wB5jXpGB6UtAHlni0+I/iNanw9o+lXek6TMy/bNS1KIwsyA52RxH5znAOTjpjgc1ueIdFtPDvwd1jSLEEW1ppM8aZ6n5GJJ9yST+NdvgelY/imzOoeEdZskHzXFhPEPqyEf1oA0bSRZrOCRDlWjVh+IqbA9BWL4Ruzf+DNDvDndPYQSN35MYJ/WtugDgdYjfwLrtx4mtI2bQ75gdYt4xnyJOn2pVHPYBwOo+bqK7iGaK4hSaCRZI3AZHRgQwPcH0qR40kjaN0VkYFWVhkEHsRXAwyyfDfUVtLls+EbuXFvO7f8AIMlPSNv+mTHhT/CeDxg0AegYHpXI6j4DsmvJNR0O6uNA1JzueewwI5jg8yxH5H656A+9dWG3DIPBp+B6UAcSPEPijw8QniLRP7QtAcf2joql8DOAXgPzjjklS4rOn8L+AfiLnVNKuYk1FDvN9pkvk3ETHu69QeP4hmvR657WvBuha9cLdXdiq3yfcvbZjDcIR6SJhvwJxQByRHxI8F/daLxhpMY/643qD9Q+PxY+1bnh74m+G/EFx9iF09hqgO17C/XyZlb0weGPsCT7U1dG8YaIB/ZWvQ6xbKABbazHtlAHXE8YyT/vIfrWH4hvNE1m38jx/wCCL20KAj7ZHCbqOMdsTQ/OoPoVWgD04GnV47pNtrelxCX4eeNLLxFp6Ln+ydSmWR1Horggr7A7QPet7Tvixp0d6um+KrG68NakTgJfD9w/PVZehHucD0JoA9EoqGCeO4gWaKVJYnG5ZEYFWHqCOtTUAFFFFABRRRQAUUUUAFFFFABWVr+h2niPQb3SL5Qba7jKNkZ2k8hhnuDgj3FatIcDrQB538N9dvJdG1DwvrTAa1oJ+zzZPM0WP3cgz1yOM/Qn71avgCaLT/hboU95PHBDFp0ckkkjBVRducknoMd65L4sRSeF9QtPHGmtGJxE1hfwscefDJwpxkElWx7n5ewNafhXxpaQ+EdE0zRdK1TW7m3sooHNpbFYVdYwDmaTanUHkE0Ach438UaH4k+LXhK3Gq2r6Npzm4mu/MHkiTO7aW6f8s1H/Aq9ludf0mz0tNTuNTs4bGRVZLmSZVjYN0KnvntjrXPiDx3rbZuLrTvDtscZjtR9rufcF2ARfqFareneAdBsbpb+6hm1XUVHF7qcpuJB/u7vlT/gIFAFH/hNNS11Qng/QpryJhxqWoBra1GejLkeZJ/wFR9acngQ6rKtx4v1OTW5Fbclpt8mzjPXiIH5z7uWrtcD0ooAZDDFbwpDDGkcSAKiIoCqPQAdKXpTq4bXdYvfEeqzeFfDs0kPlkDVdUixi0Q/8s4yf+WrDv8Aw5z16AFPWLyHxpqN3ZPJ5XhPR2MmrXB4W7lT5jAD/cXq57kAe9R/Cu1l1T+1vG17EUuNbuD9mRlAMVrHlY1H5c+u1TVX4gQRWOgaH8OvDsYtH1iYWyrED+6tl+aVyfU988n5+9ekWFlBpthb2Nsgjt7aNYokH8KqMCgC3WB4x8NQeLvCl/os7iP7Qg8uTGdjg5VvzA/DNb9GBQB5z4U8Vt4b0O10HxhDNpl/YRrbJcPEzW9yijCukgG3OAMg4Oe3p0J8SyaqvkeHLeS6kbg3k0TpbRf7RYgGQ/7KfiVHNdLijA9KAM7SdOi0vT47WN2kILO8r/ekdjud27ZJJPHAzgcVo0YHpRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhUEEEAg8EGlooA474as0XguHTnffLpdzcWD+3lSsq/+O7fzrsa4vw/jSviF4m0clVS9EOr26gYJ3L5Up/76jU/8CrtKACoLq0gvrSW0uoUmt5kKSRSKGVgeoIPUVPRQB59Dc3Pw2ljs755bnwk77ba8bLSaaT92OXu0WeFfqvRuxrvY5UmjWSJ1eNhlWU5BB9DSzQxXEMkM0aSRSKUdHUFWU8EEHqDXBtZar8P5Xm0eGbU/DJOZdNU7p7E/3oM8vH6x9RwV4yKAO/orP0nWtP13T4tQ0u7jubWX7siHIJ9D3B9QeR3FaFABgelGKKKAMHV/BvhvXHaTUdFs552wfP8ALCS5HTDrhh+dYOo/DOC5tJbW117VorVxxa3TpewL/wABnDkfgRXeUUAeKWnwr8c+FLsTeEvFNlHF1ktZUkjhc9yYyZBk+oxjtitO7+KfiHwlGq+NfB91Co4+3adIJIJD+PC+wL59q9YxTXRJEZHVWVhghhkEUAcJpPxW0bWLcTwabrogPHmpp7Tqp5yC0W8Z46deRVxvih4Qi3faNTlttgG77TZTxYz/ALyCs/VfhPo8t2+peHrm58N6oQf3+nNsjb2aP7pX1AxmqQ8SePPB6keJdFXxBpsY51HSABKAO7wnHPrjAHrQB0kfxJ8FynC+J9LBP9+4Vcfnipf+Fg+Dv+hq0fn/AKfY/wDGk8O+MvDPi5N+lahbzTYJeBxsmXHXKNzgeuMe9dD9mgznyY8+u0UAc5J8R/BcRAbxPpRz/cuVb+War/8AC0PBzEiLWhcYcIfs1vLNz6fIhrrBBCOkSD6KKkoA49viFYMqmz0fxFe7unkaROoPXu4UfrSN4s8RXKhtO8C6kc9767gtgPqNzN+QNdjijAoA48t8QrwjC+HtKiI5JaW7kH4fu1H5mmf8IfrF8B/bPjXV5sHd5enhLGP6ZQF8f8Drs6MUAeWeN/A3hvS/CV0LHS4DqmoTQ2UV1clp5t8sioSHkLNnaWPXoKn+G95caBqeo/D7VJWefTCZ9OlfrPaMcr+Kk/rj+GtrxJ/xNfHXhjR12vHavLq1wvdfLXy4vzeXP/AKzPihpN3bQWPjTRkzq2gOZmXp51tj97GfbGT7DdjkigD0XAorP0bVrXXdGtNVsXL211EssZPXBHQ+hHTHtWhQAUhPr9ahuLmG2tpLieeOGKNS7yOwCoo6kk8AD1rhpNS1Xx+Rb6LLPpvhvIE2qYKT3g7rbg8qvrIefQcGgCfVvEGoeItTl8O+FZjH5L7NS1cLuS19Y4z0aYj04XPr06fRdGsfD+lx6fp8XlwISxJOWdj1ZierHuTzTtJ0mw0LTIdO022jtrSAbUjQcD3z3JPUnk1zPxQ1+40XwbLb2G46rqki2Fki/eMknGR6EDJB9cUAY3gjHi/x/r3jWQB7O2P9laWT3jXl5B7MTwf9ph2r0+sXwroMPhjwxp2iwEMlrCFLgY3seWb8WLH8a2qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDivGn/En1nw/wCKQdsNncGzvmyABbzkLuYnssgjb867TNUdX0u11vR7zS7td1vdwtFIO4DDGR7jrWJ4D1a4v9CbT9RYnVtJlNje5PLun3ZPcOu1s98mgDqqKKKACjA9KKKAOP1bwhPBqUut+FbuPTNWk5nidSbW9x0EqDv1+dfmGe9S6N40hu9QXR9ZtZNG1vtaXDApP/tQydJB9MEYOQK6vFZus6HpfiDT2stWsoru3OGCuOVPZgRyp9xzQBo9aWuHFl4s8KSf8S2dvEWkr1tLyULeQj/YmOFkHU4fnoM1r6H4z0bXZzaQzyWupIMyafeoYbiP6oevXqMj3oA6GikzS0AFFFFABgelJgegpaKAOR8SfDjw14nl+1XVkbbUAdyX9m3kzKw6NuH3iPVga58W3xI8GH/RLiPxfpSf8sblvJvFHs5+/wDU5J7CvTsUUAcToHxR8O61c/YLiWbSNVB2tYanGYJAewGeDnsM59q7QHgc1j+IPC2h+KLT7NrWmQXiAfKzrh0z12sPmX8DXFHwX4u8HqX8GeIftlkvI0nWDvQD0jkGCvoBwPU0Aen0V51Y/Fe1tLxNN8Y6Xd+G9QY4U3A328vuko4I9T0H96u+t7mG7gjuLaeOaCRQySRuGVge4I4IoAnoorl/HWsXOmaB9l01iNX1OUWNiAeVkfq/tsXc2f8AZHrQBS8IH+29f1/xQTuhnmGn2LZB/cQEgspHZpS5+gFdoyK6lWUEHggjrWfoulW2haHZaTagi3tIViTIwSFGMn3PX8ar674o0bw1AsurX8cG84jj5aSQ+ioMsx6dBQBw/g3f4G8c33gicsul3xa+0V2JIA6yQg+q8nHsSeWrr9f8Xab4feO1kM13qc//AB76faJ5k8vXnaPurwfmbA4PNcF400/xX4906LUtM0ZtGOksbvT5bs4vpnAB2Kg4jBxyGOSVXgV03wwi0G48J2utaTCTc3q7ry5ncyTvKOGDyN8xwc47c5AwaAEh8Lan4puI73xoYxaoweDQrd90CY6Gdv8Alsw444UY4BzXcqiooVVCqBgADAApaKADA9K8xtv+Ky+M0919/S/CsRgj9Hu5Pvn32gYPoUB711njbxInhPwhqWsuVMkEeIFPR5W4QfTcRn2zVL4ceG5PDPgy1trvJ1C5JvL1n5YzPy2fccL/AMBoA6/A9KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAwK4TxLnwn4mtvF0SldOudllrQUdEz+6uDj+4xKnvtbpxXd1Bd2sF9ZzWl1EstvMhjkjcZDKRggjvQBIGDgEHIPTBp9cP4Vu5/Dmqf8IVqspfy0Mmj3Mh5ubcdYyehkj6EDkrg4wCa7igAooooAKKKKADA9KyNc8NaL4ktxDq2nQXWz/Vsww8Z9VcfMp+hFa9GOMUAcWNA8VaAB/YOvDUrUH/AI8tby7DnJ2zqNw46bg9J/wn/wDZjbPE+h6louBlrkp9ptf+/secf8CVfwrtcUYHpQBn6ZrWm61AZtL1G0vYx1a3mWQD64PFX81zmp+BPDGqXAurnR7dLoHcLm3zBLn13oVb9aoDwdq9gG/sXxprMAJ3CK/VL2MewLjfj/geaAOzorjx/wALDtJAN3hzUoh6ia0c/wDowfyo/wCEj8XwMVuPAzyL/fs9ThkHbtJ5Z9e1AHYUVyD+NtQgVjN4I8S8H/llHbyfylpF8dyNAZP+ER8Uq+CfKaxXP/oeP1oA7CjA9K46Lx3dzhjH4I8UjH/PS3hjz/31LSyeJvFUhxZ+BLsjn5rvUbeIe33Wc/pQB099p9nqdo9rfWsN1byfeimjDqfqDxXn1z8LJNHnkvvAuu3WgXDku1qSZrWVu2UbOD7847CttpviFdsPKs/Dumoeplnmun/JVQfrTD4W8SXxcar42vVjbpHpdpHa4/4Ed7fk1AGH/wALG13wm6w+PfD7wW+Qo1fTcy25Pqy9V/mey1l6Z43tvE3ja81rTtO1HWF09TZaVb2tuQq7gDJPI74VN5AVckEKp+Xmn694L0HUvEEXhjTraS71F0WXVNTvJ2upbS3/ALqtISFkkxhcDIGWx0Nb+p/Cbw/LKt7oTXPh3Uo12x3WmyGMY9GToR69Ce5oAtrZ+N9f2m+vbXw3aNgmCx/0m6I7gyuAin0Kq31rU0PwdomgyvdWlq0t/IP3t/dOZriT6yNk9hwOOOlcl/bfxB8GkJrelp4n0tet9pihLlR/tw/xH/d4A6tXT+GvHvhvxYgGlalG1yBlrWb93KvrlT1x6jI96AOmwB2ry60b/hX3xTeyJC+H/FEhmgJ+7Be8ZX23/qSoH3TXqOa5jx54XTxd4VuNNDCO7UiezmJwYp15Ug9u4JHZjQB1FFcj8PfFMnijwvHLdgxaraSG01CEjBSdOG47Z6/iR1Fb+r6rbaJpF5ql45W3tIWmkI9ADwPc9KAOA8Tf8Vj8UtH8MIRJp2ij+1NR7hpekUZ9/myR3Vj6V6dgeleffCjTLlfD914k1If8TTxDOb6U91jOfKUf7IXJH+9ivQaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMPxN4cg8SaWLdpntrmGQT2l3EMvbzL0df6juOKpeGPEs1/NNomtolr4islBuIEJ2TpnAniP8SN+anIOOM9Tgelc74m8MweII4J4rh7HVrJvMsr+EZeBjxyP40boVPB6UAdFRXJeH/Fs1xqB0LxBAmna/GCRGGzDdqP8AlpAx+8O5X7y9+hrraACiiigAooooAKKKKACiiigAooooAKKKKACjFFFABXK+KfE02nSw6LosS3niK+U/Z4OSkKZwZ5sfdjH5seBnnCeIPFslrfjQtAgTUfEEiZEJbEVqp/5aTkcqvOdo+ZuAOua8/wDiMZPAHgCaOK8kvPEmvy+Td6i/EkgwS+3+6oBCKo4AbjmgDU8KXV1dT3ei+ErlZYopt+seJbmPebi4P3hEnRj0GSdqrjrwW7GfwtctanyPEmsxXgHy3LTK43epj27CPbaKm8G+HIfCvhLTtHiVQ0EQMrD+KU8s355/SugoA4bwJ4wvNZvNV0DW0ij13SJfLnaLhJ0zhZFB6Z7jtkeuBf8AEvw+8NeK283UNPVL4fMl7bnyp1YdDuHXHbcCBXAeD5ft/wC0j4uu7Yf6PFaGGQjpuXyVx9SUY/ga9poA8yOm/EXwad2lX0fivS1P/Hpft5d2q+iy9GPqW/Ba0dD+Kfh/U7r+ztRM+haqpCvZaonktn/ZY8H0GcE+ld5isnXPDuj+JLI2usadb3kI+6JFyye6nqp9waAOD18j4f8AxItvE0f7vQ9fK2mp4+7FP/yzlPYDrn/gR6kVN8S5H8R6voXgO2Y41GUXWoMv8FrGcnJHTcRgH1UetZWv/CTVodDvNK8MeIJG0y4Ug6TqhMkS85BjfGUweRxycZJrT+F3hLX9KnvNc8WYbWZoIrKEGVZDHbxgD7wJGWIBPPJGe9AHpkcaRRrHGipGgCqqjAUDoAKdWNd+KfD+n3T2t7r2mW1whG6Ke8jR1z6qSCOKYnjLwxI+yPxHpDt/dW+iJ/8AQqANyio45VkQOjhkIyGByCPY1JQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRgUUUAY3iDw7p3iWxFrqMLNsO+GaNtkkD9nRxyrD171zaa9rfgtjB4nD6lo6nEet28eWiXsLiMdMf89F4IxnBrvcCkKg9QDQBXtby3v7aO6s7iK4t5BuSWJwysPYjg1Zri7rwMLG7lv8Awlfvod5I2+S3Vd9pOeOXhPAPGNybTyTzTf8AhNtQ0JfL8YaLNYqg+bUrFWubRsYyxKjfH1/iX8aAO2oqlp2q2Gr2outOvbe8gPSSCUOv04q7QAUUUUAFFFFABRRRQAUVS1HVLDSLU3Wo3tvaQL1knlCL+Zrlj43vtcATwfos+oq3TULvdbWij1DMN0nP91fxoA665u4LK2kubu4igt4l3SSyuERF9STwK4tvEGs+NH8jwsHsNIY4k1u4j5kHcW0Z+8f9tuOuM1Yg8DHUryPUPFt82t3KHdHaFPLsoD/sw87jyfmcsenSuzCqAAAAAMYAoAxvD/hzTvDVk1tp8TBpD5k88rb5Z3PV5HPLMc9e1eb/AB0tmjk8JaxKpNhY6li5IHQMyHJ9B8jDPv717FgVR1PTLPWdNn07ULdLi0nXbJE44Yde3TBA59qAI73WbWxlhiczTTSgskVvE0rFRjLEKDgcjk4HQdSBWP4o8a2OgeFG1iNjPLOuyxt1U755j91Ahw2c9RjIAPGeKp6b4M1LQrhjpniOU23kJbpFf2onaGJCxRVcMvA3tjIPGM9K4Pwv4o8G6Fe6zeeI72SbX9P1K7ih89Wd9plYjyYwNqlixzgDnPQUAdh8KfBlz4Y0O4vtX+bXNVk+03hPVM5IU+/LE+7Edq9CrM0Se+utHtbjUoBBdTJ5rQAEeUGOQh/2lBAPuDWnQAUYoooAMCjA9KKKAPHPjTBFrOueEPC8cSGXUb8STMqjesa4XOeuMMx/4B7V6u+kaZLB5EmnWjw42+W0ClcemMYryRkvPFH7RN3NZTwRjw/YiNJZ4TKm5hyCoZecyv3/AIK2viBrPifw1p8N7e6pAdEaUQ3j6XbmC7iDcblMjSKce2Dzx6gAxfhpcy2nxZ8W6FpG/wD4Rq33MIgd0cEwZRhf7uT5gwP7vtXs9YnhnQNG8P6RHb6JbJDayAS71yWlyPvsx5JI9a26ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAwPSiiigDltR+H/hzUbs3yWT6fqB/5fNOma1lJ9SUIyfqDVf8AsHxhpgb+y/Fsd7GB8kGsWYc/jLEUP5qa7GigDjv7Y8d2SKLrwpp9+cfM+naoF/8AHZUX/wBCpX8a6lbpm58D+IwQBnyVt5f5S12FFAHI/wDCct5G/wD4RTxPu258v7AM59Pv4z+OPemx+NdRuEzbeB/EhJzjzkt4v5y12FFAHHDWPHV6jC18KafYn+F9Q1QN/wCOxI3/AKFSHQfGOpY/tPxZHZRlcPDo9kEJ/wC2kpcj8AK7KigDlrDwB4esrlbyazfUr9f+XvUpWuZM+oLk7f8AgIFdRgDtS0UAGB6UUUUAFFFFABgelcufh/4UPiVvEB0aBtUL+YZizEb/AO9szt3d84znnrXUUUAGB6UUUUAFFFFABWPrPiXRfD8aPq2qW1nvVmjWaUK0gXrtU8tjI6D0rYooA8S+CGr6ddXviLULu/t4tY1nUC6WkkgEpRQzDCnkj526f3avftDG8/4QO0WFHNv9uVrhl52gK23PsT+uK9ewPQU2SKOaNo5Y1dGBVlYZBHoRQBi2Op20M2m6PZ/6QRaiR3jYFYYgoClv944Cjv8AMeimt2q1lp1jpsJisbO3tYi24pBEqAn1wB1qzQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//Z'] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 7 "如图, 点 $D$ 是锐角 $\triangle A B C$ 的外接圆 $\omega$ 上弧 $B C$ 的中点, 直线 $D A$ 与圆 $\omega$ 过点 $B, C$的切线分别相交于点 $P, Q, B Q$ 与 $A C$ 的交点为 $X, C P$ 与 $A B$ 的交点为 $Y, B Q$ 与 $C P$ 的交点为 $T$. 求证: $A T$ 平分线段 $X Y$. " ['首先证明 $Y X \\| B C$, 即证 $\\frac{A X}{X C}=\\frac{A Y}{Y B}$. 连接 $B D, C D$, 如下图.\n\n\n\n为了方便我们直接用三角形代表该三角形的面积, 因为\n\n$$\n\\frac{\\triangle A C Q}{\\triangle A B C} \\cdot \\frac{\\triangle A B C}{\\triangle A B P}=\\frac{\\triangle A C Q}{\\triangle A B P}\n$$\n\n于是\n\n$$\n\\frac{A C \\cdot C Q \\cdot \\sin \\angle A C Q}{A B \\cdot B C \\cdot \\sin \\angle A B C} \\cdot \\frac{A C \\cdot B C \\cdot \\sin \\angle A C B}{A B \\cdot B P \\cdot \\sin \\angle A B P}=\\frac{A C \\cdot A Q \\cdot \\angle C A Q}{A B \\cdot A P \\cdot \\sin \\angle B A P}\n$$\n\n根据弦切角定理, 有\n\n$$\n\\angle A C Q=\\angle A B C, \\angle A C B=\\angle A B P\n$$\n\n又 $D$ 是弧 $B C$ 的中点, 于是\n\n$$\n\\angle C A Q=\\angle D B C=\\angle D C B=\\angle B A P,\n$$\n\n于是可得\n\n$$\n\\frac{A B \\cdot A Q}{A C \\cdot A P}=\\frac{C Q}{B P}\n$$\n\n因为 $\\angle C A Q=\\angle B A P$, 所以 $\\angle B A Q=\\angle C A P$, 于是\n\n$$\n\\frac{\\triangle A B Q}{\\triangle A C P}=\\frac{A B \\cdot A Q \\cdot \\sin \\angle B A Q}{A C \\cdot A P \\cdot \\sin \\angle C A P}=\\frac{A B \\cdot A Q}{A C \\cdot A P}\n$$\n\n\n\n而\n\n$$\n\\frac{\\triangle B C Q}{\\triangle B C P}=\\frac{B C \\cdot C Q \\cdot \\sin \\angle B C Q}{B C \\cdot B P \\cdot \\sin \\angle C B P}=\\frac{C Q}{B P}\n$$\n\n因此可得\n\n$$\n\\frac{\\triangle A B Q}{\\triangle A C P}=\\frac{\\triangle C B Q}{\\triangle B C P}\n$$\n\n即\n\n$$\n\\frac{\\triangle A B Q}{\\triangle C B Q}=\\frac{\\triangle A C P}{\\triangle B C P}\n$$\n\n又\n\n$$\n\\frac{\\triangle A B Q}{\\triangle C B Q}=\\frac{A X}{X C}, \\frac{\\triangle A C P}{\\triangle B C P}=\\frac{A Y}{Y B}\n$$\n\n故 $\\frac{A X}{X C}=\\frac{A Y}{Y B}$.\n\n设 $B C$ 边的中点为 $M$, 因为\n\n$$\n\\frac{A X}{X C} \\cdot \\frac{C M}{M B} \\cdot \\frac{B Y}{Y A}=1\n$$\n\n所以由塞瓦定理的逆定理可知 $A M, B X, C Y$ 三线共点于 $T$, 故由 $Y X \\| B C$ 可知 $A T$平分线段 $X Y$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAXwCcQMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACikLAZz2oyMZoAWikzzS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5Z8Xdc8Q+FLS0vtD16eO4vrtLeGxNtC6D5TkgshbOQO55auqj8O+IhAm/xrfmYKNxFla7S3fjy84z2z+Nef/EPULW/+NXhPS7yYJZaWhvp2wSFbJYAgf9c0/wC+q9EufG+ixIxga8vJsfLDaWcsjv7DC4HPckCgDndC8Z6rZfEefwR4gkgup2i8+0voI/LMo27trpng4DdP7vvXo46V5l4R8Ganc+Pr/wAeeI4VtryYbLKyDhmt49oUM5HG7aMYGfvNXpo6UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSZpay9Y0ifVURYdZv9O2hgxs/KBcHHUujEYx/Dg/pQB5h8Of+Ki+L3jTxOcNDA4sbd+oYA4yP+Axqf8AgVewBehB/XtXHeFPhxZ+DZG/snWtXEEknmzW8zwukzYx8x8vd+RFdp2oATFL2opu8Z9fpQA6ikBz0oz9aAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvMvjGPFdnoltrvhnU7i2XTS73cEQB3IQPnIPDBcHgg8NntXptMeMSIyMAVbIII4I9KAPn7wb8TPHertFZpf6JdXzruS21SNraWde3lMmEbuOTng8V3g+IXiXSzjX/h3q0S95NNlS8/EhcYH1NchrvhDR/DHiJdD1u23eENYnJsLxTtfSrpv4Vf+FWwDg8cZIIVq6BdZ8V/DVhB4hE2v+GFICatCubi1Xt5y87gP73P1z8tAG3YfGLwVeT/AGebVHsLkcNFfQPCVPoSRtH5112n6zperw+dpuo2l5HnG+3nWQZ+oJqlby+HvGOkpdRCw1axkHBdFlX1wQQcH2P41z9/8IfA+ouZl0dbSfqstlK0JQ+oCnb+lAHdZo3CvOf+Fba/poB8PfELW7cKOI9RC3iY9BnGB+FHnfFjRyd9v4f1+Bf+ebNbzv8AXOEH5GgD0bNLXm//AAs/UdNDL4i8B+ILEr96W0jW7iUepcYA/DNael/FrwNqh2xeILeBx94XYaDH4uAPyNAHa0VXtL61v4Fns7mG4hbkSROHU/iOKnyCM5oAWik3DGen1oyKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAyvEHh+w8TaHdaRqMW+2uVKtjqh7MvoQQD9a4vwDrl7puo3HgHxNLu1SxTNlcNnF7bfwkepHf6d9pr0muN+IPhCTxJpsN5pkptdf01/P0+6XqGHJQ/7LAY+uPcEAydX+HV1pWoy694CvV0rUWIaewb/j0u8dmQfcPXkevG0nNXfDHxHt9T1D+w9ftH0PxFGMNZ3Jwsp/vRP0YH/wDVnrWj4G8YReLtDM0kf2bU7R/Iv7Q8NBKODx6Eg4/LqDV3xL4R0bxdp/2TV7RZgOYpV+WSE+qMOQeB7HuDQBuFgKMV5UdR8V/DE7NYE/iLwqn3b6MZurNP+mg/iUf3v1HAr0XRtd0zxBpsWoaVexXdtJwHjboe4I6g89DzQBoYrN1Lw9o2sjGqaVZXuOhuLdXI+hIrS3DGaWgDz+6+DXg+Sc3NhbXek3eeLjTrt42X6AkgflUH/CB+MtKH/Ei+Id88Y5EOq263O72Mh5A+gr0eigDzf+1Piro7f6X4e0TXIwOun3Rt3x6nzOPwAoHxbi04Y8R+FfEGjhfvzPa+bAv/AAMdfwFejkf5NJtPTPH60AcrpfxN8Fauqm18R2KsxwEuJPJYn0AfGfwrqY5o5UDxOro3IZSCD+NY+qeD/DmtbjqWh6fcuwx5klupf8Gxkfga5WT4MeG4ZTPot1q+hznq+nXzqW+u7d+lAHom4UZrzgeEfiFpIb+yPHaX0a/ct9Wsw2eP4pRljS/8JH8TNIUjU/BthqqLyZtJvfL49kfLMfpigD0eivOF+Mmi2bBNf0jXdCY/xX1gwQn2K5J+uK6XSvHvhPWtg0/xBp8rv92MzBHP/AGw36UAdFRTQ6sAQcg8gjpS7gDigBaKTNLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJmjcMcZNQ3UUk9tLHFM8EjKQsqAEqfUBgR+Yrybw/qfizXPiVr/h9PFtz/AGVpKANcCytvMaQ4G0/u8DkP2/hoA9f3fX8qNwrkL3QvF8MDS6V4vea4UZWK/sYDHIfQmNFI+vNL4C8af8Jfp12tzbfYtW0+Y219abs+W44yPYkH8j9SAdfRQOlFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU0qT6fjTqKAPMPG+l3nhDXl+IGgRNII1EetWKdLiH/noP9pRzn056bs+g6Xq1lrGlW2pWEwmtLhA8cg7g/wBc8Y6g8VaaIOGV8MjDBUjII715ZaFvhR4wXT5GYeDtamJt3Y/LYXLfwE9kbt6Yz2YkA9UKk55yDXnms/DeXT9Rk17wJero2qk7prTn7Jd452unRep5A78YPNei5H17UmKAOE8NfEaK91BdB8S2b6F4iX5fs85/dTnpuic8HJHAz7Atg13m4dP6VieJfCWjeLdMNjrFmlwnPlyYxJEfVG7Hp7HvmuFe78W/DHP2/wC0eJfCiZP2pP8Aj8skH9/++oGee2M5XABAPVqKzNE8QaV4j0yPUNJvY7u2fjch5U+jDqp9jzWlmgBaKKKACiiigApMUtFADWQMu1gGU8EHoa5vVPh74R1neb7w9p7vJ9+RIRG5/wCBLg/rXTUUAecn4PaXZMW8P65r2hnqI7O+by8+6tkn6ZpP7A+J+kHOn+LdL1hB0i1Oy8k/99R8k/U16PSYzQB5x/wmPj3SVzrXgE3cScPc6VdrJn3WI5b8DUsPxm8LRyrBq8eqaJcHgRalZOh+vy7uPrXoO2mS28VxEYp40ljYYZHUMD+BoAy9L8WeHtaYLpmt6fdv12RXCsw+q5zWxmuR1P4XeCtXJN14dslY87rZTASfU+XjJrH/AOFTHTk/4pzxh4g0nacxwm586BP+2Zxn8TQB6NkZx3ozXnJsPivo4/0bWdC12MckXtu1vIfYbPl/Emk/4T/xZpZ/4n/w81NYxx52lzLd599o6D6mgD0iiuBsvjJ4MuJVt7u+n0u6PBg1C2eJl+pwVH5112m67pOsx79M1OzvVHU286yY+uDxQBoUUmRRmgBaKM0UAFFFFABRRRmgCveXUVjZT3czbYoI2kc+igZP8q8t+A9rLP4d1jxFcr/pOsahJKx/vKv/ANkz1ufGTWP7H+GOqsrbZLsLaR577zhv/HQ5/CtrwHo/9geA9F00qUkitUMg9JG+Z/8Ax4mgDoj0NeNfCiY3/wAUviBfwc2TXO3K/dZvMfafyVj+Ndv4/wDFo8N6I0FiPP1y9/c6daJ8zvIeN2PReufbFRfDPwT/AMIV4Sjs5yr6hcN59445y5AG0H0AAHucnvQB2tFFFABRRRQAUhYClrF8RanLptgI7NFk1G8kFvZxt0MhH3j/ALKgFm9lNADbDxXpepeJ9R8P2ru95p8aPOcDYN38IOc5HGeOMj3rcrw/wFYL4c+P3iPRxK8qvpwkMspy0rnyXZifUlnP417hQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWXr+g2XiXQ7vSdRj8y2uUKsO6nsw9wcEVqUUAec+A9cvtK1SbwJ4il3anYpusbluBe22cKR/tADBHseuDXooPHHNch4/wDCMniTTYrzTZvsuvaa/wBo066XqrjkofVWxj8voZvA/i+PxbozSSxi21S1cwX9ox+aGYcdP7pwcH6+hoA6qmlTnPFOByM0UAed638OHttTfXvBV6NE1cn97Cq/6Ld99sidBn1Hr0zzUvhz4jrLqS6B4ssjoWvcBY5TiC5zxmJzwcntn2BJBrvse9Y/iLwvpHirTWsNXso7iE8qTw8Zx1VhyD/PocigDY3Cl6ivKC/i74YJiYz+JvCkf8Y5vbJAe46SKB39v4ABXoOgeJNJ8TaYl/o94l1AeCVPzI391l6g+x9j3FAGtRSZFLQAUUUUAFFFFABRRRQAUUUUAFFFFACYpMH1p1FAFW806y1GEw31pb3MTfejmjDqfwIrktS+EXgfUn8xtChtpR917N2g2n1AUgfpXb0UAecf8Ky1jTefD3j/AF209I74rdxgdgFOAB+dJ/xdrR+f+Ke1+Fe53W07/wAkFekUmKAPOP8AhZes6YxXxD4A120x1lsQt5GB6llwB+taOmfF3wPqTeWNditZRwyXiNBtPuWAH6122D61Q1HQtJ1hNmp6ZZ3q9hcQLJj8xQBNZajY6nAJ7C8t7uFukkEiup/EHFWcg9K4G++DXgy6lM9rYTabdZytxYXDxsh/2QSVH4LUB8AeK9MbdoPxD1MIP+WWqwreZ9tzdB9BQB6LkUHuM4rzj7f8V9HY/aNG0LXoV6fY7hreUj1Jk4/AA0D4rvpq48R+DvEGlFfvzLB58C+v7wYyPoKAL/if4Z23i8hdX8Q63JbpMZordHgWONucYAiycAkDcSfXNaZ8KX7rtfxl4gKnqB9lUn8RAD+tVtM+KXgjVgPs3iOzRjwFuWMBJ9B5gXP4V1cNxDcRCWCVJYz0dGDA/iKAMTRvCGlaJeSX0EUk+oSjbLfXcrTTuPTc3Qey4HtW/SZozQAtFJkUZH/66AFooooAQsByTx6159ZeIvtviO51uTRtYubeNTbaY8FoWj8o4LSgkjmQgc/3VX1IpnjTxXczSJoVjoPiCa3mnEOoXsGnTbY4M4fyzj5iwyAw4AJIPSu9tjCtnD5EZjhEa7EEZTauOBtIyuPTHHSgDxaDUPM/aXsbj7Hd2YvtPZSl1Fsc4jbnGen7v9K9xHIrxDxTd3l98YPDniOw8P8AiCSxsYhDczf2VMuFLP0Urk8Oe1ezWV7HfWkVzEkyJIMhZoWicfVWAI/EUAWaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooATFeZ+OdLvPCuvL4/0GAylF8vWbKMf8fNv/wA9Mf3l9fQegOfTaY6b1KtgqwwQRkEUAVdL1ay1nSrfU7CYT2lwgeORe4P9e2Ouau15RbMfhT4wFhISvg/Wpv8ARpD93T7luqFj0Ruoz/RifVgRj9KAFooooAaVOc159r/w4Meovr3g29/sTXMkuqD/AEa777ZE6cnuB1JOCeR6HSY98UAef6B8SQNTTQPGNl/YWtkYTzW/0e57Zjc8cnsT7Ak16BuA6n86yvEHhvSvE+mPp2r2cdxbNyAeGRv7ykcg/SvPjH4u+GGBF9q8TeFU/h63tkg547OoH8v4QKAPVxyM0Vj+HvFGjeKdNW/0a9juYOj7eGjPoynkGtfIoAWiiigAooooAKKKKACiiigAooooAKKKKACiik3DOO9AC0maydc8T6N4dhjk1O+jhaU4hiALyynIGERcsx5HQVgDVfGXiQf8SrS08P2L9LvVF33LDH8MCnCn/fb8KAOylnigiaWaRY41GWd2AAH1NctcfEjw4s0lvp01zrN0gyYNJtnuT/30o2j8WFRwfDrSp5luvEFxeeILoNvDajLuiVsYO2FcRgf8BP1rq7e1gs7dLe1highQYWOJAqqPYDgUAcqde8X3zldO8IJaRnlZtWv0j/NIg5/Wj+zvH14n7/xBoun57WenPMQM/wB6SQAn32/hXX4paAPO9Q+FQ10E694hnvpSMeYNNs0b8G8okfnWdZ/AXQdOnNxp+v8AiOzmOTvt7uOMg/8AAYx+Veq0UAeV3Xw58c2aSf2J8SL9wfuxaihkP/fZLf8AoNYVzB8cdGH/AB9R6oF53232YrjH9141c/gRXuNJigDws/FvxdosiDXNMS2Qffk1DS57UMfRXRpAfrtxW7pfxv064Cfa9MOWICnT7uK4Le/lsUl/DZXqxQEEEAg9q5/VfAnhbWt51DQNPmkf70vkhZD/AMCXB/WgBNL8eeGdXuPs1tq0Md30+zXQME2f9yQBj+ArosivLtS+AvhO8jMdnNqWnR5z5MNxvjJ9Ssgb+dZSfD/xv4HtZrrQvHsLWMCmR4NTiKwJGvJ/vhRgckBfwoA9k4PQ/l2pduSc4x0rwfQ/j/q9xFO154WF9Hbc3FxpzuojT+9sYE447kV1+nfHPwfdRRPef2lpqyj9213aMVkx1KlN2RmgD0kA0beMHn61jaX4x8N62VXTdd0+5kYZEcdwu/8A75zn9K2tw/OgBaKTcM470Z+tAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSZozWH4i8Vad4bjgF2ZJbu6by7Wyt13zXD/AN1VH6k4A7npQBubh/8ArozXOxT+LbuHzhZ6XYZGVgmleZz7My4VT9Nw9zVXQPGY1DXrnw3q1n/Zuu2y+YYPM3xzx9pInwMj2IyPwNAHW0UDpRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZev6DZeJdDu9J1GPzLa5Qqw7qezD3BwRXG+A9dvtK1ObwJ4jl3anYpusbluBe2wPykf7QHBHXg9cHHo1cd8QPCEniXS47vTZjaa/prGfT7pequByh9VbGPrg+oIB2HtzS1yfgXxhH4t0VpJoxbarZube/sz96GYe3904OPoR1BrrB04oAKKKKACm7OTgkZ5p1FAHn/iL4brLqb+IPCl6dD8QAkmSIfuLnODtlTockdQOvJBIFM0L4km31JNA8a2Y0PWcARyOf8ARrr/AGo36D6H6ZzxXoWOazda8P6Z4i057DVrOO6tmOdrjlTjhlI5Uj1BBoA0gQRkcj1FLXlJtfFnwwKixNx4l8KpjNs3zXlko67P76gY4/D5etd54b8WaL4s01L7RrxLiMgB0HDxH+669VP6emaANqik3D3pRyM0AFFFFABRRRQAUUUUAFJmkLgev5Vh+IvFNn4fjiiKSXepXJK2lhbjdNOw9B2Ud2PA7mgDUvtRs9Nspby+uYre1iG6SaVwqKOnJPvxXHjXPEHjA7PDUTaTpDddYvIsySr/ANMIT2PHzvxgnANTWHhK+1q9i1jxlJHczo3mWulRnda2foSD/rZB/ePAOcDGK7EIfXtigDB0LwbpOgStdwxyXOpSDEuo3jma4k9cueg/2VwPat8LzmnUUAFFFFABRRRQAUUUUAFFFFABRRSbsdjQAFgM14z481xvGtzqul2chHhbQomudXuFOPtUqAstuh9Ny4J9c+gz0fj3xJfXWpw+CfDErf25fpuuLhOlhb/xSMezYPA689iVzjePNBs/DHwz0zwVoieW2rX8Fj5g4d2ZgzyN652gH2IHQYoA5zwBpTeDde8CX0rKieItNnt7jjC7i3nR59yGjX8K9P1T4f2slxLqGg3LaLqUvMpiQPb3B/6awH5G6nkAHnrWT8XNPNn4DtdS0+JVl8PXdte26KOMIwXb9MNn/gNeg21zFeWkN1A2+GaNZEYd1IyD+RoA8nuNG8JS3yaV478IabpV5M22HULRTFaXbf7MqbSjHn5X59z31/8AhUsFgD/wjvinxBo4BykMd0ZYAf8Arm3X8TXe32n2up2ctne28VxbTDEkUqBlYe4rims9Z8AHfpaXGseGhw+nkl7myXnmEnmVAP4Cdw4wcUAV/wCyvirpIP2TxBomuR46ahamB8eg8vj8SaP+E68ZaWAdd+Ht60Q4M2lXC3JPuIxyB9TXcaTq9hrulw6jpl3HdWky5SSM5B9j6EdwcEHg4q7t7g0AcDa/GTwe84tr+e80i5/54ajaPGw+uAQPzrrdM8RaLrQJ0vVrK9x977PcI5X6gHird1ZWt7C0N1bQ3EbDBSWMMCPoa5LUvhL4H1Q7pfD9tA/ZrQtBg+uEIGfwoA7TIozXnP8Awq/UdNUf8I7471+w2/ciupBdQqPQIcCgxfFjRyAlz4f1+Ff+eqNbTP8ATGEFAHo9Fecf8LI1/TDjxB8Pdbth3k08reL9SVwB+dXdO+MHgi/kELayLO4HDRXsLw7D6FmG0fnQB3VFU7DVdO1SLzdPvra7j/v28yyD81Jq5mgAoozSZFAC0UUUAFFFFABRRRQBR1jU4NF0e81O7OLe1haZ8dSFBOB7mvNfhNaXXie5v/iDrQ33l7I0FijDK28CnB2emTlc/wCyf7xrZ+NJmHwn1sQg9Id2Ou3zkz/n0zWp8OYobX4ceHliICHT4ZDzgBmUFv8Ax4mgDqsd68b+JE5s/jV4CmtTi6eQQyBeMxNIFP4YZ69hSaOSMSRuroRkMpBB/GvHPD8LfED413nipQX0TQ1+y2kp+7LKAR8vqAXZuOnyetAHs46c0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSYpaKAPMfHWk3nhbXk+IGgQNI0YEesWUY/wCPmDgb8f3lx19gegOfQNJ1ey1vSbbU9PnWa0uUDxyDuD2PoexB5B4q28e8MrYKtwQRkV5RAx+EvjAWUhK+Ddam/wBHdz8un3J/gLdkb36AZz8rEgHrQ5GaKbvAODn0zTqACiiigAooooAaVzn3rhPEvw3hvNRbX/DV0dC8RLlhcQD93Oeu2VOjZ9cZ7ndjFd7SYoA850X4jTafqSaD46s00bVGz5Vzn/RbsZ6o56Z4OD684PFeihx71n6zoOm+IdPksNWs4bu1c5KSDOD/AHgeqn3HNednTvFfwzYyaQZ/EfhdDlrGRs3Vovfy2/jUf3f0HLUAerUVh+GPFujeLtNF7o92JlGBLE3EkLf3XXqD19jjgmtvcKAFooooAKTcM45pc1zXirxLJo62+n6bCLzXL8lLK2zwPWRz2jXufoKAI/E/ieTTJ7fSdGt0v/EF6N1tak/JGg6yykfdjGevc8DnkS+GvCUeiST6jeXLahrl3/x9ahIuCw7Ii/wIOyj2znjD/C/hePw/bzzTXL32rXrCW+v5Bhp37DH8KL0VRwB+NdCOlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACZrk/Hni9PCekRtbQfatYvH8jTrMAkyynpkDnaM849cAgmtjxBrtj4b0S61bUpRFbW6bm9WPZR7ngD61xXgTQdQ1vV5PH3iaLy9Quk2adZnJ+xWx6dejNkn6E/3iAAbPgLwa/hnTZrvUZRdeINRfz9Ruj1Ln+Bf9lc4/P2Ax9W/wCJ78ctD08ndDoVhLfyDt5khCKp9xhWFekAj0rzj4Zn+2fEHjLxUTuW91L7JbnsYYBtVgfQ5H4igDuNa0yPWtDv9LlOI7u2kgb23LjP4ZrlfhFqb6j8ONOiuMi608tYzoeqNGcAH327K7nHevOPBZ/sP4neM/DzErDdSx6vaqR18wYlYe27aPwoA9IppXJPTBp1FAHE6v4dvtE1SbxD4TSP7RK2+/0tm2xXw7kdkl9G6HvXQeH/ABHYeJdJTULBn27jHLDIu2SCQfejkX+Fh6fTGQRWpg561xniLQb3S9UbxX4ajLX4AXULBW2pqMQ/lKvJVvqDwaAO1orN0TXLHxDo8Gp6fIZLeYcZGGUjgqw7EHII9q0hyM0AFJg+tLRQAmD7VS1DRtM1aLytS060vI/7txCsg/UGr1FAHB3/AMHfBV7J50WltYXA5WaxneIofUKDtB/Cqn/CuvEumHOgfETWIlH/ACz1JFvAfQZOMD8K9HooA83N18WNIx52n6Br0S9raVreZvc7sKKUfFO603cviPwT4g00r9+WGEXMCj1LjHH0FejY/wAmjFAHG6X8V/A+rD9x4itIm7rdEwYP/AwAfwrrbe6t7uFZraaOaJujxOGU/iOKoan4a0PWh/xM9IsLw4+9Pbo5H0JGRXJXPwY8JGUz6Wl/o111E+nXjow+mSQPwFAHoO4Yo3DGeg9686/4QjxvpTE6H8QbmaIDiDVrZbgt7GT72PoKaNY+Kejg/bfDGj60o/j028MLY9xJyfwFAHo+aWvNx8XrOw2jxF4c8QaKB9+a4sy0IPs4PP1ArodI+IvhDXGiSw8QWTyysEjikk8qR2PQBHwxP0FAG7qOnW2q6dc2F5GJLa5iaKVD3Vhg153ZeF/Efhyys9A+yx674dtroyIFmWOYxFXxFIj4VwHZTncMhcEdq9OpMUAeVLb6l4g8Waz4XEi+HtOaCG6uLW3KvPKrblYIynbGGwu7GTyMfeJrt/DP9j21vPo+hW4is9KcWpKcpvxuZQc8kbuSe5I65rlfHXwlTxl4kg1qDXLjTJhCIJhFHuMiAnodwxwcd67XQdBsfDWiW2k6ZFstbZcICeWPdmPck8n3oA1O1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZmv6DY+JNEutJ1GLzLa5Qq2OqnswPYg4IPtWnRQB5t4A1y90fVJvAPiSXdqdiu6wumGPttr/CQT1ZQMEegx1UmvSM1x/wAQfCD+JdLiu9OmNrr2msZ9Oul6q45KH1Vsfng+oMvgXxhH4t0VpJ4xbatZv9n1C0PDQzD2/unBx9COoNAHWUUDpxRQAUUUUAFFFFABTduTkmnUUAcJ4m+G9vqWonXdAvJND8RKMi7tvuTc5Kyp0YH1+mdwGKo6T8RbrStTj0Hx9appGotkQX6nNpd44yrH7h9j+OCQK9IxVDVtF07XdPlsNUtIru1k+9HIM4OOCD1DDsRgigC8rgjj26c04civKW0jxZ8Mzv8AD5m8ReGlPz6XM2bm1XH/ACxb+If7OPw5LV2/hfxloni/Tzd6TdbymBNBINssJ9HXt355BwcE4oAseI9ftfDeiz6jdZcLhIoUG55pGOFRR3YnA/8A1VmeE/Dt3aNca7rTCXxBqIBuDnK28f8ADBH6KvfH3myazdGX/hNfFDeJJedF0x3g0hD0nl+7Jcke3KJnsCeM13YGFAoAWiiigAooooAKKKKACiiigAooooAKKKKACo5Z4oIpJZXWOOMFndjgKAMkk9hin7hnH4V5Z4r1C5+IPid/A+jzSR6TakNrt7F6Z4gU9Nxxz9P9lgQCLTo5Pix4rXWrpGHg7SZiLCBwVF9OOPNYd1B6Z+mOXFesY9Kq2OnWum6fDYWUCQWsKCOOJBwqjtVugDC8Y6z/AMI94N1fVQVV7a1do89N+MIP++iBVD4Z6MdB+HGh2TKVkNsJpAw5DyZcg/Qtj8Kwvi6x1Oz0LwrGSW1rU445lXr5EZDSN+B2mvSAAoAAwBwAKAFrzfxiDonxV8H6+PlgvfM0i6b13/NEP++iT+FekVwfxf06W9+Hl7dWo/0zTJI9Qgb+6Y2yx/BC9AHedqKpaRqMWr6NY6lACIru3jnQHsGUMP51doAKTbk5paKAOC1qFvA2uS+J7KNjot44Gs26DIhboLpVHp0fHUc4yDXcxTRzRpJGyujqGVlIIIPIII60k1vHPHJHKivHIpR0YAhgeoIPUY7Vxfhl28J6+/gy6ZjYyK1xokrtkmIHL25J/iQnjrlSPSgDuaKB0ooAKKKKACiiigAooooAKKTNVNR1Ww0mye81C8gtbZPvSzSBV9hk9z6UAW9w/XFVL/UbLS7N7y/uobW2j5aWZwij8Sa8+l+I+seJ7hrTwBobXsYba2ragrQ2qeuAcM36H2NTWXwujv72PU/G+q3HiLUF+ZYn/d20PThYxweRjng+lAEUvxL1DxJcPZ+AdDl1LDbW1W8BitIzxk84LEZ6cH0BrgPCXg268b/EmfWNT1MX1lpcq+feWsXkRT3C4IjhK4yqkcvwSAOm4Gu/8bapcXt9a/Dvwp5cF7cxD7bPCoC2Fp36dCQcAcHBGMbga7jQtAsfDmiWukadH5drbIFUd2Pdie5JySfU0Aag6UUDpRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACYrzLx1pN54W15PiBoEDSNGBHrFlGP+PmDgb8f3lx19gegOfTqY8e8MrYKtwQRkUAVNJ1ey1vSbbU9PnWa0uUDxyDuD2PoexB5B4q8ORmvJrcn4TeLxZyNt8G61N/o7sfl0+5P8BPZG9+gGc8MT6vvAODn0zQA6iiigAooooAKKKKACiiigBu3nNeTfErwhY6r4i02DQi2neJ9QZ/Nu7aQxAWwU+Y8oX7w5CjoSTjOBivWWdUUsxAAGSScYri/A8ba3e6n4znyf7TfydPVlwY7OMkJgHoXOXP1FAGH4e8ay+Ens/C/jXT4dHeFFgs7+DP2OdVGBhj9w4A6/UgZFenrKroHVgykZDLyD7iqmq6RY63p8thqVrDdWso+eORcjPYj0I7HqK84bQ/FXw2kabwyZNf8OKSW0idv39sOv7lu474/Q9aAPVaK57wp410TxjZGfSrnMseBPayjbNCfRl/TIyODzXQZAoAWiiigAooooAKKKKACiiigApCwFGa5rxt4utvCGiG6aI3F/O4gsbRM77iZvuqAOcep/DqQKAMfx/4qv7ae28KeGsSeI9U4RycLZw/xTN6YGcfQnnGDv+EPCll4O8Pw6XY/ORl552GGnlP3nb3P6AAdqx/h/wCDrjRIbnW9bkFz4k1U+bezE58sfwxL6KvHTuPQCu3oAAMDFFFNZtoJ44BPNAHnDY1749r1a38O6Xn2W4mOP1jb/wAdr0mvN/hNnU4vEfip8sda1SRoXPVreP5Ix+GWH4V6RQAVWvrOHULG5srhd8NxE0Ui+qsCD+hqzSY5oA8++Dl3K3gc6TdMWu9GvJ9Pmye6uSMe2GA/CvQq828P50P40+JtIIAg1e0i1SEDopU7H/FiSfwr0ntQAUUUUAFc74w0GTXdHxZuIdUs5Vu9PnI+5OnIz/sn7pHcE10VJjntQBj+GNfi8SeHrTU442ikkUrNC3WGVTh0PuGBFbNcTb58M/Eea0+7pviJGuIhg4S8jA8we29AG+qGu2HSgAooooAKKTPX2rP1jXtK8P2JvdWvobO3HAeVsbj6AdSfYDNAF8sB9PWqeqaxp2i2TXmp3sFpbqOXmcKPw9T7CuAfx34i8XlofAWikWjEqdZ1MGKH6xp95/6elW9K+FNi96uq+LL+fxJqnUNd8QR+yRdMexyPYUAUpfiDr3iuRrbwBobT27Eg6zqStFbLzglB958fmD/DVvTPhXBc3cep+MtTuPEmor8yrcnFtEe4SIce3PB64FegpGsaBEUIqjACjAA+lPAwMUAQxQpbxLFEiJGowqIu0KPQAVzPjvxfH4R0VXhi+1apdsLfT7MLlppm4HA5wO/4Dqa3dX1Wy0PS7rU9QnWG1tkMkjt2HoPUk4AHUk4HNcD4G0q98U64/wAQNejZHlUx6PZv0tYD0f8A3mHOfc+oAAN3wB4Ok8MaTLcajN9q13UX+0ajcsc7nP8AAD/dXP559cDsKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDM17QrLxHot3pOox77W5Qq2PvKezKezAgEH1FcT4B1u90bVZvAXiOXdqViu6wumGBe2vRSCerKOCPQY5Kk16TXH/EDwg/ibS4rnT5za67pz/aNOul6o4/hPqrYx+R56EA6/NLXKeBfF6eLdFaSaMW2q2bm31C0P3oZhx0/unBwfqOoNdXQAUUUUAFFFFABRRRQByHxDuJ30GLQrNyt5rtwunowGdkbAmV8Z6CNX6dyK6iztIbGzgtLZBHBBGscaDoqqAAK5KLGtfFi4kzug8P2KxKCOlzcHLEH2jVR/wOu0oAKaVJPXinUUAcV4q+HNlrt4usaZcy6P4gi5j1C1+UufSQD74PT1+o4rJ074hal4cv49F+INmlhMzbINXhGbS5+p/gY9efXkLXpdUtT0qy1iwlsdRtYbq1lGHimUMD6HnuOx7UAWY5Y5I1dGDIwBVlOQR2wRUleVSeHvE3w4kefwk0mteHwWMuh3DkyQDqfJc545Py9fZicjsvCvjfRPF9s76bcMtzDxcWc67J4W6EMn14yMjPGaAOjopAwNLQAUUUUAFFFNZ1QEsQABkk9BQBR1jV7LQ9KutT1GdYLS2QvI7emOg9STjA754rgfBekXni/Xv+E+8RRsi7SuiWDji2hP/LUju7DnPbP+7tp4f4u+KixDHwVo83yjPGo3A/8AZB/X3wvrCqAoCgAYwAOwoAdRRRQAVynxI1n+wfh3rt+rFZBatDGwPId/kUj6Fs/hXV15t8Tv+Jvr3g7wsBuW/wBT+1TqejQwLudT7EN/47QB1XgrRT4f8F6PpbIqyW9qglA/56Ebn/8AHixrfoHSigAooooA82+In/Em8beCvEwGES9bTrhhx8k6kAk+i/MfrXpNcZ8VNJOsfDfWokz50EP2qJh1DRnfx+CkfjW74Y1hde8LaXqykH7XbRysB2Ygbh+ByPwoA1qKKKACiiigDl/Hul3GoeF5p7EA6lpzrqFkcZPmxHcFH+8Ay/Rq2tJ1SDWNGstUtz+4u4EmTJ5AYZwfcVc46151oHiLRvA9tr2i63qFvZW2l3zNbLIeTbzDzUCr95sEuuFB+7QB6MWArN1rxDpPh2wN7q9/DZ246NI3LH0UdWPsAa4D/hMvF/jVtngvRl03TG4OsasuNw9Youc/U7h2O2tXR/hXpNvfDVfEFxP4i1k8m61A7lX2SP7qj0BzjsRQBmjxv4o8Zs0XgjRmtbFjj+2tUG2PHrHHyX9R1HqBV7SfhRpq3w1XxPeTeJdVP/La+GYk68JFkqBz0OR6Yrv9g24HAHanDpQAxUCqFCgADAHYe1PoooAKTcOevFIXA65rzfx9rd7rOrxeAfDcwXUb5Q+o3S8/YrbuTjozDGB1wR/eBoAz5pD8WPGLWyNu8GaJPmZh93ULkfw56FF6nHGD33Aj1hVCqAAABjAFZ2g6FY+HNGtNK06Py7W2QInq3clj3JJJJ960+1AAOlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUmKWigDzLx1pV74X1tPiDoELSSRKI9Zs4x/x9W/d+P4lAzn0APQEHv8ASdXstb0m21PT5hNaXKB43HcHsR2IPBHUHirbx7wQcYPrzXlUB/4VN4vFpI23wbrU37hmPy6fcn+AnoEbnr0A/wBliQD1gHIB9aKbvAOOfTNOoAKKKKACmscA9OnenVg+NNRbSfBOuXyNtkhsZmjOf49h2/rigDL+HH+maDea4xbdrOoXF6pfqIy2yMfTYi4+tdlWX4d03+yPDOlaaOfslpFCT3JVACf0rUoAKKKKACiiigBCOa47xZ8OtP8AEdymqWc0mk6/DzFqdp8r5xjDj+MY455xxnGa7KigDzLT/iBqnha/i0X4hWq2ruQlvrMAJtbj/eP8Ddz09SAK9JininhSaKRZI3UMrqQQw9QfSoL/AE601Szls7+2hubaUYeKZAykfQ15tL4W8S/DuRrvwXM+p6Hu3zaFcyZeMZ5MDnp9D+O6gD1Siua8J+OdF8X27/YJmivIeLmxnXZNAwOCGU+/ccfjkV0m4ZxQAm8ZxXmPjXVL3xl4gPgDw/K0cOA2uX6HiCEkfuge7N0I/A8bsa/xB8X3WkJa6DoCLceJtVOyzhxnyV7ysDwAMHGeCQeoBFafgrwfa+D9ASxif7RdTHzby6kyWuJSOWOe3YD098kgGvpWk2ei6Vb6bp8Kw2lvHsjQdh9e5PUnvmr9FFABRRRQAma8307Gu/HPWb0rug0LTo7FMnjzZSXJHvgspr0SeaK3gknmcJFGpd2PRVA5NeffB2GS58K33iC4GJ9d1Ge9YHqqltoX6fKSPrQB6NRRRQAUUUUAMkjWWN45FDI4wynuO4rzv4PSNZaBqvhmWTfLoWpT2oJ+80ZYsrH6ktj6V6PXm9n/AMSH48ajb4xB4h02O5X0M0OV2j/gOWP1oA9IopNwFYviHxdoPhW18/WdShtQRlEJy8n+6o5P4CgDaLYNZOv+KNF8L2f2rWdQhtI/4Q5y7+yqOW/AVwz+IvHXjYhfDGljQNKkP/IU1NR5zj1ji57dM5B9RWv4e+FuiaNd/wBpag02t6w2C9/qLGRgeOVU5C9ODyR60AZD+KfGvjYiPwlpX9jaY/8AzFtUXDup7xxc9uhOQfaqFl4DsdA+JmjTa3dza/c6naXCm41BQ+24j2OCqn7o2b8DnGODXruD61yPj4NbxaBqqEKbDWbZnb0jkJgb9Jf0oA64LgAYFOoooAKKKKACkz168UtZ+savZaFpV1qeoTrDa2qGSR27D0HqScADqScDmgDC8e+MY/CWiB4Ihdavdv5GnWeCTNKeBx12jIz65A4JFR+APBr+GNJln1Gb7Vruov8AaNRumOSznnaD/dGce/J4zgYXgTSL3xRrj/ELX4yksqGPR7Nxxa256N/vMCefc+oA9OoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACszXtCsvEei3ek6jHvtblCjY+8p7Mp7MDgg+orTooA828Aa3e6Pqk3gHxHJu1KxTdYXTDAvbX+Egn+JRwR6DHVSa9I3cZwfyrkPH/g9/E+mRXOnz/Zdd05jPp10vVHH8J/2Wxj64PPQv8CeME8W6M73CLbatZv9n1C06NDMMjoedpwcfiM5BoA62igdKKACuP8AiUguPCa2DZIvtQsrUj2a4jz+gI/GuwrjfHy75PCsPl7xJ4gtsjPTaJJM/mgoA7LtRR2ooAKKKKACiiigAooooAKQg0tFAHHeK/h1pfiadNRgkk0vXIeYdTtDtlU4x82CN4+vOOARXKXHxI17wDby2XjnS2uZ1jb7FqdkAIrxgOFfj5GPrjv0459S1HULXStPuL++mWG1t4zJJI/RQBmvMfDujt8TdZfxf4jsgdFRXh0bTZ1BDRk4aZ16Zbt9PQKSAc94C8eeDLG4vPE3iTxEsviXU/8AXBbOcrbRdoU+Q8DAzg9gOcZPc/8AC7fh5/0MP/klcf8Axusyfwj4j8ATPe+B5WvtIJLz6BdyEhRnJMDnofY9+u7pXV+EvHej+Lo3itWkttRg4udPuV2TwkcHK9xnuPxweKAMf/hdvw8/6GH/AMkrj/43R/wu34ef9DD/AOSVx/8AG677cMdaWgDgP+F2/Dz/AKGH/wAkrj/43R/wu34ef9DD/wCSVx/8br0CigDxzx98YfCd94F1ez0TVvtV/dQGCOL7NMmQ5CsdzIAMIWPXtWh4f+Kvw50Hw5p2kp4iBFnbRwFhZT/MVUAt/q+5yateOx/bXxD8F+Gx80aXT6rcD0EQ+TPsTuFekAHFAHAf8Lt+Hn/Qw/8Aklcf/G6P+F2/Dz/oYf8AySuP/jdegUlAHAf8Lt+Hn/Qw/wDklcf/ABuj/hdvw8/6GH/ySuP/AI3XfbhnFc/4m8b+H/CUHmavqMcUrDMdsp3TSfRBzj36e9AGF/wuv4e8f8VB16f6Fcf/ABuuI8c/E7whea74U17R9Va5utLvz50a20qH7NIuJT86gEgKABnvXTjVPH/jkkaTZL4V0eT/AJfL2PfdyL6rH0Xj1+oaodZ+EGhw+DtcMcdxqWuTWryLf3snmzvKo3Lg/wAOSMcckEg5oAnGt+PPG/Ggaf8A8IxpD/8AMQ1KMNcyD1SHoPx4PUMK1dB+Gmh+HJX1WeK41rWsb2vr1vNlZh/cDHCn0PX3rV8Caz/wkHgXRdTaTzJJrVRK3rIvyv8A+PKa6PFAHn9z8WtNs9di0K50DxBHqsuPLtfs0ZZs9MHzMEcHnOODXZXGota6Mb46fdyOsQc2kYQzdsrjdtyP97HHWvMPjjpFxbWek+M9Mwt/otwpdgOsZYbc+wbHH+2a6az1o/EKyt10xpIdFkiV725BKtISATboRg98O46fdHOSoBN4Z+Itp4s8t9L0LXDbO+w3UtuiRL6ncX5A/wBnNS/Ey3+0/DfXsHDRW32hSOxjIkB/NRXTwWsVrbxwQRpFFGoREjXaqgDAAHYVl+LoBceC9dgY8SadcISOvMbCgDWglE9vFKvR0DD8RmpKx/CdwLvwbodyCxE2n28mX68xqefetigAooppcDrmgA3jn2615PO3/C2fGJt0bd4N0Sf96R93ULofw57oo/Q/7QI0vHut3utavF4A8OThdQvE3aldL832K2P3s46OwIwPQj+8CO10PQ7Lw9o1rpWnRCO1t02Kvc9ySe5JJJ9yaANFUCqFUAAYAA7CnDpRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACYrzHx3pV54X1xPiDoEXmSQr5es2adLq37vgfxKBnPoAegIPp9MdA4wcEehGRQBT0jWLLXdIttU0+YTWlzGHjcdx6H0IOQR2IIq+DkZryWP/i03jD7LI23wZrc37pnOF0+5P8JPaNvfoBn+FifWN46ckigB1cn4zONS8In/AKjiD/yXnrrK474gDaPDE53/ALnxBaH5f9stHz7fPQB2NFHaigAooooAKKKKACiiigApu8c9eOtKWAzXm3jnXb/X9ZTwF4ZnKX1wu7U71eRZW569P4yDwPceuQAcj4v8c6B4t8XxaTqeriz8IWEha4lVHI1GdCP3alQcouQffOe6key6LqVjqmnrLpqutqvyJut3hAwBjCso4x6cV518SvAFjF8IW0/SLbZ/Yqi6hHVjt/1hJHUlSzH3A9sdT8O/EyeJfAOmarNIpnSEx3LE42unDEntnAb6GgDT8Q+LdE8LRxSa1eNaxSkqshgkdMjHBKqQDyOuK5nUfDnhr4kQrrGk3N1Zanbn/R9WtopIJFOOPvBd6/06EZOdSG3j8Z3kOoXcYfQ7aQSWMLji5kGR57D+6OdgPX7x/hx1m3IxQB5ha+N9c8F3cel/ECANau2y31+1jzDLxwJVA+Rvw/DALV6Xb3UF1bRz280c0MihkliYMrg9CCOopt3ZW99bS2t3DFcW8q7ZIpkDow9CDwR7V5rP4N8QeAp5b/wJObrTT882g3chKD1MLk/K3sfx3cCgD1KkzXLeEvH2keKw1tF5ljqsAxcabdDZNEw68H7wHqPbIGa3tTv4dK0u81C5bbBawvNIcdFUZP8AKgDgvC//ABPfjD4t1zloNNhi0m3ftn70o+quP/Hq9JzXn/wfsJbb4fw6hdAm71aeXULgnuZG4P4qFP41seJvH/h3wp+61G/Vr1sBLGD553J6DaOmfU4HvQB0+RXOeJ/HXh/wjFnVL9RcMP3dpF880hOcAKORn1OB71yTyfEXxyxSGL/hENFf/lpIu+9lX/d/5Z/oR6mum8M/Dzw/4Wb7RaWpudQbPmX923mzuT1O49M+gxQBzH234h+OztsLf/hEtFc4+0XMe+8lXnon8GePTHZjXSeHPhx4f8OTfbEt3vtUZt76jft507Nz8wY/dPPbFdbilAwAKAG7fegrmnUUAeb/AAqzpM/ijwo4KjSNUdrdP7sEuWjH6E/jXo+7ivNrgf2D8eraUKVt/EWmNEcdHuIecn6RhR+NXPFmreO5YpbTw14WnVi+w30t5bqdgPLRoXPJGcbhx1IzwAC/4gDeLXu/DFkQtmVMWp3oUMIwRnyY88GQjBJ6ICD1Iri/gjqVxp7az4F1JgLzSLhmiBP3oy3zEewbB/7aDrXqGiWcVjolrbQ2T2SrGCbeRg7oTyQzAkMxJJJyckk815XrOheMF+L0HjDQvCs626IIbtZL23U3YAKlgN/Hy7cA/wB0ZxQB7MOlZ3iBkTw5qjSKWQWkpIHUjYam0+7nu7NZrmwnsZTnME7IzKAe5RmXn61neM5/s3gbxBOACY9OuGAPciNjQAzwJ/yT3w1/2CrX/wBFLXQVl+GbcWnhXR7YJsENjDHt9MIBitSgBM9evFcn488YJ4T0ZDBCLrV71/s+m2eMmaY8DjrgZGfXIHUit3WdXstB0i61TUJlhtbZC8jn09B7k4A9Sa4LwLpF74m1qT4ha/GUmnTy9HtGGfsluejf7zA5z6E+uAAb3gHwc/hfSJJtQm+165qD+fqN0xyXc87Qf7q5wPXk8ZwOvoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMzXtCsfEejXelajF5lrcoUYDgg9mB7EHkH2FcP4A1y90XVp/AHiSYPqNipbTrthj7bbdsZ6soGMegI/hJPpdcd8QPB7+KNLiuLCf7Lrmmv9o066Xqjjnaf9lsD8QOvSgDsN3HQ1yHxMcweCLm9UfNZXFrd59BHOjk8ewNP8B+ME8WaKz3CC21ayf7PqFoeGhmGR0/unBx+I6g1r+JtNOs+FdW0xR811aSwp7MyEA/nigDWorE8H6n/AGz4N0bUCQXuLOJ3wc4fYNw/PNbdABRRRQAUUUUAFJnFLWJ4q8Taf4S0C51bUnIhiGEQfekc9EX1JP8AU9AaAMf4geMX8N2MFjpcP2vxBqT+RYWqjPzd3b0Vcg+/0yRY8C+DY/COjsksv2rVbx/P1C8blppT1Gf7oycfUnqTWP4A8OahcX8/jTxREf7dv1xbwPn/AEG3/hjA7E557/iWz6GOgoAiliSaN4pVDxupRlboQeoP1rwn4SaHPdal4q8Prd7/AAxZamcoBzdMpZQuf7pCIWHfAHQkV614m8Sf2LaTpBp+p3l6YGeBLSwlmBbB2gsqlRz6muK+CVvLovhqTTdQ03VLTVLi5kuZzc2EqJ2A/eFdvQdM0AepLHtwAAAOgA6cYqSikyKAFpvQnml3AjI5HtXIeJ/iR4d8LzfZJrhrzVGO2PT7JfNmZjjAwPu9e+D6A0AP8W+AdI8VlLtjJYavDg22p2h2zRkdOR94ex98Eda8k8eeO/Efh7w/qfgzxBLaXl7PEq2+p2coBeIsN3mx9VYpkdAOejda7lbf4g+OlBvJP+EQ0ZxzDCfMvpFPYtxs/DBHcGuk0D4c+GPDtrLFa6ZFPLMpWe4uwJZZs9dzEd/QYHtQBxmjQeNfGWhWEWn3EHhTwwlukcDwMJbyaIKACGBxHwPUMPeu18LfD7w94RHm6dZ+ZfNnzL65PmTuT1JY9M9wuB7Vy914J17wPdyan8P5/NsmbfcaDdPmJvUxMT8p9s/iQAtdH4T+IOk+KXkstsun6zBxcaZdrsmjI64H8Q9x7ZAzQB1gUjvmnUm4DrS0AFFFFABRRRQB5x8X0NhpGj+KI1+fQ9ThncjqYWIR1/ElRXoqurorqwZWGVI7isfxZo/9v+FNV0rC7rq2dELDgPj5T+DYP4VkfC7WDrfw30S6cnzY4BbSZPO6I7Ofc7c/jQB2GDS4oHSigBuDXJfE2V0+HerxRcy3MaWqe5ldY/8A2auvrjvHJ+2XvhjSFfm81eOV19Y4FaZv1RfzoA6+NBHGqL0UAClLAdTRuGcV5p4+1q81zV4/h94dlC316m/U7oDIs7Y8Nn/aYEDGRwQP4gaAKErf8La8ZGIYbwboc+ZD1XULkDp6FFB59j/tDHrKrtUAADAxis/QtDsvDuj2uladEIrW2TYg7n1JPck5JPua0u1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJilooA8w8d6VeeF9cT4g6BF5kkK+XrNmnS6t+74H8SgZz6AHoCD3+kavZa7pNrqmnTia0uYw8bj09MdiDkEdiCKuugcYOCPQjIryeM/8Km8Xm2kO3wZrc37p34XT7k/wk9o29+gH+y2QDqPh+RYW2s+HyAn9k6nMkSA9IJSJo/0kx/wGuz7VxlyV0T4oWlyTtt9dsjbPxx9ohJdMn1ZGkH/AAK7MdBQAUUUUAFFFIWAzQBFc3UFlazXNzMkMEKGSSR2wqKBkknsAK8v0G2uPid4nTxZqcTx+G9OcjRrORf8AXuDzO479OB9PQlk12eb4oeKpfC2nysvhnTpFfV7pGx9okByIEPcAjJPY/Rd3qNtaw2lrFbWsSQwRIEjjRcBVAwAB2AoAk24HFOoHApM0AGD7U0jn1p24VxviP4l6DoN1/Z8Ly6rq7kqmnacnnSlvQ44X3zz6A0AdjuAH0rkPE3xK0DwzcGxaWXUNWY7U06xXzZix6AgcKfY8+gNc+NG+IHjlt2uX3/CLaM3IsNPk3XUg9Hl/h/D6Fa7Lw14M0Dwla+To2nRQMRh5z80r/wC855P06UAcemn/ABB8c/NqlyPCmjP/AMutod95Ivo0n8HHpj0K11nhnwN4e8JRj+ydOjjmIw1zJ88z+uXPPPXAwK6HbTqAMTXfFmheGGtl1nUY7RrkkQqykmTGM4Cg+o/Os+f4k+ErWETXGqmGLIHmSW0qr7clas22jG58X3+t3tuvmQItnYlxnbHje7j3ZnK/SMeprgfjg7arL4V8JRMQ+p6iGkx1VRhMn2/eE/8AAaAO0PxF8KrB9pOpkRFdwkNrNjb6529Oao6r4d8LfE3SodWsrki4jJ+yatZkxyxMp7HgsAex98YPNdokMcUSwogWNVChAOAMYA+mBWJ4M0s6N4Xt7NoPIPmTTeX/AHd8rOB+AYD8KAONi8YeIvAU62HjuFrvSshIPEFpGSuM4AmQcqfcfk3WvS7O+tdQsoruzniuLeVd0csLh1YexHWnT20dzC8M8aSxSKVeORQysDwQQeCMdq81vfA2s+D7yTVPh7cAQO5e50C5b9xL6mMn7jcDuO3OBtIB6fmlrj/CXxD0rxRK1g6SabrcPE+mXY2yqcc7f7w9xzjBIGa6/cKAFoo60UAIQa83+HWNH8WeNfC5G1bfUBf26/8ATOdd20ewwB+Nek15trp/sP43eHdS3BYNasptNlPYOh3ofqSVX8KAPSaKKKACuMb/AImvxaAG1odD0w55+7PcN0/79xf+PV2DsEUs3AUE5JwK4Pwtqtpp3hTWvG+qSeVDqVzJfb3XDC3XEcC49SiqQPV/egDQ8feMF8J6Mn2eL7VrF8/2fTrTGTNKeBx6DIz65A6mk8AeDX8LaRLNez/atc1FvtGo3R5LyHJ2g/3VyQPqT3wMPwJo194j1uT4g+IYtlxcJ5ek2jf8uluejc/xMCefQn1wPTKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArN13Q7LxFot1pOoxCW1uUKsO4PZgexB5B9QK0qKAPEBPq9pp9z4H1OUS+JNCZNR0C6KkfboouVUerbQyEDqCRztYn2HSNWttb0az1S0bdBdwpMnqAwzg+hHQ+4Nc/4+8It4o0uKewmFrrunP8AaNOugOUkH8J/2WwAfwPOMHjfg54t8+71TwveQCzuYJHuIrTkCElv30QHZVc7lGTw/Xg0AewUUDoKTNABux2NeeePfEl9danD4J8MSt/bl+m64uE6WFv/ABSMezYPA689iVzr+PPF6eE9Ija2g+1axeP5GnWYBJllPTIHO0Z5x64BBNReA/Bz+GdNmu9SlF1r+ov5+o3bYyXOfkX0Vc49+fYAA2PDHhmw8J6DbaRpkYSCEfMx+9K56u3qT/gBgCtnOKNwA5PTvXDeIPiloul3p0rSo59d1liQtlpy+YVI/vMOBjv1I7igDuciuI8Q/FDQNGvDptiZta1hvlWx01PNfd6FhwMdxyR6Vjt4Y8a+N9zeKdW/sLTHzjStKcGRl9JJuc+mBkH0Fdr4f8JaH4WszbaLp0NqjD52UZd/95jyfzoA4pvD3jvxwd3iPUR4d0h+Tpmmybp3X0kl7cenH+zXZeG/B2heE7T7PounQ2wYAPJjdJJ/vOeTzz6e1bgXAwKdQAgH0paKKACiiigBuOfrXj4/4qb9pTOd1t4fsPw3kfzzN/45XpGq+JbXSZ2glstWuJQobFpp00ynPQb1Urn2zXlnwxurrR9a8T614h0LXra91a6EqAaTcSBU3M2MohxywGPYUAe2AcUYoByoPtS0AFNK59MU6igDmPFfgXR/F0SNexNDfQ4Nvf252TwkdMN3GexyPxrk4vFfiP4ezJY+NkbUdI3hINetoydvYCZB0Pv/AOhda9TqKaCO4ieKWNJInBV0dQQwPUEHqKAIrLUbPUbKK8srmO5tpV3JLEwZWHrkVZzXmV/4C1bwney6x8PbpYN533Oizkm2uD3K/wBxvxH1A4O54S+Iem+Jbh9MuYZdK12HifTLv5ZAQMnYTjePpzjkgZFAHZV558Y7aZfBkWtWy7rrRL6DUI1/vbW2kfT5sn6V6Fu/SqGt6ZHrWh6hpcp/d3dvJA3tuXGfwzQBatbmK8tIbqBw8M0ayIw/iUjIP5Gpq4X4Ram+o/DjTorjIutPLWM6HqjRnAB99uyu43AdaAOR+Id1M2hR6FZOVv8AXZhYRMBkpGw/evjI4WMOfriuQgtYviV4mg0+2RR4G8POsaqDlb+4RcBR2KKPzHrn5cLxDq9/8QfibdaJ4fnxFFC1ibsElbWDcPtMw/2mIEYweQp/vA17VomiWXh/RrXStOiWK0tkCRr3PqSe7E5JPqaANAKAOMdKdRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACEZryL4p+FrvStWtviJ4cT/iZaawe+gUcTxKOWOO4XKt/s88befXqay5BGBg0AZ2ga7Z+I9BstXsHLW91GHXOMqehU47ggg+4puv67YeG9FutW1GYRW1uhZvVj2Uf7R4AHvXm6Z+EfjQxH5PBmuzZVsELp9yR0PbY2Pbj/c55LV/HaePPHcf2TSb3WtN0t92n6XApC3U3Tzp26Kg7A54xkDLZAPQPAug6hrOrSePvE8Xl6hdIU06zYH/QrfnHX+Nhk/Qn+8QLmu/FTSLG+/srQoJvEOsHhbTThvVT/tuOAB3xnHfFZieCvFnjQ+d421n7Fp79NF0ptqEYHEkn8XuOR3BFd5ovh3SvDtgLLSLCCygHVYl5Y+rN1Y+5OaAOEXwl4x8Zjf4w1f8AsrTHyf7H0o7SR6SS9/cDIPUYruNB8L6L4Ys/sui6dBZxH73lg7n/AN5jkt9STWtj2FOoAbt7cYp1FFABRRRQAUUUUAFFFFADSD24+lJs9MAU+igAooooAKKKKACiiigBpUnrjFc54r8DaJ4wt0XUYCtzF/qL2Ftk8JHTa/p3wcjPPWulooA8rj8TeJ/h1Mln4xV9W0IEJFrltGS8Qzgeen0xz39WOa9I0/UbLVLKK9sLqK5tphlJYnDK34irEkSTRvHKivG4KsrDIIPUEGvN9S+H2p+Gb2XWfh7eLZSMS8+jTEm0uPXA/gP0+gKigB/gs/2H8TvGfh4sRDdSR6vaoR18wYlb6bio/CrnxS8WTeHfDyWGl7pNd1Z/s1jFHywJ4Lj6ZAH+0R7159qfxIsrX4j6Hr2p2V3pN/a28+n6xYzLlgmN8ZQ9HUuSc+w7EE9h8PtFvPEWsS/ETxDEEu7sbNLtTyLS37Hn+JgfyJP8WAAbHw18BQ+BfDSW52PqdyFkvZh3bBwoP91c4Hvk98V21A6UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVT1DVtO0mFZtRv7aziZtqvcTLGpb0BYjnirlYniy/i0nwrqupTxxyLaWskypIAQWCnaOfU8fjQA0+NfCg/5mbRv/A+L/wCKq5Ya/o+quU07VrG8cDO23uEkP5A1wfwT8Owaf8NrK4nt42nvpHuWLICdpO1Rn02qD+NZPx0ttPsNC0u6sYlg8QNfotk9sm2ZuCGAxyw+7+JHrQB6nrGjWOv6VcabqUCXFncDDxN0Pcc9iDg57YFeQ6B8MfBljrcvhjxJo/m6iA8the/a5kF/CDk8K4AkToy4HGCMjmvZNMa6bSbNr4AXhgQzgYwJNo3dPfNZ/iXw3b+JdM+yzSyQTxOJrW7iOJLaYZ2uvuM9O4yKAOZ/4Un8Peh8P8/9flx/8co/4Ul8PCP+Re/8nbj/AOOVp+GfE9zLfSeHfEMcdr4gtkLYTiK8jH/LWInqD3XqtdZuAGe1AHAf8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlegUUAef8A/Ckvh5/0L3/k7cf/AByj/hSXw8/6F7/yduP/AI5XoFFAHn//AApL4ef9C9/5O3H/AMco/wCFJfDz/oXv/J24/wDjlegUUAef/wDCkvh5/wBC9/5O3H/xyj/hSXw8/wChe/8AJ24/+OV6BRQB5/8A8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlegUUAef8A/Ckvh5/0L3/k7cf/AByj/hSXw8/6F7/yduP/AI5XoFFAHn//AApL4ef9C9/5O3H/AMco/wCFJfDz/oXv/J24/wDjlegUUAef/wDCkvh5/wBC9/5O3H/xyj/hSXw8/wChe/8AJ24/+OV6BRQB5/8A8KS+Hn/Qvf8Ak7cf/HKP+FJfDz/oXv8AyduP/jlegUUAef8A/Ckvh5/0L3/k7cf/AByj/hSXw8/6F7/yduP/AI5XoFFAHn//AApL4ef9C9/5O3H/AMcpp+Cvw7HXQMY/6fZ//jlegbwDjBrgdSvp/H+pz6DpE80WgW7lNU1GFseeR1t4j3/2mHQcd+QDktB+G3g7xF4pOoaVoqx+G9OZo0kM0si6lMDgkbmIMSEYyPvHPUAivawuAAMcDFQ2dlb2FpFa2sKQwQoEjiQYVFHAAHYVJJNHBE0kzqkaKWZ2OAAOpJ9BQA4sqg5IAUcmuffx34XS4eAazbSvGcSeRmUJ/vFQQPxrhdKurn4w6zd3EzzW/guwl8qO2Vih1CQd5CP4BkHb7jPevVLOxttPtI7Wzt4reCMYSOJAir9AOlAFf+3NLNlb3ovoGtbh0jhlSQMsjMwVVUjqSTjArQ615brXhdZPjT4fktzIlg0c2o3NqhxGZkwgl29NxLx5Pt6kmvUR0FAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeX/HXUZIPAaaXBk3GrXsVsqjrgHcfryqj8a9LuLmC0t5bi4lSGGJS8kjsAqqBkknsK8P8AGPizw/4k+L3hK3Gs2J0fTC11NdeevlCT7wBbODyiD/gVAHp+m+HdX0vRrXTrXXUjitoEhjxZIdoUADvzwK4W2eDw98WrPT/FijVtSvkDabrEhIERyR5YhztjORjK+oJ6nHb3HxH8HW8LSf8ACRafMQOI7eYSu30Vck1xWl6Bq/jz4mW3jTVbGfTtF05QNNtrgbZpSCSGZf4eSW59AOetAHrw6CigcgUUAYfiTwxaeJbSJJpJLe8tpPOs72E4ltpPVT6diOhH4GsnQ/E15baonhzxSsVrrBGba5Q4g1BR/FGT0ccZQ885GRXZVma3oOn+IdNk0/U7ZLi2c52ngqw6MpHKsPUc0AaO4Bck8e9OrgRqet+BAIddM+r6AvCatGha4tl7C4QcuAP+Wi+nI5rtbO/tb+ziu7O4jubaVd0c0TBlceoIoAs0Um4YyDmloAKKKKACiiigAooooAKKKKACiiigAooooAKKKTIoAM0kkiRRtI7BUUZZicADuTWT4g8TaX4ZsRc6lP5Zc7YYEG6Wd+yog5Y8jp681zS6JrHjeVbnxPG+n6IDui0VW+eYA8NcsD+Plg4HfOKAI59RvfiHK9no801l4XVttzqa5SS+weY4PROxk79B3J7XTtMtNJ06Cw0+3jt7WBQkUSDAUf55z3yanjgWGJIokSONAFRUGAoAwBj0qXtQADpzXnXxt1ObTPhjqPkkq128dsWB6Kx+b81BH416LXLfEHwufGHgvUNIjZUuJAJLdm6CRTuAPscY/E0AM+G+kJovw80O1VQrvapPJxyXkG9v1Yiuq3AYBrgvAPjCzbQLPRdZkTTNd0+Fbe4s7thGx2DaHXP3gQM5Fb954os/ONnpTJqmpEYW3tnDBM9DK4yI14PJ5ODtBPFAGuj201w7oYnmhPlORgsmQrbSeoyCpx7irNZmi6WdLsPLkmE9zNI09zPtx5sjdTjsBwAOyqB2rToAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGsuQen0NG08c59zTqKAGhcCgAjqcmnUUAFFFFABRRRQA0qTnpz6iuOvfBU+mXcup+DrxNKvJCXlsXXdZXLY/ijH3GOB86YPHINdnSYoA4608eQ2l0un+K7NtBvicJLO+bWfrzHN07fdbDcjiuwV1ZQykFSMgjkEVDd2Vvf2strdwRXFvKNskUqBlYehB4NcofAs+kM0vhLWbjSed32GYG4s27keWxymfVGGPSgDstwpa4n/AISrxDo2V8R+GJ5Y1wDe6KxuYz2yYziRR9A1bGkeNPDeuyCLTtZtZZ84MDP5coPvG2GH5UAb1FJmgEEZoAWik3CjNAC0UZpMigBaKM01pERSzMAo5JPQfWgB1JkVy998Q/DVpO1rBfHUr0A4tNMja6lJHUYQEKf94iqh1Hxpr3Gm6Xb6BaN/y86mfOuMdisKHaD/ALzH6UAdVf6lZaVZyXmoXUNrbRjLyzOEUfia5A+KtY8TjZ4P0/baNnOs6ihSIDHWKPh5Dg8EhV9zVyy+H+nLeJqGtXFxr2pLys+okOkZ/wCmcQGxBnkYGfeur24AA6DtQBzug+DbPSLttTuZ5tU1qRcSajeYMmO6oBxGvJ+Vce+a6MClAwMUUAHaiiigApMUtFAFO90nT9SCi/sLW6C9PPhV8fTIqS2sreziENrBFBCvSOJAqj8BxViigA7UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACEVl6v4a0TXk26rpVneYGFaaIMy/Ruo/A1q0UAccPh1ZWe3+xtZ1zSAv3Y7a/d4v+/cu9f0pV0PxtZljbeL7S8X+FdQ0tSfxaJ0/wDQa7CigDjlb4iw8NB4XugB95Zp4D19Crjp71I+p+OkwF8NaNL6lNXcfzhrrDwKO2aAOT/tDx5LHlfD+hRHPSTVZG/lDUYj+Is7cy+F7NMn7qz3BA4x/wA8x612A6Z70tAHIDw14qunJ1DxvNHGRjy9O0+KHH/An8xv5UR/Dbw/I6S6r9u1uZCSH1W8knH/AHwTs/8AHa6+igCpY6bZaZbi3sLO3tYB0jgiVFH4AVaxilooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//Z'] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 8 "如图所示, 在 $\triangle A B C$ 中, $X, Y$ 是直线 $B C$ 上两点 ( $X, B, C, Y$ 顺次排列), 使得 $$ B X \cdot A C=C Y \cdot A B $$ 设 $\triangle A C X, \triangle A B Y$ 的外心分别为 $O_{1}, O_{2}$, 直线 $O_{1} O_{2}$ 与 $A B, A C$ 分别交于点 $U, V$. 证明: $\triangle A U V$ 是等腰三角形. " "['如下图, 设圆 $O_{1}$ 与圆 $O_{2}$ 的公共弦为 $A D, A D$ 交 $X Y$ 于 $E$.\n\n\n\n\n\n由于 $A D$ 为两圆的根轴, 于是 $E$ 点对圆 $O_{1}$ 和圆 $O_{2}$ 的幂相等, 从而\n\n$$\nX E \\cdot C E=B E \\cdot Y E\n$$\n\n进而结合合分比定理有\n\n$$\n\\frac{B E}{C E}=\\frac{X E}{Y E}=\\frac{X B}{Y C}\n$$\n\n又由已知, 有 $\\frac{X B}{Y C}=\\frac{A B}{A C}$, 于是有 $\\frac{B E}{C E}=\\frac{A B}{A C}$, 从而 $A E$ 是 $\\angle B A C$ 的角平分线. 又 $A D \\perp O_{1} O_{2}$, 于是 $U, V$ 关于直线 $A D$ 对称, 因此 $\\triangle A U V$ 是等腰三角形.' '如图, 设 $\\triangle A B C$ 的外心为 $O$, 连结 $O O_{1}, O O_{2}$, 过点 $O, O_{1}, O_{2}$ 分别作直线 $B C$ 的垂线, 垂足分别为 $D, D_{1}, D_{2}$. 作 $O_{1} K \\perp O D$ 于点 $K$.\n\n\n\n我们证明 $O O_{1}=O O_{2}$. 在直角三角形 $O K O_{1}$ 中,\n\n$$\nO O_{1}=\\frac{O_{1} K}{\\sin \\angle O_{1} O K}\n$$\n\n由外心的性质, $O O_{1} \\perp A C$, 又 $O D \\perp B C$, 故 $\\angle O_{1} O K=\\angle A C B$. 而 $D, D_{1}$ 分别是 $B C, C X$ 的中点, 所以\n\n$$\nD D_{1}=C D_{1}-C D=\\frac{1}{2} C X-\\frac{1}{2} B C=\\frac{1}{2} B X\n$$\n\n因此\n\n$$\nO O_{1}=\\frac{O_{1} K}{\\sin \\angle O_{1} O K}=\\frac{D D_{1}}{\\sin \\angle A C B}=\\frac{\\frac{1}{2} B X}{\\frac{A B}{2 R}}=R \\cdot \\frac{B X}{A B}\n$$\n\n\n\n这里 $R$ 是 $\\triangle A B C$ 的外接圆半径. 同理 $O O_{2}=R \\cdot \\frac{C Y}{A C}$. 由已知条件可得 $\\frac{B X}{A B}=\\frac{C Y}{A C}$,故 $O O_{1}=O O_{2}$. 由于 $O O_{1}=O O_{2}$, 故 $\\angle O O_{1} O_{2}=\\angle O O_{2} O_{1}$, 从而 $\\angle A U V=\\angle A V U$.这样 $A U=A V$, 即 $\\triangle A U V$ 是等腰三角形.']" ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIATICIQMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiig9KACiuX8deM7PwL4cfVbmLz5C4jgtg+0yue2cHAxkk4PSuht5VngilU5WRQyn1BGRQBPRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSEgKSTgAdaU9K4/xldXt3HH4f0q1e6uLpfMvFSUIUtc4YbjwC/KjvjeR0oA8/wDitanxF8PtV8USg/Z4ZIo9MU9oPNVWl+sjEEf7Kp6mvVPB9x9s8F6FdE5MunwOfqY1J/WuI+I02uXfw11mzl8MC1tltQS63sbCNYyGyFA5A29K3/hNc/avhd4fkznFt5Wf9xmX+lAHaUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQehoooAy9avr+xs/M07R59TnJ4iimjix7szsMD6A/Suf8CJr2NTufEmitY6ldz+c0vnxSI6fdSNdrFgEUdCOpJ7mu0ooA5bx1/adz4a1DS9M0O41KW/tJrfek0UaRFk2gtvYHvn5QenasT4UWPiDw54YtPDutaHPbfZzKy3QuIXjIZywGFctnLHtXolFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFIxARiSAAOSegoAU9DXP8Airxjovg/TTe6veLECD5cK4Msp9FXv9eg71yOtfEufULq50zwPBDqM9upa71S4fbY2S92Z+jYAJ447jOCK4jwH4El8d+KpPFOvXdxqelwSYinuUKfbnU/wp0WFT0Xv0I6gAHrngjxzpXjrS5L3TfNjeGTy5oJwBIhIyOAT8p5wfY+hrqa+b9Ca88CeJtd8UW29tNtNcn0/VbRB922ZgYpVUD+Ek/mB0Jr6Jtp4rq2iuIHWSKVQ6OhyGUjIIPcEYoAnooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKD0pGICEkgADqegrzXVPiJe61qEuh/D+0XVb5eJ9Rc4tLTPct0c4zwPw3cigDq/FPjDRfCFh9q1a7EbP8A6qBPmlmPoijk/XpXEroviv4mMJfELTeH/DLEMulQti4uh285uwPp+mQGrd8L/Dm10jUW1vWrqTW/EMpy99cjiP2jToo7Dv6YHAzPGWv6h4l1z/hBPC02y4cbtW1BTlbOE8FB/tn07dPUqAYzWdr451AeDfC8K2PgnSnA1K5tuBdyA58lD1PQktk56n+Hd65Z2lvYWsNraQxw28KCOOONdoVR0AHoKp6BoWn+G9HttK0yHyrWAYAxyx7sx7sT1NatAHmXh2zgl+J3xF0W7i820vY7SUxP0dWiIf8AMtj8Kb4AvLjwn4huvh5qszOsANzo88h5ntic7Pqpzx7NjgCrP/Hl+0GvaO/8P/8AfTrN/wDEj9a0PiN4Xude0aG/0hjFr+lSfarCVepYctH9Gx06ZA7UAdtRXO+C/FNv4w8NWurQARyP8lxDnmGYfeQ/0zzgg10VABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU12VI2Z2CqASSegFADj0rnvFXjLRvCFkLjVbra78Q28fzSzH0VRyfTPQVyuqfEO/wBdv5dD+H1mmo3qHbPqcvFpa++7o5+nHpurT8LfDqz0XUf7a1a6l1rxBIcvf3YzsPpGvIQY49ewIHFAGEmieK/iU63HiUy6F4bJDJpEDkT3I/6bN1A9v0BG4+jaVpGn6Hp8dhplnFa20YwscSgD6+59zV+uS8deMofCGlxGKE3WrXr+Tp9kmS08h4HA52gkZx6gd6AM/wAe+LrzTp7Xw14cRbjxLqYxAp+7bR95X9hg49wT2wdfwX4PsvB2jCzhZri7lbzby8l5e4lPJYn09B/Mkk5/gLwbN4eS51bWZvtviXU28y+ujztHaNPRRjHHt2Ax21ABR2oooA858Yf6J8W/AN7khZTeWznPXMY2j8yfyr0Y9K84+LJ+zQ+E9TGR9j8QWpd84whzu/A4Ar0XHv8AiKAPLNV3fDX4hprifL4b8QSiHUAPu211ztl9g3JP/AvYV6mCDg8HPPHNZuu6JZeI9CvNI1CPdbXUZRgOqnqGB/vA4I9xXHfDPW723a88E644bV9EwkchwPtNrx5ci+uBgH6rk5zQB6LRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQelNd1jjZ3YKqgksxwAPevNdR+IWoeIb6XRPh7aLf3KHZPq0v/Hpa+4P8bYzjHHf5hQB1XirxnonhC0WfVLrbLJ/qbaIb5pj/ALK9T6Z6Vxi6F4s+JMon8TGXQfDmQU0iByJ7kdf3zdh04/QEZO94V+HVjoV+dZ1O5l1nxBLzLf3XJU+kanOwfTntkDiu3oAo6VpNhomnxWGmWkVraxfdiiUAD39yfWr1HaqOp6nZ6Nps9/qFwtva26F5JHPAH9T6CgCj4p8Taf4R0KbVdRfEUZ2oin55X/hRQerHn8AT2rlfA3hrUb/Vn8c+K4h/bV2m2ztWHGnwEcIAejEE59MnPJYVQ8NabefEXxHD40123eHR7VidE0+TuM/69x6kgEfpwAW9UAx06UALRRRQAUUUUAcB8aLd5/hXqzxZ82AwzoQeRtlXJ/Imu3srlLyyt7mM5jmjWRT6gjNY3jm0N74B8QWyjLvp8+0erbCR+uKh+Hl0L34deHZg27/QIUYnn5lUKf1U0AdPXnfxJ0W9hNn4z0FCdY0T53jH/LzbdXjPrxkj8cc4r0Sg9DQBleH9bsvEWh2er2D77e6jDrzkqehU47g5B+hrVryrSz/wrX4iHRmynhnxFIZbE/w210fvR/RuMfVfQmvVM0ALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTZHSOJ5JGVUVSWZjgADuaAHHpXO+KvGWi+ELNZtTucSyf6m1iG+ac+ir1PpnoK5XUfiDqfiPUJdE+Hlql9PH8lxrE+Ra2/OODj52+nHcBh01fCvw7sNDv21jUrmXWtflOZNRuxkg/9M15CDHHH0BxxQBgpoHir4kutz4pMmieHSQ0ejQORNcDt57dQPb9ARk+kaXpdjo2nxWOnWsVtaxDCRxIFA9/r71dooAKKKKAGyOkUTySMqIoLMzHAAHUk15Mgm+LviMNlk8D6XPkAjB1Ocf8AtMH8/qflm8Q6jd/EbxFN4M0Sd4tFtDjW9QQ4Lf8ATBCOMkgg/iOgIb0jTdOtNJ0+3sLC3WC1t0CRxoMBV/r/AJ70AWY41iRURQqKAAo7Y4qSiigAooooAKKKKAGTRLPBJE4yjqVYexGK4D4KyP8A8KzsrSU/vrOe4t5AT0IlY/1r0KvOvhYPst7400w/KbfxBcSqvokm0r+gNAHotHaiigDnfGfhe28YeG7nSLg7Hcb7eYdYZR91we3ofUEisv4ceKLrXdKn07WF8rX9Ik+y38R/iI4WQezYz9c44Irtq8x8fWdx4V8QWnxC0mIv9nAt9YgQf6+2JHz8dSvHPsOymgD06iq1heW+o2Fve2kqy29xGssci9GUjIP61ZoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACg9KbI6RxPJIyqiqSzMcAAdzXmmo/EDU/El/Nonw8tVvZ0+S41iYYtbbnHBI+dvTHHfDDOADqfFXjTRvB9oJdTuCZ5OIbSEbppz6Kv14z0rjk8PeKfiPItz4tMmjeHyQ8eiQORLOOo89uo7cdfZSMnf8KfDyx0G+bWNQnl1jxBKcy6ld8sO2IxzsGOOOe2cYFdtQBS03TLHSLCKx0+1itrWIYSOJQoH4evvV2iigAoooPSgAPSvOPHPiXUNR1ePwP4Uk/4nN0u69u1zixg7sSOjnIx35HcitDx74ym0JLbRdFjF14l1M7LK3HOwHrK47KMHr12nsGxb8C+DoPCGlOjym61W8fz9QvGyWmlPJ5PO0ZOPqe5NAGj4X8M6d4S0K30nTIgsMQyzsBvlfu7Hux/ToMAADboooAKKKKACiiigAooooAK858Kj7F8Z/HFqRgXkFndx+4CFT+pNejHpXnNwPsX7QNnMRhNQ0F4AcHl0l3Ht6BaAPRqKKKACo7iCK6tpbeeNJIZUKOjjKspGCCO4xUlB4FAHl3guaTwJ4vn8BX0rHTbjdd6HNJ3QnLwk/wB4HJ9+T/EBXqNch8QfCknirw+BYv5OsWDi5064BwY5l5Az2B6fXB7VP4D8Vp4v8NRXzoYb6FjBe25G0wzLwwI7A9QPQ+uaAOoooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiimSyJDC8srpHGilmdzhVA6kn0oAeeAa5jxV430bwfaxtqM7vdS4FvZQDfPOSeNq/XueO2c1zOoeP9V8TXs2jfDu2W6dCVuNauB/otueh2nHzt3HUd8MK2vCnw80/w7eNql3NLq+vTczaneDL9MfIDnYMceuOM4wKAOei8M+J/iNJHeeMHfSdB4aLQraQh5R1HnuOfTj9FNej6dptlpFlFZadaxW1tGMJFCoVR+A7+9XaKACiiigAooooAD0Ncx4y8X2vg3RDdyo1xezN5dnZRnL3Mp6KoHOM4yQP1IrS8Qa/p/hjRbjVtUl8u2hXJx9527Ko7k9BXFeC9B1DxHrY8eeKYvLupV/4lOnnlbKE/xH/bbP4fU4UA0PAXhC802a58SeInW48Tal807jBFsnGIUOTwMDJHoBkgAnuqKKACiiigAooooAKKKKACiiigAPSvOfGyC0+KHw/1IgbftFzas2O8kYCjp7tXox6V5x8XwINK8O6rjjTtetJ3OOi5Of1IoA9HopO/NLQAUUUUAFeV+Jkf4d+OYfF9sjDQtVZbbWY1HEb9I58dueD+Pdq9UqhqumWmtaXc6bfxCa1uYzHIh7g9/Y+hoAuI6yIrqQysNwI7j1p9ebfDnUbvRdQu/h/rUxe90sB9PnfI+02h+6R7qMAjt052k16TQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUE4GaZNLHDBJLK6xxopZnY4CgDkk9hXml/481fxVfS6N8PLZJwh23Gt3C4trfsdmR87d+hHsRzQB0/inxzonhGCM6hM73c+Bb2UA3zTE9Aqj34yePeuRTwz4o+IsqXfjJn0nQshotCtnIeUZyDO459OP0U5rovCfw803wzdNqVzNLquuzcz6nd/NIT/sZzsHbHXHc4rs6AKenabZaTYxWWn2sVtbRDakUSBVH4Dv71cooPAzQAUUdaKACiiigA7VXvby3sLKe7u5kht4UMkkrnAVQMkn8KnONpz0xXkt7LL8XfEUmmWsrL4L0uYfbLhCR/aEy8iNT/AHBwTj2PdSAB+i2d18U/EUfiXVI3j8K2Ep/smxkB/wBKccGeQdxnOB+HQHd6qMDAH5VFbwRWsMcEEaRRRqESNFCqoAwAAOgHoKsUAFFFFABRRRQAUUUUAFFFFABRRRQAdq4L4yWbXvwp1tIxl41jlHsElVj+gNd7WH4wszqHgrXbRRl5tPnRf94xsB+tAGjpd2moaVZ3qfcuIElX6MoI/nVuuT+Gd2L74aeHZQchbGOLPug2H/0GusoAKKKKACiiigDgviR4cvL6ztfEmhDb4h0RzPbEAkzJ/HEcdQR0HrkfxGui8K+I7PxX4ds9ZsT+6uFyyE5MTjhkP0PHv1HGK2z0NeUhh8M/iKSPk8MeJZc4GdlpeHv7K4/zhKAPVqKaD6dKdQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVHNNFbwvNPIscSKWd3OAoHJJPYUASHgZrl/FfjnRvB8Ef26Z5bybC29jAN88zE4AVfTPc8fjXM3njvWPFl/LpXw+tVlSM7LjW7lf9HhPcRj+NvfkexBzW54U+HumeG7t9Tnlm1TXJjmbU7z5pDxjC5+4McY647kAUAc9F4W8S/ESZL3xm76Zoed8Og27kM46gzuOfw6/wC6civR7HT7PSbKKz0+1jt7aJdqRxKFVR9B3q4elea+L/FOo6n4stfAXhq4MF9MvmajfpybSHAPy+jkEc9tw7nIAOzvvEujaddfZLjUIhdAZ+zx5klx/uLlv0p+l+IdJ1p5Y9Ov4J5YT+9hDYkj/wB5D8y/iKboWgad4csBZ6ZbiNM7pHPLyserO3VmJ7muD+MkDaPoln4v00i31fSrmPbMowZI2O0xsf4lORx9fWgD1KvHvjzovibWNF01dEt7q6s43c3dtaqzMSduxtq8kD5uO2c/T1PSdQj1bR7HUYhiO7t451B7BlBH86vUAeJeBdZ8feDPCtra6z4P1HU7AEvHJbzq9xDGeieVyzeo6YB9q7PSvi14P1KY202otpt4OHttSjMDIfRmPy59s13R6Vm6poOk65D5OrabaXqdhcQq+PpkcUAXYZY54llhkWSNhlXQhgR7HpUp6V5zN8INLspXuPC2r6r4duG5xaXLNCzdiyNncPbIFcjr/iH4laNqzeDtO1PTvEGp3FuzrNDbmO5t04+Z+RGhI6ZJ6j1GQDo/FurX3jXXpvAfhydo7eMY1vUUHECf88lI6uwyCPqOzY9A0XSLHQdItdM06AQWluoSNBzx3JPqTyT3OT3ryzwZ408OeAtHg0PWdI1bQLgtma4vrYlbmXjc+9c5/LGMc16lpWu6TrsPnaTqdrexj7xt5Vfb9cdPxoA0qKKKACiiigAooooAKKKKACjtRXlvxP8AE1/Nq2l+A9AmMOp6swFxcKcGCA5zjHQkBj7BT60AdY/jG1uNQm07RbSfWLqA7ZzalRFA3o8rELn2GT6gVXv/ABpLoDRy+IdHnsbGRwn26GYTwxknA8zGGQE8Z2ke9bWg6JYeHdGttL02Dyra3QBV7se7HuWPOTVfxdbW914O1qG52mBrCYOW6ABDz+FAGxFIksaSRsGjcAqynII6g051V0ZGGVYEEe1ecfA3UrnUvhjZC4YsbSaS3RmOSUBBUfgGx+Ar0mgDzv4KsYvh3FprkGXTb25tJP8AeEhY/wDoVeiV5x8Mf9E17x1pRI3Ra5Jcgf7MoBH6L+lej0AFFFFABRRRQAVjeKPDtn4r8OXmjXo/dXKEBwMmNuqsPocGtmg9KAOC+G3iO7vbW78Na64/4SDRH8i4y2TPH/BKCeuR1PXoT96u9rzb4j6ZeaNqFn4/0SJnvtLXy7+BSQLm0P3gf93k89Ov8IrutI1O01vSbTU7GXzbW6jEkbeoPPPoR0I7HigC/RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFB6VHNNHbwvNNIscSKWd3OAoHJJPYV5pfeO9Y8W3suk/D63EiISlzrlwuLeHsRGD98/p7EHNAHTeLPHej+EIY1vZHmvp8C3sbcb5pmJwAF9M9zgemTxXKxeE/EnxCmS+8bO2naMDvg8P27kFx1Bncc56cf+gnIrovCXw+0vwxctqMsk2qa5Pkz6neZaRj0O3P3B7dcdziuxoAq2NhaabZxWljbR29tENscUahVUfhVqiigBHYIjOxwqjJPtXinwEWTWL3xR4quxuur26Ee49V6uw+nzJ/3yK9rYAqQehFePeAIV+GfijWPC+ssLWxvrgXGl3khxFMOhTceA4G3g+h9sgHsR6V478ftReXQtI8M2atLfapeKViXqyrxj8WdcfQ16JrXi3SNDhBuLoS3DY8qztv3s8zdlRByfyx7iuU8K+D9S1XxdL458WRCK/I2adp2/eLKPGBuPd8E9OAWJ68KAdhavYeFvD+n2d7f29vFa28dusk8gQNsUDjP0qzpGr2WvabBqWmTi4s5t3lyhSA2GKnGeeoParNxEjxszIpZVO0kZxxXFfBn/kkug/7kv8A6OegDvKKD0rnvF3iux8HaDLqd987D5IIFb555D91B15Pc9hQBn+OfGI8MWUNpp8P2zXtQbydPswclmPG9v8AZH6nj3B4F8G/8IvZzXeoTi81/UG83UL1gMsx52r6KOnv1wOAPOr6LxT4L069+JetSaZca1crHGtndQuxtUZgBHGyuAuAeeM8EZOSW9O8JXfifU9Os9T1o6ZFDc2yzLbWsMgdCwBALM5HAPPHX6UAdHNBFcxPFNGkkTjDI6ggj6HrXF6r8JfCGpTfaYdOOl3o5S40yUwMh9QF+X8dtWPG+reKNFt4brQ10q4SSWG2+zXUb+Y0kkmwEMrAY5BxjgBjmt3RV1oWpOuS2D3JbgWUbqijHQlmJJznnj6UAcSPCvxC8PnOg+MItVt1+7a65CWOP+uq/Mx/IUp+I2v6GMeLfBOpWyL9670xhdQ47scHKjvySa9JpD0NAHL6F8RfCfiIqum65avMxwIZCYpCfQK+CfwzXUDsR+lc9rngXwx4k3Nq2h2dxK3WXZsk/wC+1w361zA+GGpaIN3hDxnq2mqM7LS7IuoB7KrDj68mgD0mivN/7f8AiV4fGNX8MWWu26/eudInKOB6mNxlj7KAKtab8XvCd3c/Y9QuLnRb7+K21WEwFfq3Kj8SKAO+oqva3lvfQJPaTxXELcrJE4dT9CDVigArxLw4h1D9p3xBNdffs7QmEHthYkGP+As3517aeleceJvCep2Hjy08c+HLdbq6WLyNQsC4jNzHjG5GPG8ALweDtHTuAej15x8ZvES6H4CuLKFt19qv+hwRjlmDffOPoSPqwroW8VzSW/8Aonh7W5rojAge28kKfQu5CY9wT+NZOk+C7u/8UJ4s8WSQ3GpRDFlYwEtBZL14J++/P3uOeg6YAKuhrD8LfhbpcF95YumdEk3sQonlbJ3EAnaueSAeF96u+IvEut+Chaalqx0+90eW4SC4e2geCS23dH+aRw654P3Tz3rs5oYp02zRo6hg2GGQCOh+orhNft4vHDxfaXEHhLTZPtdxcOf+P5kGQF/6YryS38RAxx81AEPh3Fj8b/F1oSM39laXiAeiDYe/q36/n6PXnF8fsHx+0ediANR0SW1UDu0chkPf0x+X5ej0AFFFFABRRRQAUUUUANdFkjZHUMrAgqRkEeleW+GnPw68dyeEbhmGhavI1zo7seIpD9+HPp0x+Hdq9UrmPHXhRfF3hqWxSTyb+FhPZXAODDOv3SCOQO340AdPRXHfDvxU/ijw/i+URa1YSG11K3OAySqcE49GxkY4zkDpXY0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVFPcQ2tvJPPKkUMalndzhVA5JJ7CgCU9DXLeKvHmjeEUjiu5HuNRmwLbT7cb55mJwML2Ge54PbJ4rmLzxzrXjC9m0n4fQKYI3Mdzr1yuLeLA6Rg/fbp/htOa6Dwl8P9K8LytqDPLqWtT8z6pd/PK56HGc7B7DnHUnFAHOQeEfEfxAmjv/HMjWOkZDweH7WQgHnIM7jknvgdP9k5FekWNja6baQ2djbRW9tEAscUSBVUfQVbooAKKKKACiiigAqC5toLuBobmGOaJvvJIoZT9QanooAo2Wk6bpufsGn2tpnr5EKpn8hV49KKKAM/VLu5tbUm20y5v3YEbIHjXHHcu61ynwxstY0Hwfpug6vo1zaTWqSbp2lgeM5kZgBsctnDenbrXd1HPNFb28s88ixxRoXd3bAVQMkk9gBQBS1nWLHQtIudU1GdYLS3UtI7D8MAdyT0FcB4Q0i/8ba/F488SQNHbpn+xNNfkQRk/wCuYH+NsAg/j2XFSzhm+LniJNTu0ZPBWmTH7HC4K/2jMDgyMO6A5x+XdsesBQAOBgcYoA8g+NztrF/4T8IRMc6lfh5cfwqCEB/8fY/8Br15EWNFVFCqAFA9B6V5HJE+s/tNRicfu9I0vzYge+RjP5yn8q9goA5nWT9u8X+HtOHKQmbUpR7IojQH/gUwb/gFdNXLeHn/ALV8Ta1rSr/oybNOtX/viIsZGHsXcr/2zrqaACiiigAooooAD0qjqWk6drFv9n1Kwtb2HOdlxEsij86vUUAed3Pwf0GK5a78P3mp+HrtuS+nXTKrf7ynPHsCBURtPin4eybe+0nxPar0juI/s1wR6Aj5M+5Nek0UAeaN8XodGVl8WeGtZ0SYA/M0XnQufRZBjJP5e9TeB/i7o3jjXJdKtrS6tLhUaWLz9uJUGM9Dw3Oceg612+q6Xa61pN1pl4m+2uoWhkA4O0jHB7GvM9N/Z+8K2LzvNd6ncOx/cSecI2g5zkbQMt9Rj2oA9aoPSvNf+EL8b6Dz4a8avdwL0s9dj84fTzVG4D2AFH/CeeLtBGPFHgi6eJfvXmjOLhGx38vOUH+8aAOy8RaDH4j0WbSpr69s4pxiSSykCOV7rkg4B71yifCe1UxrN4u8XXMCMpNvcakGicA8Ky7OR2xWnovxO8H68wjtNbt45yQvkXRMD7v7oD43H6ZrrgQwBUg5GQR3oA878fH7F8QPh9qjHCrfTWhPvMgUD+dejV5z8Y/9G8N6Rq2cDS9ZtbtvoGK/zYV6Ln9aAFooooAKKKKACiiigAoPSiigDy7xpDL4G8W2/j6xjkbT59trrkKc5QnCTY/vA4H5Dua9Ktp4rm2iuIHSSKVQ6OhyGUjIIPcEYpL2zt9RsZ7K7iWW2uI2jljboykYI/I15z4Avbjwp4huvh5qszSCAG40e4lPM9sTyn+8pB49mxwBQB6dRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUHoahuLiG0t5Li4mjhgiUs8kjAKoHJJJ4ArzW58b6541updK+H9uFtkby7jX7pP3MfqIlP326cn8sENQB03irx5o3hJY4bp5bjUp8C30+2XfPKScDCjoM9zwcHGTxXKxeEPEfj6VL7xzK1jpIbfB4ftZTg9wZnHLH2H/jvIrpfCPgDSvCsj3mZb/WJ+bjU7w75pCeuCfug+g5x1Jrr6AKtlZW2n2kVpZ28VvbQgLHFEoVVHsB2q1RRQAUUUUAFFFFABRRRQAUUUUAFFFB6HvQAHpXk+sXdz8U/EUnhrSpXj8KWEg/tW+TgXTqciCM9x0JP49l3XfGWv6h4j1r/hBPC0225kXOragvK2cPQqPV26Y7dO5K9r4f0HT/DWj22k6ZD5dtAMDuXPdmPdiep//VQBds7S3sLSC0tIUht4UEccaDAVR0H0qyelFFAHI694QkvPENn4l0e7Sy1q1Qw7pIy8VzEf4JFBB47EHj8sPl03xNq8fkapqFnYWZGJU0wO0so7gSNjYD/sqW9GHWurooArWlrBY2sNpbQpDbwoI4o0GAoHGB+FWaKKACiiigAooooAKKKKACiiigAooooAKKKKAMPW/CPh7xGCNY0a0u2K48x4x5gHsw+Yfga5I/CqXSPn8IeKtX0PacrbM/2i3H/bNjz9STXpNFAHhvxEi+I6+AtU07W7TStV08xrI+oWTmKSII6tudGwDwvRRxmvYdEvP7S8P6dfjn7Taxzf99ID/WofFFj/AGl4S1ixGc3FlNEMdiyEf1rG+Fl8uofDDw9MOi2og/79kp/7LQBq+JZdattKmutEey86BHkaO7idxIAuQqlWXbyOvNcr8MfF/iPxxpn9sXo0m3sVmeFoYIZPNLBRg7i+APmHY/hXojqroysMqRgj2rxv9n1jaaT4j0aQ/NZajlgexK7T/wCi6APXL77QbKb7JJDHcBD5bzqSgOOCwBBx64IrkPBereMteSLUtVj0e20yRm8sQRS+bOgztkXc2FVuoyDxj1rR15m1rUIvDVuxEUsYm1Jx/Bb5IEf1kIK/7of2rpERURUQBVUAKB2FAD6KKKACiiigAPSuK+I3hi513R4dQ0djFr+lSfarCVerEctH7hgMYPBIHau1pD90/TtQBz3gvxTb+MPDNpq0GEkcbLiHPMMw++h/pnnBB710VeV6p/xbX4hrraAp4b8QyLFqAH3ba652y+wbnP1YnsK9RB5H9OaAH0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFQXNzBZ28lxczRwwRqWeSRtqqB1JPYUATnpzXKeLPHmj+EkjhuWkudTnAFtp1su+eUk4Hy9gT3PXBxk8VzVx4213xteSab4AtxHZodlxr12hEKeoiU/fP4fUYw1dD4R8AaV4Vle8zLf6xPzcaneEvNIT1wT90H0HOOpNAHOQeD/EPj64TUPHk32TTA2+DQLSQ7cdjM4+83t27bckV6RZ2dtYW0VraQR29vEAqRRIFRR6ADgCrVFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFB6UAB6Vwfjzxdd6bJbeHPDiLc+J9SGLdDjbbp3lf2GDj6HrjFaHjnxlF4Q0qJooTd6reP5Gn2SctPKeO3OASM/gO9VfAXg6bQVudY1qb7Z4k1Mh725JyEHURp6KAAMD0GOAMAGh4L8H2fg7SBaQu1xeTN5l5eyZMlzKerNnnGScD9SSSemoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEYZUj2rzr4LnyPBE2lEktpWpXNm2R3D7vT/AG69GPSvOfhv/oXizx7pPOYtXF5+E6lh2H931/8ArgHo1eFeC9Wi8KfFL4iQSozmSX7RFAn3pXMp2IvuxmUD617qehrhbL4eQRfFPUfGdzIkpmjjFrCAcxPsVWc574XA+p70AdD4e0uXTbN5L11k1K8kM95KvQyEDCr/ALCqAi+yjuTWzRRQAUUUUAFFFFABQelFFAGXruiWXiPQrzSNQi32t1GVcd1PUEH+8Dgj3Fcf8NdcvIWvPBWuyFta0TCJIePtVtxskHrgYB+q55Jr0TtXnXxK0S+hay8a6DGTrWiZZ4wM/abbnfGfXgsR35OPmIoA9ForL8P63ZeI9Cs9XsJN9vdRiReclT3U46EHIPuDWpQAUUUUAFFFFABRRRQAUUUUAFFVb2/s9Otmub66gtbdSN0s8gRRk4AJPHWs9PF/hqR1RPEOks7kKqrexksT0AG7k0AbVIehqlqGq6fpMKy6jf2tnE7bVe4mWNScdASetQ2PiDRtSujb2Gr2F3OAWMUFwjsAOpwp9xQBj+LPHuk+E1SCYyXmqTkLbadarvmlJ4Hy9gT3P4ZNc1B4L1/x1cx6j48mNvpyNvt9AtZCEHoZmH3m9vyI5Wui174beEvE+qtqGsaMlxdsqo0qzSxlgOmdjAE47nngDoBWd/wpL4e/9C9/5O3H/wAcoA7e0tILG3itrWCOC3iUKkUaBVQegA4AqzXn/wDwpL4e/wDQvf8Ak7cf/HKP+FJfD3/oXv8AyduP/jlAHoFFef8A/Ckvh7/0L3/k7cf/AByj/hSXw9/6F7/yduP/AI5QB6BRXn//AApL4e/9C9/5O3H/AMco/wCFJfD3/oXv/J24/wDjlAHoFFef/wDCkvh7/wBC9/5O3H/xyj/hSXw9/wChe/8AJ24/+OUAegUV5/8A8KS+Hv8A0L3/AJO3H/xyj/hSXw9/6F7/AMnbj/45QB6BRXn/APwpL4e/9C9/5O3H/wAco/4Un8Pf+he/8nbj/wCOUAegUV5Xf/Df4QaXcfZ9Qg060n2hvKuNWkjbB74aUVW/4Qf4Jf8APbRf/B4//wAdoA9dPSsLxR4m07wjoNxq+pOFhiGFjBG6Rz0RR3Y/yGTwK5Kz+Efww1GETWOkwXUWceZBqM7j8xIatf8ACkvh7/0L3/k7cf8AxygCHwL4a1HUNXfxx4rhxrN0gSytTkiwtzyFAPRiCc+mT3LCvRq8/wD+FJfD3/oXv/J24/8AjlH/AApL4e/9C9/5O3H/AMcoA9Aorz//AIUl8Pf+he/8nbj/AOOUf8KS+Hv/AEL3/k7cf/HKAPQKK8//AOFJfD3/AKF7/wAnbj/45R/wpL4e/wDQvf8Ak7cf/HKAPQKK8/8A+FJfD3/oXv8AyduP/jlH/Ckvh7/0L3/k7cf/ABygD0CivP8A/hSXw9/6F7/yduP/AI5R/wAKS+Hv/Qvf+Ttx/wDHKAPQKK8//wCFJfD3/oXv/J24/wDjlH/Ckvh7/wBC9/5O3H/xygD0CivP/wDhSXw9/wChe/8AJ24/+OUf8KS+Hv8A0L3/AJO3H/xygD0CivP/APhSXw9/6F7/AMnbj/45R/wpL4e/9C9/5O3H/wAcoA9Aorz/AP4Ul8Pf+he/8nbj/wCOUf8ACkvh7/0L3/k7cf8AxygD0CivP/8AhSXw9/6F7/yduP8A45R/wpL4e/8AQvf+Ttx/8coA9Aorz/8A4Ul8Pf8AoXv/ACduP/jlH/Ckvh7/ANC9/wCTtx/8coA9Aorz/wD4Ul8Pf+he/wDJ24/+OUf8KS+Hv/Qvf+Ttx/8AHKAPQD0rzjRf9A+O3iW1HA1HTLa9Ax/zzIi9Pep/+FJfD3/oXv8AyduP/jlH/Ckvh7/0L3/k7cf/ABygD0CivP8A/hSfw9/6F7/ycuP/AI5Va9+Efwx0y1e6v9JgtbdPvSzajMir+JkoA9Jorx238G/Ba6dVit7bDnakjXtykbHsA5cKfwNbJ+EXw0/tBbD+xk+1NEZvJ+3T79gIG4jzOBk4/P0NAHpNFef/APCkvh7/ANC9/wCTtx/8co/4Ul8Pf+he/wDJ24/+OUAegUV5/wD8KS+Hv/Qvf+Ttx/8AHKP+FJfD3/oXv/J24/8AjlAHoFFef/8ACkvh7/0L3/k7cf8Axyj/AIUl8Pf+he/8nbj/AOOUAegUEZBFef8A/Ckvh7/0L3/k7cf/AByj/hSXw9/6F7/yduP/AI5QBlaUf+Fa/ERtFfK+GvEMplsG42210fvRfRuMfVfQmvVM1w1n8HfAdhewXltoAWe3kWWNjdTsAynIOC5B5HQgiusv9TsNJgSbUb61s4mbYJLiVY1ZvTJIoAvUVjweKfD11cx29vrumTTytiOKO7jZnPoAGya1ndY42d2CqoJJJwAKAHUVixeLPDlxLHFD4g0qSSRgqIl5GSzE4AADcnPGK2c0ALRRRQAUUUUARyRpKhWRVZD2YZFeGXGn2nw/+P8AaXDWkK6VryFIj5YxDKxAIXIwDvCn6PXu56V5D8Z7L/hJdCntdLtzPe6J/plxcq2BAoXmPI6sRh9o6BQTjIyAdZr8EPjaSfw3FGr6ZFIBqV0RkAgg+TGf7/8AeP8AAOOp46DSdD0vQrVLXTLC3tYlGAIowM/UjkmsH4Z6tZ618PtIubONIgkflzRpxtlU4fPuT82Tyd2Tya7CgAooooAKKKKACiiigAooooAKKKKACiiigAooooA8m+O8nm+GdM0e3ija+1XUIoI9ygtgZ6f8CKD8a9IsdG07TtOt7KC0hEMESxIPLH3VGB+leXeK45vE/wAeNA0e3nEa6NaG9d9u7ZITkHH1EX513mpaN4lurGWK18Ti1lYcOtip/Drx9RzQB51cIun/ALRtha+GESJHtB/a8NuAI/4iS4HAbHln6kepr2uvMfhPqGkNPrekJpYstfsbgx6lK0xna5YMw3+Y3zHkHg9M+9enUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHPeMPFVj4M8OXOsX2WWP5IogcNLIfuqP157AGuY8HeGLvX1t/FfjRRd6lcDzbOycfuLCM8gLGf48YJJyRwOoOeY+Latr/AMTvBfhWTmzd1nmQ/wAas+Gz77Y2A+pr20DGABgY6UART20F1bSW1xCksEiFHidQVZT1BB7V5x8MPD02meJfF93PNNOsd8thavNIXZIYxuVQT2AdB/wH616axCqSTgAZJqC1NvJCs1qYzDN+9DxjiTcM7sjrnjmgCxRRRQAUUUUAFFFFABRRRQAVDPbw3MRjnhSWM9UdQQfzqag9KAPC/h1bQ+CfjNr/AIUlhjWG8Xz7FyvzYALqoPX7jMD7pXrmtaudNhihggFxqN0xjtbbOPMbuWP8KKOS3QD3IB8s+NkEmi+IfCni+wAN/BdC2MYODKoO9V+n3wf98V6domlXEM8mq6oUfVblQH2cpBHniJPYdSf4jk8DAABU8NeCdK8PtJdi1t5tUuZWuLm88kBnkY5OwfwICeFHQYySck9RRRQAUUUUAFMlljgheWV1SNFLO7HAUDkknsKfRQB5rrfxW0BtQtNE0fWLf7Vev5b6j1gtVxy24/KzdlGcZIzxwe1tbHTdC0aSAbI7KNHknkmYHcDku8jHrnkkn37Vq0UAfPXwu8W6J4P8ZeIfD7arAfD80xmsrx3xECOxY+qkDPqnvX0BDNFPFHNDIskcgDI6nIYHkEY61LRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVm6trmlaFAs+rahbWULtsV7iQIGPXAz1rSooA8K+HnivQJ/iF4x8T6prNjafaZlt7P7RcLGXhGecHkjCRfrXfat8S9At7Vk0e4Gu6i4xDaaaDOWbtuK5Cjpkn8q7eigDzf4XeCdS0B9U17X9i61rExllijbIhBJYrn1JY+o4HNekUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFB6UUUAeY/E3w/frrOg+NNJtZLy40WUfaraMZklgzk7R6jLcf7We1dfpni/w9rNgt5ZaxZtGRkq0oR09mUkFT14Nb9Zs+g6PdXP2m40qxlnH/LWS2Ut+ZGaAMe71EeK4307R5Gk0+XK3eox/wCrEfRkib+N2GRuXIUEnOcA9LDEkKJHGioigKqqMAADGB7U9QFAAAAAwAO1OoAKKKKACiiigAooooAKKKKACorm4htLWW5uJUhhiQySSSMFVFAySSegA71LRQB4R458VaB4j+KnhC2XVrR9H06Q3U915g8kPncFZun/ACzUf8Dr3C1uYLu2iubaZJoJVDxyRsCrg85BHHep6KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//Z'] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 9 "如图, $\triangle A B C$ 内接于圆 $O, P$ 为弧 $B C$ 上一点, 点 $K$ 在线段 $A P$ 上, 使得 $B K$ 平分 $\angle A B C$. 过 $K 、 P 、 C$ 三点的圆 $\Omega$ 与边 $A C$ 交于点 $D$, 连接 $B D$ 交圆 $\Omega$ 于点 $E$, 连接 $P E$ 并延长与边 $A B$ 交于点 $F$, 证明: $\angle A B C=2 \angle F C B$. " "['设 $C F$ 与圆 $\\Omega$ 交于点 $L$ (异于 $C$ ). 连接 $P B 、 P C 、 B L 、 K L$, 如下图.\n\n\n\n注意此时 $C 、 D 、 L 、 K 、 E 、 P$ 六点均在圆 $\\Omega$ 上, 结合 $A 、 B 、 P 、 C$ 四点共圆, 可知\n\n$$\n\\angle F E B=\\angle D E P=180^{\\circ}-\\angle D C P=\\angle A B P=\\angle F B P\n$$\n\n因此 $\\triangle F B E \\sim \\triangle F P B$, 因此\n\n$$\nF B^{2}=F E \\cdot F P\n$$\n\n又由圆幂定理可知, $F E \\cdot F P=F L \\cdot F C$, 所以\n\n$$\nF B^{2}=F L \\cdot F C,\n$$\n\n\n\n因此 $\\triangle F B L \\sim \\triangle F C B$. 因此\n\n$$\n\\angle F L B=\\angle F B C=\\angle A P C=\\angle K P C=\\angle K L C,\n$$\n\n即 $B 、 K 、 L$ 三点共线. 再根据 $\\triangle F B L \\sim \\triangle F C B$ 得\n\n$$\n\\angle F C B=\\angle F B L=\\angle F B K=\\frac{1}{2} \\angle A B C,\n$$\n\n即 $\\angle A B C=2 \\angle F C B$.' '设 $C F$ 与圆 $\\Omega$ 交于点 $L$ (异于 $C$ ), 如下图.\n\n\n\n对圆内接广义六边形 $D C P E L K$ 应用帕斯卡定理可知, $D C$ 与 $K P$ 的交点 $A 、 C L$ 与 $P E$ 的交点 $F 、 L K$ 与 $E D$ 的交点 $B^{\\prime}$ 共线, 因此 $B^{\\prime}$ 是 $A F$ 与 $E D$ 的交点, 即 $B^{\\prime}=B$,所以 $B 、 K 、 L$ 共线. 根据 $A 、 B 、 P 、 C$ 四点共圆及 $L 、 K 、 P 、 C$ 四点共圆, 得\n\n$$\n\\angle A B C=\\angle A P C=\\angle K L C=\\angle F C B+\\angle L B C,\n$$\n\n又由 $B K$ 平分 $\\angle A B C$ 知\n\n$$\n\\angle A B C=2 \\angle L B C\n$$\n\n从而 $\\angle A B C=2 \\angle F C B$.']" ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAa8BmwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKbJIkUTSyOqRoCzMxwAB1JPpTbe4hureK4t5o5oJUDxyRsGV1IyCCOCCO9AElFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIxpazdd1m10HRbnVbth5MCbsAgF2Jwqj3JIA+tAHDfFzUL648LarpGlP5bw2bXeoTD/AJZw5+WP2ZyD/wABRvUVtfCq6+1/C/w/LnO21Ef/AHwSn/stZd2dNT4eeIYLvVtOl1bUrO4kumS5Q5maIgKvP3VG1V9gO5NR/Am6+0fCqwjz/wAe800X/kQt/wCzUAek0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUZoAKKM4rF1zxZoHhxR/a2q2ts5GVhZ8yP/uoMs34CgDaorjP+Ey1XUuNA8I6ndLuAFxqBWyiI/vDf85H/AAClOm+PNSP+la7pWkR7s7NPszcOR6b5SBn32UAdlVe6vrSxjMl3dQQIOS0sgQfma5Zfh9BcMzatr/iHU93WOXUGhj/74h2D+dWLb4ceDbVSE8NabIT1a4gEzH6s+SfzoAluPH/g63JEnifSMg4IW8jYj8ATVMfFDwW5k8rXYZjH97yIpJMf98qa6O20uws1CW1hawoOixQqoH4AVbAx/SgDi/8AhbHg3vqV1/4Lbr/43Uv/AAtHwWqI8mtpCrnC+dBLHz/wJRiuw5o60Ac1B8QvBs/3PFGkD/fu40/mRW5aalY3y7rS9trgesMquP0NFxp9ndqVubSCdTnIkjDdevBrCuvh54OvAwn8M6XknJeK1WNs/VcGgDp80Zrjm+HdjAFGk6vr2lBDlVtdSkZPpslLrj8KQ6R460/LWPiWw1Rc8RapZeW2P+ukJH/oBoA7KiuNPivX9MONb8H3wjBC/aNJkW8Q++z5ZAP+AmtPRfGfh3XpWg07VoJLkEhraQmOZT3zG+G/SgDbmkSKMySOEReSxIAH4muKtNR0vxz4nuI4bi3vNL0Y42KQ6z3DAguRnlEU4HYsx/u11+oafZapbG2v7OC7tycmKeMSISOnByP0qnY+GtB0u6+1adomm2c+0p5tvaxxsB6ZUA4/GgCK78P+HktZftGm6bDGVIZ2gjUKMHPJH1Nebfs6XsbeC9RsmlQyxagzBd3O1kTGB9VavVdR0nTtYhWHU9Ptr2JH3olzCsgVvUBgQD15qpa+E/DlldLc2vh7SreeM5SWKyjRl+hC5FAG1RSAYJNLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFGR601vwrkdQ8brNey6X4YsX13UoztlMTbba2P/TWbkA9flXLHHQUAdbJJHFG0kjqiIMszHAUepPauQm8fQX8zW3hXT7jxBcKdpltyEtYzx96dvl79F3HjpUcXge41qQXPjTUP7UbIZdOgDQ2UJzn7gOZeR1cn6V2FtbxWsCQQRJDDGAqRooVVA9AOAPagDkB4b8Ua2d/iDxE1nbk5+waGDCOD/FO37w5742Vs6L4R0Hw+S2maVbQSsSWn275WJ/vSNlj+JNblFACD6YpaKKACiiigAooooAKKKKACiiigAooooARhntmsnWfDGieIYTHq+l212CMBpI/nUf7LDDL+BrXooA4o+Etd0YlvDXiObyuv2DVwbqH2Cyf6xAPqw9qB45fSZEh8XaRcaMxYIL1T59mxJ4/eqMpn0cKPyrtDXJ+LPEFzFcw+HtDjhudevYyVSTmO1h6NNJ/sjsP4jwM4NAHRadqVlqlr9psLmK4g3FRJE4ZSR6EVbr56+F2h6nBqep2ml+IJbK73NeWbBA9teRLM8L+ZF0HzRjBUhgH69K9Qt/Gs2kTx2HjKxGkzsdiX0ZL2Nwe22T/AJZk4Pyvjp1OaAO1opiEEbgQQe+etPoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopDQAtZGv+ItN8OWK3Wo3GwO3lwxIC0kznoiKOWYnsP0FZev+LHtb4aJodqNR16UAiDdiK2U/wDLSdh91R1x1boBR4f8HLY3x1rWbk6rr0o+a7lXCwD/AJ5wr0RR69T3NAGd/ZXiDxsPM11p9G0Jx8ulQSYubhT/AM95B9wEf8s1PfBORXY6dp9npVlHZ2FpDa20YwkUKBFH4CrSjHbFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXO+K/E8egW8FvbwG81i9YxWFin3pnx1Poi5yzHgD3wCAM8U+JpNLa30rSYY73xBe8Wlqx+VRnBllI5WNec+pGBz0Zo2hQ+EdEv7y4nN5qMqtdahfyLta4cAn/gKgcKo4AHrk0/wt4ZfR0nv9SuRf65fEPd3eOB6Rx5+7GvIA78nvgR/Ea6+x/DnxDIAxZ7GSEY65cbBj8WFAHHaRatoHhz4c65l9qqtrdnPVLxQcsfaXYfxNep3NtBeW0lvdQR3EEg2vFIgZWHoQeDWF4h8OjU/AV3oMQw5tPKtyONsqgeWR6YYKat+FNZHiHwrpmrcBrm3R5FH8MmMOv4MCPwoA51/DmteECbjwjJ9q01cl9Du5SFAxn/R5DkxnP8LfLyelb/hzxRpviSGX7I0kN1A225srlPLnt264dDyPr0PODW2w5HB45rm/EPhC21uaLULaeXTdatxi21G2A8xP9lweJE9Ubg+ooA6XIFFcfoviq6g1OPQPFNvHY6uwP2aaMn7NfgdTEx5DeqHkZGM9uuXH4UAOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopDzjoe9AAfT9K4vWfEWoaxqc3hzwmy/a4yVvtUZd0NgPQdnl9F7dTxTde1fUtf1WXwx4Zl8iSPH9o6qvIs1P8AAnrKR+XXuK6XQtDsPDulRabp0HlW8Xryzk9WY92J6mgCv4e8M6d4asWtrGJi0hLz3Ep3zXDk5LyP1YkmtkUtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFZHiPxBZeG9KN9diSQs4igt4V3SXErH5Y0XuxP9e2aAIvE/iW28N2KSPFJdXtw3lWdlDzJcy9lX0HqegHNUPCvhu7spZtb12ZbrX71Qs7rxHbxg5EEQ7IDz/tHk1H4Y8O3rXz+JvEeH1q4UrFbht0dhETnyk7Fum5+54HA564DrmgBEGBXI/EYpNoenac43DUNXsrfHqPOV2/8dRvyrsK4/xWwuPGPgzTyMg3k943sIoHAP8A31ItAHW9jXIeCj/ZmseJfDZLBLO9+12wK4AguAZAF9QJPNH4V2HUZwf89q43Wx/Y/wASPD+r/dh1KKXSbhmOBu/1sP1OVkX/AIFQB2lFIM0tAGbrmh6d4h0yTT9TthPbuQepDIw6MpHKsOxFctY61qPhHUIdF8U3DXFjM2zT9acbQ5zxFcEcLJjo3Af65ru6qanptnq+nT2F/bpcWs6lJYn6MP6euRyCBQBZXqadXA6Ve33gnVLbw/rc73Oj3L+XpeqSn5kPJFvMf72OFb+L68DvF7n160AOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEbtXIeJtevp9Rj8L+HnVdYuVDz3TLuTT4T1kYdCxxhV9eTwK0PFniI6Bp0S2sIutVvZPs9haf89pSO/oij5mPYDr0pPCvhsaBYStczG81W8czX96w+aaQ9h6IvRVHAA+tAF3w/oNh4b0qPT9PjKxqSzu53PK5+87t/Ex6k/wD6q1KQUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFGao6vq1loelXGpajcJb2lum+SRu3pj1JOAB3JxQBHr2t2Xh/SZtRv5CsMY4VBl5G7Ig7sTwBXO+HtBvtU1ZfFfiWHZqO0rYWBbcmnxHrx0MrD7zf8BGAKi0TSL7xNqsPinxHbGBYudK0yTn7Mv8Az1lHTzSO38I98126554oAEBGc06iigBDxzXHzv8Aavi9Zwlciw0WWXOOjTTIo/SJq7A1yGhM138SvFlyR8ttDZWSH6K8rf8Ao1fyoA68VzHxBsZr3wZfSWg/02x239qQuT5kLCQAe52lf+BV1AprgMpUgEHgg+lAFbS7+HVdKtNRtzmG6hSeP/dZQw/Q1brjvh4WsdM1Hw7JnzNEvpLZMnJMLfvYT/3w6j/gNdjQAUUUUAUtX0qy1zTJ9N1G2S4tJ1KSROOCPb0I6g9q5bw5qd/oGrp4T1+dp2ZS2lahIMG7iA5jft5qDGcfeHPrXbVj+JvD1r4m0d7G4Z4pAwlt7mP/AFlvMv3JEPYg/pkdDQBrjmlrmPCHiC61GO60nWVWHX9MIjvEX7sqkfJMnqjjn2OR2rp6ACiiigAooooAKKKKACiiigAooooAKKKKACq99d29jZzXd1MkNvChklkY4CoBkk+1Tnjn0rhvEQPi/wAUxeFI8NpdjsvNYOfvn70NufZiN7DrtUdM8gD/AAlZ3Gu6jJ411SF45blPK0u2fk21rnhiOzyfePoMDtXbCkQYUcYOMU6gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACjIFFQ3VxDa20lxPLHFFEpd5JG2qoAyST2GKAI9QvbTTbKW+vp44La3UySSyHAQDvXGaTZXXjjU7bxFrFuYtGtX8zSNOlHLt2uZR/ex91f4Qc9TUdnbzfES/i1S9jZPCdtIJLC0kTDag46TyA8iMc7F/i+8ewPfrnnI9qABe/GKdRRQAUUUUABrj/AAEXuH8T6g4/4+dcuAjeqRBYR+sZrrpGCIWY4VRkn2rk/hksn/CvtLuJRiW88y8f6yyNJ/7NQB11IelLRQBxkv8AxJ/itA/CW+vWDRnA+9cW5LKT7mN2H/APauyFch8R43g8OQ65ArtPol3FqACcFo1bEo+hjZ811sUiSxrJGwZGAKsOhHtQA+iiigApDS0UAcf4w0a8WW28TaJDu1rTAcRKMfbLc/fgP1wCuc4Ye9dBomr2eu6PbapYSiS1uUDoe47EH0IIII7EGr5GcVw1uB4M8b/ZDlND1+Uvb5+7b3uMsg9BIAWA/vKcdaAO660U1elOoAKKKKACiiigAooooAKKKKACiikP1oAyPE+uxeHPD93qboZXiUCKFc5llYgIgxzlmIH41W8G6FLoOh7LyQTandyNdX8w/jnflgPYcKPZRWTeD/hKPiJDp+3dpvh1VupwVBD3bqREv/AEJb6sPau2XOTQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUZoprgNjPPNACSOqIXZgqryxJwAPevP0834k34ky6+DrWQYXGP7VkU9TnrAD26MR6CnXUk3xIv5NPtJJYvCds5S9uUJU6k4PMMZHSIYIZx977o7mu9ghS3hSGJFjijUKiIoAVQMAADoAOKAHIoUbVUBRwABinUUUAFFFFABRRRQBh+Mr1tO8E65eI22SGwndDn+IRtj9cVP4ZsP7L8LaRYHrbWUMJ+qoB/SsX4mI9x4IuLCNtr39zbWY+kk6If0JrrVGBx07UAOooooAgvbWG+s57O4TfBPG0UiH+JWBBH5Gua+HN1LJ4Pg0+5dWu9Ilk0ycqMcwtsU8+qBG/wCBV1Z9a47Tc6R8UNWsfm+z6xaR6hFngCWLEUoHuVMTfnQB2VFIPrmloAKKKKACsbxToMXiTw9daZI7RPIoaGZOGhlUhkcH1DAGtmkP0oAwPBuuTa7oKyXqLFqdtI1pfxL0SdDhsex4YezCugrh7/Phn4h2t+Bt07xDizuRnCrdKCYX+rruQ+pC12y85NADqKKKACiiigAooooAKKKKACqGtarb6Hot5qt2cW9nC8z4PJCgnA9z0A9TV+uM8bKdY1TQPC6gtFfXJu7zABH2eDDlW9mkMS/nQBd8CaTcaX4ZSXUBjVNQka/vuMYmk+Yr/wABG1f+A101IuMYGMD0paACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoziimsePrQAMR6964PVLq58dapceHtLklh0O1cx6rqMTY84jrbRH/0Nh06d6k1rUr/xRqs/hfQJpIbaE7dW1SJubcd4Iz3lI6nogPriut0jSrHRNLt9N063W3tLdNkca9h+PJJOSSeSSTQBLY2Vvp1jDZ2kCQW8KBI4kGFUDsKsUUUAFFFFABRRRQAUUUhOKAOR8bj7VqfhHT8/67WkmYeqwxyS/wDoSrXXCuQ1ZRdfFTw3BnP2Oxvbsj3YxRg/kzfnXXqcjNAC0UUUAFcZ49/4lkmg+JVAzpd+qTsTj/R5v3Un5Fkb/gNdnWb4g0qLXfD2oaVMQEu7d4s/3SRgH8Dg/hQBojHalrn/AAPq0uteDdMu7nIuxF5NyGGCJoyUkyP95TXQUAFFFFABRRRQBieLtE/4SLwxe6aj+XcOm+2lzgxzIQ0bA+zBaPCet/8ACQ+GLHU3QxTSx7biIggxzKSsi8+jAitpu1cX4fA0Tx9r2hBcW2oKur2nXGW+Sdf++grY/wBugDtaKQUtABRRRQAUUUUAFFFFADW7Vx3h3/ib+PfEutttaKzMekWpA5GweZN+bvj/AIBXVahew6bp1zfXLbYLaJ5pG9FUEn9BXP8Aw5s5bXwJpklzk3d6hvrhiuCZJmMjZ+m7H4UAdQBiloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKRuaAA4PcVxniHWtQ1fVX8KeGpRHebQdS1BeRp8TdMesrDO0dup9af4l8RXsupL4Z8NNE2tyqGnncbo9PiI/1jjuxGNqd85PHXa8OeHrHwzpS2FirEbjJNNIcyTyn70jnux/wHQUAS6Dodh4c0iHTNNg8q2iHA6lierMe5J5JrSozRketABRWRe+JtFsLs2k+oQm7UZNvFmWVR7ooLD8u1SaV4g0jWjKNO1CC4eL/AFkath4/95Tyv4igDTooooAKKKKACkNLSNQByFgY7z4ta1MpybHSbW3+hkklc/mFX8q68VyHg4rdeIfGOo/39VW1BJPSGGNePbcW/WuwoAKKMj1ooAKRux9OaWkbpQBxnhYjSPG3ifQDhIppU1a1UtklZhtlwOwEiMf+B12Y6Vxvir/iVeMPC+vKcRyTvpV0Qv3kmGY8n0EiL/30a7IUALRRRQAUUUUAIa4zxwP7M1Lw34lUEDT78W1wScAQXH7pifYOYz+FdpWL4u0j+3vCOq6WAC9zaukee0mMofwYA/hQBsrS1jeEtY/4SDwlpWqllL3VrHJJt6B9o3AfRsitmgAooooAKKKKACiiigDkfiVI58FXNhDJsm1OaHT4/fzpFQ/+Os35V1cUaRRJHGoVEAVVA4AHFcj4wKXfijwbpbAkPqEl4QD2hhcg/wDfbJ+ldgKAFooooAKKKKACiiigAooooAKqajf2+l2T3l0ZFgj+8Y42kPJx91QSevYVbqK5njtbaW4lbbHEhd29ABkmgDlbf4m+Ebq5ltrfVJJZ4sh4o7OdnXBxyAmRzUlz8RfC9nEZbq+uIIh1eWwnQD8Sgri/gTbyX1j4i8U3KkTavqDHn+6Mtx7bpGH4V6hFcWuqJeW6hZo4pGtp1ZMqTtBK9PmHzAH8fSgBdI1Wy1zTINS06cT2k67o5ACNwzjuM9QavVg+C9KfRPBuk6dJEYZIbZQ8ZIJRjyQSO4JIreoAQ1yvinxLcWt3BoGhKlx4ivFzEjDMdtH3ml9FHb+8cAd6n8VeJX0nyNM0yAXuvXwIs7X+FccGSXH3Y1zye/Qc0/wx4ZTQLeeWed73VLxxLfX8gw8747Y+6g6Kg4A/E0AS+GfDVt4c05oUka5upnMt3eSgeZcyHqzeg7AdABitsUDvS0AI1eZ+KPE2pa94zj8BeGrp7aUIZdU1CL71tFj7iHs5yPm7Fh716Ndzra2k1wwJWJGcgegGa8d/Z/gk1C08ReJ7w+ZeX995byHrwN7Y9iZP0HpQB6rouhad4f09bHTLVYIRkt3aRu7MerMfU5NeffGVX8P2OmeM9MAg1awvERpF486Fgcxv/eGQvXpz616nmvGvj7eyX9roHhOyG++1C9WQIPQfIuR6Fn/8dNAHr1hdJfWFveRf6ueJZUz1wwyP51Zqtp9olhp1tZxnKW8SRKfZQB/SrNABRRRQAUjDI6Zpaoa3fDTNB1DUGOBa20k5P+6pb+lAHMfD6bPgu41eKCSZr6+vb0RxgbpN077QMkDlQuMkDmq6fFCwfxE/h5fD+utq0Sh3tBBESgwGBJ8zaBgjnOORW34DtPsPgDw/bbQrLp8JYejFAW/UmvO/hXKut+OvHHjKV1ELTfZoJXOAIgcnJ9lSKgD162me4tI5nt5oGdQ3lS7Q6n0O0kZ/GuStPiPbX+t3ek2nh3X5rq0l8qcrbx7Iz7v5mB6+vtV2DVJfFsbNo10ItH3NG+oRMDJOVOGWL+6MgguffaOjVv2Fha6darbWkCQwryFUdz1PuT1J6k5JoAsKc9iPrTqKKAOf8baQ+u+DtTsYSwuTCZLYqcETIQ8Z/wC+lWrnhzV01/w3purRqFW8to5to/hJXJX8DkfhWma47wIy6dd+IfDRwo02/aW3QDgW8/71MfQmRf8AgNAHZUUUUAFFFFABSN2paQ0Ach8PgbS01vRygjGm6vcRxqP+eUhEyfpL+ldhXHaQPsXxR8TW2/i9s7O+VfQjfEx/JErsBQAtFFFABRRRQAUhpaQ9KAOQu2+0/FzS4WXIs9GuZw3oZJYlH6I1deK5GzRZfi3q0vynyNGtYvcbpZm/pXXCgBaKKKACiiigAooooAKKKKACuH+LusDRvhlrEiviS4jFqgz1Mh2kf98lj+Fdua8T+LF5eeL4tE0rTtB8QTacl4s99KdKnTCDAGAygk4Zz+AoA6HwZ4L1XT/h/pltb+KdS07faiYwxW9swiaQb25MZY4Lf3s8V0vw+0260vwRpkF8ZDeyRfaLky/f82QmR92ec5YitXR9Tg1S2Z4Le8gSM7Nl1ZyW56A8K6jI7ZHFaI4oAWuf8U+Jk8P20EcFs19q145isLCM/PPJjPX+FQOWY8AfhmXxP4kt/DenrM0T3V5O4is7KH/WXMh6Ko/mewyazvC3hq5tLmbXtclW48RXibZXU/u7aLO4QRDsi9+7HJJoAm8K+GH0f7RqOpXH23XL7Bu7ojAGM7Y4x/Ci5IHr1PoOlHekXpTqACiiigCOaNZYmiddyupBB6EeleQ/DX/i2+s6r4O1txbw3F0bjTLyX5Y7kEAEZPAbAT5evWvYjUF1aW15CYbq3hniOMpKgYH8DQBja74u0fRIsS3P2i7YEw2Vp+9nmPoqDk9ep4Fcv4Q8GajdeKrjxv4rjVdWnXZZ2QYMLGLoBnoWxkcepPU8d1ZaTp2mDFhYWtop7QQrGP0FXRQAKOtLRRQAUUUUAFcn8TLhoPhzrYjBMlxb/ZUA7tKwiH6uK6yuP+ILGa10DT1G4XuuWkbDr8qMZT+kX8qALfjHUx4a8B6rfRNsNpZMIecYfG1P1Irh/hH4Lz8OrP8AtdxLZXjNdCyCkI+7ADS8/P8AKowOABjIJAxa+Kdl4s8WeHp9A0bw3ciN7kGS5mu7dUkRSSNqh93JCkZAPHNdx4a89NFtrSbR7nTFtI0gjinliclVUAEGNmHQe1AHmfwluJfCfjLxB8P71yUhkN3Ysx+8hA/UoUbA77vevZhXj3jrQPFl98RNG8SeG/Dcpl0w7ZZ5LqCMXSA5wAXyAQ0gyRnDe1eq6XdXF5ZLNdafNYTsfmgmdHYY4zlGYEH65oAu0UUUAIa43VQdI+Juj6iAwg1i2k06fsvmJmWEn3wJV/KuzrkviRZyzeDbi+tVQ3ulSJqdtuBI3wsHI49VDr/wKgDrB3par2N5DqFhb3ts4eC4iWWNx/ErDIP5GrFABRRRQAUh7UtFAHIXqi2+LOkXHP8Apmj3UB9/LkicZ+m5vzrrxXH+JlKfEDwVOAmDNeQMW6gNAX4/GMV14oAWiiigAooooAKKKKAOS0hR/wALO8TtjkWOngfncV1o6VyWkMP+FneJx3Njp5H53FdYDmgBaKKKACiiigAooooAKKKKACiiigArI8SeILLw3pTX15ufLCOGCMbpJ5T92NF/iYnt9fSpdd1yw8PaTLqWoziO3i9OWduyqO7E8AVznh7Q7/VtVXxX4lgVL0KV06wJ3LYRH9DK3GW7YwMUAcLquieLNP8AFuj+Mr7VLawutRmNrNC0P2mDTy4CxR9vvbAjupXDHjI69uvjPVNCyvi/QpLWJRzqWnFrm1PAyWAHmRjPHzLjrzXS63o1tr2i3uk3i5t7qMxuR1Xjhh7g4IPsPSsjwRrF3f6ZNpuqvnWtIl+x3ueshAykv0dSGzjrn0oA3tN1Ow1e0W8068t7u3bpLBIHH0yKuZHrXJ6h4A0e5u31DTmuNG1JuTeaY/lM56/Oo+RxnrlTn1qqdR8Z+HcDU9Oj8Q2K9brTV8q6AHdoGOGP+4fwoA7aisPQfFuh+IS8en36Pcx8S2soMc8ZHXdG2GH5VuZ4zQAU1u3rTsimuMjFAHiN9+0VYWniGS0i0R59NikaM3S3I3Pg43Ku3GO/XmvaraeO5t47iGQSQyorxyL0ZSMg/jXid9+zpZXXiKS5g1l7fS5JDIbVbcF0BOditnGOeCR+Fe2WsENpbRW8EaxQxIsaIowFUDAA9qAJqKhubiC1gee4mjhhjBZ5JGCqoHJJJ4A+tcf/AMJxc63I0Hg7SJNVCnadRuHMFkp6cORukweoRT9aAO2yOeenWsbWPFXh/QTjVdZsbR9u4RyzqHI9l6n8BXF61ax2aRy+PPG0qiUjy9M0om2jftsVUzNLyeuR9Kbo+k37/wDIo+EbHw1bHj+09UgDXbjkZWIHdnv+8cdelAGtffFTQbSyN7Daaxd2oGTcR6fJHEPq8uxf1rkp/iDceLvFPhxtE8L6rNFZvcXipceVCLjERjBRmfYQplBJBPUYruLL4f6Yl0moa3Nca/qKHcs+otvSM8f6uL/VoOOwyPWmKGuPi6QM+VYaIBgdA80388QfrQAxPE/jAsBJ8PLsL3I1S1J/9CqZ/GOp267rzwR4gQZwTB5E+PwWXP6V1wooA48fErw5E0a6jJfaTI/QanYy24z6FmXb+tdLp2p2Gq2/2jTr62vIT/y0t5lkX8wasMiupV1DAjBBGc1zV/8AD/wzfz/al0xLK9Gdt3p7G2mBPfdHgk/XNAHUUZHrXFNpXjPQPn0vV4tetFH/AB6aqojn2jPCzoOT/vL+NW9M8cafc3yaXqdvcaLqznC2d+Anmtx/qpASkg5/hOfagDqqZKqyIUcBlYEFT3B4pw70dRxzQByHw5Z7TQLnQZmcy6Jey2AaQ/M0YO6JvoY3T8q7DrXFqP7G+LDDCrb6/p4b63FucH845B/3x7V2Y4oAWiiigAooooA5XxUg/wCEl8Gy911ORR9Daz/4V1IrlvFTr/wkvg2P+I6pIw+gtZ8/zFdSKAFooooAKKKKACiikNAHI2biL4tatCNoM2jWkv8A3zLMv9a64d65C7UW/wAXNLmLMBeaNcwgdiY5on/kzfnXXjvQAtFFFABRRRQAUUUUAFFFFABmqGsapYaLpc+palcpb2duheSRjwB6e5JwAOpJxU1/e2unWU17ezxwW0CGSSWQ4CKBya4rS7K68c6nbeItVhkh0S1fzNJ0+VcGRhwLmVT35Owdgc96AJdF0q+8UatD4o8Q27QwRZOk6ZIObdT0mlH/AD1PGB/APfkduvfjH9aFzjmnUAI1cR4qH/CL+I7HxfEClk22x1cDp5TH93Mf9xzgnk7XPpXcVWv7O31GwnsbuIS29xG0UqHoykYIoAmTuR0PNOYZ7ZrkPAt7Paw3nhfUpS9/orCNJXPNxan/AFMnucDafdT612FAGJrnhTRPEQRtT0+OWaPmO4XKSxH1WRcMO3Q9qxP7L8Y+HTu0rUk8QWKDP2TVGEdwMD+CdRhuv8anp1rtqQ0Acnp/j7SZbxNO1VLjRNTc7Ra6knleYePuSD5H6/wn8K6sEYz2PSquoadZapaPaX9pBd27/fimjDqfwNchc+E7nwxayXfhnxC2mWkK7msdTcz2QA7ZY7oh7q2B6UAd1XN+IfFsGk3UWmWVtLqmuTrvh0+2I3bf77seI0/2m/DOK801X40alc6TdWek6XGuoRTLbzatHIZrCAMMeaJNvX0DDseuMHb8KfDf7VpputU8Sf2jFenzLldLmKx3bY6yzgmSUe2VUdlGaAK13cafeamq+Kbx/E+sod8fh7RozNbWpzjLr91mGeWlI68CumXT/GmvoqXdzB4Z03AH2WwYTXZXHQykbI+33AcetdRpej6fotmtnpdjb2dso4jhQKCfU46n61fHegDB0Pwfovh+SS4sbINeyD95ezsZbiQ9y0jHd+GQK3lGM0tFACGuR8Nq1x4+8ZXpOVWS0s09tkO8/rMa65u1ch8PUaSy12/Zt327W7yVT/so/lL+kQoA7CiiigAooooAQ9qoato2na5YSWOqWUV1auMNHIuR7EdwR2I5rQooA4RrHxF4IHm6YbnX9BUZfT5X3XlsP+mLn/WKB/A3PAwTXUaFrum+IdNF/pl0s8JYq2RtZGHVXU8qw9CAa0XB4I6iuS17wpOuoN4h8MzJYa2FxKr5+z3qjosyjqRk4ccjNADfiLustHsfEMQbzNEvYrttgyWhJ2TL9PLdj/wGuvRgwypBB6EdxXMaTrNj420PUdOu7Z7S7VGtNS06YgyQMykEZ/iUg5VxwRz6gJ8O76a78F2cF2wN7pzPp9zhs/vIWMZz9QoP40AdVnFJkHoaRscH0rw/4j+H9J1T4s+E9Cs9PginvJWu9RaNcNNHuyd2OvEcnPvQB7lRmuWf4d+D3Tb/AMI5p69spCEP/fQwa5CzvbrwD8T7Hww15cXXh7WIy1klzIXa0lGRtVm5KkjGD/eHXBJAOo8SsX+IPgmAFcCa8nYEc4W3K/zkH6V16nNcheMLn4s6RCRk2mkXU5OOheWFBz/wE/ka68UALRRRQAUUUUAFFFFAHH+L9lp4p8GamxIC6jJZkj0mgcAf99In6V14Oa5L4lo6+Cbm/ij3zaZNDqEft5Miux/75DD8a6uN1lRZEIZWAII7igB9FFFABRRRQAUUUZA60AFQ3M0MFvJPPIkcUSl3dmwFUDJJPYYqR3CqWJAAGSSeB7159h/iXfEYdPCFrJ1GV/tSRT+fkqR/wI/Q0AOtbeX4j6hHqN5HLF4TtpA9nayKVOpSLyJpV/55AgbVP3up4wK79c45HNEaKiBVUKAAAAMYFOoAKKKKACkPSloyPWgDivG0Mmi3dl4ztEYvpmYr9EXJmsmI3/UocOP90+tdjBNHcQpNDIskbqGV1OQwIyCD6YomjSaJopFDRupVlPQg9jXmWieKrLwRdah4Oujc3sthJv0uCyia4mlt3yyx4GcMnKndgY2mgD1GsvXPEOj+HrUXWr6jb2cfO3zXG5z6KvVj7AE1zu3xt4iOCYPDFgTjA23N6659f9XHkf75FaWi+CdF0W5+3Jbvd6kcF9QvpDNOxxgnc33fooA9qAMz/hIvEviAhfDeiGztScf2jrIaMFfWOAfO2RyC20fXNcv4g8OSX+r22iSalceIPEc6iWW6vgPselw5wZRbDCFiOFRskkZJwOfQfFXiBPDeitcpD9pvJpFt7O1BwbiduET8+p7AE1F4R8NtoOnyyXsoutYvX8/ULv8A56yHsM9EUfKoGAAOnWgC3oHh6w8OaKml2ERES5LvIdzzOeWdzj5mPc//AKqx7v4fact09/oM9xoGoOdzS6cwWOQ848yEgxuOe659668UtAHEnWvFnh07dc0ddYslOPt+kIfNA4GZLdjnPU/IW6dK39C8TaL4jieTStRguWTiSNTiSM9MMhAZfxArWYVga54N0TxBItzeWfl36cx31sxhuIyBwRIpzxngHI9qAOgorifsvjbw4QLS5i8TWC/8srsrBeKvAwJAAknc/MFJ9av6T460bU71dOnabTNUJx9g1KMwSk8/dzw/TqpagDo7iZLe3kmkOEjUu30AzXL/AAzt3t/hxofmHMk1sLlyepaUmQn83qx4+vBYfD7xBc79hXT5grZ6MyFV/UitbRrFdM0SwsE4W1t44QPZVA/pQBeooooAKKKKACiiigAprdqdWZqXiLRNI/5CWsWFmewuLlIyT9CaAMXxT4Zubq4h17QXW28Q2a7Y3LEJdRZy0Evqp7HqpwQRWD4B8R21/wCMdct4EeFdQjTUGtZF2tbXKYhuI3/2gREf+BZ7ito/Erw3Nv8A7NkvtWdMgrpthNPk+m5V2/rXBeJL6fTPGmmfEJPDOq6ZZQMLfVZbsRJ5kb4jV9iuzblyOxztXpjkA9s9cV5F4V/4qT4/eKNYPz2+kQCxhP8AcfhTj8Vl/OvS9R1qw03Qp9XluITax25nDiQYdQpI2nvnt65rzz4D23leDLzWruRPtWrX0k7uWwSAdvP/AALefxoA9WJ4zXi3ixn8QftEeG9MtsuukxLPcEf8s25kOfw8sf8AAq9A8QeOtL0j/RbNv7V1d/lg06yIkldu27Gdi+rH9elZnw98F3ehPf69rzpP4j1Z/MuWXlYFPIjX6d8egHbNAF3SCL34oeJLrb/x42VnYhscZPmTMPydK68DGa5D4fH7Zaa3rO4ONS1e5kjcHOYo28lPwxF+tdhQAUUUUAFFFFABRRRQBV1Gzh1HTrmxuF3QXMTwyL6qwII/I1g/Du8luvAmlx3I23VnGbG4UnJEkLGJs/XZn8a6c/WuM8O40fx34k0UhViu/L1i2APJ3jy5h+DoD/wP3oA7SikFLQAUUUUAFNbtx0NBwQMc+lcHqt5deOdVuPDukTNFols/lavqMTcu3U20R9cY3sOmcdeKAG3skvxFvpdLs2ePwnbybL27icg6i4PMEZHSIHhnB5+6D1Nd3bQRWtvHbwRJFDGoSONFCqijgAAcAAYGKjsLG20yxhsrOBILaBAkcaDCqB6VZoAKKM4ooAKKo6rrGm6JZNeapf29nbr/AMtJ5AoJ9BnqfYc1yw8W61r4K+EtDd4GHy6pqm63tyOxRMeY459FHHWgDtJJEijaWRlVFGSzHAA9Sa5C4+IFrd3D2nhiwufEN0p2s1nhbaM/7c7fIPwyeOlNTwCNUlFx4t1W51yQEEWpHkWadxiFT83p85bNddbW8VrAsEESRRIMLHGoVVHsB0oA5AeG/EuvkP4k1w2VqSD/AGboxMQx6PP99hjghdoqn4h8IWfhvSLPWPCmlQ297o0hnENuu1rqEjE0bHqxKjIzk5UV6DTW9cZoArabqFtqum22oWcoktrmNZYnH8SsMg+30q0a4fw1/wAUt4pvPCcgCWFzvv8ASDjAClv3sA/3GIYD+63tWn461W50vw1JHp5A1O/lSwscnH72U7Qf+Ajc/wDwCgDL0YN4s8Z3XiCQF9L0lnstMB+7JKOJpx68/u1PoG9a7lc/571n6HpFtoGiWelWgxb2kSxIT1OByT7k5J9zWjQAUUUUAFFFIWABJIAHJzQANVDVdF0zXLM2mq6fb3luf4JowwHuMjg+45rP1Hxv4W0tmS98Q6bFIo5i+0qX/wC+QSf0rN/4WNptyqtpWl67qyt0a00yVUP/AAKQKv60Acr478KX2i+HobLRdcuvsN9fW1oumX0hlj3NKm1UlP7xF45GW4zxXTx+Pk02RbfxZpdxoMpbaLiT97ZucnG2ZeBnGfn2kZrnfE+t+J9Z8QeGNPi8K/YW/tBruBtRvExJ5UTkhli3FRhs5PcCujk0vx3qlvJDe65ouno67WWz097g4PB5lcA/iuPagDr7a4huoEnt5Y5YZFDJJGwZWB7gjqPem3V5a2URlu7mGCMdXlcKPzNeZj4MpbWd0mmeLde0+4uGLsLaRIbfdjr5MQUY9gR+FU7Xw5Z+FZWfxJ4DtdSiyWbWLNXvu/3pIZS0i46kruAoA7O5+JXg+CVYk122upWOFjsQ1yzfhEGqP/hN7m7LJpfhDxDdsOjzWy2sZ/GZlP44rX8O6roWraesnh+5s5bVQBttsDZxwCowVPsQDWxQBx/274g3yKbfQ9D0vJ5N5evcMB/uxqo/8ep3/CP+L7yTdfeM/s8ZHMOmadHFj6PIZDXX0UAccPhxpM6FdV1DXNWyckXupSlT/wAAQqv6Vp6d4M8M6SVaw8P6bA69HW2Tf/31jJ/Ot6igBoXGABgAcYHSsnxToyeIfC+paQ+MXdu8a5GQrEfK34Ng/hWxSN6+nNAHjfwyttI1ezh0bxDoun3s0NoJ7CW8tUkcQbyssOWBI8qbeuM9CvFeh/8ACCeEc8+FdDJ7n+zof/ia8+1OCbw9rOtXNvG7TeHr8a3AuBmSyuQRcxr/ALIZZW+qrXr1vPFcwRzwurxSIHRlOQVIyDQBWsNJ07Sk8vTtPtLOM9VtoVjH6AVT8V6sugeE9V1UkBrW1d48nGXx8o/FsCtquN8cH+0tQ8OeHFwRf363FypXINvb4lYH0y4iX/gVAGz4S0k6D4S0nSmCh7W1jjkwMZcKNx/E5P41s0g4FLQAUUUUAFFFFABRRmigBDXGeNm/sbVNA8UD5YrK5NpeHOALefClifRZBG3512maoa1pVvrmi3ul3QzBdQtE+OoBGMj3HUe4oAuqc554p1cx4D1W41LwxHHqDf8AEz0+RrG+z1M0fylie+4bXz/tV09ABSHoKCc9K4vxDrl9qurP4W8MTiPUAobUL8JuTT4j/OVh91fqTjFAEWuapfeJ9Tn8L+HLjyYo/k1fU05Nup6wx9jKwyCf4APUius0nSrLQ9Mg03TrZLe0t0CRxp0A9fcnqSeScmotB0Ox8OaTFpmnReXbxDqTlnY9WY92J5JrRYjBJIwOuaAHZHrRXI3vj/TPtb2GiQ3Ovaip2mHTlDpG3P8ArJSRGnTuc+1V/wCxvF3iIbta1VdDsmOfsOkNmYjjh7hhx3+4o69aANnXPGGh+H5Vt729DXrj93ZW6mW4kz02xrlufXGKxvtnjXxIcWVpD4bsG/5b3gE92fpEDsT/AIESR6VuaH4W0Xw5E66Vp8UDSHMkp+aSQ+ru2Wbv1PetkYoA5fSvAWjaferqN0J9V1Vel/qUnnSqf9nPCY/2QK6hRjNLRmgAoqKe4gtomluJo4o16vIwUD8TXNXnxG8H2b+W3iCymkJx5doxuHz/ALsYY/pQB1VFcf8A8J21y5TS/C3iO+4+WQ2Ytoz/AMCmKfoKb/aXj6+Q/ZvDmk6bn+K/1Aykf8AiTH/j1AFzxtotzqmjpd6YMazpkovLBgcFpF6xk8fK6lkPOPmBPSuf0nWLXx3430fUbVg2naVpv2wrnJS5nJQI3uixyfQmtX+wvGd4ym98XwWqZ+aLTNMRT9A0rP8AyrzPwd4YsV8WX0esy6hc6Zrd3dCymW8khEs0Erq4kEZUEsoLAnH3WGKAPa9Q1vSdIQNqWp2dlxx9puEj/wDQjXNXvxZ8F2Ssw1c3QU7c2lvJMpPpuVSuevetTTvAvhXS2DWfh3TY5EPyyG2VnHvuIz+tWvEt1a6X4Y1HULqCKSKztpJwkigqSqkgYPc9PxoA43/hb1reIraTpAcHo1/qVraD64Ls3/jtO/4S/Xb2QY8QeB9KiPrfG8kH6xr/ADrO+Bfhy2g+Hi6hdWkEs2oXEku6SME7QdgHPbKk/jXaatoPh/xFoF9E+n2dxCVmhLCBSyOhZTtOMhgwPSgChB4Z1nVbRZr3x7qE8Mo3q2lwwW6FT02sFZse+6pR8NPDUrRvqFvd6pIn8WpXs1xk+u1mK/pWr4OsW03wXolm6FJIbCBHUjBDBBnI9c5rboAzNO8P6PpAxp2k2NmP+ne2SPP5CtE5p1Iew9aAOPvit38WtHhIz9h0m5uM/wB0ySRoPzCt+tdgOlcfo7refFLxLcY/487KytFYf7XmSke3DLXYCgBaRhnHtS0UAc3rHgfRdYu/t5hlstTH3dQsZDBOOnVl+8OOjAis7Pjfw5ncsHiixUjBXbbXirnnj/VyYH+4TXa0h9qAOc0Pxtoet3P2OO4a01MY32F9GYLhTjP3G5b6rke9dHkcc9ay9a8P6T4gtfs+rafBdxDlfMT5kPqrDlT7gg1z3/CO+J9Abf4d1v7faA5/s7WmL4Gc4ScfOOOAG3CgDtsj1orjbXx/Z2s6WfiWyufD12xCj7bg27nH8E6/uz264PtXXxusiB0dXUjhgcg0APpD0pc0UAcR4qij07xr4d1aZYzbX3m6NdhxwyyjdED/AMDTb/wP3qx8OpZIPD02iXDu0+h3UmnMzjBeNDuib8Y2SrnjvS59X8GajBaFhexILm1ZeomiIkTH1ZQPxrC8L6rBc+Opru3Rlt/EOi2upoCejofLcfXa8efpQB35ri9AzrfxA17XD81vp4XSLUj+8PnnOP8AfKLn/YNbXivXP+Ed8M3upIhluI02W8QGTLMxCxpj3cqPoaPCOh/8I54XsdMd988ce64kJyZJmJaRvxYk/lQBtL06Y9qWjI9aM0AFFFFABRRRQA1iRjFedah8RNd0/wAZWPhVvCttJqF7GZYfL1TKBBuyWPlDH3Gr0Y9K8d8N3dtrPx88UaxcXESwaVAthB5jgbX+62M+6Sf99UAdzPrHi+GJ5D4Us5gATsg1bLnjOAGiUZ6d6m8H+MtN8a6ZJeaeJYpIZPKuLeddskLejDP159vak1/xppOjWrCOUahfsCILCzPmzTNjgBVyQPUngfkDzvwk8Hal4bsdV1TWQsWpaxOJpbZSCIACxAJHGSXY47cd80AXrwjwt8R7e9bK6d4kC2s5J4S8jB8o9f40BXA6lBXbcEcgfzrJ8U6FF4k8PXWmSSGJ5VzDMvBilUhkcEc8MAePSvOtY+McGkeE4Ybho4fFDM1ncW7KStrKh2vK23J2fxKBknI9yADrvEviK8l1FPDHhxlOtzqGmnKb00+E8GV88FsfdXuevHXQ0yw0fwR4f2SXcdvboxkub28lAaaVuWeRzjLE/wCA6V47oXxGtLaCTT/D115MtzIZbrVb+3kury8lIwWS3iBC442hnAA7dc9DZQRXVyuoP4T1/wASalGcpda9LDbRpnHMcTsAg+iZ470AdV/wmt7rmYvB2izagpOBqN4Db2a+4JG+TB/uL+NC+CLvWm83xfrU+pqTn+zrXNvZJ04KglpMEHl2P0p32zx3esnlw+G9KiPXzbiW7kA+iiNf1NC+HdfvAw1Px7dBW/g021gtgvsGYO345oA6uxsLPTbRLaxtYbW3jGFihjCKo9gOKzdS8YeG9HcpqGvabbSKMmOS5QP/AN85zWN/wrzwzOE/tOW+1Zlwc6jqc0wPvtLbf0rb07QPDmj86bpemWjf3oYI0J/Ec0AY/wDwsjRriMPpVnrOr56fYdNmZT/wNgE59c0v/CReLbtwNP8ABUkER6S6lqEUWPqkfmGurE8X/PWP/voU4Tw/89Y/++hQByX2L4g3wYT6toOlg9PslnJcsB/vOyjP/AaD4HvLvYdV8Y+ILogYZLeZLSNvwiRT/wCPV1vnw/8APWP/AL6FHnw/89Y/++hQBy0Hw18IRTGaXRIbuY4zLfO9yx/GQtXR2thaWEQis7SC3iHRIYwgH4DFTefD/wA9Y/8AvoUefD/z1j/76FADxS1H58P/AD1j/wC+hR58P/PWP/voUAMvLhbSzmuX+5DG0jZOOAM159o/hdtY+C+iWcEnlaiLWLULS4PWO6P71Xz7sxz7Ma6fxpeJD4G8QSxSxmRNNuGT5h1EbEVP4a8q18LaRb7kTyrKFNoYfLiNRigBvhPX18SeH4NQMYhuOYrqA8GCdDtkQj2YHr1GDXG/HjVmsPhxJZxH99qVxHbKo6kZ3n/0HH41evru28GeOvt8txFFoev/ACXLvIqx292ifK5J6CRFIP8AtKD3rg/H/ivQPE/xN8IWEes2T6TZTfarq584CHdkNtLE4ziPH/A8UAdo3h7xR4Z8AGCw8Uw2406wJRf7OViNiZIyWx1B5wa6nw3ar4e8HabbX0ux4beNZ5JW6yt97J9S7H8T3qtJ8Q/BqrvPinSMDnC3aE/lmsGw8Yaf498VxWOkSmbRtKIu7q5IKLNMCRFGoOMgMC+emUHagD0VeRkdO1LUS3EP/PVP++hS+fD/AM9Y/wDvoUASUjUzz4f+esf/AH0KRriEKSZo8Dr8woA5XwQ/2vUfFuoFcGXWpIQT3WGOOL/0JWrr6434aTxyeB7a8kdFkvp7m8bLcnzJ3YfoRXXefD/z1j/76FAElFR+fD/z1j/76FHnw/8APWP/AL6FAElFR+fD/wA9Y/8AvoUefD/z1j/76FAElFR+fD/z1j/76FHnw/8APWP/AL6FADbm2gu4Ht7mCOaGQbXjkQMrD0IPWuRfwGdLcz+EtWudDfO42ozPZtk5IMLH5e/KFetdh58P/PWP/voUefD/AM9Y/wDvoUAcavi3WtAXb4u0J0gUDOp6VuuLfGOS6Y8yMfgR711Glatp2s2S3emXtvd27dJIJA659OOh9qsNNAcZlT/voVzGqeC9Bv7xtRtHk0rVTyb7TZvJkY/7QHyv/wACBoA6xj/9evHdBB0fx7pWiDCjTNRv7BEH/PtcRC6hz642Ffw9q6j+1PF/hz/j/gtvElgg5uLHbBdqO5aEnY/b7hH0rzrxh420kePdA8R6LO9yQSl3p+0xz+fEkixKyEbssZmTOCOOtAHpN9jxP8RbXTB82n+Htt7dej3Tg+Sn/AVy/wBStbPiLxXpXha2ik1CVjPcNstrSFN81w/HCKOpzjnp05rN0W0i8D+CLnUNYkDXZEmo6nKuDvnYbnC9sDhV9lFcj8J7K58WX1/8Q9bQPd3MjW+nowytvCMg7PxJXPU4Y9WNAHZW994z1FVuF0jTNMgbBWG8uHlmx/tBAFU+2TWZq3xEk0W7tdFvtMMfiG8uYoLaBHLwyq7Y80PgfKMcqQGB9jurvACPbP51zGu+Gf7X8Z+GdY2KYtKNw7kkZJdVCj35yfbFAHUINqge1OpBS0AFFFNYHtQBW1PUIdL0q81CY/urWB53wf4VUsf0FeY/BHRILrwZc63qdrBcXWq301wXljDHbnb3/wBoMfxro/Hmk+LPEWjX+iaPFpENrdIIzc3N1KJNpxuGxYiBnkZ3Hg03w7p/jDw74b0/R4dK0GUWcCw+Z/aky7yBy2Ps/GTk4z3oAq/FDR9Ks/AeparBbw2N9ZxiW2vLZRFKkgYbQGGDgnjHvWx8N9Xv9e+H+kalqeTdzRHe5GPM2sVD/wDAgAfxrF1TwLrfjW8gHi/ULaPSIJBKul6YW2ysOhklYBjxngAdeCDXfWtvFa20dvBEsUMShERRgKAMAAemMUAJdW4uoTCzyojghjE5RsezKQR9Rg+9eW+K/BPhzw9r9p4iu9JhutHn/wBF1P7UxlMJY/JcFnJYncdrEk8MD2r1mq19Z29/ZzWd3Es1tPG0csTjIdSMEGgDmx8NfBJGf+EZ0wjr/qRS/wDCs/BP/Qsab/35FVPCF7caHqEngzVZWkltE8zTLqQAG6teAAT3kThW6cbT3zXbLQByn/Cs/BP/AEK+m/8AfkUf8Kz8E/8AQr6b/wB+RXWUUAcn/wAKz8E/9Cvpv/fkUf8ACs/BP/Qr6b/35FdZRQByf/Cs/BP/AEK+m/8AfkUf8Kz8E/8AQr6b/wB+RXWUUAcn/wAKz8E/9Cvpv/fkUf8ACs/BP/Qr6b/35FdZRQByf/Cs/BP/AEK+m/8AfkUf8Kz8E/8AQr6b/wB+RXWUUAcn/wAKz8E/9Cvpv/fkUf8ACs/BP/Qr6b/35FdZRQB554r+HHhODwhrUtj4c0+O7SwnaF1iAIcRsVIJ6c4qbQPh74Mv/DmmXcnh3TZXntIpS/kj5iyAk/iSTXbXtst5Y3Fq+Ns0TRn6EY/rXO/De5F38OPD7jgx2UcDA9Q0Y8tgfcFTQBR1T4UeDb7S7qzh0KytJZ4mSO4iiAaJiOGHuDz+FZHgvwf4R1rQtuo+FtMTVrBzZ6hH5AwJk6sOB8rDDg9MNXppriNe/wCKT8ZWniRPl0zUyljqnZY3ziCY+nJ2E+jD0oAuf8Kz8E/9Cxpv/fkUf8Kz8E/9Cxpv/fkV1YpaAOT/AOFZ+Cf+hY03/vyKP+FZ+Cf+hX03/vyK6yigDk/+FZ+Cf+hX03/vyKyvE3gPwXpPhXV9RTwxpwa1spphiIDlUJHf2r0GuR+Jpkb4fanbQnEt55Vmv/baVI/5NQBm+G/hj4TXwxpS33h2wmuxZxefI8QJaTYNxP45rU/4Vn4J/wChX03/AL8iuqRQqhVACgYAHanUAcn/AMKz8E/9Cvpv/fkUf8Kz8E/9Cvpv/fkV1lFAHJ/8Kz8E/wDQr6b/AN+RR/wrPwT/ANCvpv8A35FdZRQByf8AwrPwT/0K+m/9+RR/wrPwT/0K+m/9+RXWUUAcn/wrPwT/ANCvpv8A35FH/Cs/BP8A0K+m/wDfkV1lFAHJ/wDCs/BP/Qr6b/35FH/Cs/BP/Qr6b/35FdZRQByf/CtPBQxjwzpo/wC2IrzS60LRrn4laFc6HpdpZaTp+sLZebBFg3VwI3lcg/3YzGq9OSWr0nxnrF4zW3hrQ5dutaoCFlXn7JACBJOfoDhckZY8dMVm3Ol22j+JvAnh/TYvLs7MXVxt74jh8vcxyMsWmyTjkk0AO+Myzv8ACfXFgVi2Ii20/wAIlQt+GBz+NaPwxhht/hn4eSHG02SOcf3m+Zv/AB4mukvLODULOazuohNbzI0ciN0ZSMEH8DXDaDonijwFbtpWnW8Wu6ErlrVWuBBc24JJKncNrrk8HIPX2AAPQTyKztM1P+0brUEjiIgtZvIE27IkcD58eyk7fqCO1Zjf8JLrC+VJbx6Lat9+RZxNckei4GxP97LEenet2xs4NPs47S1iWKCJdqIvYf5/xoAsUUUUAFFFFABRRRQAUUUUAFIaWigDnvFnhw69YRSWkottXsn8/T7vHMUo7HHVGHDDnIPqBS+EvEa+INOl8+A2eq2j+RqFk5+aCUD9VPVWHBH41vkZ4rj/ABRol/b36eKPD0YbWIE2XFoW2rfwA5MRPZx/C3Y8Hg0AdjmisvQNdsfEWkR6lYSM0MhIZXXa8TjhkdezA8Ef/rrUzQAUUUUAFFFFABRRRQAUUUUAFFFFACGuQ8BMbMeINEcqDp2rTmNAekUxE6f+jCPwNdea4yUnRfivC+ALfxBZGM4H/Lxb5YZPvG7f98e1AHaVR1jS7XWtIutNvU3211E0Ui+xGMj0PoeoOKur/wDXoP0oA5XwLql1Pp91ouqybtX0aX7JcsTzMuMxTfR0wfqDXV1w3jBT4c1uw8awqRBCBZ6soB+e2dvlfHcxsQ3+6Wrto2V13KQVPII70APooooAK4/x4puZvDGnr/y863AzD1WJXmP6xiuwrj9cU3fxL8KW4OVtoL28ce4WONT/AORWoA68UtIKWgAooooAKKKKACiiigAooooAKx/E3iG18NaM9/cq8rlhFBbxDMlxK3CRoByWJ/TJ7Va1fVbHRNMn1LUZ0gtLdS8krnhR0H1ySAAOSSAK5bw9pl94h1iPxbrtu8GwFdJ06T71rEeDJIP+erjqP4Rx1zgAv+ENAu9PW61bWWWXXtTYPdMDlYVH3IU/2UBI9zk+lVbMjUvizqU6tmPSdLitcY/5aTOZG5/3Ej/7696653WKNpJXCooJZjwAByTXJfDhJbnQbrXrhHSXXLyS/CuOViOFiH08tUP40AdgOlLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUjDPFLRQBxGuaLqWgavN4n8MwtO8uDqelg4F4oGN8fpKB+DdOtdJoWtaf4g0mHUtNnEttKOOMMpHVWHZgeCK0W7cf/Wri9Y8O6jo2qTeI/CiJ9qlbff6WzbIr8DuD0SX0boT1oA7aisfw74j07xJp5urF3DI3lz28y7JoJB1SRP4WB/xGQc1sZoAKKKKACiiigAooooAKKKKACuX8e6Zc3/hs3enpu1LS5k1CzGCd0kZyUwOTuXcuP9quoprDNAFPR9Ttta0e01Szfdb3cKzIfYjOD7jofpV6uH0Bz4V8X3fhiXC6fqBk1DSSeiknM8I+jHeAOzn0rtx0oAhu7WG8tZba4jWWGZGjkjYcOpGCD7EVyfga6l0xr3wfqEpa60cj7LJI2WuLNifKf3K4KHHQqPWuyNcZ46t5tMay8YWEbNdaQSLmNBkz2bY81MZGSuA49196AO0oqCzuYby1iubeRZLeZFkjkU5DKRkEfhip6AENchbp9r+Ll9OOVsNFhhA9Gmldj+kS1156VyHhNVuPGHjTUVYMGvoLQe3lQJkf99SN+dAHYCiiigAooooAKKKKACiiigAqnqeoWek6fNqF/cJBa26l5JXOAo/z6cmoNc13TvD2mPqOp3SQW6cAnlnbsqjqzHsBXMWOiah4v1CDW/E9q9tp8LCTT9FfHyMM4muPWQ9QvRBwcnJoAZplhfeNtSg1/WoJbfR7ZxJpWmSDDOw+7cTD+9/dXovU813gGKQYHoKSRlRS7kKoBJYnGB60Acl8QrmW40q28NWblb3XpvsgKEbo4MZnk57CPI+rCuqtbeG0tYra3jWOGFBHGijAVQMAD8K43wkW8S6/e+MZUP2VlNlpSsDxApy8uO3mMAR/sqPWu3FAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSGlooA5TxB4Tkur8a3oVyNN15F2ibbmK5Uf8s51/iX/a6r1HpTvD/jCLUb5tH1a1bStej+/ZzHKzDGd8L9JE+nI7gV1BHIrJ13w5p3iOyW21CAsY2DwTRsUlgcch43HKsPagDWFL1rg11XX/AASDHr6y6xoiD5dWgizPAv8A03jXqo/vqOgyRXY6dqNnqtlHe2N1Dc20oyksThlb8RQBbooyD3ooAKKKKACiiigAooooAwfF3h8+IdHEUE32bUbaVbmwuv8AnjOv3TjuOoI7gmk8JeIR4g0pmniFtqdq5t7+0J5gmXgj3U9VPOQRW8fTtXG+JtGv9P1RfFnh6MyahDHsvbHdhb+AHO32kXkq3uRyDQB2dNkVXUqyghgQQfSs7Qdb0/xDpMOpabOJbeUemCjd1YdmB6itI84I/CgDiPCDnw7rd94Mmz5EIN5pLE53WzNzHn1jY4/3StdupzXKeOdKu5rG11vSoS+saNL9ptkX70yYxLD9HTI+oWt7SNUtda0i11Oyl8y1uolljbvgjv6EdCPagC6TiuQ+HGybQb/UUORqOrXtzn1HnMg/8dRa6bUbtbHTrq7YjbBE8jZPZQT/AErC+HNoLL4c+H4sEFrGKVs9dzrvOffLGgDp6KKKACiiigAooqC6uYLS2kubmaOGCJSzySOFVAO5J4FAE9c74k8W2mhSRWUFvLqWs3Cn7NptsQZH7bmPREz1duBz1xisZvEms+Li1t4QjNrp+SsmvXUWUwOP9HjI/eHP8RwvHet7w74V07w1DKbVZJrychrm9uW3z3DDu7nnHoOg7CgDM0fwrdz6pHr/AIonjvdVX/j3t0z9msQccRg9W45kPPoAK65RgfrSilyPWgBCeRXEeKruTxLqw8E6bKyo6CTWbmM829uekWe0knT2XccVf8V+JptOkg0fRoVu/EN8pNrAfuQp0M8pH3Y1/NjwO5F3wt4ch8NaX9mEz3N3M5mvLyQfPczN952/kB2AAoA1rS3itLWK2giWKCJBHHGgwFUDAA9gKmoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGsM4471yN74HFvfS6r4XvW0TUpDumSNA1rcngnzYemTz8y4bk8muwooA4qHxtPozR23jTTjpMmQi6hDmSxlPqJOseTnhwPqa7C3niuIVmgkSSJwCrowYEeoI4/KnSxpLE0ciK6MMMrAEEe471x0vgCOwna68K6ncaBOxy0EAEtpIePvQNx26qVPNAHaZHrRnNcT/wknifRPk8ReHGu4RwdQ0QmZeT1aA4kXA643VuaH4r0HxCCNL1W2uZQPnhD7ZU/wB5Dhl/EUAbVFFFABRRRQAU1s8YGadRQBxOseHdQ0XVLjxH4VRWuJjnUNLZtsd6B1df7s3XDdD39Tu+HPEmm+JbA3VhK25G8ue3mG2a3cdUkU8qwP8A9YkVsEZrl9e8HJqF+NY0i7fSddRdq3kKgrKv9yZDxIv6jsaAOnbBHXiuJ0L/AIpTxld+GnwunamXv9LHTY+czwj6E7wB2c+lSWXjZ9Nuo9M8Y2qaPeuQsV0GJsrk/wDTOQ/dPH3G5GR1rQ8Z6JPrOhh9PYJq1jILuwkzjEyZwpP91hlD7NQBD8Rrr7L8OfEDqCWeykhUDqWkHlj9WFdFY2yWVhb2seNkEaxrj0UY/pXA+ItetvE/gfQJIk2rq+rWVvLCx+aJlmDyIc918tgfpXooPBJoAWiisnW/Emi+HoPO1bU7W0XBKrLIAz4/ur1Y89ADQBrU13VFLMwCr94k4A+tcZ/wlut638nhjw3cNEemoatm1gA7MqYMjj/gI+tCeBJtXdJ/F+sT6uQciwiHkWSdwPKBy+D3cn6UAPufHSX1w1l4TsJNeulba00TbLSE8cvMcg464XceKjtvBFxq88V94zvl1WdSGTT4k2WUJ9BGc+Yc5+Z8/QV2FrawWVslvbQxwwxgKkcahVUDsAOBU1ADUXYAoAAAAAHQU6jI9aqalqNnpdjJeX93Da20Yy8szhVH1yf0oAtN/n2rlfEPiuS3vv7D0G3TUPEEqgiEtiK2U/8ALSdx91R1wPmPQdcjOOsa/wCNV8nw9HLpGiv9/V7mLE0y/wDTvG3IB/56MOM5C8V0mg+HNN8OWLWunwFQ7F5pZCXlnc9Xkc8sxP8AgOKAK3hjwxHoEM089zJf6tdtvvr+UAPM3YAfwoOgQcAevWugFApaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBGGRisTWfCWg+IcNq2k21zKANs5TbKuOmHGGH4GtyigDjP+EO1jTju0HxdqNuobP2fUlF9Fj0BYhwP+B0v9pePNN4vPD+mavHn/WabdmB9vvHLwT/wOuyooA44fEG0tS41bQvEGmBOrT6c8qfg8W9cfjVq1+Ing67x5fiXTEY8bZrhYmz6YfBrpjVa706yvozHd2dvcIeqyxBwfwIoALbUbG8UNbXtvOD0MUqsD+Rq1XMzfD7wfcD954W0nOcnZZovP4Cqh+F3g3y3RNFWFGO4iC4liGf+AsMUAdjRXE/8Ko8Hd9Nuf/Bndf8AxypB8LPBogMLaOZYyd22a6mk5/4E5oA6LVTpU1lLbaqbN7VxiSO6KlCOvIbg15re6honhJS/hXx9pdrDHn/iUX90Lq34GMKVYyRd+FyP9muzh+Hfg2D7vhfST/v2iP8AzBrReDSfDmnvcR2EVtBGBuW0tMnBIHCxjJ5PYUAeBJ4yurPxjDq83h3UofDv29tRnS3gZk+1CGSMvE7BAVbcrHdjoT659Q0zxp4g8WQu3hvTdGhiAG2a91RZWH1ig3YOOxZa0bf4neEru7ktbe/uZriHPmRR6dcs8fODuXy8jv1rL1Kf4Za7fKNWtrSC9nYBZ7q0lspXb0ErKhz+NAGmfCniDUyf7b8Y3gjJz9n0mJbNB6jf80h/76Famj+DPDug3H2iw0qBbo5JupAZZyT1JkfL/rWaPAYgcPpnifxHZIBxEt/58YHbiYP+lI3hvxjHuFv48kIOMfatKgk2/wDfOzNAHYj9KWuNfQPHTIoHjizUjqy6GuW+uZf85p6+FvEsxb7b471Eqx+7a2NtDj6Eox/WgDr8iue1fxx4a0ab7Pd6vbfas7Rawt50xPp5aZbP4Vnf8K20i5Qrq9/rOsAnJF9qMhQ/8AUqv6V0Gl6BpGhx+XpemWlkp6i3hVCfqQOaAOcbX/FeusE0Hw+dNtif+P7WyUOO+2BfnJx03FRU1h4As/t0ep6/eT6/qcfKS3oAhhOB/q4QNidB6n3rrlGKWgBF+lLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFR3EqW8Ek0pCxxqXYnsAMk1JXE/FrVxo3wy1mdWxJPD9lTB7yHaf/HST+FAHM/AuB7+y8R+KrgYm1jUWbn+6uW49t0jD8K3fjNcWdv8AC7Vvtixt5oRIVbr5pYYI9wMn6A1B8P8AwvrWmeAdGtoNb+zI9ss5h+xoxQyfOQSTnI3Y/CtoeBrW71GDUNevrrXJ4DugS8CCGE56rEihc+5yeKAF+GkWpQfDrQ4tW3/bFthuEn3gmTsBzzkJtB+ldXSKMZ/WloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBG7cV4p8Wry98X22j6Tpmha/LYpeCe9mOlTptUDAxuXJ4ZzjHYV7ZRQBS0q9hv7FJreG5hi+6qXNs8DjHH3XAOPwq7RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//Z'] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 10 "平面直角坐标系中 $x O y$ 中, $P$ 是不在 $x$ 轴上的一个动点, 过 $P$ 作抛物线 $y^{2}=4 x$ 的两条切线, 切点设为 $A, B$, 且直线 $P O \perp A B$ 于 $Q, R$ 为直线 $A B$ 与 $x$ 轴的交点. 求证: $R$ 是定点;" ['设 $P(m, n)$, 则 $A B: n y=2(x+m)$, 根据题意, 直线 $P O$ 与直线 $A B$ 垂直, 于是\n\n$$\n\\frac{n}{m} \\cdot \\frac{2}{n}=-1\n$$\n\n因此 $m=-2$. 进而 $R(2,0)$ 为定点.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAZkBYgMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKTd+VAC0Vi23ivR7vUotPhuibmZXeANC6LOF+8Y3ZQrgf7JNW9Q1nT9KktEv7qK3a7nW3gDnmSRuij3oAv0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVS1bTzqmlXNiLh4BcIY2kQfMFP3sehIyM9s1dpC2Me9AHl9sg1/45kQgJp/hSw8tVQYUTTDGPpsJH1SneKB/b3xs8KaOPmh0q3k1OYDnDE7Uz7hlX86vaFpWo+FPF3im4bSrm+ttXuEuree1MZOcHMbhmUrjPB6EE8g8VlfDT7Trvjvxj4qvIURjcLp0AjbcqrH98BuM/dj57mgD1akzS1yXijxhDoHijwtpMkgX+1bt45CRn5QhCj2zI8f5GgDraKTNLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFNDZpc89KAFopu6nUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVTU7JtQ0q8skuHt3uIHiWZPvRlgRuHuM1booA890Xwzr+h+EIfDGlJDYhdwl1KW6M7LuJLPGu1cnJOM7QPeus8PeHrDwxodtpOnIUt4B1P3nY8lmPck1q7aWgAr5J+KviC/8RfEWS/sorpbeyZbeykWMgnYSxdfqxZgfTHpX1tXPeIeNb8Kd/wDiav8A+kV1QBJ4Q18eJ/C1hq3ltFJNGPOiYYMcg4YfTIOPUYPet2m7OvNOoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOI+KsGkp4B1bUdSsre5ktbZxbNKmSkj4VSP8AgRX8qxfht8PNA/4V9pE+q6PaXd7cw/aJJZ4gzHedyjn0UqPwqD46TzXmiaH4YtWxda1qKRAHoVXHX/gTJ+VdssHia2sUt7OPRk8qMJEGaUgADA7UAeafEuGP4eaj4f1TwiJLO8uLowyafA7eVdJwcGPOOuBx/eHtXtteSeGlsb74nzw+LvNm8YWke+1D4+yCLrutwMc4JPzZbr3Bx63QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVz/AIh/5DfhP/sKyf8ApFdV0Fc/4h/5DfhP/sKyf+kV1QB0FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTGkVRliAPU0+q95Y2mo2j2l9bQ3NtIMPDNGHRvqDwaAPJ9RuIfE37Q+l2ySpJaaDZNPJhsgSnP6/NH/wB816fqeu6Vo9m93qOoW9tAgyXkkA/LuT7Cs/8A4QPwh/0Kuh/+C6L/AOJqWDwX4WtpRLB4b0eKReVeOxiUj6ELQB5t4U0++8afFmbx+9pLaaNaxGHTzKpRrkbSm/BwdpDMc+6jnBx7LTBjoOPQf4UobvigB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc/4h/5DfhP/sKyf+kV1XQVz/iH/kN+E/8AsKyf+kV1QB0FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRSbqzNa8RaR4dsGvdXv4LO3BwGlbljjOFUcsfYAn2oA0ywFZuteINL8PWRu9WvYbWHOFMjcufRV6sfYAmvPpfGnirxksg8HacNJ0YAl9e1QbQUHVo4znPAJBOR67aofBfw4L2K/8YatNLqd3dXBSyu71d0nlplfMGSSpY8YB42AZoA6o6t4s8Tvs0Sy/sHSz11HUY91w455ig6L25fseldLomirotkbcX19euzmSSe9mMsjscZ56KOBhVAA9K0iue9OoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5/wAQ/wDIb8J/9hWT/wBIrqugrn/EP/Ib8J/9hWT/ANIrqgDoKKKKACiiigAooooAKKKKACiiigAopN1Q3V7bWNtLc3dxFb28Q3SSyuEVB6kngCgCbNU9T1aw0axe91K7htLZPvSzOFX6c9T7CvLNc+NP2+/GjeAtMm1nUZDxM0TCJR0LAcEgHgk7QOuSKfonwpv9cvY9a+I2qvqt2DujsI3xBCe4O3APbIUAcclqALEvxI13xhdPY/DzSDNCp2SazqCmO3jP+yDyxwR7/wCzjmtHRPhVYJfDVvFV7L4k1f8A56XozDHyThIySO/fI44Arvbezgs7aO2tYo7e3jUKkUSBVUDsAOAPpUv/ANagDgPixqU0Xhu38O6dt/tLxBOthCvpGf8AWN9ADg+m6uy0bSbbQ9Gs9LtF229pEsScckAYyfc9T6kmuB0LPi/4u6rrrfNp3h5Tp1kf4WnI/fMPccqfUFa9NoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuf8Q/8AIb8J/wDYVk/9Irqugrn/ABD/AMhvwn/2FZP/AEiuqAOgooooAKKKKACiiigAooprOFBLEADkknGKAFzUctxHbwtNM6xRoCzu5ACgdST2HvXB6x8U7L7c2k+FLGbxJq3dLM/uIunLy/dA56jI45Irjta0zUtW1GK38ZX8uvarJ+8tvC2jMY7eIdmmfsoyPmbkZ4LCgDotf+L1qDdWvhO0GrzQD9/fSN5dlbdeXkOAenAyAegJPFcdY+C/FfxQu4dR8R6pMNLVt8chjKIwzn9xAQCOBjzJACQ33WxmvRdA+Hscf2e58Qi0uXtzutdNtYgllZn/AGEx879cu3PPAFd1s4x1+tAGL4b8I6L4T08Wej2aQKceZIeZJSO7MeT/AC9AK29vvS0UAFcx4/8AEv8AwingrUdUQ4uQnl2q9S0r8Lgd8E5+gNdPXmWvZ8XfF3SdBX5tN8Pr/aV8P4TOR+5U+44b3DNQB0vgDw3/AMIp4L07TXH+lBPOumJyWmflsnvgnH0ArqKTFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc/4h/5DfhP/sKyf+kV1XQVz/iH/kN+E/8AsKyf+kV1QB0FFFFABRRTd3tQA6m7vb9a5DxN8StD8O3X9nRmbU9Zb5Y9NsE8yUt2Bxwv4846A1zp8O+NvHibvE983h/R3PGlac+Z5F9JZf6Yx6gUAbWv/FDSdMvTpOjwTa/rhJC2On/PtI673AIUDv1I7gVj/wDCH+KPGWLrx1q32DTMbjounSbUKjtNID83uBkehFdVBY+Fvh3oEssUFtpenxgGWTGWc9tx5Z254HJ7D0rGj03VfHjifXoptN8OZzDpOds136NcEcqv/TMc8/N0xQBU06VtRtm0L4eWkGl6JG+241oRZVyOGECn/WscYMh444J4NdloHhjTPDdo0FhE3mSHdPdTNvnuH7tI55Ynn2GeAK04baK2gSCBEihRQqRxqFVFHGAB0GPSpqAEx70tFFABRRRQBR1bVbbRdHvNTvGK29pE0shHXCjOB6k9B6muN+Eul3Mfh258Q6iB/afiC4N/MfRD/q1+gBJHpuqr8TpH17UtD8CWzsG1W4E99tPKWkZy2fTJHHupFejRQpBEkUSqkaKFVQOABwAPwoAkooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuf8Q/8hvwn/2FZP8A0iuq6Cue8Qn/AInfhQ9v7Vf/ANI7qgDoabu9q5/xP430DwjbeZq18iTEZjtYzvml9lQc+2Tge4rkBdeP/Hh/0aNvCOhMSPNkG6+mXpwP+Wf14I7FqAOo8U/ELw/4SIgvrlp9QfAisLUeZO5PT5R0z2zjPauXFl498etnUJj4T0GT/l1tm3XsqnBw7dI8/gexBrqvC/gDw/4RVpNOtN96+TJe3B8yeQnqSx6Z7gYB7102Md6AMDw14L0HwjaeRo9hHC5GJLhhumk/3nPJ+nQdhUviLxHYeGrJJroSSTTOI7a1gXdLcSHoiL3JP4epqLxP4pg8OWkQED3mpXb+VY2EJ/eXEnp/sqOpY8Ae+AafhzwtNBqD+IdfmS81+ddoZM+VZoR/qoQeg9W6mgCro3hu/wBU1KLxF4t2Pep81lpqNugsB/7PL6v27dBXa4/lSbeetOoAKKKKACiiigAppcKpZiABySTwKdXB/FbWbjT/AAgdM08k6prUy6daqOuZOGP/AHzkZ9WFAGd8OAfE3ifX/HcynyrmQ2GmZ7W0Z5YezMB+INem1maBolt4e0Cx0i0/1NpCsQOMbiByx9ycn6mtOgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACisnXdcOhWZujpd9exKrPJ9kEZMaqMkne6/pmue0T4lQ+I9P+36R4Z1+5td5QSiOBQSOuN0ooA7eiuVg8f6V/a1vpWpW1/pF7c8W8eoQBBMcgYV1LKTyOM966qgAooooAKKKKACiik3UALSbunFZmteIdK8O2LXur3sNnbjjdK2CxxnCjqx9hmuDbxf4u8auYvBml/2ZpLddb1JMbl9Yoz972JyPXbQB23iDxZofhay+1a1qENqhBKKxy8mOu1Ry3XsK8x1bXfFnjvU9CTSNPn8NaZJfMLbVLxA1w7fZ5jlYs8L5fmc+pUhhXY+H/hho+k3g1TVJZtd1skM1/qJ8xgRjGxTkLjHHUj1xWr4hXGt+E8f9BWQf+Sd1QBS8M/DfQvDVyb8JLqGrvzJqN8/mzMfUZ4X6jn1JrrttLRQAVieJfE1v4bsEleCW6vLiTybOzh5kuJT0Ueg7knoAas61rtl4f0efVNQcpbwjkKMs7dAqjuxPAHqa57wvoV5d6g3inxHEo1i4TZbWvBGnQHkRrwMuQfnbv0HA5ALHhfwzPZ3Muva5Kt34hvFCzSD7ltHncIIh2Qdz1Y8muqxz1oxS0AFFFFABRRRQAUUUUAJmvM7HPjD4y3eoN8+meFojaW5zlWu5P8AWEcfwgFSOxCmur8beI4/Cng/UtYYrvgiIhBHDSn5UH/fRH4Z9Kp/Djw3J4a8E2VtcEm/uM3d67feeZzls+pAwufagDrqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA4j4sav/Yvwz1qdX2yzQ/ZU7EmQhDj8Cx/Crfw30caF8PNDsSu1xbCWQYwd0nztn8Wx+FcT8bnbWdQ8JeEI2OdSvxJKF6qoIQH6fO5/wCA16CfCSGMR/25rYQAABb0rgD6AUAecfG0S+IdR8OeEtIXzdWmuTcnZ1gQDbvYjoMknP8AsV7MqkKATkgcn1rL0fw1pWhGVtPtRHNO26ad3aSWU/7cjEs34mtagAoopN1AC0magu722sLaS5vJ4reCMZkllcIqj1JPQV55dfEm/wDEVzJp3w/0h9UkRtkmp3IMdnEfqcFz7DHHIzQB32o6tY6RZSXuo3UNrax/emmcKo9uep9q89k8f+IPGEjW3w/0jfag7W1rUlMduv8AuL95j+H/AAGrOm/C5L6+i1fxvqMniHUwBtikAW0i9kjAAI+vB9M16EkKRRLHEqoijaiqAAo9B6UAcHovwt0+HUP7X8TXk3iLWDz516o8qPknCR8gfrjtiu+CBQAAABjGBTsUUAFc/wCIf+Q34T/7Csn/AKRXVdBXP+If+Q34T/7Csn/pFdUAdBTHkWNSzEBQMkk4AHqafXE+LZpfEGq2/guykdFuE8/VpkPMVp02A9mkPy+y7jQBX0hf+E719PEV0pOg6dMy6RCw4uZRkNdEdwOQmenLcGu92+9Q29pDa28dvbxrFDEixxxoMKigYAAHQAdqnoAKKKKACiiigAooooAKKKq3+oW+madc392/l21tE00r+iqMk/kKAPPPFZ/4S34naF4Vj+ax0r/ibakAcgsOIkPvk5I9H9q9Mx71538J7G4udM1HxdqMZXUPENybnDdY4BxEn0xkj2Ir0WgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACq95cy21pJNBZzXkijKwwsgZ/oXZV/M1YpCM5oA8eutJ8Wah8XbPxfd+Ero6dY25ht7dby2MmdrfNjzMfedu/pXrsUrSRI7xNGzKCUYjKk9jgkZ+lSbfegLgYz0oAWkzS1heLtcufDvhbUNXtdPe+mtUDi3Qn5huAJ4B4AJY8cAGgDZlnjgieWZ1jjQEs7sAFHqT2Feeal8UP7Qvn0nwPpcniC/XiS4GVtIM55aTv06cA5+9niuJ8L3unfFS8R/GHixZWLjyvDluWtYc54BJwZT3wCSPXHFe4afp1lpNjHZadaw2trEMJFCgVR64A796AOCtPhpea/cJqHxB1h9YmQ7o9OtyY7OA/7owWPucZHXNeh29nb2dtHb20McMES7UijQKqj0AHQVLjp3p1ACbaWiigAooooAK5/xD/yG/Cf/YVk/wDSK6roK5/xD/yG/Cf/AGFZP/SK6oAv63rVpoGh3urXjYt7SJpGx1bHRR7k4A9zWL4J0e5sdLm1HVExrWrS/a77JyUJHyQ/7sagKB25x1qn4jU+IfG+jeHBlrSyxq1+BnDbGKwxnsQXyxB/5510uqazp2h2yz6leR28bMEQMfmduyqo5Y+wyaANKiubm8Z21tbm6n0jWkswNzTmxb5V9Sn3wP8AgNbGnapZavYRX2n3MVzayjKSxtkH/PcdqALlFFFABRRRQAUUUUAFeb/FS5m1X+xvBFlIVudeuQLhk6x2qfNI3seB9QGFejFvavNPA3/FV+PPEHjV8PaRN/ZelsenlIcyOB6MxBB92oA9GtrSGztYbW3jWKCFFjjRRgKoGAB9ABU9FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU3ZznODTqKAPEvH3wrtNPvm8Q6NosWoWBYtqGjrlSQeskBXlW/2Rxx0I4qz4ctfECaNDq/w78Vrq+kt8v8AZWuZZomA5QOOVI7LwMc8jFexbT615p4l8L6n4V1m58YeCYhJPJh9U0fOI7xBzvQDpIOTx15xkkq4BYs/ivaWd2un+MNJvPDl6x2h7geZbyf7sqjB+vT3rvrW8tr23juLSeKeCQZSWJwysPYjg1g6HrmgeP8Aw4tzDHDd2so2z2tzGGMTd0kU5AP8xyMgiucuvhRFptw994L1q88O3TctDG3m20h/2o2z/Ue1AHo+falrzEeNvF3hTKeM/DZubJTg6ro2ZEA9XjPzKB3PHsDXZ6D4v0DxPb+do2p293gZaNGxIo/2kOGH4igDbopu7PanUAFc94iP/E78KZ4A1WT/ANIrquhrzz4vam+keH9NvISRP9sljhI6+Y9lcon/AI8woAq6N4htNF8LeI/iFqHzJqV08kCjhpIIz5UCc9zgn/gZNTfDnR7vWYl8ceJf32rX67rONxlLK3P3REp6FhyT1II9TnjfjTYtp3hrwT4RtnK2zSrCT6mNUjBP/fwmvcre3itbeO3gUJDEgRFHQKBgAfhxQBKEAGO1eReB7r+xfjb4v8LWvy6bKovo4l+7HKRGW2jsD5n/AI6K9ZmuY7aGSadhHFEpd3Y4CqBkkn0rxr4OQT+IvGvinx1LG6QXcjW9ruHJUsGI/wCAhYx+fpQB7XRRRQAUUUUAFFFJmgDivilr0+ieC7iKw3NqmpyLYWSJ95pJOOPQhdxHvitzwroEPhnwvp2iwYK2sIRmX+J+rN+LEn8a4wY8Y/GjPEmmeFYfwe7l/ntUfgV969MxQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFQz3KW8Ek0iyFY0Z2EcbSMQBnAVQST7AEnsDWL/wmel/8+uuf+CK9/wDjVAHQUVz/APwmel/8+uuf+CK9/wDjVH/CZ6X/AM+uuf8Agivf/jVAHQUVz/8Awmel/wDPrrn/AIIr3/41R/wmel/8+uuf+CK9/wDjVAHQU3b78+tYP/CZ6X/z665/4Ir3/wCNUf8ACZ6X/wA+uuf+CK9/+NUAcv4q8H6jpWuN4y8FhY9Ux/p2n9I9QQdRx0f+ZweDnPS+D/GOm+MtJ+2WO+OeM+XdWknEtvIOqsP5Hv8AgQF/4THS+9rrn/givf8A41Xn3i+OOPVV8V+DINZtfEEX+utzot4sWoJ/cceUBu9CfzyAQAew7evv2xXH6/8ADDw1r1x9tFq+namp3Jfac3kSq3rxwT7kE+9QeH/ilout2hDWuqw6lBhbyxTTbid7Z+RtYxxkdQcZweOQDkDZ/wCEz0z/AJ9dc/8ABFe//GaAOQKfEnwcP3clv4x0pONrnybxQPfkN/48x9BW1oXxS8N6zc/YLmWXR9UU7XsNTTyJAfQZ4J9s59q1P+Ex0sjBttcI/wCwFe//ABqsfXbjwh4mtfs2s6Jql5GBhS+gXodP91hECv4GgDtwwIzXC/Euy/tB/B9twQfEdtIykZyqpIx/RTXHm01Twswk8E63r5tEPGlavod9LDj+6r+TuUew596ivPifJLqnhmXxb4e1Dw+lnfSTSzz20hikxBIgKZUNnc4OMHAPWgDtfip4Mn8Y+G4hp7qmqWEwuLUscBjjlM9s8fkKt6R4/wBNn0+L+2S+kamqgXFndxtG6uOu3I+cHqCuciprLx/oGp2i3VgdVurds4lt9Gu5EbnnBERBqz/wmGmYx9m13/wR3v8A8aoA5nxGms/EaD+xdLhuNM8PSsPtuo3MZjkuEyDshjb5sHuxAB7ZGc9xo2i2OgaTbaZp0IhtbdNiIP5n1JJJJ75rO/4THS8f8e2ufX+wr3/4zS/8Jnpf/Prrn/givf8A41QB0FFc/wD8Jnpf/Prrn/givf8A41R/wmel/wDPrrn/AIIr3/41QB0FFc//AMJnpf8Az665/wCCK9/+NUf8Jnpf/Prrn/givf8A41QB0FYvirX4fDHhfUdan2lbWIuqk43v0VfxYgfjUP8Awmel/wDPrrn/AIIr3/41XnfjfxHZeLvFeg+GIoNTbTYJhf6on9lXPmFE+4pj8vftYnBO3HK88UAdf8L9Am0LwVbyX246nqTtf3ruPmMsnPPuBgH3z612tc6PGGljpba3/wCCK9/+NU7/AITPS/8An11z/wAEV7/8aoA6Ciuf/wCEz0v/AJ9dc/8ABFe//GqP+Ez0v/n11z/wRXv/AMaoA6Ciuf8A+Ez0v/n11z/wRXv/AMao/wCEz0v/AJ9dc/8ABFe//GqAOgorn/8AhM9L/wCfXXP/AARXv/xqj/hM9L/59dc/8EV7/wDGqAOgorn/APhM9L/59dc/8EV7/wDGqP8AhM9L/wCfXXP/AARXv/xqgDoKK5//AITPS/8An11z/wAEV7/8ao/4TPS/+fXXP/BFe/8AxqgDeDdeOlLmvG/il8Tr/wAPJo114d+1wt5sgniv9MnhjlUAYH7xFz/wEgil8L/tA6NqssVnq+m3dldOdoa3Q3EZP0Ub8+wU/WgD2Siq9peR3trHcQrKI5F3L5sTRtj3VgGH4gVYoAKKKKACiiigBpU+tOoooAKKKKACiiigAooooAKaVyMZ4p1FAHA+M/A9zdamnirwvOLHxNbLjcMeXeJ/zzlHfgAA+3PQY0PBPji18V2skE0TWOtWnyXunS/K8TDqwB6r7/nXWFc9/wBK4jxr4Fk1i6t9e0C6Gm+JbPmC6A+WYD/lnJ6g9M8/Q0Advup1cZ4I8cp4lNzpmo2p07xFYHbe6fIeR/tpn7yHj6ZHUEE9lnnpQAYrjfG8FvJrPhFruKOaB9WaB45ACreZbTDBBGD2rs683+MF7/ZuneGL5iQlr4htZnI7KqSlifbANAEt98JdOgvH1LwnqN54a1InJazbdDJznDxE4I9gQPaqv/CU+OvCR2+KPD41qwQf8hLRfmcD1eE4OfUgKB716ZRjmgDnvDfjnw54siDaPqkE8uNzW5O2VR7oefx6V0Oa5PxJ8NvDPihzPeWPkX2cre2h8qZW9cjgn6g1z/8AZ3xI8HtnTL+DxXpi/wDLtfMIrpV9pejH3Yn6UAem0Vwej/Fnw/fXY07V1uPD+qAfNaaqnk/k5+XHpnBPYV3IkDAFeQeQRQA+ikz7UtAEF1dw2VpNdXMixQQxtLJI3AVQCST9ADXn3wrtZdVTWPG99GVuteuSYFcfNHbIdsa+3Q/UBTT/AIs31xdaXp3hDTn26h4huRbkr1jgHMr/AEA4PsWrvLGwt9N0+2sLWMR21tEsMSf3VUYA/IUAWa4jxF8TLLwvqMFnqOha1uuZjDavFFEy3DAgfJ+8z3HUA8129eP+JD/wkX7QHh3Sg2+30W2N7MBzsc5YfTkQ8+9AHby+M5reMyXHhTxDHEo3M4gikwP91JGb9K1NC8RaV4l09b/SLxLq3LFSyggqw7EEAg/WrV9qNpplhPe31wlvbQKXllkOAo/H/PNeVfBfTNRl1PxP4pngktLDWbozWsLgruG923YPYBgAe/NAHsFFFFABRRRQAUUUUAFFFFAHJ+M/AGmeOZNMXVZphbWMjyGKIhTLuxwW6gcc4556itTRPDGieG7cQaNpltZLjBMUY3t/vMeW/EmtisO71G9u9UfTNJMCPAFN1c3CGRIyRlYwgYbnI5PIwCDzkCgDazS5rgNH8Y6xq+tav4eSC2W/0mUi5vhCzQGPqm2PcDvbkbd2BtJyelbHgXxBqfiTw/8AbdV0uTT5xM8ao8RjMiDGH2EkrnJGMnkHmgDqKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkxS0UAcX438Dr4iWLVNKuDpviSy+ayv04Prskx1Q8jnpk9QSDH4L8ctrM8ug67bf2b4nshi5tG4WX/AKaRnupHOPfuOa7fHvXI+NPA9t4oghu7eVrDXLL5rHUIuHiYHIU+qn09/rkA60Nn/wDXXHfEHSl1yDRtKc4F5eXEAb+6WsboZ/CqvgvxvcXl6/hnxPCLDxNbDlDwl4v/AD0iPfocj24742/EBzrnhTv/AMTV/wD0juqAF8E6s2ueCtI1CbPnvbqs+Rg+anyScf7ytXQ1xXho/wBjeNPEHh1ziG4YavZDORskOJlH0kBOP+mgrtaACk29cd6WigDN1jw/pOv2ZtNW0+3vIOyzICV91PVT7jFcK/w31fw0TL4E8ST2UQO7+y9RJntT7DOSgPc8n3FemUmKAPNI/idf+H5UtvHvhy50nnaNRtQZ7Rz65GSufT5j64rvdM1vTNatFutLvre8gP8AHBIGAPofQ+1W5IY5YnikRXjcEMrKCCPcV5B8TfCGg+FdGl8QeH1u9G1uWVILZNLnMK3EjHAQoOMYBJAxnFAGt4RP/CXfEzXfFjHfYaZ/xKtMbGQSOZXHvk4B9Gx2r02ue8FeHY/CnhHTtGTHmW8Q81h/FIfmc/mT+GPSugyDQAZ9a8W+HGnQ+MPHfjTxVcvc+U12LS1lt7mSElF/2kYE/KsXFej+KNR1uCxurbQ9Cub66kgYRXCTwxxxuQQN29w3HB4U1zPwi0XV/CnhpNE1TQri1mMsk8t158DxMxIAHyuWztC9scdaAMP4m29p4M1Pw/rkbz6ikt6IJdO1Kd7uNkwSXQSlirDsR6jjrn2IKM9q8r+MHhfV9fufDeo6dayXlvply0lzbxYLlCUO5R/F9w8DnkV3un395qepPPHBNBpaRFFE8RjkmkJzu2thlVQMcjJJPAAyQDaooooAKKKKACiiigAooooAKzYdQ0ozX4t7q0aW3bdeLE6lo22jmQDkHCjr2FaVcfbfDvS7S+1aWC4uEt9XnM99bjaRMSSShYjd5ZJbKgj7x5wcUAYPwZRr7RtZ8TTKRLreqSzgn/nmDhV/A7xXoOn30GqWKXlsxaCUtsLLjcASMj2OOPUEVh2Hge30yzl02y1G8g0eSV5PsKbAqhjlow+3cEJzwDnnGccV0sUKQQpFGqpGihVVRgKB0AHYUASUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSYpaKAOX8aeCbLxjp8aSSvaajasJLK/hH722cdxyMjgZGfyIBHFaV4r1Sfxd4d8KeKrbyNfsdQeTzkBMN5D9kuFEqnpnLAEccntyB67XB/Erwxa+KB4d0+aRreWXUnWK6iA8yEi1nkBU+m6NCRxnaPrQBZ8eQyWMen+KrSNnuNElMsyIMmW1cbZl98DDfVK623uYru3juIHWSGVA8bqchlPII9iCDXnnhbxbf6dqieDPHComqsu20viMwahH06n+M+h6/Xg6Hg+R/Der3fgu6ZvJgButIlfP7y1J5jz3aM5HqVKnGKAO5ooooAKKKKACvMr7/isvjNaWQ+fTPC0QuZuPla7k5QH/dADA9ipFdz4h1u38O+Hr7V7r/VWkLSFQcFyOij3JwB7muO+HVqPDXw+ufEetNtu9R8zV7+TvhhvA/755x6saAOp8Q+KdM8M20Ul87tNO/l21rAu+a4fptRe59+nNV4LnxZfW/niy0zTQwykFxI88mP9opgKfYFvrXD/CqG58Y6tqPxB1pd08sjWumxMMi2hHXZ+eM+zetet7R+mKAOS0Txl9p8ST+GdZsxputxR+dHGJPMiuYv78TYBPQ5UgEYPocdbt4rxr4rzfY/ih8PJ7QkXjXhjYDqUMkagfQ7nH417NQAm2k2e/8A9enUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc/wCIv+Q34T/7Csn/AKRXVdBXP+If+Q34T/7Csn/pFdUAO8U+ENK8X6UbDU42+U74Z4ziSF+zKex/n3zXl11e63Y3dr4c8S3CReI9Pl8/w7rzjEV8fumGRuxYHawJ7gnkKW9vrH8S+GNM8WaJNpWqw+ZBJyrDhonHR0PZh/iDkEigA8N+IrbxLo0d/CjQybjFcW0n37eZTh42Hqp/oa2K+e49Y134R+OEGus13pV4qxSXgXi6jXhZT6TIMAj+Iepwx99truG8torm2kWWCVA8ciHKspGQQR2oAnooqOWZIInllYJGilmYngAckn8KAPNviKf+Em8U+H/AkRJhuJP7Q1PBx/o0Z4U+zMD+IFanxcEqfCjXhbggiFBhR0XzF3f+O5/Cs34YxPr2oa547uVIbVrgw2IYYKWkZ2rj0yRyP9kHvXod7ZQajYz2d1GstvPGY5EYcMpGCPyoA5X4WQw2/wAMPD6Q42G0Dn/eYlm/UmuuSZJUDxsrKehB4NeaWXhPxF4ZsodAht49c8Mx3ZmWLzljnERDHyXD4R13lWzkZwQQQcCBotT1fxlqPha2kTw1Y3FhDdXENuVeeRd7o5jK/JGWGwE8nAU9+ADO0+BviH8cJdci/eaH4cUW8Uo+7NMMnj1wzMcjsq+or2euc8LjRLCK40DQrdUtdKZYXaPBTzSMsuR1cZUt7sO9dHQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc/4h/5DfhP/sKyf+kV1XQVz/iH/kN+E/8AsKyf+kV1QB0FFFFAGZrugad4k0ifS9Tt1mtZhggjlT2ZT2I7GvKPD99qXwe1iLw94hlNx4Vu5CNP1HnFu5Odj+gPU9skkd8e1VQ1fRdP17S59N1S1jurSYYeNx+oPUEdiORQBcEgYAjkHoRXA/FnVbhPD1t4c05x/aniCcWMIz0jP+sY+wBAPpurD0/U9R+E2px6L4gnmu/CMzbNO1RgWa09IZfYYwDjoOOMhb/h1h4z+LOqeI1YSaXoUf8AZ2nsOVeYj966npkZK57hhQB6DpOlW2jaRZ6ZZrtt7SJYYwfQDGT7nvV2iigBMV5348+FMfjTXrTWINbuNLuoYfIkaKLd5iAkjB3Lg/Meec8elei0UAZHh3w3p/hfQ7bSdNQrbwDqxyzserN6knnP4dK16KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArn/EP/ACG/Cf8A2FZP/SK6roK5/wAQ/wDIb8J/9hWT/wBIrqgDoKKKKACq4vrY3zWIuIjdrGJTAHG8ITjdt64zkZ9qi1XVLfR9LudQut3kwIWIUZZj0Cgd2JIAHckV494JuNWi+P8Ar0GtSg3lzpokKKcrGT5LiNfZQSue+M8GgD2LUtLs9Y0640/UYEubS4UrJFIMgj+hHUHseRXAWFufhMzWjRtL4PnlLpdKuZLCRjjE2PvxnjD8kdD2Nel1G8McsbxyIro4IZWGQQexHpQAkdxHNEkkTrJHIAyOhyGU8gg9x71LXn72Go/D2V7nR4Jr/wAMMxebTEO6Wxz1eDP3k6kx9jyOpFdlper2GtadBqGm3UdzaTrujljPBHfjqCOhB5B4NAF6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuf8AEP8AyG/Cf/YVk/8ASK6roK5/xD/yG/Cf/YVk/wDSK6oA6CkzS1y3i7xdZ+H7WO0S9tU1a9lS2s45HHDuQodhnhVzuJPpjqaAKd7q+m6p4tFtc6jaRWWjSB3SSdV827IBUYJ6Rg5/3mH92uJlvLQftOaZNaXME0d7pzKzwuGXISTgkd/kH6V6bp/hTRLSwgtzYWty6L81xPCrySseWdmI5ZiST7mvLPG66Xonxw8F3FmLS3BIhmjhCrt3OVBYDpneevpQB7jRTBIrLuU5HPIp9ADSue/H8q4vVfDN9pOpS674RaOG7kbzLzTJDtt74+v/AEzlPZx1P3s8121N2CgDD8OeLLHxEksSJLZ6jbcXen3I2zQH3HdT1DDII/Kt3PtWB4i8JWmvNFdxzS2Gr23NrqVtgSxH0PZ0PdTwQT061lWHi680a+j0jxlFHZzyNsttUj4tLs9hn/lm/B+VvTgnjIB2tFNLY7U6gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5/xD/wAhvwn/ANhWT/0iuq6Cuf8AEP8AyG/Cf/YVk/8ASK6oA6CsSfwd4ZuriS4uPD2kzTSsXeSSyjZnY8kklck55zW3RQBFDbQ20CQQRpFDGoVI0UKqqOAABwB7VjHwT4VJYt4a0YliSSbCLnPX+HvW9RQBWs7C0060jtLK1htraP7kMEYRF5zwBwOas0UUAFFFFABVa+0+11Kzls723iuLaYbZIpUDKw9CD9BVmigDgRpuv+Bxu0MT63oCfe0yV83Vso7wOT869fkbnj5TzXUaH4l0vxHZNdaZcrKqMUljIKyQuOquhwVPHetQpk8mub17wXaarejVbC5l0nXEGE1C1A3MP7siniVeBw3pwRQB0uaWuJt/GN5oNwlh41tY7Iu2yHVYMmynPGNxPMLdeG44PzV2ayK6BkIZSMgg5BoAfRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXP+If8AkN+E/wDsKyf+kV1XQVz/AIh/5DfhP/sKyf8ApFdUAdBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEFxaQXdtJb3MUc0EilZI5EDKwPUEHg1xknhfVvC7G48G3SNZg7n0S/kYwnn/ljJy0RPIA5TnoMV3VJt9zQBzeieNdP1a8Om3MUumayg/eadejZJ7lD0kX0ZSQa6TdWXrfhzSvEdoLbVbNLhEO6Nzw8Tf3kccqfcGuaKeLfCOfJMvijR15MblV1CEex4Wb8drfWgDuqKxtC8VaP4khdtNuw8sR2z27gpNC3TDofmU5z2xwa194HWgB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXP+If8AkN+E/wDsKyf+kV1XQVz/AIh/5DfhP/sKyf8ApFdUAdBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU3Z7/nzTqKAOf17wZpHiCVLqaOW11GMfutQs38q4j7cOOoxkYORz0rG/tTxZ4VZhrFo3iHS1PF9p8QW6jH/TSDo/1TsM4ruabsoAzdF8Q6V4isRe6RexXcHQlDyh9GU8qfYgGtPcM471zms+CNJ1W9/tKHztM1YdNQsG8qY9OHI4kHA4cEYq7oUGs21k8OtX9vfTI+2O4ig8oumBy6gkBs7hxgcUAa9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc/wCIf+Q34T/7Csn/AKRXVdBXPeITnW/Cf/YVf/0iuqAOhooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApNv1paKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACm7eKdRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//Z'] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 11 "如图, 在锐角三角形 $A B C$ 中, $\angle B A C \neq 60^{\circ}$, 过点 $B, C$ 分别作三角形 $A B C$ 的外接圆的切线 $B D, C E$, 且满足 $B D=C E=B C$. 直线 $D E$ 与 $A B, A C$ 的延长线分别交于点 $F, G$. 设 $C F$ 与 $B D$ 交于点 $M, C E$ 与 $B G$ 交于点 $N$. 证明: $A M=A N$." ['如图, 设两条切线 $B D, C E$ 交于点 $K$, 则 $B K=C K$. 结合 $B D=C E$ 可知 $D E \\| B C$.作 $\\angle B A C$ 的平分线 $A L$ 交 $B C$ 于点 $L$, 连结 $L M, L N$.\n\n\n\n由 $D E \\| B C$ 知,\n\n$$\n\\angle A B C=\\angle D F B, \\angle F D B=\\angle D B C=\\angle B A C,\n$$\n\n故 $\\triangle A B C$ 与 $\\triangle D F B$ 相似.\n\n由此并结合 $D E \\| B C, B D=C B$ 及内角平分线定理可得\n\n$$\n\\frac{M C}{M F}=\\frac{B C}{F D}=\\frac{B D}{F D}=\\frac{A C}{A B}=\\frac{L C}{L B},\n$$\n\n因此 $L M \\| B F$.\n\n同理, $L N \\| C G$.\n\n\n\n由此推出\n\n$$\n\\begin{aligned}\n\\angle A L M & =\\angle A L B+\\angle B L M \\\\\n& =\\angle A L B+\\angle A B L \\\\\n& =180^{\\circ}-\\angle B A L \\\\\n& =180^{\\circ}-\\angle C A L \\\\\n& =\\angle A L C+\\angle A C L \\\\\n& =\\angle A L C+\\angle C L N \\\\\n& =\\angle A L N,\n\\end{aligned}\n$$\n\n再结合 $B C \\| F G$ 及内角平分线定理可得\n\n$$\n\\begin{aligned}\n\\frac{L M}{L N} & =\\frac{L M}{B F} \\cdot \\frac{B F}{C G} \\cdot \\frac{C G}{L N} \\\\\n& =\\frac{C L}{B C} \\cdot \\frac{A B}{A C} \\cdot \\frac{B C}{B L} \\\\\n& =\\frac{L C}{L B} \\cdot \\frac{A B}{A C}=1,\n\\end{aligned}\n$$\n\n即 $L M=L N$.\n\n故由\n\n$$\nA L=A L, \\angle A L M=\\angle A L N, L M=L N,\n$$\n\n得到 $\\triangle A L M$ 与 $\\triangle A L N$ 全等, 因而 $A M=A N$, 证毕.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAZUCIQMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAorL1/WoPD+jXOp3Ad1hUbYk5aVycKij+8xIA+tcz8KPFN/4w8GtqWpyo90LqWNti7QoyCAB7BgPXjnmgDuqKBRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTWPXrTqwvEuoXMEEOnac+3U9QYxW7YB8lf45iD2Qc+7FR3oApQKPEniV7uQbtL0p2hgB+7NckbXf3CAlB/tF/QVw/7PLmDwzrmmsTutdTYkHtlFX/2Q12Wm+Ftd0rTrews/FPl28CBEH9nxk8dyc8k9yeSSTXD/AAWjfT/Gnj3SZZfMeG9UhsY3YeUFsds8fnQB7QOlFA6UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSd6AFoqnqGqafpVv8AaNRvrazhzjzLiZY1z9SRXNH4leHpXdNOa+1aRf4dMspZwf8AgQXb+tAHY0Vx48Ya3cRlrHwJrj9x9qlt7f8A9CkzUbeIvHO7934DhKYGPM1uNW6dwEI/WgDtKK4tfEfjZVZpvAaHGMLBrMTsf++lUfrUknjTUbNQb/wV4hiGeWt0huAP+/chP6UAdTdLcPbSraypFOUIjd0LqrY4JXIzz2yPrXH6X4R8R2vjA+IL7xTFel4vIe3bTtirFnO2MiT5DnBJIOcVaj+JHhUzi3u9SOnTkZEepW8lqcfWRVB/A101vcwXdus9vLHNE4yrxsGVh6gigCK/S9lspUsLiGC6YDy5ZYTKqnjqoZc8Z7j9K4HQfhzregeKdR8QweKrWa61Ek3SSaXhGy2flAmG3ocHJ/GvSR06UuB6UAIudvJyaWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAppOD1rI8Q+JdN8NWqT38z+ZKdtvbQrvmuH7JGg5Y9PYZ5IFc7/AGN4h8ZHzfEU0mj6M33dJs5cSzL/ANN5hyP9xOOeSSKAL+o+PLCG9fTtHt7nXdTXg22nAOsR7ebKSEjGeuTkelVl0vxnruW1XWIdCtDkfZNJHmTYI/inccEf7Cj611Ol6XYaPp8dlptnDaWsf3YokCge+PX3PNXMUAcvp/gDw1p9x9qbTUvb3gm71Bzcykjvukzj8MV0yKqKFVQAOgAwKdRQAYooooAKMUUUART28NzE0M8McsTDDJIoZT+BriNf8IeD9DtLnWhLJ4b8kBpLzTZzb454BRcoxJ4wVOc10niLxFYeGtP+2X0jkuwigghXfLcSn7scaj7zHt27nAya8y8R6XrPiW806DWSqaxqrstjp8bb49JtgAZJ2PRpgp2hjgBmG3pQBleDvi14ovNfGltYf2tazpJPYG4KW13PCrEHGP3bMAr8cZ2n5q9Y0PxnpGuXBskkltNUVcyadfR+TcJ/wA/eHupI964Txh4Tgg8WaDFocaW1/BpEq6WR/BLbSRSIpzyQyu6nPXcc5rsorbQfiL4Wsb+8slkjlRXQklZbaQHBCuMMrqwKnB6igDqh065pa4P7R4m8EgfajceI9AGP34XN9ar6uB/rlHHIAbk5ziuu0rVrDW9Oiv8ATLuK6tZhlJImyD7exHQg8igC9RQKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBCa5jxJ4qbTryLRtHtxqGv3CF4rbcRHDHnBmmYfdQfmx4HPRfFXiO406W30fRoUuvEF8D9mhfPlxIOGmlI5WNfzY4A74n8M+GIPDttO5ne81K7bzb2/mH7y4kxgHjhVHIVRwBxQBW8P8AhJdNvG1jVbg6lr8w2yXkg4jU/wDLOJekaDPQcnnNdQOgoAGOAKWgAooooAKKKKACiikJwetAC1z/AIm8UweHkhhSCW+1S7yllp0H+sncD6YVB1ZzwB69DX8R+K30+7i0bR7cah4guV3RWu7CQpnBlmYfdQfmSMD2d4Y8LLpDy6nqF0dR127UC6vpFAJH9xB/DGOwHpmgChpHh97GebxX4tu4bnVo4mYyA/uNPiGSUiBHGB1c8nH1p3gm2n1S4vPGN/EUudUAWzicfNb2SnMa+xbJkbHdh6VD4sY+Jtfs/BsJJtSovdXde0Ct8kWfWRh652qfWu3RVVFVQAoGAAMADtQBx/jAi18Q+DdRYn5NUa2JA7TQSKM/8CC/pUOmqPCnj+50w5XTPEBe8tPSO7Ufvk/4EuHHuHqx8SyLfwedR25Om3tpeDjoEnQsf++d1XvGWhy674feKykEWp20i3dhMf8AlnPHyv4HlT7MaAOhAGMda43WPC95pmpS694RMdvqDnfd2DnbbX/+8OiSejjv97NbfhnXY/Efh601REMbSpiaE9YpFO10PurAj8K1x096AMPw54ltfEdpK8SyW93bt5d3ZzDbLbyY+6w7+xHB7VuDoOc1yPijw1cz36eIPD0iWviC2Tb8/wDqryLqYZR6ejdj09tPwz4jt/E2l/aoY5ILiNjFdWkgw9tMPvIw9R69xzQBuUUgORkc5paACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKxvEviG38M6PLqFwrytuWK3gj+/cSscJGo9SfyGT2Na7dfp+tcLow/wCEy8XyeIZPn0jSXe10te00w4lnx0ODlF/4EaANPwl4dn04XGrawyTa/qOHvJV+7GP4YU9EXp15Iz3rqB0oHSloAKKKKACiiigAooprHnr+lACnrXH634mvLrVX8OeFglxq20faruQboNOQ9Gcj7zn+GPv1OAOa+o69qPinULjQfCk/lQwsYtR1oAFbc94oR0eX1PRPc4x02g6Dp3h3S47HToPLiBLOzHc8jnku7HlmJ7mgCr4b8MWfhu2lELPPeXDeZd3kxzLcv6sew64UcAVY1/W7Xw9oV3q14T5Fsm8qvVz0VR7sSAPcitMjmuGugfGHj2Oz5bRvDrrNOeds18RlE6ciNTuOD95lB6UAafgnRbrTNLmv9VAOtarJ9rv2/uMRhYgcnhFAUc44J71046UDBUHrkd6WgDC8aWLan4J12yjUNJNYTIg9W2Hb+uKs+Hb4at4Z0rUSBm6s4ZufVkDf1rRdQ4ZWGVIwR9a5P4ZvJ/wgGm2sxzLZmWyf2MMrxj9FFAFa2P8Awi3xEkscY0vxFuuIeOIrxAPMX/gaDdk9WDetdupyoNYHjDQ38QeHZ7W3cRX0RW5sZjj91cId0bZI45GD7E+tTeF9ej8S+HrbUljMMr5juIDkNDKpKuh9wwP1GDQBtYFcP4rsLjQNVPjPRoWeWNFTVrOPj7Zbr/GB3kjHIPUjK57V3A6Uh65oAgsL221LT7e+tJlmtriMSRSL0ZSMg1YrhNEB8G+Ln8NHK6Nqhe50rssEn3pYB2A6uo92Hau6HSgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikPWgDlPHmpXUGkw6PpkhTVNamFlbuDzEpBMkuMg/IgY5HfFb+k6XaaNpFppllF5draxLDGp5O0DHPqfU9zXL6XnXviPquqE7rXRYhplocgqZ3AknYehA8pfwNdqKACiiigAooooAKKKq3t7b6fazXd5cR29tEu55JXCqo9STQBNLKsSM8jBEQbmZjgAdyTXBS31/8RJpLPR55bPwwhMdzqScSXzA4aOA9o+CDJ36DjOUSK9+JTLNdJPZeEAd0duwKTaoOzvjBSLPIXq3U4GK76CGOC3jhiiSOONQqIigBQBgAAdBQBBpunWek6dBYWFvHb2sC7I44xgKP8fWrdFNJwT7e9AGB4x1+TQNDeW0jE2pXLra2EH/AD1nfhfwHLH2U1Y8LaBF4b8P2+nq/nTjMlzcN96eZjueRj1JLE9egwO1c/ooHi3xlceJH+bTNKMllpeejydJph7ZGwH0Umu5HSgAooooAQnmuQ8DA2114p09jzb63NIg9ElVJh+sjV2FcfpAFn8UfE1uW4vLOzvAvuPMiY/kiUAddj6ZrikVfCfxCMYGzSvEZLjssd8q8/TzEGfdk967YdKw/F3h8eJfDtzYJJ5F0Ns1pcAcwzodyOD2wcfhmgDdHSjFYXhPXj4j8OW97LH5F2Mw3cHeGdDtkX8wce2K3R0oA57xjocmv+H5YLRxHqNuy3VhLgZjuIzuQ8+p4Psxqz4Y12PxJ4csdViXyzPH+8iP/LOQHDofcMCPwrWbPbH4+tcZoS/2F4+1vQyMWupJ/a1oOeGJCTqD/vbWx/tmgDtB0paQdKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqnql/DpWlXmo3BIhtYHmcj+6oJP8quVyHxKYy+DpNNSQJJqlzb6ep9pZVVh/wB87qAJ/h9p81h4I09rvJvLxWvrpiMEyzMZGz7jdj8K6imoqogVQAoGAB2FOoAKKKKACiisbxH4jsfDdh9pu2keSQ+Xb2sC7prmQ9EjUdST/wDX4oAsa1rWn6BpsuoandJb20Q5Zj1PYAdSTjgDmuTtNGv/ABteRat4nt3ttJjYPYaJJ1PQiW5AOC3GQnRehyc1Y0fw7qGrapF4i8WbWvYzmx01G3Q2I6hvR5cdX6DoOldoOgoARRlRkc96d0oooAK5LxzqV2Le18PaTKY9W1lzBHIvW3hA/ezH02rwP9plrp7i4itYZZ55VjhiQu7McBVHJJ9sVx/gmGbW7288aXsZR9RURadGw5hs1PyfQufnP1HpQB1WlaZaaRpNpp1jEI7W2iWKJfRQOM+p759auUg6UtABRRRQAVx2oqlp8WdGuCcG/wBKurXpwTHJFIP0Z/1rsa4/xoUtNd8H6kw5i1f7OT6CaGSP/wBCK0AdeOgpcZpB0FLQBw8xPhT4ipKPk0nxIRG/ZYr5V+U+3mIMe7JnvXbqcqDWN4p0NfEfh670wyeTLIA1vMODFKpDI478MAePpUPg/X38Q+Horm4j8nUIWa2vYO8U6Ha6/QkZHsRQB0Fcb45B0++8PeIkwv8AZ+oJBO5OALe4/dPn6MY2/wCA12Q6Vz/jfTTq/gjW7FFLSyWcpiGf+WgUlP8Ax4CgDoBRWdoGpDWfDumaoBj7ZaxXGPTeobH61o0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcf4xCXPiTwZYsR8+qtcdf8Anlbyt/MiuwrjfETZ+JvguIqpHl38mSOQRGgGPwY0AdkOlFA6UUAFFNJweTXL+I/FU1ndromhQLqHiCdcpAT+7tl/56zsPuoOw+8x4HsAWPE/iqHw/wCRbQwSX+r3fy2enwkB5j6k9EQdSx4AHfpVXw94Wngvzr3iG4S+16RSu5cmGzQj/Vwg/dGOrdW79as+GvC0eiST6hd3LahrV3/x938oG5v9hB/AgPRRwMV0QFAAOR60tFFABRRWbrmsWugaNeareyFLa2jLvjkn0A9ySAB6kUAcz4xkfxHrNp4Jti3k3Ci61eRCRstVPEeR0aRht9dobiu1iRUiVEUKijCqBgAdhiuZ8FaPd2dhc6tqqBda1eX7Vdr1MWRiOHPcIuF+oJ711IoAKKKKACiiigArj/iYfI8GS6htJOnXVrejHYRzozH/AL53V2FYvjCwbVPBmt2KAF57GaNAR/EUOP1xQBtCisrwxqDat4U0fUWxvurKGZvqyAn9TWrQAYBrib0r4U+IEN7kJpfiIrbzjPyx3qj923p+8UbPqq+tdtWP4m0KDxLoF5pVw7R+en7uVThopAQUcY7qwBoA1x0prgMCGHGD1rn/AAdrs2t6Aj3q+XqVpI1pfxD+CePhvwPDD2YV0P8AOgDkvhgXX4eaZbyHL2pmtTzn/VTPGP0UV19ch8O2J0PUV42x6xfqoHYfaHP9a6+gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKy9cfU4rBpdMurG3kjy8j3sLSJsAOfuuuO3Jz3oA1KK8w8A+KvG/jjw+2rhtCsYTO0UataTSFwuMtxKO5I/CrXiXxj4j8CRWuoa9badqGkSTCGWawV4ZYSejFGZww4/vDtQB6LXG+I1VfiV4KmYnJF9Cox1JhVv/AGma622uIru1iuYHDwzIJEYfxKRkH8q5Txu/2TVfCGoc4i1lIWI7CWKSP+bKPxoA7AdKQ5z3ppOMegrh9Q1zUPF1/PonhadoLKIlNR1pekZ6GGDIw8h7t0T3JFAFjW/E17f6o/h3wmY5dSAH2u/cboNOQ45bs8h52p+JwBzr+G/DVj4bsnitTJNcTN5lzdzsGmuH/vO3frwO3SrWhaHp/h/S47HTbdYYVJZj1aRj1d26sx7k81pUAIOlLRRQAUUUUAIf84rh9R/4q/xzDpIO7R9CdLm9/uzXR5iiPqEB3keu2trxdr58O6HJcwxeffzOttY2/ead+EUfjyfYGn+FNAHh3QIbN5fPunJmvLkjBmnY5dz+PT0AA7UAba9BnrS0CigAooooAKKKKACmuoZSGGVPBFOpDzQByPwzMkfgKxs5jmWweeyf28mV4x+iiuvrj/A6/Zr/AMWacz5MOtSyqp7LNHHKP1dq7CgAooooA4fUlPhf4g22sKdum69ssbz0julH7mT/AIEMxn32V23aszxFosHiLQb7SbolYrqIoHA5jYcq49w2CPoKy/B3iC41Pw451TEeq6a72moJ0Alj6sPZlwwPTDUARfDsBvD17KD8s2rX8i/T7TIP6V11cn8MoZIvhzozzcy3ETXTHnkyu0uef9+usoAKK5bxR42tfD11baZbW8upa3ef8e2n25G5h/eYnhEGDkn0PpTLWx8aXqCe/wBbsNOdulrZ2fmhPZndvmP0AoA6yivNtf8AG2vaDq2m+GZ7SKXVdTuY47W/hTEBhLYdyhJIdR/DkjkNn+GvSF+6KAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuK+LGsf2L8M9bnVsSTQfZk55Jk+Q4+gJP4V2teR/GbOtav4Q8IpyNR1ESzheojXC5+mHc/8BoA2vh/qWieHPh9o2ny3qpJHbCSZTG2Vkf52HTqCx/KsTxMLn4wyW+j6KfI8OW1wJL+/kwHkYZASOPO7jnlgAT6gDPrXCjphR+leMeJLow/tFaBHoR/0t7dU1MQ4w8fzE7wOMhOef8AY9qAPZLO2isrKC1gTZDBGsaLnOFUYA/IVzHxJilbwLqN1AAZ7Dy7+PPYwOsv8kIz710V7f22l2M97e3CQWsCF5JZDgKo75rhnsb74mAtqK3Gn+EyP3NpkpPqHQrLJ3SPuqdTjJ7CgDJv/HOkeObyTTYvEtjpHhyI7bu4kvEhuL845jjDEMkf95+rdBxknsNP8V+BdKsIbGw8ReHra1hXbHFFfwqqj2G6vL/APg+e38OPeaNb2F7qNldS2mq6TqEStFLLG+AY5CCY227fVTnoMV6F4fuPCOvyy2f9hWVlq0H/AB8abd2caTR++MfMvIIZcg5HTpQBr/8ACdeEP+hr0L/wYw//ABVL/wAJ34Q/6GvQ/wDwYw//ABVWx4Z0Aj/kB6Z/4CR/4Uf8IzoH/QD03/wEj/woAqf8J34Q/wChr0P/AMGMP/xVH/Cd+EP+hr0P/wAGMP8A8VVv/hGdA/6Aem/+Akf+FH/CM6B/0A9N/wDASP8AwoAqf8J34Q/6GvQ//BjD/wDFU0+O/COePFOhn/uIxf8AxVXf+EZ0D/oB6b/4CR/4VyfjnTdLhsbfQ9L0jTU1fWXNrbMLRD5KYzLMeBwikn6lfWgDOtfF3hrxB47n1a+8Q6VBp+i7rbTo572NPNmYDzJ8EjgD5FPI+8a7H/hOvCA6+KtCH/cRh/8Aiqfpvgzw5p2m21lFotiyW8YjVpbZGdsDGWOOSe5qz/wjGgf9APTP/ASP/CgCn/wnfhD/AKGvQ/8AwYw//FUv/Cd+EP8Aoa9D/wDBjD/8VVv/AIRnQP8AoB6b/wCAkf8AhR/wjOgf9APTf/ASP/CgCp/wnfhD/oa9D/8ABjD/APFUf8J34Q/6GvQ//BjD/wDFVb/4RnQP+gHpv/gJH/hR/wAIzoH/AEA9N/8AASP/AAoAqf8ACd+EP+hr0P8A8GMP/wAVR/wnfhD/AKGvQ/8AwYw//FVb/wCEZ0D/AKAem/8AgJH/AIUf8IzoH/QD03/wEj/woAqf8J34Q/6GvQ//AAYw/wDxVJ/wnfhD/oa9C/8ABjD/APFVc/4RnQP+gHpv/gJH/hR/wjOgf9APTf8AwEj/AMKAOK0rxZ4Ys/iN4il/4SPSRa39raTLL9ti2GRRJGwDZxuCqnHXGK6keO/CH/Q16H/4MYv/AIquf1PQNDs/ifoOdIsPKvtPu7cx/Zk2b0aKRTjGM43/AK11g8M6Bj/kB6b/AOAkf+FAFT/hO/CH/Q16H/4MYf8A4qj/AITvwh/0Neh/+DGH/wCKq3/wjOgZ/wCQHpv/AICR/wCFZetxeCfDtoLnVrPRrSInC+ZbJuc+iqBlj7AE0AWP+E68If8AQ16F/wCDGH/4qvNvH3ijSdNvr7UPDusadftr9g+m3VvaXkUjifaRBNtBJOAWQ9vu1vNa3niTCeH/AAfpej2T/wDMR1ixTzGHPMduBn0ILkD2rlPFHwy0J/Evh7QFknl1PVJpbm91BtqskEUZJVY1CogZsYwOMd6APbNLsY9M0mzsIQBFawpCgHYKAB/KqniXWofDnhzUNYuATHaQNLtzjeey/UnA/Gs3wTrN1qeiNa6k/wDxONMkNlfj+869JB7OuHB/2j6VmfGK1nvPhVrkdupZ1SORlH91ZUZvyAJ/CgDC+C2mXGo2F/441c+dqusTsElYfchU7cL6DcCMdMKvpXq4Ax0rk/hk1u3wz8PfZiuz7EmdvPz/AMX47s11RPPUigDD1bw6mp+KdB1d2XGlfaGVcclpECD8hn9K3h0rJ0fUpdVkvblAv2FJvJtZAOZQvDv9C2VH+7nvWsOlAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEF0J3glS1ljiuChETyIXVWxwSoIJGccZH1rz+4+HviG88bWfiyfxTYyX9nEYYIzpDCJFIYHjz85+du9ejkAggjINGKAOVuNJ8Y3EDRHxVp9uDwZLfRyHA9i07Afkao2OheGfhnp15rV3cSSXc2PtOo3bmSe4YnIUfUjhVHYZzit3xH4lsfDNok12XkmmYRWtpCN0txIeiIvc9PYZ96x9E8NX2o6lD4k8VlH1JMtZ2CHdDpykcgf35D3c9+BgAUAVrHRNQ8Y38Ws+KYDBYQt5mn6IxB2HtLcY+9IeoXkL7nNdyBkA/kRSoPlGcH3p1AHlej3f/CMfHLWtGkxHZa/DHe247CYKd34ttlP4D1rt/EPhbS/EkMYvY3juYDutry3cxz27eqOOR9OQe4ri/ipok11r/hvUbIxxXu+W2gmb+G4C+dB+BeIofaQ13HhnXIvEnh601SNDG8i7ZoT1hlBw6HvlWBFAHOLr+ueDf3PiiNtR0gHCa1ax/NEP+niNR8vpvXI6ZArs7O9tr+1iurO4juLeUbo5YnDq49QRwanwCuCBjpjtXF3Xg+60W6l1PwZcxWEzsXn06fJs7g45O0f6pv8AaXrjkGgDtRyKWuX0Lxla6reHSr+CbSNdRcvp1yRuYf3o26SrweV9DwK6cHIzQAyWVIY3lkdUjRSzMxwAB3J9K4rwZHLr+q3nja6UgXi/ZtMjcYMVmpyGx6yN85z2Cin+M5pNd1S08F2jsBeqZ9UkQ4MVkp5XIwQZD8g68bjXZwxRwQRwxRrHHGoVEQYCgcAAegoAcOgzS0UUAFFFFABRRRQAUUUUAFFIetc1q/jfR9Ku/sEckuo6oRldP0+MzTf8CA4Qe7ECgCr41YWur+EdQ28xaysBPos0Ukf/AKEy1p654t0Xw88cN9ej7VKcQ2kCmWeU+ixrljn1xj3Fef8Aj9PGOreD7zU9QFvolhZPFdCztpPNuyEkUljMPljIHzDYCcgDNeg6B4V0Xw4jtplkiTTcy3LEvNNznLOck+vXHpigDEF1408TEG1t08M6c3/LW5UT3rjg/KgzHHxkfMWPtWnongrRdEuTfLHLe6mQN2o38hmuG7ffb7v0XA9q6MYpaAGnGDu4HOa8t8EXv/CWfFfxR4jBLWmnxJpdmccFdxZmH1Zd30cV1HjrVbi10yHR9Mfbq+syfY7UjrEpH7yb6ImW+uPWs74R6bBY+B1uraN44r+5kuIlfqIQfLiH/ftEP40AS66g8MeNbHxJF8lhqezTtUwMBWJPkTH3DHYSezj0rspYo54XhmQSRyKVdGHDKeCD7VV1jSbXXdFu9LvU3W13CYpB35HUe46g+orE8DapeXekS6Xqr7tY0iT7HdknmTABjl+joVb65oAztO8Ia34Skmj8K6laPpU0hkGnagrlYGPJ8uRTkAnJwQRzmtdtK1vVl8rWb+CCzP37TTgwMo/uvKTu2n0UKeuSQcV0gAxS4oAjhijhgjiijSOONQqogwqgcAAdhUlFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU0nB5JxQA6uc8T+Ko9CMVlawNf61dgiy0+JgGkOPvMTwiDGSx4+tVvEHiya31FdA8Pwx3/AIhlTcImb91aL/z1nI+6ozkL1bgDGc1a8NeFYdB868uLiTUNZu8G81CYfPKewA6Ig6BRwMUAVvDvhWW0v5Ne125XUPEE6lGmAIitoz/yxhU/dUev3m5J611SgYoGOtLQAUUUUAcn8SLaWbwRe3VsoN1pxj1GHI6NA4kOPchSPxrKF3D4X8VRarA4PhvxKUaRx923u2A2SeySjAJ/vAE9a7yeFJ4pIpV3RyKVZfUEc1xPgyxt9Z+HT+GtXVbkWLTaTdJ/1ycqpHodgRge3BFAHdDpS4HpXFeFdWu9L1A+ENeneS+t499heOMfb7cd8/8APRMgMOv8XrjtF+6MnPvQBk6/4d0zxJZi11K3EioweKQHbJC46OjjlGBxyD+YrlLrWde+HttJLrbS654fi6X8YUXdupOAJV4WQcgb1wepI5r0A/eriNWJ8W+NrfQ0+bStGZLzUT/DLP1hhPqB98j/AHRQA/4cxrf6VceJ5p4J9Q1uT7RO0LhxCgGI4AR/zzXg/wC0WrthyK47UvBj219Lq/hS7XSNVk+aWMrutbsjtLH6/wC2uGGSeal0jxok2opouv2p0bW2JEcEzgxXQzjdBJjD9R8vDDuOKAOsopF+6M0tABRRRQAUVFNPHbxvLNIscaDczucBR3JPYe9chL49Gp3D2vhLTZ9dlU7WuUPlWcZ75nPDeuEDGgDsmJBzkYrkr/x9p4upLDQYLjX9STg29hgxxnn/AFkx+RBkYOTkelQDwbqeu/vPGGtPdRnk6Xp+6C0Hsx+/KP8AeIH+zXWafp9lpdlHaafaQWttH92KCMIo+gHFAHJHw94n8SAN4i1b+zrI8/2ZpDspIyPlkuD8zcZBCBQfWum0bQtK0CzFrpVhBaRdWESYLn1Y9WPucmtHA9KKAMbxbYNqng/WrFBl7ixmjQf7RQgfrineFb86t4Q0bUH5e5soZX7/ADMgJ/XNarAEEEZHpXJfDTdD4FtLJ23Pp81xZN/2ymdB/wCOgUAdfUFxcw2sMs9xKkUMKGSR3bARQCST7cVKSR6/hXA6jK3j/XpNDtiT4b0+ZTqVwvS7mU5FuD0KjguR6AcDqAYeoXd5e+G9e8dTRypcX1sdO0KBhhooZWCJJg8B5GYMfRQvYV6hpOnQ6To9lp0AxDawJCnfhVAH16VzHiofb/FHhLQ1B8s3bajME4Cpbrlcj0Mjx/lXZDpQAtcN4ob/AIRjxXp/imMYsbrZp2rf3VVm/czH02sSpJ7P7V3NU9U0611fTLrTryPzLe5iaKRe5Ugg49+aALa/dFLXJeBdUuZdMn0PU5C+raLJ9kuXPWZf+Wcv/A0wfrmutFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU1jtySeKAA/55rjdY8SX2qajJ4e8Jsj36EC81FxuhsFP6PLjog47ngc17/WNR8ZXc+jeGblrXTY2Md/raDOOu6K27M/Yv0Xtk4x1mjaNp+haXHYabbLBbJk7RklierMTyxPcnk0AVfDnhux8NWBt7PfJLK3mXFzM26W5kxy7t3J/ToOK2R0GetLgelFABRRRQAUUUUAJ3rjdFI0z4leI9LZsR6hBBqkCY6EDyZfxykZ/4FXZ1xvis/wBl+MfCmt79sTXMmlzgDO5Z1ymfYSRp+dAGr4m8O2/iXT1geV7a7hcTWd5F/rLaUfddf6joRkVn+GvFFzPeyeHvEKR2uv26bvkyI7yPtNF7HuvUHNdYAMdKxfEnhux8S2awXXmxTRN5ltdQNtmtpB0dG7H26GgBnivxAPDWgTXwjE90xENpb5wZ53OI0H1P6DNJ4R0BvDugR2083n38ztcXtwes07nLt06Z4HsAO1ecaR4kkuvGto3i+/jax0mSWy07U0haO1vLzozsxO1XCfKAcqT5hU9BXso6dKADA9Kztb0XTdf06Sw1W0jurV+SjjoexB6qRngg5rSooA4PHiXwT9w3XiPQFGcZDX9qPbp5y+33+e4FdTouvab4hsEvtKvYrq3Y43RnlT/dIOCpHcEZo1rXtK8P2Zu9WvoLSHoDKwBc46KOrH2HNed3lhq/ifXk1zwhplz4cm3Yn1W8Hki8QZ4a2wTIPR32npjpwAemX2o2el2b3d/dw21ugy8szhFH4muTbxlqmvHy/B2jPdRE4/tTUMwWg91H35f+AgD3rmtFgsLHXYYfiNHNP4gMmLa+1CTzLKYnoLcYEcbcfdKhs9Ca9bUDaOBxxQBxkXgNdRkS68W6lNr06HclvKvl2aHJxiAHDdcZcsTiuwghit4EhhjSONFCqiDAAHQAVJgUUAGKKKKACiiigBD+tcd4LQWmp+LtOLHEOsvMo9Fmjjk7f7TMfxrq7q5hs7eS4uJUhhiUvJLIwVUUdSSegFeRWV1c+MfiDrlvod/Pp+kajaW01zeCFkluUjLRk25PRW+7v6/LxmgDqdX1m+8VapP4a8NXDwQQnbqurx8/ZwesMPrKRwT0QHuTx1mkaXZaJpNtpunW6QWlum2ONBxjv9SSSSe5OadpOkWGiaXBp2m2sdtaQLtSNBwPUn1J7k8mrUsiRRvJIwRFG5mPQAckn8qAOQ0f/iZ/E7xBqBBMWm2sGmQsDkbm/fS/j80QP0rsh0rj/htC7eERqssRjn1i5n1J1JzgSuTH/wCQ9g/CuwFABRRRQBxHivHhvxLp/i6M7LVtun6t/d8lm/dynsPLcjnrtc+ldsv3R9Kq6lYW2q6bdafeR+ZbXMTRSJ/eVhg/jXNeAr66jsLjw5qcpk1LRJBbPIeDNCRmGX33JwfdWoA7CikHIpaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKp6jqFrpVjPf31ylvaQLvklkOFUD/PTv2oAnuJ47aF5ppViiRSzu5AVQOpJPTHvXBvcXvxHlaCzknsfCSnbPdLlJtTwR8kfdITzl+rdBgZNLDZ3/wAQZ473VoJbLwvGwe3098rLfkHh5x1EfcR9+p4wD3sUaRQpHGipGgCqgGAoHQYoAisrG10+xhs7S3jgtokCJFGoVVHpgVYoooAKKKKACiiigAooooAK5j4g2E194H1T7MSLq2jF3bkDJEkTCRcfUpj8a6emOqurKyhlIwR6igCvpd/Dquk2eo25zBdQJPH/ALrKCP0NYHjjWLqy06DStJYDWtXk+yWfP+r4y8x77UXJzzzjjmq3w6l+yeGLjSZpDu0O8nsGeQ4+RGLIT7eWyGofCCP4j1m88aXKt5Uym10iN/4LZTzJjsZGGen3VWgDf0/w1pdh4Xg8Oi1SfTo4fJMcwDCQdy3YknJJ9STXPLoniHweFbw1L/a2jrjOj3k2JIR0xbzHt0+R+OOCM1r61420bRbkWTSyX2psPk0+xj864b/gI+79WIFZnkeNPEx/0qePwxpzY/c2zCe9Yc53SEbI+Om0MR60AOT4oeGhbsbq5ubO+Rgjabc2zrdhyMhREAS2eOVyPem/bvGfiXH2G0Xw1prf8vF8olvGH+zEMonp8xJ9qnT4ZeERaPDNpKTzSMHe8mkZ7lnH8fnE7w3fggVF/YPi3QTnQ/EEeo2o4FnrgLMoz/DOg3ewDK1AF/RvA+kaTff2lIs2oasRzqGoSedN/wABJ4Qc4woAxXTCuNHji70/jxD4V1fTgAS1xboL2AD1LRZYfiorR03xz4W1cqtjr+nyyN0jM4R/++Tgj8qANXUdOstVsprLULWK5tZRiSKVNykfT1/l1rjhp3iLwUA2itNrehIOdMmkzc2yj/nhIfvqB/A3PAAPNd2rBlyGBHXI5petAGPoXiXS/EdobjTboP5fyzQuNssDdCroeVYEEYNbI6VzOveDrPVr5dUtLibStbiXEWo2gAcjssiniRc4+Vs+2M1nW3jG80G6j07xpbx2TyNsg1WDJs7j0BJ5ic5+63HH3jQB29FctefEXwjYuI21+znmZtohs2NzIT6bY9x/Sqw8Wa9quF0HwneBCSPtWruLSMe+z5pCP+AigDsCeuK5TVPHdlbXzaXo0Euuav8A8+tjhli9DNJ92MfXn2NVz4P1fXDu8V+IZriE8tp2mA2tvjHKuwPmSD6kfSuo0vSdP0awSy02yt7S2TpFBGFXPrx1Pv1oA5WHwhf6/cx33jS6ju1jffBo9sT9khI6b88zMOOW45PGKl1NY7H4p+HJwuDeadeWeeB90xSqPyV/yrssCuP8bt9l1PwlqAXmHWo4SR2WaN4v/QnWgDsB0rlfiNdy2/gfUILYj7ZqAXT7cZwS8zCMY+gYn8K6quO8Sj+0/HXhbRxtaO3kl1WcZ6CNdkfHu8oP/AaAOpsLOHTtOtrG3ULBbRLDGo7KowP0FWKB0ooAKKKKADAPauI8ZBvD2u6d4yhGIIcWWqgd7V2+WQ/9c3wfozV29V720gvrK4tLmNZbeeNopY26MjAgg+xBoAnUgqCDkGlrjfAd9Pbw33hW/kZ77Q3WBZG6z2xH7mT67Rg47qfWuxHSgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiisLxP4ntPDNkksyS3F3cN5VpZQKWluZMcKoHT3boPyoAs67r2n+HdOkv9Rn8uJSFVQCXkY9FRf4mPoK5jT9D1DxZfw654qgMNrCfM07RGO5YvSSf+9J3A6L9c1Y0Xwze3mpp4j8VvHPqqjNrZId0GnIeyf3pD/E/wCC4Arsl5XkfhQADlRnmloooAKKKKACiiigAooooAKKKillSBGkkcIigksxwoA7k9qAJaafvdq4648fRXtw9n4V0+fxBco215YGEdrGcjO6dvl79F3Hg1H/AMIjrPiHD+L9ZZ4G+9pWls8NsR0w7/fk69CQPagDgvFutXE3jrWfDPhlH1aPXUtpb8afMpaAJuSZM52oWRY1JYjGe5NdxbeHfEutW8UOsX8eiaVGqrFpWiuQ4QY2rJOQDwBjEYUe9HiHTLHwzqfhLUdNsorS2ttQNjJHbxhEWO4XZkgf9NBGc13YHHI/OgDM0Pw9pHh2yFtpGnwWkZ5by1+Zz6sx5Y+5JrUwD2oooAKKKKACs3U9A0fWQBqelWN7jp9pt1kI+mRWlRQBx7fDDweJTJb6R9kc97O5lt8/98MKc3w80o4Cajr8SgYCprNzj9XrrsYooA5IfDzRyhWa812Zc9JNZuefyemw/DLwZDIZG0G3uJDxvu2e4bn1MhJ7119FAHn6eF9U8ETyXPg9Eu9OkbfNotwwU+5glP3fXY3HXGOK6Lw/4t0zxHHKts8kF5BgXNjdJ5c9ufR0POOeoyD61vYFc/4h8J6dr80Ny7SWepQc22o2jeXPEfQN/EvPKnIOTxQBvjkUtcLH4o1fwrItr4yjWSzyFi121TELdh56DmI9OfukntXawzRzwrLDIskbDKujBgw7YI60AS1yHxNLxeBL28jTdJYSwXq/9spkc/8AjqmuvrI8U2Dar4T1jT0Hz3VjNEv+8yED9TQBqhgwBByCM59a4/QMap8QfE2r/I8dmIdJgYdRsHmy/wDj0qj/AIDWn4c1eO48B6VrFy6qradFcTNnhf3YLflzVH4cW0kXgqzvbhQtzqbSajPgdWmYv+YDKPwoA60dKKQcCloAKKKKACiiigDifGgOg6rpvjOFTssT9l1IKpJezkIyxwCT5b7X47b67SNleNWRgykZBByDUV1bQ3ltNbTxrJDNGY5EYZDKQQQR9DXJ+A55dOjvfCN7Kz3OisEt3Y8zWjZ8lvfABQ+6e9AHZ0Ug6UtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFNPU81yniDxVPDqA0Dw9Cl9rzqGdXJ8mzQ8eZMw6eoUHcaALPibxXHojw2FlA+oa3dAm1sIiAWHQu56JGO7H071B4c8KSWN9Jret3Kaj4huE2SXO3EcCdooR/CgyfdjknrVrw14Wt9AWe4ed7/Vrsh7zUZgPMnbGBgdFQY4QcAV0IoAQcrzz9aWiigAooooAKKKKACiis3WNd0zQLN7vVb+CzgHRpnAycZwB1J9gM0AaVVry9tdPt5Lm9uoba3jGXlmkCKo9ST0rkj4l8R+IX8vwzozWlmeP7U1dTGuMjmODh345BbaOKmsvAdlJdR3/AIhvJ/EOoL8yvfY8mNvWOAfIn1wT70AQt43vdcJi8HaRJqCdP7TvCbezXrypI3S8joox/tV5R8UvDWt2enX0994l1HUXgiS+vLYyMLWMyziOJUiZmwARL1PYYxgivooAAAAYA6ADpXmviex/tvwZ8QL3GRKHig75S1Tp/wB/Vl/SgDv9Ge3k0WxltYo4reSBHjSJdqqpUEADsOaq+IdVOmWDeSwW5kVjGSM+WqjLyEd1VRn3OBwWFY/w71SOf4XaDeyyqscVgiu7NgKIxsJJ9tvNc98SNSlsPhrrmtXAeO61KIWdrGwwYoHONuOzFdzt36A/dFAHK+E9B1bxj8KtY1vUtZ1q4vJTNLp8LX0hQGL5o/lzgnzB6dhXtehamms6Bp+qR/cvLaOcD03KDj9azvBGjHQPBGi6YUCSQWqCUf8ATQ/M/wD48WrO+HQNlpOo6CVZf7H1Ge1jDHJ8kt5sR+myRR+FAHZUUDpRQAUUUUAFFFFABRRRQAUUUUAFBGetFFAEcsaSo8bqrI4wysuQR3yO4riZfCep+GZXvPBcyJbklpdDuXP2Z+cnym6wt19VyeQK7qkwPQUAc7oHi+w12eWyZJrDVoR+/wBNuwFmT3AB+dO4ZcjkdOldD25GaxfEPhfS/EkUYvomS4hbdb3kDGOe3b+8jjkHOOOQcciufGu674LJj8Tq2p6Mv3Natov3kK9f9IiXn1+dQRwMgZoA55Hmt/gv/wAI9HNi7mvpPD8ZPP3rloj+UeT+Fes28EdtbRQQoEijQIijooAwBXjfhy5g1f4rT6NZypcafY6jca95sZDJIZYIljCsO4aWRvy969nHSgClqd7Lp9q08NhdXrAgeTahC5z3wzKMD61zPhb4laN4t1u70e0gvrW+tULyRXaKpIDYO3azZwSPzro9e1EaRoOo6jt3G1tpJgn94qpIH4nA/GvG/HGkv8OtV8GeL7YFls0jsNTZeTINuCx9SR5nJ7haAPZ9SvZNPsnuI7K6vWXGILUK0jD23Mo/WsHw146h8UzAWWia1FBuaN7q5t0jiRlzkZ3ZJyMcA8+lbeo6rBYaDc6vuElvBbNc5U53KF3DHrnFR+GdOfSvDOnWU2PPjgXzj/elPLn8WJP40AagOQCDketLRRQAVxPjiKXR73T/ABlaIzNphMWoIg5lsn+/067DiQfQ+tdtUVxDFcwyQTRrLFIpR0YZDAjBBHcEUAOhkSaBJInV43UMrKcgg9CPan1xPgaebS57/wAHXsjGTSSrWTMeZrJ8+UR3JXBjPYbR612o6UALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUxmIPU0McHJbAAyc9BXC3Wr6h44u5dK8N3L2ujxMY77Wo/vOR1it/Vuxk6DnGTigCxrHiO/1nUpvDvhNl+1RnZfam67orEeg/vy+i9B1Nbnh3w5p/hvTfstirMZG8ye4lO+W4kPJd26sSf/AK3GKtaPo+n6FpUGm6bax29pCMLGvP1JJ5JPUk5JNX6AEx6iloooAKKKKACikPXriud1zxno2gzC0muJLnUmGY9OsozPcP34jXkZHc4HvQB0JODWPrfinR/DqIdTvo4pJDiKBfnmmOQMIi5ZjkjoKw9vjXxL994/DGnN0VCs97IvoTykRx6ByPatbQvB+i+HpXuLS1Ml8/8Arb66cy3En1kbJ/Ace1AGR/afjHxKv/EqsV8PWDDIvNRjEl0w9UgzhP8Atof+A1oaT4G0jTrxNRuhNquqrz9v1F/OlB/2M8IOeigV0wAxS0AJgUtFFAFLVdQg0nTLrULpttvbRNLIfRVGT+OBWToekN/wgdvp1zgzXNmxuSDkGSUFpD75Zmp3iDwZofiiXOs2090oUL5X2yZI8A5B2K4UnJ64zV3RdCsPD9iLPTknS3B+VJbmSbbgYwvmMSB7DigDy/4MzTaz4DstHkjcWmm3Mv2osvEh370iz3GWLN7BQchiKs/Fn/id+LfBXhJfnjub77Xcp/0zT+fy+bXpNlomn6bpj6dZW4t7V95ZYXZDlySxDA5ByxOQcjt0rAf4ZeFZdQTUJLO7e+QYW6bU7oygcg4fzN3Qnv3oA7AcjtXHW4/sr4s3sQTbDremx3AcnhprdijAD12SR/gtdZaW6WlnFbxmQpEoVTJIztgerMSSfcmuT8dKLG+8N6+Ao+wamkMzHosM4MLZ9ssh/wCA0AdkKKB0ooAKKKKACiiigAooooAKKKKACiiigAooooAO+aYygjbgEYxg0+qmpX0Omabd39w22G1heaQ+iqpJP6GgDy3RfDl7/wAJb4q8QeDJ7SwMN8LMWUkA+zXXlxqZAxAyh3scMvcHIOa7TQ/GdvqN8dJ1K3k0jW0GTYXLAlx/eiccSLwenIxyBS/D2yms/A2ltdZN3dRm8nLDB8yZjK2foXx+FaHiLQNN8QacbbUbP7SqfvItp2yI46NG/BVvfI688UAVPFZ+1LpOlDn7fqEQcf8ATOPMz59iIwv/AAKpvGHh6LxV4T1HRpcZuYiImP8ABIOUb8GAP0rzi2v/ABv4c1qLVNc0HVdT0HT4JY7eZpLeS8jVynzSLG58wgIRkY4Yk16rpmq2Gs2EV7pl3FdW0gyskLBh9OOh7UAeReAfEMuueArHwlekrqNrqcenTxv97yUJlII9PLikj/4DXtY6V57pXgD+zfjBqXiiML9hurXcqBh8twxAc46/dBOf+mhr0JRhQAMcdKAFooooAKMUUUAcX46il0p7LxhaRs8ujk/a406y2T/60Y7lcCQZ/uH1rsLeeK6toriCRZIZUDo6nIZSMgj2IolSORGjkRXRgQysMgg8EEVxvgqRtEv9R8GXEhzp2LjTyzZMlk5O0DnnY25D7BaAO2opF+6KWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACobieO2iknmmjiijQu7yMFVQO5J6D3qDVNTs9GsJ9Q1G6jtrOBd0kshwFH9T2A7k8VxkOn6h8Qp477XLeax8MoRJa6TICsl6RgiS4x0Qdo+/U9sgDWlvviTJsgM9j4Q6PMMpNqg6FVPBjh9W6sOBjnHd2dpbWNnDa2kMcNvCgSOONQqoo6AAdKkjVVjUKoVQMAAcAelPoAKKKKACimO6oCWYKqjJJPAHvXI3Hj+1urmSy8MWU/iG8Q7WNoQttEfSSc/IPoNx9qAOvJ54+lctqnjvS7G9bTbBbjWdVHBstNUSsnIGZGztjGSOWIql/wiuu+IlLeLdZK2z8HS9KdoYdp7PL99+DyAVBPaur0vSdO0axSz0yygs7ZekcMYQZ9cDqfegDlhpHi7xJhta1NdDsGx/oGkvunYHtJcEcH/AHAPrXQaH4a0bw5btDpOnw22/wD1jgZeQ5Jy7nLMeT1JrWooAOCKKKKACiiigAooooAKMCiigAxSYHpS0UAFYfjDRzr/AIQ1bS1H7y4tmER9JAMofwYKa3KQ+1AGV4Y1dde8LaXqoxm6tY5WA/hYqNw/A5H4VrVxvgEf2fHrnh/5VGl6nKIUHaCb99H+khH/AAGuyoAKKKKACiiigAooooAKKKKACiiigAooooAK474ksbjwwmjI7JLrN5Bp4ZeoV3BkP/ftXrsa43VP+Jl8UdFsxuMelWM9/IB93fJ+5jz7482gDsEAVAqjAHAA7U7FIOlLQAYHpXIar4MaLUZNY8L3g0jVX+aRNu61vD1xNH68Y3rhhknmuvooA5LSfGivqMei+IbNtF1luI4pXDQ3fbMMnR+3y8MM9K6xc45rP1jR9N13T5NP1W0iurWT70cg79iD2I6gg5FcoU8S+CD+5N14k0BesbENfWo/2Tx5y+x+YZHXFAHeUVl6Jr2m+IbBb3S7xLqAnaSvDI3dWB5Vh3BFaanKgjpQAtFFFABXGePLSWyWy8W2UbteaGxkljTrNatgTJ+CjcM904612dMdVcFWAZSMEEZ4oAZaXEN5Zw3NvIssEyCSORejqRkEfXNTVw/gtpPD+q6j4MuWby7XN3pZZiS9o7fcz/0zb5foV7V268qDnOaAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKytf8AEGn+G9Ne/wBRmKRghURRueVz0RF7sew/+vUHiTxNaeHLeLzVkuL25by7SygwZrh/RQew7seAOtZeheGru41RPEfid47jWdp+z28ZLQaeh/hjB6uf4nPJ6DAFAFbTNC1HxLqMGv8AiuPyo4GEunaNnctue0suOHlx07L25zXcL90dD70LyvPP1paACiqOqatp+i2b3mp3sFnbJ1kmkCj6D1PtXKr4r13xEoHhTRylowB/tbVQ0UJB7xxfff2Pyj3oA7G6u7eyt5Li6njggjXc8srhFUepJ4Fcg3jm51pmh8G6VLqwyVOoTkwWSHOD85G6TBHRAfrUtt4CtrqeO88T3s/iC8Rtyi7GLaI/9M4B8g+p3H3rr0VVUKoAUcAAcAUAcUnga51p1uPGWrSar0P9nwZgskPX7gO6TBzgufwrsbW2t7O1jt7aCKCCMbUjiQKqj0AHAqbFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcaQNJ+LSsNiQ65phBHd57d+P/HJT/3xXYjOOetcd8QP9Ah0XxACqf2VqcLySEdIZcwyfpJn8K7EdKAFooooAKKKKACiiigAooooAKKKKACiiigBDXG+Dx/aHiHxXrx37Z79bGEHkeXbrsyv1kaWuj1vU4tF0O/1Sb/VWdu87D12qTj9KzfAmlyaP4H0i0n3faTAJrjd182Ql3z/AMCY0AdCOlLRRQAUUUUAFGB6UUUAcprXgyG71M6xo12+ja3jBu7dQUmH92aPpIPrgjseKr6f4zuLK/h0nxdZrpV/K2yC6Rt1ndtz/q3P3WOPuNg+5rs8A9RVPUtOs9VspbG/tobm1lGHilQMrd+h/wD1jrQBbU5UE0tcGNL8Q+CUDaCZda0NfvaXPJm4t1/6YSN94AfwPzwADziuj0DxNpfiS0abTrgs8bbZoJFKSwP3V0PKkGgDZopBnHNLQBx/jy1ntrO18TadGXv9Dcz+WvWa3IxNF+K/MP8AaRa6iwvbfUtPt760kWS3uI1lidejKwyD+RqVup9MVxXhJ/8AhHNf1DwbIdsCZv8ASien2d2+eMf9c3JH+6y0AdxRSDpS0AFFFFABRRRQAUUUUAFFFFABRRTSevNACmua8TeKv7Imh0zTbY6jrt0M29lG2MLnHmSH+CMHjJ6ngVX8QeKbr+0v+Ed8NQx3musoMrP/AKmxQ9HlI7nqEHJ9qveG/C9r4eiml86S81O6O+81CfHmzt/7Ko6Ko4AoAq+G/CraZdS6zq90NR8QXKBZrwjCxL/zyiB+7GD+LdTXUfUVga54x0XQJFt7q7Mt/IP3NjaoZriQ44xGvP4nA96yvM8aeJDhEj8L6cx+8+24vZF9hzHFkHvuIoA39c8S6P4dtxNquoRWoc4jQnLyH0RBksfYA1z/APbHi7xKxTRtNGhWDdNQ1VN07DnmO3B4PQ5c9P4a1dD8G6LoU7XkED3OosMPqF7IZrh+McyNyB7DA9q6HAI6D0oA5XSvAml2V8upX8lxrOqKcre6k/mvGc5/drjag/3QMV1QHFLiigAxRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBk+JdJXXvDWqaS+ALu2khDEZCkqcN+BwfwqDwZrDa94M0jUpG3TzWyefxjEoG1x+DBhW4a47wQxsdT8UaAzf8eOpNcQoBgLDcASgD23mQfhQB2VFA6UUAFFFFABRRRQAUUUUAFFFFABRRRQBx3xF/wBM0nTtCCljrOowWjhTgiEN5kp+myNh+NdgBgAenFcddD+1fizYwbSYdF017ksG4E07bFBHrsjk/wC+veuxHSgBaKKKACiiigAooooAKKKKADArmvEHg+y1i8XU7WaXS9biXEOpWmBJ/uuDxInT5W/SuloxQBxEHi+90CdNP8aQR2gZtkGsQcWc/oHz/qWPo3HBw3Su2Rg6BlIIIyCO4qK5tre8tpLa5hjmgkG14pFDKw9CD2rim8Pa14OYzeEpPtmmAln0K6lwF5yfs8h/1frtbKnnpQB3dcl4702drK01/TovM1TQ5DdQovBlixiaL/gSZ/ELV/QfFmm+IRLHbvJBe2+BdWN0vlz25wPvIecc8MMg9jW2eRz39f5UAQabf22q6Za6hZyCS2uYllicDGVYZH86tVw/hYHwz4m1Dwk522cu7UdK7ARs372If7rnIHo/tXcUAFFFFABRRRQAUUUUAFFFMckHrxQAM2DjOK4rVfEOpa7qk/h7wpIqzQt5eoas6borM90Ts8oB6dB3Ppxviv4nzeJNbbwt4QWa4g5W8vrWVE3DkFI5G+VFPA8znr8oPGdvSPDDS6dDY6prllpmkRKAmjaLP5Sbcn/WzkiSQnvjbk889aANKz1bwz4KhPh/RkudU1XdumtrMfaLmSQ43PO/AUk9S5GO2BxUw07xh4mA/ta+Xw7Yt1stNkEl0w/2pyMJ/wAAGf8Aarb0eHw1oNitnpP9m2cA6pCyLuPTJOck8dTzWh/aum/8/wDa/wDf5f8AGgCnofhfRvDkTrpdhFA7/wCtmI3Sy85y7nLNyT1Na+OMYqp/aum/8/8Aa/8Af5f8aP7V07/n/tf+/wAv+NAFyiqf9q6d/wA/9r/3+X/Gj+1dO/5/7X/v8v8AjQBcoqn/AGrp3/P/AGv/AH+X/Gj+1dO/5/7X/v8AL/jQBcoqn/aunf8AP/a/9/l/xo/tXTv+f+1/7/L/AI0AXKKp/wBq6d/z/wBr/wB/l/xo/tXTv+f+1/7/AC/40AXKKp/2rp3/AD/2v/f5f8aP7V07/n/tf+/y/wCNAFyiqf8Aaunf8/8Aa/8Af5f8aP7V07/n/tf+/wAv+NAFyiqf9q6d/wA/9r/3+X/Gj+1dO/5/7X/v8v8AjQBcoqn/AGrp3/P/AGv/AH+X/Gj+1dO/5/7X/v8AL/jQBcoqn/aunf8AP/a/9/l/xo/tXTv+f+1/7/L/AI0AXKKp/wBq6d/z/wBr/wB/l/xo/tXTv+f+1/7/AC/40AXKKp/2rp3/AD/2v/f5f8aP7V07/n/tf+/y/wCNAFyiqf8Aaunf8/8Aa/8Af5f8aP7V07/n/tf+/wAv+NAFzFcbeE6X8WNPmLMIdZ02S1KgcebA3mIT9UeUfhXTf2rp3/P/AGv/AH+X/GuQ+IWo2UGk6frEN9AZNJ1K3vCqSqWaPd5cgx/uO5/CgDuxyKKpLq2mlQRf2uDyP3y/40v9q6d/z/2v/f5f8aALlFU/7V07/n/tf+/y/wCNH9q6d/z/ANr/AN/l/wAaALlFU/7V07/n/tf+/wAv+NH9q6d/z/2v/f5f8aALlFU/7V07/n/tf+/y/wCNH9q6d/z/ANr/AN/l/wAaALlFU/7V07/n/tf+/wAv+NH9q6d/z/2v/f5f8aALlITiqn9q6d/z/wBr/wB/l/xrL8ReJ7HR/Dmp6lHe2zyWttJKiCVTuYKSoxnucCgDN8Dj7ff+JtfZRm+1N4IXByGhtwIlI9tyyH/gVdkOlcv4NXTdD8GaPprX1p5kNqgl/fLzIRlz17sSa3P7V07/AJ/7X/v8v+NAFyiqf9q6d/z/ANr/AN/l/wAaP7V07/n/ALX/AL/L/jQBcoqn/aunf8/9r/3+X/Gj+1dO/wCf+1/7/L/jQBcoqn/aunf8/wDa/wDf5f8AGj+1dO/5/wC1/wC/y/40AXKKp/2rp3/P/a/9/l/xo/tXTv8An/tf+/y/40AXKKp/2rp3/P8A2v8A3+X/ABo/tXTv+f8Atf8Av8v+NAFyiqf9q6d/z/2v/f5f8aP7V07/AJ/7X/v8v+NAGX4h8J6b4gkiuJPNtNSt/wDj21C0by54T7N3XnlTkHPSsRPFGreE2Fv4xQTWBKrFr1rHiLngefGOYjnHzDKHcOldf/amm/8AP/a/9/l/xpkmo6ZKjo95aMrDBUyKQR3yM9KAOf8AGdlPqGi2uvaEUn1PSpPtlmY2UidcYki3f3XTI474Paui0jU7XWtHs9Tsn3211EssZPB2kZ59/WuIn0c+GpZL3wVqtlHExLS6JcXA+zS9cmI9YX5PT5emRWb8NfGFm3irWPCqQz2a+Y17a2s+3MBc5mhG07SoYl1x1Vz6UAerUUg6UtABRRRQAUUUUAFQ3Vrb3trLbXUMc0EqlZI5FBV1PUEHqKkJ5rJm8UeH7WZ4bnXNMimjJV0e7jVlI65BIxQBT/4V/wCDT/zK2jf+AUf+FH/Cv/B3/QraP/4BR/4VaPi7w138Q6T1x/x+x/8AxVWLHXdH1WZodP1Wxu5VUsyW9wkjBemcKc9xQBm/8K/8Gn/mVtH/APAKP/Cj/hX3g3/oVdG/8Ao/8K6MDjmloA5v/hX3g3/oVdG/8Ao/8KP+FfeDf+hV0b/wCj/wrpKKAOb/AOFfeDf+hV0b/wAAo/8ACj/hX3g3/oVdG/8AAKP/AArpKKAOb/4V94N/6FXRv/AKP/Cj/hX3g3/oVdG/8Ao/8K6SigDm/wDhX3g3/oVdG/8AAKP/AAo/4V94N/6FXRv/AACj/wAK6SigDm/+FfeDf+hV0b/wCj/wo/4V94N/6FXRv/AKP/CukooA5v8A4V94N/6FXRv/AACj/wAKP+FfeDf+hV0b/wAAo/8ACukooA5v/hX3g3/oVdG/8Ao/8KP+FfeDf+hV0b/wCj/wrpKKAOb/AOFfeDf+hV0b/wAAo/8ACj/hX3g3/oVdG/8AAKP/AArpKKAOb/4V94N/6FXRv/AKP/Cj/hX3g3/oVdG/8Ao/8K6SigDm/wDhX3g3/oVdG/8AAKP/AAo/4V94N/6FXRv/AACj/wAK6SigDm/+FfeDf+hV0b/wCj/wo/4V94N/6FXRv/AKP/CukooA5v8A4V94N/6FXRv/AACj/wAKP+FfeDf+hV0b/wAAo/8ACukooA5v/hX3g3/oVdG/8Ao/8KP+FfeDf+hV0b/wCj/wrpKKAOb/AOFfeDf+hV0b/wAAo/8ACj/hX/g3/oVtH/8AAKP/AArflljhR5JXWONBlmZgAoHcnsKxf+E28Kcf8VPov/gfF/8AFUARf8K/8G/9Cro3/gFH/hR/wr7wb/0Kujf+AUf+FWYfF3hq4lWKHxDpMshOAkd5GxJ+gNbSkMoI5B70Ac5/wr7wb/0Kujf+AUf+FH/CvvBv/Qq6N/4BR/4V0lFAHN/8K+8G/wDQq6N/4BR/4Uf8K+8G/wDQq6N/4BR/4V0lFAHN/wDCvvBv/Qq6N/4BR/4Uf8K+8G/9Cro3/gFH/hXSUUAc3/wr7wb/ANCro3/gFH/hR/wr7wb/ANCro3/gFH/hXSUUAc3/AMK+8G/9Cro3/gFH/hR/wr/wb/0K2j/+AUf+FdEzKoLMQABkk9APesUeLvDXQ+IdJBPY3sf/AMVQBXPw/wDBpOT4W0f/AMAo/wDCj/hX3g3/AKFXRv8AwCj/AMKs/wDCX+Gf+hi0nn/p9j/xq5Y6xpmq+Z/Zuo2l55eN/wBmmWTbnpnaeOh/KgDK/wCFfeDf+hV0b/wCj/wo/wCFfeDf+hV0b/wCj/wrox0paAOb/wCFfeDf+hV0b/wCj/wo/wCFfeDf+hV0b/wCj/wrpKKAOb/4V94N/wChV0b/AMAo/wDCj/hX3g3/AKFXRv8AwCj/AMK6SigDm/8AhX3g3/oVdG/8Ao/8KP8AhX3g3/oVdG/8Ao/8K6SigDm/+FfeDf8AoVdG/wDAKP8Awo/4V94N/wChV0b/AMAo/wDCukooA5v/AIV94N/6FXRv/AKP/Cj/AIV94N/6FXRv/AKP/CukooA5v/hX3g3/AKFXRv8AwCj/AMKP+FfeDf8AoVdG/wDAKP8AwrpKKAOb/wCFf+Df+hW0f/wCj/wqxY+DvDOmXsd5YaBplrcxZ2Sw2qI65GDggZHBIraPBrL1bxLouhlF1LVLW2kf7kUkg3v9FHJ/AUAaworH03xJpOrzGGxv45Zgu4wnKSbfXY2Gx74xV6yvra/iaS1uEnRJGjZ42yNykhh+BBH4UAWqKbz6n8qOfU/lQA6iiigAxnrXivxRsrXX/ir4N8NR20OWkN3dkIMvHuyQT/uxv19a9pPXvXiOjR6n4p+OXibWdLubOL+yEFnG93btMg42HAV0IOVkOc96APXZbLSYGijktbKMyt5catGg3HaWwOOThSfoD6Vz9h4XsNM+Jk+q2FhFbCTShFKYYtis5lz0HGcJz+FU7C28SXPxMUa5f2NxaafYefAlpA0KrLKxjDMGZjnasgzn6Y5rvQBge1AAOlLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANYBgVIyCOQa8b8J2dr4j+PPinVPs8LWelRLZxr5YwJOEJ/8AHJPzr1nVr+LStJvNRnIENpA87k+igk/oK83+A9hKPBd5rd0C1zq99JOznqyg7f8A0LefxoA9B1Lw/pGrWr2t/plncQuCCskKnr6ccGvPfhrqNzo3jfxH4Bnupbi207FxYtKxZo4m25Qk9h5ifrXqZwAWJwOuSe1eMfCcP4h+JvjDxioJs5Ha1t2I++pcEH8FjT86APah0ooHSigAooooAKKKKACiiigBpAJwRnNeK6fYWfiL9o2/K2lubLRLMLtWJdjSYA5GMZBdv++B6V7PcTx2tvLcTMFiiQu7HsAMk/kK8R+D2ma3rFtr3iq11RLCXVdQcsr2gmLAEtkEsMDdIR/wGgD1+Wz0b7ULJ7OyM0kTSeUYVOUUgE4x0BYfnWD4U8M2eg+LPE8+n2a2lvdtbYSOPam5UJJUDgcv271B4NsNXj8T+JbzWdUGpSxyQ2dvOIREqxhBKQqgkdZQM5yStdnb3ENzGZIZFkVXZCVOQGVirD8CCPwoAmHSiiigAooooAKKKKACiiigAooooAKKKKACiimnk4oA8++IXjS/sdTsfCXhoK/iHU+kjDK2sfOZD7gAnHYDPoDveF/Bum+GYfNjDXepyjNzqNzlp52xySxyQP8AZzxXm3wuU+IvjB408R3RLyWshtoN38Ks7Kv0IWID8TXs9zcJbQSzSBykSGRtiMxwBngAZJ4PAyaAOW+JGmreeB9UuoneG+0+1kura5ibbJEyqSdrDkBgCD6g1d8A6R/YXgLRNPZdskdqryD0kf53/wDHmNZ138SfB/2gabd3k4nnXb9km024DyA8Y2GPJB54xzXX20yXFtFNGHCSIHUOhRgCMjKsAQfYgEd6AJaKKKACiiigDA8SeLtF8MW80mpalbQTrC00du8gEkgA6KvU5Ix3rzP4E6rpFrod4L3VLRNc1PUGdreSULK/AA+U8nJ3Hv1r2uigBqqo+baAxAycc/55p1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU0kg06jA9KAPJ/jL430m18Dapo9pqttLqlwVtmgjkDOi5BfcB0+UEc+tbHhLxV4N8PeDtJ0z/AISXSA9taorhbtCS+MtwD1LE13+B6ClxQB53rus6n42s5ND8KW9xDaXQ2XetXMTRRRxHqIg2GkY8jIGPfuOu8NeHdP8ACug22kabFsghHLEfNIx6sx7k/wCeK1cD0paADpRRRQAUUUUAFFFFABSGlooA81+LPjfSNK8Ga3pkWqWzatND9nFokgMiiTAJI6j5CTz7etR/DjxL4Q8O/D3RdOm8R6TFOtuJZka7QMruS7AjPUFsfhXpuB6ClwPSgDzvX/itokfl6Z4bvodV1y9dYLSK3O+NHbA3Ow42jOcZ7duo7bR9Oj0nR7WwjYuIYwpdurt/Ex9yck+5q9iigAooooAKKKKACiiigAooooAKKKKACiiigApDnNLRQB4/Yxf8Kv8AiXrVxqCNF4c8Qus0d8ATHbzBidkn90ZduenK+hx6PN4n0GCyF3JrOni3xlZBcqQ3rjnn8K15I45UZJEV0YYZWGQR71RtdC0exnM9ppVjbzE5MkVuiN+YGaAPMNGtb/xH8eZdfu9OubWwtNMDWDXEZVmVsoGweVzulODggYyATXrw6UuKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/2Q=='] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 12 "如图, $A B$ 是圆 $\omega$ 的一条弦, $P$ 为弧 $A B$ 内一点, $E, F$ 为线段 $A B$上两点, 满足 $A E=E F=F B$. 连结 $P E, P F$ 并延长, 与圆 $\omega$ 分别相交于点 $C, D$. 求证: $$ E F \cdot C D=A C \cdot B D $$ " ['连结 $A D, B C, C F, D E$, 如下图. \n\n\n\n\n由于 $A E=E F=F B$, 从而\n\n$$\n\\frac{B C \\cdot \\sin \\angle B C E}{A C \\cdot \\sin \\angle A C E}=\\frac{\\text { 点 } B \\text { 到直线 } C P \\text { 的距离 }}{\\text { 点 } A \\text { 到直线 } C P \\text { 的距离 }}=\\frac{B E}{A E}=2 . (1)\n$$\n\n同样\n\n$$\n\\frac{A D \\cdot \\sin \\angle A D F}{B D \\cdot \\sin \\angle B D F}=\\frac{\\text { 点 } A \\text { 到直线 } P D \\text { 的距离 }}{\\text { 点 } B \\text { 到直线 } P D \\text { 的距离 }}=\\frac{A F}{B F}=2 . (2)\n$$\n\n另一方面, 由于\n\n$$\n\\begin{aligned}\n& \\angle B C E=\\angle B C P=\\angle B D P=\\angle B D F, \\\\\n& \\angle A C E=\\angle A C P=\\angle A D P=\\angle A D F,\n\\end{aligned}\n$$\n\n\n\n故将 (1) 、(2) 两式相乘可得 $\\frac{B C \\cdot A D}{A C \\cdot B D}=4$, 即\n\n$$\nB C \\cdot A D=4 A C \\cdot B D . (3)\n$$\n\n由托勒密定理\n\n$$\nA D \\cdot B C=A C \\cdot B D+A B \\cdot C D . (4)\n$$\n\n故由 (3)(4) 得\n\n$$\nA B \\cdot C D=3 A C \\cdot B D\n$$\n\n即\n\n$$\nE F \\cdot C D=A C \\cdot B D\n$$'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAXkBigMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACk3D1oYZFeY/G+DSoPAN5qF1YwS6gSltaTOnzIWYE4P+6G/KgD07IFGR61wHhL4b+HLXwjpMWoaHZT3v2WNriSaEM5kIy2SfckfhXL+Irg/D74n+F7Lw7JLFZas4iu9N8xnhwXCh1Uk7TyTxj7lAHtGaKaOtOoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvGvjPLJrHiXwh4Uhh+0G4uvtU0AYKWUfKOT048zmvY2kRFLMwUDqScAV41otzB4n/aN1LUPPjkttFsvIt2DAgtgKQPXl5aAPRZNU8SkbYPDUW/oPN1FVUfUhSf0rJ0fwHK3iw+LvEtzFea0E8u3igUi3s17BM/Mx5PzHH3jwK7cdsUtACAc5paKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ9KAKt7qdnp72qXU6xvdTCCBSCS8hBIAA9gT7AVbyK5m3gXU/G97eyncukwraQA/wSyKJJX+pQxAeg3DvU11r8sfjXT9AgtRIs1pLd3MxYgxKpCqB65Y0AWtZ8TaP4flso9Vvktnvpxb24ZWPmOe3AOByMk8DIya1siuM+IOk2Ot2ej2lxEj3Darb/ZyfvDa26TH/bJJOPp3FdkM96AFoopMigBaKTIzVS/1bTtKi83Ub+1s4/79xMsY/NiKALlGa5J/iZ4TMrQ2mpvqEw/g0+1luc/jGpH61GnjqadyLTwh4nnUdHktEgU/9/XU/p3oA7HNGa5AeJfFUkoWLwHdhMH559StlwfcKzGoW1/x0T/yIVsR2zrkf/xugDtcikPQiuPXxD40WFml8BruHRIdYiYn/vpVFOPi7WoVzeeBdbT1+zzW038pRQB0WoaTp+r2/wBn1KxtryDdu8u5iWRc+uGBrOXwX4WVlceGtHDqchhYxZBznI+X1rNX4jaVEpOo6Zr2mhfvG60mbA/4EisP1rR03xx4W1d1jsfEGnTStwsX2hVcn/dOD+lAG6q4xwBj0p1NWRHzsdW28HBzjjP8iKXIoAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPSlooA8z1v8A4Tfwz4y1K+8PaJDrWm6t5UhRp1iMEyRrH3I4IVfy7VmXOi/EXRNVg8YRJb6zql1G0F/piuEjghyGjWIkj7pByeeSevJr17GOen40mf8A61AHFeFtN8R6nq48SeK4IbOaKIw2GmQvvFsrffkZv4nbAHsM+prtc4xk1zes+NtL0u//ALLtkn1TVyNw0+wTzJVGR8znoi8jliOPWs4aN4s8SYfW9TGh2Jx/xL9JfMxHHElwR9chAPrQBta54x0Dw+yw6hqUS3T42WsQMs8mem2NQWOfpisgeIPFutL/AMSPwymnw8bbnXZPLPXtDHl+n94rW5onhfRvDsbLpWnQ27P/AKyXBaWTvlnJLN+JNawGKAOPPg7WdTO7XvGGpSqWz9n0xRZRAf3crmQj6vVzT/h74U02UzQ6DZvOTkzXCmeQn13Pk/rXTUUAMSNI1Coiqo4AUYp2D3paKAE5zS0UUAFJjiloNADW4HtmuH8dzWF28Gg2+jafq2v3yEW8V1AjpbR955CQdqL2HVjgCtnxT4mTQLSGK3gN7qt6xisLKM/NM+Op9EXILN0A9yAWeFfDTaJHcXl/OLzW75hJfXeOGbnCJ6Io4A/xoA4Dwj8PI9J8Q67oUOt6xZTWv2a8hubK48kSrIhDZiwY8b42GNvAxzxXYm08eaPhoL/TfEEK5Pl3cf2SfHYB0BQn6qtLfFdP+LOjz7mA1TTJ7Mr2LQusqfjhpa7DrxQBx0XxCsbOWODxLp974enYgB75Abdm9FnQlPzIrrbe5gu4I57aaOaGRdySRsGVh6gjqKJYUmjaKSNXjcbWVhkEHrmuSuvh9a20sl34Yvrnw7eu29vsfzW8jdPngb5D+AU+9AHZZFFcM3izWvDTbfFuk77Nc/8AE40tWkhA55lj5ePA7/MMnrXX2GoWeqWcd5YXUN1bSfcmhcOrfQigC1RRnNFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFHSgApM0E8Vyuv+K3tb/wDsTQbVdT151DeSGxFbKf8AlpO/8K9wv3m7DnNAGvrmv6X4e083eqXiW8RIROCzSMeiooyWb2ANcyIvE/jQFpmuPDOiP92FOL+4H+03IgU8cDLcHkZq/oXg1bTUf7b1y6Oq68ykfaZBiO3B6pCnRF9/vHnJ5xXUgEHrQBm6N4f0zw9Zi00myitYd25tvLOT1LMeWPuTmtMA5paKACiiigAooooAKKKKACiignFAB0rH8SeIrTw3pLXlwHlkdxDbW0QzJcTH7saDuSf0ye1WNa1mx0HSLjUtQnEVvAuSe7HsqjuSeAB1JrmvDmi3ur6sPFniOExXrIU06wJ4sIT3I/56sCNzdR0GOgALHhXw9dxXk3iDX2SXX7tNpCnclnDnKwRn0Hc/xHNdWBjoAB04pEUgc0+gDjvHu6zXw/rClV/s/WIDIx7RS5gb/wBGg/hXYd657x5ph1fwHrlkqlpHtJHiA6+Yo3Jj/gSitLQ9RXV9C07U0+7d2sc4/wCBqG/rQBoUHpRRQA0qSMYH865C/wDAqw38ureGb06Lqch3SiNN1tdHPPmw9CT/AHlw3Oa7GkIyKAOR0rxm8WpRaN4osxpOrScRNv3Wt2emYZPU/wBxsMM9664EGqWqaRYa1p0thqdnDd2sow8Uqgj6+x75HIPSuNd9b+H5LSG51vwsOSx/eXdgvv3mjHX+8oz1AoA7/IzS1U0/UbTVLKC9sbmK4tZ13RyxtlWHtVrIzigBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiig9KAEyM4oBBrk/HuuXmleHp4NKCtq1zBKYATxGqIWkkPso6erFR3rH+CF2138LNM3szvFJPGzMcknzGb+TCgD0WiiigBCQoyTgCgnjj+VGRjg/SuH1jVNQ8T6pN4Z8OTPbQwYTVNWQf6gY5hhPeUg8nkIDnrxQA/VPEGo6/qlx4f8JyqkkDbNQ1Yrujsz3jTs8vt0XvzxW94e8N6f4asDa2EbZdi888rbpbhz1kkbqzE9/yx0qxo2jWOgaXBpum26QWkC7URefqSepJ7k9a0KACiiigAooo6UAFFJkCjIoAWikyPWgEHoaAFooo6UABOBk1Xvb620+ynvLuZIbaBDJLI5wEUDJJqWSWOOJpJHVEUFmZjgKB1JPauBt43+I2qR3c6MnhKyl3WsLDH9pSqf9Y3/TFTjav8RGT2FAEuj2dz411eDxNq8TR6VbNv0bT5B97/AKepAf4iD8oP3Rz1Oa7oA55H40KuDTqACiiigBGGVIwDx0PeuQ+GhMPhBdLZ98mlXdzp7H2jlYL/AOO7a689K4/wzmx8eeLtMKhY5ZLfUogO/mR+W5/76hP50AdjRRRQAUUUUAFIc44paKAOG1Dw7qHha+m1zwlFvhlffqGi7gsdx/eki7JLwPQN3569J4f17T/EWlR6hp0u6FiUdGG14nH3kdf4WHcfj0rUIyDXGeIfDt/p2pP4o8Loi6iFH26wJ2xajGOx7LKP4X/A8UAdnuGcZ5paytA12w8RaXHqGnyFomJVlcbXiYdUdeqsO4/pg1qAg0ALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUVxPFBbyzSyLHHGpZ3booHJJqRvuntXJ648PibWR4WjcPaRIs+rBWIxGSfLhJHQuQSf9lD/eGQB2jWTazBfa3exsj6pCYraNxzDa4+QH0LZLn6hT92uN/Z3nL+Ab23f78GoyLj0BRD/Mmu3/AOEC8NY/5BnOO08n/wAVXn/wLVbHVfGmjrwtnqICDOeMyLx/3xQB7NSGjNc94r8RnQtPijs4Vu9WvpPI0+0z/rZD3Poqj5mPYD6UAZvifV7/AFHUl8JeHp/L1GaPzL29AyNPgORu/wCujchF68buAM10WiaJZeH9Kg03T4fLt4R3OWYnksT3JOSTVLwr4dTw7prRyTNd6hdObi+vX+9PMep9lHQDsAPc1v0AFFFFABRRRQAUh6UtB6UAc342t9KPhTUL3VrSK5gsreS4RZOzBTjHuTxXnnwa8D6Vf+AIdT1qwivLi8nkkjefLFYwdoHX1Vj+NbHx31VtP+G8lnGT52pXMdsoHXGd5/8AQAPxqR4/Gngz4eeXZwaAI9K0/JLySliI0yxxjBbgnrjNAFvxN8OvCd74Z1B7XT4reaGCR4Z7WRlKOoPPynBwRjBB/Oup8K2zWfhLRbV9xeGwgjYscnIjUHPvTPDdg2meF9Os7xt06QKLhn/jlblyfqxP51sDC9BgD0FADqaSDxxQSGXjBrhtav7zxXrEvhXRLh4LWHjWNSi/5ZL/AM8Ij/z0I6n+Ae5xQBFdzS/ELVJdIspGj8LWUmy/uUJU38i9bdP+mY43sPvfdHGTXdwQR20SQwxpHDGoVERcBQOAAPSodN0600mwt7Cwtkt7W3QJFEnRVH9ff3q3QAUUUUAFFFFAAelcdqONP+K+hXRBxqWnXNkxHTdGySr+nmV2JrjvH+bS10LVw4T+zdXtndz2jkPkv+kufwoA7HNFIOtLQAUUmQehzRketAC0Um4HvS0AFB6UUUAcL4i0288LapL4u0KB5YmAOsadFj/SIx1mjHTzlHP+0Mjr167Tb611Sxt9QsZkntriMPHKnRlP+enarbEhTgZNcAAfh74lyPl8K6xP0H3dPum9P7sch/AN6A8gHoFFJkbsflS0AFFFFABRRRQAUUUUAFFFFABRRRQBBe2kV9ZyWsxlEcgw3lStG34MpBH4Gud0b4eeGtA1Q6lpdjNbXjZ3yC9nbfkHO4F8N1J5HXmupooApalplvq1m1rded5THJEM7wt1z95GB/Wue0z4aeFdGvPtem2Nzaz7gzPFqFwvmEHPz/vMNz65rrqRvunPSgCCe4gtLWW5uZVjgiRpJZHOFVQMkk+mBXH+D7WfxBqUnjXUo3U3Ufl6Vbuf+Pe0PIfHZ5OGJ64wM4yKwfirqkuq32leC7R5hHe3dsNUmh6xxPJtVM4wGbDNg9k9DXSHwn4jtVVNN8c3yqv3UvbG3nH6Kh/WgDsOn0pciuQe3+IlttEN94bv1HXzraa2Y/iruB+VDa342tCBP4Ntbsd3sdWTP5SIn86AOwzRXHP46ltmC3/hHxLbZOC0dmtwv5xOx/Snf8LO8IxzCG61N7GQ/wAN9azW/wCroB+tAHX0Vj2Xizw7qTbbHXtMuW/uw3aMfyBrXDKwBBBB7igBaRiFUliAoHJPajIqK6t4L21ltrmGOeCVSkkciBlZT1BB6j2oA8e+IVxD4l+Mfgzw7HNHJBZuby4AYEAg7ire+Iun+1XrtzLZtbSLcvAYCpDiRhtK9857VjjwN4RJwfCuh4z/ANA+L/4ml/4QXweenhXQ/wDwXQ//ABNAGS3iCx8X+LIdE0u4ju7LTSt5qM8Tbo96n91EGHU7/nP/AFzx7V2ox16Zqhpui6VoqSLpmm2dhHIQ0gtoFiDEdztAzWN4p8R3NlNb6FoiJceIL5cwo33LePo08voi9h/EcAUAVvEut399qv8AwinhuQLqkqB7y8xldPgP8RP/AD0YfcX8TxXQaDodl4d0mHTrCMpDHyWY5eRj953P8TE8k1B4a8OW/hvTjbRM01xM5mu7uT79zMfvO3ufToBxW1QAUUUUAFFFFABRRRQAVz/jnTTq3gTXLFE3SSWUhjH+2F3L/wCPAV0FIcY56UAZ2gakNZ8PabqYAH2y1jnx6FlBP860T0rj/hoVg8KvpW5mfSb65sDu6gJK2z/xwp+ldgelAHn/AMTPFuu+CNIOs2n9ly2vmJCsFxHJ5jMc5wwYAjAJ6dq0tPk8c3emWt1NPoEDzRJI0RtpiUJGSCfMHQ8VwnxrvLW+8U+DvDd5cwwWUl19qvGmkCIse4KCSeAMeZXdX/xA0Rrix0/Q9W0/UdSvbmOGOK3mWYKm4b2bYTgBNx5xyBQBTOteM9O8ZaLpmpW+jT6dqLyp9ptFlVkKRs4yGYgZC+9d3VK506O61Cxu5GO+zd3QDHJZCnP4E1eoAKKKKAEPIqnqmmWmsaXdadfwLNaXMZjkjbuD/IjqD1Bq7SEZFAHH+C9UuoJ7rwrrExk1TSwDHO55vLY5Ec3ueNrf7Q6812Ga4/xzpt2lva+JtKRn1TRWMwjUn/SYD/roeOuVGRx95RjrXS6ZqFrq2m2uoWUoltrmJZYnH8SsMjrQBcooooAKKKKACiiigAooooAKKKKACiiigAqjrOq2uiaNe6pdvtt7SFpZCOuAM4Hueg9yKunoa4rxYP7f8UaL4VzutQf7U1EZ6wxt+7QjoQ0mPwQ0Ac5Z6TPHP4SuNWQDWda1t9UugRnyyttKUi57Iu0exB9a9YAx9K4/WUNx8TvCkeB/o9tf3JG3ODiOMH2++1djQAUHkUUUAJj2pu3IIIznqD/hT6KAMe+8K+H9TcPfaFply/8AfmtUZvzIzWR/wrHwnHKZbXTZLGT+9Y3c1v6dkYDt6V19FAHHjwJNbsWsPF3iW3z0WS8W4UfhKrH9aF0LxrayFrfxjbXSdkv9KQnPuYmT+VdhRQBx6zfEO2LGax8N36j7vkXM1sx69mRx6d6F8UeJIAf7Q8C34A/isr23nB+gZkP6V2FY3iTxFaeGtK+13CvLJI6w21tEMyXErH5Y0Hcn9OT2oA5LW/izaaZYvGNC1uDVpEJtbO8sHTzSMZOVyCq5ycHoPWovBniXwbp0E91eeLNOn1u9YSX91cy+SWfHCKJApWNeQq9vqa3/AAr4eure6l8Qa60c2v3qBZNvKWkXUQR+gHc9WPPauluLS3uozHcQRzIeqyKGH60AR2ep2GoIHsr62uVPRoZVcfoatZzXNXfw98HXobzvDOl5PJZLZUY/ioBqqPhvosEZTTrrWtNHb7Hq1woH/AS5H6UAdfkUZFcgfCGu20WzTvHesp/1+Q29z/OMH9aDY/EG1QCDWtAvyP8An6sJYSfxSQgflQB2GaK49tW8d2ijz/Cum33q1lq2z8lkjH/oVI/jW/tQo1DwV4hgJGWMEcNyq/8AftyT+VAHY0Vx7fEzwxbgfb7i9044yRfafPCB9Sybf1rTs/GvhbUCFtPEWlSsf4Fu03flnNAG7QelNSRJFDI6uD3U5pTyMUAch4d32Pj/AMWae20RXBttShHf50MT5/4FDn8a6/PvXG6qBYfFXQL0Kf8AiY2NzYOw6ZQrMmf++Za6HVLfVbmBE0rULWzk3He89qZ8j0ADrg/nQB5boqjxP+0PrmoOBLa6HaC1jyM7XI2kH8TNXpV34ftbzxDperNHEJNP80oRGNxZ129fTBb8xXI+Ffh1rnhK+1K7s/FFpPNqcwmumudKJLtljwRMMcsx79a9FUHqaAHAYxS0UUAFFFFABRRRQAjdDXEeFwfDXi7UvCj/AC2U+7UtK4wAjN++iHb5XO4D0f2rtz06ZrkPiBazQaTbeI7OMvfaDN9sUL1kh6TR/jHn8VFAHYZoqvZ3UN7aQXVvIJIJ41licdHVhkH8qsUAFGRUc8STQSRSorxupV1YZDA9R+VeH+H/AAroOu/G/wARRR6VanRtJgWL7OqfuzOwAJK9M8SfkKAPdMijNcbq3w+8Jf2TdOumW2nNHEzi7tR5Lw4Gd4ZcYx1rG+CPiHVvEXgdptXkknktrpoIriX70qBVPJP3iCxGfb1zQB6XRRRQAUUUUAFFFFACN904ri/AedVn1rxVIM/2rdmO15OBawkxx4z0yQ7/APA60PHupT6b4M1BrM/6dcqtna4OD50rCNCPoWz+Fa2kabDo+j2Wm2wxBZwJAnHOFUDP6UAc7zP8YVGDttdBJ6DGZZx36/8ALI/nXY1yGjMbj4oeKJCBi2s7G3U49fNcj/x4V19ABRRRQAUUUUAFFFFABQeBQTgZNVr++tdNsZ728nSC2gQvJK5wFA5JoAg1rWbHQtIuNRv5fLt4V5wMlieAqjuSSAAO5rmvDeiXurar/wAJZ4jiMd86FdPsGPFhCe3/AF1b+Juo6DHSoNFsrnxpq1v4n1iBotNtzv0bTpFxj0uZB3cj7o6KOepzXdAEN0/HNAAoI6/pTqKKACiiigAooooAKTFLRQA3BrNvvDmiap/yENH0+7/672qPj8wa1KKAORm+GPg+SUyx6HFayH+Ozlktz/5DZaa3gBI5N9j4m8TWeOiJqJmXv/DKHHeuwooA8q8baJ4l0ixsdY/4TB7qHT9QglVbyxi+Te3kli0YXIAlORjpXSKfiHbSklPDN/H7Ge2ft6+YPX0rU8a6YdZ8Ea3p6oHknspVjU/39pK/+PAVZ8OakNZ8N6Xqa8fa7SOcg9iygkfXJoAwx4j8W2zMLzwNI8a/x2GpQy56fwv5ZoT4gW8chS+8O+JLEgZLSaY8ij/gUW8V2B5pMe9AHKQfEzwbNIYm1+2tpB1S8DWzDr2kC+hrdsdc0jU13WGqWV2PWC4SQfoatyQxzKUkjR1PUMoINYd34G8KXxZrjw3pLu3V/saBj/wIDP60Ab+RRkVyEfw08O2qt/Z66jpxP/PlqdxEBwBwA+O3pQvgvVLWMrYeN/EER7C5aG5A/wC+48/rQB1+aXNcf/Zfj21jPkeJNHvm7fbNLaMn6mOUfyo+3+P7OPM2gaHfnP8Ay66k8RIyezxEdMd6AOwyKa6rJGyMAysMEEZyK5D/AITDWLVM6h4G12M9zatb3P4/LJk/lS/8LI0GEK2oR6vpuT/y+6XcRgfU7CvfrntQA34fM1haal4YlYmXQ7toItzbmNs48yAn/gDbf+AGuyrzW08V6BdfFPTLnRtXtLyPWLGS0uI4ZVJWSI+ZEzL97lTKvI9B6V6STQBDeXUVlZT3c7bYoI2kdvRVGSfyFeQfBm21ybQ9V8RQx2Rk1m/kmZrhnBOCf7o6bi1dN8Ytfi0f4barGs6Lc3iC0jQsMtvIDDH+4Wra8EWMGg+BNFsDLGphtIzJ8wA3sNz/APjzGgDjPiPc6zbWEbeKJBH4UklWK7GjEibk8eZv52E4+5g/nXo2g2mmWWh2MOjxwx6b5KtbLF90oRkEHvnOcnk5ya8y+KOuN4vtF8DeFlGp3txKjXskR3RW0asGG9xwCSBxnt6kV6b4f0ldC8PabpKyGUWVtHBvP8W1QM+2etAGnRRRQAUUUUAFHaiigDjfE4/tLxt4U0jAeKKabVJlz08lNsZ/77lB/wCA12GMHpXIaTtv/in4hu8H/iXWNrYIe2W3zP8Ao0ddgelAHI+EAk3ibxneKOX1SOAn/rnbRD+p/Ouvrj/h8m6x1u7OD9q1y9kyBjIWQxj9IxXYUAFFFFABRRRQAUE4GTRTSQQQOaAGyyxxQvJI6qiAszMcAAdTXA2qN8SNSjvZlZfCNnJm0gYFf7SlU8SuP+eKkfKvcjJ9KLmWT4j6rLptnIV8J2cuy+uY2/5CMikHyUPaMfxMPvdBxzXewwpbxpFDGkcMahURBgKAMAAdhigB4UhgePenUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAB6Vxvw0AtfDM+jhiTpGoXNjz12rIWT/xx0rsj0rj9ADWPxF8VWDEBLpLXUYlHfcjROfziB/GgDsKKKKACiiigAooooAKKKKAGkH2pTnB60tVdSvrfTNLu7+6bbb20LTSnGcKoJP6CgDynx0rX/iXUfENuhKeD1tXTaMB5TIss/PfEIUY/wBo166rB4wycqwyMelcX4S0Frr4dzx6jGFutfSe8vQB/FcAkj6hSq/8BrS+H1+2peANDnkbdKtokMpJyS8fyPn33KaALN14O8NXt1JdXfh3SLi4lOZJZbKJmc+pJUkmo/8AhBfCOc/8Itomc9f7Pi/+JroKKAKtjp1lpkHkWFnb2kOc+XbxLGv5AVZFLRQAUUUUAFFFFABQelFFAHIeA91xJ4m1B8ZudcuFU/7EQWEf+iyfxrrmICknpiuP+F7GXwBYXTNua6luLktjGfMmdx+hFdFrd0LHQdQuycCC2kkz6YUn+lAHPfC/dJ8PdMuHJLXTTXRJ7+ZM7/8As1dhXPeBIPs/gDw7ERhhptvuHoTGpP65roaACiiigAooppIxj+dAASGX5cH0rhdcvbvxfrE3hXRJmhsYDt1jUk/gHB+zxHoZCD8x/hHucVZ8Sa3fahq3/CKeHJgupyIHvrsAFdPhPc+sjDhV/wCBHAroNB0Kx8OaTBpunQiOCIcnqzt3dj3Y9SaAJ9N0620qwt7GygSC2t4xHFEnRVHb3+vUmrlFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVxurEWHxS8O3u041CzutPkbsCu2ZP/QJK7E8iuP+IuLXR9M1gttGlara3LN6IXET/htkb8qAOxopB6UtABRRRQAUUUUAFFFFACN90/SuN+ILDULbSvC6t8+t3qxTAHB+zR/vJj/3yoX/AIHXZHpXG6URrfxL1fUSC1to0C6bbnII858SzEehA8pfwNAHYBdqgAYAHAFcn8PmaKz1zT2AAsdbu4kAPAV385f0lH611x4Fcl4XYxeNfGlpjCi8t7hfffbRgn80NAHXUUUUAFFFFABRRRQAUUUUAFMmYrBIw6hSR+VPqOf/AI95f9w/yoA5r4bxmL4b+HFJB/4l8TZ+qg/1p3xFuFtvhv4jkJAB06ZOf9pCv9ad8Pv+SdeG/wDsGW//AKAKqfEtftHgie0BAa8urS35AOQ9xGpGD7E0AdPY24tLG2txjEMSxj8BirNIOtLQAUUUGgBCfeuW8VeIrq0ng0HQo0uPEF8pMSuMx20XRp5fRBngfxHAGan8VeJxoNtb29pB9s1i/YxafZA4Mr9yT2Rc5Y9h7kUnhTw1/YUM1zeTC91m/YS396QMyPjhV44RRwo7DtyaALXhnw5beGtN+ywvJPNI5lubuU5kuZT953Pqf0AAraoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArF8X6YdZ8HazpqgF7mzljTPTeVO0/nitqg9KAMjwvqR1nwrpOpsctd2kUzezMgJH55rXrjfhsRb+HrzRwpH9kaldWQz3USF0/8AHHWuyoAKKKKACiiigAooooAo6zqkGi6Lfapcn9zaQPO4HUhQTge5xisfwDpk2meELM3igaheFr68OMEzSku2fpu2/RRVDx3jVLjQ/C4G9dWvA9wMHH2aDEsn0yQi/wDAq7QAigBa4/RVSP4o+KgoOZLLT3b6jzx/ICuwrkNJ/wCSqeJv+wfY/wA5qAOvooooAKKKKACiiigAooooAKa6h42U9CMGnUh5GKAOS+GDl/hp4fyrKUtRGQ3UFSVP8jTPH26T/hGLRD/r9etcj2j3Sn/0XR8NwkPhieyQqfsWp30B29Mi4kP8mFL4nbzfG3gu04IN3cXBBI6JbuM/m4/OgDrx1xS0lLQAVjeJPEVp4c0o3c6PNM7iG2tYhmS4lb7qIO5P6AE9qs63rVjoGkz6jqE3l28Q52jLMScBVHdiSAB6mub8OaHfanqf/CVeI4tuoOhWxss5XToT2H/TVhgs30A4FAFnwt4dure5n1/XXWbX75QJSpJS1jGMQR+ijuRyxyTXUgYNCqQRmnUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFBopD0NAHIaGTY/ErxNYFxsvYLXUoo/cq0Lkf9+k/OuwrjtYH2D4m+Gr4Rjbe211p0j+hwsyD/yG/wCddjmgAooooAKKKKACkJwM0tZniHWIdA8O6hq0w3JZwPNszjeQOF+pOB+NAHPaARrXxD1/WThoNNRNItmB/iH7yc49dxRf+AV2lc94I0iXRfCOn210S146G4u2OMtPIS8hJHX5mI/CuhoAQnAzXIaAxl+JXjB9ylY4rCAAdQRG7nP/AH8Fdgelch4MZbnXvGN8Afn1fyM+vlQRL/PNAHX0UUUAFFFFABRRRQAUUUUAFIelLSHpQBx/hFltPFHjLS1zlNQjvQCc8TQoeP8AgSvT9Q2XHxX0KM4LWul3s46ZG54E/wAaY5/s74txElVi1fSGUDu0tvID/wCgTH/vmlt0874u302crbaHBGB/dMk0hP5hB+VAHYVVv9QtNN0+a9vbiOC1hUvJJI21VA9amlljiheSV1WNFLMzHAUDqSe1cFZxyfEbVEv51ZPCVnJus7dhj+0ZFPErqR/qlP3VP3iNx7CgCbRLG68YavB4m1qCSHT4G36Ppsy4K9vtEo7yEH5Qfugjuc13IzkdfzoAxjjpTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoPSiigDjfiQPs2g2Os7ih0nU7W7LDsnmCN/w2SNXYDtisrxVph1nwlrGmrjfdWcsSbugYqQD+eKZ4T1I6z4S0fU2Pz3NnFI+OzFRuH4HIoA2qKKKACiiigAPSuL8aE6rrHh3wwoLR3t19ruxjIFvbkPg+zSeWK7M9K4zwwf7a8ceI9fZQYbVl0e0OMELH80x9wZGx/wCgDswKWiigBGxtOemOa5D4aH7R4QXUim1tSvLq+PGMiSZyp/7521o+NtVOjeCNav0bbLFaSeUf8Apow2p/48RV3w9pg0Xw3pmlht32O1igLD+IqoBP44zQBpUUUUAFFFFABRRRQAUUUUAFFFGaAOM+IONOj0TxH8irpGpRtM7fwwS5hk/wDRgP8AwGl8PEy/EPxnOSSsX2K2UnGPliMhx/39rode0qLXfD+oaVMdsd5bvCWHVdwIDDPcdR7ivF/A934g8YDWdAbzrB2vB/bd8Gw6qkMcXlR/7TNE+T/CvuRQB3F0z/EbVJdNtXZfCdnJtvZ14/tGVSP3SEH/AFS/xN3IwOMmu9ihSCNI4o1jjRdqoowFHoAOnaoNOsLTS7GCxsYY4LWBfLiijGAoHareaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAA9K474cbbbRdQ0dVZRpWqXVqobsm/zE/8AHJFrsa47Rc2HxP8AEtmz/Lf2trqEaehAaF//AEWmfrQB2NFFFABRRQaAMjxTrS+HfC+pasQGa2gZ0Q/xv0RfxYgfjUPg7RX0DwnpmnTHNxFEGuGzndM2WkOe+WZjWT4rY6t4p8N+HEy0bTnU7zBHEUBBQMPRpWj/AO+TXZAYoAWiig9OOtAHGeOT/aF94b8PKf8AkIaks0y7cgwW485s9sFljH/Aq7IDFcdpJ/tn4l6xqQLG20i2TS4OcqZWxLMceoHlL+BrsqACiiigAooooAKKKKAAnAzSFgOpFKelec/E3xpfaK2n+HfD5U+IdYcRwE8iBCdvmH3z07cEnpigDqdX8YaJo12tjcXLy6g4ytlaxPPOR67EBIHucVFB4wsmmhivLTUdNaZgkLX1s0aOx6Lu5UE+hIPam+EvB9j4S03ybfM97L893ey8y3Eh5LM3XGc4GeP1rW1XTLfV9IutOukV4LmJonBHYjGR70AR6brVjq81/FYSiYWM5t5mXlfMABKg9yNwzjpXn0ng7QR8T9QtNRstrarENRsLuGRoJY5l+SdVkQhsnKPjJHzNWx8ItFfRfhvpcc0ZS5ud11MGznc5JGc99u0fhVzx9p90+jQa3p0ZbU9EmF9AqnBlUDEsXr8yFhgdTtoAjHhvxVpP/IG8VveRKuFtdbgE+Tn/AJ6oUf8APdR/wlmvaWduv+EbwIMD7VpLi8jPqdmBIB/wE10+nX9tqmn2t/aSrLb3MSyxOO6sM5/UVawf8igDC0Xxl4c15/K07V7WWcEg27Hy5Vx1zG2GH5Vv5rI1jwzomvoE1bSbS8wNqtNECyj/AGW6qfpWIfA95p3zeHPFGqaaowFtrl/ttuAOwWU7h+DCgDss0ZrjDq3jbR8f2l4etNYgBObjSJ9kgAHBMMuOfZXNT2XxF8N3Nytrd3kmlXpH/HrqsTWsn4b8A/gTQB1lFNV1dA6sGUjIIOQRTs0AFFGRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAAelcdrYNh8SPC9+FG27iutNlf6qJkH5xN+Jrsa434k4tfDltrBJH9k6ja3pI67RIFf8NjtQB2VFIKWgApD0NLWH4w1ptA8JalqUI3XEUOLdduczMQsYx/vstAGR4S36v4p8R+I5FJjM40yzJH/LKDIdlPcNK0n/AHyK7Osbwroq+HfC+maSMFraBUkb+/J1dvxYsfxrZoAKzdf1m30DQL7VbrmK1haQr0LHso9ycAe5FaJ6VxPiPd4j8Y6T4aQFrS0I1TUvopIhiPb5nG7B7JQBqeBtHn0bwraxXpDajcbru9bjLTyku/I64Jx9FFdHSAYP9aWgAooooAKKKKACiiigBGOFJ5/CvE9GjbWv2m9XnueU0q0JgB5C4VE4/GRz+Jr2wjIrzPxJoGoeHPiNF470exlvoJ4Ps2qWsAzLt4xIg/ixtTIHPy+5wAel5A+nqagvb22sbbzrmXy496R5wT8zsFUYHqzAfjXPweP/AA3cx/ub+Vpsc262spmB9DHt3Z/Cp7WC81y/t7/ULZrSytG32tnJjzHkwR5sgBIXAJ2pnj7x5wFAOgXHbpSt90/40gBHbApT0oA4fws3/CM+J7/wjKAlnIW1DST0HlM372Idhsckgf3WHpXc5rmPGehXWqaXDeaWVTWtLk+1WDk4BcDBjJ/uuuVOfUHtWj4c1618R6HbanbBkWVfnicYeJwcOjDqCpBBoA1qKMg0UAIRkVWu9PtNQtjb31rBcwN96KaMOp/A8VaooA45vhzpdq5l0G81HQZS24jTrgiJj7wvujx7BRTNvxA0YAB9J8R26jqwNlcsc+26M/8AjtdpQelAHHL8RdNs3EfiCw1LQZMhd1/bnySfaZNyY9yRXUWOo2Op2wubC8t7qBuksEodT+IOKnK7lKsMg9R61y998O/Dd5cNdQ2B028II+1aZK1rIM98x4yfqDQB1IINAYHoRXG/2L400g50rxFbarAMAQazbhXAH/TaIAk+5U0f8Jrf6YQviLwtqViozm5sh9tgAHcmP51H1QUAdnmisfRvFOg+IRnSNWtLxgMskUoLqP8AaT7w/EVr5A70ALRRRkGgAooooAKKKKACiiigAooooAKKKKACsvxLpf8AbXhfVdL73dpLCvsWUgH88VqUHpQBheDdT/tnwZouoM4aSeyiaQ/7e0bv1zW7XHfDr/RdL1XR9u0aXq11boP+mbP5qf8AjsorsaAA9K4rxLnWvG/hvQVw0Fu7aveLnosWFhHvmRs4/wBg12p6VxngonVtY8Q+JmJMd3d/YrTLZAt7fKZHs0hlb8RQB2QHOTS0E4GTSZHSgClq+q2miaPd6pfSeXa2sRlkb2HYe/YD1rC8C6Zd2+mT6vq0YTWNYl+13Sf88hgCOL6IgA+ufWs/UWHjLxpFo0RD6JosiXGosOVnuRzFB7hfvsOedoPNdyARjP8AOgB1FFFABRRRQAUUUUAFFFFABSEcUtFADSCetKBilooAKKKKAEbp/wDXrgtRI8CeK31ldqeHtXlVdRHRbW6PCz+gV+FY8cgEnrXfVWvbK31Cxms7uBJraZDHLG4yGUjBB9qAJwckcg9adXD+Gbyfwvqsfg/V5mkiwTo17J/y2hH/ACxY/wDPRBx/tKM+tdvuGQO5oAWiiigAooooAKKKKAA803Bp1FAGFrHg7w9r7b9U0i0uJ+MTlNsq454kXDD8DWUPB+taWd3h/wAW38aZz9m1RRexfQM2JFH/AAKuyoNAHF/8JD4t0gAa34WF9EAS1zoc4l7/APPGTa/5FqvaZ4+8M6pdfZI9Ujtr0Nta0vVa3mDYzjZJgk/TNdKRmqWpaPp2s2/2fU7C1vYf7lxEsgHvyOD9KALoINLmuMPw8g0/L+G9Y1TRGwcQwzedb59TFJuH5YoNx4+0cnzrDS/EVuMAPaSGzuPclHLIfwYUAdnmiuPh+I+hRzJBrIvNBuGJCx6rbGFTjriTmMj6NXV29zBdwJPbTRzQuMrJGwZWHsR1oAlooyKKACiiigAooooAKKKQ9OaAOO0grYfFLxDYljjULK21CNe2V3Qv/wCgx12Vcfr+bH4h+FNRXaqXK3OmzMep3J5qD/vqE/nXXnpQBz/jfWJdF8H6jdWhP250EFoB1M8hCR4/4EwP0Bq74e0iLQPD+n6TDgx2dukO7GNxAwT9Scn8a57XlOt/EHQNHABt9ORtYuQQcFxmOAZ/3i7f8A+ldoARQAHoa5jxj4guNJtLew0tFm1vU3MFhETwGxlpG/2EHzH6Ad61td1yx8PaPPqV/IVhiHCoMvIxOAijuxJAA96wvCei3kl5P4o16JU1q+QIkOdwsrfqsIPr3YjGT2GKANfw1oMHhzRodPgdpWBaSed+XnlY5eRj6k8/pWxSAUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh6UtFAGP4i8PWfiXSWsbwOhBWSCeM7ZLeVTlZEbqGB5zWT4W8Q3n26Tw14j8uPXbVN6yr8sd9D0EyDsf7y9j7HjrWGVIFYXibwvbeJLJFeWS2vrZvNs72HiS3k9R6g9CvQigDdyM4pa5Hw54nujqQ8OeI0jttdij3o6f6m+jHWSI+v95eo+ldcCDQAUUUUAFFFFABRRRQAUUUUAFFFFABQaKKAI5YY54mimjR42GGRhkEehFcpcfDfw+ZmuNMjudEumxmfSJzbE4PdF+Q/iprr6KAONGn+O9Hz9j1bTtdgBJ8rUITbTAdgJIsqT7lBSDx9/Zwx4m0DVNG2jLTmL7Tbj/tpFnA+oFdkRkYoxxgDFAFDS9e0jXIfO0rU7S9jGMm3mV9ufXB4/Gr+R61zuq+BfDes3AurrSYUvA24XduTBMD6+ZGQ361njwx4o0jnQ/Fs1xEo4ttahFwD/21Xa/55oA7OjNcYfFPiDSzt1/wlcvGMD7Vo8gu0J7nyztkH/fLVp6P418N67N5Nhq9s9yCQbaQmKYEdQY3ww/KgDoKKM0ZoA474kqLfwvDqxUltJv7W/GOypKof/xxnrr85XjgYrO8RacNZ8NappZPN3aSw+uCykA/rXHXHie4uPgzY38Eu7VNTs4bKAqQCbqXERI9wxJ/4CaANDwJjUbjXvFT4xqt6Y7Y5P8Ax7QZiQ4PTJDt/wACrqdS1Kz0rTp7+/uEt7WBC8kjngD+vpgcnPFZ0baV4M8JwpcXKW2naZbJGZZOMBQFHTkknHHUk981ztjpd9441KLWtftnt9Gt3D6bpEowzt2nnH97B+VD0780ASaHYXXjDVoPE+tQvDp8B36PpsowUH/PxKO8hH3R/CPck13ABz3oAIPtTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPQ0tFAGP4h8N2HiXTxa6gjAxuJIJ4m2S28g6SRv1Vge/wCYrnrDxNf+Gr6LR/GMiFHbZaa2o2w3B7JL2ikx/wABbnBHAPcHkVWvLC21Gzls72CO4tpVKyRSjcrA9iDQBZ3DOM80bhnGea4L+ztf8CDOkJPrXh1Rzp7PuurNR/zxY8yoP7jcjAAzzXUaD4h0rxHYC80u7SeNTtdRw8Tf3XXqrexoA1qKMjOO9FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQaKKAEx7Vmav4d0fX4RFq2l2l6oGFM8Ssy/7p6j8MVqUUAcZ/wAIJPpq58NeJNU0oDAW2mkF3bqPZJckf8BYUp1PxvpBH9oaHZazbgkm40qfyZAo7mKU4z9HNdlmmkgjrQBydp8RPDk86W19czaPeMMi21aBrV/TgvhT+BNeaWniOw0zxXDoV4JDaeH9SvLu3tbZBK13JM2bZIlHUgTSH0GBkiu+1rxImvzXHh/w5pltrlxkpcz3KhrG1OORI2CHbn7i5PXJGKl8F/DXSvB7zXirHc6pcHMt15KxheOVjVeI1znpz6k4oATS/DupeIdQt9d8XpGJIG8yx0dH3w2bf33P/LSUD+LovOBnmu0AO7JFKqkHtTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEPSuY1zwXaanff2tYTy6TrijC6haYDOOyyL0kXgcNzxwRXUUGgDh18Wav4abyvGOmj7Kv3dZ05GktyOceZHy8JxjJ5XJ6iuvsr+01K1jurG6hubaQZSWFw6t9CKnIzwRXJ3vgCxF1Lf6DdXOgajJlnmsSBFK2OskJyjdeuAfegDrdwzjPPpS5B6VxR1rxdoAxrOhx6xaDJ+2aMcSYHdrdznJ6/IzfStXR/Gnh7XJzb2Wpw/a1JDWk2Yp1I6gxuAw/KgDoKKTIoyPWgBaKM0UAFFFFABRRRQAUUUZoAKKKr3l9aafbPc3tzDbQJy0kzhFH1J4oAnyKMj1rjJfiDbX5aLwxpd94glBK+Zbp5dsCOxnfC/987qafD3inX2La/rg060PP9n6KxQsM5Ae4Ybz6EKFFAF/W/HGkaReDTYml1LVn+5p2nr5s3b72OEHIOWIGKzD4d8QeLvm8UXI03TG/wCYNp8vzSD0nnHLdwVTC+5rpdF8PaV4dtPsukWEFpETlvLX5pD6s3Vj7kmtMDB6UAVrHT7TS7SK0sbaK2tYhhIolCqo9gKbqeq2mkWn2q8Mwi3Bf3UEkpyf9lFJ/Srh4FZ2t6mmi6DqGqyYKWltJOQf4tqkgf0oAwrP4n+EtRaVbG/urpoiBIINOuXKH0OI+OlWofH/AIYmvY7NtT+zXEhwiXkEtvuPoPMVcmuT+A+lva/DwahMS1xql1JcM7D5iAdg/VWP/Aq7fxToFl4k8OXunX8KPHJE21mHMbYyGB7EHB/CgDZyM4pa83+CPiC78QfDyA3sjyzWM72fmOcl1UKy5PsHA/4DXpFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAmM9azNY8OaN4giEWr6XaXoAIUzRBmX/dbqv4EVqUUAcaPAdxpw/wCKe8UaxpgAAWCSUXcCj0CTbiPwYUu/4g6cTut9C1qJehjkks5W/Ah1/WuxooA44+NNSs0X+1PBWuwMeptFiu0H/ftyx/75pX+Jvhe2IW+ub2wbGcXmnXEOPqSmP1rr+aTB6dqAOai+I3guZcr4o0kD/bulX+ZFT/8ACd+ECM/8JVof/gwi/wDiq2ZbSCcDzoIpMc4dA1Rf2Vp//Pha/wDflaAMlvH3g5Dg+KtF/C+iP8mqlJ8UPBSMETX7edzyEtleZj+CKTXSLptihDJY2wYcgiJRVhUCjCgAfSgDkX+IdlIR/Z+h+ItQz0MGlyIp/wCBShB+tKNc8Y3rMlh4Pis0I+WbVNRRPzSIOf1FdfigUAcedC8Zant/tPxTBYxkYeHSLIKfwklLn8QoqWz+HXhyC4W6vLSXVr1f+XnVZmun/APlR+AFdZRQA1VCgKqgADAAGABTqKKACiiigAPSvMvjrqrWHw2mtIgTNqNxHaoF64zvP6Jj8a9KmkEULyMGKqpJCKWP4Ack+wrxXx3fXPinx14UMeheIDoem3H2m6mbR7gBm3Agbdm4/cA6fxUAeseHNKXQvDemaUoH+iWscJI7kKAT+eT+NZPxG1+Lw94A1i9MgWVrdoYOcEyONq49cE5+gNPk8bWgUi30bxDcSdo10eePP4yKqj8SKxH8Lar441qz1LxZbpZaVYyebaaMsgkLv2knYfKTjoo9Tz1yAO+DPh+bw98ObJLlGjuL1mvJEYY27wAo9jsVfzNeg01QRinUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACEZFHOaWigBDnFABpaKACiiigAooooAKKKKACiiigAooooAKKKKAP/2Q=='] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 13 "如图在平面直角坐标系 $x O y$ 中, 菱形 $A B C D$ 的边长为 4 , 且 $|O B|=|O D|=6$. 求证: $|O A| \cdot|O C|$ 为定值;" ['因为\n\n$$\n|O B|=|O D|,|A B|=|A D|=|C B|=|C D| \\text {, }\n$$\n\n所以 $O, A, C$ 三点共线. \n\n\n连接 $B D$, 则 $B D$ 垂直平分线段 $A C$, 设垂足为 $K$, 如下图.\n\n\n\n于是有\n\n$$\n\\begin{aligned}\n|O A| \\cdot|O C| & =(|O K|-|A K|)(|O K|+|A K|) \\\\\n& =|O K|^{2}-|A K|^{2} \\\\\n& =\\left(|O B|^{2}-|B K|^{2}\\right)-\\left(|A B|^{2}-|B K|^{2}\\right) \\\\\n& =|O B|^{2}-|A B|^{2} \\\\\n& =20 .\n\\end{aligned}\n$$'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAa8BmAMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAopMijcPWgBaKM84ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApGxjmlpD0oA838ceKNU0rwtqviGzvns0tLgWtjbiJGF04kCMX3KWxkOAFK8LuycgDpfEniGbQPAl9rksapdQWXmCM/dEpGFU+24gVy3xEibVvH3gPQJR/oU17NeSqfuu0KhgPyLD8aZ8ZZzf6XofhWKQefrepxQuoPPlKwLHHsSlAHa+ELvUNQ8I6Te6ps+23FrHNLsXaMsA3TtwRn3zW3TI0WJFRFCqoCqB0AHalkkSKNndgqqMknsKAHUU2ORJUV0YMrAMCO4NOoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmv09u9OpGGR0z+NAHDSXdt4w8X6hol3oVzHBobpJDq/mtGROQp2oRgj5X9SCMZGCKwdF0S28SfFdfEFkss2kaLC0MV7LK0hurk5DbWY8ogJHGFDZx1r0O/8AD2lalKZrvToJ5GAV2deXUdA394cng8c+9aEEEdtEkUMSRRIoVI41CqoHQADpQBIOPauG+LviJdA+G+pukmLi8T7HAB1JkyDj0ITeQfau5bOOK8r+MvgW68T6PNqra39ms9HsprlbMW27zXVSxJbeMZCgDg459aANr4QeIV8Q/DjTHZw1xZp9jmHcGMAKT9V2n8a7uvLPgz4HuvC+jxaqutfaLPWLKG5ayNtt8qRlDAht5zgMVPyjPHpXqdABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXP8Ajv8A5J74l/7BV1/6Kaugrn/Hf/JPfEv/AGCrr/0U1AB4E/5J74a/7BVr/wCiVroK5/wJ/wAk98Nf9gq1/wDRK10FABRRRQAUUUUAFFFFABRRRQAUUUUAFBOOtFQ3TTpayNbRLLOFJSN32Bj2BbBx9cGgCXNLkV5xYfETXtQ8ZX/heDwpam/sYxLO/wDav7sKQpHzeTkn5xxj19K1dU8T+JdD06bUb/wnFJZ26mSb7FqQlkRB1O1o1zgc9aAOyorJ8O+INO8UaNBq+ly+bazA4JGGUg4KsOxB7VrUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXP+O/+Se+Jf8AsFXX/opq6Cuf8d/8k98S/wDYKuv/AEU1AB4E/wCSe+Gv+wVa/wDola6Cuf8AAn/JPfDX/YKtf/RK10FABRRRQAUUUUAFFFFABRRRQAUUUUAFI7BFLMcKOSfalrk/iZrH9ifDjXLxWw5tjAh7hpCIwfw3Z/CgDifg1eW19eeLPFd3cxRSapqJWNZXAKxrlhjPb5wP+A11PjfxdB/Y13o2gJ/a+t3kTQRW1p+8EW8Fd8jD5UUA5+YjP0yQz4a+FrDTvhzocVzYW0k72wnkaSFSxMh34JI7bsfhXOfGWO18K6BZeINEZNM1eO9RI5bQCMyqQxZXA4YcZ59MUAdf8M/CEvgrwbb6XcyiS6Zmnn2nKq7Yyo9gAB74zXYVS0m4nu9Jsrm5h8iea3SSSLGNjFQSvPoTirtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVz/jv/AJJ74l/7BV1/6Kaugrn/AB3/AMk98S/9gq6/9FNQAeBP+Se+Gv8AsFWv/ola6Cuf8Cf8k98Nf9gq1/8ARK10FABRRRQAUUUUAFFFFABRRRQAUUUUAIwJGBXmfxG8J+MfHGmjSLePRbXT0uhMXe9lMkyrkKCBDheuSBu5A54r02igDl1l8ZpCscWi+H0VVCqDqkxAA6cfZ/61ir8Pb7X/ABDb6540v4b5rRs2em2qlbaDpkkty54B5x0HbgehE4GTSAg9DQAijFOoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuf8d/8AJPfEv/YKuv8A0U1dBXP+O/8AknviX/sFXX/opqADwJ/yT3w1/wBgq1/9ErXQVz/gT/knvhr/ALBVr/6JWugoAKKKKACiiigAooooAKKKKACiiigAo6UVHPNFBC8s0ixxRgu7scBQOSSaAOY8cePdK8D2ljNqCvKby4ESRxfe2fxvjuFBHHckDvXQ2N7bX9lDe2k8c1rOgeKVDkMD0Oa8j1qKTWvCWteP7uIgs1u+lxyKf3NnFOj7sdd0m0sepxt5GK6WaOT4b6k95ArHwjdybriFRn+zZWP+sXniJiTuGMKcEYBNAHoIOaKjikSSNXR1ZGAKsGyCPY96kBzQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc/wCO/wDknviX/sFXX/opq6Cuf8d/8k98S/8AYKuv/RTUAHgT/knvhr/sFWv/AKJWugrn/An/ACT3w1/2CrX/ANErXQUAFFFFABRRRQAUUUUAFFFFABRRRQAjHAzXFeL5n8QavaeCrV2Edyn2nVZE48u0Bxsz/ekb5fXburpNd1i00HQ7vVr1iLe2jMjberdgq+5JAHuax/BGj3VnY3OrasoGt6xILq8Uf8shjEcQ9kXA+u40AS+N7QP8O/EFrFGqqumTiNFAwMRtgAdugxWnpssWq+H7SZ40eK6tUcqyhgVdM4PYjBq1fW4u9PubZuVliaM59wRXP/Dm4W6+HHh2RSCBp8MfBz91Qv8ASgDHtJpfh5qsWlXUjSeFrx9lhcyMSbCQ9IHP/PMn7rH7v3ScYrvgeSO9V9R0601XT57C/t0uLW4QpLE4yGB/z17VyGh6jd+EtXh8La5cNNZzfLpGpSn/AFo/595D/wA9QOh/iA9RyAdzRSAg9KWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArn/AB3/AMk98S/9gq6/9FNXQVz/AI7/AOSe+Jf+wVdf+imoAPAn/JPfDX/YKtf/AEStdBXP+BP+Se+Gv+wVa/8Aola6CgAooooAKKKKACiiigAooooAKQ0EgDk4rA8Y6+/h/QWltYvP1K5kW1sLcf8ALWd+FH0HLH2U0AYt6P8AhMPHUenL82j6BItxdEdJrsjMcfoQg+c+5UV3Crg/yrH8K6BH4b0GDTxIZp8mW5nPWeZjudz9WJ/DA7VtUAI3SuS+Gq+R4OWz3Fvsd7eW/JzgLcyAD8sV1prj/AQaGbxVaMT+5164ZQTnCyKkv83NAHYGs3XdDsvEOkTabqEe6GUdQcMjDo6nswPIPrWnSHOOOvvQBx3hjXL2x1M+FfEcu7Uo0L2V4eF1CEfxD0kXgMv4jINdlWH4l8NWviTS/s00jW9zE4ltLuP/AFlvMBhXU+o9O9UPCniO4u7i50PXUW38QWK5nQDCXMWSFni9UOOR/CcggdwDq6KQEHpS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVz/AI7/AOSe+Jf+wVdf+imroK5/x3/yT3xL/wBgq6/9FNQAeBP+Se+Gv+wVa/8Aola6Cuf8Cf8AJPfDX/YKtf8A0StdBQAUUUUAFFFFABRRRQAUUUh96AEY9PrXDaAP+Ev8YXHiZ8PpWmb7LSeQRI+cTTj8RsU56A+tXPHGo3UsVp4Z0uXZqeskxeavW3tx/rZfqFOB0+Zh6Guj0zT7bSdOttOsoxHa20SxRp6KoAH1+tAFsDBpaKKAA9K4/wANF4vH/jS1PCtLaXS8f34Qh/WI117ZxxXIWjC3+LupwhcfatFt5s46lJpVP6MKAOwooooAQjNc14r8LtrttBdWU4stbsCZLC9AyY2xjY3qjdCPTtmumpGGRQBzvhPxKNet7iC7g+x6xYsIr+yJyYn5wwP8SN1U+ldHkHvXJ+KfDd3dXEHiDQnSDxDYqViLcJcxn70Enqp6g/wnnitHwz4jtPE2mfbII3gmjcxXNrLxJbyjhkcdiP1GDQBt0UgIPSloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuf8d/8k98S/8AYKuv/RTV0Fc/47/5J74l/wCwVdf+imoAPAn/ACT3w1/2CrX/ANErXQVz/gT/AJJ74a/7BVr/AOiVroKACiiigAooooAKKKKADOKr3l3b2VnNd3MyQwQIZZZHOAiAZJP4ZqdulcN4pz4q8SWvg6IlrKMLe6yVPHkg5jhz6uwyRkHap9eQCbwPaz6pLd+MdRiZLrVgotIn+9b2Y/1aexb77e7D0rsxTUXacYwAMDmn0AFFFFACN0rkNQ223xX0OY4DXWlXkGfXbJC+P512Brj/ABTH5fjTwVek4C3txbE+0lvIQPzQflQB14NLSDrS0AFFFFACNnHHX3rjfEmh32m6ofFfhyLfqKoEvrINtXUYR0B9JVH3W/Doa7Okbp0zQBnaHrVjr+kQanp8vmW0wyMjDKwOCrDsQeCPatEEHpXC65YXfhDVp/FWjQNLYTnfrGmxjO/Ax9oiHaQfxD+IDPUc9jYX1rqdjBf2U6T2twgkjlQ5DKaALVFAIPSigAooooAKKOlISBQAtFISB1pc5oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5/x3/wAk98S/9gq6/wDRTV0Fc/47/wCSe+Jf+wVdf+imoAPAn/JPfDX/AGCrX/0StdBXP+BP+Se+Gv8AsFWv/ola6CgAooooAKKKKACiikPagDL8Ra7beHdButUuQzLCvyRoMtI54VFHckkAfWqHgzQ7jSNLkudSKvrOoyG6v5F6eYeiA/3UGFH096yB/wAVj482g7tG8OTZPIK3F/j/ANpA/wDfTe1d0KAFooooAKKKKACuP+IIaOHw5drwbbXrNic44djEf0kNdhXIfE9mh8AX10n3rSW3ugcZx5c6Of0U0AdcKWkFLQAUUUUAFFFFACHpXn95DL8OdRk1K2Vj4Uu5N15bRjI02Qn/AFqL/wA8mJ+df4fvD0HoNMmiSaJopEV0cFWVhkEHsQaAG28kc0SSRMrxOoZHU5DKeQQfSpc159bNJ8OdTSwnYt4SvJNtpM3P9mysf9W5J/1TE/K38JO08YJ79eef/rUAOoJx1opG+6c8e5oAxfE3inSvCelm+1ScqpIWOJBukmY9FRe5/l1NY9i/jbXohdStaeHrZ+YrdoftN1t7FyWCKe+MEjpXDeDZn+JfxX1TxLdZfS9DPk6bEx+UOSQHx64DN7Er6V7UBt5OKAOC8U+KtY+H+ky3+romr2LDy4poIvKljlIO0SLkqUbH3hjHTBzXW+H5r240DT59SKG+lt0kuNi4UOQCQB6A5H4VT8YeHk8V+G5tHd1VJpoGct/dSVHYfUqpA+tboGKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArn/AB3/AMk98S/9gq6/9FNXQVz/AI7/AOSe+Jf+wVdf+imoAPAn/JPfDX/YKtf/AEStdBXP+BP+Se+Gv+wVa/8Aola6CgAooooAKKKOlABXNeNdduNH0dINNVZNZ1CUWmnxH/nqw++eD8qDLHjHHvXRu6qpZmCgDJJ4wPWuI8MI3irxHdeMJV3WMatZ6Mp6GLP7yb/gbDAPXavvQB0fhvQ7fw5oNrpdsxkWFf3krHLSyE5d292Ykn61rUgzS0AFFFFABRRRQAVzvj2D7T8PvEUQGSdOnIHuEJH6iuiqvf24u9PubZhkTRNGc+4IoAg0a6F9othdjpPbRyj/AIEoP9av1y/w5uBc/Djw5ICDjT4U/wC+VC/0rqKACik3rnGeaXIzigAooooAKKKKAKt/Y22o2M1leW6T20ylJIpBlWU9RXGaHfXPgvV4PC2sztNp1wdmjajIc56AW0h7OP4SeGAwORiu8PTis7W9FsvEGkT6ZqMJltphg4OGUjkMp7MDgg+tAGlmoL2N5rGeKNgsjxsqk9iQcVyfhnWb7S9UHhTxJLvvkQtYXzDC38Ix3J/1q/xL+IyOa7EnIOOaAPIf2d41g8HatbyIUu49UdZkIwy/u0AB/EN+tevkiuLvfBN3Y+JLnxF4WvorC9vB/p1rcRGS2uyOhIBBRvcep9TnQFp4tvYxDd3mmafGeHksVeWUj/ZLgKh9yrfSgC/HqMs/iNtPtkRoLaDfdynqkjEeWg7ZK72PoNnrWqKqaZptvpVmttbIVUEszMxZncnLMzHliTySauUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc/47/5J74l/7BV1/wCimroK5/x3/wAk98S/9gq6/wDRTUAHgT/knvhr/sFWv/ola6Cuf8Cf8k98Nf8AYKtf/RK10FABRRRQAUhpelVNS1C10zTbm/vJRFbW0ZllkI+6oGTQBynji9n1Gaz8G6dKY7vVgTdTI3zW1mv+sfvgtnYvbLH0rrrK0gsLSG0tYkit4IxHEiDAVQMAD2wK5fwPp93NHeeJtViKalrDCQRMc/Z7Yf6qL2IBLH/aY+ldeB9fxoAWiijNABRSZFLkYzQAUUZHrRmgApDS0hoA5D4ZJ9n8GR2ROTZ3l5bfQJcSAD8sV156Vx/gIGCbxVaMeIdeuGUE9BIqS/zc1r+I9VmsLBIbEBtTvJBb2akZAcjlyP7qDLH1xjqQCAedeO/HN/a/EbwrpNhLLDpn9prDdzI5UTSZQNHx1VRKM9snHVa9dUYrw74yaXB4d0XwbNblimn6icyMcs7MQ7Ox7szIWPuTXuQOaAFoooJAGT0oAKKTcMZzxWRrvijRPDkKvquow27P/q4jlpZO3yIuWb8BQBsZFVr69tNPtXub25gtrdPvSzyBEX6k8VyZ1jxb4i+TQ9KXRbMnH27WEJlI9Utwc56YLkfSp7P4fab9qS/1ye41/UE5WbUSGSM/9M4QPLQfQZHrQBgeIdWj8f6cbDwzpFzfsjiW21lz9mt7WZSdskchG5ypHOwEdicGur8C6vc694M0vUr0obuWLbOVxgyKSjHjjqp6VvKpUYAwB0x6elcr8OAIvDNxaKABa6pfQ4HbFzIf60AddRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc/47/wCSe+Jf+wVdf+imroK5/wAd/wDJPfEv/YKuv/RTUAHgT/knvhr/ALBVr/6JWugrn/An/JPfDX/YKtf/AEStdBQAUUUUAIa4XXf+Ku8YQeF4zv0vTtl7q56q7dYbc/UjefZR610XinXo/DmgXGoNGZphiO2t1+9PMx2xxj6sQPYZPaq/g3QZdA0MR3cvn6ndO13qFx/z1nfBYj2HCjGOFHFAHQKMUtFFACHmvNvi/wCD/Eni3StOh8P3SotvMWntzL5fmZ27Wz0+XDHHv6ivSqKAOD0nw147sNKsoX8ZWjyRWyRuk+mecNwA/wCWnmKzdMZIyep5q4X+Idk7M0HhzVIwOBHJNaOfzEg/UV2FIaAOMPjubTtv/CReGdX0tcZeeOMXcCj1LxEkfioro9J13SddtTc6VqNreQjhmgkDbT6EdQfY1fIJ/wD11zer+BND1e6N79mex1Lnbf6fIbedT/vrjd9GBoA6bNJuH17Vwz3ni3wlzqUJ8S6SDzc2kYS8hXn70Q+WUD1XB7kV0+j63pviDTlv9LvI7q2Y43IeVYfwsOqkeh5oA5/w7L5HjzxrA7Ksfm2l2CeAA8G0nP8A2yNRWmkHxhfnxJJqF9a2+1oNMFrN5ZMGeZCcH/WEAj/ZCe9ZWveGo/EXxK1HSp9R1Kyt7vRYZJfsUip54WWRSrEqTjDDgYHPNdr4f0MeH9Ih0xL+8vIYQEie6ZGdEAACZVVyBjjOTyeelAHlHxw8M/Y/AK3n9q6pdmG8jOy7uN6DIZcgYHPI5969i0m7F7o9lddpreOTI56qD/WuZ8aeDNO8T2co1vxDqVrpahXe3jmhihXb3JaMn82rF0HXv7Ps10rweuseK4olSGKa6McVpbBPlwJ9i7+o4Ac4Xg0Aem5rmNW8d6Np962nWrTarqqnBsNOTzpV5A+f+FByPvEVQ/4RDWtdG7xXr0jwMPm0zSi1vbnqCHfPmSD6lR7V0+l6Np2iWa2el2NvZ2y9I4ECg+5x1PucmgDl/sXjTxIc3t1F4ZsWHMFkyz3jDngykbE7fdDfWtjRfBuh6BM9zZWKvfSf629uWM1xIe+ZGy3YcdPat4DFLQAgGD0paKKAEbgc1yHgVDb3niy1wAI9dmdQFxxJHHJ/NzXXnpXIeGnKeP8AxranGPOtLlQM5w8ATJ7dYjQB2FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVz/jv/knviX/ALBV1/6Kaugrn/Hf/JPfEv8A2Crr/wBFNQAeBP8Aknvhr/sFWv8A6JWugrn/AAJ/yT3w1/2CrX/0StdBQAUhoJAGSQB6muY8bazdWOnW+l6Uw/trV5DbWWf+WXGXmI9EX5vrtHegDOtF/wCEw8dSagwLaPoDtDag/dmvMYkk9wgOwejbiK7gDBrO0LR7XQNGtNLsgRBbRhFJOSx6lj7k5JPqTWlQAUUUUAFFFFABRRRQAUUhIHU4o3DNAA3TrXJa14Qd9SfXfDlyuk67gF325gvMc7J0H3hgkbx8wzweAKtaz440PR7o2BnlvdTxxp9hEZ5z9VX7vXq2BWaF8beIzlng8MWDEHCbbm8cZ6ZP7uPI9mIoA5f/AITqwtPiJY3fiGFtFvoNLubW8gn+YZ3xOhjYZ8xWw+3AySCMV1A8ReJvEPy+HdD+w2jcf2jrIMYIz1SAHecjBBYoKpap8K9PbTxc6TdXUPiOBxPb6vdTtNM0qjgSFsgoehAGO+Ox1vBPi9vEENxYanbiw8QaeRFf2R7N2kT1RuoPPXqeCQCOD4fWlzOl34lvrrxDdqdyi8IFuh/2YF+QfjuPvXXRxrEioihUUBVVQAAB2FPyD3ooAQDFLRRQAUUUUAFFFFAAa5GxZYPixrMOfmudHtJ8f7ssyf1Fdaa5C4UQfFzT5c4W50SePHHJSaJh/wChn86AOwopBS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXP+O/+Se+Jf+wVdf8Aopq6Cuf8d/8AJPfEv/YKuv8A0U1AB4E/5J74a/7BVr/6JWugrn/An/JPfDX/AGCrX/0Stb7EAc0AMmkjjiaSSRURPmZicAAckk+lcX4OjfxHq9541ukYR3Km10mN8gx2gPL44wZGG7pnaF5p/jKaTXNSs/Bdo5Bvl8/U3Q4MVmpwy+xkPyD2LHtXYQQR28KQwoI4o1CIijAUDoB7CgCQZzS0UUAFFFHSgAopMj1qhq+taXodkbvVb+3s7cHG+eQKCfQZ6n2HNAF/IpksscUTSSOqRqMszHAUepNcavirXdfwnhXQmW2P/MT1cNBCR6pH/rJOOmdo96dD4Bi1CVbnxXqdxr86nKwTDyrRDzjECnafT5i3SgBZviBbXk72vhbT7jxBcodrSWmEtUb0advl7/w7j7UweGPEXiABvEuuta2px/xLdGZokI9HmP7x+ODt2iuwht4baFIIIkihjUKkaKFVR6ADtUgP+TQBm6P4f0rw9Z/ZdI0+3s4u/lIAWPqx6k+5NaYFLmigBD0rifGvhq/lnt/FHh0KviHTl+VD0voc5aB/r1B7HpjqO3pG6UAY3hbxLp/ivQ4dV06QmOTKyRt9+GQfeRh2I/lg9CK2sg1474ih1H4d/EiPXNGgefSdcyb2wj/jmUFm2DpvKguB/EQ6/wAQFeq6XqVnq+mwalYTrPa3KB4pE6Efzz2IPIxigC7RSAg9KWgAooooAKKKKAEPSuP8QFofiP4NmBYLIt7bMABzuiWQZP8A2yrsa5Dxm32fWPB10R93WRDkc4EkEy/zxQB13eloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuf8d/8AJPfEv/YKuv8A0U1dBXP+O/8AknviX/sFXX/opqAE8CHHw88Nf9gq1/8ARS1o63rFpoOi3eq3z7La1jMkhzyQOw9ycAe5rO8C/wDJPPDX/YKtf/RK1jakD4v8bRaOvz6PobJdX/pNddYYfcKPnYcjO0GgC94H0m8gs7rW9XjKa1rMgubpD1gTGIoOg+4uBz3LV1YpFGCfTtS5FAC0mR60jOqoWZgFAySTjFcjefEDT5Lh7Lw/bXPiG/Xgx6eAYo25xvmPyL09SfagDsM1z+ueM9D0KdbS5ujPqD/6uwtEM9w59o1yR9Tge9ZP9heKvERDa7rI0qyPIsNGYiQjjh7ggN9QgX61v6H4Z0bw5AYtJ06C1DffdRl5Oc/M5yzfiTQBgfaPG3iNsW0MHhnTz/y1uQtxeOMjogPlx8ZHzFiPSr+k+BNG0y8GoTRy6lqgx/xMNRk8+YY6bS3Cdf4QorplBHWloAqX9kt/YyWskk8aSdXgmaJ15z8rKQR07GvG/COp6rp/xcsbKXWNSu9J1e0uZbWG7u3mCqssmwjcTyUiBz/tV6x4ov5NM8L6ldwf8fCQMIB6ykbUH4sVFea+MrCLwz48+GMsH+rgkOmlv9khEX9HagD1/PNeS/GXxNqdro8VloV7cWs0l7Ha+bbSFHeVgW2hhzgDGcd3UdjXpWr3sttBHb2m1r+5byrcMMgHGS7D+6o5PrwOpFeXeIrKPUPjJ4M8Mw7nttJifUZmY7izk7tz+rFkUk/7ZPegD0nw/wCHl0OH5tR1K9naNVkkvLySbJHUgMSBz6AVtUgpaACkPSlooA57xpocmveF7q2tm2X8RW5speBsuIzujPTgZAB9ia4zTNT/AOEfsLTxfpsJHhfWFWbVLSNcnT5iADKi/wBzcCJB2+8O9epmuK8IRR2er+K/DUiBoLe8F3DG65Qw3K79oHoHEoxQB2ME0U8STQyJJFIodHRtwdSMgg9xipc84rz+1kk+HWrR6dcSE+Fb6XbZzuf+QfM3/LFz/wA82P3W/hPB4wa75DnNADqKKKACiiigArkfiIqro2l3TEAWms2M2ScY/fqp/RjXXVyHxQVv+Fc6vKgJa3WO4ADY5jlR+v8AwGgDrh1paahBAI6EU6gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiijIoAKKMj1oyPWgArn/Hf/JPfEv/AGCrr/0U1dBketc948/5J74lx/0Crr/0U1AGDZ+IP+Ed+D3h65gjE9/Nptnb2NtkAzTvEoVR+pPsDXR+E9BHhzQYrKSbz7t2ae8ue887nLufqf0Aryrwd4o0ea30LVtYvAltpGnwWGlWKK0k1xc+UqzSrEoLNgjy1OMfe6da7oaj408SL/xLNPj8OWTYxdakBLdFSOqwKdqHr99j9KAOs1HVLDSbNrvUbyC0tk+9LPIEUfia5MeMtU135fCGhS3UbcDU9RzbWo4+8oI8yQfRR9auaf4C0i2vE1DUjca1qa/du9Tk80oc5+RPuIM/3QK6ocfSgDjP+EEm1hlm8Xaxcavg5+wx/uLNTnI/dqcvjHVy30rrLWzt7G2S2tLeK3t4xhIokCqo9ABwKsZHrRketACAc0tGR60ZHrQAUhOMe9GR61T1LVtN0m2WfUr+1s4WcIJLiZY1LemWPWgDH8SyJdaloGj7xm5vhcSKepjgBlz9PMWIfjXH/HQG28M6NrCA+Zp2rQzbh6Yb+oWuiPw28J3d5HqjWlzLdEbkuxqlyZMH0fzM457Gujv9HsdTsEs763W5gjeORUlYt8yEFSTnnkd+vfNAFTR45LyeXWbhGR51C20bA7ooOCMg9GY/M3f7qn7tef8Aw7xr/wAV/G/iZsGKGRdOt2HQqvBI/CND/wACr0jVtEs9ahSG9NyI0JIFveSwfn5bLn6HNZOi/D7w34euVn0m0uLNg28rHf3Gxm6ZZfM2t+INAHUDrS00de3507I9aACijI9aMj1oAQ9K5C5Bsvi3YTbsJqWjzQlR3aGVGB/KV668muP8TqF8deCLjnIu7qL6h7Zzj81X8qAOl1HT7TVdOuNPvoEntrhCksT9GB/kfQ+tcn4e1C78L6vF4T1ydp4nBGkalIeZ0H/LGT0lUDg/xgZ6g57fr3rK8QaDY+JNIk06/UlGIaORGw8Mg+66HswPIP8ASgDVBBNLXIeFNevI7yTwz4hkX+27SPdHOBtS/hzgTIOzf3l7H2PHXZFAC0UZHrRketABWB45gN14B8Qwqu5m0242j1by2x+uK38j1qtqEC3em3Vs2CssTocjPBBFAEGh3X27QNOuwcie1ilz67lB/rWhXM/DyYT/AA68OP0xp0Kc/wCygX+ldNketABRRketGR60AFFGR60ZHrQAUUZHrRketABRRketc54y8Zab4J0y11DVFmNtPdLbFoVDFCVZtxB7fIenPNAHR0VkaF4k0XxHa/adH1K3u4sAsI3+ZM9AynlT7EA1r0AFFFFABRRRQAUUUUAIwyMVhzeE9PuLmSeS51gPIxdvL1m7jXJOeFWUADnoAAOgGK3aQ5xx1oA5/wD4Q/SgMm71wfXXr3/49UF14c0CyTfd6pq1un96XxDeIPzM1ZXjTxneWutWXhLw0scviG/GfMk5Szi7yMO5wCQD7dcgHZ0bwbpumKJp0/tLUnH77UL0CWaQ9eCfur6KMAYH4gDbbwzoV5CJrXUtXniJwHi8QXjKfxE1ZHjPwpp1v4G8QTx3OsF4tNuHAk1q8dTiJiMq0pDDjoQQax/iZaDwTBb+NtAhjtLq3uY472GIbY7uFiRh1HBIJ4bryfaur8VXkWo/CzXL6AsYbnRJ5oy3Uq0DEfoRQB514T+D6jw7pGt6F4i1HTru+sYJ7iPzH8uQsisR+6aNgMk4G44rd/sDxTpp/wBN0q51ZMn95pvim+gcD/cllx/4/wBq7LwJ/wAk98Nf9gq1/wDRK1vkZFAHl41fwpbZGtJ4y0Rg20nUNQ1FUz/10SVkx77q6LTdI8L6xH5mma5qN6nc2/iS7kx9cTcV1pXI5wfrXO6n4C8L6vL515odmbjOfPhTypc+u9MNn8aAH/8ACH6VjP2vXP8AwfXv/wAepf8AhDtL/wCfrXP/AAe3v/x2s5vBOo2W86H4v1qyJ+7Fdut7EvtiUFvyYUjTeP8ATA7S2Gia5GuNpt5ns5m+quHTP/AhQBpf8Idpf/P1rn/g+vf/AI9R/wAIdpf/AD9a5/4Pb3/49Wc3xBgsSRrug65pAUZaaW0M0I/7aQ7x+eK2dJ8VaBroX+y9ZsbtiM7IplL/AIr1H5UAV/8AhDdM/wCfrXP/AAe3v/x2uR8dfCCHxXZ2kdlrF9aywSFv9Mu57xGBxniSQ7SMdR17+o9OyKMigDkdG+H2naXo1lYPfaxK1vAkTSR6vdwqxAAyEWXCjjoOB0q9/wAIbpf/AD9a5/4Pr3/49XQUUAc//wAIbpf/AD9a5/4Pr3/49R/whul/8/Wuf+D69/8Aj1dBRQBz/wDwhul/8/Wuf+D69/8Aj1H/AAhul/8AP1rn/g+vf/j1dBRQBz//AAhul/8AP1rn/g+vf/j1H/CG6X/z9a5/4Pr3/wCPV0FFAHP/APCG6Z/z9a5/4Pr3/wCO1zHiTw1YQ+JfCVsk+rkXF/KGL6xduwC20p+UmXKn3XB7dCQfRj0rj9aT7X8TvC0IOfslte3jD0yEiU/+RGoA0B4O03vda3+Gu3v/AMdoPg3TO11rn/g+vf8A49XQCloA4nXvhtp2qWm+1vtWtdThBNnevqt1K1u57jdIeCOCByQTgjrVDwpZ6frMVxY6m+tWeuaeRFfWg16+wrHo6HzeUYcg/hXojZ2/L1rlvFfhy6vJLfXNCdLfxBYLtgdjhLiPOWgk9UPb0bBGKALI8HaWTj7Vrmev/Ievf/j1L/whul/8/Wuf+D69/wDj1S+GfEdr4k0oXkKNBOjmG6tZP9ZbzL96Nh1yP1GDW3kGgDn/APhDdL/5+tc/8H17/wDHqQ+DdNxxda5n/sPXv/x2uhpDQB5t8OvClhN4MthNNqsckM9zAUt9Xu4UXZPIgARZABwB0FdV/wAIbpf/AD9a5/4Pr3/49Wf8PXxa6/bZH+ja9epgdg0nmD9HFdhQBz//AAhul/8AP1rn/g+vf/j1H/CG6X/z9a5/4Pr3/wCPV0FFAHP/APCG6X/z9a5/4Pr3/wCPUf8ACG6X/wA/Wuf+D69/+PV0FFAHP/8ACG6X/wA/Wuf+D69/+PUf8Ibpf/P1rn/g+vf/AI9XQUUAc/8A8Ibpf/P1rn/g+vf/AI9XAfFz4fXWp+GbC18PQ6re3r6gm5J9TuJ0VPLkyxEshVecDdwecZ5wfX6Ru3+FAHhXhP8AZ7aylhvdb12ZLlDuWPTD5ew/9dDz+QH1r2vTtPj02zjtopLiREGN1xcPM5+rOST+dNvtTtNMgWa6lKh2CIqozvI3oqqCWPXgA96oxeLdFmiuGW7YSW8qwyQNBIswdhlV8orvJIyRgcgHHQ0AbdFZ2k67p2trcGwuPMa2kMU8bI0bxv1wysARx6jmtGgAooooAKKKKACkYhRknAFLTXUOhVhlWGCPUUAeKfBHf4l8S+KvGd581xcTCCInqin5io9gojA9hXtnSvHvg/EfBuu+IPBWpkQ3IuftNmXOBcxkBcr68BTj3Poa9T1fWNP0PTZL/UryK1tYxlpJDx9B3J9hyaAPMf2gtT8rwZZaPF891qN4gWMcllTk4H+8UH411euae2k/BrUtNbG608PywHHfZblf6VzWg+HtQ8c+Ol8b69aSWumWfyaNYTrhyoPErr2yfmA65x2AJ7bx0D/wr3xLnr/ZV1/6KagBfAn/ACT3w1/2CrX/ANErXQVz/gT/AJJ74a/7BVr/AOiVroKACiiigApD0paKAGhcfSsbVvCPh7XSzanothdSMMGSSBd+PZ/vD8626KAONHgAWIH9heItc0raMJELv7TCv/AJg/HsCKPJ+IGmFdtzoeuQqPmMqSWUzfiu9P0FdlQaAONHje8sgo13wnrdiR96W3iW8iX33REtj3KitHSfHPhbWnEdhrtlJMxwIWk8uXPpsbDD8q6DFZ2p+H9I1pNmq6XZXo7faIFcj6EjigDR3D1pc1xw+HOmWbK2iahrGi7TkJY3rGP8Y5Ny49gKP7O8e6aP9F1vSdYj3Z26haNbSY9N8RK599lAHY5ozmuNPi/WtPP/ABOvBepxgNjzdMkS9THrhSr4/wCAVasfiF4Uvrlrddat7e4U4NvehraQH02yBT+QoA6iimpIkiB0dWU9CpyDTs0AI3A6Zrj9HH9o/E/xDqGw7NOtLfTYnzwWOZpPx+eIfhXTalf2+maZdahcttt7WJ5pG9FUEn9BXP8Aw8sZ7XwpFeXsYTUNUkfUroYx88p3Af8AAV2r/wABoA6qloooAKa4JHFOooA4vxJo99pOq/8ACW+HoDLeqqpqNinS/hHTA/56oM7T36egrpNG1ex13SbbVNOnE1rcJuRx9cEEdiCCCOxBHar5GRXBata3HgXWLjxJYRvJod4+/WLONSxhc8fao1HoMbwOoGeccAHegg9KDUNrcQXdtFc20qSwSqHjkRsq6kZBB78YqYkHoeaAOS8IssXifxnZjA2anHNjOf8AWW0JP6iuurkNFQwfE/xUh4FxaWM446nEqE/+OAfhXX0AFFFFABRRRQAUUUUAFI3TpmlpCM4+tAGd/ZynXX1OSUyMsAhhQjiLklyD6t8ufTYK898KQJrXxr8X63jMOnJFYRHHG/bhz9RtYfRsVurc+M7XxlrBntheaRJEi6ZbxLGFD8ZZ5CQygHOevX5emDmeCNG1vwTb61YXemzald3moPdxXluyJHOHVR8xLZTBBJ4PXjPSgDr/AA/4X0jw0b06VbGE3sxnnYyM5dz7sT/k1t1naNYTWFkRdT+fdyu008mTjexztXPRV+6B6Ad60aACiiigAooooAKDRRQBmat4f0rW1jXUrCC5MZzG7r88Z9Vbqp+hFVrbwlolreJdiwSa4i5jmuZGndD/ALLSElT9DW5RQA1QQfasHx3/AMk98S/9gq6/9FNXQVz/AI7/AOSe+Jf+wVdf+imoAPAn/JPfDX/YKtf/AEStdBXP+BP+Se+Gv+wVa/8Aola6CgAooooAKKKKACiiigAooooAKKKKACiiigBCCfaql9pdhqkHk6hZW93F/cniVx+RzVyigDjpPhpoEZd9K+3aLK5yX0u8kgGf9wEp+a0h0TxrpuW07xRa6ioGFh1axGf+/kO0/jtNdlnFZuva1Z+H9FudTvmIggXO0dXY8BVHckkAD3oA8z8W674i1K6t/CeqeGfOQmO91AaTcC5Mtqj8qFcIV3OFHPJAbGea7C3+JHhYzC3vNQbS7gjJh1OF7Ur/AN/AB+Rp/gvR7y2t7rWtYRRrWruJ7lQciBAMRwg9wi/qTXS3FrDdwtDcQxzRNwUlUMp+oNAC29zBdwLPbTRzROMrJGwZWHsR1qTINcncfDbwvJMbi009tLucYE2lzvaMPwjIB/EGox4Z8Uac2dJ8YzTRqOINXtUuAT/10Qo/55oA7GjNcb/bPjXTdg1Lwta6in8c2kXoyB/1zmC/luNLH8SvD8bxpq32/RJnOFTVbOSAf99kbP8Ax6gDsaRlDKVIBB4INVrDU7DVYPP06+tryH/npbyrIv5gkVZyKAPP13fDbVhExP8AwiF9NhG7aXO5+6fSFieOysccZrvwfQ88VDe2ltf2U1pdwpNbzIY5Y3GVZSMEH8K4vQ7yfwVrMHhXVppJNLuCV0a/lOf+3Zz/AHwPuk/eAx1GKALiFofjC6nhbrQFIG3vFOe//bYV2FcfqrrbfFPw2/8AFc6ffQHr/CYXx+hrrxQAtFFFABRRRQAUUUUAFFFFACY4x2oApaKAEApaKKACiiigAooooAKKKKACiiigArn/AB3/AMk98S/9gq6/9FNXQVz/AI7/AOSe+Jf+wVdf+imoAPAn/JPfDX/YKtf/AEStdBXP+BP+Se+Gv+wVa/8Aola6CgAooooAKKKKACiiigAooooAKKKKACiiigAo6UVU1DULLTdPlvb65it7WEbpJZGwqj/P86AJbm4htraS4nljjihUySSOwARRySSegxnmuG0mGXx7rcGv3UbJ4dsH3aVbyAg3cvT7U6n+H+4Dz1bjIpsFve/Ea4jur6Kaz8JRkPBZyApJqZBysko6rDwCqdW6njArv40EaBFACqMADsKAFAIPNLRRQAUUUUAIc9qRkDIVYAgjBBp1FAHMXvw98KX9x9pbRbe3uc5+0WebeTPrujINVP8AhDtbsCDovjTU4wGz5WpRpeoR6ZID4/4HXZUUAcab/wAe6af9J0TStZjzjdp92beTHrslBX/x+s7XPFXh/VtHu9K8V6RrGkW8uA73dk2xWzkOsse9QQRkHI6V6ERkUY/zmgDxTSvFqX3jrwno93qVvqN9Y3Uwi1C1lDx3lu8EgVmx92TcFDKe4yMjp7WKyH8L6G+pRakdIshfxNvS5WFVkB/3gMn8fWtfIB57nAoAWisafxd4atbiS3uPEOkwzxMVkjkvY1ZCOCCCcg1GPGvhUkKPE2jknoPt0Wf/AEKgDdoqKG5guYUmgmjlicZV42DKw9iOtS5zQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXP+O/8AknviX/sFXX/opq6Cuf8AHf8AyT3xL/2Crr/0U1AB4E/5J74a/wCwVa/+iVroK5/wJ/yT3w1/2CrX/wBErXQUAFFFFABRRRQAUUUUAFGcUVg+KPGWheDrWC41u9Fss77IhsZy578KCcAHr9PWgDeorHi8U6BJYQXw1mxW2njEkckk6puUjI4Ygjr0PIrLuviV4Ot3WNdftbmVvux2Ra5Y/hEGoA6vIoyD05rjv+Et1vUyF0LwfqLqWx9p1RhZRj/a2nMhH0WmHwr4g11t3ifxC6Wx66do4a3iI9Glz5jD1wVFAFvWfHFjZXjaVpMEmta0OljZkHYf+msn3Yh05bnngGqtn4RvdZv49W8Y3EV7NE2+20yEH7HanscHmVx/ebgZOAOK6TStF07QrJbPS7KCztl6RwoFBPqfU+5q+Ac80AIAQxJp1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFI3SlpD0oA8b+IVrB4g+Mng3w6IYysO6+uvkHzLndhvqIj/31716xJpdjLCYpLG1eMjlGiUqfwxXlngb/AIqH43eMvEB5h09Rp8PoCDtJH/fpv++q9e+lAHkEgj+HXxi0zTtMLRaH4iTElkD+7inBwGQdsnb+Z7AY9gAxXiuu7/FP7Ruj2VuC1voUCzXBHIVvv/zaMfn6GvahQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVz/AI7/AOSe+Jf+wVdf+imroK5/x3/yT3xL/wBgq6/9FNQAeBP+Se+Gv+wVa/8Aola6Cuf8Cf8AJPfDX/YKtf8A0StdBQAUUUUAFFFFABRRRQAhrlPG/wAPtH8e2tpDqrXMbWrs0Utu4VhuxuHIIwcDt2FdZRQBzGmfD3wnpdrbww+HdNdoECiaa1jeViBjJYjJPrzXQwWsNsgSCGOJAPuxoFH5CpqKAEFLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc74p8Z6L4WsLl7/UbWK7S3aaK1kkAklwDgBepyRiuhNJt9qAPFfgr4g8N6F4Jkl1TxBpsGoX93JcTJPcosg/hGQTn+En/gVdtqHj1L2I2vhCyl1vUH+VJERltYif4pJSAuB1wpJPT3HaYPOaTafQUAcl4D8ER+ErK5mubj7brOoP51/eHgu5ycD/ZBJ+pyeOg68UAYpaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5/wAd/wDJPfEv/YKuv/RTV0Fc/wCO/wDknviX/sFXX/opqADwJ/yT3w1/2CrX/wBErXQVz/gT/knvhr/sFWv/AKJWugoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5/x3/yT3xL/ANgq6/8ARTV0FIwJxigDn/AZH/CvvDQ7/wBlWv8A6KWuhpADk0tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//Z'] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 14 "如图, 在锐角 $\triangle A B C$ 中, $A B>A C, M, N$ 是 $B C$ 边上不同的两点, 使得 $\angle B A M=$ $\angle C A N$. 设 $\triangle A B C$ 和 $\triangle A M N$ 的外心分别为 $O_{1}, O_{2}$, 求证: $O_{1}, O_{2}, A$ 三点共线. " ['连接 $A O_{1}, A O_{2}$, 过 $A$ 作 $A O_{1}$ 的垂线 $A P$ 交 $B C$ 的延长线于点 $P$, \n如下图.\n\n\n\n\n则有 $A P$ 是圆 $O_{1}$ 的切线, 所以\n\n$$\n\\angle B=\\angle P A C\n$$\n\n又因为 $\\angle B A M=\\angle C A N$, 所以\n\n$$\n\\angle A M P=\\angle B+\\angle B A M=\\angle P A C+\\angle C A N=\\angle P A N\n$$\n\n因而 $A P$ 是 $\\triangle A M N$ 外接圆 $O_{2}$ 的切线, 故 $A P \\perp A O_{2}$.\n\n因为\n\n$$\nA P \\perp A O_{1}, A P \\perp A O_{2},\n$$\n\n所以 $O_{1}, O_{2}, A$ 三点共线.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAVoB+QMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBCwBxQDmqupX9tpWn3F/dyeXb28ZkduvA9B6npjvXDfCnxnqHjK112bUB5bW+oMkMG0AwREDahwOSMNyaAPRKKQUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFITjtQTjtWR4h1WTTNPH2VBLqFxILezh7PK2cZ/wBlQGZvQKTQBnXZ/wCEj8TpYrzpmkyLLckHKy3Qw0cfHZBhyPUp6GuF+Dv+heOfiFpnIWPUA0an0Eko/ltrsdL8J69pVittb+Kzt3tI7Np6MXdmLMxJOSSSTXDfD6KfS/j34u026uBPNJaid5fLCbyTG2do4H+soA9qHSlpAcjNLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADXDFTsYK2OCRkA/SuIXwb4mk8V2mu3fi63mNsrRpaDS9sSo2N+0eaSGIGN2T/Su5ooAguYp3tZUtZY4pypEckkZdVbsSoIyB6ZH1rzy2+GuvW3je48XL4stW1K4j8qVW0k+UUwoxtE2f4V79q9JJwaUHNADYwwjUOwZ8DcwGAT647U6iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQtigAJx2qlqmsafomny3+p3cNraxD55ZXAA9vc+gHJ7CsPWfGcUGpNouh2jaxrgwHt4WxHbA/wAU8nRBx05Y8YHNcPq3h+/1jXrXSb3Uf7S8STR+bcXCKRbaNbk8mFDkCVvuqx+bjd8uKANTwn8WYPGfxAl0awtGh01LOSSKaUYkndXUZA/hXBbjr646V6aOleKW+lWeh/Em01OyiENjYarb6FAqHgI9o5Oe5JklXJPJPXmvaxwKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKTPOMUM20f41yuteMlh1F9F0GzbWNbXHmQRtiK1B/ink6IMZOOWOOBzQBuatrOn6Hp0t/qd3Fa2sX3pJGxz6DuSewHJrkvN8ReOXHkC58PeHW/wCWzALfXi/7I/5YKeeT83Tpni7pHgtnvotZ8UXg1fWE5iG0i2tPaGM8A9PmOW47dK6HVtTstE0y51LUJ1htbaNpJHbPAHt3PYDqSeKAOc1GfS/AGgw2Gh6bG17dyeRYWUf3rmcj7zk8kAcs7HoOvTN/wn4a/sDTJPtU32vVb1/P1G8Yczykds9FX7qrwAOwyazvCmk3mp6jJ4v16Bor65XZYWcn/LjbdQCP+ejfeY9uBxgiug8QagNH8OanqJ/5dLWWf0+6pP8ASgDzN1Evwl1bxFAm+Rtal1pCByViuwQf+/ceM+levKwZdwIIPIIrjtI8P7/hFa6C67Hm0byHGOjvFhv1Y1p+B9QOqeBNCvWbdJLYxFz/ALYUBv1BoA36KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopCcfWgAJwao6rrWnaHp73+p3cVrap96SRu/YAdST6Dk1gaz4xA1GTRfDtn/a+tpgSRq2ILXP8U8nIXGM7R8xxxjNGkeCg1/HrXia7/tjWU5iZ1xb2nQ4hjPA6D5jljjqKAKTP4k8bt+5+0+HdAbI80jbfXa/7I/5YKfUgtx2zXU6LoOmeHtOSw0q0jtrZP4VHLHuWPVie5PNaIXHejpQAhbaeemM5rgoD/wsPxCt2cN4W0qc/Z16rqF0pwZCf4o0OQoHDMCTkAVY8TX1x4l1f/hDtImeJSiyaxeR9be3P/LJT2kk6D+6uTjpXXWVlbWFjBZ2cKQ20EYjjjQYVVA4AoAsDp3/ABrkviZvk8C3tlE22XUJILFMdT50qRn9GP5V11cf4z2Xev8Ag/S2JzLqv2oj1WCJ3/8AQtlAHWqoVQqjCjgD0rkvhyUg0G/0tAQNL1W7tAD2XzS6f+OOtdd3BrkfDoe08f8Ai+xIAjle1v4uOu+Ly2/WE/nQB2AopB0paACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkJwaGbHbNcjq/jINqT6N4ctBq+spgSqr7be09Gnk52467R8xxxjNAG/q2uaboWnSX+qXcVrax/ekkbqewA6knsBzXJlvEnjn7n2rw54fb+L7t9dr7f88VP4scds1f0jwX/wATGPW/Ed4dY1peYndNsFpnnEMfReg+Y5Y4HSurC46UAUdI0TTdB05NP0q0itLWPpHGOCfUnqT6k8n1q+BilFFACE4IGK5rxd4im0i3gsdMiS513UCYrC3Y/Lu7yP6RoOW/Ad61Nd1qy8PaPc6pqEhS3gXcdoyzHsqjuxOAB6msPwjol49zP4n16IJrd8gRYQcixt+qwr792PdiewoA0vC/h2Hw5pItlle4upXM15dyD57mZvvOfTPQDsABW4BikAxS0AGa466Ivvi7p8JTK6bo80+7HRppUQfpE1dga5Dw7uuvH/i6/Yq0cTWljEQc42ReY36zfpQB145ArkLvFj8XNNlL4GpaRNb7c/eaGRHH6SPXXjpXIeNcWms+EdV25MGrC2Y46LPFJH/6EUoA68Zxz1paQUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUhbBx3oAC2Kz9X1zTdA057/VbyK1tk4Luep7AAcknsBzWDrHjLOpPovhy0Gra0nEihttvaejTychcYztHzHHGM07RvBmzUI9b8RXh1fW1H7uR12w2mecQx9F7fMcscdRnFAFD/io/HJBZbrw54fb+H7t9dj3/wCeKk/ViAegNdZpOi6doemx6fpdpFa2sf3UjHU9yT1JPcnk1fC4z6UooABRRRQAUyR1RWZyFRRlmJwAKcTjtXCeIZ38aa5J4SsZHXS7fB1u6jYjIPItlI/ibGWx0XjuRQA3S1bx74hi165Rv+Ee02U/2VC3S6mGQblh/dHITr3bjOK7xM7eTk1Hb28VtbpbwIscMahEjVQFUAcAAdB7VKBigBaKKKAENch8OQJ9D1DVAxP9pateXIJx93zTGv8A47GtdDreoLpOhajqTfdtLWSc8dkUt/SszwHYHTPAGgWjJsdLGEuuOjFQW/UmgDohXI/E1JR4B1G6txmex8u+T6wyLIf0U111UdZsF1XRL/Tn5S6tpIW/4EpH9aALcTrLGsiEFGAYEdweafXOeAb46j8P9BuWYs5sYkcnqXVQrfqDXR0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFITjtQSAcVyGreMzJqUmjeGLQatrKfLId+22tM8ZmkGcYPOwZY4xxQBvaxr2maBpr6hqt3Fa2y/xOfvH0UDlj6AZJrllTxJ43bdL9p8O+H2/5ZA7b67Xr8x/5YqfQZbryM1f0XwYsV+mta/eNq+uLnZPKuIrYH+GGPog9/vHua6oLjoaAKWk6Np2iadHYaXaRWtsnRI1wCe5J6knuTyaviiigAooooAKaWx2pSayPEfiC08N6PLqN0HfbhIYI+XnlbhI0HdmPA/E9qAM3xd4gurP7Lo2iBZdf1LclspGVt0H355PRV9OpOAAa0vDnh608OaJDp1qXfaS8s0nLzynlpGPdiefyHas3wj4eurL7VrWtMkmvalhrkrytug+5BH6Kv6nJ5rqQMUAAGKWiigAooooA5H4mvKfAWoWsDYmvjFYp9ZpFjP6MT+FdZGqpGqKMKowB6AVyPjUC71nwjpm7Bm1dbllz1WCJ5f/AEJUrr1GBQAtIaWkPUUAcf8ADtvI0vV9M2bP7O1m8gVcY+VpDKv4bZRXY1x+hbrT4i+K7JjhLmO0v41z/eRomI/GFfzrrxQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSFsH60ABOO1Z+s67pnh7T2vtVvIrW3U4DOeWP91QOWPsATWBq3jJ59Qk0Xwrarq2rx8SsX221mfWaQd/9hcscdql0PwXHb36a1rl2dY1sfcuJkAjtv8AZgj6Rj3+8ecmgDO8vxF45J88XPh/w8f+WQO2+vF9GP8AyxQ9CBljg8jNdbpOj6fomnR2Gl2kVraxjCxxLgfU+p9SeTV3AXjpS5/GgAAwKWkByM1leJdftPC/h2+1m9yYLWPeVXq5zhVHuSQPxoA1qK8u+Hnxkt/HGuS6TPpTafP5TSwt5/mLIFxkfdGDzn6A/j6gDkZxigBaKKQnHagCK4njtoZJ55FjhiQu8jEAIoGSSfTFcT4fgl8Za5F4tvo3XTLfK6JbSDGQeDcsp/iYfdz0XnqeG6rI3j3xC+g27H/hHtOkH9qyr/y9zDlbZT/dHV/wXjmu7jjWNAiAKoGAAOBQAqjg/WnUAYooAKKKKACkJxS0h69KAOQvGF78W9MtyuRp2kT3OcdGllRB+kb/AK12Arj/AA8XvPiH4uvW5jg+yWMRx02xmVv1mH5V146UALSEZpaKAOO1DbY/FrRrgkj+0dLubQ+haN0kX9DJXY1x/jhvsmo+FNTVQTb6zHEzZxhJkeE/q61146UALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSE47UbhnHeuQ1Lxm13qEuj+FbVdV1SM7ZZS221tD/01kHU/7C5Y47UAb2t69pnh6wN9ql3HbQA4BY8uf7qqOWb2HNcqIvEXjn5rv7T4e8Pt0t1bZfXS/wC2f+WKHjKjLHkZGa0dD8Fx21+uta5dtrGtj7lxMgEdsP7sEfSMe/3j3NdVtoAo6Vo+n6Lp0dhpdpFaWcYwsMS4HuT6k+p6981blmjtoXlmdUjRSzu5wFA7k9hTxxXkHxf1i61bXtD+H2mzNE+qyI966dRDuxt+nDMR/sj1oA6qw8Van4wnlbwxFDb6RG5jOrXkZbzmBwRDGCNwB/iJA9jiptYXxbo1lLqOnahDq/kKZJbG5txE0ijqI3TG1vQEHPrXS6fp9tpmn29jZxiK2t4xFHGBwFAwBU08kdvBJNKwEaKWcnoABz+lAGX4W8SWPivw9a6zp5Pk3A5VvvIw4ZT7g1b1fSbPXdJutMv4/MtbmMxyKDjg+nv3ryj9naSV/CWrnB+znUT5Q9DsXI/LbXsYPHFAHD+CvhRoHgbUp9R0+W7uLqRDGr3Lq3loSDhQFHPA56/Su5AwMUopCeaAAnHQc1yPi7W72S5g8L6DJs1u/QsZgM/YrcHDzH37KOMt9K1PFHiGHw5pJujE1xdysIbO0jOHuJj91B/MnsAT2qr4S8OTaRaz32pypca7qLCW/uEHG4DiNPREHygexPegDT0PRLLw/o1vpmnpst4BgEnLOepZj3YnJJ960RxSgYooAKKKKACiiigApG6e1LVHWL5dM0e+1B+EtbeSZj6BVJ/oaAOd+Ha+dpOq6mH3jUdZvLgNnOVEpiX/AMdiFdgBiuc8AWR0/wCH+g27KVcWMTuD1DsoZs/iTXR0AFFFFAHJ/EuGWX4e6vLAcTWka3iEesLrL/7JXUW8qXFvHNGQySKGUjuCKg1Oyj1HS7uxlx5dzC8LA+jKQf51h/Du9+3/AA80GYkl0s0gkycnfGPLb9VNAHT0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFIWwehoACcVma34g0zw7p5vtVu47eDO0ZOWc/3VUcsfYc1har4ykutQl0XwpaLquqxnbNMzFbSzPrLIOpH9xctwelT6H4Nhtb9da1m7fWNcxxdTqAkH+zDH0jH05POTzQBm/ZvEXjg51AXHh/w+3/Lojbb26X0kYf6lDxlR8x5BIzXXaZpVjo+nx2Gm20VraRjakUSBQPf3PuevergQAAU4CgBAMDrmloooAQ14rqMJg/aj0yW7HyzWRNsT0/1Min9Q1e1Y5rmPGPgq18Vx2k4uJLHVbCQS2V9EoZoXBB5B+8uQOKAOl3YHTj1rz74u+JJNP8ADI0HTVebWtcJtLaCP7208O3twcfU+xrdjj8ZG38hpND80LtN4BK2ffyuMfTfijQvBdppepza1e3Mup65OuyS/uQMqv8AdjTpGvXgevJNAGFp1g/wt+EyxwWz3d5AFacRRGTdLI4DNtGCyrnpkZC447P8aajr3gzw8fEtvq8uoRWrxm5sr2CJVdGYKdjIisrZYdS3A/PvXZYkZ3YBVG5mJwAPeuG1mCHxjF9p1RvI8J2J+0tGxw1+UGQzDtCOo7vjPAwSAdxbTJcW0c8edkih1yMHB5GfwqO+vbbTrOa9vJkhtoEMksjnARQOSakhlWWFHQYVlDAHjAxXC3BHxC8SNZABvC+lSj7Qf4dQuVIPl+8SHBbszYGCBQBY8MWFz4j1b/hMdXhaJSpj0azkHNtAf+WrDtJIMH/ZXA9a7cDFNQYWnUAFFFFABRRRQAUUUUAFcl8TJJR8P9Tt4P8AXXojskHqZpFi/k5rra47xwPteq+EtLD4NxrCTsB3WCN5f/QlWgDroY1ihSNF2oihVHoAKfRRQAUUUUAIa5HwATb2muaWV2Cw1m6jRemEdhMv4Yl/SuuP9K4/RQbL4m+J7Nm+W9trS/RPfDwsR/37SgDsRRQKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQsAaC2DjBrjtS8ZzXt/Lo/hG0j1XU4ztnuHYraWmf+ekg+8f8AYTJ4PTFAG9rviHS/DlgbzVLtIIidqDkvI391FHLN7AZrmBaeIvG43aj5+gaA+CLONtt5cr1xI4/1SkYyq/MeQSOlaWh+DILO/Gs6vdPq+ukY+2XCgCEH+GGPpGv055OSc104UAYoAp6ZpNjo9hHY6baxWlpGMJFEoA+vuferoGKUDFGaACik3Um7kjGD70AOpM0tedfFz4gXvgPR7KTTrWOW7vJWRXmRmjjVRkk4I+bkYGfU9qAPRaK8++E/j678d6BdT6haxw3dpOI3aFSI3BAIIyTz1yM+h716ADkUALRRRQBQ1jR7LXtLm03UY2ltJwBJGsjR7hnONykHHHrz9K47/hS3w+VgR4eyR0/0yfH6vXfk4rA8V+IxoGnxi2gN1q14/wBn0+zHWaU+voij5mboAPXFAGX4s1O91LUIfCWhTvFe3SeZfXkZ/wCPK26Eg9pG6IPqe1dNpWlWejaXbadp8KwWlugSOMDoP8c8k+tZvhPw2PD+nS/aZzd6peSGfULtus0p9PRQPlUdgPc1vgYFAABgUtFFABRRRQAUUUUAFFFFACE4rkL/AG33xZ0iDBP9naVcXXsGkdI1/RZK689RXIaEWu/iP4su2H7u2js7GNv91GlbH/f4flQB146UtIPf1paACiiigArjtUCWPxV0C6wQdQ0+6siexKFJVH5CSuxrj/Hm+2l8M6nGObTWoFdsdElDQn/0YKAOvHSloFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSFgDigALAHmszXPEOmeHbA3mqXSQRZ2oDy8jf3UUcs3sKwNS8Zz6hfS6P4QtY9T1CM7J7uRiLO0P+24++3T5FyfUireg+D4LG9/tjVLqTV9cYYN7cLgRAj7sMfSJevA5OTkmgDK+xeIvHOG1L7RoPh9uRYxttvLpfSVh/qlI6qPmPIJFdhp+lWWk2EVjp1tFa2sQ2pDEgVR749ffv3zVsIBTgMUAAGKKKKAAmsDxZ4t07wjpQvL7fJLK3l29tEMyXEnZFFbzfpivFfDsx8f8Ax21TU7keZp3hxTDaR9VD5KhsepIds+y+lAHfabpniLWYVvNf1KTT9/zLpunEKIgezykbmYd8bRx36nG8WXusfDuCLXrbULrU9ESVY76yuyHkiVjtEkcmN3BIGGJ69q9FXpXnnxvvorP4V6okmN1y0MKA9z5it/JWP4UAd7ZXUF9YwXdtIJLeeNZY3HRlYZB/I1Q8QeGtI8U6b/Z+s2aXVtuDhGJUqwBGQQQQeT0rN+Hkc1t8OfD0c4bzBYRHB6gFQQPyrqBQBlaD4c0nwxpg07RrNLS1DFyqZJZjgFiTyTwOT6VqgYoooAKKKazbTz6ZoAp6vqlnoumXGpX84gtbaMySOewHp6nsB3JFc14T0m81LUJfF+uQNBf3SbLKzf8A5cbbqFI/56P95j1HA45FVLdj8Q/EC3hIPhfS5iLYDldQulOPMPrHGQQo6MwJ6ACu9XpQAAEdTmloooAKKKKACiiigAooooAKKKKAEPUVx/w7X7Rpus6puDDUdZu5lOP4Ffyl/SIV02qXyaZpN5fynEdtA8z/AEVSf6Vi/D2y/s/4e6BbkEP9ijkkB673G9v1Y0AdLRRRQAUUUUAFcp8Srd7j4da2Yztkt7f7VGw7NERKD+aV1dV721jvbKe0lGYp42iceqsCDQA60uY7yzguoiGjmjWRCO4IyP0NTVyvw2umu/h1oRkBEkNsLZweoaImM5/FDXVUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSE4oAWkLAHmkLYbGK47UPGU+pXk2k+DrWPU76M+XPeSMVs7Q/7bjl25HyJk+pFAG9r3iLS/DdiLvVLpYI2YJGuCzyueioo5Zj6AVy32DxB45GdXE+haA/8AzDo323dyuekzj/VqR1ReeSCR21dB8GwWF9/bOqXUmra6wwb64UARD+7DH0iXk8Dnk5Jrp9vGP5UAVtO02z0qxjsrC1itbaIEJFEu1R+A/nVoDApQMUUAFFFFABRRRQAnevF/gnbnSPFXjbRbsbL6K7RsN951BkG4eo5Bz/tj1r2gjPeuY1vwRaanrUOu2V3caXrUK7BeW2D5if3JEIKuvseenPFAHTBsDjn6V4z4vhk+K/j+08O2JZvDuiyeZqV0h+WSU4zGp7sB8o9CW9K9BuvDOq6tEbfVPEc32Vhh49PgFsZAeoZyWYA99pWtjSdG0/Q9PisNMtYrW1i+7FEuB7n3J7k80ALeWM1xbRw2l7JYbSMvBGhO0D7o3KQO3btXLfCrUL3UvBrXF/dzXU/265QyzNuYgSED/wDUOK7Unbj3rgfg6ynwK+1gw/tC65U5/wCWpoA9AopAcignFAATjtmuI8T3tx4l1c+DdJmeJSiyaxeR9YID/wAslPaSToPRcnFaXi7xJLo9tb2OmxLca7qLGGwt2Py7v4pH/wBhAct+Xerfhfw5D4b0gWqytcXUrma8u3Hz3Mzffdvqeg7AAUAadlZW+n2MFnaQpDbwII4o0GAigYAFWKQDApaACiiigAooooAKKKKACiiigAooooA5P4lzSR/D3V4ocmW7jWzQDuZnWIf+h11MMaQwpFGu1EUKo9ABxXJeOQbq/wDCmmK4BudZimZfVIUeY/qi114GBQAtFFFABRRRQAUhpaQ0Acj4DZrb/hI9MfANlrVxsX0SXbMv/ow/lXX1x2lD7D8UvEVuSf8AT7G0vVHbK74mP5Kn6V2AoAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikJwaTdzjHbNAClgDg1la94j0vw3ZLd6nciFXYJEgG6SVj/CiDlm9gKwdQ8ZXOp3suk+DbaLUr6NjHPeysRZ2h77mH326fKmfcirug+DrfT706xqN1Lq2uuu1r+4AGwf3YkHyxLyeBzyck0AZH9m6/wCOVzrQm0TQHzjS4nK3NypP/Ldx9xSOqKc8kE12dhp1pptlHZ2NtFbW0Y2pFEgVVH0FWtvGKXFAABiiiigAooooAKKKKACiiigAooooAKKKKAKmoaXYatbiDUbK2u4QdwjuIVkUH1wwIzVWy8MaDptyLmw0TTbScDAlgtI0YD6gZrVooATpWdrut2Xh7R7jVNQkKW8C5IAyzN2VR3JOAB6mr8kixozOQqqNzMTgADqa4XSVfx34gj1+4U/8I9p8hGkwt0upRkNckeg5CZ924yKAL/hLQ703Nx4m15AutaggUQ5yLK3BysCn17se7H2rrQMChenNLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSNxzQBx+o7L74s6JbkEnT9Murv2BkeOIfoJK7EVx+ik3fxJ8U3bL8tpBZ2Ebe4VpmA/7+r+VdeKAFooooAKKKKACkIpaKAOO1k/Yfih4ZulTi+tLyxdsdwElUf8AkN/1rsRXIePw9vFoGqIdosdZtmkbPRJGMLfpL+ldcOlAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFITigBaQnFBY+lcXfeMbnV7yXSvBtrFqF3Gdk+oSkiztT6Fh/rG6fKn4kYxQBu6/4k0zw3Zi51K48ve3lwxIC0szk4CxoOWOewrmv7L1/wAcKTrnnaLoL/8AMLhkxcXKHtPIPuKQOUXnkgtWvoHg610u9bVr66m1XXHG2TULkDKjusaj5Y19l/Emuk2jAHGPTtQBWsNOs9MsY7Oxtora2iG1IolCqB9BVoDFAGO+aWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQnHagsF69OvNct4v1+7tPs2jaGEk8QaiCsAIyttGPvzyeir/482AAaAM3xDPJ401xvCdhK6aXbkNrVzG2Nw6raqfVsZbHReO+K7eC3it4EggRY4o1CoirhVAGAAB2rM8O+HrTw5o0Wn2hdtpLyzScyTyNy0jnuxPPtwOgxWuBigAAx3zS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUhpaq6neR6dpd3fSnEdtC8zn0CqSf5UAcz8P1a4s9c1NmDi/1q6kRvVEbyV/SKuw6VzHw6svsHw70GIgh3s0nfI53yDe36sa6egAooooAKKKKACiiigDl/iNaG9+HevRrnfHaNcJgc7o/3i/qorf067j1DTLW9ibdHcQpKh9VYAg/kafdQpc20tvKu6OVCjD1BGD/Oua+Gtw8/w70ZJcebaxGzfBz80LGI/wDoFAHV0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUhOKCwGPegAJx2rI1/xJpnhyyW51GcpvOyGFFLSzv2VE6s3sKwb7xhdazdy6Z4NtY7+eNtlxqU2fsdqe43DmV/9lfUZIrQ0HwbaaXdnVL65l1bXHGJNRugC465WNekS8nhfxJoAyBpWveNzv13zdH0F/u6XDL+/uVPTz5FPygjqinPOCeK7OxsLXTrOKzsreK2toRtSGJQqqPYDirO3jHUUAY75oAUDAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkJpaiuJo7aCSeeRYoYlLvI7AKigZJJPQAUAZniTxBaeHNGl1C6DvjCQwRjLzyMcLGg7sx4H4ntWb4R8PXVkLnWtaKSeINRw1yy8rboPuQR+iqPTqck5rN8PwS+Mtbj8W30ciabb7l0S2kGMg8G5ZTzuYcLnovPfju1GB1zQAAYGKWiigAooooAKKKKACiiigAooooAKKKKACiiigArk/iVO8Pw91iOIAy3UQs0BOMtMwiH/oddZXIeOt1zdeF9MQ/wDH1rULuvqkKtMfwzGtAHVW0KW1rFBGMJGgRR6ADAqWkFLQAUUUUAFFFFABRRRQAhrkfA262u/FOmO2Ta61LIg9EmVJh+rt+Vdce3p3rj9OKWPxX1u25B1HTLa8HoTG7xMfyMdAHYjkUUCigAooooAKKKKACiiigAopC2DjjpmjPFAC0hYA4pN3t1oI3A4JHbigDJ8QeJdL8N2i3Go3BVpTsggjXfLO/ZY0HLNnHT15xXM/2Pr3jcl/ERl0nQ3Hy6RBLiadf+niQdBj+BfXk9qsS/DPTptdk1xtY1r+03Up9oF0AVU/wrhflHsMVc/4Qj/qZ/Eh/wC3/wD+xoA6GysbawtI7Wzt4re3iG1IokCoo9ABxVgDArlh4Ix/zM/iX/wP/wDsaX/hCf8AqZ/Ev/gf/wDY0AdTRXLf8IT/ANTP4l/8D/8A7Gj/AIQn/qZ/Ev8A4H//AGNAHU0Vy3/CE/8AUz+Jf/A//wCxo/4Qn/qZ/Ev/AIH/AP2NAHU0Vy3/AAhP/Uz+Jf8AwP8A/saP+EJ/6mfxL/4H/wD2NAHU0Vy3/CE/9TP4l/8AA/8A+xo/4Qn/AKmfxL/4H/8A2NAHU0Vy3/CE/wDUz+Jf/A//AOxo/wCEJ/6mfxL/AOB//wBjQB1NFct/whP/AFM/iX/wP/8AsaP+EJ/6mfxL/wCB/wD9jQB1NFct/wAIT/1M/iX/AMD/AP7Gj/hCf+pn8S/+B/8A9jQB1NFct/whP/Uz+Jf/AAP/APsaP+EJ/wCpn8S/+B//ANjQB1NFct/whP8A1M/iX/wP/wDsaP8AhCf+pn8S/wDgf/8AY0AdQWxwBzXBaq58e+IJdAhJHh7TZR/akyn/AI+ph8y2yn+6OGf8F45rTbwOG4PifxJ/4H//AGNVtO+G1lpNmtpYa94gt7dSWEcd9gZJJP8AD3JyaAOxjRUQIowqjAA6AU+uVHgjA/5GjxKf+3//AOxpf+EJ/wCpn8S/+B//ANjQB1NFct/whP8A1M/iX/wP/wDsaP8AhCf+pn8S/wDgf/8AY0AdTRXLf8IT/wBTP4l/8D//ALGj/hCf+pn8S/8Agf8A/Y0AdTRXLf8ACE/9TP4l/wDA/wD+xo/4Qn/qZ/Ev/gf/APY0AdTRXLf8IT/1M/iX/wAD/wD7Gj/hCf8AqZ/Ev/gf/wDY0AdTRXLf8IT/ANTP4l/8D/8A7Gj/AIQn/qZ/Ev8A4H//AGNAHU0Vy3/CE/8AUz+Jf/A//wCxo/4Qn/qZ/Ev/AIH/AP2NAHU0Vy3/AAhP/Uz+Jf8AwP8A/saP+EJ/6mfxL/4H/wD2NAHU1xuqFL34saBbEknT9Ou7wjHALtHEp/Iv+tWP+EJ/6mfxL/4H/wD2NVh8ObQai2oDxB4h+2NEITP9uG7ywSQudvTLE0AdkOlLXK/8IT/1M/iXP/X/AP8A2NL/AMIT/wBTP4l/8D//ALGgDqaK5b/hCf8AqZ/Ev/gf/wDY0f8ACE/9TP4l/wDA/wD+xoA6miuW/wCEJ/6mfxL/AOB//wBjR/whP/Uz+Jf/AAP/APsaAOporlv+EJ/6mfxL/wCB/wD9jR/whP8A1M/iX/wP/wDsaAOprj9c32XxJ8LXiL8l1DeWEje5VZUH/kJqn/4Qn/qZ/Ev/AIH/AP2NJH4EthqNje3Gta3dvZTCeFLm73qHwRkjb6Ej8aAOqHSikHHFIWA/LNADqKozaxp0Fx9mmv7SOcnHlPMob8utWnmSPaXKqCQAWYDJJwB9cmgCSigHIooAKKKKAIriCK6t5LeeNZIpVKOjDIYHqDXh/hLwpoPiH4x+K2XS7VtG0tVto7bZ+7804BbHTqkn517Vqd9Fpel3moT8Q2sDzSH/AGVUsf5V5R8FrHXk8IXOtRrYM+sXkly7zs4Y4O3sOm4MfxoA6jxB4B8Jx6BfzxadBpkkVvJIt3afuXiIUndlcdOvPFV/gx4g1bxH8P47rWHklnhuHgSeTO6ZAFIYk9Tklc/7Prmsb4iz6pBBAPGMm3wnLMkdwNGzv3E5Hm7hnyyR/Bz+lem6Pa6fZ6PaQaVHFHp6RL9nWH7uwjIIPfI5z3oAvUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFITzilrlPiBZmXw3cXMN7f215GhitDaXckOZpCETcFIDfMV4Oe9AHVZoz7V5p8HtS1Ke38SaRquo3N/c6XqskAluZTI+zAUDJycZRj+NekSyxwxPLLIqRopdnY4CgDkn2oAfuFAORn+VeMX1/rPiv4y2GjR6rqdhpaWRuri3tLl4GWPnYGwfvElCe4D47ZPrum2CabYpaxzXEqoSd9xM0rnJzyzEk/iaALdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFITg4paQrnvQAm7np+NLu46V578RNEv72S0g0PV9UstVvpH2GG+lWNVjidj8gbaAWCL0/ipfhD4rn8TeCkS+lZ9U0+Q2t0ZD87Ecqx+o4J9VNAHoO6gHI9K4Xxvok9/qejrYa5rGnXV7eCF/sl46p5So7udmcA4XGcdSv0rrdJ0uPSLL7LHc3lwNxbzLu4aZz+LHgcdBxQBeooooAKKKKACiiigAooooAZLIkMbSSMqooLMzEAADk5zXl1hrGp/FXVrpdPu7jTfCFnIYmnt2Mc2oOOoDdUTGM45wffC2PjtrUuj/AA2migYo+oXCWhZTyEILN+YTH411HgTQk8P+BtH05VAeO2V5eOsjfM//AI8TQBNZ+DfDdhZ/ZbbQ9PWHBDBoFcvnruLZLfiTXDDQ723+M2laPHdzN4esbOTVILRmykTnMW3J5IBO5QemSBxxXqv3SBUC2Vsb434hUXTRCFpMfNsBJC/mSaALApaKKACkJxS0mKAPOfjVr0Wl/De/t0mUXV8y2saBvmOW+fA7/KGH411PhSxt/D/hDSdMaWJTa2kaOdwA3bfmP55NOuPBnhe8uZLm58N6PPPIxaSWWxjZnJ7kkZNR/wDCCeEO3hXRB/3D4v8A4mgDzv4oaufHiQ+CfCgXUbiSdXvrqPLQ2qqeNzgYBJ54P8OOScV6romnJo+h2OmRszpZ28durN1IRQoJ/KprPTrPTrcW9jawWsIORHBGEUfgMVYAwKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK53xD/pmueH9LHKtdNezD/pnCuR/wCRXiroS2O1c3YyJqPjrVblWDpp1tFYrg52yOTJKPy8n8qAON8Df8S340+PdLGQLgw3ij6jcT+ctd3esNY1JdMTm0g2y3pHRu6Rfjwx/wBkAdGrzvV7qXQf2g47i2g8+bVtF8qJADh5A2BkjoB5YJPYZrt9buU8IeAtVvvNLzwW0szTMOZZ2HU/ViBjsMAcAUAcd8Lv+J74+8b+LG+ZHuhY28nqidf/AB1YjXrI6V5/8GtI/sj4Y6ZuXEt3vu5PfeeD/wB8ha9AU5FAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUE4oprdaAOejP23x9PJ/BptgsKn/ppM+5h9QsUZ/wCBV51EP+Ff/Hp4/uaR4oXcv91Z89PrvOPpKK9D8HOl9ZajrKMHGp380qOpzmND5MZz7pEp/Gub+NPh2TWvA8l/aAjUNIf7ZA6feCj74/IbvqgoA6bIvfH4HBTTNP7dN87/AMwsP/j1dGK4v4Z3tzrvhlvEd7GI7nVpfNZP7oRFiAHsTGW/4FXaUAFFFFABRRRQAUUUUAFFFFAHn3xk8LXXivwHLBYxtLeWkq3UUS9ZNoIZR77WOPUgDvXQeDfEtl4n8M2d9ayq0nlqlxED80MoA3Kw6gg/pz0roCDnrWBf+CfDmo35v7jS4ReH708JaF2+rIQT+NAFrV9bt9NaO3UG51GYYt7KI/vJT647IO7HgflT9C06TTdMEdxIJbuV2nuJB0aRzlseijOAOwAp2m6FpmjrINPs4oDJgyOq5eQjoWY8sfqa0QMUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBV1HTrfVbGSzuvO8mTG7yZnibg5+8hDDp2PNYWj/D7w34f1Br7S7S4trhiWdhezsHOCMspcq3U9Qa6eigCk+kWMmrR6q1shv44TAk5+8qEhiB+IFZWt+CNC8SSO+rwXV0r7d0TX06xHHT92HCD14HXmuiooAx9D8MaZ4chMOmJcxw7VRYpLyaZEA6BVd2C/hitiiigAooooAKKKKACiiigAooooAKKKKACiiigArK1zw7pviO1W21OOeSAZzHHcyxBgeoYIy7h7HIrVooAwvD/g/RfC6PHo8E9vG4wYzdSyIOc8K7EDnuAK2niWRCjgMrAhgRkEHqKfRQBV07T7XSdOt9PsYRDa28YjijXoqgYAq1RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/Z'] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 15 "作斜率为 $\frac{1}{3}$ 的直线 $l$ 与椭圆 $C: \frac{x^{2}}{36}+\frac{y^{2}}{4}=1$ 交于 $A, B$ 两点 (如图所示), 且 $P(3 \sqrt{2}, \sqrt{2}$ )在直线 $l$ 的左上方. 证明: $\triangle P A B$ 的内切圆的圆心在一条定直线上;" ['设直线 $l: y=\\frac{1}{3} x+m, A\\left(x_{1}, y_{1}\\right), B\\left(x_{2}, y_{2}\\right)$.\n\n将 $y=\\frac{1}{3} x+m$ 代入 $\\frac{x^{2}}{36}+\\frac{y^{2}}{4}=1$ 中, 化简得\n\n$$\n2 x^{2}+6 m x+9 m^{2}-36=0 .\n$$\n\n于是有\n\n$$\nx_{1}+x_{2}=-3 m, x_{1} x_{2}=\\frac{9 m^{2}-36}{2} .\n$$\n\n因为\n\n$$\nk_{P A}=\\frac{y_{1}-\\sqrt{2}}{x_{1}-3 \\sqrt{2}}, k_{P B}=\\frac{y_{2}-\\sqrt{2}}{x_{2}-3 \\sqrt{2}}\n$$\n\n所以\n\n$$\n\\begin{aligned}\nk_{P A}+k_{P B} & =\\frac{y_{1}-\\sqrt{2}}{x_{1}-3 \\sqrt{2}}+\\frac{y_{2}-\\sqrt{2}}{x_{2}-3 \\sqrt{2}} \\\\\n& =\\frac{\\left(y_{1}-\\sqrt{2}\\right)\\left(x_{2}-3 \\sqrt{2}\\right)+\\left(y_{2}-\\sqrt{2}\\right)\\left(x_{1}-3 \\sqrt{2}\\right)}{\\left(x_{1}-3 \\sqrt{2}\\right)\\left(x_{2}-3 \\sqrt{2}\\right)},\n\\end{aligned}\n$$\n\n上式中\n\n$$\n\\begin{aligned}\n\\text { 分子 } & =\\left(\\frac{1}{3} x_{1}+m-\\sqrt{2}\\right)\\left(x_{2}-3 \\sqrt{2}\\right)+\\left(\\frac{1}{3} x_{2}+m-\\sqrt{2}\\right)\\left(x_{1}-3 \\sqrt{2}\\right) \\\\\n& =\\frac{2}{3} x_{1} x_{2}+(m-2 \\sqrt{2})\\left(x_{1}+x_{2}\\right)-6 \\sqrt{2}(m-\\sqrt{2}) \\\\\n& =\\frac{2}{3} \\cdot \\frac{9 m^{2}-36}{2}+(m-2 \\sqrt{2})(-3 m)-6 \\sqrt{2}(m-\\sqrt{2}) \\\\\n& =3 m^{2}-12-3 m^{2}+6 \\sqrt{2} m-6 \\sqrt{2} m+12=0,\n\\end{aligned}\n$$\n\n因此\n\n$$\nk_{P A}+k_{P B}=0\n$$\n\n\n\n又 $P$ 在直线 $l$ 的左上方, 因此, $\\angle A P B$ 的角平分线是平行于 $y$ 轴的直线, 所以 $\\triangle P A B$的内切圆的圆心在直线 $x=3 \\sqrt{2}$ 上.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIASAB1wMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAzRkVR1bUY9J02a9kV3CYCRJjdI7EKqLnjLMQB7muXtPFGqQ/EO38LaitlO1xp5vS1rG6/Z8MRsYljuH+1he3AzigDtsj1orkdd8XS6X4z8OeHbW1W4l1RpXmYtgxRIudwx1z83/fJrrR0oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCKaKOVdsqK4BDAMM4IOQfwIzXmvw6Q61448a+J5xlxf/2ZBn+COLGcemfkP1Fegaxqltomk3mqXjMtraRNLJtXJwBnj1PYVw+m/wBkw+HL/wAZadqeo6NpOphr+5t5Ejz5nILqGDbWfaO5zxjBxQBW0T/if/HnXtQwHg0OwjsYj2Ej/MSPcfvFr1AdK87+D3h+40jwpNqF9DLFe6xcteukpLOiN9wMTyTjLc8/NzzXoY6c8UAGRnGeaWvK/G/j1dE+LXhTSBLttju+2fNx++/dpn0wRu+hr1QdKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAK93aw31vNa3MSy28yGOSN1yrqRgg1j/wDCJaZJPC14Lu+S3YPBFd3Lyxow6NtJwxHYtkjqOa6CigBF+6M9aRs4OBTqKAPlnxt8P/GGrfESBtQ+xLqGvSzvaIs5KxrCgbYTt42ptAPfFfSfh4aqvh+xTWxGNTSIJcmJtys443A4HXGfxrkvF3/JXfh3/wBxP/0nWvQKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8/8AF3/JXfh3/wBxP/0nWvQK8/8AF3/JXfh3/wBxP/0nWvQKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8/8AF3/JXfh3/wBxP/0nWvQK8/8AF3/JXfh3/wBxP/0nWvQKACiiigAooooAKKKKACiiigAooooAKKKKACiiuL+Jd/qGh+E77XbDWprB7KLKxLBFIkrswVQ29SRyccEdaAO0oyPWvPvB9j4r1zwlpmq6l4uvYbm7gExjisrUKoblesRP3cd6p6v4t1vwJ4t0XTdbvotV0nWHMUdybdYp4JAVHIU7WX515wD19OQD02ikAwKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooozigAooooAKKKM0AFFFFABRRRQB5/wCLv+Su/Dv/ALif/pOtegV594u/5K78O/8AuJ/+k616DQAUUUUAFFFFABRRmigAooooAKKKKACiiigAryL4+3xfw/o/h+OTy5NVv1BP+wvsP9pkP4V67Xjus/8AFS/tH6TYDDW+hWf2iVfRyNwP5vF+VAHdQ+LvDdhYw28F1IY4YxHHHFayu20DAACqSenSuTn8M6n8QPH2meItTsZ9O0LSMNZ21wAs9zIDu3smfkXcF4PJCjpnj1MdKUdKAEAwoHSloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooyKACiimSyxwxNLLIscaDLM5wAPUmgB9Ga5G5+I/htJ2t7C7m1e6UZ8jSoGuj9NyDaPxaov7d8Zaln+y/CcdjGRlJ9YvQv/AJDi3n8yKAOzorjv+Ef8X6gwbUvF62qEfNBpNgkeD7SSmQ/kBQPhpoM6Aaq+paw4bdu1G/llBP8AuZ2f+O0Aa+oeLvDelMVv9e0y2cDJSS6QN/3znNY4+Jfh+dGbTV1PVGHaw0yeUH6Nt2n8629O8MaFo7btM0bT7Nv78FsiMfxABrWx+VAHIDxfrNzGG0/wNrb5/wCft4LcfrISPyoGo+PbqI+T4b0WyY9Bd6o8n6JFj9a7AdKKAOPS1+IU4Im1Tw5a+nkWM0p/NpFH6Un/AAjvjGR90/jooN2SLXSIU49PnL12NFAHIjwfqsqD7R4419j38pbaP+UVRt8P98QSXxb4rkw27cNS2MfbKKOK7KigDkT8PtPbG7WPEjf72tXH/wAXUh+H+juu17nW3X/a1m6/+OV1VFAHjniTwTo9r8TPA9jG2oeTefb/ADd2ozs3yQgrtYvuXk84Iz34rt4/h5okf+rl1mPPUJrF0P8A2pWX4u/5K78O/wDuJ/8ApOtegUAck3w90wybk1TxDF6BNaucD83NMX4fxRytJF4n8Ux5GAP7VdwPcB812FFAHIR+Cb+AKIfG/iXjOPNkgk/nFSN4Z8WRnNt48uvu4C3Om28gz6/KFP612FFAHIf2f4+t0Ii8QaHdt2Nxpckfb/YmpEuviHbKTNpXhy8A6CC9mhY/g0bD9a7CigDj08T+JoATf+BL8ADJayvbefP0BdD+lA+ImnQhjqWkeINNVfvNc6VKy/8AfUYYfrXYUhHOaAObsPiB4R1LC2/iPTS5OAklwsbn/gLYP6V0cciSoHjdXQ9GU5Bqpe6Vp+qRlNQ0+1uk/u3EKuP1BrnpPhr4V84z2mmtp1wRt83TZ5LU4+kbAH8RQB11FcaPCGvWKqNI8baooBz5epQx3akemcK//j1Kb7x9pwJudG0jWUB4axuWtpMeuyQMpP8AwMUAdLqNnLfWjQwX9zYuxB8+2CFxg9t6sP0rjrD4X2uma9da5Z+I9eTUrsETztJA5cZHBDQkY4H5Vb/4WNpVmduu2Oq6ExYLuv7RhET7SpuT8yK6fTtU0/VbUXGnX1teQE48y3lWRc+mQTQBaQFVAJJI7nvS0ZFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFGcVyeqeOLePUJNJ0Gyl1zVkJEkNswEUBHXzpT8qYweOW9qAOsyK5TUviBolpeNYWDT6zqQ62elx+e6/wC8R8qf8CIqmvhDV/EA8zxhrBmgY5GlaaWhth7O4/eSfiQPauq0/SrHSLVbTTrG3tLZekUEaoufXAHX3oA5gHx7rv8A0D/DNqTxjF5dYz+Ea5H+/jNSQ/DnRZZRPrUl7r06sWV9VnMyKT/di4jH4LXYCigCC2tYLOBYLWCKCFBhUiQKoHsB0qYdKWigAooooAKKKKACiiigAooooAKKKKACiiigDz/xd/yV34d/9xP/ANJ1r0CvP/F3/JXfh3/3E/8A0nWvQKACiiigAooooAKKKKACiiigAooooAKKKKAGld2QQCD+tclrXgjwoY7jU5rKPS5YUaR76xc2siKBlmLRkZwBnnPTpxXXEgdTXF+OXfWbvTPB1u5H9pyGW/KkgpZR4MnIII3kqmf9o0AcPo3iDx9pJ0iee8trvSNZJGn/ANsDEgBJMcckyDh3TDAkEE8cV3SfECCwdYPFOl3mgSuQoluAJbVmPYTplf8Avrb9K6DVdEsda0a40i+t1eynj8to1GMD1X0IOMHtj2rnfDepXdrfTeD/ABIwuL6GMta3Lr8uoW2cbsdN69GXr3GQaAOwtrmC7t457aaOaGQbkkjcMrD1BHBFS5rjLjwBBa3D3vha/m8PXj/M62yh7aQ/7cB+T8V2moo/GOo+HysHjXTltIiwC6tZZks2ycDf/FETnHII/wBqgDuKKit54bm3jnglSWGRQySIwZWB6EEcEVLmgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqepajZ6VYT39/cR29rAu+SWRsBQP89O54qa5mit7eWa4kSOGNC8juQFVQOSSeg964bSbKTx7qcPiTVYXGiW77tHsJQQHIz/AKTIp/iP8AP3RzjJzQAsaa54/Hmym60Pw0TlI0Yx3l+vqxHMUZ9PvEZ6A11+laPp+iafFY6ZZxWlrGPliiXaPr7n68+tXl+70x7UtAAOlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAef8Ai7/krvw7/wC4n/6TrXoFef8Ai7/krvw7/wC4n/6TrXoFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFGaAGSOsas7sFVRlmJwAK43wMr61PqXjC4jYNqj+XZqw+5ZxkiPHpvO5z/ALw9Kd4/nlv4bLwnaSMlzrshhkdOsVqo3Tt07r8gz3euutoIrW2it4I1jhiUIiKMBVHAA9sUASDpWD4q8OL4h09BDM1pqVq4nsbxB80Eo6H3U9GXuCfat+igDnPCfiOTXLWe2v4Baa1p7eRf2oOdr4yHX1Rh8yn0PtW9JGJEZGAZWBBDAEEehHpXLeLdDvvtMHiXw9Gv9uWKbTETtF9BnLQMf1Uno31Nbega7ZeI9Gg1OxZvKkyGSQbXiccMjjswPBFAHMT+FdQ8LzSah4KKLEW3zaHO+Labkk+Uf+WLnJ6fISRkcVu+HPE9j4ltZHthLBc27bLqzuF2TW74ztZf5Hoa2zya5TxR4auLm4j17QGS28RWi4jcnCXceQWgl9VPb+6cEEc0AdYOlLWP4a8Q2viXRY9Qt0aFgWjnt5OHt5VOHjcdiD+mD3rYoAKKKKACiiigAooooAKKKKACiiigAoqrfteJau9hBBPcjGyOeYxIeRnLBWI4z/CemOM5GQLvxgAMaFoY/wC4zL/8i0AdDRXP/bPGH/QD0P8A8HEv/wAjUfbPGH/QD0P/AMHEv/yNQBl+OQ+s32jeEo2KxanM018V/wCfWEBnX23syL9Ca7KNEijWONVVFGFVRgAdgK82a68Tt8VVZ9I0f7SuiERxHVZdmwzje27yM5yEGNv4noOqF34vwMaHof8A4OJv/kWgDoaK5/7Z4w/6Aeh/+DiX/wCRqPtnjD/oB6H/AODiX/5GoA6Ciuf+2eMP+gHof/g4l/8Akaj7Z4w/6Aeh/wDg4l/+RqAOgorn/tnjD/oB6H/4OJf/AJGo+2eMP+gHof8A4OJf/kagDoKK5/7Z4w/6Aeh/+DiX/wCRqPtnjD/oB6H/AODiX/5GoA6Ciuf+2eMP+gHof/g4l/8Akaj7Z4w/6Aeh/wDg4l/+RqAOgorn/tnjD/oB6H/4OJf/AJGo+2eMP+gHof8A4OJf/kagDoKK5/7Z4w/6Aeh/+DiX/wCRqPtnjD/oB6H/AODiX/5GoA6Ciuf+2eMP+gHof/g4l/8Akaj7Z4w/6Aeh/wDg4l/+RqAOgorn/tnjD/oB6H/4OJf/AJGo+2eMP+gHof8A4OJf/kagDoKK577Z4v8A+gHoX/g5l/8Akaj7Z4w/6Aeh/wDg5l/+RqAOf8Xf8le+Hf8A3E//AEnWvQa8n8T3HiN/ih4EabS9KS5A1DyI01KRkkzAN25jACuB0wrZ6cda7cXfjDH/ACA9D/8ABxN/8jUAdDRXP/bPGH/QD0P/AMHEv/yNR9s8Yf8AQD0P/wAHEv8A8jUAdBRXP/bPGH/QD0P/AMHEv/yNR9s8Yf8AQD0P/wAHEv8A8jUAdBRXP/bPGH/QD0P/AMHEv/yNR9s8Yf8AQD0P/wAHEv8A8jUAdBRXP/bPGH/QD0P/AMHEv/yNR9s8Yf8AQD0P/wAHEv8A8jUAdBRXP/bPGH/QD0P/AMHEv/yNR9s8Yf8AQD0P/wAHEv8A8jUAdBTG4Oawftni/wD6Aehf+DmX/wCRq5nxrq/i1tPh0KLS9Jgv9cc2UEkGpySNGu0mSTBgThUzyDwSOD0IBoeDs+INb1XxhIN0E5+xaWeuLaNjucf9dHyfoq12wGAB6Vy2nJ4n0vTbaws/D+hR21tEsUSf2zNwqjAH/HtVr7Z4w/6Aeh/+DiX/AORqAOgorn/tnjD/AKAeh/8Ag4l/+RqPtnjD/oB6H/4OJf8A5GoA3zXB67by+CdZl8U6fHK2j3JH9tWcS7vLwMC6RfVRgOB1UZxlcjd+2eMP+gHof/g4l/8AkamPc+LnVlbQdDYEYI/tiXn87WgDdtZ4Lm1hntpY5YZUDxvG25WUjIIPcYIqQ8nIryqyuvE3w9vItNl0zS/7D1G6K2AbU5BFYSNz5TSeRnaxztG3jkZ5FdsLzxhj/kCaGf8AuMS//ItAGVLF/wAI78TLeeIlbHxFG0c6AfKt3Eu5H9t0YcH1Kg12o6V5r43ufEzHw40+kaOki63bmHy9Ukcl/mGDmBcDaWyRuI/unpXVC88YY40PQ/x1iX/5GoA6Giuf+2eMP+gHof8A4OJf/kaj7Z4w/wCgHof/AIOJf/kagDoKK5/7Z4w/6Aeh/wDg4l/+RqPtnjD/AKAeh/8Ag4l/+RqAN3zovNMXmJ5gXcU3DOPXHpT8180fG7UvEVp400a6kSLTr+O1PkNp17JKfvn+IxoQfbBz69q7TwBrnxcvIYv7T0a0nstpxcakxtZW9Pugn8THz60Aex0UyIyGJDKqrIR8yq24A98HAz9cCn0AFFFFABRRRQAUUUUAcV4zkGh+INB8UttWzt3ewv2IHyQzFdjknoFkVP8Avo12gIA69KrX9hbanYXFjeQrNbXEZiljYcMpGCK4/wAOardeG9Ui8IeIJmdhxpOoS9LyIdI2P/PVRwf7wGaAO6opBwMelLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAGa5LWPGOzXh4d0C1XU9b2h5U37YbROPmlfnHXhRknjpnNO+Ivij/hEPBWoarHt+1BRFbAjrI/A+uPvH2FZXwj8PHSPBdvqNyXl1PWD9vup5OXcvyoJPPQ5+pb1oA3G0vxQ9uXPiOCO6xwkenr5APYEFi5H/AAIVR8KeMJtU1nUPDes28dpr2mgNLHCSY5ozjEkeeQORx2zXYg5FeMz3Jl/amto7U4EWnmO6x3zEzDP/AH1H+VAHTeLf+Su/Dv8A7if/AKTrXoNefeLefi58Oj/2E/8A0nWvQaACiiigAooooAKKKKACiiigAooo70AIetcR4bH/AAknjDVPFDZNrabtL03PQqrfvpR2O5xtBHZPetDx3q11p+hCz01gNW1SZbGy/wBl3zlz7IoZv+A1s6LpNtoWiWWl2i7YLWFYlz1OB1PuTyfc0AXx0ooooAKKKKACiiigChq+k2mt6XdabqEKzWlzGY5EbuPb0I6g9jgjkVzPhfUrzSNVPhDXp2luoozJp17J1vbcdif+eicBh1Iw3rXUanq2naNaNd6nfW9nbjrJPIEH056mvJ/HXjSPxMmn6T4d0TUbnVJ5xLpl+y/ZvLdcHzY9w3MuMhiQFwetAHYalJ/b3xJ0zTISGttCRr+8IwQs7o0cKdeG2mR/oF9a7Rfu8jFc/wCEfD0nh7SWS6n+16ndSG4v7sj/AF0zYzj/AGR0UYGAK6AEDjNAC0UZFGR60AFFFFAFKXSrCXU01KWzge9ij8uOdkBdFzkgE9KuZCjkgfWkOc1zw0NNUuLq78QWkN1+8aO2tp1WSOGEEgNg8bnA3E9QGC9uQDosj1FKCCAQcg1438PdJm8YeBdUnurrzYTLcWujG8iE62sfOHCtwzAnGTyAuAccV6X4U0Wfw94X0/Sbm+e+mtY9jXDjBbknp6DOB7AUAbNFFFABRRRQAUUUUAFZeu6Dp/iLTXsNRhMkTEMrKxV42HR1Ycqw7GtSigDgotd1XwW62XioveaRwtvrkaH5B2W5UfcPbzBweM4Oa7m3niubeOeCVJYpFDJJGwZWB6EEdRQ8ayBldQysMFWGQRjkY9K4ybwXe6JK934Kvk04sS76ZdKXspSe+0fNEfdPTpQB2+R60Vxtt48hs5Y7HxTp8/h+7Y7RJckNayn/AGJx8p+jYPtXYRukkaujKyMMhgcg0AOooziigAooooAKKKKACiiigAooooAKKKKAPIv2iYJ5fh7aSRgmOHUY2lA7Ao4BP4kD8a9P0Z4H0PT3tseQ1tGY8f3dox+lGraVZ63plzpmoW6z2lymyRG6EfzBB5B7GuX0HQPE/hSxXS9PvbLU9MiG20F+WjmgTshZQQ4HQcAj6UAdJrmr2Wg6Pd6rqEojtrWMyOT1x6D1J4AHqa81+EegX19qmrfEDWIWjudYdvssT9UgLA5/HaoHsuehrqrjwVP4gvoLrxXfJfQ27iSDTYIzHbK46M+STIfqQOvy84rsVUKoVRgDgADpQB5/4s/5K58Ov+4n/wCk616DXn/i7/krvw7/AO4n/wCk616BQAUUUUAFFFFABRRRQAUUUUAFNJ54p1c5411ybQvDss1kA+pXLraWEZP3p5DtX8B94+ymgDK0onxL8QL/AFlhu0/RQ2n6f6PO3M8g4zxhY8j0b3rt14UVleG9Dg8N+HrLSbcllt48NIesjnl3PuzEn8a1R0oAWiiq17eWmn2z3V7cw21vGMtLM4RV9yTwKALNFcU3jt9UfyvCejXetHOPtjf6PZrzg/vXGWx6IG+tIPCmva5h/FHiCQQnBOnaQWtocdw0nMkmfTKj2oA0dY8caHpF4bH7S97qOONP09DcTn/gK/d+rECs/wA3xv4gwIorXwzZN/HNi6vD7hR+7Tj1L/SmDWvCXgw/2Lolist+2M6bpEHmzEjvJjgYznc5HHek/sfxT4r5166/sTS2ORpuny5nkX0mnHTv8qdj940AYMlppFtrbWfh6zbxV4qU4l1HU5jPHY8/ed8bUIJ4jjAbjtxXZ+HPCkWiSz6hd3D6hrV0B9qv5Rgt6Ig/gQdlHtkmtXSdJsNF06Kw02zhtLaMYWKJcAf4nPc9av0AIOnpWJ4q+0Q6HdXtvq8+mfZInuJJYoo5MqqkkEOpGOO1bled/GzV/wCyvhlfojbZr547SPHU7jlh/wB8q1AFD4cSeL/F3g+DW9U8V3cD3EjiJILO2A2KSuTujP8AED07U7xt4g8S/DiCy1ibVF1vSpLlbe5gubeOOZcgnKNGFHRT1Hp743PDF2vh3wfpml/2PqzPZ2iI6paE7mCjdjPBy2a5W9tT8XPEUNjqUyadpOlSCaTSJGxeTt2aRcDy1wSAQTwfcYAPWraeO5tYbiI5jlQOp9QRkVLTY1CRqqgKAMADoKdQAyTgE9fbrXmbePbrxT8PdVez0mW11m58+zstP80PM/y7TJtABUDLZyONuO4r041EsEaSs6RqrvyzBQCfr60Aee+BNWsNG+GWi2OnSR3Wpm2wlkjjzGnYkurDqoDk7ieAAfavQrNZksoEuJFlnWNRJIq7Q7Y5IHYE9qEgjSRpFiRXb7zBRk/41KOBQAtFFFABRRRQAUUUUAFFFFABRRRQBBc2sN3BJb3MMc0Egw8cihlYehB4I9q5NvACadIZvCurXmguTk28f760bnJzC/A7j5CvWuzooA4o694t0QH+3PDi6lAoObvQ33tjtmByG/75LVo6T458N6zcfZrbVoUvAcG0ucwTg4zjy3wx/AV0Z+lZ2q6DpWuQeTqum2l7GOizwq+0+oyOKANEHilzXGH4fJYc+Hdf1nRiq4SKO4+0W4PqYpdw/LFAHxB0s5I0PXokXj79lOx/J0/lQB2dFccPHNxZ7V1rwpr1gcZeSK3F3Ev/AAKEsfzAqzY/ELwjfv5cPiGxSUnHlXEvkSZ9Nr4OfwoA6iimpIkkYdHVlPIYHINOoAKKCQOpxRQAUUUZoAKKKKACiiigDz/xd/yV34d/9xP/ANJ1r0CvPvF3/JXvh3/3E/8A0nWvQaACiijNABRRRQAUUZoyKACiijI9aAE71xNuw8UfEWe7B3ad4cBt4+Rh7x1+c8f3EIXnoXPpWx4x8RR+FvC99qrbDLGm23Rjw8rcIPpkjPtk157Y/Evwx4K8P22jWV2mtaqEaW5kinVIZbhvmkZpn4ILE427jjAxQB7ACAOwrC1zxhoPh6VYb++T7Y3+rtIVMs7k9Asagt+lec/8JLrfillMs+tyWjHi08NWEkSkbuN93Nszx12be9bWiaP4j09GXw/4R0Tw+GbD3GoXTXNxKOuW8scn6yUAav8AaXjPxDkaXpsPh+zb/l61MebcEY6rAhwv/A2/CqF9ofhDw+66j4x1pdTvlG5JNZuFcL0/1UHCj/gKk+9aI8G6xqJzr3jHVLhC2fs+nBbGLH90lcuR9XrU0fwX4c0CTztO0e1iuMk/aCu+U/WRst+tAGQnjLUdUAi8L+F726i4C3l+v2K2C44YbhvcfRKUeFNe1sZ8UeIJDA2C2naQGtoe+Q0mfMcH0yo9q7QdKWgDM0jQtL0GyFrpOnW9nBwSkUYXcfVj3PucmtIdKWigAooooAK8j+Jw/t/4meCPCwO6Pzzf3CHoyLyP0jkH416rdwyXFtLFHcS27upAliClk9xuBGfqD9K4kfDCAeJR4j/4SfXzqwj8oXDNbnC9MBfJwOp7dzQB3efX24rxW/nbX/2kNPfQW3Jpdr5eozR8LkbyVYjrwyr9fpXoNz4Nub2AwXXi7xFJCwwyK9vESDwRujhVunoa09A8M6R4XsfsekWEVtETlivLufVmPLH60Aa46ClpB0paACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBKqXulafqcXlX9jbXcf924hVx+RFXKKAORf4aeExOZ7XSvsE+OJNPnktT/AOQmUfpTF8D3tpk6d4z8RQnnC3Esd0q/TzUJ/WuxooA45dK8e2iHyPE2k3zdvtmlFD+JjkH8qcl58QbZG8/RvD94RnH2e/lhJ/BomH6119FAHHp4l8URsftngO92jGWtdQt5R+AZkP6Uh8eSw5Fz4O8UxbccrZLMDn/rm7GuxooA5I/EPR4l/wBIs9dtxnH73Rroc/glRr8T/COXV9TmiMYy3n2NxHj/AL6QV2GPbikwc9OKAORh+KPgeZNy+JrADPR32n8iKnj+I/guViB4o0oY/vXKr/M105UMCCM+xpnkRf8APKP/AL5FAHlXibxh4aufih4FvYPEGmSWlr/aH2iZLpCsW6EBdxBwMngZ612cnxE8GRrubxTpJHot2jH9DWH4sjjHxc+HiiNQD/aWQAP+eC13wt4goHkx/wDfIoA5dvib4IVST4m03AGeJsn9KiHxT8FvEZYtaEyA4JhtppMH/gKGuvWNUHyqo+gpcGgDkx8RtBkz9nj1i4OMgRaPdHI/GOmN4+Vifs3hbxVcEY5XS2jBz7yFa7DHPSlHSgDkH8Va/IubLwJq7nOB9pubaEdf+uhP6Ui6l47uVYReGdJtOuDdasz/AEyEiP8AOuwooA4xrfx/LDI93rPhzTUUFi8NlLNtHckvIo/HFNtvDGr6paRz3Pj/AFS5t5lWSN9OjggR1PIKsEYkEdwfxrK+Luo31x4X1bR9Jk2NFZG71CYD/Vw9An+85Df8BRs9RW18LLr7X8MPD8mc7bbyv++GKf8AstAEUnwu8N3nlnVF1HVmjIZTqOoTTDPrtLbe57d639N8M6HoxzpmjWFme5gt0Rj9SBWtRQA0LjinUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5/wCLv+Su/Dv/ALif/pOtegV5/wCLv+Su/Dv/ALif/pOtegUAFFFFABRRRQAVma9q9roGjXWp3ZxFAmdoIBduiqM92JAGavyyJCrSSOqKvJZiAB+NcZZ6hpfjrxRcRwzW15pWitt8sFXWe5YHLEd1RTgdizE/wigCjetpifD3xBFd6vp02q6lZ3Et0yXKMDK0ZARec7UAVV9lB6mo/gXcif4V2Eef+PeeaP8A8iFv/Zq6670Dw+lnL9o03TYoihVpHgQYGOuSBivNv2drxH8FajYtKpli1ByF3DO1o06e2QaAPZB0ooFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHn/AIu/5K78O/8AuJ/+k616BXn/AIu/5K78O/8AuJ/+k616BQAUUUUAFFFFAFXUNPstTtWtb+zgu7diC0U8QkQ455BBFU7Hw1oel3QutP0XTrS4ClBLb2qI4X0yBnHtWtRQBQ1DSNO1eFItS0+0vI423olzCsiq3qAwODVO18JeHLG7jurTw9pVvcRHMcsNnGrqfYgZHU1t0UAIOlLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5/wCLv+Su/Dv/ALif/pOtegV5/wCLv+Su/Dv/ALif/pOtegUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBjal4btNT8R6Nrc0k63Wkef9nVGARvNQI24YycAcYI/GtgdKWigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9k='] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 16 "如图, $P, Q$ 分别是圆内接四边形 $A B C D$ 的对角线 $A C, B D$ 的中点. 若 $\angle B P A=$ $\angle D P A$, 证明: $\angle A Q B=\angle C Q B$. " ['延长线段 $D P$ 与圆交于另一点 $E$, 延长线段 $A Q$ 与圆交于另一点 $F$, 如下图. \n\n\n\n则\n\n$$\n\\angle C P E=\\angle D P A=\\angle B P A .\n$$\n\n因为 $P$ 是线段 $A C$ 的中点, 故 $\\widehat{A B}=\\widehat{C E}$, 从而\n\n$$\n\\angle C D P=\\angle B D A \\text {. }\n$$\n\n又 $\\angle A B D=\\angle P C D$, 所以\n\n$$\n\\triangle A B D \\backsim \\triangle P C D\n$$\n\n于是\n\n$$\n\\frac{A B}{B D}=\\frac{P C}{C D},\n$$\n\n即\n\n$$\nA B \\cdot C D=P C \\cdot B D,\n$$\n\n从而有\n\n$$\n\\begin{aligned}\nA B \\cdot C D & =\\frac{1}{2} A C \\cdot B D \\\\\n& =A C \\cdot\\left(\\frac{1}{2} B D\\right) \\\\\n& =A C \\cdot B Q,\n\\end{aligned}\n$$\n\n又 $\\angle A B Q=\\angle A C D$, 所以 $\\triangle A B Q \\backsim \\triangle A C D$, 故\n\n$$\n\\angle Q A B=\\angle D A C .\n$$\n\n同时, 有 $\\angle C A B=\\angle D A F$, 故\n\n$$\n\\widehat{B C}=\\widehat{D F}.\n$$\n\n又因为 $Q$ 为 $B D$ 的中点, 所以\n\n$$\n\\angle C Q B=\\angle D Q F,\n$$\n\n而 $\\angle A Q B=\\angle D Q F$, 所以\n\n$$\n\\angle A Q B=\\angle C Q B.\n$$'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAX4BfwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKCcCgAormNc+IHhzw3O8Or3s1oVYKXeynKFiMgBwhUnHPBNJ/wn+gCMSb9R8sjO7+ybrH5+XigDqKKydF8S6P4igebSNQgu0jOJAhIZD/tKeR0PUevpWqCc0ALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQelFB6UAeP/F4f294w8F+EV+dLm8N1cJ/sKQM/wDfPm169j5eMe1eRaKP+Ek/aL1nUPv2+hWYtYm/uyEYI/Npfyr144Az6UAePfEpovCHxE8KeJtOAgnvbg2l8sfAuI8oPmA6kBjyfRfQV7CBivFvHKv4y+Nfhrw7bDfDo4F5eMpyEyyuQf8AgKxj/gde0igBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooACcCsnWtfh0SNWks9RundWKR2VlLOTjsdikL174rWpNooA8X+E15NoFtrt9r+j67BqmqX7TyKNHuZPkxkcrGf4meu4vfFes6hG1t4b8O35uG4F3qcDWsEX+0Q+Hb/AHQK68gAfjR29KAOW8F+C7fwpBczyzm91i/cy319IMNK5OSAOyg9BXVY5zVW91Kx0yAz315b2sX9+eUIv5muWvPiv4Ms7mG2/tuG5mmbYiWSNcc9vuA9TwB1yfrgA7SiuPPj9ZJNtn4W8T3S8YZdNMQPXnMrJxx/nNSf8JXr0mDB4F1dgRn97c2sZ/Iy0AdZRXFf8JT4yyf+Ld3WO3/E1tf/AIqpY/FPikJm48AX6HPSPUbV/wD2oKAOworkJfHF5bf8fXgrxKmOpighmA/74lJP4Cg/Erw9AoOoDUtNycf6dplxEAevLFNo/OgDr6KxtO8W+HdXZV07XNOunP8ABFcozf8AfOc1sZ5xQAtFID7UtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFITgZoAWg9KbvGcZGfrXJ6n4+so76TS9CtJ9e1ZeGt7LHlxe8kp+RBkEdSc9qAOs3Vgaz420HQp1trzUEe9fhLO2QzzsevCJk/iRj3rKXw54k8QNv8R62bG0bkaZozmMY9JJz87cYB27R17V0OjeG9G8O25h0jTbazVhhmjQb392Y/Mx9yTQBg/294w1n/kDeG4tNgIyLnW5drEe0EeWz/vMtKfCGs6iM674x1OUZz5GlqtlGB6ZXMhH/AAOuvxgYUD2HSuM1XxFqGu6lN4f8IyIJIW8u/wBXZN0VmeMomeJJcHp0Xv6AAwdU0Tw1p+rHQ/DHhqw1TxJJh5p78G4SzU4/eTSOWbOOQoOT7cZ4DUfAdnf+JoZn1G6df7Wi0dr8Ha0tz5UrySKg4QI4iRVHA2Ee59iuoNN+G/ge/n0+3aR40LbpCZJbu4chVLt1Zncrn69qxdT0SXw34R8H2WRLcw65ZPdTMdxeWSTEr5PJJaQ49qAOl8Fa5cazo7Q6moj1jT5DaX8fQeav8a8DKuMMDjGD7V0uBjHauH8Tn/hE/E9r4viG2wudljrCjgbCcRTn3RjtJOflfHau3DZNAC4owKWigBMA0bRS0UAZGp+FfD+sktqWi6fduRjfNbozAexIyKxR8OrCyVf7C1bWtF2ZKx2l6zxf9+5d64+gFdjRQBxYTx/owys+k+IoVBysiGyuD7ZXdGePZafH8RdNtZlt/ENnfeH7gsFB1CLELN/szKSh/MV2GKZNBFcRPFPGksbjDI6ggj0IoAbDcR3EKTQyRyxOMrJGwZWHqDUoOTXH3Hw/s7OSS78M3114eumO4rZnNs7dPngb5Dx6bT3zUP8AwlOveGxt8W6V5tov/MW0pGliUc8yxffjwAMkbhzQB29FU9O1Sy1ayS8067gu7aQfLLA4dT+Iq2DmgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooNNLEUAOPArB8Q+LNM8ORxJdtJNeXGVt7G2QyXE59EQduOpwB61j6h4r1DXbyXSPBqwzSRt5d1q8o3W1oe4X/nrJj+EcDIz3Favh7wlYaA81yDLeancj/StRuW3Tynjjd/CvAwq4Ax680AYw0LxD4ucyeJbl9L0pumjWE5EkikYInmXk55+VCBg9TXXabpVhpFillp1pDa2yfdiiQKv146k9zVsDHeg8CgAAx0pruFVixAAHJ9KiuryCytJbq7mSC3iUvJLIQqqo6kk9BXDKt/8SZQZFuLDwh2Qho5tUHqe6QnjA6sPQGgB9xquoePLmSx8PXMlp4fRil3rEZw1wQcNHbe3rIOOuOma6/StJsNF0yDTtOtY7a0hXakSDgD+pPJJ6kk1at7aC0t47e3iSGCJAiRxqFVVAwAAOAAOKWaSO3hkmlkCRxqWd2OAqjkk+wFAHHa3nX/AIgaNoi5Nppa/wBrXvXBkBK26Z9d298H+4Kn+IaqPD1pKxP7rVbB8j/r5jH9ai+HsEl5p994nuomS5164N0ocfMluPlgT/vgBv8AgZqT4miQeAr2SIAvFPayjPT5biNj+gNAHTX1lbahZXFpdwia3uI2iljPR1III/ImuV8DXk9j9q8JalM0l9o5CQSv1ubQ/wCqk6AEgAocZ5Q+tdiff8a47xvZ3Fi9n4u02N3vtI3faIk63No2PNj46kYDrnjK9OaAOzzRVeyvIL+0gu7WVJbedBLFIhyHUjII/SrFABRRRQAUUUUAFFFFAARkUmBS0UAclqXgW3F5Jqnh28k0LVWO55bZQYbg+k0X3X6nnhsnOahs/Glxpl7FpnjGzj0y7kbZBfRsWsro46K55RuvyvjpwTmuzIyMVWvrC11Gyms723jubaZdskUqhlYe4P8AnigCxu5/l70tcF/Z+t+A28zRkuNZ8OAfNpjNvubRR3gYnMigY/dsc8cGus0XXNP8QabFqOl3UdzaydHTPB7gg8qR6HkUAaNFGaKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKD0oqC4uY7W3lnuJI4oYlLySO21UUDJJJ4AAzk0ALNcRQQySzyJFEiM7yO21VUdSSegHc1wjT6h8R5Gis5ZrDwlnElyuUm1L1VO6Rdi3VhwODmkt4Lj4kXkd3cpLb+EIXD21s4KSamy9JJB1EIP3UP3up4wK7+OKOGNY40VERQqqoACgdAB2FAFfTtNs9KsYbKwt47e1hXbHFGuFUf5/OrQUClxzSE4GaAFPSs/WNZsNB0ufUdUuY7e0hGXds/kAOST2A5qt4i8S2HhqwFzemR5JHEdvbQLvmuJD0SNP4mJ/+vWFo3hvUNY1SHxD4vRDdx/NY6Wrb4bAepPSSX1boO1AEFpo2oeOLuPVPEttJaaKjiSy0WTGZMdJLn1PcJ0XjOTXdhADx+VKFwc89MUtABXG/EOeS70u08M2zlbnXrgWZKn5lgA3Tv9BGCPqwrsTwDXFaIP8AhIPiHrGtN81npKf2TZ+hk4e4bpwc7E/4CaAOwtoYraCKCGMRxRoERVGAFAwAPwArl/ijEJvhj4hU7httGcbeuVIYfqK60DFc74/Tf8OvEo/6hlwfyjY0AdAhDoCOhAP4UpUbT3z1zVfTZPO0y0lznfCjZ+oBq1QBw/hfPhbxLdeEJCVsZQ97o5J4Eef3kI/3GOQP7re1duDXOeNNEuNV0ZbjTSF1jTZBd2Dn/nooOUP+y6kqfr7Vf8O65b+JNCtNVtlZUnT5o2+9E44ZG91OQfpQBq0UUUAFFFFABRRRQAUUUUAFB5oooAaVHpXH614WvLTU38QeFHjtdVbm6tZCRb36+jgfdcZyHH0OR07EjIwelIVB60AYnhvxPaeIrWUpHJa31s3l3ljONstvJ6Eeh6huhH41uAnvXMeJfC8t/cR61ok62PiG1jKQXBz5cydfJmUfejP5qeR6Gfwx4lTXrWVJ7c2Wq2jeVfWEjAvA/bp95G6q3Qj3yKAOhopOc0tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSE4GaAAng9vxrz9gfiVqjRqxPg+zlwzqxA1SZTyB6wqQQezEcZFWPEt5ceJ9abwdpczRW6qH1q7Q4MMTdIVx/G4/Jc9e3YWNnBYWkNpaxLDbwIscUScKigYAH0FAE6RrGoVRhQMADtTqKQnAzjNAATgE1z3ibxZBoKwWkFu9/rN3xZ6dCfnlP94n+BB3c8DBqt4i8WS216NB0K2TUPEEy5EJOIrVD/wAtZm7KOoXq3brmp/DHhOLQmnvLq4fUNauwDd6jKAHk/wBlf7iDjCj0HWgCt4d8Kzwagdd8Qzpfa9KpUOoPk2iH/lnAD90c8t1P44rrMc5oCgHIpaACjpRQelAGJ4s13/hHfC+oamqh5oY8Qx4zvlb5Y1x3yxUfjR4R0P8A4R3wvYaY7mSeKPdcSFs75mO6Rs+7FjWJranxB8QdG0Qc2mlr/a17xwZMlIE9M7t78/3BXa4xQAtY3i6FbnwXrsD7tsmn3CHb1wY2HHvWzVXUozLpd3GACWhdcHvkGgCh4SnFz4N0Odc7ZdPgcZ64Mamtmub+H7bvh54bJOT/AGZbj8o1FdJQAHpXDRY8H+PWhHyaP4jkLR/3YL4D5h7eaoz/ALyn1ruax/E2gw+I/D11pkshieRQ0My/ehlU5Rx7hgDQBrBjuxTq5zwZrs2uaKPt8Yh1ayka1v4f7kycEj2YYYezV0dABRRRQAUUUUAFFFFABRRRQAUUUUAI33T9K5TxV4burm5h1/QCkHiGyUiNm+VbuPqYJfVTjgn7p5GOa6ymkccHn3oAyPDXiG08S6SL22V4pEdori2l4kt5V+9G47EfywehrZrhfE1nc+GtYPjPSIHlAQJrFlEObmBR/rF7GSPtnquRkV2NjfW+pWUF5aTJNbzoJI5E6MpHBFAFmiiigAooooAKKKKACiiigAooooAKKKKAAnArnfFviGXRNNiisIVuNXvpRbafbno8p/ib/YUfMx9BXQSMqRszsFQDLEnAA9a4jwnE3ifXLjxndKfs5DWujRsPu24PzTY9ZGHt8oHrQBu+FvDsPhvR0tBK1xdSMZ7y6cYe4nbl5G+p6DsAB2rbwBijGKQsQCeKAFJrjNZ8T6hqeqzeHPCflvfRnbe6i67odPH8nl9E/PgGq95rOoeNbubSfDFw9rpUbGO+1tAcnqDHb8cv6v0Xtk4rq9G0XT9B0yHT9Otlgto+ig5JPdmPdj1JPJoAqeHPDVj4b09rW1Ekksrb7q6lYtNcSY5d265P5DtW2FAOaAuKWgAooooAKZNLHbwSTSuqRRqWd2OAqjkk+2KfXG/EOeS70u08M2zlbnXrgWZKn5lgA3Tv9BGCPqwoAPh5DJeafe+J7qJkudduDdKHHzJbgbYE/wC+AG/4Ga7KobaGK2gighjEcUaBEVRgBQMAD8AKmoAKbIoaNlboRg06igDkPhdMJvhn4fYbgFtFQ7vVSVP8q6+uP+GHmDwHZxykF4p7qIkDj5biVR+grsKACkb7p7+1LQeRQBwviAjwj4st/FScaZf+XZawOMIc4huD6bSdh7YYccV3AYlsduxqvqOn2uq6bc6fexiW2uY2ikQ91Iwa5rwNf3McV34a1WQyanozCPzW63Fuf9TL9Svyn3U0AdfRRRQAUUUUAFFFFABRRRQAUUUUAFBGRg0UUAN2ge9cLpinwP4qXRjhfD+rys+m4+7a3JyzweythmXpzuFd5WR4j0C28R6Fc6bcsyeaoMcy/eikByjr7hgD/wDrNAGqrZ9Pwp1c34L1y51fSXg1NQmsadIbTUEHTzVA+cf7LjDD610lABRRRQAUUUUAFFFFABRRRQAUGikdgqFmIUAZJPagDjvHM02qGx8IWcrRzawzfapIzhobNMGVs9t2VjGf759K6u3t4bO2it7eJY4YUCRxqMBVAwAB9K5DwQG1m81XxhMM/wBpyeRYbv4LOMlU47b23v77hXT6nqllo2nXGo6lcpbWcK7pJHOAPb3JPGByeAKALM9xFbW8k9xLHFBGpaSV2CqqjqST0FcGZL74lOUt2nsfCHSSZSUm1TttU9Uh9TwWHAwDT7bTL74gXKX2u28ln4cRhJa6VJ8sl3jpJcD+73WP889+9SNY1CooVV4AHAFAENnY2thZxWlpbxQW8K7I4o0Cqg9AB0qfFKaaWxySMetADqK5eHxpFqlzLB4fsJ9XWFtklzCypbKw6qJWI3np9wN71FdeN/7Gvra18RaZLpiXbiOC9Eiy2zOeis4wUJ7ZXHXmgDraKQNn0pelACHgGuK0Qf8ACQfEPWNab5rPSU/smz9DJw9w3Tg52J/wE1t+K9c/4R7wxf6mq75oY8Qx4zvlY7Y1x3yxUfjSeEdD/wCEc8L6fpjsXnij3TyE53zMS0jZ92LGgDbAxS0UUAFIehpaD0oA5L4ebV8PXcKggQ6tfx8/9fMh/rXW1x/w/wB6W/iGJ2B8vX73AHYNJvA/8ersKACiiigBD0rjPGtrPpdzZ+MbCJnudMUpexoObizY5kXHcofnHup9a7SmsoZSCMg8EHoaAIrW6ivbWG6tpFkt5kWSN1OQykAg/iDmp64fwkzeGdevPBs5ItVDXujuc/Nbs3zxfWNjgD+6ymu3zzQAtFFFABRRRQAUUUUAFFFFABRRRQAUhGQRS0UAcP4kI8LeKrDxTGgWyuymnasAeArH9zMe3yMShPpIPSu3Bz3yKp6tpdrrWkXemXqeZbXUTRSLnBwRjj0I7Vh+A9SurvQn0/UX36npMzWF0xGPMKfckwezoUb8TQB1NFFFABRRRQAUhOBmgnAJrK8Qau2kaYZIYhPeTOILSDP+tmb7qn0HVieyhj2oAyj46sj8RovB0UXmXJtmnmmD8RMACEx3JU5znjjrnjq68Kk0tfC37QfhWPzTLJd2DtdTnrPMwn3Mfq2OOwwBwK91oAK5L4g3dwfDq6PYvsvdanTT4WA5RXyZH/4DGHP1xXWMcAk9K8u8Q+Jra2+Jys0Ml9c6VaC3sdPgGZJ7yfBYjPAVIlXcx4UP74IB2mo6ppHgzQIPPbyrWBEtrWCNS8krYCpHGvVmOAMD+WaxtK8Pah4j1O38QeLIgnknfp+j7g0doeMSSH/lpL6dl7c8ix4f8L3R1JfEPieWO81xlKwxpkwWCEDKRAnqcDL9T06Zz1wUA55/OgBAoHPf1NOoooAQ9DzivJ/HmsXfinxtZfDjSbh4IZB5usTxnDLDjd5ee2V6/wC+o9c+snpXi3wpiN58WPiDqdzk3EN0bdSeoVpZOPyiX8qAPXdP0600vT4LGxgWC1gQJFGg4Uf4/wD165j4q2dvd/DDX0nVSEtjKpbnDqQVx+I/Wuw3evvXmHxu1aVfCVv4bsVMupa3cJBFCnLFQwYn89o/4EaAOh+FepXGr/DPQry6dnmMDRMzdW2OyAn8FFdg3Cn1rH8K6Inhvwvpmjowb7JAsbMOjP1Y/iSa1ppY4IXmldUjRSzMxwFA5JNAHHa0v9v/ABA0fRh81rpS/wBq3noZMlLdT753v/wAV2YGO9ch8PopLvTrzxLcoVuNduDdKG6pbgbYF/74Ab6sa7CgAooooAKD0ooPSgDj/A6LFqfjCJAR/wAT13P/AAKCE12Fcl4WYr4v8aQlgduoQOB6brWL/D9K62gAooooAKCMjB6UUUAcv420O51HSodQ0oAa1pUv2uxJHDsBhoj/ALLrlTyOoPatXQNbtfEWh2erWZPkXUYYA9Ub+JD7qQQfcGtJjhSRXDWhPhDx7LYkFdH8QO01sT92G9Ay8eccCQDcOfvBgOtAHdUU0HJ/lTqACiiigAooooAKKKKACiiigAooooAQ9K4u8P8Awj/xMsb0AraeIIPsc56AXMQLRE+7JvX/AICtdqRkYrl/iDpk+oeDb17LP9oWW2/syBkiaE71A9zgr+NAHTg5papaVqEOraVZ6lbf6i7gSdPowBH86u0AFFFIxIGRQAN901wYv9X1XxQ+s2WiG/020V7fT5PtccYL52yygHOQcbFPopPRql8cah4wltLjS/DfhyeUy4je+N5BFhCPmMYL53YyAWAweea6nR0EWkWkQsG09Y4lQWjFT5IAwFBUlcDHY0AeM+PLvUV+KvgHUNQ0n+zy12sCn7Qsu8eYgPTpjf8ArXug7V5D8UNF8V+KtW0V9J8M3G3SLtphPLd26iUZU/KN+cfJ3wenFeo6Ze3N7aCa60240+XJBgneN27c5jZlx+OaALrEBST0HNfOXhiz8Zatq/iHxd4WvrZdQlvMy2V1DGZHtpFEkW1yOPlI4yo+Uc8Yr2j4g38mneANalhDGeS2NvDt6+ZKRGn/AI84rJ0DT4/DnxCbSYE229zoNt5Z9WtnMZH12yJQBk6B418WX17JY+XodxqEK5l027E2nXY9wpEisO+5TjpXQDxnrNnGDq3gjWYj3axeK8Ue/wAjBsf8Brb1zw1pHiKzFvqdlHPsO6KQ5EkTdmRx8ynpyDXPLa+LvC202c7eJtKQf6m5dVvox6rJwsvGeGwT0zQBaj+JnhTzhBd6k2nTkZ8vUbeS1I/7+KB+tdDYavp2qQ+dp9/a3cX9+3mWQfmpIrM0TxVo3idZre3lxdw8XGn3UZjniPo8bc9xzyPc1Be/D/wjqMha48PaeJCcmWGERSZ9dyYYH8aAOl3V53deHNT8K+PbvxXoVkb+x1OMLqNhG6rIHHIlj3EA+4Jz8xx2Fa7eAYrZw+leI/EOnBfuxrfmeMf8BmD0z+y/HlgGNr4m03URn5V1HTjGceheJwPx20Ac5c+IbnSdI0rUlsNbbXJbi3juvtokggaSUhWRt52BMtxsBC4HvWxpPhtdO8Qp4m8V3cV34gvHFparEpMVopBIiiB5PAYljjjPuTi+PbDxz4k8JTaNL4btXmd0kju9N1IMFdWBGUkVDg4xnPGc9qw/Atzd6HqJ1n4hS+IZNSgQw2pubKaWC3UjDMrqGBZhxkdgc9aAPce9cf8AEGeW70+y8MWzEXOvXH2VtpwVtwN07f8AfAK/VxWjp/jjwrqe1bLxDpsjsOI/tCq//fJIP6VlaCf+Eh+IGs64cm00xf7KsvQvw87/APfWxMj+6aAOwgijhijiiVUjjUIiqMBVHAA9uBU1FFABRRRQAUGikPSgDj/DhRPiR40iVSGYWMzHscxMo/RK7GuS0tTH8UfEILD97pti+B7NOP8AP1rraACiiigAooooAOtYninw9F4k0C4sDJ5M5xLbXAHMMykFHH0IH4ZrbpD0oAwfCGvP4g0NJrqIQalbO1rfwf8APKdOGH0PDD2YVv1wutf8Uj4yt/ESDZpeqlLPVB/DHLnEMx/E7CfQj0ruQeaAFooooAKKKKACiiigAooooAKKKKACkOMHPSlpDyKAOO+HWbLS9S0BgVOjajNaxhjkmEnzIj9Nkij8DXZVxtig074s6lEqER6tpcV1nPBkhcxt/wCOyR/l7V2VABQeaKKAE2gdCfpRgUtFADdgo2gHNOoPSgDj/HYa6fw1panIu9agMi56xxBpj/6KH50nio/YfGXg7VC21Ddzac/uJoiyj/vuJaXWkN18TPCkPUWtve3bDHfakQ7/APTRqX4loY/BU+opH5kumXNvqCD08qVWY/8AfAagDrs5owDSKcgEHINOoAw/EHhPR/EcaG/tc3MXMF3ExjnhPqki/MP5e1YQl8YeE2AmjbxPpCf8tIwsd/EBnquQkvHptY9813NJigDH0HxRpPiW3aXTLxZWjO2aFlKSwt6Oh+ZT9RWvxnGO9YGv+DNH16ZLuaKS11KP/VahZt5VxH/wMdR1+Vsjk8Vkf2l4s8Kk/wBq2p8QaWvS9sYwl0g/6aQ9H+qc99tAHblQeooxjmszRPEOleI7IXmkX0N3BnDFDhkPoynlT7EA1pE88CgDlPHq6PZ+F77Ur/R7HUJoo9tvHPbJJvmYhY15HditYWi+Cde8C6NaHw1fC7MUKm80q8f9zPJgb2ifrExOeuVORkCtTWl/4SD4h6PooGbPSU/tW89PMyUgQ+hzvfn+6K7XaM570AYHh7xfp/iF5rVBLaapb8XGnXS7J4vcjPzLyPmGRyK388gYrD8Q+E9M8RrFJdLJDe2/NtfWzbJ4D/st6eoOQe4rBj8R6x4PdbbxeoutN3BYtdto8KOw+0RjPlnP8Y+XkdKAO7oqK3uI7mCOeGWOWKVQ6PG25WUjIIPce9S0AFB6UUHpQBx9uwj+MV7GEb97oMDbu3yzyjH6iuwrkJA8fxhtTv8A3cugzAr6lJ4+f/HzXX0AFFFFABRRRQAUHkUUUAUtV0y11fSrrTr2MS21zG0UiHuD/Wue8C6ndta3Xh/VXL6toziCWQ8faISMxTAejL19CprrTyK4rxpDJod7aeNrOJ3fTlMWoxxjJmsmOWOO5jPzjp0b1oA7aioYLmO6himgdJIpUDo6NkMpGQQehGD1FTUAFFFFABRRRQAUUUUAFFFFABQelFFAHHeKAbTxr4N1LcApubiwf3EsLMB/31EtdhnmuQ+ISBNF0u9bg2WsWM+70BnVD+jkfjXXigBaKKKACiiigAoPSigjNAHGkiX4yRrvH+j+H2bbt/56XA5B/wC2Z/Ouj1vTl1fQdQ01/u3dtJAf+BKR/WsC22n4u6jx8yaHbLn6zzn/AA/KutP3TQBzvgLUTqvgLQrtmLSNZRpIT18xRtf/AMeU10dcd8Ps2ttrmkFdg07WLmONfSORhMn6S/pXY0AFFFFABSYBGKWigDmtb8E6Xqt2dSgafTNXHTULBhHKfZ+zrx0YGsr/AISHxF4UVv8AhJ7QalpicnWNNjOY1HVpoBkqBySybhjsK7o9K4z4hSyXmn2Xhm1ZludeuBbMUOGW3X5p2/74BX/gYoAh+GksOq6Vf+KA6PPrV28zhWVjDGnyRREg4yqKCfdjXcA5OK5G/wDAWmtOuoaFLJoOpqu0XGngIsgHAEsf3ZF+oz0wRVUeLNa8MZXxjp2bNeP7Y01GeDHPMsf34+3PzLk9aAO5prorqVdQysMFT0IqvZaha6jaRXdlcw3NtKuUlhcOrfQjirP1oA4i48J6h4anfUPBc0cMJO+bRLhsWsvUkxn/AJYscnkfLnGRWr4f8Y2OuzyWDxy2GsQD/SNNuxtmj/2h/fTp8y5HI6Zroto/H1rF8QeFdK8SQRrewstxCd1vdwN5c9u3qjjkfToe4NAGyGyccU41waa9rXg1xD4pVtR0ocJrdvF80Y9LiMZ2+m9flPGcGu0tby3vrSO6tZ4p7eVQySxMGVlPcEcEUAc1qO2P4p6A2z5pdMvUz9HgP+P511tcdr25PiV4Nl8wKGiv4Svdsxo3/sldjQAUUUUAFFFFABRRRQAUyRFeNkdA6MMMpGQR34p9B5oA4fwa7+HdYvPBdyxMVspu9Kdj9+0ZuY++TG3y9fula7YMSa5bxvo93d6fb6vpK7ta0eQ3VouceaMYkiPs6ZX649K2tE1e117RrPVLJt1tcxh0yMEeoI9Qcg+4NAGjRRRQAUUUUAFFFFABRRRQAUUUUAcf8UkJ+GutuqqzQxLOobplJFcdP92uuBBwfaub+IsYl+G/iRWzgadM3HshP9K6KD/UR/7o/lQBJRRRQAUUUUAFB6UUh6UAchbyqPjBfRYO59Bt3B7YFxMP6iuwPSuQlDxfF6zfOEuNCmTGByyTxkc/R2/OuuPKkUAcfpW2w+KniC03H/iY2NrfovbKF4XP5CP9K7GuO17dY/EXwrfjAjuUutOlY/7SCVP1hP512GenpQAtFFFABRRQeBQAhOATXF6H/wAVB8QdZ1tubTSl/smz54MgIedsdju2Jn/ZNbPi3XT4d8L3+pIu+eOPbbx4zvmY7Y1x3yxWl8JaH/wjnhfT9LZzJNDFmeQnJklY7pGz7sWP40AbdIVBGKWigDj77wJbw3r6n4avZNA1Fjuk+yqDbzn/AKaQfdY9eRhuetQJ41vvD5SDxrpv2EFgq6pZgy2UhOMZP34uTjDDHB5rt8ZFMeNGjZGUMhBBUjgj0xQAy3uYrqCOe3ljlhlUNHJG25WB6EEdRUuc8GuMuPAzaZcSX3g+/OiXDks9oE32Ux4+9DwFPGNyFT9elFv45bSZYbLxhYHRbiQ7I7tT5llM3+zKPuHvhwv40AdkUBUgjINcXdeEL3Qrp9S8F3EVqZG33GkT5+yXHPJUD/UuR3Xg4GR1rso5BKiupVlYAgjkf/X+tOIH+B60AeYz+KbTWvHng23ns7iw1q1urjz7G5XDorW0g3Kw+V0JHDKefavTwcmuB+Jej2mqz+FIbl5Id+srELiF/LlTMMpG1xyDuVfxAp66zrvglSniISatoynCatbxfvoF/wCniMdQP+ei9cZIoA7yiq1lf22o2kV3ZTxXFvKu6OWJgysPUEdasA0ALRRRQAUUUUAFFFFACEZGK4fTQfCHjifSm+XR9dd7mxP8MN1jMsXsGHzqPXcK7msPxX4fHiLQZbSOYwXkZWezuAOYJ0O5HH0PX2JoA2gST/ninVg+EtfPiLQ47qWIQXsTtb31tnJguEOHTqe/I9QQa3qACiiigAooooAKKKKACiiigDl/iRIYvhr4jZcZNhKvPupH9a6SEEQxj0UVyXxQBk+Hep24DE3LQW4CHBPmTInB/wCBV2A60ALRRRQAUUUUAFBooNAHH+Ig1v8AEHwddjhHa7s3PH8cXmL+sNdeTxxXH/EP/RtJ0rVSwUabq9pcOfRGkET/APjshrrx97mgDj/iRttvD9pqxYr/AGVqdpeEjsvmhHP02O+a7AVk+K9NOseEdY05cb7myliTIyAxQ4P54pPCmpHWPCWj6ixBe5s4pXx/eKAt+uRQBs0UUUAFB6UVHPNHbW8k8zrHFGpd3Y4CqBkk/hQBxusg6/8AEPR9FAzZ6Sn9q3fcebykCn0Od78/3RXagYrjvh7A9zp154luYyl1r1wbsKw5jgA2wJ+EYB+rGuyoAKKKKACiiigBMVFcW0F3bvBcxJNDICrxyKGVgexB4IqaigDiZfBl9oUj3XgzU/sCkknSrrMlk5Ofuj70Ryf4OOnFTWXjuG3uodO8T2b6DqMpxH9oYNbTn/pnMPlPb5TtbnpXXEYGfSqeo29hc6fPFqkNvLZlD5y3ADR7e+d3GOO9AHNePyFj8MzGMyGPX7PGOMFmZM/+PV2GMKefyrxNtL1DVb+3tvh7Ndz+HrS7ju5Fv5SLLzIZFZUtnYGTGVIOMoO1eh6X46sri/j0rWbabQ9YbpaXuNsp4z5Uo+SQZOODn2FAFe78H3WkXsuqeDLmLT5pG33GnSgmzuWx1KjmJunzJ1xyDzm7oHjO21W8bStQtpdJ12Nd0mn3ONzD+9Gw4kXryvocgV0mORkfj6Vl6/4b0vxFYi31G2D+Wd0MyEpJA396Nxyp47fyoA1Q3zYwadXBf2r4g8EHGtrNrWgqONSijzc2q/8ATdF4cAdXXng5BrsrDUrTVLKK8sbiK5tZV3JNE4ZWGcdaALdFJnmloAKKKKACkb7ppaCMjBoA4XVD/wAIj44h1tQV0nWmS01D+7FcdIZvQBvuMeP4Ca7nPNUNa0ez13RbzS75C9tdRGOQDg89x7g4I9wKxPA+r3VxZXOiarIH1nRpPst03eVcZjmxk4Dpg/UMKAOrooooAKKKKACiiigAoPSiigDj/HxaS28PWKjJu9ctEI/2UYyn9IjXXiuP1wG++I/hWyVspaxXeoSr9EWJD+crflXYY5oAWiiigAooooAKKKKAMXxdpB13wfq+looaS5tJEiz2k2/IfwbBp3hXVRrnhXSdU4zdWkcrAfwsVG4fgcj8K2D0rjPAJGnvrvhxtqnS9QkaFB2gm/fR/wDoTr/wD60AdmenXFcb8Ndtt4cu9IUEf2Tqd1ZAHsokLoPpsda7KuP8P7rL4ieK7E4EVytrqMQ/3kMT/rD+tAHYUUUUAFcd8QJpL2wsfDFu5S416cWzbDhltlG6dhxj7g2/VxXYHoa4zQydf8f6zrTZNppY/smz5OC4Ia4bHru2Jn/YNAHXwRRwRJFEqrGihVVRgADgAfhUtIBiloAKKKKACiig8CgANJmqOrazp+h6fLf6ndxWtrEMvJI2B9B6k9ABya5NrzxN40BTTVn8PaG/BvZk/wBMuVPeOMj90OvzNzyCAOtAGrr3jSx0e6XTbeGfU9ZkAMenWY3SYP8AE5ziNeRy2OKzIPCOoeJp0vfGtxHPECHi0W1Y/ZYuQR5h6zNwOvy5zgGui0Lw5pXh21Nvp1qIjI26WVzvlmfOdzuclj15J47YrUdW2N5ZAcg7SwyAfUjvQARwxwxJFEipGgCqijAUDsB6VU1PSNP1mxey1Kzhu7Z+TFOgZc9jj19+tedHxj41b4lDwbA/h+WRbb7RNdC0mAiGM4K+b15Xv/FXT3rePLS2kngfQL9kUsLdbeaBpMfwhjIwBPbIoApf8I/4k8KLv8MXw1PT16aRqcp3KP7sM/VfYPuA9q0tH8b6Zqt8dLuUn0vV1GWsL9PLkI55Q52uOCQVJ4GaTwP4zsvHWgrqlpG0Dq5iuIHOWjcDOM9wQQQf65xra1oGleILM2uq2MV1EDld6/Mh/vK3VT7g5oAv5HIwK43UPBlxp17Pq3g66TS76RjJNZuC1ndtgDLoPuNwPnXHuDk1GNM8WeFT/wASa6PiDTFP/HhqEoW6jH/TOc8MOejjOB96tfQvGWka9cyWcLy2upxDM2n3kZiuI/cqeo6cqSORzQBBoXjODUb06TqlpJpGuKM/YblgfNGPvQv92ReD054OQK6cNk4rL1zw/pfiKwNpqlmlxGDuRjw8bdmRhyrD1BrmRe+IPAoI1M3Gv+H0/wCX5E3Xloo7yqP9aoHV1+bgkg0Ad5RVLTNWstZsIr7TrqG6tZRlJYm3KfUfX261cB5oAWiiigAPIriPGKy6Bqll40tUZo7NPs2pxoCfMs2Od+PWNvn45wWrtyMjFRTQRzQyRSoskcilXVxkMDxgj6UALHMkyJJG6ujqGVlOQQehqSuJ8GzPoWo3ngu7dj9hXz9Mkc8y2ZOFX3MZ+Q+20967UHmgBaKKKACiiigApG4U0tRXFxFa20txO4SGJC7ux4VQMkn8KAOS0QHUviZ4j1Ap+70+3t9MifOctgzSf+jIx+FdlXIfDe3kHhKPU7iMJc6xPLqcw95mLKD9E2D8BXX0AFFFFABRRRQAUUUUAB6VxWpZ0T4m6VqecWms27abOcgKJkzJCx9yPNX8q7Wue8baNNrXhW6hsyV1CArdWT91niYOn5lcfQmgDfzkZrkNTC2HxW0C7Kn/AImNhdWDMOmUKTID+Ak/Otvw5rUXiHw9YatBwl1Crlf7jdGU+4bIP0rF+IGbW30LVw23+ztYtndvSOQmF/0loA6/NLTR196U9KAMPxdrreHfC9/qUaeZcJHtt48Z3zMQsa475Zhx9af4T0MeHfDGn6WXMksEX76QknzJWO6RufVix/GsPWB/wkPxE0jR8brTR0/tW84yplOUgQ88EfO//ARXbYoAKKKKACkOcHHWgnAzisTxB4q0vw3BGb6ZmuJ/lt7SBDJPcN6RoOW/l6mgDa3Y47+lcfqPjaS7vZdJ8JWa6vqSHZLPu22dqf8AppKOp77Fy3B6VVGj+IPGjbvEEkmj6K2caTay4nnX/pvKv3QR1RPXBNdlp+m2WlWMVlYW0VtbRDCRRIFVfwFAHNaT4LQajHq/iG8bWtWU7opJF2wWvoIYui8Y+Y5Jx1rrtooxzmloAQDFB5FKawfGmsf2F4K1nVA214LRzGf9sjCf+PEUAea/DLUbHVPiJ418UXd3boJbgWls0kgUtGCeef8AZSOu38T+ONPsdNuLXRrhNU1uWNktLKyYSyFyMAsFPyqOpJ4wDWD8GvC1jbfDWwmvLG3mnvHe6ZpYgxwTtXr22qp/GvSLeytbRSttbRQqeoiQKD+VAHEfCXwVceCfChtr4qb+7k+0XCqciMkABMjg4A5PqT7Z74jIxSBQMY7UtACbQayNd8MaR4jthFqdmszJzFMDtliPqjjBU/Q/WtiigDhxD4v8KY+zyN4n0lf+WcrKl9EvHRuEmwM/e2sfU1taB4r0bxJ5i6fcEXUHE9nOhjuID6PG3I/lx1Nbmxff86w/EPhHR/EapJeW7JeRD9xe27GK4hPYpIOR16cj2oAy9U8HTW9/LrXhS7XSdVkO+eNgTaXh6/vY+x/21wwyetTaN4ziuL+PR9bs5NH1vBxaztmOfHeGT7sg9uo5yOKpm48X+FW23UZ8S6SM/wCkQKsd9EO25OFl7crhjycHpWhHceFviJo0sO6HULdGxJE4KS27jjkHDxuOeeDQB0wbnFOrg1m8R+Bzi5+0+ItAXAE6jdfWq/7Y485B6j5uSSDius0nWtP13TotQ0y8hurSUZWSM5H0PoR3B5FAGhQelIDS0Acn430m6ltLXXdJj3axo7m4gXoZozxJCT6MuePULW7o+qWmt6TaapYyeZa3UayRNjHB7EdiOhHtV4gVwuj/APFIeNLjQmG3SdYL3mmE52xT9ZoPx/1ij/eHagDu6KQE+lLQAUUUUAITgVx3xGnluPD8WgWshW6124TT0K9VjbmZvoIw/wCddic4461xWn/8VD8S7zUMBrHQITY27dQbmQBpWH+6mxfxagDsYIo4Io4YkCRxqERQOAo4AHtUtJiloAKKKKACiiigAooooAKD0oooA4nQR/wjfjbU9AkOLPUy+p6bnoGJH2iIfRirgDs59K0vHenHVPAeu2iqWkaykaIDr5ijcv8A48q03xvo93qOjR3ulAf2xpcovbHPR3XO6M+zoWX8Qe1aWiaxaeI9BtNTtMm2u4g2G6r2ZT7ggg+4oAl0XUV1bQ9P1KP7l3bRzqPQOob+tW7ieK2tpbieRY4YkLu7HAVQMkn2xXJ/DRmi8FQafI++bS559Pf1/dSsq/8AjoWm/EGaS9sbDwvbsVuNeuPszlGwVtl+edgcY+4Nv/AxQAfDyCS50y78SXcZW71+4N5hsZSAALAmfaMA/wDAjXZVFDHHBEkcSqsaKFVVGAAOAB6elPLEDsPrQApOBmobi6htLaW5uZo4YIlLySyMFVFHJJJ4AHc1z2u+M7TTr06Rp9rLq+uMMjTrU8oOMNK/3Yl5HLdj0NULbwfe6/cRX3ja6jvWRhJDpVvkWcB7FgeZW92464FADZPFOr+Ki1v4PgWKyyVk1y8jPleh8iM8ynn7xwmR3zWv4f8ACOnaFO95mW+1WYfv9Su28yeT23H7q9AFXAGBXQKiooVQFUDAAGABShQKADAzmloooAKKKKAEPTiuH8b+C9a8Z6fcaTJ4it7PS5XRvJi04tIQpyAzmXB5APCjpXc0mBQBheFtI1HQtLg0y91G1vILaGOC2MNmYGVUXHzZkbdxjpjvW9SAAcCloAKKKKACiiigAooooATAFc9r3gvSNdnW9dZbLVEGItRsn8q4T23D7w9myOa6KgjIxQBw39reKvCxxrVm2u6WvI1HTottwg45lgzz1PKdhnbVdNJ03X2fxR4B1qCz1CXmZ4Rut7k9ds8XGG6/Nwwz3rv9ormda8D6ZqV5/alnJPpOsA8ahYMI3bnpIMbZFzjIYHOMZoAh0fxnv1BNF8QWf9j62QRHFI2YLrnrDJ0bt8v3hnocGusVs15zrFzfWunS6b4+0SLWNGxk6rYQlggH8csIJeMjruQkD2pdN1TWNAs4r3TryTxd4YcZDxOJb61H1H+vUfg4z3xQB6PXP+LvDzeIPD8lvbS+TqEDrc2Nwf8AljOhyjZweP4T7Mav6Prmna/p6X2l3kN1bOcB426H0YHBVvYgEVfznPTFAGL4T8QJ4k0CC+8ryLlSYbu2J+a3nT5XQ+mCO/OCD3rcrhr4/wDCIeO4tSHGka+6292OdsF4BiKQ9gHHyE46hSetdwDmgBaD0opD0oAxPFevjw54cutREfmzgCO2h7zTOdqIPqxH4ZNJ4R0NvD/hu1sppTNdndNdzHrLO5LSMf8AgRP4YrDwPF/j9eN2keHHJPOVmvyMfj5SH8Gf2ruMUALRRRQAUUUUAFFFFABRRRQAUUUUAI3TpmuFgP8AwhnjZrU8aJ4gnMkJzhbe9I+ZPYSDkf7QPrXd1l+INDs/EWiXOl3ysYZl4ZDho2ByrqezA4I+lAGD4UIsvGPjHTAoVPtcOoIfUTRAMfpvjb86j0InXvH2ta4QWtNMX+yLLk4Lgh52we+7Yme+w1wM3jbUPDXiu7/tkE6/Fo72BjEfy3lwkgNtKuO0glfIHIKtwMV0+haxLp2iWfhjwfbJrN/bR7bzUJHIs4pm+aRmfq7FmJ2Lk88kUAd1q+t6doOnyX+q3kdrap/G55J9FA5Y+gAz9a5Yz+J/GpK2wuPDWhvkNOwAv7leB8i8iEdeTluhwKv6N4Khg1BNY128fWtbXlLmdQI7f2hj+7GOnPU+vNdXge/50AZeh+HdK8PWX2PTLRLeNiWkIOXkY/xMx5Zj6k1qhQPWiloAKKPwpM0ALRSZoBoAWiiigAopM0ZoAWiiigAooooAKKKKACiiigAooooAKOtFFACYrk9T8B2Ul6+qaHdT6FqrHc09lgRzH/prEfkk69wD711tFAHjurxap4f1GTVdRgbQ9Rz82vaTE01jdLk4F1b8suePm5wTw3GK6zw/4+gvJrbT9ajgsNQnX/RpYpfMtL4Z+9BKODng7T8wzjBxmu0ZFK4IyDxg1wfiH4XaVqMU7aU66W8xLTW4jD2lwePmkhPG7AOHXawznOQKAOp13RrTX9EvNJvgTb3UZRip+ZTnIYe4OCPcCszwTrN3fafNpeqkf21pMn2S9/28DKSj2dcN+fpXm1v4s8Z/C64Fr4q0ybUPD2Qsd7BJ5pgHQBXPO3PAWTDf7R79RqOu6Z9osPiF4fu47rT0UWerLDyRbk5VmXqGjYhiCM7S3agD0muZ8ZeILnR9LittMRZda1F/s2nQnvIRku3oqDLE+wHetq71O0sdOn1C6uI4rOGIzPOT8oTGc/5654zXLeEbK51vUpvGWqwvFLdRmHTrWTra2mcgkdnkPzH2wOxFAG74Z0KDw3oNppcDGTylzLMw+aaQ8vI3uxJNbFJjpS0AFFFFABRRRQAUUUUAFFFFACE4FJu4pT04615V8bZ5tG8NR6lpup6ra6pc3EVrAtreyRqc5J+QHGcAjOO9AHquaQkkEfrXJ2PgeGLT7dLzWvEEtysaiWQaxcDc+OTw475/CuU/t3VvCHxd07wq2pXWqaRqluJES8bzJrdiXHD9WGU754J9MkA0/ip8OF8c6dBPbMqahYxuYhgAzZKnyyx4A4bGehI6DOYPB/h6HU/Ddq+ieLfEVjbw5hksz9nVraReGjdfJGGU9c9evQivS+COMVxfiHSr/Q9Yk8WeHoGnmKhdT06PrexqPvIP+eyjp6jjvQBYTwbqcbh18ceISR/e+zMPyMVSP4W1kodnjnW1bsWgtCP/AESK2tG1mx1/S7fUtNuEuLSddyOv6gjsQeCDyCK0MUAcgPCniL/ofdV/8BLX/wCN08eGfEgGP+E81P8A8AbT/wCNV1lFAHFN4W8Yljt+Il0FzwDpVqf/AGWp4vD3i2KPD+OnlOc7pNLgB/TArrcUYFAHHzaB42dh5HjmFFxyH0aNjn6hxSRaB46jfc3jizlH919DXH6SiuxxS4oA5JtH8cAfL4t0wn0Oikf+1qaNJ8eAg/8ACVaSfb+x2/8Aj1dfijFAHLfYfHAH/If0P/wUS/8Ax+oTafEL/oM+Hfb/AIl03/x2uuwKAAOlAHJrbfEFQAdU8NH3Onz/APx6oZY/iWHxFd+EmX1a1uVP/ow12dJgZzQByEA+I658+Xwq/psiuE/mxpZn+IiqPIj8LO2efMkuEH4YBrrsUAAUAcakvxMDjfaeEWXuFurkH8/Lqc3PxAHP9meGj/3EJ/8A4zXWYoxQByH2z4hf9Afw5/4MZv8A41Uy33joKN2g6EW7karKB/6IrqaTFAHJPqvjtXKjwvpDehGrtg/nDSrrHjkff8JaWfprRH/tGutxRigDj5td8cR42eCrGbPXZrgGP++oRTYvEPjhpAJfAluqdymtxsR+Hlj+ddliigDk5PEHi1Iyy+CGcj+FdUhyfzwKrDxV4y7/AA7uff8A4m1r/wDFV2tJj60Acp/wk3iXAz4C1LPf/T7T/wCO1G3irxD0PgPVP/Ay1/8AjldfgCloA5H/AISTVp4WjuPAmsFXBVl860dWB7HM3INeca74VubW7n1Lwn4S1/Rb6ZCs1uotpLO6Ug5SSMSkAEcYHA64zXuh6HHWuE1u+u/GWpz+GdFmkh0yBvL1fU4mxt45t4j3k/vH+AHnk8AHA/DaTWfGNvpfh3xHDINE0re6/KzR6g0bAJGz/ddIz1GSDhc5r3kDFVrGyttNsYbKzgSC3gQRxxIMBVHQVYLhRkkAdck4FADqK4tfHU2t381l4Q0waqIWKTX80phtI29A+0mQ+yj05q3Pq3iXR7Z77VbHT7qyiG+c2DyCSFOpYK4+cAZJAIOOgJ4IB1NFcx4P8YweMxqV3YxY022ufs1vM2Q05VQWcA9F+YY/XrgdPQAUUUUAFFFFABRRSE4FAAelePfEmSbW/iz4N8P20BuPsZbUZogwUNg5AJPA4jP/AH1717BuBFeS+BiPEPxr8ZeICS0Niq6fCe2c7SR/36J/4F70AdrqOs+JLewkksfCxnnC5VGvYxj/AB+g69K5f4c6ZpOuaze+MLnVDqniAsYJUeEwiwwMeWsbElehGSeee+c+gatq9hommT6jqVylvawqWd3P6AdyegA5JIFeW/BjT7+91vxN4xnt5LWy1i4Z7WJ+CwLs5bHoNwGe53UAewYpCox3/OnUUAcLqukaj4Z1ebxH4Zt2niuG36ppCcC4x1mi9Jh3H8f1rqND1yw8RaVFqOmziW3k46YZGHVWHUMO4rQKgAnv05rjtb8M39hqkviPwm8cOpvg3dlIdsGoKOzf3JBzh/Xg8E0AdkDS1geHfFdl4iSWNEktNRtjtu9PuRtmgb3HdeeGHBz1reBJ7UALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUHgUAB6U0tj+lRXV1DaWstzczRwQRKXklkYKqKOpJPQVwz3Op/EN/K057jTPCxz5l4Mx3GoD+7EOqRHu3VhwMdaAJtS1m+8YX9xoPhq4aCxizHqOtR8+We8MB6NL6t0QH+9jHVaPpFjoWlW+madAsFpAu1EB/EknuTySe5JqXTtNs9J0+DT7C2jt7SBdkcSDAUf4+/U1aAA6UABHfJryL4ra7fapr2kfD3R5mhn1Uq19LGeUgycj6YV2I9AP71evHpXium2/mftSatJcggpYiS2J4z+6jXI/At+tAHrekaTZaJpVtpmnwLDaWyBI0UY/E+pPUn1NXSikEFQQeoxQODkc/4Vn6vqo0y2iZY/OnnmSCGEHBdmP8gMsfQKaAMj4e+G28J+DbLSXVVmQySS4OfmZyfxwCB+FdTTR1xx9M06gAooooAKKKKACiiigDP1XRrTWYFgvGuhGpzi3u5YCe3JjZSR7GsCw+GXhXShKNOtb+zErbpBb6rdx7z6nbKM/jXX0UAcx/wr3wy9zFcXNhLeyRHdH9vvJroKfUCV2H6V0qoq42jAAxgU6igAooooAKTaKWigDnvEfhGz154r2OaXT9Xth/o2o23EkXOcHs6ZzlTwcn61kWnjC70G5j03xpDDZzOdlvqsWRZ3JxnBP/ACyc91bjg4PQV3B5qC7tLe9tJba6gjuIJV2vFKoZHHoQeCPrQBKrbuQQQRkEU6uF/wCEb1zwpIZfCN0tzpw5Oh38jbAB2glwTGT/AHWyvOeB00tH8daXqd7/AGZdiXStYA+bT79fLkPuhztcHBwVJ45oA6iimgknpTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAopCcDNZ+r67pmgWZu9WvoLSAHAaVgNx9FHVj7DJoA0CcDNYHiHxdp3h4xW83mXWo3HFtp9qnmTzH2XsOM7jgcHmsg6t4p8WHZodq2h6W33tSv4T9okH/TGE/d6fekxwcha2vD/AIT0rw75slrHJNez83N/cv5k8/T77nnHA+UYA9KAMO38L6l4ou47/wAaGMWyMHttDgfdBERyGmb/AJav2x9wY6HNduqKoAHAAwMelKBg5paADFFFFACN901xni/wZcatrOn+JNEuo7LX9O+WKSVSY54znMcmOcctz/tH8O0pMDOaAOXt9Y8VuvlT+FIknGB5g1JPIJ9c7d4H/ACau6dpFwb0alq9wk99tKwrEpWK2B6hAeSx7seSOwHFbe0enfNG0ZzjmgAxiloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACgjIwelFFACbRWdrXh/SfENkbTVrCG7hzkCReVP8AeUjlT7gg1pUdaAOJHh/xR4eYt4e1hdQsx003WWZyoyeI7gfMOOAGDdvrUkfxDtLKRbfxPp154euGIUPdqGtmb0Wdcp/31trsdoprxJIjRyKHRhgqwyCKAI7a7gvbdLi2minhkG5JInDKw9QRwfwqYEntXJ3Pw60AzvdaWt1ol0+N02kTm33fVB8jfipqMad470z/AI89c0zWYt3CalbGCQD08yLgn3KUAdjRXHf8Jfr1ijHV/BOpqFOPM02aO8Uj1wCr/htp3/CzfC0Uoivr2fTpT/BqFnNb9s9XUDPtmgDr6KxLXxf4bvm22niDSrhu4ivI2I/I1rR3EUy7opUkB7owNAEtFJnAyeBSMwVcnge9ADqKoXWt6XYgm71OytwOvm3Crj8zWJc/ErwbbMF/4SKxndvupauZ2P0EYJoA6qg8CuPPj9bl9mk+GfEOokjKyCxNvEfbdMU/kab9s8f6oF8nTNG0SMnDG7na7lH/AAGMKmf+BGgDsC2M1z2seOfD+i3Js574XF/nAsbNTPOTjONiAkfjis8eBJtSAHiTxLquqAghreKQWduR6bIsEj/eY10Wk6BpGhW/kaTptrZR9xBEEJ+pAyfxoA5tr7xr4iUrYWEHhyybj7Rf4muiPVYlO1T2+Yn6Vf0bwPpel3i6jctcarqw/wCX/UH82Rev3AfljHJ4UDiul2gfX1pcUAJtHv8AjzRilooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAMZ60mKWigAIzSFQQQRkHqD3paKAMi88LeHtRYte6Fplyx7zWkbn9RWbJ8N/Bcrbm8MaWDjHy2yr/ACFdTRQBxf8AwqTwHkn/AIRu1yf9p/8A4qpYfhb4HgBCeGbAgnPzoX/mTXX0UAc/D4F8JW7B4vDGjqw6N9hjyPx25rat7S2tI/LtoIoU/uxoFH5CpqKAExRtGc0tFAAAB0ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP//Z'] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 17 " 如图, 圆 $O 1$ 和圆 $O 2$ 与 $\triangle A B C$ 的三边所在的三条直线都相切, $E 、 F 、 G 、 H$ 为切点, 并且 $E G 、 F H$ 的延长线交于 $P$ 点。求证直线 $P A$ 与 $B C$ 垂直。" ['证明 设 $\\triangle A B C$ 的三边分别为 $a、b、c$, 三个角分别为 $A、 B 、 C$ 则 $C E=B F=C G=B H=\\frac{1}{2}(a+b+c)$.\n\n$\\therefore B E=\\frac{1}{2}(a+b+c)-a=\\frac{1}{2}(b+c-a)$.\n\n$\\therefore E F=\\frac{1}{2}(a+b+c)+\\frac{1}{2}(b+c-a)=b+c$.\n\n连 $C O_{2}$, 则 $C O_{2}$ 平分 $\\angle E C G, CO_{2} \\perp E G \\Rightarrow \\angle F E P=90^{\\circ}-\\frac{1}{2}$ $\\angle C$.\n\n同理 $\\angle E F P-90^{\\circ}-\\frac{1}{2} \\angle B, \\angle E P F=\\frac{1}{2}(B+C)$.\n\n\n\n$$\n\\because \\frac{E P}{\\sin \\left(90^{\\circ}-\\frac{1}{2} B\\right)}=\\frac{E F}{\\sin \\frac{B^{+} C}{2}} \\quad, \\quad \\therefore\n$$\n\n$E P=(b+c) \\frac{\\cos \\frac{B}{2}}{\\sin \\frac{B+C}{2}}$.\n\n设 $P 、 A$ 在 $E F$ 上的射影分别为 $M 、 N$, 则 $E M=E P \\cos \\angle F E P=(b+c) \\frac{\\cos \\frac{B}{2} \\sin \\frac{C}{2}}{\\sin \\frac{B+C}{2}}$.\n\n又 $B N=c \\cos B$, 故只须证 $c \\cos B+\\frac{1}{2}(b+c-a)=(b+c) \\frac{\\cos \\frac{B}{2} \\sin \\frac{C}{2}}{\\sin \\frac{B+C}{2}}$,\n\n即 $\\sin C \\cos B+\\frac{1}{2}(\\sin B+\\sin C-\\sin (B+C))=\\frac{\\cos \\frac{B}{2} \\sin \\frac{C}{2}}{\\sin \\frac{B+C}{2}}(\\sin B+\\sin C)$ 就是 $2 \\cos \\frac{B-C}{2} \\cos \\frac{B}{2} \\sin \\frac{C}{2}=\\sin C \\cos B-\\frac{1}{2} \\sin B \\cos C-\\frac{1}{2} \\cos B \\sin C+\\sin \\frac{B+C}{2} \\cos \\frac{B-C}{2}$\n\n右边 $=\\frac{1}{2} \\sin (C-B)+\\sin \\frac{B+C}{2} \\cos \\frac{B-C}{2}=\\cos \\frac{B-C}{2}\\left(\\sin \\frac{B+C}{2}-\\sin \\frac{B-C}{2}\\right)$ $=2 \\cos \\frac{B-C}{2} \\cos \\frac{B}{2} \\sin \\frac{C}{2}$ 。故证。'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAXMCQQMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APfqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoqKW4ht13TTJGv953AH61D/aunf8/9r/3+X/GgC3RVM6rp/wDz/wBr/wB/l/xrjtZ+K+i6NqcljJbXk7R9ZIImdD9CAQaAO9orzP8A4XZoX/QO1T/wGf8Awo/4XZoX/QO1T/wGf/CgD0yiuH0L4naTrt0IIbW9hOcbpoioH5iuvN9a5/4+of8AvsUAWaKqNqNkv37y3U+8oH9alguYLkZgmjlA7o+f5UATUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRTSaFJoAdRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSZoAWk3YNNLUlAEmciikHSloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqK4uIbWIyzyrFGOrMcAUAS1FPcQ20ZknlSNB/E5wK4zxD8SLDR7pLa3tLjUDIvEtqN6qT64rHg8NeK/E8/l+JL2F9En/AHiwRZWQf3c8+ntQB1mveNNL0HTjdmT7ZhgvlWreYx/AVybfEHUfFo/s/wAKWc9pfj5/MvISE29SOe/FdBoXw28PeHtQF5ZRTNLtK/vZC4x+NdYlvDEd0cMaH1CgGgDzSHwj4s8SP9k8ZXULaevzL9kba278DVj/AIUt4a/563//AIENXo9FAHnH/ClvDR482/8A/Ahq6/R/DWm6LpsdjBAskcfRpgGY/UmtikzQBW+wWf8Az6W//fsf4UhsbPp9kg/79j/CrJNJjNAFG60mzuraSAwRorjBKIAfzFYP/CvdI7yXOPeQ11gODTiM0AcJffCnQdQKtNNeDb6Tms2bwZ4k8MHyfBVzGtvJ80wvH3tu9smvTgMUUAeXL461jwd/oni22lvLuT5o3soSyhffANdT4d8caV4hsXuQWsdrbfLuz5ZPvg4rpJIIZTmSJHP+0oNcv4g+Hmg+JLxbq+hlEirt/cuUGPpQB01vdW90m+3mjlTpmNsj9KmrzG58H+JfDUoi8H3sUOlj55Irgl2J7gHI9609B+JVpqV/9gu7O6s3jUh57hSiFh1wSKAO7oqC2u7e8j822mjlTONyMCKnoAKKKKACuV8ZX2s6VBDqVg8S2Ntl71WGSyf7P44rqqyfE+mS6z4av9OhYLLcRFFJ6A0AS6HrEGvaPbanbBhDOu5A3BxWjXB/DXVIo7GTwwVP2vSFEcz/AMLfSu8oAKKM00nigBSaTOabS4oABS8Uo6UYoAXtRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFGcU0mkzQAFs0lLjvTu1ADQKWlA5paAEApaKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoqK5uobOB57iRY4kGWdjwBXnN7qHijxheyr4aujpdvakqZJVyJ/Qr7f4UAa/iT4h2mg3SwQWFzqLc7za/MIz71iW/hzxX4mn3a7qET6FcnebQKQ6jsM5/pXYeGfDNtoNq7BVe8uCHuZf779zW8Bjpx9KAMTw/4T0fwzavbabbbInbcQ53c1uDAGBRRQAUUUZxQAUZppakzmgBS2aTmijntQAU4dKQDn3p2KAExS0UUAFFFFABRRRQAHpWNr3hnS/Edh9j1CDdFu3fJ8pz9a2aKAPMbrwj4n8OzbfCuoRW+jRDzGt5FLOSOSM/T2rV8P/EW31a+Nleafc2BUY8644V29BXc1i+IvDll4h08QTxgyRnfC2fuP2P50AbIOQCO9LXmVvceLfBt1Hca9e/2pZSt5apCpHlD+8xr0Wzvbe/tkuLWVZYm6MpoAsUUZpC3NAHl9lG/gf4gXcl2puF16YCLyh/q8f3vyr08n3rjPF8Uja5otxszFE5MkhHCjBrr4pY541ljYMjDKsO9AD+tGOKKcAe9ACDrS4owKWgAxRRRQwCioLu5FrbSTFSwRS2B3wK81f4vS+Y4h8MahMikjevQ0r3bSGotq56jRXPeGfFMPiK2En2d7WbvBL94D3roauUXHclSTCiiipGFFFFABRRRQAUUU0sBQA6imBs0rdKAFJpCeKbS0AJS0dacFxQAm3NOAxRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWN4h8QW2g2JkkPmXDD9zbg/NKfQUviHxBbaDZGSQh7lgfIgz80regrm/D/h641u8XX/ABArOzHzLS1lHzW3qKAMy2u9Y+IsyxXNjPpWmRf8fNvOP+Pge30r0exsrfTbKKztYxHBCu1EHYVYooAKKKKACms2KdTWXIoAYGJNSdaj6U5emaADHNFOxkUYxQAgFLilooAKKKKACiiigAooooAKKKKACiiigAooooAhureK7tZLedQ8Ui7WU9we1cZ5Fx4KBTTLV59NbIitYv8Almf84ruT0qPHNAGdo2sR6pbqSvlXAGXhb7yfWtIiuc1bR5YrhtT0393ODulUdZh6Vp6Nq8eqQDK+VcKP3kDfeT60AQ+JoZJ/Dl7FEheRkwqjuc1W8IXltNokFnHOrXFugWaPuh9DXQkcHFeV+BwdD8eeJF1L/Rmvrjdah/8AlqAACR+VAHqoGKKSloAKKKKACiiigClqpxp0xPACN/KuK8KeLNAstHaC51W3ikDsdjNg9a7XVQG06YHoUYfpXnvhf4eeF9U01rm80uKWYyNlj9aIpy57lPlsmzQ8Nyw33jS7vrRRJbPEAsycqTzxXfjpWfpOi6fodotrp1usEI5CrWhWlSSbXL0MYQ5b+YUUUVmaBRRRQAUUUUAFRsp61JTWoAaOKcOabtzT8YoAMUYxS9qKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACorm5hs7aS4uHCQxjc7HoBRc3EVpbSXE7hIo13Ox6AetefSy33xA1NY7V3t9DgbcJ1OVu17qf0oAg8N20vifxrqWo36G70qIh9Olb7oPqtem96rWNja6baJa2cKwwJ91FHAqzQAUUUUAFFFFABSd6WigBpHNOwKO9FABiiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQ0mO9OpCMigAAFec+Oo7/Sde0jUtLV4LQzE6jKnTy8H7344r0cDFQ3VtDeW0lvcRiSGQYZCOCKAGWV7bajZx3dpKssEg3K69DXnnxCtZo/GnhvVnjP2CzYm4m7IOetTPHf8AgDVTNHvudFuG+ZScLZp7fjx+Na/jRG8S/Dm+GkD7T9phzDt/iFAHUWl1De2sVzbyLJDIu5GHQg+lT1yfw+1C1m8M2unJKDd2MYiuIh1jb0/UV1lABRRRQAUUVyPxG8WP4O8LS6hFb+cxPlgZxgnvQB1kkayoVcAgjBBqK1s4LKPy7eMIhOcCvM/g14zTXtIktb3UDNqbSvJ5b/eC5PFep0d/MAooooAKKKKACiiigAooooAKMUUUAJiloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKp6teNp+kXd2qhmhiZwD3IFAHA+O72fXNZsNC0SdpJ7e4DX0Cf88zx835V6DY2Ntp1oltaQpDCg4RegrgfhxZLrV3P43kYx3OoAxtCPuqB/wDrr0egAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCK5toby2kt7iNZYZBh0boRXm3hO5n8M+LdS03WJHt7e8mxpkTdNvHC+3WvTq4D4k6YkENv4rDsZ9HUukQ6Mff86AMn4Vf8jT4u/6/P6CvVa8al1NpPGng+9tUW0GpIZbqOPozZPWvZB1oAWg9KKa7KkbOxwqjJ+lAGfrmt2Wg6c15eyiOPO1Se7HoPzrh4dIvvFS3et69E0VsIXEVixyjLtO2T64wfxpNZlf4kXZ0mxXOixSbprteolQ/d/nXd3FutroEtupyIrUoD6gLigD51+E6Dw54sude1AfZ9KeSS2jlI43liAP1FfTCOJEV1OQwyCPSvmo/wDJLLf/ALDg/wDRor6OsObC2x/zyX+QoAs0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhxg5OB3rzXx5eTeItTs9B0SV3vLadZbuNTgeWfU9+hrqfGGvWmiaI/wBplZHugYISvdzwP1NZ/wAOtCu9I8ORnVIkOoMzFperFT0yaAOqsrSGytUgghSJFA+VBgZ+lWKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa0iJ1dR9TVTVr9NN02e6fpEm6vOo/Ddx8QVGoXWoXdnbH5ovs8hBP15FS3K+i0B2UVJ9fzPUFkRz8rqfoQaZc28N1A0M8ayRsMMrdCK84s/D1/4I1a2jsLq4vra5fEzXDE7R7da9JRt6Ajoa1lFKzTuNxa3PnvxR5vhOw8QJqpaG5uZN2lMvOxcD7p7DOa9q8HTtc+EtLleTzJDbqWbPJPrWb8RfDjeJPCN7aWttHLfPHtiZhyPoa4v4ENeW1lq2n6hcFp7ecIEZ8447VAj2M9K8++I+pvfWa+HNJmb+15ysqKnGUHXn8RWx498Q3HhvwtcahZqj3KkBUbuDTfBvh23sNPTUJS891dDzWeYZaMnkqD6c0AbGg6dHpmk28CwpFJ5a+aFGMvjnNWdS/5BV5/1wf/ANBNWvfvVXUv+QVef9cH/wDQTQB5b8M7O3u/hvqguIVlCT3DqHGdrAkgj8a3fhDd3F14OJupnklW5kHznJAzVP4MLnwfdq68G8lBB7/Mag0pms/jbfWqMYbL7ICsYO1N3zdKAPUqKPpRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFGcU3dzQA7NN3c0nU0YoAcDS0gpaACiiigAooooAKKKKACiikYgKSTgCgDzH4yfvtN0eOPLSC/jJVeTjcOtelW3FrD/uL/KvMdPBvPjffFsz2a2i7f4ow3zdO2a9TGBQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSFsGgBaaWxSMe9AGaAHA5paReKWgAooooAKKKKACiiigAooooYGF4s40G5fGVCEkYzVPwdcCXwZamzA8zywQp45rpLmBLq3kgkGUcYNefahoPi3RLpj4V+zGKThlnPAHtS9o1zU39rr2E4JyjOO6/IrXuueOrLxFBFeWdj/Z8kmFbjdj8q9JtZDLbJIQBuGcCuE0jR/Fmq3SyeKhbKsJzF9nI/Wu+ijEUQReg4GamkpKL5hy+LmQ+vlHTvEI8LfGC5vb954bIXLM6jIDe+O9fVcsiQxlndUUdWY4Ar5b+NWr2eu6/E2m2cipbApLJ5O1WPrnHNWB7Poei3fifUo/EGtnEaf8ekKMfLeM9Cw9eBXfIqooVVAUdAOMVkeEv+RT0s/wDTutbBbFAC1XvT/oNwMZ/dN/I1LnmoL07bC4Y9omP6UAct8PEVNDnCKAPtL8AdeTWD8Xx9lsNJuYP3UzX0atInDEbhwT3rZ+GV5HeeHbiSNWAW6kHI/wBo1o+NvD9rrmhlrrdmyP2mPaf4l5H6igDorY5tISecov8AKpa5L4c69deIvCMF9eBRLvaP5RgYGK62gAooooAKKKKACiiigAooooAKKKKACiikJ4oAWkzTc5oHSgAyaMd6O9LjIoAUdKNuaAKWgAAxRRRQAUUUUAFFFFABRRRQAVn63PHBo14ZJVjJgcKWYDJ2nGK0K8z+NTvH4c04ozLm/iBwevzrQBa+D8Lr4RMlzE4uDcSfPIpDEZ9TzXoVVdPRI7C2CKqjy1OAMdhVqgAooooAKKKKACiiigAooooAKKKKACiiigAooo6UAFGaaWppNADiaTGaD0oGMUAAFLRtzTsYFACYpaKKACiiigAooooAKKKKACiiij1AKKKKACg9KKpanqcGmWzTSncVGQi9T9BRYDjPiHqK6nYt4W09na/v1KrJFysZ9yOn41H4l8MonwwOnXFvHJcpEFd41BZj3OeprR8G+H/sF1qGqSBj9vk81Fc5ZBgcfpXWuquuGXcPegDj/hvqlzfaEYZ8YtiI0GMYH+RXZsM15R4S1e5tvGtxp0ZUW8sxZlA7ivWD6CgBAKgvm26fcsegiYn8jVkA1W1L/kFXn/XB/wD0E0Ach8LbyG98O3EsC4UXUi9P9o12l1bpd2stvJnZKhRsHseK87+Cn/Io3X/X7L/6Ea9JoA8w8G3UmifEC/8AB9rgaXbQieMEfMGbOf5V6fXl3j9B4U12x8Q6Z8l/qFwltOzcgpnt/wB9V6dEd0aE9SoPH0oAfRRRQAUUUUAFFFFABRRTGfFAD6CeKjUk07OaADOaSjFFABjFKBk0AcVT1TU7bSbKS5uHACqSFzy2OwoAu4pa5Lwp46tvFd3Nbw6feWxiXdunQgH6EiutoAKKKKACiiigAooooAKKKKACiiigA7V5j8bf+Rc0z/sIQ/8Aoa16celeX+PG/wCEw8QW/g62/dXNvIl40r/dIUg4H5UAekWP/Hhbf9cl/kKsVHbxmK3ijJyUQKfwFSUAFFFFABRRRQAUUUUAFFFFABRRSM2KAFoqPfzT+tACE0meaMc0UAFFGM04DFACbcinAYoooAKKKKACiiigAooooAKKKKACiiigAooooAKQsM4pHqMA5oAfLKkMZkkYKi8kntXG6Okmua9eTX4LxWr4tWxgEECpZ7ufxJqs2m27GO2tjtuVb/loPSuotLOGytkt4F2xoMKPb0oAlAwMYApDwCfQU7FBHyH6UAeMPdWuj6brXiKL5ru0u9ilT0B6/wAq9b0i6N7pFpcsfmliDnPqRmvKrXSrLRtdvvCGtRfal1mVrpGTooHY/nXR/CvV7zU9P1OG6k3pZ3RghH91ASAP0oA9AqrqX/IKvP8Arg//AKCatVV1L/kFXn/XB/8A0E0AcB8FP+RRuv8Ar9l/9CNek15t8FP+RRuv+v2X/wBCNek0AcP8S9AuNa0qzuIXRV0+cXMgbqyryQPyrd8KeILfxNoEGp20bxxPlQr9eKv6taNf6Rd2iMFaaJkBPYkVwnw3vF0S4n8ESqXutPBkeYfdYH/9VAHo9FFFABRRRQAUUUUAFMYU+mmgBlPFIAM807AoAMUjFUUuxAUDJJ7Vm6j4h0vS2eO6vYY5gpYRFsMfYVwbr4x8ZTm+029/s3SnPlPazrlmXuQfcUAaOt/EiO21B9M0/T7q5lcbY7qEZjVj61X0rwh4j1a9STxjfw3lrERLbxwgqVf35PFdnoeg2Og6alnZxBUB3Hvk9zWp+lAEccMcX3I1XjsuKkoooAKKKKACiiigAooooAKKKKACiiigAry63/5OAn/68f6GvUa8ut/+TgJ/+vH+hoA9RooooAKKKKACiiigAooooAKKKKACmsuadSd6AI+AacppSKUKKADtRilxWN4j1yPRLFZGGXkOxB71M5cquxpNuyNnFFeXf2F431QnU4fEMlrCeRalefpXTeFdflu55dLvATd265dz3q4RctHo97eXUz572aTs+pD458Uvoa2Wn26kXWpOYYZR0jPrXP2msa/4J1qwsPEeoHVf7Tk8qEqMeWcf/Wra+IPhq41f+ztVt23SaXIZxCBzJ7frXOwxap8Rdf02+vNMm0ddJl80CbH70kHpz70iz1iloooAKKKKACiiigAooooAKKKKACiiigAPSud1nWXWQafYKZLmQ7C6f8sfc1b1/XrbQbFppmDTkHyYf4pD6CsjwfZ3Esk+uXMLW0l8Mm3fqhzQBraLoqaYjyuQ95NzNKP4jWuBSjpRQAUUUUAeV+JBu+OXh4EZBt2B/MUI58NfFyy0PSz5Gn3sTXE8Q6O/HP6mjxH/AMlz8Pf9e7fzFWPH1o3h/wARWnjpm82O0T7P9nHU7iOf0oA9LFVtS/5BV5/1wf8A9BNOsbkXtjBdBdvnRq+CemRnFN1L/kFXn/XB/wD0E0AcB8FP+RRuv+v2X/0I16TXm3wU/wCRRuv+v2X/ANCNek0AB5GK8t1df+EI+ITeIZv38esOtska9UOTyfzr1KvNvixZXNyNCnhhd4ra8Ekrr0RR3NAHpCkEA4xmlqpY39rf2Ed1ZzLNCw4dOhqnp+uLfapdWQhKmD+LPWha/dcHtc16KxtS11dP1C1tGiLGd9oPpWwOeadtE+4PewtFFFIAopD0rnPFHiqLw9blIYjeX55jtIyN7r68kdKAOiYhVLE4AGTXBa98RXtL/wCxaRpU+pI3yfaLc/LGx45+lZkcXjDxxi+guptAhQ7HtJRkv78Z9P1rvdA0Ky8P6eLWziVNx3Slf437n880Acnp/wAOrTVtmpeKUW/1IuHSU9UXqFP04rv441jRUQYVVCj6U6igAooooAKKKKACiiigAooooAKKKKACiiigAooooAD0ry+7B0f4zPrGoDyNPltREk7/AHSxGMD8TXqHavMfjb/yLmmf9hCH/wBDWgD01WV0VlOQRkH2par2P/Hhbf8AXJf5CrFABRRRQAUUUUAFFFFABRRRQAUUUUAJil7UUUAFcV498rZp/n42/aV25+tdrWJ4l0NNasFjJw8Tb0Pv2qZS5LT3sXCST1ZqwY+zJjptHT6VxtgIB4+1Lytvm4G/H1NYv/CS+MdKY6XH4cmu0HAut2Pxra0bwvePBd6hNO8F9dptJxyh9avmTk59Lb/kvnuZxnyr2Ut5fo73/wCAdmlzDJK0SOC6dR6VLXF+DdMu9L1K8gu757yQLgyOOvP0rtKclt5ii7r0CiiipKCiiigAooooAKKKKACiiigAqO4uIrW3eedwkUY3Mx6AetSHpXmup6hdeL/Gtz4YjlazgsCJJmU/69DkFT+VAEehQSeKfHWoX16hvNHhw+nyt9wN6r+GK9Oqrp+n2ul2iWllCsMCfdRRwKtUAFFFFABSHGDnpS0jfcb6UAeWXoOt/GHSdQ03/SbSzjaO4lToj8cH8q7Dxx4ePifwzLpwn8r5hJux/d5rk/g//rvEv/X+f616bKnmQumcblIoA5L4eeIx4g0SRfI8r7DJ9l653bMrn9K6bUv+QVef9cH/APQTXnHhR/8AhCvGsvhEf6QL4veedn7vPT9a9H1L/kFXn/XCT/0E0AcB8FP+RRuv+v2X/wBCNek15t8FP+RRuv8Ar9l/9CNek0PRXAKyvE0Et14Z1GCFC8skDKqjua1aDTXxIDz74VTRWng630WdwmpWw/fW5+8nb+hrAuPFesaJ4v1NbDw/NqAJAJj7Vbsf+Kf+K2tX2qf6PbagFjtpG6SNk9K6Tw9/yNeq9+lKmryfoVzJR2OPh8Uavr3iTThqOgzadsk+XzCOeD717AOlcZ4m/wCRh0n/AK6/0NdmOlXzXpQ+ZnZqdxaq6hqNrpdm93ezLDBHyzt0ArmNY+IWlWhuLPTpo7zVojtWzU4LN6VjWFprfjm9juNesZNOsrf5XsX5WcH1/wD11BRY1fxNceKZ00fwvOfKmHz6lCeID2BrQ8MeCpNKuPtus3v9qaknyxXLjlF9Bx/nFdDpOhaZoUTxaZZx20bnLKg61o0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAHavMfjb/AMi5pn/YQh/9DWvTjXLePPDcXiPQtsszRfZH+1Lj+Ip82P0oA6Gx/wCPC2/65L/IVYrlfh/4il8S+GUvJYViZHMO0dMLxmuqoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKE7bAFBoooa0sF3qY2nWk0WtXkzoRG/3T61s0UU77AFFFFIAooooAKKKKACiiigAoorG8R+IrPw7p4uLqQK8p2Qqf437D86AMTxN4ola7bQdEX7RqTfLcKpwYFPG/8AnWn4Y8MQ6BahpX+037jEt24+dx6GsTwh4cu31+58Wamhtr+7Ty2th90KOh/Wu8oAKKKKACiiigApG+430pa5zxv4hk8L+FLrVoohK0K52n3oA5L4P/67xL/1/n+teoVxvw80CPSdKlv1lLPqbfaXU/wE9q7KgDzPx/b/APCN69b+N1PmyRhbXyD0wxxmu7lnN14dkuCNpltDJjPTKZrM8beHIvE/h2WzlmaJUImDDvt5/pWR4L8Sy+JPBmoSSwrEbUS2yhe4QFc/pQBR+Cn/ACKN1/1+y/8AoRrovFGoyqgtrOQi4U7iB1xXNfBpxH4MvXPRbuY/+PGs6Xxt4bs/GtzdanqXl5i2+UfuipnFyla9kilZJtnoXhu8knsFS4JMw5OTW3XlOkeP9AuPFsg0+/8ANikUKqgcCvVVbcoPYjNWtYqSM00puPY8t+LYzqvhb/r9/pXpkdpbxTPNHCqyP95h3rC8cWkE3hW+uJIlaa3iZ4XI5RvUV5z4X+L2jaX8PYVu9R8/V4osmN+rNSWjH0setaodOtLdtQv1RY7cbzIf4RXnGs+M9d1K3uBDp5tNDl5XVkb7qf3q8/h0bx78QNTS+m+022i37ZcRt8ir9K9J0b4SNpc1usmv3dzZRdbVwNhHpR0sPrcqaP4n+GelpbzNqFrNfxr812w+dz6k+9dF/wALb8F/9BqKtn/hC/DWf+QNaf8AfFH/AAhXhr/oDWn/AHxQBjj4teC2IA1mLJOBXY21xFd20dxAwaKRdysO4rFPgrw2QcaNag467Olchc/Cu+NxLPb+KL+JN26OFDhU9BQB6dRXmdr4x8Q6BMB4l0tbTR4R5f2wtkse2frXbaB4j0vxNZG80q5E8AbaWHrQBrUUUUAFFFFABRRRQAUUmaaWzQA7IpajqQdKACiiigAooooAKKKKACorqBbq0mt2OFljZCR2yMVLQelAHmXgq4PhzxndeCoB5lrFGbkSt94liT/SvTa8u8cKPB3iO28V2X727vpUtHR/uhSeo/OvTYXMkMbnqyg/pQBJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUE4FIDk0ALRRRQAUUUhOBk9KAGXE8dtA8srbURSzH2FebXcUvxM1OFFTZoNrIJYrpeGaRTyMdulO+IV3P4guLbw7okrnUYpkmmVThfLyCefoDXoOn2cVjYxQQxJEAoyqDAzjmgCwieWioOQoAFOoooAKKKKACiiigArzb4g3javr1h4KkULa6ohMkw+8uO3616Sa8t8M/8Vt42utYvsRS6JOYIVTowPOT+VAHo+mWSadpttZxsWSFAgJ6nHerdJ0NLmgBksYlheM9GUqfxrzvQdOj8I3974at3MsE6SXBkf7wLAnH616IWPauG8Qg6T4jk1q6+WyFsYtw5O4rQBT+H+nS2XhK4t7XMm+7kLZ7ZY109t4R0YR/6Rp8E0hOSzpk1j/C+9h1DwzLNAxMZuHwT/vGu1aRI+XZVB9TigHqczqng7TTCkmn2EEU8Z3KY06mi68WWfhfRrefxFILZ3bbhfmqh4l8X6j9tbSPC1vHearF80scpwoT1Bwc1w/iK31O2+x3utRJJf6tILee1zvSBf7yjjB5pp2TSJcVzKXb9TN8UfGS+1u/utC0OyjubS7/dRSngkmsL4ZfDRb3xdd2uuhoptOIbysZDnOMV714c8EaN4d0u3tIbaOZ4eRNJGN9cj8SFax8V+GJrMGEz3f794xjeMHqaRR6dbW0NpAkNvEsUSjConAFTU1WDKCpBHYjmnUAFFFFABRRRQBWvLK1v4DDdwJLFnJVhkZritd8PXeg3q634bh5QbXslOI9vdvriu+pGAZSCMg8EHvQByugfEDQvEF6NPtbkm9VcyIVwAe9dXXJ+JPB+m3umSSWyfYZoszCS3QKzEc4P1xTPh54kufEnh0XF6iRzpI0W1T1C8ZoA6+iimk0AOzim7smk3ZoC5oAO9GO9LilAoASnDpRiigAooooAKKKKACiiigAooooA4P4paFeazo1k1oqsLO5W4lyeiKQT+grpPDWt2fiDRYb2xZmh+58wwcitK7tkvLOa2kJCSoUbHoa85s55fhpfR6dcgHQJ5Nlqy/NIZWPOf0oA9MopqkMoYdxmnUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSHgUALSZppJNA60AHU0YpcUYNADh0ooAxRQAHgVxnxG8SXXh7Q42sFSSeaZYWU8kKxAJH4GtnxP4jtPDGkte3W7aWEa4GfmPT9awPDnh271LUf+Ei8QbWu3XbFEjZj8s/dO3scYoA1/Cnhy10PTYyjNNPL+8aWXlwW5xn8a6KkAAAAGAO1LQAUUUUAFFFFABQelFFAGdrms2mgaTPqV6xFvCNzEDJrjfhho91ZHV9SlA+z6lP59uc5JU/5NXdaA8bG40OL/kHg+Xdnow78V1GmWMWl6bb2MO4xwIEXdyfx/SgC6TzTWGaKOe1ABjiuY8e6Xcar4blhtlDMpLnPoOa6Oe4jtoGlmdURRnk15zf/ECbxKs+keFYJf7QYlSbmIhNvQ4J49aAKngrxfo/h7wO11cFgi3LRMkS7m3ZxyKtSC7+J0pEcs1r4e+9HPESkpcdj7VgfDTwxZ6F4om0zWi0mturTPCfng2nJzjpnmvaYYIreMJDEkSD+FFwP0oA5i10a08FeGrg2r+bPFGzLNOQXc44BJPNY3gCxHiKH/hLNTDteXRIMEg+SPHdQenWqeoXEvi34l3Hhm9dksbBEuI/KbaWJzwfXpXpcEEVtEsUMaoi8AIMD9KAJOMe1c149gifwbqczIpligLRuRyhyOQa6aqeq6dDq+l3On3BYQzpscqecUAc78MppZ/h9pMszs7tFyzHJP49666vOfhxqM0Gs6t4WUL9i0nCQE/eIz3/ADr0agAooooAKKKKACikLYNICDQArAMpUjIPBFcHr2nJ4Z1iPXdP3iSdhC0C8RAE4zjsea7tjUFxbx3ULRSqrKwI6ZxQA+KXzoEcEHIGcU/tXIaFcyaf4muNARi9rFH5is5y2T711+M0AH0pcGlApaAEApaKKACiiigAooooAKKKKACiiigAooooAK5fxxoNtrOiGaYO0tiTcQBO7jkV1FIwDKQRkEYIoA5T4fa9c694XtrjUCi3vIeL7pAGMcV1leW3QbwT8RZtZvTustWK29vHF/C2T1HbrXqIOQKAFooooAKKKKACiiigAooooAKKKKACiiigAozTSaSgALflQORQOhoFAABS/wAqNuadjAoAQCloooAKhuLiK2gaWaREjAySxxUp6GvOfH15/wAJMV8K6UXa7lZZfPU/u1CnkE9jzQBHKJ/iXeGMxtH4ehkw4ddshkXuM9RkV6PBCtvBHCn3I1CD6AYFV9MtBY6db221Q0caqxUYyccmrlABRRRQAUUUUAFGaaxqMZzmgCXNZHiHUpNN0ieeAr56rlFPJJ9hWqDxiuDF8vi3xd5dmjxrpMuycSDAbPp69aAN3wtpsdvY/b8MLi8AkmB7H/IrfoCgDAAAHQAVXub+zsyBc3UUJPQSOBmgCx7k4A5rD13xTp+hac9y0qzuhC+XE29sn1A5rk73WvFnim9kbwo8VraW7GKY3KH5znqp44x6Vq6F8N9K0vUI9VlM0t+VzLukLIWPXigDIg0Xxf4plWLxBJCmiyHzUEJ2yD+6DjmvQrTT7SzjRYLeNCihQwUBiBx1FWgMDgY+lLQB5f4iX/hEviMvi2/wbCeNbRAnLbjxz+Jr0K/vGh0W4vYcblgMqZHtkVy/xN8OXXiPw/DHasim1nW5fecZVCCf0FPs/FFhrvgG5vIWMSeS8A804LMFxx60AZXwytY9bWXxjdZ/tO5LQPg/LtU//Xr0iuC+EEEtv4ChjmjaN/Oc7WXBxx2rvaACiiigDyvXyfBnj/TpdL669Ptut/PAB6flXqfpXF/EbSraTRW14qftulKZbds8A9OR+JrX8Gancaz4S07ULsgzzRbnIHegDeooPSqi6nYvc/Z1u4Wmzjyw4z+VAFug013WNCzkKB3NcLrPxQ03SL4WpsL24OcF4I2YDn2FS5xUuXqHRHbsDupVOKoaVrEGr2qTRBk3DOxxg/lV/bmrsJSTV0O6iggngUvSl7Uhnm/j+8l8KX9hrWn4+1XtylvLvGRsJHT869FiYvEjHuoP6V5t8YoJZdP0UxRs4S/Vn2rnaMr1r0OxniuLOKSGRXTaOVbIzj1oAs0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHP8Ainwzb+I7JA4xdW5MlsxPCv2NZfhnxNcx3DaH4gIXUYB81wRtjlPov612lc/4n8Mwa/ao+At7bnfbSf3H7E0Ab4pa4vwV4luL29u9A1ImXU9OA8+cfdfPt2rtKACiiigAooooAKKKKACmlwKdjNRleaAHBs0GmU8UAJiinYoxQAmKcBiiigAooooAKD0oqveXcFjbPPcSrFEo5ZjgUAct8RNcutH8Nzf2ZKv9pMy7IxyxXuQKveD9DtdJ0eKWKJlnugJpi/XeRzXLeBbObxFq99rmtxPJc2szRWkjDAMZ/n0FeljtQAtFFFABRRRQAUUUUAB6VHTz1rB8Ra0dN+z2kSkXF42yJx0U+poApa/4qW0u4dLsEee9uW2B4zuER9WrT0LRE0tJJnC/bJ/mndejN7Vmabp+j+FJJLzULqGLUL05mldsBz7Vg6jqvifxbeyxeFbgadDatteWZdyzZ5yv50AbHib4hWPh24jhSzuNQdvvi1G4ofQ1j2vgt/GW7UvFJaRXO60jjJQxoeQG6810/hjwvb6FbtJIokv7j5rqU87n9R+ldGAAMAY/CgCtY2UGnWcVrbptjiUKOOas0UUAFFFFAFTVFLaReqoJJgcADv8AKa+d5pTZ/D7SrGVjFd/2xloW+Vtu8fw19J188fEPw7cXvxSe9eRLWytY0m8yThHK87R78UAfQFmqpZwhQFGxeB9KnrA8H+IrfxP4dg1G2jZIySmG9u9b9ABRRRQBjeKtJl1zwxf6bA4SW4iKKx6A5rnfhtq8LafJ4bKH7Vo4EMz/AMLH1H513deV6fnwH8QbhLs+d/wkE2Ydn8GB3/KgDrfH+rXeh+CtQ1GxcJcwx5RiM4Ned6potpovgP8A4TqzMi62YhMZGcsu4+1eu6vpNpremTaffRl7aVcMvrXnyeBPEVxd/wBmahqMEvhgEKLQLhtnpnP9KNOo1uausajeXfw5huvMAup4VZ26ZyOf6VueHNItbTSYj5StJMoaQsN3NU/FGkMPCD2OnLsMShYx12gCo9C8V6bHpyQX91FbTQjYVlfBbHBIpJpQa+3+gp6QjbzElVbHxhDDDkRtESR054rp57yC0j8y4mSJM9WbArhobqXXPHUF1bZNkkZVmHIJ471v+IfDia/H9nvGBtAAdgODmnJ2gmV+7cvdfu2/E2rW9tb1N9rcRzL/AHkYGrFcV4T0NNDvjb6ccacAfkJz81dqelVJJbMzjK7fk7GV4jRW8OahuAJFu5HtxXLfB1mb4eWhdix81+TWl4+8QwaHoiwyxM5v2+zIV/hLcAn86l8A+H5/DPhO2024kWSRSXLJ05xUlHT0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBwviHw9daTqD+IdAPlSk772NRlrhfQV0Ph7xDba/ZLLH+6uAMyW7fej9mrZrhfEPh250e9fxB4f/dSZ8y8t4x81yPSgDuqK4nwx4+Os3LW+qadLpMxOIY7gjMv05rtR/nFAC0UUUAFFFFABTSM06jFADNvenAUAUtABRRRQAUUUUAFFFB6UAB6V5lHcy/EfWrq1L+Xo1jKYbq1b/lqc8GtTxH4ju9RvRoPh6RvtEvyyXsZytq3v/Ot7w34ctfD9oViRftEx3XEgH+sfuf5UAatrbRWVtFbQKEiiUKgHYDtU1FFABRRRQAUUUUAFFFcL42+JVj4Rkgtoovt17I+w28Z+daAOi8ReIrHw1pUt7eyqu1SUQnl8dhXlEfiS98T3MV5bu1214f9DSMZNi3q3+e9Uk0PxF8UfFZm1qCax0i2YSR21wPvA9QOa9f8P+D9D8LvK+kWSW5mADle4oA5Sz+HV5rG/wD4Te8j1YJ/qNoxs9a77TtPttKsIbK0jEcEK7UT0FWqKACiiigAooooAKKKKACvKfjzp13f+DIVtLd5mSbcwQdFr1aqGtRvLod9HGpZ2gcBR3ODxQBxPwRBHw1tAeokbPH0r0WvBfgnqGuWniu/8Pag0kVtCjSJbsPukk8/pXvVABRRRQAV558SNKeK703xT5g8nR8yPF3b6fnXoZ6Vy/xEtLi+8C6rb2sTSzPEQqL1JoA19D1RNa0W01KNCiXEe8Ke3atGuU+H15byeErCySZTc2sISaIHmM+h/MV1dAPUQjIIPeuV1b4ceGdbuxdX+niSUd811dFS4xvzdQet79ShpWj2Wi2v2axhEcXpmuW+ImvavpWmgaTZzzSlhkxDORkZH5V3FFOd5NNPYdO0NkcV4F8Qy6pbrDJo1zYnGWMvGWrtaKKucuZ3ISd3dnmHxm/48dC/7CCfzWvS4P8Aj2i/3B/KvMJWPiL4u3Wh6mfP0+0hWeCFv4Xyef0r1JVCqAOgGOKkoWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDA8TeGYNft1dWWHUIgfs9yRkxn1FYWjeNV0pZdO8USfYprchI7ic4+0/7Q/PH4V3lZGseGdH15o21SwiuWjGE39qANK2uIbu3juLdw8UgyrA9RUteY3EviTwJcyW+nafNrVncHdEoOBbj+6K6fRfHOi6vNDZi8jTUWGXts8ow6igDp6KTvS0AFFFFABRRRQAUUUUAFFFFAAelYPibxLD4fsyVUT3zrmC2H3pfpWtfX1vp1lJd3cixwxruZ26AV514JsbrW/Emqavq0bXFsk27TJn6BCBnb7daANf4f+GZ9H/tDVLhisuqSCdoG6xHuD7/4121J3paACiiigAooooAKZLKkMTSyMFRBlmPYVgaz400PRLh7S6voUvQuUhPVj2H4mvNra28beNfGMsl01zpGkbB+7Jysg9PxoA1tQ+Kkuo+I5/D3h+we8yu37XCciPPGT9Km8OfCYWniSXW9fvV1S5YAoXHKnrmu10fwnouhTGfTrCKCdl2u6jlq2qACiiigAooooAKKKKACiiigAooooAKDRRQB4R4qtdR0n4pahrxvm0yzWFSJm+7ORn5BXq/gvxGPFfhq21YQmIS5G0n0xzXG/GuGO407QoZlDRvfqrKe4ytF9LJ8OtXsZrZzLpuousEdkPuwk/xCgD1KikU5UH9KWgAooooA8q8BD+wvGniKLU/9Ge/ug1qJOsoCgZH5V6oK808f200Hjjw5rUiFdPssm4m7J9a9FtLmG8to7m3cSQyDKOO49aAJ6KKM4oAKTdg00tmkoAUtXLePPFLeFtHhlSIvJdSi3Uj+AtwD+Gc10k8nlW8kmM7VJx+FchpdnF4yk/tLUFElqkmEtX6Ky9xQBe8KeF10sf2jeyi71SYfPdH7xU9BXU0iqEUKowo4A9qWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAA9K5HW/AWmX9vM+nRpp2oSHcLyJRuU9+ua66igDy1H8Y+Bf9Bgtp/EMcuJHupTgx+wxj/Irq9E8eaFrd0ljb3sZv9uZIAeVI6iumIBBB6HiuT1vwHpuoW0n9mhdMvWbd9qgX5qAOtoryweEvEvg4/wBpabqV3rkwGz7JMRjB6ngVZs/iBremTef4w0dNJ08j/Xkn73YUAelUVzWgePfDnia9a00nUEuJlXcVHpXS0AFFFFABSHpS1wniDxFc6xfv4f0AGWTPl3syfetge4oAzI7mbx94vvdOkka2s9JlCywqcrcA+v516Ra20Nnbx29vGscMYwiKOFFZnh7w9b6BZLEmJbgjE1wfvSn1PvWzQAUUHpXO+IPG+geF544NXvkt5JBuUN3FAHRUV5vefEPVNVkEngzS01izUYlkDY2t6VxXiq58V+IJlTzrjTNfxiHTYm4kTu/8vzoA9Z8QeOdA8NzNbajfxw3Pl70jbv6V5VqHjfxh8QNL8rw9pUltb/adv2yFuwbHf2qvoHwZ1fxJCt/4rvrmK9jcAJJzlR+H0r3LSNIs9EsI7OygSKNVGQgwCfWgDmfD/wAP7G2sIX1xRqmojDG5nHzj2/Cu0UKqhVGABwPalooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMLxbYWt54du5LiFJHt4mkiZuqOBwRXJeBrH/hLfhpanU3M11ucRzyfeRuMEV6PLEk0TRSKHRxtZT0IrzDwpK9r8XNb0qBzHYQwK0duv3VPNADoNc8U+EZV0y60yS/063OZNTlbkr64/D9a9F0zUrTV7CO9spRNbyDKOO9TzwR3MDwzIrxuMMrDgivO9R03xB4Ov5brw1ZtqMFycCzJwkA/2aAPSKK4nSfiTpE9xb6Xqc6WutOdslr1Kt6V2uevt1oA4v4sf8k21f/rnWr4I/wCRK0j/AK9x/Wtm6tLe+t2t7mJZYWHKt0NcD8OJQb/XraO7eaG3udkcR6RDj5R7UAehlsUA5FNxxQTtBb0GaAAjBqpqOo2+mWxnuHCr0Un+JuwrFu/F9rNvttIK3d+pwIf51Hp+m32r3Qv9YiMG35fsmflz60AV/tGueIXFrLaPp9vu3CdT99fT8a6qzs4bC2EMEaoo67ehPrU6qAAFACgYAFLigBVNOpAKWgAooooAKKKKACiiigAooooAKKKKACiiigArh/FGs+NbHVjFoWhw3dptz5jNjmu4ooA8s/4Sb4n/APQrW/8A32f8KP8AhJvif/0K1v8A99n/AAr1OigDyz/hJvif/wBCtb/99n/Cj/hJvif/ANCtb/8AfZ/wr1OigDyz/hJvif8A9Ctb/wDfZ/wo/wCEm+J//QrW/wD32f8ACvU6KAPLP+Em+J//AEK1v/32f8KP+Em+J/8A0K1v/wB9n/CvU6KAPLP+Em+J/wD0K1v/AN9n/Cj/AISb4n/9Ctb/APfZ/wAK9TooA8s/4Sb4n/8AQrW//fZ/wo/4Sb4n/wDQrW//AH2f8K9TooA8s/4Sb4n/APQrW/8A32f8Kq32q/EPUoRDe+DbOeLOdsjEjP5V67RQB8+65ovj3UrJYtO8L2+lShsma1YhiPQ8Vzv/AAhHxY/v3f8A39P+FfUlFAHy3/whHxY/v3f/AH9P+Fd74f1D4o6Jo8Ng+gx3TR5zLLIdx+vFez0UageWHxN8T8f8itb/APfZ/wAK5zRIPiPoviLVNYi8ORPJqBBZGc4X9K92oouB47rOrfFDVNKnsl8OxQGVdvmpIcr7jivPf+EJ+K5/ju/+/p/wr6kpCwFAHy5/whHxX/v3n/f0/wCFb+g6F8QNLiddR8Nw6s5OVkumJKj06V9BZ5zTiyquWYD3JpN23Czex4bqUXxEudDm0zT/AAxb6ashDF7dyDx+FV/C1j8R/DqM03h+O/us/LcTud6j06V7sbiHp50ef94VICCMg59xT8wPLP8AhJvifn/kVrf/AL7P+FL/AMJN8T/+hWt/++z/AIV6nRQB5Z/wk3xP/wChWt/++z/hR/wk3xP/AOhWt/8Avs/4V6nRQB5Z/wAJN8T/APoVrf8A77P+FH/CTfE//oVrf/vs/wCFep0UAeWf8JN8T/8AoVrf/vs/4Uf8JN8T/wDoVrf/AL7P+Fep0UAeWf8ACTfE/wD6Fa3/AO+z/hR/wk3xP/6Fa3/77P8AhXqdFAHln/CTfE//AKFa3/77P+FH/CTfE/8A6Fa3/wC+z/hXqdFAHln/AAk3xP8A+hWt/wDvs/4Uf8JN8T/+hWt/++z/AIV6nRQB5Z/wk3xP/wChWt/++z/hR/wk3xP/AOhWt/8Avs/4V6nRQB5Z/wAJN8T/APoVrf8A77P+FH/CTfE//oVrf/vs/wCFep0UegHln/CTfE//AKFa3/77P+Fc5rcHxH1W9tr2Hw3DZ3EUgd5InOZR/dPFe5vLGnDuq/U0qur8qwP05o32B6Hlo8TfE8cf8Itb8D/nof8AClPib4n/APQrW/8A32f8K9TphPagDx+Wy8Wa1DdfbPClpaXcg+S6jJ3g+oOOtN0jQvG+ly27t51x5XUSPw31969hooA4e61zxvHbu8GhRPIOQC5/wrHht/Fi6hBqEeiRWsnWaONiA7HueK9PJ2jJ6CsC68a6LazvDJM+9DggJmlcaTtcyzq/jJgR/YsQznqx4/SuTm0PxtNdSTYmAZt2wPx/KvS9L8Rafq+fskjtj1XFa3t2qmiU0eeWZ8S2ZRovD1t5gGDIDyf0rQOr+Mu2ixf99H/Cu0UU6kM8/vtc8dw2wa08PwySZ+6WPT8qWx13x3LbB7rQIYpM/dDn/Cu/J4pm78qAPN73xH8Ro7kpa+GreSIDhi55/Sq//CTfE/8A6Fa3/wC+z/hXqI+9TqAPLP8AhJvif/0K1v8A99n/AAo/4Sb4n/8AQrW//fZ/wr1OigDyz/hJvif/ANCtb/8AfZ/wo/4Sb4n/APQrW/8A32f8K9TooA8s/wCEm+J//QrW/wD32f8ACj/hJvif/wBCtb/99n/CvU6KAPLP+Em+J/8A0K1v/wB9n/Cg+Jvifg/8Utbf99n/AAr1OigDg/Det+ObzWEh1rQYbWzKktKrkkHsOld3S0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXOeJfGuk+FEifUnlAkO1fLTdzXR15548e3jvrGW4h82JJskFN3FJJuSjff/K4pycIOSV7f52LNh8WfDWpXsVpbm6MkjbVzCQM13AYMMiuR03XfDt7cqltpqpJkYb7MF/XFdYPb9OKt2srCQuTmjBNGPzpw6VJQ0dRXLePo2l8M3CCZ4dwA3K2CPxrq8VyXxCtVvPC9xCzMqsOSpwRUyveNu5cLJ6nHW3wy02SxjvD4lvxIV37DcHGfTGa7XwPdX9xpssd7tIgfy42BySo9a4+0+Dmlz6clwdW1MM6bsC4YAfhmug+HCSWljd2cjbwkxVWzkkAnrmuiLtGUZdDNqTV1snqzuqKKKxGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUN3P9mtJpv+eaFumelTVV1BQ1nLnptNTLsVH4lc87OgN8QVN5Pf3VpBkhfIcrzW94Z0K68N3L2a3EtxaKvyyTOSxPvzWj4XeM6UoiUKNx4/GtjfHvKll3dxnmrjGNPSPUT1bbQ/dmnHpmm9qUGkISilPFJQgGy/cNcFba9oljqN4l7b7n8zr5O6u9l/1TH2rn9DtbaW6vS8ETnzO6g0oatsbsloW9C1HS9UjeXTofLVTg/u9tbQUVHFDDAMRRIg/wBhQKkB5qpO+xMU1uxScCmluKVhmm8nikMSlC5pwWlxQAgGKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKTIoAWikJ4puc0AKTXLeIPJ+3Wvm7MeZ/Fj+tdRWRrHh2z1tUW634Q5G1sGhO0k+3+ViZpyg4rr/ncuRnTlYbGtA3+ztzVwHPTmuXtvAel21xHMj3G5DkAyGunjQRoFHagY4CloooGFc94v02/1XQprbTfL+0EDbv6V0NFJq5UZWdzymO0+KsUC2wOm+SML1GcdK7Twl4fbQrB1mObiZvMk+bI3Hriuioq1JpPzJe1ugUUUVIBRRRQAUUUUAFFFFABRRRQAUUUUAFFFGcUAFITgUm7mkJoAcpzSOgkQoejDBpoODUme9DSaswOPvdN8QWV650YwCA9A/arGkaNffaWvdUk/0hhgrG3y/gK6cjNMIxUwjyqw27u4dsfqaKKUKTVCDG6lC04DFJnmgBGQMpB6VQsNKg0153hLkzNubcavEn8KD8yihabAB6ZoBNKFOKcBigBBmloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAYxOKROtK3SkTrQA5qQUppBQAd6cOtJ3pR1pgLRRRUjCiiimIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAprU6mtQA2iiigAPSlHSkPSlHSgAB5oakHWnNQAgp9NFOoADTG60+mN1oAD0pRR2pRQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q=='] Multimodal Competition False Theorem proof Geometry Math Chinese 18 "如图, 在四边形 $A B C D$ 中,对角线 $A C$ 平分 $\angle B A D$ 。在 $C D$ 上取一点 $E, B E$ 与 $A C$ 相交于 $F$, 延长 $D F$ 交 $B C$ 于 $G_{\circ}$ 求证: $\angle G A C=\angle E A C$. " ['连结 $\\mathrm{BD}$ 交 $\\mathrm{AC}$ 于 $\\mathrm{H}$. 对 $\\triangle \\mathrm{BCD}$ 用塞瓦定理, 可得 $\\frac{C G}{G B} \\cdot \\frac{B H}{H D} \\cdot \\frac{D E}{B C}=1$因为 $A H$ 是 $\\angle \\mathrm{B} A \\mathrm{D}$ 的平分线, 由角平分线定理, 可得 $\\frac{B H}{H D}=\\frac{A B}{A D}$.\n\n敬 $\\frac{C G}{G B} \\cdot \\frac{A B}{A D} \\cdot \\frac{D E}{B C}=1$.\n\n过点 $\\mathrm{C}$ 作 $A B$ 的平行线 $A G$ 的延长线于 $I$, 过点 $C$ 作 $A D$ 的平行线交 $A \\mathrm{E}$ 的延长线于 $\\mathrm{J}$.\n\n则 $\\frac{C G}{G B}=\\frac{C I}{A B}, \\frac{D E}{E C}=\\frac{A D}{C J}$. 所以, $\\frac{C I}{A B} \\cdot \\frac{A B}{A D} \\cdot \\frac{A D}{C J}=1$\n\n从而, $\\mathrm{CI}=\\mathrm{CJ}$.\n\n又因为 $\\mathrm{CI} / / \\mathrm{AB}, \\mathrm{CJ} / / \\mathrm{AD}$,\n\n故 $\\angle \\mathbf{A C I}=\\boldsymbol{\\pi}-\\angle \\mathbf{A B C}=\\boldsymbol{\\pi}-\\angle \\mathrm{DAC}=\\angle \\mathrm{ACJ}$.\n\n因此, $\\triangle \\mathrm{ACI} \\cong \\triangle \\mathrm{ACJ}$.\n\n从而, $\\angle \\mathrm{IAC}=\\angle \\mathrm{JAC}$, 即 $\\angle \\mathrm{GAC}=\\angle \\mathrm{EAC}$'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAdUB6AMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APfqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKjmmSCFpZDhFGSaTaSuwJKKx9K1yHVbl1tzuiAyG962KYdwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKTNAC5x1/WuT8VXovLK7sIJGDpEWcr2FauuX81vZSJZlWuWUhBnv2rym/k+JVpp1ws+nWHkurBpN+WK/lU2U3yvYuNo6s674XWscGgoY5GlQ5+dutd/XEfCyOZPBNqLhQJcncAa7etqkeWXL2MotNtx7hRRRWZQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVFceb9nl8jHnbDsz69qlooA888M6Z4yHiaa911bf7MRhAjflxVjxxaeML+BrfREtmiYYO84ru6MfX86Knv8q7BGybfc4D4e6b4t0mE2OuR2otEGY/LOTmu/HSiirnPnd2TGKirIKKKKgoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAprukaF3YKqjJJPAp1cb4416FLF9Et0ee8vcwjyTnySehb0FAF6y8a6VeaveWHmCL7Nj99IcI4/2T3roIpknjEkTo6sOGU5Br5E1ax8SyarD4PnnDrp77fOjBATPdmru/Cmt+MdBmeyn1CCTS9NxkKCTcLwPkOef/rUAfQlFcb4d+Ium64spngl0zy8Y+2fJu+ma66KaOaISxurxsMqynIIoAkooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopskiRRtJIwVFGWYngCgCjq+sW2jWT3Fw4BA+RM8ufQe9ea2FtqKjxD44RTbi7ti0EEo+aMjufzq1r6v8QPENnZWCtHbabOs/wBs6pKPQV2HjNceCdWA4xbN0FAHA6Jpqap8LtQ8RGEy6xqdrmZ1HLnPaotP0u2uvhdaXKRl9d0qDfFEpy6P0ww/Gur+EmD8NNJ6YMf1rE+H/PxL8YL2Eg4/KgC9pmhaR4/8OadJrwE2owR/vVjbYyN7jtVN9P8AGHhKc3iXqXOgWh+SxiQmQx+gOa09d0K68O37+INBBVCfMvrZBlp/p+ldRoWu2mv2KzQFRIAPNgzloz6NQBkeFvHVt4jZopbSbT7j+CG54Z/oO9dbXL+KfCv9rql7pzLb6vbj/RrjHCevFcqviPxP4Ixa63BPrsk3zLNbLgIPQ80AepUVi6X4p0rVTDFFdxfapVz5GfmHrW0KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArjvGXiOOK3fRrOE3t7cgxSRRn5oVbgMfaug1rWrPQ7E3N3MiZ4jVj99uwFcb4N0S7v/FN14zu42tHvIxELR+qgZ5/WgDoPA/h2Twv4Yt9LlmWV4ySXHfNc38UtTu7SbQ7CGUrb31x5Nwn99T2r0bHHSvLfi3/AMhjwp/1/D+RoA9H0vSrPRtPisbGIRW0QwiDoBXm3i8nwv490OTSP9HfVrjbdkf8tOG6/kK9VrjviNp9s/hi71YxA3thEZLeXuhz2/OgDsOB/OuB13Qbnw1eyeINARhHkyXtpGMtcnoP6VueBr641LwXpl5dymSaWHc7nuc10RBxxjNAGVoOvW2u2SywuomAAliz80TehrVIDDB6eleYWEMnw68S3b3KmXT9Um86W76Lbjpg/lXpcFxFcwxzQuHjcblYdCKAOJ1T4a6cjTX3h5I9O1h2LLdAc5PJrIHiPxR4KddP1O0udfeQ7zdRYAQehr1KmsiujKw4YYNAGPpXinSNXdIbW+hkuSoZoVPzL6j8K2s1wmqfDawVJLjw6U0vU2Yt9pUZPPWq2ka3qHg+9/snxNdNcW2N41SThMn+GgD0Siqem6rY6xai50+5juIc43oeM1coAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiuS8f+KZfC2ixTQxCR7mVbcHP3CxC5/WgDmvFj/8Jr4zi8JAfZ/sLLd+f13YOcf+O16fEnlwon91QPyrmvCfhiPSYFvbmX7ZqMwy104+baeQv4ZrqKACvLdLH9vfFvWrLU/9Jt7DEltG/SNueRXqVeW+E/8AktHij3QfzoA9SqC8s4L+0ktbqMSQyLhlPQip6KAPMvhteT/8JT4l0rzW+xWUwS3h7Rrx0r02vK/F4/sP4i+HRpn+ii/m/wBK8vjzev3q9Tz6YoAqajptpqtjLZ3sKTQSD50YcH0rhra7v/AeqfZL53n0aY7hct921XOAv+fSvRaqahp1rqlk9peQpNC3VHGRmgCaC4juYEnhYNG67lI7ipa85try+8A6kbW/d7jRZiX+2P8AdtvRK9CgmjuIEliYMjruUjuKAJKoatouna7afZdStUuIc52v0zV+igDzjU/AGpWd39o8O6w+nWMQ3ixiHDkdvxp+lfEW8guGTxPpLaRaKNq3Ux4civRKoapoum61biDUrSO5iByFccZoAfpmqWesWSXlhOk8DnCuvQ1crzbU/AGpWd89/oWsz2lnD88enQ/cYjt071a0Tx7qJvlt/Emkf2RHIdkDsSfMb0oA7+ikBziloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikzQBFdT/Z7SaYAHy42fB74FeceEUPj69l8Q6nzbRytCli3KBlJAb696l8Talda/wCNo/B0cr2sBjFwbiI8tjqv0rvNN0210qzS2tIUiQAZCjGT3P1oAtqoVAoGABgCloooAyfE8slv4Y1KWFykiQMVYdQcVy3wlijuvBdpq06B7+4Uiac/ef610vi0/wDFJap/17v/ACrnfg7/AMk00z/dNAHeUUUUAcZ8TLaEeDr7URGPtltHugmA+aM+1afgi4mu/Bek3FxIZJpIAWZjyeTVvxFo0fiDQrrS5ZCiXC7Sy9RXJ/DXXJbj+0fD5jURaM/2eOQfx9+fzoA9BooooA5/xj4dXxT4dm0x5jEGYOGAz07VleFPEjRTJ4e1aIWl/ENkEXUyRjgN/Ku1rnfFHheHXbUvC5tr+PBjuYx84x2z70AdF70VxvhfxRO13/YWtxi21NP9VGTkvGOjH6jmuyByM0AFFFFABisrXdCtddsWguI1MgB8qUjJjb1FatFAHli6P4t8C5n06e58RNPw0czY8v3HSt3SPiTpU81vpurTR2esudj2ueVb0rtsdetYOr+EdK1WO4kNrHFeSjAulX51PqDQBu5pe1eWf2P4t8Dc6K1xr/2j/WfaXI8v6VvaP8SNIu7y30m+nWDWWISW37K31NAHa0UgORntS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVyXxB8SXHhrw6bm1RZJnkEW0nnDcZFdPczCC3kkyAVUkZOBkCvN/BqN451O517Vd+bSdreO258ogEgNj14oA6fwj4ag0qyS7kka5u7geaZpeWUNztB9Oa6f6UiqqoqqMKBgAdqWgAooooA4T4l69NpVhY2Ecasmpym2kJONoPcV0Phbw/B4X0C30q3kaSKEYDMME1xPxf/ANd4a/6/xXp4Hyj6UALRRRQAY615YUHgX4jQWtn++TxBKZJy/wDARxx+Vep15/8AEywSzs4/F0bMbzR1Lwpj5W+tAHoA4AorL8O6jJq3h6xv5VVZLiIOwHQGtSgAoxRRQBzXizw1b6xYvMrtbXcI8xbiP7/y84z6VT+HfiW58S6FLLdxiOSCZoAM8kKcZP5V2BUMCCMg9feuE8RaBfaLqH/CQeHVDTDAltSdsez+JsetAHeUVkeH/EFn4g09bm1c5B2OrDBDDrx6ZrX6igAooooAKKKKAExzmsDWPCOl6rbTqtvHBdS/8vMa/OD65roKMUAeXwa94s8L3Ah1awQ+H7T5XvixLsnqQR1rsvD3jDRvE0Mkum3O5Izhi42/1rZnt4bmFop4kkjbhlcZBrj/ABD8ONP1qaKW2up9N8sY2Wh2BvrigDtAwIyOfpS15fD4g8W+F7j/AInllENAtvk+0qxeQjtxjriuy8PeLtI8TWb3OnzkRo20+aNhz9KAN6ikDAjOeD096WgAooooAKKKKACiis3WNcs9CtGub1mWJRklVzSlJRV2CV3Y0qK88X40+EGzi4uDjriE1qaL8SfD2vXQt7OeXzCdo8yMqM00r7CbSV2dfRSKwYZBBB6EUvHrQFwooooGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUmcckgClzXKfEDxBc+HvDM93YFGuwwCxkZJB4OB3oA5/xbqFzrnjaz8Ih2TT7iPzZJoT8wYY4JH1r0Gw0+3060jt7eMKiqBwMZIGMn3rA8F+HrbS9JW6w73N2POkaXlkLDJAJ6DmupoAKKKKACiiigDyy+b/hNPiXPoF/hLbSStxCyfeLZPX8q9T7V5X4c/5Ln4j7f6OnuOpr1SgAooooAKy/EGh23iLRbnS7okQzrtYr1xWpRjjigDz74aa3c3y6po8igwaVL9nhYdWX1OfrXoNeWY/4Qz4l2WmadzDrjmW48zk54HFep0AFFFFABSFQwIIyDwfelooA4PxB4fvtG1M+IfDyjzsYnt2OIwg6kDpmuk8PeIbPxDpyXVqx67WV+GBHXitcqGGCAR6GvMvGsUng3WLXxBpAfzrydYJYsZjVCRkhegPJ5oA9OoqG2nWe3jkR1YMoOVOamoAKKKKACiiigAoxRRQBFNbw3MZjniSRD1V1BB/A1xviL4badrd5Hdw3FxYvGmFjtWMaseoJxxXb0YoA8xtvEHizwzcq/iG3hGiRHylki+aQ9lJH0r0W1v7W8jRoZ42LqGChwWGfUU+5tobq3eCdFeNxghhmvObj4e3vhyWTVPCt1PLqTMf3d1MWjCk9ACcUAemZorzW2+Itz4flTTPFltKdTdh81rEWjCnpyBXoNtf212qmGeJyVDbVcEj8KALNFIDmloAKx/E8kEOgXbzorKsZOGGa2K4X4g6mI/sWnDJ+1uYzioqJSSi1e+hdN2d+xR+Hvh7TZ7V9SaygdbhQVDxg4qz4+8I2k+lHULGNba5tV3J5Q2g/XFdX4e09dM0aC1UYCDFZfj3Uk0/wlfNuHmGI7V/vU6yaSjDRrYnDq7Wm+pW+H2rz6joywXBJmt0wxznJrrsH+8a4n4aWbpoa3rjBuVD13PPtW1Raoyo7Pm7hRRRWZoFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSZ5/SgCOeaOCJpJZERAPvM2MV5t4Ohk8X69e61rCSGWwnaC3XGEdPp0PTrT/F97PrnjHTfDSOZdJulP2oxclSOmSOlehWFhb6dZxW1sgWONQo9Tj1oAsBQqhQAABgAdqWjtRQAUUUUAFUdZupLHRb26i/1kULOv1Aq9WT4m58M6l/17v8AyoA4/wCGFpHq9s3jC5B/tO9BjlI4XA9vxr0auB+Dn/JObH/fau+HSgAooooAKKKKAPNviBZyaZ4l0vxjNg6fpakzKPvHvwPwrv8ATr6LUtPt72DPlzoHXI5xWH490C58TeD73SrR0WadcKX6VV+H2u2+p6MdOhVhLpmLaYnoWHcUAdhRRRQAUUUUAFVr2ygv7WS3nQMjqQcj1qzRQB5vBPefDzUEtJxJLoEzbLbaC7q56lj2HSvRIZ454lkikV0boVOQfxqK+soNQs5ba4UMkilT6/hXA28158PdSW0mDy6DMwS2Cjc0Z7lj6UAej0VHDPFcQiWCRZEPRlOQakoAKKKKACiiigAooooAKMUUUAVbrT7S7jdZ4I2LqV3FASM+9efXHw8vfDjNf+Drhvt7sQ4upCyY9ga9LpGYKpLYwBnJoA82tfiLcaDcxaP4mtLiTUwwDy28JMQB6cgYr0WCeO4hWWKRXRujKcivNvF/xC0S3uptF+wvNPcL5UV0qApubjhvaum8A6FeeHfClvYX0wlmVixYHOQaAN/UL1NOsJ7yRWZIULEIMk/SvDdS+JNlquvRXVxpepG2hfdGBbvn+Ve9FQy4IyO4PeoPsNp/z6wf9+xSs+ZSXQHrFxfU85X4y6VNiGDS9TWR+F3WzgZ/75pYvD2s+Mr9L7XGUacrbreNMq23/aFejCytQci2h/79iplVVXaoAHYAVSsnzPcXvbJ2XUgsrOKwtI7aAYjjXaKsfjRRSeruwUUlZBRRRQMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuT+IGuXOjeF7uTTpVGolP3MfVm+g71011cw2lu89xKsUSDLOxwBXm/hCC48T+KdR1PWo2lWxnxp8mPlKe3rQB0ngjQ7ew0aO+MTreXqia4MnXef5V1VIAAAKWgAooooAKKKKACvP/iprN5pem6bBayBY765EE4I6ocZH616BXmHxl/49fD/AP2EF/mKAO80DRbLQdHhsLBDHAoyATnrWnTIf9Sn+6KfQAUUUUAFFFFACGvLfCx/4QrxpdaFe/vJ9Zma4haPoq+hr1LFebeP7NtH8SWHjWVg9ppybHiH3mJPb8qAPSqKq6derqOm296ilVnQOAe2atUAFFFFABRRRQAVWvrGDUbOW1uU3RSLtYd8e1WaKAPNfCN5NoXjDU/Dsj+RpFuAtkJjjefQE9a9JzWB4n8M2+vW6SABb23O+2k6bW96yvDHia4iuW0PX226jb4X7Q/yrcH/AGP1oA7Wik/pS0AFFFFABRRRQAUUma53xR4utvDduSIXvLrgi2hPz49cUAbOoajbaZaPcXUqoigkbjjcfQe9edS+L9T8byHSdDs7nTn3YmmuUO1o+4HTqAamsbW8+Id4t9qcEtvoiEFLKUFXEg75ruNQAsNHuZLdQrwwNsIXngcUAeUaZolpdfEabwlcIX0ywjW7iU/eEmTkk+nFezqoVQo6AYrzn4W28esae/iq9Ak1admhebPBUHj+dej0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSc0tYviLxFbaBZM7/ALy5YZhtx96U+goA5jxzqaa/C/hXTVM8t5+7lnjORbn/AGq6zw9pjaNoFlp7sGeCLYXA6muY8AeG7nTrjUtbuSUbVnEpt2+9H2wfyrvMUAFFFFABRRRQAUUUUAFeW+LZB428Yw+FoP3EulyLdPK3RhnoP++TXqVeU6L/AMl81s/9Oaf+zUAeqIu2NVPYAU6iigAooooAKKKKACub8c+HpfE/ha60uGURvJg7m7YBrpKa4Oxh14/OgDkfh7r8esaNJZxxlTprC2Zj0YjIz+ldh2ry/wCFpGkXmtWGoH7Pd3N60kMT8NIvPIH416hQAUUUUAFFFFABRRRQAVz3ifwvb6/bpIAEvrfLWsv9x/X9a6GigDi/DHieeO5bRdcLR3sOFW4k4W4Pqv6mu07Vwnj/AMO3N9eaZr9sDI2ksZfs6j5pfYfnXQ+HfEVt4gsVkjIS5UDzoCfmiPof896ANqigdKKACkLBQSeAKrX+oWumWj3V5OkMK9Xc8CvOZfFuveK7l9HsNKudNSRvlv2wUZQen4igDT1/4iGx1D7Hpel3GpKRsM9t8wjY8YPuKueF/C00d0Nb1uQXWqSZ2SYx5cZ6KR7Ditrw94fs/D1h9ntYwrOd8rD+Nz1b8618YGKAEAAHFef/ABJ1m9jtbXTNFm33ck6rcQx8t5R65/Wu/d1jQu5AVRkk9hXl+iI2ofGa81a0Hnae1r5YnXlSwzkfWgDvtA0az0PSIrOyi8qLG4r7kc1qUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEN1dQ2VtJc3EixxRjc7N0ArzdrWfx94ustTSNrax0mXfBMeVuRg9Pz/AErR8X62dYaXwxpcP2p7g+TdyJ/y7DqCf0/Oum8M6L/wj3h6z0vzfNFsmzd60Aa2KWiigAooooAKKKKACiiigCvfXP2Kwnudu7ykL7fXArzvwBZnxD4guvHQbylvE8gW56rtJ5/Wu813/kAah/1wf+Vcd8GR/wAW+g/67SfzFAHoPWiiigAooooAKKKKACiiigDyzxTDJY/F3SNbuUMWmw27JJcNwqk7cD9DXp8UqTwpLEwZHXcrDoR61xvxU0271XwNc21lC0sxlRgq+gzk1seEdStNQ8P2yWs6yPbxrFKB/AwGCDQBvUUUUAFFFFABRRRQAUUUUAJiuF8Q+HrjRb1tf8PqyOpMlzaRDm6PT+X8q7umnvQBkeH/ABFba9Y+ZGypcoP38GeYm/un3qv4o8UxeH7UrDGLrUGGYbRT80n0rzzxJf3Wn+MobvwXZtdiNidShg4DP/tfgBXReB7G11W8uNXvbsX2oJJ8qN1tT3SgCtp9trHj+7W51qzl07TYTtk06Xnzj6/59a9HggjtoEhiXbGi7VHoKfiloAKKKKAOT+IHiZfDOgiRoDN9qkFtgfw7+M/rUngLw2fDHhtLMzibzHM24dt3OP1rl/GjHxj4th8GY8gQFbz7RnrtwcV6ZBEIbeKIHIRAufXAxQBJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVh+JPElt4ftAXKtdzfLbwk/6xvStW8u4bC0lurhwkMS7mb0FecPaS/EbXrPUdnlaTp8oms7lefPPP8AjQBreB/Dt1aX+oeIr4NBdamA0lsR/qjXcUg6d6WgAooooAKKKKACiiigAooooA474i+JH8PaJCqwCUX0v2Y8/d3YGf1q/wCCfDq+F/DUOnLOZgGMm7/e5rkvjT/yCNG/7CEf/oQr0q15tIf+ua/yoAlooooAKKKKACiiigAooooAjnDNBIFGWKkD8q8z+GLDQLvUtF1I+RqF1dvPDC3Vkyef1FeoV5Xq3/JfdL9Psbc/980AeqUUD2ooAKKKKACiiigAoorA8TeJ7bw/bxx7la/uSVtYGOPMb0oA1b+/t9Nspby6kEcEQ3Ox7CvO7nxJ4l8UTvp2naW9vplydsWqRnov94U+ysfEnjO9ifxFZPpVtakEwK2VuPZq9FtrWGzt44LeNY4oxhUXoB6UAZvh/wAPW2g2KxRKrXDD99Pj5pW9T71xFtby/DnXby4kUy6VqEpmubs9Lf0Fen1WvbG21G1a2u4UmhfrG4yDQA+2uYru1juIGDxSLuVh0IqavOEmvfh/qRW5d59Cnfe9y54t/RQPSvQba5iu7aO4hbdFIu5T6igCaormb7PayzYz5aM+D3wKlrz34v391YeFIWtZ3iZ7pFbYeWBIBH60AU/Asf8Awlviafxq/wC4dC9oLcDjAOM/pXpw6Vm6FYWtho9slrAkSvGrsEGMsQCTWlQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVheJ/Ett4cskeVv9IuD5dupHDP2FAGB4q16XVryXwvo8S3E7fJegnBhQ/xD1ro/C/h6Lwx4ftdIglaWOBdodhgmsHwZ4auoNSufEuqr5OqX6gTQJyi4967bH1oAXtRRRQAUUUUAFFFFABRRRQAUUUUAeX/ABLYeJb6w8P6WfO1G1ukuJYv7qAg5r0y3UpbRKwwQgB/KvL9NH/F/wDUf+vIf1r1SgAooooAKKKKACiiigAooooAK86+LsQtfDI1O1Ty9QWZESdPvhSeQDXotUtUtYLzTp47iJZU2lgrDPIHWgA0eQy6NZSF9xaBCT6naKu15t8Hbu4uND1JbqZ2ZL6RUDnkKGPGPSvSaACiikzj6etAC00sF+8QPqagu7+3sreSeeRVSNSzc84HtXnU8F/8Srh/LuJrLQk+a2uYGKvI3oR2oA1PEfiK51PUH8P6EPNmB23kgO0wKe49al8NfD6LQ7h573UJ9UccxG458o+q1t+HPDlr4esEgjYzzYw9zIPnf6nvWzgUALRRRQAUUUUAVr2xt9QtXtrqJZYXGCjjI+ted6Xf3PhLx/D4WWV7m0vVa4Ekh/1QGPlHtzXpv6VgeJvDNv4gsmXcYLpeUuIwN49s+lAG48ixxs7HCqCT7Ada8ytS3jL4iDULcm78PQIYnV/uiZevH1FOj+IUOgWk2jeKnFtelTFbhPm3pjCk+hNaPwp0O+0Tw9dLexCM3N088fPVGJIP5GgDu0UIiqAAAMADtTqKKACiud8QeNdF8MY/tSd4wTjhc/1rBHxm8GsMi8mOe/lf/XpRkpbA9D0CiuW0D4g+H/Et01vp1w7yKMkMmK6mqt1FcKKKKQwooooAKKKKACiiigAooooAKKKKACiiigCG6uY7O0luZjtjiUsx9hXnC283xL1OG6dQugWsnm2kq/eaQHkEflWj4m8RXGp6tJ4V0RVe+Kj7UJOAIjnJB9cA10fhjw9beGNDi0y0ZjEhLZb1PWgDYCgADnj1paPpRQAUUUUAFFFFABRRRQAUUUUAFRzTLbwSzScJGpY/QDNSVS1f/kDX3/XvJ/6CaAPPPCkL678SrzxZZYbSpIPIVyed4yDXqFedfBj/AJEc/wDXzJ/6FXotABRRRQAUUUUAFFFFABRRRQAUEAgg9DRRQB5bLmw+OFvBB+4tHtMsq8IW45PbPNeog5AIrzr4xRunheK5tkIuRcxgSRj5gMjv6V22m3cA0i0d54wBCmSXHXaPegC+SAMkgfU1g+I/FFnoViJC4knmPlwrH82X7Zx05IrG8SeJLu9vz4f8PhZL5hmZm+4Iz1Ib1xmm6B8PtJ8NXrahPfTXDSD7t3LuRW9QGOKAM608A3niG6i1vX725t71my9rC58sqOnFei21tDaQLDBGsca9FUYFRi9sgBi7gwB/z0WsXxH420jwzbxzXcjSrIcAQDzCPwFAHSYorzj/AIXR4b/543//AIDt/hVWTxB8QNYc3/h6ztG0uX5oDONr49xigD09nCKWYgAdSTj+dRfbLb/n4h/7+CvNBb/EnWW/s7V4bOCwn+WaWBwHA9u9P/4UppP/AEGtV/8AAhv/AIqgDqPEfj3RPC8sSX8rkyjK+Su/j8Kw/wDhc/hT+/d/9+DWt4a+H+leHIpkDSX3mnObv95t+mc1vf2LpX/QOtP+/K/4UAcDdeN/EfiJxN4Iso7m0T5ZWuQUIb24qv8A2n8V5PkfSLAKRhmV+QD+FenW9nbWilbaCKFT1EaBc/lTp38uCRx1VSwzQB8++K/h3ZTa1a2tvd3U/iSYrOYZSSirkEgH05r37Tomt9MtYX4eOFFb6hQK838CIPGHiC68U34231lM9pGqfd2g9T/3yK9R7UAFFFITgE0AcJ8SJLBbK0juYo2M0wQFlz6f406y0zQ9J0y1tls7OZ3YAnYCa5/xbYw+NvFb6DLLKiQbZMxkgjn/AOtV3Rfh1b+G9Z86G7u514wJ5CwH5ms6MUrtq3Myq26tukdTY+F7Wx1ma9t7aKISdkUAV0lNVgeAwOKcOla9LEbu7CiiikMKKKKACiiigAooooAKKKKACiiigArn/Fvii28L6Ys8+7fM4hiwP4zgDPtyK3ywUEkjAry/VCfGXxE/sC9Hm6RbItzE8XTzBk8sPoKANzwn4Ynj1OTxLq+P7XuU2N5bfJs5xx+NdoMYFIiCONUGcKABTqACiiigAooooAKKKKACiiigAooooAK5zxp4hs/D+hO95uxdZt49o/iYbR/MV0deY/Gz/kXNM99Qhz/32tAG98NtAu/DvhZbS92+Y8rSjaezHIrsKr2I/wCJfbf9cl/kKsUAFFFFABRRUFxe21rjz7iGLPQO4XP5mgCeiqP9s6Z/0EbT3/fL/jXEah8YNJsNQmtP7N1GYxttDxQMyt7ggc0Aei5+lGa8vb4ov4hH9m+HrC8g1KbiGS5gZYx9SQKYLT4t4/4+9N/T/GgD0ya9trdts1xDGeweQCo/7TsMf8f1t/39X/GvPYvh5f8AiZftXjS5b7ZH8sZtJSq7ffBrE1/wD4L0XTpLgXl9cyg7BHBdF3DHpwMmgDpfG3xO8NaDJLpd8fPllhLKUUOuSOOa8Q8PeKJtStrjQ9RF82kzTPJDJAG3h2J28jtXo/hr4Hadd6c1x4gM7zSOXh/eHIjPIBz3xitLw1ZW3hb4j/8ACI2METab5BnBkQM+7GetAGX4b8N/Erw5YeTp62DozF1knwZMH1J5reXwv4u8WH7H4wlihsU+ZGsZNrFvfFenAYAA4paAPM/+FJ6Gf+Yhqf8A4Ev/AI1t+G/hxo/hu5lmie4uzIMbbpzIB9Aa7GjFAFP+ytOx/wAeFr/35X/CrMcUcSBI0VEHRVUACn0UAGKMf5zRRQAYooooAK5H4ha/daB4ZluNPKPdlwqx9WIPXiutzXlerk3vxv0ny8z2i2zB9vzIG+Xr2z1oA6/wT4dtdB0UNbB912RcShuzsMnGenJNdNSAAAY6DpS0AFc/4v8AE1v4W0Zry5imkVyUUQoWOfwFdBUckEUwxLEkgznDqDSkrpoadmeFeH/iNpVjrk2p3thqJlkXbxbt7+3vXQ6h8ZNPuLYw6Zp999pcbVMlswGe3avT/wCzrL/nzt/+/Yo/s+yByLSDP/XNf8Kq+iT6EJWbcdzC8FSX93oMN7qYIupPvDGAPwrpqRVVFCqoAHYClpzld6BFNLUKKKKkoKKKKACiiigAooooAKKKKACjtRVLVL6LT9OnuJZli2odrMcc44oA5L4la9e6ZpMNvpMga7mnSKSNeWEbMATjr0JroPDOg2eh6THFaxkGQeY5bltx5PNcl8ObKbWjP4j1uFzqYleJGYYBjB+Xg+1ejjjpQAUUUUAFFFFABRRRQAUUUUAFFJn1rMk8SaLE7JJqdqrr1UyDIoA1KK5nWvHOk6Vp73NvKuoSKcC3tnDOfwFcv/wuOL/oWdV/74P+FAHp1eX/ABBb/hLtatvCNl8l7byR3bO/3SoYHH5A0knjnWvGC/2b4dsLrSr3732i7j+TH6VwkWl+PD8VZbZdWtRrP2bJmKHbtx060Ae9/wBp6fp0UVtdXtvFJGigq8gB6elQ3PibSLe2llF/byMiltiSAlvYVyFr8MLfWYvtfi9zd6oTh5IHKKV7cc1btvhD4StbmOeO2n3xsGXM2RkfhQBmH4z2IJH9g6r/AN+m/wAKjfxjr/jTEHhS3l06aH5pWvYyAwPp0r00W0CqAIY8Dj7opyRRxnKIqn2AFAHl39mfFr/oLad/3x/9ep7bwFrXiTcvjm7S4WLmD7KxTB9+TXptFAHnf/CmPCvpe59ftBrtLDRbDTrGG0ht0McS4XeoJ/OtCigCFLS3jYMkEasOhVADSz3MNrEZZ5UijHVnbAFZXiLxJa+HbF55VM0oGVt4z87/AEHeuMiuNQ+JVyqtbz2WhJ8t1bzrteRu2DQBq+I/FE95dJoXh1le+uVyLlRuiUdwSPrUmg/DnSNJ1CLVWWWS/IzJvfcm49SB9av6PoXh3wPZvDaultC53EzSZI+hNX/+En0M/wDMVtf+/gpJp7Dt3NUAKAAAAK8y+JqjwzPbeKdO+TU5Jo7ZnPI2EgYxXdR+I9GmcJFqdq7HookBNVvFWiWOvaHIl7H5iQqZ48H+JeQf0p2JujXtJGls4JH+88asfqRU1cR8Ldcvtd8LNPfSCR453iQgdFU4FdvQMKKKKACiiigAooooAKKKKAMXxV4gtvDOgT6ndIzRJ8pC9eeBWB8NtAuNK068vLt0kN9ObmFupVG5x+tUfiVeJrTxeCYFK3t+BIkp+6AODn8xXdaRZvYaRaWkhDPDEqEjocDFAF2iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQnFAASFBJIAHJNeY6pK/i74hxaSzG78PpEHYx/dWUep+ta/xI1u7stG+x6PPnVJXX9wnLtHnB4rd8MaHZ6Ho8Udpb+UZlEswPUuwyx/MmgDXhhSCFIo1CoihQB6CpKp3+qWWl25uL65jt4gcb3OBWZ/wm3hn/oNWn/fdAG/RXGa58RLCxtVk0iP+2JicNDatlgPWuf8A+Fs6p/0JupfkKAPUs+4pks8cELzSsEjQZZm6AV5j9i8eeKR/aun6w+kW033bSVTuT9afF4L8cXMyxar4mS5sXOJ4dp+dfSgDtP8AhL/D3/QYtP8Av4KxNf8AiPZaUIjp1rJq277/ANkO7Z9ai/4U94J/6BCfnW74d8HaH4V83+yLNbfzfv470AcZ/wALfn/6FPU/ypp1jxf44Pm6A0mhpb8SJdR5MhPTFep4pMYzjjNAHln/AAjPxPPDeJ7YjHI8s8jv39K1I/hD4ZuEWXUbQzXjjM0gbAZu5/OvQKKAOS0X4beGdA1FL/T7NknQYBLZFdV5Uf8AcX8qfRQAwrHGC+1VA5JxjivMdNBvfjbNqVr++svsmzz15XdggjPrXo2p/wDIKu/+uL/yrgPgsM+Ebk/9Pso/8eNAHpVFFFABRRRQAUUVFcXMVpA888ixxIMs7HhR6mgCTPNcZ4m+IMOhXC29pYT6nIQRILbrGfesi/8AHmp6zey6Po+l3MazNsi1IYMePWuq8MeGLfw/bySlVbULkb7ucD/Wv60AYvhzw9darqCeItebzZQ2+yjIwYUPYjvXcqioMKAv0FLjtSnpQBxnxF0vTb3w9M98CcEAYbFcnofwr8LR6ObvU7Nn3MCjbscGtX4mSTasE8P2c4iuJ1Do3pg//XrFPhbxrYWVv9s19biyXaPKVMYFZ0YJuTWl3YqrZKLettTQT4baDb3cV3ptjJFtI53ZzXpqW6NYrbuvyGMIw9sYptihjsIFbkhFz9cVZra9lymUVd8zPL/Dkj6F8VLnwvYHy9L+z/aPK6/OckmvUB0ry/4oKPDstj4g0z9zqU9zHbyTDqULAEfrXpds5ktIXY5ZkUn8qkslooooAKKKKACiiigApCTgkClrkfiXq17ofga/1CwmMVxGAVf+lAHNaYP+E3+I0fiC1PkwaOzW0kb8lznqPyr1OuY8DaVaWHh6C6t49s16iyzsP4nPf9a6egAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKM0AFUtV1G10vTpbq7uEgiUEeYx4BNXapappNlrVi1lqECz27EEo3TiiwHgvhnxnqN3q93qJ0C51e7WZ4oL6PGIlJIHfoBXajwf49uh9oTxg0Sy/OIivKZ5x+HSrup/Di+iuAPC+sHRrPHzQRrwW9azzrXi7wR/wAS2TT7rxEW+cXa4AGe3UUAXbH4eatfT+V4s1oaxp+Mi3YEAN61pD4TeCyOdFhzVDSfiTetd48RaHJotnji5nPGfSur0rxboWuXJttN1KG4mAyUQ5OKAIND8EeH/Dd09zpWnpbzOMFl9K6GjNFABRRRQAUUUUAFFFFABRRRQAUUUUAZfiDULXT9GuXup0iV42RCx6sRwPzrk/hDYXen+FJ0u7d4We6kdQ3dSSQaq/Gv/kU7T/r+hP8A48K9A00f8Su0/wCuKf8AoIoAtUUUUAFFFcZ4p8cyaRP9k0fTzqt4h/fQRH5ox70AbfiDxDa6DZNLKytOwxBBn5pW9BXD211rvxDnWG6sJ9GsIf8Aj4hm5FwD2/lWn4f0C6129Gv+II2y5D21lKObZq7zFAFewsLfTLGKztI/LgiXaijsKs0UUAFU9R1Oz0q0kub24SGJRyzngVcqjqmj2Os2jWuoW6zwt1Vu9J3toNW6nmNhrui+IfiDb3iX0JMIZFXd97kcj8q9WaCK4hCuA6dRXP2Pw+8L6bdLc2mkwxTL91x1FdKihFCqMADAFV9iMX0JafO5XAAKoUdB0paKKW4zj/iJ4afxJoUYScRfY5RcnI+9sIOP0q54I8Rr4n8Nw36QGFQxiCnvt4rcvbf7XY3Fvu2+bGybvTIx/WvO/AN1/wAI54guvA20ym3U3H2kdDuJ4oA9MooooAKKKKACiiigA715j4kuZfE3jjTtItmN5onK36Jyqtno1eiX9/a6ZaPd3kyxQJ952PArz74VWF1b3ev3c0LCC6uvMhk7OvqKAPRbW1hs7WK2t12QxrtRR2FTUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHMeNbK7udHle01OSxZFzvWvOdD8GeL9VjmkfxjeIiEbOnzjH0rtfiXeXKaBNZWSl7qdCEQHk1yOl+MPE+kaVBBqnh42dmiAPd7v161lC3vO/l6MqcW+X+tDY8C67q1tq0miao0ly4kKrO56j1r06uH8E6DaxebqYvzfPM/mK7fwDrgV3FdEnpFPe2phBWbfS+nkFFFFQalDVdG07W7X7LqNrHcQZzsfpmuV1j4cWb2w/wCEcddFvM/NcQD5iPSu5ooA8rGl+L/ApN/HfXXiQyfL9mbjb79q0NM+JF3DMx8VaT/Ytrj5JpDkOfSvRKoanoum6zCsWo2cVyinKiQdDQBiW3xH8KXlzHbwaxA8sh2qozya6nNcvdfD/wAOvbSLa6Zb205GI5kU7oz6iuT/AOFe+JNII1CLxVfX0kHzrbMRiU+nSgD1WivMoPHvi6GdJNW8K/ZLBT+/nL/6tfXrW/p/xL8KanfRWVpq0MtxKdqqOpNAHXUUUgPGaAFooooAKKKKAPM/iww1izttCsT52pi4jm+zr12BgSa9EsUaPT7ZGGGWJQR74FebSj/jIGP/AK8f/Za9R6UAFRzzx20DzTMEjRSzMewrN8QeILPw9p/2m6lVS52xKf437L+eK4eOTxV43uVstS0+XRbOJt5kVs+cv905zQBLqHjfW9Vu3stB0eS40+f92moxnhSe9dP4Y8LxaDa755Bdai4xNdt96Qe9bFhp1rplmlrZwrDCnREGADVqgBMcUtFFABRRRQAUUUUAFFFFABRRRQAV5b4rj/4QrxrF4sB+0HUGW08k8beev616lXIfELw6uvaLFI0xjNhJ9pAA+/t5x+lAHWRNviR8Y3KDin1zfgbxE3ijwvBqTQCFiSmwf7OK6SgAooooAKKKTNAHB/FS5iufCl1ocTBtRvY8QQjq/Wuk8KWs1n4V0y3nQpNHCFZT2NcLpbf8J38QX1CTFufD8/lIq8+bkZ5/OvUh270ALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhOOT0paz9a006vpM9kLiS3Mq7fMj6r9KOgHGagH1rxvZPE37u1cq6g8ZrT8f6npuneGJ470psK8K3Oa5iP4LeXI0ieJ9SV25JB71e0/4Sw2+oR3F9rN5fohz5U/zKazcJSpqnexSk1Pn+4l+FNldW+l3Es0jNDM++IHoF9q9EqG2tYbSBYYECIowAKmrecuZryM4xtqFFFFQUFFFFABRRRQAUUUUARXFtDd27wTxiSJxhkbkEVzuoeA9DuLGWK0sobOdh8k8S4ZD6j0rp6KAPK/8AhU2qdf8AhMNRzjpkfX0p39t/ELSP+JfbeHBfQW+US5dzmUepr1HFGKAOCi+LnhiCNYdTv47a+X5Zoeuxu4rt7W8hvLWO5gcNFIu5WBHIrOm8LaHPI0sml2zSN1Ypzn1ri7r4USyXUk0HiTUIULbkhRvlHfFAHpmabI6xxs7HCqCxPsK8t/tz4l2GbW38OwXEUPyJI0hywHGTxVhfiSNL064tPGMK6dqTo3lxICwKkcc0ARaUD4g+LR8RaaPO0yKA27TDtIOCP0roPFHjC5sbn+y9BtU1DWAN7WxOML65FeUfDrWfF0ek3kGh6XDcadcXch8522sAzHJHHvXsnhXwzBolt5sspur1/maeXlhn+H6CgDF0Hw/qGuah/bniaExuQFXT3G5EI6N7Gu9UbVAAwB2o7UtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVa/tRfWE9qzFVmQoWHOM1ZooA8y8BXjaF4lvPAqIHt7JPPWc9WLHpj8K9NrytkPhj4t32uap+5sNQjS3t5Ou58nj9a9TByoI6EUALRRRQAVh+Ltbfw74ZvtUjjEj28ZYKe9bleYfEGeSXx54XsS5a0mcieLPysOeooA1vhzocdpZXGuiUmTWCLh48YCHpj9K7mo4YI7eFIoUCRoMKqjAAqSgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEwPSloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmsypyzBR7mqupajb6XZPdXLhYl6mvOnvNf8c3UllAoi0fO15422uPTH4Uk25csR2S1lsemfaIc/61P++hVS60jS9QlEt1Z208mMBnQE/nXC2/wltrCX7VDrWpPKoyqPK2CR+NXfC9xr9xre3U0RYYsohVicgcA1cUm+XqTJuN5dBdd+GNlrF99ot9RutNTG0w2vyqffANY72Xjnwg39m+HbZNUsh832i7kIfPp0NeqYpMVIzzG08ceJdClNz430+Gy09hhHgbed35Cum8P/EHw/4lu3tdPuXMiLuPmJtGPzrormztryMR3MEcyDna65Fc54h8B6XrtmkEZawKtnzLUbWPsSKAOnWWN/uyKx9jmnA+vFeXP4L13wYPtfhO4m1G5l+WRLyQlQPXnNS23jjxB4bYy+N7OOC2cYha1UuSffAoA9Norg7H4t+Gb++hs4muhJKdql4SBmu1S7t3bas8RYnGA4zQBPRSE8dKWgAooooAKKKKACiiigAooooA8++Kej3mqWOl3FtGGjsrrz5iTyqDGT+ldfoOs2ev6PDqGnyGSCQYViMU7XLSW+0O9tYOZZYWVQTjkiuL+Ft1FpWmjwlckjVbEbpkA4APvQB6JRRRQA1iApJOAOp9K8s+HwOo+OvFEl4PPEFz/o5k5CcD7vpXQ/ETWIoNIbRI5WTUtSUx2u3j5vr9BWp4O0eTSPDVnBdQot6IwJ3Xqxz3PegDoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDzD4n3Ru7m30IOy/aVzwcYwa7nw/p8Wm6JbQRqBiMZIHU4rivibpk8c0GvQozm0XG1RknJrpfC/irT9V0iJmuY4pEUBlkcKc/jSou1OS8x10ueNtrfiU/E/xI0XwpeLbaglzuZdwZIiR+YFVfC3xA8P8AiPVfs2nJdecwJy8ZCj8ay/ind2eo6SNPtDazXUjrgqVZsZ5rrPB3h+10fRLdUgRZGRWJwM5IrSiouMpy9CKrSajHqdIDkA0UUVBQUdaKKADAxUM9pbXQAuLeKYDoJEDfzqaigDJv/Dml31hNafZIYRIu0vFGFYfQjpXC/wDCpYdHH9oaRqN/LfwDdDHPOxQn3ycV6hRgUAeXprfxE0l/tuuWtl/ZsXM/kDL49gBWppXxY0DVtSisYY7uOSU4VpYSij6k13UkaSqVkVXU9QwBBrI1bwzpmrabNZPbpCsgxvgUIw+hFAF/+0bLr9rt8f8AXQf41YDqwDKwKnnIPWvNR8FNBxxfal/4Et/jUTWfxNsCbbT5LFrGH5YTKfnK9s+poA9R7UV5mnxh02zYWl9Yah9rjOyYpbsV3d8HHSu8t9a0+5toplvIF8xQwV5ACM9jQBoUUgZWUEEEHkEUtABRRRQAV5ZIP+EQ+KN5rOp8WmrFYLYryS2e9ep1wHxN0S61G303UISoh02b7RNnrtHpQB39Jmsvw7r1p4l0SDVLLcIJh8oYc1H4q1KbSPDGoahb486CIumR3oA4TXc+M/iBpq6XydCn3XW/gdD0/MV6pjnNcJ8NdMhfSz4lYN9v1ZBJcc8Z9q7ugAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGSRRyoUkQMp6gjNcJffCLw5f3UlxI12juxYiOUqOfpXfUfhRZXuPmdrHDaR8KfD+jakl9bm6aVOB5kpYV3CqEUKBwOBS0UdCba3CiiigYUUUUAFFFFABRRRQAUUUUAJgUtFFAFZ9Ps5A2bWEkjBJQVwtz8HvD8s8tyj3iysS4AnIUN1HFeh0YzQB5adO+KkJMVtfaf5CfLHuAztHAzz1xTl+IWo+Eh/Z/iqzuLu+PzebZxMyY9OAa9QqN7eGRtzxIx9SoNAGBoHjTS9e00Xgf7Hk48u5Oxh+BreguYbmLzIJUkT+8jZFcprvw18PeIdQN9exTCYjb+7faMfSufuPCPjPRJjaeEtRtrfSlGUSfLNnvzkUAen596xvFqM/hLVFQFmNuwAHJPFcQnxG1DwuP7L8Q6bd3+oRcvPaxHY304NbegfEjTdeuJYZ7SewVFzuvBsVvYZoAg+ETrH8PdOtnYLcRJ88Z+8vHcVV+Jur3VvfaLoiMBZ6rKYLgY524J4/KsfwnrGnQ/FnxM7X0CWxUeWfMAU/Sr2lxN4y8f3z6mplstLkEmnyJ93PQ4PfqaAPQtH0m20PSYNNtFK28C7UBOTV+gdBRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAMaGJjlo0J9SorF8Q+ENG8T28cGpW5aOM7lCHbzW7RQB4x4v+BVneQwnw04s5g3715XJ3D8MV6P4L0Gbw34Xs9NuXWSeFMPIo+9XQUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYGv+LLDRIXHmJLdDhLcN8zn0o8W62dF0aaVBmZlOwDqTXJeCvDq68kPiHWofMnch4g/WM0o3m32QSagl5i2HxS1G6vYoZ/Cl9bRO2GlkwAorsdP8S2WpXBhtZEkZTiQK2dh961ZYEmhaJ1yjDBBrkfCnhJND1vVrpQAlzKGUe2B/hVxScnfZbDaur31OzoooqRBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5d8Wrp4ZtHTkRNPh8eld14b8saDbeVjZt4xUPijw3b+I9Mkt5MLKAfLkxkofWvPrHUfGXgtDpdvok2rQxDaszHG73pU7RjKL+RdW8nBxWyZ627rGrMxwB1pUdZEDIwIPQiuC0m/8SeKZgdS02TSI4TkrniSu6t4RbwLGDnaMZ9apJrch26EtFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKfUOgYoooqeokFFFFMYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/Z'] Multimodal Competition False Theorem proof Geometry Math Chinese 19 "如图, $\triangle A B C$ 和 $\triangle A D E$ 是两个不全等的等腰直角三角形, 现固定 $\triangle A B C$, 而将 $\triangle A D E$绕 $A$ 点在平面上旋转, 试证: 不论 $\triangle A D E$ 旋转到什么位置, 线段 $E C$ 上必存在点 $M$, 使 $\triangle B M D$为等腰直角三角形. " ['以 $A$ 为原点, $A C$ 为 $x$ 轴正方向建立复平面. 设 $C$表示复数 $c$, 点 $E$ 表示复数 $e(c 、 e \\in R)$. 则点 $B$ 表示复数 $b=\\frac{1}{2} c+\\frac{1}{2} c i$,点 $D$ 表示复数 $d=\\frac{1}{2} e-\\frac{1}{2} e i$.\n\n把 $\\triangle A D E$ 绕点 $A$ 旋转角 $\\theta$ 得到 $\\triangle A D E$,\n\n则点 $E^{\\prime}$ 表示复数 $e^{\\prime}=e(\\cos \\theta+i \\sin \\theta)$. 点 $D^{\\prime}$ 表示复数 $d^{\\prime}=d(\\cos \\theta+i \\sin \\theta)$\n\n\n\n表示 $E^{\\prime} C$ 中点 $M$ 的复数 $m=\\frac{1}{2}\\left(c+e^{\\prime}\\right)$.\n\n$\\therefore$ 表示向量 $\\overrightarrow{\\mathrm{MB}}$ 的复数: $z_{1}=b-\\frac{1}{2}\\left(c+e^{\\prime}\\right)=\\frac{1}{2} c+\\frac{1}{2} c i-\\frac{1}{2} \\cdot c-\\frac{1}{2} e(\\cos \\theta+i \\sin \\theta)=-\\frac{1}{2}$ $e \\cos \\theta+\\frac{1}{2}(c-e \\sin \\theta) i$.\n\n表示向量 $\\overrightarrow{\\mathrm{MD}^{\\prime}}$ 的复数: $Z_{2}=d^{\\prime}-m=\\left(\\frac{1}{2} e-\\frac{1}{2} e i\\right)(\\cos \\theta+i \\sin \\theta)-\\frac{1}{2} c-\\frac{1}{2} e(\\cos \\theta+i \\sin \\theta)$\n\n\n\n$$\n=\\frac{1}{2}(e \\sin \\theta-c)-\\frac{1}{2} i e \\cos \\theta .\n$$\n\n显然: $Z_{2}=Z_{1} i$. 于是 $|M B|=|M D^{\\prime}|$, 且 $\\angle B M D^{\\prime}=90^{\\circ}$. 即 $\\triangle B M D^{\\prime}$ 为等腰直角三角形. 故证.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAWUB2gMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApCcUtIRnH1oAQN9KXd04ryH4pLOfG/hDTdO1DUrWfVbrbdm3vpYwYVKA/KrbVOCTkDtUnxI0ifwZ4Ul8Q6D4h1m2u7SWPEU+oyTxTbmClSshbnnP4GgD1oEmlrM8O3tzqXhzS768i8q5ubSKaVMY2uyAkY7cmtOgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoNFMmMgiYxKrSYO1WbaCe2Tg4/I0AeN+IbOTxR+0PZWEN9c2g0rS/MaW22742O7kblYc+YnY034k6BfeGbC38TXOrXHiKzsp0L6dq5zHljgOoj2LuGccqev4HV0zwn410zx/rXiwW2gTzalGIhC19MPKUbeA3k88IvYdKueIfCHivx1DDp2v3emabo6yrJNBpzyTSzFegLuqgDv07UAd3pN/HqukWWpQqViu7dJ0B7B1DD+dXahtbeGztorW3QRwwoscaDoqgYA/KpqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKaxIXI//AFUADkgAgZrzPxJ4y17xDr0vhb4fyQC8tfmv9UlAaG2x0jGQwZiRg8HHTsSsPiHxZqnjbW5vBvgqYRxpxqmtLytshJDJGR1c4wCD1zjGCw7rwv4a0vwpocOlaVB5cEfLMeWlfu7HuTjr6AAcAUAc54D8dya5NNoGv2/2DxPY/LcWz4AmA/5aR9iDwcAkc5GQRXdjB54PGfWuN8e+AovFMMOoafOdP8Q2Pz2V+hwQRyEcjkrnP0ycdSDX8B+PJNbmm0DX4PsHiix+W5tX+US4/wCWidiCMHg98jgg0Ad5RSA57jpniloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikY4GaAAnA7fia8q8TeJNW8d6xL4O8GzeVbRsF1XWV+7CvdIyOrHBHHXpkDJqTxF4h1Lx5rU/g/wjceTZxHbq2rryI16GKM92PI/P3Nd34c8O6b4Y0aHStLgEVvH8xP8AFIx6sx7scdfw6AUAM8L+GdL8KaHDpWlQGOCPlmY5aV+7se5OPyAA4wK2cc55oxznmloAQjdXF+PfAUXimGHUNPn/ALP8Q2Pz2V8nBGOdj46qT+WfTIPa0hG6gDhPAfjyTW5ptA1+D7B4osflubV/lEuP+WidiCMHg98jgg13YOe46Z4ri/HvgKLxTDDqGnz/ANn+IbH57K+TgjHOx8dVJ/LPpkGDwH48k1uabQNfg+weKLH5bm1f5RLj/lonYgjB4PfI4INAHeUUgOe46Z4paACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQkjpQAMdoz/OvKde8S6r8Qdcm8JeDrgwabAduq6woyAOhjjPcnkZ7+wGSeINd1T4j6tceE/Cdx5GkQnZq2sJyD6xRnvnuR1+nX0Dw74d03wxo0OlaXbiG3j5J/ikbu7Huxx1/DpQAeHPDumeGNGh0rSrcQ28Qzn+J2PVmPdjjr+HTFawUA5oCgHNLQAUUUUAFFFFACEbq4vx74Ci8Uww6hp8/wDZ/iGx+eyvk4IxzsfHVSfyz6ZB7WkI3UAcJ4D8eSa3NNoGvwfYPFFj8tzav8olx/y0TsQRg8HvkcEGu7Bz3HTPFcX498BReKYYdQ0+f+z/ABDY/PZXycEY52PjqpP5Z9MgweA/HkmtzTaBr8H2DxRY/Lc2r/KJcf8ALROxBGDwe+RwQaAO8opAc9x0zxS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFIxwM0ABOBmvKte13UviPq0/hXwpcGDRoTs1bWYzwR3iiPfPQnv8AT70Gva5qXxQ1i48K+FZ2g0GBtmq6uvSQd4Y/UHofX/d+96ToOhad4b0iDS9LtxBaxLwO7HuzHux7mgA0HQdN8OaRBpel2ywWsK/Ko6se5J7n1NaeMUY5zS0AFFFFABRRRQAUUUUAFFFFACEbq4vx74Ci8Uww6hp8/wDZ/iGx+eyvk4IxzsfHVSfyz6ZB7WkI3UAcJ4D8eSa3NNoGvwfYPFFj8tzav8olx/y0TsQRg8HvkcEGu7Bz3HTPFcX498BReKYYdQ0+f+z/ABDY/PZXycEY52PjqpP5Z9MgweA/HkmtzTaBr8H2DxRY/Lc2r/KJcf8ALROxBGDwe+RwQaAO8opAc9x0zxS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTXcIpZiAoGST2FACk4FeT6zrOofFHVp/DXhq4a38OwP5eq6vH/y245hiPQg9Ceh6/d+83Vtb1D4q6lN4c8NTvbeG4WMeq6ug/1/rDDnggjqe4I7cN6VoujafoOkwaZplusFpbrtSNf1J9STnJPU80AN0HQ9N8O6RDpelWyW9pCMKi9Se5J6kn1NaWOc0AAZ96WgAooooAKKKKACiiigAooooAKKKKACiiigBCN1cX498BReKYYdQ0+f+z/ENj89lfJwRjnY+Oqk/ln0yD2tIRuoA4TwH48k1uabQNfg+weKLH5bm1f5RLj/AJaJ2IIweD3yOCDXdg57jpniuL8e+AovFMMOoafP/Z/iGx+eyvk4IxzsfHVSfyz6ZBg8B+PJNbmm0DX4PsHiix+W5tX+US4/5aJ2IIweD3yOCDQB3lFIDnuOmeKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiimSOEQuSAAMknsKAFZgqliQAOST2ryHWNX1H4r6vN4b8OTvbeGLZ9mp6qn/LwRz5UXYg+vfr93AeXU9Vv/AIrarNoGgzSWvhS2fy9T1OPrdnvDF7HIyfQ56YDemaRpVjo2lwabp1tHbWduuyOOMcAf1JOSSeScnvQA3RdG0/QdJg0zTLdLe0gXaka/zPqSc5J6nmtAADPvQABn3paACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQjdXF+PfAUXimGHUNPn/s/wAQ2Pz2V8nBGOdj46qT+WfTIPa0hG6gDhPAfjyTW5ptA1+D7B4osflubV/lEuP+WidiCMHg98jgg13YOe46Z4ri/HvgKLxTDDqGnz/2f4hsfnsr5OCMc7Hx1Un8s+mQYPAfjyTW5ptA1+D7B4osflubV/lEuP8AlonYgjB4PfI4INAHeUUgOe46Z4paACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkNBpkkqRxs8jKiKNzMxwFA5yfagBZJUijeSRlREUszMcADuT6CvI7/AFfUfi1qtxoegyy2fhG3fy7/AFOMEPdnvFH7HIyfTk8HBTU77Uvi5qkmj6NLNaeDreTZfagow16w58uP1Hv26nsD6jpGlWWjaXBpun2yW9nbrsjjQcD1+pznJPU896ADSdKsdG0uDTNOto7azt08uOJBwB/U5yST1JJPWrwGKAMUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhG6uL8e+AovFMMOoafP/AGf4hsfnsr5OCMc7Hx1Un8s+mQe1pCN1AHCeA/HkmtzTaBr8H2DxRY/Lc2r/ACiXH/LROxBGDwe+RwQa7sHPcdM8Vxfj3wFF4phh1DT5/wCz/ENj89lfJwRjnY+Oqk/ln0yDB4D8eSa3NNoGvwfYPFFj8tzav8olx/y0TsQRg8HvkcEGgDvKKQHPcdM8UtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhOB/jQTgf41HNNHBC8s0iRxopd3c4CqOpJ7ACgBZZFijZ5HVEUbmZjgADufQV5NfX198XdUl0nSZZbbwbbSbL2/Q4a+cHJjT/Z6foe4zFdXuo/GHV5dO0qaez8F2smy7vFyrX7Dqi/7Pt6YJ6gD1bTdNs9K06CwsLdLe1gQLHHH0UfzPrnqe9ABpum2WlabBp9hbxwWsKbI44xwB/XPUnuetWwMUAYpaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEI3Vxfj3wFF4phh1DT5/7P8Q2Pz2V8nBGOdj46qT+WfTIPa0hG6gDhPAfjyTW5ptA1+D7B4osflubV/lEuP8AlonYgjB4PfI4INd2DnuOmeK4vx74Ci8Uww6hp8/9n+IbH57K+TgjHOx8dVJ/LPpkGDwH48k1uabQNfg+weKLH5bm1f5RLj/lonYgjB4PfI4INAHeUUgOe46Z4paACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQnA/xoJwKjuLiK2t5J7iVIoYlLvJIwVVUckk9gPWgAmnjt4HmnkSKKNS7u7bVVRySSegHrXkt1PqHxi1KWx0+Way8FW0mJ7oAq+ouDyq56KP8CecALcXF98YtUeysnmtPBFrKBcXAyr6lIDnauRkIP6DvgD1WxsbXTbGGysoEt7aFAscSDAUelADNO02z0rT4LCwt0trWBdscUYwFH+eSep71bAxS4xRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACEbq4vx74Ci8Uww6hp8/9n+IbH57K+TgjHOx8dVJ/LPpkHtaQjdQBwngPx5Jrc02ga/B9g8UWPy3Nq/yiXH/AC0TsQRg8HvkcEGu7Bz3HTPFcX498BReKYYdQ0+f+z/ENj89lfJwRjnY+Oqk/ln0yDB4D8eSa3NNoGvwfYPFFj8tzav8olx/y0TsQRg8HvkcEGgDvKKQHPcdM8UtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSE4FBOBUVzcQ2ttLPcypFDEheSR2CqqgZJJ7ACgAuLiG1tpZ7iVIoYkLySSMFVVAySSegA7mvIpZr74z6w9tatNZ+BrSYCWXBR9SkU9B3C8D6d+SAsrtffGPVCkRms/AlrNh2GUk1SRT09RGCP8t9z1SwsbXTbKGysoUgtoUCRxRjCqo7AUALYWNrptjDZWUCQW0KBI40GAo9KsYxRjFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIRuri/HvgKLxTDDqGnz/2f4hsfnsr5OCMc7Hx1Un8s+mQe1pCN1AHCeA/HkmtzTaBr8H2DxRY/Lc2r/KJcf8tE7EEYPB75HBBruwc9x0zxXF+PfAUXimGHUNPn/s/xDY/PZXycEY52PjqpP5Z9MgweA/HkmtzTaBr8H2DxRY/Lc2r/ACiXH/LROxBGDwe+RwQaAO8opAc9x0zxS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRVe6u4LK0lubuaOG3iQySSSNtVVAySfQCgAuruCytJrm7mjht4UMkksjbVRQOSfQCvKDJffGXU9sfn2PgW1l+c8pJqcin8wmQP/wBr7kbDUfjPq4J+0WXgO0l6cpJqbqfzCA/53fc9ctbW3srSK0tYUht4UCRxxjaqqOgAHQCgAtLS3srSG0tYUht4UCRxxjaqqOgAHSpgMd6AMd6WgAooooAKKKKACiiigAooooAKKKKACiimyFghKAFscAnAz70AOorzez+IHiTUfGOqeGrPw5pst1pqh5pTqjiMg7cAHyc5+boR2NaknibxVY6rpNrqfhywjg1C7FqJbfUWlKHYzk7TEM4VG70AdpRSAk9RS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACEbq4vx74Ci8Uww6hp8/9n+IbH57K+TgjHOx8dVJ/LPpkHtaQjdQBwngPx5Jrc02ga/B9g8UWPy3Nq/yiXH/AC0TsQRg8HvkcEGu7Bz3HTPFcX498BReKYYdQ0+f+z/ENj89lfJwRjnY+Oqk/ln0yDB4D8eSa3NNoGvwfYPFFj8tzav8olx/y0TsQRg8HvkcEGgDvKKQHPcdM8UtABRRRQAUUUUAFFFFABRRQTigAoqOWeOBd0siIvTLHAp4OSRigBaDQaq39/a6bYzXt7PHBbQKXkkkOFVR3JoAfd3UFlaTXV3KkNvCheSSRgqooGSSfSvKFW++MeqCVxPaeBLSXKJykmqSKep6ERgj/LfcjgXUvjLqXnzrPY+BbabMcIykmpOp6k9QmR+B4+8Mr65bW0FrbR21vDHDBEoSOJFCqqgYAAHAAoALa2htbeO2t4UhgiUJHHGNqooHAAHAAqUDHegDFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUjdKCcds1g+LPEth4b8P3l3dX9tbzC3la3WSUK0rhSQFB5Y5x0zQB5T8M9elTxP4z11ND1bU0v8AUSiSWMcbLGqsx2ks6no69u1eo+E9Vk8UaW+q3dn5Ki9mW1SRB5kaozRc8nDcODjscV5x8HPFPhTw78O4LbUNdsLa8mnlmlhklAZSTtGR7hVP413Oh+L9N1zxSNL8OTWs+m21o9xdTQL8olaQBVBHGT+8Y+uRQB2IHOc0tIKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEI3Vxfj3wFF4phh1DT5/7P8AENj89lfJwRjnY+Oqk/ln0yD2tIRuoA4TwH48k1uabQNfg+weKLH5bm1f5RLj/lonYgjB4PfI4INd2DnuOmeK4vx74Ci8Uww6hp8/9n+IbH57K+TgjHOx8dVJ/LPpkGDwH48k1uabQNfg+weKLH5bm1f5RLj/AJaJ2IIweD3yOCDQB3lFIDnuOmeKU9KACikzjHrUP2y280RfaIvMJxt3jP5UAT0UgOaWgApG6UprmvGuu3Gj6EI9PAfVr+RbPT4+eZX4DHr8qjLH2X3oA81+K0E/jPR/EN7Az/2b4dCxQBTxPc71MzfREJX6lvSvU/B+pnWPBui6ju3PcWUTuf8Aa2jd/wCPZrjofDnjK08Cy+GYtO8OtbvaSW7yG/mLuzg73P7nBYlifqaT4E6kb74ZW9tnL2NxLbnPbneP0cUAeiX9/baZYz3t7PHb20CF5JJDhVA7k15QlrqXxk1OO7u1msfA9tJuhgOVk1FgfvH0Xrz+XPK6fxn8J674o8NwNotwzCyZppbDb/x9dMfUrg4UjnPrgVl+DI/Ffivw/DdaT8TFhWICKW0Ph+3VrZgMbCueAMcdsdKAPXLa2htLeO2t4UigiUJHGgAVFAAAA7AVKBj1rz//AIRL4hn/AJqd/wCUG3/+Kpf+ES+If/RTv/KBb/8AxVAHoFFef/8ACJfEP/op3/lAt/8A4qj/AIRL4h/9FO/8oFv/APFUAegUV5//AMIl8Q/+inf+UC3/APiqP+ES+If/AEU7/wAoFv8A/FUAegUV5/8A8Il8Q/8Aop3/AJQLf/4qj/hEviH/ANFO/wDKBb//ABVAHoFFef8A/CJfEP8A6Kd/5QLf/wCKo/4RL4h/9FO/8oFv/wDFUAegUV5//wAIl8Q/+inf+UC3/wDiqP8AhEviH/0U7/ygW/8A8VQB6BRXn/8AwiXxD/6Kd/5QLf8A+Ko/4RL4h/8ARTv/ACgW/wD8VQB6BRXn/wDwiXxD/wCinf8AlAt//iqP+ES+If8A0U7/AMoFv/8AFUAd+ee1BGRXAf8ACJfEP/op3/lAt/8A4qkPhL4hj/mp2f8AuAW/+NAHoGBjH5e1A614l411Lxv4PjtrdPiJJqOsXjBbTTodDtw8uTjJOTtHocHJ4x1x0eneF/ibPYQy33xEW1unQNLAmjW8ojb+7u4zj1xQB6XRXn//AAiXxD/6Kd/5QLf/AOKo/wCES+If/RTv/KBb/wDxVAHoFFef/wDCJfEP/op3/lAt/wD4qj/hEviH/wBFO/8AKBb/APxVAHoFFef/APCJfEP/AKKd/wCUC3/+Ko/4RL4h/wDRTv8AygW//wAVQB6BRXn/APwiXxD/AOinf+UC3/8AiqP+ES+If/RTv/KBb/8AxVAHoFFef/8ACJfEP/op3/lAt/8A4qj/AIRL4h/9FO/8oFv/APFUAegUV5//AMIl8Q/+inf+UC3/APiqP+ES+If/AEU7/wAoFv8A/FUAegUV5/8A8Il8Q/8Aop3/AJQLf/4qj/hEviH/ANFO/wDKBb//ABVAHoFFef8A/CJfEP8A6Kd/5QLf/wCKo/4RL4h/9FO/8oFv/wDFUAegUV5//wAIl8Q/+inf+UC3/wDiqP8AhEviH/0U7/ygW/8A8VQB6BRXn/8AwiXxD/6Kd/5QLf8A+Ko/4RL4h/8ARTv/ACgW/wD8VQB6BRXn/wDwiXxD/wCinf8AlAt//iqP+ES+If8A0U7/AMoFv/8AFUAegUV5/wD8Il8Q/wDop3/lAt//AIqj/hEviH/0U7/ygW//AMVQB6BRXn//AAiXxD/6Kd/5QLf/AOKo/wCES+If/RTv/KBb/wDxVAHfkbvWuL8e+AovFMMOoafOdP8AENj89lfIcYI52PjqpP5Z9Mg1P+ES+If/AEU7/wAoFv8A/FUf8Ij8Qj1+J2f+4Bb/APxVAEngTx5Jrcs2ga9B9g8UWPyXNq3Alx/y0TsQRg4B75GQQa7kNkZOK8o1L4S+I9Y1rT9X1Px75t5YsDFPFo8cMgAOcbkcZHXrkcnjk16Nr4uP+Ea1UWoJuTZyiIL13bDtx+NAHnGlXl58WfEGoyNdXFv4O0+XyI4Ldyhv3HXew5298DH3l9K7Vvh94Oa0Ns3hjSPLxgkWiBv++sbs++c1y/wGEC/C+28kqXNzMZccfNu/+J216Je3lvp9hPe3Uiw20EbSSSPkBEAyx/AA0AZXg3w+PC/hq30cMHEDykEMSArSMyjJ54BA/Ct+mRsHAdeVYZGafQAh6Vyt34a1G78d2niF9VtntbOJoreyazZvL3gb3DiQfOcYztwFOMZ5PVEZFGOc0AQXa3DWzraTRRXBH7t5ozIin3UMpP5iuN+H/gG88Dzaira1DfWl9J55hWyMRjk9QxkbjHGCM8DnjnucD3/OjFACEAc96838W+E9T0XWX8Z+C0A1IDN/pyjCX6A84A/j7+p7cnn0ojNNIwO9AGD4R8XaZ4y0ZNQ058MDsnt3+/A/dWH8j3rfHPpXmvi7wlqei60/jTwWmNTAzf6cudl+meTj+/39T7nr1fhHxdpnjHRk1DTnwwOye3f78D91YfyPegDoKKQHNLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSMcDNAAeBwAa5Lxv44tvCVlFFFAb7WLthHY2EXLzOeASB0UEj69qf418b2fg/TI3eNrrUbp/KsrGLO+eQ4AHsMkZPuBjJxWR4E8DXdpqEnizxXL9s8T3YJGTlLJD/yzTtnBwT+A4yWAJfA/ge4sLybxN4mmW98T3i/O/BS0Q/8ALOPt04JH0HGSe8wM0BQOlLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABimkDH+TTqKAOGg8CXnh/Vby+8Jaumnw3j+bcadc2vn2zSf3lAZGT8Dj9MP1Hwl4g8RxC213xJCNPZlaW002x8kTAEHazu7nHHQYrtdoo2igBAOadSAUtABRRRQAUUUUAFBGaKKAGkYHevNvF3hLU9F1p/GngtMamBm/05c7L9M8nH9/v6n3PX0sjNNIwO9AGD4R8XaZ4x0ZNQ058MDsnt3+/A/dWH8j3rfBzXmvi7wlqei60/jTwWmNTAzf6cudl+meTj+/39T7nr1fhHxdpnjHRk1DTnwwOye3f78D91YfyPegDoKKQHNLQAUUUUAFFFFABRRRQAUUUhOBQAE4Fcx418a2ng7SFnlja6v7hvKsrKL79xKcYAHpyMnnGR1JAK+NPG2n+DNHF3cq091MTHZ2cX+suJOMKPQZIye2e5IBw/BXg6/l1VvGHi9xceIblP3MOP3enxnpGgOcHB5P15OSSAL4F8G36alL4u8XOtz4kulxGg5SxiOf3cY6A4JyR6kd2LeghQCT3NAGDmloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKCM0UUANIwO9ebeLvCWp6LrT+NPBaY1MDN/py52X6Z5OP7/f1PuevpZGaaRgd6AMHwj4u0zxjoyahpz4YHZPbv9+B+6sP5HvW+DmvNfF3hLU9F1p/GngtMamBm/05c7L9M8nH9/v6n3PXq/CPi7TPGOjJqGnPhgdk9u/34H7qw/ke9AHQUUgOaWgAooooAKKKDQAGub8YeMtP8HaP9tvMzTSHZaWsZ+e4kPRVHJ7jJxxkeoFP8X+LtO8H6HJqOoPuY/Lb26H555Oyr/j2rlPBXg7VNT1weOPGmW1h1/0Kx/gsY+cDH97B6duScseACXwd4Lv73Wz408ZASa7KP9FtesdhH2VR03cn6Envk16MBg0AAHiloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoIzRRQA0jA715t4u8JanoutP408FpjUwM3+nLnZfpnk4/v9/U+56+lkZppGB3oAwfCPi7TPGOjJqGnPhgdk9u/34H7qw/ke9b4Oa818XeEtT0XWn8aeC0xqYGb/AE5c7L9M8nH9/v6n3PXq/CPi7TPGOjJqGnPhgdk9u/34H7qw/ke9AHQUUgOaD04oAU8Vz3i/xfpng7QpNT1Jzj7sMK/fmc9FX3459Kd4r8W6Z4Q0OXVNUmCxrwka8vK3ZVHc/wAuprkvCfhXU/EmsxeNPGkWLoDOmaS2Slih5DMD1kIx15HfnAUAPBvhTU9d1hfG/jSIjUm507Tm+5Yx9iR/fPX2788L6WBQFAOe+MUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUEZoooAaRgd6828XeEtT0XWn8aeC0xqYGb/Tlzsv0zycf3+/qfc9fSyM00jA70AYPhHxdpvjHRV1HTWww+Se3f78D/wB1h/I96l8TeKNM8J6JNqurTeXbpwqqMvK3ZUHcn9OpwBmuQ8W+EdS0fWpPGfgxQup4zf6dnEeoJ34/v459SRnr1reGPDOs+MPEaeMfGtsbdYCf7K0d87bYZ4kcHq/uRnPPGFAAHeFvC2p+Ldfi8a+M4fLZOdJ0huUs06h3B6uevI64PGAF9QAxQFAbPfpS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAITgZrO1TX9J0VYzqupWliJDiM3E6x7semSM9a0T0rzr4334sPhZqag4kunit159XDH/wAdVqAOhTx94Pc4XxTo2T0zfRjP61vW9zBdRLPbyxyxOMrJG4ZW+hHBrD8PeHLG18HaTpl1Y20vk2UUcgkiVgWCDPUdzmvOZYl+HPxq0mw0dmg0TX1xLYqf3aS5I3KvRedv5n8AD2gHk0tNUY/IU6gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBCcV5H8aj/ad74N8OZyNQ1VWYegXCk/lIfyr1wgEYNcVrfw2tte8QW2t3XiHW1vLRma18poFWDJzhR5XI/wB7J96AOz5HY+w9K8gZR47+PFre2J83SfDcO2a4XlHn+Y7QfXLD/vg+1dnN4C+2oYtR8U+I7y3YYeE3SRK47gmJFOD6ZrodI0XTdB0+Ow0uzitLWPlY4lwM+p9T7nmgC6KWkxS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/Z'] Multimodal Competition False Theorem proof Geometry Math Chinese 20 "如图, $M, N$ 分别为锐角三角形 $\triangle A B C(\angle A<\angle B)$ 的外接圆 $\Gamma$ 上弧 $B C 、 A C$ 的中点. 过点 $C$ 作 $P C / / M N$ 交圆 $\Gamma$ 于 $P$ 点, $I$ 为 $\triangle A B C$ 的内心, 连接 $P I$ 并延长交圆 $\Gamma$ 于 $T$. 求证: $M P \cdot M T=N P \cdot N T$;" ['连 $N I, M I$. 由于 $P C / / M N, P, C, M, N$ 共圆, 故 $P C M N$ 是等腰梯形. 因此 $N P=M C$, $P M=N C$.\n\n\n\n连 $A M , C I$, 则 $A M$ 与 $C I$ 交于 $I$, 因为\n\n$\\angle M I C=\\angle M A C+\\angle A C I=\\angle M C B+\\angle B C I=\\angle M C I$,\n\n所以 $M C=M I$. 同理\n\n$N C=N I$.\n\n于是\n\n$N P=M I, \\quad P M=N I$.\n\n故四边形 MPNI 为平行四边形。因此 $S_{\\triangle P M T}=S_{\\triangle P N T}$ (同底,等高).\n\n又 $P, N, T, M$ 四点共圆, 故 $\\angle T N P+\\angle P M T=180^{\\circ}$, 由三角形面积公式\n\n$S_{\\triangle P M T}=\\frac{1}{2} P M \\cdot M T \\sin \\angle P M T$\n\n$=S_{\\triangle P N T}=\\frac{1}{2} P N \\cdot N T \\sin \\angle P N T$\n\n$=\\frac{1}{2} P N \\cdot N T \\sin \\angle P M T$\n\n于是 $P M \\cdot M T=P N \\cdot N T$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAZMBoAMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiisXxP4n0rwno76nq1x5cIOxFUZeVyMhVHc8f16UAbWaMj1rjLHVfGutQLdW2i6dpNtJ80aajM7zsOxZEACHGOCxI70/Ste8Sjxamha3penoslo90l3ZXDspCsilSrLkH5x3/OgDsKKQfSloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACs7WNc0zQbYXGqXaW0Jz87g449SBxWjXCfGTUf7N+FusMDhp1S3Ueu9wG/wDHd1AF5PiZ4KkYKPEungnoWk2j8zxXUW9xDdQJPbzRzQyKGSSNgysPUEda5fwho1ra/DTR9M1C3ie3Gnxm4jnAKZZcvkH3JrkPgC0x8NawqPI2lpqLrZFyThcAkD25B+pPfNAHrlFFFABRRRQAUVDc3ltZxmS6uIoIwMlpXCgfia5q9+JXgqwBM/ibTTjr5M4lP5Jk0AdXRXnE3xy8AQj5NWmmx/ctJf8A2ZRWa37QfhEyrHb2WtXLN2htkP6FwaAPWaK8q/4XzoP/AEL/AIm/8Ak/+OVG37QXhWOYRXGm67bEjOZrVB+gkzQB6zRmvNbb47eA5wDJqNxb+vm2khx/3yDWzY/FLwNqCgw+JbFc/wDPdjD/AOhgUAdjRVSx1Ow1OIS2F9a3SEZ3W8yyD8wat0AFFGaKAEOOp7V49qf/ABVf7RFppN1l7HQLT7SIW5UyEK2783j/AO+a9hNeTeIrK58GfFxPGxtZ5tF1G2FrqE0EZdrYgKA5Uc7fkTJHoe+MgHq69jxzSGNDIJQimQKVDY5x1xn8BXMyfEXwbHaC4PiXTHQjISO4V5D/AMABLZ9sVN4P1m78QQalqU0M8Fk94UsI54TGxhVFG/BAPzNvPPtQB0Y70tFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5H8eWa+0vw54eibEup6oigA8kAbf5yKfyr1mTp1x7+nvXH+I/h5aeJtfstZvNY1aGexcPZxwNAEgb5eQGjJJJUH5ify4oAZP8OoL22+yah4k8RXllja1rJdqkbr/AHW8tFJH411Wl6ZZaNp0Nhp9tHbWsK4SKMYAH+PqTyep5qhe6pYeFdHW41zW8Qpwbm8ZFeQ8nGEVQTjsq9uhryPxR+0Pbxs1r4YsRKSdv229UrGPcRj5j+OOnSgD3R3VULuyhAMkk8AVwmv/ABi8F6Exi/tP+0bjIHk6evnE/wDAshf1rx5NY8OeKHFx4/8AiLeXi53f2fYWk0cK46cmMD8lB967zQfHPwb8MALpLQWzjgTfYZ2k/F2Qt+tAFn/hPfiH4jx/wjHgY2duxwt3qz7cqe4Ulf0LU4eBfiTrg/4n/j/7EhbPk6VFtwPTcAh/PNaY+N/w/H/Mak/8A5v/AIml/wCF4fD7/oNSf+Ac3/xNAFK2+BHhMSmfU59U1aduWa7uiMn/AIAAf1ro7H4YeCdOQJD4Z05wP+fiLzj+b5rJ/wCF4fD7/oNyf+Ac3/xNH/C8Ph9/0G5P/AOb/wCJoA7S10XS7BQlnplnboP4YoEQfoKvAY4GAB2Fee/8Lw+H3/Qbk/8AAOb/AOJo/wCF4fD7/oNyf+Ac3/xNAHoVGP1rz3/heHw+/wCg3J/4Bzf/ABNH/C8Ph9/0G5P/AADm/wDiaAO5uNMsLsbbmyt51PaSJWH61h3nw68G3ykT+GNL+bqY7ZY2P4qAf1rC/wCF4fD7/oNyf+Ac3/xNH/C8Ph9/0G5P/AOb/wCJoAq3/wACPBVzhrSC+06RTlXtbpiQf+B7qqt8N/G+jBn8OfES9bA/d2+pJ5qD2LEsB+C1qf8AC8Ph9/0G5P8AwDm/+Jo/4Xh8Pv8AoNyf+Ac3/wATQBknxT8VPDe4a14Rtdbtk48/S5CHb1O0bif++BWlo/xq8I6hP9lvprnRrtTtaHUItgU/7wyB+OKefjh8P/8AoNyf+Ac3/wATWXrHxL+EniCHy9XngvFwQDNp0pZc/wB1tmVPuCKAPUrW6try2S5tZ4p4JBlZYnDKw9QRwamPX+dfM11d+AtIuHv/AAL491HQ7rO7yHt55YHODhTlM9+rbvpWt4e/aDuLG4+xeI7aHUIlwn2/T1ZWb3KPjP8A479KAPf1t4UkMqwxiQ/xBRn86kAIrD8NeMNB8W2jXOi6jFcBeXj+7JH/ALynkfXpW7QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFGR60hNcV43+JOkeDwtqVfUNZlwsGnWxy7E9N2M7QcjsSc8A84AOtvr210+1kury4ht7eIbpJZnCqg9STXll98UdX8U3kmk/DjSHvWB2y6rdIUgiz3AOM+27nj7pqGy8AeI/H90mr/EK7eCxzvg0O2bYiD/AGyDwcZ/2ueoxipfEPi5orxfh/8ADWygOocpPcQIFhslP3jkcbhnk84Pq3AAOF8R6GtnrUVjfXU/jLx5dfKsG4m2ss4wWB+9gngHagHLKBw3b6X8CdJPhi5g1qX7Rrl0Az3sf3bdx0EakAFexBHPtxjrvAvw+0/wXZO6ubvVbn5ry/l+Z5WPJAz0XP4nqTXX8/3cYoA+VdM8BWmm+KZPC3iK/utD1gn/AIl+pQtutrkE8Ag4OT2wwHYgHr3o8N/EDwngNoXhvxVYIcfLaxxzhB26Lyf+BnJ716V408F6X420RtP1CMpIuWt7lFBeB/Ueo9R0I9Dg1xHgvxpqfhnXF8DeOXC3a/Lp+pMx2XK9FUse/YN+B5HIBWsPiV4FS4Wy8S+Ej4evcAsl3pqso/ELu/EqK9B0m08Ga3befpVpod5D3NvDE4X64HB9jWxfabYapbG3v7O3u7c9Yp4ldfyINcDqnwS8MXFwLvRnvdCvVJZJrGdgFY98HOB7KRQB2v8AwjOg/wDQE03/AMBI/wD4mj/hGdB/6Amm/wDgJH/8TXnR0r4u+E+dP1Wx8UWagARXi+XNjuckjn6ufpUtv8a7bTp1tfGHhzVdBuGO3e0RkiOO4OAT+AP1oA9A/wCEZ0H/AKAmm/8AgJH/APE0f8IzoP8A0BNN/wDASP8A+Jpmh+KtA8Rpu0fVrS8OMlI5BvA90PzD8RWzmgDJ/wCEZ0H/AKAmm/8AgJH/APE0f8IzoP8A0BNN/wDASP8A+JrWooAyf+EZ0H/oCab/AOAkf/xNH/CM6D/0BNN/8BI//ia1qKAMn/hGdB/6Amm/+Akf/wATR/wjOg/9ATTf/ASP/wCJrWooAyf+EZ0H/oCab/4CR/8AxNH/AAjOg/8AQE03/wABI/8A4mtajOKAMn/hGdByP+JJpv8A4Cx/4V5n8Vl08LYeDPD2j6euu60wXdHboDDDn5mJAyM4POOiv3Fepa5q9noOjXeq38my1tYzJIe5x0A9SegHcmvOPhVpF5rl/qHxE1yPF7qjFLGJukNuDjj0zgAHHQZ/ioA858V/DiHwL410T7Pq13p+nXyLBFqkbYa2uQoBLYx8pOD1HBbH3a7uDx14w+H8qWvj7Tvt+mZCprViu4DJ43gY/UKev3q9A8aeF7bxj4Wu9HuMK0o3QSsM+XKB8rY/mO4yO9cx8K/EcniDw7c+HNdhB1fR2+x3kM43eZHyqk54bgFT6kZ7igDuNF1vTPEGnrf6Tew3dq/R4z0PoR1B9jzWhkeoryjWfhZe6LqL698O7/8Asq++9Np7N/o849Mdu/B4yeCuM1qeD/ihBq2o/wBg+JLRtE8RIQhtpsrHM3T92T6kcDnqMFuaAPRKKRenbFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNY9DnimXE0UEDzyyJHFGpZ3ZsBVA5JPYD1rxvVfEOtfFvVJ/D/hOV7Lw1Edl/q5Qjzh3RRxkEH7vBPcgdQDR8SfEPU9e1h/Cvw8jS6vx8t3qZ5gtV7kNjBI9eRxgBj03vBPw10zwhv1C4lfUtcnJa41C5O5iT97bnOB1ycknnJ7VteH/DujeCdAFlp8UdtawKXmmkYBnwOXkf1xyTxjsAOB5tqmv618XNTn8P+FZZLHwzE2y+1bYQZvVE6cEH7vUjrgHBALfiLxrq3jjWpPCXgGQiJONQ1pD8kSnqI29evI5PO3puruPBvgnSfBOjix02LMjHdcXLj95M3qSOg9FHA+uau+GvDWl+FNGi0vSbbyLdMlieWdj1Zj3JwOfywBitkUAIO9LRRQAjdq5rxp4L0vxtojafqEZSRctb3KKC8D+o9R6joR6HBrpqRu1AHkfgvxpqnhjXF8DeOZNt2pC6fqTMdlyn8Klj39CevQ89fW0wFrm/GngvS/G2iNp+oRlJFy1vcooLwP6j1HqOhHocGuI8F+NNU8Ma4vgbxzJtu1IXT9SZjsuU/hUse/oT16HnqAeuGobm0t7yB4Lm3jnhcYaOVAysPQg9alTAWnUAeea38GPB2rS+fbWUulXQIZZdOk8rBHT5MFR+AB96x/8AhFfij4UXOgeJ4NftVyRaaonzn0AYkn/x9RXrdFAHky/GG+0GVLfxt4R1HSeQn2qAebCzd8HgY9gzV2/h/wAdeGPEwA0nWrWeVhnyS2yX/vhsN+lb7orqVZQykYYEZBHpXD6/8IPBevBmfR47OcjAlsT5JB9do+Qn3KmgDu6K8l/4QHx/4YYN4U8Zte2qnIstXXcMD+ENhv02U3/hafijw0pXxt4IvIIkGWvdP/eRD06kqP8AvvNAHrlFcjoHxL8I+JGWPT9btxO/AguD5UhPoFbGfwzXWjGOMYoAWkNLmuT+InjCHwX4RudT+V7ph5NpEed8pHGfYYJPsKAOJ8czy/ELx/Z+ArGRxpdiwutXmjPp0jB9cHHszZ/gr122t4rS2jt4IlihiUJGiDAVQMAAegFcR8LfB8vhfw49zqQZ9b1R/tV/I/LhjyEJ74zz/tFu2K7taAA15D8SLO48EeL9P+I2mRM0BItNYhTjzI2wA/HsAPqqe9ev1T1XTbXWNLudOvYhLbXMZikQ9wePwPv2oAfZXdvf2cN5ayrNbXEayRSKeHU8gj8MVz/jLwJovjbTjb6jBtuFz5N5EAJYjx0Pcccg/wD1xx3wt1K68Na5qPw41mVjNYs02myvwJoDzgeuM5wOnzD+GvWRQB45p3i3xD8M9Sh0Px0z32jStsstbQFiP9mTv05PUjBxuHI9etbiG6to7mCZJYJVDxyIQVZSOCCOoIxUGraVY63ps2nalbJc2c67ZInHBH4cg9weoIyMGvHimt/BO/DJ9p1TwRcSYZT80tizHr06E/gx4OCRkA9uoqlpWqWOtabDqGnXUdzaTrujljOQR/MEdCD0PFXaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooozQAVHM6RRNLIyqiAszOcBQByT+FOcZGO3868c8V6xf/E3xLJ4J8NTtHo1swOs6inQjP+rU9+QQB/ER/dBNAFfU9S1T4ya9NoeiSyWnhCzkH26/AwbojB2r/QenzH+Fa9StrfRfBnhsQxiDTtKsUyWY4VB6knqSfqST6mqxfw/8O/CKB2jsdLsY9ozyzH8OWZjn3JNeb2emaz8ZtUi1TWY59N8GW77rWwBKvd4/iYj/ANC7che7UAEk2s/GzUmt7b7Rpfge3lxLJwJL1ge3HT25A6nJwB69pGkWGhaZDp2mWsdtaQLtSNBgfUnqSepJ5J5qeytYbG0itbaFIIIUEccUa7VRQMAADoKnoAKKKKACiiigAooooARu1c1408F6X420RtP1CMpIuWt7lFBeB/Ueo9R0I9Dg101I3agDyPwX401Twxri+BvHMm27UhdP1JmOy5T+FSx7+hPXoeevraYC1zfjTwXpfjbRG0/UIyki5a3uUUF4H9R6j1HQj0ODXEeC/GmqeGNcXwN45k23akLp+pMx2XKfwqWPf0J69Dz1APXaKamAtOoAKKKKACkIz2paKAOQ174Z+EPEW5r7Q7YTNyZoAYXz6kpjP45Fcl/wq3xV4ZBPgnxtdQwqPksdRUSRD15wVH/fGfevXKDQB5GfH/j7wwwTxZ4Le6tgTuvdKbeAo/iKjP6la5nT/GGh/Eb4q22p6vqEOn6Lo8YfT7W+kSMyzEjk5O3OQDwf4VHrXcfFzxLd2un2nhPRMvrmuv8AZ0CNgxxHhmPpnpk8Abjn5au2Xwj8Ip4YstIvtGtrl4Iwsl1s2TO3Unep3dSeM4FAHdRsrIGQgqQMEHIIp9eSt8HtS0AmXwT4v1LSyCXFrcN5sJJ9hgfmrGkPir4o+FSw17wrBrtomAbvSmO8ju20An/xxRQB63SHmvPNF+NHg3V5RBPfSaXc5IaHUY/K2kerZKj8T+Fd9b3MF1Cs9vPHNE4yskbhlYeoI4oA83+Lnhy7eys/GOiDZrWhN5wI/wCWkAOWU46gdcehYd67Xwr4hs/FXhyz1qyIEVygZkzkxv0ZT7g5H4ZrXdVddrAEHggivHfDrN8MfihceF5iU8Pa8/n6a7fdim4BjHv0X/v360AeyVDdW8V3bSW88SSwyqUkjkXcrKRggg9QQelSIMZzTqAPELyx1X4Ja42p6XHPfeCr2UfarQHc9m5OAQT+jH7w+VsHax9k0zUrPV9Og1DT7hLi0uEDxSoeGB/kexHUHrUl3bQ3lrLa3MKzQTI0ckbgFWUjBBB7EZrxlTdfBPxQI5DNN4G1Sb5ScsbKUj8+g+pA7leQD22ioreSOaFJopFkjkUMkikEMCMgg+h61LnPSgAooooAKKKKACiiigAooooAKbJIkUbSSOqIoLMzHAAHcmnVHNGksbRyIrowwVZcg/h3oAht9SsbyQx217bzuBuKxSqxx64B9xRcanYWknl3N7bQyYztklVTj6E1892AXwlr+gfESAeVpmsald294ijCRxPM4jOB22jd/wAAFeo+OrCz1XxJ4O02a1gkkn1IzuzxhiY4YncryPuklf0oA7qGaK4iWWGVJI2+66MCD9CKce1RwRRwRLFFGscajCoi7VH0Fc9488X2ngrwtcarcBXl/wBXbQn/AJaynoPpwSfYHvigDlviZ4s1CS7tvA3hc7te1MbZZVP/AB6wnqxI6EjJz1A56kVoWy+Gvgz4EVZ5flXLMwA868mxzgev6KByeM1x+i3Nr8MfD9x4t8Vu934u10l0tePNOeRGP7o5BY9BkKASADq+FPAuqeJtZj8Z+PR5l0cPY6WRiO1XOV3L69MKeR1bJ4ABU0Hwrq/xO1eHxV40ia30eM79M0bPysh6O/qDx15b2XAPsMMaxRrGiKiKAqqowFA6AU5BjOT3p1ABRRRQAUUUUAFFFFABRRRQAUUUUAI3aua8aeC9L8baI2n6hGUkXLW9yigvA/qPUeo6Eehwa6akbtQB5H4L8aap4Y1xfA3jmTbdqQun6kzHZcp/CpY9/Qnr0PPX1tMBa5vxp4L0vxtojaffxlZFy1vcoAXgf1HqPUdCPQ4NcR4L8aap4Y1xfA3jl9t2pC6fqTMdl0v8Klj39CevQ89QD12impgDFOoAKKKKACqeq6laaPpdzqV9KsVraxmWVz2Uc/ifQdzVpu1eQ/EK6uPHPjKx+HemSslrGVu9YnQ/cQYIT69D9WX0NAE3wu0278T69qPxH1mJlluyYNMhbnyYAcZH8vwY/wAVesKMdsVDZWlvYWUNnaxLDbwII4o1GAqgYAH0FWKACkIzilooAxNb8J6D4ji2axpFpd8Eb3jG9c+j8MOnY1wlz8FIdOuHuvB/iTVNAmY58tJDJEfYjIY/iWr1aigDyP8AtX4ueElzqWkWPiizQEtNZHZPjsMADP4IfrXPeNvHnhXx34cl0u/S90DxBZkT2f26ErtlA+7vH3QemW2gcHtXvhrO1bQtJ1uHydU061vE5wJ4VfGe4yODQBznwv8AGaeNfCEV3K6/2jbHyL1O+8dGx6MOfTOQOldpkEZyK+b/AIh+A4vA3ivS9U0W/vNE0W+YW8txbSMWs5PXO4EqfvYz/C3tXbKfi74WYFf7O8WafkEEYin2Y/Dn/vugD1vNZ+taRZa9pFzpeoQrNa3KFHQnH0IPYg4IPbFee6f8b9FjuFs/E+l6p4fvf4kuoWZB+IAb/wAdAr0DStd0nXIPO0nUrW9jHVoJVfb9QDx+OKAPL/A2q33gDxSfh94hnMllM27Rb5+FkUniMnsSTwOzcdCtewrwK5D4h+CYPGvhxrVdsWo2582xuM4Mcg7ZHO09D+B7Cqfwu8ZzeJtFmsdVzH4g0t/s9/E4wzEEjfj3IIPuD0BFAHeUZopD2oAXNFeF/EbxNrvhXx9bTafq98dJt5LaXUIXkDIPNkkO0Dsu2Mj8a9vd0jjaR2VY0BLEnAUDvQBLkUV4RD4t8Q+LvjDYada6leWOg3UTTQxWxCs0CB8SEkZG8rkf7LLXuNtD9nt44vMeTYoXfI2WYDuT60ATUUUUAFZHirUf7I8J6vqAOHtrOWVP94ISP1rXrm/Gvh2/8VaHJpFrqdvY28423BktDMzjIIC4kUKODnIOc9qAMG78Frq3wUtvDQQfaF02Ixdv36qGH0ywP4E1zHwx8Qv4x17Q5Ljc0+haLJDOWByJ2kVAT7mOPP8AwI167YRXsNoqX08E9wOskEBiQ+mFLMR+Z/Cuf8MeB7Twv4g8Q6pbTBhrE6y+V5e3ycbiQDnkFmJ6DFAHVOQFJJwO9fMnjD4hWWs+OP7cniW80rSWaDSbU/6u5uBjMr/7AO1iM5OEHdiPVPi/4kubLRrXw1o7bta16QW0SqSGWMkBmz2zkLk46k9qfd/Bvw3qHg7TdBuRMsmnxsIruFirb3wZG2nKncRnkHAwBigDlPBMfhpNVPi7xn4t0W+8RzYdIzexFLIdgoDYLD24HOMnk+mDx/4OBOfFOjf+Bsf+NeNzeA9W+Hspe/8ACmm+LtCB+aaG2CXMQ9SAM+5JDdOq12fhG3+E3jSIf2Zo+lfasbmtJ4BHMo7/AC85A9VJHvQB2X/CwfBv/Q1aN/4Gx/40f8LB8G/9DVo3/gbH/jVf/hWngj/oWNM/78ij/hWfgk/8yxpn/fkUAWP+Fg+Df+hq0b/wNj/xo/4WD4N/6GrRv/A2P/GoP+FZeCf+hY03/vyKP+FZeCf+hY03/vyKAJ/+Fg+Df+hq0b/wNj/xo/4WD4N/6GrRv/A2P/GoP+FZeCf+hY03/vyKP+FZeCf+hY03/vyKAJ/+Fg+Df+hq0b/wNj/xo/4WD4N/6GrRv/A2P/GoP+FZeCf+hY03/vyKP+FZeCf+hY03/vyKAJ/+Fg+Df+hq0b/wNj/xo/4WD4N/6GrRv/A2P/GoP+FZeCf+hY03/vyKP+FZeCf+hY03/vyKAJ/+Fg+Df+hq0b/wNj/xo/4WD4N/6GrRv/A2P/GoP+FZeCf+hY03/vyKP+FZeCf+hY03/vyKAJ/+Fg+Df+hq0b/wNj/xo/4WD4N/6GrRv/A2P/GoP+FZeCf+hY03/vyKP+FZeCf+hY03/vyKAJj8QPB3bxTo3/gbH/jXNeNLv4deNtDbT9Q8TaMsi5a3uUvIy8D+o55HqvQj0ODW/wD8Ky8E/wDQsab/AN+RR/wrLwT/ANCxpv8A35FAHnnw/wDinFpV7J4T8V6vZTm2JW01iO5V4ZlA4Dvng46MfoeRz6QvxA8Ggf8AI06MAf8Ap8j/AMax9e+EHg7VtIntINHt7Cd1/d3Nqm1427H0I9Qevt1rznwjpvh/w/4h/wCEK8d+HdMF9uxYam0ICXak4UE46+h79DzyQD2D/hYPg3/oatG/8DY/8aP+FgeDf+hp0f8A8DY/8arj4aeCT18M6af+2Io/4Vp4JH/MsaZ/35FAFDxP8VPDOjeHry+sNa07ULyOM+RawXCuzueBkA5wDyfYGuW+FOpeGPD2hTaprHijSG1/WJPtV40l5HvXJyEPPHUkjsWI7CsXRvCOgeOvijcyaZpFrD4W0P8AdOYUwt7Nk9x1Xj8lH96vUv8AhWfgo9fDGm/9+RQBOvxA8Ggf8jTo/wD4Gx/40v8AwsHwb/0NWjf+Bsf+NQf8Ky8E/wDQsab/AN+RR/wrLwT/ANCxpv8A35FAE/8AwsHwb/0NWjf+Bsf+NH/CwfBv/Q1aN/4Gx/41B/wrLwT/ANCxpv8A35FH/CsvBP8A0LGm/wDfkUAT/wDCwfBv/Q1aN/4Gx/40f8LB8G/9DVo3/gbH/jUH/CsvBP8A0LGm/wDfkUf8Ky8E/wDQsab/AN+RQBP/AMLB8G/9DVo3/gbH/jR/wsHwb/0NWjf+Bsf+NQf8Ky8E/wDQsab/AN+RR/wrLwT/ANCxpv8A35FAGd4o1/wH4q8OXujXnijRvKuY8BxeR5jbqrj5uoOD+HpXMfCn4kaZBoEugeItZsILvSZDbxXElwojuIhkKVYkBsYx7jae9dufhn4KHI8Mab/35FecfFH4f6V4aGm+K9G0O1a1sZQuoWOz93LETjdjsecZ9we1AHol/wCLvAGqWxttR13w9dwHrFcXETr+TGuA1Xwn8Jrq5+2aR4rs9DvVJKzafqiKA3+6W4H+6RXb6X4F+H+s6Va6lZeHNMktbmJZYn8kcqRnn39RVv8A4Vn4J/6FjTP+/IoA8s/4SrxX4UT/AIl3xA8M+KLRMBYr27jjmPryXBP4uelcnffFKCP4h2Xi2x01rG/UeRqcEU6yw3cfAyGGOcY45Hyqc8GvoD/hWXgn/oWNN/78imS/DDwS8Tx/8I1p6h1KkrHtPPoR0oA29C1zTPEelx6lpN0tzaycB1BGCOoIIyCPQ1pE+nJrwn4JXdp4d8a+K/BrzlpEumFs78GURM6N+OMNj0B9K9sv55bazkmgsp72Rfu28BQO+eOC7KvqeTQB474s0weIfDHxO1JV3NHeRRR98C0RC2P++pPzNbkesy+NfDHhrw7ayt5mqWMdxqsyH/VW6/LIM+ruGQe249q1PBukak3hHUdH13RriynvXupbh5JYZElM7uSBsckkKwB3AfjVf4e+E7r4feCl8zTp9Q1m4Ia5jt5I9wHO1Azuq7VBPfqTjNAGF4Lgj1D49eKb2CNVtNLtUsIVUcRkbVwP+/b17CK8u+FuheINC1bxBc67oVzbz6veG5Nx58EiAZYgNtkLZy56KfrXqIoAWiiigAooooAKZKyohdmCqoJLE4AHrmn1518ZvEE2leCv7MsSW1LWpRY28aEbiG++QD2x8vsXFAGL8Pkbxz8Qta8eXClrK1c2GkgjhUA5cA9DtP5yuOwr15axfCOgQ+FvCun6LBgi1iCuw/jc/M7fixJ/GtugBGGeK4fxZ8LPDviqY33kyadqwO5b+zOyTcOhYdG5wcnnj7wruaKAPHP7a+Inw3bZrlq3ijQF/wCX6AH7RGvq4PPQE/Nkcj5677wp468O+MoDJo9+jzBcvbSfJMg91PbnGRke9dIRmuA8U/CXQfEF1/aNj5mjaup3pe2HyHf2LKOD1zxgn+9QB6BmjIPQ147/AMJR49+HDeX4r09vEGhp01SyH72NR/fX2/2sdfvGvQ/C/jHQfF1oZ9G1GK42gF4vuyx5/vKeRznnGD2oA36KMj1ooAKKKKACiiigAooooAKKKKACiiigBG7VzXjTwXpfjbRG0/UIyki5a3uUUF4H9R6j1HQj0ODXTUjdqAPI/BfjTVPDOuL4G8cSbbtSF07UmY7LpeiqWPU+hPXoeeut8WPFNxpGhweH9HzJrutv9mto04ZEPys3t1wM9yT/AAmtn4g+F9C8S+FrlNbcW8VtG00d6B81vgZLD1HHK9x6cEeKfCbXbeTx7Z6j4wurt72azFvo11djEZAJQgN68FR2JLZOSKAPePBPha28HeFbTR7chmjG6eUDHmyn7zf4ewAroaauBn+dOoAKKKKACiiigAooooAKKKKACq99Z2+oWU1ndwrNbTo0UsbdGVhgg+2KsUh6igDx/wCHV3ceCfGGofDnU5Wa3Ytd6PK55kjYklfrwT7FX9RXr69688+LPhW51jQYNc0ndHruiN9qtXQfMyghmX36ZA9Rjua6PwR4ptvGPhWz1m3wrSrtniBz5Uo4Zfz6Z6gg96AOipDwKWkNAHy/r+malY/EHxl4p0w/6ZoGpQXRjXo0Um7dnHX+HPsWr6S0XVbbXNGs9Vs33W93CsqZ6gEZwfcdD7ivM/Ddra3Pxp+IWmXUPmQ3drAHjYcOhjXcD9d1O+EF1PoWo+IPAF/IXm0i4aa0LYy8DnOQB0GSrf8AbSgD1mikFLQAUUUUAFFFFABRRRQAjdq8jAPjP4+kMd+m+FrfgdUa5fv7HP8A6Jr0/WNSh0bRr3U7j/U2kDzuB1IVScD34rz/AOCGmzJ4OudfvcNf65eSXcsm3BK5IA+md7D/AHqAPTV6f54paBRQAUUUUAFFFFADW57ZHcV554l+EOi6vef2po80+gaypLLd2BKKW7kqCPzUqeec16LRQB46vjbxv8PW8jxvpTarpanC6xp65Kj/AG14B7DnaeD96vSPDninRPFNkbrRtRhuoxjcqkh0/wB5Tgjp3Fa8i7l2kAqRyCM5HpXm+v8Awd0m6vf7V8NXU/h3V1JImsyRGx75QYxn/ZI+hoA9LyKK8fg+IPi3wI4tPiDoz3NmDtTWdPTch56uowO/+yf9k16XoPiHSPElgL7R7+G7tzxmM8r7MDyD7HFAGrRRRQAUUUUAFFFFABRRRQAUhpa5/wAaeKLXwf4Xu9YutrGJdsMRbBlkP3VHf3PsCe1AHBfE2/ufGHiaw+G2ky7RMy3OrTLz5UK4YKfTs2DjJ2evPW+I/h5ofiLwlDoElsLeK1jC2U0YBe2IAAI9c45B6885wayPhL4WuNO0i48SayC+u6632md2GCkbHcq47dckdsgfw16Kc+lAHkngvxpqnhjXF8DeOZNt2pC6fqTMdlyn8Klj39CevQ89fW0wFrm/GngvS/G2iNp+oRlJFy1vcooLwP6j1HqOhHocGuI8F+NNU8Ma4vgbxzJtu1IXT9SZjsuU/hUse/oT16HnqAeu0U1MBadQAUUUUAFFFFABRRRQAUUUUAI3bgmvGrTHwr+K5sj8nhrxK+6EYwtvcZ+6PQZYD6Mv9017NXLfEHwjD418I3WlPhbgfvbWQ/wTAHafoeQfYmgDqF7/AFoNcH8KfF0viTwy1nqRKa3pL/ZL6Nz85YZAc+5wc/7StXeE9PSgDyjQRJD+0p4ojJHl3GkxS/8AfIgX/GoviOR4Q+JHhjxsg2Wsz/2dqDE4Xac7WPrgFj/2zFWbcC3/AGk7k7WDT6ECT64def8Ax2uk+J+gjxF8PNXslQvOkJuIAoy2+P5gB7nBX/gVAHXgd/wpa5L4aa8fEfw90fUJHLz+QIZ2Y5JdCVJP1xn8a62gAooooAKKKKACiikJxQB5r8ctSltfh/8A2bagtc6tdxWcaqeTk7jj67QP+BV3eh6bFo2hWGlw/wCrs7eOBT6hVAz+OM15t46K658afBGgkMY7MSalIO3GSufxhx/wL3r1gUALRRRQAUUUUAFFFFABRRRQAUUUUARzRrMhjkRXjYEMrDII9CO9ea638HrJb46v4O1Cfw7qo5H2cnyH74KDoDxwPl/2TXp1FAHj9t8TPEfgyWOw+ImhypETtTV7JA0T+5A4zwTxg/7NeoaNrWma9p632k3sN3atwJImzg+hHUH2ODVq5tobu3e3uYY5oJFKvHIoZWHoQeCPrXmOr/CBbK9fV/Auq3Hh/UuvkqxNvJ32kdhk9MMv+zQB6pkUV5HZ/FLWPCtzHp3xG0KWxY/ImqWqb4JfcgZ+p2knn7or1DS9UsdYsUvdOu4bq2k+7LE4ZT7cdD7UAXKKKKACiiigBDXjVyR8Vvip9jA8zwx4bffNgfLc3HTb7jII+in+9XT/ABX8Xz+HfD0Wn6VufXNXf7LZJH99c4DOPQjIAPqwPY1seAfCMHgrwna6THtaf/W3Uo/5aSn7x+gwAPYCgDpVzzkGnUUUAI3aua8aeC9L8baI2n6hGUkXLW9yigvA/qPUeo6Eehwa6akbtQB5H4L8aap4Y1xfA3jmTbdqQun6kzHZcp/CpY9/Qnr0PPX1tMBa5vxp4L0vxtojafqEZSRctb3KKC8D+o9R6joR6HBriPBfjTVPDGuL4G8cybbtSF0/UmY7LlP4VLHv6E9eh56gHrtFNTAWnUAFFFFABRRRQAUUUUAFIaWigDx7xxDN8PfH9l48s0b+y74i01iNBwM4xIB64GfquP4q9chmiuoEngkWSKVQ6OhyGUjIIPpg1T17RrPxDod3pN+m+2uoyjjuPQj3BwR7ivOvhLrF5pV1qHw+1tv+Jjo7E2sjZ/fWxPGM+mQR7MBgYoAXUZDD+0rpIBGJ9DZT/wB9yn/2WvU2wRzXlPiZBH+0R4MnKHc9jPGWHfCTYH4bv1r1b9cUAeUfB/Og694w8HMNsdhqH2i2BOSY3BA/8dWM/Vq9ZFeS3n/Ei/aOsJ1TbDr2ltFI/YugJ/PEcY/4FXrI70ALRRRQAUUUUAFIfrS0hoA8p8Oq2q/tCeJ74kNDpljFaR8fdZghP6iT869WHSvKvhDGbnxF491gkt9p1holJ7BGcgfk4r1agAooooAKKKKACiiigAooooAKKKKACiiigAooooAr3tlbahayWl3bxXFvKNskUyB0Ye4PBry/UvhDc6Pdyap8PtZn0W9PJtJHMlvL7HOfyYMPpXrFBoA8m0/4s3mg3UelfEPRJtIuT8q38SF7eY+oxnHUdCevOOlen2F/aalZx3lldRXNtKMxyxOGVh7EcU3UtMsdXspLPULSG7tpBh4pkDKfwPf3rzC/+FGqeG7uTVPh3rUumzMcyadcOXgl9snPv97J56rQB63moLu4gtLSW5uZEighQySO5wEUckn6AZrzHS/i62nXqaT490efQL9vlW42l7aU8ZIPOBk/7QHdhVX4ka8/i7UNL8BeG7tJTqZWe+uYH3rFbj5sbhxz1/75H8VADfh/bXHj7xte/ELU4WFjAxtdHhccKoyC+PUZP/Amb+7XsIqjpOmWmiaVa6ZYxiK1tYxFGnoB6nuT1J71eoAKKKKACiiigBG7VzXjTwXpfjbRG0/UIyki5a3uUUF4H9R6j1HQj0ODXTUjdqAPI/BfjTVPDOur4F8cPi8UhdP1EsSl0ucKpY9T6E9eh56+tpgLXN+NPBWl+N9EfT9QQpIuWt7hR88DY6j29R39uo8A8SfEvx54Tik8G3GoxC809zFJfx4eWWMgFAWPfBzn73IB5ByAfUtFfPvwh+Lesal4jg8PeIboXUdypW2uHUB1cDIUkdQcEZPOcetfQK9O9AC0UUUAFFFFABRRRQAh6V5Z8WtDu7GWw8faIh/tPRWBuEA4mt/4g3qACQf9lm9K9UqK4hjuIHhmjWSKRSjowyGBHII7gigDyDWtattc+I/wx16xkBtr1LjZk8qSoBU+4LEfUV7H1P0r5iu9Cu/BHxl8OaGzO+kDVVn04nnCzuisM+20Aj2z/FX06KAPKfjCv9naz4H8QhiostWWFyO6PhiPyjYfjXq9eZ/HmyW6+F9zORk2lzDMvsS2z+TmvQdMuVvdMtbtTlZ4UkB9Qyg/1oAt0UUUAFFFFABTJWCoWPAXknGcYp9VtQkaHTbqVRlkhdhn1ANAHmX7PyM3gG8u5CC91qc0pwMY+VBj8wfzr1avN/gTGU+FOnsQAHmnYY7/ALxhz+VekUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhpaRu1AHL/EC60PT/AAXqF5r9lBeWUKZFvMoPmSdEVeCQSTjI5GSe1eOeCvht4z0jQ7Xxd4dvre11S5Qt/Zs8fyvbkhlUuScFsA4OOo+YHNdPrOfil8UI9Bi/eeGvD7+dfMM7Zp8kbP0K/TzD6V7Eq7QABgDgADGBQB5ho3xht4L9dG8baZP4e1QHbumUm3k7bg3VR19V/wBqvTYJoriFJ4ZEkjkUMrowIYHoQR1rP1vw/pfiKxNnq+nwXkHZZVztPqp6qfcEV5rP8OvFXgedr34eaw0lpku+jag+6NvZScDPT+6f9o0Aev5FFeZaD8X9Olv10fxTYz+G9XHymO7yIW7ZDnGM46kY9Ca9KiZXQOjKyNypU8Ee1AD6KMj1ooAKKKKAEPavD/i78I9U8Sa03iDw+kMk8kQW5tWfYzuuAHUn5T8oAIO37o65r3GqEus6XHIY31K0V1OGUzoCD6EZoA+bfhn4fh8IfFS1h8YxPp18Ii1gkwUxSyMMDLgkZwTj/a7ggA/T6cDGRXMeMPB+keO9A+x3YBJG+1vIsM0LHkMp7g9x0I9Dg1xfgvxpqnhjXF8DeOZNt2pC6fqTMdlyn8Klj39CevQ89QD12impgLTqACiiigAooooAKQ57daWigDxb9oK0uGtfDN1Y7hfJfGKApw+5gpXae3zIK734d+L4vGnhG21LKreJ+5u4h/DKOpx2ByGHscVzHxwZYNJ8M3RTd5WuwHj02scfjt/SsvUAfhd8Vl1Jf3fhjxIxS64+S3ueu70A5z9Gf+7QB2nxYtlu/hdr8TchbbzfxRlf/wBlrQ+H8vnfDvw4+cn+zbdSc56RgUzx+Afhz4kJ5H9m3B6f7DYqr8LJfO+GHh9tu3FqFxn+6SP6UAdhRRRQAUUUUAFVNU/5BF7/ANcH/wDQTVuo7iMS28kZGQ6lSPXigDz74GsrfCbSgDkq84PsfNevRa8w+AUwk+F8CAY8q6mU+/Ib/wBmr0+gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKM460AFcN8UvGEnhXwx5enln1rUX+y2EcYy284BYDvgEY/2io712s80VtBJPPIscUal3dzgKo5JP4V5D4Jgm+InxCvPHd4jf2Rp5Nro8TjAYj/lpj6En6tj+CgDtfhz4Oj8FeEoLBtr30v769lHO+U9eT2HAH0zjJNdbSDv1/GloAKQ0tFAGPr/hnRvE9mbXWdOhvIRnbvX5k9drDlT7g5rzeTwL4z8ASm58B6q2o6aMltH1Bs4H+weB6ngqeB96vYKQ0Aec+G/i9pGo3g0rX7abw9rA4a3vflQn2c4/UDrxmvRQykZBBB7+tYniPwhofiy0+z6zpsNzgfJJjEif7rDkdvyrzr/hD/HXw6cy+DtROtaMDk6Vfn94gz/AeAeM9Cv+6aAPYs0V574W+Leha7cjTtTSbQ9ZU7Xs7/5Mt6Kxxn6EA+1egjj2oAG7V4xqGnWOs/tJWdqLS3aHTdNM1xH5QIdyGILccn96nX0r2cmvIvhwP7X+L/j3XD8wglWyjb1AYrx+ES0AetIixoqRoFRQAqqAAo9PpXO+NPBel+NtEbT9QjKSLlre5RQXgf1HqPUdCPQ4NdMKRu1AHkfgvxpqnhjXF8DeOZNt2pC6fqTMdlyn8Klj39CevQ89fW0wFrm/GngvS/G2iNp+oRlJFy1vcooLwP6j1HqOhHocGuI8F+NNU8Ma4vgbxzJtu1IXT9SZjsuU/hUse/oT16HnqAeu0U1MBadQAUUUUAFFFFAHlH7QasPh9aTo+x7fU4pVPvskA/nn8K7bxj4YtPGPhW70e52/vV3QS4z5cg+4w/Hr6gkd65X48ReZ8LL1im7yp4Xz6fOB/XH416FZyedY20mMb41OPqAcUAeP6F4putS+EPizw/rOV1zQ9PuLa4WQ5aRBGwV/foQT7A/xV2nwk/5JXoH/AFwP/obVwXxt0C70WWXxlpC7Rd2z6dqqgcOki7Fc/oPqsfvXpPw2Qx/Dbw6CQc2ER491z/WgDqaM0hrjvHXjr/hBbGK/utKlubF3EXmRzKp8w7iF2nnop5oA7LNFcJqHj3U9F09tQ1fwXq1vp8Y3SzwzwTFAe5UPnH4cV1eiazY+INIt9V02YTWdwu6N8Y74IPuCCD7g0AaFIaWkNAHlfwMjWx0jxLpXAaz1uZSB2G1V/L5DXqteUfDpRpXxX+IWks3MlxFeovs25if/ACIterCgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACmt2p1ZPiXXrPwz4fvNZvmxb2sZfaDy7dFUe5PA+tAHn/xX1i71e80/wCHmhyEahqzBryRf+WNvyTn64JI9Bj+KvRdB0a08PaJaaRYR7La1jCIO57lj6knJJ9Sa8++Evh+8uEvfHetqDq+uHfHx/q7f+EAHscKf91V969RFAC0UUUAFFFFABRRRQAUjDIwQD7GlooA5zxP4I8P+L4PL1jTY5pAMJcL8sqfRhz+B4+tcB/wjvxC+G5L+HLw+JdCTn+zro/v41HOEP0GPl9fuV7FTWGe1AHnmg/FPS/FlvJp1pdR6Hr4IT7NqcJcK+eQAGTf3GMg55K8Yq14D8B3/gmW+Da3b38N9OZ591i0cpc+j+aRj/gJ69a0vFfw/wDDvjKEjVtPU3G3C3cPyTJ6fN3Az0ORXCjTfiP8Ngx0yX/hK/D6fMLaYkXMKDsp69MdNw/2RQB7EBilrifCPxO8OeLH+zQ3DWWpZ2tYXgEcgb0XnDdOxz6gZrtegoAG7VzXjTwXpfjbRG0/UIyki5a3uUUF4H9R6j1HQj0ODXTUh7UAeR+C/GmqeGNcXwN45k23akLp+pMx2XKfwqWPf0J69Dz19bTAWub8aeC9L8baI2n6hGUkXLW9yigvA/qPUeo6Eehwa4jwX401Twxri+BvHMm27UhdP1JmOy5T+FSx7+hPXoeeoB67RTUwFpcjGc8UALRRXJ+KfiN4Y8Ihl1PUkN0OlpB+8mPflR936tgUAZPxuXd8I9a5+6YD/wCR4xWtb+LNE0LwVo+oazqttbRy2MMgLvlpMoD8qjlvwBryzxt4n8beN/BeqS2vhpdK8MpF5ss17/rplUhhtB/A5APThq6D4e/Cfw3L4f0rX9Uil1a9urOGZRetujiBQYVU6EAED5sjjjHSgDmviL8U7jxT4O1K20HQrv8AsRtsc+q3K7F++vyoOmTx3zyTgYzXq3wy0G48OfD/AEvT7qbzJxGZGwchN7Fwo9hux9c1y3xyRn8HaRodntibUdUgtkRRgBcNgADsDtr1SNQiBVGFAAA9BQA41478crkXGoeD9EMc08dxqPnywwoXdlUqvCjknDtivYicV47rdxBqf7SOiwyzRrb6TYNI29gB5hDkfj8yflQBb8e/EGOfw3daNDo+qWUuqRtai61W2NpbxBxhmLv3wTgAH8K7XwH4eTwt4K0zSEuUufJjLNOhyrs5Lkr/ALOW49qwPiv4g0OD4f6rYz3ltNdXkPk21srq7vISNpCjng857Y9cVqfC/Tb7SPhtollqKsl0kLMyN1QM7Mqn6KQPwoA66kPSlpDQB5PcBdE/aTtJAmE1vSTGXxwXTJ/PES/mK9YFeUfGYHR7/wAIeLVLKNM1MRzbB1jfDHPthGH/AAKvV1IKgqcgjg0ALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA1x0rx3xO7fE74lweE7c7tA0R/P1ORTxLKMgR/zX8X9K7D4m+Mh4O8KyT25D6ndn7PYxAZLSHjdjuFznpycDvS/DTwaPB3hWO3uT5mqXZ+0X8xOWaVh93PcL09zk96AOwjRY0CKoVV4AAxgU+gUUAFFFFABRRRQAUUUUAFFFFABRRRQAUjZpaKAOR8WfDjw34wVn1CwEd4Rhby3Plyr7kjhv+BA1xWPiT8NAdo/4S7QI+QCSLmFB27t/wChjj+GvY6QjkECgDkPCHxI8N+MgI9PvPJve9lc4SYY64GcMOO2cd8V14NcX4s+GHhzxaz3Fzam01H7y31odku7sW7P0HJ59CK5L7b8R/hshGow/wDCW+H48k3ERIuYk/2s5JA5PO/p94UAewntjn6VzPjTwXpfjbRG0+/jKyLlre5QAvA/qPUeq9CPQ4NVfD/xM8JeI9Pa7t9Yt7fy13zQ3kixPEO+Qx5HTkZFc7qfxltLm8bS/Bej3fiK/wAfeijKQp2ySRkgH2AP96gCp4M8aap4X1xfA3jmQJdr8un6k7Hy7lOiqWPf0Y/Q89dvxF8X/DWjXH2Kwkl1vVCdsdrpw35bnALjjt0GT7VzF38MfF/xAKXfjnWoLNIwxtrCxhVhCWHc/UDIy2f7wqD4b31t8PfEMvgzxJptnY6jK5+x6qkYAvFJ4Vn6/T8jg9QDS/s/4o+Peb66j8JaO/8Ay7wZNy69skYI7jqnuprqvC/ws8L+FWWe2sftd+Dua8vD5shPqM8KfoPzrs16dfpzTqAOW+IsXmfDfxGpOD/Z8zZ+ik/0pnw0mE3wz8OsGDYsY0yDn7oxj9MVd8cRNN4C8RRIMs+mXKgep8psVh/B2f7R8J9BfbtISRMf7srj+maAMLx9t1n4x+BNEyT9laTUZAOmB8y5/GEj8a9XFeT+F2/4SH49eKNXDB7fSLVNPi4ztc/e/wDHll/OvWBQAEZIrn28C+EpGLP4X0YsepNjFn89ua6GigDHsPCvh7SphPp2habaTDpJBaIjD8QM1rqCM0tFABRRRQByXxN0Q+IPh1rViilpRbmeIAZJeMhwB9duPxo+GWt/8JB8O9GvmcvMLcQSljk74/kJP1xn8a6tuRj1ryT4WH/hF/GnizwNJ8sMM/2+yXOcxNgHn2UxfjuoA9dopB1NLQAUUUUAFFFFABRRRQAUUUUAFFFFABTJHVIy7MAoBJJOAB9ac1eW/FrX7u6Nj4D0M51fXDslb/nlb87icdiAc9flV/agDN8Kq3xO+JNx4vuFZtB0Zvs+lIQQHk6+Zg+n3ue5QfwmvZF6dMVl+G9BtPDOgWej2K4t7WMICert1Zj7kkk/WtWgAooooAKKKKACiiigAooooAKKKKACiiigAopMj1FLmgAorlfFfxC8M+EExqmpRi5A4tYf3kx/4COn1OBXE/8ACUfEbx6NnhfRl8P6TJ/zEdQ/1jL2KgjuPRW/3hQB6Vr3iTRvDdp9q1jUrezi5x5jfM/sq9WPsAa84l+KXiDxbPJafD3w3Lcxg7W1S+XZCh7kDOM4PAJz/s1o6J8GdFtrz+0vEdzceI9UPLTXzEx59AhJyP8AeJ+lekQwx28SxQxrHEgCqiKAFA7ADtQB4rH8A5NYN3qPinxA8usXXzFrGBEiR8YyQVG8fQJRYXXjP4P2Ys77RbbWfDUZJ+2adEIpY19XUd8DJLA8n75r26kPNAHOeF/HHh/xhbedo+oRyyAAvbthZY/95Tz+IyPemeNPBmleNtEbT79Nsigtb3KAF4G9R6j1HQj0ODWL4p+Eeg6/Ob/T/M0TWFO5L2w+T5vVlGM9eoIPvXOnxb49+HQEfi/TP7d0VTtGq2I/eKv+2vHbH3gvOfmNAE3gzxpqnhjXF8DeOX23akLp+pMx2XSdFUse/oT16Hnr62mAtef6jF4O+Mfhp7e1vYp5EG+KWPie0c9yjYOCRgg8EdD0NYngzxpqnhjXF8DeOX23a4XT9SZjsukzhVLHv2BPX7p56gHpmvRCfw/qULHAktZUP4oRXn3wm1WDSfgbbajcN+5sY7uWTHXCyO2Pr/jXpkqb7d4wAdykbT0PGK+ZrHWJn+A2meGbMKb/AFnV2sok3YLKHVyeP9pkU+zUAepfA7T5ovBM+s3h3Xms3st3I5GCRnaPwyrEf71em1S0jTYNH0ez0y2GILSBIE+iqAPx4q7QAUUUUAFFFFABRRRQAhryP4po3hTxn4Z8fQhlhhm+w6gVBP7ps4OB14L/AIha9drF8W+H4fFPhbUNGmIAuoiqMf4HHKN+DAH8KANeN0kQOjBlYZBU5BHXNPrzn4NeIZdT8INo+oZj1XQ5DZXMTn5gqkhCR9AV+qGvRqACiiigAooooAKKKKACiiigAoJA60UjfWgDO17WbPw9od5q1++22tYzI+MZPoBnuSQB7kV538J9GvdVu9Q+IOuRf8THV2K2qMOIbcHjbnpnGB6qoP8AFVLxrK/xG+Ilp4HtHYaPpjC61eVDwWHIjyO+Dj6sT/BXr1vDHbwpDCixxxgKiKMBQOgA9MUASCloooAKKKKACiiigAooooAKKKOlABRRVe8u7axtnuru4it4IhueWWQIqj1JOAKAJ8j1pHICkkgAcnNeYar8ZrKa+Ol+DtKu/Eeo9AYEZYV5xktjJA9cY96ojwF438cYk8b6/wD2fp7c/wBlaZwCMdGPI/Pf+FAG94l+L3hnQrk2VpNJrGpk7FtNPHmEt0wWHAPsMn2rB+yfFHx/k3M8fhDR3/5ZRZa6ZSM8nhgevUp9DXfeHPBXh/wnCI9F0qG3bGGnI3St9XOW9eOnpiugA5oA4nwx8KvC3heRbmGyN7fg7jeXp82Td6gH5VPXkDPvXaqMZp1FABRRRQAUUUUAFNdQylSAQQQQRnI9KdRQB5x4l+D+japdDUtCml8P6wh3R3Vj8q7u5KAjBxnlSOvOa4LxlL4httH/ALH+JWjfb9PRv9F8QaaoLwMR95hwCDwCp2ZAPUgGvoSmSIskbI6hkYYZWGQR6GgDxL4XfFVPtMXhXX9QiuHBEdhqYYhbgdFR8gEN0xnrwDzyeW+CHh2bUvHk080jy6foBkaJWPyiZztBA7ZCluO6iuk+MPw28J6V4aufEVqp0q8R1VIoAPKndjgDYcbeMn5MAAE4OK7H4N+Ebzwn4MI1Bl+1ahL9raPb80QKgBWPc4GT6Eke9AHoYPrxRketYPizRZ9fsLTT45Wjt3u43uykrRsYVyxUFcHkhV4I4Jryrxz4esLP4heDfD2jtewLezF70C+nYyQhl4yzkjhZORQB7pRXFQ+ALPTPFOkanpIuIYrYzNcpJfTSB8x7VG12I4JJ4x0rtFGBQAtFFFABRRRQAUjUtFAHj3i4/wDCu/ipYeL13Jo2tD7FqePupJj5ZD+AB9fkf+9Xr6MCMggg85FY3i3w5a+LPDd5o138qXCYSTGfLccq34EDjv071x/wj8S3Vxpt14S1oGLW9Cb7O6sf9ZEOFYeuMYz6bTn5qAPS6KQUtABRRRQAUUUUAFFFFAATjrXI/EfxingvwlcX6FWvpf3FnEed8p6cegGWP0x3FdY3AyTgDv6V41oQb4pfFGXxC4LeG/DzeTp64+Wafrv/AJN+EfvQB13wv8HSeFfDG+/3PrGoN9pv5H5cseQpPtn8yfWu4FItOoAKKKKACiiigAoooyPWgAoorlvFXxA8MeEUI1bU4luQMraQ/vJm7j5R0z6tge9AHU5B71l654i0fw5Zi71jUbezhOdplfBf2VerH2AJrzT/AIS34iePMr4T0UaFpb9NS1IfO6+qqQffoG+orS0X4MaRBef2n4lu7nxHqjfelvXJjHtsJOR/vEj2FAFCX4qa74puHtPh94bnvFDbTqV8uyBffGR29WB/2TT7T4RX2v3CX3xB8Q3OsTAgrZQMYreM98Yx7fdCdO9eqW1vDawJBBDHDCgwkcaBVUdgAOBUtAGfpWj6dolmLTS7C3s7cf8ALOGMKCfU+p9zV8UtFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7uB1p1cb8S/GS+DPCkt1Dh9RuT5FjF1LSnvjuF6478DvQBx2tn/hY/xetdCjBk0Hw432i+K8rJP2Q+vI2468SV7EvTpiuM+GPg4+D/CccN1ltVuz9ovpWO5jIf4c99o4+uT3rtKAENeQ/wDIa/abPdNE0vnPTLL/APb/ANK9Wv3vY7Vm0+CCe4H3Y55jEh+rBHI/KvO/C3hHxZovjrWvEd7b6NOdWdQyx30oa3QHouYfm4A/u9OooA9NFFNXPcc06gAooooAKKKKACiiigBrDOK8o+KOj33h/WLP4jaDETdWA8vUYQcefb9MnHoDgnsMH+GvWajmiSaNopUDxuCrqy5DA8EEdxQBR0DWrHxFodpq2nyiS2ukDqe4PQqfcEEH3FaVeLadK/wd8cnSLp2Hg/WZC1pK5ytpMcZBPYdAc9tp7NXs6kUAOooooAKKKKACkJApao6vqtnouk3Wp30ojtbWMyyt6ADPHqewHckUAcB8XPEd0llaeDdDO/W9dbyAF/5ZQnhmPoDyM+gc/wANdp4V8O2nhTw5Z6NZD93bphnxgyOeWc+5JJx26DgV578KtJvNf1fUfiJrURW51BjHp8Lf8sIBxx9QAB7An+KvWhQAtFFFABRRSZHrQAtFQXV3b2Vu9zdTxQQRjLyyuFRR6kngV5tq/wAZNNa9bTPCOm3niPUz8oFuhEQ9y+CSPoMe460Aent+lcB4m+Lvhfw/KbSC5fVdSLbFtLAeYd3TBYcA57DJ9q5//hBvHnjv9541146XpzHJ0rTMZI9GbkenUv36V33hvwR4d8JxBdH0qGCXbg3DDfM3rlzk/hnFAHAmH4pePxmR4/B+jyDhFy10yn16MDx/0z69DXTeGPhP4W8MyLdJZtf6ju3G8vj5r7vUDG1e/IGfeu4XjIxgU6gBFGM0tFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQSB1NFIaAIrqaK2tpLi4kSKGJGeR3YBVUDJJJ6DFeReFoJfif8AEGTxneRH+wNJcwaTE4IErg58wg/gfrtH8Jp3j3WLzx14mj+HPh6fZCGD6zeKMiJAclPc+o7nC5HzV6lo2lWeh6Tb6Zp8IhtLZAkaDnj1J7knJJ7k0AXVGM8Yp1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGL4q8Naf4t0C40jUo90Moyjj70Tj7rr7jP07HIJrz/4feJdR8Payfh54rbbfWy4027Odt1CPuqCe4A4PsVPI59ZIzXH/EDwLa+NtHWLf9m1K2PmWV4owYn9CRztJ9ORwe1AHXr3p1ea/Dzx5e3t3J4T8WRCz8T2fy4fgXagffUjgnAJOOD1HGQPSARz9aAHUUUUAIeorx7x/PN4/wDG9j8PdPlZbG2YXeszxnoowQnpnBHqNzL/AHTXc/EDxfB4K8J3OrNsa5/1VrE3/LSU5wD7DBY9OFNZPwq8HzeG/Dz3+p7n13Vm+13skhy4LZIQ/TJJ/wBotyRigDuLS2hsrWK1tolighQRxxoMKqgYAH0qemrinZoAKM1zPijx74b8IxE6tqcSTYyttH88zf8AARyBxjJwPeuG/wCEw+IHjsbfCGh/2Lpr/d1TUhhmXjlFwR68gP8AUUAema3r2k+H7P7Xq+oW9nAOjSyBdx64A6sfYZPtXnE/xW1nxPM9n8PfDdxfgNtOo3imOBD9OPryQfY1c0b4MaUl6NT8U3114j1Q8tJdufKHXgLkkjnuSPYV6Ra20NpbpBbwRwwoAFjjUKqj0AHSgDyu1+EmpeIbiO++IPiG51WRW3LYWzGO3Q88cAev8IXp1NekaPoemaBZi00qwgs7cfwQxhc+57k+5rSooAQUtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUmQO4oAD29+K87+JHju40dYPDnhyM3XifU8R28ceMwK3/LRvQ+meOpPA5v8AxD8fweDbGGC0h+3a7eny7KxT5mYk4DMBztzxxyTwO5FL4deA7jQ2uPEPiGU3fifUfnuZWIbyAf4FPT0BxxwAOByAangDwRbeC9CEG4XGoXJ82+uyMtM5569do5wPqepNdcKRe9OoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkNLRQBxXjzwDbeMbSK4gmNjrdn89lfR5VkYYIBxzjI+o61keBfiLc3Oov4U8XxCw8S25CIWG1LwDjcpHG44JwOD1HcD0s1yfjfwDpXjfTxHc5tr+H5ra+jH7yJu3cbhkDj8iDg0AdYCMmkbp1HvmvJPDnxA1bwlqsXhX4igQzYxaaxu/dXCjoWb8vmOP9oA8m/wDGDxi+i6BDoelzRrquskxRt5gQQwnh5C3ReuMnGOTn5aAMey/4up8VP7QI8zwz4bcLB/duLjOcjsRlQfoq/wB6vYwRzz7mvFdG8f6B4N0S08J+CtPufEuqRqfMa0jIjklP3nZuSRn0BAAA3VcHgrx/47Bbxlrv9j6a/XS9N6svQhmBI9+S/wBKAOk8TfFvwt4cmNol0+p6lu2LaWA81t3PBb7o54Izn2Nc4B8UvHwGfL8HaPKOQMtdMp+uGB4/6Z9e9d34a8CeHfCUWNH0uKGXGDcPl5W9cseRn0BA9q6QDGaAOF8MfCbwx4blW6Nq2o6jnc15fHzG3dcgfdH1xn3rugMZpaKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikJ4zQAGuH+IHxDt/CUEdjZQ/2h4hugFtLCMFiSeAzBedv6noO5GX41+Jc1vqLeF/Btt/afiSUlCUAaO19WY9CR6HAHVvQ3vAnw4i8NTS6zq9wdT8SXeWuL2TkRk9Qme3bPU47DgAEHgHwBc2F7J4q8VSC+8UXgyzPhltARjYmOAcfKccAZA4zn0Rcjg5Pue9KuRmloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQ1j2vijRL3xBcaFbajDLqdspaW3UnKAYz7dWFReLtebw9oEt1BGJr2Vlt7KDvLO52ov58n2BrygaH/AMIF8YvBjmUyHUbSS3vZ8/6+4YuXb8XdOPYUAeu+IPDmleJ9Jk03V7Rbi2Y7h2ZGHRlPVT9PU+tfPfiv4ZXXg3XbbUtXgv8AxB4Ut/kJhmIlt4gSQrccKMn7uAfVSa+mxTZFDrtZQykYKnoaAOX8B3PhG58PxyeEEtI7HgOkK7XDYxiQH5t3u3J65PWuqBry/wAQfChrfUzr3gS/Og6v1aJOLebvgrghfpgjj7veo9G+LbabfronxA0x9C1McLcbSbaUeoIzge+SvuOlAHqtFQ208NzAlxBKksUihkkRgysD0II6ipcgkjPIoAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACjIrkviF43tvAvh0ajJD9puZZBDbW4bb5jkE8n0ABP5etePp8c/F+nCW41TR9Ont5VIjSMshibtk7juHcg9fUVLlFOxtTw9WpGUoR0j1Pf9W1Wx0bT5L7UbuG1tYuXllbAH+J9uteT3PinxR8U7qTTfBiTaT4fDbLjWZlKvJ6iPHI+g56ZK9DY0j4c6t40urfxD8QdTF5GwEttpNrIfs8ankZKnB69s5wMseler2ltDZ26W1vBHBBEoWOONQqqPQAcD6VRic/4N8DaP4I0v7JpduDKwHnXUg/ezH3OOBycAcD8TXTClooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQ9qWmsM4PpQB5rdW+qeOPGst7pepxWVh4elNvBJJai4We5YfvTjco+QYUHnBJrlPi9p2v6Ja+H/ABJqWtw6kdO1JPLEViIGQn5yc7m7xD0r1rwr4ai8KaOumW19e3NvGxZPtXlllySzcoi5ySSScnJ61U8YeCrbxrYLYajqWoQWYIYwW3lAMw6Elo2YfgR1oA6WKRZY1kQhkcBlYdCD0p9Z+iaWdG0uGw+3XV4kKhElutm8KBgLlFUHAHcZ9zWhQAhzxis7WND03X7BrHVbGC8tm/5ZzLuwfUHqDgnkcitKigDyGX4b+KPBMzXnw91tntsl30fUG3Rv3IVuBnoOdpx/FVrTPjJbWl5/ZPjbSLrw9qI+XdIheBu2QQMge+CPevUzVLUtJ0/WbNrTU7G3vLdjzFPGHXPryOvvQA/T9QstStFu7C7gurZ+VlhkDqfoQSKt5ryu9+DEFhdNf+C9d1Dw/dk5MSSM8L4zgEZBxk9yw9qrjxH8VPCMZXXfDtv4ktVHN1prbZD65ULz/wB8D60AeuUV5vpXxt8HX8ot72e50i6DbTFfQFcH/eXIA+uK7vTtW07VofP06/tbyI/x28yyD8xQBdoozRQAUUZooAKKKKACijIziigAooyKgu7y2sYGnu7mG3hUZMksgRR+J4oAnzRmvPta+M3gnRdyLqv9oTjGIrBDLu+jZCf+PVjHxz8QvFJKeFvBx0+2Y4F/qrFflI+8EOP03/SgD1aaeG3haaeVIokBZndgqqPUk9K85174zaDZ3X2DQYLjxDqbZ8uCwTcme2X5z/wEGs+H4Rar4hmS68feKrzVWGCbK1PlQK3fHQY+iqa9C0Pwzo3hu2+z6PplvZp/EY0G5/8Aebq34mgDxfxX4M+JnjuyTW9VisLWWxJex0mMjfyRuJbnnCqcFucdB34218JeL/FV3/ZEXh69scuDcXF2jIkYzzkkDd07cmvrHGK5/wAZeKLTwb4ZutZul3+XhYoQdplkPCrn+Z7AE1nOnCclJ9Drw+Nr0Kc6VN6T0Zq6Vp8Ok6TZ6bbbvItIEgj3HJ2ooUZ/AVcyOOeteaeFPCt/4o0yHXvGl5c3NxeKJodOjlaG3tkIyo2KRlsYzuz2HbNZ3jZZ/hZJYeJNDuLkaQ1ysF/pckzSRkMCd6bidh4I47kdgc69dDkWyf8AWh65RUVvIk0KyxsGjdQykDjB6VLSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApCM0tFAGZq3h/R9cjEeq6XaXqdvPhVyPpkcfWuE1D4FeELmdbjT1v9JnU7lezuTwf+BhsfgRXp1FAHlH/CuvH2k720L4j3coz8kWpReaBx03MX/RR9KGl+NelxAfZ/DusMOrKSjH8ygr1eigDyv/AITj4l2Ueb74b+cw6m1vVOfwG6o1+LPiaIutz8L9fRlOP3SvIv5+UB/OvWKKAPJv+Fxaz/0TbxH/AN+n/wDjdK3xd8QtGTB8MPEUj9g0cij8/LNer9KWgDysePviJeDFn8M5ojnA+03gA/8AHlWmpf8Axq1Eso0bw/pSn7rSyF2X/vl2H6V6tRQB5OPAvxM1aPGtfEMWgJ5XTbfaQPQMvlmprb4FeGnuftet32ra1cH7xu7o4P8A3yA3/jxr1KigDD0bwf4d8PBf7J0WztXUYEixAyY93OWP51tj6UtFABRRRQAV498ekNynhOwlOLK41PE2emeAM/gz17DXPeNPCNj418PyaVelozuEsE6DLQyDOGHr1II7gnp1oA31wowOOOleRfHq6a+0rRPCtn8+oanfoUQc/Kvy8j/edfyPpV3xB4q8b/D7woLrU9M0/WI4CsX26C4eNsHhXliKcZOM4bGSBxVvwV4Wi1LUYfHeq6tDrWp3cQ+zSQJsgtYzkbY1PII5BJweWyM5JAPQLOBbWzhtkOVijWMfQDH9KnpFHU0tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFe8toL22ltbqJJreaNkkjdcqwPBBFc/4c8DeHfDN5NNo9g1q7FgQLiVl5A/hZiP07D0rpW+8P8AdP8ASmRf62T/AHj/ACFAEifxfXFOpqfxf7xp1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/2Q=='] Multimodal Competition False Theorem proof Geometry Math Chinese 21 "如图, $M, N$ 分别为锐角三角形 $\triangle A B C(\angle A<\angle B)$ 的外接圆 $\Gamma$ 上弧 $B C 、 A C$ 的中点. 过点 $C$ 作 $P C / / M N$ 交圆 $\Gamma$ 于 $P$ 点, $I$ 为 $\triangle A B C$ 的内心, 连接 $P I$ 并延长交圆 $\Gamma$ 于 $T$. 在弧 $A B$ (不含点 $C$ ) 上任取一点 $Q(Q \neq A, T, B)$, 记 $\triangle A Q C, \triangle Q C B$ 的内心分别为 $I_{1}, I_{2}$, 求证: $Q, I_{1}, I_{2}, T$ 四点共圆." ['连 $N I, M I$. 由于 $P C / / M N, P, C, M, N$ 共圆, 故 $P C M N$ 是等腰梯形. 因此 $N P=M C$, $P M=N C$.\n\n连 $A M , C I$, 则 $A M$ 与 $C I$ 交于 $I$, 因为\n\n$\\angle M I C=\\angle M A C+\\angle A C I=\\angle M C B+\\angle B C I=\\angle M C I$,\n\n所以 $M C=M I$. 同理\n\n$N C=N I$.\n\n于是\n\n$N P=M I, \\quad P M=N I$.\n\n故四边形 MPNI 为平行四边形。因此 $S_{\\triangle P M T}=S_{\\triangle P N T}$ (同底,等高).\n\n又 $P, N, T, M$ 四点共圆, 故 $\\angle T N P+\\angle P M T=180^{\\circ}$, 由三角形面积公式\n\n$S_{\\triangle P M T}=\\frac{1}{2} P M \\cdot M T \\sin \\angle P M T$\n\n$=S_{\\triangle P N T}=\\frac{1}{2} P N \\cdot N T \\sin \\angle P N T$\n\n$=\\frac{1}{2} P N \\cdot N T \\sin \\angle P M T$\n\n于是 $P M \\cdot M T=P N \\cdot N T$.\n\n因为 $\\angle N C I_{1}=\\angle N C A+\\angle A C I_{1}=\\angle N Q C+\\angle Q C I_{1}=\\angle C I_{1} N$,\n\n所以 $N C=N I_{1}$, 同理 $M C=M I_{2}$. 由 $M P \\cdot M T=N P \\cdot N T$ 得 $\\frac{N T}{M P}=\\frac{M T}{N P}$.\n\n因 $N P=M C$, $P M=N C$.\n\n故$\\frac{N T}{N I_{1}}=\\frac{M T}{M I_{2}}$.\n\n又因$\\angle I_{1} N T=\\angle Q N T=\\angle Q M T=\\angle I_{2} M T ,$\n\n有\n\n$\\Delta I_{1} N T \\sim \\Delta I_{2} M T$.\n\n故 $\\angle N T I_{1}=\\angle M T I_{2}$, 从而\n\n$\\angle I_{1} Q I_{2}=\\angle N Q M=\\angle N T M=\\angle I_{1} T I_{2}$.\n\n因此 $Q, I_{1}, I_{2}, T$ 四点共圆.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAZMBoAMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiisXxP4n0rwno76nq1x5cIOxFUZeVyMhVHc8f16UAbWaMj1rjLHVfGutQLdW2i6dpNtJ80aajM7zsOxZEACHGOCxI70/Ste8Sjxamha3penoslo90l3ZXDspCsilSrLkH5x3/OgDsKKQfSloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACs7WNc0zQbYXGqXaW0Jz87g449SBxWjXCfGTUf7N+FusMDhp1S3Ueu9wG/wDHd1AF5PiZ4KkYKPEungnoWk2j8zxXUW9xDdQJPbzRzQyKGSSNgysPUEda5fwho1ra/DTR9M1C3ie3Gnxm4jnAKZZcvkH3JrkPgC0x8NawqPI2lpqLrZFyThcAkD25B+pPfNAHrlFFFABRRRQAUVDc3ltZxmS6uIoIwMlpXCgfia5q9+JXgqwBM/ibTTjr5M4lP5Jk0AdXRXnE3xy8AQj5NWmmx/ctJf8A2ZRWa37QfhEyrHb2WtXLN2htkP6FwaAPWaK8q/4XzoP/AEL/AIm/8Ak/+OVG37QXhWOYRXGm67bEjOZrVB+gkzQB6zRmvNbb47eA5wDJqNxb+vm2khx/3yDWzY/FLwNqCgw+JbFc/wDPdjD/AOhgUAdjRVSx1Ow1OIS2F9a3SEZ3W8yyD8wat0AFFGaKAEOOp7V49qf/ABVf7RFppN1l7HQLT7SIW5UyEK2783j/AO+a9hNeTeIrK58GfFxPGxtZ5tF1G2FrqE0EZdrYgKA5Uc7fkTJHoe+MgHq69jxzSGNDIJQimQKVDY5x1xn8BXMyfEXwbHaC4PiXTHQjISO4V5D/AMABLZ9sVN4P1m78QQalqU0M8Fk94UsI54TGxhVFG/BAPzNvPPtQB0Y70tFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5H8eWa+0vw54eibEup6oigA8kAbf5yKfyr1mTp1x7+nvXH+I/h5aeJtfstZvNY1aGexcPZxwNAEgb5eQGjJJJUH5ify4oAZP8OoL22+yah4k8RXllja1rJdqkbr/AHW8tFJH411Wl6ZZaNp0Nhp9tHbWsK4SKMYAH+PqTyep5qhe6pYeFdHW41zW8Qpwbm8ZFeQ8nGEVQTjsq9uhryPxR+0Pbxs1r4YsRKSdv229UrGPcRj5j+OOnSgD3R3VULuyhAMkk8AVwmv/ABi8F6Exi/tP+0bjIHk6evnE/wDAshf1rx5NY8OeKHFx4/8AiLeXi53f2fYWk0cK46cmMD8lB967zQfHPwb8MALpLQWzjgTfYZ2k/F2Qt+tAFn/hPfiH4jx/wjHgY2duxwt3qz7cqe4Ulf0LU4eBfiTrg/4n/j/7EhbPk6VFtwPTcAh/PNaY+N/w/H/Mak/8A5v/AIml/wCF4fD7/oNSf+Ac3/xNAFK2+BHhMSmfU59U1aduWa7uiMn/AIAAf1ro7H4YeCdOQJD4Z05wP+fiLzj+b5rJ/wCF4fD7/oNyf+Ac3/xNH/C8Ph9/0G5P/AOb/wCJoA7S10XS7BQlnplnboP4YoEQfoKvAY4GAB2Fee/8Lw+H3/Qbk/8AAOb/AOJo/wCF4fD7/oNyf+Ac3/xNAHoVGP1rz3/heHw+/wCg3J/4Bzf/ABNH/C8Ph9/0G5P/AADm/wDiaAO5uNMsLsbbmyt51PaSJWH61h3nw68G3ykT+GNL+bqY7ZY2P4qAf1rC/wCF4fD7/oNyf+Ac3/xNH/C8Ph9/0G5P/AOb/wCJoAq3/wACPBVzhrSC+06RTlXtbpiQf+B7qqt8N/G+jBn8OfES9bA/d2+pJ5qD2LEsB+C1qf8AC8Ph9/0G5P8AwDm/+Jo/4Xh8Pv8AoNyf+Ac3/wATQBknxT8VPDe4a14Rtdbtk48/S5CHb1O0bif++BWlo/xq8I6hP9lvprnRrtTtaHUItgU/7wyB+OKefjh8P/8AoNyf+Ac3/wATWXrHxL+EniCHy9XngvFwQDNp0pZc/wB1tmVPuCKAPUrW6try2S5tZ4p4JBlZYnDKw9QRwamPX+dfM11d+AtIuHv/AAL491HQ7rO7yHt55YHODhTlM9+rbvpWt4e/aDuLG4+xeI7aHUIlwn2/T1ZWb3KPjP8A479KAPf1t4UkMqwxiQ/xBRn86kAIrD8NeMNB8W2jXOi6jFcBeXj+7JH/ALynkfXpW7QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFGR60hNcV43+JOkeDwtqVfUNZlwsGnWxy7E9N2M7QcjsSc8A84AOtvr210+1kury4ht7eIbpJZnCqg9STXll98UdX8U3kmk/DjSHvWB2y6rdIUgiz3AOM+27nj7pqGy8AeI/H90mr/EK7eCxzvg0O2bYiD/AGyDwcZ/2ueoxipfEPi5orxfh/8ADWygOocpPcQIFhslP3jkcbhnk84Pq3AAOF8R6GtnrUVjfXU/jLx5dfKsG4m2ss4wWB+9gngHagHLKBw3b6X8CdJPhi5g1qX7Rrl0Az3sf3bdx0EakAFexBHPtxjrvAvw+0/wXZO6ubvVbn5ry/l+Z5WPJAz0XP4nqTXX8/3cYoA+VdM8BWmm+KZPC3iK/utD1gn/AIl+pQtutrkE8Ag4OT2wwHYgHr3o8N/EDwngNoXhvxVYIcfLaxxzhB26Lyf+BnJ716V408F6X420RtP1CMpIuWt7lFBeB/Ueo9R0I9Dg1xHgvxpqfhnXF8DeOXC3a/Lp+pMx2XK9FUse/YN+B5HIBWsPiV4FS4Wy8S+Ej4evcAsl3pqso/ELu/EqK9B0m08Ga3befpVpod5D3NvDE4X64HB9jWxfabYapbG3v7O3u7c9Yp4ldfyINcDqnwS8MXFwLvRnvdCvVJZJrGdgFY98HOB7KRQB2v8AwjOg/wDQE03/AMBI/wD4mj/hGdB/6Amm/wDgJH/8TXnR0r4u+E+dP1Wx8UWagARXi+XNjuckjn6ufpUtv8a7bTp1tfGHhzVdBuGO3e0RkiOO4OAT+AP1oA9A/wCEZ0H/AKAmm/8AgJH/APE0f8IzoP8A0BNN/wDASP8A+Jpmh+KtA8Rpu0fVrS8OMlI5BvA90PzD8RWzmgDJ/wCEZ0H/AKAmm/8AgJH/APE0f8IzoP8A0BNN/wDASP8A+JrWooAyf+EZ0H/oCab/AOAkf/xNH/CM6D/0BNN/8BI//ia1qKAMn/hGdB/6Amm/+Akf/wATR/wjOg/9ATTf/ASP/wCJrWooAyf+EZ0H/oCab/4CR/8AxNH/AAjOg/8AQE03/wABI/8A4mtajOKAMn/hGdByP+JJpv8A4Cx/4V5n8Vl08LYeDPD2j6euu60wXdHboDDDn5mJAyM4POOiv3Fepa5q9noOjXeq38my1tYzJIe5x0A9SegHcmvOPhVpF5rl/qHxE1yPF7qjFLGJukNuDjj0zgAHHQZ/ioA858V/DiHwL410T7Pq13p+nXyLBFqkbYa2uQoBLYx8pOD1HBbH3a7uDx14w+H8qWvj7Tvt+mZCprViu4DJ43gY/UKev3q9A8aeF7bxj4Wu9HuMK0o3QSsM+XKB8rY/mO4yO9cx8K/EcniDw7c+HNdhB1fR2+x3kM43eZHyqk54bgFT6kZ7igDuNF1vTPEGnrf6Tew3dq/R4z0PoR1B9jzWhkeoryjWfhZe6LqL698O7/8Asq++9Np7N/o849Mdu/B4yeCuM1qeD/ihBq2o/wBg+JLRtE8RIQhtpsrHM3T92T6kcDnqMFuaAPRKKRenbFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNY9DnimXE0UEDzyyJHFGpZ3ZsBVA5JPYD1rxvVfEOtfFvVJ/D/hOV7Lw1Edl/q5Qjzh3RRxkEH7vBPcgdQDR8SfEPU9e1h/Cvw8jS6vx8t3qZ5gtV7kNjBI9eRxgBj03vBPw10zwhv1C4lfUtcnJa41C5O5iT97bnOB1ycknnJ7VteH/DujeCdAFlp8UdtawKXmmkYBnwOXkf1xyTxjsAOB5tqmv618XNTn8P+FZZLHwzE2y+1bYQZvVE6cEH7vUjrgHBALfiLxrq3jjWpPCXgGQiJONQ1pD8kSnqI29evI5PO3puruPBvgnSfBOjix02LMjHdcXLj95M3qSOg9FHA+uau+GvDWl+FNGi0vSbbyLdMlieWdj1Zj3JwOfywBitkUAIO9LRRQAjdq5rxp4L0vxtojafqEZSRctb3KKC8D+o9R6joR6HBrpqRu1AHkfgvxpqnhjXF8DeOZNt2pC6fqTMdlyn8Klj39CevQ89fW0wFrm/GngvS/G2iNp+oRlJFy1vcooLwP6j1HqOhHocGuI8F+NNU8Ma4vgbxzJtu1IXT9SZjsuU/hUse/oT16HnqAeuGobm0t7yB4Lm3jnhcYaOVAysPQg9alTAWnUAeea38GPB2rS+fbWUulXQIZZdOk8rBHT5MFR+AB96x/8AhFfij4UXOgeJ4NftVyRaaonzn0AYkn/x9RXrdFAHky/GG+0GVLfxt4R1HSeQn2qAebCzd8HgY9gzV2/h/wAdeGPEwA0nWrWeVhnyS2yX/vhsN+lb7orqVZQykYYEZBHpXD6/8IPBevBmfR47OcjAlsT5JB9do+Qn3KmgDu6K8l/4QHx/4YYN4U8Zte2qnIstXXcMD+ENhv02U3/hafijw0pXxt4IvIIkGWvdP/eRD06kqP8AvvNAHrlFcjoHxL8I+JGWPT9btxO/AguD5UhPoFbGfwzXWjGOMYoAWkNLmuT+InjCHwX4RudT+V7ph5NpEed8pHGfYYJPsKAOJ8czy/ELx/Z+ArGRxpdiwutXmjPp0jB9cHHszZ/gr122t4rS2jt4IlihiUJGiDAVQMAAegFcR8LfB8vhfw49zqQZ9b1R/tV/I/LhjyEJ74zz/tFu2K7taAA15D8SLO48EeL9P+I2mRM0BItNYhTjzI2wA/HsAPqqe9ev1T1XTbXWNLudOvYhLbXMZikQ9wePwPv2oAfZXdvf2cN5ayrNbXEayRSKeHU8gj8MVz/jLwJovjbTjb6jBtuFz5N5EAJYjx0Pcccg/wD1xx3wt1K68Na5qPw41mVjNYs02myvwJoDzgeuM5wOnzD+GvWRQB45p3i3xD8M9Sh0Px0z32jStsstbQFiP9mTv05PUjBxuHI9etbiG6to7mCZJYJVDxyIQVZSOCCOoIxUGraVY63ps2nalbJc2c67ZInHBH4cg9weoIyMGvHimt/BO/DJ9p1TwRcSYZT80tizHr06E/gx4OCRkA9uoqlpWqWOtabDqGnXUdzaTrujljOQR/MEdCD0PFXaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooozQAVHM6RRNLIyqiAszOcBQByT+FOcZGO3868c8V6xf/E3xLJ4J8NTtHo1swOs6inQjP+rU9+QQB/ER/dBNAFfU9S1T4ya9NoeiSyWnhCzkH26/AwbojB2r/QenzH+Fa9StrfRfBnhsQxiDTtKsUyWY4VB6knqSfqST6mqxfw/8O/CKB2jsdLsY9ozyzH8OWZjn3JNeb2emaz8ZtUi1TWY59N8GW77rWwBKvd4/iYj/ANC7che7UAEk2s/GzUmt7b7Rpfge3lxLJwJL1ge3HT25A6nJwB69pGkWGhaZDp2mWsdtaQLtSNBgfUnqSepJ5J5qeytYbG0itbaFIIIUEccUa7VRQMAADoKnoAKKKKACiiigAooooARu1c1408F6X420RtP1CMpIuWt7lFBeB/Ueo9R0I9Dg101I3agDyPwX401Twxri+BvHMm27UhdP1JmOy5T+FSx7+hPXoeevraYC1zfjTwXpfjbRG0/UIyki5a3uUUF4H9R6j1HQj0ODXEeC/GmqeGNcXwN45k23akLp+pMx2XKfwqWPf0J69Dz1APXaKamAtOoAKKKKACkIz2paKAOQ174Z+EPEW5r7Q7YTNyZoAYXz6kpjP45Fcl/wq3xV4ZBPgnxtdQwqPksdRUSRD15wVH/fGfevXKDQB5GfH/j7wwwTxZ4Le6tgTuvdKbeAo/iKjP6la5nT/GGh/Eb4q22p6vqEOn6Lo8YfT7W+kSMyzEjk5O3OQDwf4VHrXcfFzxLd2un2nhPRMvrmuv8AZ0CNgxxHhmPpnpk8Abjn5au2Xwj8Ip4YstIvtGtrl4Iwsl1s2TO3Unep3dSeM4FAHdRsrIGQgqQMEHIIp9eSt8HtS0AmXwT4v1LSyCXFrcN5sJJ9hgfmrGkPir4o+FSw17wrBrtomAbvSmO8ju20An/xxRQB63SHmvPNF+NHg3V5RBPfSaXc5IaHUY/K2kerZKj8T+Fd9b3MF1Cs9vPHNE4yskbhlYeoI4oA83+Lnhy7eys/GOiDZrWhN5wI/wCWkAOWU46gdcehYd67Xwr4hs/FXhyz1qyIEVygZkzkxv0ZT7g5H4ZrXdVddrAEHggivHfDrN8MfihceF5iU8Pa8/n6a7fdim4BjHv0X/v360AeyVDdW8V3bSW88SSwyqUkjkXcrKRggg9QQelSIMZzTqAPELyx1X4Ja42p6XHPfeCr2UfarQHc9m5OAQT+jH7w+VsHax9k0zUrPV9Og1DT7hLi0uEDxSoeGB/kexHUHrUl3bQ3lrLa3MKzQTI0ckbgFWUjBBB7EZrxlTdfBPxQI5DNN4G1Sb5ScsbKUj8+g+pA7leQD22ioreSOaFJopFkjkUMkikEMCMgg+h61LnPSgAooooAKKKKACiiigAooooAKbJIkUbSSOqIoLMzHAAHcmnVHNGksbRyIrowwVZcg/h3oAht9SsbyQx217bzuBuKxSqxx64B9xRcanYWknl3N7bQyYztklVTj6E1892AXwlr+gfESAeVpmsald294ijCRxPM4jOB22jd/wAAFeo+OrCz1XxJ4O02a1gkkn1IzuzxhiY4YncryPuklf0oA7qGaK4iWWGVJI2+66MCD9CKce1RwRRwRLFFGscajCoi7VH0Fc9488X2ngrwtcarcBXl/wBXbQn/AJaynoPpwSfYHvigDlviZ4s1CS7tvA3hc7te1MbZZVP/AB6wnqxI6EjJz1A56kVoWy+Gvgz4EVZ5flXLMwA868mxzgev6KByeM1x+i3Nr8MfD9x4t8Vu934u10l0tePNOeRGP7o5BY9BkKASADq+FPAuqeJtZj8Z+PR5l0cPY6WRiO1XOV3L69MKeR1bJ4ABU0Hwrq/xO1eHxV40ia30eM79M0bPysh6O/qDx15b2XAPsMMaxRrGiKiKAqqowFA6AU5BjOT3p1ABRRRQAUUUUAFFFFABRRRQAUUUUAI3aua8aeC9L8baI2n6hGUkXLW9yigvA/qPUeo6Eehwa6akbtQB5H4L8aap4Y1xfA3jmTbdqQun6kzHZcp/CpY9/Qnr0PPX1tMBa5vxp4L0vxtojaffxlZFy1vcoAXgf1HqPUdCPQ4NcR4L8aap4Y1xfA3jl9t2pC6fqTMdl0v8Klj39CevQ89QD12impgDFOoAKKKKACqeq6laaPpdzqV9KsVraxmWVz2Uc/ifQdzVpu1eQ/EK6uPHPjKx+HemSslrGVu9YnQ/cQYIT69D9WX0NAE3wu0278T69qPxH1mJlluyYNMhbnyYAcZH8vwY/wAVesKMdsVDZWlvYWUNnaxLDbwII4o1GAqgYAH0FWKACkIzilooAxNb8J6D4ji2axpFpd8Eb3jG9c+j8MOnY1wlz8FIdOuHuvB/iTVNAmY58tJDJEfYjIY/iWr1aigDyP8AtX4ueElzqWkWPiizQEtNZHZPjsMADP4IfrXPeNvHnhXx34cl0u/S90DxBZkT2f26ErtlA+7vH3QemW2gcHtXvhrO1bQtJ1uHydU061vE5wJ4VfGe4yODQBznwv8AGaeNfCEV3K6/2jbHyL1O+8dGx6MOfTOQOldpkEZyK+b/AIh+A4vA3ivS9U0W/vNE0W+YW8txbSMWs5PXO4EqfvYz/C3tXbKfi74WYFf7O8WafkEEYin2Y/Dn/vugD1vNZ+taRZa9pFzpeoQrNa3KFHQnH0IPYg4IPbFee6f8b9FjuFs/E+l6p4fvf4kuoWZB+IAb/wAdAr0DStd0nXIPO0nUrW9jHVoJVfb9QDx+OKAPL/A2q33gDxSfh94hnMllM27Rb5+FkUniMnsSTwOzcdCtewrwK5D4h+CYPGvhxrVdsWo2582xuM4Mcg7ZHO09D+B7Cqfwu8ZzeJtFmsdVzH4g0t/s9/E4wzEEjfj3IIPuD0BFAHeUZopD2oAXNFeF/EbxNrvhXx9bTafq98dJt5LaXUIXkDIPNkkO0Dsu2Mj8a9vd0jjaR2VY0BLEnAUDvQBLkUV4RD4t8Q+LvjDYada6leWOg3UTTQxWxCs0CB8SEkZG8rkf7LLXuNtD9nt44vMeTYoXfI2WYDuT60ATUUUUAFZHirUf7I8J6vqAOHtrOWVP94ISP1rXrm/Gvh2/8VaHJpFrqdvY28423BktDMzjIIC4kUKODnIOc9qAMG78Frq3wUtvDQQfaF02Ixdv36qGH0ywP4E1zHwx8Qv4x17Q5Ljc0+haLJDOWByJ2kVAT7mOPP8AwI167YRXsNoqX08E9wOskEBiQ+mFLMR+Z/Cuf8MeB7Twv4g8Q6pbTBhrE6y+V5e3ycbiQDnkFmJ6DFAHVOQFJJwO9fMnjD4hWWs+OP7cniW80rSWaDSbU/6u5uBjMr/7AO1iM5OEHdiPVPi/4kubLRrXw1o7bta16QW0SqSGWMkBmz2zkLk46k9qfd/Bvw3qHg7TdBuRMsmnxsIruFirb3wZG2nKncRnkHAwBigDlPBMfhpNVPi7xn4t0W+8RzYdIzexFLIdgoDYLD24HOMnk+mDx/4OBOfFOjf+Bsf+NeNzeA9W+Hspe/8ACmm+LtCB+aaG2CXMQ9SAM+5JDdOq12fhG3+E3jSIf2Zo+lfasbmtJ4BHMo7/AC85A9VJHvQB2X/CwfBv/Q1aN/4Gx/40f8LB8G/9DVo3/gbH/jVf/hWngj/oWNM/78ij/hWfgk/8yxpn/fkUAWP+Fg+Df+hq0b/wNj/xo/4WD4N/6GrRv/A2P/GoP+FZeCf+hY03/vyKP+FZeCf+hY03/vyKAJ/+Fg+Df+hq0b/wNj/xo/4WD4N/6GrRv/A2P/GoP+FZeCf+hY03/vyKP+FZeCf+hY03/vyKAJ/+Fg+Df+hq0b/wNj/xo/4WD4N/6GrRv/A2P/GoP+FZeCf+hY03/vyKP+FZeCf+hY03/vyKAJ/+Fg+Df+hq0b/wNj/xo/4WD4N/6GrRv/A2P/GoP+FZeCf+hY03/vyKP+FZeCf+hY03/vyKAJ/+Fg+Df+hq0b/wNj/xo/4WD4N/6GrRv/A2P/GoP+FZeCf+hY03/vyKP+FZeCf+hY03/vyKAJ/+Fg+Df+hq0b/wNj/xo/4WD4N/6GrRv/A2P/GoP+FZeCf+hY03/vyKP+FZeCf+hY03/vyKAJj8QPB3bxTo3/gbH/jXNeNLv4deNtDbT9Q8TaMsi5a3uUvIy8D+o55HqvQj0ODW/wD8Ky8E/wDQsab/AN+RR/wrLwT/ANCxpv8A35FAHnnw/wDinFpV7J4T8V6vZTm2JW01iO5V4ZlA4Dvng46MfoeRz6QvxA8Ggf8AI06MAf8Ap8j/AMax9e+EHg7VtIntINHt7Cd1/d3Nqm1427H0I9Qevt1rznwjpvh/w/4h/wCEK8d+HdMF9uxYam0ICXak4UE46+h79DzyQD2D/hYPg3/oatG/8DY/8aP+FgeDf+hp0f8A8DY/8arj4aeCT18M6af+2Io/4Vp4JH/MsaZ/35FAFDxP8VPDOjeHry+sNa07ULyOM+RawXCuzueBkA5wDyfYGuW+FOpeGPD2hTaprHijSG1/WJPtV40l5HvXJyEPPHUkjsWI7CsXRvCOgeOvijcyaZpFrD4W0P8AdOYUwt7Nk9x1Xj8lH96vUv8AhWfgo9fDGm/9+RQBOvxA8Ggf8jTo/wD4Gx/40v8AwsHwb/0NWjf+Bsf+NQf8Ky8E/wDQsab/AN+RR/wrLwT/ANCxpv8A35FAE/8AwsHwb/0NWjf+Bsf+NH/CwfBv/Q1aN/4Gx/41B/wrLwT/ANCxpv8A35FH/CsvBP8A0LGm/wDfkUAT/wDCwfBv/Q1aN/4Gx/40f8LB8G/9DVo3/gbH/jUH/CsvBP8A0LGm/wDfkUf8Ky8E/wDQsab/AN+RQBP/AMLB8G/9DVo3/gbH/jR/wsHwb/0NWjf+Bsf+NQf8Ky8E/wDQsab/AN+RR/wrLwT/ANCxpv8A35FAGd4o1/wH4q8OXujXnijRvKuY8BxeR5jbqrj5uoOD+HpXMfCn4kaZBoEugeItZsILvSZDbxXElwojuIhkKVYkBsYx7jae9dufhn4KHI8Mab/35FecfFH4f6V4aGm+K9G0O1a1sZQuoWOz93LETjdjsecZ9we1AHol/wCLvAGqWxttR13w9dwHrFcXETr+TGuA1Xwn8Jrq5+2aR4rs9DvVJKzafqiKA3+6W4H+6RXb6X4F+H+s6Va6lZeHNMktbmJZYn8kcqRnn39RVv8A4Vn4J/6FjTP+/IoA8s/4SrxX4UT/AIl3xA8M+KLRMBYr27jjmPryXBP4uelcnffFKCP4h2Xi2x01rG/UeRqcEU6yw3cfAyGGOcY45Hyqc8GvoD/hWXgn/oWNN/78imS/DDwS8Tx/8I1p6h1KkrHtPPoR0oA29C1zTPEelx6lpN0tzaycB1BGCOoIIyCPQ1pE+nJrwn4JXdp4d8a+K/BrzlpEumFs78GURM6N+OMNj0B9K9sv55bazkmgsp72Rfu28BQO+eOC7KvqeTQB474s0weIfDHxO1JV3NHeRRR98C0RC2P++pPzNbkesy+NfDHhrw7ayt5mqWMdxqsyH/VW6/LIM+ruGQe249q1PBukak3hHUdH13RriynvXupbh5JYZElM7uSBsckkKwB3AfjVf4e+E7r4feCl8zTp9Q1m4Ia5jt5I9wHO1Azuq7VBPfqTjNAGF4Lgj1D49eKb2CNVtNLtUsIVUcRkbVwP+/b17CK8u+FuheINC1bxBc67oVzbz6veG5Nx58EiAZYgNtkLZy56KfrXqIoAWiiigAooooAKZKyohdmCqoJLE4AHrmn1518ZvEE2leCv7MsSW1LWpRY28aEbiG++QD2x8vsXFAGL8Pkbxz8Qta8eXClrK1c2GkgjhUA5cA9DtP5yuOwr15axfCOgQ+FvCun6LBgi1iCuw/jc/M7fixJ/GtugBGGeK4fxZ8LPDviqY33kyadqwO5b+zOyTcOhYdG5wcnnj7wruaKAPHP7a+Inw3bZrlq3ijQF/wCX6AH7RGvq4PPQE/Nkcj5677wp468O+MoDJo9+jzBcvbSfJMg91PbnGRke9dIRmuA8U/CXQfEF1/aNj5mjaup3pe2HyHf2LKOD1zxgn+9QB6BmjIPQ147/AMJR49+HDeX4r09vEGhp01SyH72NR/fX2/2sdfvGvQ/C/jHQfF1oZ9G1GK42gF4vuyx5/vKeRznnGD2oA36KMj1ooAKKKKACiiigAooooAKKKKACiiigBG7VzXjTwXpfjbRG0/UIyki5a3uUUF4H9R6j1HQj0ODXTUjdqAPI/BfjTVPDOuL4G8cSbbtSF07UmY7LpeiqWPU+hPXoeeut8WPFNxpGhweH9HzJrutv9mto04ZEPys3t1wM9yT/AAmtn4g+F9C8S+FrlNbcW8VtG00d6B81vgZLD1HHK9x6cEeKfCbXbeTx7Z6j4wurt72azFvo11djEZAJQgN68FR2JLZOSKAPePBPha28HeFbTR7chmjG6eUDHmyn7zf4ewAroaauBn+dOoAKKKKACiiigAooooAKKKKACq99Z2+oWU1ndwrNbTo0UsbdGVhgg+2KsUh6igDx/wCHV3ceCfGGofDnU5Wa3Ytd6PK55kjYklfrwT7FX9RXr69688+LPhW51jQYNc0ndHruiN9qtXQfMyghmX36ZA9Rjua6PwR4ptvGPhWz1m3wrSrtniBz5Uo4Zfz6Z6gg96AOipDwKWkNAHy/r+malY/EHxl4p0w/6ZoGpQXRjXo0Um7dnHX+HPsWr6S0XVbbXNGs9Vs33W93CsqZ6gEZwfcdD7ivM/Ddra3Pxp+IWmXUPmQ3drAHjYcOhjXcD9d1O+EF1PoWo+IPAF/IXm0i4aa0LYy8DnOQB0GSrf8AbSgD1mikFLQAUUUUAFFFFABRRRQAjdq8jAPjP4+kMd+m+FrfgdUa5fv7HP8A6Jr0/WNSh0bRr3U7j/U2kDzuB1IVScD34rz/AOCGmzJ4OudfvcNf65eSXcsm3BK5IA+md7D/AHqAPTV6f54paBRQAUUUUAFFFFADW57ZHcV554l+EOi6vef2po80+gaypLLd2BKKW7kqCPzUqeec16LRQB46vjbxv8PW8jxvpTarpanC6xp65Kj/AG14B7DnaeD96vSPDninRPFNkbrRtRhuoxjcqkh0/wB5Tgjp3Fa8i7l2kAqRyCM5HpXm+v8Awd0m6vf7V8NXU/h3V1JImsyRGx75QYxn/ZI+hoA9LyKK8fg+IPi3wI4tPiDoz3NmDtTWdPTch56uowO/+yf9k16XoPiHSPElgL7R7+G7tzxmM8r7MDyD7HFAGrRRRQAUUUUAFFFFABRRRQAUhpa5/wAaeKLXwf4Xu9YutrGJdsMRbBlkP3VHf3PsCe1AHBfE2/ufGHiaw+G2ky7RMy3OrTLz5UK4YKfTs2DjJ2evPW+I/h5ofiLwlDoElsLeK1jC2U0YBe2IAAI9c45B6885wayPhL4WuNO0i48SayC+u6632md2GCkbHcq47dckdsgfw16Kc+lAHkngvxpqnhjXF8DeOZNt2pC6fqTMdlyn8Klj39CevQ89fW0wFrm/GngvS/G2iNp+oRlJFy1vcooLwP6j1HqOhHocGuI8F+NNU8Ma4vgbxzJtu1IXT9SZjsuU/hUse/oT16HnqAeu0U1MBadQAUUUUAFFFFABRRRQAUUUUAI3bgmvGrTHwr+K5sj8nhrxK+6EYwtvcZ+6PQZYD6Mv9017NXLfEHwjD418I3WlPhbgfvbWQ/wTAHafoeQfYmgDqF7/AFoNcH8KfF0viTwy1nqRKa3pL/ZL6Nz85YZAc+5wc/7StXeE9PSgDyjQRJD+0p4ojJHl3GkxS/8AfIgX/GoviOR4Q+JHhjxsg2Wsz/2dqDE4Xac7WPrgFj/2zFWbcC3/AGk7k7WDT6ECT64def8Ax2uk+J+gjxF8PNXslQvOkJuIAoy2+P5gB7nBX/gVAHXgd/wpa5L4aa8fEfw90fUJHLz+QIZ2Y5JdCVJP1xn8a62gAooooAKKKKACiikJxQB5r8ctSltfh/8A2bagtc6tdxWcaqeTk7jj67QP+BV3eh6bFo2hWGlw/wCrs7eOBT6hVAz+OM15t46K658afBGgkMY7MSalIO3GSufxhx/wL3r1gUALRRRQAUUUUAFFFFABRRRQAUUUUARzRrMhjkRXjYEMrDII9CO9ea638HrJb46v4O1Cfw7qo5H2cnyH74KDoDxwPl/2TXp1FAHj9t8TPEfgyWOw+ImhypETtTV7JA0T+5A4zwTxg/7NeoaNrWma9p632k3sN3atwJImzg+hHUH2ODVq5tobu3e3uYY5oJFKvHIoZWHoQeCPrXmOr/CBbK9fV/Auq3Hh/UuvkqxNvJ32kdhk9MMv+zQB6pkUV5HZ/FLWPCtzHp3xG0KWxY/ImqWqb4JfcgZ+p2knn7or1DS9UsdYsUvdOu4bq2k+7LE4ZT7cdD7UAXKKKKACiiigBDXjVyR8Vvip9jA8zwx4bffNgfLc3HTb7jII+in+9XT/ABX8Xz+HfD0Wn6VufXNXf7LZJH99c4DOPQjIAPqwPY1seAfCMHgrwna6THtaf/W3Uo/5aSn7x+gwAPYCgDpVzzkGnUUUAI3aua8aeC9L8baI2n6hGUkXLW9yigvA/qPUeo6Eehwa6akbtQB5H4L8aap4Y1xfA3jmTbdqQun6kzHZcp/CpY9/Qnr0PPX1tMBa5vxp4L0vxtojafqEZSRctb3KKC8D+o9R6joR6HBriPBfjTVPDGuL4G8cybbtSF0/UmY7LlP4VLHv6E9eh56gHrtFNTAWnUAFFFFABRRRQAUUUUAFIaWigDx7xxDN8PfH9l48s0b+y74i01iNBwM4xIB64GfquP4q9chmiuoEngkWSKVQ6OhyGUjIIPpg1T17RrPxDod3pN+m+2uoyjjuPQj3BwR7ivOvhLrF5pV1qHw+1tv+Jjo7E2sjZ/fWxPGM+mQR7MBgYoAXUZDD+0rpIBGJ9DZT/wB9yn/2WvU2wRzXlPiZBH+0R4MnKHc9jPGWHfCTYH4bv1r1b9cUAeUfB/Og694w8HMNsdhqH2i2BOSY3BA/8dWM/Vq9ZFeS3n/Ei/aOsJ1TbDr2ltFI/YugJ/PEcY/4FXrI70ALRRRQAUUUUAFIfrS0hoA8p8Oq2q/tCeJ74kNDpljFaR8fdZghP6iT869WHSvKvhDGbnxF491gkt9p1holJ7BGcgfk4r1agAooooAKKKKACiiigAooooAKKKKACiiigAooooAr3tlbahayWl3bxXFvKNskUyB0Ye4PBry/UvhDc6Pdyap8PtZn0W9PJtJHMlvL7HOfyYMPpXrFBoA8m0/4s3mg3UelfEPRJtIuT8q38SF7eY+oxnHUdCevOOlen2F/aalZx3lldRXNtKMxyxOGVh7EcU3UtMsdXspLPULSG7tpBh4pkDKfwPf3rzC/+FGqeG7uTVPh3rUumzMcyadcOXgl9snPv97J56rQB63moLu4gtLSW5uZEighQySO5wEUckn6AZrzHS/i62nXqaT490efQL9vlW42l7aU8ZIPOBk/7QHdhVX4ka8/i7UNL8BeG7tJTqZWe+uYH3rFbj5sbhxz1/75H8VADfh/bXHj7xte/ELU4WFjAxtdHhccKoyC+PUZP/Amb+7XsIqjpOmWmiaVa6ZYxiK1tYxFGnoB6nuT1J71eoAKKKKACiiigBG7VzXjTwXpfjbRG0/UIyki5a3uUUF4H9R6j1HQj0ODXTUjdqAPI/BfjTVPDOur4F8cPi8UhdP1EsSl0ucKpY9T6E9eh56+tpgLXN+NPBWl+N9EfT9QQpIuWt7hR88DY6j29R39uo8A8SfEvx54Tik8G3GoxC809zFJfx4eWWMgFAWPfBzn73IB5ByAfUtFfPvwh+Lesal4jg8PeIboXUdypW2uHUB1cDIUkdQcEZPOcetfQK9O9AC0UUUAFFFFABRRRQAh6V5Z8WtDu7GWw8faIh/tPRWBuEA4mt/4g3qACQf9lm9K9UqK4hjuIHhmjWSKRSjowyGBHII7gigDyDWtattc+I/wx16xkBtr1LjZk8qSoBU+4LEfUV7H1P0r5iu9Cu/BHxl8OaGzO+kDVVn04nnCzuisM+20Aj2z/FX06KAPKfjCv9naz4H8QhiostWWFyO6PhiPyjYfjXq9eZ/HmyW6+F9zORk2lzDMvsS2z+TmvQdMuVvdMtbtTlZ4UkB9Qyg/1oAt0UUUAFFFFABTJWCoWPAXknGcYp9VtQkaHTbqVRlkhdhn1ANAHmX7PyM3gG8u5CC91qc0pwMY+VBj8wfzr1avN/gTGU+FOnsQAHmnYY7/ALxhz+VekUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhpaRu1AHL/EC60PT/AAXqF5r9lBeWUKZFvMoPmSdEVeCQSTjI5GSe1eOeCvht4z0jQ7Xxd4dvre11S5Qt/Zs8fyvbkhlUuScFsA4OOo+YHNdPrOfil8UI9Bi/eeGvD7+dfMM7Zp8kbP0K/TzD6V7Eq7QABgDgADGBQB5ho3xht4L9dG8baZP4e1QHbumUm3k7bg3VR19V/wBqvTYJoriFJ4ZEkjkUMrowIYHoQR1rP1vw/pfiKxNnq+nwXkHZZVztPqp6qfcEV5rP8OvFXgedr34eaw0lpku+jag+6NvZScDPT+6f9o0Aev5FFeZaD8X9Olv10fxTYz+G9XHymO7yIW7ZDnGM46kY9Ca9KiZXQOjKyNypU8Ee1AD6KMj1ooAKKKKAEPavD/i78I9U8Sa03iDw+kMk8kQW5tWfYzuuAHUn5T8oAIO37o65r3GqEus6XHIY31K0V1OGUzoCD6EZoA+bfhn4fh8IfFS1h8YxPp18Ii1gkwUxSyMMDLgkZwTj/a7ggA/T6cDGRXMeMPB+keO9A+x3YBJG+1vIsM0LHkMp7g9x0I9Dg1xfgvxpqnhjXF8DeOZNt2pC6fqTMdlyn8Klj39CevQ89QD12impgLTqACiiigAooooAKQ57daWigDxb9oK0uGtfDN1Y7hfJfGKApw+5gpXae3zIK734d+L4vGnhG21LKreJ+5u4h/DKOpx2ByGHscVzHxwZYNJ8M3RTd5WuwHj02scfjt/SsvUAfhd8Vl1Jf3fhjxIxS64+S3ueu70A5z9Gf+7QB2nxYtlu/hdr8TchbbzfxRlf/wBlrQ+H8vnfDvw4+cn+zbdSc56RgUzx+Afhz4kJ5H9m3B6f7DYqr8LJfO+GHh9tu3FqFxn+6SP6UAdhRRRQAUUUUAFVNU/5BF7/ANcH/wDQTVuo7iMS28kZGQ6lSPXigDz74GsrfCbSgDkq84PsfNevRa8w+AUwk+F8CAY8q6mU+/Ib/wBmr0+gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKM460AFcN8UvGEnhXwx5enln1rUX+y2EcYy284BYDvgEY/2io712s80VtBJPPIscUal3dzgKo5JP4V5D4Jgm+InxCvPHd4jf2Rp5Nro8TjAYj/lpj6En6tj+CgDtfhz4Oj8FeEoLBtr30v769lHO+U9eT2HAH0zjJNdbSDv1/GloAKQ0tFAGPr/hnRvE9mbXWdOhvIRnbvX5k9drDlT7g5rzeTwL4z8ASm58B6q2o6aMltH1Bs4H+weB6ngqeB96vYKQ0Aec+G/i9pGo3g0rX7abw9rA4a3vflQn2c4/UDrxmvRQykZBBB7+tYniPwhofiy0+z6zpsNzgfJJjEif7rDkdvyrzr/hD/HXw6cy+DtROtaMDk6Vfn94gz/AeAeM9Cv+6aAPYs0V574W+Leha7cjTtTSbQ9ZU7Xs7/5Mt6Kxxn6EA+1egjj2oAG7V4xqGnWOs/tJWdqLS3aHTdNM1xH5QIdyGILccn96nX0r2cmvIvhwP7X+L/j3XD8wglWyjb1AYrx+ES0AetIixoqRoFRQAqqAAo9PpXO+NPBel+NtEbT9QjKSLlre5RQXgf1HqPUdCPQ4NdMKRu1AHkfgvxpqnhjXF8DeOZNt2pC6fqTMdlyn8Klj39CevQ89fW0wFrm/GngvS/G2iNp+oRlJFy1vcooLwP6j1HqOhHocGuI8F+NNU8Ma4vgbxzJtu1IXT9SZjsuU/hUse/oT16HnqAeu0U1MBadQAUUUUAFFFFAHlH7QasPh9aTo+x7fU4pVPvskA/nn8K7bxj4YtPGPhW70e52/vV3QS4z5cg+4w/Hr6gkd65X48ReZ8LL1im7yp4Xz6fOB/XH416FZyedY20mMb41OPqAcUAeP6F4putS+EPizw/rOV1zQ9PuLa4WQ5aRBGwV/foQT7A/xV2nwk/5JXoH/AFwP/obVwXxt0C70WWXxlpC7Rd2z6dqqgcOki7Fc/oPqsfvXpPw2Qx/Dbw6CQc2ER491z/WgDqaM0hrjvHXjr/hBbGK/utKlubF3EXmRzKp8w7iF2nnop5oA7LNFcJqHj3U9F09tQ1fwXq1vp8Y3SzwzwTFAe5UPnH4cV1eiazY+INIt9V02YTWdwu6N8Y74IPuCCD7g0AaFIaWkNAHlfwMjWx0jxLpXAaz1uZSB2G1V/L5DXqteUfDpRpXxX+IWks3MlxFeovs25if/ACIterCgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACmt2p1ZPiXXrPwz4fvNZvmxb2sZfaDy7dFUe5PA+tAHn/xX1i71e80/wCHmhyEahqzBryRf+WNvyTn64JI9Bj+KvRdB0a08PaJaaRYR7La1jCIO57lj6knJJ9Sa8++Evh+8uEvfHetqDq+uHfHx/q7f+EAHscKf91V969RFAC0UUUAFFFFABRRRQAUjDIwQD7GlooA5zxP4I8P+L4PL1jTY5pAMJcL8sqfRhz+B4+tcB/wjvxC+G5L+HLw+JdCTn+zro/v41HOEP0GPl9fuV7FTWGe1AHnmg/FPS/FlvJp1pdR6Hr4IT7NqcJcK+eQAGTf3GMg55K8Yq14D8B3/gmW+Da3b38N9OZ591i0cpc+j+aRj/gJ69a0vFfw/wDDvjKEjVtPU3G3C3cPyTJ6fN3Az0ORXCjTfiP8Ngx0yX/hK/D6fMLaYkXMKDsp69MdNw/2RQB7EBilrifCPxO8OeLH+zQ3DWWpZ2tYXgEcgb0XnDdOxz6gZrtegoAG7VzXjTwXpfjbRG0/UIyki5a3uUUF4H9R6j1HQj0ODXTUh7UAeR+C/GmqeGNcXwN45k23akLp+pMx2XKfwqWPf0J69Dz19bTAWub8aeC9L8baI2n6hGUkXLW9yigvA/qPUeo6Eehwa4jwX401Twxri+BvHMm27UhdP1JmOy5T+FSx7+hPXoeeoB67RTUwFpcjGc8UALRRXJ+KfiN4Y8Ihl1PUkN0OlpB+8mPflR936tgUAZPxuXd8I9a5+6YD/wCR4xWtb+LNE0LwVo+oazqttbRy2MMgLvlpMoD8qjlvwBryzxt4n8beN/BeqS2vhpdK8MpF5ss17/rplUhhtB/A5APThq6D4e/Cfw3L4f0rX9Uil1a9urOGZRetujiBQYVU6EAED5sjjjHSgDmviL8U7jxT4O1K20HQrv8AsRtsc+q3K7F++vyoOmTx3zyTgYzXq3wy0G48OfD/AEvT7qbzJxGZGwchN7Fwo9hux9c1y3xyRn8HaRodntibUdUgtkRRgBcNgADsDtr1SNQiBVGFAAA9BQA41478crkXGoeD9EMc08dxqPnywwoXdlUqvCjknDtivYicV47rdxBqf7SOiwyzRrb6TYNI29gB5hDkfj8yflQBb8e/EGOfw3daNDo+qWUuqRtai61W2NpbxBxhmLv3wTgAH8K7XwH4eTwt4K0zSEuUufJjLNOhyrs5Lkr/ALOW49qwPiv4g0OD4f6rYz3ltNdXkPk21srq7vISNpCjng857Y9cVqfC/Tb7SPhtollqKsl0kLMyN1QM7Mqn6KQPwoA66kPSlpDQB5PcBdE/aTtJAmE1vSTGXxwXTJ/PES/mK9YFeUfGYHR7/wAIeLVLKNM1MRzbB1jfDHPthGH/AAKvV1IKgqcgjg0ALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA1x0rx3xO7fE74lweE7c7tA0R/P1ORTxLKMgR/zX8X9K7D4m+Mh4O8KyT25D6ndn7PYxAZLSHjdjuFznpycDvS/DTwaPB3hWO3uT5mqXZ+0X8xOWaVh93PcL09zk96AOwjRY0CKoVV4AAxgU+gUUAFFFFABRRRQAUUUUAFFFFABRRRQAUjZpaKAOR8WfDjw34wVn1CwEd4Rhby3Plyr7kjhv+BA1xWPiT8NAdo/4S7QI+QCSLmFB27t/wChjj+GvY6QjkECgDkPCHxI8N+MgI9PvPJve9lc4SYY64GcMOO2cd8V14NcX4s+GHhzxaz3Fzam01H7y31odku7sW7P0HJ59CK5L7b8R/hshGow/wDCW+H48k3ERIuYk/2s5JA5PO/p94UAewntjn6VzPjTwXpfjbRG0+/jKyLlre5QAvA/qPUeq9CPQ4NVfD/xM8JeI9Pa7t9Yt7fy13zQ3kixPEO+Qx5HTkZFc7qfxltLm8bS/Bej3fiK/wAfeijKQp2ySRkgH2AP96gCp4M8aap4X1xfA3jmQJdr8un6k7Hy7lOiqWPf0Y/Q89dvxF8X/DWjXH2Kwkl1vVCdsdrpw35bnALjjt0GT7VzF38MfF/xAKXfjnWoLNIwxtrCxhVhCWHc/UDIy2f7wqD4b31t8PfEMvgzxJptnY6jK5+x6qkYAvFJ4Vn6/T8jg9QDS/s/4o+Peb66j8JaO/8Ay7wZNy69skYI7jqnuprqvC/ws8L+FWWe2sftd+Dua8vD5shPqM8KfoPzrs16dfpzTqAOW+IsXmfDfxGpOD/Z8zZ+ik/0pnw0mE3wz8OsGDYsY0yDn7oxj9MVd8cRNN4C8RRIMs+mXKgep8psVh/B2f7R8J9BfbtISRMf7srj+maAMLx9t1n4x+BNEyT9laTUZAOmB8y5/GEj8a9XFeT+F2/4SH49eKNXDB7fSLVNPi4ztc/e/wDHll/OvWBQAEZIrn28C+EpGLP4X0YsepNjFn89ua6GigDHsPCvh7SphPp2habaTDpJBaIjD8QM1rqCM0tFABRRRQByXxN0Q+IPh1rViilpRbmeIAZJeMhwB9duPxo+GWt/8JB8O9GvmcvMLcQSljk74/kJP1xn8a6tuRj1ryT4WH/hF/GnizwNJ8sMM/2+yXOcxNgHn2UxfjuoA9dopB1NLQAUUUUAFFFFABRRRQAUUUUAFFFFABTJHVIy7MAoBJJOAB9ac1eW/FrX7u6Nj4D0M51fXDslb/nlb87icdiAc9flV/agDN8Kq3xO+JNx4vuFZtB0Zvs+lIQQHk6+Zg+n3ue5QfwmvZF6dMVl+G9BtPDOgWej2K4t7WMICert1Zj7kkk/WtWgAooooAKKKKACiiigAooooAKKKKACiiigAopMj1FLmgAorlfFfxC8M+EExqmpRi5A4tYf3kx/4COn1OBXE/8ACUfEbx6NnhfRl8P6TJ/zEdQ/1jL2KgjuPRW/3hQB6Vr3iTRvDdp9q1jUrezi5x5jfM/sq9WPsAa84l+KXiDxbPJafD3w3Lcxg7W1S+XZCh7kDOM4PAJz/s1o6J8GdFtrz+0vEdzceI9UPLTXzEx59AhJyP8AeJ+lekQwx28SxQxrHEgCqiKAFA7ADtQB4rH8A5NYN3qPinxA8usXXzFrGBEiR8YyQVG8fQJRYXXjP4P2Ys77RbbWfDUZJ+2adEIpY19XUd8DJLA8n75r26kPNAHOeF/HHh/xhbedo+oRyyAAvbthZY/95Tz+IyPemeNPBmleNtEbT79Nsigtb3KAF4G9R6j1HQj0ODWL4p+Eeg6/Ob/T/M0TWFO5L2w+T5vVlGM9eoIPvXOnxb49+HQEfi/TP7d0VTtGq2I/eKv+2vHbH3gvOfmNAE3gzxpqnhjXF8DeOX23akLp+pMx2XSdFUse/oT16Hnr62mAtef6jF4O+Mfhp7e1vYp5EG+KWPie0c9yjYOCRgg8EdD0NYngzxpqnhjXF8DeOX23a4XT9SZjsukzhVLHv2BPX7p56gHpmvRCfw/qULHAktZUP4oRXn3wm1WDSfgbbajcN+5sY7uWTHXCyO2Pr/jXpkqb7d4wAdykbT0PGK+ZrHWJn+A2meGbMKb/AFnV2sok3YLKHVyeP9pkU+zUAepfA7T5ovBM+s3h3Xms3st3I5GCRnaPwyrEf71em1S0jTYNH0ez0y2GILSBIE+iqAPx4q7QAUUUUAFFFFABRRRQAhryP4po3hTxn4Z8fQhlhhm+w6gVBP7ps4OB14L/AIha9drF8W+H4fFPhbUNGmIAuoiqMf4HHKN+DAH8KANeN0kQOjBlYZBU5BHXNPrzn4NeIZdT8INo+oZj1XQ5DZXMTn5gqkhCR9AV+qGvRqACiiigAooooAKKKKACiiigAoJA60UjfWgDO17WbPw9od5q1++22tYzI+MZPoBnuSQB7kV538J9GvdVu9Q+IOuRf8THV2K2qMOIbcHjbnpnGB6qoP8AFVLxrK/xG+Ilp4HtHYaPpjC61eVDwWHIjyO+Dj6sT/BXr1vDHbwpDCixxxgKiKMBQOgA9MUASCloooAKKKKACiiigAooooAKKKOlABRRVe8u7axtnuru4it4IhueWWQIqj1JOAKAJ8j1pHICkkgAcnNeYar8ZrKa+Ol+DtKu/Eeo9AYEZYV5xktjJA9cY96ojwF438cYk8b6/wD2fp7c/wBlaZwCMdGPI/Pf+FAG94l+L3hnQrk2VpNJrGpk7FtNPHmEt0wWHAPsMn2rB+yfFHx/k3M8fhDR3/5ZRZa6ZSM8nhgevUp9DXfeHPBXh/wnCI9F0qG3bGGnI3St9XOW9eOnpiugA5oA4nwx8KvC3heRbmGyN7fg7jeXp82Td6gH5VPXkDPvXaqMZp1FABRRRQAUUUUAFNdQylSAQQQQRnI9KdRQB5x4l+D+japdDUtCml8P6wh3R3Vj8q7u5KAjBxnlSOvOa4LxlL4httH/ALH+JWjfb9PRv9F8QaaoLwMR95hwCDwCp2ZAPUgGvoSmSIskbI6hkYYZWGQR6GgDxL4XfFVPtMXhXX9QiuHBEdhqYYhbgdFR8gEN0xnrwDzyeW+CHh2bUvHk080jy6foBkaJWPyiZztBA7ZCluO6iuk+MPw28J6V4aufEVqp0q8R1VIoAPKndjgDYcbeMn5MAAE4OK7H4N+Ebzwn4MI1Bl+1ahL9raPb80QKgBWPc4GT6Eke9AHoYPrxRketYPizRZ9fsLTT45Wjt3u43uykrRsYVyxUFcHkhV4I4Jryrxz4esLP4heDfD2jtewLezF70C+nYyQhl4yzkjhZORQB7pRXFQ+ALPTPFOkanpIuIYrYzNcpJfTSB8x7VG12I4JJ4x0rtFGBQAtFFFABRRRQAUjUtFAHj3i4/wDCu/ipYeL13Jo2tD7FqePupJj5ZD+AB9fkf+9Xr6MCMggg85FY3i3w5a+LPDd5o138qXCYSTGfLccq34EDjv071x/wj8S3Vxpt14S1oGLW9Cb7O6sf9ZEOFYeuMYz6bTn5qAPS6KQUtABRRRQAUUUUAFFFFAATjrXI/EfxingvwlcX6FWvpf3FnEed8p6cegGWP0x3FdY3AyTgDv6V41oQb4pfFGXxC4LeG/DzeTp64+Wafrv/AJN+EfvQB13wv8HSeFfDG+/3PrGoN9pv5H5cseQpPtn8yfWu4FItOoAKKKKACiiigAoooyPWgAoorlvFXxA8MeEUI1bU4luQMraQ/vJm7j5R0z6tge9AHU5B71l654i0fw5Zi71jUbezhOdplfBf2VerH2AJrzT/AIS34iePMr4T0UaFpb9NS1IfO6+qqQffoG+orS0X4MaRBef2n4lu7nxHqjfelvXJjHtsJOR/vEj2FAFCX4qa74puHtPh94bnvFDbTqV8uyBffGR29WB/2TT7T4RX2v3CX3xB8Q3OsTAgrZQMYreM98Yx7fdCdO9eqW1vDawJBBDHDCgwkcaBVUdgAOBUtAGfpWj6dolmLTS7C3s7cf8ALOGMKCfU+p9zV8UtFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7uB1p1cb8S/GS+DPCkt1Dh9RuT5FjF1LSnvjuF6478DvQBx2tn/hY/xetdCjBk0Hw432i+K8rJP2Q+vI2468SV7EvTpiuM+GPg4+D/CccN1ltVuz9ovpWO5jIf4c99o4+uT3rtKAENeQ/wDIa/abPdNE0vnPTLL/APb/ANK9Wv3vY7Vm0+CCe4H3Y55jEh+rBHI/KvO/C3hHxZovjrWvEd7b6NOdWdQyx30oa3QHouYfm4A/u9OooA9NFFNXPcc06gAooooAKKKKACiiigBrDOK8o+KOj33h/WLP4jaDETdWA8vUYQcefb9MnHoDgnsMH+GvWajmiSaNopUDxuCrqy5DA8EEdxQBR0DWrHxFodpq2nyiS2ukDqe4PQqfcEEH3FaVeLadK/wd8cnSLp2Hg/WZC1pK5ytpMcZBPYdAc9tp7NXs6kUAOooooAKKKKACkJApao6vqtnouk3Wp30ojtbWMyyt6ADPHqewHckUAcB8XPEd0llaeDdDO/W9dbyAF/5ZQnhmPoDyM+gc/wANdp4V8O2nhTw5Z6NZD93bphnxgyOeWc+5JJx26DgV578KtJvNf1fUfiJrURW51BjHp8Lf8sIBxx9QAB7An+KvWhQAtFFFABRRSZHrQAtFQXV3b2Vu9zdTxQQRjLyyuFRR6kngV5tq/wAZNNa9bTPCOm3niPUz8oFuhEQ9y+CSPoMe460Aent+lcB4m+Lvhfw/KbSC5fVdSLbFtLAeYd3TBYcA57DJ9q5//hBvHnjv9541146XpzHJ0rTMZI9GbkenUv36V33hvwR4d8JxBdH0qGCXbg3DDfM3rlzk/hnFAHAmH4pePxmR4/B+jyDhFy10yn16MDx/0z69DXTeGPhP4W8MyLdJZtf6ju3G8vj5r7vUDG1e/IGfeu4XjIxgU6gBFGM0tFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQSB1NFIaAIrqaK2tpLi4kSKGJGeR3YBVUDJJJ6DFeReFoJfif8AEGTxneRH+wNJcwaTE4IErg58wg/gfrtH8Jp3j3WLzx14mj+HPh6fZCGD6zeKMiJAclPc+o7nC5HzV6lo2lWeh6Tb6Zp8IhtLZAkaDnj1J7knJJ7k0AXVGM8Yp1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGL4q8Naf4t0C40jUo90Moyjj70Tj7rr7jP07HIJrz/4feJdR8Payfh54rbbfWy4027Odt1CPuqCe4A4PsVPI59ZIzXH/EDwLa+NtHWLf9m1K2PmWV4owYn9CRztJ9ORwe1AHXr3p1ea/Dzx5e3t3J4T8WRCz8T2fy4fgXagffUjgnAJOOD1HGQPSARz9aAHUUUUAIeorx7x/PN4/wDG9j8PdPlZbG2YXeszxnoowQnpnBHqNzL/AHTXc/EDxfB4K8J3OrNsa5/1VrE3/LSU5wD7DBY9OFNZPwq8HzeG/Dz3+p7n13Vm+13skhy4LZIQ/TJJ/wBotyRigDuLS2hsrWK1tolighQRxxoMKqgYAH0qemrinZoAKM1zPijx74b8IxE6tqcSTYyttH88zf8AARyBxjJwPeuG/wCEw+IHjsbfCGh/2Lpr/d1TUhhmXjlFwR68gP8AUUAema3r2k+H7P7Xq+oW9nAOjSyBdx64A6sfYZPtXnE/xW1nxPM9n8PfDdxfgNtOo3imOBD9OPryQfY1c0b4MaUl6NT8U3114j1Q8tJdufKHXgLkkjnuSPYV6Ra20NpbpBbwRwwoAFjjUKqj0AHSgDyu1+EmpeIbiO++IPiG51WRW3LYWzGO3Q88cAev8IXp1NekaPoemaBZi00qwgs7cfwQxhc+57k+5rSooAQUtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUmQO4oAD29+K87+JHju40dYPDnhyM3XifU8R28ceMwK3/LRvQ+meOpPA5v8AxD8fweDbGGC0h+3a7eny7KxT5mYk4DMBztzxxyTwO5FL4deA7jQ2uPEPiGU3fifUfnuZWIbyAf4FPT0BxxwAOByAangDwRbeC9CEG4XGoXJ82+uyMtM5569do5wPqepNdcKRe9OoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkNLRQBxXjzwDbeMbSK4gmNjrdn89lfR5VkYYIBxzjI+o61keBfiLc3Oov4U8XxCw8S25CIWG1LwDjcpHG44JwOD1HcD0s1yfjfwDpXjfTxHc5tr+H5ra+jH7yJu3cbhkDj8iDg0AdYCMmkbp1HvmvJPDnxA1bwlqsXhX4igQzYxaaxu/dXCjoWb8vmOP9oA8m/wDGDxi+i6BDoelzRrquskxRt5gQQwnh5C3ReuMnGOTn5aAMey/4up8VP7QI8zwz4bcLB/duLjOcjsRlQfoq/wB6vYwRzz7mvFdG8f6B4N0S08J+CtPufEuqRqfMa0jIjklP3nZuSRn0BAAA3VcHgrx/47Bbxlrv9j6a/XS9N6svQhmBI9+S/wBKAOk8TfFvwt4cmNol0+p6lu2LaWA81t3PBb7o54Izn2Nc4B8UvHwGfL8HaPKOQMtdMp+uGB4/6Z9e9d34a8CeHfCUWNH0uKGXGDcPl5W9cseRn0BA9q6QDGaAOF8MfCbwx4blW6Nq2o6jnc15fHzG3dcgfdH1xn3rugMZpaKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikJ4zQAGuH+IHxDt/CUEdjZQ/2h4hugFtLCMFiSeAzBedv6noO5GX41+Jc1vqLeF/Btt/afiSUlCUAaO19WY9CR6HAHVvQ3vAnw4i8NTS6zq9wdT8SXeWuL2TkRk9Qme3bPU47DgAEHgHwBc2F7J4q8VSC+8UXgyzPhltARjYmOAcfKccAZA4zn0Rcjg5Pue9KuRmloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQ1j2vijRL3xBcaFbajDLqdspaW3UnKAYz7dWFReLtebw9oEt1BGJr2Vlt7KDvLO52ov58n2BrygaH/AMIF8YvBjmUyHUbSS3vZ8/6+4YuXb8XdOPYUAeu+IPDmleJ9Jk03V7Rbi2Y7h2ZGHRlPVT9PU+tfPfiv4ZXXg3XbbUtXgv8AxB4Ut/kJhmIlt4gSQrccKMn7uAfVSa+mxTZFDrtZQykYKnoaAOX8B3PhG58PxyeEEtI7HgOkK7XDYxiQH5t3u3J65PWuqBry/wAQfChrfUzr3gS/Og6v1aJOLebvgrghfpgjj7veo9G+LbabfronxA0x9C1McLcbSbaUeoIzge+SvuOlAHqtFQ208NzAlxBKksUihkkRgysD0II6ipcgkjPIoAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACjIrkviF43tvAvh0ajJD9puZZBDbW4bb5jkE8n0ABP5etePp8c/F+nCW41TR9Ont5VIjSMshibtk7juHcg9fUVLlFOxtTw9WpGUoR0j1Pf9W1Wx0bT5L7UbuG1tYuXllbAH+J9uteT3PinxR8U7qTTfBiTaT4fDbLjWZlKvJ6iPHI+g56ZK9DY0j4c6t40urfxD8QdTF5GwEttpNrIfs8ankZKnB69s5wMseler2ltDZ26W1vBHBBEoWOONQqqPQAcD6VRic/4N8DaP4I0v7JpduDKwHnXUg/ezH3OOBycAcD8TXTClooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQ9qWmsM4PpQB5rdW+qeOPGst7pepxWVh4elNvBJJai4We5YfvTjco+QYUHnBJrlPi9p2v6Ja+H/ABJqWtw6kdO1JPLEViIGQn5yc7m7xD0r1rwr4ai8KaOumW19e3NvGxZPtXlllySzcoi5ySSScnJ61U8YeCrbxrYLYajqWoQWYIYwW3lAMw6Elo2YfgR1oA6WKRZY1kQhkcBlYdCD0p9Z+iaWdG0uGw+3XV4kKhElutm8KBgLlFUHAHcZ9zWhQAhzxis7WND03X7BrHVbGC8tm/5ZzLuwfUHqDgnkcitKigDyGX4b+KPBMzXnw91tntsl30fUG3Rv3IVuBnoOdpx/FVrTPjJbWl5/ZPjbSLrw9qI+XdIheBu2QQMge+CPevUzVLUtJ0/WbNrTU7G3vLdjzFPGHXPryOvvQA/T9QstStFu7C7gurZ+VlhkDqfoQSKt5ryu9+DEFhdNf+C9d1Dw/dk5MSSM8L4zgEZBxk9yw9qrjxH8VPCMZXXfDtv4ktVHN1prbZD65ULz/wB8D60AeuUV5vpXxt8HX8ot72e50i6DbTFfQFcH/eXIA+uK7vTtW07VofP06/tbyI/x28yyD8xQBdoozRQAUUZooAKKKKACijIziigAooyKgu7y2sYGnu7mG3hUZMksgRR+J4oAnzRmvPta+M3gnRdyLqv9oTjGIrBDLu+jZCf+PVjHxz8QvFJKeFvBx0+2Y4F/qrFflI+8EOP03/SgD1aaeG3haaeVIokBZndgqqPUk9K85174zaDZ3X2DQYLjxDqbZ8uCwTcme2X5z/wEGs+H4Rar4hmS68feKrzVWGCbK1PlQK3fHQY+iqa9C0Pwzo3hu2+z6PplvZp/EY0G5/8Aebq34mgDxfxX4M+JnjuyTW9VisLWWxJex0mMjfyRuJbnnCqcFucdB34218JeL/FV3/ZEXh69scuDcXF2jIkYzzkkDd07cmvrHGK5/wAZeKLTwb4ZutZul3+XhYoQdplkPCrn+Z7AE1nOnCclJ9Drw+Nr0Kc6VN6T0Zq6Vp8Ok6TZ6bbbvItIEgj3HJ2ooUZ/AVcyOOeteaeFPCt/4o0yHXvGl5c3NxeKJodOjlaG3tkIyo2KRlsYzuz2HbNZ3jZZ/hZJYeJNDuLkaQ1ysF/pckzSRkMCd6bidh4I47kdgc69dDkWyf8AWh65RUVvIk0KyxsGjdQykDjB6VLSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApCM0tFAGZq3h/R9cjEeq6XaXqdvPhVyPpkcfWuE1D4FeELmdbjT1v9JnU7lezuTwf+BhsfgRXp1FAHlH/CuvH2k720L4j3coz8kWpReaBx03MX/RR9KGl+NelxAfZ/DusMOrKSjH8ygr1eigDyv/AITj4l2Ueb74b+cw6m1vVOfwG6o1+LPiaIutz8L9fRlOP3SvIv5+UB/OvWKKAPJv+Fxaz/0TbxH/AN+n/wDjdK3xd8QtGTB8MPEUj9g0cij8/LNer9KWgDysePviJeDFn8M5ojnA+03gA/8AHlWmpf8Axq1Eso0bw/pSn7rSyF2X/vl2H6V6tRQB5OPAvxM1aPGtfEMWgJ5XTbfaQPQMvlmprb4FeGnuftet32ra1cH7xu7o4P8A3yA3/jxr1KigDD0bwf4d8PBf7J0WztXUYEixAyY93OWP51tj6UtFABRRRQAV498ekNynhOwlOLK41PE2emeAM/gz17DXPeNPCNj418PyaVelozuEsE6DLQyDOGHr1II7gnp1oA31wowOOOleRfHq6a+0rRPCtn8+oanfoUQc/Kvy8j/edfyPpV3xB4q8b/D7woLrU9M0/WI4CsX26C4eNsHhXliKcZOM4bGSBxVvwV4Wi1LUYfHeq6tDrWp3cQ+zSQJsgtYzkbY1PII5BJweWyM5JAPQLOBbWzhtkOVijWMfQDH9KnpFHU0tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFe8toL22ltbqJJreaNkkjdcqwPBBFc/4c8DeHfDN5NNo9g1q7FgQLiVl5A/hZiP07D0rpW+8P8AdP8ASmRf62T/AHj/ACFAEifxfXFOpqfxf7xp1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/2Q==', '/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAZ4BtQMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoqrfajaaZbPdX1zDbW6felmkCKv1Jrnn+JXhBE8xtbhEOcCby38snt8+3b+tAHV0VT03VbHWLJbzTbuC7tnztlhkDqccHke9XKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBuSD260bj6V4z440+HUPjb4b0K3a5iju4mur9YbmRBKvzHBw3H+rPTHWpPiVpj/D3RLbxH4W1G/s5oLpI5bWW8lmhmRs8FXY88Dp2zQB7JRVexuPtmn21yUKedEsmw9VyAcVYoAKKKKACikz+VGeOMGgBaKTd9M+marTahZ22fPu4IiP8AnpIF/maALVFZDeKNARSza5piqvUm7QAfXmo4PGXhi5z5HiLSJdvXZfRNj8moA26KzoNd0m5JEGqWUpHBEc6MR+Rq8rhxlSD9OaAH0Umc0Z/zigBaKO1FABUc86W8Ek0rBY41Lsx6AAZJqSsfxVazX/hDW7O2GZ7iwnijA7s0bAfqaAPNvAds3xO1u98Z6+hn0+2uGg0jT5eY4QBzIV6FsEc+oJ7Lj15o0KlSo2kYwRxj0+leb/Ay5if4XWcKEebbzzxzqeCr7y2D6HDLXeavqttomk3ep3jFba1iaWQjrhRnj37Y96AIPD+iW/h3SBp1p/qVlllXgDBeRnwPpux9AK1qah3orkMpIB2t1Hsad0oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKguZJktpmgSN5gjGNZHKKWxxuIBIGepAOOuD0oA8YjbWdW/aE1y90WGwuJNLtEt1F7K6IuVUHBRWOcl+3rXUap4I1/xreWY8X31hHpNpKJhpumh2E7jp5jvjgAkYA7mofBPhDxV4Z8Ua9qt9Do1wNauxNK0V7LugXc52qDD8338dR0Feh3V5b2NrJc3lxDbwRDdJLM4RUHqSTgD3oAsKAFAAwAOAKM815jqvxo057xtN8J6Xe+I9R7C2RliHOCS2CSB6gY/wBoVR/4R34peMmZtc12Dw1YP1tNOG6XHoWBzz/vn6UAeh634t0Dw4hbWNXs7Rgu7y5JR5hHsg+Y/gK4W6+OWk3M72vhjRdW1+5AyPs9uyofzBYf981paJ8GPBukOJp7GTVLrcWabUJPNyT1+XhT+IzXd2tnbWVutvaW8VvCgwscSBFH0A4oA8uGvfF/XXP2DwzpeiW7rxLfSl3X8Ac/mlA8CfErVov+Jx8RWtCeSmnW+OPQMuw/zr1cKAKMYoA8rf4IWN8g/trxX4j1En73mXQ2np2YMe3rVq3+A/gOIDzLG6uPeS7cf+gkV6UBjtS0Aefj4JfD0DnQCT6m8n/+Lo/4Ul8PP+hf/wDJ24/+OV6BRQB53L8Dfh/IpC6PLFnul5Lx+bGs5/gF4Vjm86wv9asJBnabe6Xj8ShP616rSUAeUn4V+J9PkEmi/ErWIgB8sN4DMpP4uB/47Tfs/wAaNEDtHd6Fr6D7qOgicj8BGB+Zr1jGKMUAeUH4ta/oe8eK/AWqWcUS5e6s/wB9H+fC4/4Ga6PQ/ix4L15ljt9bggnbH7m7BhbJ7ZbAJ+hNdptFc1rvw+8KeJA51PQ7SSV+s0aeXIT/AL64J/E0AdGsgYAqQQRng07rXksnwl1jw87S+BPF97p2MkWV23mwkk5+g/FWNN/4WT4v8IHy/HXhWSS0B/5CemDdHjplgTgZ68lfpQB183w/sYdZuNW0TUNQ0O8ujuuPsLJ5U7f3mjdWUn3wOp9Tlk/gCPU3jOva/rGqxowf7PLKkMBIOQSkSJnkd60vDvjPw/4rh8zRdTguWHLRZ2yL9UOGH1xj0NbuaAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUmT2FAC1XnnhtYZZ7iVIYowXeSVgqoo6sSTgDiuU8afEnR/BqpbyB73VpsCDTrc5kcnpu/ugnA5GT2Brj4PBXi34jzx6h47vX03SAweHRbRtpPp5h7Hp1y3J+5QBd1j4uPqF/Jo3gDSZde1LobgKRbxc43E8bh2ySq8g5PSvL/FGl+IfEviJNCvdak8QeJWYmS0tTtstPGMEseAWAPOAMHqWPFd3qOvtfTnwB8KrS3t0UFb3U4BiGBDwSG5y3q/J4+XJ5HoXgnwJpHgfSvstghkuJMG4u5APMmb39AOyjge5ySAfOnjv4Ran4JtbXUWuft2nMFW6nhi5t5OhyM8r6Nkehxxltj8Pb+1sYdUn8Ot4j0eZA0d3ot4dxHQ/KVLZHcFBggjjt9YXFrBdW8lvcRJLDKpSSORQyup6gg9RXi99Y6p8E9bk1TTEnvvBN5KDdWm7c9mxIAYE/kCeDwrHO1qAOU0bR/gzqk32e6udZ0m6B2mLUJQgB7/ADgFR+JFd7a/An4f31ulxZ3F7cQPyssV4rqfoQMGu4l0/wALeO9It7+axsdVtJ48wzNGGbHorfeUjBB5BBGK427+CdlYzSXnhDxBqugXRwQsczPF9CMhj+LH6UAA/Z+8En/oJD/t5H/xNL/wz74J/wCol/4Ej/4mov7Q+LnhRh9s0+w8U2K5Jktm8ufH0AHP0VvrV3S/jh4amuDZa3b32g3ykBob2BsA+mVGR/wICgCD/hn3wT/1Ev8AwJH/AMTR/wAM++Cf+ol/4Ej/AOJr0fTtVsNWthc6de215Af+WlvKJF/MGrgbNAHln/DPvgn/AKiX/gSP/iaP+GffBP8A1Ev/AAJH/wATXqlFAHlf/DPvgn/qJf8AgSP/AImj/hn3wT/1Ev8AwJH/AMTXqlFAHlf/AAz74J/6iX/gSP8A4mj/AIZ98E/9RL/wJH/xNeqUUAeV/wDDPvgn/qJf+BI/+Jo/4Z98E/8AUS/8CR/8TXqlFAHlf/DPvgrsdTH/AG8j/wCJpp/Z/wDBQOP+JkB/18j/AOJr1auP+I/i9fBvhWe8jw+oTnyLGLqWlPfHcAZJ/AdSKAPnL4haLo3hrxPLbeEjegaXt+13Zm3bJmPCBgAAR065yG/umu58GfFjxhp2iG91vTZdc0i2cxXFzCMXNqR/z0HcY7kAf7Wcim+LfBLeFfgTJJeENrF1eQ3l/K3LF2JATP8As7vz3HvW9rW74Y/Eu28Squzw54hKwaiqjCwz4zvIHHq3frJ7UAeleGvGGh+LrL7Tol/FcKozJFnbJH2wyHkd+cYOOK3Qa818T/CXT9QvBrXha6k0HW0JdJrU7YpD1+ZR0znqMdTkGqOj/E7U/Dd/FoXxGshY3LHbb6rEube47ZJHA7ZI4GeQuKAPWaKihnjnhjlikSSORQyOjAhgRkEEcEVLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVXvL620+0lu7yeOC3hUtJLKwVVHuTwKAJWfaTnAA6knFeUa98Q9V8VarL4Z+HcazzKdt3qz/AOot1PBKnv3+bnodobqM281PXPjPqUunaM8umeDIX2XV6RtkvMH7oB7HsMcdW6ha9O0vStC8D+HTb2iQ6fp1speSWRgMnoWdj1J45PsOOBQBg+DfhxpHgtJNTupft+tuDJc6ldN8wJyW25+6OuTnJ7k1yuueJtY+KWqy+GvBkj22hxnbqGs7WAcd0T2OSMDlunC5Jgu77WfjTqUmnaS0+m+CoHxc3eMSXhHOAD+gPTq2ThR65ouhab4f0qHTdLtI7a1iHyonc4wST3J7k9aAKvhbwrpXhDRYtL0mHy4l+Z3bl5XxyzHuTx7DAAwBW3RRQAVFcW0N1by29xEksMqlJI3GVYEYII71LRQB4he2OqfBLW5NU0uOe+8E3koN1aBtzWbnADDP5A9DwrHO017BperWWtaXb6lp06XNpcLvikTuP6Hggg9DxVq4tobq3lt7iJJYZVKSRuMqwIwQR3rxW9sdU+CWtyappcc994JvJQbq0Dbms3OAGGfyB6HhWOdpoA9uAGPX61S1PRtM1q3+z6pYW17DnOy4iVwD6jI60aXq9lrWl2+padOlzaXCb4pEPDD09iMEEHoeKvUAeXah8ENA+1fbPDl9qPh+9UHbJZ3DFQT7E7h9AwFVDB8XvCeRDcad4rslIwJV8udVH5cn3L165ik2g9aAPLbP436XbXKWfinRdU8O3TDOLmFnjx7HAY/ULj3r0DSPEWj6/C0uk6naXqLjd5EoYpn+8ByPxq1eafZ6javbX1rBdW7jDRTxh1b6g8GuA1f4KeE76f7XpqXWi3wYuk1hKVCt7KcgD2XbQB6PmlByAa8jGh/FrwmAdJ1208TWcfS31Bdkp/4ETk/i/wCFTQ/Gg6VOLXxn4Y1LQ5d2wT7DLCx7kEAH/vnd9aAPVqKw9C8Y+HfEqKdH1e0unZd/lK+JAPdD8w/EVt5oAWiiigBruI1ZmZQo5JJwAMd68b0EN8UPifN4lmUt4d0BvI01CPlmnznf/Jv+/foa1/i34iu/s9n4L0Nt2ta63lEKeYoCcMxx0BwRn0DntXb+GPDln4V8OWWjWI/dW0eC+MGRzyzn3Jyf06UAcf8AHKPf8KdSbsksDcjr+8Uf1ro9Y0C18WeBm0m+Py3VquJCMlHCgq49w2DisL42pn4R6yQfumA/+R4x/Wut8N5k8LaQ7MWZrKEknudgoA4f4SeIrqXTrvwjrh2a1oLeQys3MkIOEbPcD7ufTae9d5rOhaZ4g02TT9Wsoru1k6pIOh9QeoPuOa81+KWnXXhbXdP+I+jxMZbNlg1OJePPgPAJ+n3ec9UP8Nen6ZqVrq2mW2o2MoltLmJZY3HdSM/5FAHkNxpnif4OzNdaTJNrng7JaeykOZrRc5LA+nfI4PO4D71eoeGvFGleLNJTUdJuBLEeHU8PG3dWHY/5FbO0ZzXk/in4f6j4b1VvFvw8K2t8p3XelqP3N0ueQq9Mn+7x/s4bqAes0VyHgX4gab42013hBtdQtwFu7KXh4m9fdc55/PHSuvoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiop5lt4ZJpGRI41Lu7nCqByST2GO/tQBHf39tpllNe3txHBbQKXklkOAoHXNeOiPVPjZq3mv52neB7SX5FwVkv3B/Qe/Qe5zhLia8+NfiNrS3eW28EabL+9lA2teyjsPbB49AcnkgD0rV9a0LwH4Z8+52WlhaRiKCCMfM+BgIg7scfzJ4yaALN1c6L4P8OebM0On6XZRgDA2qg6AADkk9OOSfrXlcFtrPxq1Rby+WfS/BFvJ+5ts7ZL0g8E+3qeg6Lk5YS6P4d1j4sarB4j8WxtaeHYm36dpAOPNXs7+xHc8nthSM+yRQRQQxwxRrHFGoVEQYVQBgADsKAIbDT7TTbGCzsYEgtoECRRRjCqPYVaoooAKKKKACiiigAqK4tobq3lt7iJJYZVKSRuMqwIwQR3qWigDxC9sdU+CWtyappcc994JvJQbq0Dbms3OAGGfyB6HhWOdpr2HS9Xsta0u31LTp0ubS4TfFIh4YensRggg9DxVm4tobq3lt7iJJYZVKSRuMqwIwQR3rxW9sdU+CWtyappcc994JvJQbq0Dbms3OAGGfyB6HhWOdpoA9voqjper2WtaXb6lp06XNpcJvikQ8MPT2IwQQeh4q9QAUmKWigBNopksEU8TRTRpJGwwyOoII9wakooA8+134M+C9aYyx6cdNuOom09vKwR0+XBX9M1ijwb8S/DBLeHPF0er2oyRaaspLY7KGOf5r+Fet4pNo/wA96APJR8XdZ8O7Y/HHgy/08LhWvLMeZCSfTJx+Tsa6m3+Kvgy70m51G2122dLeNpGhY+XMcDOFRsFiegx3rryoIIIBB4OR1FeDeM/DGieNPirZeF9E023tVs1abWL61QKQDglMD5d3QZIJ3N/smgDpPhXpN1r2pah8Rddixe6mzJYRN0gtxxkfXG3OBwued5r1gdBXkQ+HHjXwwi/8Ib4zkktkI2WGqJuRVHYHBA/BVp//AAs3xh4Z+Xxl4JuPs6Al7/Sz5kYGeCVyQPxcfSgDoPjFD5/wo15ScAJG/wD3zKjf0rb8DsW+H/htiSSdLtSSe/7pa8/8X/Ejwj4v+Gmu21hq6R3T2u5ba4BikLAhgAD948fw5ruvAB/4t14bOf8AmGW//otaANu+srfUbG4s7qMS288bRyIw4ZWGCD+Bryz4b3dx4K8Xaj8OtTlJhBa60iVz/rIjklQfXAJ+qv7V656etec/Fvwvc6po1v4g0fKa3obfabdkHzSIMF09+m4DnoR/FQB6OOlIVBrn/Bniq38YeFrLWLfarypiaIH/AFco4dfz6H0IPeuhoA8z8ffDy5udQj8V+D5BY+JbQ+YQmFW7A6hu24g4yeCDg8cjX+H/AMQrXxpp8kUsYstZtPkvbJ+GRhwWUHnbnj1B4PYntNoyT69a8y+IfgW9a/Txl4RAt/Edl87og4vEAOVI7tjj3HHpgA9OHTnrRXKeBPHFj440EXluBDeQ4jvLQ/ehk+n9084Pf6ggdXQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJmjNcV8TGvofDscul6ld2WpS3UFpbeS4Cs8sqL8wI54zWd8KfEmpavpeq6Lr1w8mtaRePbzyEAM6knaePcMPoBQB6Nn0FLXAeF7S8u/F/iIPreqTadptzFb28TzjaX8pWkDYGSAWHGa7+gBu7nHFeP+NdXvfiJ4pPgLw7Oy6dCd2tX0XIUA/wCrB7+mO546Bq6D4oeMrrQrG30LRF83xFrDeTaxofmjU/KZPb0GeM5PO01hrfaP8FPB9vpkS/2n4lvzv8mLLSXMx43HuEB+Udz2BJNAHUa5r3h34UeELaBY1jjjQxWVlH/rLh+/6nLMfXuSAeX8M+C9W8a61F4w8eKCq/Np2jtnZbqTkF1PfocHrxu9KueDfh9f3es/8Jj45YXeuyYaC1ODHZAH5QAONwHT068nmvUAowMUAAQAADgDoBTgMDFFFABRRRQAUUUUAFFFFABRRRQAVFcW0N1by29xEksMqlJI3GVYEYII71LRQB4he2OqfBLW5NU0uOe+8E3koN1aBtzWbnADDP5A9DwrHO017Dper2WtaXb6lp06XNpcJvikQ8MPT2IwQQeh4qzcW0N1by29xEksMqlJI3GVYEYII714re2OqfBLW5NU0uOe+8E3koN1aBtzWbnADDP5A9DwrHO00Ae30VR0vV7LWtLt9S06dLm0uE3xSIeGHp7EYIIPQ8VeoAKKKKACiimsSB1A9zQBy3xC8Xx+C/Cd1qeFa6b9zaRH/lpK2cfgOSfYVm/CzwhL4a8Nvd6kGbW9Vf7XfSP98M3IQ/TJJ9ya5bT8/FP4pyaq48zwx4cfy7UH7lzc5zu9xkA/RU4+Y17LjI6mgACjA7/WjaM0tFAHnfxN8E+G77wdrmqS6ParqFvaS3CXMUYjkLqhILFcbunfNcX4P+H3iaLwfpOs+E/Gl1Yy3NqJTY3I8yAuRzjqB/3yT716t49UP8PPEoJ4/su5PH/XJqyvhGQ3wq0Aqc/uGGf+BtQBzf8AwnHxF8KjHijwcup2qtj7bpT5O3uxXn9Qgrd0P4weC9eZYhqn2C4PWC/XySO2C33Pw3V3uBWFrvgrw14lU/2vo1rdSEbfOZMSgf74w360AeaaXLH8NPiibKN4x4W8UMJbR0OY4J8/dBHGMnHphk5+U17QD/8ArrxTxH8ALSSymXw5rF5bEOZksrlvMhZwDjB4KnnG47qzPB3xR+IH2a4juvDn9ux6a4t7oQnZdxNyPmUZJ6Hnb1B5oA9/pu0E5JNedaL8bPCGpyC3vZ59IuwdrQ38RQA9/mGQP+BEV6Ba3trfW63Fpcw3EDjKyxOHVvoRwaAPKPHmgX3grxF/wsTwvDuCnGsWKjCzR5y0mB34BJ9cN616VoOvWPiPRbXVdNk8y1uE3KT1U9CpHYg5B+laDxpKjo6hkcFWVuQQexFeM27N8G/HgtGLjwbrkpMRY8WU3oSeg6DnqvPO05APagcgGim7uOOf606gAoqrfNefZJPsH2c3I+55+dnvnHPSuA+GXxOuPHN9qdneWEFpLaJHJH5Tk+YjZyef+An8aAPSaKyvEOu2/hvQrvVboFkgTKxr96VzwqL7liB+Nch8NvHWu+PLSbUZdPsLSwgnMDhXdpGYKG47Y+Zf1oA9EooooAKKKKACiiigAooooA4vxl/pnirwZpPaTUXvWHtBEzD/AMeZK5fX/wDii/jhpWuLhNO8RR/Ybo9hMMBSew/5Z8/71dDcjW5vibb6m3hu/fTLSzls4pRPbcyPIpMgUy527UHbd7dqn+J/hSXxf4Ku7G0TfqEJW4tOQP3i9gTwMgsM570AHwzxceG7zVh/zFNTu7wZ/umUqv8A46gro9b1m08P6Nd6rqEnl2trGZHb19APcnAHuRVTwhpT6F4P0fS5ECS21pFHKAR98KN/I4+9mvOvHksvxA+IOn+AbKVxptmReaxIjdQMYT8iPxcHHy0AcXpfi64XXZ/Fk1mdS8ZayTFpGmL8wsoCMB2x044A4JAZiQHzXp/gP4cvo99J4l8S3P8AaXie6+aSeQhlg7EJwOcYGewAAwK8r8W/DHxV4M1yTWfDt1dz2czsFbT5niuIkJGI8ckjoBjOcDgVp+E7WHxcVtrb4r+J7XUejWN1NJHLu/2f3mG6HofrigD6G460Zryv/hUuv9f+Fn+Jv+/8n/xygfCXXyM/8LO8Tf8Af+T/AOOUAeqZozXlf/CpNf8A+in+Jv8Av/J/8co/4VJr/wD0U/xN/wB/5P8A45QB6pmjNeV/8Kk1/wD6Kf4m/wC/8n/xyj/hUmv/APRT/E3/AH/k/wDjlAHqmaM15X/wqTX/APop/ib/AL/yf/HKP+FSa/8A9FP8Tf8Af+T/AOOUAeqZozXlf/CpNf8A+in+Jv8Av/J/8co/4VJr/wD0U/xN/wB/5P8A45QB6pmjNeV/8Kk1/wD6Kf4m/wC/8n/xyj/hUmv/APRT/E3/AH/k/wDjlAHqmaM15X/wqTX/APop/ib/AL/yf/HKP+FSa/8A9FP8Tf8Af+T/AOOUAeqZqK4t4Lq3lt7iJJYZVKSRuAVYEYII715h/wAKk1//AKKf4m/7/wAn/wAco/4VJr//AEU/xN/3/k/+OUAYt9Zan8Etbk1PS0nvvBV7KDdWgbLWbnADAn8gT14Vjnaa9g0rV7LW9Mg1LTbmO5s7hd8UsZ6jvx1BB4IPII554rzab4PazcQSQT/EnxFNDKpWSOSV2VgRgggvgjHY1594q8CeI/hikE+n+I9aPhp5R9qk0+Ront2PG5kDYIIxg5AJ4OOCQD6YDAgGjNePaZ8O9S1rTLfUtN+K3iS5tLhN8UiXMhDD/vvgjBBB6Hirv/Cpdf8A+in+Jv8Av/J/8coA9UzXm3xc8T3dnplr4W0XL65rr/Z4kU8xxE4Zj6Z6Z7Dcc/LWTqfw31XSNNudQvfip4litraMyyubiTAUDP8Az06+1cj4B+HOueNbY+LL3xVrFlMXaOxuTIz3DRDIJ37sgcsMA9j60Ae4eEfDFn4S8MWWj2gBEKZkk6GWQ/eY/U9uwwO1buRXln/Cpdf/AOin+Jv+/wDJ/wDHKT/hUmv/APRT/E3/AH/k/wDjlAHqmaM15X/wqTX/APop/ib/AL/yf/HKP+FSa/8A9FP8Tf8Af+T/AOOUAd34sjW58Ha5A2dsmn3CNjrgxsP61zHwTb/i0ehj/rv/AOj5KwtR+FGuJply0vxI8RzRrC5aN5nKuMHg/P0PSub+Gnw/1XX/AALY6haeO9a0yGQyj7JaSuI4yHYcAMBk4B/GgD6BzRmvK/8AhUuv/wDRTvE3/f8Ak/8AjlH/AAqTX/8Aop/ib/v/ACf/ABygD1PA9cfSvHvG0Mnw5+IVn45so2XR9RItdYijXgEniTHrxnI6lSM/Oavf8Kk1/wD6Kf4m/wC/8n/xyq978GNU1G0e0vfiHr11bvjfFO7Oj4PcF/UD8qAPRdU0DQfFFoh1LTrPUYHTMckkYchSOqN1H1BFcHdfBKwsrlr3wjruqeH7o/wwzM8ZwcgEZDEfViPauD8G+GNevtf1XwjfeOte0q/0ohYLeC5fy5YQBhkG8YGNpx6MPfHd/wDCpdf7/E7xL/3/AHP/ALPQBCL34u+ElP2qy0/xTZIc77c7J9vbgAforfU1Q1v4j+EfGOi3XhrxXZ3/AIfvJFBAvrcsIZeqspAyMf7SqCCfU1q/8Kk1/wD6Kf4m/wC/8n/xyqmofA+91eBYdS8fa1exK24Jc5kUH1wzkZoAtfBnxk2q6XP4X1C7in1PSD5aSxSB1ngBwrq38QBwM+hX1NeqjoK+ZPGnwuuvhraW+v6JrNzPJasJJW8sReWu9VByG5yzgY7jPpX0N4b1X+2vDGl6n5iv9qtI5WZf7xUFv1yMe1AFfxnqH9k+Ctbvw2GhspWQ/wC3tO39cV5hoOnnwd8YvDlmV2LqXh2O1kJ6GWNec+/7of8AfWK6r4r63pcGhQ6Fd6jaW82o3lrG6STKrJB5wLyEE5CYRhnpWR8U7HUNYvfBet+F5YprwXphtp4mDoRIu4MSOCoEZORkdfxAJ/GGof2zNrd+Wzo/he2mZP7s+oeWdo9xHkf8Cb2q/wDBLTvsHwt0xiuHumluG98uQD/3yFrnfihdaP4Q+Es3hOz1CBr9xFGYjKPPky4eSVlzn5sHJ/2q9E8EPp48FaPb6deW91DbWkUDSW8quu9VAbJBxnOaAOiAwAKKB0FFABRRRQAUUUUAFFFFACYoKgjnP50tFAGF4v8AEcHhTwvf6zcAMLeP92n/AD0kPCL+JI/yK5X4QeHJtN8MS63qRMmr65L9suXb721vmQH04Jb/AIF7Csfx+D44+JuieBYmZrCz/wCJhqm09h0U9xwQP+2o9K9dCgAY6dhQBHNbRXEDwzIJI3XaytzkVwfif4e+HvEsi2Wtwbb1/wDj11ODEcz4H3XOMM2B/F1AJGCDXoVQ3FrDdwPBOgeN+oP5g56gggEEcjAxQB5EW+JPw2G52Pi7QU6nDC6iX17k/wDj4/3a7Xwr8SPDXjBQmnXojvMfNZ3IEco9cDOGx/sk1uWtxLbXAsrw5Y8QT9POA5wcdHA6juOR3C854u+F/hzxcxuZrdrLUgdy39nhJd3Ytx8348+4oA7MHP8ADj60uPavHW1H4kfDYganEfFmgJ/y9Qg/aol9WHJ6ZPO4f7QruvCnxC8OeMIl/sm/Q3G3LWsx2TL9VJ5HuMigDqMCjAoBzS0AJgUYFLRQAmBRgUtFACYFGBS0UAJgUYFLRQAmBRgUtFACYFRXFpBd28tvcRJLBMpSSN1BV1IwQQeoIqaigDxG9sdU+Cetyappcc194JvZQbu0By1m5wAw/kD0OArHO016/pWq2Wt6Zb6lps8dxZ3C7opE6Ef4jkEdiCKtXFtDdW8tvcRJLDKpSSNxlWBGCCO9eF65Dq/wM1GfUdC23nhbUnZfsM7n/RrgqSuO5Hy9R1UbTyFagDa+I13ceN/GNh8OtLkYW67bvWJk/gjBBCH8weRyzR9Oa9XsrK20+xgs7SJYbaCNY4o06IoGAB+Arzv4NaEtp4XfxDdXMd5q2vObq4uFfdjk4TI7jLE+hJHavTB0oATAowKWigBMCjApaKAILqNZLSZG6MhB+mK85+AxVvhbaBTytxMD7Hd/ga9LYBgQehBB+leVfs+Or/DVwp5S/lBHodqH+tAHq2B6UYFLRQAmBQVBpaKAPKfi1o13ptzp/j/Q1xqejOPtK44mtycHI9skH/ZZjngV6HoWtWfiHQ7PVrFs211EJEzjK56g+4OQfcGr80EVzC8MyLJFIpR0YZDAjBBFeQ+B5ZPh38Q77wHeOw0q/Y3ejyOcjnqmfXAx9V/2qAPYQBjpRgelKOlQzzJbwSzSsFjjUszegAzmgDgPilGt78OPFchQsiRxxrg8Hy3Vt34MSP8AgNcr8CtcutP8zwhqZIZ7aPUtPJPDRSKGZQfbIOPXf6V3njS2cfCbXUdBHK2nTTSr1w5Uu36k15jrFvcaZ8PfAXxB05N13o0MEVyU48y3I27T7dU/7aGgD6AxkHk80Y61WsL+31LTra/tZA9vcxLNG/qrDIP5VaoATH1pcUUUAFFFFABRRRQAUUUUAFFFFABVa+vIdPsbm8uHCQW8TSyMeyqMk/kDVmvNfjZqtxZ+CF0mxBa+1q5SxiRThirHLY9c4C/8DoAo/Bmzm1SLXPHF+uLrW7pvK77IUYjAPXGcrj/pmK9YrN0DR4dA8P6fpMGPLs4EhBAxuIGC31JyfxrSoAKKKKAILq2iu4GhnXcje5BBHIII5BB5BHINVbW5liuBYXrZmxmGboJ1A546Bx3HfqOMhdHFVry0ivLdopAcZyrL1VuxB7EUAWNoI56elcJ4s+FPh/xPOb+FH0vVlbel9ZHYxf1YDgnPfr711lpdTLIbO6x9oQZV8YEq8fMPfsR6+xBq/j1oA8ePiD4g/DdgniO0bxLoK8f2haKfPiUd3H0H8Xr96u/8MeOfD3i+3Emj6jFLIBl7dvllT6oece/T3roiqkcivPvFHwk0TXLv+0tNeTQ9YVi6Xlh8mW9WUYyeeowfc0Aeg5z6Ypa8eHi/x18O3EXjHTzrmirwurWK/Og7bxwPTrj/AHmr0Tw54w0HxZamfRdRhuQoBePlZE/3kOCPr37UAbtFN3U6gAooooAKKKKACiiigAooooAaWIOOK8aKj4s/FJt4Wbwp4cYjaeUurjv9Rke42r/tmuk+LPiq40jRIdD0jdJrmtv9ltUjPzKpIDN7HnAPqc/wmug8EeE7bwZ4UtNHtyryIN88oGPNlP3m+nYewFAHmd7Y6p8E9bk1TS4573wTeyj7XaA5azY8AjP5A98BWOdpr2HS9Xsta0u31LTp0ubS4TfFIh+8P6EYIIPQ8VZuLaG6t5be4iSWGVSkkbjKsCMEEd+K8VvbHVPglrcmqaXHPfeCbyUG6tA25rNzgBhn8geh4VjnaaAPb6Ko6Xq9lrWl2+padOlzaXCb4pEPDD09iMEEHoeKvUAFFFFADSPXp/SvKfgGqR+ENbiQAKmtTgAdh5cWP5V6ua8u+CmxbHxVCnGzXp8AdhhQP5UAepUUUUAFFFFABXBfFXwlL4n8NC504sutaW/2qxeP75YclAe2dox/tKtd7SFQaAOV+H3jCPxr4RtdUAVbofuruJf4JVHzfgeGHswFbmpMGjhtSRm5lEeCMgryzA+xVWH415TeA/Cz4rpfL+78M+JW2T9lguM53e3JJ+jN/dFeq7hPrYX5sW0G7kfKS7EfmNh/BqAM7xyhl+H/AIjRVLMdLucKOpPlNiuZ+G1ja+IvghpunXKH7PdWk1tIO/8ArHXI9+Miu212L7R4e1GHcB5lrKm7sMoea4z4Hvv+EukDdnY84+n75z/WgCl8FdTuV0DUfC2oN/p+gXb2zDnJjJO08+4cD2Ar1GvI9Rx4R/aBsbz7lj4mtfs0jE8eeuAMD14jH/AzXrlABRRRQAUUUUAFFFFABRRRQAUUUUAFeSa+B4n/AGgdD0rKyWugWjX0y4+7KxGP1MJr1omvJ/hV/wATvxp448VOVkE9/wDYraQD/lmmePoV8r8qAPWR0FFFFABRRRQAUYoooAq3lol5AY3ZkIO5JE+9G3Zl9x/9Y5BNQ2d/I0z2d2gju0GQR92ZOPnX25wR1B9iCb+Kq3lml5EFLtHIjbopUxujbH3h+ZB7EEg8GgC3SbQevIqnZ3cjsba6CpdxrlgudrjpuX29uo6H1N0dKAGlQcg8g8Y7V514k+EOk6nff2r4fuZvD+sLkrcWJKoW90GPzUj3zXo9JgUAePJ488Z+AZRb+PNKOo6YCFXWNPQED03jgd+4U/WvStA8U6N4nsvtWjahDdxj7wQ/OnsynBU/UVqvEkisrAFWBBBGcg9vevNtf+D+nTah/a/hW9m8Oasv3XtPlhbvgoMYBx/Dx6g0Ael5+lLXkEPxF8UeCJ1sviHpDSWpOyPWbBN0be7gYH6KfRTXpei+ItJ8R2IvdHv4Ly34y0bcqT2YdVPsQKANSikByKWgAooooAKq399Bp1jcXt1MkNtbxtJLI/RVAyTVjdjr0ryX4m6hdeLvElh8ONHlZTOVuNWnTkQwjBCn9G5xklBn5jQAz4cWd1408Xah8RtVhZYmLWukQSDPlRDILfXkj3LP7V6/2qpp+m2ul6bbafZxCK1to1jiQdlAwKt0AFRXFtDdW8tvcRJLDKpSSNxlWBGCCO9S0UAeIXtjqnwS1uTVNLjnvvBN5KDdWgbc1m5wAwz+QPQ8KxztNew6Xq9lrWl2+padOlzaXCb4pEPDD09iMEEHoeKs3FtDdW8tvcRJLDKpSSNxlWBGCCO9eK3tjqnwS1uTVNLjnvvBN5KDdWgbc1m5wAwz+QPQ8KxztNAHt9FUdL1ey1rS7fUtOnS5tLhN8UiHhh6exGCCD0PFXqAENeW/B94xqnjq3Xgx69M2PQFiB/6Ca9Tryf4RyofGXxHgA+ZNadj9DJKB/wCgmgD1iiiigAooooAKKKKAOe8a+Frbxj4VvdGuMK0yboZSM+VKOVb6Z6+xI71ynwe8SS6po17pGqMy67pkwhuldsllACIw/BcH1Iz/ABCu/wBTnkt9OuJIdvnhdkIboZDwg/FiteUePtMf4f8AibSfHujwv9jjCWOqwx874uFVj74CjPqEoA9euYxLayxlQweNlIPfI6V5r8A5hJ8L4FCkeVdTISe/zZz+v6V6PZ3kF/Zw3lrIsltPGskUinhlIyD+VeX/ALPyvD4H1O0aTeLfVpolOMcBI/6kn8aALPxysJm8GW+u2mFvdEvYrqOTGSATtOPxKH/gNei6ZqEWq6VaajbnMN1CkyE/3WUMP0NVPEulrrfhjVdLIH+lWskS57MykA/gcGuR+CerHVfhhp0bvulsme0fPba2VH4IyUAeiUUUUAFFFFABRRRQAUUUUAFFFFAGZ4h1D+yfDmqaljP2S0lnA9dqE/0ri/gfp4sfhbpzldsl3JLcP75cqD/3yoq78Yb17H4V67IhwzxpD+DyKp/Qmt3wXYnTvA+g2bgB4tPgVwP72wZ/XNAG7RRRQAUUUUAFFFFABRiiigCre2Yuo12uY5kO6KReqN/ge470yyvWmZ7e4VUu4ceYg6EHo6/7J/QgjqDV2qN9ZfadkkbGK4iOYpQM7c9QR3U9x9D1ANAF6iqNlfm5Rkmi8i6iwJYd27GejA91ODg8dD0IIF4HIyKACkwP/wBVLRQBHLbwzxPFNGkkbja6OoKsPQjvXmes/B+CHUH1jwXqk/h3VOTsgJ8iTnO0r/CCe3K/7NeoUmBQB5HafE/XvCF0mn/EbRnhQtsi1eyTfDJ7sB64J45/2RXpula3puuWSXmlX0F5bN0khcMAfQ9wfY1aubS3vLaS2uoY54JAVkilUMrg9iDwRXmGrfCF9Ov5dW8B6vPoN+3LW+4tbS9flK84GexDAdlFAHqoORmivJbH4sap4auk0v4i6JLp0pO2PUbaMvBLjvgZ5xgnaT1+6K9N0/VbHVrOO80+7gurV/uywuHU+2R/ntQBmeMvE9r4P8M3us3RU+Uu2GPPMsh+6v59fQAntXLfCTwtdabpNz4j1rc+u64/2mZnHzRoclVx2POSPcDtWHe/8XV+Ki6ep8zwx4bbdcd1ubjOMe4yCPor/wB4V7IAO3Q0AKOlFFFABRRRQAVFcW0N1by29xEksMqlJI3GVYEYII71LRQB4he2OqfBLW5NU0uOe+8E3koN1aBtzWbnADDP5A9DwrHO017Dper2WtaXb6lp06XNpcJvikQ8MPT2IwQQeh4qzcW0N1by29xEksMqlJI3GVYEYII714rfWOqfBLW5NU0tJ77wReyg3doDl7Nycbhn8ACT83CtyFagD2+vKPhkVT4n/ElAMZvYWwB7y5/nWDqv7R9pb6uYtM0NrvT0cqZ5JjG0gzjcq7Tgdxnn1ArQ+EevWniL4heNdUs0dIL0W0qq4AK8MCDjvmgD2UdKKKKACikyeeKTccZ4oAdRQOlFAFC9/fXlpbAjBczOCM5VOn/j5Q/hS6nptrq+l3OnXsQltbmNopEPcEYP49x7022LTatfSnfsjCQIpHBIG9mH13gf8Aq/gdaAPJfhbqV14Z1rUvhxrUmZ7Jmm02ZhxPAeSB9M7sDPVxxtqx8Ff3Nv4ttRHs8nXp+Ow6DH4bal+Lvh26ks7Txfoo261oTCYFRkywA5ZTjk45OM9C/rWR8CNXGs3HjG8X92lzqX2sQsclBIXPP5AfhQB7Jj868p+E5OmeLPHnh4qqR2+p/aYVB/hkLY/RU/OvV+1eVaYj6b+0frce7EWp6Qk4XHBZSig/8Ajj/maAPVR0ooHSigAooooAKKKKACiiigAooooA8q+P00i/DyK2iUs93qMMIAxycOwH5rXqccaxRJGowqKFH0FeW/G3ZLZ+FbVwSJddgyPbDA/wA69UHQUAFFFFABRRRQAUUUUAFFFFABSbRmlooApXlo0wV4JPKuIsmNyCRz1DD+JT3H0OQQCFsr77UGR4jDcRkLLExyV9CD3U9iOPoQQLmKoXti0rLcWziO8jGEc5KsO6uB1B/Q9KAL4ORmiqlnfLdxMdpSWNtksTdUb0P6EHuCDVsdKACiiigApCM0tFAFa90+01KzktL22iubaUYeKZA6sPcHrXg/xD8LQ/Dq6tJ/BOsalp2o6xP9nj0qByyy5GNw5yMEgDO45YYxjI96urqGztZrm4lSKCFGeSRjwigZJP0FeS+Abebx/wCOb74g6jEVsbctaaPC4xgDOX+oBP8AwJm9KAMrwB4usvhnYx+FfF2iXOizvI8hvivmRXDEj5sr6Davy7gMc4r2yzv7XULSO7s7mG4tpBlJonDqw+o4puoaXYatZPZahaQ3dtJ96KdA6n8/59q8wuvhXq/ha6k1H4da7NYEtufS7tzJBL7ZOcHA/iBPP3hQB62OlFeWaP8AGFbK9TSPHelTaBqfQTMhNvJzjIPJAz35UY+9XplvdwXdvHcW08M0Ei70kjcMrL6gjt70AT0UdqKACiiigArL8RaUdb8O6npaymJry1kgEn9wspXP61qVVv722060e6u5RFAh+ZypOPTgZoA+GtX0bUND1GWx1S0mtbqMkNHIhHfGRnqDg4I4Neyfs4kweIdbt22sz2cUgKuG4DdOO/zDjtXsln4m8J+KpvsVreWmos4aMx+WXXBX5lORjBHUV4YmpL8IvjJrKabp09xokcafaI+XeKFxG24Mf7rsAM9c4Jyc0AfTI6DFLVDS9Xsta0u31LTp0ubS4TfFIn8Q/oRggg9DxV+gDA8Zubfwjqd6t5c2rWdvJcrJbvtbKISB0PBrmvhH/amqeDrHX9Y1e/u7q6EmI5ZB5aqHKg7QBz8tO+Neo/2f8LNWAbElwY4FHrucZ/8AHQ1dH4MsBpHgjRLEgK0NjCH/AN7aCx/PNAG/TJJFijZ5GCqoJJPYDmmpOkoJR0YA4JU5Aqnq/wC8shagBjdOsO3puUn5/wAdgY/hQBLpqOLCJpEMckuZXQnJRmJYj8CcVcoHSigBrIrqVYBlIwQRkGvn74f6tZeBvjN4i8LmJYLHUbryrdieI2Us0SfQhyvrnbX0HXz7q/hD/hKviF8Q9Ot5AupwfZb2xYNgiRUBxnsCH257Eg9hQB9BV5R4hWS1/aN8KXC/6u602aBht67Vmb+ZX8q6P4Z+MT4v8JxTXHy6pZn7NfRsNrCRR97H+0OcdjkdqwPHpWD4wfD2YsVZ5LmMnPsoA/8AHjQB6n2ooHTmigAooooAKKKKACiiigAooooA8w+Lv/IQ8Djt/wAJBAD+Yr0+vLPjZtitPClyzlRFr0GT6DDHP6V6mOlABRRRQAUUUUAFFFFABRRRQAUUUUAFJgGlooAoXdtI0hubVlW7TgbiQsijnY3HT3HTqM8gyWV/HewF1V0dTtkicYaNhyVIBPOCPY5yMirJUZzk5+tZ97aOLgXlnsS6RQhDHCTR5zsf6c4PO0knkFgQDSHIBoqta3aXcAkjBUg4ZHGGRh1BHY1ZoAKTJ9qWsTxX4js/Cnhy91i8PyW65RO8jnhVH1OOfx7UAcB8U9Wu/EWsWHw50SXbc37CTUZl5EEA5wceoBYjPQKP4q9M0jSrTRNItNMsY/KtrWJYo19gO/qT1J9Sa8/+Enhu6WxvPGOtgvreut5+WHMUJ5RRnOAeD9Ao7V6cBgYoAKTFLRQBQ1bRNM12wex1Sxgu7Z+scqAgHGMj0OO45FeX3Pw08ReDp5L74d65KkG4u2kXrb4n9Qp6Z4AycH/br1+k2gnNAHmOifGK1jvV0fxlp03h3VlwGM6kQPzjcG/hB5wT8v8AtGvSoriOeFJYnR43AZXVgQwPcH0qhrnh3SPElg1lrFhDdwHosi8ofVT1U+4xXmk3w+8XeBZHuvh/rT3NiG3NouoHchz1CHgd/wDZPHLGgD18HIBorzTw/wDGPS7q8Gk+J7Sbw7rC4DxXilYmPs5xjPX5sDkYJr0dJRJGjqQysNwKnII+tAElZ+tXy6Xoeoag2NtrbSTHP+ypb+laFcJ8YNROnfC7W2Bw86Lbr773Cn/x0mgDJ+Amnm1+Gsd2+S9/dyzlj1OCE/8AZKrWsEdx+0XrtrdQLLb3GghXSRcq65iByO44IrtPh/p/9lfD7QLPbtZbKJmB4wzLub9Sa5NHaL9pJwRxNoOB9N4/qtAGLd6bqvwW1mfVdJjnvvBV3IGu7JTuezY8blz+AB7jAbkK1evaXq9lrWmQajptwlzaTrujkToR/Q8EYPQjFWpYY7iF4ZkWSN1KujgEMD1BB6g141f6fqXwY1uXV9HimvfBl3KDeWKnLWbnA3pn8ACeDwrEfK1AGr8XtG8Q+LLSy0bStBup7WC8S5nuPtECLIApG1Q0gOfnP3gORxkc12upaRB4r0OG01KzltYDNFLLaT7GJCMDsbYzLg4HQng1oaXqtjrWlwalp1wlzaTpujkQ8Ef0I5GD0PFVfEfiPTvC+kPqWpzCOIMI0G4AyOeiLkgAnHcgDBJIANAHA+ONJsvD3ibwdceGrGDTtTuNUW2dbSMRia3P+sDhcBlHHXpXpEhE2rpHjP2eEyEEfxOSqke+FkH41xOiar4cuNaXxBrXibQpdYdTDa20WoROllGf4E5+Zz/E3foMAV2um/vTd3RJIlnYKD2VPkGPY7S3/AqANCigdKKACvJvD7GL9pDxbAY8LNpsUqnsQFgB/Un8q9Zryu0UQftK3+GP7/Qwce+5B/7LQBn+JVPwy+KFv4qiUr4f11vs+pov3YpjyJPx5b/v56irfxKKP8Tvhu6HeDdzEbTkEZixXf8AifQLTxT4dvdHvR+5uYyobGTG3VWA9QQDXgWg6hqVz8QPBXhXXYn/ALR8O3lxbs56NHtVoznvjZwe67TQB9LjpRRTS2AT6UAOorlZviT4Pt5mhm160jlT7yOSGXjuCM1e0nxh4e16Uw6VrNjdzAZMUcw34/3TzQBuUUUUAFFFFABRRRQB5V8f4ZG+HsF1Hw1pqMM3T2dR+rCvU43EkauvRgCK4X4yWTX3wq1xI1DPGkcw9gkisf0BroPB16dQ8FaFdsQXm0+B2x/eKDP65oA3KKKKACiiigAooooAKKKKACiiigAooooAKQqDS0UAZ15bTRyG7sQPPH34ycLMB2J7N2Dfh0qza3cV3brNC2UOQcjBUjggjsQQRU+KzLq1e3uWv7OMvJ/y3gBx5wHGR6OBnB4yPlJHBUA0ixFeN603/C0/ijF4fj+fw14ekE1+3Oyefpsz9cr24EhHaum+I/jxfD/hFH0otNqupsbWwjjXLiQ8MdvXcp4xjO4gY640fh14PTwX4Sg0+TDX037+8lByXlPUZ9BgAH2z1JoA61VUKoAwAOB7U6gdKKACiiigAooooAKQrmlooAx/EPhXRPFVj9j1rT4rqIfcLDDJ7qw5X8DXmsngjxv8Pma48Dau2qaYpydI1AgkD/YOQPXpsP1r2KkI9zQB534b+MGiapdf2ZrcUvh/V1wr2t+Nik4zgOQPyYKTnjNbPjHwNaeN7VbTUdV1KCyBDG2tWiVGcE4Yloy2efXHHSr/AIl8G6D4us/s+s6fHcYGEmHyyx/7rjkfToe4Necv4V8efDo+Z4S1Btf0SM86Vff62NP9g8ZHH8OOT9xqAPVtK099MsI7V765vdnCy3IjDY7D5FUYH0rzm+kaH9pXTV2gibQio/B5D/StPwx8XNA1+5/s29Eujayp2PY34KHfx8qsQATk4wcMfSsXXWki/aV8MOADHPpMkQb3AnY4/SgD1qo5oIriGSGZFkikUq6OMhlIwQQexqSigDxa/wBP1L4Ma3Lq+jxTXngu7lBvLFTlrNjgb0z+ABPB4ViPlavT0/sDxjodtctb2WrabNiaITRLKmQCM4YcEcj1ByK1poIriGSGZFkikUq6OMhlIwQQexrxq/0/Uvgxrcur6PFNeeC7uUG8sVOWs2OBvTP4AE8HhWI+VqAO91PwT4Yj06eS38NaPFcopMMiWMQZXH3Tnb/eA9a2tGJXT4rVlIltVEMgY5+ZQBnPcEYOff1zinDqdj4htNMn064jurO5b7QrL/Eic8Z7h/LBHY8HmrWohrOUajGuQoCXIXqYsn5vqpJb6bu5FAGoOgxRTFcOoZGVlIyCOcj2pd35+lADq8rvn+z/ALSmnfL/AK/QmGc+jSH/ANlru9f8VaJ4XtPtOtajBaIQSqucu+P7qjlvwFeCax4y1Dxh8X9G1bwVayxXX2V7O2lv1CxygeaWfGcYAZj1z8o47UAfRF/qNlpdo93qF1Da2yYLSzSBFH4k187+J/GGnav8b/Duq+EsXMsTRW0sgjYLKS7KRjGSNjYzjpjHAFdfdfDa3t7G48TfEzxDday1pGZnhRzHAnH3VAwSSQAMbck9DmuU+DrL4h+Lt9qj6bBZw21i8lpbxRhUt1YqqBQAB9xmOe+Se9AH0gOlN4JNOqKWVIY3kkYKiAsT6ADOaAPHfCWoWV38dvGerXV5bxLaotlEJZVXkFVOAT/0yP50zxYlv4p+L3haXwq0dxPp8nm6ne2hDIkQZSFdxwTgOMZz82KT4LaDpniLQ9a17WNKs7ya+1SRlNzAsuBgNkFh03OR+FHiS3TwX8X/AApb+FgbOLVJAt9p9u2IWTeAX8voPlLHgDGzjvQB7WOlFIOgpaACiiigAooooAyvEmnHWPC+raav37qzmhX2LIVH6muQ+CWpf2j8LdNQvuktXlt3P93DkqP++WWvQyK8p+Eo/sXxR428Ksqxpa6j9qt0zyUkz+gUR/nQB6vRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVDPLHDFJJM6rEgLOz9AByc1LmvKvixrF3q15YfD7RHxqGrsDdyDnybYHJz6ZwT9FI/ioAyPCcFz4+8f33j9rUSaXp8ph0y3dNplwMGUZwNwGD83cgZG0Eey29xHdW6zwMTG4yMgqfTBB5B7YOCD1qtoeiWXh7Q7PSbCMR21rGEUdz6sfUk5JPqTUdxDLYXD3tqjPEx3XECjJbtvQf3vYdfTPUA1R0oqGG4juIkkhdZEYZVlOQamoAKKKKACisrXddg8PabJqF3BdSW8QLSNbxF9igZLH2xVTwz4vsfFloLzTba9FoykpcTQFEfDbSFPfnP5UAdBRRRQAUUUUAFJtHp3zS0UAc34q8C+HvGNr5Wr2CSSqNsdynyyx/Rhzj2OR7V4frWieIPhv8TfDr2E914k8uKU2FrMSZBFsYPEMZ6KSRgYz/D2r6Ury3xx5kXxn8ASrja/2lOf935v0agDY8J/Fbw74plWx81tO1bOw2N6Nj7umFPAbnPHX2FdxuOORjiuW8W/D3w540hxqtiBcgbUu4TsmT8f4h7MCPauHNp8R/hswaxlPizw/H/ywkz9qhX0Xqxxx03Dj7q0Aex1HNBFcQyQzIskUilXRxkMpGCCD2Ncf4S+KHhvxcRb21ybTUB96xux5cgI647N0PQ59QK7BpAiszYVVGSfQUAeJXllefB/xPc61o1tLe+EGl8u9tASWsmcISyZ7fc56HhWOQrD2LS9Usdb0y31LT7hLmzuFDxyJyD/hjGCOxBzyK861X4teG7Gz/s+1il8Q6nfbz9htE80HfkiN2xg4B24AY8civK7vRfHPhfRrnUDBqOgeF768ElxZWU++W2jJ64JBHHHJGTtDdqAPbNb+IfhvwI9xZajfIxT5re0th5koBHMZUHCYPI3FQQQB0JPOf8JB8SvHp26BpkfhnSW+7fXozO6+qqR3HPC/Ru9bHg34eeCrbQ7fU/DyrdSzBZYNUmJklDA5B7bcMMFQFyMg9xXd2N6LuFiVKSxMY5oz1Rx2+hGCD3BB70AcFoHwZ8P6dc/b9bkn8Qam3L3GoMWUnGPuHOf+BFsVU8ZRi0+M3gCSONVQpcwrtGMAJjHsBu6V6nXh/wAeLu9s/Efg2XSHf+0w9ykCxjLB28pVIHc5PHbIoAueKriX4ofEGLwbYu39gaTIJ9XuI24kkHSMN7cr9dxwdgq38JIVuvFvjjWIkRbRr5bK1CKAFji3AKB2AUx1s+HdAg+GHwyvppNkl/FbSXl5N1M0wUnbk9QDhR+fUmoPghpTad8L7KV1Ky38sl0+7qcttU/iqqaAPSKztb0k61pc1h9vu7JJgVkktdm9lIIK5dWAznqBn3rRooA4TR/hmvh/Tl07SfFfiG1s1LERq9ucEnJ5MOetaei+AtI0fV21h5LzUdWZdn27UJzLIq+i9FUc9gP1rqMUUAFFFFABRRRQAUUUUAFeS6vjwx+0JpOo4VLbxDZNZyux6yrjA/8AHYR/wKvWq8z+N2lT3HgyLW7Li+0S7jvImAyQM4bHoAdrH/doA9MorP0bVoNb0Wy1S1P7i7gSZM9QGAOD7jOPqDWhQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTWbbknoKAMvxFr1p4a0C91i+bFvaxlsDqzdAo9ySAPrXB/CXQ7u5S+8d64gOra42+IN/yxt85UL7HC/8AAVX3rN8VO/xN+Jdt4Rt2LaDozfaNVdekkgOBHkdxkrjjq5/hr2FERY1VFCoAAqr0A9qAHjpSYBOaWigDKmjbTJHuLeMtbMSZoR1B7ugH0yVHXBIGchtCKeOaJZYnV42AZXU8EfWpNo57E1kyxPpU8lzbpusny00CjmIk5MifXqyjqRkfNkMAa46UUxZFdA6MrKwyGByCPWnjpQBwnxi1A6b8LdakVsPMi24997qpH/fJatbwBp39leANAsyu1lsomcejMoZv1JriPjxI17pOgeH42Ik1PVEUAdSANvf3kWvUZ7iLTrFpDHIYoVA8uCJpG9AAqgk9ugoAtjgDjHtRXKeFfGbeJ9V1uz/suax/suWOIrcOPMcsCeVHC9B3NdX2oAKKKKACiiigAryr4kM8PxT+HMikDddTpn2Plg/oa9TLc9q8e+Mt/DpXi7wDqtxcLDBZ37vO2CzCMvEWO0AkgKG/OgD2H1qre39npto93fXUNrbpy000gRB9STj868uk+J/iTxdM9r8PvDcskOdp1W/GyFfUgdD68kn/AGalsfg9PrN3HqPj7X7nXLoci2jcx28eeoGMHH+6EoA5Xx7rXhPx9etY+F/Dd5reuLgDUbJTAsZzgFnI+YA8ZYAejVieIPCXxLtNG09fE0+o6ro4GJrOyvd8qcEgNwd5HJ43gAHkda+kNN0nT9HsltNNs4LO2XpFBGEX9O/v1qOVll1iGHgiCNp3P91jlEP4jzPyoA4X4Y6v8O7i1+z+FIYLG9ZMS284xdMO+WYkuB7Ege1eiywxXEMkE0SyRSAq6OAysDwQQeoxkVx/i34XeHPFshu5rd7HUx8y39mdkm4dC3Zvx59CK5I6l8R/hu23VIm8WaAn/L3CD9qiX1Yck8ZPO4f7QoAhv7DUvgxrUmr6PFNeeC7yQG9sVOWs3JxvTP4AE8HhWI+Vq9It9Ssbu1t/EWlzi50+4Qea0Z+UpyN4B6FTkN0OA2clQKqeGfHPhjx1ZPFp95HM7xnzbK4AWULjBBQ5yvOCRkc9a4LUNP1H4N6zLq2kQzXvgu7kze2AO5rMn+Jc9vTPBHysc7TQB67qep2mj6Zc6jfTLFa20Zllc9lA/n6evSvmu8l1jxJ4z8OePtRVorO912C20+Bj9yFJARx6Zz9TuPcV1WtaoPib4jsfBGg36v4dh23l5dxkgmHClYuccqTgeh255Ridz4wW1npWi+DxbxiC3s9at0jRBgIgVuB+CigC58ctRlh8DR6Pajfd6xeRWsUanDMN244/FVH/AAKvQdI02LR9GsdMgz5VpbxwIT1IRQo/lXmGr48WfH7StMAV7Pw1am7myCf3zYK8+uTEfwNeuUAFFFFABRRRQAUUUUAFFFFABRRRQAVU1Gwt9T026sLpd9vdRNDIvqrAg/zq3SYoA8r+C9/PZWOr+DNQb/TdBu3Rc8b4mYkEeo3An6Mteq15B43P/CC/FfRPGaHy9O1Mf2fqbdFB42sT9AG+kRr14HIGCD70ALRRRQAUUUUAFFFFABRRRQAUUUUAFcX8S/GB8IeFJZ7Y7tUum+z2ESjczSEfex32jn0zgdxXYvIsau7sqooyWPAA9TXj3hiNvib8TLjxdcqzaDojm30uNvuySg58zHtw3bqn92gDr/hn4O/4Q7wnDBcANql232i+kJ3EyN23d9o4+uT3rtR0pCM9aWgAooooAKTaM5paKAMuT/iUOZVGbFmJlX/niTyWH+znr6delaKvlQ3GCOvrTtoPXNZBUaI5Zc/2YScgD/j2+n/TPP8A3z/u52gFHWfAPh3xDqcWpanbXU91E2+FxfzoIjxyiq4VD8oPygZIyea6C3tY7a2jgjMrJGu1TLK0jfizEsT7k5p6vkcYPpUV1JdJbubOCKWcfcSaUxqfqwViPyNAHAfD/wD5KB8Qv+v+Dp/uNXo4GABXA+F9A8TaJ4n17VLi10hodZuY5mWO/lLQBVIIAMI3Hn1Wu+FABRTGcKCzFQo5JJ6VwHiL4xeG9GuPsOntLrepsdqWunDzMtzwXHHboMn2oA9A3cnv7Vyvir4j+GPB6uup6ihu1GRaQfvJj6fL/Dn1bA964z7B8T/Hzbr+6Twjo78+Rb5a5dT6nORxkHJT/dNdV4V+FvhXwoUntLH7VfKd3227PmSbvVeyn3UA+9AHKnxJ8SPHny+HdKTw5pT9L/UB++deOVUg4yCegI/2hXK+LvhrB4b1jwleX2p3Gt3t/rEMF5LffMsgLD5dpz8p5zkmvocDrx19K8v+MwZE8ITo20pr0GMdecn+lAHp8cUcUSxxIqRqMKqAAAegp20CgdKM9aADNULHE015dBg2+by0bHIVPlx/33v/ADp+oahDp9jcXUjriKNn2lsFiATj6nFQWt9ptlaxWz6jah40CsTMoJPcnnrnJoA09vFBUEYIqmur6c5wl9bufRJA38qU6pbAZHnsP9i3kb+QoA5DxZ8KdA8TTm/hWTStXVvMS+sjsYv6sBwTnv8Ae96888S+LPHfw306fR/EDWGuWl9DJDZX8mN4OMZdCMuACMhgeSPmPQ+0XniHT7Gzlu7o3EUEKF5JJLSVQqjqSSvFeW+B4rnx942ufiDqllO1hbkw6NBsGFUEgucnkjnpn5iem0UAefeFL5/BOnW+vaLqUGsWEqxvqkCx4nsJhkBtpOdg3su7gOGZcrlTXffGHXbTX/hXpGu6VNHLCmpwzDJPBCSAqc85BI444rZ8WfC3RvEc0l7Y6XfaRqbbsXdk0QV8jB3oJBnOTkjBOeSeleHa/wCGPF/hi4Hg2TdPDqkyzwW0Tq3msDgOFUnYex7cdSFyAD3D4LafcXOkat4tv1IvdfvHmGSfljUttAz2yWx7Y9K9Sz6CqWj6dBpWjWVhbRmOG2gSJFPUBVAGfeuduv8AhKtU8Tajb6bqcGmabZrEgaaw84zSMu5sEuuAAV9etAHYUmea8j8Ha9418W634isk8Q2UFvpF19mS4/swP553OCcb/l4TPU9RXceD59dmtdRj16dLieC+khhlS38kSRqFw23J6kt36YoA6WiiigAooooAKKKKACiiigAooooA53xt4ai8W+EtQ0aTaHmTMLkfclByh/76HPsSO9c/8I/FEmueEhp2obk1fR3+xXcbn5vlyFY/ULg+6tXoOOc1494zV/h18SrPxtbo50fVCLTVo06K3QSfoD7lSM/NQB7EOlFMjlSaJZInV0dQyspyGB6EH0p9ABRRRQAUUUUAFFFFABRRWdrmtWnh7RbzVb6QJbWsZkc9z6AepJIA9yKAPPvi3rt3cfYfAuhtnV9dbZLg/wCqt+QxbHY4bP8Asq/tXe+G9AsvDHh6y0ewB8i2jChj1c9WY+5OSfrXn/wo0a81W81H4g63HjUNYYi0jbnybfPy4z64AH+yoP8AFXqo6UAFFFFABRRRQAUUUUAFIVBz79aWkLc/jQBkO39iB2OWsS3ylj/x7k9ATyfLznk/cz/d+7ZMupMxC2drjH8VyQfyCGq2veI9E8O2TXOt6hBaQkHiRvmf1CqMlvoATXln/Cz9f1mSSy8CaHNcWRlWOPU9SQpFDkkY64x93bk57bSeoB6rd6jcafaS3V+dPtLeMZaWW7KoPqxQAV5xqXxklu7z+y/BmnHxBqH8TRW7rCg6E7s5xnvgL71JZfCC51u7TUfiB4gutauV5FrExjt4yeoGMcf7oX3r0vS9H03RbJbTS7KCzt16RwIFBPqcdT7nmgDyuT4feOPG48zxr4kFhZuQ39lacPkHThjnHHuX+td14d8DaT4XgMekW8NqWGHkSEGR/wDedixP0ziunwKXFAFA6fcMc/2teAegWL/4jNPWxcfevrpz6koP5KKuUUAUn0qCXG+W746bbqRP/QWFeW/G+wjtPDugzQyXG4a1Av7y4eTqj8/MT6da9fryX9oWNm+HttMrlGg1KKQfXZIP/ZqAPTzplk4w9ukg/wCmnzfzqP8AsTSs5/syyz/1wT/Cr9FAGVd2VqZLS2jt4VDTKxCKAVVPnz06ZCj8a1ABjis+L9/rVw42lbaNYVPcM3zOP++fLNaI6UAJgUE0tcd8RvGcfgvwzLcRgSalcnyLGAAkvKe+BzgdT+A6kUAch8Q7258c+L7b4eaPMy2qMtxrVxGMiNAQQnpn27sVHY16tYada6Zp1tYWcIitraNY4o1PCqBgfX8a4/4Y+DJPCnh959QJfXNSf7TfysQWDHkJkdcZP4knpiu67UAQXFxDaW0lxO4jhiUu7ueFUDJJ9sA15R8M4JfGHjDWfiJfRsInY2ekxyD/AFcS8FgOxxxx3MlWvi5rF3qcuneANEbOp6y6/aG5xDbgkknHODtJP+yreor0PQ9Fs9A0Sy0qwBW2tYhGmerepPuTkn3NAGiOlVb+6j0+wur6XiO3heV/ooJP9atVxHxL1aaPwhrGlWFhqd5qN1aNFElrYTSqQ/ynLqpUYGTgnNAGB8ArSRfAd1qU3M2o6hLMW9QAF/8AQg1eq4+tcP8ACtVsPAmmaS9pfW11aw5uEurKaDDsSxALqA3JP3Sa7ntQAUUUUAFFFFABRRRQAUUUUAFFFFABWX4g0Ky8SaHeaRfputrqMoxHVT1DD3BwR7itSkxQB5V8K9eu9Ju7z4fa++NT0n/j0kPSeDGQB9Bgj/ZP+yTXq1eb/FPwjeahBbeKfD+YvEWjHzYnQcyxg5ZMd+pIHfJHeui8EeMrPxr4at9UtdscuNlzb7smGQdVPseoPcH8KAOmooooAKKKKACiiigBCSK8d8ayy/Eb4h2fgazkb+yNOcXWryp0Zh0jz6gHH1Y8fJXa/EXxgngzwpcaguHvZT5FlF13ynpx3A5J+mOCRVP4XeDZPCnhgvfln1nUW+037sctuOSEz7ZP/Aix70AdrBbxW8EcMMaxxRqFVF6KAMAD6VLRRQAUUUUAFFFNZwoJYgADJz2FADqbu5P8q4HxJ8X/AA1oU5sbSV9Y1QnYlpp48w7vQsOM57DJ9q582fxS8f5N3cR+ENIccQw5a5dSO+CCPTqn+6aAO28UfETwz4QRl1TUYxcgZW0iO+VvT5R0z6nAriT4p+I3j0geF9HXw/pLjjUtRH7x17FFIPUHsCM/xCuq8LfCrwr4VZbi2szd3wO77ZeESSBvVeMKfcAH3rtdo+lAHmmh/BjQ7S9OpeIrq48R6oxy018SUJH+wSc+nzEj2r0UWluLb7MIYxBt2eUEGzbjGMdMVNtGMUtAGXE50yVLaZy1oxCwTMeYz2jc+/O1u/Q84LaQPGPwps1vFcQyQzRrJHIpR0cZDKeCD7Gs2KaXTrhbS5Z3t3Oy3nPOOM7HPrxwx69Cc9QDWopAc0tABRRRQAV5f8fIfN+GE77seVdxP9eSv9a9Qrzj45xh/hRqZ/uSwNj1/eqP60AehwEmCMk5O0ZP4U/NVdLJbSLIk5JgQ59flFM1WSSPT5REWEspWJGXqpdguR9M5/CgBNK+ezNySCbpzPuxglWPyZ9wgUfhV8dKaqKiBVAAAwAO1KTQBFdXUNnbS3FxIkUMSNI7ucBVAySfYCvIfCFrN8S/Hs3jnUI3XRdNcwaPbyDAZgeZCOnXk/7WBn5Kn+JeqXni3xJafDfRJSjTkT6tcKM+TCMHafw2nnGSUGfmNeoaTpNnomk2umWEQhtbaMRxoPQevqT1J7mgC4BwDzWR4l8Q2fhbQbzV79sQW6ZwOrt0VR7kkD9exrWLBQcngV4vMT8ZfHohjLN4O0GUM5B+W9m9B6jjHsuTxvGADY+FGgXly194819P+JvrR3RKw/1Fv/CBnscLjP8ACq++fUqasaqgVRhQAABwBTqACk2gn+lLRQAm0fj60tFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACFQTXjfivTrv4W+Lz420OCSTQr5xHrFlGOEJP8ArFHTqSR6NkZw/HstQ3NpBeW8lvcxJLDKpR43UFWU9QR3FAFfS9Us9Z0y21DTp0ns7hA8Ui9x/ngjsavV4lE158FPFBhl8648D6jLlJOXNhIT0OMnAA/4EORkqQfZre6huraKe3ljlhlUNHIjBlcEZBBHB4oAnooHSigAprsEUsSAAMnPFOrzL4ueI7tLO08HaHltb11vJAVsGKEnDMccgHkZ9Ax7UAY2iKfij8U5fEMgL+HPDzeTYL/DPPnO/wDPDfQR5717Lisbwt4as/Cnhqy0ayyY7dMNJjBkc8s59ycn9OlbQGBigAopuTkiszW/EmkeG7Q3esahb2cIzgythmxzhV6sfYCgDUz16VXur62sbWS6u7iK3t4wS8szhVUepJOK8tm+Kmu+Kp3svh54cmvAGKHU70eXAnqQCR25GSD/ALJp1p8IrzX7pL/4geILjWJwcrZwOUt09R2P/fIX8aALGqfGeyuL1tL8G6VdeItR9YUKwp2yWIyR74A96oDwF448cMZfG/iA6fYOcnSNLIAx3DMMj89/4V6lpWjabolmtppdjb2cA58uBAoJ9Tjqfc81d2g9efrQBgeG/BPh3wnAE0bS4bdyMNMRvlb6ucnHtnFb4UDpS0UAFFFFABRRRQAVFNbxXELwzJvjcEMvTipaKAM6CaSzmWzuXZ1Y4gnY538Z2t/tfzxWhn86iubWG8t5IJ13RuMEZwfqCOQR1BHIqpbXElrcJY3chd2z5E5GPNA7HHAcDqO/UdwoBo0UUUAFeffGxc/CTWyf4Wtzj1/fxivQa4b4wwrP8KNfRiQBHG/HqsqMP1FAHSeGDnwnoxznNjBznr+7WpbndLqtpEM7Ig87EHvjYqn67mP/AACs/wACHPw98NHP/MKtf/RS1o2Tefd3txtXG/yEZT95U6/k5cUAXh0Fcp8QPGMHgrwtc6k217pj5NpCRnzJTnHHoOSfYe4rp5Z0t4nlmdEijUszscAADJJrx7w5FL8U/iJJ4su0b/hHNEcw6XEwwJpcgmTH5H8EHY0AdN8LfB8/h3RZdT1YM+v6s/2m9kk+8uSSE9sZJI9SfQY77dj0xSHvz1rzr4jePLrTJ4PC/hmM3fifURsjWPB+zKf427A9SM8AAseByAZfxG8R33iXWV+HnhZibu5H/E0u1B220X8SkjvjG72IXksRXovhrw7p/hbQbXSdNj2W8K9TyzseWYnuSef0GAAKxPh94FtvBOjtG0n2nVLo+Ze3hJLSv6AnnaOevXOa7KgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAparpNjremXGnajbJc2lwhSSNxwR/MEEAgjkEAjpXjtle6n8E9dTStUknvvBV7Li0u2+Z7JjztI9O5HAPLKM7lPt9VNR02z1bT57C/t0uLS4UpLE4yGB/wA9ex5oAfaXsF9aRXVrLHNBMoeOSNtyuD0II6irFeJPHrnwUvnlg+06v4Jmf5oyd0tixPbtgk9eAehwcE+uaNrena/pkOo6VdR3VpKPkkj/AFBHVSO4OCKAH6vq1roek3ep38oitbWIyyP1IA9B3J6D3NeZ/C3S7vxJrOo/EbW4sXN+zRadE3PkQDjK/UDbnvhj/FUHxAuZvH3jey+H2nSlbG3Iu9YnT+FRghP1H/AmX+6a3Na+KnhHwlFFpWmsdSuogsMNjpg8wLgYVN33RjGMDJ9qAPRN341zHin4heGvB8Z/tbUo1uMZW0i+eZvT5R0z6tge9cObf4pePhm4lj8H6PJ/yyTJumX3P3ge3VPoa6jwv8J/Cvhd1uY7M3+oZ3m8vcSPu9VGMLz3Azz1oA5j/hK/iJ47wvhXRl0DSn5Gp6j/AKx19UUgjkegYf7QrT0P4M6Nb3Y1LxLd3PiPUzy0t6xMY+iZOev8RI9q9LKg0YAoAjht4reFIYY0iiQYVEAVQPQAVIFApaKACiiigAooooAKKKKACiiigAooooAKhubaK7gaGZdyNz1III5BBHIIPII6VNRigDPtrqaGdbG8dWmOfKlxgTADP0DDuO/UYHA0Kr3VrHdQtHIO+VYdVbsR7iq9pdzJL9jvNv2gAlJB0mUfxD3HQj+hoA0K5D4pRLL8MfEKsTgWjNx6qQR+orrwcgHGPauZ+Ikav8OPEYbp/Z0zfiEJ/pQBF4GuY7b4X6DcOf3cWlQuxHJwIwTW9p0D22nQRT4MoQGUjoXPLH881yPgJ45Phl4VgDZE0ESEjkYUF2B9vkI/GtXxx4utPBfhi51e5CtIP3dvCWwZZTnav07n2BoA4v4oazfeItXtfhzoEuLy+w+ozryLe3wDhvqOT04wP469H0PRbPw9olppOnxlLa1jCID1b1J9STkk+pNcX8KvCNzo2nXPiLXMyeINZb7RcPIuGiQnIT2POSPoP4ap+L/iJeXmqnwl4EiF9rj5We5UZisx0JLdNw9eg6cnigC74/8AiI+kXEfhvw3CdQ8U3eEit4huEGRnc/occ4PQDJwOtv4d/D9fCVvPqOpT/bvEV/8ANeXhOepzsQntnknuQOwAEvgH4e2fgu3luZZWvtauh/pd/Lks+TkquckDPJ7k8noMdrjvk0AG3jqeaWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKaWxmnVxPjma51e5s/B2m3DwXOphpbueM4a3tVxvbPYsSEH1PpQB2Mkcc8MkUqJJHIpV0YbgwPBBHcV5FrngLXvA+o3HiD4ctuhkz9r0WUbo3Hqgzzj0BBHIBwStaXwJ1K4vfAs1neSu9zp99LA+9izAcNyT7kj8K9PKg+v50AfF+hx+Idb1LULdItRvmuZTLqVnaXIhnuDuJJYYYsASc/KQCTXrXhfxNB4Nh22/wi1yxkClXuEiaaRsHnMjICR7Dj2rvPGvwx0zxXN/aVpK+la7GQ8V/akqxYDA34xnt83DDA5xxXM2PxE8Q+BrqPSviNYO9qSEg1u0TdHIO2/HXoegB4+6etAFqT48eH7SRVv8AQvEFmScbpbRABn/gef0q7b/HbwHMBv1G4g4z+8tJD/6CDXe6fqVlq1lHe6ddQ3dtKCUkhcMp/EfjT59NsLxcXNlbzA/89Yg38xQBydt8XfAl2R5fiO2XJwPNjki/PcorTh8feEJ9vl+J9Hy2MBr2NSc+xOafN4F8JXDM0vhjR2ZurGxjyfx25rLuvhJ4DuxiTw3ar/1yZ4v/AEFhQB09tq2n3gza39rOP+mUyt/I1cz+vSvObj4F+ApgQmmXEPXmO7kOM/7xNUF+Afhy3YvYaxr9mcghYbpAAf8AvjP60AeqbqXNeVS/CDVo026f8RvEluuOFednA/AMtOXwB8RbPBtPiZNKRn/j4sgf5s1AHqec0ZrygaH8aLVyYvFWh3kfYXFuIz/47F/WnSXvxqs1IXTfDV8Rn7rMCfzdaAPVqK8rTxj8VbVQb34e28w7/Z71Af0ZqY3xW8WWz7b34X6yq4yWgdpf5R4/WgD1eivK3+N9nagnUPCPia1wcHdaDj82FPtvj94InA82W/tT3E1qTj2O0mgD1GiuBg+NHgC4YKuvqjHp5ltMv6lMVrQfEfwZcgFPFGkqD/z0ukT/ANCIoA6iisq18S6FerutNa024G0tmK6RuAcZ4PTNaSyK4JRg3OODmgB+KqXllFexCOQsrKweN0bDIw/iB/HH0yO9WwcjNJ+dAFK0vJDKbS7UJdKu7IGFlXpvX2yRkdRkdiCcvx4N3w98SZ/6BdyfyiY1sXdlHeRBXZlZWDxyJwyMO4/PHuCQeprC167+0+Ftc06+RUu/7On3IPuyJsI3r7eoPIJAPUEgHPfCSSObwJok/mKIrSxZN4bjc0rbwfQgRrz/ALVcoupWfxC8c3HinWLiODwV4ZbbbmY4S4n67vfPBx1xsGPmNcTB4xa3+EGk+DPDiyT6xqjzm9S3VmdEMjgJgDksoGcdFBz1Fdv4P+DmoX1nYP41nYWFoubXRYHwi55JkI/iJJJxye7AcUAWrvxJ4m+Kt3JpnhETaR4aVtlzrEqlXm9RH3/AHPTcRnB9J8JeDtH8GaSthpNvsBwZZmOZJm9WPf6dB2rYtrO2s7WK2tYI4IIlCRxxKFVB2AA6VPQAm0Yx/KloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCveXkNhZz3dzKsVvBG0ksjdEUAkk/lXmfhbUfEr3WpeJW8HXV1LrDLJBJ9tgj2WoH7qPazZBwSx6ZLV1XjrQ9T8RaNDp2ntbNE93G95DcTNEJ4FyWj3KrEZIXt0z+PSxhliQbFVgB8qnKg46A46e+KAPHfhPPcaf8S/G+jXdo1lNcSC+Fs7hjECxPVeDxKnT2r2evL4/B/imL4ryeM4ItHWCaEW8tt9ul3OmAA27ycA/KhxyOOvevUB0oAQqDUF5Y2uoWslreW8dxbyDa8UqhlYe4PWrFFAHkuofCnUfDl7Lqvw51iTTJmIaTTZ3L282O3OffG4HrwVqTTfjE2lXkek+PdGn0G/6C4VC9vJ7jGSBnjgsP8AaFeq7RVXUdLsdWsns9RtIbu2k+9FMgdT+B70AFhqVlqlkl5YXUF1byfdlgkDq30Iq1mvKr34N/2XevqPgbXrzQbs8mAuZIHx0BBOcfXcPaoF8cfELwf+78W+Fv7Vs0ODqOlHOFHVmUDH5hBQB67RXD6D8W/BevhFi1iK0nbGYL79ywJ7ZPyk/Qmu1SRZFDIwZT0ZTkGgB2KMCgEntiloATAoxxilooATFGKWigBMVHLbQTLiWGOQejKDUtFAGLdeD/DV62668PaVO3J3S2cbHn6is25+GPgi6BEnhnTlz/zyi8v/ANBxXWUhOPp60AefTfBHwBLnbojxEnOUu5uD9CxFZk3wA8HNKJLafVrN1OVaC5XI/FlNeqbsjj86xdb8XeH/AA4hbWNXtLQgbvLeQbyPZB8x/AGgDhv+FMPbrjTfHPia1IAC/wClZA/75201Phn41tGJs/ijqRUE4FzbmT8y0hz+VJP8aP7WuHs/BPhrUtcnB2mcoY4Uz0JOCcf72361AfBnxD8aDf4v8Rro9g+C2m6VwcY5Vnzj82cUAcl4o8W+NfCM6WkPxFsNVvQ6r9igsUeTOcEMQhA69CQx9Kdd6Z8ZvHmhBLsRWVqVP7l9ttJKCCDkY3AEHGDgEdjXsPhf4e+GPCCK2laZGtyBg3U37yY8c/MemfQYHtXS8DOfx5oA8z+EnwzbwRYXF7qnkSavdYBaM7hDHjOwHHXdnOPQelenYyPSqt5f2Wnor3t3BbIxwGmkVAT6DJp9veW93CJbaeGaInAeNwwP4igCxRQOlFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACbRnOOaNoPrS0UAJilHAwKKKACiiigAooooATH1oxS0UAc5r3gLwt4l3tqui2s0r9ZlXy5T/wNcMfzripPgsdMdpPCfi/WNGYsW8oyGSPPpgFf1zXrFGKAPJvJ+M+hKTFcaH4ijB+UOojkx/44P1NP/4Wf4w0x1j1v4bamAAd81i5mUfgFI/Nq9VwKMe5oA8ti+PnhUTmC/stY06QdRc2o4/BWJ7elacPxs8ATbQdd2EnGHtJhj6nZiu9eKORSroHU9QwyKy7rwt4evs/a9C0y4z/AM9bSN/5igDFh+KvgackJ4kshj++WX+YFSN8T/BKKWPibTiB/dlyfyFWm8AeDmOT4W0XPtYxD/2Wk/4V94OPXwto/wD4BR/4UAZM3xj8AwBS/iGI7umy3lf/ANBQ1mXfx68DW6boby7uz/dhtWB+nz7R+tdfF4I8JwMrxeGNGRl6MthED+e2ta3sLOzAFrawwADGIowo/SgDzH/hdE+oRhtA8C+ItQ3Y2s0OxP8AvpQ4pD4g+L2tOBp/hbTNGgYcS30/mOv4Bgf/AByvVsUYoA8nHw58d69tPib4gTxxnh7fS4/LVh6bht/VTWxonwX8FaMyyvprajcDOZb+Tzd2fVeEP/fNegYxS0ARQW0FrAkFvEkMKDCxxqFVR6ADpUm0ZHtS0UAFcb8SvGf/AAhHhObUIlWS+lcQWkbcgyEZyR3AAJ/Id67KvHfjXGG8ReA2uONOGqbbgt90ZeLGfwD/AK0AdL4P8BwW1jFqviaNdV8RXSCS5nvAJPKJ58tAeFABxxjp6VzXxMtovhxd6X4y8OwrZbrtbbULS3UJFdIys2WQcZG0jPXJHpXsA/nXjfxmkbxNrnhvwJZZe4uroXNwE5MUYBUE/gZD/wAB96APZEdZI1dTlWAIPtTqRVCqFAwAMAUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVi+JvDOmeLNFn0rVIi8EnzBlOHjYdGU9iMn8z61tUmKAPJ/GFz4/8A+D2ubDVbXWLW3wjzT2RFzDFjAYkPtfGACSuecnvWr8N9O8MNHJr+naq2r6xqK+Zc3dy6+ePVNg4QA44HsMnAr0F4ldWVujDBHY1n6f4c0PSJnm0zR9PspXGGe2tkjZh6EqBQBpDgCloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//2Q=='] Multimodal Competition False Theorem proof Geometry Math Chinese 22 "如图, 在锐角 $\triangle A B C$ 中, $A B < A C, A D$ 是边 $B C$ 上的高, $P$ 是线段 $A D$ 内一点。过 $P$ 作 $P E \perp A C$, 垂足为 $E$, 作 $P F \perp A B$, 垂足为 $F。 O_{1} 、 O_{2}$ 分别是 $\triangle B D F 、 \triangle C D E$ 的外心。求证: $O_{1} 、 O_{2} 、 E 、 F$ 四点共圆的充要条件为 $P$ 是 $\triangle A B C$ 的垂心。 " ['连结 $B P 、 C P 、 O_{1} O_{2} 、 E O_{2} 、 E F 、 F O_{1}$ 。因为 $P D \\perp B C, P F \\perp A B$, 故 $B 、 D 、 P 、 F$四点共圆, 且 $B P$ 为该圆的直径。又因为 $O_{1}$ 是 $\\triangle B D F$ 的外心, 故 $O_{1}$ 在 $B P$ 上且是 $B P$ 的中点。同理可证 $C 、 D 、 P 、 E$ 四点共圆, 且 $O_{2}$ 是的 $C P$ 中点。综合以上知 $O_{1} O_{2}$ $/ / B C$, 所以 $\\angle P O_{2} O_{1}=\\angle P C B$ 。因为 $A F \\cdot A B=A P \\cdot A D=A E \\cdot A C$, 所以 $B 、 C$ 、 $E 、 F$ 四点共圆。\n\n充分性:设 $P$ 是 $\\triangle A B C$ 的垂心, 由于 $P E \\perp A C, P F \\perp A B$, 所以 $B 、 O_{1} 、 P$ 、 $E$ 四点共线, $C 、 O_{2} 、 P 、 F$ 四点共线, $\\angle F O_{2} O_{1}=\\angle F C B=\\angle F E B=\\angle F E O_{1}$, 故 $O_{1} 、 O_{2} 、 E_{1} F$ 四点共圆。\n\n必要性: 设 $O_{1} 、 O_{2} 、 E 、 F$ 四点共圆, 故 $\\angle O_{1} O_{2} E+\\angle E F O_{1}=180^{\\circ}$ 。\n\n由于 $\\angle P O_{2} O_{1}=\\angle P C B=\\angle A C B-\\angle A C P$, 又因为 $O_{2}$ 是直角 $\\triangle C E P$ 的斜边中点,也就是 $\\triangle C E P$ 的外心, 所以 $\\angle P O_{2} E=2 \\angle A C P$ 。因为 $O_{1}$ 是直角 $\\triangle B F P$ 的斜边中点, 也就是 $\\triangle B F P$ 的外心, 从而 $\\angle P F O_{1}=90^{\\circ}-\\angle B F O_{1}=90^{\\circ}-\\angle A B P$ 。\n\n\n因为 $B 、 C 、 E 、 F$ 四点共圆, 所以 $\\angle A F E=\\angle A C B, \\angle P F E=90^{\\circ}-\\angle A C B$ 。于是, 由 $\\angle O_{1} O_{2} E+\\angle$ $E F O_{1}=180^{\\circ}$ 得\n\n$(\\angle A C B-\\angle A C P)+2 \\angle A C P+\\left(90^{\\circ}-\\angle A B P\\right)+\\left(90^{\\circ}-\\angle A C B\\right)=180^{\\circ}$ , 即 $\\angle A B P=\\angle A C P$ 。 又因为 $A B < A C, A D \\perp B C$, 故 $B D 如图, 锐角三角形 $A B C$ 的外心为 $O, K$ 是边 $B C$ 上一点 (不是边 $B C$ 的中点), $D$ 是线段 $A K$ 延长线上一点, 直线 $B D$ 与 $A C$ 交于点 $N$, 直线 $C D$ 与 $A B$ 交于点 $M$. 求证: 若 $O K \perp M N$,则 $A, B, D, C$ 四点共圆." ['用反证法. 若 $A, B, D, C$ 不四点共圆,设三角形 $A B C$ 的外接圆与 $A D$ 交于点 $E$, 连接 $B E$ 并延长交直线 $A N$ 于点 $Q$, 连接 $C E$ 并延长交直线 $A M$ 于点 $P$, 连接 $P Q$.\n\n因为 $P K^{2}=P$ 的幂 $($ 关于 $\\odot O)+K$ 的幂 $($ 关于 $\\odot O$ )\n\n$$\n=\\left(P O^{2}-r^{2}\\right)+\\left(K O^{2}-r^{2}\\right),\n$$\n\n同理\n\n$$\nQ K^{2}=\\left(Q O^{2}-r^{2}\\right)+\\left(K O^{2}-r^{2}\\right),\n$$\n\n所以\n\n$$\nP O^{2}-P K^{2}=Q O^{2}-Q K^{2},\n$$\n\n故\n\n$$\nO K \\perp P Q \\text {. }\n$$\n\n由题设, $O K \\perp M N$, 所以 $P Q / / M N$, 于是\n\n$$\n\\frac{A Q}{Q N}=\\frac{A P}{P M}. \\quad \\quad (1)\n$$\n\n由梅内劳斯(Menelaus)定理,得\n\n$$\n\\begin{aligned}\n& \\frac{N B}{B D} \\cdot \\frac{D E}{E A} \\cdot \\frac{A Q}{Q N}=1, \\quad \\quad (2)\\\\\n& \\frac{M C}{C D} \\cdot \\frac{D E}{E A} \\cdot \\frac{A P}{P M}=1 . \\quad \\quad (3)\n\\end{aligned}\n$$\n\n由(1),(2),(3)可得\n\n$$\n\\frac{N B}{B D}=\\frac{M C}{C D}\n$$\n\n所以 $\\frac{N D}{B D}=\\frac{M D}{D C}$, 故 $\\triangle D M N \\sim \\triangle D C B$, 于是 $\\angle D M N=\\angle D C B$, 所以 $B C / / M N$, 故 $O K \\perp B C$,即 $K$ 为 $B C$ 的中点, 矛盾! 从而 $A, B, D, C$ 四点共圆.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIA6UEDQMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKimuYbcZlkC/WhagS0VBDeW8/8AqpVb6Gp6PIAooooAbI4jQsxAGO9c5p3iq2v9TntI/vRttP5UzxZqZhsHjgbMozwK8g8EX08Xim9aVm+aToT7CgD6GU5UGlqtZy+ZAh/2RVmgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikzQAjttRmPYZryD4h+MWt28u2kyVyDzXY+NPE8ej2BCt8zZXg14bf291qV6XlyyytlciujDwvLUTO6+G3iaW9ZFuH5LHvXsyMHUMpyK+cNIgl0PUogPlGM173oF4LvS4pM5JFGISUtARrVTv7tLS3eR2wFq052qTXC+LdX3SGwjJ3uK5xmSt8upeI5d7HySvFcZ+6sPEbtHwHkFeiaH4YnFos5xvIPOK898Y2T6Xq1u/UmQZwPegD2/Q5fMsUOf4RWpXN+ErtZtMTHXaK6SgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACs7VdSh020aaVwoX1NWrmdIIi7nAArxTx74lu9Z1BtDsTu3jIANXGNwKlxJP4v8SSwKWMCuCD2NdJ4g0qLT205BGM8A8f59K2/AnhRdL0yGadf35X5s/Sq3ih2uNRtlI4R+MfjXRRfvaEvYwdf0ktZm8jQ4VQOBW/8AD7VTKq2jHkAdTW1LY/aPDUsYTLECvN9JvrjQfEbqRtUYHNZz95saPcmG5CM9a5e+8Ii71mK+MvCdvWuhsZvtFlDL3dc1ZrAZDDAIYRGowK5PX/A6a3cJK0oG1s12VFAGJouh/wBkwiPzCce9bdFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhYKMmlzXP+JNYj0+zYlwCQR1oQHPeO/FsFjZvaxsRPIuFx2OK5r4deGpb+ePWb1N0oPDEe9ZWn2Fx4r19Lh93lRyE4PQjpXt+nWENharDEgRcDgVo3yoRMVEcD7eAAT+lecTs9zrGCchZDXpNx/x7S/7h/lXmOhhrjW7kE52ymtsPs2DPQ7CICzCEcYFeT+OrM2motcKvG4dPrXsMCbIlHsK5vxlpkd1prExgt1zisVL3gG+CtaTUtPjhVstGuDmusrxfwLqh0vVriCTgM+0Zr2aNtyK3qKUlZjHUUUVABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUySRYkLt0FAFTUr9LG3aRiBivF/Eeq3XiDU/s0OWVZB909s10PjnxHveS0gc59BU3gbw4GcXlwmd4zmtUlFXEdH4P8AD0el2QYqNzqCciuspqKERVHQDFOrNu7GQ3TBbWXPHyH+VeaeF1P9t3Z9ZSa7zXJvJsyc9Qa4/wALxf6fO/q2a6aWlOTJZ6Gn3F+lQX1uLi3ZD0wasL90fSgjIIrmvqUeFeIrZtJ1+CVAVUyZJr2HQtSTUbBHRs7VANcj480US2/nheVG4VT+F+sf6FJbzMd/mEAVb1VxHp9FFFZjCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBCcA5rjvGWvrp9rJCjfOw4Ire1nVYdNs3eRwp2nGe9eKzXt14q1tdqs0auVOD71cV1A0PDGkTa7qkdzPyrHndXslhZx2VskSKBtGOKyfDWipptii7QGGOo9q6ClJ3EFFFFSM5jxpN5NhHz1bFUfCtufmf15pvxIk2aXb84zIB+tafhWBRYRtnqoNdW1G5PU6MdBS0UVylGXrVl9tspEI6rivGbRpPD3ja2tt22NyWI7dR/jXu8iB0YHvXj/AMRdIe2uP7VRcGIdR/n2rSAj123nW4iEiEFTjmpq434d6sNR8MW8jt856g/SuxBzUtWYxaKKKkAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkY7VJPYUE4rz74ieLDpumtDauRODjKdaaVwOW8b+IX1fUF061fJRwrgV13gjwtDp9sJSmHYbiSK5fwL4Vmu7ltTvPnM2G5616/BCsEaooxgYq5Oy0ES4paKKzGFFFFAHB/Edll0+3TuJR/Ot7wwu3Tov8AcFcv4snE90ITzhxx+NdhoShbKPAx8orqnpSSJW5rUUUVylBXNeMdLbVNEngVdxYYArpajlQOuCKadgPEvh9qNzpfir+wXbCxjofy/pXt6fdFeD+LNPuPDvi+XW0JVW4yPrXr3hnUDf6Vbys2WZMmrmtLiNyiiisxhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUHoaKp6hdLa2zyMcALmiwGb4k16HR9PmmMg3p0WvHtMhufGHic3cqP9nfoO1WPEupz+JdcSygO+F8hsV6Z4O8NRaLpkcezDgDtWvwoRs6Tp6WNpHGqgbVxxWlSAYHFLWV7jCiiigAooooQHmF1J9p8UTw9cNXoWnJstkGMcV5vphMnxAvVbpmvUYVCxLj0rqxGiSJW5JRRRXKUFFFFAHA/FDSDf+HcRR5fdn5etZPw61tm/wBAfOYRt/SvSr61S6t2jcZGDXhtjJJ4c8W3TMNscsoxWi1VhHva8qDS1R0u7F3ao4OflFXqzGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFISBQA2WQRRlmxXlvjjxSysLWBjlzt45rpfFviGPT7RlVxuHGBXnvhzSZvEOrvcTg7EfcM960irasDf+HvhZhH9suly+7cpI9a9SCgdKr2dqlrAkaKFwoHFWalu4BRRRUgFFFFABUU8giQse1S1la9N5GmyPnGKcVrYGcHoiF/HN5Ljhv8K9Pj/1a/SvPPDCeZrMk2PvDrXoafdFdGJfvJeQkOooormGFFFFAAeRivJfibpIgktLmFMHcGYivWqw/E2kpqemybsZRCRVRdmBheB9ZW5shHnkYGM13NeHeDbxtM1N4JGIzKeD9a9rtplmiDA5omtQJqKKKkAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsnW9TTTrJ5GYAitG4nW3geVzgKM145418TnVdR+xWbHDcYq4xuBlXr3nirW2hUFoyQRg17B4b0KHSLCIKuHKjdxXOeA/DZsreK7mQeYRgmu/AxwKJsQuOaKKKgYUUUUAFFFFABXM+OJhD4emcnAH+FdNXG/EdtvhS4J9f6VrRV5oGQ+C4jJbRz44Yda7dfuiuV8CAN4ctWx2rq6dd++xLYKKKKxGFFFFABUc0YlgeM9GGKkooA8U8Xad/Y3iGB4gVVvmJ/WvSPCepR3emR4bLHH8qyvH2im9tJLsLzGvB/Cuc+HmoPFcxW0sgxnpWj1iI9bopFYMARS1mMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkJwCfSlrn/ABPryaNYF9wBII5ppXA57x14lW0j+ywOC0ny8HocVzngvw215dLeXILfNkbqx9Ms7vxLrTTzKxjWTIIr2jR9Mj0+0VFHYVo3yoRfghWCJURdoHapaKKyvcYUUUUAFFFFABRRRQAhOBXE/ECYT6LNa45P+Fdqxwua8+8UzGfUTa9QQa3oK87iZveC4fI8P2yegrpayPD8Xk6ZCo7Cteoqu82w6BRRRWYwooooAKKKKAKOq2v2vT5Yf7wxXi1xBLoPiU4dgq17sRmvLfiDpJMkl2in8KuAHoOiXS3WlwPuySvNaVeefD3VTOv2dn+4vSvQ85pSVmAUUUVIBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFMkkCIWOAMd6AI7u7isoDNKcKK8R8SavN4j1t7GBiY0cHFb3xD8UExy6bat+8bpt61J4B8LsI0vrkZkccluvStI2ihHT+E9BSws0JXDFRmurAwMU2NFjQBRgCn1Dd2MKKKKQBRRRQAUUUUAFFFFADJOENeYarMZvHcVuD1B4/GvT5TiM15ROSfipCO2P611YbW4pHp9jD5Vuq+nFW6aoAAp1czd9RhRRRSAKKKKACiiigArC8T2AvNMZAuWOa3aZJGJEKtyPSmnYDxHQ7uXQ/EEiMcBm2/rXtdrJ5ttE+c7lBrx3xtYtaagtxGpA8wNwPeu/wDBesDU9PxuyYxjr6VctVcR1NFFFZjCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQnAzXI+MPEkel2Eqhx5hX5R71v6rfx2Nq8jnACk14hqdzJ4v8AEMMVvl4UlKyD2xVQXVgSeEtGuvFGvRavcI/lhsHPSvcrO0S1gWNAAB2rP8N6LDoemLbQrtGAT9cVs0SlcQUUUVIwooooAKKKKACiiigAooooAq3snlwO3oM15zax/aPHsVxj8fxru9bk8uwkOei1x/hqM3GqJcH1611UNINkvc9EHSlpB0FLXKUFFFFABRRRQAUUUUAFFFFAHIeNNNWewyFBYDPSuL+H2riwvJrSVsF5CAD9a9Yv7ZLm3dXGflNeIa3Auh+K7WWMFY/My3860jqrCPeFOVBHTFOrN0XUY9TsVmibK8D9K0qzsMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACoZ7hYIi7EAe9SswUZPArgPHHikWVvLBCdzdqaVwOW8c+I7i+uBZ2rMDvCnb7muq8A+El0u2e4uFBkl+cHvzzXOeC9Ck1PUmvblGKuNw3civXYIlhiVFAAAxVylbRCJcUUUVmMKKKKACiiigAooooAKKKKACiiigDn/FTlNKnIOMLWF8PoWn0wXJOcNWv4x+bR7gZwdlZ/wAMoynhog/3q6o6UGyep2opaMUVylBRRRQAUUUUAFFFFABRRRQAjDKkH0rzj4g6KjWb3Kpl40yDXpFZOu6et/YyxsPvDFVF2YHGfCrVg2hLaytmXcByea9JzXg2jyt4d+IMVmzFYByfTrXudtOtxErodynuKc11QImoooqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKqX94lnbvI5xhSaAMzxLrCabZSBm2sRxXk9pazeJtaDuN0bH+tS69rFxr+qpDCSUDFTXoPg/wAPLYWaO6/OO/StfhEbujabHp1jFGq4IGK06QAClrK+owooooAKKKKACiiigAooooAKKKKACgnAJopG+6fpQBx/iubdbtFn7wxVnwLB5Gh7QMfNWL4nn/4mEMWepxXV+HYfJ04L711T92kl3JW5r0UUVylBRRRQAUUUUAFFFFABRRRQAUyRd0bD1p9B6UAeL/EvSjp8kurxLh17/rXd+A9UW+8O2pZv3m3JpfHOjf2voc0AUEmvP/h7qkllr82lysQsQwAeK03iI9soqOJw6KQc8VJWYwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGswUZPSvLvHnibdttLdtzbtp29ua6fxn4iTR9Mdw+HHFebeF9DuNe1iS8uVPls25TWkVpdgdF4H8OFv9JmTLE7ssK9QjQRoFAwPSq9hZR2duiIOi46Vb71LdwCiiipAKKKKACiiigAooooAKKKKACiiigApr8I30p1MlIEbZ9KAPLvEkufE9jHn7z4/SvTbSEQQKo9BXmOvIJPFlgwPSSvUo/wDVp9BXVX+GJK3H0UUVylBRRRQAUUUUAFFFFABRRRQAUUUUAMkRXGGAI968G8RW0vhvxTJqCqVWaQD264r3wjNed/FHRWv9KhaFMsjhiR7HNXB66iOr8PXou9NhcnJKA1s15b8O9deZXtXbmL5cZr1FTkD6UpKzGLRRRUgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFUNU1OHS7KS5mPyoMnmrU0qRRMzkAAZ5rx74g+I3vr0aPaEsJxglD0q4q4GDf6ndeNvFzW1uxNm2MAjivZvDeirpdhEhHzBccVzvw+8Kx6TpcTTIGnH8TDmu/UADA4olK4hRRRRUDCiiigAooooAKKKKACiiigAopNwzjIpc0AFFFFABVS+fZAT7GrdZmtPstDzjg1UVeVgOE2Lca9AzDJV+temJ9xfoK888OD7RfSPjOHPPpXoi9BW2I3SEhaKKK5xhRRRQAUUUUAFFFFABRRRQAUUUUAFVNRtY7qymSRc/I2Pyq3SMAVIPQigDwLSLo+HfEk0UgKiaY4Fe5abcrdWquvTAry34laaLbU7O6hixsbLED2rqvBOvJe2Kx7cNkCtJK6uI7SiiisxhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIzBRk0tYHiPW4dNsmJb5vrTSA5/wAb+J/sVqYImG9xtArk/AHhaXUrr+0r9TvVyVzzxms61jufFmuvu+aOKTjI969s0nTo9Ps0jjGPlGa0b5UIuRRCJAqjAqSiishhRRRQAUUUUAFFFFABRRTWbauTQBHcXMdvGXkOBXMXXilmn8uzw5Bwa5/xt4leAtbxSENnFWfBWkNMrXNwM+YMg0AadxrGpLAZhEMgcCotF8Zfa9Q+xXLBZu6iujvre3itGLgbcV4ZBcOfivKtucR4GAPqaAPoONw6gjoafVPTixtY93XFXKACsPxMxWxYj0Nblc/4mkU2RX2NaU/jQmc/8PV85rwt2c/zr0CuG+HsRjW8J7uf513NXX+MFsFFFFYDCiiigAooooAKKKKACiiigAooooAKKKKAOd8WaWl9pNw5XLKnFeZ+Cr86bqSwSHaS56/WvaLqITWzxnkMMGvFvEtl/Y/iVXQbUAya0g7qwj2m2mE8KyDkGpq5/wALakl5pcIBy3WugrNjCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopkkojjZjxgZoAraheJaWryOwG2vG/EupT65qL2sLNjOeK3fHHidi7Wlu24sOgpngXw3JLMl/cKcsP4ua0S5VcR1Hg/w5FplokzKN7rk/Wuu6UyOMRoEHQU+obuMKKKKQBRRRQAUUUUAFFFFABVa+JFq23rVmmugdSp6GgDwXxQskmvOHDbd46/WvY/D4gh0W1KlQTGM1zniLwp9rmaaNCWJzxT7KDUre3WHyW2qMCgCx401n7LpU8cRzIRxt+lcJ4D8Py3euDV5lbLev4muybw/Nqk4N0GUeldVpum2+l2qwRhcL3xzQBchQJGFAxipKQEHpS0AHauP8TzfLtz3xXYHpXnvimcfaVXP8YH61vQV5CZs+DofKhmOOprqayNAh8qzU4xlQa16iq7yuNbBRRRWYBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXB+PtGFxZS3Sj5gOtd5WfrNoL3Tnh25zTTswPOPh/qRivRbyMcAdDXqqsHUMOhrwplk0PxCxwVXIHXrzXtGk3IudPgYHJKDNVNdRF+iiioGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcn4x8QRaTaFC+GcYArc1bUo9Os2lkIAwe9eI3Ut54t11o1d/Ljkx7EVcV1YFnw7psniDVkuZV3KHPP417Vp9otlaJCowAKyvDWgRaTZKm0bsA5roKUncQUUUVIwooooAKKKKACiiigAooooAKKKKACjFFFACYrnNb1b7EzANjmukPSuB8c5trYzkcZrWik5WYM6/S7n7TbJJnORV+sHwvMJtLgYdNlb1TUVp2AD0ry7xXIBqSD/AKaj+demzSeXGWNeZa9tutUUAciQH9a2wy1bEz0fTlAsICO6CrVV7EYsYB/sCrFYTerGgoooqQCiiigAooooAKKKKACiiigAooooAKKKKACiiigDyrx9pMiyG6Rerda2Ph5qr3cMkMj58sYHNbviqx+2aaVC5IBNeVeHL+XRNdeFmKiSTbWkdUI91oqOF98SMDnKg5qSsxhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFMllSFC7nCjvTq4Lx/4oTTrGa0jkxcHlRTSuByvjvxTPql22lWg3bGHK9etdL4I8Ni2hE8q4ZxuOfWub8EeHmv74ancplpB1r2G2hWGFUXgAYq5S6IRIqhVAHFOoorMYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcX8SAq+HNx4+au0ri/iYm/wANEf7VbUP4iE9jQ8HsDpFvj+5XSVzPg5duj24/2K6alW+NgtipqD+Xasa4AL9q1VhjOGz+tdvrj7NOZq47w6Dc6vKD25rWlpBsGd/bDbbRj0UVLTYxhFHtTq5nqxhRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAI5oxJGwIzwa8W8Z2E1jq0NxHEQFfcSBXttcd4204XGnuyrkhSauLswLng3Vzq+leYT9zArpa8e+HOsPp8p02RsF5CcE+9ewUSVmAtFFFQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUHpRVS9u47WBnZgMA0AZviHW49L0+aQnBCZGDXjllBd+MvEkd2xYwAkEH61Z8W65NrurQ2lrlkZ9rbT04r0fwT4dTSNLVXUFzg5I5rX4UI29F0mPTbNIlUDA7Vq0gGKWsr6jCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5D4iqX8OkD+9XX1zfjVA+ikHpmtaP8RCZH4QnX+zIE7hK6jqK4vwnwgGeMV2a9BTrL32C2MfxKcaU9cr4Iy2s3GfQ10HiebFi6Vk+DIduoSvjqK0hpSYup3NFFFcpQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVLUbZbm1dWXPy4q7SMu5SPWgDwfUVOh+N7eUArGOuBx1r2rSL5dR0+O4U5DV5/8AEjRh9glvIwPMUcYq38MtZE2iW9m75lXkgnmtGrq4j0SikBzS1mMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopDQA2SQRqSeBXl/jvxP5cZt4XG5jtP48V0vi/wASRaXYyDd8w9DXmnh3SrrxTrzyzAmEEMu4e9aRWl2B0Hw/8IhpZL68TDM29M816uqhVAHAFV7G0SztY4kGNqgVaqXK4BRRRUgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVh+KYWn0kqvJzW5WdrOTYnFXB2mmByXheUpdvEf4eK71fuj6V574cYDVrgZGd1egr90fSta694SOR8UzY3pU/hWEp8+OorI8Wy4v3TNdP4egKafE/qtVL3aSEtzZooorlKCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMbxBpq6jp8sTDO4Yrxzw1dNoPxDls3bbCoGM/U17067lINeJfErSJNGnOsRDDM4GR161pB9BHs9rOJ4VdTkEZzViuZ8HagLvQrRi4LeWM101S1qMKKKKkAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKzdX1CKws5XeQKQMjNXZ5lhiZ2OMAmvH/ABpr8up3q2ls24E7Dg1cY3dwMjUrqfxPrvkJuMbflXr3hnR4dM0uFRGokAwT3rlvAnhZbWKO5mX94D3/ADr0ZVCjA6UpO4haKKKkYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVFcRiSIqwzxUtI33D9Ka3A8v8P7h4pvVB4EnT8K9OT/AFa/SvLtBJ/4S2+/3/6CvTXbba59BXTifiXoSjzzxeu/VXKtXcaCCNHtwf7tcPrKC61Vs967zSFCaZCo7Cit/DSBbl6iiiuUoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5TxzoS65opgx0O6urqOVA8TqQDkGmnZgeM/DfU5INYvNPllO2BtgyfYV7QhDIpBzxXgmq2s3hjxM9yFKrczA/yFez6Hei7so3LAkoKuauriRrUUUVmMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQnApaw/EetRaTp7yM65HamlcDm/HfihbOAQQPiQnacVzHhDQpdQuzdTrn5t2TWdZQT+Jtcld9xi3ZGelex6NpcWn2yIqKPlFaN2Qi9bW628QRRgVPRRWQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRvun6UtI33T9KAPLtCx/wld72+f+gr0a8bbpzNnoorzy3T7N4huGHUuK7e9lzokreiCuutrJMlHHxf6TqwzzmvQLJdloi46CvP/DWLjVkz3r0ZF2qBU4h6pDQ6iiiuYYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAecfE7RzdwW1xGvMXzHAqH4eay08LRO/Knbg+xxXd61aLd6ZOjKCdhA/KvF9Fll0DXTA2VDyE/rmtFqrCPeRS1T025F1aiTOc1crMYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTXcIpJPQUWAgvLtLS3aV2wqjJNeI+K9aufEetvp9tlom7qa6T4i+LUtc6ZDJ+9lGFAqv8OvC5eGHULuP98cZOPatYrlQjp/BvhxdPsomkXDlec12YUDpTYoxGgUcAU+s27sYUUUUgCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApG+6fpS0h6GgDzW6Pk61ITwC9dVdyqdBl56oK5vxDGqX6sOu/wDrWndSkaWyeqCu2SuoslbmT4QU/wBrIe3FekVwnhOELdI2PSu7rHEP3xxCiiisBhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA11DoVPQivIfiBpv2PXIbmIYVRkkV7BXMeMtLivNHnkZcuBxVRdmBT8EauLywiTdk8V2deMeCtRXTdRS2kbGO1exW8omhWRTkEU5K2oEtFFFQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAITgVy3izX49MsX+cBmU4wfatjV9Tj061aR2AwK8N1rUL3xhri20SuYopeSvpmtIrqwJPCmhXfjDWhql07FIZDw3cZr3e0tIrSHy4owijkAdqyvDOhxaNpyRoBllBPHet7GKmUriCiiipGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUHoaKKAPPPGaG2ngf8AvOP50y9uC1vGA2MqOKufEMqiWeT/ABj+dYGoODLbgHgoK9CmrwRL3Ou8LxYjRiK6usPw1GBpqNW5XHVd5jQUUUVmMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACoLq3FzbtEwyGqeigDw3xFaNo3iZ3XhR6V6t4av1u9MgAYE7ea5j4g6Es9pJdD7xPaqHw71NIrh7eST7owATWr1iI9SopFbcoI6GlrIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQelFIxwpPtQBj6prUem8ytgVmWvjC1uuUkyDXN/Ee+CuiI2Miqfg/Tt+k+fK69e9AHfW/iixml8rzPmrcRw6Bl6GvCb+S4j13bbk48wfdHvXtmlljpdsX+9sGaALlFFFABUU8ywRGRuFHWnswVSSQMetcJ438RC1hkgif5iONppxQHM+OPERvZ3sraQl89BXQeA/C8dkgvJIsSSjcSa5nwh4el1XUxe3ILK394V7Ha2620CRKMBRgVcnbRCJQMACloorMYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcF8R1DR2eegcfzrnbspJPbBOyium+IqFrW3b0Of1rjNMuRdXcY9OK9Ogv3SfYh7nqnhxSuloDWxWdoybLBV9K0a8+fxMpBRRRUDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAzNbsVvrBomGc14zzoniFsEqGkA/WveGGRivJfHekNHOtyi9GDfrVwYj0/TblLmyiZTn5BVyuG+HmqG8sZFkfJQ7QM13NJqzGFFFFSAUUE4ppkQdWA/GgB1FV3u406sPzpsd/DI4UOuT2zQBaopAcjNLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFRTuEgkY9lNS1ieJL1rTT3KnGVI/SgDyLxXcvqWsJEhJw5GK04LS80/RiFRwua53TZJJte82XoJM16FqurI2nGBCMkD+VAGJ4Sa31DV2ilKl15INeuQqEhRR0A4ryfwToFxHr8t6yHY44NetRjbGo9KAHUmeKWs7WNSj0y0M0jYGDQNK7sil4j1qPTbR/mXcRxmvIoGuPEutozKxj3EHHSjxD4lOvagLdH3KHwa7rwbpdlp9qHbh+vNaRatoOUXF2Z1Wg6YmnWCRhRkd616p/wBo2w/jo/tK3/vVNm3sSXKKp/2lb/3qP7St/wC9S5WBcoqn/aVt/fo/tK2/v0cr7CuXKKp/2lbf36P7Stv79HK+wXLlFU/7Stv79H9pW39+jlfYLlyiqf8AaVt/fo/tK2/v0cr7BcuUVT/tK2/v0f2lbf36OV9guXKKp/2lbf36P7Stv79HK+wXLlFU/wC0rb+/R/aVt/fo5X2C5coqn/aVt/fo/tK2/v0cr7BcuUVT/tK2/v0japbL1ejlfYLl2is/+2bP/npUg1S2Izvp8rC5coqn/aVt/fo/tK2/v0uV9guXKKp/2lbf36P7Stv79HK+wXLlFU/7Stv79H9pW39+jlfYdzm/Hig6cpPZa828Gnz9Q65w5/nXpPjC4guNOZVbJ2mvOPAPlw37mQ/8tT/OvToX9g0Q9z2+zTZAoqxVJdQtgoAel/tK3/vV5rTb2KuXKKp/2lb/AN6j+0rf+9S5X2C5coqn/aVt/fo/tK2/v0cr7BcuUVT/ALStv79H9pW39+jlfYLlyiqf9pW39+j+0rb+/RyvsFy5RVP+0rb+/R/aVt/fo5X2C5coqn/aVt/fo/tK2/v0cr7BcuUVT/tK2/v0f2lbf36OV9guXKKp/wBpW39+j+0rb+/RyvsFy5RVP+0rb+/R/aVt/fo5X2C5coqn/aVt/fo/tK2/v0cr7BcuUVT/ALSt/wC9SjUbcnAajlfYZboquL2E/wAVH2yH+9RZgWK5zxVpwu7EjbkhT2rb+2Q/3qiuLiCSBwx7GnqgPHPC99JouuraMSBJJ0Ne2xsHUEHPArwrxX/oHiGC5j4CtnNeqeENaTVNKRy2W6VU7bj5Xa9jpKKKZK+yNmPYVmIzNX1eLToGZnAI7VyC65c6ndEQqxHtXOeOtakn1z7CjfIwPQ12fgvSFgs45ivJHegB8ltdvakkPnFc3p0moR+J4I2WTyz616oUG3GBg1TGmQfaln2/MPagC2gwozT6MUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUF1ZwXibJ03L6VPRQBjR+FtJjcutsA3rUzaBpznmAVp0UAV7eygtRiFdoqxRRQAhIAya838faqbq2awhY+aDXVeJ9aTS9NlZWBlHRe9cb4f02TV9TOozghZP4WrppUk4uUtgjLld0ebr4V1RHa5iJBJ3ZxUsF/r1rIInndQOM4r6Ij061WBUMCcD0rC1vwfa6lG3lhImPde1Xhq1OndNF1qkqrTkcDo9rrmpBdt8uT7/8A163R4U8RkZ+2Lj/PvWTLoGoeGZ/PgeWcA9Bzmui0bxm8o8m9h+z7eMvxW9SUnrDVGKXcp/8ACK+I84+2r/n8aUeE/Eh/5fF/z+NdBd64qur2jCfj+DmoovEt2Ww1k4Hrisuer2Q7GL/wifiP/n8X/P40f8Il4k/5+1/z+Nd3ZXwuYwWwDjpVzOayeJqJ2Y+U84/4RLxJ/wA/a/5/Gj/hEvEn/P2v+fxr0iij61MXKeb/APCJeJP+ftf8/jR/wiXiT/n7X/P416RRR9amHKeb/wDCJeJP+ftf8/jR/wAIl4k/5+1/z+NekUUfWphynm//AAiXiT/n7X/P40f8Il4k/wCftf8AP416RRR9amHKeb/8Il4k/wCftf8AP40f8Il4k/5+1/z+NekUUfWphynm/wDwiXiT/n7X/P40f8Il4k/5+1/z+NekUUfWphynm/8AwiXiT/n7X/P40f8ACJeJP+ftf8/jXpFFH1qYcp5t/wAIl4k/5/F/z+NQXHg7xPIhCXqg4/z3r1Cij61MOU8fPgPxfz/xMF/z+NaNv4P8TxxBXvFJ/wA+9en0mKbxlR9EHKecf8Il4k/5+1/z+NH/AAiXiT/n7X/P416RRS+tTDlPN/8AhEvEn/P2v+fxo/4RLxJ/z9r/AJ/GvSKKPrUw5Tzf/hEvEn/P2v8An8aT/hEvEn/P4v8An8a9JopfWpj5TybVvCviBLVvMugRg/561y3h7wzrDXL+TOFO45r2LxRceRbKMferB8MRFnZtv8Wa6oYiSpk8upTPhbxEP+X1R/n60n/CLeIif+P1f8/jWl4u8RyaMjlELFSeBVLwv4on1aRvOiaNQM5Nc31qY+UiPhfxEOt6o+v/AOulHhbxGf8Al9X/AD+NXdd8Rz288cdrE02euwZxW14durm8gWSeJoyezUfWphynM/8ACJ+JP+fsf5/Gl/4RLxJ/z9r/AJ/GvRxS0fWphynm/wDwiXiT/n7X/P40f8Il4k/5+1/z+NekUUfWphynm/8AwiXiT/n7X/P40f8ACJeJP+ftf8/jXpFFH1qYcp5v/wAIl4k/5+1/z+NH/CJeJP8An7X/AD+NekUUfWphynm//CJeJP8An7X/AD+NH/CJeJP+ftf8/jXpFFH1qYcp5v8A8Il4k/5+1/z+NH/CJeJP+ftf8/jXpFFH1qYcp5v/AMIl4k/5+1/z+NH/AAiXiT/n7X/P416RRR9amHKeb/8ACJeJP+ftf8/jR/wiXiT/AJ+1/wA/jXpFFH1mYcp5v/wiXiT/AJ+1/wA/jSHwn4kAP+lj/P416TSHpS+tTDlPJrnQvEcEm03R/D/9dJbabr8cmXuSR9K9VkSEZaRVx71XM9guRuiyO1aLEyatYOU4IW+sAczH8qd5Gr/89jXRz6wkc5VbZSgP3sUt5r+nW1uW3RGTH3fWhTk3ZRCxy0q6rEu5p8D3rnNT8RX1oGUzlu3y81p6p4nvNRla2ttPfZ2cCl0v4fSajKLq4lZN3O1q6o8sFeoJp9DzHWNTvtRl3MkrY/2TXb/C3ULtdVgtHdhHn7p+tep2vhbTrSzMb2sTtjGSM1ws9ouheMhfIgSFR6YFccoQrVG0daxMlT5LHrdQ3Kl7dlHU8VHp90LyzjnXGGGeKtEZrmasc54P4rsJbfxaszqSgByce9eo+GdStjpkSbgCB3Iq1rXhyDVlOQquf4vSufh8ATwSFk1B1HpmkB18uoRIOGB+hqSzuftCFsEfWsSy8Ny2zBnu2fHUE5roYo1jQKBigCSiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqpf3qWVq8rnARcmp5ZREhZumK848Va1Le3kdnbMcOdjjsa1pU+eWom7FG4ll8Ua+kkeXtvukg8V6NpOmx2FsqKMYFZPhTQI9MsxlMMx3fnXUAYFaVqt3yrZAkLRRRXMMhlt45QQyA59RXL654Qt9QUtypHI2jFddQRkVcKkoO8WDR4/JY6v4emxZReZHnOXNdFpPiiGWBY9T2xTdwBXa3FnFOhVlzmuV1XwjDLulijAf1rqVaNRWmieU29PFrMfNgcsDzWseE47V5Qw1nSLjCy4iB6Adq6TSPF8b4jn3F+hqKlB7p3Gmbl/e3sJPlICKS11kAf6WwU1djmt7uMMCOfeq0+kQzE/LmsrxWjQ7FqHVLWc4jkyauZrKtdIjt3yq4rUAwKiVugC0VWubyO1Xc4NU0162dtu1hzihRbA1aKhiuEmGVqapasAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUZpr5Ckiuc1jxJDpZ/ek/hQB0tFclYeKI9RiaSEtgcVK/iNYGAfdQBB44m8qG35+82Kf4bj22vmMMD1rH8cXf2m1sHU/eYH9a2NPm8jw/JIeNqA11S0oonqcD8TNWCXEyqRjniovCOrGSJETbyMHAxVDU4R4g1lo/vZ9aJNPl8OyQunyruGcfWuUo9b03QIUCzMNxb5ua30iVFAUAD2FY3hrV4tSsEKuCUUA81u0AAooooAKKKKACiiigAooooAKKKKACiikLAdxQAtFIGU9CKXNABUcs8cIJc4qrqDTBP3LYNYSR6hPKFlfKn2rSMEwN9dTtXfYsmTVsEMoI6GsaDTI4SJHAB+tNvvEFrp0e1ucdMGhx5naIGndRCWMhjjNcdqQ0mymZpbllaqN/4hvdRYrYSFc9M0WXhu61P5r/AOcnrW8KfIveZLdzNuNU1CVvL05FkjbjJ9KmsPBj6nKs98XVu4B4rudN8P29kuBHithIlQYWnLEpK0AsY+l+HrbT4lVVDY/vCthI1QfKAPoKfiiuWUpSd2ykhCMjFcL4/wBPeXSZXhX5+1d3VLULNLu3KOuQaqnPlmmJnP8AgzU45NMhtC/72NfmFdYDmvKNAlfTPF12khxFkhRXqcEgkjVh0IzWmIhaakuoLYlxRiiiucYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIzBRzRnisnWdTSztmJbBFOMXLYDI8T64trAY0I3E44rI8JaK11cS3VyC2W3LurPt7abXtXbfkxg7ga9KsLRLS2RFGCFxXXUkqcOVbk7llECKABjHFOoorjKCiiigAooooAKQqGGCM0tFAFK602C5XDRr9a5fUvC4QF4Tg9eK7WkZQwwRWkKsobBY8qW41DSp/mMrID0rqdI8VLcYjkXaRxzW5faTBeKQygZ9BXKah4WNuTJbBifaujmp1VqrE2Z2sV1FKoKyKc1NmvLo9S1DRpcTKQue5rqdI8VQ3qDe4B6VlPDuOqC5v3VqLhMGsyXRggJUjNa8VzFMoKtmpetZXcRmHaQTRy4JbArbT7gpdo9BS4pOVxlW4vBB1FJb30cy5JA+tLc2onHJP4ViXFjcRkiJWINaJKSA6ISxscBwfxp4Oa5uyiuopxvQgV0EROwZqJR5QJKKRmCjJNRfaYs43VNgJqKQMG6UtFgCiiigAooooAbIfkJNeM/EK93X1vCr43PjrXrWq3H2e1L5rwfWxLrevIsYLeXKOlAHofhKxhsdHLSyKSeea25NJjv7bzEx+Fc2ul6gkUSCN9mwd67PRE8jTxFJ98etAHF+KIsraQA8owFaU9nPPobxRFgWQDiqGqubrVSmAdr/wBa7jSYgtqoKjp3rqq6QSJW55l4b8KXVtqqzSsx57/Wt/xT4ce/sVWMEMPSu+EaDoqj8KCinqoP4VylHl3gzRtQ0qWRZJHKlu9enxZ2DPXApwjQdEUfQUuKAFooooAKKKKACiiigAoqvdXKwR7iayJNdOSoIqlBvYDe3D1FLWRY3T3ByRxWsOlElYCtc3JhU8VgXVxcXLHyyy/Sujlt1lGGJpkNnHDnABz6inGSQGNpq3QlHmM5HvXQJ90Ux3jiGWwBWTqPiC2s0JEmDT1qPRBsa0jxKDvIH1rH1DW7WyB2BGIrkdQ8T3F+xjt8N24NQWGh32oShrhXCnvmt40EleTE3cu3uu3GoMUgV1+gptjod3eybp3cgn+Kup03w5b2iK3Vu+a21jVFAVQMe1J11FWgKxjad4egswpKqT3rZSKOMYRQKfRXPKUpblJBRRRUgFFFFABSEZGKWigDzLxzZNp7w3UK4Z5FJI+tdh4dvhcWEY3ZIUZp3iPTF1CxIYZ2LkcenNch4M1Blu7iBzgI+AK7H+8pW6onZnpVFMjYMoI9KfXGUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNdgqEnsKAIbu4W3gZ2OMDNebaxezavqBtoWzu7VreK9aJkEELkluPlqTwpohIW8lGWz/ABV104qnHnZN7m14e0hbGzjcpiUjk1u0iqFGB0pa5pScpczKSCiiipAKKKKACiiigAooooAKKKKACkIz9KWigDL1DRLPUFInjzXI6h4QubVy2nKFXrXoVIQCMGtYVpQVkKx5dDr91o03k3TNkdeK67SvEtveKPn5471f1DQbO9UkwJvP8RritQ8H3tlIZ7e5YKDnatdF6VVa6MWqPRo5lkUFeQfSpK8wsvFFzpkoguIZWwcbiK7PTfENteRqTIgY9s81hOjKL8h3Nyimo6uAVOQadWVhjTGCcmlAxS0UtQK91G7oQnWsCa0v4pC5I2109NZFcYYZq4zsBzsGrtG4jbO7pW/DJ5iA+2aYbG3LbvKXPrip1UKMAYFKTi9kAE4FAYGornPkHHWsGbWJbdyggdsd8U4xctgOkornbTXWlkCvCy59RW5FMJVBBzmk4Nbiuct4z1FoNOZUznnpXlvhSR11m5mmVsb9wJFe8XFhbXS4mhVx71Wj0LTISSlpGpPoKkZy154qit4ATu4HpUug6rLqV15qk+UR3rpn0bTpeHtYz+FPi0+0s4z5EKpgdqa3A87sXN34iuUX+F69JtIzHCoPpXmegIR4sviOhf8AoK9Sj/1a/SujEdCUOooormKCikzUUl1FEcMwH40ATUVFHcRy/dYH8akPIoAY86J1NVZtQjQcH9agvtOnus7Jiv41Qi8P3SybpLjcvpWkYx6sWppWuoC4cgEnFaPUVXtrOOBAAozVmpla+gyhd2jzjb1FRpotrgF05rTooUmthEENpFAMIMCp6Y8ioCSQMetZWoa7a2cZJkQkdgaEnNjNV5AgyayNQ123tEJLYx71xGp+M555TDb28hycblWo7HwzqeryrPJdOqHnae9dMcOkrz0Jb7E2oeMXu5Db2zHcc1FZ+HtX1Kbzrj5om56V2ml+FrOzjBlhR5f72K3Y4kiUKgwB2pyxCirU0FjntN8KWdoqsYsSdzXQRwrEu1eBUlFc0puXxFJBRRRUAFFFFABRRRQAUUUUAFFFFADJV3wuh/iUivLdTh/4R/W4dg2iZ8nFeq1yHjHShchLsAfuhu/SujDztLlewmb+lXHn2atnPArQrivCOqCeIRk9DjFdoDnpWdWPLKwIWiiisxhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc94k1lbC2wjDc3y4rU1K+j0+1M0hwBXm0j3Ov6qwJ3QhsrW9Glf3nsS32JdD0uXU777TLkjfnnmvS7aFYIgigAADtVLSNOSytlAXBxWnSrVOZ26DSCiiisRhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUjKrD5gD9aWigDG1bQLfU42VlVMjqoxXB33gqbSZzdWksshz93dXqmKa0asCCK2p15wVhWueb6Z4u1OzYQX1v5Ua8Bm712un+IdPv1HlXCs2OgFVtX8OW2pRkOmfwrh7vwveaLIZNLjCkHI4ra1Kt5MWqPVgQaWvOdJ8V3diqrq8nzDg12On67aaioMLZ49axnRlBjuatFIDkZpaxGFFFFACEZpphjJyUUn6U+infsBRutOiuCDtC49KfbWgt1wGz9at0You7agRTu0aZUZNYcmsXsUxDQ4TPWugIBqtPaJMpDDINVFpbgVotZtdn72ZVb3pb2+T7CZom3A9xVGTw3ayNkpmoNehXTdB2xcAGrSi5JITOZ8Nw7tfupe7Nn+lelp9xfpXmOh6hDDcSOD8561rz+JbqNsK/y1tWpObEjuaY5IGRWDpGtNdYEjcmt8EOua5pRcR3MLUNU1CCVVhg3A+1Uzp0+rHfOXjJ9DiuoMYJzShAOlNVLLRAZmn6QtjjEjN9TWoBgYpaKlybYwooozSAKKQnAyazNQ16z00Ezt09KFFvRAalZt7rlhZKfOnVG6AE1x2o+LLu9LLpL5Jqrb+H73WnD6kM966I0EleehNyTWfF+oXEnk6fD5qNxlazrLwld65ILi8kliLdRk13OleGrWwUbEwfpW6kSoMAVX1hQVqaCxh6P4ZtdMjUYDkDqwzW6kSIMKoH4U+iuaU3J3kUkFFFFSAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVS1SD7Rp08WM7lxV2kK5GDTTs7geW6dnRNXW3JxyTz9a9LspfPtUf1FcH4t0+SLUvtiDhR1rf8L6j9ptkiLZIFdVZc8FNEo6WiiiuQoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmSSLGhZiAB6mnMQBzXI+LddFpC9tGw3yDgVdOHM7AYnibVn1C/bT4CSD3HSui8N6MLaFHcfMRyTXPeEdIkuHjvLgMW/2vrXosUaxoFAxiuitJQXJElaseBgYFLRRXIUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABiopIEkHzDNS0U07bAc5qvhqC8ViI1yfauNvNI1LTJt1vKyqD0Udq9VxmoZbaKYYZFP4VtTryjo9RWucHpXiqS1xFch2I7kV2Nlq9veICGUE9iaydS8MxTIWTAPPSuQubG/0uctGJCorZxhV2Fqj1QOrdCD9KdXB6R4pkQiKdcY9a6621S2uEBEqkkVzTpShuO5eozUJuoR1cVTuNUWI4Ug81Ci2M0qQnAzUNvMZUDHuKklBMZAoatuBSutTS26qT9KpnXEl+VUIqR9PM0h3EgVLFpEaHORWiUEhak9hI0kZZjXPfEGYxeHiwODurqY4xGoA6Vx/xJIbw7tB53U6OtRA9iDwto0c9nHMVB3rkmuhfQIH6oKq+D1xo9vn+4K6SnWnLnaBLQ56bSTb/wCp+X6Vf01JlP7xieK0SoPUCgKB0ArNzuOwp4FUZNRSO48og59avEZFZeoWHmgyKTu9qUVrqBfSdGXO4D8aeHU9CD9DXKzQXES5JcAUyPXo7NWDSAlfWtPZX2Fc61nVfvED61l6hrlvYoSWDH0BzXHaj4quLwGKFM59DVK0066vZt9wzqp9TWscOkryFc0r/wATTX7GO1DoemcVWstFvtRcG6cuD6102l6FaxBTuVj710EcEcYwqAfQUpVlD3YILGJpvhu3s8ExjNbcdvHEMKuKlornlJyd5FJBiiiipAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAw/EtmLjSpsDLGuT8N3X2HUDExxjivRJYhKhVuleaazbNZau0q5C7q6qL5o8jJZ6ZE++JW9RT6zNGvFubKMBslV5rTrnkrNooKKKKkAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACgmiq91cLBEWY0WuBR1nU0sLZmZgDg4rzmwgn8UastywLRxOQT+NTa9qM2tXy21sxwr4b867rw7oselWihUALgE49a7dKML9WTuaNlZx2kIRFAAx2q3RRXG3fVlbBRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikyKMigBaKKr3Uxhj3c/hQBMzADmqVwltc/I4rEl1p5JPLVXBPGcVNb2d5M4k34U1ryNat2EVNR8LwyAyW6/N2rlbmLVtHZmKkKDwc16nbxskYDnJqO50+2u1Imj3CtIYhx0eoWPLrLxFd3c6hmyOldjpsKXYUynn61X1TwaJNx08CInp7VzEt1qPhyYi4Z3AOPlFbvlqL3NBXPVIYliQBfSpa4nRfF8V1hXyp/wBriutt7uOdQysD9DXHOnKO5SdyzRRnNFZ6gIa4LxpK06tbnpmu9PSvNdcdp/Ezwbs+1b4de9fsJ7HYeGo9mmQjGMLW3WbpEfl2cY9FrSrObvJsa2Cims4UZJrNvtYt7ZCS68e9SouTsgNJnCgk9qy7/W7a1jYl+RXFap41LSGGBJCWOMqM4qla6HrGtyifzysR/hNdMMOlrN2Jvcv6l4va5kaC3YHtWfaaDqWozeZJGfLY5612Wl+ErS2RWuIlaTua6GG2igUCNcAcU3XjBWpodjnNM8JW1uFd1+cc9KvXenyqgWBOBW3RWDqSbuFjmEa5szmTitCy1MzuFzmtKS3il++uajisbeE5jjAPrTc01qBZpGYL1paztUleJAVzxzxWS1GaAOaWuVGvtG20o/HtWtYamtxjOR9at02hXNSikByMijOOtQMWijNFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVyfiyx3WvmKuTmusqpqFqLq3ZSOxrSnLlkmJnIeDr4xyyxSHocAZruQcgGvK5HfTNaQDIDSc4r020mE0CMDn5RWmIjqmuoIsUUUVzjCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopCcA0AI7hFyelcF4v8AEDQo0FuN75xha3fEespY20iBwGxxXIaDpcur6v8AapkPkt3rqoQS9+RLfY1/B3h/yyb+cEmYZwexruVG0ADtUdvCtvCsaAbVGKlrGpPnldlJBRRRWYBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNdxGpZugoAdRWfLrNlFkNJg1DHqyTyYibIquViua1RSTxxDLsBSxuWHNV7uxjuRhifwpK3UZnahrLRD/AEdfNPoKo2Ou39xcBJLN1UnqR0rXtdHht2JGTn1rRWFFxhV/KtOaCVkhaiRMWUZp7KGGGAIoxS1kMh+ywdfKXP0qVVC/dAFLRT36gFFFFIAqrc6fbXSkSQo2fUVaopptO6YWOF1XwQJW863nMZGThTisE6nqnh6YRi2mnQfxda9XIzVO90+G7jKOowf9kV0QxD2nqJxOe0bxhbXaqLl0hf8Aut1rqYZ451DRuGB7ivP9V8BW4la5t9/mZzgcCqEGsa7ojiF4gIFOMk9vyq5Uoz1psEz1NuhrypwJvibLEWyMDj8TXV6d42025jCzTgSHjHHWuFk1axt/iPLdvLiPAwfxNPD0pR5tOgmz163j8qBQOwqvearaWinzZ0Uj1Ncbf+MLiaMJpJEh71nQaPqOvPu1FCmT/CahUOswv2L2teMJ8tHYwNP7oM1kWvh/UfEMolnkmtwecEkV22keFLTTgpXLHr8wroViWNcKAMegxTdeMFamFjkLXQrTRIN9xskwMlm5q1Z+JNPciO3eLPZVqp49uY49FuRu+bZxXC/DHQP7QgW+kZz857+9c8puTvIpI9XXXLNcebOiE+pq/b3cNwMxSBh6iuM8ReEoHtTMjPuUFuvpXM+DPE041Caylb5Y32DJqAPYaKihk8yNW9qloAKKKKACmsiuPmANOoo2ArtZQMP9Uv5VVOlKJd6NgegrSoqlJgMjQxxhfTvVO/upYImaOMsR2Aq8RmgqGGD0pJ6gYNjrTyOBcR+WPVq011O1YgCdD+NQXmkQ3f3sj6VRi8L20cm8M/WtP3b3Fqb6urjIOadUUMQiQKOgGKWWdIULOcAVk/IZJRWaddsA+wy8/SrcN5DOMxtmm4tasCeiiikAUUUUAFFFFABRRRQAUUUUAFIwypHqKWigDgvFuneSRcKOV+bitHwRqLXmmsZSdwbABrW1uzFzatkdBiuG0O9Om67FYZwHJOPxrsj+8pW6onZnp9FIpBGRzS1xlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVR1K+jsrZmc844q1NKsUZZiAMV5z4g1iTULpbaLPDYOK2pU+dibsUp3m13UwMkpkjFeh6LpyWFmsYXBFY3hjRRBDvkX5zzk11gGOlXXqX9xbAkLRRRXMMKKKKACiiigAooooAKKKKACiiigAooooAKKazqv3mApFmjb7rg0APpCwHUignisrURKw+QkfSnFXA0mmRVzuH51XXUYml8sA5rBS2u3bBdyK1rKw2AM55q3GKFqaYOQD61n6ik0kTKhxWgBgAelBUEVCdmMwItFWZAZlBar9tpUNv91MGtAAAUtU5yYCKoUcUtFFQAUUUUAFFFFABRRRQAUUUUAFFFFABRTWdV+8QPrWde6xb2ik+YpI7ZppNuyDY0G2kc4Fc/rh08QN54DcHoawNT8XSzs0UEbfUVm2unX+pzbpHk2Me5rqp0WtZOwm7nLavbrPcldKjaNyeMjPNYdtompWmrG61L95H7CvdNP8ADEEG12VScd6uXnh+1uoyvlIK6Y45R91InlOR8LtpLbQkW18ckmu/t1h2AoQRj1rzzU/DFzayb7Z2UA5+WnWOtXWlMI51d8d25rGpD2msWUmekYFDnCMfasLTfEcF4qhyqE1ev71UtWeM7vlPSuOUWnZjPMfiBqJkvI7IHPm/Liuu+Hmmf2d4fWIrg5ryfXLu6v8AxdZubdyiSc8V6/Z6yLS0RFgxgDt7VIFvxRfx2WmOXIG5SOvtXjvgi2kuteupcHBlJHHvXXeJHvNf2wR70G4dPSug8KeGk02IOQNzDJoA6u1Ty4FX2FT0gGABS0AFFFFABRRRQAUUUUAFFFFABRRRQAVDPAJkKEZBqaigDDl0GEuXCDNQx2lzby4jOFz0rosU3Yuc4Fae0lazEMg3eWN5yadJII13EcU+o5E3qQagZBDfxTOyLkEetWd6n+IfnWFd2EiyFo2Iz6VWEV0jgl3rTkTFqdRmiqVkz+WAxq5nHWs5KwxaKjM0YOC4FODq3Qg0We4DqKKKQBRRRQBHMm+JlPcV5v4ishp2qDUAuDH3r0sjIxXM+LNO+2afKAvJrehO0rCZo+Hr37fpEM5bJatavP8AwXqPlXQ0xjygzg/j/hXoGc1NaHLJggooorIYUUUUAFFJkZxmlzQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhOATS1k65qcen2EkjHBFNRbdgMXxVrghgMMLfPnBFZXhvRmuZzczA8ncKzbG3n1zV2mf5oWORmvStPs0tbeNVXGBXXOSpw5VuTuWYoxGiqABgVJRRXH5lBRRRQAUUUUAFFFFABRRRmgAooqtNdpFnJ5FNK4FmisCfWtrkAmp7DUjcOBzye9V7N7iubB6VmahqLWuMVp9RVaexhuf9YuaUbX1GYjXs96MKKn0+1uEkBkBx9a1IbCCD7i4qziqc10ENA+UCkManqKfRUXsMaEUDgCnYA7UUUtwCiiigAooooAKKKKACiiigAooooAKKKKACims4UZNZ95q9vaqxdhx704pydkBoswUZNZt7rFtaqcyYYVx2q+M/nMULMc+lZcFhqutSeYG+Q+orphh9Lz0Jua2peLZZmMUJDduKy4dP1HVZQzowU9wa6jS/CMEQVrmMF+ua6a3sobZcRrgVTqwpq0EFjmNL8JwxgPLnd7109vZxW6hVUYHtViiuadSU/iKSCjFFFQA1kVxggH6isTU/D8F2pPQ+wrdoqozlHZg0eX3/h68spS9urEDpzT7TWri3Hk3IwMYOa9KkiWRSrcisPUPDVrcgssfzda6FXjNWqImxh2Om6PeTLM0i7856d66VdHtZYwVbIrg77QtU02bzITtjU56Vb0nxZJDMtvOWz0PFEqCavEaZ21vpEFu24cn3FaCqFGBWbZ6xBcoCrZP1FaKuGAI6GuZpp2Yx1FFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEIB7CmtErdhT6KeqAYsYTpSSglSBUlFFwOdvrW5Mu5VOPrUceozWo2MMH3rpSoYYNVZNNtpW3OmTWimnoxDrSczQqx71YzxmmRQpCoVBgClkz5ZxWb3GL5i5606sG5vnglOSaii1sl8EmqVNsDo6guohLAykUy2ulmQEVZPIxUq6YHk0obQvFkt4+VibAB/wA/WvT7C4F1aRSg5DLmuM+ImmNNpiyQLhw+a0vCGqLNZR2xbLxLtNddVc9NSXQlbnWUUgORQTgGuMojmnSFCzHFYN14jSOXZGwNc/4x8T/ZcQxvhi22ofCGmy6krT3I3DOc0Ab8muypGZBinaL4qh1G6e3ZxuXqK0LvSrNbcgp2rxHStRktPHV5DC2FD4xQB9CKwYAinVU09zJaRMepUVboAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiimswVSTQBFcTrBC0jkAKMnNeYa5qUuta4lrAS0TdcdK1vGviMwmOwgbJn+UmpPBXhv7Fa+ZOCXLbgW561204qlDnkTe5veH9ISxtEBUbh3rdAxQqhRgdKWuSUnJ3ZWwUUUVIBRRRQAUVBNdRW4zI20URXUU4zG4Ip2drgT1FJcJEMsQPrTnJCZAyRWFeQ3F5L5bhgh7inGN9wNF9Tg5AkUn61JZ3IuC2O1YcXhKIP5hnfce2a3bSzW0TapJ+tVJRS91i1LVY95pM1zMXWYqM9M1sUVEZWYzOttKjjX94Ax96tx2sMWNkYBFTUUOTYB3ooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRQap3Wo21muZ5Av1oSvsBbLAdSBVK51KC2Ul3UfU1yuq+Mc5XTysx6ADFYcVrq3iKXF3HJFGe4NdMMPpeehNzV1zxeYsx28ZkJOPk5rDt9P1TxDIG82WFc9DxXYaN4MtdPxIXLseofmunjgjiUKiKAPQVbrQpq0FcLHLaP4Ois1U3W2ZuuW5rpobOC3UCKNVHsKnornnOUneRSQYooorMAooooAKKKKACiiigAooooAjlgjmGHQMPQ1han4Xt7uMiBFic9GA5roaKqM5LYGjye80rU9AuDKsskq5+6Oa09F8YyMwjuImQjuwxXoUkMcikMit9RXNax4OtdRBbd5ZH9zjNdKrRqaVETY2LTVILlQVkU/jV4MCM5FeUXdnq3huY/YYpJ0HcmtrRvGxJEepFYW6EEilLDaXhqCZ39FVLTULe8jVoZA4PPFW65mmnZlBRRRSAKKKjeVIxljigCSis6TW7CJtrzgH0qSHVbOf8A1cwNVyu1xXLtFNjkWRcqcinHgZqRhRVWW/tofvygVANbsGOBOM/SqUWxXNGioYriOcAxuCKmPSk0MM0mR61Ru57iMHykzWFdatrEZ/d2xIq402wOryPUUua5rS9S1O4c/aLfYK6JCxUbvSplHlAfmkyB3qC4kkRf3YzWTNf6gudkGfwpqN9gN3cPUUuc1yK6trJlANqdpNdJYySywBpV2t6UTg0BaPAqA3MYyCw/OpmGUI9qxv7LMsjM7MOeOalJdQLU09nnLhCfemG2tLpcwooPqKp3HhiK46zuD9avadpSaeAFkZvqa0bSWjEOtrJoCSX4qWS8ij4ZgD9assu5SKyLzQY7uXeZXH0NSrN6jMzXtRhe2dNgcAGvItA8YnTPElxGwO2SXAHpXtUnhuBoChcnj1rxnxN4HOl65FcxB8SSgk1o5Pl5KZvh1C7cz3bTr1by2SQY5AqxcsViJA7Vg+FhGtggV8kKOtdE6hlINY2a0ZlO3NoeB+IpJLrxFsbO3zR1+tex+HbaK106MLgZQE1w/ivw4kN19rT727dUmk+J9ReAxQw7tvyjFIk6XxbriabpzvkEj0ry/wACaDNqXi27v5UYJIcqSK6y40e98TTmG+R4om6kGu00PTrPSrZbaDaWTgnHNAGpbxeTEqegxU1IPaloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQnAoAMilzXMeIfES6LE0j9BWbpvi8X4Z0RsAZ6UAdzRXI2njS2lult2TazHHPFdXHIHXI6UAPooooAK57xHrkem2hy2CeB9a0tRvUtbdnLAEeprzS5ebxDqzW3JRWz7VvQp3fM9iZMk8NaNLrupSXeoLuWN90Rr1GGMRxKg4AGKpaRp6WNnGqqA23mtGlWqObGkLRUc0vkpuIzWRPr6RsUERz04FZqLewzbyPWiuXae6u5N0bOorcsRIsIEjEn3puFkBackKSPSsG9uNRLn7Melb7DIqNYUHalGVgOYS11C9O265U9a3rGxW1jAAxVsRqOgp3SnKdxBijaKWioGFFFGaACiiigAopCwHU4pPMX+8PzoAdRTfMT+8PzpQcjIoAWikJA60zzo843r+dFgJKKaJEP8AEPzpcg96AFooqpc3qW/Wmk2BborMGroei1YgvBN0Uim4tAW6KTPFVbm8FuuSCalagW6K59vE8SybTER709/Etske87fpmr9nPsK5uE461VvNRgsojJK3yjrg1xep+Nw2YYIm3HgECseODVNSYyySuYiclSOtbQw7tebFc3tS8axz7oLCQ+b0rHjtNa1mT/TCGhPSrkGjxRKJPJ/edzW1ZJICFTIrVyjTXuAN0nwdZWZEgjw/WunhgSJdqqAKLcMEG7rinyZK8GuWc3J3bKSHfjRkeorHuYrkk7HIrJlttSMnyzviiME+oHX5orM0uOdIAJnLHPetI/dNQ1ZgLUUlwkQJY1TuVmLfIxFUZLW5k6uTVKK6gaqX0TttB5qyDkZFYtpZSRvlmNbKDCAUppAQXF5HbDMlV11m2ZcgmrE9qs4wwBqBdLjRcBFoXLbUCL+37PzNgJzWjFMsy7l6Vn/2NDv37BmtCKIRLgDApy5LaCCaZYU3P0rNHiCzMhQE7hWlNGJU2kVnDRofML7Bk0o8nUY6XV4SmUJzVmxnNxDvPrUQ06MDGxatQRCFNoGBTbjbRASNnacdcVzV7LrCz4hb5M966amGNT1FKMrAc3s1OeIrLznrWNeeC47xjLJHl+td75a+lO2j0rSNaUfhFY8rli1rQ3xbHbEP5VYTx5KI/IaQ+eelehXNhFcLtZAa5TVPBsMgMkMahx0IreFanNWmhWYabqGtXYWXePLbpW/avfH/AFprz9YNS0Wfe0rtEP4QK6HSvGcMzCGSIqw4yc0qtP8AlGn3Ozjzt5pk0CzLtbpTbe7hnQMjrj61OCO3NclmmMwbjwxZXD7njyamttAtbYfImK2aKr2ktgIoYhCm1elSEZBFLRUMDNutJguc71zmqKeFbFH3CPn6V0FGKtTkgKtrZx2ygIMCrVFFR1ATFJsHpTqKPQBoQCnUUUwExxSbRTqKQDdg9KcBiiij1AKTFLRQAUUUUAFFFFACY96wvEunLeWTSEZaNSwreqK4iEtu6EZ3DFXCXLJMDzvwVqMitJFMekhAFeil90eUry/UY/7F1+KNFIVjk4r0TS7gXFmjZznmt8RH7a6iizlPE9lq98CsHK5rjE0fxVpzk2hC5Oa9raJG6imG2iPVa5RnmGnT+NC4W4kyPqf8a7jRrW4QCW4H7xhzWuLaIHIWpAgXoKAFXgUtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTXbauT2p1VNRlEVnIxOMUAeUfFC+823eFX5z2rZ8J2NtbeH0meQbmiPWuM1oPrniZ7RfmzyBXf2Ph+8XToYQmFC4oA4K5hubjxhavAGMayclele4WIIt1B9B/KsPSvDENvJ5sifPnNdIqhRgUAOqvdXUdtEzyMBgZqcnAJ9K898e6tJFatHbt8xGOtOzLhHmlYz/ABJ4hF/cG1hfIORxWx4dgt9PtluGYGRh3ry3wva317qiPMM5Y16xb6JdPCoKfLXRCspR5C69D2TsaH/CTosoQkAZxWzaX0d0gYMDmuUm8KyMysqHcK29L02a0ADDGKmcadtDDU2ZEEi47VnyaZCW3McVorwKguo2dflrJSsMiiW2gH3l4qZbu3zgSLmsmewuWztFVItLvVm3FePrV8qe7EdQGDDI6UjHapNMgVkhVW6gVIw3DFZDKEt+yMQFqnLrckbAbO+K1Hs43OTUL6VbuckVacewhbO8NyuSKuE4GahhtY4BhKmIyMVLtcZn3OoNAcBaibVHVN2yrsllFL96mnT4SMEVScbbAU7TVZLiUKUwCa1lOVzVWLToYW3KOatgYGBSk77AUdRZlUbc1mxJNIT96t14lf7wpEiVBxTU7IDDa1uN3G6tuBSsKA9cVJgUtJyugILpS9u4XqRXN/YLrz85fH1rq6MD0pxnYDCjtZwBndWnboyrzmrWKKTlcBrcrWRe2Lzt3rZo/CiMrAZNlpuwHdV+O2EfSpiQB6VRu9VtrRfnfBFF3NiLpIVcmsrUb20RSHkUEetczq3jHaxSB/asRYNT1qQMBlSa6KdB7ydhXuWNV1UGQpAFbryKzIdHvtTk3HzAp9DXX6T4QjUK1ymGrqbXT4LRQsa8e4rSVdU1aOocpy2k+EY0VWmOTjvXUQ6fDDF5YVcVbxilxXLKpKTvIaRT/s+P0FSR2qRnIAqxRUczYxAMUtFFIBNqnsKTy1/uinUU72AQKB0ApaKKV7gJtB7Um0egp1FACbR6ClooovcAoxRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSFQeoFLRQBTu9PhuoyjIorkNU8JYYvATnOeK7ukIyMVpCrKGwNHmEU9/ojjKuQD3Oa6PTPFqT7UmIU963L/AEm3vUIdeT6Vx2p+EpYmL2sddKnCrvoTZndW93DOoKOGz6VYzXmFrqV7o8m2Y4A4rqNM8UQXCgSSfNWM6DWqHc6eioYbmOdQUORU1YWGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHGeMNND5vQOUHWk8H6mZo0jY/rXS6tai70+SLGcjFeeWLnSNX8noBxXZTfPTt1J2Z6iDmlqvZyiW2jcHqKsVxvTQoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArmvFk8kWny+WGJx2rpaY8Mcgw6Kw9xQB4j4PsriTxcLqeN9pHUj3r22HAiUCo47G2hbdHAit6gVPjFAC0UVBc3CW8PmSHCimlcDP1vVEsLcktyRjivP4LWbXr/L5ZN3cU7WNRuNZ1NrWNW2K/DCu18P6OtjbhjjcwrsaVKnruyVe9xdN8NWliyssQBAreVQqgDoKWiuL0NHJvcKKKKCQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKTOBVW5vobZcySKo96aTewFokDqRVS5vooFJZhx71zGq+LEjVktdsrdgvU1zyPqmvTlJIZYUz97pW8cPdXkK5s674uW3+WIMx/wBjmuehXU/Eb5jd0B/vDFdZpPgqO0KyzTeaTyQ1dTFZ28AAjiRcegrR1qdNWihWb3OT0nwYIQrXoWQ966m20+3tVAijC4q1iiuadSUndjSCiiioGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIyhhg0tFAGZe6LaXY+aIEmuM1TwjewP51rIEUc4GK9GprIrfeAP1rWnWnDYVjy6y1670ucQTiQ46nHFdnp3iK3uY1BYA+5q9faPbXkTL5aKx/iArg9U8H3OnTtd21w8mTnYDmt17Krvoxao9JjmSQAgjnnrUma8s0vxRqNnMIru1kjVTjc/pXdad4gs7xFxOhY9s1jUoSgx3NqimrIrrkHinViMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBCMjFed+KNPeHUHugMLmvRawfFFl9p00hVJb2rWjOzExnhq/FxbrHnlVroa818N3zaffvE+euOa9HjbdGreozVV4csgQ+iiisBhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACE4rg/GOuktJp9s2ZT0Fb/iTWU0+ykQNiVh8vNcZ4e02bVr5b+5G456ke9dVCCXvyJb7G14V0Ngq3FwuGYZNdsqhVAHQVDbQCGFVAwBU9Y1KjnK5SQUUUVmAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUhIHWq1zfQ20ZZ3X6ZppN7AWqr3N7DaRGSVsKK47VvHdrExt4VbzG4BFYcUet61LvMx+zt/CRXRDDu15sVzodU8aW2GisZd0o4xXPKNf1uXFxDiEnqD2rpdM8H2sZWWaIGQ8k4rqLe1jgXaq4FU6kKfwq4rX3OW0nwPZWrLM5beOxrq4baOCMIigAe1SgYpa551JTd2UGKKKKgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAMUhUN1A/KlooAx9U0C01NSJRj6CuF1TwteaNIZdJRmK8jJr1KmPGrgg1tTrzhpcVrnmOl+LdUsZBHqoCIOM5ru9N1+y1FF8mXc2Oaral4atL1SWi3GuP1DQdR0x91i4jXvgVvalW8mLVHpwORS15ppfi+fT5Fhvy7n1ArutP1e3v4VkRgM9iawqUZQY7mjRSAg9CDS1iMKKKKACiiigAooooAKKKKACiiigAooooAKZLGJEIPpT6KFoB5bq8DWer+ZghS4Ofxr0LSbxLu1Qo2dqgVheLdPDwK8a/MOc1R8FXzRJJDM3zFuOa65rnp83YnZnd0UmaWuQoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA7VTv71LS3Z3YcA9asSyiNCTxXnPinWpLy4W1tTuO7DAVtRp88hN2M+ae48TawjJuWONiCOxr0fStPSygVFUDoayPC+gpYW+9lO58NzXUgADFXXqJ+5HYEhaKKK5hhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFITiqd1qVvaqTI+MU0m9gLhYAcnFVLnUbe3UlpVGO2a5TVPFxQlLdg3aueI1HWXyVOD6GuiGH6yJudBq3jIxbo4Y9/uK5x49S1qYMryxqTnHSui0nwkvDXAOa6u002G0UBF4HtVupTp/Cgs3ucrpPhFAFefDMP71dZaWENtGFVFGPSrYAHQUuK5p1JS1Y0hAAOlLRRUDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAMZqKW3jmXDKD+FS0U02tgOb1Hwzb3GWCKG7ECuRvdJv9MmMkUsmwdga9SxUE9rHcJtcDH0raFeUdHqK1zgdL8ZTRSCCeFht4Jau1s9Wt7qMESrk9s1iap4TglBaIHceeBiuYlsb7R5NyA4HPJrVxpVdULVHqIYMMg5pa4LTPF0isI7ghcda62z1W3u0BR8muedJwHc0KKQHIyOlLWYwooooAKKKKACiiigAooooAKKKKAKeo24nt2BGeDXmw36dr8Q5VC3P516m43IR6iuD8V2Bhfz0HK85rpw8t4slo7i2nWeIOpyCBU1cx4Nv/ALTpSBz85PSunrKceWVigooorMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApCwUEntS9qyNZ1NLK2clhkU1FydkBkeKNdFpbMqMd3tWR4U0V7q9kvLpdyv8AMuR0rPtIptf1jDgmI889K9KsLNLO1jjVQNoxxXXOSpQ5VuTuWI0CIqgcAYp9FFcZQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFJkCq895FAhZnAFCV9gLBNVrm9itlJkPH1rndU8URxKREQ5HZa5j7bqGuSmNY5YgTgGuiFBvWQrm5rPi5IMrCxz7HNc75mo66/wC7Y4J7iuh0nwW8DK9zL5vc7sc11dtpttaqBHCq++K0dSnT+FXFa+5yel+EDgPdrk11dppdtaKPLj21dAAHFLXPOrKe47CAYFLRRWYwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqtc2UN0hWVcg1ZopptbAcbqvhFJNz2qBSawPL1DRJcu3yj0FeoYyMGq1zYW9ypEkSn6it4YiS0lqKxyWleLUkIWZjkdc8V1lrqEN0oKMPzFclrHgxpiXtpfK/wB3isBJtS8Pv5bCWYA9cVo6UKmsHqLU9XzRXH6T4shmVRMQjdw3Wumt72KcAo4Oa5503DcpalqikyDS1mAUUUUAFFFFABRRRQAVka5ZC6tHBGeK16imTfEV9aqMnF3QHm3h28aw8TJYE4jHavTVYOuR0rzLxJB/ZGovqIGCvcV3WhXovNKgl3ZLCuiuuaKmupKNSiiiuUoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopCwAJ9KAK93cLBCzscfLmvN9Y1B9Z1BbeI5BOMA1q+KtdMhFtbMd/wB00/wloIUfabhf3gOVOK66cVTjzvcm9zc8OaOmnWKKy/OO5HNbtJilrmlJylzMrYKKKKkAooooAKKKKACiiigAooooAKKKKdgCijNRTXEcEZd2AA96LMCXOKhuLmO2TdI2BXKat46sLdmt42PnCuca48Qa3L8j5t26cdq3jh5NXkxXOm1TxhaRgpbTK8nQD3rmmu9b1qUobdhA38QNbWl+CLQFZriLMvXPvXX2lnFaRhIlwtaOpTp/Chavc5HSvA8KOLiaR955IJrr7eyht0CrGnAxnaKs0Vzzqzn8TK2DFFFFZgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACEZGKgns4bhcPGp/CrFFCdtUBwGs+AYXla6glk8wnOFOKxba/1zRJhHJbt5KnBLeles1TvbCG+QpMuQeK6o4l25Z6icTB0vxdZXIWN51Eh7ZFdJDOkyBkbINcBq/ghYGabTY9svUGs6z1TW9Fmxfv+5HGBTdGM1emwuerUVzWleLrG/AQMd465NdEkiuoKkEH3rmlCUXZoY+iiipAKKKKACiiigDlfGOjjVNMkjAOT6VleB9T/wBKfTN3+pHT8K7m4jDxketeVIr+G/E8923yrM+Af0rsovng4PfoS9z1oHilqtZT/aLaN85yoNWa5GrOxQUUUUgCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArnvEmsrY2hCsN/TANampXyWVo0rNjFebyNLrmrMfmMZ54rehTv7z2JbJ9F059UvjPKCRnPNej20CwRKqjHFUdI01LO3QAc45rV6Uq1Tmdug0gooorEYUUUUAFFFFABRRRQAUUUUAFFFVbi/t7ZT5kgU00mwLJOBk8VBNeQQqS8ij6muV1XxgIcpblXrmJ5dQ12Q8SKD6Gt4YdvWWwrnT6x43isiY44i7dMrzXKTS6xr04aCeWKM9Vrf0nwl0actnr83NddZ6XBaoAqr+Va+0p0vhVxWbOR0jwcCVluwsj9ywFdjZ6dDaoFSMLj0q4FC9BS1zzqynq2NKwgUDpS0UVkMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBCoPWs690e2vFO+JT9a0qKadtgaPOtX8KTwuXsmMRzn5cVn2Wr6jokgW6aSYA9xmvUnjVxgqD9ay77RILoHKjn0FdMcQmrTVybFfSPEsGoIu7EZ/2uK3FljcfI6t9DXnOseGZ4svblxg/wnFV7HxFf6TIsMkbEDjJodBS96mxpnqNFYmn+Ibe6QeZIA2K2ElSQAowINc7i4uzGPoooqQEIyK4L4gaW08EEkSkFZAxwPQ131UtStUubOVWGfkOPyrSlPlmmJmF4U1Zbu0WIHLRgKa6qvKfC0z6Tqc8UpI3ynGa9Shk8xAa0rwtK/cEySiiiucYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUySQRxs7dAM04kAc1yfirXlsoRAjfNINo21dODk7AYfijV3vtRFlbsSrDBFdB4a0QWlurSL83rWF4V0V7l/tVwNz7sgt6V6HEgjQADFdFafIuSIktRwAUYFLRRXIMKKKKACiiigAooooAKKTIHeoZrqOFCWYfnQtdgJ6guLuK2XdIcCue1PxNDCjbDkj+7XLPqd7rEhhj8xcnqR0reFBvViudBq/i2OAMsEnP1rmXu9R1uTCnIJrb0zwfMzCS6YODzyBXV2mj2tog2RAEelaudOn8ItWcjpXhBmw9ynvXXWWkW9oo2L0rQA2jA6UtYTqznux2EAAGKXFFFZDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKMUUUAMeMOMNzWLqHhy1ugTs+c+lbtFVGUlswaPNL/AEC8sGMsK4VaSw8TXNnIIpnwBXpEsKTLtcZFYOp+GLe6UmKNVc966I14yVqiJsWNN163u0Hz5Y1sK4YAjpXmt3o99o7l1divotS6Z4seKRY51cduRQ6Cl8A0z0ekYbkIPcYrMsNYgvFXaw5960wwI4IrmcWnZjPM/F9obLWrWWEYTcSxrs9Bvhc2i4OelQ+KNNW70+SbALInFc14NvWj2xSNg7jx+Ndb/eUvQl6M9FopqMGUGnVxlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFQXM6wRl27UbgUtX1KOxtmdmAODgV5vp9tceJ9YZ5QypC/BP8AFUviDU5tc1I6faHeyOCR7V33h/SItOsYyoxIyjdx3rt0owv1ZO5esrNLWBFVQMACrdFFcbd9WUgooopAFFFFABRRUcsqxJubpQA8nFRTXMcKlnYACua1Xxlp9pmMTYk6Y965eXUdd1mUC2QNCTg89q6IUHJXYrnV6l4ot4QUjlVn5+UGuWl1TVNUuDGltIIyeGFa2meCopis96GEvtXX2enQWUSxxgYHqBV89OnpFai1ZyGmeCmZ1uJp3yeSpNdda6bb2ygCNcjviruBRWE6sp7sdrCBQBgACloorMYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUARyQRyKQ6KfqK5zV/CMGoAlGEZ9q6fNJVRnKOzBo8suNL1Hw8261WSfb6d609K8ZNG4S+AhPT5vWu+eNXGGUGuU1nwPp2plpW3B85GPWumNaNRWqImxsR39tqlo6xyK4YY4rgrvdpXiJY0GExniomsNe8PzAWUWbcHkk9qy9Y8SQKTJevtuF7CtqVGzfLqmK567pdyJ7OM5ycVfrifBWrpqECbH3LtzXbDmuOrBxnYtMKKKKyAKKKKACiiigAooooAKKKKACiiigAooooAKKKQnANACO4RSxPArhfFuutsktrZyHI4xWz4i1lbOBkRgWIrj9E0yXVtTS7l3FATwe9ddGCXvyJb7G14P0AJt1CZB5rjk13AAAAHQVDawLbwLGoAA7VPWFSbnK5SQUUUVmAUUZqCa8ggUmSRR9TQlfYCeo5J441JZ1GPU1zGreLo7QMIFEpHZea5G51DUtfcoglhGexxXRDDt6y2Fc67WPGlnpw8vaXb/Zrj7jU9Y16U/YpXjjPYitbR/CEhw9zI0hP97muystHt7RRsjUfhWnNTpfCri1Zxuk+DGmcSagokY8kkV21jpkFlGFiQKMVdCKowBinVhUqzqbsdrCAACloorIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFNZ1XqQKb58X98fnRYCSioWu4F6yqPxppv7Uf8tk/OnZgWKKqHU7IHBuUH40n9rWA/5eo/zo5X2FcuUVT/ALVsD/y9R/nVa4120iOFmRvoafLLsFzVorBPiOEDOVNVJfFgQ4WPP0qlSk+gXR1OaK5B/GLoufs5P4VTbx3cBsLYsR9KpYeb6BdHd0V5/J4/u0I/4l7c+1OHj26I/wCPFvyp/VqgXR3u4DuKTev94fnXnsni28uTxaOtNOt3zKP3LimsNNbsLnofmp3dfzo86P8A56J/30K8583ULo7gZFpkltqMg2iWUe+afsF1Ycx6R58P/PVP++hQbiEf8to/++hXmg8PanIN/wBrmGfeopPDGqswxez/AJ0/YQ/mDmPTzcwgZ82P/voVUm1e3iOCyn6EV58vhjVMc3k/51Yh8L3v8dzIfqaPYQX2guzsX8QWyDJx+dUn8Y2aHGwn6Vif8Ixc95n/ADq5b+GCqfO2T70clJBqWZvHNlCm4xOfwqmfiRYD/l2l/I1ZHhdH4bBFXY/C9oEGY0zR+4XQWpit8TdPVtptps/7p/wpx+JNiy8W8uf90/4VsnwrZFsmJKcPDFmP+WSUc2H7MNTnG8bC4OYo5FHuKa/ia5cYTeD9K6pPD9qnSNPyqQaJbg/6tfyo9pS6RCzOLOoavN8yTMAfaopX8QTjbDcsp+n/ANevQF02BRgIuKkWxiU/cH5Ue3XRBY8ym0bxXcRsDe5DDnr/AI1zF98NNbvn3TShj9P/AK9e9CFMY2il8qP+4KuONnH4UkDijz3wb4WvtEVVkcYA7V6AZPKiBfsKeEUdAKq6gcWr4ODiuepVlUlzMrYF1GBpAm9QT6mrQYMMjGPUGvCvEOs3uneIEdGk8sZzg8V6x4X1JdR0KGYsC5HIrIDTk1CGJsOcH3NTR3CSruFef+L2mn1C0W2kYYcBtprsdLgZLNAxOdo60AatFFFABRRRQAUUUUAFFFFABRRRQAVQ1O+Syty7Njg4q3LKsSFmxj61514j1d765NrCx4atqVPneom7FKaWbW9SVQCVDdjXoOjaYlhaBAOeuax/DGiC3j82RRuPINdYBgAVdap9hbAhcUUE4FRS3CRLuYjH1rmGS1DPdRW6FpGwKwtR8SQQoyoTu9jXKXWq3mpuYomOPpW8KLerFc6LVfFkUAKwOC3TFcrPqOo6xJtCZU+hrT03wncTuJbgBgea66x0S0tVBEeGrXmp0thas4/S/CTuwecMM9a7Gx0a3tEG0c/QVpKoUYHSnVjOtKe7Haw1VCjAAx9KdRRWIwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigLBRRRQAUUmRRketAC0Um4eoo3D1H50ALRSbl/vD86N6/wB4fnQAtFNLqB1H51C15EpwSPzp2YFiiqbajCnUj86iOs2wPX9afKwNGisp9ftE6n9aj/4SSz/yafs5dhXNmisX/hJrLOM/+PU1/EtmBwf1o9nPsFzcorl28TRbuD+tVp/FCj7rGqVGQXOxorhT4nkIyGb8qqT+KrkEbWf8qv6vPuFz0WivNW8T32M5f/vk0xfFN+T1f/vk0/q0u4rnpbMF61GbqIHBavOJPEV9LgZf/vk1JHe30g3bj+VP6u+rC537ahbp956YdWtB/wAtK4InUJ2wD+lSrp2oMudw/Kj2EVuwudm+u2CHDS4pp8Q6cP8Alt+lcb/wjmo3J4ZfyqRvB+olR8y/l/8AXp+yprqM64eINOPSb9Khn8R2KfclzXLr4P1ED7y/l/8AXp6+D74kbiuPpS9lS7hqbh8TRHo4xVWfxUVP7tgahTwpOq4OKlj8KkHLqDRakhakJ8Vz4zkVUl8X3+7EarittfDMWMGMVZg8OWS/fiyafPSXQNTlpfGOpqoIVfz/APrUqeMNUKg7V/z+FdefD+nEYMNKNA04DiH9aXtaX8oWZxknibU5zjav50LqWouMlR+ddoNCsF6RVKNJtAOI6PbQ6ILM4J31C4P3f1pTZXzADB59679dOtl6JT/skQ/hpe3XRBY88Hhy8uBuw3/fRpH8K3h7P/30a9JRAgwtOo+sy7Bynmy+Fbwdn/76NSR+FLkt8yv+dei0UvrMw5ThF8LSY5D/AJ1Zh8LgfeDV2VFS68h2OVPhiIjG01dg8NWqxgMOfpW7RUurPuFjFPhqybqP/HaUeG7MDp+lbNFL2ku4WRkp4ftE6D/x2pRo9sB0/StGilzyfUdimmnQoMAZ/CpBZxA/dH5VYopOTCw1Y1UYwPypdq+g/KlopAJtX0H5UbV9BS0UAJgegowPSlopgGKKKKQBRRRQAUUUUAFFFFABRRRQAHpWLr1x5MHXqK2WOFJ9BXE+INUR7hYeTk4oAwb/AEJdV0yW4wSwbFV/BertZ6m+mSthY0yP1/wrvNFtFOkuhXhjmvL/ABXZT6Hq738IK+YwXIH1/wAaAOy0PGpatcl+VR+M813caBEAA7Vyng2waOzW5YfNMoYmuuxxQAtFFFABRRRQAUUUUAFFFFABSE4paytb1NNPsZXLYbbkVSi27AYfi3WxBbyQRN+89AeayfDOkPeXH2mZT83PIrOsYJfEGri7YExk49q9Is4YrG2UYAwPSuqb9nDkW5K1ZcijWKNVGBgU2W4jjBJYD61g6l4psrRSpmUP6Vyt3rWranJizi3xn+IGsoUHLVjbsdZf+JIIAVDKW9BXJXOuXt9P5cUMoBPUDirun+DTfss18zo55xmuysdJt7GIIqqcdyOa0vTp6LVi1Zx+n+FLi5dZ5p2x1INdbZaPbWqAeUpYd8VpBQOgApaxnVnIdrDVRUGFAAp1FFZa9RhRRRQAUUUUAFFFFABRRRQAUUmRRuFAC0U3cKN4oAdRTfMUd/0o8xfX9KAHUU3zF9agmvI4T8zYosBZorPOrW//AD0FVpPEVjEcNMAapQk+grmzRWC3inT1GTOKqv420pGwbpc/hVKlN9AujqKK5Q+OtJH/AC9D8qUeONJPP2oU/Y1OwXR1JIHU0bh6iuNm8aWkjfuJ1b8qi/4S3g4ZfzprDz7Bc7bev94UnmJ/eFefyeJL+RiYU3CoJfEGs4xHBk1X1eXcLno/mx/3xR50f98fnXmP9qeKn+ZLIkf59qhk1PxeCMaecf59qr6q+4rnqnnR/wB8VBJexRtgutebrqXizAzYn/P4UqDxFcybprVl/GhYbuw5j0NtShUffX86gOt24ON6fnXFfYdYfgwsB9akh8OXcvMgdT9aPZQW7C51r+ILZOrp+dRHxPaD+NK5w+D3mOHaTH1qynw7s3QFriUN/vH/ABo5KK3Y9TYPiq0Bx5iUv/CT2mP9YlYx+G1iSD9pl/76P+NOHw5sf+fmX/vo/wCNFsP3YtS1L4oj8w7MEe1V5vFBA4XJqxD4FsoRgTOfqanXwdaAg+Yxo5qK2DUxv+ElnbpC5/Cqs/ia8/ht5PyrsIvD1tEuB/Kpk0a2Rgdqn8KPa01sgszgv+Ei1Lr9lm/Kon8SaoJQv2SfH0r05baFVC+Uh/4CKX7PD/zxj/75FH1iP8oWPNH8Qamy4+yzflT47rUZuTFKM16T9nh/55J/3yKBDEOkaf8AfIpe3j0iFjzcpqEpxiUZqdNGvnXJlkFeheVH/cX8qXYv90flR9Y7ILHnn/CMXlwcfaXFWR4GuWUH7a3513e0dgPypan6zUDlOC/4QO63Z+3N+dO/4QS4z/x+t+dd3RR9Yqdx8pyEXg50XBnJ+tSp4S2nJkBrqqKn202Oxgp4chVcELU8Wg2qEFokP4Vr0VPPJ9QKf9lWOMfZo/ypP7JsP+fWP8qu0VPNLuBU/suyH/LtH+VPFhagYEKflViijmk+oEAsrcdIl/KniCIDiNfyqSikA1UVegAp1FFG4BRRRRZAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjDcpHqMVzF74UN3drMZsYbOK6iigCrZWn2SAR9eKztb8PwavEqOq8HPNbeKMUAVrK1W0tY4VAGwY4qzRRQAUUUUAMeQRjJquuoQM+0MM/Wm6mcWEzA4IXIrwabxFfw+M4Lf7Q/lljkZ96APoUMGGRSPIEGTWfpNz5unpIzDkdc+1cd448StaQbIG2scjK0Adz9vh3Y3D8xVhXDDIrxHwVd6lqOoLJJcSOm/kH617Wn7uPB9qAFnlWGF5GOAoJryrxFq8niDWIorJ/3CMVkBP4VofEDxadMtNkSkk8HbXkthrVzcSyeUjxu7EggV6eFwr5edkSkex22r6X4YstjDDjB4rFvfEGr67IV0qQhSehB6Vh6R5rlTfI0w77h1rqrbxDY6YAItN5HdVNOUFF3SvLuFxdH8HXV0wl1ZA5PPANd1p+kWunIFgTaK5L/hYaoONPfH+6aaPiSC23+z5PrtNYVI15vX9B3SO/zRkeorgX+IRcYWxkGe+01H/wkl1J8/lSAHnpWX1efUdz0LcPUfnSb1/vD8685k1i+uTtTzVz6Uwf2q2SJ5af1fuxXPSfMX+8Pzo3r/eFeYPpmuXLfJfSqKY3hrxA3TUpP0prDx6yHzHqXmL/AHh+dRS3cUIyzCvME8MeIM86nL+lSf8ACLa4zDdqMhGfaj2EP5hczO/OuWoJGf1qvP4osLc4YnP1rl08MagEGbps1JF4UuDJmSUt9aPZUu49TbPjTTQMndVOb4jaPC2G301fCq45wasQeEbMnMkCMfcUJUF3FqU2+J2iL/f/ADoX4n6I39/861T4R0w9bSOgeEdMXpax0Xw/ZhqYs3xE06biAuCeKi/4S9ichm5rok8K6chyLWOpx4fsuP8AR4/yo56K2QWZx0viHUrhv9HcgfSoX1DxC4OyX9K7yPRrSP7sKj8KmGnQD/lktHt4LaIWZ5oU8aztmGYAfj/jUcll4+/huF/I/wCNerJbogwFAp+welP612igseVJZePNozcLn6H/ABpyaT4xmkBuJVI+n/169T2L6UbB6UPFPsgsecDQde28sPyqWHwneSNm4UE16HtFG0VDxMg5Thf+EMVuHjGKtQ/D/SHAM9vk12GBQBipeIn3Y7HJn4deHz/y6/oP8KcPh54fA4tf0FdXRS9vU/mYWOai8DaLD9y3xVgeEtLHSE1u0UnVm+rHYy49BsYhhI8VMulWqnISr1FTzS7gMjjWNdqjinYFLRU6AJilwKKKNADFGKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiimu21ST0AzQBheI74WsaQkj94NteM+ItM+zeK7efb7/yNegeK9Tju9StIkbJVwDWL42tWMsc8Y+YRjH5D/CgDf0/WQNKSNGG4dq4zxWzXJTOeTWn4WtZWjWW4+7isPWryOfVVgXnEgGKAOx+Gul7LN5GXkGvSJF3JisHwnbLbaeABjcoNdDQBwGveC11aZi5YjNUbT4dQW8isAePavTaK6Fiqijypk8upyUfheJEAAFTReGYA2WArp6Kj20h2Rijw7a7QNq/lR/wjlpnO1fyraoqfaS7hZGOPD9qP4V/Kpho9uBgIv5VpUUueXcdigulQKchV/KpRYxD+EflVqilzN9QsQJbRp0UflUoRQPuj8qdRQ2Fhuxf7o/KjYv8AdH5U6ikAm1fQUbR6ClooATAowPSlooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmyLvRlHcYp1FAHIP4Rkk1E3DMCN24VpXugJeFfMAIC4rdooAwxoKRW3lRALXNf8K+Y35uGZD8wNeg4ooAqWNp9kgVOOABxVujFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q=='] Multimodal Competition False Theorem proof Geometry Math Chinese 24 " 如图, 给定凸四边形 $A B C D, \angle B+\angle D<180^{\circ}, P$ 是平面上的动点, 令 $f(P)=P A \cdot B C+P D \cdot C A+P C \cdot A B$. 求证:当 $f(P)$ 达到最小值时, $P 、 A 、 B 、 C$ 四点共圆;" ['如图, 由托勒密不等式, 对平面上的任意点 $P$, 有 $P A \\cdot B C+P C \\cdot A B \\geq P B \\cdot A C$. 因此\n\n$f(P)=P A \\cdot B C+P C \\cdot A B+P D \\cdot C A \\geq P B \\cdot C A+P D \\cdot C A$\n\n$=(P B+P D) \\cdot C A$.\n\n因为上面不等式当且仅当 $P 、 A 、 B 、 C$ 顺次共圆时取等号, 因此当且仅当 $P$ 在 $\\triangle A B C$ 的外接圆且在 $A C$ 上时, $f(P)=(P B+P D) \\cdot C A$. 又因 $P B+P D \\geq B D$, 此不等式当且仅当 $B, P, D$ 共线且 $P$ 在 $B D$ 上时取等号. 因比当且仅当 $P$ 为 $\\triangle A B C$ 的外接圆与 $B D$ 的交点时, $f(P)$ 取最小值 $f(P)_{\\min }=A C \\cdot B D$. 故当 $f(P)$ 达最小值时, $P 、 A 、 B 、 C$ 四点共圆.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAYQBtQMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikzQAtFJuFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFGaACvNviV8QZfDUEUOlSZuy+HbYGVR6HOf5V1nibX49DslHkyTXFzuSGNFPzNivnbxWuupcI+tWjQx3Uo2Ic4UZ55PtQB9D+C9RvNW8H6Zf6g4e7ni3SMABk5PYcVv9qzNBhs7fQLKLTyptViHllTkfn9a06ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKTIozQAtFJn60hdFGSwA9SaAHVT1HUbfTLKW5uJo41RCwDuF3Y7VN9rts4+0RZ9N4rB8T+GtF8YWsdrqNw5jQ5AgnCHNAHm9lJdfEfxL55uGhsoDuLJJtCj0BHf1Ncj8SIdOXxLbaZpl5cyW8cm1/NuWkw/Q4JPSvatG+HeiaHAsNhPfrGpYgfaScZ69qzbr4N+Fb2/e9m+3/aHbcWFxjn6YoA6/QbOz07RLWysWBhgjCqN24jvzWnWdo+kW2iWYtLVpmjHeVtx/OtDIxQAtFJmloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikzQAtGaz9W1zTdDtRcalew2sRyA8rbQTXmOsfGCe8LReF9Le7Xdse5k4VD6jGaAPW2ljTG91XPqcVzOpfEPwvpcskM2qwm4Q4aEZ3D9K8q/sLxp8QES51G7uIraVh5IiwEUdMk9cA12GifB/TbO2SW7kP24ZDSIN2fz9qAKs/xqgup5bfR9GvLlo8guQu088EZINYa/Efx5qF7FZ/2VDZGRiElZG59jg16nZ+CfD9k4li0yDz8KGkwQWx3NbvkRZBMaZHQ7RQB4deaH8WpLhJItZukDnBWJ8KvvzV+w8I+PNbt9upa5qFpL/EZWG0j2AFey4paAPH7r4QazJaYg8TSC4JB3SMxGPyqU/CXWoo0a28TzJOAMtuOM+3Fet0UAeH6poHxNtXjs9O1fU5UUHM+8BTj071BA/xN8N2R1LU9TeWBF3ut0xIA9OK90eRY42kdgqKCSx4AAr538f8Ai298V+IJ9OsbkDTraTYpQ/LIfX3PtQBlz/GHxXJq8skciKpbHkrnYMD61sp8dvEcV4EutOtBEv31VW3fzrgrLQ576bUI4YmMdqMysnJAwDn6V3Hw+ttG8Qw3ej6xuS7MirFOAOBg/Jn3zn8KAOmg/aC0ny1M+kXu/gZUpt/U5rrNP+LHhS8gR5tRjtGb+CbII/IYrh9d+Bp87zdHuFSOJdy5++7elcTc6fqOgPJb6/pUN+GI2RXAPmIp7rjvQB9HaV4r0LW1zpupQXA/2Dj+daqXELttSVGPoGBr5osrbwlqkh0+1uZNKv8AfhmuWCKox0BB610umfDDXdNsf7S0bxFNKNu9GgfcZPpkUAe6hgRkUZFeE20XxdtblZGubmeJCcJIigH6kLVyb4q+MNOn+zS+Hbe4cYVnV24x1/GgD2vNFeW/8LltdPgibXNHvrRnGcrGCD6Y5rT0r4weFNSi3yXn2Ppxc4X+tAHf0Vg2fjXw1fyNHaa3ZTuvBEcgNboYMAQcg9KAFopMjFLmgAooooAKKKKACiiigArN1TXtM0bZ/aF2lvv+7uB5rSryz45XUcfhNIVnRLjzBIU/iZACDj8cUAdbbfEHwpeM62+tW7lAS2A3H6Vc0zxdoGsTCHT9ThuJGJAC55x16ivNvhD4c0270q8kvbKOSZWUB2zwGHSuP+Jel3PhHxRbTWPmwwZ3W8q8deSvHpQB9J0VmeHbw6j4a0u9aRpDPaRSF2GCxKg5P1rToAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACjNISB1Ncl4v8e6b4TVY5GWa6bkQKecd/x9qAOk1DUrTS7KS7vJlihjGSzHFeT+KPi5c3CvbeFrR5RJsWO8IwoYnkelcnaQ+Ifijq91JcvJ9jdsraiQooA6E88cV7B4Y8CadoNlbhohJOi9/uj8O596APPNB+Hms6/d3F54pkkupXYOFaQ+UpzncuPWvU9N8JabpxDLErurZUlcD8u9bgXaoCgADoMcU6gBkcSxIERVVB0VRgCnUtFABRRRQAUUUUAFNd1jRnYgKoJJPYClzXj/xa8ZMGj0DSrlnkfm5MP8I9Nw6e4oAzPiX8QptYuh4d0OVlhZts0qHDP7D296o3fhqDwt4Ce91aMx390vl2UaDIjPB3MfXGa6b4U+B7ZLRdcvQZpix8tZI8Y/2snqPQdqp/HLWoHht9DKsLkKLiNgeucjFAFf4IaTcyyXupSpE1qUMWG5JbryOhrG8d+GNS8H+IbfVbESG3WYSLOi52855A9+K9G+EGjz6X4TZ5EAhunEkOGz8uMc/lXVeJdAt/EujSafclgpIdGU4KuOh9+vSgDJ8CeNIPF2ls+0rdW+FmG3j6/Xiunmsra5yZoI5CRtyygkD6182aHqV38P8AxcLRXcRecyvvUgbd3JxnnIyRX0lY31tqFlFdWkgkhdQykfTp9aAOD8TfCfSdWRprRPKmUZSPPBb1JrzsReMvhxNK1sXuLaFDGFlOATnPy8c8V9E1T1HTbbVLJ7S7jDxOMH1HuD2NAHGeEvihpviGY2c6tbXoZUWJurZHJruPstt18iLPX7gryPxZ8JDDFcX+iXMqSJhkjRjvX1O7OTWRovxE1vwZNZWOvBrnTW4888uCfU9fzoA9pn0PTbkkz2kchPPzDOKydU8CaHq0flTWkSx+ioB+oxW1p2r2GrWyT2N1FOjKH+RgSARkZHb8auZFAHnUnwd8NxxMlravGzDHmCVgQe3esb/hT15aXZu4PE+oqwOVQfMB+Zr1+igDx6bRvirYlIdK1aCa0Qk7pgqsfrwatXfjLx/4es0jvPDdvqEw5aWGcnP4Ba9WIBHIFJsXH3R+VAHmem/FmWG0ebxNoF7puOV8uFnB/E4rS0j4v+EtYuxbRXU0DH+K5j8tfzzXZT6da3KlZ4UkU/wsuQfzrMuPCGiXETRf2ZZqrDB2wKD+YFAD4/F3h2aURR61YvITgKswJJrYV1YAgggjINeczfBbwsZzcRw3KynnKXDLg+2DxWRqHwi1aWfzLTxTqNvAOkRnkcj053UAevZozXj+oQ/ELwppPl6drFpcwQDc0l1EqsR9WPNZHhf41avcXa2up2SXLMVTfHhApJxngc0Ae75r59+Mupxax4tg021DiS1hMcwdcAknPB9Oa9t1zVJtLtUlgtXuHdtuFB+XjrwOa8M1Xw/q+s+I31i5in82XiQLbkZHpQB7N4K0uXR/CtnbToizhNzFOc56Z9eK8P8Aihex6949+zRTTeQAqeWVOQy8YA9yK9UFx4o1rSXt9NkXT3CBF82HtjB5OKy9D+EMEOpQajqlw8sqP5jIWyWcHIbd6Z7UAegeHbY2nhnS7fYYzHaRIUIwVIQcVp0dqKACiiigAooooAKKKKACiiigAooooAKKKKACkyKCcDJ6V5V8SPiT9gdtD0OQNeuCJZ1OREOhoAteOfifHoszWGjOk98h+cbdwB/u/wBa4Xwt4B1rxbqNxq+sSMk7ndvnUkD2x/Wtb4efDia/aXWdVaWMTL8pP35D/e57V7akYSNUX7qgAUAZmheH7PQNOW1tI1yRmRyOXPvWtRRQAUUUUAFFFFABRRRQAUm72NGa4n4i+MrXw3os9tHMf7TuIysEcZ+fPY/SgDJ+JXxFTRLOXT9KcPfONpkQhvLJ7fX+Vcr8NPh/carL/bGrF/sztvKuDumfryfSs/4deEX8SeImv9VgleFAWkfPyhjzt/E9a+hI4ljiWNFCooACjsB0FACRRJBCkcSBUQAKq9AK+dfi1eDWvHSWqIYjAwtiWOQ2CecelfRM8ot7eSYgkRqWIHGcDNfNEU7+OPie01uPs32uUbfM6qvXBxnnigD6F8NaY+keG7DT3kWVoYgpdRtDd+n41rYpI12RIhOSqgZp1AHmPxa8HR6zp6anGVSW2BD7Y8s3ocj0rH+D3jEtLceHr6ZFEIDQuRgyE9ST74FeyOiyIyOAysMEHvXz98SPDNx4f1T+07S02DzRIksQ+VgDna30FAH0FmlrkfAnja38X6WGOI76NQZovy+Ye2a66gBMVzHifwbYa7Ysv2aPzlO5eOG+vrXUUYzQB823Ntrvww8SxajaxuttMw863+8CP8/lXtvhHxjZeLdN+126iE+YUETSgscd60Nc0O21ywe3nVd20hHIyUyO1eC3Oj6n8O/EUV1awhvszlvJwdko6bl98UAfRwPFLWH4Y8T6f4q0mO/sXHI/eRk/NGe4NblABSE4Ge1LTJUEkToejArQA37VAf8AltH/AN9inJNFIcJIjH/ZYGvmzVdVvYfiG2m293L5EV6UMYbAKjjFdb8TLzV/CM0F/pdxNaxSLsIgb5N3+1nmgD2jP+cUjOqKSxAAGST0A9a4v4Z+KZ/E3hkPdxyC6t2CSu/Ryecj2xXMfFjxrLbvH4f0q6QyzKftJQ/NGPc+mDQBz3xL8Y3Ov6pcaRo86TWNsuZCOhbndn16dq5j4YaRa6n4vtrSfcYUO4BTySOc5/Ctf/hDYNJ+Hl1rzT/v2dQgXg4zz17YNdD8EdJtvNurySON5vLV43xygJ4oA9rAwBTqKKACkxS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFGaM1yvj3xUPCnhyW7jMZumISJHbBJPcetAHNfFHx5LoaHR9PH+lyrlnzyFPpXPfDn4cTajdDXtcVvKbDJCxz5npn/AGa53wb4Xu/H/iWe/wBRumVEw8zFtzYzwB6Z7+lfRVnZw2NnDaW6bIYUCIuc4FAEqxqiBFVVUDAAHAHpT6KKACiiigAooooAKKKKACjNJnnFZHiPxFYeGdJk1DUJQiKDtXqXbsKAMzxp41sfClgxkdDeMpaONj0HTcfavGPDXhnWPiL4muNSv3mS38z55j/Av90e9VvJ1P4ieLnuFtt0c829Y8nES+p9B7V9GaTpVro+mw2dnCsUcagYX1/rQA7TNLtdJsI7OziCRIAMDufU1do7UUAYvivUH03w3e3MaqzBNuGOBg8ZrxL4PaFb6j41u9QEzhbP97AF6OCcf1rv/jNq76f4TW1VFK3jlWctjZtwRWR8C9HSLR7jV1nZmm/c+URwoBBoA9fooooAKzNd0lda0meyZyhccMB0NadFAHzUl1qPw08aSXC3CypPcGKZAeH9j0wO4r6MsL+31KxhvLWRZYZVDI6HINcN8TfBq6/pwubaFfOjyZSo+Zl68e+a4v4Q+L30q/PhjUYn3zSARSAk/N0Ax2WgD3brRSZpaACsfxDoFr4g057edAJAD5cgHKmtiigD5wuV1n4ZeLvtke4Q7czgZ8uUZ+8R6duOa908M+J9P8U6Wt7YyhsYEkf8UbehqHxh4fi8QaDcQeSj3SoTAzdjXhnh7VG+GvjDN7bTfZJVKTLkgR89h3PpQB9KVm65qEOm6Nd3U1wLdUjbEh/hYjj8c1Y0/UbTVLGK8s5llgkGVZT+n1rzX4weIrY+HTpVtJHO874kMbbmjKn0+tAHl3hSPUtS8TfaxBBqV3JcOW+1MwDsO529Oa9H1XwLr3i67W5111jlDExwRnMKp/dJPNQfA2wZIL66lEJY4AGcupzzx6e9eg+M/FMXhPQ3vWTzJ3OyBD90vjjJ7CgDlfF2p23w28JpZ6QI/wC0bpguRw57bwPXtXGfDrwc/ifUbnUdTmLKJFa4B5LHqBn05OapeGdG1z4heJm1S/Z/LPV25Ea56qD36YFe+6RpFnotglpZxKka9SByT6mgDyf413Nra2Om6dalFMZ2PCpxtVsAEiur+FGnW9p4WEkaZmDmIyngsoxivL/iHqNr4k+IIisszRriJ1xyHT/69e8+HLdrXw9YxNEI3EK7lxjnFAGrRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUZoAr3l3FY2k11M22KJS7H2FfN2vX954+8YLaM0rQGZVUxoXGzPUY6YGM12fxi8aT20o0HT5Wyyf6QE4IPYH2xV/4Q+Dhp1gutzPIJZdwSIgrtz94n1zxigDvPDXhmx8L6VHZWSDI5klP3nbuSfT2rboooAKKKKACiiigAooooAKM0VBd3cNlay3NxIqQxqWZmOAKAKWu67ZeH9Nkvb2QKijhepJ+nWvANUvNY+KfiqGC1Ba3R+FHCquT1+nr3qbxp4vuPH+uRWGlo62kDlYgB88rZwSPavXvh/4U/wCEX0BIp44ReSndIyJggf3c98UAXvCfhKx8J6UtrarulIzLMern/D2roe1A6UUAFFFJ9KAPCPjfrc02rJoLonkpGkyMRyGOc/yFei/DLSRpfg62cSbxdDzwMY25HSvHPH0ra78RxBdsCY5hEyxjaRHuwvP0r6L03T4dK06Cxts+TAgRNxycD1oAt0UUUAFFFFADWQOpUjIIwRXz78TvCcmha1Be6a0yMRuhaMFdvP3d3c96+hKyvEGkrrWj3FmQgkdD5bsudjetAHPfDjxfF4l8NwCa6WTUIRsmUjaeCeg79K7YdK+ZYLi/+Gfjhrs2qtGP3UygjlSQePSvpCwvotQ0+3vIiCk0auNrBsZGcZFAFqiiigBMV5v8U/CDa1p51GDy91uh8xMAbhnrn1Fek1HLCk8TxSqrxuMMrDII9KAPFPg/4vuLW5HhW/ESRIGeKUuBtPpz94mvYn0rTpHZ5LC1ZicktCpOfyr58+JfheXwz4jS+sUKW4O+Fickd3Ptg17P4K8Sx674Qg1GYNG0ceJQ7bm+Ucsfr1oA0tSutN8NaVc6k8EMEMS5cxxAE+g4rwa/vdc+Jvi2IwK32OJ8RQ4Plgc/e7H61a8eeObnxjq0OjaS0w0/zMMI85lPbJ9DxxXpnw78Fv4a08z3R/0mZdvlDpGvp70Ab3hjw3B4d0z7PG2+SQhpWPRm9h2rTvbyHT7Ge8uWIhhRnkOM8Ac8VZHSuR+JOtJofgi/mkhaYTqbYKrYwXBGaAPDfCFjJr/xAludOXcJLt5wWO35NxbP5V9P14T8ENIaXUZtTEqhIV2mPby2QR1r3egAooooAKKKKACiiigAooooAKKKKACiiigAooooAKztb1SPRtHu9SmV2jt4y7BSMkVo15T8afEEtrpUOhWcsi3V58zIo4lj6bfbmgDzjw5Y3fjnxwbi5EsyvISz9T5f19ulfTFvAltbRQx52RoEXPoBivMvhD4cksNMW+mWRMLsiDAfMD1P516lQAUUUUAFFFFABRRRQAUUUhYDPtQBFc3MNpbyXE8gSKNdzMegHrXgfjzxxeeLb86FpKS+U527MZD89wO57Vq/E/4lCaSXw5o8g2t8tzcL2B6gDvWp8KvANxpTLrl+zpI6kQQsOxH3m96ANr4efDq38KWcd3dKkmpunL4/1YPYZ7+td9ilHQUUAFFFFABVXUJ3tdOurhBlooXdQR1IGatVyXxG1V9I8G3V0sjpl0jYqMnaxwaAPEPCUY8YfE4PfuQ80nmuY/VecD2r6cHSvCPgbp9lc67q181shlTDQueqAk8V7vQAUUUUAFFFFABSYpaKAPO/iZ4Ot9X0uS9hgk+0jiQxHll9TXI/CjxgukahceHdSmKxbh5DnhE9ue9e4MoYEEAg9Qe4rwn4p+DbnTtQbVtIsUjidlO+Ecq3fPuT0oA92VgVBHIxng5p1cH8NPGKeI9I+xyJtu7FFSTnOR0Hvnjmu8oAKKKTNAHN+NPDdr4i0K5jkjzcJExideD0+79DXzTY65rOgTXOk2txLA0mYpFU9R0Knt617z8SvHtv4b0yWyt1E9/MhTbnhM+vvzXgc+l6nbQW2uSwTNvk+ViOMj/CgD2D4XfD97J4Ncu1eDaN0MR+8x/vN9RXruK5jwF4hTxJ4TtLwM7OqiORnABLAcnArqKACvHfjtrE8GnWWkKqfZ7nMrsRlgykYx+dexZr5w+L19Nd/ED7FPKZIISgiQjhQducUAelfCDRrex8Ki9iZzJdN84Y8DFei1k+GrK2sPDtjDawrDGYUbaD3IBNa1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA2SRY42duFUZNfMet3P/AAl/xHnnsDLcQeb5kSMDnpjaPT14r37xpqc2j+ENTv7YgTQxZUkZ6kD+VeM/B7TF1TxRcXzSBGgl89QF68Yx+tAHvOlWUVhpdvbQp5aKg+X0J5NXaKKACiiigAooooAKKKM0AJmvI/id8Qnsml0XTlZpeUkwSGLenHb3rZ+I/wARIfDNjLZ2DLJqTrx3CA9/c+1efeAfAN34t1Jtb1dpBb+ZueQk5mb0HtQB0Xw1+GjCX/hINeQvNI2+KCQfkzfyr2IAAYHApscYjiVFGAq7R7Cn0AFFFFABRRRQAV5N8c9SmtNCtrYOfs0xPmKBnJBG39a9YzXzv8atQuG8Ytp0khNrsiZI+nPU/rQB3fwU0u1t/CH25Iit3NIySue4GCB+tenVzngfTrbTvCVglqpCyxiZsnOWYAmujoAKKKKACiiigAooooAKz9Z0m21vTZbK6XKNyCOoYdD+FaFFAHzD/p/w88bs6tLDB5xBIXJKZ6475r6P0jWLLW9PjvbCXzIXHHqPYjtXK/EnweviXSPOjCCe2Vm6csMevtXnfwk8Y3OlapH4buWia0mb93IxClT65zznHSgD32uc8YeLbLwlo0t5cEPMEJihzguff2961NU1W00fTpb27lCQxruOep9MDqa+b9Xub74jeLZZLNJHhnk2QQkngY5J9F7+lAD/AA1oureNPFqXTxGSMy+bMrsdiRlslc471698SvD8EvgZ47SzDPagCILkbAcBjx7Cul8N6Ba+H9FgsrWERkKDIc5LMRzk9+a0by3F3Zz25JUSxshP1GP60AeGfBLXUtNUn0u4lcmRBHCoOQSOST+Ar3uvmGyjk8E/ETybeVWMcwgjbA5OcHI7da+nFbKA+2aAGTTRwQvJM4jjUZZicACvmrRAuo/Er7RMwkEN5tG75g4Zs857V7r47v7ey8JXy3DFftCGJMDOWI/+tXkfwZtvtPiRrySAPlZNz7cqpXhfoaAPoBQFUAAADsKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8o+Ol5NB4csoYblkWSciZFb7y7eMj0zVz4OWEdt4blZoES48za7ADOMVxHxqEkvji1hTc6m3TdGPcmvYvB2npp/hqzTyFhmeMNKB3NAHQUUUUAFFFFABRRRnmgBM1ynjnxlY+FdLYSOXvZ1KQQofmJPf2qTxn4zsPCWmtLM6tdOP3UXc+/0rxjQdE1v4i+LJdTvjIIjgeaTxGvoPqPagCXwX4RuPFuvRz64lxOiMJJXEnyjuPqfevoS3torW3jt4I1jijXaqqMAD2qtpOkWujafHZWibY079yfU1fHSgAooooAKKKKACiiigBD1r5j1yRdQ+JyRXR84x3gDmVshgXGF/D0r6K8QzSW/h7UJYpPLlWBijA4wccV8+fCmGDW/iM0l7B9oCB3YyLkeZyd31zQB9JxRJBEkUSKiIMKqjAAp9FFABRRRQAUUUUAFFFFABRRRQA1kV0ZGAKsMEHuK8C+Kng46RqkeoaXaNDbs29ZEPCSc5/3R9a9/zXh/xa8dPJdvoOmTRyxBf32wng55Dewx0oA4bUPEmp+L7bSdOe7mlZCI2UA5Gc5Jx1bkc1754I8E2PhTS08pUe7kXMk2317DuB7V886DdTeEdXttaKM0eQ5WQfd7ZOe1fU2lalb6rpsF5aypLHIgOVPfvQBdooooA+ePjHYJY+Mmv4NkYMKM6IMFmz1z69K9p8H3Elz4Q0qaR2kkeAEsTknmvPfjrp1vJpunXWIo5mlZXkPVlC5Ara+DN1Pc+CVSWR2SJwkYb+EYBxQBn/G/WoLbQbTSln23tzMHRQOdgyCQatfBrTZ7Lw7cTyQ7Irh1MZzndjIP9K4L4v6rFrPjqDTo4njaxQwsznhiTuyPbBr2vwdpL6N4WsbOSRJHVN25Rx83P9aAN6ijtRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfOvi+8Pib4tyWV0sVvHbyi2R3JAKqSc/nX0FZ20dpZwwQACJFAUZzgV8+RJMPjxdGCJLhmv3AjlOFHH0NfRS52jIwccigBRwKKKKACiiigAzWXr2u2Ph3SptQv5dkUY4Hdm7AU7WdZs9C0+W9vZdsafwjqx9AO5r591fUdX+KXiVILQMbUEqkeSFVe9ABdf2h8R/FrXqWwMcpCx23XCjgOfSvoLQtHt9E0qC0t4Y4tqjfs7tjk1neEfCNl4W05YoUDXDKPMlPXp0HsK6OgAooooAKKKKACis+91vTdPk8q5vIY5cZEZcbj9B3qCPxRorlQdRt42dyirJIFLEegzQBr0UgIPSloA4b4r30mneCZLiNAx89AQTjjmuP8AgMEkj1ibaNzuGzjpkngUvxznUpZIsuRzHIgJwCx4JHtXV/CKKOLwHb7EUN5rhjwC2G70Ad7RQOlFABRRRQAUUUUAFFFFABSZpa5Hx94wHhPSN8ahruYERBunv+NAGJ8VfG7+HbGKwsZF+2XOQwB+dFx2HvXGfC7wKviCWTXdVKyQLOW8jOd7jsfas7wh4T1fx74gk1jUpJEsycvI3JbBzgZ96+gtP0610uyis7KFYYIgAqqKAOO+I3hCPW9EElpYxSXNuD8qrhmTB+UV558LfGn9g6ndaLqJ/wBHklBWSQ4ZMDHI9Aev8q9+xXh/xZ8GXMF2dbsnj8qWQb04Ta/oMdiBmgD2+ORZI1dDuVhkEdxTq86+FvjX/hI9NezuZUNzbYRc8GQAc4HoMV6L2oA4b4s2VtceAb+eeJHkt1DRMx+6SQK5b4G3r/2PqFvviZA/mKD988Dt0xxXYfFM4+HOrHYH+ReD/vCvN/h7fX2m/DPxDfWkccXlqWjmHLo/Hy4x05zQBzEDDxp8Ty90BbG6udreVzjHy9/pX07BEIbeOIEkIgXJ6nAxXz38GLK11PxdcXVwm+WMF0b345r6IoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDwLSRn463J7jUpAPyNe+18+2EyQfHq4DMAv9oSMxJ4AK9TX0FQAUUUUAFQ3NzDaW7zzuEiQEsxOAKfLKsMTyOcIilmPoBXgnj7x1c+LL46Ho6y/ZC23KjPme5A7e1AEPjjxjL481T+ytNV0062mwrKMvK/t6cGvUfh74Tbw1pJNwkQupiCQqj5Bjpms/wCHXw8i8NWSXV8qyX7crkcxZHP1PvXoWMigBaKKKACiiigAzXnXxQ8cTeGbGO1sthnuDsLhslM9BjsTXoh618u+LLu78WePbe3kxDJNMYASOOCFB98UAd38OvCU3iFn1/WZ2mV8xrlyTxxjOeMe3Ws/4ueFbPw7aQapYtKrOwVF3nCMDknPuOK9n0XS4dG0i2sYUjXyowGKJtDNjk4968T+L3iEa7rcfh62fdFCwBYA/K/cEd6AO/8AhNr17r3hV5L2TzGt5vKRyMEqADye9d7nnFcR8LvD82geFFE0oc3T+eFKbSgIHB967WR1jQvIyqqjJZjwB70AfNXxZug3j6YRbp4mKsQrZXCgcV7d8PNYh1vwbaXVvZi0jXMXlrjkrwT+NeHeH4xrvxOjju2RI45nHyxFhIu7kHFfSVnY2un2wt7OCOCEEkJGu0AnrQBZooooAKKKKACiiigAozRVa+vYNPs5bu5fZDEpZm9KAKXiHXbbw9pEl/cnCqdq+7Hp/KvnyRdY+KvjABGeSBSeQCI0Ufpn371Z8a+KdQ8e+JIdJ00SvZjIFunRj2yenPWvXvh94HXwdpEiyS+Ze3OGnI4UY6AD2oA2/DmgWvhvRYtOtCzRp8xZjyzHqfateiigAqnqWm2uq2E1neRCWGRSCD1H096uUmKAPmK/s7/4d+NFlmRxB5u4BGIDLnIAPbI619FeH9dtvEOjw6ja7hG/BBHRh1HvzXN/EnwdD4n0N5g7R3NqpZCBkMvUrj3ry74VeLp9E15dHvrtksZSQFlB4OeAPTFAHrfxNGfh9qo/2F/9CFeEpetbfDO4SKYqf7SO9FfBZdgHI9M17j8TpR/wrjVHj+YeWpG3nI3DpXzbbo01rCmB5d1ceU5x83TP9KAPcPghZC38PXjSQxibzQC4HOCua9VrmPANpHaeD7HbB5Ujrl8rgk5xzXT9qACiiigAooooAKKKKACiiigAooooAKKKKACiijNABSUZozQB847Y0+Ol7vtTMpv23RZx5n0+nWvo1T8i8Y46elfOvxRsxovxFjninYtMVuVz/CxPP4Yr3zR7p73R7W4do2aSMEtGTtJ9s0AaFIWABJOAOpozXlfxQ8ez6XI+haap+1Oo8xh1wR2oAp/Ej4kt9oPh7QJQ0kmVuLhecDoVHvT/AIXeAntXh1u5aSNRh4Y2+8xI+834VV+G3w2aWdNf1tHy3zRQP37gn2r2dVCqAAAB2HFAABgY6UtFFABRRRQAUUUUAJg8+9eDePvAeq22tvqmkxXJEMgeFwRjJ5IHoc171SFQwwwBGe4oA8vf4haq2nW+lxaNeW+qSQbftFzgqGC8k7TnNZHhb4eahqWqHUdb373Ile5b70pznC98fWvZPIjJBMaZHQ7RmnhQOgx/SgAAwMdqwPGrxL4N1bzpBGn2dgSTiugry743XsMXhSO280CfzRL5WSNygHOfagDjfguC3jOSYK3zQSZwOBgjHP0r6DHAryn4HWVxB4cu7ie3ZFmlUxuQPmHOcH8q9WoAKKKKACiiigAoopM0AIzqilmICjkk14h8UvH814x0DSd/lSnZKyfelX29q6D4q+PI9J006VZKJbm6YxM2cbP/AK9Yfwi8G3M9y3iDWLWNwy5haQHczddwH0oA2/hb8P30FBrV9ujupYyqQ9Nqnru9ya9SpoH0FLntQAtFJkYz2paACimPIkalnbCjqT2rIufF3h+zz9p1a2i2nB3PjFAGyR14FeE/F7wXcWl2dd0+BBasQXWMYMb9yfqa9OHxI8GEkf8ACSafkf8ATUVQ1zxr4G1LSJra71qwuIZVI2LKCc+o9xQBwFv40/tz4TarpckQhurC3QFv4SNwGPXNcL4BsRrvimyguWIhknwcdQ2Oo96ztZns9OurtdLu/tMNwNoJbG1c5H1rrPg1o8974mt543TZbMLhwT1Xpx70AfSaRiNFQDhQAKfRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBU1JbptOnWyZVuih8tmOAD714HqfjfxtF4rOkx6yDu+UC1jSXn2496981C+h0zT5724JEMKl3wO1fNnhK9uLHxdc6ra24uBG8mFKghlLZJyQcECgDt76P4pWNtDJJq7u0oJxHAh2DqAeODXofgifWbjw3E+u7vt3mMGZlALAdDgVxPgXxTqHijxHNb3SywwoZN8WMgdcc9K9YVdqgDsMUAeGfHPSpYtSstZ2LsdBAh3chhk9PSvRfhrrEOr+C7LywyyQJ5coxwG68fnWZ8YdEGqeDJLvzdjaefOUbc7ifl/rXmfg74gz+FvC19aiAbzJ+6lPIQ46Y70AeofEX4hQeFdOktrIiXU5FIReoX6+h9K888FeCb7xfqbarqzyGMnfLcEnc5znaPbsag8H+Ebz4ga1LqeryBrOJ/3m1sFs8gEe/r26V9AWtnBY2kdtbxrHFGAAqjFAElvBHa28cEK7Y41CoM9ABgVLTHljjXc7qo9ScCqkutaVB/rtSs4z6POo/rQBeorNHiDRT01ewP/byn+NVr3xfoNgMzalbn/ckDfyNAG3RXA3nxk8G2L7Zb2Yn/AGISwpkPxo8G3DbYru7Y+1o5/QAmgD0HIpMivNrz4zaFEdtrbX07gZKtbsh/UVhXXx3ljy9t4buJYR1csQP5UAez0Zrx/TvjRfakxSLwy6sw+XfOF/mKS78cePpkkey0RI1UZBGJP6c0Aew0ZrwRvGHxaZ4ylvFiX7qm0HH14q9Z+Ividc3As7wxW8pHDLZBgc+/QUAe25rwn446pHJq9lYwPG5ERWYDkg5Pyn04INaV34M+Id9bSPc60kbkZ2xMFH6GvI9T0K8XxALV7ye5uZwX3Elmcjjb1oA+k/h3A9h4G0+K5jeBlVjtk4IGc1tz+INHtc+fqVrHjrulAryrS/hnrtzYRLqGoagpIG1vt7naD/s5/Srr/A+zlKebrF1Jj7+52+b9aAO9HjXwwemu6ef+261Fd+OvDNlEJJNYtWBGQI5QxP61w3/ChNCEhcXM2cfL8zcH1681taX8JtGtYUjvwl35fKlU2HPvzzQAXfxn8IWYy1xcyDp+6i3f1qtF8c/Bs0gRZL/cTj/j3z/I1vN8N/DDzrMdOXcq7cA4GPpVZ/hZ4Tkg8k2DAB94ZJCrA/X09qAMq9+MWlxKv2PTr+Vm+7vtyoauV1T48X8AkjttCjD4wGlkKkH1xivQ9THhrwJo0l1PGmwDEaSYdmbtjPNeMWlpdfEjxZJeR2ixF22pEibUjQH7xI6nH50AcxDNrms622pXERllml3lpQQjnrx1/OvWf+El+IM6xwabpVtFEq7QYnLKP/HetenaT4ds9O0m1snt7eZoECmRohlj68itSOGOFdscaoD1CgD+VAHg0+q/F9gZk3xqG27BCD/7LVy0vfiqZUgv7mSNZDkPFbBiv44GK9wA45xRigDx6bwL471RZJbrXyu4ZQKQuQemeODWLJ8G/FcojkbW5RIT+8AnOAPave8UYoA8ds/hNqcC+Vc6hNcoR1a6cfN64FaH/CkNHeELJqF0XJBLHJ49OtepdPasPxL4r0vwvpkl5fTqNvAjU5Yn6CgDhj8DPDccryvPL5YX7p4Ax361w3id/C/h2yey0qQ6pOZSpjZcbcf7QOat65451/xzrEFnoSvb2cq7Nq53Nnrn0rqfBvwdtLK2abX4zJcmUOqJJkDB4JPfNAHjOraTOV+3XSeRLNhooQAAVJ6j1r3r4TeFItH0JdTf57m8TiQ/3ODjH1FeZ+PrxtY8fJYZjVrOYxKqqFCpnAwPavoHQtMGj6FZ6eJPMEEQTf0z70AaOaM1yvi3x3pnhSP9+4kmxny1OSB3zjvXGeHfE3jrxjcy3FpFb22mCULudMMEPuev4UAeu5//AFUZGK8a8R+KvHGja/Fpsc1oygqqqIxk54BJzXrWli8GmWwvwv2vyx5u3puxzj8aALlFFFABRRRQAUUUUAFFFFABRRRQB598XtZuNJ8GyrbNGDct5MgYc7CO35VyHwd03SJdK1Ce6uSkpzFh5go2MOcA/wA69M8R+CdK8U3Ecupo0nlrtVew5J/rWMPhF4XCbBbnbnOOP8KAMOLxnpei69b6H4chV4mnCTTn5y53YIz7V6zXD2fwq8O6fNHLaxPG6Or5GOcEe3tXcDpQBm67p0GraJeWNyGMUsZDBevHP9K+UEivbLXvJGwmN9/kzpuXIOOVr7Ar50+LuhyaL4rk1YGNkuD54AU5yONpP4ZoAvL4R+IyRxixeO2inG92tv3eD270i+AviasxH9u3hQAHJnOW9s5r1rwRr6+IPDdvcO0ZuEULKifwnHFdJigDx+z+HfifV4Y/7U1u/tigwyyTFwR7YPFJcfAuO6ud0+rSSRY6OWLZ+tew4paAPGB8AbOMs0eofPkbN+SB9RXQad8I9Kj2DUY7edVHWOPYSfXNej0UAcOfhL4TMjv9icbxggNwPpxSwfCnwvatG0NvMjRnOVkGW+pxzXb0UAY9p4Y0m0TaLOOVv78oDN9M1MNA0kRNF/Z1t5bdV8sYrSooAzRoGkhlYadbZT7v7scVeigigjEcUaog5CqMCpKKAExgUYpaKAKWq3sGnaXc3dzJ5cESEs3oOn8zXzr8PrW+1b4lwTorTx2k29nZvupnPQ/WvaviPqtlpngu/F44BnjKRJ/fbrgflXm3wPsbltWutRaEtF5TI857tkED8qAPdQP8mloooAKKKKACqt9f22nWct3dSCOGJSzMT6VYLqoJJwB1J4rwP4o+Mn8Qat/Y+kTzG0tsieRT8jP1GB1JHIxQBj+KNak+IvjMpZwzyWSEJHFk8kcbhjp64r3jwp4ctPD2jQ28NuI5WQGY9SWxyPoK5r4XeEE0XR0v7q0aK+mJ4fHyr2YfWvQh0FAC9qKKKACiikzQAEgUyWeKCF5ZXCRoNzM3QD61geKvGel+E9O+1XknmMW2pDGQWY9/yryLUde8U/EHVpre1jubXR5kASBSMyrnr9aAOt8T/Fy3gngs/DsZvp5CQzgfKv5964rR/BPiHxxqd5darcNHGTuJmQhFPYBf616F4M+GllpNjBJdI/mA7miY5DH/AGvf6V6IqBVAUYAGBQBi+H/CumeHrSCO1t086NNpmIy5z159Km8RapbaNoN3eXcxhiWMjeo5DEYFateUfGbxPHaaXHocL5luD++C/ejHG0/TJoA4D4cWn9r/ABAhu7pDdqZm3NKN+Rg4Yn8K+k3JSNiOwzXmXwX8Ox6ZoU1+ZGe4mJiPZdowRj869Nl5hcdtpoA+WZheeOvHjxyuqPcTmLd/Cr5wDj6V9O6Zp0emabb2cKoixIF+RcAnucV8y6TCNA+IljeXj+VaLeiSaQg4Qg9+/Svpw6jZi288XMXl7N+d3bGaAKt54d02+vxeXFuGmG3DfTpWqKwPD/iyw8R3F3FZbj9mbDMeh54Nb9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVwfxX0T+1vCUkqojfZG8589SoB4H513lMkiWVGSRQyNwVPII9KAPC/gt4jFhf3Oh3LRqsz7t7HnfjhR617uOlfMvi/Rrvwb41N1Z+YFSTdFK6YUgnO7j0ORX0L4d1iHW9Ctb6JiwdQrMRjLDg/rQBq0UUUAFFFFABRRRQAUUUUAFFFFABRRRnmgDyL45Xato0FogYSwN9oLdsYKgfWtf4NaLc6V4NE88iMLxhKm3sAMc/lXn3xh1Uar4wt7G1Ln7OfJZXG0b/6jmvavB+nT6V4S02xugnnRRYbacjkk/wBaAN2iiigAozSZrhviT40/4RXSUSBkN1ckqBu+ZVx94CgDB+LPjHybVdB0m6JvpG/frG3Cp6Me34Vn/CbwRFIJtY1KKR8OPK8wfK5/vfh0rI+HngdvFGqy61qsu6JH+dA+SxP8JPp3r3qGCO3hSGJFSNBgKBxigCQDGAMADtS0UUAFGaTNYfiLxbpHheBJdTnMfmHCooyTxQBsXN1BaW0lxcSrHDGpZ3Y4AAryzxV8WxHqi6R4Yiiv55IzunB4TPQqfauR1rxH4l+Ik17p9vFNBpmcqkY+ZgB0+h616J4K+HdvothbPdANKoLeXtHU989fwoA4fwx8ONQ193v9amF47S798rNtHOSV9/wr2bSdAsNHjAtYEEm0BpMct7+1aKRrGu1FVV7BRgCn0AJiloozQBFPPHbQyTSuqRopZmY4AAr5m8Q6s3jT4ivMVhNujCCMKcq4yQrfj1r1P4t+MI9G0CTTLK5C6ldEIVABwh659OK5z4P+FNt0+pT5ZYuVJQFXJ6jPtQB67omnnS9FtLFggaGIK2zpkVoYpR0ooA5zVPBWj6tcSS3FshEqkSpj5X9zWdL8LvDDEGGy8hhjBR2PT6mu0ooAy9J8PaZom82FpFC8gAkdBguR3NalFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcT8R/CkXiHQ5LhS/2q2jYoq8717rivL/hV4ql0DW30i/mkW0ckEOScMegUdgO9fQuDmvDfi74Rnsp312xEUUDMgZo1wyN7+uTQB7ijq6BlYMCMgjoadXnHwr8ZnxDpZ065RUubNAo5xuXoBjqcY616P2oAKKKKACiiigAooooAKKKKACoriUQW8sxGRGjOR9BmpayPE2oDTPD15ctEZQIyuwHGc8f1oA+dL1v+E0+JKz6ch33UgZUZsAPnPf2FfTsCFLeNT95UAPPtXzt8JdDl1Hx5LeLOqpYN5pUjO8cjg/jX0dQAUUVQ1jVbbRdNlvrptsSD8z2FAFHxZ4gj8M+H7nUmCM8Y+RGYLuJ/nXhGhadqHxM8YyXlzICoAaUscbEycMB254xTtU1XWvib4qjtbeF2tY3OIh9wD1PYkfXmvbvCHhC08K6aIo9sl24Hnz4++fb0HtQBq6TpFpo2nRWVlGI4kGOOp9z6mr9A6UmaAFqOWeKCMyTSLGg6s5wB9TWJ4i8X6P4aj/0+6VZnRmjiH3mIHTFeLav4l8S/EdXtIFa108TfIixkM4zwD+HqKAO18XfFiK0v7rRdDi+03oTaswPyK316Y965Xw98P9Z8WNa6nrUzzbZOWd+FXnoO9dr4S+GFppjx3d+iPJsH7s9d3+2f4q9EhgjgiWOFFSNRhVUYAFAGZovhzT9CRhZxbWfG5icnp29q1sfSlooAKKKKACqWpana6RYzXt5J5cMQJY9z7D1NWpJUhjaSRgiKMlmOABXz58SfGn/CVa7FpekmZrKAlZSuf3nPUDrntQBhmS68deNxfy/vY55vJARcnZnAYgegAr6W0ywi03Tre0iRFWJAvyrtyQOuPWuT+HfhK20PSI7uSy8m/mHzFuqj29Mjr713A4AoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqlqmlWms2EtlewrLDIOQex7H8Ku0UAfN/iPRNT+G3ixNRsw7QP8A6uYH7w54/DvXtngrxQnivQUvxH5cgOx1yMEgdR6CpvFXhi18T6YbecBZkBMMn90//Xrwa3v/ABB8L/FD+ZG/2Xf+/i/gkU8bhQB9L0VlaD4gsfEWmR3tlKHVh8yZ5Q+hrVoAKKKKACiiigAooooAK4L4s66ukeEntzEXe9zEp7Ljkk13teJfHLU1nSPSSyB4QJkAPzHdwaAJ/gTpEkdldaqZFMRXyFTvng5r2btXE/CzRYtG8DWRileX7SgmbcOh6YFdrntQAyedLeB5pW2oilmY9ABXgfxD8aX3iy/XRdGZmtDIMrHz5mD39j2rd+KHxExbSaLok482U7JZV5OOhAFTfCfwNc6eU1y/DxMwbyoXAywI+8f5igDpvh54LPhfT2nnOLy4QB4x91AOg+vrXbZorm/FHjbR/CaRfb5/3kp+SNTknj/61AG/dXdvZW8lxcyrFDGNzO3AAryrxl8XIoxdaV4cikub/AVZ0Py4Pce9chqGseKviTc3dhEs0NiW3rBF1ZewPt3r0jwh8MLDRVtrq9AmuY1zsYZUH19c0AcL4e8Dax4vvbXWdekmmlJ+eSc5UBTjGPXFezaN4estDidbVMyOfnlb7zexNaioqLhQAPQDFOoATFLRRQAUUUUAFJnmlzXlPxN+Ji6THLo2jyq1+/ySSr/yyz2HvQBD8VfiHFZ2s2gaWEuLu4HlyP8Awpnt9ag+FfgyRZhrd7bAIV/d+cMuzY+8PpWX8Ofh9Nrsqa7rys0JO+NX/wCWn/1vevc44lijWNECIowFHQD0oAfiloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooASue8XeE7PxXpMlpcDZMBmKYDlTXRUmKAPmm2vfEHws1+SJI2myd0tuc7JVH8QP5dq9x8I+M9O8WWXmW7qtwnEsO7JU/1q9rvhnTPEcKRahCW2HKuh2sPbPpXhXiLwXqvgjXpL7TWuPsrKWJhyAyjsSPu0AfRtFeZ+A/inZa1aiz1IG2vY2CBTzketelB1KhlIIIyCD1oAdRRRQAUUUUAJ6180fEm+GvfERYZAsLLKLbg5O1SRn9TX0ffztbaddzp96OJ3X6hc1806Gh8afEuOWdlglnIZyoz0yx/PFAH0dommLo2i2empI0iW8YQMw5Ncj8Q/iFB4WsJbezKS6mynam7hD2zjv7VveK/FFn4X0l7i4bdKQRGg4yfU+grwrwnotx8QfFMd1dwSSWgfdOOVCpnkbu7dMUAaPw78D3viLWk1y8YraJJ5jSMMmRs52genrXvtxdW1hbebcSxwQrgZY4Armte8XaB4JtY7KV1SURHybeJeTjpwOhNePajrPij4klIJFlt7ITnbHFGRkZ4DEdPqaAOt8YfFo/bLzRvD8ayyhdpuSeFOeef5Vz/hf4daz4llstT1eQyRBhukkclgMfwg9RXoXhL4aWehyJc3nlzyhBhCnCnHO7ru+td4kSxoqIiqijAUDAAoAz9J0Kw0WJksoFj3kFm7nitOiigAooooAKKKKACkyM4qtf6ja6XZS3d5KsUMYyzMcV4n49+JNzr9xFo3hkzCF2UtcqCN3fAIoA6T4jfEldNL6HoTebqkgwzAZCDvj3rm/Afw6/tnUU1TXUmK7BLsdflfJ6Z6+9XPBHwxW6uW1PVPP2scPvyHkbnnnleTXsdrax2drFbQgiKNQqgnOBQA+OJIo1jjVURRgKowAPTFSUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVHNCk8bxSqrxuMMrDII9KkooA8W8YfCOWA3epaFMwOQwjH+sUfxYb09qztB+JureE4YbDWbaW8tosBpgNrYPA4POB9K95xWFr3hDSfEMUgu7cLNIApnTh8DtmgA0DxjofiS287Tr6OTaBvUnBU+hrdyK8Q1r4S3WlTzz+HXuImRVMZVvlODnn1o0n4m674TaaDxRYXV5EzYgmiA5/PtQB7hmiuT8P/ABC0DxBlYbtYpgwXypD82TXVK6sPlYH6GgDnvG9/PpvhS9uLdkV8bSXXICng8fSvFvhPHpNpq+p65fTMBZp5luQ+NwJPbvkV33xn1e5sfD8NjCVWK8LCRj14HGK8HhuhAkdmk4j3DMknJI/2B60AdPqutXfxA8VsYRIbKVz5UbtwF9z/AHfaus1T4g6Z4e0KfQPCVsftUXyvNnPOOWJGOfevP9L0u/1S+gtNIhntvMfYwxlz7ZHGMV7X4S+E+n6MJpNSS3u3k+6gU7QCB1980AcN4c+H2u+LNZtda1wuIpBveUnHAxwBnOfevbtH0Ky0O18izQgE5LMcsfqe9aCRrGioihVUYAA4Ap9AB2ooooAKKTNGRQAtJmo5bmCBS0sqIFG47mAwK4PXPi74d0sSx2spvpl4VbfnLenOKAO/Z1RCzEBQMkmuD8YfE7SvD9tc29nMLrU0GFhjBbB9TjivOrnxB438daiLNY5rCxf5THB/y0Hoc5GfyrqvCvwihsTHcXbmMmPBVfv5z0Y9CKAOSFv4n+It/LHqd49rZTOuIkBZRx14OK9S8L/DnTPD0UDv+/uY88/wZ9dvrXUafpdnpcPlWVukKnrtGMn1NXKAEAx2FLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACYzWZqWgafqmGnt4zKgxHIVyU+lalFAHlviP4P2upuJLGc287Hc8wJDEjoMdK5e10Dx34LkddOv5P7N3Y2zY5b6gZ5r3nFNaNXBDqrAnOCM0AfMvjfVfF/iiEQahpEiRQAAMgJAI6v8Aj1rnPCcOhTatEmq3b2yNw0j7QEPqM19Z3Wk2d7t8+BHC9Kzp/CGkSxbEtIYwQQ2Iwcg0Ac/oHiHwD4dsIrG117TmZPvSNINzn1Jrq9O8Q6RquBYahBcf9c2zXHv8GfCskpkaB9x54Yj+tVm+D2l2krz2E1wCRhYhKyKD65BoA9LyPWkZ1RSzEADqa8XuvhVrrylop22k55vXzWjpfwuvEyNQkkZD1C3r4NAHoF/4s0HS5DHfarbW7DqJGxWXP8S/CEEXmDXbOQZPCSAn8q51vgnosyyGa8uWdyCNzE7PYc81NY/BnQ9Ov47uCZ9ySlyrRghl/u8npQBSufjjojzfZ9Ps7q4nL7QCgwR+BrDufHvj7XroW1jpH9mllIVxn5j265r1Y+ENDJB/s+LcOjBQDWslrBGFCQoAowOOlAHiMPw48W+KGW68Q6rci4iO3a5Chl9OBzXb6R8KdC0545JIhLgZeIj5d1d5S0AU7LSrLTovLs7aOFN27CjvVvHalooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmvIkalnYKo6ljgCnVn6zdWlnpF3cXxAtY4yZMjPFACnW9KDsh1OzDL94Gdcj9alt9Ssbt9lte28zekcqsf0NfN/gbQY/FPjSeSRwtkmZJH28MoPQnt+NVNQll8N+M4T4ZudyxlwroDtY5+770AfUtFVNMnludLtJ512zSQo7jGMMVBP61boAKKKKAEwPSjFLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXAfFnXJNI8LeTGqMLx/KfcOVXGc13rMVUkAnAzgd68L+Kc2u+INSSDTvD2tSW4j8uRhYykZyeQQCD9RQBR8O+CdXtPh7da1ba/LbWtzG08ltGfvAZGG45/Om/Cl7W78aLps9pbymKNpBJt5LDkHnv610n9q64/hGLwzo/hPWBE1sYXnv7VogrH0z2pfhh4B1fQtcOqakgRxG8bg8Fs9Me1AHsI6UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTCcDNPpjfcoAM8A4FO7U3+FfoKd2NACjpRQOgooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//Z'] Multimodal Competition False Theorem proof Geometry Math Chinese 25 "如图, 在 $\triangle A B C$ 中, $P 、 Q 、 R$ 将其周长三等分, 且 $P 、 Q$ 在 $A B$ 边上, 求证: $\frac{S \Delta P Q R}{S \Delta A B C}>\frac{2}{9}$. " ['作 $\\triangle A B C$ 及 $\\triangle P Q R$ 的高 $C N 、 R H$. 设 $\\triangle A B C$ 的周长为 1 . 则 $P Q=\\frac{1}{3}$.\n\n则 $\\frac{S \\triangle P Q R}{S \\triangle A B C}=\\frac{P Q \\cdot R H}{A B \\cdot C N}=\\frac{P Q}{A B} \\cdot \\frac{A R}{A C}$, 但 $A B<\\frac{1}{2}$, 于是 $\\frac{P Q}{A B}>\\frac{2}{3}$,\n\n$A P \\leqslant A B-P Q<\\frac{1}{2}-\\frac{1}{3}=\\frac{1}{6}, \\therefore A R=\\frac{1}{3}-A P>\\frac{1}{6}, A C<\\frac{1}{2}$, 故 $\\frac{A R}{A C}>\\frac{1}{3}$, 从而 $\\frac{S \\triangle P Q R}{S \\triangle A B C}>\\frac{2}{9}$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAUABGAMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiud1HxVZ2XjDSPDSAS39+JJHUH/UxKjNuP1ZQAPqe3IB0VFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFQXFzDZ20txPKkUESF5JHbCooGSSewAoAzfEPiLTfC+kS6pq9yLe1jIXdgszMeiqByT/wDXPQGtOCZLiCOeI7o5FDqcYyCMivnfxvc33xGksNUd5rbQLnVYdL0eDGGnZ2IkuGB7YUqPrjjBz9GABQABgDgCgDL1/WI9F08SlRJcyuIbWDdt82U9Fz2HUk9gCe1eaaVp6x/HmzBuFu7uLRHury5XpJM8hU49FClVUdgAK7CxsrfxLqmqXuu6U0i2c8lpaW15aMUWNTzKm5cOZCM7lz8oUeueV8LW0Vn8aNZvbXQb+w0uWxS1tZV0uWGF2yhb+ABeQeTgcUAet0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5X4hup/iX4nk8I6bK0fh7T5AdbvEOPOcHi3Q/Ucn29sNpePfE1+17b+DvC5LeIdSX55gflsYP4pWPY46d/x2g9N4X8M2PhLQLbSNOQ+VEMvI33pXP3nb3P+A6CgDkPElrDJ8TfAeg2sSx2dglxeNBGMKiogWLA7AMMD616XXnOkAap8dfEV2MkaTpdvYD0zIfN/oR+dejUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRTWBKkKcHHBxnFeRx+KvG198VL/wdYajphis4hNJdvZElV2qcFQ/Jy4HWgD16ivL/ABN4v8U/DyWyvtd/s7VtEnnEEs1rA9vPExBIO0uwIwD+WMivSoZ47mCOeFg8Uih0YdCCMg0ATVyvjjxfF4R0VZ0jN1qV0/kafZoMtPMeAMDnAyM/l1IrY1rWLHQNIutU1GYQ2lsheRz+gA7knAA7k1w3gnR77xPrjeP/ABFGUllUppFg3S0tz0c/7bDnPoc9wFANfwD4Rm0C0uNT1iX7V4j1NvO1C5JBwe0a44Cr04/lgDtKKzdf1EaR4d1PUyOLS1lnx67VJ/pQBxnwrBvpPFmvMMtqGtzLG/8AehjwqfllhXotcV8JtN/sz4XaDC33pLf7QT6+YxkH6MK7WgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAimmjtoJJ5mCRRqXdj0AAyTXhPwm8S6TFqnifxVrVy1tPql2fKLwuQIwSxAYKR/EoxnPyiu/+MOuDQ/hnqrq4Wa7UWcXuZOG/8c3n8K0Phtof/CP/AA90WwZSsv2cTSg9d8nzsD9C2PwoA4Txquo/Fy80/QtDs7qHQYJxcXeq3MDRI5AIAjDAFsBm7ckjoBmvX7eGGxsoreMBIYIwign7qqMD9BVivMPGOpXnjPxAfAOgTvFAFDa5fR/8sIT/AMsQf7zdCPw6bsAFaEP8WfFX2hwf+EL0eb90D01K5X+IjvGv6/iQvq4GBgdKo6Xplno2mW2m2MCw2tsgjijUcAD+Z7k9Seav0AFcH8YruS2+GepwwH/SL1orSJf7xeRQR/3zurvK85+I/wDxMfE/gXQRz5+rfbWHqtuu4g/UNQB3mn2UWnaba2MICxW0KQoB2VQAP5VaoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOZ8aeC9O8daPDpmpz3UUEVwtwrWzqrFgrLg7lYYw57ela+m2T6fYpbyX91e7OBLciPfjGMfIqj9M1frA8XeKLLwh4fm1S9JbB2QQqfmmlP3UX3P6AE9qAMbx94sutJhttC0JFm8S6qfLs4uvkr/ABTN6BecZ4yO4BrN+B9vEvw1tb0Lm6vZpprmViS8riRlyxPXgD/Jq94B8LX1rJc+KfEhEniTVRmQY4tIuqwr6YGM+4A5xkwfBZDD8N7a33blgurmJSR2ErUAeh0UUUAFeczkap8fLaPhotH0VpR/sTSvtx+KEV6NXnPgH/iZePPHmudUa/j09M9vITa2PYkigD0aiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooArX17babYz3t3MkNtAhklkc8KoGSa828LWNx8QfE0fjfWIWTSrRmTQrOUds83DD1OOPoD2BMOpyv8VvFT6HayP/AMIjpMwOoTxtgX045EKkdVHcj6/3TXqUMUdvCkUSLHGihVRRgKBwAB2FAE1ee/B0lfBlzbsMPb6ndRNz38wn+tehV578InRtA1sKQSmuXgYDsdwP8iKAPQqKKKAIZ547W2luJW2xxIXcnsAMmuE+DcMh+HsOozri51O6nvZuMZZpCM/iFFafxN1IaV8NfEFySQTaNCpHUNJiMfq4rU8J6adI8I6PpzAb7ayhifAxlggyfzzQBtUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeceOdfvtT1WLwH4ZmK6reJuv7pORY2x+8xPZiDx35HQsDWx488X/APCLaXHFZQ/atb1B/I06zHJkkPG4j+6uQT+A4zmjwJ4QXwrpUsl3L9q1q/fz9RvDyZZDk4B/ujJx+J4zQBs+H9BsfDOiW2k6dEI7e3XaPVz3Zj3JPJrWoooAK87+Ev8AqPF//Y0Xv8kr0SvO/hSNsvjZB91fE95gen3aAPRKKKKAPOvi6ftulaDoQORq2tW1vKuM5iBLMfwIWvRa858Qk6n8avCWnjO3TbS51GVT0IceWh+oYf5zXo1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWT4g1+w8MaHc6tqUmy3gXJHd27Ko7kngVoTzx20Mk0zrHFGpd3Y4VVAyST2FeX6THJ8VPFKa9dI48I6VMRp1vIpAvZxwZmB6qDkD8v7woAv+BNA1DU9Vl8d+JodurXqbbG1Y5FjbHoo9GIPPfk9CWFej0UUAFFFFABXnfwyUw6t45t8ggeIZ5Qcf3wDj8K9Erz34eNt8U+PIGGJF1jzCD/dZBj+VAHoVFFFAHnXh3/iZ/GnxdqByV060ttPibsQw8xx+DCvRa86+EWb3SNc148rq2s3NzE3rECFUfgQ1ei0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFeU+GobrXPix4nZdW1Y6LpRjgjtvt83ltOVG/+LoCrcdORQB6tRXmfxguL2Ow0Ox0jUbyy1fUtSjtYXtrmSP5DncSFIBAJXr6132nWEemWaWsc1zMFAzJcTvM7HGMlmJPb6UAXqKK4Hx/4qvrae18K+GsSeI9UGEbPy2kP8UzenGcfQnnABAMvxRe3HxE8TSeCNJlaPR7Ng2uXsffB4t0PTJI5+h/ukH0mzsrbTrGCys4khtoEEcUaDAVQMACsnwj4XsfCHh+DSrLLBSXmmYfNNIfvO3uf0AA7Vv0AFFFFABRRRQAV5/4FP8AxXvj8d/t8H/oqvQK868FgD4s/EYAAfPp/T/ri9AHotYvi3UTpHg/WdRU/vLaymkTnGWCHH64rarz34zTOfh7LpsJxc6pd29lDzjLNIGx+SmgDV+GWmjSvhr4ftgCubNZmB6hpP3h/VjXW1DBAltbxQRDCRIEUegAwKmoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAo6vqMOkaPe6lP8A6q0ged/oqk/0rzb4V+FZp/BUes3epalbXmrzSX0y282xWLMcHGD1AB/Gu48ZeHpPFfhO/wBDjvfsRu1VTcCPzNoDqxG3IzkAjr3qfR9Nu9J8O2um/ard5bWBIIpVtiiYVQoym8nt/eFAHncOm/2j8d7a1+23l5beH7A3Dm6l8zbPLwAOOPlKn/gNeuVxPhTwXqPhzxFrWr3WtQX76xKsk6iyMRQru2hW8xsKN2MEHoOa6bVdUtNG0y51K/nWG1tkMkjt2A/mewHc0AZPjXxbb+D9Ca9kRri8mbybO0QZe4mP3VAHOPX29TgHO8BeErrR4rnWtdk+0+I9UIkvJuvlL/DCvoq8dO49AKyPBml3vjDXx498QQtHEFKaJYP0t4j/AMtWH99vX8f7uPTqACiiigAooooAKKKKACvOvCI2fGP4hIPukaex+vkn/E16LXnfhkND8aPHKsBieCwlUg9hFt/nmgD0SvOfHv8AxMfHvgPROqNfy37jPTyE3Ln8Sa9GrzmH/iafHy7kBDRaPoqQkZ+5LK+78yh/lQB6NRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAITgZPSvI5rlfir4sS3kkWLwbpd0UAZx/xNbpQTtX1QAE4HUc9/l0vG2rX3ijXP+EA8OzmOSVN+sXy8i1gPVB/tsD09D7kjs9P8OaVpWmWGn2dlFHBp4/0UlQTE2CC4JH3iGbJ75OetAGsqhVCqAFAwAOgp1YSXsmhQCHVpybG2to2k1e6mjjEkhYqVZRjB+6c4wd2OvXdoAKKKKACiiigAooooAK890NlHxu8VIeHfT7RlHqACCf1FehV5/Yf8l31j/sBw/8Aow0AegV5z8OD/aHiXx1rrYJn1f7Ep9Ut12g/k1d3qF7Hp2m3V9MQIraF5nJ7BQSf5VxvwespLX4ZaZLcc3F2ZbqVu7F3Ygn327aAO9ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiivPfiroEPiTRLfSre1gbVr2Xy7a4ZBviCI0p+bqAdu30+egD0KiuP+HniFfFXgGxvLvDTpGba9WQf8tE+VtwPqMN/wKo/h7oem2eitq9tYwwT6rLLehljAZYpHLRoPRQmzjpnNAHaVxXj3xZPoFrbaVo0QuvEeqN5Vhbjnb6yt6KvXnjj0BxseK/E1h4R8P3Gsag/7uIYjjB+aaQ/dRfc/oMnoDXN+AfC9+Lu48Y+JRu8QakPliI4soP4YlHY4xn8uuSQDX8D+DoPCGhm3Lm51C5fz7+8ckvcTHkkk84BJx+fUknqqKKAGOiSIUkVWU9QwyDWV5V7p15uheS7trq5eW4e5uAPsieXwI1C8rlRxnjcTzWxRQBU0+/ttU063vrOUTWtxGskUgBAZSMg881brH1GyvI3n1DSyH1BokiSK6uJBbhQ+Sdq5w2CeQMnAHSrdnf2981ykHmE20xgk3xMnzgAnG4DcORyMg+tAF2iiigAooooAK85hVV/aHuNvG/wyGbnqftAGfyr0avOzmP8AaIGOfM8Mc+3+k/8A1qAL3xa1L+y/hdr0wPzSwfZwPXzGCH9GNdLoWnjR/D+m6aOlpaxQf98qF/pXF/FM/bpvCWhKeb/W4WlT+9DHln/mp/CvRaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5yP8A4mHj6d+sWlWIiH/XWdtzfiEjj/77ro6xNK8PjSdT1O9TUb6c6jcG4linMZRGwqjaQgYAKqqASeB680AeW38k/hHxt4m8LW+6ODxSiT6cV6RzyuIpcemNzP7BBXsLvZ6RpheR47aytIcszHCxxqOpPoAKpaj4dsNU1vSNWuEJutLeRoD2+dNpB/Q/UVwOtyzfFHxQ/hixkdfDGmyhtXuo2wLqUHIgQjqAep9s9lyAP8PWs/xK8Tx+L9SiKaBYOy6JaSL/AK1gcG4cfUcD2Hpk+qVhi2udFP8AoMclzaE29vBYRLHElpGDtZlPBIAOcHP3cDrWla3lrfxu9pcRTokjRs0ThgrqcMpx3B4IoAtUUUUAFFFFABVG806C8uLW5YH7Rasz277mwjMpUkqCA3BPBq9RQBlafeXAlSwvwz30VtHJPcRQMkDsxIIRjnnK9M5wRWrVPUNPs9Vs3s7+CO4t3Klo5BlSVIYfqAapwy39jeiC8Mt6l3cStHNDAqJaRBcqkh3ZPQgMByTyBQBsUVDDNHPEksUivG6hldTkMD0IPcVNQAV51cbo/wBoOzcqdk3hxo1Ix94Tlj+mPzr0WvPdRIHx40bJAJ0WcD3/AHlADNVI1P47eHrPJxpOl3F8fTMp8rH8j+Vei1514QzqXxX8caqctHbG20+Bj22pmRR/wIA/jXotABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFcp448XxeEtIR4ovtWq3j/AGfTrJeWnlPA4HO0ZGfwHUigDG8eeI7+5v4PBHhiQjXNQXdcXC9LC2/ikY9mI6d+exK56nwz4esPCmg2+kabFsghHLH70jd3Y9yT/gOAKyfAnhGTw1YT3epzfate1J/P1C5Jzl+yL/srnA//AFAdjQAVlXdnPA32vTy26GOZlsUZY4rmR8EFztJB3A8j+8Sc1q0UAZ9jqcN3NLaGSIahbJG11bpJv8kuMgZwMjg4OBnFaFUb+xW/jiRp7iDy5o5t1vIULbGDbWI6qcYI7g1XtdSkS8gsNTWOG/uDPJDHBvkRokYAEvtAB2smQe54oA1qKKKACiiigAqN40ljaORQyMCGVhkEHsakooAwpre50WMzaZbSXNpHDDBb6VbrFEseHwzqxx/CRxnGE9607W9tb0Sm1uIZhDK0MnluG2Ov3lOOhHcVarNnsG+0QT2s0kJhaSRreIqkdwzAj958pPXnI79c0AaVefa+VX41eE2JAA0+8yfbArrdO1NboraXJhh1VLeOa5sklEhh354zgZGQRnHavLvjHqJ0XxXoGoRyGOT+zNUjB9/s52f+PEUAb/wcX7V4SvdbOQdZ1W6vuewL7cf+OH8zXo1c34B07+yfh/oFls2OllE0i+jsu5v/AB4mukoAKKKKACiiigAooooAKKKKACiiigAooqte3ttp1jPe3cqxW9vG0ksjdFUDJNAFmivPvDV3qXxAR9bu5rmw0B3ZbGxt5TFJcKDjzZXUhsEg4VSB6575/i+8m+Huu+H9S0+6uv7MvbsWd9YzXDzIQ3SRN5JVhg9MA8e9AHqNFFRvIkUbSSMFRQSzMcAAdzQBn67rVj4d0a61bUZRFa2yb3Pc+igdyTgAepri/BGh3+va0/j7xJCY7y4XZpdkefsdueh/32BOfYn1wM+zR/iz4sXUpo2/4QzSJiLWOQYGoXA4MhHdF7Z+ndgPWKACiiigAooooAKrXlrHe2c9pNu8qeNo32MVO0jBwRyDz1FWaKAMTz7jSGaO4Tfp5kgtrJbeKWWZcjaTK3PGcfN2HU5raBzS1gixbQIml02IDTYI7ieSxgiLyzSs2/KEtwc7/l6EsOnYA3qKrJdxGDzJGEOFDOsjAGPIzhueDXP6h8RvBulKxuvEmnZX7yRTCVh/wFMn9KAOporzk/GLRrs40LSNf1zjhrDT2KZ9y2CPypP+Eq+ImpjGl+A4bJGHyT6lqC8f70a4YfSgD0eivOTofxS1TP23xXpGjqf4dNsTP+suCPwNKfhQl+S2veLfEeqBvvQteeVC3/AFHH4GgDpfEOpaDbW/k6rr0GmEyI2/7atvIdjBgucgkHBBHcE14N8U9fsfH3iTw7pdjfWdzKL2a2BtC7ARyPGsZLMoG44OQuQMdea9l074U+BtM5g8N2chzkm5DT/+jCaxvEtjaP8AEzwLodnawwW9u9xqE0UMYQLsT92cD/ayKAPS1VUQKoAVRgAdhXlt9Bc6z8bjpNtq+rw6baab9pvoINQmjQysSFAw3y8MhwMDj8/UyQASTgDqa8J0uLWtU8LeOPHui6pc2l7eXUj2oRUYSW0HAB3KTnbuAwRyBQB1HhrVdT0/4uav4S/tG51LSY7JbpDdP5kls52/KXPJB3dDk9PfPp9cb8O9P0YeF7XWNLgPm6rElxd3Eshkllkx8252JJw24Y6da7KgAooooAKKKKACiiigAooooAK8s+P17PbfDhbeFtq3l9FbynOPkwz8+2UWvU65vxvpOjaz4Qv7PXp0t9PKb3uGYL5JByGBPcH8+negDY03T4NL0u00+3XbBawpDGP9lQAP5V5d42VvGvxX8PeF7X57XR2/tDUnHKpyCqH3IAH/AG09jWv4V1HxDreii1tvEekkIPLiuzD5l28YGA7xeYVRzjvn1Kg5Wug8PaJo3hMtp9nI8moXrtcXE87eZPcN3kkb0ycdhk4HJ5AOmry/xdqN3468SN4E0Odo7GHD67exf8s4/wDngp/vNjn8uzCtbx/4qvdNFt4d8Oqs3iTVcpbLnP2eP+KZ/QDnGe4J5wRWt4R8LWPg3w8mnwP5khJlurl+GmlP3nY/y9Bj60AbOnafa6Vp8FhZQrDa26COKNeiqKt1zepePvCWkhxe+I9NjdOGjW4V3H/AVyf0rnz8ZPDlyxXRbLW9bYHGNO092wffdtoA9EorzoeMPHmpY/sn4fyW8bHibU75Itv1j+9+VNGmfFfVP+PvxBoWir/1D7Np2/HzePyNAHo9Z+oa3pWkpv1LU7KyX1uZ1j/9CIriR8Lbm+UHXvG/iPUGIw8cNwLeF/8AgAzj86v6f8I/A2nP5iaBBNIerXTvPk+uHJH6UARX/wAYPA1jJ5I1tbqb+GO0heXd9Co2/rVX/hZeq6gduheAPEN23Z7xFtIz7hmyK7mw0vT9LiEWn2FtaR4xst4VjH5ACrtAHnQvPivqmDBpXh7RYyeRdzvcSKPYp8ppB4G8Z6j/AMhr4i3qxt1i0y1S2K+wkHP6V6NRQB5bP8DfDdxLHPPdale3YuElnuL+4MzzIp5Q42jkDGeoFdHoXh7wvYGCOLw3p2lag5kMcDxwtOyI23eCCSRyp6nG4Zrr6oX1gl5DKBIbe5aF4Y7qJV82ENjJUkHHIB9MgelAF4AAAAYA6AUtYw1T+zpzb6qyW0DTRW1ndTzpm8kZem0AYbIIx37Vs0AFFFFABXnWmf8AE1+PGuXX8Gj6TBZf8Clbzc/lkV6LXnXwu/0+88X66QD9u1qWONx/HDEAqH9T+tAHY6/p91qug31hZ3osri4jMSXJi8zyweCQu5cnGcc8HB5xiszwZ4Xl8KeFbfQZ7yC+gt1ZUZbYxblZix3AuwPLH0rp6KAOP8DeEL7wXYSaWusR3mmCV5LeFrUpJCGOdu/eQR1P3epNdhRRQAUUUUAFFFFABRRRQAUUVHIodGU7gCMHaSD+BHIoAkqjqGmWGrQrDqNjbXkStuEdxEsig9M4IIzya808AWEvim68S6ncazrh00alJbacq6pOoRE6sPn5zkdc9K1PhV4h1PXLXXba/uWv4NN1F7W11BgAbiME4yRwSBg5/wBoUAaF58J/At/KJZvDlrG4OR9nZ4B+UbAUusXnh74X+GZrmz06OJpGEcFtCP3l3MeFXPLMfc5wM/Sup1C/tdK0+e/vZlhtYELyyN0VRXnXhLTrvx14kXx3rcDxWEOV0Kxk/gT/AJ7sP7zdR+fZTQBlaJ8MfFl9fXHiPV/Fk2m6pqaj7TFZQDzI1zkRrKTlQBgYUY4HJxmuhX4NeG7lt2tXmta2+c7tQ1B2x9Nu2vRKKAOb07wF4T0nY1n4c02N05WRrdXcf8CbJ/WuiVVRQqgKo4AAwBTqKACiiigAooooAKKKKACiiigAooooAaVVsbgDg5GR3rCZpfDkBeWVpNGtoZ7m5u7qd5Z0O7eABtOVALd84AH136KAGI6yRq6HKsAQfUGn1jy6dcW9611prqJLm4ia7F1JI6eWq7SIl3YRsY6DB75q1YX8epWSXUCTpG7MAs8LRPwxU5VgCOR3HTmgBut6iuk6DqOpP920tZJz/wABUt/SuY+Euntpvww0OJxmSaFrlm7nzGLjP4MB+FR/GC9ksvhlqyQcz3fl2sa92MjqpA/4Durr9MsY9M0qzsIgBHawJCgAwAFUAfyoAuUUUUAFFFFABRRRQAUUUUAFFFFABXN+PNb/AOEc8C6zqgfbLDbMsTekjfKn/jzCukrlPHnhGTxrocGmJqK2ax3cdw5aDzllCg/Iy7l4JIPXtQBwcvgO40b4Mhodb1KzuLXTzez2wnIgkbaZHjZRg4PK9f8ACu3+GmoQat8PtIvrXT4NPjljYG2t02orK7KSB6EqT689TUGs+Ddb8T2v2DXPEyDTWI86302x+zGYA5wztJIcewxXWafp9rpenwWFlEsNtboI4o16Ko6UAeP+IPEujePfGh0O/wBcsLDwtpMoe7FxdJC2oTA8INxBMYI5I9D/ALJHo8fjXwbFGscfifQlRQFVV1CEAAdABuqSTwT4UmlaSXwxo0kjEsztYREsT1JO3k0f8IJ4Q/6FTQ//AAXQ/wDxNAB/wnfhD/oa9D/8GMP/AMVR/wAJ34Q/6GvQ/wDwYw//ABVH/CCeEP8AoVND/wDBdD/8TR/wgnhD/oVND/8ABdD/APE0AH/Cd+EP+hr0P/wYw/8AxVH/AAnfhD/oa9D/APBjD/8AFUf8IJ4Q/wChU0P/AMF0P/xNH/CCeEP+hU0P/wAF0P8A8TQAf8J34Q/6GvQ//BjD/wDFUf8ACd+EP+hr0P8A8GMP/wAVR/wgnhD/AKFTQ/8AwXQ//E0f8IJ4Q/6FTQ//AAXQ/wDxNAB/wnfhD/oa9D/8GMP/AMVR/wAJ34Q/6GvQ/wDwYw//ABVH/CCeEP8AoVND/wDBdD/8TR/wgnhD/oVND/8ABdD/APE0AH/Cd+EP+hr0P/wYw/8AxVH/AAnfhD/oa9D/APBjD/8AFUf8IJ4Q/wChU0P/AMF0P/xNH/CCeEP+hU0P/wAF0P8A8TQAf8J34Q/6GvQ//BjD/wDFUf8ACd+EP+hr0P8A8GMP/wAVR/wgnhD/AKFTQ/8AwXQ//E0f8IJ4Q/6FTQ//AAXQ/wDxNAB/wnfhD/oa9D/8GMP/AMVR/wAJ34Q/6GvQ/wDwYw//ABVH/CCeEP8AoVND/wDBdD/8TR/wgnhD/oVND/8ABdD/APE0AH/Cd+EP+hr0P/wYw/8AxVH/AAnfhD/oa9D/APBjD/8AFUf8IJ4Q/wChU0P/AMF0P/xNH/CCeEP+hU0P/wAF0P8A8TQAf8J34Q/6GvQ//BjD/wDFVmaj4m8IzyvfWnirw/FqsdrJBbXEuoRsse/B5UOARlVPrxWn/wAIJ4Q/6FTQ/wDwXQ//ABNH/CCeEP8AoVND/wDBdD/8TQB574q8VaX4x8UeFvDOm30N3JDrUVxcyQMrRSpFH5hKlWPyncRyeqnrivUtZ1a00LSbrVL+XyrW1jMkjew7D1J6AepqrY+FfDul3a3WnaDplncqCFmt7OONwDwcFQDXBftBTTR/DqGONisM2oxJPj+5tduf+BKtAGt4aXV/HVmuu61Pd2Gl3PzWOmWszQkxdnlkQhmLdQAQuOxzVzUPC1zb67oMukX+pQWIvM39v9rkkjZFRnUkMTj50VTjAO7nNdbaW8NtZwW9uoWGKNUjC9AoGBj8Km3DdtyM4zigB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWVr+hWHiXRbnSNSiEtrcLtYA8qeoYHsQcEVq0UAcTpHh/xhoNpHptr4i0+8sYQEhlv7F2njQdFJSRQ+B3OK6TTNNNiJJZrh7q8mx51xIAC2OigDhVGTgD1JOSSTpUUAFFFFABRRRQAUUUUAFFFFAH/9k='] Multimodal Competition False Theorem proof Geometry Math Chinese 26 " 四边形 $A B C D$ 内接于圆 $O$, 对角线 $A C$ 与 $B D$ 相交于 $P$, 设三角形 $A B P 、 B C P 、 C D P$ 和 $D A P$的外接圆圆心分别是 $O_{1} 、 O_{2} 、 O_{3} 、 O_{4}$. 求证 $O P 、 O_{1} O_{3} 、 O_{2} O_{4}$ 三直线共点." ['$\\because O$ 为 $\\triangle A B C$ 的外心, $\\therefore O A=O B$.\n\n$\\because O_{1}$ 为 $\\triangle P A B$ 的外心, $\\therefore O_{1} A=O_{1} B$.\n\n$\\therefore O O_{1} \\perp A B$.\n\n作 $\\triangle P C D$ 的外接圆 $\\odot O_{3}$, 延长 $P O_{3}$ 与所作圆交于点 $E$, 并与 $A B$ 交于点 $F$, 连 $D E$, 则 $\\angle 1=\\angle 2=\\angle 3, \\angle E P D=\\angle B P F$,\n\n$\\therefore \\angle P F B=\\angle E D P=90^{\\circ}$.\n\n$\\therefore P O_{3} \\perp A B$, 即 $O O_{1} / / P O_{3}$.\n\n同理, $O O_{3} / / P O_{1}$. 即 $O O_{1} P O_{3}$ 是平行四边形.\n\n$\\therefore O_{1} O_{3}$ 与 $P O$ 互相平分, 即 $O_{1} O_{3}$ 过 $P O$ 的中点.\n\n同理, $\\mathrm{O}_{2} \\mathrm{O}_{4}$ 过 $P O$ 中点.\n\n$\\therefore O P 、 O_{1} O_{3} 、 O_{2} O_{4}$ 三直线共点.\n\n'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAjkCFgMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopMjOKAFpCQOtRzXMNum+aRYwTgbjjJ9Pr7VW+3TTf8e1pIVxw8/7pc+mCNw/75x70AXc/Wlqp5N3KPnuli9BDGMj2y2c/kKX7BEW3PJO7d8zMAf+Aghf0oAs7h9PrTDPCDgyp/30Kr/2XYAkixtsnv5S5/lU4t4QMCGMD/dFADlljb7rqfoc0/NQvaW0i7Xt4mHoUBqIaZZKcpawxn1jXYfzFAFrNGRjNVfsAQHybm5jJ7+aX/8AQ84/CkK38WdjwTjoA4MZ/Fhn/wBBFAFyiqQ1BIvluoZbfH8TrlPruXIA/wB7FWlkR1DKwKkZBByCKAH0UmaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKTcOfbigkCqE93JLM0FkqvIOGlfmOI/h94/7IPbkrkEgFqe7gtkVpZAoY7VHUsfQAck+wquRd3gBB+yRHuQGl/Dqq/wDj2Qexp9vYpC5m3tLMw+aV8FiPQdgPYfz5q2OBQBWgsYYGLogMmMb2JZsem4849qnC/TNOooAKKKKACiiigAooooAKSlooAbtOevFVX06PcZIHa2lJyWh4DH1Kn5T9SM+9XKKAKH2i4tTtu4w6f894UO0f7y5JH1GRxk4q4ksckSyxuHjYblZTkEHoRSsu7PvVOWyeOR57NxFIxy0bf6uQ+pHY/wC0PxBxigC8DkZFFVbW8WbdE6NFOgy8b9fqD3HuP0PFWc0ALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACZAozXjnx51LU7A+GotN1S9083NxJHI9rO0ZI+Qc7SM4yaun4ReIFGYfib4iR+xMjkfiPMGaAPVs/X8qXOa8RuPFHjf4V6raReLLmPXPD1y/li+SPEkZ684Gc4ycNnIBweMV7VbzR3NtFPC6yRSKHR1OQykZBB+lAElJuGcd6CwFUHzqUzRDH2JCQ5/56sOCv+6Oc+p46ZyAJ5smpMRCzxWecGZThpR6IR0H+119OoarkcCRRqkaKioMKqjAA9vSpFGAOnHFLQADgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIRzS0UAV7m0S5Qbsq6HMcicMh9Qf6dD3BFQwXMsUy2t2FEpH7uRRhJcckAZODjnB98ZwcXqiuLeO5iaORcqcexBHIIPYjggjkEUASZpapW00sc7Wt02ZBzG/TzU9fTIyAceo6ZxVxfuigBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDxL9oL/j58H/9fr/zjr22vEf2hHVJ/CLMQqrdyMSTgAAx16q/i7w3GpZ/EGlKo6lr2MD891AHOfGS2iufhZrfmqp8tI5EJ7MJFxj+X41Z+FFxLcfC3w+8xJYWxQZ/uqzKv6AV578SfGg+IUlv4G8F7r97mVWu7lFIiVVIIG7+6CAxPTgYzmvW9NsIfDHhmw0u1BmFrClvEo4MrAYzxnGTkk9hk9BQBbuna6nNlC7L8oM0inBVT0UH+8cHp0HORxm5FEkMKRRoiRooVUQYCgcAAdhUFnaC1g2lxJI7F5JMYLsep9vYdhgdqsjpQAtFISBS5oAKKTNLmgAopM0ZoAWikyKM0ALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFa8tluo9pJV1O6OQdUbpkf55BIOQSKS1ujLGyyoUmjbZIoHGfUexHI/wDrGrOOao3sZhlW9hTMkYAkVQSXj9MDqRyRwe4GNxoAv9aKZHIkkaujBkYAhgcgg96fQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFIWA60ALRSZqvNf21u+x5MydfLRS7keu0ZOPwoAsZGcUbh61RM97cf6m1EKk433Dc/UKvUfUin/AGKWUH7ReSsCOUi/drn2x8w/76oAx/FfhPw14oitz4jtUmjtixiL3DxBS2M8qw9B1rmf+FSfDncfJ8MzzOBkBZ7nDfRmcKfzr0OKzt4W3RworkYLgfMfx61KFx9KAMDRdBsfD9r5WiaBaWEbffUsFdvQsVDbvxPaqwu9Uu9eLobM2kbPDBvRgWdf9aQcnJHKgbf4H7HnZ1i7ks9PcwFftUrLDbhhkeY52qSO4BOT7A0DTY4dJisrdtvkIPJdySQyjhj689emcn1oAgEpiAN1e31uMEnzUj2ge7hSo/MGra2dtMokWadwwyGW5fBH4NipLW4FzbrJtKMSQynkqwJBH4EEfhTTp8G5njXyXdtzNEdpJ9Tj7345oABZQKMHzWB/vzO38zStp1lJgyWkLkd3QE/rUYiv4D8k0dyvpMNj/wDfSjH4bR9aP7Rjh+W6hmt8fxumUx67hkAfUigCRdNsUbclnbq3qsQFKbCAjGGXPdJGU/mDU0cscqK8bq6N0ZTkH8adn6/lQBUGmwgk+Zc/+BMn9WpWs5CRsvrmMDsNjZ/76UmrdFAFQw3qkeXdQ47+ZCSx/EMP5UeZeox3W8TIO6THcfoCoH61bpKAKv28IuZ7a5iycAeXv/8AQNwH44qSG8trkkQTxSEdQjgkfWpsVFNawXKhZ4Y5VByBIoYA/jQBLmjcM1U+wbP9RdXEXqN+8H8HzgfTFNL38H34orlQOTF+7cnsArEg8d9woAvUVUj1C3ZhG5aGQkKEmQpk46DPDfhmrWaAFopM0tABRRRQAUUUUAFNKnnGOadRQBn2v+i3Utkc7MGWHj+D+ID12k9McBlq+OgqlqQMcIvF+/bHzPqoHzDHfIzj3A9KuqQVBBBHbFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSEgdaAFpCwGfagsMVnm+e5bNhGJlz/rmOIx9D1br24PqKAL5dRnJxjqTVL+0BcH/QojcZHyyZ2xdM/e7j3UNQunLKwkvJPtLgghSMRqQQeE9iMjOSPWru33oApiznnIe6uWwR/qofkX8T94/mB7VZhtorePZDEka+irgVIBgUtADQCBTqKKACkJxS1Xu5/s1vJKF3OAAi/3mPCj8TgfjQBnFjf+IxjBgsIz+MrjGR9F3D/gRFa+M1n6PbmG2lYkl5JnLEjGSDtLAdgSC3/Aq0qAM/H2TUs/8sbo4br8sgHB/FRj6qPWr46CoLu2S7heFywDAYK9VOchh6EHkH1AptncmaAiXaJ428uVQeA/59DkEexFAFnFG36UoOaKAKsun28rFwhjkJyXiYozY6ZI6j2ORTBDewKRHOlwB0WZQpz/ALyjAH/ATV2kxQBTF/5Z23NvPCc43bd6H1OVzge7Yq1HNHNGJIpFdD0ZWBBpcHtiq0um207tI0e2VgAZYyUcgdty4JHt0oAtbvrS1TMN5CMwzpMP7ky4+g3L0H/ATSLfNEALq2lh6DevzoT7Ecge5AoAu0VFDcwXKF4Jo5UBwWjYMM+nFSbhQAtIRk0vWigCN4kkVlkRXVhhgwyCPSq39nmEf6HO8A/55n54/wDvk9B7KRV2igCj9qntzi6tyV/56Q5dfxX7w/AED1q1FPFNEJIpFkQ9GQ5B/L/PFOKkk8jHpVaXT45HMqM8Mx6yxEAtx3GMH2yDjtigC0GBGR0paz/tVxati7jEqZ/11uCcfVMkj8M+vAq3FPFPEskTrIjDKsrAg0AS0UUUAFFFFACEHmqmm/u7d7Y4zbuYwB0C9UHv8pUfXNXKpnMer8biJoOTngFG/md//jtAFyigdKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikJxTJJ44YnkldUjQEszHAA9TQA8sB1qnPqCJN5EKma4OPkXouTjLHoo+vJwcAkUwtcX+Qm+2tjj5yuJH55wD90Y9eee2M1aht44ECRKEGcnuSSeST1JPqaAK4sWuMNeuJQf+WI4jH1H8R9z6ZAFXNppwGKKACiiigAooooAKKKKADPtWbdTK900jcwWUZlfA6uQcD8FzkH+8pq5cTpbQvNJnailjgelUXgaLR5EmH765+WXaf45CF6+gyAPYCgC7ZQm3sYIS24xxqpPrgdanoHSigBMVRuc2t7Hc5PlSYil64U5+VvTqdp47g5wKv1HNEk8TRSKGRwVYHuCMGgB44FLVOxnbY1tM264gwrnGNwxw34j8MgjtVygAooooAKKKKAEIpCuadRQBWmsLe4fzJIh5uNolQlXA9Aw5H4GmG3u4iDDch1HVJlzkY4AYcj6kMauUUAU/tkkKZurWRCAMtCDKuT2GBuP1Kip4LqC5VmgmjkCna2xgcH0PofapCMmoJrOC4cSSRr5gGBIBhgPQMOR+BoAsZFJmqX2O5iP+j3hK5zsuF3gD2PDZ9yTSteSwHFxaSYAyXh/ejr0wPmJ/4DigC7RUMF3b3IYwzI+04baeVPoR2qXIxntQAEZGKpzaeGlM1vJ5E55LKMq/8AvL0boOeD6EVczS0AUUvWhZYb1FhcnCyLzG5zgc9icjg9ScDOM1dzTZI1lVkcBlYYKnoRVBoJ7Ef6N+/hAx9nbGVHoh4GP9k8dOQBQBpA5oqC2u4bmIPE5YDg5BBB64IPIPI4NT0AFVL0bXtZScBJhnHfcCg/Vh+VW6qaiB9hkkbpFiUj/cIb+lAFodKWikzzigBaKQEEZFG4Dv1oAWigHNFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSE4oLAHFU7q5fzhbWwDzsATkZEa/wB5v6DqSPQEgAddXaW+FAaSV87Ik+++PT9Bk4AzyRUcVlLK6T3rrJKDlYhzHEfbgZI/vEZ9MZOZbazWBnlLF5pDl5G6n0HsBzgfXuSasqMKBQAAYpaKKACiiigAooooAKKKKACkzS1HJIkaszsFVRksTgADnrQBVuT9pvYbb+CPE8uRnofkH/fQJyP7nvT7/H2ZAWA/fRHn/roppunRuYTcSZ8y4bzCCMFQfujHbCgA++fWnX+37Oobdjz4unr5i4/WgC3RQOlFABRRRQBQvgbaaO9UEhPlmA/uH+L/AICefYF8Ak1eB4pHQOCpwQRgg8gjvVOwzbh7F2yYANjHvGc7fxGCPXjPegC9RQOlFABRRRQAUUUUAFIWVSoJALHA9z1/oaWqcw83UreMrlY1aUnP3W+6PzDN+VAFyikzRuGM0ALSEZ+lGcev5UZoAimtYbnb50asU5RiOVPqD1B9xUC2c0P+ovJNoGAk/wC8AH14Yn6sau9aKAKP2q5hJFzZsUyT5kDeYAPcYDZ+gP1qeG7t52KRzIzgZKZ+YfUdR+NTY5qGe0gulCzxJIAcruH3T6j0PuKAJ801hu69KqfYpogfst26HHCz/vVznknJDH/vqgXF1ExE9ruUf8tIW3gD3U4I+gzQAs9j5knnwv5NyBhZAMggdA4/iHJ9+TggnNLb3u6X7NcJ5VyBnaTkOO5U8ZA79x6YIy6K9t53MaSgyAbmjYFXA9Sp5A+opbi2iu4wkgJGdykHBU+oI5B56igCfNVtSwdLuwSBmF+T2+U1DDcS2jpb3j7wSFiuMAB/QMBwG+mAe2M4EmpFDpN5vzs8lw2PTBzQBbBryz4iePdZi8SWvgnweiNrl0oMs7AEW6kE/TIUbiSDgEYBNep9R3rxD4eAXnx98a3dx808PmxR57KJVUH8lA+hoA1Ivg3q95EJ9Y8f65NfN8xMMrBEb0GT0H4fQVn29546+GvizT9L1K6u/E2g6g21JRG0k0Z4DH+JsjIOMkEdMHOPax0FNP3iM/hmgBy9OuaWkHSloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApCwHXNBbB6Gs+8mmuGa1sn2SdJJ9oYQ/QHgvjoDkDgkYwCAOnuZJZzbWmPMGPMkIysfcD3b27ZyewM9tbJbx7Yx947mZvvMf7x9TwKSzsobO3EMC7Y+vJJLE8ksTkkk8knknrmrI6UAIBgAdaWiigAooooAKKKKACiiigAooooAM1QviLiWKyGcOS8v+4uMg+xO0Y7gtV04zjPNU7ENOJb1sZnxsyOkYztHuDkt6/NjtQBeHSqmo/8AHozE4WNklYj0Vgx/QVbqC7h+0Ws0OceZGy59MjFAE4oqK1mFxaQzqCBIgcA+hGaloAKKKKACqGoI6FLyJcyW/JAHLRn7y/oCAOpVav0hBwaAGxOrxqysGVhkEdCKfVC0/wBFuHsSflx5kOP7ueQP90kewBWrw6UALRRRQAUUUUAGcVSt8SX95Nggrsh9iFG7P5uw/CrZ71V00ZsI5BnEuZsHqN5LY/DNAGf4s8SWnhLw3eaze7mjgUBUB5kcnCqPqTXleiaH46+J9quuax4lutD0q4y1rZ2OVZkzwTgjj3bOevTFT/tHzyp4T0m3BIikviz47kRtj+Zr2GztorOygtbdVWCGNY41HQKBgfoBQB5Hf/C/xd4fha+8JeNtTmuohuFnePuWY9ccnbn/AHlx7ium+GHj8+N9JnS9hEGrWLiO6hAIz1wwB6ZwcjsQfau7IyuOCSPTg14l4RUWP7Svii1ts+TNbNJIAeNzeU5P13MfzNAHt46ClpB09aWgAooooAKTHNLRQBBNaw3KhJ4o5VDBgHQEAjoRnvUbWcqHNtdSxnJO1/3ikn1z834BhVvNMeaOKN5JHCIgLM7HAUDqSe1AFKRrgRNFd2iTxsNreU2Qw75VsYHsCxrKGoRPY3MSXZltWZrZJipDwSHC+XJu5yCRgnGc4POC1kvc6848iSS10s4/erlJbn12Hqidtw5bPy7RhmQWluivpywRxW0lzGiRIgChFjVtuMYx8hX6cUAbQPJFeFeLTdfDD4wr4xFvJLoWrDyroxDOwkDcPrlQ49eR617HCH0uRbaSR3tHIWCRiSYyT9xj6dApP0POM27uzttRtJbW9t47i3kGJIpUDqw9CCMGgDM07xl4a1SxW7s9csHhIySZ1Ur7MCQVPsa4bxB8U7i/8V6b4c8CJb6pdSSg3czqWgWPuAwI6dSw4GAOTkDSn+CPgO5m806O0ZP3kiuZVU/hu4/Cur0Dwpofhe2a30XTILNH++UGWf8A3mOWb8TQBsL0paQDAAyT7mloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkzzS5qreXRgUKieZM/EaZxk9yT/Co4yf5nAIBHd3LGQW1qQbhl3FiMiJc43H9cDuR6AkTW9rHbReXGDtzk5OSSTkknvk0lpam2jwz75GO6STGC7dz/IAdgAKsjpQAgzjnrS0UUAFFFFABRRRQAUUUUAFFFFABRRSE47GgCjqX71Esw2GuDtbrxH/GePbIz2LCrygBQAMDtVK1P2m4mvP4cmKI/wCyp+Y/Utn2IC1dHAFAC0h60tFAFPT22xywsctDM6kDoATuUfgrLVyqZPlanjnbPH16AMp/UkN+SVbHSgBaKKKACiiigCnqEEkkSywKDcQnzIx03HGCuenzAleemQe1TW88dxAksTbkcbgenX681KRn0/GqEWbO/eA8RT5lix2fq6/j94dz83pQBoUUDpRQAUUUUAVNSOLCVA5RpAIlYdmc7QfzIq0oCqABgAYAHaql0d93aQgj75ldT3VRj9GZDVsdKAOE+LnhOfxd4HntrNN19aSLdW6/3yoIK/ipbHvis34b/E/SdY0K20zV7yKw1uzjEE0N03lmQrxuUt1JxyOuc8Y5r00gk9q5TX/ht4T8T3BudU0eF7pvvTRM0TsfUlSNx9zmgB/iH4g+GPDenyXd7q9s7KuUt4JVkklPoqg/r0HciuG+Dei6lqGr63491iAwS6s5FtG3Xyi24kZ/h4UA9wv0z1GlfB/wRpF0lzDokc0qcqbmR5QD/usSvp24xXSeIf7Wj8P3a6BHAdT8vbbCY4RWyBn8BzjvgCgDVDDaDnilHIryHxToGs+D/B8/iRfHOtvq9oqyyJc3Ia1mckZQRYwAeQAK9T0u4mu9Js7m4i8qaaFJJIz/AAsQCR+dAFuiiigApM0ZGcd6z9Q1NLRlgiRri9kGYrZDhiO7E/wqO7HjoBkkAgE19f29hbtPcPsQEKBjLMx6BQOSx6ADk1RjsLnVJFuNVQRwqd0VjkEA9Q0pHDsOwB2g8/MQrCWx0t1mW+v3Se/wQpAxHAD1WNT092+83fgBRpgYAFACY/8Ar1nL8/iGSMHIitxKwI6FiVUj/viT860j+NZWmsZtTvbgjiVIyuf7oZ1GPUHG4f71AGlJEs0bJIiujAhlYZBB6gj0qjAHsZ1tZZC8LnEEjElgBjCMT1I5IPcdeRk6I6DPWorm2ju4HhmXdG4wRnB/PqMdQRzkUASgilqjazSRytZ3D75lG5Hxgypn72OmRkZx6jgZAq6OlAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFISB1oAjnnjt4mllbCKOeMn2AA5JPTA5NV7S3kZjd3AKzyDAQkHyl/ujHGfU85PcgDEYBvr3zORbQMVXPR5B1b6LyB7knHANaC/dFAABgYpaKKACiiigAooooAKKKKACiiigAooooAKqX8rpCI4mKzTMI0I/hJBy3vgAnHfFWiwHWqMWbrUZbjOY4R5Mfu3Bc/oo9QVb1oAtwxJDBHFGoVEUKqjoABjFSUg6c0tABRRRQBU1CJngEkakzQMJYwMZJHVRnjLAlc/wC1U8E0c8EcsbBo3UMrDuCMinkZ+lUbY/ZrqW0Y/IcyxdhtP3h+DH6AFaAL9FIOgpaACiiigAqrfQNPARG4SZSHjdhwrDpn27H1BI71aprAnoaAIbS5W4tUlAZc5DKxyVYHBU+4II/CrAORWeR9j1DjiK7POD0lA/qo/NfVqvrjaMdPpigBaKKaTgnPAxyaAKqjzNUlc7SsUSop9CxJYfkENXB0qnYKSk0xUBpZnY89QDtU/wDfKrVygAooooAKyvEOv2PhnRrjVtSLizg2+YyLuIyQo4HJ5IFatQ3NrDd28tvcwxzQTKUkjkUMrqRggg8EEUAeY+PvC2jtpN745tNUljvbWL7bbySOs9uzBRsAjcFfmwAMYOSDmvQPDeozax4Y0rUrmIRT3dpFNJGOisygkD25rm4vhF4KinjkGkl0ifzEgkuZWiVv9wttx7EEc12yKI0VAAABgBRgflQA6kzzjBpGdUUsxAUDJJ6AetYjXNxrrNHZSPBpp4e8Xh5R6Reg/wBv/vnqGoAlu9TlnuGs9LVJZl4muHyYbfjPzEfebodgOeQSVBBq1p+mRWKOwZ5Z5SGmnl+/KfU9MewAAHYCprWzgsrdILaJY40+6B/nk5NTgYAFAABgYpaKTdg45oAqahKyQ+XExWaZhFGQMlSf4ufQAtj/AGTSW8KW14yRqFjFvGiIP4Qpb/EflTIj9rv5ZxzDDmGP0Lfxn8MBfYhvWpXYjU4VC8PC5LfQrj/0I0AW6KBRQBVvLX7TGNrBJYzvikxnY3TP06gjuCR3pbS6FxEdy7JUbZKm7O1vTPpyCOnBHFWMZqjeRtDN9thGXVQsyquS6dsY5JXJI4PVhjJGAC+DkUUxJUeNXRgyMMhhyCPrT6ACiiigAooooAKKKKACiiigAooooAKKKKAEJx/9aqV7K7SR2cLssswJLL1jjHBb68gD3OcEA1ZnmSCGSWU4jRdzH0A6mq9jA+17mdds05yykfcUfdXqcY74JGSfWgCzDEkUMccSqkaKFVVHAA7VJSDIHPWloAKKKKACiiigAooooAKKKKACiiigAoopCcetAFa+nNtbtIgzIcJGp7uTgfqRn2FSW1uttbRwoSwUYLMclj3YnuSeSe9Vsi61M85jtR/5EYf0U/j5ntV8DAxQADpRRRQAUUUUAFU723eUJJDjz4W3x5PU4wQfYjI9s5wcVcpCOaAIba5S4gSVA21h3HQjgg+4PFT9azpsWFy1wCRbSH9/jpG39/2HTPpgHjmr4YBfp6dqAHUUUUAFFFFAFe6txdQPEzFQ2MMOqkHII9wcEU2yuTNbAy7Vmj+SYDoHHX8D1HsRVnFUJ/8AQ75LkZ8uYiKX0Dfwt+fyn6r6UAaA5qC8mNvaTTKm9kQsqf3jjpUw6Cql/wDP9nhyw8ydOR225f8AXZj8aAJ7WBba0ht1JKxIqAnqQBipaO1FABRRRQAUUUhYA4oACQKr3l7b2Nu9xcyiKJerH9AB1J9hzVfUtUi08IoVprmU7YLeP78h/oB1LdBUNnpc0l0NQ1J0muR/qY0J8u3H+z6se7de3SgCulpca/5c+oxtBYZDpYt96T0M3/xHT+9noN4DA6CgdOaWgAooooAKpXszKVggZRczZEZODtAHzPjqQOPxKjIzVi4uI7aFpZWwqdcDJOeAAOpJPAHc1BaQSHfcz7lnlxlCR+7UdF449cnnk9cAUATwQJb28cMeQiKFGTk4Huev1qF/+Qpbkkf6iXI/4ElWgMACq8qgX9vJj5trp+BwT/6CKALNFFFABTSvOQcetOooAzocWN4LViBBLk2/op6lP0LD23cAKM6I6VWu4PtELorFJOCjjqrDkH8+3T86LO6FxbhigR1+WRB0Rh1HIH4cDIwe9AFmigc0UAFFFFABRRRQAUUUUAFFFFABRmiobmdLeCSZ8lUUkhRkkeg9TQBWnP2u9S3U5iixLL9f4B+eT/wEdjV4dKqWFtJDBvm2/aJWMkpHPzHsD7DCj2UVcAwMUAFFFFABRRRnmgBCQKMg1zPjPx3ovgfT1utVlcyS5EFtEAZJSOuB2A7k8VxMXxM8d6jH9q0z4b3TWbDcjTzlWdexAKj9M0AeuBgelLXmvhj4vWOr60NC1zS7vQNXfASG7zscnoAxAIJ7ZAB6Ak4z6UOlABRRRQAUUUUAFQXUy21vJKw3bR90HBY9AB7k8fjUxOKpS/6TqMcIP7uECWQerHIQH1HBPsQpoAksrZre1RHYNKfnkcZG5ycsQD0GTwPTA7VapB0FLQAUUUUAFFFFABRRRQA1kDE55B6g1nI39lyLbyt/orsqwyM33CTgRn8cBT3+6cHG7TqOWFJo2jlRXjcFWRhkMD1BHpQA8MOBSg5AI71mKz6Ywimdms+kc7Ekp/sueegHDn6Hnk6IYY70AOooooAKimiSeJ4pBlHG0ipaMUAU7Cd2jME5zcQ/I5xjd6N+IwfTOR2oY+ZqyAN/qYSWU/7Z4P8A44w/Go77FrMt9kBFwlxk8eWTwx/3Sc5zwC1PsyZZbmbcCrS7EOecKNpH4OHoAujOBnrRQOlFABRRSFgOtAAWArKvdUkN01jp0YnvQoLljiOAHoXPr32jk49MVVlvbjXXMGkuYrTdtlv/AFA6iIdycY3dMZIzxnVsrCGwg8q3XapO5j1Zm7knuTQBBp+krZbppJTc3kg/eXEnVjnoPRewA7AfWtIDApAMDmloAKKKQnHrQAtMlljhieWV1SNAWZmOAAO5NJLPHDE0srBEUZJNU1gfUHSa5QpboQ0UDDliOjuP5L26nnAUAWKOS+nS6lUpChzDEwwT/tsOx9B2HXk4W/QOlFABVS7z9qscHGZyD9PLf/AVbqneH/SrDg/68/8Aot6ALlFFFABRRRQAhGc1Qm/0TUEnGfKnIjk46N/C34/dPU/d7CtCobiFbiCSF87XXacHBwfQ9qAJRnAz1paqWFw8lttnI+0RHy5cDHzDv7AjBA9CKtA5GcY+tAC0UUUAFFFFABRRRQAUUUUAGaoXB+0ahFbj7kYE8voefkH5gn22D1q6xxkk4HcmqmnKzwNdNkNcN5oB42qRhRjsdoXI9c0AXAMDFLQKKACiiigApCMmlpD/AFoA8M0O3Txz+0Hrd3qIE1poQMdvE4yqujbF4/3t7fXFe5KDtGT+teHeEZk8KftCeJNMvj5a6xvmt2bgO7sJAB+bj6jFe5A8UAeW/HXw3bal4Gm1lUCX+lskkUqjDbSwVlz6cg/VR05rsPAWtS+IfAejapOd089svmt/edflY/iQT+Ncz8cdbt9L+Gt7avIouL9kghQ9ThgzHHoFU8+pFdB8OtLl0L4faJptypS4jtVeRD1VnJcg/QsR+FAHU0VWtr+zvHlS1uYZ2hfy5VjcMY29Gx0P1qzQAUUUmaAI55o4IpJpG2oilmPoAMk1Bp8EkcBklGJpm8yQZ5Un+H8AAv8AwH3pl2Bc3kFsDlRiaUZ6AH5R6jLY9iFIq8vIoAUdKKKKACiiigAooooAKKKKACiiigBrLuz0/Ks8xS6d/wAeyGW33ZMH8SDjhCeMf7PucdAK0qaVycigCK2uobmINFIH7MMYKn0I6g+x6VNmq09issnnRu0NxjAlj6kehHRh16g4ycYNRC5uLbCXkO5eB50Cll7DleWXv6gAcmgC/RUcM8U8SSQyLJG4yrodwI9cinhgelAEc5RY3aUqIgMvu6Y759qztCElvZJYz7hcRKGbcclg2SDkk5Ocgn1BPerWo/PaGLaGWZliI9VYgN+S5P4U2+DReXdxgs0B+cDJLIfvDjuMbgB1Ix3oAujpS5pqupQFSCpHBHINU9S1O306MGQlpH+5EvLP9B9SBn1IHUgUATXV5b2Vu89xKscScsx/l9fbqax/KutfYm4SS203GBDkq857liOi9hj3PoaltNMnvZ47/VgGlU7orbOUhPb2LD155+gxs7aAGxRJFEkcaKkaKFRVGAoAwAAOlSUCjNABRSZ5xUNxeW9qF86QKW4VerOfRVHJPsKAJsjOM81Uur2OFxEqtLOwysKfeI559hx1OBUZa8vM+WptIT/G4Bkb6DkL25OT2wDViC0jtkYQrgsxZiSSWPHJJ6nAAyewxQBDBaSSSJc3bK0wHyxqcpGe+PU9Rk9uwyc3gMDFIBgAelLQAUUUUAFV7vjyWzjbKvPpnj+tWKqajj7Mmf8AnvD/AOjFoAt0UDpRQAUUUUAFJilooAoSg22pJKPuTjy39AwyVPoOMg+vyDtV5RhQB0HFQXkH2m3kiztJAKvjO1hyG98EA/hS2tx9otkkK7XI+ZQc7WHBH4EEfhQBPRRRQAUUUUAFFFFABRRRnFAFHUv3kaWo63LCNuP4Orf+OgjPYkVdHAqjHi41aWXqtughX1DNhm/Ty/1q8OlAC0UUUAFFFFABSYpaKAOK8ffDfTvHdvBJJM9lqdr/AMe17EMsoznDDjIzz1BB6Hk55eHRvjTpkYtINc0W+iX5UnuFJfHqx2ZJ9zmvXaQ0AeV6J8KtSvfEEPiHx3rQ1i+gYNBbRgiCMjkHBABGewUDPJzmun8ba7d2Vva6JopB17VmMNt38hP4529kHP1x16V1h6Hp+dcDd+DPEw8Zal4h07xHZxS3aJDGtxp/mmGJeQineMAnJPrQBnfCPSotD1DxhpcLvIltqCR+Y/LORGMsfcnJ/GvUB0ryX4a2evx+NvFTXOq20sMWokXcYtdpnfy+HU7vlHI45r1odKAFprsFBZuAOcmnVR1D9+Y7LGROT5menlj731zkL/wLPagA09TLG142Q1yd4B/hT+AdOOOcerGrw6c0inKg0tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTSmWzninUUAU5dOgkcyJuhmPJkhO0k+pHRv+BA0bb2EAAx3IHdjsfHr0IJ/75FXKQ0AZM16Gv7JJre5hKs8vzRluQNoyU3AAhyeT2q9DdW11n7PcRTY6+W4P54qKHD6hduM/KEhx24BfP/j/AOlY2r351FGttOhhnUYXzpEDKWboq569jkdvTO4AEjaoLG6k0WxRbi7X5oVByIlPXdjkBcjjjhkGcsKv6dpK2zNdXEhuL5xhpn52j0HAAHXoBnPQDAGfb+F7bS9JVbNGa7Q+a8qsUad+rZIORnkD049K1IbS0uIUmjkuikg3KRcyDg8/3qALwOOM5xSebH/fX8xVb+zYMffuefW6k/8Aiq+cfhT8OtD8crrs+sfat9tdKkZhl28HcTng0AfSDajZrIY/tMRk/uKwLH8BzTDevJj7PaXDggnc6+WAfcNhvyBryzUPgJotvbSTeHdT1TT9TRS0EvngjPocAH06GtX4MeMNR8VeFriLVpPNv9On8hpj1kUjKlvfqPwoA74293PjzbkQr3SAZP0LN2+gB96lgsobcsY1+ZvvOzFnP1Y8mpx0paAEA4paKKACiiigAooooAKqahk2645xNET7DzF5q3Va/ISxnkIOEQvx3xz/AEoAsjpRQOgooAKKKKACiiigBCM1Stx9n1CeAnCyjz4+e/AcAemdpPu9XqpX+InguuB5bgMcc7W+U89hnaf+A0AXByoNLSDpS0AFFFFABRRRQAU1yFUknAA5OelOqnqS77N4R/y3IhOOuGOGI+i5P4UAGnI32JJGDB5sysG6qWO7H4Zx+FXBSDp6UtABRRRQAUUUUAFFFFABSYpaKAKpsRuLpPcI55yJSQPoDkfpTPs14gPl3ocnvPEGP4bSvFXaKAKRN8h2mC2kXuRIVJP+7tP86d9tZQTLZ3Maj+Lar/opJ/SrWKMd+9AFQ6nZqAZZxDngCcGMn6BsGmWB+0vNehlZZTtiKnjy1zg+hySxyOoI9KdqDt5a28bMslw3lhkOCgwSzZ7HAOCe+PWnDTbHIYWcAYDAKxgEAehoAtA4GD1ozVX7Aqg+VcXMbH+Lzmf9GJFHkXiACO8Rh3M0O4n/AL5Kj9KALWRS1U33ythoIHQdWWUgn6KVx+tAvioJls7mIDvsD5/BCxoAt0VUOp2ageZcJET0Wb9235Ng1aDAgEHIPTFAC0Umc0ZFAC0UZooAKKKKACiiigAoopCwBxQAuaimmjgjaSV1RF5LMcAfjUN9qFvp8HnTvgFtqKOrt2UD1/wJ7GsS6tbrVLWW7vwYkxttbQ9Nx4Vn9ySOOw4PVgQBlkLvxDbZBe30uZ3kLFcSToxJUewwRn2GOckLqWNujy+ZEgS1gykC4PLc73JPJPUZ/wB45O6n3S4WLT7U+WWXBKcGKIcEjHQ9APfnnbir0MaxQpHGioiKFVVGAoHQD2oAfiqEC/Yr17cn91MTLF6Bjy6/ifmA927CtCq15A00J8raJ0IaJm6Bh0z3x1Bx1BI70AWe1fMfwp8bzeE/7cii8Oanq32i5Vi9lGWEeNwwePevpS0uUubSOVQy5HKt1U91PuCCPwrxn9nnP2XxRyOLxMH8GoAv33xU8T6nava6B4A1tL6UFEmuYmCRE9GPy449yB710fwo8DXHgjwq1vfSK+o3cxnuNpyE4ACA98AZJ9Sa7rbxSgYFACjpRRRQAUUUUAFFFFABRRRQAVU1PP8AZV5jr5D4/wC+TVuq9+hl0+5jBwXiZQT2yKALA6UU1GDxqwzhgDzTqACiiigAooooAKiuIVuIZIJBlJFKN9DwalpMc0AV7GZp7KJ5Nvm42ybegccMPzBqz1qlagRXV1BkfeEyqOAAw/qyufxq6KACiiigAooooAKp3GZNStY9uVRXmJH94AKB+Idvyq5VOH59Su5Ac7Vjix6EAt/Jx+VAFyikHAApaACiiigAooooAKKKKACiiigAooooAKQnBxS1Uv5Xit8QkefIfLizz8x7474GSfYGgCKAC6vpro8pHmCE49D85/76AH/AAR1rQqG3hSC3jijzsjUKueTgVNQAUUUUAJRj1NLRQAmOMVWOm2ZbebWEP/fCAN+fWrVFAFP7AEBENzcxE9T5pk/R9wH4UvkXqYEd3GR382HLH8VKj9Kt0UAVPMvlJ3W0TqP+ecx3H6AqB+tJ9v2Lma1uYvT5N5P4IWq3ijFAFb+0bMEK9xHG56JKdjfk2DVkMCMg5+lJt4xgYqv/AGbZhiy20cbt1eNdjfmOaALWaTIqr9hKjEN1cxe/meZ/6GGpDHeI2Euo2Xv5kOSfxBH8qALZIFZupaslkRFEhuLyQfurdPvHPTPoOvJ7A+hqhd6zqD3jWFhaRzXAH7ySKbKwjpzuUDceQBzz1zjBn02GHTI3klt7s3MzbpZnjMrOfqhbA4GBnt+NAEljpEguPt+oSrNekYGB8kQ/2Qf5/pySZtSlWLyBIQUDmSQd9qjPAHJ+bZwPXFTLqNnvWI3MSyHGI2YK3P8AsnmqJA1HxAwIJt7KNe3DyMd2P+A7VPfkjpt5ALllbuA1xNxcT4Z8H7o7KPYc+2ST3q4BgYoB496Ac0ALSEHPajIziloAz8C01Dbz5V2eP9mUD/2ZRn0yp7ml07RdL0gSjTNNs7ITHdJ9lgWIOfU7QM1Pd24urd4SxUnBVh1Vgcqw9wQD+FNsrn7Rbguu2VSVlUA4Djr15weo46EHvQBaooooAKKKKACiiigAooooAKKKKACmsoYEEcEYp1IaAK+nO0mmWrv99oULfUgVZqrpn/IKs8HP7hOfX5RVqgAoopCcdjQAuaTcPWuJ8W/Fbwx4QuzY3VxLd6gCAbSzUO6k9AxJAB9ic+1c7/wvfTLdlfUvDWvWNs5ws0kA2/qR+maAPWaKytB8RaT4l0tNR0e8jurZjjcvBU/3SDyD7GtWgCpL+71KBwQBKjRn1LD5l/Ib/wA6tjpVPUPlSGULuaOZCPbcdhP/AHyxq4OlABRRRQAUUUUAIf06VUsD5kc0uAGeeTJ/3WKD9FFWzVbTTu0y1Y9WiVj9SMn9TQBaooooAKKKKACiiigAooooAKKKKACiiigAzVBMXepPJ1jtxsTI43kZY/gMDPuwqe8nNvbvIFDNwqKTjcxICjPbJIH40Wlv9ntY48hmAyz4xuY8scdskk/jQBOOgpaB0ooAKKKKACiiigAooooAKKKKACiiigAopM1Bd3lvY2slzcyiKGMZZjz+GOpPsOaAJmdVBLEADqSelYTXlzrryQ6dI8FkDta9Xq/r5f5Y3e+R05UQ3Wuyh7pXttOXBSDo8zZ6vjoo7DueewraiijhhSKJFSNAFVFGAoHQAUAQ2dhb2ECw2saxRr2Ude3Pr+NWMYGPT8adTXdVUsxACjJJ4wKAKl/K8cQijw00x2ICMgerEegGSc4zwOpFUdK0eyht5mit1j8yV8sq7GODtzlcHnbu9y1To5EM+rTKcCMmJCuCkY5+uWxk9P4QRkVds4fs1lBAW3GONVJ9SB1oAi+wsq7Ybu5i9SH3k/8AfYbFL5V6rfLcwsg7PCdx+pDAfpVuigCoJr1ATJaIwHQQzbif++go/Wj7eqKPOtrmMn+HyS//AKBuFW8UmMdOKAK32+0eTyvtUPmH/lmzAMP+A9ailxaX6Tg/upyI5OeA38Lde/C+v3ewq6UDLtbBB6jtVKXSLGSGSIW6xLIMMYf3RP4rg0AXg3Hv3pc1k2UUrQ+Sb65SaBtkoBVsnGQfmBOCMHrxnGeKtiO+U5E9u6jorREE/UhsfpQBayKWqYnvEB82yDeggmDH8dwWl+3omBLBcxse3ks+PxXI/WgC3RVZNQs5JPLS6hMn9wOM/lVnNABRRSBge9AC0UUUAFIaWkNAEFgoSxhjAwEXYB7DgfyqxVXTv+PZvm3fv5uf+2jVaoAK53xzrr+GvBWr6xFjzra3PlEjIEjfKmfUbiK6KuK+LVhNqXwt1+3gBZ1gWbA9I3WQ/opoA5r4JeEbaDw1H4qvYxcaxqbySefN8zRpuIAGe5xknvmvVJ7eO5heGeNJInXa8bqCrDuCO4riPg3qlvqXwu0cROpe2VreVQeVZWPB+q4P413m4e/5UAeE2VqPhp8eoNKsP3eja9ED5HO1GO4Lgequpx6K2K92HQZ614h40ddc/aK8LafaEO2npHJPj+AhmkIP/AQv/fQr28cgUAV7+N5bC5jTh2iYKfQ4NTxussSyIcqwBB9jSk+nWq2mrs023j3bjGgjJ91+U/qKALVFFFABRRRQBXvpGhsLmVMbkiZlz6gEipo0WOJI1GFUBR9BVfUV36dcoOrxsg+pGP61aHSgAooooAKKKKACiiigAooooAKKKKACjNFQ3M6W0Ekz5KopYgDJOOwHc0AVnIutSVRzHbjefeRhgD8FycH+8pq+OlVbGB4bcGXHnSEyS4OfnPXnuB0HsBVodKACiiigAooooAKKKKACiiigAooooAKKQsAehrK1HVjBcJY2UX2i/k+6g+7GP7znsP19qALGo6lDp0YaTc8j8Rwpy8h9AP61TtNMub2WO+1jaZUbfFaq26OE9if7zY79iTjPBqfT9K+zyteXUv2m+kGHlIwFHZUHYfz61pLnAzjPtQAm3A7fypwoooAQsAcc1n3WL26+xDmIKHuOP4eye+7ByPQEdxVi8uPs0DSbS7dEQHBZjwBn6nr260llam2hwzh5WO6R9uNzHqR6DgADsAPSgBt+d0UMGcNNKqgH+ID5mH4qrVbHIqpJ+81OJeCsMbOR6MeFP5BxVsdKAFooooAKKKKACkxS0UAULsfZrpLxQNuBFP8A7n8J/wCAk/kWOeMVeHSmyRrKrIwDKwwysMgj0IqpYO8YezmdnlgwA7dXQ/dY+p7E+oPGMUAXSM+lGDxzSjpRQAx4kkQpIqup6qwyD+dV/wCzLMAiOEQ56mAmIn8VxmrdFAFQ2TggR3lxGo/hyGz+LAn9aAl+hJ863kHZTGyH8Tk/yq3RQBT8+7jGZLPeewglDY+u7bTjfxoQJYbiNu4MLMB+Kgj9askZoxQBBHfWkz7IrmF3/uq4J/KpiabJCkqFJEV0PVWGQagOm2oXbHGYVznEDtFn/vkigBNOZTbPj/nvN/6MareazLW2kEs6x31wAkhGw7WUZAbuCf4vWrIW/QE77ab0XY0f5nLfyoAtZprxrKjI6qyOu1lYZBHoRVbz7qIZksmc/wDTCRWA/wC+ttO+3xKdrx3CN3zA5A/EAj9aAPIpfAHjDwBr11qfw/lt7zTrlt0ulXTbcH0GSAcdjkHtzjm3L4j+L2pRm1s/B1lp0rfK11NOrhD/AHgN3J6dmr1lGWVQ6MGU9CDxTsc0AcB8PPhy3hSS71jVr0aj4hv/APj4uTkhATkqpPJyQCTx0HTFbHiDx1pnh7UYdLNtqGparLH5osdNt/OlCf3iMgAfU11FYl9HoPh+e/8AEt6ttaSNEFubx+CyKOBn8hgdeKAIPDfjLTPFEl3BbR3dpfWhC3NnewmKaLP3cr0wfYmtfTwVt3Ugg+fKcH3kYj9DXDeCrO61rxhq/jma2ks7S9t0tLGCQYkliXB81x2yRwOuP17m1JM16vYTfL+KKf5k0AW6KKKACiiigCrqDFLZcY+aaJT9DIoP6E1aqnqX/Hsn/XxD/wCjFq5QAUUUUAFFFFABRRRQAUUUUAFFFFACZqlc/wCk30Nt1SPE8o+h+Qf99At/wD3q1JIsaM7sFRRlmboAOufSq2nxv5DXEgIluG8xlbgqCAAPbAAH1B9aALg6UtAooAKKKKACiiigAooooAKKKTNAC0hYCmySpFG0kjBEUbmZuABWH5lx4hZDA8ltpR5Mo+WS5HYL6IeuepHTAOaAJLjUrjULqWy0grmP5ZrxhuSE/wB0D+Juc46Doav6dp0Gm2/lQZYnl5XOXkbuzHuTU1taw2kCQwRpHGgwqIMAVMOlAAOBRRRQAUhbHY0tMeMSKytnBGOGIP5jpQBSh/02+NznMEJKQgjq3Rm/moP+9yQ3F8HgUyOJYYkiiRUjRQqqowAB2A7CnEhVJJ4HJyelAFS2zJd3c+AcuIkb/ZVen4MXq4OlVdNUjT4WZSjyAysp7M5LH9Sat0AFFFFABRRRQAUUUUAFUb8eSyXiqSYciRR/FGcbvywG464x3q9TSpJoAFYMoKnIPIIPandRWfZEWkr2DniMb4feP0/4CTj2BX1rQHSgAooooAKKKKACiiigAooooAp2uPtV/jOfPHfr+7SrlVLbK3N7u4zMpX6bEH8watjpQAhFGKWigAAwMUUUUAFeVeMLDxZqPj+O4fwk2t+H9PRWsrf+0IYY5JyATK6scsQSVAIxxnvz6rRQBy/h/W/Euo37Qax4RfSLZYiy3DahFcAuCMLtTnoSc+1bloFFze4PJmGfb92lWyM96p2f/H1fj/p4H/otKALtFAooAKKKKAKt+oa356LJG/H+y4P9KtDpVTUmK6bdsDgrCzD6gE1bHSgAooooAKKKKACiiigAooooAKTNLTW4PXGaAKN9/pE8NmASsh3yjH8C44/E4GO43VfHSqNgpm82+O3NwRsOOkYztHvnJb/gRFXgMDFAC0UUUAFFFFABRRRQAUUUm4c+1AAWxVa8v7ewg8+5kCIWCrkEliegA6kn0qDUtUSwCIiNPdSnENvGRuc+vso7seBUNlpMhuV1DUpEnvQCIwufLgB6hB6+rdT7dKAIIrC51lhcaqnl2uQ0Nhngj1l/vH/Z6D3NboGB2oAwMUtABRRRQAmecUbhjNYni3xJaeEvDd5rN6C0cCjagPLuThVH1JryvRND8dfE+1XXNY8S3Wh6VcZa1s7HKsyZ4JwRx7tnPXpigD2/OPX8qM145f8Awv8AF3h+Fr7wl421Oa6iG4Wd4+5Zj1xyduf95ce4rpvhh4/PjfSZ0vYRBq1i4juoQCM9cMAemcHI7EH2oA77rVLU/msZIucTYhyOo3kLn8N2fwq4OgqpcnfqFnEGIILTEY4YKNuPzcH8KALgopB0paACiiigAooooAKKKKACiiigClfxSFBcQgmaD51UdXH8SfiP1AParMUySwJKh3IyhlYDqPWnkZqhbL9jvZLU/wCqlJli9jnLL+Z3D/eI7UAaFFIvQUtABRRRQAUUUUAFFFFAFWNh/aNxH38tH/MsMf8AjtWh0qomf7WuOBjyYv5vVsdKACiiigAooooAKKKKACqlqxa5vgQPlnAHH/TNKt5qrbL+9unzlXmyPbCqv81NAFqiiigAooooAgu4ftFpPD2kjKfmCKfbyie2imXpIgYfiM081V0zaum28anPlL5RPuvyn+VAFuiiigAooooAKKKKACiiigAqjqRMix2aZ3XB2tjsn8Z9enGexZauk4OKpWo+0XM92c7cmKLIxhVOCfxbPPQhU9KALqgBQB0AwMUtIOlLQAUUUUAFFFFABRRSFgDg0AGeT7Vk3mqO942n6YizXgUGR2z5duD0LkdT6KOT7DmoJb241stBpUjRWhJSW+A5YDqIc9T/ALf3RzjcempZWVvZWyw2sapGOeMkt7k9Sfc80AQaZpMVgryM7XF3MczXMmN7nPT2UdlHA/WtAZA5pQMDFFABRRRQAUUUUAeLftHzyp4T0m3UkRSXxZ/ciM4/ma9hs7aKzsoLW3VVghjWONR0CgYH6AVxfxc8Jz+LvA89tZpuvrSRbq3X++VBBX8VLY98Vm/Df4n6TrGhW2maveRWGt2cYgmhum8syFeNylupOOR1znjHNAHpZGVxwSR6cGvEvCKix/aV8UWttnyZrZpJADxubynJ+u5j+Zr0fxD8QfDHhvT5Lu91e2dlXKW8EqySSn0VQf16DuRXDfBvRdS1DV9b8e6vA0E2rMRbRsDnyy24kZ/h4QA9wPpQB7COAB1NVIj5upXL5yIlSIA9Q2Nx/MMn5Va71V0757Uz5UmZ2kDD+JSflP8A3ztoAuDpRRRQAUUUUAFFFFABRRRQAUUUUAFVb23eeLMRUTRkPEWzjcOx9iCQfYmrVIRznNAEVrcJcW0cq5wy5IbqD3B9wcj8KmrOUfYtSKknybo5X0WXHI/4EBn6qf71aA6UALRRRQAUUUUAFFFFAFVV26nK39+FB+Rb/wCKFWR0qtIWGqQAD5TDISfoyY/matUAFFFFABRRRQAUUUUAIeDVXThi1b/rvMR9PMbFWicZ7VW00sdMtWcEO0SswPqRk/rQBaooooAKKKKAExzmqljhDcwjkRztk+pbDn/0OrlVEymqTLgBZI1cf7TAkMfy2UAW6KQdBS0AFFFFABRRRQAUUUhOKAKt/I6RCOI4mmYRof7uQct+ABP4YqeCJILeOGNQscahVUcAADAFVIv9J1GW4z+6hBhj5yC3Bc/oF9irVfHSgAooooAKKKKACikJxVTUNRg06ASS7mdztiijGXlbsqjuf5Dk8A0ATXN3BZ273FzKsUMYyzucAVkeXc6+zG4jkttKIwsLArJce7jqqf7PU98crUtvps1/NFfauq+ZGd8FopykB7E/3n9+g6D+8dcDFADI4liQJGqpGowqqMADsAKkHSiigAooooAKKKKACiiigBCCT2rlNf8Aht4T8T3BudU0eF7pvvTRM0TsfUlSNx9zmusooA4XSvg/4I0i6S5h0SOaVOVNzI8oB/3WJX07cYruFQKMKAABgAcU6igCrfyyQWM8kXMqofLHq2PlH4nAqaCJIII4YxhI1CKPQAYqtfZeS2h27leZSf8AZCguD/30qj8aujpQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBXu4PPhdA21zyjAcqw5B/MDjviks7r7RbqzLtkHyyKP4WHUc/wCcY9asEZqhJiz1ETZxFclY5PQP/CT9fu57nYKANCikHSloAKKKKACiiigCpJ/yFrfnnyJePX5kq3VaZQL23fHO10B9jgn/ANBFWaACiiigAooooAKKKKAKmpEjTbkKcO0ZRD/tEYA/MirQAAAHSql/hmtoSCfMnXn025cfqmPxq2OlAC0UUUAFFFFABVO5xHf2cu0klmhJzwoYbs/mij8auVU1FGexlKIZHjxKiA8syEMo/EgCgC2OlFNRleNWQhlIyCO4p1ABRRRQAUUUUAFVb6YwW7OmDKSEQEZBYnA6fUZ9ue1WScdqoZ+16nkcx2o4z/z0Yf0U/wDj5oAs2sC29rFCjFgqgFiclj3J9STyT71OOlIOlLQAUUUUAFJuGcc0bhnHesa51Ga9uJLLSSu9G2z3bjMcB7qP70nHTovVuysAT6hqi2862lrEbm/kXcsKnG1c43O3OxffBJ7AkUafpP2eZr26n+038i7WnK4Cr12Rjnantkk9SSamsNOisICkRdmc7pJZGy8rf3mP5dMAdBgACroGBQAgGBg9aWiigAooooAKKKKACiiigAooooAKKKKACiikNAFQ4k1c9R5MHHod7f08sfnVwdKp2P7w3M4JIkmYAH+Hb8hH0ypP41coAKKKKACiiigAooooAKKKKACiiigAooooAKhuIUnjeOQnYwwcHBHuD2PvU1IRzQBVsbh5IDHNk3EJ8uXAxkjofxBB/H2q2DkZHSs+6/0a8juwQEYCOcf7Oflb8Cee2GJPSr6/dFAC0UUUAFFFFAFO85urAZx+/Off909XBVS84ubE4z+/Ofb929W6ACiiigAooooAKKKTvQBUZvM1ZVB/1MJZl/3zhT/44/51bAwAKqWf717m4zuDylVz2C/Lj/voMfxq5QAUUUUAFFFFABSHrxS0EZoApaYwS2a26G2cw4/uqOVH/fBWrtU2bytUUEHZPHjOeA6np9SCfwSrg6UAFFFFABRRSE4oAiubhba3kmYFto4UdWPYDPc8AfWo7K2NvbIjEM5y0jf3mJyx/M/yFRy/6TqUcXPlwASuMdWOQoz0OME47EKaur0oAUUUUhIFABnnFNeVI1ZnYKqjJZuABUF3e29lA89xIERcDoSSScBVA5LE8ADkngZrOjs7jWSJtTi8q0BzHYk53YPDS9ifRBwOpycbQBpmuddkAtna20s/enHElz7R90X/AG+pH3cZDVrW9rDa28dvBEkUMYwkaDCqPpU2PelHAoAQDAxnNLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVFcTLbwSTScJGpdvoBk1LVPUfmhWAYzPIke0/xLnLj/vkNQBLZRNBZQRyHMioN59W7n8Tmp6BRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUARyRLKjo6hkcYZWGQRjBBFV7GVlD2kzlprcgbmPLofut75HBPHzBsVcqhfjyJUvlz+5BEoH8UZ6n6rjcO/BA60AXwcjiimqQVBznPenUAFFFFAFa7IVYmJAAlTn6nA/UirAORmquof8e6ZGf38P/oxatDpQAtFFFABRRRQAVBdzG3tZZlUuyqSqDqxxwB9TxU9U7oiW6t7b+8TKwx1VMd/XcUP4GgCa1g+zWkMG4t5aBSx6sQOpqakH3RS0AFFFFABRRRQAUUUUAVL+N2tzJEpaaEiRABkkjqo+o3L+NWI5EliSSNgyOAysDwQelOxzVGx/wBHaay7QsDGB/zzbO38iGX6LQBfopF5UUtABUU8scMMssrYjRCzH0AHJqTPOKo3ebi8t7VT8oIll5/hHKj15YD2IUigB9hbvHAZJVAnmYyyj0Y4GM+wAX321bAwMUDoKC2M8HigAJxVDUNTisjGiq89xKcRW8WC746kZ4AGRkkgDPJ5AMd5qTm5ax05FmvcDeWB8uBT/E5H6KOW9hllk0/TEsvMlMj3F1Ngy3Mv33x0HHCqMnCjgZPckkAhs9Lke4W/1F0lvAD5aIcxW+eCEyOuOCxGTz0B2jVAwKAMDFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVOYebqdum0FI0eUnurcKPzDPVzNU7fL3t3MVxgrEvPUAbv5uR+FAFwdKKB0ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmkHdninUUAZ9ifssj6eeFiG6H3j9P+Anj6bc9a0B0qlqEbhBdRKWlg+cKOrr/Ev4jkf7QXPSrMUqSxo6EsjKGVvUGgCSiiigCrqAJtlIP3ZYmP0DqT+lWh0qrqLBNOuHxnZGXx64GcVZHSgBaKKKACiiigBM1Ss8z3Fxdfws3lp/upkHj13F+fTbUl9M0NuRGQJpCI4jjOGPAOO4HU+wNS20KW9rFBEMRxoEUZzgAYxQBIOAKWiigAooooAKKKKACiiigArPvwIZ4bzOBGdkn+42OfbB2nPYbvWtCmSRrIjIyhkYYZWGQQeuaAHDpS1S0+Qxo9nIzNLbELljkuh+4x9cjgn+8G9Ku0AMdgikkgAckntVTT1MkZvDnNyd/wA3BVMfIOnHHOPVmo1DE7R2IGROT5gPTyx9765yF/4FntVia5htrd555UihjXe8jsAqjuST2oAlzjg1jS3s+qyNBpcojt1OJL4KGB9VizwSO7HKjphjkK0w3GvE+ekltpR/5YsCktz/AL46on+z948BsDcp144ViQRoqqigBVAwAB0AFAEVlYW+nwCG2jCJksckszE9WZiSWY9ycknvVodKQDAxS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIT69Kq6aM2EUhBBlzKQ3UbyWx+GcVZdBIjI33WGDSgBQABgDoKAAnHrUc1zBbJvnlSJemXYKP1rh/ir45k8EeG1ks1V9UvX8m0QjO0gZZyO4GQMerCuY0T4KJrUCav461S/1HVbgb3hExVIgf4c9eOOBgDoBgUAevQ3UFwheGVJEH8SMGH5ipcjGa8Z1/4MtoFtLrPgPVNQsdUt1LrbmbcswA+6D1zjIwcg8Diuv+F3jlvHPhYXVyqpqNq/kXaLwC3ZgOwI/UEdqAO4ooooAKKKKACiiigAooooAKKKKACiiigAooooAQjrWfbg2t7LaE/JJmWHjGMn51/AkN/wACwPu1o1Uv4HmhDQ7RcRESREnGGHGD7EEg+xNAFocilqC1uUubdJUDBWGcEcj1BHqOhqegCpqZI0q8x18h/wD0E1bHSq19F59jcxHgPEy5+oIqeNg8auOjDNADqKKKACkzilqveT/Zrd5FXfJ92NP7zHgD8/60AQK32nU2bP7q2G0D1kYDn8F4/wCBNnpV5RgAVBZ2/wBmtEi3l2GSzn+JicsfxJJqwBgUAFFFFABRRRQAUUUUAFFFFABRRRQBQv8A/R5Fvlz+6BEoHeM9TjuQRkdeNwAyauggD29qUjJzXP30l1p2nz6faQPPNgC3CNsxEThjnkjYD2DEDZwxOKALDahDapLqNwzETuIraOMbmkAzgIAeSTubI/h5OAuQ6DTp764S91QAMjb4LRWykRHRm/vv79F4C9Nxg0+O3tZBdXBuJ70x+X5gs5ESNOuyNcfIvTvk4GScDGodRsowA91DGfR3C/zoAs4460tV47+0lfZHdQO/91ZAT/OrFABRRmkzQAtFJkUuaACijNGaACikyCaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooA8Q+MWJPih4BjuObX7UmQ3TmaPd+gFe3DpXnPxi8FXfizw5b3OlKTq2mSGa3CnBdTjcoPZvlUj3XHeqfhP41aDfWCW3iWc6RrMACXEc8TKrOOpBxx9DjHT3oA9RY8ZrxP4JKIfHPj2C2AFml4AoXoAJJQv6Z/Ktrxb8aNDtbF7PwxOdX1q4Hl20dvGxRHPAYnHzf7oznHOBzWj8IvBc/hDws51H/kK6hJ59yCcmPj5UJ7kDJPuxoA9DHSikByAfWloAKKKKACiiigAooooAKKKKACiiigAooooAKaVyeuKdRQBnr/omomM58q5O5f9mQDJA+oBP1DHuKvg5FV7y3FzA0edrZDI2MlXByrfnj69KLO6FxarIVKOMrIuc7GHBGe+COvfr3oAsEZBHrVbTWZtLtGbljChP12irOc1V0vH9kWWOnkJ/wCgigC3RRRQAhIBx61QQi91EyYBhtjtjOfvSEYY/wDAR8v1LDHFS30zxoscAzPMdiHbuC+rH2HJ5IzwM5IFTW0EdvbpDF9xBgc5J9ST3PvQBIowoycn1paKKACiiigAooooAKKKKACiikJxQAjOq/eOB6mgMCMg5+leTfGrUJ9S/sTwPp7kXWtXSmbbztiVhyfbdz/wA1F8H7mTw74g8SeALuRi2n3DXFmW6tESM/mCjY/2zQB7BVW8t3nVWiYLNEwkiY9jjGPoRkH2J6HmrI5ANBGaAK9rcLc26SKGTPBRsAow6qcdwRU+CehqhcBbGdro4FvJgXGRwvo/0xgMfTB4CnN8MAAMk+9ACPGsi7XUMPQjNQf2ZYdfsVtn/rkv+FWgcjNFAFU6fbYwiGMekTtH/wCgkUi6fEpyslyD/wBfEh/Qk1booAqG0mJ4v7hR6BYz/NSaX7PcKuEuyzessan/ANBxVqigCoIr/Izc23B7W5H/ALPQxvlOFht3HqZWXn6bT/OrdFAFUS3gz5ltH7eXNk/qopPtk2D/AMS654/2o/8A4urVGD3NAFY3yIMyQ3Cn0ETP/wCg5oXUICeRMvu8DqPzIFWcc5796KAKx1OwBwb23B9DKo/rUsVzBMoMU0cgPdGBqTFRy20EwxLDHIP9tQaAJM0tVBpdgORZWwOeoiApTYQk9ZlHos7qPyBoAsk4oLAVWFkqA+XNcIT385m/9CyKQWc4/wCYjdH6rH/8RQBayKXNVGguwMJcxH/rrDu/kwpVS+VstNbuPQRMv67j/KgC1RVTff5/49rY/wDbdv8A4ilM9zGuXs2Y56QyBv8A0LbQBaoqqLuXPNhcgepMf9GoOoQqcFLjPtbuf1AxQBYKgtmsnVPCuga44k1TRrC8kHAkmt1Zh/wIjNXhqFttyztGPWWNk/mBR/adgTgXtuT6CVT/AFoApaV4X0LQnL6Vo9jZuerwQKjH8QM1i+O08SyaZcR6LeQ6dZx2ks1zeYLTfKpKpGOi5xyx6dua69XVwCrBgehBrL8Sn/il9X/68pv/AEBqAMz4b3tzqPw70S8vZ5J7ma33SSyHLMdx5Jrqa474VH/i1/h4f9Oo/ma7HNABRSZoyKAFoozRmgAooooAKKKKACiiigAooooAKKKKAGkZPbFUZGFnqKucCG4IVz/dkxhSfXcAFz6qoGc1oVDcwJcQvE+cMMZHVfQg9iDg57YFAEnYD8KhseLKJQMBRsx6Y4/pTLKdpYCsv+viby5QBj5hjoOwIwR7EUaaQbVirZBnm5/7aNQBbpjusas7sFVRliTgAetOyBWfKV1C5MAz9nhIMp7O2OF9wMgn1yBz8woAfZxtO5vpVw0i7YlIIKR/4nqenYHpV4dKB0ooAKKKKACiiigAooooAKKKKACkJxkk4HrS1wfxf8Uf8Ix8P76SKTbeXg+yW+DyGf7x/Bdx+uKAPP8Awl4j0TxB8Ytb8W6xq+n2lrZJ9m01bu6SLcOVDKGIyNoY/WSl+IfiHRNH+JPh3xrousafeAN9m1CO0uUkbyx/EQpJPysw/wCAr7V0/gv4PeGo/B2mf25o0VzqUkIkuHkZgwZudpwR90EL+FWPE/wd8LXXhnUYdI0WG21EwsbeVGbIkHIHJxzjH40AekxSJJEjowdHAZWXkEHoRT683+C3iY694Bt7edj9r0tvskoPB2gfIcf7uB9VNejjpQAhTJJOCD2NZ1uTY3S2TvmJv+Pdj39Yye5A5HfHrgk6dQ3Nul1C8Mg+VscjqCDkEehB5B9aAJV+6KWqdrcuHNpcjFygzkdJV/vj+o7H1BBNygAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoxRRQAgFGPelooAKQjIwQMehpaKAKz2FpI257WF26ZaME/wAq57XPhz4V8R3iXep6UJZkjEamOeSEbQSeiMoPU89a6qigDkdH+GfhPQL1LzS9Nktp0UqGW9nPB7YLkV0hs2ChYru4jA44Ib/0IGrJYClzQBVW1nQg/b529nVMfoopDHf54ubfHvASf/QxVrOKWgCrtvkUnNvK30aMf+zUm+/z/wAe1tjv+/bOP++Kt0UAVTdTKdv2Gdj6oyY/Vh/KhbxsEyWdxGB3IVv0Uk1apMUAVf7Rg/uXP/gLJ/8AE0p1GzQDfcJHnp5h2fzxVjac5z+tLjnP60AV49Rspn2R3cDt6LKpJ/WrOaaUDDDAMD2IyKrnTLA9bK2P/bJf8KALWaM1V/s+2C7Uj8tR0ETFMf8AfJFINOhByHuc+9zIf5tQBbzRVVrSUt8t9cIOygIcfiVJoFvcop23jMf+msakf+OgUAWc0Zz0NVDFqHa5tf8AwHb/AOLpzfbVwFjgcdyZWTn/AL5NAEN1i2u47nAKSbYZh+PyN+BOP+BZPSpNPbFswKkHzpf/AEY3P40xxcypJFc2kDxSDayiUsCCOQQVHFVbWS4s9N23CO9yZGSJGcFn67dxGQCQMt6cntQBcvJ33LbW+RPKMB8cRDux+mRgdyR2yRNBbR20CRQjai5xnJJJOSSTySTySeSetR2lo0CmSWXzbiTmWTGAfYD+FRzgZ785JJq2OBQADgUUUUAFFFFABRRRQAUUUUAFFFFABVDUtE0vWPLGp6bZ3oiOYxdQLKEPqNwOPwq/RQADpTSuTmnUUAUNP0TS9Kknk07TbOzec7pmt4FjMh9W2gZPJ6+tXgMDFLRQAUUUUAVry3Nwg2v5cqENG+Pun+oPQ+3502zuxMrxyqY7iLiWMnJGc4I9VODg/UcEEC0RVS9tWnQPC6xXUeTFKVyBnqCO6nHIyPUYIBABc60VUsrz7Qhjlj8m6jwJYc52+4PdTg4P8iCBboAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA4D4j/ABFm8B3OkQ2+jf2nJqTSKqLP5ZDJswMbWznf+lYv/CzfHI4Pwr1E/wDbw3/xusz468+KfAI7fbZf/Q4K9rHSgDz7wx458Ua1r8FhqfgO90i1lDbruWYsqYUkcbB1IA6969BHSkJGcU4dKACiiigAooooAKKKKACiiigAooooAKKKKACjNIWAOKgnuo4Ii7ZIPCqvJY9gB60AF1cJbRNIw3Y6Kv3mPoB3JqG0s3EhubkhrhgQADkRKedq/jyT1J68AAFrbzSP9qu1UTHhIwciJfQf7Xqfw6Crw4FACDgYozziqGuO8ehajJG5R0tZWVlOCpCnBBrwX4a+F/EPjzwzNq03j3xBZvHdtbiNLmRgcKpB+9/tUAfRORjPalrwrxVofjf4a6V/wkeneN77VLW2dBPa3+XwrMFGAzMDyQOMEdQa9g8M6wPEHhjTNXEfl/bLdJin90kZI/PNAGrRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJjmlooAqXdr54V45PKuI+Y5QM4z1BHdTjkfToQCC2vPMcwzRmG5HJjJzkZxuU9x/iKtEc1Bc2iXUYViUdTuSRPvI3qD/kHocgkUAT5paow3UkUwtrzaJSPklUYWXHX6N3x+WcHF3cOmKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPDP2grWO+1zwTZylhHcXE0TlTg4LQA49+a2f8Ahnfwceftesf+BCf/ABFa3xK8Bap4x1rwxeafcWcUelXDyzi4dlLAtERtwpyfkPXHavRKAOC8I/CTw/4L1v8AtXTLjUHn8toiLiVWXB68BR6V3gGBilooAKKKKACiiigAooooAKKKKACiiigApCwBxRkA1UursRv5MKebckArGDjA9WPYcHr6HAJFADru6S2TcVZnb5UjT70jdlH689BgkkAZpltaSeabm6fdMfuqPuxA9l9/U96dbWZibzp5POuiMNJt2geoUc7R7ZJ9SetWgMDFACjgUUUUAZ2v/wDIu6n/ANekv/oBr5++EfiDxppfhGa38O+FI9WtDeOzTtcqm1yqZXBPoAfxr6B1/wD5F3U/+vSX/wBANeSfAPWdK07wDdQX2p2VrMdRkYJPOqHaY4+cEj0NAGN468QeMtas4bHxholzoHhp5Fa6nsoftLHByAx34UZx26gcHpXt/hh9Jbwxpo0KVJdLS3RLZ1J+4owM55zxznnOc81y/jnx34UsvCGqxyaxp91JPaSRpbQzpI0jMpAG0EnHv0GKo/AqwvrD4awfbVdBcXEk0CPxtjOMcehIY/iKAPTByKKB0ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAjmhSeNo5UV0PVWGRVHM+n4Vg9xa9Nwy0kY7Z7uO2evTIPJrSpu35sigBsU0csSSRuJI3UOrochgehBHUVJVCSyeGRp7JljkJy0Tf6uQ5zz/dPX5h65IbAFS296kr+TIrQ3ABPlScEgHqOzDpyPUZweKALVFIGB6UtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFJkc0AGaMioLi7ityA5+dvuIBlm55wOtVhaT3w3Xv7uAj/j1VuvP/AC0I+9xxtHHXO4YwAK9zLdsUsThM4e4K8D2X+8e2egPXOCpsW9pHbxsIwcudzs3Jdu5Pqf6AAcAVMqbRgYA7AdqdQAgGBiloooAKKKKAIbi3juoJYJl3QyoUdc9QRgj8q4X/AIUn8PhjHh/p/wBPtx/8cr0CigDi9O+EvgbS7hZ7bw9bmRTlTM7zAH6OxH6cV2SrtUAADAwMCnUUAA6UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACYNQ3FpFdReXKgYZyvYqfUHqDz1GDU9FAGfm6siQc3UI79JR9ezfoeO5qzb3cF1GXhkDgHDdQVPcEHkH2PNSlcnOfwqCeyjnbzMtHKMYljO1hjoM9xz0OR7UAWNwpaz/MvLTiWMXMQ/jiGHUe69zjuPwWrUF1DcK3lSK5XhgOqnrgjqD9aAJqKTcKUHNABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUmecUALSE4pktxFBGZJpFjjHVnIAFVGubi4JFpCVB4824Uqox6LwTz64z1zQBbkniijaSWRUjUZZ3OFA+tVDPcXhH2WPyoj1mmQg/8BQ8+vJx0HBFOisFEizzyNPOOQ79EP+yvQdTz1x1Jq4BgdqAK0FlHBuZSzyvjfLJyzYzjJ7DJJAGAMnGKtUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIRznNV7ixguXEkifvFGFkUlXX2DDkfnVmigCh5V9bsCksdynTbL8jgezAYP0I/GnjUoUIW4WS2bOP3w2j2w3Kn6A5q3ikKZznvwfegBdwxmjIqmNMgjB+zF7UnOPJOFGep2nK59yDQVv4uA0FwvQbwY2HuSNwJ/AUAXaKpi/wBvE9rcxHOAfL3g+/yZwPripobu2uGZYZ45GX7yqwJH1HagCaijNGaACikyKXNABRRRQAUUUUAFFFGaACik3CjNAC0ZqKa4ht1BmlSMHoXYCoG1BCSIYLiduvyRkA/Rmwv60AW80bhVQm/lPyLBAvUFyXP0KjGPwY0HT1kJ+0zS3APVXIC49NoABH1zQA+W/t45DGGMko6xxKXYemQOn1OBUR+3XBBQJax9y/zyH8AdoPoct9KtRwRwxiOKNI0HAVVAAH0FSDgUAVIrCOKQSsWlmHSWU7mHGDjsufQYq0FwMAAAdABS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAmKimtYLlNk8MUq9droGH5GpqKAKn9nQAgx+bHt+6I5WVR/wEHH6ULa3KElb+Vz2EqIR/46FP61booAqKl+nLS20nsI2T9dzUnmahn/AI9rb/wIb/4irlIfvCgCsbidF5tJJD6RuvH5kUgvJdhb7Bc5Bxt3R5/9Dq3RQBVF3KVYmxuAR0UtHk/T56Rbmd84splI/vsmD+TGrdNP3x9KAKxe+z8ttble26cg/wDoBoK30ijm2hb3BlH/ALLVvtRQBUNvdyLiS9Kkd4Y1XP8A31uo/s+NiDJLO7Dv5zKD9VBC/pVuigCvBY2ttu8i2hiLddiAZ+uKnx70tFAAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/Z'] Multimodal Competition False Theorem proof Geometry Math Chinese 27 " 已知 在 $\triangle A B C$ 中, $A B > A C, \angle A$ 的一个外角的平分线交 $\triangle A B C$ 的外接圆于点 $E$, 过 $E$作 $E F \perp A B$, 垂足为 $F$. 求证 $2 A F=A B-A C$." ['\n\n在 $F B$ 上取 $F G=A F$, 连 $E G 、 E C 、 E B$,于是 $\\triangle A E G$ 为等腰三角形, $\\therefore E G=E A$.\n\n又 $\\angle 3=180^{\\circ}-\\angle E G A=180^{\\circ}-\\angle E A G=180^{\\circ}-\\angle 5=\\angle 4$.\n\n$\\angle 1=\\angle 2$. 于是 $\\triangle E G B \\cong \\triangle E A C$. $\\therefore B G=A C$,故证.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAeMBjQMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APfqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooppagBcikJpvJpw96AExThSY9KUDFAC0UUUAFFFFABRRRQAUUUUAFFFI33TigBaK4vw94knv/ABtrGkzZCWgG3P1rtKACiiigApCcUE+lM5NADieKTrQBzS4oAAKd2pMUvagAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKTIoAXNJupueaO9ABk5oxQDilxmgAFLigCloAKKKKACiiigAooooAKKKKACiiigAooooA8tsP9A+KOrTdPtDhfrzXqVec67YGLxja3JbaJJh+PFeiE9KAFJppJo70GgA60uKAOKUDBoAMUtFFABRRRQAUUUUAFFFFABRRRQAVS1K6ntLQywQec4ydtXaRlDDacEe9AHFWXxG04ymHVHWzmzgITya660vre9hEsEgdD0NZeo+E9I1FWMllCJD/AB7eRXIXXgXVtKmN1pmq3Uvpb5wtAHpeaK81t/G2t6Q2zXtNW2t1/wCWxJOfzrrNH8X6NrgH2G7WQnsKAN6ijIxmigAooooAKKKKAEJApu/LYodc03pQA/NJ3oBpcUAJSgUuKWgBMUuKKKACiiigAooooAKKKKACiiigAooooAKM4opDzQA0vSg5phXmlU84FAHIeNIj/aWkSrwFnya62FxJEHHcVy3jmAta290rlfs7b8etbHhu6F/oNrcgcOuaANUClxS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBVutPtb1dtzbxyr6OM1yer/Dy1vMtY3MlieuIFxXbUUAeXK3jDwqwit7U39svBlmbBA/KtrTfiRpU0gtr6XybvoUxnmu1dFkXawBB6g1ial4T0vUUI+zxxOf40UZoA17e6huYllicMrcjmpq8yufBGraFI1zo17cXT5yIpXIX6U618datpDBfEtnHbIP4ovm/pQB6XRWLpHinSdaj32lxkf7fFbKsrDKkEeo5oADTMc1Jx1pMUAAHFLQKKACiiigAooooAKKjnkEUDyHGFGTmvKrjxr46vNdvLPQ9HtJ7eA8O7kZH5Uk03ZA9FdnrNFeU/298V/+hdsf+/p/+JrtvC934gu7Zm16yhtph0EbZ/pVqLauS5WaR0FFFFSUFFFFABRRRQAUGiigBpoCilxSigDmvHUJbwnqEo/5ZxFqrfDSfz/AWls33vK5rY8Txef4Z1CL+9ERXMfDGXZpAsv+eCYx6dKAO9ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqtzp1pdj9/bRSe7KDVqigDhtX+HFpeSGe1u7m2cchIXKj+dY4l8Z+Gn2JBFPZKOXd8tivUaa6LIu11DD0NAHFaV8SNKvJRb3BkS5HDZjwAfrXYQ3cFwitFKjZ7BhmsnVvCmm6tGVeFYieN0ShT+Yrj5vA+reH3abw/cyTtnO25lJH5GgD02ivNYPHuo6K4j8SW+GzjMCZH6Cu00rxFp+rQiSGULkdHODQBrUUisrDKsCPY0tABRRRTS1DZXMXxZdG08M38yHDrCSteX+Dfib4f0myJvhci5dfnKwk5P1ruPiBcbNPitgcGfKYPernhfQLCHw/aJLYWzSBeS0QJrKhq5zXTQKsrKNJr+9+hj23xf8MXc6QxG73ucDMJAruLW5S7t0njzscZGeKgGj6ahBXT7UH1EQq4qhVCqAFHQAdK1VrW6ktS5/IWiiikUFFFFABRRRQAUUUUAFFFFAFbUIvPsJosZ3LivP/h5KU8Ua7Zn/ljgfrXpNeW+GGNh8S/EDdBcOAB+IoA9SooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAK1xY2typWWCN8jGSoNcXqnw0sppjd2c06XHYCTC/lXe0UAeX/AGvxl4Z4uRDJYJ2Qbmrb0b4jaZqTCJ4p4ZOhMqFR+ors3RJBhlDD0IzXP614T0jVkYXIEZ9UIWgDciureYZimjcf7LA1N+NeUz+HNS8Ond4e1K2SIHkXEwJ/nTrX4qJpMy22tnzZScboRlaANH4j+GfEOvy6fJojQhraTcRKetZkEHxaghWNP7L2r9K7zTvFWkajbrMl9AgYZw8oBFXRrGmMcDULU/SYUopRTS6jlJytfocNpg+KH9oxfbzp32Xd8+zGcV6HGH2Lv+9jnFV/7UsP+f22/wC/oqRL21kxsuYmz0w4qr6WJtrcnopqurDKsD9DTqQwooooAKKKKACiiigAooooAK8r1I/YPiDAw4NzOBn14NeqV5X8RkNr4y8LypwHujvP/ATQB6pRTUcOoYd6dQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRSEgKSTgVi6p4o03S0O+eOSRf4Fbk0AbdQz3dvbDM0yR/7xxXnNz4+1LV5DBpOnXdu3QSSJlfrTYPCHijWTu13UYpom6Kq7SB+dAHW6h4w0qxUlZ0nI7RuDXLXXxTSaU21lpN/5naQxkr/ACrY0/4ZeG7Ah0tpPM6kl8811Frp9raReXFCgUe1AHm51Hx1qPzWM8cKt0EqdKF8OfEO6x9v1OzYHrsXHH516iFUdFH5UtAHmqfDi5uf+P8AuN/+42Ka3wj02XiRSR67+a9MooA8q1H4KaPJZFbEzJcEdTMcZryy78JXfg/VWXUmnmiY4QRsa+qM1h+IdBtdZtw0iAzRcxt6GgDynQdI0nWk5jurbHeeQjP510S+CdRjUnSb+Lj7uW3f1rW03T7G9DaffRESxfLuzjcade6HrWlQM+j3Koi8bSMk0AYh0f4lWR3Q6pZeV3GzJP604eJPFekfNqSm4A6iGI5/nVmy+INzYyLaarpt079DKFwtdjZa/pGooPLuICx/gLAkUAcrp/xUs7pvLl0y9gYcFpEIB/Suqs/Eml3iArdwox/gZxmpb7Q9P1RMXEKspH8IxXK3vwt0IsbizheO67MX4FAHcxyxyrujdXHqpzT68ufSvGvh+TdBqEUlkvPlKhLfzq9p/wASdswtr/TLuNxwZXXCmgD0OiqFhrFjqKA21zHJ/sq2SKv0AFFFFABXnnxLgDXOlXP/ADwkLfoa9DrkPiJBu8M3Vz3gjLD2oA3tCn+06NbTHksuc1o1zngOc3PgrS5ScloQTXR0AFFFFABRRTCaAHE4pCabyacPegAWnUgpaACiiigAooooAKKKKACiiigAooooAKKOlVr2/trCEy3MyxqOctQBZrE1jxRp+kxkPMjzDpEG+Y1yup+L9R1i5NlocEignAu05Ue9XNI8BRmVbzW2W8u+u88YNAGTJrviTxTKYdKjm0xAcb5V4PvWtpfw7sxIt1q4Fzej/loD+ddtFGsMSxoMKowBT6AILe0gtYxHFGAo6DFTYxS0UAFFFFABRRSE0ALSEgU3JpTzQAmaMZpQMUYzQBz+vaYflvrYETRfNgdTVrQ9Zh1OAoJFM8YAlUHlT71r7cjBrzvW9Nm8K6v/AGxYAi3d/MuUX+P6/pQB3V7ptrqEJiuIgyEYPFcZf/Da1gcz6FttJzyWJzzXYaXqUOp2MVzER867iv8Ad9qvUAeXf2l4s8LN/wATAy6nGOghU8D866LSfH2n3wC3a/Yn/uzHBrriARg8iua1fwNoerlpLizVpT/FQBvQXdvdpuglSRT6c5qvqOjWOqRGK7hDqfwrg5/CviTQm83S9Vxar0t0HapbH4g31pN9m1TSblAOs74C0AOvvAV5pbmbwzcrZ4O4qcnNMsPG+paXcCy1ixuHI63G3C12Wn+JNK1JV+zXsLv/AHVbJFWr/TbbU7YwXUYkiI5B70AN0/VrLU491rcRy+ynOKvV5zf+D9Q0FzdeHbn7PCvJgUZLD0rQ0Pxykri21WF7OboDMcbqAO2rC8ZQ+f4P1SI87oSP1FbUciSoHRgynvVTWYftGj3UX99MUAcx8NZseGre0/54xgfSu1rzv4bTj+0NVtM/6hgtehk0ALSbqY77BuJ4FcrD41im1z+zfsrA5ID54oWrsOz3OsNJ1FAYFQacOlD3sIQClxS4ooAKKKKACiiigAooooAKKKKACiiigAoorlvEfihLHNlZAT3jHaVQ8rQBf1zxLZaLAxklVp8fJDnlz6CuQtdM1XxlcfatQaS2suptpB94enFaGh+EXu5hqWtt9olJzHHIPuH1rtkjWNQqjAHQUAU9M0ey0iDybKBYkAwAKvd6WigAooooAKKM4ppfmgB1JmjOabmgBSaTnNFGM0ABowTShadQAgGKWiigAqveWkN9aSW86bo3BBFWKKAPNraa48GeIfs05L2F1JuD9BEvYV6LDMk8KyxsGRhlSO4rO17RINb0+S3kADEYDntXLeFdZn02/fRdSLI4bbb7/wCJR6UAd9RSAgjIpaAD/OKp3+l2epw+VdwrInoauUUAcHf/AA4hiYvocy6e3X5QTzWR/aXivwo+y4guNXUH76YAA/GvU6RlDqVYZB4INAHJ6V4+0y7CpfSJZTn/AJZyHnNWtV8OaV4jh84KjTdY5v7p9aZqngfRdR3SfY4kuD0kxyD61h2/hjXPD87zRarLcwEfLbgcCgCOyvtZ8J362l5HLe2rnb5vRUHrXewXNvfW5MTrIhHUdK5NPEEkqGDVrAxRdCznrVOWU2Mq3WkXfm24OTAnTHpQBN4UgisvFWt7V2mWQc+vSu4ya820fXbWfxGTvWOeZ/mi7g16Hd3MdpbPNK21FGST6UnJR1YWvotzD8U37xWv2S2b/SJQduOtYF7Yw6SttfzACQJlmI5zXKz+LfEM3iSS5tfDM19BbyERyKRgj161Q8b+MPEuqaDIlx4VnsU4zOSPl/WiEU+Rt21TfoOd5OUI9E/vse6WUgmtIpFOQyg1ZrC8Izmfw3ZEn5hEua3a0qR5ZtEQu4psKKKKgoKKKKACiiigAooooAKKKKACig1yfirxIbT/AIltiPNvZDtZc8oD3oAj8R+J3Sc6Vpa+deNw4U8xg96l8OeFls8Xl8fPu26u45p/hfw0unQ/arsma9f78rj5iPrXUUAJS0UUAFFFFABRRRQA1xkVHjnNSmmkZoAQGn4pAuKcKAExQBS0UAFFFFABRRRQAUUUUAFcr4v8OnU7cXVqNl9GMI46iuqoIyCKAOW8I+IRqVsbS5+W5gwhz1Ygda6muA8V6PNpV8mv6Yp3RDDQLwH5ySa6rQdZh1mwWaJgWX5ZAOzdxQBq0UUUAFFFFABSEelLRQBSurC1vBi4hSQf7Vc5qfhiKKF5Le6NpGBkhR2rotQ1CDTovMmYLnpnvXFNZ6x4q1XfI8lnYRNuQoeJR70AeX6zcy6P400uawj89vOyT3k69a9B1/XNR8U6fBpumROrypi6aM8wn0pnjzRraw1bQ54olAgYksBg9DzV+/0u405LfXtK3DjzJYk4En1osNOx2Hh3S/7J0e2tmO6VIwsjnqSKi8V6adU8Pz2qp5jMOF9ak0HW4NasllRh5qj96n90+la+amtFVVJPS/b9ApN02muhzng63urXTnguoDEUbCg9xXR0UVbd3ciEeVWuFFFFIoKKKKACiiigAooooAKKKoarqUGl2TzzNtGDj3NAGX4r8RJotmFTBmlOwDvk9KpeF/Drq51TUctdS/wsOg9jWV4b02fxJq767qKnyj8qxdVBHQ16IBtAAHAoAUelFFFABRRRQAUUUUAFFFFACY5oxS0UAAooooAKKKKACiiigAooooAKKKKACiiigBk0STxlJFDKe1ecXUU/grXvtEef7LlJMh6Ycn/69elHpVLVNNh1Oye3mQMp6ZGaAJrW6ju7dJomyrqGH41PXnWgX9x4X1dtHv2PkuS6Oxzj0Fehq4dQwOQRkUAOooprOqKWY4A60ALniub8ReLLbR18iNle7fiOP1b0rN1/xdLLcHStEUT3Z4kB42g9waseHvCK2z/bdRZri4b+GX5tp9qAG6Jpt/qxW+1hDGzc+T1UV10cSRR7EUKo6AdBTgNvA6UtAHD/ABJh/wCJK13jiBCTW54WZLzwlp7ONyvEMg9+TVT4hwfaPA2qxj7xhOD+VM+Htxv8Iafb5+aGIKaAMXWbK48I6gdVs9xsyS8ygYArttK1KHVLKO4iYHcoJA96nu7SK8t3gmQNGwwQa89sprjwb4i+xyszWN05k3M33PQD2oA9JopkUiTRLJGcq3I96fQAUUUUAFFFFABRRRQAUUUHgUANdgiFicADNebalNJ4w8TDToWIsI/n8xepIPI/St7xv4gfS7AQW2GuZGC7fY8VN4K8PJoekgN88srGUs3UZ7UAdBa2sdpbpFEoVVGMCp6KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKDyKKKAMDxT4ei13T2UkpMpDrIvXjtWV4O8QzSsdK1MCO8jJ2gdCo4H6YrtD0NeefEO1TTo01mxYC8VlUqp6jNAHe3N1DawtLKwVVGTmvP7/XNR8VXRs9IX/RM4aRsqw9ao6XHq/j1YpL3dBp6EYKEqxYetekadpltptusUEaqB3AwTQBnaD4ZtNEtlCgyynkyyAbj9TW7RRQAUUUUAZPiWD7T4evIgM7kIrl/htPuF9a55gYL/ACrubiLzoHjPRhg15p8NJSnivxTbtwEudq/kKAPUD0rF8SaJFrelyQONrkcOByK2qQ8g0AcN4J1uVXm0m/O2aJ9kQPdRxXdV55430t9N1GLxNZgiS3GwoOhyck12Oi6nHqenRTq2W2jf9SM0AaVFFFABRRRQAUUUUAFRzyrFA8jHAVSakPSuK+IGtPZ6Z9jtG/0uRl477e/86AMXw4jeMPE8mtyDMEBaDa3TIJGcfhXpwUKAB0AwKwfCWix6Lo6RoMNLiR/qef61v0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUZFFABRketNd1RSWYKB3NcVr/AIume5Gl6Mpe7fnzMZQDuCelAGn4j8V22jReWuZZmO1Qg3YJ+lYWk+Gb3XbxdV15vnP3Y0Py7e2RWj4d8HraTfb9QJlu2GTk5XmuvACgADAHagBkMEVtEI4kWNB2UYFRyX9nExWS6gRh2aQCnXb+XZzP/dQn9K8esPBll408RXF7fXNz5RXA8qUr0+lRz3nyeTf3f8ODTUU7dUvv/wCGPXf7T0//AJ/rb/v6v+NWEkSVA8bq6noynIrzn/hSvhz/AJ+dQ/G4b/Gu30TRrfQdLi0+1Z2hj6F2ya2sle4LXVGjRRRUAFeV+H86f4+1FehubjJ9+n+FeqV5brY/s/4kaOvQ3MhJ9+tAHqVFFFAEF3bR3ds8Mqgow5BGa858M3UnhrxW/h6Uki6LTqScgDsM/iK9NrjPF2jRmePWolb7VEAoI9O/8qAOyzTSap6ZeJeWMboQSAA31q5jigBVp1NHWnUAFFFB6cUANdgiM3oCa8wsQfE3xCTUM7ra3RomA6Z/yDXaeLdWGj6BPdE45C/nWL8N9JNhpNzK4+a5m84E+hyaAO2AwAo6CloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKaTQAuaQmm96cBQAgzUdxdQ2sRknlWNR3Y4qtqOrWmnRnz5VBIyEzgt9K4uS21HxtfYk3Q6Wp2yxsMF/cGgBL/W9S8U3bWOjq0NuCVd5F4Yg9Qa6jQPDNnodvhF3TOcuzc845xWhp2mW2mWywW8YCqBV3vQAUUUUdRGP4luWttEuNpwXRlH4ivH/AAfonxEXTjPpGoWccDO2BIuT1+tehfErU0sNHtwx/wBbOqdfUgVueFrQWWhxRBSB9786ijvOVuyXz3KquceSK2d2/VWscXaab8VFu4jc6np7QhhvAXkj869JtxKIV88gyd8dKlorS+liWtdAooopDCvM/iDFs8a+HbzoISST+Jr0w9K4jx/YPcpBcoQPJUnJ+tAHY2svn20cv94ZqXIFZ2iFhotoGPzeWM1f5oAUmobiFbiB42GQQal7U4UAch4YkawvJdOkPzOzOB7ZOP0rr8V514uuJ9D8UQaqG225URn6nAr0G3l863jk/voG/MUASAUtFFABRRSNwpPoKAPOPiJcG/1C20HI/fgSbfXBH+Nd5pcIt9MtYQMBIlX8hXnEWdc+KFtfcNHbo8Z9uR/hXqQGAAOg4oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQkUALmkLU2igBc5pMc0UMyohZjhR1JoACK53xB4qt9JjZIcz3BGBHGfmzWbr/i6R5hp2jK007/KZo+RGfep/D3g9beVdQ1NhPfHnzPQ/SgDP0nw5ea9dLqeuvvXO6GLGCg9DXeQwpBGI41CovQU8DFLQAUUUUAFFFFAGTrPhzTdeSJNQhMixuHUZ6Ec1pxxrEiogAVRgD2p9FO7tZA9VYKKKRjgUgFozUW7Jp4ORQAbua5/xlHu8N3bY+dUOK38Vm6/F5+jXKYzlaAGeHZN+g2eTyIxmtXr0rnfCVwk1rJErA+VhcDtXSAYoAMcUvSiigDkviDpY1Pw55ZXJSRX/I5qXwLqp1XQFctnymMf0xxXQX0KzWM6MM5jb+Ved/DWRtNuLrSHPLTSSgfUk0AemUUdqKACq99cLbWkkrdApqxXO+N7oWfha5mJwBjJoA5f4W25nOsXc3Li7YIT2FelVx3w8tjb6PM+Mea+/wDnXY0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACEgUgbNMYZNA4oAec0nUUo6c0UAJS4NLis3V9btNHtTLcSqrH7iHqx9BQBbubqCygaW4kEaL1Y9q4LUNb1LxRetZaSrw2ynBuV5VxUccGreNbzdMXtLBTkoeRIPSu80zSrXSbZYLSJY0AxgUAZ+geGLTQ4cqitcuP3sn98+tbtFFABRRRQAUUUUAFFFFABRRRQAUhFLSGgCPApRTsc0oHFAAKgvYTNavGvUirGKKAPNfhfctLqviGFj/qrnb+gr0qvLPBX+geMtYjHH2m5zj8q9ToAKKKKAEYAoQehFeYNnS/jDkcQNbdO2TXqB6V5h45/0LxNBfnjJSPd+IoA9OByoI70tRWxzaxH1QH9KloAD0rhPizOV8D3cSf6xiuK7uvO/iid2mGIdWAoA6zwtCIfDlj6tCpP1rYrP0MbdDsh6QrWhQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAMPWkAJNPxQBigAxRQzBVLMcAdTXE694veSY6ZoqC4uW4faeUB70AafiDxVbaSpghKzXZOBEDzmsLSPDd7rt3/AGnrbPsJylrJ0j+mK0fD3hAW7Ld6nIbu5bnMvUV14AFADIII7eJYokCIvQDtUlFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR2oooAKKKKAPLT/wAS/wCJVnF0+0yE/XpXqVeYeMU+z/E/w5cjhFBLfnXpkMnmRK47igB9FFFAB2rzf4wQsNBtJ0HzC7jzj03CvSK4b4pRmTw5DjtcIf1FAHW6VMs+mWzqf+Waj9KuVieFXEmiQnvgCtugArzj4kHfcwQDjctej15v8RONUtSegWgDvNJXbpNqPSMfyq5VTS/+QXbf9cx/KrdABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSEgDmgBahubmK0gaaZgqKMkmqesa3aaLaNPdSbR0GOeewriEt9V8bXgacvbWAOQ8R+9jnBFAEl9rl/wCLLo2WkKRYjrcoefeuo0Dw1a6NAGwJbk/emYYYj0rQ03S7bS7dYbeNUA67RjNXaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDzn4jx+Ve2d9/zxU813GjyedpFrJ/ejBrkvivFs8FXt2v34l4rofCcom8K6a+fmMCk0AbVFFFABXIfEWPzPDyj0lB/UV19cp4/wD+RfH/AF0FAE/giTzPD6H0bFdJXL+A/wDkXV/3zXUUAFec/EwBUSX0XrXo1ee/FZTH4bluD91MAmgDtNGOdHtD6xL/ACq9Wb4fYP4fsGHeFa0qACiiigAooooAKKKKACiiigAooooAKKKRmVQSxAA9aAFzXN+IvFdro6+Qj77lvuqOazdf8Xym4/szRk828fpu+7+dTeHfCC2jm8v2aa5Y7iHO4DPYUAZ2j+G77XLsapruUJ+5ApyhHY49a7yCCO3jEcSBVHYDFSKoUYAAA6CloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDlviFam88F38AGSy8UzwBc+doSRf88VC1ua3bG70uaEDJYdK434X3AlXVogf9TPtoA9CooooAK4v4lvs8Ox84zMo/UV2nauA+LUwi8M25Jxm6jH/AI8KAN/wcmzQYxjGea6Csnw7EYdHgVhglAf0rWoAQ9DXHfE+1+1+B7yIDJJGK7KsjxJa/bNDmhxkkZxQBU8F3X2jw/brnPlIEroq4P4YXPn6dqEecmK42flmu8oAKKKKACiiigAooooAKKKKACiiszV9btNGs3uLhs7Rnapyx+goAu3N1DaxNJK6qo9TXAahrmoeKrptP0ldtopKyu42kn2NRpBqnji5LTZi0snGBlWxXd6bpdtpdqkFvGFVRgHHPFAFDw94ZtNDt8KDJK2GZpOSD7Gt2iigAooooAKKKKACiiigAooooAKKTNNLc0APopB0paACiiigAooooAKKKKACiiigAooooAKKKKAAgHrXlvw1zY65rsDH/XXZYV6lXlul/wDEv+IS2/T7Q5Ye/SgD1LvRSd6WgArzL4qt9sgtbAHpPG+Powr03tXl/iQ/bviPHYDnbEr4oA9JsVCWNuoGMRqP0qemRDbCg6YUCn0AFNkUNEy+oNOoPSgDy7wS50XxJeaWeDdTPKAfr/8AXr1HvXlviFDpnxW0y+T5bfyCH+pIr0+JxJEsg6MM0APooooAKKKKACiiigAoOMe1NZ1RSzEBR1J7VxniDxdIZRp+kK0lzIdolUblQ+poA0vEXiq20eMRp++uG4CxfMQfcCsLSfDl9r14mq64+5c7oEU4wPQitDw74QW2f7fqR82+f5nftn6V14AHAAAoAZDBHbxqkahVA7CpKKKACiiigAooooAKKKKACiikzxQAZpM0maMcUAGaOMUoFLigBR0ooooAKKKKACiiigAooooAKKKKACiiigAooooAK8t1/wD0L4vaDgYR4yW/MV6keleaePU8nxTp1/8A88kPP40AelKQwBHQ0tVtPk82wgf+8gNWaAGTNsgkf+6pP6V5n4cX+2PiNLrHVViaL2yMiu8129Wx0ieRjgFSo+pFcf8ACiyeLQ7macfvWuZGB9ixoA9D6UUE8U3dQA6iiigDhPiZp7voLX1sP9JjdQp9u9dH4Z1BNQ0W3ZTlkjVXPvjmr2oWkd7YyQyrlSuce+K4D4c3cmn3V7pN02ZZLhnj/wB3J/xoA9JoozRQAUUUGgAqC6u4bOEyzyBFHcmqmra3aaRbNLcSKCB8qZwWPoK4mOPVvG11vk322nZyYZB1H1oAfqOt6l4nvDYaPuhtlOJZWHyyD2NdR4f8M2mhxEomZ3Hzt1zV/TNJtNItEtrOIJGgwBV6gAooooAKKKKACiiigAoooJxQAUhPFNJooAQnNKAcUYoGc0AHSndaMUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFee/FWPyfD8t8P+WQxmvQj0rjvifbfa/At9FjJOP60Ab3h+TzfD9g/wDehU/pWnXOeC7nzvDtumf9Uip+ldEzBVJPQDNAHG/EMT3ekJY2jhZzKjHPcZ5roNC0+PTdLhhjGMqC3ucc/rXPbjq3i5ZOtukZUj3FdgoCgAdBxQBIelMIp46UhoAWiiigAPSvMvE8DeHvG9tryjbZqnlsB0ycc16bWL4o0aPW9FltpB935xn1HNAGpazrc20Uy9HQN+YqauF+HmtS3NlNY3hKTxSsiKx52gkZ/Su5ZgqliQAOSTQAtc54h8VW+kxmGHE94ePJU/MKzNf8Xu8hsNGja5nY7S0Z+571N4f8HrAwvtUcXV63JkbrQBm6V4bvPENwup62xaHOYraQcofWu+hhSCMRxrhR0FPxjAGKWgAooooAKKKKACiiigApjPin0wqKAEU5NOPIpnSnigBMc0oHNLxS0AJiloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKyfEdn9v0Sa3/vVqFuailUPEQ3SgDkPh00g0+9ikB+SbaPpk10Os36afpzysf8AZ/OsHwQ5jOpRuefPO0fnTdWc6xr8enr81tt3M3bIoAu+EtPa2s5ZZuZJJCwPsSTXSHoMVHDGIoUjHRQF/KpKAFBo3GjoaUrQA6iiigApGAKkHoeK57WfHPh3w/dLbalqUcErDIVjzWcvxV8GuwVdZhLHGB60k7q/QHpuYnilD4S8TJ4gj+Wz2CNkHTJ4Jqtqnjn/AISOdLDT7n7NAVDPdKevqtdzrWnWXizQjDuEkTjcp69q8n8L+EI7XWJNEubkwz/NIAB27VTTWjEnc9C0A+HNGiDi7he5I+aXua3f+Em0f/n+i/Oua/4VvH/z/Pz7Uf8ACt4/+f8Af8qQzpv+En0f/n+j/Oj/AISfR/8An+j/ADrmf+Fbx/8AP+/5Uf8ACt4/+f8Af8qAOm/4SfR/+f6P86P+En0f/n+j/OuZ/wCFbx/8/wC/5Uf8K3j/AOf9/wAqAOm/4SfR/wDn+j/Oj/hJ9H/5/o/zrmf+Fbx/8/7/AJUf8K3j/wCf9/yoA6b/AISfR/8An+j/ADo/4SfR/wDn+j/OuZ/4VvH/AM/7/lR/wreP/n/f8qAOm/4SfR/+f6P86e2u6aEDtdIFPQ5rlv8AhW8f/P8At+VWYvAe1h5l+7oP4WHFAHRDWNO27vtSYxmof+Em0cHH26P86yrjwWssWxLtk7cCs/8A4Vumc/b3/KgDpf8AhJtH/wCf6P8AOl/4SfR/+f6P865n/hW8f/P+/wCVH/Ct4/8An/f8qAOm/wCEn0f/AJ/o/wA6P+En0f8A5/o/zrmf+Fbx/wDP+/5Uf8K3j/5/3/KgDpv+En0f/n+j/Oj/AISfR/8An+j/ADrmf+Fbx/8AP+/5Uf8ACt4/+f8Af8qAOm/4SfR/+f6P86P+En0f/n+j/OuZ/wCFbx/8/wC/5Uf8K3j/AOf9/wAqAOm/4SfR/wDn+j/Oj/hJ9H/5/o/zrmf+Fbx/8/7/AJUf8K3j/wCf9/yoA6b/AISfR/8An+j/ADo/4SfR/wDn+j/OuZ/4VvH/AM/7/lR/wreP/n/f8qAOm/4SfR/+f6P86P8AhJ9H/wCf6P8AOuZ/4VvH/wA/7/lR/wAK3j/5/wB/yoA6b/hJ9H/5/o/zo/4SfR/+f6P865n/AIVvH/z/AL/lR/wreP8A5/3/ACoA6b/hJ9H/AOf6P86P+En0f/n+j/OuZ/4VvH/z/v8AlR/wreP/AJ/3/KgDpf8AhJ9H/wCf6P8AOnL4l0h2CrexknoM1y//AAriP/n+f8quQ+BreJADMSw/ixQB0X9s2B4+0rTTrFj/AM/C/nWN/wAIive5b8qZF4N2M7G8Zgx6Y6UAbf8AbFh/z8rSHWLHH/HylZH/AAiS/wDPyfypG8Jooybkj/gNAHPRaxDpl7ctEwbzHYjFbvgrSbiztbi4vXMks0pdC3ZTzWJpmhxX+uF0IkghJV+OM16LEoRVjA+UDAo2AWnLjrWVqut22nnyQQ05GRH61gnxN4iB3DQP3efvZ7etJO4PTc7QigGsrR9ZXUo9rgRzjrGO1ag4HNVYSaY6mudqE+gzTqoaxdCz02WZiAFFZ1JqEXJ9Ey4x5ny9zzfT9O07xf4ve7vII7hLZmiKuMjt/hXTa34O8MW+lyyf2VbRFejhOQcVwHh34dy6/Lf3ya1e2JNwTtgOAa3j8ObnRFN8Ndvb/YOYZjlTSmnSoKPVL/g/qSpQnOVSGqff5I0/hWl3HoVytzI8gFw4Tcei5OB+VWvGmgTTMuq2AIvIyNzKOSgOSCa0fBmqJqelu6QRw7JChVO+CRn9K6J0DoynkEEY9a6sQ71WZUZc8ebuYfhfxBFrenK4OJF+Uj6VvV5vrNpP4S11dVslJtpSEMQ4UZ6nFd9YX0OoWiXEDhkbv71ialqiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoozSE8UAGRR1FMyaXNACd6Wg0lABmnLjFN6Uc9qAFPWub1/UXlYabbH97L0IOCKv61rCabb7QczsMop71U8P6YQWvbn5pZDvXd/D7UAaOj6amn2gUD52wXOOrVZvJ/s9u8noDUpbB71Q1sM2nPs69aio7RbKitTm/DMA1m4m1G6UO0cjRqrDPHP+FdjgbNvQYxisPwrLG+nybI1TDnOO/WtqeZLe3kmkO1VUnn6ZrSpyp2toY0HKSTluzPttEjtdZa/RyAy48sDitfANc14f8SS69eSGGJTZLlRIOuRXTUNOyuWndtdg6VxvxL1P+zPBt1MoJcEdPpXZVDcWsF3GY7iFJUPVXGRWdWHPHlNKcuWSfY8p8LfFHwppumKlxPOkrYZh5J61Y1r4mWmvW/8AZ/hkPcXshHyyoVG3vzn0zXoX/CPaMP8AmF2n/flafb6LplrIJILC3icDG5IwDVySqaTM17i91f1uZvhDRX0XSRFIT5kp8xxngE8kfrXQ0UVdSbqTc31FCChGyK97Zw31q8E6KysCOR0rgYZbrwTq3kSktpkjBY5D1yT6V6NVHVNMh1SzeCZQcg7SRkr9KgoswXEdzCJI2yp71LXnWnahc+DtR/s+/wBzaexxDIeW3e9egQzRzxrJGwIPfNAEtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFNLgU0uaAJKTcPWouSetPC8UAPzRSUUAI3FNzTyMimEc0AFFFFADsZFN6UuaU+9ADev0qrqWowabbs8jYOOMU69v4bC3aWVsKBnjrXLQ6dP4j1OK/uSywQHMSj+Mf7QoAn03TJNTvm1G8Hyhsxr1BFdSoA4HA7AdqFjSJQqLgDpilx81ACkccU14xKhRulSBaXFJq4I4qfR9W0KZ5dFj+0bstskbAyTWJFb+N/FExsdeso7CyDbvNt5PmPseK9QoqotrfX1Hez0M/R9It9HsltrcDaOvGK0KKKG77iCiiikAUUUUAFFFFABRRRQBQ1TSrbVrR4LhAQwxuxyPpXEW8994IvFtJi0mmE4ic/M/wCNejVWvrCDULZ4J0DKwxnHIoALK9gv4FmgcMrdOelWa83urDVvBl0bnTz5mn9ZFb5mC+gFdfofiKz1y1WaFihIzsfhh+FAGzRRmigAooooAKKKKACiiigAooooAKKKKACiiigApjNihiTwKYRjrQAE5pKKKACpFNMUZPtUmPSgBaAeabnBoBweaAH00jinZBo60AR0oHNO20jEKM5xQAcZqjqWqQ2MJLElscAVm6r4ijtpPs9uGe4bhSBkA++Kg07Rbi7nF5qJy4OQAeM0AMtNPuNauVvL07YlOY1Hce4rpYo1jXaihQOgFSKgVQqgAD0oCnNADsetGOaWigA7UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADXjSRSrKCD1BGa4fW/B01tdtqeht5dx1YM3H5V3VHWgDg9E8dk3P8AZ+rxSJdJ8rybSqE+xrt4Z4bhN0MiuvqpzWZrfhvT9cgMd1F+KcGuJms9f8GS+ZbSebpq/wDLJQWbHpQB6dRXKaJ46sNUAWVWtZPSf5cn8a6iOWOZd0bhx6g5FAD6KKKACiiigAooooAKKKKACg80UUAIAKY45qSmseaAGBeaUpxQTgUBsmgBO3FAzmiigAzzT8Aioz1qRelADFyGqXjFRTXEEClpZFTHqa56/wDFSK/k2kMjueAyjIzQBtX2p2unwtJPMigDOCwBNcNP4t1LxBffYtFheKMH948yHBX0BqZfB15r199q1uUPAPmRFOCDXaWOnW2n26w28YCr0yOaAM/SdAhsMzSDfO4+YtyBW0oxx2paKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRlVhggEehpaKAOX1vwNpGsEyyQkTdVIOADXLvaeKvCj7kuBPYr92KNMtivUKQgHqM0AcLpXxJtbtvLu7C4syOC0w2g111prGn3wBtruKTPZWziqmq+GNL1pNt7b7x7cVyN18ObnT2LeGrlLI9fm5oA9Gory0XvjPQeb2Z78DtGhq5ZfE6R2CXeh3luRwWkGBQB6NRXN2vjfRJQPOvoICf4XfmtKLxBpMxxHqED/RqANKioEvbaTGyZDnpzU9ABRRketGR60AFNbpSswVSxOAOtQNd26jJmUA+9AElGKpPq+nJ968hH1aqVx4lsogTE4m/3DQBs9KQkKMk4rkZfF1zO3l2+l3AJ6Pjioxa+JNSIKXYhQ/wutAHRXmtWFkhMt1ED6Fhmsabxa1yxhsrWYt2kAytPXwNY3aA6onnyZySpxXQ2OmWunQiK2jCKO1AHMxaJqWqMH1OdXhPIVeDXQWGkWenrtgjx9ea0CPSgDFAAKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAxVK+0mz1Fdt1CHX3Aq7RQBxt18L/Cd2S0uloW6g+9Z8nwwtYRnTzHbt64r0KigDzR/AfiVM/ZteWLH3cA8VD/wh/xFx/yOQH/ATXqNFAHl39hfECx4l8SG4z3VTxR/wjHxCuvnTxX5IP8ACVNeo0UAeXDwb4/YhZ/F4eM/eUqea3rbwpqawolzqKykDBOK7FuTQKAOYXwVYP8A8fMSyg9c96uW/hTR7U/ubNVI6EVuUY4oAihgSFdqKFWpgKbSg0ALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAGkpTSUALRRRQA09aB1oPWgdaAHdqKO1FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/Z'] Multimodal Competition False Theorem proof Geometry Math Chinese 28 "如图, $O 、 I$ 分别为 $\triangle A B C$ 的外心和内心, $A D$ 是 $B C$ 边上的高, $I$ 在线段 $O D$上。求证: $\triangle A B C$ 的外接圆半径等于 $B C$ 边上的旁切圆半径。 注: $\triangle A B C$ 的 $B C$ 边上的旁切圆是与边 $A B 、 A C$ 的延长线以及边 $B C$ 都相切的圆。" ['由旁切圆半径公式, 有\n\n$r_{a}=\\frac{2 S}{b+c-a}=\\frac{a h_{a}}{b+c-a}$, 故只须证明\n\n$\\frac{R}{h_{a}}=\\frac{a}{b+c-a}$ 即可。连 $A I$ 并延长交 $\\odot O$ 于 $K$, 连 $O K$ 交 $B C$ 于 $M$, 则 $K$ 、 $M$ 分别为弧 $B C$ 及弦 $B C$ 的中点。且 $O K \\perp B C$ 。于是 $O K / / A D$, 又 $O K=R$,故\n\n$\\frac{R}{h_{a}}=\\frac{O K}{A D}=\\frac{I K}{I A}=\\frac{K B}{I A}$,\n\n故只须证 $\\frac{K B}{I A}=\\frac{a h_{a}}{b+c-a}=\\frac{B M}{\\frac{1}{2}(b+c-a)}$.\n\n\n\n\n\n作 $I N \\perp A B$, 交 $A B$ 于 $N$, 则 $A N=\\frac{1}{2}(b+c-a)$,\n\n而由 $\\triangle A I N \\sim \\triangle B K M$, 可证 $\\frac{K B}{I A}=\\frac{B M}{A N}$ 成立, 故证。'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAZ4BYgMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APfqKKKACiiigAooooAKKKKACiiigAooooAKKKTPqcUALRXL6r8QPDujauml3t6EunIAUDIyeOua6ZHDoGU/KRkGgB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYXirXbPQtGklvJTH5wMMRA6uwwP1xW5n1OK8V+Jtz4g8UeJ4vC+j28U0UGy6Dk/xLg4z+FAGP4h0O807wXpFxq0QOoSaorCUnLFCy45/GvfbUf6JD/wBc1/lXgPje68bPZaPB4isLWGzS7iVXibJyGHtXv9r/AMekP/XNf5UAS0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBg+LP7cOiSLoEcT3j5XEh4we9Y/w38OajoWiONaRH1B5WYyZ3EA9s9cV21GKAPKviX4f8ZeJL2G202G2bT4JFmjZj8xYc13nhj+2P7EhGuJEl6owyxdAK8w8dfE/XPD3xCh0SzEH2Z2jB3L83zHntXskDF4I3bqygnHrigCSiigkUAFIWApC3pSYoAeDmimrTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooyBQAUUm4UbhQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFV7+Z7fT7mZMb44mdc+oBNWKz9Zljj0e73sq7oHUbj1O0gD9aAPnXxNA/iDw9Z+LZSDrEmo+QrD7uAwA4r2Lwb4mu5bs+HtYGdVt4lkd4x8m3HHP4GvNIdJupvhxpsToYpF1bfiQYyN4Ner6hpMtk6azp5VLlY1E5b+JAO1AHVk0081Q0fVItZ06O8hDKjZGDWgOKAEHvS/SjFOoAQCloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo4oAKCcUU1smgALelNPNFHegBMUYpaKAJKKKKACiiigAooooAKKKKACiijOBQAUUzeM07tQApIrjviExGkWmCRm6TOP94V13Ncd4lP9u6pFoMXyyxss5c9MA5xQBD42QLoulhVAHnx8AfSuwESTWQicfI6AHHpiuR8fultpOmLJIF/0mNcn14FdnAP9HiOf4Qf0oA5CS4Pg+9hhlkX+zLiTy4Iu6t9e/auzA4rD8S+HLbxBZIsqj7RAd8Dn+B/WsXwb4kuptTuvDWpv5+pWC5muBwrZ9BQB29FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNLc0AOJ4pmTmjJpKAJM5FIaRTilJFADcUlOPSmgZoAKKXbRtoAfRRRQAUUUUAFFFFABRRRQAU1gcU6kPTFAEQGKeCTRjmlVcCgAZlVSxOAo5P61xenumo+P5L60cTWohKGZOV3YIxXWajxpd3/1xf8A9BNcB8Fv+RTu/wDr9l/9CNAEfxn40bR/+whH/wChLXo9r/x6Q/8AXNf5V5x8aP8AkDaP/wBhCP8A9CWvSLX/AI9If+ua/wAqAJcCvM/G1pcaD4gsNZ0aFo5LqcC/mUZzGO5NemVBd2sN7aSW1wm+GQbWB7igAtLy3v7ZLm0mWaFxlXU5BqevM/C11J4c8ZalpF4/2TSchNOjkOFY+i+pxXpdAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUcUhOKAFJxTS1ITmkoAcCc0h4pKceRQA2iigDNABSkZFKV4oHTFAAvIpRxS8CmF6AHZozTMmjJoAkooooAKKKKACiiigAooooAKKKKAEIpaKKAOW8eeJP+Ea8PG4MHnee4gxnpuyM/rTfAPhz/hGvD/kef532iQ3GcYxu+bH61hfGjnwjbf8AX5F+jCu903/kF2fp5CD9BQB578aP+QNo/wD2EI//AEJa9Itf+PSH/rmv8q83+NH/ACBtH/7CEf8A6EtekWv/AB6Q/wDXNf5UAS0UUUAc1410aPUtBnnitfNv7ZC9qw6o/qKr+ANYe/8AD0Fre3HmarboBdRt95D711uK808a2Vzo3iTS9X0uNra1aXdqUydCvP3v0oA9LoqvY31vqNnFd2sgkglG5XHcVYoAKKKKACiiigAooooAKKKKADignFNJIpCc0AGTSim0o60AJRSkcUlABTgaQCl24oANvekHy96UnApvFADg2Tig9aYKf16UANbOaAMinYz1p1ADNlGyn0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUx3EaM7HCqMn6YoA801UnUfjPBpN4fOsBaCT7O/K7uDnH1r0xEVEVFGFUAAegFeZaYP+Eh+LA8Q6Z++02GA27zDoHHBH6V6fQB5l8aP+QNo/wD2EI//AEJa9Itf+PSH/rmv8q83+NH/ACBtH/7CEf8A6EtekWv/AB6Q/wDXNf5UAS0UUUAFRXNtDd2z29xGskMgwyN0IqWigDzLwrcz+GfF2padq0jW9rdS402FuhXvt/WvTK5nxzo0mq+HLk2VuH1KND9mcfeQ+xqPwLrUV9okdhJcGTUbJfLuw3VXoA6uiiigAooBzRxQAUcUhpu6gBS1Jk0lFACnmkpRQRQAlFH0pQMigBd2aTHNLwKQmgBTgUh5FBG4Ugz0oAUHjBpuKXHOadjnNACBacoxS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVe9/48bn/rk38jViuT+IfiC58N+F3vLaNJHeRYiG6ANxQBz3wU/wCRc1Mdv7Qm4/4G1em1zPgfw7b+HdCCW0jv9rP2l93Znyx/nXTUAeZfGj/kDaP/ANhCP/0Ja9Itf+PSH/rmv8q83+NH/IG0f/sIR/8AoS16Ra/8ekP/AFzX+VAEtFFFABRRQTigAOK868U6Xdad4w0rWLGLydOjYtftHxu+vrXoLPmoZYkmjMcqB0PVSODQAtveRXUEc0Lbo3GQe9Sgk9q4zQZJNG1i6s79mX7VLm2HYD+ldkje4Oe4oAcOKWlwMUUAFMIxUlIRQAyijvRQAoNL1FIFpwAAoAaABS5ANIetIcCgBWyfpTTTxRt4oABnFG3nNOAooAMcUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5v8TZk10Q+ErL5tTldJ1U9NoPP869Iry3UuPj5p/Y/Yz/SgD0jT4Xt9NtYX+/HCit9QKtUUUAeZfGj/AJA2j/8AYQj/APQlr0i1/wCPSH/rmv8AKvN/jR/yBtH/AOwhH/6EtekWv/HpD/1zX+VAEtFFFACZAqNnz9KcRmhlAHSgCOiinbTQBh+KNMm1LRZ4rRR9rK4jfuPoaf4dvormxW33N59uPLk3+vfFbIGK5PXYJdO1611kAiygUiVY+rH1IoA67JpSar29zHdwJNEwKsM4HapxzQA/qOtFRZK1LnIoAZil28c06igBrGm9RmlI5pAMGgB2aaRUmKKAEHSloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAI5nMdu7jqqk/pXmngFf+Es1q78Tajzf2Uz2sWzhdgJ6j8BXo1/PFb2MzzSLGm0jLHArz74OwSw6RqxljZd99IVLDG4biQf5UAelUUUUAeZfGj/kDaP/ANhCP/0Ja9Itf+PSH/rmv8q83+NH/IG0f/sIR/8AoS16Ra/8ekP/AFzX+VAEtFFFABSHpS0UAMxRuGaO9M2mgBxxUcqLJGysoYEYwRmn0UAcdoEp0LV5tIvGLT3TmWLByAv+cV2SdfasDXNFeedNTsiFv4hhGf7uO9WvD+sx6zZu6gh4W8uQ4/iFAGuy5pegpCaCSaAFHWlpBS0AFJgUtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHA/GFmT4fzlWIPnxjIPua6vQEVdAsNqgZgQnA68CuK+It4uvXcHgiFSl3eATrM33QFPI/Wu9022az022tmYM0MSoSPagC3RRRQB5l8aP+QNo//YQj/wDQlr0i1/49If8Armv8q83+NH/IG0f/ALCEf/oS16Ra/wDHpD/1zX+VAEtFFFABQaKM0ANxTad0rP1XVIdMtmkcF5MZWJT8zfSgC9x+P50nP/6+K45r/XfEJ8zSmfT0j4dZ1JLH1FNt9evvD+pw6drxMyzjcLteI4wOxP40AdkU3gqe9cDrc114Dvl1WNwdCcgTQAZkMjHqD6V6DE6Sxq8bBkYZUjuKzte0Kz8Q6Y1lex74yQw9iOlAF23nF1bQzoCFkQOOOxFS4rg/DOuXuk+Iv+ER1eQXN0UMsMsYwqx9lI69Mc1331oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiimyErGxHUAmgDyzXMj49aJ6/Y39+616rivMPhwq+ItT1PWdTH2i/srpoIJT1Rc9B+Qr0+gAooooA8y+NH/IG0f/sIR/8AoS16Ra/8ekP/AFzX+Veb/Gj/AJA2j/8AYQj/APQlr0i1/wCPSH/rmv8AKgCWiiigBDwKaKeeaTbQAVxEU8XirxX5ts4T+yZNkqnnJ6/1ruK8g+Gup2dr458VWs1zGk815+6jJ5bhe34UAeubQOw/KuE+MBH/AArm/PcFefz7129zcRWsLTTyLHGvV24A+tcZrBj8T63baehF5pDrm4VDkZFAHR+GP+RY03v/AKOvf2rXqG2t47W3jghXbHGuFA7Cpc0Acj4r8MPcTf25pciW2qwqAZyOqDqv4gVa8F+J08U6M10kTIYZDC+7nLKcE/mK6N0WRGRhlWBBHqDXmes5+G17HqNmc6PczCL7Cn/PRzjd+bE0AenUVHBL59vFKARvUNg9sipKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsDxj4hHhjw1caoYDP5fy7Acdc1v1wXxhz/AMK6vv8AeUc0AWvh34fOi6RcXLTiT+0ZPtWAPubucfrXZ1k+Gf8AkWdN/wCvdf5VrUAFFFFAHmXxo/5A2j/9hCP/ANCWvSLX/j0h/wCua/yrzf40f8gbR/8AsIR/+hLXpFr/AMekP/XNf5UAS0UUcUAFFITSBqAHV534g+F8F94ltdc0qdLC6ibdIwGS59a9EooA4+38K6nJOq6lqxu7Un54iPvV0WnaRZaVG0dnCI0Y5IFXcCl6UAc7428SHwp4ZuNVEBnKEKEBxyc1i/C2+1zUtCubvW0lSSWYvCsnZDnA/LFUfH95/b+t2ngbb5f2xfP+0f3dpHGPxr0HT7T7Dp9va7t3kxqmfXFAFmszW9Ds9esDa3kSyKPmTdztcdG+tadFAHn/AIV1q807xTN4OvpWu5oY/OFz/s84GK9ArkPFvhoXKtrGnz/Y7+Ab3mQcyIozt/n+dXPBPiM+KPDsWotD5R3mMrnPI70AdHRRRQAUUUUAFFFFABRRRQAUUUUAFFFGaACiiigAooooAKKKKACiiigAooooAKKKKACvMPFksl38VtE0a4YyadPCWlt2+6xBGM16f0FeWzA+JPizp2q6X+/s9PVobmQdEf0/SgD0+KKOCJIolCogwoHYU+iigAooooA8y+NH/IG0f/sIR/8AoS16Pa/8ekP/AFzX+VcP8UtPXUdM0xGcrsvEfj6iu4gGLWEeiD+VAEpNJmk5NFAByaXAoAzS4oAWiiigAqjq2q2mjabLe304igQcuR09KvV5t8QLw63rdl4JdQkOoJvaccsm0j/GgCX4eaVc3U19q+swmW5M5NnPJ94RHPT9K9EqpptmNP022swxYQxhAx71boAKKKKAGyRpLG0cihkYYIPcV5nrxf4eazb6hZOz2F9MtutiOEjJIyw9+f0r06s7WNHtdZsmt7mNWOCY2I+43YigC9G++NW6ZGafXnvg3Wbuy8UXng64ka5Wyj80XLn5myTx+lehUAFFFFABRRRQAUUUE4oAKQmkLelICTQApb0pBQBS0AOooooAKKKKACiiigAooooAKKKKACiiigBD0NeY/CL/AI+PEvp9vP8AWur8deIJ/DHhK81W2jWSWFchW6Gqfw/0KHS9Ie/jkZn1Mi5kB6Kx7CgDsKKM0hNACk4ppakPNFAHH/EHnT7D/r6T+YrrYP8AUR/7o/lXJfEEgafYf9fSY/MV1sA/0eM56oP5UASA+1GKcBiigAooooAKKKKAKGr6xZaHp0t/fS+XBHyzAVxfw90m7ludQ1bVYvNMs5kspn5IjPpVO/kbxh8QLE6cxuNLsGMd9E33d3oR3r0yOKOKNY40CoowqjoKAH0UUUAFFFFABRRRQBx/jLw/DJavrFrI1td2oMzPGOZcfwk+lXfA/iGbxP4XtdUniWKWX7yDoMV0MkaSxtHIoZGGCD0NeZWZk8IfEG+lvy1vpF9tjso0+6G78dqAPT6KQMGAKkEHnIpaACjikJpCTQApNITkUlHSgAAoxSinUAIKXAoooAKKKKACiiigAooooAKKKKACiiigAooooA5H4k2kd/4IvrV2++Og6/lWt4eT7P4esIVzhYQvNcl4n1GaP4oeHtP6286Euh6HnuK9BCqoAUAAdhQA4HjmgjNN6mnjNACDj60gBp+BRQB5p8ZXePR9IKMVJv4xwf8AaWvRrX/j0h/65r/KvN/jR/yBtH/7CEf/AKEtekWv/HpD/wBc1/lQBLRRRQAUUUUAFc94112fw74XvNRtFR7mJMxxt3Nb7uqKWchVHcngV5fez/8ACbePbFtKfzbPSpCl6jn5WP06HtQB0Hw+0OCw0t9VVn8/VCLiZT0VvSuyqL91bRfwRxqOM8AVH/aFn/z9wf8Afxf8aALNFICGAIIIPcUtABRRRQAUUUUAFY3ibTP7U0G7gjiR7kxnySw5VuxFbBqIk5oA5L4eSz2OgW+janIx1K1XExc5yfYmuxLVyvimwnM9nf242pbyb5ynBZff1rfsL+DU7VLi3PyMM4PUUAWjzRS4oAoAMUAU6igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKZLLHDGZJXVEHJLHAoA8w8Kn/AITLxnfapqXFxo1wYbfZwNvvXqBHFeZfCmKRNW8TyOjBJLzcjEcMPUV6fQAgFLRRQAUUUUAeZfGj/kDaP/2EI/8A0Ja9Itf+PSH/AK5r/KvN/jR/yBtH/wCwhH/6EtekWv8Ax6Q/9c1/lQBLRRRQAUUUUAecfF6bXo/DciaTJCsDRnzwWxIev3azvgj4V1TQNJur3UcYv8SR5OWxx1/Kp9Qc+OPH1omnErHocpF4kh4bOeg79a9PVFRQqqFA6AcUAZ+u6PDr+kT6dcSSRxSjDNGxVh+IrxPwD8PrLxDc6wt5qGoYs7kxR7bhhx7817T4j1618NaJcareKzQQDLBetcv8NNDuNNttR1CYqYtTm+0QgdQp9aAO2s7VLKzhtkZmWNdoLHJNT0UUAFFFFABRRRQAUwjmn803FAEZUNkMoKnqD0NclbFvDniO5kvMi3vXxDt+6n19OldkKx/FGlzax4bvrG2KrcTR7Y3bsfXNAGujpIgdGDKehB4p1cP4B1eODT18OXZeO+09fKkeU4Ep/wBknr1ruKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4v4rMyfDnVmVirCPgg4NdpXn/AMS79L61i8IopF3qylYZD91frQB0HglFHg7S2CgM0CliOpPvXQVmeH9Pk0nQLKwlYM8EQQkdCa06ACiiigAooooA8y+NH/IG0f8A7CEf/oS16Ra/8ekP/XNf5V5v8aP+QNo//YQj/wDQlr0i1/49If8Armv8qAJaKKKACuS8ZeKTon2XTLfI1DUWMds5GVVvf8q6mWaOCJpZXCIoyzHoBXmmiwv4v8cahPqqNNZ6bIG06RRhfrnv1NAHU+E/C66HHNeXGG1K8w106n5S3tXTUmBS0AeZ/E3XtP1OzPhCO6hW81BSFkLjZH/veldz4ftGsfD9jas6uYogu5DkN9K5q++E/hTUb6W8ubWYzyNuZhLjn8q7GztIrG0itYQRFEu1QTk4oAnooooAKKKKACiiigAooooAKKKKAPPvH2jXX9q6X4htlJt9MYyTxxj5n69B+Ndfo2tWut2Md1bNgsMtET8yezDtWiVVgQwBB7GvMNJhl8CeLtQbUFaW21efzI5U+5AOPvenSgD1CimRTRzxLLE4dHGVYdCKfQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeX+Nf8Akq/hEdyT9eteoV5Z4MY+KPGutXGrf6RLpVzstC3/ACzHBoA9TxRRRQAUUUUAFFFFAHmXxo/5A2j/APYQj/8AQlr0i1/49If+ua/yrzf40f8AIG0f/sIR/wDoS16Ra/8AHpD/ANc1/lQBLRRUc08dvA80zhI0BLMegFAHGfEPXI7PT4dEKOZdX/0eOQHhDjqfyra8IaJJ4e8MWemTOkktum1nUcE1x2jQP4t8dX9zqKG70uzcSadL1QHnp69TXp1ABRRRQAdaMUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVg+MNCk8ReGL3TIHSOWdNquw6VvUUAcV4K1yOK1j0C8je2urMCFDKcef7qD1FdrXAeONFu4td0/xXbxtcf2aDm2QfPJn0rrNE1u11uxWeB18wD95HnmM+hoA06KKKACiiigAooooAKKKKACiiigAooooAKKKKAILu8t7C2e5upVihjGXdjwK85+GFncR674lvXhYW11ch4JD0dcDp+tb3xOP/FvNX/641c8B/wDIjaP/ANe4/maAOjooooAKKKKACiiigDzL40f8gbR/+whH/wChLXpFr/x6Q/8AXNf5V5v8aP8AkDaP/wBhCP8A9CWvSLX/AI9If+ua/wAqAJa4n4i68unWFvpJhLHVmNsHzjy8966nVb7+zdKur3bv8iMvt9cVwvhKy/4TVo/FOpP5ltKd9taNz9nYdwaAOq8IaA3hnwzZ6S8wma3XHmAda3aKMigAooFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAYrzDSo3+HviK7iu0Mtjqcxne86JD6Ka9Prn/GXh7/AISjwzdaUJvJ80ffxnFAG5DMlxCs0TBo2GVYdCKkrjfh3r41jSZ7TyTH/Zr/AGYtnh8d/wBK7EmgBaKBg0UAFFFFABRRRQAUUUUAFFFFABRRRQB5n8Q7mZvGXhvSzITY3blZ4P4ZBz1r0a2tYLO2jt7eMRwxjCoOgFeZ+Iz/AMJL8RdEfSv9IXS5SLwr/wAss56/nXqVABRRRQAUUUUAFFFFAHmXxo/5A2j/APYQj/8AQlr0i1/49If+ua/yrzf40f8AIG0f/sIR/wDoS1301y9nobXMab3igDBfUgdKAOH8fX9xqmpWGjaNM0s8c6m9gQ/8sv8Aa/Wu80/T7XS7KO0s4UhgT7qL0FcN4D0uTUdXuvGdxmC4v18prYdFxnnP416BmgB5NNo5NKaAFWlpFyKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKCMjB6UE4ppagDhNb0j/hF9THiDTpzDaqcT2a/dmZsfMe/au0tZ/tNrFPjb5iBseme1JdWsV7btDPGHQ9jXH2GoXuieMIvDzI1xbXCmUTNwU6YX9aAO4WnU0f/Xp1ABRRRQAUUUUAFFFFABRRRQAUUVj+KNWk0Pw1f6nEgeS3jLhW6HmgDhPhp/yPfjH/AK+R/Ja9TrgvhxplvHZz+I/PH2jV8TSxkjCH2/IV3XnRf89U/wC+hQA+imedF/z1T/voUedF/wA9U/76FAD6KZ50X/PVP++hR50f/PRP++hQA+im+Yn99cfWk8xezr+dAHCfFOwXUNL0xGcrsvEbj6il8VibWDp+laZdSJcQOjzqndPf9ad8SbgQ6LbSoQxjnVuvXpU/g6OPUXPiKVwlxOnlNGDwAKAOrtbaK1t0ihjVEUdAO9TgDFM82PpvTP8AvClEsfeRP++hQA7mnYFR+bF/z0T/AL6FL50X/PVP++hQA+imedF/z1T/AL6FHnRf89U/76FAD6KZ50X/AD1T/voUedF/z1T/AL6FAD6KZ50X/PVP++hR50X/AD1T/voUAPopnnRf89U/76FHnRf89U/76FAD6KZ50X/PVP8AvoUedF/z1T/voUAPopnnRf8APVP++hR50X/PVP8AvoUAPopvmIRw6/nQZE/vr+dADs00tzTPNT++v50m9P76/nQA9uaMZpvmIBy6/nQJo/8Anon/AH0KAH1la3pMd9avKrGK4jUssy/e4HStPzYv+eif99CgyQkEGRCD1G4UAcp8P/FE/ifSrmWeFYmtp2gGD94KSMn8q6+vMvGgj8F3EXiTS5FG51hazU4RtxALH3r0WyuPtVlBPxmSNWIB6EjOKALFFFFABRRRQAUUUUANeRIxl2VQe7HFM+0wf89o/wDvsVyfxG0JNZ8MTytd3Fu1ohlQxOVyfQ4rz7wH8N4PE3hGz1W71rU1mnXJCTNgfrQB7ekscmdjq2Ou1s1S1zSYtc0a502dmSK4XYxXrXmMlpJ8N/EOmWulXlxfLqU3lTi4cv5YwTnvjpXr1AHl8PwXtLeJYofEOqJGgwqq5AH60/8A4U7B/wBDJq3/AH8P/wAVXptFAHmX/CnYP+hk1b/v4f8A4qk/4U7D/wBDLq3/AH8P/wAVXp1MbNAHmn/CnoOn/CS6t/38P/xVKPg/CpDf8JJqvH/TQ/8AxVekAc5p4NAHGr4ARUVf7Xv+Bj7x/wAaD4FgXg61eA9eXP8AjXY49q85+JsMOnw22qNdzxtLOkO1GIHJAoAvXHgHT7hAs+rTumeA0mRmpbf4eWsUQW31S6WMHojcfzqrcfDWz1Wxi3atqCBlV8rKR2+tVrO8ufh5fRabqEjSaHKwjtp3O6VpSeh9un50APvPhPFd3LTHxDqce7+FXP8A8VUH/CnYf+hk1b/v4f8A4qvTAdyhh0ODS0AeZf8ACnYP+hk1b/v4f/iqP+FOwf8AQyat/wB/D/8AFV6bRQB5l/wp2D/oZNW/7+H/AOKo/wCFOwf9DJq3/fw//FV6bRQB5l/wp2D/AKGTVv8Av4f/AIqj/hTsH/Qyat/38P8A8VXptFAHmX/CnYP+hk1b/v4f/iqP+FOwf9DJq3/fw/8AxVem0UAeZf8ACnYP+hk1b/v4f/iqP+FOwf8AQyat/wB/D/8AFV6bRQB5l/wp2D/oZNW/7+H/AOKo/wCFOQ/9DJq3/fw/416bTSSBQB5mfg7B/wBDLq3/AH8P/wAVR/wp2D/oZNW/7+H/AOKr0jJNSA0AcTafDqO1t1hGtag+3+JmP+NS/wDCBR/9Be+/77Ndht9hSjJoA47/AIQOL/oL33/fZoHgFP8AoLX3/fR/xrsQKdgelAHEXfw6iurdoTrWoJu/iVj/AI1k/wDCnYf+hk1b/v4f8a9NxRQB5l/wp2D/AKGTVv8Av4f/AIqj/hTsH/Qyat/38P8A8VXptFAHllz8E7G8jEdzr2pyoDna75GfzrtfDPh+HwrpAsRfS3CBsiSduR6DmtuWUQwvKx+VF3H8Oa83nluPiXcyW1rNJDoEZKtPExWXzF4xx24oA9GFzATgTRk/7wp/mIW2hgT6A15fcfCay062lvo9a1NntlMqq0zYJUE+tUfhfJ4i1/xNdeJNQIWweMwIqtxlSe35UAewUUUUAFFFFAHKePdatdN0RrGbd52og28OBxuPrXDeHdJ+J/hrRINLs4NPMEAwpfBJq942u7fxT4rstDtZ44bnSZ1uJzM4VSvtn8a9BvNf02xsZbpryCQRJuKxyAscegoA4zwMLW68RaodQLSa8gH2tG+aOM5/g9Pwr0ivOvAOnXFx4i1fxQFKWWqANCjjDD6ivRaACiiigApG5FLSc0AMpQDilxTqACvMfiMR4o1C18Kaf/yEYZo7pt33dgIP9K9Hu7uGytnuLiRY40UsSzAdK8w8OXdp4g+Ik3i23u4I7BYmttssoDbhkdPSgD1C1jMVpBG3VUVT+ArzX4xTRGDQoxIvmC/QlQRkcjH9a6jxN470XwvYJd3U6zq77AkDB2yfpmuF07wknxA8YHxZcGdNJO028TMVYOvcr6UAevQ/6iP/AHR/KpKRV2oF9BgUtABRRRQAUUUUAFFFFABRRRQAUUUUAFIaWk5oAZjFAB704gU4UAIM0o4oooAKKKKACiiigAooooA474ka/deHfDBubQIXlmWFtwz8rcVe8G+HrTw7occVoXK3B+0MWOfmfk/zNUfiR4fu/EXhkWtltEkcyTHcf4VOTVrwx4o07UdHjJlFs0H7lluGEZJX5c4OPSgDorm3W6tpYHyFkQq30IwazPDfhyz8MaUNPsS5hDl/nOTk1g6x4ovb7Wo9G8ObGu0IkllcZjMfcBumeveuzj3eWu/G/A3Y9aAH0UUUAFFFFAHE638L/D+v6vLql2LgXMuN5jlIqvZfCPw7Y30N3G12XjbcA0xINd9RQA1URF2ooVfQDAp1FFABRRRQAUUUUAFFFFAGR4i8O2fibTDY33meUTn922DXHp8FfC0Ywn2xRnOFmIr0fFFAHncfwa8MJNHKwunMbhlV5SRkfWvQIbeOCJIo0VVUYAA4qSigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBCAc5Gc1yGv/AA40PxFqH2268+OXbjEMhQfpXYUUAY3h7w1YeGrAWlkrlQc75Dlvz61s4owPSigAooooA//Z'] Multimodal Competition False Theorem proof Geometry Math Chinese 29 "如图, 在 $\triangle A B C$ 中, $P$ 为边 $B C$ 上任意一点, $P E / / B A, P F / / C A$, 若 $S$ $\triangle A B C=1$, 证明: $S_{\triangle B P F 、} S_{\triangle P C E 、} 、 S_{\square P E A F}$ 中至少有一个不小于 $\frac{4}{9}\left(S_{X Y \cdots Z}\right.$ 表示多边形 $X Y \cdots Z$的面积). " ['\n\n如图, 三等分 $B C$ 于 $M 、 N$, 若点 $P$ 在 $B M$ 上 (含点 $M$ ), 则由于 $P E / / A B$, 则 $\\triangle C P E \\sim \\triangle C B A . C P: C B \\geqslant \\frac{2}{3}$. 于是 $S_{\\triangle P C E} \\geqslant \\frac{4}{9}$. 同理, 若 $P$ 在 $N C$ 上 (含点 $N$), 则 $S_{\\triangle B P F} \\geqslant \\frac{4}{9}$.\n\n若点 $P$ 在线段 $M N$ 上. 连 $E F$, 设 $\\frac{\\mathrm{BP}}{\\mathrm{BC}}=r\\left(\\frac{1}{3} 证明: $I O=A E$" ['$\\because \\angle B=60^{\\circ}, \\therefore \\angle A O C=\\angle A I C=120^{\\circ}$.\n\n$\\therefore A, O, I, C$ 四点共圆. 圆心为 弧$A C$ 的中点 $F$, 半径为 $R$\n\n$\\therefore O$ 为 $\\odot F$ 的弧 $A C$ 中点, 设 $O F$ 延长线交 $\\odot F$ 于 $H, A I$ 延长线交弧 $B C$ 于 $D$.\n\n\n\n由 $\\angle E A D=90^{\\circ}$ (内外角平分线) 知 $D E$ 为 $\\odot O$ 的直径. $\\angle O A D=\\angle O D A$\n\n但 $\\angle O A I=\\angle O H I$, 故 $\\angle O H I=\\angle A D E$, 于是 $R t \\triangle D A E \\cong R t$ $\\triangle H I O$\n\n$\\therefore A E=I O$'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAUsBNQMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APfqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKxvEPiGHw7Yvdz280yKMkRqSf5Vw6fG3TJBlNE1Rh6iFv8KmMlKTit0Nqx6jRXnWmfF3TdS1SGw/srUIJJT8rSRkD9RXocbiSNXHGRmrtpcXWw6iiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGN4nuIYdDuTMUA2dW6Vz+naxodpoUZgubOS5ZB8ispNJ46eO7vtO0iZDJDeNskA49f8KoD4V+HtOvbSeytJFlU5zvzilFW99rfr8yp3skt7HVLpMWpmyvzGgZVzwoFbyrtUD0qvZ7IbeODeNyDBFWap7tLYha2fkFFFFIYUUUUAFFFFABRSEhRk9KRHV13KQR6igB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFRzTJBE0srBY0GWJ7D1rAPjzwuCQdctBjg5Y8UAdHVTUrtrDTp7pYWmaNdwjXq3sK4HU/ihewX8keleHLnU7MH5LqAja/wBOap/8LV17/oSNQx9R/jQNb6mFL421eXXWvLnwrqEqIxaJQv3a3ZfixqhjYJ4P1EHscdKVdQ8X+OxixW48N/Z+WMwz5n5f55rK8TaJ498OeH7vVW8XmYWyl9gXrSStBQvogduZz6v+kdz4MOoXaz32oI8fmtvSNxyo9K6+vmHRfEPxI1G4t3u9TurLT5eWvJFOxB6n8q6k/FOTwKRb32qL4jacb1kiP3B6c/54q5S5mRCPKrHu1FeTw/FrWriFJYfBd+8bjcrDByPzrR0n4nXdxfrHrHh+50qzI+a6nI2r7dako9HornR478LswUa1a5JwPmPNdBG6yoroQVYZBHcUAOoorE8SeILPQrHzLu4SEOdgZuxPehuw0rmd4q1ya2CWtsGDs2GPtW3oasNLj3HJ7157qOvaJLb2ax6xb3V28+CVPJ6cV6TpyBLNABgdaVOm48zezsKe8bFqiiimAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVR1bWLDQ7I3eo3CQQA4Lse9cNqfxC1C9ufK8M6SdTsZBs+2RE4Qn/CgDtta1m00Oxa5u5VQEEIGP327KPc1543xE8T3ztaR+EbuFZj5a3GRhc9G6/jWhovw/vmvluvEOsSanbE+YlrMOI36jHHavQ0UIgVRhQMAelAHmEXw/8AFk8qG88WyS2rHMkBXhlPVelb4+F3g44J0W3Jxycda7HvmigCppumWmkWMdlYwiG3jGFQdBVvFFFABiuP+KI/4t1rH/XGuwrj/ij/AMk51j/rjQA/wpptpq3w40uzvYVmt5LYB0YcEZpn/CrvBwB26JB7cdKveA/+RF0f/r3H8zXRUAeYTfDzxWkzix8XyW1qp/dQhPuL2HSs3Vh4g8P2LaHqulT+K4Jj5hmAwFPp1Hr+lew0UAeDaZFoDXf/ABOvBC6LbbTi8mIAVu3enGaWKXdbfEqJo0bdHbqDyOyfd/Cva9T0qx1mzNpqFus8BOSj9K52f4d+EooJJF0i2iZELCQD7mO/4UAcVf8Axh1fRLeN9R8L3EdvlY/tLMMN23de/Wuj0uHSfiHp66jqCx3NmR/qW6KRXifjO31g6jbwnVZtV0D7UiBz9xTuA2fh0r1u5+HmoQeVeaDrEllaJEsn2KIDbIQMkdO9NOy0Womc/wCKLbwFoWp2a2cdrFPHOpfb1A9a9j0m/tNSsI7iymWaAjAdeleTW91os2oSS+MfCcOmRY2rdzZO8j8f85r1Dw42jvo8TaF5f2A5KeX0pwlaioS3QSV58yNeijOaKkYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFBoAQnAz2rl/FPi7+xmFjp0K3mruN0dpnBZe5/lR4p8Vf2VIumafGLnWJxmG2/vL3P4ZFN8KeFRpwN/qLm61GU+Z5koy0Of4QfSgDF0rR9U8Y341XxNaPaWyDYdLflGPZv8mu40zSbDR7b7Np9rHbxE7iidM1dooAKKKKACiiigAooooAK4/4o/wDJOdY/6412Fcf8Uf8AknOsf9caAL3gP/kRdH/69x/M10Vc74D/AORF0f8A69x/M10VABRRRQAV578SdTubqGDQ9Fnf+1WlR3hjPJiyN36Gus8RazZ6LpE1zeziFGHlq3+0eB+tcr8NdGvorK41HW4C2oSzO0M0nL+STlQD6YxQByniixh1m4/4Qm3gWw+y2ov2mTqZAu4598ius+D17d33ghHvbmS4ljmeMO/XA4FYF/z8ZtTxz/xKZOnrsNbPwXwPBDAf8/Uv86AO21PRtO1mBYNRtI7mIHIWQZANcPqWl6z4Lv5L/wAOWj31pP8AIunLwkPuPr9e1ej0YoA5rwt4qXXENtdxi11WIZntOpjrpa5DxT4We5lGraSxt9QibzGEXBuOnytVrwt4pXW43tLtFg1W3H+k2w/goA6WikBpaACiiigAooooAKKKKACiiigAooooAKKKDQAhrlvFXio6UU07TkFxrFwMwW54DD3Pal8V+KW0oJp+mqs+sXA/0eI/dJ9z2pvhXwqNOVtR1AtNqM58xvM+bySeqqfSgA8K+FRpwa/1AtcahMfM3S8mHPVVPpXV0UUAFFFFABRRRQAUUUUAFFFFABXH/FH/AJJzrH/XGuwrj/ij/wAk51j/AK40AXvAf/Ii6P8A9e4/ma6Kud8B/wDIi6P/ANe4/ma6KgApsjrGhdjhQMk+gpxOK8++JGpPqFovhrSZpP7XnZXRU4G0Hnn8RQBnxh/GHxGiv7XN1oFuhjlVx8nmj2NejXqiLSbgR/KEgbbjtheMVBoWnJpuk28KwpFLsUyhBjL45Jqt4q1yx0LRJpr6QokoMKkDOWYYAoA474RRpqWgXd/eKJ7s3MsRmfliuTxn0qHRWaz+Nd9plsTFYrahxAnCBuecVs/CzRL7Q/C8kN/GEeWd5lwf4WORWNqCnwv8V5fEWqfutNu4lt4pBzl+eP1FAHqXaimowdFYdCMinUAB5rhfHvgmXWbGa70eeSz1JVLAwfKZj6E13VFAHF/DzV/M0WPRrudn1axXbdLJ1DZ9e9doDnmuP8VeFXuJE1bSSYtRtj5ioh2ic+jGrfhTxTHrcT21ziPU7fC3MeOA3oD34xQB0tFIDmloAKKKKACiiigAooooAKKKKACs/WNYs9D0+W9vZNsUQyQOWI9hV815dqUx8a+P7EaWzNa6PIUvkfhTkZ6d+ooAu/DvR7w3+p6zqEYkhu5fNsnk5ZUx2z05FeiAY4pI0SNAiKFUdAOgp1ABRRRQAUUUUAFFFFABRRRQAUUUUAFcf8Uf+Sc6x/1xrsK4/wCKP/JOdY/640AXvAf/ACIuj/8AXuP5muirnfAf/Ii6P/17j+ZrfkkSJC7uqKP4mOAKAM3X9cstB0uW7vHKoBtAUZYk9OK5b4baHeWtvfX+qIHluZzLbSOcuIznA9qzAk3jH4i2uq2IZ9KsA0NwkvCs/HIHfoa9PRFRQqgBRwAOwoAdXmnxp+fwrbRLy/2yI7RycbhzivS8Zry68/f/AB2itpv3kH2IN5TcrnA5xQB6Ppuf7LtM9fJT/wBBFedfGof8SfRv+wjH/wChCvTgABgdBxXC/FLQrzW9Es2tApFncrcS5P8ACpBP8qAO1tf+PSH/AHF/kKmrH8Ma5aeIdDhvrIsYf9XkjHK8GtigAooooAQ15z46025sfEOla/aJ5VjaMXvjFwWHI5x17V6PTJYo5o2jlRXRuqsMg0AVdL1O21awhvLWTdFKu4Z6ge47Vdry3w00vg7xrf6fqzt/xOJ91kiHIC8D8Oc16iDnNAC0UUUAFFFFABRRRQAUUUncUAYHjHWpdE8M3t5asn2uOMvEjHliPQd6yvh3ocFtpba6Vdb3VgJrgNxg9On4CsHRWbxp491WLVWLR6PN/oyKeDwPvevWvUUVUXCqFHoBigB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcf8AFH/knOsf9ca7CuP+KP8AyTrVx6w0AXfAhx4F0f8A69x/M1gfEXUP7XsW8K6a7nUr1f3ckZ+VOehI6dqtaFr9p4e+GelXl1lilsCIk5duvQd6h+HWg3dm2paregMmoTefbh+WjUjpz0oA6rw/px0vRLS1kRFmjiCyFR1P171qUgGKWgBksghieVvuopY/QV5l4eB8V/EhvFun/wDIPgja0bfw28cH+VekX4zYXH/XJv5GvOfgl/yLWpZ6/wBoTdf99qAPTqzte/5AGof9e7/+gmtGobq3S7tZbeT/AFcqlG+h4oA4T4Nf8iBF6+fJ/SvQa8v8GXMmifEHUPB9rxpdtCJo1PJ3NnPP4V6hQAUUUUAFFFFAHBfErTBBp6+J7dHk1LS0LWygZBPuK6bw1qb6toFndzOhuJIw0iqR8p9PatWSNJVKuoZT1BGRXmEjN4R+JmnaVpjEWurMZZ1fkBvb070Aeo0Ug70tABRRRQAUUUUAFYni7UbjSvCepX9qQtxBCXjJ6Zrb7V5t8TdUuotW0HRkcCy1OYw3KY+8uCcfpQBo/DXTbdtDTxBg/btUUSXLA8Mfb8q7iqel6Za6PpsFhZoUt4F2opPQVcoAKKKKACiiigAooooAKKKKACiiigAooooAK474pHHw51f/AK412BOK8u+L/i21tvC17pcML3Uk8ZV3hOREf9qgDD8FwXHjCfw3e2sMsFro0YjnEwwJR149a9tUBRgAADsBXOeAURfA+kFVAzbjOBjNdJQAUUUUAcX8T9bvdB8Jm6sXCyPMsTEjPytwa1fCGg2OhaHElkhUXIE8mTnLt8x/UmuX+MDLd+GI7CE+Zdm4jcQryxGeuK7zS1ZNJslYYYQICD2+UUAW6KKKAPKdE/5L7rf/AF5p/wCzV6sK8u+IaDwtrOna/pQ8rUL+5W2nkPOUyOP1NenxktGrHqQD+lADqKKKACiiigArz34pWsWm6M3iu3G3VNNT/R3PQV6FWfrejWev6TNp1+he2lGHUHGaAGeHbyXUPD1hdznMs0Ks3HetOvPfhdq95fx6vZXDhoNPufItxj7qDoK9CoAKKKKACiiigANeV6sp8d/EG3tbQiBvD1xvmL9H4I4/MV6oRmvLfAQ/4uj4w+q/zFAHqIOaWiigAooooAKKKKACiiigAooooAKKKKACiiorm4itbd553CRJyzHoBQBm6/r9toNi88pDzbcxQA/NIfQe9eUah4eubTwP4s165+RdVTzo4XHzRDAGD75Breubebx94wsb23jaC00eXeszcrcD1X863/ih/wAk51j/AK40AXvAf/Ii6P8A9e4/ma6Oud8B/wDIi6P/ANe4/ma6KgApD0paZK/lxO+M7VJoA8v1Hn4+2Ckkr9iPHbtXqYGK8u8Mr/wmfjt/FsP7iGxL2hhbksQcZ/SvUaACiiigDzf4vWlxc2OiPDC8iw3yySFR9xQRkmu+0+7t76yintZkmiKgB0OQap+JgD4Z1L/r3f8AlXL/AAcJPw5syepd6AO+ooooAKKKKACkPTFLRQB5b4Zb/hCfG1xoNyPOl1mZrmN06IucYP516lXlfiUD/hePhv8A64N/MV6oKACiiigAooooAiuLiK1t3nnkWOJBlnboBXm/w/glk8eeJtUSMtY3ZBgnH3ZBkdK63xzx4I1c+luazPhUP+LcaR/1yxQB2dFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIe1cL411z+0Y38M6dCbqa8zBcPGf+PbPdv8962PGWsx6XoM6JciG+nQrbDuz+gqh8O9IktPD8N/qNsY9YuVzdSP95z7/lQBs+FtEPh7w5Z6U0olNugXeB1rI+KIx8OdY/6412Fcf8UefhzrGOnkmgC94D/5EXR/+vcfzNdFXO+A/wDkRtH9rcV0VABUN1/x6Tf9c2/lU1cT8VdSu9K8ETXFlM0Mvmou5euDnNAGN8Fc/wBkaz2/4mEnH/Amr0+sPwnplnp2gWxtIVjNxGssuP4mIyT+tblABRRRQBm+IYpJ/D9/FEhd3gYKo6k4rj/hJNHZ+E4dGuHEeowMzS27feUHpkfhXoJryvw5/wAl08Rf9e64/NqAPVaKKKACiiigAopM+lcjrXxA0yyjng02WPUNUjO1bJG+Zj6UAc94uiks/ivoWsXCGPToISJLg/dUkjANemQzR3EKSxOHjcZVh0Irwf4g3HiPxP4RudVvYp9It7ZgjWTY/e991ezeGP8AkV9MOMf6OnH4UAa1FFFABRRRQBz3jr/kR9Y/692rN+FX/JONJ/65VteLbObUPCmpWlsheaWEqijua574XXcMPhe20ORwuo2MYFxD3Q0Ad1RSDOOaWgAooooAKKKKACiiigAooooAKhubiK0tnuJ3CRIMsx6AetTGvMPiHqk2p6lZ6VpE7SyWswfUIUPHld8+1KTsrsaV3Ypaff2+p+M9R1jVnE+iDD6dJJ90N6itG++IXiUXcv8AZfhWS9swf3c6scMPzrN0uzHiLxLJp9tAINIsmDRIo+RhXq9rbQ2kCQwIEjUYCgcU4xly80uuxDl7zS6Xv8jlfCnjb+3ZpbW+tfsd5F96I9j6VxHx7j15tLtm00zfYFQ/atn3ce9XNel+xfELThZQgGWf9+y9+D1rqvifk/DnV88fusVXxU41F1v+GgW5Kjp9v11L3gP/AJEXR/8Ar3Wujry/4LeMJPEfhs2T2yxDT1EQIP3u/wDWvUKkoK86+LE8epaF/wAI/aN5uqTSJJHbjqyg8n9a9FPavKdbz/wvzRu/+huM/wDfNAHpGjxSQaLZQyrtkjhRWHoQKvUUUAFFFFABXldqDoHxf1TU9T/0ezvo1it5G6O3PA/OvVO4ry74v8S+Gj/0/Ac/hQB6iKKr3V3DY2clzcOEhjXc7HoBXGT/ABW8NTwvHpV/Fd35GILcEZduw60Ad1muR1j4g6TYtPZWM6XerR/KlovV29K5t7Lxh45wt99p8NC2+60Rz5n1zXXaN4J0jTEt5ZbWK41CIZN26/OzepPrQBx5tPF/j355Zbnw19n+UKnPm+/Of8mux0bwVo+ltBdm0ik1FBlrrGGZu5ro8UvegDgfjGB/wri//wB5f611Hhj/AJFfTP8Ar3T+Vcn8VriLUPD0nh21bzNUusNDAOrAdf512OgW8tr4fsLeZdskcKqy+hxQBo0UUUAFFFFAARmvLvAX/JUvGB7lh/MV6jXl3gT5Pij4uzxlhgnvyKAPUcYoozRQAUUUUAFFFFABRRRQAUUVDdXMVpbSTzOFjjUsxPoKAMTxhrdtpOiSpLOYp7pTFb46lz0Fcno2jXelfDi5uNUh2aw8L+dMeXYdRk03w9azeJvH17rjKbnw+0YFr5nRZBnJAPTtXpF3bR3drJBIMo42njtUVFeLRcHaSZwnwnSM+GYZs7pnXLnvXcX97Dp9jNdzvtjiUsx9BXmlzpnizwnqEv8AwjWnJd278BXbAUe3FSQ6R4s8ZSBPEcH9mwxHIWF8iT2PtV3dWK5dNvlsS7KcpSWjbf43/EXwsk3iPxTe6lJAPsiSbreT+8PWt/4o/wDJOtXHYxEfrXRaRpMGj2EdpbgBYxjIGM1z3xR/5JzrH/XE1TUYpRirJf1+ZCvJub3e5wNjaS+HrPwrrttH9l0iO336i8fAbk8mvZrK8hv7OK6tnDwyruRh3FcbpWgw+JfhNYaTPI0cdxahSy8kdaZ8Ntdmvbe/0iWNUTS5Ps8TDq6jvipKO6l4hc9wp/lXmXwpA1WXWb+//wBIu4L1o4ppOWRcnge3Fd7r2s2ehaRPfX0nlwINpb3I4rkvhVo95penapNdR7I726M8B/vIScGgD0Ciikz9PzoAWjtUM9zFbQvLK4VEUsckdBXAX/xJOqhrTwbEuoalGx8yKQFQAO/f3oA7+5uorO3kuJmCxxqWYnsK8X+Ifiiz8X2tlN4Xdb+fSpvtEyZxtUev5GuhtfBGr+JriPWdd1C5sLlmG+xiYmMgfXHWuj17RNO0vwrqr2dnFDIbVlLIvJ4oA43w7oF549gtfFFzq9zBDcnL2KnMZA7V6Fb+EvD9rOk0Gk2ySRnKsF5Fc58Hf+SaaYP9n+grvaAExiloooAKKKQk9utAHlniUf8AF8PDfr5Dc/iK9UFeV+JDu+N/hxl5UQtkj6ivVKACiiigAooooADXlPxG/wCJf418LPaHyDc3W2Zk48wYY8+terVxHxH0aCfTU8QMzfadHBngX+Fj05/OgDthS1h+D9Ym17wtYancKFlnjDMF6CtygAooooAKKKKACiiigBCcc15r4/u5vEd/aeH9ElZr2CdZbhFOFMeeRnv0NdV4u1+z0TSJBcO3mTgwxhBk7m4H05IrN+HGg3ej+HlbVI1N9JIzeZnLFD0GaAOqsLWKys44IYliVVHyqMDOKs0UUAFGKKKNwCuP+KP/ACTnWP8ArjXYVx/xR/5JzrH/AFxoAu+BBnwNo3/XuP5muV8X20nh7xjpviMAW+jW6k3pi4LH3A611fgP/kRdH/69x/M1a8TaBbeJtCn0q6Zlhm+8U60Acl8WLqK++FtxdQNuilKOrEdRzXX+G8L4Z03/AK90/lXiPiXxFfafdw+DfEqRropGEktvmk2r0JHrzXXQ+JvEWsWkEXgi1jm0yBBDI90NjjtkZoA7/XfEmm+HtPa9v5sQqdp2Dcc/SuHuvG3inXJftXgzToLvTR8pkuDsYN9MGtLQvhpaWGpLqd5d3N1NIC0lvOxeMMevB4rtra0t7OPyraGOFP7sa7R+lAHm9v4I1jxXKmq+JLy4069DAG2tpCY2UevSu/sNF07TSGtbSGOQKAZFQBj9av4FLQAmBVXU7FNS024spSQk6FCR71bpCM/4UAebfD68fSfEWpeC4QGstMQGKU/ebPHP5V6VXlvhf918ZvEzS/KrIApY4DcnpXqQ70AFFFFABSN0pa5nx7r9x4Z8IXmq2iq88K/KGHHegDlPhZ/p+p+Ibi7xPNBelY3f5ig9Aa9RrkPh9oVvpmjNqETMZdTxcTA9Ax9K6+gAooooAKKKKACqOsaZDrOk3OnXBbybhNj7euKvUhHI470AedfDfVZ01PVvDXymz0ciKE/xEcdfzr0UV51rGlz+CdVufEmmEfY52EmpBzlscfdFdxo+qQ6zpNtqNuD5Nwodd3XHv+VAF6iiigAooooAKhurqKzt5J5nVURSTk4zipjwM5xXmnj64fxXd2/hjSHJvElS4eVT+72g8rn1oATw/bS+JfiDN4liVm0gRmFY5h0cdwDXpajA6Y9qr2FstrYwQhFUoihgo4yBzVmgAooooAKKKa8ixqWdgqjqScAUAOrj/ij/AMk51j/rjT/E3xB0jw0IDKJbsS8/6IvmlfrjOK868c3vjjVvCGoagBapoU0e5UdcSBPcHpQB3XhzxFp2ifDbTbu4nVhFbAskZDP1PbOayJfGfiTxURN4Ltk+zJxL9tTYSfbP41D8Pvhto8elaTrZlupJ2iDmN5WKck8belenx20Fur+RDHEDydigZ+uKAPDbfwumnfGDRmmLXb3ETSXQkPmIj8cc5Ar1TXvEmk+DbQyzWzJF3EEXGfwFcl8JAJrrxFJKN8iX7KjNyVHPQ11PjuWCDw68k0auN6jBXPWs6vNtHcqCvKw3wz490rxS+2wS4BPeSMrXVVi+GtPt7PS43hhRDIobIQA1tVvPcyhfVsKKKKgsKQ8jFLRQB5b8VB9m1zwxJB+6eW9AkZOC49D616l2ry/4sRyPqvhd1RiqXoLMBwo9TXpsUqTRh43V0I4KnINAD6KKKAENebfEC7k1TxNpng6cD+z9UU+eV+8O3B7da7fX9btvD2i3GqXe4wQLuYKOSK5Hw/otz4l1i38UauVIhO7Twh/5Zn+96mgDt9NsY9N0+Cyhz5cCBFz1wKtUg6UtABRRRQAUUUUAFFFFAFHWNLt9a0ufT7sEwTrtcD0rhvh5q11Bqeq6BdkRWmnyCGxVxgsmB378k16PXnvjzR7qPWdK8SwIWttNy88MY+aTr6de1AHoQorO0bWbXWrGO5t2ALKC0ZPzIfQ+9aNABRRUF5dwWNu09xKsaKOrHFAGN4q8R2mh6ZJ5gaWaUeWsUXL5bgHHpzWV8OPDd3oGhyjUGSSa4madG6kK3IGfxrH0a0n8V/EBfFMcTw2FujW5imHLN03D24r0wDAoAWiiq93fWthGJLu4jhQnAMjYFAFimvIkaF3YKqjJJPArlvEHj7S9DtEnhDaiWbBjtDvZfqBXMj/hMvGUwvLS5jtNBuTta2mQiUJ35/8ArUAdL4k8f6X4dhik2SX3mNgraDzCo9TjNc0F8ZeMJBcRTRQeHrvgxOCswT+hrqfDvgHQvDUsstjBIWlXDea24V06oqDCqFHoBQBzHhvwHo3hgzGzSSQy9fPbfj6Zqr8T0VPhxq6ooVRD0A4rsq4/4o/8k51j/rjQBd8Bj/ihdG/69x/M1c8S6/beGdDn1S8VmhiHzBetVPAf/Ii6P/17j+ZrF+MX/JNNT78D+tAB8MtCudLstQv5mQx6lP8AaYgvUKfWpfElymoeJrbQmBKypvOPbFW9P1ddE+HthfG3knVLdPkjHzNxXG+GvF6ax4vR5tHv45fm2SPGQoFJWdRJ+v3ar8Ry0pt99Pv0PWbeIQ28cY/gULUtIp3KG6ZFLVN3d2JbWCiiikAUUUUAc/42RD4O1RyoLJbsVJHIrK+EzvJ8N9JZ2ZmMfJY5NdH4h0+TVfD99YQsFkniKKW6A1yHwyvo7C0k8HyAm90lQszj7rdOlAHoNIfbrS9RWTr2v2mg2D3Nwd7KNyQqfnf2A70AcZ46vZdX8R6X4ZjPnaZfZW88sZ2fU9q7/TrGDTdOgsrYEQwoFQe1cT8PNAu7S71XW7rHl6nIJoY3+9EuAMHPTkGu/FAC0UUUAFFFFABRRRQAUUUUABGaayhgQcEHqCM06igDy/RY5PAXiu/j1HdJb6tMZVuF4SEdMH0r02GVJ4llicOjjKsDwap6vo9nremy2F9H5lvKMMvSuL03Ur7wXqq6TqrGXTZDm3uOiW8fZSaAPQicDPavN/HN5/wl7L4V0sM7u4ka6Q5jTaeQcd66bxH4qtNI03dFi7uZlzFbxHLOD3A9KxvBGkL4P0S8u9UukjjvJ/PDScbAc/KffmgDsdNtDZadb27YLRRqjEDGSB1p97fWunQefeTpBFnG5zgZriNc+I62l4LXStOn1JJBtFxbcqhPrVK08E6/r0+PFmpR3ulSfvFtQuCpPQZoAva58SY7S+Nhp2nXV75g2pdW43Rqx9fpVC08EeIPEEpTxnqEV7ppG+KGIFGUn1OfpXcaF4d0zw5YCy022WKEHdt68/WtWgDmPD/gDQPDN491pts6Suu0l33D8q6ZVVQAoAA7ClooAKKKKACuP+KP/JOdY/6412Fcf8Uf+Sc6x/1xoAveA/8AkRdH/wCvcfzNcp45uZdS8daN4XuW3aVfoTPGOrduv411fgP/AJEXR/8Ar3H8zXH65/xNPi/oFzY5uIbVWWd4+RG2RwfSgD0q0s4LOzitYUxDEoVVPYVKIo1OVRQfUCn0UB0sFFFFABRRRQAUUUUAGM15d4J/5K14u/Dj8a9RzivKL25i+Hnj641W/dZINdkEaEceV3yfyoA9SnmitoWmmkVIlGSzHAFea3UU3jvxtp95ZxtDZ6RL87yfdnH+z69as3l1f+OtUewst0GjwNi4Zh8t0nop/Ku603TbXSrCKytIwkMK7VHtQBaVQFwBxTqMUUAFFFFABRRRQAUUUUAFFFFABRRUc88VtC0szhEXqx7UN21YJXJKoaxpNnrWmy2V9CJYH5KH17VlyePfC0UjRya3aq6nBG48Va0/xXoWqzCKx1OCdz0CGhe9sJu2587z6n4j8MeOxrepabdS6fp7NBbkrgKn8P8AKpovEHjLWr0nXdGvdR0OUmQWu0YI7V9G6tpNnrWnyWV7EssD8lff1riLDVb7wRqf9l6xI0+lyZdL5uEgHZP8+lAzm9C8Zy+G7M2mleAb+3gJ3bVA61q/8LX1r/oStR/If416LpesafrVsbjTrqO5iBxuQ5Gav4HoKAPK/wDha+s/9CVqP5D/ABo/4WvrX/Qlaj+Q/wAa9UwPQUYHoKAPK/8Aha+tf9CVqP5D/Gj/AIWvrX/Qlaj+Q/xr1TA9BRgegoA8r/4WvrX/AEJWo/kP8aP+Fr61/wBCVqP5D/GvVMD0FGB6CgDyv/ha+tf9CVqP5D/Guf8AG/xH1XVfCGoWU3hW9tY5Y8GaTGF/WvdMD0Fcf8Uf+Sc6x/1xoA4Twx8TNW0/wxYWkXhK+uEhiwsiYw4Gelc94D8d6jpGoa7LB4cu7xri6LsI8ZjOOh5rvr3U7vSPgTBfWMzRXEVoCjjqOtdL4D020tvDVrexRBbi8jEs7/329aAOU/4WtrQ/5kvUfyH+NH/C19a/6ErUfyH+NeqYHoKMD0FAHlf/AAtfWv8AoStR/If40f8AC19a/wChK1H8h/jXqmB6CjA9BQB5X/wtfWv+hK1H8h/jR/wtfWv+hK1H8h/jXqmB6CjA9BQB5X/wtfWv+hK1H8h/jR/wtfWv+hK1H8h/jXqmPYVn6rremaJCsupXkVrG52q0hxk0Aebz/F3VbeFppvB2oRxIMs7AYUep5rh/F2qap8XTo8Nlod1a2xk/4+XGVwe/FelXd3feO9VaysGe30eE7nugMpdJ3A/z3rutN0y00mxjsrKERQRDCoOgoAoeE9Dfw74astKklEr26bS471tAYorK1rxBZaLDmaVfOYZjizy/sKUmo7lKLexrUV5xa/EfWZtVFs/hW6S1LY+0krtx6/errNK8S2mrzGK2ZZGQ4k2k/KcVUU5K6IbtubdFFFIYUUUUAFFFFABRRRQAVDcwxXFu8U6ho2HINTVm67cm00ieZfvKtTP4WiorVHn2leB/Dmqa5evNpkLqkuDn6VR1zRdL0DxbYf2AqW85BJt4urHP+fzpLf4ca7etNqNr4qurNbk+Z5agYH6e1X/B91H/AMJALLV7RZNQgcpFdScswHenShGLjDZroTUd1OfdW/Q9LsmkezhaUFZCoLD0NRappNlrNkbO/gWeA8lG6Zq4OlLVSd2KKskux5zquh3ngu5Gq+GbZprNRtbS4ejMf4qvaP8AEazeBY/EKLo+oM21bWU889DXcYrE1bwno2tStcXlhDLdbdqTMuWU9iKQzZjdZI1dTlWAYEdwadXly6J4l8DXB1SPUrnWrctta1cgLFHnlhx2FdDb/E3wpPJFANWh+0OQuzvu9KAOwopquGUMDkEZB9adQAUUUUAFcf8AFL/knOr/APXGuwrj/iif+Ldav/1yoA5HWriK4+C9losThtQvLMCCHu55r0XwpbS2nhXTbedCkscIVlPUGvJIRjxD8OT3+z/1Ne6UAFFFFABRRTJJFiieRzhEBZj6AUAPqOWZIInlkYLGgJYnsK5Gf4n+FY2kij1WJ7hSVWPByX9PzrAXw54j8ZXK6vc6rc6VCzYNgMbWQfh3oA1tY+JFsIQvhqFdau1Y+ZBEeVA7/wCfSq2k+G7nxdK+reJomFvMMR6bL0hPqPrx+VdXpPhbRdElM+n6fDBOy7XkQYLVs0AVNO0yz0mySzsYEgt0+7Go4FW8YoooDqU9Vvk07TJ7tzhYl3GvNvC2nSeKfEFzquoSefbxyB7ZW6KPauv8e7v+EN1HHQRc/mKzvhksSeF7bYwL+WN1KlG9SUn0Rc4uNBNPeTOyMEf2fyQuIwMAe1cn4Q8Mf2HqWqTbABcTb14rrnkSNSznAHU0qSLIu5TkHmqjJq77kuXu8vQd/hRRRSF1CiiigAooooAKKKKAEPSvN/F/xF8P2l7/AGXPfIvO2bI+7XpNY9x4V0K7naa40q2klY5ZmTkmk1qXFqzucgPi14QsdLRLfVYpJEXCr61R8HWOoa7r/wDb13am3hVyYcc71Peu4Hgzw4DkaPag+yVswQRW0SxwoERRgKOgFNJKp7V6tfqZTjzQ9n0HiloooWiKCiiigBskayxtG43IwwQe4rnbnwJ4cljl8rSrWKdwSsqpyrHuPeukoNAHljfDbXdPc3sPiq/naE70tyRh8dF6VJD4x+IHnLG/hD5Adu7cfzr00n0pMZ/nQByM3xG0XSYEXXrqOyuzw0JI+X9ag/4W94J/6DMXXFdJeeH9J1GUyXlhDM56lxmq3/CGeHMf8ga0/wC+KADw/wCL9F8UGX+yb1Ljyf8AWbe1ZfxRP/FutX9fJNQa/wDDi01ERf2TdSaOV+8bQY3/AFrn7n4NT3tu9vceK9RlhfhkY8EUAYPwuf8A4TqfTL+b/Rz4fAiRV58wdcnP1r1bX/Gug+GJo4tXvkt3lG5A3cV5/YfAwaUjrYeJL63D/eEfGa6zQfh3ZafFKuqzvq8jnh7oZKj0FAEX/C3vBP8A0Gov8/jUF38U9Kvrcw+GJY9T1M/ctgcbh3710f8Awhnhscf2Pa/981Ys/DejadcrcWemwQzL0dFwRQBwf/CX/EKX903g/Yr/AClw5+XPf8KSP4Y61PKtzP4tvwJG8x4CRgZ6r06V6liigDnYPA3huIRsdItWlTB8wpyW9frXQqoRQqjCgYA9KWigAooooAKKKKAKuo2Ueo2E1pLjZKu05ry4aV4p8D38x0Owk1S3nb7hOBGAO2K9boxUqPK+ZDveHKzgtIvvFXiFmj1fSG0xAcAg9fzruLeEQW6RZztGM+tS9KQmruTYXikJpuTRSGJkg0uTQaSgCSiiigAooooAKKKKACiiigAooooAKKKQ0ABNNPNBoFABS9KKUUAFLRRQAYooooAKKKKACiiigAooooAKKKKACiiigAooooAKQnFBprUAOzTe9IKcKAExS0tKKAEAowKWigD/2Q=='] Multimodal Competition False Theorem proof Geometry Math Chinese 31 "如图, 设三角形的外接圆 $O$ 的半径为 $R$, 内心为 $I, \angle B=60^{\circ}, \angle$ $A<\angle C, \angle A$ 的外角平分线交圆 $O$ 于 $E$. 证明: $2 R\n\n由 $\\angle E A D=90^{\\circ}$ (内外角平分线) 知 $D E$ 为 $\\odot O$ 的直径. $\\angle O A D=\\angle O D A$\n\n但 $\\angle O A I=\\angle O H I$, 故 $\\angle O H I=\\angle A D E$, 于是 $R t \\triangle D A E \\cong R t$ $\\triangle H I O$\n\n$\\therefore A E=I O$\n\n由 $\\triangle A C H$ 为正三角形, 易证 $I C+I A=I H$.\n\n由 $O H=2 R$. $\\therefore I O+I A+I C=I O+I H>O H=2 R$.\n\n设 $\\angle O H I=\\alpha$, 则 $0<\\alpha<30^{\\circ}$.\n\n$\\therefore I O+I A+I C=I O+I H=2 R(\\sin \\alpha+\\cos \\alpha)=2 R \\sqrt{2} \\sin \\left(\\alpha+45^{\\circ}\\right)$\n\n又 $\\alpha+45^{\\circ}<75^{\\circ}$, 故 $I O+I A+I C<2 \\sqrt{2} R(\\sqrt{6}+\\sqrt{2}) / 4=R(1+\\sqrt{3})$'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAUsBNQMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APfqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKxvEPiGHw7Yvdz280yKMkRqSf5Vw6fG3TJBlNE1Rh6iFv8KmMlKTit0Nqx6jRXnWmfF3TdS1SGw/srUIJJT8rSRkD9RXocbiSNXHGRmrtpcXWw6iiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGN4nuIYdDuTMUA2dW6Vz+naxodpoUZgubOS5ZB8ispNJ46eO7vtO0iZDJDeNskA49f8KoD4V+HtOvbSeytJFlU5zvzilFW99rfr8yp3skt7HVLpMWpmyvzGgZVzwoFbyrtUD0qvZ7IbeODeNyDBFWap7tLYha2fkFFFFIYUUUUAFFFFABRSEhRk9KRHV13KQR6igB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFRzTJBE0srBY0GWJ7D1rAPjzwuCQdctBjg5Y8UAdHVTUrtrDTp7pYWmaNdwjXq3sK4HU/ihewX8keleHLnU7MH5LqAja/wBOap/8LV17/oSNQx9R/jQNb6mFL421eXXWvLnwrqEqIxaJQv3a3ZfixqhjYJ4P1EHscdKVdQ8X+OxixW48N/Z+WMwz5n5f55rK8TaJ498OeH7vVW8XmYWyl9gXrSStBQvogduZz6v+kdz4MOoXaz32oI8fmtvSNxyo9K6+vmHRfEPxI1G4t3u9TurLT5eWvJFOxB6n8q6k/FOTwKRb32qL4jacb1kiP3B6c/54q5S5mRCPKrHu1FeTw/FrWriFJYfBd+8bjcrDByPzrR0n4nXdxfrHrHh+50qzI+a6nI2r7dako9HornR478LswUa1a5JwPmPNdBG6yoroQVYZBHcUAOoorE8SeILPQrHzLu4SEOdgZuxPehuw0rmd4q1ya2CWtsGDs2GPtW3oasNLj3HJ7157qOvaJLb2ax6xb3V28+CVPJ6cV6TpyBLNABgdaVOm48zezsKe8bFqiiimAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVR1bWLDQ7I3eo3CQQA4Lse9cNqfxC1C9ufK8M6SdTsZBs+2RE4Qn/CgDtta1m00Oxa5u5VQEEIGP327KPc1543xE8T3ztaR+EbuFZj5a3GRhc9G6/jWhovw/vmvluvEOsSanbE+YlrMOI36jHHavQ0UIgVRhQMAelAHmEXw/8AFk8qG88WyS2rHMkBXhlPVelb4+F3g44J0W3Jxycda7HvmigCppumWmkWMdlYwiG3jGFQdBVvFFFABiuP+KI/4t1rH/XGuwrj/ij/AMk51j/rjQA/wpptpq3w40uzvYVmt5LYB0YcEZpn/CrvBwB26JB7cdKveA/+RF0f/r3H8zXRUAeYTfDzxWkzix8XyW1qp/dQhPuL2HSs3Vh4g8P2LaHqulT+K4Jj5hmAwFPp1Hr+lew0UAeDaZFoDXf/ABOvBC6LbbTi8mIAVu3enGaWKXdbfEqJo0bdHbqDyOyfd/Cva9T0qx1mzNpqFus8BOSj9K52f4d+EooJJF0i2iZELCQD7mO/4UAcVf8Axh1fRLeN9R8L3EdvlY/tLMMN23de/Wuj0uHSfiHp66jqCx3NmR/qW6KRXifjO31g6jbwnVZtV0D7UiBz9xTuA2fh0r1u5+HmoQeVeaDrEllaJEsn2KIDbIQMkdO9NOy0Womc/wCKLbwFoWp2a2cdrFPHOpfb1A9a9j0m/tNSsI7iymWaAjAdeleTW91os2oSS+MfCcOmRY2rdzZO8j8f85r1Dw42jvo8TaF5f2A5KeX0pwlaioS3QSV58yNeijOaKkYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFBoAQnAz2rl/FPi7+xmFjp0K3mruN0dpnBZe5/lR4p8Vf2VIumafGLnWJxmG2/vL3P4ZFN8KeFRpwN/qLm61GU+Z5koy0Of4QfSgDF0rR9U8Y341XxNaPaWyDYdLflGPZv8mu40zSbDR7b7Np9rHbxE7iidM1dooAKKKKACiiigAooooAK4/4o/wDJOdY/6412Fcf8Uf8AknOsf9caAL3gP/kRdH/69x/M10Vc74D/AORF0f8A69x/M10VABRRRQAV578SdTubqGDQ9Fnf+1WlR3hjPJiyN36Gus8RazZ6LpE1zeziFGHlq3+0eB+tcr8NdGvorK41HW4C2oSzO0M0nL+STlQD6YxQByniixh1m4/4Qm3gWw+y2ov2mTqZAu4598ius+D17d33ghHvbmS4ljmeMO/XA4FYF/z8ZtTxz/xKZOnrsNbPwXwPBDAf8/Uv86AO21PRtO1mBYNRtI7mIHIWQZANcPqWl6z4Lv5L/wAOWj31pP8AIunLwkPuPr9e1ej0YoA5rwt4qXXENtdxi11WIZntOpjrpa5DxT4We5lGraSxt9QibzGEXBuOnytVrwt4pXW43tLtFg1W3H+k2w/goA6WikBpaACiiigAooooAKKKKACiiigAooooAKKKDQAhrlvFXio6UU07TkFxrFwMwW54DD3Pal8V+KW0oJp+mqs+sXA/0eI/dJ9z2pvhXwqNOVtR1AtNqM58xvM+bySeqqfSgA8K+FRpwa/1AtcahMfM3S8mHPVVPpXV0UUAFFFFABRRRQAUUUUAFFFFABXH/FH/AJJzrH/XGuwrj/ij/wAk51j/AK40AXvAf/Ii6P8A9e4/ma6Kud8B/wDIi6P/ANe4/ma6KgApsjrGhdjhQMk+gpxOK8++JGpPqFovhrSZpP7XnZXRU4G0Hnn8RQBnxh/GHxGiv7XN1oFuhjlVx8nmj2NejXqiLSbgR/KEgbbjtheMVBoWnJpuk28KwpFLsUyhBjL45Jqt4q1yx0LRJpr6QokoMKkDOWYYAoA474RRpqWgXd/eKJ7s3MsRmfliuTxn0qHRWaz+Nd9plsTFYrahxAnCBuecVs/CzRL7Q/C8kN/GEeWd5lwf4WORWNqCnwv8V5fEWqfutNu4lt4pBzl+eP1FAHqXaimowdFYdCMinUAB5rhfHvgmXWbGa70eeSz1JVLAwfKZj6E13VFAHF/DzV/M0WPRrudn1axXbdLJ1DZ9e9doDnmuP8VeFXuJE1bSSYtRtj5ioh2ic+jGrfhTxTHrcT21ziPU7fC3MeOA3oD34xQB0tFIDmloAKKKKACiiigAooooAKKKKACs/WNYs9D0+W9vZNsUQyQOWI9hV815dqUx8a+P7EaWzNa6PIUvkfhTkZ6d+ooAu/DvR7w3+p6zqEYkhu5fNsnk5ZUx2z05FeiAY4pI0SNAiKFUdAOgp1ABRRRQAUUUUAFFFFABRRRQAUUUUAFcf8Uf+Sc6x/1xrsK4/wCKP/JOdY/640AXvAf/ACIuj/8AXuP5muirnfAf/Ii6P/17j+ZrfkkSJC7uqKP4mOAKAM3X9cstB0uW7vHKoBtAUZYk9OK5b4baHeWtvfX+qIHluZzLbSOcuIznA9qzAk3jH4i2uq2IZ9KsA0NwkvCs/HIHfoa9PRFRQqgBRwAOwoAdXmnxp+fwrbRLy/2yI7RycbhzivS8Zry68/f/AB2itpv3kH2IN5TcrnA5xQB6Ppuf7LtM9fJT/wBBFedfGof8SfRv+wjH/wChCvTgABgdBxXC/FLQrzW9Es2tApFncrcS5P8ACpBP8qAO1tf+PSH/AHF/kKmrH8Ma5aeIdDhvrIsYf9XkjHK8GtigAooooAQ15z46025sfEOla/aJ5VjaMXvjFwWHI5x17V6PTJYo5o2jlRXRuqsMg0AVdL1O21awhvLWTdFKu4Z6ge47Vdry3w00vg7xrf6fqzt/xOJ91kiHIC8D8Oc16iDnNAC0UUUAFFFFABRRRQAUUUncUAYHjHWpdE8M3t5asn2uOMvEjHliPQd6yvh3ocFtpba6Vdb3VgJrgNxg9On4CsHRWbxp491WLVWLR6PN/oyKeDwPvevWvUUVUXCqFHoBigB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcf8AFH/knOsf9ca7CuP+KP8AyTrVx6w0AXfAhx4F0f8A69x/M1gfEXUP7XsW8K6a7nUr1f3ckZ+VOehI6dqtaFr9p4e+GelXl1lilsCIk5duvQd6h+HWg3dm2paregMmoTefbh+WjUjpz0oA6rw/px0vRLS1kRFmjiCyFR1P171qUgGKWgBksghieVvuopY/QV5l4eB8V/EhvFun/wDIPgja0bfw28cH+VekX4zYXH/XJv5GvOfgl/yLWpZ6/wBoTdf99qAPTqzte/5AGof9e7/+gmtGobq3S7tZbeT/AFcqlG+h4oA4T4Nf8iBF6+fJ/SvQa8v8GXMmifEHUPB9rxpdtCJo1PJ3NnPP4V6hQAUUUUAFFFFAHBfErTBBp6+J7dHk1LS0LWygZBPuK6bw1qb6toFndzOhuJIw0iqR8p9PatWSNJVKuoZT1BGRXmEjN4R+JmnaVpjEWurMZZ1fkBvb070Aeo0Ug70tABRRRQAUUUUAFYni7UbjSvCepX9qQtxBCXjJ6Zrb7V5t8TdUuotW0HRkcCy1OYw3KY+8uCcfpQBo/DXTbdtDTxBg/btUUSXLA8Mfb8q7iqel6Za6PpsFhZoUt4F2opPQVcoAKKKKACiiigAooooAKKKKACiiigAooooAK474pHHw51f/AK412BOK8u+L/i21tvC17pcML3Uk8ZV3hOREf9qgDD8FwXHjCfw3e2sMsFro0YjnEwwJR149a9tUBRgAADsBXOeAURfA+kFVAzbjOBjNdJQAUUUUAcX8T9bvdB8Jm6sXCyPMsTEjPytwa1fCGg2OhaHElkhUXIE8mTnLt8x/UmuX+MDLd+GI7CE+Zdm4jcQryxGeuK7zS1ZNJslYYYQICD2+UUAW6KKKAPKdE/5L7rf/AF5p/wCzV6sK8u+IaDwtrOna/pQ8rUL+5W2nkPOUyOP1NenxktGrHqQD+lADqKKKACiiigArz34pWsWm6M3iu3G3VNNT/R3PQV6FWfrejWev6TNp1+he2lGHUHGaAGeHbyXUPD1hdznMs0Ks3HetOvPfhdq95fx6vZXDhoNPufItxj7qDoK9CoAKKKKACiiigANeV6sp8d/EG3tbQiBvD1xvmL9H4I4/MV6oRmvLfAQ/4uj4w+q/zFAHqIOaWiigAooooAKKKKACiiigAooooAKKKKACiiorm4itbd553CRJyzHoBQBm6/r9toNi88pDzbcxQA/NIfQe9eUah4eubTwP4s165+RdVTzo4XHzRDAGD75Breubebx94wsb23jaC00eXeszcrcD1X863/ih/wAk51j/AK40AXvAf/Ii6P8A9e4/ma6Oud8B/wDIi6P/ANe4/ma6KgApD0paZK/lxO+M7VJoA8v1Hn4+2Ckkr9iPHbtXqYGK8u8Mr/wmfjt/FsP7iGxL2hhbksQcZ/SvUaACiiigDzf4vWlxc2OiPDC8iw3yySFR9xQRkmu+0+7t76yintZkmiKgB0OQap+JgD4Z1L/r3f8AlXL/AAcJPw5syepd6AO+ooooAKKKKACkPTFLRQB5b4Zb/hCfG1xoNyPOl1mZrmN06IucYP516lXlfiUD/hePhv8A64N/MV6oKACiiigAooooAiuLiK1t3nnkWOJBlnboBXm/w/glk8eeJtUSMtY3ZBgnH3ZBkdK63xzx4I1c+luazPhUP+LcaR/1yxQB2dFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIe1cL411z+0Y38M6dCbqa8zBcPGf+PbPdv8962PGWsx6XoM6JciG+nQrbDuz+gqh8O9IktPD8N/qNsY9YuVzdSP95z7/lQBs+FtEPh7w5Z6U0olNugXeB1rI+KIx8OdY/6412Fcf8UefhzrGOnkmgC94D/5EXR/+vcfzNdFXO+A/wDkRtH9rcV0VABUN1/x6Tf9c2/lU1cT8VdSu9K8ETXFlM0Mvmou5euDnNAGN8Fc/wBkaz2/4mEnH/Amr0+sPwnplnp2gWxtIVjNxGssuP4mIyT+tblABRRRQBm+IYpJ/D9/FEhd3gYKo6k4rj/hJNHZ+E4dGuHEeowMzS27feUHpkfhXoJryvw5/wAl08Rf9e64/NqAPVaKKKACiiigAopM+lcjrXxA0yyjng02WPUNUjO1bJG+Zj6UAc94uiks/ivoWsXCGPToISJLg/dUkjANemQzR3EKSxOHjcZVh0Irwf4g3HiPxP4RudVvYp9It7ZgjWTY/e991ezeGP8AkV9MOMf6OnH4UAa1FFFABRRRQBz3jr/kR9Y/692rN+FX/JONJ/65VteLbObUPCmpWlsheaWEqijua574XXcMPhe20ORwuo2MYFxD3Q0Ad1RSDOOaWgAooooAKKKKACiiigAooooAKhubiK0tnuJ3CRIMsx6AetTGvMPiHqk2p6lZ6VpE7SyWswfUIUPHld8+1KTsrsaV3Ypaff2+p+M9R1jVnE+iDD6dJJ90N6itG++IXiUXcv8AZfhWS9swf3c6scMPzrN0uzHiLxLJp9tAINIsmDRIo+RhXq9rbQ2kCQwIEjUYCgcU4xly80uuxDl7zS6Xv8jlfCnjb+3ZpbW+tfsd5F96I9j6VxHx7j15tLtm00zfYFQ/atn3ce9XNel+xfELThZQgGWf9+y9+D1rqvifk/DnV88fusVXxU41F1v+GgW5Kjp9v11L3gP/AJEXR/8Ar3Wujry/4LeMJPEfhs2T2yxDT1EQIP3u/wDWvUKkoK86+LE8epaF/wAI/aN5uqTSJJHbjqyg8n9a9FPavKdbz/wvzRu/+huM/wDfNAHpGjxSQaLZQyrtkjhRWHoQKvUUUAFFFFABXldqDoHxf1TU9T/0ezvo1it5G6O3PA/OvVO4ry74v8S+Gj/0/Ac/hQB6iKKr3V3DY2clzcOEhjXc7HoBXGT/ABW8NTwvHpV/Fd35GILcEZduw60Ad1muR1j4g6TYtPZWM6XerR/KlovV29K5t7Lxh45wt99p8NC2+60Rz5n1zXXaN4J0jTEt5ZbWK41CIZN26/OzepPrQBx5tPF/j355Zbnw19n+UKnPm+/Of8mux0bwVo+ltBdm0ik1FBlrrGGZu5ro8UvegDgfjGB/wri//wB5f611Hhj/AJFfTP8Ar3T+Vcn8VriLUPD0nh21bzNUusNDAOrAdf512OgW8tr4fsLeZdskcKqy+hxQBo0UUUAFFFFAARmvLvAX/JUvGB7lh/MV6jXl3gT5Pij4uzxlhgnvyKAPUcYoozRQAUUUUAFFFFABRRRQAUUVDdXMVpbSTzOFjjUsxPoKAMTxhrdtpOiSpLOYp7pTFb46lz0Fcno2jXelfDi5uNUh2aw8L+dMeXYdRk03w9azeJvH17rjKbnw+0YFr5nRZBnJAPTtXpF3bR3drJBIMo42njtUVFeLRcHaSZwnwnSM+GYZs7pnXLnvXcX97Dp9jNdzvtjiUsx9BXmlzpnizwnqEv8AwjWnJd278BXbAUe3FSQ6R4s8ZSBPEcH9mwxHIWF8iT2PtV3dWK5dNvlsS7KcpSWjbf43/EXwsk3iPxTe6lJAPsiSbreT+8PWt/4o/wDJOtXHYxEfrXRaRpMGj2EdpbgBYxjIGM1z3xR/5JzrH/XE1TUYpRirJf1+ZCvJub3e5wNjaS+HrPwrrttH9l0iO336i8fAbk8mvZrK8hv7OK6tnDwyruRh3FcbpWgw+JfhNYaTPI0cdxahSy8kdaZ8Ntdmvbe/0iWNUTS5Ps8TDq6jvipKO6l4hc9wp/lXmXwpA1WXWb+//wBIu4L1o4ppOWRcnge3Fd7r2s2ehaRPfX0nlwINpb3I4rkvhVo95penapNdR7I726M8B/vIScGgD0Ciikz9PzoAWjtUM9zFbQvLK4VEUsckdBXAX/xJOqhrTwbEuoalGx8yKQFQAO/f3oA7+5uorO3kuJmCxxqWYnsK8X+Ifiiz8X2tlN4Xdb+fSpvtEyZxtUev5GuhtfBGr+JriPWdd1C5sLlmG+xiYmMgfXHWuj17RNO0vwrqr2dnFDIbVlLIvJ4oA43w7oF549gtfFFzq9zBDcnL2KnMZA7V6Fb+EvD9rOk0Gk2ySRnKsF5Fc58Hf+SaaYP9n+grvaAExiloooAKKKQk9utAHlniUf8AF8PDfr5Dc/iK9UFeV+JDu+N/hxl5UQtkj6ivVKACiiigAooooADXlPxG/wCJf418LPaHyDc3W2Zk48wYY8+terVxHxH0aCfTU8QMzfadHBngX+Fj05/OgDthS1h+D9Ym17wtYancKFlnjDMF6CtygAooooAKKKKACiiigBCcc15r4/u5vEd/aeH9ElZr2CdZbhFOFMeeRnv0NdV4u1+z0TSJBcO3mTgwxhBk7m4H05IrN+HGg3ej+HlbVI1N9JIzeZnLFD0GaAOqsLWKys44IYliVVHyqMDOKs0UUAFGKKKNwCuP+KP/ACTnWP8ArjXYVx/xR/5JzrH/AFxoAu+BBnwNo3/XuP5muV8X20nh7xjpviMAW+jW6k3pi4LH3A611fgP/kRdH/69x/M1a8TaBbeJtCn0q6Zlhm+8U60Acl8WLqK++FtxdQNuilKOrEdRzXX+G8L4Z03/AK90/lXiPiXxFfafdw+DfEqRropGEktvmk2r0JHrzXXQ+JvEWsWkEXgi1jm0yBBDI90NjjtkZoA7/XfEmm+HtPa9v5sQqdp2Dcc/SuHuvG3inXJftXgzToLvTR8pkuDsYN9MGtLQvhpaWGpLqd5d3N1NIC0lvOxeMMevB4rtra0t7OPyraGOFP7sa7R+lAHm9v4I1jxXKmq+JLy4069DAG2tpCY2UevSu/sNF07TSGtbSGOQKAZFQBj9av4FLQAmBVXU7FNS024spSQk6FCR71bpCM/4UAebfD68fSfEWpeC4QGstMQGKU/ebPHP5V6VXlvhf918ZvEzS/KrIApY4DcnpXqQ70AFFFFABSN0pa5nx7r9x4Z8IXmq2iq88K/KGHHegDlPhZ/p+p+Ibi7xPNBelY3f5ig9Aa9RrkPh9oVvpmjNqETMZdTxcTA9Ax9K6+gAooooAKKKKACqOsaZDrOk3OnXBbybhNj7euKvUhHI470AedfDfVZ01PVvDXymz0ciKE/xEcdfzr0UV51rGlz+CdVufEmmEfY52EmpBzlscfdFdxo+qQ6zpNtqNuD5Nwodd3XHv+VAF6iiigAooooAKhurqKzt5J5nVURSTk4zipjwM5xXmnj64fxXd2/hjSHJvElS4eVT+72g8rn1oATw/bS+JfiDN4liVm0gRmFY5h0cdwDXpajA6Y9qr2FstrYwQhFUoihgo4yBzVmgAooooAKKKa8ixqWdgqjqScAUAOrj/ij/AMk51j/rjT/E3xB0jw0IDKJbsS8/6IvmlfrjOK868c3vjjVvCGoagBapoU0e5UdcSBPcHpQB3XhzxFp2ifDbTbu4nVhFbAskZDP1PbOayJfGfiTxURN4Ltk+zJxL9tTYSfbP41D8Pvhto8elaTrZlupJ2iDmN5WKck8belenx20Fur+RDHEDydigZ+uKAPDbfwumnfGDRmmLXb3ETSXQkPmIj8cc5Ar1TXvEmk+DbQyzWzJF3EEXGfwFcl8JAJrrxFJKN8iX7KjNyVHPQ11PjuWCDw68k0auN6jBXPWs6vNtHcqCvKw3wz490rxS+2wS4BPeSMrXVVi+GtPt7PS43hhRDIobIQA1tVvPcyhfVsKKKKgsKQ8jFLRQB5b8VB9m1zwxJB+6eW9AkZOC49D616l2ry/4sRyPqvhd1RiqXoLMBwo9TXpsUqTRh43V0I4KnINAD6KKKAENebfEC7k1TxNpng6cD+z9UU+eV+8O3B7da7fX9btvD2i3GqXe4wQLuYKOSK5Hw/otz4l1i38UauVIhO7Twh/5Zn+96mgDt9NsY9N0+Cyhz5cCBFz1wKtUg6UtABRRRQAUUUUAFFFFAFHWNLt9a0ufT7sEwTrtcD0rhvh5q11Bqeq6BdkRWmnyCGxVxgsmB378k16PXnvjzR7qPWdK8SwIWttNy88MY+aTr6de1AHoQorO0bWbXWrGO5t2ALKC0ZPzIfQ+9aNABRRUF5dwWNu09xKsaKOrHFAGN4q8R2mh6ZJ5gaWaUeWsUXL5bgHHpzWV8OPDd3oGhyjUGSSa4madG6kK3IGfxrH0a0n8V/EBfFMcTw2FujW5imHLN03D24r0wDAoAWiiq93fWthGJLu4jhQnAMjYFAFimvIkaF3YKqjJJPArlvEHj7S9DtEnhDaiWbBjtDvZfqBXMj/hMvGUwvLS5jtNBuTta2mQiUJ35/8ArUAdL4k8f6X4dhik2SX3mNgraDzCo9TjNc0F8ZeMJBcRTRQeHrvgxOCswT+hrqfDvgHQvDUsstjBIWlXDea24V06oqDCqFHoBQBzHhvwHo3hgzGzSSQy9fPbfj6Zqr8T0VPhxq6ooVRD0A4rsq4/4o/8k51j/rjQBd8Bj/ihdG/69x/M1c8S6/beGdDn1S8VmhiHzBetVPAf/Ii6P/17j+ZrF+MX/JNNT78D+tAB8MtCudLstQv5mQx6lP8AaYgvUKfWpfElymoeJrbQmBKypvOPbFW9P1ddE+HthfG3knVLdPkjHzNxXG+GvF6ax4vR5tHv45fm2SPGQoFJWdRJ+v3ar8Ry0pt99Pv0PWbeIQ28cY/gULUtIp3KG6ZFLVN3d2JbWCiiikAUUUUAc/42RD4O1RyoLJbsVJHIrK+EzvJ8N9JZ2ZmMfJY5NdH4h0+TVfD99YQsFkniKKW6A1yHwyvo7C0k8HyAm90lQszj7rdOlAHoNIfbrS9RWTr2v2mg2D3Nwd7KNyQqfnf2A70AcZ46vZdX8R6X4ZjPnaZfZW88sZ2fU9q7/TrGDTdOgsrYEQwoFQe1cT8PNAu7S71XW7rHl6nIJoY3+9EuAMHPTkGu/FAC0UUUAFFFFABRRRQAUUUUABGaayhgQcEHqCM06igDy/RY5PAXiu/j1HdJb6tMZVuF4SEdMH0r02GVJ4llicOjjKsDwap6vo9nremy2F9H5lvKMMvSuL03Ur7wXqq6TqrGXTZDm3uOiW8fZSaAPQicDPavN/HN5/wl7L4V0sM7u4ka6Q5jTaeQcd66bxH4qtNI03dFi7uZlzFbxHLOD3A9KxvBGkL4P0S8u9UukjjvJ/PDScbAc/KffmgDsdNtDZadb27YLRRqjEDGSB1p97fWunQefeTpBFnG5zgZriNc+I62l4LXStOn1JJBtFxbcqhPrVK08E6/r0+PFmpR3ulSfvFtQuCpPQZoAva58SY7S+Nhp2nXV75g2pdW43Rqx9fpVC08EeIPEEpTxnqEV7ppG+KGIFGUn1OfpXcaF4d0zw5YCy022WKEHdt68/WtWgDmPD/gDQPDN491pts6Suu0l33D8q6ZVVQAoAA7ClooAKKKKACuP+KP/JOdY/6412Fcf8Uf+Sc6x/1xoAveA/8AkRdH/wCvcfzNcp45uZdS8daN4XuW3aVfoTPGOrduv411fgP/AJEXR/8Ar3H8zXH65/xNPi/oFzY5uIbVWWd4+RG2RwfSgD0q0s4LOzitYUxDEoVVPYVKIo1OVRQfUCn0UB0sFFFFABRRRQAUUUUAGM15d4J/5K14u/Dj8a9RzivKL25i+Hnj641W/dZINdkEaEceV3yfyoA9SnmitoWmmkVIlGSzHAFea3UU3jvxtp95ZxtDZ6RL87yfdnH+z69as3l1f+OtUewst0GjwNi4Zh8t0nop/Ku603TbXSrCKytIwkMK7VHtQBaVQFwBxTqMUUAFFFFABRRRQAUUUUAFFFFABRRUc88VtC0szhEXqx7UN21YJXJKoaxpNnrWmy2V9CJYH5KH17VlyePfC0UjRya3aq6nBG48Va0/xXoWqzCKx1OCdz0CGhe9sJu2587z6n4j8MeOxrepabdS6fp7NBbkrgKn8P8AKpovEHjLWr0nXdGvdR0OUmQWu0YI7V9G6tpNnrWnyWV7EssD8lff1riLDVb7wRqf9l6xI0+lyZdL5uEgHZP8+lAzm9C8Zy+G7M2mleAb+3gJ3bVA61q/8LX1r/oStR/If416LpesafrVsbjTrqO5iBxuQ5Gav4HoKAPK/wDha+s/9CVqP5D/ABo/4WvrX/Qlaj+Q/wAa9UwPQUYHoKAPK/8Aha+tf9CVqP5D/Gj/AIWvrX/Qlaj+Q/xr1TA9BRgegoA8r/4WvrX/AEJWo/kP8aP+Fr61/wBCVqP5D/GvVMD0FGB6CgDyv/ha+tf9CVqP5D/Guf8AG/xH1XVfCGoWU3hW9tY5Y8GaTGF/WvdMD0Fcf8Uf+Sc6x/1xoA4Twx8TNW0/wxYWkXhK+uEhiwsiYw4Gelc94D8d6jpGoa7LB4cu7xri6LsI8ZjOOh5rvr3U7vSPgTBfWMzRXEVoCjjqOtdL4D020tvDVrexRBbi8jEs7/329aAOU/4WtrQ/5kvUfyH+NH/C19a/6ErUfyH+NeqYHoKMD0FAHlf/AAtfWv8AoStR/If40f8AC19a/wChK1H8h/jXqmB6CjA9BQB5X/wtfWv+hK1H8h/jR/wtfWv+hK1H8h/jXqmB6CjA9BQB5X/wtfWv+hK1H8h/jR/wtfWv+hK1H8h/jXqmPYVn6rremaJCsupXkVrG52q0hxk0Aebz/F3VbeFppvB2oRxIMs7AYUep5rh/F2qap8XTo8Nlod1a2xk/4+XGVwe/FelXd3feO9VaysGe30eE7nugMpdJ3A/z3rutN0y00mxjsrKERQRDCoOgoAoeE9Dfw74astKklEr26bS471tAYorK1rxBZaLDmaVfOYZjizy/sKUmo7lKLexrUV5xa/EfWZtVFs/hW6S1LY+0krtx6/errNK8S2mrzGK2ZZGQ4k2k/KcVUU5K6IbtubdFFFIYUUUUAFFFFABRRRQAVDcwxXFu8U6ho2HINTVm67cm00ieZfvKtTP4WiorVHn2leB/Dmqa5evNpkLqkuDn6VR1zRdL0DxbYf2AqW85BJt4urHP+fzpLf4ca7etNqNr4qurNbk+Z5agYH6e1X/B91H/AMJALLV7RZNQgcpFdScswHenShGLjDZroTUd1OfdW/Q9LsmkezhaUFZCoLD0NRappNlrNkbO/gWeA8lG6Zq4OlLVSd2KKskux5zquh3ngu5Gq+GbZprNRtbS4ejMf4qvaP8AEazeBY/EKLo+oM21bWU889DXcYrE1bwno2tStcXlhDLdbdqTMuWU9iKQzZjdZI1dTlWAYEdwadXly6J4l8DXB1SPUrnWrctta1cgLFHnlhx2FdDb/E3wpPJFANWh+0OQuzvu9KAOwopquGUMDkEZB9adQAUUUUAFcf8AFL/knOr/APXGuwrj/iif+Ldav/1yoA5HWriK4+C9losThtQvLMCCHu55r0XwpbS2nhXTbedCkscIVlPUGvJIRjxD8OT3+z/1Ne6UAFFFFABRRTJJFiieRzhEBZj6AUAPqOWZIInlkYLGgJYnsK5Gf4n+FY2kij1WJ7hSVWPByX9PzrAXw54j8ZXK6vc6rc6VCzYNgMbWQfh3oA1tY+JFsIQvhqFdau1Y+ZBEeVA7/wCfSq2k+G7nxdK+reJomFvMMR6bL0hPqPrx+VdXpPhbRdElM+n6fDBOy7XkQYLVs0AVNO0yz0mySzsYEgt0+7Go4FW8YoooDqU9Vvk07TJ7tzhYl3GvNvC2nSeKfEFzquoSefbxyB7ZW6KPauv8e7v+EN1HHQRc/mKzvhksSeF7bYwL+WN1KlG9SUn0Rc4uNBNPeTOyMEf2fyQuIwMAe1cn4Q8Mf2HqWqTbABcTb14rrnkSNSznAHU0qSLIu5TkHmqjJq77kuXu8vQd/hRRRSF1CiiigAooooAKKKKAEPSvN/F/xF8P2l7/AGXPfIvO2bI+7XpNY9x4V0K7naa40q2klY5ZmTkmk1qXFqzucgPi14QsdLRLfVYpJEXCr61R8HWOoa7r/wDb13am3hVyYcc71Peu4Hgzw4DkaPag+yVswQRW0SxwoERRgKOgFNJKp7V6tfqZTjzQ9n0HiloooWiKCiiigBskayxtG43IwwQe4rnbnwJ4cljl8rSrWKdwSsqpyrHuPeukoNAHljfDbXdPc3sPiq/naE70tyRh8dF6VJD4x+IHnLG/hD5Adu7cfzr00n0pMZ/nQByM3xG0XSYEXXrqOyuzw0JI+X9ag/4W94J/6DMXXFdJeeH9J1GUyXlhDM56lxmq3/CGeHMf8ga0/wC+KADw/wCL9F8UGX+yb1Ljyf8AWbe1ZfxRP/FutX9fJNQa/wDDi01ERf2TdSaOV+8bQY3/AFrn7n4NT3tu9vceK9RlhfhkY8EUAYPwuf8A4TqfTL+b/Rz4fAiRV58wdcnP1r1bX/Gug+GJo4tXvkt3lG5A3cV5/YfAwaUjrYeJL63D/eEfGa6zQfh3ZafFKuqzvq8jnh7oZKj0FAEX/C3vBP8A0Gov8/jUF38U9Kvrcw+GJY9T1M/ctgcbh3710f8Awhnhscf2Pa/981Ys/DejadcrcWemwQzL0dFwRQBwf/CX/EKX903g/Yr/AClw5+XPf8KSP4Y61PKtzP4tvwJG8x4CRgZ6r06V6liigDnYPA3huIRsdItWlTB8wpyW9frXQqoRQqjCgYA9KWigAooooAKKKKAKuo2Ueo2E1pLjZKu05ry4aV4p8D38x0Owk1S3nb7hOBGAO2K9boxUqPK+ZDveHKzgtIvvFXiFmj1fSG0xAcAg9fzruLeEQW6RZztGM+tS9KQmruTYXikJpuTRSGJkg0uTQaSgCSiiigAooooAKKKKACiiigAooooAKKKQ0ABNNPNBoFABS9KKUUAFLRRQAYooooAKKKKACiiigAooooAKKKKACiiigAooooAKQnFBprUAOzTe9IKcKAExS0tKKAEAowKWigD/2Q=='] Multimodal Competition False Theorem proof Geometry Math Chinese 32 " 如图, 封闭多面体 $A B C D F E$, 平行四边形 $A B C D$ 中, $A C$ 与 $B D$ 相交于点 $O, E$ 在平面 $A B C D$ 的射影为 $O, E F / /$ 平面 $A B C D$, 且 $E F=\frac{1}{2} B C$, 其中 $A B=B C=A C=A E=a$. 求证: 平面 $A B C D \perp$ 平面 $C F D$;" ['取 $\\mathrm{CD}$ 的中点 $\\mathrm{M}$, 连接 $\\mathrm{FM} 、 \\mathrm{OM}, \\mathrm{OE}$\n\n$\\because E F / /$ 平面 $A B C D, E F \\subset$ 平面 $B C F E$, 平面 $A B C D \\cap$ 平面 $E F C B=B C$\n\n$\\therefore E F / / B C . \\because E F=\\frac{1}{2} B C$,\n\n$\\because \\mathrm{O} 、 \\mathrm{M}$ 分别为 $\\mathrm{BD}, \\mathrm{CD}$ 的中点, $\\therefore O M / / B C, O M=\\frac{1}{2} B C$\n\n$\\therefore O M / / E F, O M=E F \\therefore$ 四边形 $\\mathrm{OMFE}$ 为平行四边形, $\\therefore \\mathrm{OE} / / \\mathrm{FM}$\n\n$\\because O E \\perp$ 平面 $A B C D \\therefore F M \\perp$ 平面 $A B C D$\n\n$\\because F M \\subset$ 平面 $C F D \\therefore$ 平面 $A B C D \\perp$ 平面 $C F D$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIASkBmAMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApKZv5wBRnIBHQ0ALmlBphbrnoO9OHBx3oAfRSA9qWgAooooAKKKKACiiigAooooAKKKKACiikzxQAtFNzS5oAWimhs9qUHIzQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUHpRRQBFuAO1eSetZPiHUrrStHuLqythcSxLnYTitfaCc9D7Vy3j++fT/AAXqLp/rjD8mO5oA421+IvjPULWWWHwlE8URw7GQ8V2XgjxNP4s0FdRubQWcwlaNolOeleUWMvi68/szRLuBYrK+jFx5tsCG47EgV7rpdpDZadDDDEqBVHAGMn1NAF0E5GRTqYpJPNPoAKKKKACiiigAooooAKKKKACiiigBD0pCcdaU00kEZ9KAEeRUXJ6Vxt/8UfCmn3Ulpc6l5c0bFWXb3FdixQjmvBH8W+GdK8VanPf6bLPJDOyBvs+9Nx6ZOKAPR7f4reEp7mK2XUv3srBUUr1JrtEYbjg8elea6J4bt/GWg2t3qtjBazw3fnQtBGEygOVzxXpYGBx6AUASUU0U6gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopDQAtJSc0mTQAjElio4GOteQ/EHW9dutTGmWmgXk1tCcSTrjbIPbmvXPvnafrSAhmKdAvb1oA8j07xB4p1G6sdMtNGudKhjTBuJkBXAr1m3WVraPeQHAGTjqe9Y2u+LtG8PSLHqc6xBvu96z0+JXhqQ/JeEY7bKAOvXAPvT81xq/Efw0zn/AExhjr8lSD4keGT/AMvp/wC+aAOu59aTkVyo+Inhs9Lw/wDfNL/wsLw9/wA/f/jtAHVUmK5ceP8Aw8f+Xv8A8dp//Ce+Hz0uz/3zQB01Fc0PHegH/l7P/fNO/wCE40E/8vf/AI7QB0dJz61zv/Ca6Ef+XkflTx4y0M/8vQ/KgDoBmlrnz4x0TtdD8qUeL9FP/L0PyoA3GBx1phBRQFU4J5rHPizRSP8Aj7H5Uh8U6QQZEugcDpxQBD4q8RWXh3TJZry5SJmX9yGP3jntXF+A9H0PxPpGrC48q5ju7hZpFU8hq7abT9G8V2UFze2sN3CuSgcZC/SrWk6LpujBo9LsYraFzlxGMZNAF22tY7RFhgAWBVChB6AVLGpUk9j2p/ToOtOUUAAp1GKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkJxRTT7UAGSQfWkJ2ryMmjPGW/AVFdXMdrbtNNKsSKOS1ADi3ybvugdc15/wCOfiZa+HYXisiJLzGPlG4A471k+JvHt7qt3Lp3h7LQID5l0uCijoc1xvhvwlJ4j8QCMt58ETj7RP1EwPp6UAcnrNnq+tW83iLUHkEYk4RiRnPoK9f+HGkaT4j8KxXEkarMGKkEDPFdlqHg/S9S0pNPdF2RqBt+lcV4dB8I/EGbSGQx6eYR5foXNAHajwJo2D+65PoBSf8ACAaMf4G/OulHGMA88mpBQByp+H2jH+Bqb/wrzRj/AAv+dddQKAOQPw60Y/8APT86b/wrfRv+mv8A31/9euxooA4w/DbRT/FN/wB9Gm/8Kz0U/wAc/wD32f8AGu1xRigDiT8MNFP/AC0uP++z/jTT8LtF/wCetz/38P8AjXcUUAcN/wAKt0X/AJ7XX/fw/wCNN/4VXop/5b3f/f0/413dJQBwbfCnReouLz/v6f8AGuZ8beANJ0nSDLBdXqysdq/vTgn869gJyODXmnxbupJNJ0+2iOJGvYwfpkUAc78NPEdzozxaNrBYRyELbNjhj15/CvaQxKnZjFef+KvBwvPDdtcWihb6xUyW5A5LEYq/4E8Uf2xpn2W5O28tCI5UPUtjmgDs0YsOBgU8HmmZ4Azg05SD9aAH0UlLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFGRRScUALSZopjHJwOtAC5z0ppYDqabIX6pjGOa5fxV4xs/D8JiRvNun4Ea8nP0oA1tZ12x0e2luLqbAjGdo5/SvM5rvWviDetHAWtdJB5lQ4JHuKsaR4Z1PxfqK6nrTvHZI2+GLO1j2+b1q/4v1+PSbeLw/oEatfTKNpRchQDg5xQBzl7FHd30fh3wvCq7SGuLgDBI/iB7GvUvDfh628PaZDaWy8hcO/QmsvwX4TXw/picBrmQ73c9RnqM11pwzckjHegDjPGniGfQniMES/OwBOeetY3xE0+WbT9L1qAkSJIjykf3MA1teN/Dk+tyQNEQFQrn863tS05bzw09hIud0Gwex24oAXw/qqazpFvfRtmOVdykdx0rXFeYfDG5bSru98NTsT9hwiZ7816fwTQApIoFNDckd6cOnNAC0UUUAFFFFABRRRQAUhpaQ0ARv93BOK8r8Zq2p+PrTTAxzEI5setequwVCxHQZryrTgdY+MEt3nMcdts9sjOaAPT0j8sEkluAAteWeKtLufBviSPxJYDdbEn7REBgFiev5V60AMj1BqnqOnx6nYy206h1YHgigCDSdSg1axjuIGDKygk9we4rST0ryPw/eT+AfEsnh+9Zjp8p8yKQ8/M3QZ/pXravlBn86AJKMg01TkUoXBoAdRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRSGjHFAC01iKAM01vlBJ5xQADaTULsqNuY7Fxkk+lR3F9FZ2zz3TIkagnII6V5jqniTVPGl/JpXh1GNnnEtxyrKOmR60Aanirx4YphpXh9TeXjjH7o8p+dHhz4fuLpdW8QS/bb5hvGQQV7gfhWx4T8G2Ph+Aycz3nV5pFG7P1rS8Q67beG9Ke4nky54Qdy3b3oAyvGniiPQdMFvAQLucFIY165HYflWb4D8KtC51vUv3l5Od67useeorM8JaFeeJ9YPiPWt3l5DW8JOQhHpXp0aNHlNqiMcDFADzkZRTt75NKvTnnHepBjHSjgdqAMLWtft9ImjjnYLv9a2UcSxI2OGUGvN/iTBLc6pZRxxFh1JA969EsyBYwDniNRj8KAPLfFgbwz4/07U4lIgu5iZyOmBk16jbSpdQRXMTAq6g1zPxD0Y6t4UvVjX/SFjIiIHKmm/DrWBqXh8W5x5lniJ/XP+RQB2HGc98U4U08t9KdmgBaKKSgBaKKKACiiigApDSN1wKU9KAILphHaysxwAp/lXmHwqja8ub/AFM8n7TLHk/7xruPFt+tj4cubgnAHGfrWB8KLE2XhmfcP9bcvJz7kmgDu8AE88mmlyGwBx3p+AaTGPegDlPG/hqLX9M3KoFxbnzomHdh0FZnw98Tz39s+maluW+tFAl3deeld4Y8kgj5SOhry3xpol3oGqx+JdL3eXE2+5QcBxjofWgD1QAEZFOrH8P61DrWkQ3kZGSo3qOxrUQhm35PpQBLRRRQAUUUUAFFJS0AFFFFABRRRQAUUUUAFFFHSgBDTc0pPHFMB3AmgBxJHFG6o3l2ZJGEAyWrjtO8fRal40uvD8NruSCNW88Hgkk8fpQB233jTXYrxTSSRkcY7UrOu3cSOKAF38Vka/4ksfD1k9zdyrnGVjB+Y/hWP4r8c2eiJ9mtis9+/CQKfmJxxXM6L4Pv/FF6useKy7xKd0VvIPuA9sigCtHb634/uvOlL2+j7uI2yrn3+lelaPoNjodolvaxhVTkNj5j+NXreCO3hSNFARQAuB0A6UXE8dvE08zhUQZJPpQBBqWo2+m2klxcuEQDqeK8utLS8+I/iH7bc7o9Lgf5EbjLKeD9KXWb27+IGvjR7IMunRNslmHI4r07StLg0nT47SFAoUAcd/egC1BAkMKRRoECjgDoOKdtcOCD8p6ingYQ+opACBx1NAEmOKKTtTSThuM4oArXb2isqzmPeR8u4c1Mu7aOmO2K878f3E8XiPTwjFQyc8+9eg23FlCSc/ID+OKAJJAjBgy5HcGvKfD8j+FPiFLpTnEF+Xnz+WP516tvGzc4wO9ebfEvTpYoIddhBEsEiRjHXaTz/SgD0vPmKrKeKXPNZehalHqej29xEw5UKfcjrWl82elAEgoHWmbsDjmlDcEkYNAD6KbuPHynmgtg8jigB1FN3il3ZHFACH734U3OadkYpmTnpwO9AHAfF24KeCZ7VDiSVlxjr1rrPDlstrodkijG6BG/SuH+IjG88SaXpQ+bz1Lcexr0WyTy7SCMdUiVfyFAFknBoHQ0wMWPIxinn260ANOXQg8VVvLOK9sntZcNFIMMD6Va3bhtPBpjAYI2nI6UAedeGrW68K+KZdJbc1neM0ynso7D8q9HVg2CMYrP1SzW5tWeIfv0U7T3HFch4F8VTzTzaTqzFb9HY4fqV7UAehZpC1N38dPrQxAGc8UAOzxSZoyOlRlwr7WOPSgCXdRmmqSV5H0paAJKKKKACiiigAooooAKRulLQaAIyNgJHJpmd6dwfankhTgZ5rH8Qa6dCsTcGymuiATshGTQBy3xL8ZL4e0tba23SXcjr8qAn5M8nArjPhvPa6p8TtSuLMyhGtIyfMXaQ3OeKl8F30uteLbrUdZ0a981A/kGRPlVPTB71D4f1u5h+KF5qC+H72G1ukW3XEWApBPJoA9w3bSABkAfMTXk3xA+LcGkTPp2ngSyMdrN/d7cY713HjLxB/YGivcQnNztzGndvpXBQ/Cm11bR5NQuQ39pTsJ0Zm4GeelAEPw9uvDt3599dS3V7fRL5jm4hOEGeNprsY/if4ckuvsaC4yDtwYDisvwK1/ZajdaNqunAvEg/wBISHCMPTPeu3/sHTlcv9ljB/3RQBh6t8RtB0S8S3u3uV3x7xsh3ACuD8XfE+y1u3jstIaYwSHbOwTBUfSui+IOrWdpGunQWyXGoS7UUBQSqk4z9KteDPAFppOlpJfQK95N98gcetAEXgLW/D0Gni2szN5+P3jPFtyfWr0HxL8OS3Ys1muzIZNmTCcbs46+ldJa6Jp9tKTDbhG7kAVHH4c0vzPNW1RSG3fdHWgDO1T4gaJo90YLp5xIBzsizT38c6Qlg1/ul+zD7x8vkfhWhdeHtPvZ2muIA7N9Kk/sPT2tTbeQBGO2BzQBj6N4+0XW5JhZyXDCJS7b4scD0qGL4j6FLcpbxSTl3bC5iIBNbVn4fsLB2aCAIXXacYFRL4V0xZBJ5I3A5+lAHL+J9X8NS6hbT6jc3KSBflEcWe9b3/CZaPBo0Wob5fsZbywfL5yB6VzHjb7Na6/YWvk7lZMEYz3rsE8P6dPpUNk0R8rAkA7bqAKuneNdD1IkQSTv7PHisrWfGXh7UrW50y4eYMchQI+M9q6S28N6dZHckOD7VWfwdpEsxlaBt5Oc5oA888BeMrTw6txoepNIDGWmUgZO1jx+legnxlpX2EX5ll+z43DCc4rzvx1otrpnjKz1N4T5N26W5C8YA9a9KTw7pclitrGha3Ixwe3+c0AR6Z4z0fV5mhtZJC4Uv8yY4FV18e6I9x9nEsglLbR8nGauWfhnS9Lk8+CJg7KUPPY1XXwVpAmWTym3q24Hd3NAD7zxlpVhsjlkfcf9mpG8W6V/Zv24yP5IYKfl702+8IaXqMqtLG+U6fNT28J6WdPNgY5PIJ3H5u9ACWPi/Sb9n8iRiFGeVxUT+ONFjmMJlcODj7lLY+ENL07d9nSQbxg5aopPAehyXPntHLvJzw9AFq+8WaXp8yRzSEMybuF7U/8A4SjTHsReK7GE/wCzVe/8I6ZqlwkkySZRdg+btSr4W0u309rUrJ5IHI30Aedtq9p4h+LOk3FtIWigRxgr616IvjHRjL5AmIk3bMbe9eb/AA58OWsnjHXLmNZAlpc+XHl+2BXet8PtDN0LrZP5m/dxJ3oA0rzxLplg/lTzFW74Apy+IdNaza8E37mM4PA71S1DwRpGpNm4ExPtJSjwXpK6Y9hibyGOSPM5oAntfEum6pIy20x3oNx4HSkbxbo6zFDP844xiqmmeBtL0t3aAygyLtO6TtVd/h3oLXJndZ9wOSfMOKANi88R6dZRo91KFEi5X3FefeMbWPzYfFmiyFmDgTc4+VevSuq1nwhod4IZL0znyo8IqykcCvM9U8WaeiL4X0Wxu1Mj7S0xLg7j1oA9e8La/D4k0aK9g/5aLkj61p3sIe2mfzGXEbDjtxWB4H8NJ4d0eOE5E7KBJzx+FamvahHZ6NcuxwCjJuPTJGBQB5J4d8I6j4g1K73eJNRjtUJKPG/JOeQee1dTp9w3hHXNP0K6u5rxr07YpJuWGKsfC6zXSvCJkupAGa4kYux/hJyKzr2U+J/iVpNzYYaHS5D5rkZ3Zz0oA9OBOVx0xTqagHO38adQBJRRRQAUUUUAFFFFABRRRQAxqQdKeRSGgCDAWXy1X73JOelJPMtvEzOwCqMsfapcgSYAycVwvjzXWgt4tIszuurxvJcjkqp7+1AGPao/jPxwZpMtYadLhM9GBr01Yh5QiC7UXp9BWJ4T0JfDuiQW5GZgoEr92PX/AArfDMfvdD0oAicSNEVRsHGNw615D4m8aeIPAurzC+SS8t7lt0DFsBBnFeoazq9rounSzzSEeWpYep+lebaDoU/jvWn1vV932ONybaM5IKkdwfxoAtfDfR/7Ynk8R6lObi4dmCBx9xT0FepJnaCc1zGieHrbwnbXEkU80luN0hU/w8Z4FWtB8WaXr0WbaQhi2Nsi7T+VAG/nHRaOSemPajcQQOMGlPLdaAFApTQKWgBvWkp3FJQBw/ijw7d6p4osL6AMY4oypwOOtdjCHSGNCpOAKzNU8SadpeoQ2Fy7CeYbkCrkVrQlXjV1ZsHnmgB+Pm60isQGz17UvUtTWGSD0xQByfjvRxqvhqaQr++tt0qcc5HSovhrrDan4VtYpz/pUSASjuD7110sAmiZG5VlwRXlugynwz8RNQspDst72YCAeoAFAHqxCn5SPehTnmk3KzAj0pQR0FADx0opBTqAGkUmKU0lAAR2zWZ4huFtNAvrj/nnGWNaRHJOe1ch8RbwW/gzUYRxLcRMi/XIoAyfhXbSJb6nePk/aphIpPfivRAT24A71yngW3Sx8E6XK8gSQwAtvYDmtyDWLO6u/s0M6PJ1OxhQBd3B8EHGOc0jSLuEatyec1wfijWvFS6tJYaLZwSI3AeRiKg0XwPqs2pR6lrGpXEU6jPkxSbkoA6DxR4s/sM+XBaG5uTwsfQk1ykV3408TzBzBPo8JOduQwavSZNPtJSrSwJJIABvYZPFSqEVdgJAXjHpQBlyWscWkr9sPmzxwkb24ycV5z4A0F9W1+5127tTHFuaONGHQhjg11F5rw1TxEmmWwDQgESEc4NdXZWcNlbLFCNq9cDpmgCwpHQNkjqa4vxl4N1bxNMgtdaeytQvzwBch29a7MKS24gCnAHdyTn0oA8ut/hn4khjS2k8WTSWgb5oivBFdzovhy10GBRbKPMP+sb+8a2uSvOQaQjPXj6UAIiANlTweop9Ko4p2KACiiigAooooAKKKKACkJxS01ulABzv9qYHOSCKU5YDBxQcduaAKGqajHptlLcSMAFUkDPOccV5/wCDdOn1/XbnxJfDMcn7uJD/AAlSeaXxlqL+JPEFv4c06TkkPJIvbackV6Dp9lDY2MVrCgTaoyAOpxzQBaAIRe+OtR3V5DZWb3Fw4REBPNSmRVBGcY615T4m1e68Z66mgaZIwtUbMsy9MqeVNAEJa8+JHiNNoZNGtmDKD/Fjrz+Ar1mys4LG0jtrdAkaDAAFUtC0a20PTI7S2QIqjPHcmtQUAMkjDoysPlYYIrzXxN4Gmsbo6z4dbyLoHdIpJIbjsK9OIzTDhjj8xQBz/hrU7u80hH1CF45oxhiwwGrdyAA/qOKx/Edjeapo09rYXj2k/VZEHpXEaJ4w1LQ70aR4ojYNuCpPKeW9KAPUUk3jAIB9KUvhgpH41BE0M0fmRMCWHBFTAgpgnp1oAkpKQMO3pS7qAPMPGlrJN8RdIk8l3QQNlh0ByK9JhwbdOwABqCeK0kvY2lC+cF+XPpVtcBNrdKAHKcijHFA7belLQA3HNea/FOxNrHa+IoFIk08FwR/WvSzz0rN1zTItY0uawnGYZQQ2aAI/D+oDVNJtboMCWiXfj1xWqFrzP4Z6k9rcX+iXH+sSZvKB67RXpecKRnmgBu8iQLtJz3p27LYBpqkptU8k1FJcxQBnkwIgOWNAFgjv6VGD1fPyjnNcbq/xJ0Oxd7a2mjubnoIh3PpWhY3l34h0CTAawlYcFeq0AaF94g03TtxuryGDA/jbGa8y8deLLfXZ9NsLA582YqX6q3Fbdv8ADIXc5k8QXx1Rd2QJRWBr2hadB460ax0+1SKO1uQ7Ko9QRQBYt/C3i/V1WynvootPjG3aFKkj65rsfDXgPTfDkpuUeZrsjDMZSRXWBcLgcDtRhF+9yaAGqiDnaN3rilB3HgYA9aCpHzL09KXOBjHzHtQAh5faRyBXL+NvEq6BoztGQ15KpEIB6tXR3F0lrHJcSECNF3M3oK8os4ZPHnjdr5svpdg4eHj5XB60AdL8O/D0llp82o3XNzeOJct1UYruAAp2Dr1pkUaxokcfyqoAAHpUu0Zz3oAUqCOaNtLS0AJjijbS0UAGMUUUUAFFFFABRRRQAUUUUAFIxwKCRTWbA6ZoAToTjpXO+MNfXw9oc1wpBm25Re7fT1reaRY4WZjtUDJY9q8zIk8aeNuDmw0qU5HUSg+lAGv4D0D7FbyapcjddXTeajsOVU9q7cPkkEfMO/amwokMSRouFAwB6VyXjfxXDodmLO2bzNQuD5caKeUOMgmgDG8deJ57mdPDujEtdzfI7D+E/UdK6bwf4Xt/D+nKNoa4l+d3Yc571jeAvCktih1bVP3l/dYkbI+6fSu9AwCTQAAHgnqaeBTFO0AH1qSgAphXPXin0UAQkFAcDmsrV/DlhriKLpPmBBD/AMQraIzTGUAZzQByeq6zaeBtPtYphPLBkqXCFmA/CtzTNWtNYs0uLV1eNxnGfmH1FSX1jDqNq1vdxq6MMHPevOz4T1jwtrq3Oiz5sHOZISCzE+x7UAenjG3OKUMMZyKrQ3Q2Rq/+tZQWXvmpgq7s4Jz19qAPNPGF7cRfE3RreKVkie3YlQeDyK9MiOIY88/KKwb/AMMWmpeILbVZ1zLAhVDnpyP8K6AYRAq9hgUAOOOOaN3GajJGBuOSelLuO4c8Y6UAP3cZ7Uw4YkHODUbzRrL5ZmUHutcp4k8aNosvlW2nz3kgOAsXU0Acv4kT/hF/H1nqqgpaPHsc9PmYgV32qeJLLRtKjvrtm2OuQEGT0zXlWvWvi3xja+dcKbWxjIl8mSP58rz1rqvB8Np4x8LWk2pgvcQSHKZ6AYH9KAKU/wAStQ1iXyfDlizOOCbmIoPzrsb7Q5PEXh+K2vZntpG2vIYGwc+n0rWttPtLdFit4o0QDHCjNTptJ4UjHHNAHN6T4F0fSyT5f2h/78q5P510cUKRAKiKqdMAVNtFGKAGSDCksflAzxXleiR/2z8WtZkJPlQIjJ7HJr02/k8qxuX7JEzfkDXnvwzT7Vq2oav2uhtB+hoA9M6YH86CM9QKaM808dOaAG5J4pjH5sd6kI54rH8QarDoekTXUrADoPrQBx3xB1yaSaLw9p7FppnHmkdkP0rq/C3h6Dw7okFhEAfLGNx6nvXG/DvRLjU7qbxFqgzK7MsYbsueP0r1AYyfXvQAgXv3p23vR3p1ACUtFFABRRRQAUUUUAFFFFABRRRQAUUU0nkigBDSE9x2pCcgA9DVW/u4tNspLiV8IoJyTQBynj7xA1hZR6baktcXT+SQOqg960vBvh8aJotvG3M5Uea56sa5TwnZS+J/ENx4hulzb/6uIN2Ze+DXf6pq1tpGnve3TBY0GSM/0oAo+K/EUHh/SJLmRgHPyoD1yeB+tcX4M8NXGtagfE+t7nkkOI4XH3MdCPz/AEqpo9hd+PPELapfb1sIGKxxnhWHY4r1mKFIIREihY0GAAOlAD17kdTTgeMN1pgxgAdqkUcUAHUinU3oadQAUUZpKADNNbHcZp2KRuMGgBnDL8w57Ck6qQGK04rn60wghs8bfagDiPGGhaxdSDUNI1GeOaPny0H3wOcfjR4T8dR6i/8AZ2qAQaquA0J5yelduxUjjgd88VyurQ+HLK+TV5pYUnjbcfKK5PH50AQ614ouLDx/pmhRw5iuoXkZvQgj/Gusd1EIZjhQMk15Dc+MNJ1TxjBdzRXEbxRskUpjKr27n3FXR4e8U+LpWbVLqK3syx2NZzYJXt0NAHo9nq1pfzTQW0gd4uuO1cRrWveLb6+ksdO0cxoCR9pV+fyro/C/g628MRnyJ5ZWcDeZDk5+tdGkSJyqgH24oA4Dw14P1y3vP7R1XWridjz5LgAD26V2ZsLVrhLgQL5yn73etCmgfN90UARXEfmwunUOpU/iK8q8Pu3hX4kX2lM/+hSxqYs9CzE161gZwa83+JmmvCbDWIFw9tNvkYdSoFAHoykeYRtxSquAR71m+H9TXWNEtL9cHzk3cVqEfNu/SgBSMCjNKeaTGKAMPxbeiz8PXbH+ONk/MGuf+FVn5HgazZhhy7Ek/Wovi3em28P20anBkuo1/MgV03hez+waBawbcbRnFAG0eGHpQaByaQjIJ9KAEZwg56V5Lr91N448YQ6PbM32GHi4x03Dmun+IHiP+y9KNlbMTdXQMcWOTu69qd4B8O/2RpX2u4UfaroiRyeoOKAOps7ZLK0SGFQqooUD6DrVhBjqMN3oI3KD705R8x9KAF706jFFABRRRQAUUUUAFFFFABRRRQAUUUmaAFpjkL260+mk80ARuQmyPH3q818b6pca3rFv4bsWJjk+eRl527TyK7DxVrkWh6DdXpCmWJMqp7mue8A6M8VtPrN8TJcXb+dGz8MinsPagDqbK1g0PS1RdqRxJukz0GBya831C4uPiL4nFjbFk0m1fbM/aZT0Iqfxfrt74l1geHNEJVVw1xMh6qetdx4Y0G08PaUlpCg3IuHk7v70AaOn6dBp1jHa26BEQAflVvOGJPTFHLMGB49Keygge1ADVUHkU8DFNGFOPWlJ54oAU9aWm545pHOFz2oADSg0wtuTIIxQJAABxk8CgB5bFRs5GMDJrE1/xdpPh2PN/ceW5GQMda5P/hYGq6pexx6HpSXNuWGZckYGaAPQLm9trFWmuZliUjq54rkdV+I+k2VwsVh/p8rHBWFulaWueHpPEWn2kdxO1vsJLoBw2aXSvA+g6RsKWEJnHWXHJoAc8+oeIdDLWYaxkcciQZP6VzNh8LbeWUy6zcfaZeuVYivQxlZdkahUA4IpQ4ZyAAWHWgDm9S8EaTqGkHT2gCqOVboeOlZPhPRNd8P6nNY3N4smlou6MAdD6ZNd6DnrwajmUTQvGCcMMGgCO1u4Ll2WGQMU+9irfFeT61pOv+ENWbWtNmlvrMsWlhYgBR19K7bwz4rtvElh51tgSoQskf8AdNAHQtkUjE8YNJu4Ge9L05oAGXJBPWs3XrJNR0e5smGTLGVB9K0s5OaawBPTmgDzf4Zai9vd6joFwSpsHEUee/ANelgknnpXk/iOA+FviHp2pxnEF05e4PYV6nbSrPbJMp+V13CgCejtTVbIyKVj8p+lAHlPxOLalrVhpSfeWaOb8Awr1GAbYY17bR/KvMLgnU/jQgA3RJZn6ZFeojCqAevagB+7BFU9QvI7CzluZGwsalj74GasFgOT2615h4+1m41fVoPDGmn5iyySsp6oTyD+FAFbw3by+N/FkviCZT9igYSWyt0z0Nes7R8p6ADGKy9A0i30LSobG3XbHGvGBWp1GDzQAuM09emKQDjApRQAtFFFABRRRQAUUUUAFFFFABRRRQAUnApaY2CM5oAXcKjklCKWJAAG4n2o4xnPFcf8QNeOl6altagvc3b+TtHVQe9AHO3zv468bJZoT9i02TMhHSQdPx61e8aeJW023i8P6T89zIoChOQFzg9OlUftkXgDwkkIHnaxMhAC/eZq0fA3hSRAdc1ciW+uD5kYI/1YPUGgDW8EeEo/D1iHl/eXMo3NI33jnnGa6tgA/wDnmmL18o9RyDT1+U4J5oAcMCnZpCPzpu73oAVyMhfXvQTg4z261DczxRRZlcIvXcaq2urWd3bTPayrceUDkIeSR2oAvf7v45piXMLM0YkRnXqoPNeaX/iHxXr2oy2Wl2FxpqISFuJACp963PC/hjVdMumvNVv1vJnO4lQRigCt4h+Ig025NlZWNy9xnGfJYr/Kqmgz+NdV1SG9uUtksSwJXo2PpXetYwLL5zRKznvip9uxPkADHjI7UAZmo+HbHVbyKe7jDmMEBSMirdlplpZJttoI0A7hcVcTIXB5PrQAeQeQaADAzuzz9aCBncaTYFPANOAIOc8UAQz3EdrA88xCooycnHFebXnjbX9a1OSz8KQxsYj+8lnTCN6YNanxR1SXTdFtUUF0u7hYGUehOP61teF9ItvD2hW9tHEAoXJJ6+tAHO+EvFetS62dK8SLCl82TGIRgFR3r0IYAJ6V5VbyHW/i1a6lbEPBYI8Em3sxxXqoBLZJ+UjpQBE0ashBG+NhyrHrWU9hHo1jczafEFLkuQq4yce1bQUHIxSMCBheAeDQBwvhHx1b6lNLp96Hgu0Y8zDaCPbNdym1xu3Aj61x/i3wTb64ftdri3v1+ZZewP4Vo6O0uh6DD/bV8m+NP3kjDAoA6IjstITgEd6hhnjuI1mglV42GQQeCKkY5GR/DQByPxD0ZtZ8I3IjH+lKvyEdQak8AayNV8PKgOXtj5L/AFArqWVZE5GVbqK8r8Ns3hLx/PornEF1vuN3bJoA9VHysR2pZGAQt2ANCYK+ue9Zmu3YsNHuJs4AHU9s0AefeACdQ8VX2qdQjyQ5/EivVG+bp2rzz4SWjQaFfSuMNLduwPsSa9Akl8pCzsAqjLE+lAGD4t16LQdElvmbEifKE7nPt3rnPh14dlCya7fgtdzs2zP9w9KxLozfEHx0IUDf2bp7mOXuGPWvXIIxbwRwouFRQox2AoAfg7cN3pQuKXGSM0/FABRRSUALRRRQAUUUUAFFFFABRRRQAUUUUAB6VEy5xxUp6VHuOcY5oAq3k0drC88jAIik4zXkceqpqmqXXim/O20j3QxRHpvQ8Gtb4keIftM8Xh+3m8syjzGk3YAK9s1z/hrR5fGuoxl42h0m1ACqBjdIvUkd80AbXhLRrjxTrL+JdWQm3LB7ZGHA9RXqMMawrtB/3R6U21t0tbdYYYwiqOAOgplxeWlmpa5nji46uwFAEyHg7hyeho3FWywXH941xl78SNKsJltYI57p2bG6Abx+lX9Wj1LW9AR7FjEZFyA52kUAaOq+JNK0kF7u6CAdcHNV4taXWNCm1DRSbjcCsaHgFhXL6V8LbNJBd6jdXUt0TuKmYsufoTXfWtmlpbJbQoqRr2UYH/66APMovC/izX5Fm1S6msEXrFGwIx+Vdx4b8NQ+HbVoY5mlaRssxHWt4Lhdp6Uc9Dj2oAb9zCoox604ZBoUbVAPXNPwKAGNk0AY4p+BRxQADNGKWigBMUYpaKAOV8beH313SUWP5poHEsS+rjkVwxb4jahZf2bPpwtI3Gx7mOXLIPWvX87+R64NI4bgD7vegDmvB/hKHw3p5UuZLiY+ZLIerN711HPGKRRnqad0FABkCkbkUoGetBFAEYFZuv6LFrmly2c7lFdcZA6VrYpjMQcYoA8it7/W/h5fLDeB7vSXcKs8h+ZMngYHavUrW4W7topo+I3ANS3Frb3Mey5hjlXrtZdw/I1zPjDUdW8P6fBc6TEjQo5NwgXJKew9cUAdWCMFe1ea/FLT57aO21q0TNxHNHGxHXZuGf0rqPDPi2w8RWaGNvLnxgxSHDA/TrV3W7OLUtNubWYMzGNiuOgOOKAJNF1GPUdIt7mIja4A/HFc98Ubv7H4FvXB+YBayPhhfyWiT+Hrlj59rl8HrgtR8UWN2lnpOc/aUyw+hoA6fwTYmy8OW5J/1iB8H3FYnxC8RSW1qmj2TE3d4TEGXqvpXRveQ6N4YiklbaIbcbT6kLxXCeC9Nm8T61P4pvVPlzY8tSPukccelAHYeCdATQ9EjBUfapQGnYfxN6n9K6kVEmECqOmMVIKAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUlABmsvWdRfTtJublImeSJMqB3NX5pVhheVzhUBJrwnx58Ury/vLnw/o0MTtJ+7E2/BHcGgDE0vS9T8a+Jpo5HZrd5dzsB/qj1wa98t7SLw5o0UNlal9oA2p3OK4D4aXWo6dbLBeafZwKQDJMsvLn1NejjVbGQYW4jJ75cUAcgfFuv3WvQWkWgXcFsj4eRsYI/OtXxB4Xi8UCI3DfugPnj5zmtwajZ7X2zxb16/MKmW4t0VW82NQwzjcMmgDC0TwRomgRg2loFfrknPNdDgbRhOnSm/aLYnP2iP8A77FH2yDJAniP/AxQBLtDYY9adgZzioRcQdfPi/77FL9pg/57x/8AfYoAlwPSggelRfaYP+e0f/fQpRcwH/ltH/30KAJM9qUVH9ohx/rY/wDvoU37RD/z2T/voUATGgVH58R/5ap/30KQyxZ/1qfnQBLn2pMn0pokj/56L/31SGWP/nov50ASUZqPzY/+ei/nS+ZH/fU/jQA7Izmjg0m9PUfnSbx2K/nQA40o6U0OMdRRuHY0AOo59abn3pdy0ALzQeRSZFL1oAjKgkUyeNZYyrAFT1B6VNwKaWBQgUAcJe+ABDr8esaNOtrIGLSLgnea6VdY060vY9NnvYxesm4xnqfetIsFXBOM+lUptJ06e8F/JaRNcqm3zivzYoA828Qq/hn4iwavGu2HUZFiduwABNTeJbiLVPiZ4eijbzIArCTb/FzV74g3FhdaVJAS32i1BeD5erVmeFfG3hVdGtW1AY1O0UJI+wswY88c/wAqAF8XXVx4q1638Mac22GNllklHTCnJWvStL0+30zTY7OCMIqr0Hrio7HT9N8xNRtbdEklXd5ijBIPrWgBltxOfTNADlxwBTxTI025OetPoAWiiigAooooAKKKKACiiigAooooAKKKKAENIRSnim5zyDgUARXUSXFvJA4O2RSpI688V5xL8EfCr3D3Be881urCYj+tekhiclTuHtSEqvBGc8UAedN8GtAUAC91IL6faX/xpW+DGgkApe6mP+3pv8a9CWNkyXO7J49qlTGM0AebL8F9CR2YX2qe3+lvz+taOs/DPT9aS1E97fobePy1EdwyjHvzya7oijFAHlp+C+nD7uo6n/4Fv/jSt8HLML8mo6jn/r7b/GvUaMUAeXj4RoFAGo33/gU/+NIfhMR93Ubz/wACW/xr1PtRQB5X/wAKruI/9XqFz75nb/Gj/hWF+Pu383/f9v8AGvVKKAPK/wDhWmpryuoSf9/m/wAaX/hXetDpft/39b/GvU6SgDyz/hXuvdtQOP8Arq3+NL/wgniZeEv0I95DXqVLQB5X/wAIR4sH3b+L/vs0Dwb4yj5jvoPxc16pRQB5X/winjkdL61/76o/4Rfx6Ol9afnXqdFAHln/AAjvxDH3b2x/H/8AXSf2B8SB0vrD8v8A69eq4oxQB5UNG+J6/cvtNx7r/wDXo/sv4qKeL3S/++f/AK9eqUYoA8sFr8Vk/wCXzSzj/Y/+vSk/Fhf+XjSz/wBsx/jXqJUUCgDywzfFYdZ9M/79f/XpPtnxRT70mnH6RV6p+FNwc9f0oA8u/tP4lr1Nif8AtlT7bVfiE1xGLj7JsyM4ir0/afX9KTaD15/CgDz/AFbU/GUBia0W3II+cNFms3+3vHMY5igIPpDXqQBPDqPbikKr/cHFAHkV1qHi25hnM1rblpFxzDXF+D/CGsyfECC71C2/0YvmQeVhTX0e6rsGYw3tTVBZcKoTHHSgAjVRCqAqFUYAHGKeuDtHYU3YoxtHzdzThx04/rQA9RyeadTIzyflxUlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADXGaikXgNkjHYVK3Uc1HISAVUYPvQBwnxNtpjocbwanPYsZAA0TYyfQ1wE2nanpGg2+sx+JL27ulBf7O75U+3Fdd8VYf7et7LRoDIs32hGkCnB2ZGTXLX3g638J+NPDsOnzSSw3FwFmSSQuANpPSgD2Hw9PPfeHbG4uCVmlhVnHoa10I2/Tioo0CRqkW0KoxtFSLwKAH0uKaKdQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhzSYNOooATB9aMUtFACYHpSEDrmnUmKAGkbh1NL0HU06kPSgBjEjHvXOeIvFMWilYY/3t1J91MZ/lXRbic849K8x8OKNe8daxcS4ZtNuPLCtyOQD/WgCrcfEfxLos5fW9Jt4LRxiBo3LFmP3QR25xXfeE9SvdX0KC+1C3SCeTJKJ0HpSa/4W07xLZxW98haOKRZV2nkMpyPwrVtLaK0hSCEfu1GAPpQBOjMxORwDUlRqRv4HFSUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANdQecZIqOTdsOM7iMDHapTTP+WlAHlN18NvE9zrUmpnxe6TsSFOzlV7DpXQaD4IuLS7W81zUf7TuEIMcjLypHf8AnXZSf6wfWlHU0ABUR/MiZJNSryPemL3qRaAFAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKD0oAjfHU/nXl+o6Vq/hTxBeavo9lJdpeyGWWNOOcY/pXp8n+of6Gol/1P4UAcZo2seI9fmC3GmzaSinLbjndj6V2wUBOGwccn1pPT6Up+5QA5CQVHUdzUtRx9KkoAKKKKACiiigAooooAKKKKACiiigAooooA//2Q=='] Multimodal Competition False Theorem proof Solid Geometry Math Chinese 33 " 如图, 在四棱锥 $P-A B C D$ 中, $P A \perp$ 平面 $A B C D$, 四边形 $A B C D$为矩形, $E$ 是 $P D$ 的中点, $M$ 是 $E C$ 的中点, 点 $Q$ 在线段 $P C$ 上且 $P Q=3 Q C$. 证明 $Q M / /$ 平面 $P A B$;" ['取 $P C$ 中点 $F, \\because E$ 是 $P D$ 的中点, $\\therefore E F / / C D$, 又由题意知 $Q$ 是 $F C$ 的中点, $M$ 是 $E C$ 的中点, $\\therefore E F / / Q M$,\n\n$\\therefore Q M / / C D / / A B$. 又 $Q M \\not \\subset$ 平面 $P A B, A B \\subset$ 平面 $P A B$,\n\n$\\therefore Q M / /$ 平面 $P A B$ .'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAVQCOQMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACimSSLEjO7BUUZZjwAK5d/iV4MjkaN/EdgrrwymTkUeQHV0Vm6Tr2l69A0+lX8F3EpwWibIBrSFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA1yqqS2MAZOa8p8C2umX/izxLrU0Nt5Im8mPzAMLtLBjg8V3ni7WLbRPDd9d3MojAhZUyeSxHGPxxXF+A/A3h/VPB9neanYQ3V1OTO0m9gctzg4I96I6ty+QS2S+ZV8J+Tf/FnUr7QlK6MkBilZMiNpPl6Dp2NesE7QT261V0/TLLSbVbWwtkghUcKg4rzX45+K7nw94Yt7bT7ryrq7lKsF+9sweR+NO+ij2FbVy7nqiurruVgwPQg8U6vlf4dfF+98LSvZ6z595ZPwOfmjPc819G+H/Fui+JrVZ9LvopsjlAcMvtikM26KTNLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGVrfhvR/EcUUWsafDeRxEsiyg4BNS6RoWmaDafZdLs47WDOdkecZ/GtCkJPtRsBW1G/t9MsJr27kEcEK73Y9gK+Wr7UZfiJ43u9Z1ORk0PTjvkbqEiDYAH1J/Wu0+OPjWW6nj8IaSTJJKR9o8vknPRfxz+lXNR8HReDPgNq0JQfbLmBXuH9964/QCgDgviJ4a0nUrI+LvCaiTSzIYp0RTiNhjnHvkflWX4e8Oa5Lpa694TvpGng4mt43+eP354x1r2D4Hadbaj8K7izu4xJDPdSB1YZHKrXns8Wo/Bj4i+dGXbS5zxjoyE9PqB/OgDpfCnx1ubGaPTfFtpIjj5ftGCMe7A/0Fe2aTrum65ZpdabeRXMTjIKN/TrXKax4L8K/EbSItQMKeZOgZLmLAcHHTPtXkOq/D/wAafDa9fUvD91LPag7m8k849GHU0AfTQ5orxLwf8eLeYpY+KLdrS56GcKQv4jrXsdjqNpqNstxaXEU0TDIZGyKALVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACE1yvxA8XQeD/C1zfuw89l2QL3LHpXTzSpDE8sjBURSWJ7Ac18zeJ9RvPiz8TItIsGc6bBJsHoAD8zfjjigDW+DPhKfxDr8/jLV1MgWQtBv7uTww9hzXpXxhZV+GGrj1iAH/fS11ui6RbaHpFtp1ogSKFAoAGPqa4340D/AItrqX+6P5igDO+ASkfDnnvdOR+S11Hj7wba+MvDk1lIi/aVUtBIeqtjj8K5z4EcfDiL/ru/8lr00jNAHzl8J/GN14P8RS+EdcLRwtKUjMnSNs/yPWvowbZEznKmvHfjX8PDqtkfEelxkX9suZQg5cevHcY/Wr3wc+IQ8SaT/ZGoSAalaDbljgyL60Aa3jD4SeHvFKSTLbraXx5WaIBQT6sAOa8eutB8f/Ci7M+nzPcWAPWMFkI91zx9a+oByM02SJJkZJFDowwVYZBoA8m8GfHPSNa8uz1dDY3vClm+659favV4LiK5iEsMqSxsMhkbINeZ+NPgpoXiEPc6ePsF6ckFP9WT/u15etx8QfhJehJBJc2GcYwZIyv8l6UAfUIOaK828GfGTQfEwS3uXFjfEcxyn5T9G6V6Orq6hlYFT0I5zQA6igUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFITS1j+JtetfDWg3Wp3TqqwoSoJ6ntQB5v8bvHR0jS10HTpf9Pu+H2nlFP+PIq/8GfAo8NeHV1G7j/4mF6ockjlUIyB7dea84+Heg3nxJ8e3HiXWEZrSJ953cgt2UfTrX0uqhVAUYA6AUAKOKztb0Ox8Q6ZJp+oxmS3kGGUHFaNFAGXoPh/T/DenCw0yIxW4YttJzyf/wBValFFADJEWRSrKGBGCD6V82fEjwtefDrxfb+KdF3LaSShyFzhD3B9sD9a+lqzde0W08QaNc6beRh4pkK8jOD2NAGd4L8WWvi/w9BqNuwDsMSx55Ru4roxXzBoOoah8HPiJJpl8XbTLhgpY/dZD0YfjX0xaXUV5aRXMDiSKVQysD1BoAnqC6tLe9gaG5hSaJhgo6hgfwNTjmigDxvxl8CNN1Mve6A5srvJYxk/Ix9v7tcHp/i7x18LbsWerQS3NipxiQllI/2XNfT+Kqajpljqts1vfWsdxGw+66g/lQByfg/4peHvFsSJFcLb3h+9BKdvPoCetduDmvCvF3wGUM9/4UuWhuQdwgdsD8GzkfgK53Rvid4v+H10ml+JbSS4tVOwecCGx6hiMtQB9MUVy3hbx/oHi2FDp96nnsMmCQ7XH4V1GaAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEJx+Wa+bvir4luPHXjK08KaOxeCKXYdh4du5/Afyr0z4u+OE8KeGXgtpduo3ilIgOqjBy34cVzfwO8DvaWsnibU4ibq7z5O8cqM8n65BoA9L8H+Gbbwp4bttLtwMxr+8cD77Hqa36BRQAVzvjHxdaeDdIGo3kcjxltuEXJroq8o+P2P+EFj95v6UAd/wCGPENv4o0KDVbVGWGYZUMMGtiuC+Dv/JNdM/3P6Cu9oAKMUUUAcF8UvAkPjLw8/lRqNQtgXhfHPuv44rz/AODPjyawvH8H64xjlRituXPRh1X+WK98Irwj40eApbeceLdDQpNEwadYhgg5yG/nQB7uKWvPfhX4+j8YeH1imcLqNsAkiE5LDs38s/WvQhQAUUUUAGKytb8O6V4gtGttSs450YYyRhh9D1rVoIzQB89+KfgdqWkTtqPhC8l+U7hBuKsPYHv+NVvDfxn1zwvejSfFtk7pH8rMRiRR9O/1r6MwKwPEfgzRPFNq0GpWSOT0kAwwP1FAD/Dvi/RfFFqJ9LvY5eMtHuG5fqK3Aa+b/EHwg8S+ELttT8J3k08cZ3CNDiRfw6EVpeE/jrdWE403xbassiHY04B3Z/2h0oA9/orN0fXtM16zW6028iuYW7o2a0hQAUUUUAITiudvPHnhXTrt7W81+wgnjOGjeYAiuiNeP67qvhuL4wLJq11aW8FlbHd5ygB3cZHbk8Un8SQ18NzvLf4heELu4jt7fxFp8s0jbURJgSxrpAQwBHIPSuL0y00PxraxajDZWy20FyJLaaKMLv25GeK7RQFUAdKt7E9RaKKKkYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFU9U1G30nTp766cJDAhdiTjpVsnFeBfG7xnPqV9D4P0gmR3YeeEP3m7L+fWgDndMtrz4wfFCS6ulY6XbsdwP3QgIG36nr+FfTVtbx2tvHBCoWOMBVA6Yrk/ht4Mh8HeF4bbAN1KBJO/ctjp+Ga7IDFAB0ooooAK8i/aE48EW3/Xx/7Ka9drx/9odmHgyxVRnddYP/AHyaAOo+Ef8AyTTR/wDriP5V3FcX8KI/L+Gmidcm3UnP0rtKACiiigAxzmobm3iureSCdFeKRSrKwyCDU1FAHzB4n0nUfhD8QItY00O2nSuWVR0K5yUP+e1fRPhzX7PxJodtqdlIrxzICcdj3FVvF/hiz8W6BcaZdqPnX93JjlG7EV4P8P8AxLffDLxpP4a1retjLLs3N0U9mHseBQB9L0U2ORZUDowZSMgjoadQAUUUUAFGBRRQAhANcl4s+HXh/wAWwMt5aJHcY+W4jHzKfp0rrqCM0AfMmr/Dvxn8Orw6h4evJ7i0TkmI5Kr/ALQ6fkK6zwh8ered47HxLb/ZJvumcAhfqa9uKhhhgCPQ1wPjH4TeH/FavN5ItL0jPnxcEn39qAO0sNSs9TtkuLK5jnicZV0bORVsV8vXXh7x78Kb5rjTppbnTwcs0WSjD0I616L4N+Oek6yyWmtoNPu/u72+4x9upH40Aeq3dxHaWss8zBI41LMzHAA+tea/DiKz1a717XbsW8gvLpkiaXBOxWOMZ6cGu/vbLS/EemNbXUcV5Zy4JXdkHuORWGnwx8FoMJoFuoB6BnH9aSSu2Dd1Yn0XUtF027Tw7psolkXfMyoP9WC2Tn8TXTCsfRvCeheH5JJNK02G1eQYdkzlvz+grZqnqIKKKKQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApCeaWop5kt4JJpGCxxqWYk9hQBy3xE8XweD/AAxPeMw+0SKUhTuWPf8ADOa8q+C3hCfXNXuPGGsL5hZyYt4+85OS39RWH4gvrz4ufEyPTbJmbTLaTAPYICct9SOPwr6R0nS7bRtLt9PtUCQwIEUAegxQBdHSloooAKKKKACqOp6Pp2swLBqNpHcxK24LIMgH1q9RQBBZ2dvp9rHa2sSxQRjaiL0AqeiigAooooAKKKKACvLvjD8Ph4n0canYIBqVmpYYHMi+n5nP4V6jSMAwIPQ8H3oA8X+CnxCbULYeGtUcre2ykQmQ4Lj+7z3GDXtAOa+dvi54LuvC2vReMNCBjjaQNKsf8DZ6/Q8CvWvh542tvGfh2K6Vgt3GNs8eeQwxz9DQB2FFAooAKKKKACiiigAoxRRQAx4klQpIoZTwQa8z8ZfBXQvEIkutPRbC9OTlBhHP+13r0+jFAHyRqlz46+Fl5/Zh1GeK3PMZQ/I/0r2H4efGLTNfsYrTV7mO21IcfPwr++arftC2iS+DLa4KAtDNkNjkZwK5DSvg7ZeLfAtjq2k3BtdQKYcPyjkAdPQ0AfRcciSoHRlZT0KnIP40+vl+x8V+PfhdeLZatFNcWCnG2TLKF/2W7V7N4Q+Knh/xaixxTi2u8ZMEzYP4E4BoA7qikByARyKUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAITivHPjj44fTNOTw7p0mby9GJdh5Vc9PY5H616T4r8RW3hfw/dapdNhYkO1e7t6D3rwT4aeHbr4h+OLrxRq4L2sM28Bujn+6PbkUAelfB3wMvhfw4l7dxbdRuxufI5Rey/zr0ykAwMUtABRRRQAUUUUAFcL8S/HzeAtPsrlbQ3H2mXy8BgMcE/0ruq8Q/aPI/sLRh/F9q6f8BNAHrfhvVjrvhyw1UxmP7VCsuwnOM1qVzHw6BX4d6CD1+xpn8q6egAooooAKKKKACiiigCnqenW2q6fNZXcYkhmQqwI/WvmhxqfwY+Im4Fjpc7cY+6yen1FfUeM1yXxA8F23jPw7LZuqi5QFoJCOVb0+nSgDodM1K31bTYL61kDwzIGUg+varg5r51+EnjG68J+IJfB2ulo4zKUiaQ42Pn37GvolSCuQcg0ALRRRQAUUUUAFFFFABRRRQB5v8AHK3M3wyvXAy0ckZ/8fGab8C7g3HwytSeqzyL+tbHxUtvtXw81SMDOEDY+hBrkv2e7jzPBU0Gf9XOxx9TQB6nqOl2WrWrW1/bR3ELdUkGRXjHjD4DI8rX/ha4+zzA7/Ic5Gf9k/w17kOlLigD5n0X4meMPh/ejTfEtpNc2kfy/vAc/g/Oa9t8LfEHQPFdurWF2izEcwyHa2fbPX8q1ta8PaVr9o1vqVnFcIR1ZQWX3B7V4j4p+BmoaVcvqXhC8YMp3CHftdR7Hv8ASgD6CzS184+HPjLr3ha6TS/FllLJGny72Uq4HryPmr3Dw94v0XxPaLPpd7HISMmNmAcfUdaAN6ikzS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIzBQSSAB1JpTXmvxh8dL4W8NvZ2sn/EwvAY0APKqeCf1oA81+JviK8+IPjW28K6MzNbRybGI5DPn7x9hn9a958KeHbXwv4dtNMtUAESAO3dm75rzT4H+Bjp9i3iTUoib27JMO4cqpJyfxIr2VelACgYooooAKKKKACiiigArw39o3/kH6L/ANfP9DXuVeHftDQzTw6KkcbOvngnAz60Aen+A/8AkRNF/wCvVP5V0VYXgyPyfBmkx4I22yjBrdoAKKKKACiiigAooooAKQgHrS0UAeMfGz4fNqVp/wAJJpaH7bbr++VByw9frxitX4PfEMeJ9H/su+dRqVoNpJPMi9Acfp+FenyIsilHUMpGCCOtfNXxC8MXvw28Z2/ibRS6Wcku/wCXoh7qfbA/WgD6YByM0Vz/AIO8VWni7w9b6nakAuMSR5yUfuK6AUAFFFFABRRRQAUUUUAYni+3+1eEtUj9LaRvyUmvJf2b59+naxB/zydD+ef8K9o1hPN0W/j/AL1vIv5qa8J/Z+f7L4j12yzjLLx/u7qAPoOigUUAFJilooAwPEfg7RPFFo1vqVlG+4f6xAFcfiOa8O8RfB3xH4SujqnhS8llhQ7vLRyrqPTGfmr6QpMD0oA8A8K/HW8064XTfF1oyMvytMq4YduVx+te3aPr2ma7aLc6bdxTxkZ+VuR9axPFnw70DxbAy3tqsc56TRDDA++OteJat8OPGnw7vzqXhy5mubSM5Hlk5/4Eg4oA+mQc0teH+D/j1BK62PiiA206nb5yjgn/AGumK9l0/U7PVLVbmxuYriBuQ8bAg0AW6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikJxQBT1bU7fR9NuL+6kCQwxl2JOOnb8a+bdBs7z4u/E2TUboN/Ztu+4gj5QgOQv41u/GvxhPrOqQeDtJYu3mAT7O7ZwFP0/rXqfw58Gw+DvC8FntH2qQB7h8clvT6A5oA6q3gS3t0giAVI1CqAOgFS0AYFFABRRRQAUUUUAFFFFABUU1rBcY86GOTHTeobH51LRQAioqKFRQqjoAMAUtFFABRRRQAUUUUAFFFFABRRRQAVl+INDtPEWjXOm3kavHMhUFhnaexrUoIzQB8veHdT1D4PfEGXSb9nbTZmCkn7rKTgOPx/lX03bXEV1bR3EMgeKQBlYdwelcN8U/AcPjHw+7Qoq6hbAvE+OSAORXDfBfx5LaXDeEdccpPESsDSHoR/D+mBQB7xRSCloAKKKKACiiigCK4TzLaWP+8hH6V87/AAhk+zfGHWbLpl5/0Jr6MNfN/g//AIlv7Q98vQSNP/48aAPpAdKWiigAooooAKKKKAEIzSMispVgCD1BFOooA4Pxh8J/D3iuN5DALS8PSaEY59x0rxy88NeP/hXeNeabLNc6cnV4yWQL/tDGB+FfT5GaZJDHKhSRFdT1VhkGgDyLwZ8dtJ1jZa62q2F0eN+f3bH6/wD1q9bhuIrmJZYJFkRhlWU5BFebeM/gxoXiQPc2QNjennen3WPuD0ryvd8QfhJeAsZbjTgcf3o2/HrQB9RUV5l4N+M+g+I1S3vXXT708bJOFY+1elpIkqhkZWU8gg5oAdRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcd8SPGUHg7wvPclgbuZTHbp3LH/AOtmusuLiK1t3nncJFGNzMegFfMmsXd98XviYljb7/7Nt5NoIOQqA/eP54/GgDoPgl4Nm1S/m8YayDKzsfJ8zqzf3v1/SvoAVT0vTbbSdNgsLSMRwQKERQOgFXKACiiigAooooAKKKKACiiigAry34r/ABC1PwXf6ZBYRROtz97fnPUivUq+ff2hWJ1/QY/UA5/4EaAPd9LuXvNMt7iQAPIgYgetW6oaKhj0WzQ9REBV+gAooooAKKKKACiiigAooooAKKKKAENeCfGfwHNYXa+MNDQxyRsGnWPsc/e/xr3yobq2hvLaS3njWSKRSrowyCDQBw/wu8eReMfD6pKwXUbYbJkPU4/i/l+dd9Xy94g0zUfg78QItUsA7aZM+4KOhXPKH/Pavo3w/rlp4h0W21KzkV4pkDcHoe4NAGpRQKKACiiigBO9fN+of8Sz9ouLt5rp/wCPV9IGvnL4kobT4+aTdD5VaS25+mM0AfRblwh2Abscbs4zXA+H/HOq3Xj298M6tb2KmBMpJbFuTnodx9K7t5lW2MzHC7d2fwrx0J9g+InhrV5lw2oq6SMfUFz/ACWiDXtFzbBJPkdtz1jWdWt9F0m41C5dVjhjZue5HQVyHgDxf4i8ZI+pzWFjbaR5jpHguZjg4HfFZnjbVH1Ow1K5JJ0q0UwxgHieVvl/EAlSK6zwBpn9leCtNgIw7RLK/GPmYAmiCesn0CdtEdMOaKQADpS0AFFFFABRRRQAY5zUNzaW93C0NxEssbDDK4yKmooA8e8ZfAvTNWka80F10+66+WOEY/qa4Cx8UePPhXei01WCa5sAdqLLlkYeqkf1NfUFVNQ02z1S1e2vbaOeFxhldc5FAHH+D/ir4f8AFkaok62t5jmCY4P4dv1rugwIBGDnpXh3i/4DQu73/he4+yzA7hbk/L9F/wDr1zGjfEnxj8Pbwad4jtJ7i2T5cSj5lH+yelAH0zRXKeFfiFoHiy3VrK8RZ8ZaFzhlPpXVA59KAFooFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhOKWsHxf4ltvCvh261S5YDy0IRc8s3YfnQB5n8cvHLWViPDOnOWu7ofvtnVV/u/U5H5V0fwh8Dr4T8NrczoP7QvF3ynuo7L+gNeafC3w5deO/Gtx4s1dWe3hl3qr92zkAeoAr6QVQqhVGAOBigBRS0UUAFFFFABRRRQAUUUUAFFFITigBa+ev2g2z4q0CPuUU/+Pmvfbu9trGEy3U8UMYGS0jAV8u/GTxlp3iLxjZS6cTLFYKEZ/7xDFuPzoA+n9MUpplup6hBVuvCYP2kNOht0jPh27bauMi4Xn9KeP2ldN7+HLr/AMCV/wAKAPc6K8M/4aU009PDl1/4EL/hXsujakusaRbagkZjWdN4QnJFAF6ikJxXnfj74s2vgPU4rKfSprtpE3Bo5QoH5igD0WivDP8AhpXTf+hcu/wuF/wo/wCGldN/6Fy7/wDAhf8ACgD3OivH/D/x8sPEGt22mR6FcwvO20O06kD9K9fBzQAtFITgE143rH7Qen6Rq9zp76BdSNA+wus6gH9KAPZaTHOa8N/4aV03/oXLv/wIX/Cj/hpXTf8AoXLv/wACF/woA9S8ZeFbTxf4fuNMulG5lzFIRyjdjXhHw68TXvw38Zz+Gda3pZyyFMt0VuzD2IGK9Y8AfFG18f3VxDb6ZLaGAZPmShs/kKzPjD8Ph4m0karYIF1OzUsMDmReuPrnmgD1FHV0DKwZSMgjoadXg/w1+LS2fhW5sNXR5bzToy0alsNIo7c9+tS/8NK6b/0Ll3/4EL/hQB7nRXhv/DSmm/8AQuXf/gQv+FIf2lNO7eHLvJ6f6Sv+FAHtGoalaaXZPeXs6QwRglmY4r5G+JHjMeJ/HLanp5ZYYNqwt3O3vXQ3OoeLfjTrv2a2R4NKRs7DkIg9z3NR/FjwHYeBdM0JbEF5m3meVv4zxj8KAPZtR1PxJL4Isbey0Ka9ubq0XdKkqoIzgYzmqfijwpqnivTPDTwW0mm3FtPunBdS0S7WB5Hrn9al8QfEi28EeFNFuZ7CW8FxbxgbJAvO0eorkx+0ppvfw5d5/wCvhf8AChWvcdzZ8caX4iuLOy8PaH4blk0q0ljaSXzlHnKpBwM9OR3r03SHlfS7czWb2jhAPJdgxXA6ZFeM/wDDSmmD/mXLz/wIX/CrFl+0Xp15ew2y+HrtTK4QEzqcZ/CmnZWJa1Xke2UVHBL50EcuNu9Q2PTNPJpDForynxf8b7Hwl4hn0iXRbi4eHrIkyqD+BFYX/DSum/8AQuXf/gQv+FAHudFeGf8ADSum/wDQuXf/AIEL/hXSeCfjNZ+NNdXS4NHuLZyud7zKw/LFAHp9FFQXt0LKymuSu4RIXK5xnFAE9FeITftIabDPJEfDt2xRiuRcLzj8Kj/4aV03/oXLv/wIX/CgD3LArM1rw9pXiGzNrqllFcxHoHHT3FeQf8NKaaenhy7/APAhf8K9E8BePIPHmmTXsFjJaLG23bJIGJ/IUAeV+KvgXe6ZcHU/CN3JvQ7lhz84+h4FVPDvxj8Q+FLr+zPFtnPNHGdhdxhx+J6/hX0bjPWvPviyPD1p4aa+1rRvt6g7VMZCuv0Yg4oA6Tw74x0XxPapNpl7HIWHMZbDD8Otbua+GRrP9may174ee6sIwf3YaXc4HoSAM16X4e+PuvW0ttDqkUVzbqQJGRDvI9c0AfTlYXiHxhovhbyzq900AkHykRMwP4gVrWlwt1Zw3KDCyorgfUZrz34qub2fQdEQEteXfzAf3QCf6UtbpLqNdWbcPxM8LTOqrfyJuOA0lvIi56dSAK6qGaOeFZYnDxsMqw6EVQ1bSLHU9Hmsby3jlgKHCOMgccGuD+Dt9cGy1fSXYvBp928ULHrt3EY/SqVm2idops9PopBS0hhRRRQAUUUUAFFFFABRRSE4oAR2VFLMcKBkk+lfNXxG1+6+I3juDwzpDM1pDL5ZI5BbPzMfYYr0n4yeOR4Z8PGwtJB/aF6Ci7Tyi9yay/gh4GOlaa3iHUIv9Ou+Yw3VVPf8c0Aek+F/D1r4Z0C10u0QKsSjcR3bufzzWwBgUCloAKKKKACiiigAoopM0ALRSAkjmg0AZ+q67puiW7T6heQwKozh3AY/Qd68f8UfH2Dc1n4Ys3uZicCZlJH/AHyRzWx46+Edx4y8WJfNqbw2Gwbozlvmyc4HbtXT+F/hl4a8LxKbaxWacDmWYBjn1GelAHitr4P+IfxMkFzq1xLa2TnOJflCj2QnNegab+z94UhtES/ku7i4H3njl2An6c162FCjAGB7UH0oA8G8Sfs7wyFpPD98Y8ciGb5ifxyMV5+2geJ/h7c4vvDtpexZ+YvbCcY+o4FfTcXimzufFUug2/7y4gjEkrA8Lnt+lbUkMdxGY5kWRD1VhkH8KFqkw62PAfDXxB+HupSR2ureEbS0uSQoZbYPuP0A4r320jgitIkto1jhCgoqrgAHnpXLX/wz8LX2qW+oNpqRTwybx5ICKT7gDmuuVQihVGAOMUALisvUfDei6xKJdR0u1upFGA00YYgfjWk7hFLMQFAySa4iw+LPhS+1afTWvvIuIZGjPmjapIOOpoA2P+EE8Kf9C9pv/gOv+FH/AAgnhP8A6F3Tf/Adf8K27e6guohLbyxzIejRsCDUoORQBi23g7w3ZXCT2uiWMMyHKukKgituiigAxmsGbwV4YuJmmn0LT5JXOWd4FJJ/Kt6igDnv+EE8J/8AQu6b/wCA6/4Uf8IJ4T/6F3Tf/Adf8K6GigDN03w/pGjM7abpttaF/vGGMLn8q0HUMCpGQRgj2od1jUsxCqOSTXCJ4r1XxVfz2fhdY4LaBtkuozJuUHuFU/eo62B7XPK/jB4Fk8Na2ninSoQbSSQNNGFyFPfPseBXofw/g8F+NPDsN4mgaWLlPknj+zrkN69OlRa9qGt6Pe22keLJ7bU9K1XMCTRwCMo/bK8+qnNeIapdaz8LvF+p6dpF00aMCvOTlD0P196Olw62PXPiFrXgHwdbtbW/h/S7nU2HyRLApCH34I/CvPvA/wALtR8damdY1GBLHTGfcyJFs3+yr2FdN8L/AIVx64sXijxFN9r81t8cRO4N7se/0r32CCK3hSGGNUjQbVVRgAe1AFDQ9B07w9pyWOm2yQwp6Dkn1PvXlH7RVtv8N2Nxj/VyY/Mivaq8r+P1v5nw4eUfeS5j/maAN7wfpml+I/AmkPqVhb3YSIBfOjDYx9a1f+EE8Kf9C7pv/gOv+FYXwbuTc/DLTGJyQXU/gxFd8KAOe/4QTwn/ANC7pv8A4Dr/AIU5PA/haJ1dPD+nK6nIYW6gg/lW/RQAiqqKFUBVHAAHSlIzRRQBjXvhPw/qVy1zfaPZXM7feklhVmP4mq//AAgnhP8A6F3Tf/Adf8K6GigDnv8AhBPCf/Qu6b/4Dr/hVqw8LaDpVx9osNIs7aYfxxQqp/MVr0UAFNkjSVGSRQyMMFSMginUUAc+3gbwq7Fm8P6cWJySbdef0pP+EE8J/wDQu6b/AOA6/wCFdBmjdj6UAc//AMIJ4Tz/AMi7pv8A4Dr/AIVp6dpGnaPCYtOsoLSInJWFAoJ+grE8S/EHw74WhZtQvkMi8eVEd759wOlePa18afEfiWZrHwnpsiKx2+Yql2Pv0+WgD3LWvE+j+HbZp9TvoYQv8G4Fz9F614n40+NFvr6Npeh6It8CfleeEyA/RCKi0T4K+IvEU633izUpEVvm8suXY+3XivYvDXgDw74WhVNPsE8xf+WsoDN+ZoA+f/D3wY8R+KZv7Qv4otMtpTux5e0/TbwRXrGk/Arwhp7288kdzPPCQSWl+Vj7ivTsAdKWgCNUSGNUUBURQAPQCvJP7f0nXfjH576japbaTBtDyTqqs+7sSeeGNevFQwIIyD1FYzeEfDjszPoWnMzHJJtk5P5U1pJSB6xsc/4m8d2i20mm6EG1LUrhTHGLcFo1zxlnGQMVe+H/AIUbwr4f8m5cPfTyNNcOP7zHOPwzW9ZaNpmnEmysLa2J4JiiVcj8BV7pQtLg9bIBxRRRSAKKKKACiiigAooooAKoazqtvoulXOo3bhIYE3Mx6e364q8Tivnr40eLpvEGuW3g/R2MmJNs4Q/eb0+mMH8KAMXw1YXnxb+Jc2q3ysNOgbeQeiqDwvv/APXr6chiSGJYo1CIg2qo6AVzHw/8IQeD/C9vYKAbgjdO4/iYgZ/lXV0AFFFFABRRRQAUhOBk4A9aGOBxXzn4k1f4leMNfu9EsrWW2hhk2OYRwvflsZHBFAHrPib4oeGfDEbfaL5Z5148qA7zn3x0ryDVPix4x8bXDWHhnT3hgZtpMSlm9iTj5a6Pwx8ArdXS88T3r3U5+9CpJB/4F1r17StB0zRLdYNPs4oFQYBVRu/PrQBi/Duz17T/AAjbW3iBle8XJ37yxIJyMk11lJgUtACYpaKKaAK5bxr4stPDdjHFJcww3V2fLh81woHqxPYAA/jW7ql3JYabc3UVvLcyRRllhiXczkdgK4nQy+o6dfeIde0C9lviNosprUMyLwQqKevrn61ErtXGvxML4Xw2knjzX57W6W8VIkT7SDnzDuPP5EV6/Xk/w0N9a+JdYa78O39gt/MZIne22Iq9gfSvVx0rSVlGNtrE/akLRRRUjGSxrLE8b/dZSp+hryfxN8BtB1iSW50+eayuXYsxyXDH1wTxXrdGKAPmSbwj8S/h/cG50uee7tl+6I3Mox7p0FbuhfH+6tLgWnifTTG68NKg+b/vnFe+7Qc5Gc1zuveB/D3iKFo7/TYST/Gi7G/MUAW/DniXTvFWlLqWlyM9ux25ZcEH0/Wtisjw34csfC+jppmnpsgQk+5JrXoAKK5jxJ4+0HwnqFrZ6tcNFJcqWQgAgAepzxWvpet6brUHnabeQ3MfrG2cUAaFFJnmlo6h0OC+L+qXGmeAbv7K7JJcEQ7l6gHNb3g7SYtF8KafZxKgKwgsR1JPP9ai8caFZ+IfDFzZXtwLaPG8TnH7s9jXIeHr74hXejCxgsrD7Og8qPUZJyHZR0dU24P59qUHy8yW45rREHj6SXxL490Lw7YEH7LL9pncc7B6H8Vre+IXw503xlpkkvkhNUjjJhmHHIHQ461oeFvCVn4YmknnuTdatenMtxKMM+OSAPSurxnvVL3Y8pL96XMfO/wi8ZXPhfXZvB+usYk8wrC0hxsb0+hr6IU5GR07V4x8avh817bf8JNpCMt9b8yqg5cf3vqOK2fhB8QV8U6KNOvHUalaLtYHq69j/n0pDPT64H4yW/2n4b364ztKv+Wa74HNcv8AES3+0+AdZX+7ayN+Sk0Acn8BLjzfh8kX/PKVh+ZJr1SvFv2crjzfC+qRE/6q4UfmDXtAoAWiiigAooooAKKKKACik5zUVzdQ2cDT3EqxRIMs7HAFAEppGcIpZiAoGSTXlniv45eHtFV4dNYahdLwNn+r/wC+hmvOJNQ+JPxRk22sUlrp8hyGHyIB/vgZoA9e8U/Fzwx4bRk+1i7uRwIoPmwfQ46V5Pf/ABE8d/EKZrLw/ZSW9q52kxA5/FwMiuy8LfAXSrJo7vXriS/uepjz8qn655r1iw0ux023WCztYoEAxhEAzQB4l4b+Acly63vivUJZpjy0KsWP4vnNexaL4Z0fQLZINOsYYggwH2Aufq3WtYKBS0AJiloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKhu7iK0tZbmdwkUSFnY9gOaAOP8Aib4zi8H+FprhHH26VSluvfJzzXnXwR8Fy3l5P4v1iMvJIxNuX5yT1b+Y/CuZv5rz4x/E9baPeumQMVyOioCAT9TX0tpthBpmnQWVsgSGFQqqowPf9c0AWgMDFLRVTUtSttJsJb28lEVvEpZnPQUAW6qX2pWemWzXN7cRwQp953OAK8S8TfH4ySNZ+GbAyuTt86TP5rj+tc7Y+AfH/wAQ7kXmuXc1tbP8wM5xuX/ZA4NAHe+IPj3oen3aW2lRm+bzArSfwAZ5IIPPGa9T029j1LTba9i/1c8ayL9CM1w3hT4P+GvDKpK0JvbtefOm6g+wHFegoixoFVQqjgADAFAC4pqwxozMqKGb7xA5P1p9FACYHpS0UUAFFFFABRRRQAhGaMUtFACYpaKKACiiigAooooAKKKKACiiigDjPGfw20TxqVkvleO5RdqTISSo+mcV5HqXwb8X+F5zd+GtSeeOI5RFchz/AMBxg19HEA9aMUAfOOnfGTxd4UuEsfFGmNJjhjKux8ewGK9Z8H/FHw/4xmW1spWjvCpPkSDDcda6bUtD0zV4Whv7KGdG+9uXk/j1rnNA+Gfh/wAN+IX1fTYPKlKlQnULnrjPNAHRazolj4gsDZahG0tuxyVWRkz+RFcbB8LV0y9+0aF4h1DTAP8AlmgEi/k1ehAcVS1jVLXRdKn1G9fZbwLuds9BnH9aS0dwItL0k2SB7m5e8usYaeRQCfwHA/CtPFc7oHjfw/4jQf2dqUEsh6xhvmH510IbNMBssSTRtHIoZGGGBHUV80ePfDd/8MvGsHiPRy62U024beinup9sDP419M1leI9BtPEmiXOmXkavHMhALD7p7GgCv4R8UWni3w/b6paMAJB86d0buDU/iiL7R4V1WIj79rIuPwNfO/hfV9Q+EPj+bR9TLtp0zhST0Kk4Dj+v0r6SlaLU9IkaBw8U8R2MOhBHFAHiX7PE3kz67Z9P34bH04r3kdK+d/gZMYviFrlnnHMpx9HxX0SKACiiigAoorE17xbonhu3Mup6hBCccKzcn2oA2s1R1TWdP0W0a61G7itoV6vIcCvEPEXx5vNQmaw8K6azSOdqzOMtn1Xt+dZOmfC7xt43ulvvE1/NbQucsspw5HsMYoA6nxV8frG1Zrbw7bG8nzt81h8n1BGc1yEHhz4j/EydbjUZpbSxPKmUlF2n0wOfxr2Twt8LPDPhdEeKzW4ul63Ew5P4dK7RUVVCqMAdhxQB5p4T+Cvh3w/smu0a/ul53SjAB+g4r0iC2gtoxHBEkajgBFCj9KkxS0AJgUtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXMeOda1bw/oEupaYtkxhBZ1ud3zew2966evO/ivPc3Gnabotm6LcX93GF8wEqQGGc47c81Mr6JFR7le+8WeNtG8NL4hvrLSZbIRiWSGDzPNVSM9ziu90XVIta0e21GAERzpuAPUdq8n8VNrlq+laJ4snt/wCw7kpC0mngoBjgBg2eMA9K9esIILWwhgtlCwogCAdMVa2b8zPZpdbFgn0rxL45eOXggTwtpbk3VxgzbDyB2X8ea9M8Z+KbTwn4eudRuJFDqpESE4LMen618xeGfEGmt4rufFXiZzO6OZIbYZJkYnIA4wAPc0ij3z4TeCE8I+GElnRTf3aiSViOgPQflXYvrulxahFp7X8H2qU/JEHyx6/4V8+6l8T/ABv44uDY+GbGa2hfhWiXDY9znFdH4H+DWrWmtW3iDXdVkF2jeYI0b5wxGOTyO9AHuIqrqNhBqen3FlcKDFPGY3HsRirINGaAOW8OfDzw54ZG6y0+MzEkmVxlj/SupCgDA4+lGRRmgBaKTNGaAFopM0ZoAWikzRmgBaKTNGaAFopM0ZoAWikzRmgBaKTNGaAFopM0ZoAWikzRmgBaKTNGaAFopM0ZoAWikzRmgBaMUmaM0ALWZr2iWniHSJ9MvlLW8wwwFaWaOKAPAdc/Z+urSRrnw3qzAjkRynB/DGKw4PGPxL+Hsoi1a2mubVDtVZxuXHtt5r6a4qKa3huI2jmjWRGGCGAOaAPKvDfx60DVHSDVI306bozyfcz+GTXq0E8V1Ak8Lh4nGVYdxXBa38HPCWsTCdbMWkm7cTAcbj713tvEltbxwJ9yNQo+gFAHBfFbwFF4w0B5bdAuo2oMkb45YAcrXF/BXx5LC7eEdadkuIiRAZOvHGz+le6Hnp6V8x/F1dFt/Fbat4fvUi1O3k/0iFOCGB+8PxBzQBc+GONO+OOqQg4EgmAH+84NfSPSvk34b66158WbLULghDOQrk8dhk17h4r+MHhvwzuhScXt2vHkwnp9T0oA9BLBRliAPXNcp4m+I/hzwtE5vL+N5x0gjOWavFb3x38QfiJcG00G1mtbVv8AnkMZX3JOPyrovDXwBQut74lv2uJSdxijJ6+jZHNAGPq/xh8VeLp207wnpssAfhZEXMmP5CptB+B+ta7MuoeLdTlQyHc0O7MmffqK9z0fw5pGg2wt9MsIbeMdkXr71p4oA53w74G8P+GYAmnadEj4w0hX5m+tdEAB0paKAADFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAITXlmsr4ruviDb6r/AMItLcabYLJHAv2mMM7Hjdz06cV6mRmgKAOKLWdwPLb/AMO+I/HmvWUmuWK6XpFpJ5n2ZpA7ufqpxXqCIsaKi/dUACnYpcUJ2VhW1ufL/wAYdL8Van46kt3guLi0dsWiopKgEnGfesBfgv47ZQRo3B9Zk/xr6+C4HeloGfL+m+C/jFo1t9m05ry1h/55x3SgD8M1d/sL45f8/wBqP/gYv+NfSeKMUAfNn9g/HL/n+1H/AMDF/wAaP7B+OX/P9qX/AIGr/jX0nijFAHzZ/YPxy/5/tS/8DV/xo/sH45f8/wBqX/gav+NfSeKMUAfNn9g/HL/n+1L/AMDV/wAaP7B+OX/P9qX/AIGr/jX0nijFAHzZ/YPxy/5/tS/8DV/xo/sH45f8/wBqX/gav+NfSeKMUAfNn9g/HL/n+1L/AMDV/wAaP7B+OX/P9qX/AIGr/jX0nijFAHzZ/YPxy/5/tS/8DV/xo/sH45f8/wBqX/gav+NfSeKMUAfNn9g/HL/n+1L/AMDV/wAaP7B+OX/P9qX/AIGr/jX0nijFAHzZ/YPxy/5/tS/8DV/xo/sH45f8/wBqX/gav+NfSeKMUAfNn9g/HL/n+1L/AMDV/wAaP7B+OX/P9qX/AIGr/jX0nijFAHzZ/YPxy/5/tS/8DV/xo/sH45f8/wBqX/gav+NfSeKMUAfNn9g/HL/n+1L/AMDV/wAaP7B+OX/P9qX/AIGr/jX0nijFAHzZ/YPxy/5/tS/8DV/xo/sH45f8/wBqX/gav+NfSeKMUAfNn9g/HL/n+1L/AMDV/wAaP7B+OX/P9qX/AIGr/jX0nijFAHzZ/YPxy/5/tS/8DV/xo/sH45f8/wBqX/gav+NfSeKMUAfNn9g/HL/n+1L/AMDV/wAaP7B+OX/P9qX/AIGr/jX0nijFAHzZ/YPxy/5/tS/8DV/xo/sH45f8/wBqX/gav+NfSeKMUAfNn9g/HL/n+1L/AMDV/wAaP7C+OX/P9qX/AIGr/jX0nijFAHzZ/YXxy/5/tS/8DF/xo/sH45f8/wBqX/gav+NfSeKMUAfNn9g/HL/n+1H/AMDF/wAa5m6+D/xCvLmS5udKaWaVi7u06ZY98819c4pCoNAHxY3gDxRaa/DpcmlzJdswAIXco/EcV7n4T+A2jaakdxrbfbrkAEp/yzB+lewECkzz0NAEFjp9pp1qtrZ28cECcBEXAqxilFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTWYIMkgDrk06sjxO8yeGNTa3BMwtn2Y65xSbsrjirtI42TxBqvjjX7nStBm+yaVaN5d1eD7zt/dQjp9ak1rwnqWhaY13oGr6lJOpUSpdTtPuUsAdoPQ85pPguluPAqSRkee88hn9Qd5616C80cbojuqs5woJ6mqa5UkiU7ydxLSFre0iieQyMi4LnqTU1AopPcYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFMkcRgsxCqBkk9AKAFZiDxS5OOleOXviHVLzxU3jvyb4eE9MQ21t9nlCLcgthpnU8mPJHQHhVPGDXXXXi/VrBTql1pECaB9m3pPDdrJNJIf8AVhFHDB/lAA5yaAO03c4pwOa8l8J6pr3hm6WDxHa3kmqeILiS5gilvFFvG2c+UhOdrYI4J57cg573Rb7xBc6jepqukQWVkNptZI7gSOwxyHA6Hvx64oA3aKQVT1TVrDRrJ7zUryC0t0HMk8gQfTJ7+1AF2isXwx4p0vxdp01/pEry2sVw0HmMhXcVAJIB5xyOuK07u7gsbaW5upo4beJC7ySNhVA6kn0oAnorkh4/sWsf7STS9YfStu/7cLJhHs/v7SfMK45yFrpbC+tdTsIb2ynjntp1DxyxtlWB7g0AWKQnH/16WuF8Z6zqGn+NfCdha6oun2moC8W5d0Qqdkaup+bpgg/nQB3G7BA9aUHIrzPxDqmpW2veFoLPxctwt3qiQzxwxxZMe1iQcA8HGPYkHqBjQ8S6vq+kWOqy2fiWwnv7dlENi1sgcM5AjRvnzzuXnAFAHeFsds0A5FcFe/2hcwadaXfj61sr6eRNotIoh5sqjJRdzHK57d+AeuK7uLPljcQW7kDGTQA+iiigAooooAKa6h1KsMgjBHqKdRQGxwcXw6k0nVbi98Oa3LpQuGLSQiBZUJPoGPFdHpOhvZzG6vrx769I2mZlCgD2UcCtmihKwdQHFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVS1TTbbVrRrO8QyW0n+sjDFQ4/utjqp7joeh4yKu01vvD8aAPA/G3xW1jT9c1vwummaTLpkW60CSRSAtGUAIO1wOhxwBWAvxd1aBNKhTRdF8rTh5dojRTFYgECggGXlgOATkgE+pzh/Eb/kpfiH/r5P8A6CK5qT78X+//AEoA7zxB8YNc1a1hkudM0fz7OUXFtMIJN0MuCA4y5BIzkZBGQOOK+gPAmrXWv+CNI1W+KG6uYA0pRcAnJGcds4+n0r49vf8Ajzk+gr60+FX/ACS/w/8A9e3/ALMaAOw6VT1K0t7uymW4hjlHlOuHUHAI5/OrlQ3X/HpN/uN/KgDyz9nj/km8/wD2EZf/AECOr3x4lkj+F14EcqHnhV8fxDeDj+VUf2eP+Sbz/wDYRl/9Ajq38e/+SX3P/XxF/wChCgDvdKk+0aLZu6IA9vGSqjCjKLwB6c1wXwDZm+GEJZiR9rmwOyjI4Ht/jXc6H/yAbD/r2i/9AWuF+AX/ACS+D/r7m/mKAPT68+8YxRXHxR8AxzRJJGWvwVdQwP7geteg1wPiv/kqvgD/AH7/AP8ARAoAr+PrO1tNd8EPb20MTNrkYJSMKT8relZd48Nt41+JOovZ2tzNZaVbXMK3MQdQ6wuwyD7gVtfEb/kNeBv+w7F/6CawdW/5GH4r/wDYCh/9J5KALOrwWk2ufDm8TT7OCS5vHeQQwhRnyif5816oABnHc5ry3UP+Pz4Yf9fL/wDok16nQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k='] Multimodal Competition False Theorem proof Solid Geometry Math Chinese 34 " 如图, $E A \perp$ 平面 $A B C, A E / / C D, A B=A C=C D=2 A E=4$, $B C=2 \sqrt{3}, M$ 为 $B D$ 的中点. 求证: 平面 $A E M \perp$ 平面 $B C D$" ['取 $B C$ 中点 $N$, 连接 $M N, A N, \\therefore M N=A E, M N / / A E$,\n\n\n\n$\\because E A \\perp$ 平面 $A B C, \\therefore$ 四边形 $A E M N$ 是矩形,\n\n$\\therefore E M \\perp M N,$\n\n由题意知, $E D=E B=2 \\sqrt{5}, \\because M$ 为 $B D$ 的中点,\n\n$\\therefore E M \\perp B D$,\n\n又 $\\because B D \\cap M N=M, \\therefore E M \\perp$ 平面 $B C D$,\n\n$\\because E M \\subset$ 平面 $A E M, \\therefore$ 平面 $A E M \\perp$ 平面 $B C D$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIARgBEgMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAprcinUjHAoAYRwcAcetQS3ttCwjluIUcjO1nxU54OOpNeea3Z2mseP7S08pWRIn872YYIoA75JoZl2xTK2OflbOakQ7iD90dga8819j4U8Q6YbBitvKCGhAwOuK9BiG8CRucgEe1AE9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUmaAQaAFprZxx+tKTikYgDnp3oArXlytpbSTPk7VJAA9q878Laxaf2zq+rXkUyyyzBoh5bcDGK72/wBU0+zQLdXEa7iFwT1/CpbaC0eJZYETY/OQBzQBxkljL4p8T2t48Z+y2oONwxnNd5GMfKOAvSlRAgAAA+lKM5xjigB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUmecUALRSE4oyKAFprEjGBmguoGSRj1zWFrPi/RNEjJvb2JG6bSeaAN3pUU08MCl5HVQPU4ryq8+KWoatKbfwzpsl0Tx5qEEVBD4J8W+Jm8zW9Qa3gbkwhSp/MUAdVrvxO0LR2aJJxcXI4EKg5/OuUfxR418USFNI06Sxgb/AJasQePoa7PQvh1oOhIGS3M0vd5G3/zrqkhhto/3aIiqP4RigD5k+IWiX+hSWTajqrXF9M6uEBIx82DX0F4Md5PCOmNIMP5IzznvXgHxSuJde8YGaJ8w2UvkH6lga998EjHg/TDggmEZyfegDoqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKQnFGaAFopCcUtABSGj8aZJIkSl3cKB60AO/Gkwc5JGK5LWviJoGjgobyOSYdI1bnNcfceOvFniJjDoWlS28PTzpYww/PNAHqd7qNpp0RlvJ1iQd2/wD1VwerfFvSYHaDSh/aFx0AgcfL+YrLsvhdqWryLc+JdUll3c+XBI6D6YzXeaT4P0bR0Ahs4mwOHkUM350AecF/H/jI7Mf2baE8b4+cfUHNbukfCTT4HE+qzz3c3fMrbfyNejKm0Dy1VVHQAYp+D60AUbPSrCwiCWttEgHcIMmrvGcf1pCCOFFJsAbvQA/61meIL0afod5cMwXZExXPritPOTivOfi3qjQaJBYxPiW4nWMqOpVjg0AebGyM/wAP7/XJ1PmXd/E6k+h4r3DwRz4N0skc+SP5muD8Z6Wuj/CSxtQm0xywqfzrvfBZP/CH6Z2/cj+dAHQUUUUAFFFFABRRRQAUUnB70fjQAtFJnnrzS0AFFFFABRRSfjQAtFJkZpaACmnk4FLkZxSHjmgBcik5z2xVe6vrayiMlzOkSDu7Yrita+Kej6dujtSbyfHAtzu5oA7stgEnAUdzWRqnibSdIBa8vEjIHQtivNW1nxx4wbbY2osrVuMyKVNaemfCdZGE+uX89zJn7pfKfrQAzUfitJdSG20DT57qRuA6AMBVCPw3438VsH1S+W0t+0Ue5Gx7+9enad4f0vSkEdnZRR4H3goGa08beB0oA4jRfhlomm7XnV7qYckzHd/Ouyt7K3tY9kESxqOygCpeTyOvvThnvQAuKKKKACiiigApD0paawzQAmRye/SvH/ETHxL8U7HTk+aK1Te4HZlOa9W1C5Wz064uCQPLQtzXmXwwtm1PxBq+uSDdmZljJ9CKANb4vrs8DKo7XcX866XwXz4O0v8A64j+dc58Yf8AkRs9/tUX866LwT/yJmlf9cR/M0AdBRRRQAUUUUAFN6DJp1MbhSBQAhIz35ozwQOuO9c94p8Qy6DHA6RiQuSu3ueKrjXdYSa086yh2XBHKMSQCP0oA6r3PXFOHSo0bcofGDjpUg6UALRRSZ9O1AC0xuvenZGM5rPvtZ0+wiZ7m7ijC9cuAaAL2DjjH40jyJGCXcAD1Nea6t8W7NZDbaNa3F3OOATESn5isgWXj7xgQ8xXTbV+f3UhDD8CKAPQNY8baJoyEzXUbuOiocnNcPd/ErWdXkaDw9pcxU8LLNGQK2NH+FGlWsgn1Jm1C5HJadQf5V3Fnp1nYxiK0hWJR2UcUAeV2vw/8SeIpBc+IdWmjjY5MML5Wu10bwBoGihWjs0klHJldOa6oLzzRt5oAYkaooVF2qOgHFSA5pNvvSigBaKKKACiiigAooooAKKKKACiikJxQBxXxN1b+zPCkqqfnuD5Kj3NTfDnSf7L8JWgIw80Ykce9cl8Rp21bxjpOhp86B1mcLzjB716raQLa28cCcIi4AoA4b4w/wDIlf8Ab1F/Ouh8Ff8AInaX/wBcR/M1z3xh/wCRK/7eov510Xgr/kTtL/64j+ZoA36KKKACiiigApmTuOcbe1PqNlJGMfjQBwHiqa51XxNp+n6eqySWsnmTBjgbWGBXQeHo74wO+plROGIUB88A8Vi23hjV7TxDdaqblpfOVU2sQMAHNbemafqSag1zeXTuhGFTigDeBzwBkUpJxxzWfq+r2miWTXd/N5cK57da8p1b42x3VwbPw/AkshOA8pMdAHsM9zFbxFp5ljHqWxXIa38StD0UFBK9xLnG2JN+fyri7fw74n8XFZda1sQW78iKOVWFdpoXw18O6MFYWyTzjnzGHJoA5KXxd408VP5WjaetpbtwJmco35EVbsfhTc383n+I9WnvGPLRPtZR7Zr1KKBIVCRoEUdhU3bgUAYmj+FdH0OMJp9hDFj+JRW2BgYpu0DkLzTlJI5oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAqOaRYomdzgKMk1JXN+ONUGleFb2bdhzGwT60AcH4NjbX/AIj6lqsoJjgLxIfxr1xckknseK4L4UaYbXw213Kp827fzcn3Fd+KAOA+MP8AyJX/AG9RfzrovBX/ACJ2l/8AXEfzNc78Yf8AkSv+3qL+ddF4K/5E7S/+uI/maAN+iiigAooooAKKKKACk6mlpP4qAPOPjOnmeDgoOPnPT6V4raeDU0Cexn1aEtYXkakTDohPc17Z8Yh/xSa/75/lWvp2h2eu+BdPs7yIFWtVAJ6jigDi7X4azzWsdxofiKSOMjchVQcD05p50b4j6WxMGoPdqvQMyjNU7K71X4Yaz9ku0eXRZX+SQ5wma9fsL611K0jubWQSRuMqQc5oA8tXxl440of8TDRfMA/iElWrb4wJGQuo6dLAe4CMcV6iY424aNT9RVWfSbG5BElrE2evyigDlrL4o+G7w4Fw6N33RkVv2viTSrwAxXkZz6tisu9+Hfhu+z5tiAx7q2K5+5+Duksxazle39AGY4oA9GW5hfGyaNs+jipAcjORz715I/w38R6aS+ma8+B0G3NNEfxK00cO12o9MCgD14D3pp+91ryZPiJ4o035dU8PyKB/Hvz/ACq9bfGLTNwW9ie3buCpNAHpnSkB965Sy+I/hq+wI79Qx6hhit631ixulDQ3MbD13CgC9170oBpiyRsMq6nPuKeD75oAWiiigAooooAKQ9RS0h4oAbn5iO1eXfFm+NxNpmhx/fuJwGA/umvUMe+O5NeQwY8U/Fp5j80VkgAHUblNAHqGi2Q07SLWzA4iiC1fUkk59aMYo5yDQBwPxh/5Er/t6i/nXReCv+RO0v8A64j+ZrnPjD/yJQ54+1RfzrovBX/InaX/ANcR/OgDoKKKKACiiigAooooAKQUtIKAPO/jF/yKaf75/lXVeE+fCmmD/p2T+Vcr8Yv+RTT/AHz/ACrqfCfHhTTP+vdP5UAT63odtrunPaXSKVYfe7g15PbXOpfDLXRa3Qkk0aU4SQ5wueOp/OvaSTgbqztb0W01vTpLS6iEiMODjkGgCaxv7bU7WO6tZhJG4yrA5zV4dK8Tt59U+Fmtra3BefQZmwjYPydhya9g07UbfU7KK6tpA8Mq5Vgcg0AXaMUnXvQKAFowPSiigCKS2hkHzQxt9VBrPuvD+mXikTWUJPsoFatNJ56UAcZefC/w3dgsLZ42PdJCKwbj4O26sTYX8sB/2nYj+depYPrTfu/w0AeSN4J8baQSbDxCsqjopiJNNGp/EjTG/eWb3YHdUAr1403aCvOD+FAHlUXxT1ix+TVPDlzH6uXH9K0rT4xeHpTtupfsz+jZP9K72Sxtph+9t4m+qA1mXnhTRbwYksYQPVUANAEFl460C/A8i/jYnt0/nW1DfW9wN0U6H23CuKvfhH4buSXjW5ifsUmIH5CsWb4RXMDFtM1iaAjp5kjsP50AerBwejAj6ikByck59K8i/wCEd+Iujn/QtWhuFH8Pkkk/nTl8V/EHTW/0/RJ7lB/FEir/AFoA9I8RagumeH7y6LbTHEWGT3rgfhVp8j2OoasxxPPKxUsOx5rkPFfxSm12xbQJNPmt7q4OzDlTnP0r1bRbRdG8FW1spCzPCvT+9igCr4Z8T3uo+Ir3TLv/AJYlsNjGRVnxj4pPh+2ijh+e5nlEaAc4ycVzVnIdH8cINpJmtC2fVyaffWr6z40srSRSdqfaDnHDA9KAGfEk3h+HEZ1AlpmuoTgDGOa7PwZz4R0xhwPJHH41znxfBHgcH+IXUQ/Wui8FceENMGdx8kZP40AdFRRRQAUUUUAFFFFABSClpBQB538Yv+RTT/fP8q6vwl/yKmmf9e6fyrlPjF/yKaf75/lXV+Ev+RU0z/r3T+VAGz2puBuzTu1NOOnSgDO1jRrbW9OltLuJWRwMEgZBryaCbV/hfrYtpPMm0OVuJWyQg6dTXtWOMEZrO1rSLbWtPks7qMMjj05FAEunala6nZJdWkqyQsOGB4q7mvFYpNU+F2tLBJvn0SVuCckoP6V69pmp2uq2cdzauHjccEGgC7QORzSEkHinUAFFFFABTWyTTqQ88f1oAaM7j6UhBwNpoOFU+gGa4PWvijpml3stlFbTXVxGSu2EgnNAHeFsNjBA9aAR14x2NeRN4u8b66Gj0zS3tI2PDXEWTj8K9D8MQarDpEQ1iWN7jH8IxQBPrmv2WgWD3t84jjXuTjNefXPxauL5vK0DRbm6z/y1Tay16VfabbajAYrmJZUP8LAEfrSW+l6faEeRaQRjp8iAfyoA860SXx9qmqWtxfCO2tQ+WR4QDj8DXpwjVhiRQWwM5HBqQAKMDgVWvrtLCwmuG+7ENxyaAPHtcsLXW/jBaQW8MWLTZLIyIB1yDXp+raDHqQgzIyLEcqqMQD7V5/8AC60bU/EGqa/Nli7vEpPorcV62w49aAMR/DlnLex3rqWnji8sc1S03wfDp+uPqolkeZwRhnJABrp8nAJHPehBtJ5znmgDgPjF/wAiQAP+fqL+ddF4K/5E7Sv+uI/ma534wj/iis/9PUX866LwUc+DdL/64j+ZoA6CiiigAooooAKKKKACkFLSCgDzv4xf8imn++f5V1fhL/kVNM/690/lXKfGL/kU0/3z/Kur8Jf8ippn/Xun8qANntQACORR2oHSgBaaRlgfSnU0kDvQBm6vpNtrNjJaXcaOjDjIzivJ1fVPhlrQjkLz6PI3yk5OwV7Tz0OTWbrmnWWqaZNb3sSyQlTkEZxQBJpuqW+r2KXVrIGVhkEHvV7cSCOfrXzhY+N5vAOvXFtaGW70kN3+bZz7dPSuntfGXjLxgivo9vBFbFjh2BB/SgD2hWyBtOR71i+IPE9l4ctBcXhJUnAVTzVrR4rxNMiS/ZTcgfMUNO1LSLLVBGt7bRzqhz84BoA84ufinqOoEpoWj3UmejtHlfzFaHhhvGt/qS3eqeRFbY/1YUiu5tdOs7EYtbaKJOmEFWxjf8o5oARhkYI4rLXw9pX2mS4OnwmV23Mxj5zWr8205/SnKOKAGxxRxqAiBQOgAp55paKADA9KQ8EUtNbjmgAHNcP8UdWOmeCrxFOJZ0ZEI6k9eK7mvIviLO2t+NNF0KPlI5g8oH91lIoA7D4eaT/ZPha3Vlw8w80/U4NdaBVe1gEFpDCOkaKo/CrAPNAC0hFLSGgDz/4w/wDIlf8Ab1F/Ouh8Ff8AInaX/wBcR/M1z3xh/wCRJ/7eov510Pgr/kTtL/64j+ZoA6CiiigAooooAKKKKACm9O9OpvBJFAHnfxjbHhNB1y5/lXU+E948KaZt5Itk6/SuU+MTE+EN4/gcn9K5y3+NeiaL4esbaNXmuI4FVlKHqBQB7Qx+Uc4NIW788cYFfPsXxl1vXNSRLWC3t7ct97zSv86900eaW60i2mlYF3QMWU5zQBm+IvGOneGVX7azl3GVWMZPXFcPefFPU79jFoejzSMTgNNGwGPrXZ+JovDkRivdcgik2YVS4zjJ+tUrbxx4Rs08u3mSNR0C4x/OgCHwc/i65vXuNaWGOBuQiPnH512xRZVIIyp6g9656w8c6FqF0lvb3ZeVug4rpMllB9s0Ac5N4J8Py2s8B02Aeb987etebIdW+FmuhMGfRbh+M5Ii7546elemap4w0TSrr7PeThZB1GKxtV8YeEdZ0+WzvZ1kidcEEA/1oA63TNTtdVso7m1lEiMOqnODVzJPoK+ftH8SP4H1ow6fK13obtuPcx5OTwO3avcLHWbLUtOW+hmVotu5iDnHtQBog4OOKDxwK5eX4geHoZWje7G9CQRimf8ACxPDpXcLwZ7CgDq+340vtVXT7+DUbJLq3YNG4BBBzUOq6ta6PbG6u5NkQYDP1oA0DwOO1GQcDJGa5P8A4WN4bDf8fuc+1S2/j3w/dTJFDdhpGOACKAOn59aOozmmq28ZB4IBrF1XxVpOiS+Te3Hlt2HFAG1I/loWJwAMnNeReDFPiT4kanrMg3RwqI0J6ZViK2vFHxK0SLw1eSWl4TcFDtwO9UPg1eac+jSpHLvvJZnkkB6gE5FAHqeOmPWlPXrSbgoJPCgVzE/j3QbeZ4prsK6MQQMdqAOo5POcUhJJrlP+FkeGiAftvH0rd0zVrTVrf7RZymSM96AOO+MBB8EnJwftUWPzrofBWV8GaXnr5I/ma5r4xSRjwaiswDm6iwM/7VdL4MDDwhpoY4PkigDfFAPTmqdxqMFoC00qjHRVOTUNrrVjdy7I2IkPRXGCfpQBqUU3dRmgB1N7YzTqjyMccUADyrGrMxwFGTXJaT4iuNS8YXlmit5EcSsFP1q1q95PfyNa2EgOz75B6dqwPA7vN4h1CSRgG2CMYPo1AHY6zotlrmnvZX0KvE3Y1414i+A0SSm40eUsR8wgZQq/TNe7jgY60beOT17UAfOOn2+meHbpbXxL4QgQoeJ4g8n48V7X4a8RaDeafDBps8ccSrhUJ24H41sXum2uoW5huIFkjPVWFefax8JLCSVrrRZDYXOd2Y//AK9AHb6z4f0rxFbeRqVnHdRZzh+R+lYP/CrfBqddFtj+B/xrj11fxz4NkEd9anUbJePNZsHH4V1vh/4m6LrLLC8jQXJ6xuhXB+poAu6f8PfDGl3a3NlpFvFKvRlB4/Wuq2gLgVDHJFMNysjjsysDUw4HvQBzereA/DeuXDXOoaXBcTN/GwzVE/C3wfkZ0a249j/jXZg008kg0AcxD4C8N2tlc2VvpkMUNwm1wo615xNDqHw31dreUPcaFcNjZjITPJOBXt2CRhuaoarplrqtjJa3kSvCwwQ1AHIaf4H8D67bi/g0i0kMoyx7k/nVsfCrwdkN/Ydrn6H/ABrhzHqvww1kzJvm0WduRjhB1r1vSNXtNasI7q1kDK4BIB6e1AE+n6da6XaJa2UKxQoPlRah1bRbDXLX7LqNsk8PXYwJrQBOcHpS4oA4z/hVng4HjQ7b8j/jUtr8NfCdnOs9votski9GUH/GuuooAaiKi7QBWDrPg3QdemE2o6dDcSD+J8mugwKa+ACx6AZoA8H+JPg3w9ZXmmaXpemQQXF1KUJTrjGa9T8L+DNG8PW8UtlYRw3DRIsjqOuBXC23/FT/ABhM+N0Gn7HTuMkEGvXwoHI+lAAyh1KtyDXJ3fw28KXlw9xPo1tJIxyxYHn9a67App460AcZ/wAKt8Hgf8gK1Kntg8frVu7vND8B6G7QpHbxD7kS9WPapfFXiyx8M2DzTSBpiMJGOpNef6H4a1Tx5qq654g3JZqcwwHkY60ARWWnav8AE3U/tuol4dGjk3pbk8NjkcHntXqtwYtF0NvIQCOCM7BnpwatW1tDZRJBbIERBgLUepWYv9NuLc8+YpH6UAcf4Ktf7eil1u/HnLcndCG/gA44rppdCtpdXtb9Y13Q55rnfC32/wAN2S6VdW37mL5YW/vD3rr7N7hzvnTYW/hBzigC5gelLgelFFABTSilcU6igDLttB0+0mllhhw8v38tUWn+GdK0u4ae0ttkjnLHdmtmigBCM0m0U6igApCAaWigCOSGOVCjoGX0Irjtf+G+g67vb7OIp+u9ciu1qM8NyevpQB45L4e8aeDZPM0q8kvbNefK4/nWvpHxbt1mW0161aynHBzlv5V6WSCCHXg9jzWRq/hfSdahaO8tFOe4ABoAuWOrWeowrLa3CSI3Qg8/lVskHgn8a8nvfhlq2izNdeG9TaFV58lgX/DmmWvxD1/w9L9n8S6bIsa/en7EfhQB64CR0GaCM4571gaH4z0TXo1azu0LHgqTzW/lW6HPpzQBT1TS7bV7SS0u4leN1xk15FLHqfwx1oFA0uizP07KTXtQycg1R1XSrXVrJ7W7jDxMO45FACaVq1trNilzaSB1YZ4PSr65IyTXissWqfDDWxPGZJtFmb3wmfrXrWj6xZ61YpdWkyurqDwen1oA0SSD7UuKQE9DRzu60ALisvX9RTS9GubtzgRp1NafU15z8XdTMPhz+zIT++vDsUD2oAq/COxeSG91mYZa5kcBiOwbIr04EhaxfCWmLpfhu0tl4+QMfqQK2ycD2FAAcDHNcp4w8bWfhqzYKwlvGGI4V5LGqnjTx1B4fgNta/vtQk4RF7E1heEPBFzqd7/wkHiQF52O6OJug79KAKnhjwjqHijUl8QeIy20ndDA3QZ+letQQpBGsaIERBgAUsaLEoCqMdAAOlPXDMSO3FAD8D0pMClooAbsX+6PypVUKuB0paKACiiigAooooAKKKKACiiigAooooAKMD0oooATFGB6UtFACbRjpVS806zvojHc28cikYyVBq5Sd6APNdc+FFhPIbvSpZLW56jEhAz9BWIuoeO/BhC3UDalYrzviQDj8TXsh+XpmopY1lBWRFZf7pGaAOK0H4paHqzLDcTC0uehjkOTXaRSxXKeZG4dSMgjmuW134eaFrys0lu0E5HDRHYf0riJvCfjTwa/n6Fe/bLdT/qXRnbH1JoA9Z1PTbXVLN7a6jR4nHcd68huYNU+F+tefAXuNDmflBn5CeBya2NL+K6wzrZ+IrKSwnHDPMQF/IV26T6P4nsJUhliuoZVIPGcZHuKALOka3Z61p0d9ZyrJC4yGU9D71pJkqGYYJrxS6tdU+Fur/abQPcaDI2WAJPlZ46nj34r1nRdZs9d0+O9s51kjcZG09KANLI57YryHxGx8Q/FHT9NXmGzfdKRyBkV6rfXItLKWdiAqoST+FeXfDSB9T8Q6t4gn4SQgKx6fKaAPVo1EUaIOAgxg+lcD428frpzf2To587UpjsUqQfLJ7n8qq+M/Hsn2kaH4eHn6hN8m5MNs/Cr3gfwDFoqHUdSJudSl+ZmY5Cg8gDNAFTwT4Ckil/tnXSZ9Qc7l3dB3HFelKoAAAAx0Apihd2eh9KkA5zQAYFAUL0paKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApMUtFACFQabtBOO1PpD1zQBj6r4b0rWYXiurWJiw+8FGR+Nedaj8Lb3SpPtfhnUZoXT/lnLIzKfwFeuYGc0n/LQZz0/CgDxifxhrmlxHTvF+jvdW7DHnQxAKO2eTXNaZ4th8G6wbzS7sXOkyuPMtw24xD69B+FfQd1ZWt6jR3VvHKv/AE0Ga888TfB/R9WjaS1DwS4+6hwp/AUATeN/GVjN4AlvbG5RxMAF2tzyea4TSPEF4ug2vhnw2he7kZjNMBkDdz9aybr4SeKY5otJS6Eli7cckhRXtXgvwTY+FdPVI41a4IwztyfzoAg8E+Brbw9am4uD9o1GQ7nkfnGeeM12YGTjsKQHLEBcHuaeuO1AC7RnNAGO9LRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJijb70tFACYppAB9vSn0xyARkfjQBhap4ns9Imjt5opd8hO0KOuKs6drtlqMxhQ7Z1GTG33h6VxWvX5uPGUJ+zGZNPzu2oTnIqfwjCmreIrzV8hHOPkzzx0zQB6EM96UYHAGKaCec8Cng55oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqmoyvDZSNGod8cA1bqpf/wDHuaAOC0aHW7G7v7l7SJrm5+6Cx4rY8G+GrjR5bq8vsfa7nlwvKjn1rSX/AI+0rcXpQAbcjFOxiiigAooooAKKKKACiiigAooooAKKKKAP/9k='] Multimodal Competition False Theorem proof Solid Geometry Math Chinese 35 " 如图, 在四棱锥 $A-B C D E$ 中, 平面 $A B C \perp$ 平面 $B C D E ; \angle C D E=\angle B E D=90^{\circ}, A B=C D=2$, $D E=B E=1, \quad A C=\sqrt{2}$. 证明: 平面 $A C E \perp$ 平面 $B C D E$;" ['$\\because C D=2, D E=B E=1, \\angle C D E=\\angle B E D=90^{\\circ}$,\n\n$\\therefore B C=\\sqrt{2}$,\n\n$\\because A B=2, A C=\\sqrt{2}, \\therefore A C \\perp B C$\n\n$\\because$ 平面 $A B C \\perp$ 平面 $B C D E$, 平面 $A B C \\cap$ 平面 $B C D E=B C, A C \\subset$ 平面 $\\mathrm{ABC}$ 且 $A C \\perp B C$\n\n$\\therefore AC \\perp$ 面$BCDE$\n\n$\\because A C \\subset$ 面 $A C E \\therefore$ 平面 $A C E \\perp$ 平面 $B C D E$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIASYBLgMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KSigBaKSigBaKSigBaKSigBaKSigAooooAKTFOxRQADpRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFMfO3igB2aM1l6zq0ek6bLeSkBUHTufoO9Zvg/VbvV9LN7dAKXdgqg9geP0oA6eg9KB0pDQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUtJS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUh6c0AL1qCaRYkLscKvJNPJbbx1rB8TQajcwxQ2DFSxG4e3egDg/E/jDTbq4uorlrgiLCxJ5J2sfrXc+DrdIdAgaJRh2LE+1UPEGh3E+h/ZbO3TfgZ+UEk/WtXwza3dhpkVvdLtYcfpQBv0lFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABS0lFAC0UmaM0ALRSZozQAtFJmjNAC0UmaM0ALRSZozQAtFJmjNAC0UmaM0ALRSZpGfbQA6kboabuO7GRSBiQQaAAE7uOlMBIYliODwaUnGO49q5TxZ4+0fwzaM8lyjz9olPOaAOqXgBQQfxp3XaSMkHtXiPgX4mX/AIm8aiGQ7bd2wo9q9vzgDtnnigB9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU1iQRjGKAHU1+nTJpN55BHNIWwNxOKAEZlVd5BzUdxdwWsfmzyJGuOSxxiuf8QeMNP8AD9nI9zKrSqCVjByT6V4r4n8Wa14pLSJK1nYAdN21n9sHtQB0Hj/4xGymlsNFZHkDbfMByPzrx26g1TXI5tSvWdmLDaWPHPpXYeCfh43ivUmluFMVkhyxx97jI6iuj8Q6bb3viPT/AAtpkYjgg4dlHJIOeaAOb+EFm9t40iinwkiMDivqJDlR3rwfTrKLS/jN9nCgCMqOO/Fe7x9j2IoAlooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopM8kelAC0U3dkZpGfaBxnNAD6Y4FI0hDYVcjuc1h+IvFWm+H7V5bqdQy5+TuTTGbEk6RqSWVQP7xxXmvi/wCKUdg7afpUJu71hjC5wv41zNz4i8SfES6FnpdvLDp7HDTL0Aro4dI0L4eaFLfaiVnukUsQ3JagDjY/CU/mDxB4r1JgARIITgj6VFY6FdfEXXElS3+zaVbYRT/fwetWbLRvEHxE1lbu+jaDSTjap6EV7Xo2kWmi2CWdmgRE44HWgDK1F9P8GeFXK4SGJNuf7zYOBXBfC7Tptb1y/wDE0vCzvuUEdBjt+VRfFzVDrF/ZeGNOYyTSOjS4/h2sM5/A16T4Q0GPQtBgtMDeEG4juaAPNpuPjbKSM5cdfpXticxr9BXil4DH8agf9ocfhXtaHKKfYUAPooooAKKKKQgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooprNjtmgB1Nc8YHWlDDGTxTCy7s5FAAQnTv6VDdXCW1u00rLHGnJJNc94o8baX4cgdpJ0Nxg7YweSa8wkufFnxHvkg+e10zOSygqSPrmgDe8Q/Fy2trprbS4WuyoIxGR978awdI8C6t401JdY8QTvEkjb1t2yMfkSK9K8OeBdK0G22i2SWQ8lpBuOfxqfxH4o0/wrpRmkCiVRxGODmmMbqFxpPgvQ2dljSNF4VQASR9K8qs9N1L4neI1v7pZItNiYZjb+IDI+lTWFhq3xO1Vby+Z7fTUbiMkjdXtGl6Zb6XZJbW8SoFXadoxQAafZxabZRW8ahFQAKuOvFLqV4tjYyTSHYFXJb0xVzqemcHNea/FnW/sGkppsLEz3T7doPIBoA57wHaLr/xFvtcMZaKFnjRz0IOORXtYAAJBHNcl8PNGGj+F7RGjAkaMbjjk/WusC/ktAHjGp8fGdf8AeH8q9qi/1Sf7orxTWSB8Y4m/vPj9K9qhP7lP90UASUUUUAFFFFIQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFJu5oAWik3YOKQuAM0AOppyMmjzBjrWH4h8T6b4dtHubqdVZeiZ5b8KANOWaO2QySSgL33HpXnHiz4nW1hMbLSY5Lu7PGI13KD+Fczc6x4j+It4Y9Pje00/O3eCQSPxFd94T+HunaBGZJk8+6I5lcfNmmM4zwx8O9Q1vU11nxI28sd6xscjHYV6/a2NvYwLDBGkaIMALxUyDycAPn6/yri/G/jyy8O2rxQOs18wOyJPmyfTikBf8AEvjnS/DiH7VMvm7dyqDycV5hp2l6n8Tdf/te8R4tLVsxocjcD7GrXh7wBd+LpE1nxCGLyMHSFuij0r2Sw023061W3tUVIk4VAOBQBHpml2+mWi28MSqiDA4xV5T8pLdfQU7afSmP8p3fmKAB2CpvJCgdSTXhd5nxl8V4wmZLe0ADdxlTXpPxC1pNK8LXMnm+XIUOz3Nc98INC+z6TNqlyn+kXUhYMepU0wPS4Y0iiCoMKBgYqQDik2nbilXOOaAPFteAHxdtj6v/AEr2aMfuY/8AdH8q8Y8SjZ8XLM9i/wDSvZ4f9RHn+6P5UhEtFFFABRRRQAUUUUAFFFFABRR70hIAzQAtFJuFGaAFooooAKKKKACiiigA7UzBJp9MZscZFAC5APqahlk2EyFgFHUE4qrqer2mk2rT3EihVGTzXjuq+NNa8bamdJ0EPDau2x7jqBQB1Pi74m2mjyfZdPX7TengKuePyrldJ8Ear441VdW8QFkgB3CIniu28JfDaz0A/aJiLi6YZaR+cn8a7mNBGAkahF9KAKen6bbaZbJDZxqkSjGBV0jjAJBP60jBQ3rXFePPHEPhnTmS3Pm3jgiNV7GmMb458cW3h2x8iECa9kyscanPNcZ4M8AXOq6yPEOsbvMz5qI/r6Vd8CeDbjWJV8R645kuHfdHG38IzkcfSvW44dgwoAAPAFADYxhDhAGP3lA6VPHgLt9KjRThsDac1KvyjnvSAdUcuNuT2p+axPFmtx6B4fu79xu8qMsF9aAPIPH+qHxV42tPD0LE20Tq8ijoe1e0aJZDTtKt7RBhYkCjj0ryb4UeHTqt9c+JrwbnmmfZntySBXtAUhs0wH0UUdKAPFvFny/FWwP+3Xs0P+oj/wB0fyrxjxmwX4p6cfVz/IV7NBg28X+4P5UhEtFFFABRRRQAUUUUAFFGecUUgGP0xtznrTRgnaGHHbNJctKsD+TjzMfLnpmvNLTxzr99rlxp9taKXhJ3N5fBAoEenIOTntTiK5LQ/Fgv7p7K4jaK5XOQ3GT7V1m4Y68imMcOlFID7ilzQAUUmaMgdTQAtMJ6k8YNOJ5x3xmqV/f21hbtNdzJHEoLEsaALLMVBLkbe1cN4v8AiPp3h2Nre0YXV8R8kUZ5z2ri/EPxH1DxDe/2X4cilIztaVRx+YrpPCXw0g0+4TU9UJubt8MfM+bH50AcxaeFPEvju6XUdZne2tXPEJypx+Br1nRPDOn6JbxpBCoZVA3Y5rUjiEKhI1ARegx0qTAHXJpjEGOSAaYWzliNmPXvTyf7uBz3rhfiF46i8N2XkwHzL6ThEXmgBvjn4g23h62NvaEXF7IMLFGfmBrl/BvgrUvEGoHXfEQbDEMkLjken6VY8CeDJdVl/wCEh1tPMnc7hG44H4GvWo0CKojXao6L2FADYIUt7cRRLtVRgD0FWB92mjqSaVQRnNAB3oYevSgUjHPBoAbnqpNeQ/FzWJdTmg8MWRzLcEo2PcV6xeXMdvayzOQAik814p4Lhk8U/EK71dlJjgf5WPI4JFIR614W0tNI0C2tkQLtQFgP72Oa2h160wHZgAEjpT1GKAHUjdPwpaQnigDxTxyMfErTP+uhr2a2/wCPaLP9xf5V41484+JGkn1kP8q9kt/mtocf3B/KgCeiiigAooooAKKKKAEam9OTTj94Cmnl8dqAM3WtTTTtKnu2z+7QtXLfDyFp7e6v5Y182aZiGxztPIqX4g6kV0v7BCm43GUJHOBS2Go2fhzw9DsMkkvljKqnfFIDF8VusPjbT/sSbZioDgdTzya9OGMjvnvXAeHNGutW1mTXtRG0nKwq3oa75SVCq3XFMBy/MxHYU40gHoaByetACHgHrTP4CGYevWmXd7DaRGSaRY1HVicV474u+JV5e37ab4bgaST7rSrnj15GaAO28WePtP8ADVm53ia43bVRTkk+lef2+k+JPiVeLNeyvaacDnygcEj6Gtzwn8M0nEer6/M91cyYk8uVeFPtXqFtaw26BIYwoAxQBh6F4R0vw9bCG0tk3DrJt+Y10KjAFKRhflHNOx64FMYAVCS27aeD2NTE/SvOviH49j0G0e0sj5t6/CKvUH1oAXx548GiQNZaeBPeudoVedvbP1rnPBfga+1q9/tvxAxmkzlUkPT6flVz4feBnuGXxDrjtNeTjcI3HHP5elepoiqpVAEUelACrCkKJGgCADgDpUyYxxUZZdm4nd6U9OF5oAfRRRQAU1h3Jpc1HLIiKXJGFGaAOA+K2vnS/DrWds/+k3IwmOtWfhjoP9leG0lkTZLKSWH15rg9ZlPjH4p2drGS9lbOee3Ir3C1i8m3SPAUKoXAoETdKO9L+NFIBMZopQR60hI9aAPFfiPx8RNB2f8APRs17LbcWsP+4v8AKvG/iN+5+IOgu3QyN/KvY7Ug2kJz/wAs1/lQBOaTNLkUxutADwaKaDThQAUUUUAIRzmkPBJ7UNjIGab8w4xkUDKM+mWlzLvkhDn3p0Wk2URytuoNXee3FG0EUAMUbMAKAo6UuDuw3QCg+hU49aMng9Rg0AG8YyOB61z3iPxhpXhq1825ulDdlX5smuR+Knji78OJb2enKftM2QNvWvC4pdYm1Q3t/ZT3Jc5I3cfkaBHqYbxN8Sr1kAktNMHIb+8K9I8LeC9N8M2/l20Yadh8746k9a8os/irrVtbLCmhyRogCggAdPpXpngHxRf+JNOknvrcwENtUN1NAzswAOmNoGMYoGdoxhaa7MEO1fmHNeR+JviZrOj61PaWunSzKjY4NMR6+CvQtkmms6KMs2AO9eDv8Y/EXyn+x51x7is26+NWuT+ZZxWci3MgwuaBnpPjv4i22hD+zbLE2ozgKqqc7c96xfBHga7vrldc18E3DMGjD88dad4G+HomeHW9ezJeF96I/VSeQa7zxTqk+h6Ibq2gaWROiqfagDbVBEAoAPGMU5QBwpA9q8IPxk8Qhsf2NOCPpR/wuHxETgaNPn1yKBHvAA445pRlsgjFcP4E8V6h4jt5mvLN4mB/iNduAVGSePSkAv0UH8aM/wAIIBryrxr8RNY8O+ITZWmmyzxhA2VPrXNt8YPERyBo04PcEigD3ng8Z3GuM+ImuDRfDczrJsc8DHvmvOR8YPEhAVdGnB7kkVnXviO88f69p2nSho1GTKhGckGmM7D4M6NLHYzateIfNuiCpYc8V63GSVy2AfTNZlnbR6XpCJGoXy0+VQMc4ryXVfit4gsNQktk0iZgrEBgRyKAPbzjNIemQceteBt8Y/EYx/xKJ/zFb3hX4la5rerR2k+mSxoerHFAj1zIPK0mRn7vT0oBz1+U9xiuF+IXj1fCVoskOHc/wg0gOU+KIZvGvh7LcGRq9dimjg0+J5CFRYlJJ9MV8zHxneeO/GOlu0DIsDk5Ne2eP7240/wK7W8nlv5AG8jp0oGLZeI73xBqMq6cDHaREr53qQcEU3W9S1zSTFLGTOryCMr0wD3q94Gtki8OQucMXw5wAMk963ri1t7tk8+PIXBBPagQtnJJJYQysPnYDIq0x2n60iLsUIB8oHFCA8k+tAEtFFFABgZziiiigYYo6UUUAMkzs/nUMknlQsw+6q7jz2Gf8KsMAVINc74v1VNG8N3VxnBCEAeuQRQB5bo0KeLfivd3tx+8trd8IrcgZr2JNF01FAFnD+KD/CvPPg5orx6dc61Njzb9t2P7uOP6V6mBxjjNAFD+xdNIx9ih/wC/Y/wqzBZwWy7YYkQdcKoFTjI64pcAjOaYDCDxgVSl06zklaWa3gLE9WjBq8Wwp9a838c/EK30aNtOsUe41CcbQE5C9qAKfjzxXpekxNYafZ29xeyjaFjiUkH8qo/Dr4cxxuNc1eEfa5G3LGw4HpxTfAHw7vTfjXNdYSTOdyxt1H4GvXwAigKoBU8ADpQAoUIqKqjIGAAOgpXgjlXbIiuvowBFKD8me5p46CgCi2jacTzZwf8Afsf4Ug0bTQcizgz/ANcx/hWhxSZHpSEQQWkNt/qYkjH+yoGanxk80vb0oA75oAqXGm2c8vmS28TvgDcyAnFRHRtOA4s4M/8AXMf4VoH6UyRgozQByPim80Xw7pk0lxBAJCh2AIuc4+lcH8ItC/tLULrxLeRqruQ0YAwMEDoPwrC+KmqXGv8AiOHS7QF1EwiYDt8w5r2bwdoQ8PeGbTThgtFGAW9aYzoCAw2sODVV9Ksmbc9rCx9TGDUeq6jDpFhLqFzu8uIcha8t1H4t6hezNFoOl3EjdMvHkGgD0PUI9CsIxLcQWwXOPuKP6VLo8mlaghudNjt3RTs3RqOD+VeSJ4A8X+KZBd6tfLBbMdxhRyGGa9K8MaBa+B9Blt/tDeWWMjvK2TQB0F/IkNrK8zhI9pG7oBXy54n0aXWvFMtppk816JHwWDllSvQvFni2/wDF9/8A8I/4bWQoT+8nxxgHnkexrr/Afw/h8L25knIku2xvZucmgCD4f/Dew8L2qTSxq904BYsM8+2a6zXtDt9e0ebT5wRHIpXr0rWy2SSBx09qRd5TJIOTzSA8+06fX/D0H2BrCW8iQ4ieJRhR2zmutsI7iYpcXhImI4QDGPqK1MFvpSKPnyPujigCbbjGKCuaXmigQUUUUAFFFFABRRRQAhryf4v6j+5tNLhO+e4dSqf7IbB/nXq0jBVOa8Quw2u/GJIA3mLZ70H04NAz1XwrpY0nQbW3UYwoJrcAFRxYChRxgdKlpgIcAUw8E4646GnscA5OK8y8d/ERNKLWGn/vrt/l+XnH5UAL8QPiCmlwHTtMzPfyHaFj5x27VR8CeA5vPXXdcHm3T8hW52/5xTPh54GkbU28QawvmzSZZQ/bNetcjhef6UAMKhGGB16e1TAAHOOajOSArdfWpR0oATAFLRRQAVGwIOQT9KkpGJGMCgBgJK5ajd/CM1GJo5JTH5i7h2zTiSVPOD2x2pCEL7QVZxj1zXK+LPGum6NpNyVu4muFQ4QOCc1z3je68WXmurpGjJ9ngKqWu0b5ueo6YrxvX/CdxbeJrWwlu2u7u4cCQnGQT70xljw14ouv7dm1L+zJrpribcW8osq19NaLdNfaTBM6GN2TOCMVl+FfC9p4e0iO2WMBwPnwM5NdFGq7QFwAOlAEN5ZQ31u1vPEskTdVYcGqtloWm6a2be0ijbrlFwRWoc4NZuratZ6PZvc3cwjjA5J60AP1PULfTbN7iZwqKM5JrxvXfEGqePtVGmaSWWwB2ySpnHX8qrajrGt/EjVDplgr2+lh/mlU4Lj6GvWfCXhe08LaOtpbR4JwZD0JNAEPhPwhZeGbJIYkBlI+aU/erpQCSRnp096UbMfKML3p4ANACqKNoA4FHSlpCG4FKABxS4oAoAWiiigBKKKKACiiigBDTSTx9acQOM01SM4xQBg+MNaj0Lw5d3Uj4IRgv1xwK8++DunPfreeIbpCbi4k3qx6gED/AAp3xqvzNZW2kxNmSaVNqg9ycf1rtfAGiS6F4RsrScbZ1jAfjvTGdOPn+YHpTfO+9k4wOc0MVRM5G0e9efePPiFBpFq1npTi41KYFFjT7woArePfiC2nP/Y+lEzX0vy/L2z0qPwH8Phbf8TbWSZ7u4/eYf8AhzzVb4f+AJbe5/trWFP2qY+Yok5Iyc/1r1dQvULwOODwKAGx/u8RIgVF6YqXHv1qJMb8J8wPJPpUu4KPmP40AGAq4AyPWkz3DcUFlHRwKzL/AMQ6ZpsTSXl3HDGvVmPSgDTDZPPA9TSGQAk7uB1zWXpGu2Gu2oudPuEuYlY5dOnFaNxEtzE8JPyvxkcUAcnrXxJ0TSGkje4DSocFQK4i++Juv65P9n8P6bIVf7soP+Nb1p8JNMbWbi+uSX3ybsFiRXc2ekWWnx7ILdAF4UBQD+dAHE+CNB8Twai99rt2xL8+WRwK9EyShyMHPSlUAKOCPqaCQMkHigDO1q8h07S57iVgiohO41414B0WbxF43utduIybZGZYy3Trwa6j4vats0yHS4XPnXjeXtHXkda6nwLpR0vwzbQMgQlQc460AdIuVQITkkUhbawAHPYUqEbmA65xXO+KfF1l4YsDLcSK03UJnBP86ALniDxNYeHbKS5vJgpA4XqSa8eSHXfihqJeUPDpSMcLn746Ultp+rfE/XUvL2OS00tG+UP0evatJ0u10i0S3hVVCgD5RjOKAItG0G00awit7eBV2qASBWtgFsEc0vJ6GgH86AHYFJjFLRQAYooopCCiiigAzRmiigAooooAKKKKQDWbBFRyv5cbt6DNSNjHPesbxNqKaTol3du3CRE0wPJ1jbxN8V1EnzwWoJx6EHNe2llC43BceteTfCWweee+1u4B/wBJmLofY1qePfHy6eW0vSwJb5/lIHOKYyv498dvbSjSNHVpruYYYpyFqLwL8OhZTjVtWDS3kh3qH5xz70vw98BtaynXdYJkvJjuCN2r05mSP5iduP71ACoojULkLt5+gpcMUbgE9RisDVPGWjaaGEt7CHA5BauDvfive307Q6Hp0rhePMKZU/jQB64pzgEc98VQ1rUX0vTJ7pUMrqPlRetRaDd3V5pcEt7HsndMtgYGa0pYY51CSKrA+tAHisnirxx4lkeOy0+S1TON8iZBFXdM+E93qcv2nXr+WRupRZGCj8M4r1qK3hh/dxxbcegqfAPrigDI0Dw3ZeHdP+yWSEJnPJ61shR16Gm854qSgBpQGlxzS0negBNoznmoZ5ViBZjgAZJ9KmJriviVrg0fwtcFZNrSqQD70AcDYofG/wAXLi6Yk21mi8HodpI4r20hIo1X7qLworzv4U6IuneGpL2f5bid2ZpD12HkVB4x+JK2zNpWkL59458vC84PrQBe8X/E2w8PTNawkTXJGAqYJ3elcjoPhPVfG+rHV9fSWK3LbkibK8VoeE/hkLqZtR14mS5d/MwegNes2sKW8EcaEBVHbpQBHp9ha2NuttbxKkaDAAq2qLRjBIXFKvBxQIUqDRilopAFFFFABRRRQAUUUUAFFFFADWbb24pBID0BpJCVYMBk+lRvIFy5YCP+Ik9KAJt35e1Jv46HNUhqdju2rd249P3o/wAakjvbaeYRxXcTN/dVwaBlhnXAyev6V5l8YtZS18Ow2ykmSabYU7sCMV6SSCCdmNwxmvmn4v8AiKWXxZGkR3rBjC54BBpoDo7vxbJ4d8IWek6ON99PGDhOqn04rc8CeDbdPK1jXJVl1G4G4o55U/5FeLaL4iuoNVa4hhSS6JJDM+Npr0rw/BqWq6kuranrnlPkEwh1Ix7UwPdowvIUcL93Fc34x03V9W0zydHmVJTwxL7SKvQa/pSwoi38J2jBYuAalTXNJkXzRd224dMyD/GkBwWmfB60bEmrXU1zMwywcAjNd7pnhrStLtxBbW0aovoKeNd00tg3tuD/ANdB/jU41XTiP+P62z/11X/GgC2qKibRjaOg9KXhiDjp61UGq6f/AM/1t/39X/Gj+0LQ8i9t8f8AXVf8aALbDIOGwaACBjOaq/2jZPwLuAn/AK6Cnre2va4h/wC+xQBODilDdsVAbu36ieH/AL7FL9ph7SIf+BCgCYHntSF8NjFQrcW7N8silv8AepzScfMy7e/PSgBzE5zxj614d47vP7f8d2Gjs+bdZB5ig8cjvXqHi/xDD4c8PXF+4jLIvyLnrmvmbSL/AFjXtfupbSJzd3DfLJ/dGeMGgD0/xV4xlxb+F/DQJdgEkdcjaCMcH6iun8E/Du10sJqV+vn38gyWkGcZqz4G8BW+gwfarz97fyAF3PUHrXfIqgfKMYoAYkQVQPSnCNQuAMCn5ooATaPpS4oopCCiiigAooooAKKKKACiiigAooooAjZBu3D71UtSihls5UmH7god3arr7UO8nHbrXMeONRay8PytG4Akwufc5FAHn2geGPD93rWoz3AL2qN8oMp4rrtD8F6dp2srqOmo8SE/dLlhXP8Ahn4a2sugxXdz9o+2uQxYSlQcH0r0+xaNIkhTkooHHtQBaAYoQDg/SvP9d+E+j61qD3kihZGOScV6Gh5I6e1OIFCA8pT4IaEMkcEnPGaR/gnpxKmO6ZGXpya9Xpe1O4Hkj/BDT3AzeNu/iOTzUT/A3TzKGS+dV9Oa9gxSY5pAeQr8DLHndfufTrxUL/Ae1LZGqSAemTXslJTA8cb4E2wGV1WTI9zTD8GJ0bCanJj8a9mxxzScDvz9aQHjbfB68jGYtVk3fQ1F/wAKu15ThNVk/KvasEdelIVHUZP40AeLn4Z+I4xuGrOT2+WmnwN41T5Y9XkC/wC6K9p3HuppRg/w0wPFj4K8dwjdDq0gb12im/8ACOfE0YT+2JCjcn5BXtfI7VHI5RGYJkjoPU0gPC9S+H/jnXY/s+q6i88HQqVHSvRvBngXT/CtpGiBJLjGS23pWbf+P9Qg8QS6Ra+HruWcHhwy4rT0Xxkt/qI06/ga0u34SOQ4JP4UAdZsXcWjGCepqReVpq/OvA24OKkWgAApaKKACiiigAooooAKKKKACiiigAooooAKKKKAGuuew/GuZ8SeEovEaRRXErrGjBiFYjkV1FJigDmj4UUW/lJdTrgYGJTV7RtJGlQMnmNIT3ZsmtcCgKOtACKKfRRQAYpKWigApKWigBvelpaSgApMD0paKAEwaMUtFABjikHFLRQAdRVW5YLFJnjapIPpVquW8a6pJY6PKkMM0kkgwPLXPXigDzuPW7m08UX2pw6Td3rBvkmiAKgD1rf8J2cfiHXhr1zIgnjbKRLwVI9aZ4X1BtJ8O+RJp9007gnmPrn1q38PNIvILq+v7mPyRPwiYxg59KAPQF3EYOAc8VKvvUZUtjnBDZqUd6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAozRRQAUZoooAM0ZoooAM0ZoooAM0ZoooAKKKKACiiigAooooAKKKKAE71E8KOfnG4eh6VLSUAReUirwi8cClSFUAx25p56GloATbznPbFOHAopaACiiigAooooAO1Ao7UDrQAUUUUAFFFFABRRRQAUUUUAf/9k='] Multimodal Competition False Theorem proof Solid Geometry Math Chinese 36 "如图, 多面体 $A-P C B E$ 中, 四边形 $P C B E$ 是直角梯形, 且 $P C \perp B C, P E \| B C$, 平面 $P C B E \perp$平面 $A B C, A C \perp B E, M$ 是 $A E$ 的中点, $N$ 是 $P A$ 上的点. 若 $M N \|$ 平面 $A B C$, 求证: $N$ 是 $P A$ 中点;" ['记 $P A E \\cap A B C=l$, 因为 $M N \\| A B C$, 根据线面平行的性质定理, 有 $M N \\| l$.\n\n又 $P E \\| B C$, 所以 $P E \\| A B C$, 从而 $P E \\| l$, 于是 $P E \\| M N$.\n\n又 $M$ 是 $A E$ 的中点, 于是 $N$ 是 $P A$ 的中点.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAeIBfAMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiobq4jtLaS4lbbHGpd2wTgAZPSuZT4k+E5Ll7VNXRrhBlolgkLqPUrtz3FAHWUVzsPjnw1NdR239sQRTyHEaXAaIufRd4GT9K6EHk0ALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSEkYxQAtFctJ8RfCcVyttJrcCzt0iKtuP4Y/zipW8eeGo1LvqihR1JhcY/wDHaAOkorL0PxHpHiS2kuNHv4byKJ9jtEThWxnFalABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjdPevJPhSP7f8a+NfFrHek159jtZPWNP/sfKrvfG2sf2B4K1nUwwWSC0kMZP98jCf8AjxFcV8JvCt7afDjTZI9dv7E3ga6eKGK3K/MTtOXjZuVC9TQBq/GW4sbf4Y6sL1Y2aUJHbq4GTKWG0r7jk8dga2vh7FqUHgDRItX3/bVtVDiT74H8IbPO4LtBzznNJD4K0+TUYtQ1a4u9ZuoDmBtQZGWE+qxoqxg9OdueOtdKAB0oAWiiigAooooAKKKKACiiigAooooAKKKKACkbHelqK5nitbaW4mcJFEjO7HsoGSaAPJNPx4k/aO1K7bDW+g2AgRuMeYRyD+Lyf9816n9vgfVH05STcJCJmGOFViVXP1Kt+VeP/B/w9/wkWl614pvLrUbW41XUZGH2S7eEMoOedpGfmZx7Yrv/AAh4YPh6/wDEE8k11N9ru1Mc15MZZDEsa4yx5wHaTHtQBe8NaImj33iCSO3WCK91D7REFwAV8mJScDp86vXQVU0y/i1PT4b6AMIJ1EkZYYLKeh/Ec/QirdABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSEkdqWigDy/4r2vinxT4bn0DRfDtyUa4TzbmW6t0SRF5G0eZnltp5A6V3PhsyLolvbSaVc6atqiwRw3DxMSiqACPLdhjtyQeOla20ZB7ilxigAxRRTWOMc496AHUV51b/GCwv0abTPCvi3UrTeyJdWemb43wcZB3D078+oB4qX/haf8A1Ifjn/wT/wD2dAHoFFef/wDC0/8AqQ/HP/gn/wDs6P8Ahaf/AFIfjn/wT/8A2dAHoFFef/8AC0/+pD8c/wDgn/8As6P+Fp/9SH45/wDBP/8AZ0AegUV5/wD8LT/6kPxz/wCCf/7Oj/haf/Uh+Of/AAT/AP2dAHoFFef/APC0/wDqQ/HP/gn/APs6P+Fp/wDUh+Of/BP/APZ0AegUV5//AMLT/wCpD8c/+Cf/AOzpG+KZwSPAnjcY7nSP/s6APQCcVxfxBm8Q3vhzU9F0Pw/d3c95bmFbrz4I4lD8N96QN0J/h/Gl8OfEvR/EWvPof2XUtM1ZFLfY9St/JkIADcDJ6g5x1wCfQ12fXNAHn3gn+1/Cvg3TNFbwdqzS20WJWjnsyrSE7mIJnHGSetGuXPjHxG8GjW/hmfSdKuZAl9fT3kDSLB/EqLG7EFhlc84z+NehYpCAe1ADIQiIEjAVVACgDAA7Y9qkoxiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkIzS0hoA8X/AGcdVE/hLVdNLEvaXglx6LIoAH5o3517QK+ePgR/xKfENrATtj1rR3uOT96SK5kjAH/AQTX0OO9AC0UUUAFFFFABRRRQAUUUUAFIe1LSE4oA8J1bwxeeI/iP48v9Hcwa7pEmn3OnupAzIITmM54IYKRzxnGeM16p4K8V2/i/w3DqcQEU4Jiurc9YJh95SDz7jPYj6VzngEJJ8QviFcozMzXtvCSenyRsMfgSRWf4iR/hx43XxbbIRoGrusGsRonEMh4SfA6DJOfqepYUAeqj+VLTIpFlQSIwZGG5WByGB6EU+gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApDS0GgD548Jg6boHwm14D5FvrvTpOOvnyyKufYYY19DCvn+Kzef8AZa028gXNzps7XkJA5UrdOCfwVmP4V7zYXcV/YW97Ad0VxEsqH1VhkfpQBYooooAKKKKACiiigAooooAKQ0tIelAHnnwwLT6p46uGC8+IbiIY/wBjA/wruNT0y01bTLnT72IS2tzGY5UPcEY/A+/WuG+EJ8yy8WXGwqJvEl2657jCf/Xr0XGaAPM/h9ql14b1u5+Hmszb5rRfN0m4Y83Nqc4X6pgj8CMfLz6WK4z4jeFbnxBpMF9o8hh8QaVJ9q0+RTjcw+9Gc8YYADnjIGeM50fBXiu38X+GoNTiXypwTFdQHrDMv3lI69eRnsRQB0dFIP5UtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFBooNAHlnw10waz+z5baYTj7XaXkIPoWllAP61vfCTUzqvwv0OVvvwwm2Ydx5bFBn/gKqfxqn8E/wDkkOhf9vH/AKPkqD4Vn+zb/wAZeHmGDYay80aj+GGUZT9FJ/GgD0iigUUAFFFFABRRRQAUUUUAFIaWmyMFjZiM7Rn8qAPPvgwfN8ET3fmiX7VqVzNuHfL4z+mfxr0OvPPgem34S6QcY3tOf/Izj+leh0AIfSvKvESP8OPG6+LbaPGgau6w6xGicQyHhJ8DoMk5+p7sK9WIBqnqemWmraZc6fexCW1uYzHKh7gjH4H360AWYpFlQSIwZGG5WByGB6EU+vM/h9ql14b1u5+Hmszb5rRfN0m4Y83Nqc4X6pgj8CMfLz6WKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACg0UGgDz74J/wDJIdC/7eP/AEokqvZ40n4/alB92LWtHjueT96WJvLAH/AQTVn4JjPwh0L/ALeP/R8lV/iADpnj/wABa8B8i30mnScdfPXaufYYY0AejjvS0gpaACiiigAooooAKKKKACqWsTC30a+mLbRHbyOW9AFJq7WF40ma38DeIJlALR6bcuAenEbGgDE+D0Ig+FGgoucGJ35/2pHb+tdxXL/DeMxfDbw6pIJNhE3Huuf611FABRjNFFAHF/Ebwrc+INJgvtHkMPiDSpPtWnyKcbmH3oznjDAAc8ZAzxnOj4K8V2/i/wANQanEvlTgmK6gPWGZfvKR168jPYiuiPpXlXiJH+HHjdfFttHjQNXdYdYjROIZDwk+B0GSc/U92FAHqo/lS0yKRZUEiMGRhuVgchgehFPoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACg0UGgDz/4Jf8AJIdC/wC3j/0okpPjRZvP8OLq8gXNzp08N5CQOVKuAT+Csx/Cl+CX/JIdC/7eP/SiSut8R6YNZ8M6pphOPtdpLCD6FlIB/WgC3YXcV/YW97Ad0VxEsqH1VhkfpViuK+EmpnVfhfocrffhhNsw7jy2KDP/AAFVP412tABRRRQAUUUUAFFFFABXMfEWURfDjxGxB50+Yce6kf1rp64v4tTfZ/hZr77wmbcJk/7TquPxzj8aANTwLGYvAHhyNlKsumWwKnsfKXNdBWfoUP2fw/p0Gd3l2saZ9cKBWhQAUUUUABANU9T0y01bTLnT72IS2tzGY5UPcEY/A+/WrlGM0AeZ/D7VLrw3rdz8PNZm3zWi+bpNwx5ubU5wv1TBH4EY+Xn0sVxnxG8K3PiDSYL7R5DD4g0qT7Vp8inG5h96M54wwAHPGQM8Zzo+CvFdv4v8NQanEvlTgmK6gPWGZfvKR168jPYigDo6KQfypaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACg0UGgDz/AOCX/JIdC/7eP/SiSu/PauA+CX/JIdC/7eP/AEokrvzQB5x8Kz/Zt/4y8PMMGw1l5o1H8MMoyn6KT+NekCvNrPGk/H7UoPuxa1o8dzyfvSxN5YA/4CCa9IHegBaKKKACiiigAooooAK8++NzbfhHrQx94wD/AMjxn+leg1518bAkvw9a1dyour23hwB1zID/ACBP4UAegwR+VBGmMbVAx6YqSkBzS0AFFFFABRRRQAh9K8q8RI/w48br4tto8aBq7rDrEaJxDIeEnwOgyTn6nuwr1YgGqep6Zaatplzp97EJbW5jMcqHuCMfgffrQBZikWVBIjBkYblYHIYHoRT68z+H2qXXhvW7n4eazNvmtF83Sbhjzc2pzhfqmCPwIx8vPpYoAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACg0UGgDz/4Jf8kh0L/t4/8ASiSvQCM15/8ABL/kkOhf9vH/AKUSV6BQB5v8QAdM8f8AgLXgPkW+k06Tjr567Vz7DDGvRxXn/wAaLN5/hxdXkC5udOnhvISBypVwCfwVmP4V3NhdxX9hb3sB3RXESyofVWGR+lAFiiiigAooooAKKKKACvO/i8znS/DVuu3/AEjxDZxHP/Aj/QV6JXnPxV/eXvge3ClmfxJatx6DOf50AeijvS0g70tABRRRQAUUUUAFGM0UUAcX8RvCtz4g0mC+0eQw+INKk+1afIpxuYfejOeMMABzxkDPGc6PgrxXb+L/AA1BqcS+VOCYrqA9YZl+8pHXryM9iK6I+leVeIkf4ceN18W20eNA1d1h1iNE4hkPCT4HQZJz9T3YUAeqj+VLTIpFlQSIwZGG5WByGB6EU+gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACg0UGgDz/4Jf8AJIdC/wC3j/0okr0CvP8A4Jf8kh0L/t4/9KJK9AoAzPEemDWfDOqaYTj7XaSwg+hZSAf1rnfhJqZ1X4X6HK334YTbMO48tigz/wABVT+Ndoe1ecfCs/2bf+MvDzDBsNZeaNR/DDKMp+ik/jQB6RRQKKACiiigAooooAK88+IJ83xt4AtTKFDalJNt7nYg/wAf1r0I57V514yPmfF74dx7c7TqD5P/AFxU/wBKAPRRS0etFABRRRQAUUUUAFFFFAAQDVPU9MtNW0y50+9iEtrcxmOVD3BGPwPv1q5RjNAHmfw+1S68N63c/DzWZt81ovm6TcMebm1OcL9UwR+BGPl59LFcZ8RvCtz4g0mC+0eQw+INKk+1afIpxuYfejOeMMABzxkDPGc6PgrxXb+L/DUGpxL5U4JiuoD1hmX7ykdevIz2IoA6OikH8qWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKDRQaAPP8A4Jf8kh0L/t4/9KJK9Arz/wCCX/JIdC/7eP8A0okr0CgBDXm9njSfj9qUH3Yta0eO55P3pYm8sAf8BBNekkZrzf4gA6Z4/wDAWvAfIt9Jp0nHXz12rn2GGNAHo470tIKWgAooooAKKKKAA15z4gCT/HDwgm4lreyu5do7bl2V6Ka87umaX9oKxi+XbD4deQHv80xX+goA9EFLQKKACiiigAooooAKKKKACiiigBD6V5V4iR/hx43XxbbR40DV3WHWI0TiGQ8JPgdBknP1PdhXqxANU9T0y01bTLnT72IS2tzGY5UPcEY/A+/WgCzFIsqCRGDIw3KwOQwPQin15n8PtUuvDet3Pw81mbfNaL5uk3DHm5tTnC/VMEfgRj5efSxQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQaKDQB5/8Ev8AkkOhf9vH/pRJXoFef/BL/kkOhf8Abx/6USV6BQAV598aLN5/hxdXkC5udOnhvISBypVwCfwVmP4V6DWZ4j0waz4Z1TTCcfa7SWEH0LKQD+tAFuwu4r+wt72A7oriJZUPqrDI/SrFcV8JNTOq/C/Q5W+/DCbZh3HlsUGf+Aqp/Gu1oAKKKKACiiigBD0rzqH97+0PcsFOIvDYQt2BNwCP0zXoxrzvRSZ/jn4ok8zP2fTbWIL6bvm/+v8AjQB6GKWkFLQAUUUUAFFFFABRRRQAUUUUAFGM0UUAcX8RvCtz4g0mC+0eQw+INKk+1afIpxuYfejOeMMABzxkDPGc6PgrxXb+L/DUGpxL5U4JiuoD1hmX7ykdevIz2Iroj6V5V4iR/hx43XxbbR40DV3WHWI0TiGQ8JPgdBknP1PdhQB6qP5UtMikWVBIjBkYblYHIYHoRT6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACg0UGgDz/wCCX/JIdC/7eP8A0okr0CvP/gl/ySHQv+3j/wBKJK9AoAKQ9qWkNAHnHwrP9m3/AIy8PMMGw1l5o1H8MMoyn6KT+NekCvNrPGk/H7UoPuxa1o8dzyfvSxN5YA/4CCa9IHegBaKKKACiiigBDzXnXhD958YviFJt+6NPXP8A2xP+Feik4rzvwAEl+IXxCuVZmLXtvCSenyIwx+BJFAHog70tFFABRRRQAUUUUAFFFFABRRRQAUUUUABANU9T0y01bTLnT72IS2tzGY5UPcEY/A+/WrlGM0AeZ/D7VLrw3rdz8PNZm3zWi+bpNwx5ubU5wv1TBH4EY+Xn0sVxnxG8K3PiDSYL7R5DD4g0qT7Vp8inG5h96M54wwAHPGQM8Zzo+CvFdv4v8NQanEvlTgmK6gPWGZfvKR168jPYigDo6KQfypaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKDRQaAPP/AIJf8kh0L/t4/wDSiSvQK8/+CX/JIdC/7eP/AEokr0CgAoIzRRQB5v8AEAHTPH/gLXgPkW+k06Tjr567Vz7DDGvRxXn/AMaLN5/hxdXkC5udOnhvISBypVwCfwVmP4V3NhdxX9hb3sB3RXESyofVWGR+lAFiiiigAooooAQ1558L2abVPHM7befEVxEAP9jAr0M9K87+EJ8yy8WXGwqJvEl2657jCf8A16APRCSOlc5q3jvw3oN01tquqJaSKdv7yNwM4zw23BrozXmPxYsv7c0vVLPGU03Rpr9x6OWHln67YpqAPS4ZVniWVGDI6hlYdCCODSzSLDE0ruqIgLMzHAAA6k9hXO+Ab37f8P8Aw/c7iWewhVj6sqAN+oNZ3j7Wfs3h7V8N+4sbVprk9mcj91F+LFS3XjAwd1AGjpfjzw3rdyttpmqJdyM2391E5APuduB+NdIM964f4QaR/Y/wy0hHUia6jN3IT1PmHcv/AI7tH4V3NABRRRQAUUUUAFFFFABRRRQAh9K8q8RI/wAOPG6+LbaPGgau6w6xGicQyHhJ8DoMk5+p7sK9WIBqnqemWmraZc6fexCW1uYzHKh7gjH4H360AWYpFlQSIwZGG5WByGB6EU+vM/h9ql14b1u5+Hmszb5rRfN0m4Y83Nqc4X6pgj8CMfLz6WKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACg0UGgDz/AOCX/JIdC/7eP/SiSvQK8/8Agn/ySHQv+2//AKUSVt+NZtWs9EkvdK1P7HNGNqIYEkEsjkLGp3dPmIHHrQB0tFeffDDxlqfiFNY0nxAY11zSbpopwibQyZIBA6dQw47Y9a1PG8niG1tYLjQNVhtppJ4bZYJrYSK7SSBSxPUYDZPspoA2fEemjWfDWp6Yc/6XaywgjqCykA15V8OtN8b694D0u8sPiD9gt1jNulodGglMIjJQKWJBPCjrzzXq+kW2oWtmY9T1Iahcb8mUQLCBwOAoJ788k9a4j4Vn+zdQ8ZeHmXb9g1l5o1H8MMoymPbCk/jQBZ/4RP4h/wDRT/8AygW//wAVR/wifxD/AOin/wDlAt//AIqvQBRQB5//AMIn8Q/+in/+UC3/APiqP+ET+If/AEU//wAoFv8A/FV6BRQB5/8A8In8Qh1+J3/lBt/8ah+CgdvAclxJcC4kuNQuZXkAADMXwTgcDOM/jXokjBY2YjIAJxXn3wPTb8JdIbH32nP1/fOP6UAehHpXJ2FoNbj8VTPgpfTSWMRPeOJPKI/7+ed+daviDUtU0+1U6Voc+qXDhsKk8USIQONzOwPOf4QehzjvneBf7Vg8OW9jrGjz6fdwKPMd5YpEnkYlndSjEjkkncB94deaAOU+EmsvF8INOjRPNvIp5rOGFjjfIXZlB9AFOSewBPaq3xciktvB2leGLaUvfa5qkcckp4MrFtzP/wB97MDoBgDpW18P/Bd34Tg1ie8Vpy19cy2NqhB2xMQAcnA3OEXqeAMcZYVka9Y+J9a+I/h/XZfCd9/ZGkLIwha7tfNaVgfmx5u0YIQ/e7UAeqWlvFaWsVtCoWKFFjRR0CgYA/IVNUVu7SQI7xPE7KC0b43ISM4OCRkexI96loAKKKKACiiigAooooAKKKKACjGaKKAOL+I3hW58QaTBfaPIYfEGlSfatPkU43MPvRnPGGAA54yBnjOdHwV4rt/F/hqDU4l8qcExXUB6wzL95SOvXkZ7EV0R9K8q8RI/w48br4tto8aBq7rDrEaJxDIeEnwOgyTn6nuwoA9VH8qWmRSLKgkRgyMNysDkMD0Ip9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUGig0AeffBP/kkOhf8Abx/6USVv+ID9s1fQNMXlZLs3kq+scK7gf+/rQ1gfBTP/AAqLQsf9PH/pRJW7Zul/451GdWDJp9pFaLyPleQmSQfksP60AcB4t/4oX4yaP4oUiLTNbX7DfH+FX4AY+nGw/wDAG9a9C1PN54s0WyH3LdZr9/qFESA/XzXP/AKo/Erwx/wlngXUNORN12q+fbevmpkgfiMr+NYvwf1W78T6FJr1+rCdYodNDMeXEIJL/VmkbP09qAPRgAM44Fec2eNJ+P2pQfdi1rR47nk/elibywB/wEE16RgV5x8QAdM8f+AteA+Rb6TTpOOvnrtXPsMMaAPRx3paQUtABRRRQBS1iYW+jX0xbaI7eRy3oApNcp8HoRB8KNBRc4MTvz/tSO39a2/GkzW/gbxBMoBaPTblwD04jY1U+G8Zi+G3h1SQSbCJuPdc/wBaAOopMClooATAHajApaKACiiigAooooAKKKKACiiigAooooAKKKKAAgGqep6Zaatplzp97EJbW5jMcqHuCMfgffrVyjGaAPM/h9ql14b1u5+Hmszb5rRfN0m4Y83Nqc4X6pgj8CMfLz6WK4z4jeFbnxBpMF9o8hh8QaVJ9q0+RTjcw+9Gc8YYADnjIGeM50fBXiu38X+GoNTiXypwTFdQHrDMv3lI69eRnsRQB0dFIP5UtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQaKDQB5v8ILKHUPgro9rOZRFIJwxhmeJv+PiToyEMPwNdJo/gTw9oGoG+0y1uYLhmLOft07CQkYyys5DHnqQaw/gl/wAkh0L/ALeP/SiSvQKADFVNN0yy0i0+y2FukEHmPJsXONzsWY/mT9Og4q3RQAV598aLN5/hxdXkC5udOnhvISBypVwCfwVmP4V6DWZ4j0waz4Z1TTCcfa7SWEH0LKQD+tAFuwu4r+wt72A7oriJZUPqrDI/SrFcV8JNTOq/C/Q5W+/DCbZh3HlsUGf+Aqp/Gu1oAKKKKAOY+Isoi+HHiNiDzp8w491I/rU/gWMxeAPDkbKVZdMtgVPY+Uuay/i1N9n+FmvvvCZtwmT/ALTquPxzj8a6TQofs/h/ToM7vLtY0z64UCgDQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBD6V5V4iR/hx43XxbbR40DV3WHWI0TiGQ8JPgdBknP1PdhXqxANU9T0y01bTLnT72IS2tzGY5UPcEY/A+/WgCzFIsqCRGDIw3KwOQwPQin15n8PtUuvDet3Pw81mbfNaL5uk3DHm5tTnC/VMEfgRj5efSxQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFBooNAHn/wAEv+SQ6F/28f8ApRJXoFef/BL/AJJDoX/bx/6USV6BQAUUUUAFIe1LSGgDzj4Vn+zb/wAZeHmGDYay80aj+GGUZT9FJ/GvSBXm1njSfj9qUH3Yta0eO55P3pYm8sAf8BBNekDvQAtFFFAHn3xubb8I9aGPvGAf+R4z/Su9gj8qCNMY2qBj0xXn3xsCS/D1rV3Ki6vbeHAHXMgP8gT+FeiA5oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACjGaKKAOL+I3hW58QaTBfaPIYfEGlSfatPkU43MPvRnPGGAA54yBnjOdHwV4rt/F/hqDU4l8qcExXUB6wzL95SOvXkZ7EV0R9K8q8RI/w48br4tto8aBq7rDrEaJxDIeEnwOgyTn6nuwoA9VH8qWmRSLKgkRgyMNysDkMD0Ip9ABRRRQAUUUUAFFFFABRRRQAUUUUAFBooNAHn/wS/wCSQ6F/28f+lElegV5/8Ev+SQ6F/wBvH/pRJXoFABRRRQAUEZoooA83+IAOmeP/AAFrwHyLfSadJx189dq59hhjXo4rz/40Wbz/AA4uryBc3OnTw3kJA5Uq4BP4KzH8K7mwu4r+wt72A7oriJZUPqrDI/SgCxRRRQB538Xmc6X4at12/wCkeIbOI5/4Ef6CvQx3rzr4q/vL3wPbhSzP4ktW49BnP869FHegBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAAgGqep6Zaatplzp97EJbW5jMcqHuCMfgffrVyjGaAPM/h9ql14b1u5+Hmszb5rRfN0m4Y83Nqc4X6pgj8CMfLz6WK4z4jeFbnxBpMF9o8hh8QaVJ9q0+RTjcw+9Gc8YYADnjIGeM50fBXiu38X+GoNTiXypwTFdQHrDMv3lI69eRnsRQB0dFIP5UtABRRRQAUUUUAFIaDXIePPHC+EbK1htbcXutahJ5NhZA/6xycbm9FBI+uR06gA615FRCzMFAHJJwKbFOkyB4pEdDwGU5H5iuP0jwJHcol74wmGu6q+GdbgZtoD/dji+7gf3iMnHbpWf8QtGTw14R1HXvCqR6RqNtFlzaRhFmjPDBlHykgHcpxkEcHk5APQ0cOCVYMMkZH15/wpxrH8K6Y+jeFtM06QlpoLZFmZjktJjLknvliT+NbBoA8/+CX/ACSHQv8At4/9KJK9Arz/AOCX/JIdC/7eP/SiSvQKACiiigAooooAzPEemDWfDOqaYTj7XaSwg+hZSAf1rnfhJqZ1X4X6HK334YTbMO48tigz/wABVT+Ndoe1ecfCs/2bf+MvDzDBsNZeaNR/DDKMp+ik/jQB6RRQKQ57UAee/EE+b428AWplChtSkm29zsQf4/rXoQrzrxkfM+L3w7j252nUHyf+uKn+lejetABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIfSvKvESP8ADjxuvi22jxoGrusOsRonEMh4SfA6DJOfqe7CvViAap6nplpq2mXOn3sQltbmMxyoe4Ix+B9+tAFmKRZUEiMGRhuVgchgehFPrzP4fapdeG9bufh5rM2+a0XzdJuGPNzanOF+qYI/AjHy8+ligBaKKKACiiigBD1rxfQQ/ij9ovWb25BaDQoDFboeiPwn9ZG+uPQY9oJAryea3/4V58V9R1+9Rl8P69GFkuwpZbWcYP7zHRTg8/7XYCgD1hQAOOlV7+C1urf7LeJHJFMdvlyYIfgnGO/Qn8Koy+JtEht1uX1iwED/AHGWdW356BcH5ifQdar2Mdxq+qx6vdQyW9tArJZQTIVkJb70rqfukgbVU8gFicbtqgG8ByaGoXpQwB60AeN/BvxBrNtbReCm8PqItImmhvb83qgxsXkdf3JUMQT8uc+/tXsQJxya898eeG9QsNSh8ceFos6zZJtu7VeBfW/GUI7sAOO/HqFrrPDPiLTvFegW2r6ZLvt5hyv8Ubd1YdmH/wBfoc0Acv8A8Jd8Qz0+GX/let//AImuw0O81G/0iG41bTP7Mvm3eZaees3l4YgfOvByAD+NaAApelAGN4k1LWdM0+KbQ9D/ALZuWlCvb/a0t9qYJL7mBHBAGP8Aarn7HxR46n1C2hvPh79ktpJVWa4/tuB/JQnDPtAy2Bk4HWu5IzSbR6UAJk9zXjV/quveG/jlrKaT4c/tJtWsIZViN8kAlEahTICwIGMMu3rxnvXs2BXnHxAU6Z4+8B66AAgv5NPkIHUzptXP0w1AHUeGNW8Q6p9q/t7wx/Ynl7PJ/wBPjufNzu3fcA24wOvXd7Vf1y81Gw0ie50nTP7Tvk2+VaeesPmZYA/O3AwCT+FaC96D0oA8K1nxB4uu/ir4amm8EGLUrO1uZLew/teFvNR1Ks/mAbVxg8HrXtlhPcXGn2s13bfZLmSJWmt/MD+U5GSm4cNg5GR1xXCXTPL+0FYxDG2Hw68ue+WmK/0FeiYFAHL+Itd8VabqKQaJ4O/tq2MQdrj+04rba+SCm1gScAA5/wBqjw7rvirUtReDXPB39i2wiLrcf2nFc73yAE2qARkEnP8As11AAHajANACZPrXA/8ACXfEL/omX/lft/8ACu/wKMCgDP0O81G/0iG41XTP7Mvm3ebZ+es3l4YgfOvByMH8cVX8SalrOmafFNoeh/2zctKFe3+1pb7UwSX3MCOCAMf7VbAAHSlIzQBw1j4o8dT6hbQ3nw9+yW0kqrNcf23A/koThn2gZbAycDrXbZPr39KdtHpRgUAcPfeKPHUGoXMNn8PPtdtHKyw3H9twJ5qAna+0jK5GDg9K2fDGr+ItU+1f294Y/sPy9nk/6fHc+dnO77gG3GF69d3tW/gCloAztcvNRsNJmuNK0z+071Nvl2n2hYfMywB+duBgZPvjFch/wl3xC/6Jj+H9v2/+Fd+QD1owPSgBNxOOa5jxFrvirTdRSDRPB39tWxiDtcf2nFbbXyQU2sCTgAHP+1XUYHpQAB2oA5fw7rvirUtReDXPB39i2wiLrcf2nFc73yAE2qARkEnP+zXT5PrS4BowKAOA/wCEu+IX/RMs+39v2/8AhXX6Heajf6TDcarpn9mXr7vMtPtCzeXhiB868HIwfbOK0MCgADpQBgeJ9X8RaX9l/sHwx/bnmb/O/wBPjtvJxjb98HdnLdOm33rGsvFHjqfULaG8+Hn2S2klVZrj+24H8pCRufaBlsDJwOtdzSYBoAbk+vf0rib7xP47g1C4hs/h79rtUlZYrj+2oE81ASFfaRlcjBwelduQKhubiCzt5J7iaOGCMbnklYKqj1JPAFAGd4b1LWdT0+WbXND/ALGuVlKpb/a0uNyYBD7kAA5JGP8AZqfXb3ULDRri50rTRqV6gXyrU3CwCTLAH524GASeeuMd64u8+Ktve3b6d4M0q68R3ynDPCPLto/9+VuPxHBx1quPAnibxY4m8deIWjtSc/2RpLGKHHHDv1b6c47HmgDz3xr4/wBW8UatYWFl4We38R6dcCeznsNSS8MRz8yssaEEEDkEjGBnjIP0Np0lzNp9vJeRJDdNEpmiRiwRyMsASBnBz2FVND8O6P4cs/smj6db2cPGREmCx9Wbqx9ySa1QMdKACiqGr3d9ZWXnWFgt7KD80ZnEWFwcnJBFcf4W+IOreMNKbU9L8LN9l8xo1aa+RCxAGcDb70Ad/RXF3Hj8aPq9lp3iTSLjSjfP5dvc+Yk0DPkfKWU5U89wK7LLdhmgB1NZFZSrKCDwQe9OooAo2ui6VYzme002zt5W6vFAqMfqQOau4FLRQAUUUUANbpXlOtwT/C7xS/ijTonk8MajIBq1ogz9nkJwJ0HYEnkdzx3XHrFQXVtBd2strcwrNBOpjkjcZDqRggj0xQAWlzDe2sV1byxzQSqHjkjbcrKRkEHvU9eUaDcz/C7xNH4Y1GZ5PDOpSk6TduSfsshP+ocntzx9c8ZOPVUbd2oAdRRRQAV598aLN5/hxdXkC5udOnhvISBypVwCfwVmP4V6DWZ4j0waz4Z1TTCcfa7SWEH0LKQD+tAFuwu4r+wt72A7oriJZUPqrDI/Spz0ri/hJqZ1X4X6HK334YTbMO48tigz/wABVT+NdqaAPOYf3v7Q9ywU4i8NhC3YE3AI/TNeiivPNFJn+OfiiTzM/Z9NtYgvpu+b/wCv+NehigBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAopCcVh+IvGGg+Fbcy6zqdvakjKxk7nb6IMsfyoA3CSCMVR1XWdO0Oza81S+gs7cceZM4UE+gz1PsOa4D/hLPGvjNNvhTQ/7I05+mqawAGZfWOIZz7E5X6Vc0n4UaSt6NT8S3dz4l1QjmbUDmIeyxZIC+xyOOMUAVZPiRrHid2t/APh6W+jLFf7Vv1MNovrjOGf6cH2NOtvhfNrlxHe+PNcudcnU7ls42MNpEe2FXBbHrxnuK9HSNERUVQqqMAAcAegp+KAKtjp9nptolpY2sFrbxjCwwxhEH0A4qzgZz3pcYooAKKKQ0Acn8TdYOh/DjXLxSRIbYwxkdQ0mEB/Ddn8Kyvh3qHh/wAOfDjRbOfW9MidLYSyh7uMbXcl2ByexbH4VlfGgnVpfCvhNCc6rqamTHXy0wDn2+fP/Aa9RMMQQr5aBcYxt7UAeUeLbK6+K2taPp+mQSp4dspvtFzqroUWZum2EnBcYBG4AjJ9ufWuD2/SvINNuTp37Q9xpOg4TS57Qy6laxf6qOXYTv2jhWJ8sHv85969gHAHPb1oAdRRRQAUUUUAFFFFABSEAjBFLRQBj+J/D2neKdBuNI1OEyW8w4YfejYdGU9iP8Rz0rkvAniTUbDUpvBHimTOs2K7rS6bgX9uOjDPVgBz7ZzyGr0XFch4+8GjxTpcM1lN9j1uwfz9PvAceW452k/3TgfofqAdapJBzTq4/wAB+Mz4p02SC9h+ya7YP5GoWbcFJBxuA/unH4dOeCevBzmgBaQ9qWkNAHnHwrP9m3/jLw8wwbDWXmjUfwwyjKfopP416P1615vZ40n4/alB92LWtHjueT96WJvLAH/AQTXo+cZoA878IfvPjF8QpNv3Rp65/wC2J/wr0Ud6878ABJfiF8QrlWZi17bwknp8iMMfgSRXotABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRTWbAznA9TXDa58VdC067OnaSJte1Y5C2emr5nP+044A9cZI9KAO6JxiuV8SfEPw74Xf7PeXvn6geEsLRfNnduw2jpntuxmudbQ/H/jU513VF8M6U/P2DTWD3LL6PL0B/wB3I55FdT4Y8DeHfCUf/Eq02NJyMPdSfPM/rlzzz6DA9qAOWNx8RPG3NvDH4Q0huRLOolvXX2TpGfrgj1NbXhz4ZeHdAuft0kEmp6qSGe/1F/OlLeozwp9xz712WBnNL0oATAoAA6cUtFABRRRQAUUUUAFRzeYYmELKkhB2sy7gD6kZGfzFSUdaAPOr3wD4gv8Axpp/ii48Tae15YRNFbxf2SwhXIYE48/Ofm9f5Vt3Wk+L7uBoT4o0+2VhgyWmkMsij/ZLzOB9dprqsUgUDoMUAc94V8F6T4Shn+wpLLeXLb7q9uX3zTseSWY++TgdzXRYFFFABRRRQAUUUUAFFFFABRRRQAUhHNLRQB51498N6jY6nF448LxZ1mzXbeWq8C/t+MofVgBx349QorrfDHiPTvFWgW2r6ZLvt5hyv8UbDqrDsw/+vyCDWs3SvKdbgn+F3il/FGnRPJ4Y1GQDVrRBn7PITgToOwJPI7njuuAD1igjNQWlzDe2sV1byxzQSqHjkjbcrKRkEHvU9AHm/wAQAdM8f+AteA+Rb6TTpOOvnrtXPsMMa9GH19q4D40Wbz/Di6vIFzc6dPDeQkDlSrgE/grMfwruLK7i1DT7e8hbMVxEsqEd1YZH6UAcJ8L2abVPHM7befEVxEAP9jAr0SvOvhCfMsvFlxsKibxJduue4wn/ANevRaACiiigAooooAKKKKACiikJIIxQAtITVHVdZ07Q7NrzVL6Cztxx5kzhQT6DPU+w5rgpPiRrHid2t/APh6W+jLFf7Vv1MNovrjOGf6cH2NAHotzdQ2dvJcXE0cMMY3PJKwVVHqSeAK4C9+K1vfXb6d4N0q68R3ynDPAPLto/9+VuPy4OOtR23wvm1y4jvfHmuXOuTqdy2cbGG0iPbCrgtj14z3FegWOn2em2iWljawWtvGMLDDGEQfQDigDzv/hBPEvi1vN8deISloxydH0kmOEjj5Xfq30OcdjzXdaH4d0jw5Z/ZNH0+Czh43CJcFj6s3Vj7kk1p4Gc96WgBMClAxRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVBdW0F3ay2tzCs0E6mOSNxkOpGCCPTFT0hAIwRQB5ToNzP8LvE0fhjUZnk8M6lKTpN25J+yyE/6hye3PH1zxk49VRt3asnxP4e07xToNxpGpwmS3mHDD70bDoynsR/iOelcl4E8SajYalN4I8UyZ1mxXdaXTcC/tx0YZ6sAOfbOeQ1AHZeI9MGs+GdU0wnH2u0lhB9CykA/rXOfCXUzqvwv0KVvvxQm2I9PLYoM/8AAVB/GuzBJH415x8L2OmXnjPQCuDp+sSTxJ6RSjdGPp8pP40AT/Bg+b4Inu/NEv2rUrmbcO+Xxn9M/jXodeefA9Nvwl0dsD52nb/yM4/pXodABRRRQAUUUhOMUALSE4rlfEnxD8O+F3+z3l75+oHhLC0XzZ3bsNo6Z7bsZrnTcfETxtzbwx+ENIbkSzqJb119k6Rn64I9TQB2HiLxhoPhW3Mus6nb2pIysZO52+iDLH8q47/hLPGvjNNvhTQ/7I05+mqawAGZfWOIZz7E5X6Vt+HPhl4d0C5+3SQSanqpIZ7/AFF/OlLeozwp9xz712WBQB59pPwo0lb0an4lu7nxLqhHM2oHMQ9liyQF9jkccYrv0jREVFUKqjAAHAHoKcAB04paADFGMUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAGK5Dx94NHinS4ZrKb7Hrdg/n6feA48txztJ/unA/Q/Xr6QjmgDkPAfjP/hKdMlgvofsmu2D+RqFm3BSQcbgP7px+B456nmbqZdC+MfiEFjHDq/h/wC1sw7yQ5TA+iKSa0fHvhvULLU4vHHheHdrNmm28tV4F/b8ZQ+rADjvx6hRXF/EzxRZ6hpHhrx3pEiyQGO8sXVgcq8sBUI4B42kNke4I45oA9B+D0At/hToKLnBid+fVpGb+tdxXLfDiMw/Dbw4pI5sIm4HqoP9a6K5uobO3kuLiaOGGMbnklYKqj1JPAFAE9NZsDOcD1Ned3vxWt767fTvBulXXiO+U4Z4B5dtH/vytx+XBx1qv/wgniXxa3m+OvEJS0Y5Oj6STHCRx8rv1b6HOOx5oA09c+KuhaddnTtJE2vaschbPTV8zn/accAeuMkelZraH4/8anOu6ovhnSn5+waawe5ZfR5egP8Au5HPIrudD8O6R4cs/smj6fBZw8bhEuCx9Wbqx9ySa08CgDnPDHgbw74Sj/4lWmxpORh7qT55n9cueefQYHtXR4Gc0oGKKADpRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA1hxXz18Z/BVzoVlfarpCZ0S/mSa8th923uAcLMo7BgzKfdv93H0PSbR6UAeN+F/HGv6j4S0bRvBfhqW5ltrGC3m1K/XyrWN1RVfHOXwQQcHOR0Nbdt8L5tcuI73x5rlzrk6nctnGxhtIj2wq4LY9eM9xXpCRpGioiKqKMKoGAB7U7FAFWx0+z020S0sbWC1t4xhYYYwiD6AcVZwM570uMUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFITjvS0yV0jjaSRgqINzMxwAB3NAFS71Wzsbqztbm5jiuL2QxW8Z6yMFLED6AdelXQa8H8W3l3P8TfAPiOd5FtL++MFpA3GyDdGquf9p/MLH2KjqDn3gUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRQeKAGscYx3rjfGGrwS31t4fkivZbab97qJtLKW4KwZOI2EasR5hBHI+6r+orY8SeIRoFn5i6ZqeozsGMcFhaPMWI7EqCFHPViPYHBrP8Byve6E+oXlnd2+p3czS3q3ds8LLJgYRdw5RV2qCMj5fXNAHnHxh1y0ux4Yvre31GJrLU1bNzp09uuOGwDIign5OgOeOle5DmvI/jjHca74aj0TTNI1W9vortJ829hK8YG1h/rAu08N0BP4V6R4f1ZdY0yOf7Pe28oVVljvLWSBg+Mnh1G76jI96ANWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBCAQARn601ScdfT+lO7CmL0/Ef0oAc3QfX+tCd/rQ3QfX+tCfxfWgB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/2Q=='] Multimodal Competition False Theorem proof Solid Geometry Math Chinese 37 " 如图, 在三棱柱 $A B C-A_{1} B_{1} C_{1}$ 中, 侧棱 $A A_{1} \perp$ 底面 $A B C$, $A B=A C=2 A A_{1}, \angle B A C=120^{\circ}, D 、 D_{1}$ 分别是线段 $B C 、 B_{1} C_{1}$ 的中点, 过线段 $A D$ 的中点 $F$ 作 $B C$ 的平行线, 分别交 $A B 、 A C$ 于点 $M 、 N$. 证明: $M N \perp$ 平面 $A D D_{1} A_{1}$;" ['因为 $A B=A C, D$ 是 $B C$ 的中点, 所以 $B C \\perp A D$,\n\n因为 $M N / / B C$, 所以 $M N \\perp A D$,\n\n因为 $A A_{1} \\perp$ 平面 $A B C, M N \\subset$ 平面 $A B C$,\n\n所以 $A A_{1} \\perp M N$,\n\n因为 $A D, A A_{1} \\subset$ 平面 $A D D_{1} A_{1}$, 且 $A D$ I $A A_{1}=A$,\n\n所以 $M N \\perp$ 平面 $A D D_{1} A_{1}$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAR0BmwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKCcUUyQgLliAO+T2oAXcP89qXcM47+lcHb+Jb3xf4hutL8PziDS7EmK91ELlzLj7kOflBHcsD16GtvWtJn/sS5NnqN7BeJASLlGDOxVT1BBXn2HegDocilrnvBqakvhHTW1i4a4v5IRJLIybTliWxj2Bx+FdAOlAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACGuY+Imo3GlfD/AFq9tXMc8ds2xh2J4/rXUVmeINHg1/QL3SrksIbqIxuVODzQgOT+Dumpp3wz0z92gmud88xX+Ni5wT77Qo/Cu9JAzkivM/Ar654Lsh4X1rSbie1tJSlpqVqN0boxLfOCcggnsD1x257J73UdRuVgtraWzgRwZriZRllwCBGATnOcEnGMdDng6gbQ5z696dWFqfizQtFu4bTUdVtra4mJCRu3OfwzjqOtaVrfW97HvtrmKZAcFonDDPXqKALdFMDGlBzQA6ijNFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQRkYoooAaEA/HrSbOO1PoNAHzJ438L3Pir4z6/Z2jR/aIbUXKpICVk2onynkYznr/jW74P8ABukeKdImuNB1bVPDmt28u26s1m3xRSjqQnBKn3Pt2rX0fn9prWf+vH/2WOtHx74bu/DGqjx14WUpdRn/AImVovK3EWeWx2I7/wD1qAI3tPi34baVra+03xBaqwx9ojKTMPQKuFH5mpo/jBNps72/ijwlqumSIq/NEPPU5zkk4AH5mu68Na/Z+JdCttUsZN0Uy8qDnY3da05beK5haKaNJI2HKOoII9waAOe0f4heFddJWw1q2d1UFlkJjI/76x+ldIkyuoZHVlIyCD1FcprPww8Ia45ku9Gt0m2bFlgHllR2wBxn8K5qX4Uaxo8nneE/GmpWO2PHk3f+kBj9SQAPwoA9RLY60/NeTR618VfDckS6lodhr1qsbZaykMchIxgszcfgFNXdP+NWhM8cOt2Oo6NM+dzXMJ8pSO27qfyoA9MorH0vxTomtxRyabqlrOsnCASAMf8AgJ5/StXeMdqAH0U0tg9KUHJPtxQAtFFFABRRRQAUUUUAFFFFAAaTNY3izXf+Ea8N3mseSk32WMv5byeXux2zg81naZ4h13V/DVnrFloloWu4FnjhkvivDDIG7yz2PpQB1dFcr4S8bWviaW7s5LOfT9VsjturKflkPqD/ABD3rqs9aACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8Y0f/k5vWf+vH/2SOvY5YxKpVgCrDDAjOR3FeOaP/yc3rP/AF4/+yR17NQB43rNpdfCnxgNc0+OQ+FtRbF9AgJW3k/56Adh/wDX9q9asb22vrOO8tZllt5lDo6HIYYz1pb6xg1GzltLqJZIJlKOjDIINeSaDd3nwp8UHw9q7sfDOoSF9NvD92Bz/wAs29O38/XAB7IGDdKCMio43VlDKQVYZBHII+tSZFACBT7Y9KqXel2WoIqXtnb3KqCAJow+M+mRV2igDgNS+DvhO9lSe1t7jS7lW3+fYTGNycEd84HPbFYv/CB+PvDoQ+HPGP2yBJQRZ6jGdu33cEsf0r1mmkHOaAPJz4+8c+HkI8S+DDcQrKFa606T5NpPURnJPHvW1pnxh8HXkhiuL2fTp9wXyr6Hy2JP0z+td5tOf8aydW8KaHrkMkWpaVaXAkxuZogGP/Ahz+tAGha6lZXyFrS6hnUDJMUgbH1weKsbxnHP4c15lqPwV0X97LoWoaloszAbFtpz5SnPUr1P51Ul0n4seHPPex1rTtegEeQL2AxuSB0UA9fcn8qAPWC4Hel3A15WvxZ1DSJPJ8UeDtUsGC7jJakTq3qeMAfma6fRfiV4S11lSz1iATbNzRzfu2X1Bzxn6GgDrqKiiuIZ4llhkWSNhlXQhgfoRUm4euPrQAtITijIpGPIHftQB5j8Z55L7StI8NW5jE2r38cWXP3QCDnHpnivR4beO2gjghjWOKMBVVRgKAOMD8BXkt1qena98doJJLyyFjolrkSPMArOwzkZ4yCa73VfGmj6dFiG5F9cvxHb2f753J4HQ4H4kUmB59A5X9p2ZYmYA2P74BsA/uhjNezDqa8/8A+FL+11HUPFWvMBrOqEM1upyLaPqqZ7nGM16AKdwFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPGNH/wCTm9Z/68f/AGSOvZs4rxnR/wDk5zWf+vH/ANkjr166Sd4JBbSpFMQfLd0LKp9SARn6ZFAE5YEDnr71ieKvDdj4r0CfSr8fLKMo46o+OGH0rjPD3j7Vj8TdR8Ha21jKYkzb3VujQb3Chiu1mbJIYHg8YPXNdL43vtc0vQjf6HPZpJEQphuYGcS7mVVAIYbcZJzg8encA5PwR4su/Dmqf8IR4sZI7m3XNjfE4S5i6Dk/xf8A1/Tn1JGV1VgcqeQQeDXiPxp0S/k8AWOp6w1tcavb3ap59pC0aojqSQcsxOGAGf0Ga5/4d6brus2k8ei+L77S9ZtI8S2d0vnLKp+6yZPyr7bTjj1oA+ksijIryZdf+Kfh1gup+HbDXLZIjltPkMbDHdiwOT7Bavad8aPDrvHDq9pqGjSsOftcBEYI6gN3/KgD0zNFZGmeJNF1mKN9O1O2uBIMqFkAY/8AATz+laoIxQA6ikzRmgBrnjrivPPif4n1zwfp1tqOkSWD+bOIEt57ZnZmYdQwcfyr0Rua8k8fzNrnxP8AC3h+EmVLNzfzxKvJZPmTnsDgikB1q6f4xuLNRJrejFHQb4zpTsOR0/149a5rw/4LtfFsWoP4v0PSDcW9y1vDJYRPDkLwW+9zzjGa6RPEGt3Pju20VdK+y2SQNczXMsuWlTG3aigYBDsucnpn6Hqo41iDBUVQSSdo7n+vvTA8yb4Q3elTRzeFvF+qaayAjy58XC/QA4A/I1DDe/Frw2YkvNO07xBbKSCbZjHM49SThR+Rr1nII/Cua8TeN/D/AIThabVdQRHA4gj+aRiOcAfh3xQBylj8aNKQpF4g0jU9HnMhRmki8yFf+BjGfwFdlpfi7w9rkIl07WLSdSdoxIAc/Rsc15xd6p4y+JTJb6To8GjaJv8A+P7UYhJIVDdVRhgHHY+3Irj7X4X6bY/Faw8MS3146taNNJcQOI38wITleDtGe3NAHv8A/wAI/ovOdG08k9QLZPzxj6VYtNLsLF2a0sba3cjDGGJUJ/IV5rJ8PPGmgrI3hfxpNJD5gdLPUE3gj0Z+T+QFI3jb4ieHDN/wkHhCLUIEYZudMkZVA74DbmP6UAerjjjBp9ed2Hxl8JXMjQ3k91pUwwSl/B5ZP0xn9a7az1bT9RwbK9t7jIz+6kDcevFAF6ikyMZo3D6fWgBaKM5ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8Y0b/k5vWf+vH/ANkjr1+7nW1tZriTJSJC7Y9AMn9M15Bo/wDyc3rX/Xj/AOyR13Xj7WIdO0L7MZSk95LHAm3nALDOfQEAjPvQBwPi/SZ7Hwdo/jS2J/tGwvDfSSrjLQyt1OepCBFHpzXcXmoR+Ir7wtHAR9nuN2pE53ArGoGw9jky/mlb91ptpe6JLpexPsrw+SFxkKMYBHrjivPvg9oGpaYdY/tM8WMo021jZcMkaEybv+BeaD+FAHUfEbSpNY+HutWURjWU25cFhwNpDH9Aa85bRb7WPAug+O/DyrbeI7G3+dIelzEpwVYeuAD+Jr2y6to7u0ltpRmOVDGw9QRj+teZfBS6iTRNZ0QM3madqMoETj7kbfc/Pa1AHWeCfFln4v0GG/gcC4H7u4h/iikHUEds4rZvdLsNSULe2dvcLjH76IMQPbI4ry/xjo1/4F8TL448PW5exf5NXs4zgMpx84H+e3qa9L0bWbLXtJg1LTphPbzLuBHY9wfQ0AchqHwb8JXcqz2UF1pVwpJ82wnKMSfc549hishfA/xE8OCL/hHvGEd/AjHba6lEQoX3YZJ/SvWePSjHtQB5MvxD8a+H1C+J/BkksQlKveae+VK+qx8k/ia3NK+L3hDUX8qS/lsLjzPL8m9iMbg++Mgfia73FYereEfD+tRNHqOj2dwHbczGLDE/Uc/rQBfj1SwuLdp4b23lhT70iSgqv1Iry74e6ja+I/if4n8Qfbon2gWVpEcAtGDu3Dvxtx/wKrep/BLRJYpjouo6jpbyEMsaSeZACD3Q9e/U1xWr6t4l+GN+Ug1fw/rMrkLCptAtzk/KVVYx8vXoWoA9/wDs0Ju1uvLHnrGYw56hSQcfmK57xJ4/8O+FFP8AaN8rT9VtoBvkPtgdPocV474k+JXjTVGgguLC98O6XLHvkuLa2M8hBBGSSQAM9uCPWus8B2/wxik+0WOpw6hqm3zHuNRb95nv97C5/E/WgBf7Y+Ifj6ULpNqPDWjtjddXA3zOueSB9O3H1rovDXwq0HQZFvLkPqmqAfPd3p35YjBIU8AHPQ5+tdvHLFLGrRsjxsMqVIIP0qQA455P0oAYBgFRgDtgdK8quh/xkfYHH/Li+fb92a9ZGKgNnbfaRc/Z4/tAG0S7Bux9aAJxk9aCOucHPrSjAHHSloAydT8O6RrMciajp1tciQbWZ4xux7HqPzritQ+C3h6Rnm0a4v8ARZimB9jnITPqwPJ/OvS8UmKAPKP+Ee+Kfh1gdL8R2OtwLHjytQhMZyOwCkk/i1LF8Ute0gwR+K/BWo2m5PmuLMibcw77QOB16tXq232FNMasMFQRjGDzxQBx2i/FHwhrrRR2+rxw3DjJguAY3U9wc8frXWQXMNzEJbeeOaNujxsGU/iKwdX8B+F9bULf6JaPtOQUXyz/AOO4rkZPg5/Z7pJ4Z8UarpcisSFkYTRqPQJwPzzQB6krdu9OzXkqy/Fzw2gDw6b4htlmI+XKXDpnjPRR+RqxbfGe2tHaHxJ4d1TR51fa3yebEg9S/H6A0AepUVz2leN/DeuIz6drdpMFbafn2kn2DYJre3cZzx60APophb3p9ABRRRQAUUUUAFFFFABRSEgdaNwoAWikBB6UtABRRRQAUUUUAFFFFABRRRQB4xo/P7Tes/8AXj/7JHXsEtpBM++WCJ26ZZQTXj+jf8nN6z/14/8Askdez0AMEYUAAcDoPSiOJIyxVVUsctgdTjHP4AU+igBr9K8r8NtPo/x18S6WwUQ6naJfLgY27DtH82r1Vvwrybx0IdE+LvgzXN0kYuRLaXLg/KVHKA/Vn/SgD1SaFJoXjkQOjAqykZBB7YrxsJdfB7xS0jq03g/VJeo5NlKfUdxyf8gZ9nBJHTFUdZ0Wz17SLnTb+JZLe4Qq4xz9R796ALNtdRXMCTQurxSKGRweGBHapd5ryTwrrF/8PvEy+B9dfzdOnLHSr88e/lvn+fr9eOl8S/FDw74df7Ms76hfsPktLP8AeMeCeT0HTHGSPSgDtt1cf4o+JfhzwziGe5N1ek4S0tBvkJ9OOlckLL4i+P5P9NnHhbR2/wCWMXzTyLxjJ4x9cg89K7Lwz8O/D3hgCSzsxLdjlrq5/eSE/Xt9cUAcYzfEf4glgCnhXRXGNxHmzyAg/T29CO1df4Y+G3hzw0xngtjd3z/fu7w+ZI3fqenP4+9deEHegL824nn6UANeCOWJo5UV0YYKsMgj0xXMax8NfCWusXvdFt/N2lVkiBjK+/Bxn6iusooA8pk+E2oaRKJvCnjDVNPZYyClyRcK3oADgAfnTItT+LHhuSFNQ0jT/EFqAQfschjlPoWZuB+ANesY54ppQH+fNAHmdh8adHDxQ69pupaLO5Ks1zFmJSP9vjP4LRZ/E1NX+J1no2l3djcaNPbNJ52wh94UkDJI747V6JeWFpfRhLu1huFX7oljDAfnXhOseBdEu/jlb6NBFNp9pLbNMxspCjBgucg9uaAPfg3Xt9e1LuOe3rXlDfD/AMb6AN/hnxk9xGJdy2uoR5Uj0aQZY/gBQ3jn4g+HVlPiLwat7BG4DXWmykLg+incx/SgD1nNFee6d8ZfCN3K8N3c3OmTKQPLv4CjE/QZ4+tdtaapZX+fsl3BOB18qQNj8qALlFJkGloAQgGkKg9adRQA3YPQVDc2VteReVcwRTRnqkiBh+RqxRQBxGsfCfwfrDzTPpgtbqVgxuLRzG4I9OoH5Vzsvwy8U6G00nhTxreRxkgpa3yiTJHrJ1x7Ba9YPSkCgUAeUjxV8TfDbTDWvC1trFuiKRcabKUCjnOd2Sx6dAK0NO+NPhieXyNTF9pE+wMVvbcqCfQYyfzAr0TyxnPfoeKpahoemaqpW/0+2ucrt/exhjj64yKAG2Gv6VqiK1hqFrcbl3gRygnH06itANkcYz2PavPb74MeF5pvP0032kThCoaxuCmc+ucn8ARWX/wiXxL8NmH+xPFVrq8SIw+z6lBsAHGORksfqRQB6wD69aXNeTxfEvxXohgj8VeCbtEJKtd2L+YDj0jGT+bV0Gj/ABa8H6u0cS6l9kuHbb9nu0MbqffqB+dAHcUVXtr23vIxJbzxzIeA0bBh+lT5oA434l+KL7wp4ZS+02S3+2vcJDDDNCZBOzfwDBGDjJz7GsjxJrnjPwv4U/4SKa/0m8hhETz2wsXhZlZgCA3mtg5Ydu1ZXxMlvNb8eeFvDmmpFcyQSHUJoXcoAU+4WcKxUH5h0Ocio/G2o3ms6tp/hPxU/wDYdhqUi/8AHmftIuiDwhkIUx/Nt/hOcjpigD0/w9rUHiHQbLVrdHSG7iEio/VQex/KtSqmn2Vvp1hBZ2qBIIUCIo7AVboAKKKKACiikJA60ALRSbh60m8etADqKTcKWgDxjRv+Tm9Z/wCvH/2SOvZ68Y0b/k5vWf8Arx/9kjr2egAooooAQ9q81+NVrMfBUGpwRo76XfQ3jbu6qSMfiWX8q9KNYHjbTI9W8E6zZTAlHtXbjrlRuH6gUAaemXX23S7S74zNCkhwcjJAJq5XD/CTU11L4b6UfN8yWBWgmznKsp6H8CK7mgDzr41adbXHw01G8mhVrizMctvJ/FGxkVcg/QmsHRfgV4bmsLLUf7Q1eO4kiWUvHcKpDEc4IXI611Hxk/5JPrv+5F/6OSuo8Pf8i5pv/XtH/wCgigDhj8GtKzg+IvEvr/yEO/8A3zUcnwf0WFd8vifxGibgNz6hgZPA529zgV6Y5wR/L1rxnx/4kv8AVvGvhnQtPQjT31CORpVPM5icFsdto6+5we1AG8PgxpR/5mPxL/4H/wD2NL/wpfS/+hj8S/8Agw/+xr0hBgn9afQB5p/wpfS/+hj8S/8Agw/+xo/4Uvpf/Qx+Jf8AwYf/AGNel0UAeaf8KX0v/oY/Ev8A4MP/ALGj/hS+l/8AQx+Jf/Bh/wDY16XRQB5n/wAKZ0oH/kY/EuP+v/8A+xqI/A/QjdLdHWtfNwF2+d9sG/H+9tr09uOa52Xxdp8fjOLwuyT/ANoSwmYHaNm0DPXOc/hQBy4+DOlkf8jH4lJ75v8A/wCxpW+DOkrjHiHxIP8At/8A/sa9IHy9ar6jqFppljNeXsyw28KlndzwAOaAPJ9X+CXg20tptR1bV9W8uPmSee5U9O2SuTXD+B/h6fE/iK5u9Du9V03wvG2FnabE1xj024HrzziutUal8Z9cziaz8H2kmB63ZB/T+nvzXsNlp9rp1lHZWcCQ28ShEjQcAUAef/8ACm9KJP8AxUfiUD/sI/8A2NO/4UxpX/Qx+Jf/AAYf/Y1neKfEWr6D8WPD2l22rXLadfyqbiOTaVXLn5BhRgYwec9a9ZDADk49TQB5t/wpnSh18R+JR/3EP/rUD4MaUf8AmY/Ev/gw/wDrVQ1bxjq3iH4o2Phnw9fG20+NGkuriMDdJtJDBcg4wRjkckHtgn1OzhNvbJEZpZtox5kuNzfXAA/SgDzz/hS+l/8AQx+Jf/Bh/wDY0f8ACl9L/wChj8S/+DD/AOxr0uigDzT/AIUvpf8A0MfiX/wYf/Y0f8KX0v8A6GPxL/4MP/sa9LooA80/4Uvpf/Qx+Jf/AAYf/Y0f8KX0v/oY/Ev/AIMP/sa9LooA80/4Uvpf/Qx+Jf8AwYf/AGNL/wAKX0r/AKGPxL7/AOn/AP2NelUUAeaH4L6Xg/8AFReJPb/T/wD7GqEn7PnhSUs0l7qzSHncbhTk/itetUGgDwnTdAX4f/GXQND0bUL42N9FIZ4p5QwbCE4wAMcqK9xkdYo3kc/KoLNxnHvXk3icf8ZC+Ef+uEv/AKLavXCPzHSgDxzw3r9nJ8T/ABF4i1OW6giESWViGspSJIs5J4U8ggfnSa9a3nxL8faNJp1rcW+jaNN5st7cRFRMwYMAqnBx8uM8dT6c+x7eMADj2pNp7dcYBNACoDgZ/Wn0gpaACiiigAprkAfgeKdWfrepw6No13qVw+yG2iaRj9BQBT1jxJY6PPBaSNJPe3GRBa26hpZMegJAA9yRUM+q6zZyXFzLoyNpkUfmBorktcH5QSPLKhc5z/FXHfB+3udbgv8AxtqrGW+1SZkgLHIihQ7Qq8ccgj3wK9OkjDxOrcBgRnvQBleGtft/E2g2usWUUqW1xu2LKMONrFTkc91PetqqFtb2ekWUcMfl29vH8qAkKBk/1PP41ezQB4zo3/Jzes/9eP8A7JHXs9eMaN/yc3rP/Xj/AOyR17PQAUUUUAFNdQylWAYEYIPQ06kPIoA8u+ELzWN34r8Pzoq/YNR84MO/m5P6bRXqVeS2fk6F+0Rdw+c6Raxp3m7W+68wYYH4Kp/OvWRQBwvxk/5JPrv+5F/6OSuo8P8A/Iuab/17R/8AoIrl/jJ/ySfXf9yL/wBHJXQaQsz+ErMW7Ik/2NfLZxuAbbwSO9AFLxNeXV3J/Yemq/nzJm5mU48iE9f+BN0HTHJzxg8PqjoPjN4GsFs2t1tbe6GxiGwDG2On0rufCGianothdLq91Fe31xMZWuEXbuz0XHYDt161h3fgvV7n4m2vi8T2uy3iMS2pB5BUgtuxwefSgD0Fepp1Mj3fxAA45APQ0+gAooooAKKKKAEbnivJbsj/AIaRsTn/AJh7/wDouvWWx3zXAap4cax+JUfja7vbeDTLW0eOTecFfkxkcUAdtqF9a6bZS3l5MkNvEpdnc8AV44DqXxm10KvnWfg60cjdkq90R/jj8PzpS2pfGbW9qGaz8G2snJ6NdEH17dOvb8xXsGnWFpplnDZWVulvbRKFjjRcBRQAWFha6bZw2lnbJBbxKFSNBgKAKtn5VJJ6ck0p4BNc54u19fD/AIfnuPLlluXVlgijjZy7Y6fKDj8aAPKviFC9zoh8WJlHTXP3IzwFQiFSD6MIw3416pr19Nc3keiafLsnfD3cgI/0eDoTn1ODjg9O1cd4s0eXW/g9Yaf4fEl1Jbm3SPfGyM/l8ElWAPUZ5q5qt+3gvwleG4LX3ie8tjK/lQO4kc/KFBA4QYwM4OB0oAyvhVaQ6j4z8U69BDbpaRTjTrRYwSAsQC7gT1yoXJ7mvXUzzmvNvguLaz8C2um+XKl/FvkuFeB4ySzsRksBk4wPwFekoc0AOooooAKKKKACiiigAooooAKKKKAPIvE//JwvhH/rhL/6LavXfWvIvE//ACcL4R/64S/+i2r131oAKKKKACiiigAooooAK5/xxpdxrXgrV9NtSonuLZ0TeeM4z/SugpCM4oA80+CeoW5+H1vpTSbL/T5po7mB+GRjIzdOuMMK7vUNTg09U8ze8shCxQxjLuT6D/GqN94L8P6lfG9udNj+0ldpkid4iwyTztIzyT19auaboOnaOpWyttgyTl3Z2BPXBYkigDjvizHnw5YSjcrjUrcZDHkEnIIr0Lhe+AK5Px74evvEei2tpYNEJY72GdjK5UbVJzjAPNdbjPt9KAPFo5DpH7S9xJfIYl1G02Wp6+YSqj8OVb8q9mLYUVx3xB8GL4p0pZ7QmDWrM+ZZ3EZ2sD1259DVf4deNG8Saa9hqhFv4gsGMd5bsNrHHRwO4OP5+2QDukPy85p2Qa8tuvB/xC0m6e58PeMIbuJ7h5PsV9BtjUMc43DLHrjt0ptr468d6RLFb+IvB3nI9wIWvrKb5ME4BCYJ/EmgD1WkPNRqxx3/ABpguYXeSNZkLx4DqGBKk9M+lAHmPxRE2keM/BfiSOFWjgvGs5Ce5lAC/kA1epjnkdK89+M1kLv4b3dwCwmsJY7qIg/xBtv8mNdf4avotT8N6deRS+astuh34+8cc/rmgDmvjJ/ySfXf9yL/ANHJXUeHv+Rc03/r2j/9BFcv8ZP+ST67/uRf+jUrqfD3/Iuab/17R/8AoIoA0cUY46ClooAMUUUUAFFFFABRSEgdarX17b2FrJdXc8cEEQ3PJIcBRQAl/fW2m2kt5ezpDbxAs7yHAAArxN764+Mvig6elz9i8L2r5K+YFluwDnIB+nXt+lWZH1L4z655UTS2fg62f5mxhrkjt/np+GKsQWFppf7QWlWVjAkFtDpzqiIOB+7NAHrWm6fa6ZZR2dlAkFvEAqIowAKuYpFGBS0AFIRmlooAaFwPegLjpTqKAG7eMe2KdRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHkXif/k4Xwj/1wl/9FtXrvrXkXif/AJOF8I/9cJf/AEW1eu+tABRRRQAUUUUAFFFFABRRRQAUUUUAJtpaKKAGsuRXmfxH8I3wvrbxj4aQDWtP+aaNTg3EQ5I9yP1H0FenUxly2c0Ac94P8WWHi/RI9QsztkB2XEDDDxSDqpH6g10AVSOAB9K8j8V6Le/DvxO3jTQYzNpdywXVbBTgjP8Ay0Q/5wfXPHpuja1Za3plvqGnzCW3uEDoQOR6gjsR0xQBoMuc98+tef8AiP4VWus6pdavY63qmm6lcOHLwzfuwQMD5OM/nXoIbdRjNAHjms+HPilp2l6hZQ6tp/iGwng8srdxFJccg7VHGee7HoK6D4L38l18ObW3lj8t7CWS0YA5ztOf/Zv0r0Mr/kV5V8L9mj+NvGnh0XLOkV0k8Eb8cNu3n8ytAFz4y63pqfD/AFvSJL2FL94I5Fty3zFfNTmu18PSB/DenFDkfZ0569q4b40eHNHuPA2qa5NYxtqdrFGsNxkhkBkUeuOhPWs3TfhXfW2nWOoeGvF2pabM1sC0cwE6nIBwuSNo/OgD2AHNLWJ4VtNZstChg168ivNQBO+aNNob0qv4n8b6J4QezXWJpIVunKK6xllXAzlj2FAHR0Vh6V4w8P65Gj6bq1rP5hwih9rMfZTg/pW0GyM8UAOophcAgetQXl9b2NpJdXMqQwxglpHPAFABe31vp9pLd3cqw28Kl3kfooFeNzPqnxl1t4ITNZ+DrV8SSDhrrGDx/nj9KWeTUvjJrTW9uZrLwfavmSXo1yR2H1/SvX9N0u00qwhsrKBILeBQqRqOAP6/WgA07TbTSrGOysYEit4QAiKOmK89utLvv+F+2Wpi1lNkli6GYD5Qdhr07GPr0ppx3NADx39qWmr3xTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8i8T/APJwvhH/AK4S/wDotq9d9a8i8T/8nC+Ef+uEv/otq9d9aACiiigAooooAKKKKACiiigAooooAKKKKACiiigCveW0V3BJBPGskMilXRhkMD1FePBrz4PeK4rbe03g7VJv3ZY82Up9+4Oe/Yf7OT7Qeazdc0Sw1/Sp9N1K3Wa1mU7lPY9mB7EUAXYZVmRZEYMjjcpByMEVKDXkXg3W77wP4ol8C+IrhmtHy2k3kp+8v9wt0JHH+eK9cUjJHegBT2rym/L6J+0Hp1x9mAh1nTmtlYHGXQ72J/ACvVjXlPxigFjdeFPEKTPFLZ6mluSOgjkHzn8kA/GgDb+MXHwn13/ci/8ARyV1Hh5f+Kd048f8e0f/AKCK5X4vyLN8I9bkRgyPFCwI7gypXV+Hv+Rc03/r2j/9BFAGkBiq11p9rfKi3VtDOEOQJYw4H5irVFAHBap8IPCWpEyx2L2FyW3efZSmNs+2cgflWt4R8Jv4StLq2bV7vUIpZN8f2ltxiH90E8mumJA61Wvby3s7WW4uZlihiXc7v0UetAGF408Uf8Il4efVTYTXioyhkjO3apPJJ+mfrXiut/EHT/iR4lg06/1NtF8LxkO/mA+ZckHgfKDg9O+B168V0dxPqXxk11rK0aaz8H2kmZ5hkNdYPRT7kcenX2PpjeC/DzaWumNo1m9sqCMAxAHGP7w5/WgCxoLaLDp8Vnoc9o1tAgVUgcNtHvjv9a11O0Y5+lcz4d8BaF4V1W4vtGtXtWuIxG8SuTGADnIB5z9Sa1Nbk1KDRbt9Ijil1FYm+zrKcKXxxnHJ5oA0WORx0rzi413VV+Otpoq3jjTZLN5GgxwW2EiqUPxT1zRXii8WeDNRtAY9xns/34Y/Tov03GsPRPE+meK/j3p+paXJI8LWEgIdcFSIzkEUAe5KCDzTqTcM470m8e/TPSgB1FIDmloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPIvE/8AycL4R/64S/8Aotq9d9a8i8T/APJwvhH/AK4S/wDotq9d9aACiiigAooooAKKKKACiiigAooooAKKKKACiiigAprCnUUAct418IW3i/QnsZlEc6fvLacDmKQdCD29/X8K574b+L7l5JPCXiRmg8QWOQPN/wCXmPsynuf/AK1ekP06ZrgfiL4Ln1+G21jRmEHiDTm32z9POHdCe3Tg/h3oA7/NcV8V9LfVvhrrEMcKyzRxCWMHsVYEke+3NSeAfGsHi3THWaNrbVbM+Ve2jjlGHGQe4OD/AC9M9LqVquoaZd2TkqlxE8LH0DKRn9aAPMfFmpjWf2cZr8Lt86zg+X0xKi/0r0jw7/yLmm/9e0f/AKCK8Ntrvd+zt4m015/Mk0678gKeqR+dHt/rXufh7/kXNN/69o//AEEUAaVGaM1XvLmG0tZLm5kWKCJS7u/AUDvQAXt3BZ2ktzcyrFDEpd5G6KB3rxq5uNT+MevtY2TSWXhC0k/0icDm6II+UfX17daS7utT+MWuNYWLS2XhC0kzc3A4a5I6BfxH4deoxXr2k6XZ6PYRWNjbpb28I2pGo4A/qfegA0vTLPRrCCw0+3SC2hXaqKOBV7OBSMQikk4Hqa4XxN8UtB0J2s7VpNV1QqfKtLIbyTjIJYcAcdRkj0oA7zOelY3ibXB4d0S41I2Vzd+VgCG2Tc7MSAOPTJ5Paue8GXvjXVNUuNQ8QafbadpjxkW9or7pVOcgseh478H2ruRyM0AeOyWXxB+IEcj30qeF9DeMkwoPMnlUjoenB9eD7GrXhaD4YeE9TaLTJnl1W0LCSV4ZpJlzwc4TGPwr1WQiNWYnAUZOegFeYfB+H+1H8Q+K3gCf2tfyNCc5PlgnI+maAO1sfEuka20trp9/G1yox5LoyMD/ALrAEiuDWT4ueGwoe203xDbiQ5EZKTMPUk4UfrU3xosxp3h+28UWUjW2p6dcxlJowAzBiFwT3HtXoWianHrOhWGpxIY47u3SZUJ6BhkUAcTonxYW71S20rWPDmqaZfz3AgX5A8IYnH3+OPoK9IzxmoXhimK+YiOUbcu5c4I7/WpsUAGRijcM4zXl2q+APFtpqGoan4b8ZTQyXM7TizuY90eWOSu/JIXtwKi/4Sr4maBLINZ8LWmqQrg/aNPmKKg99wJP4AUAerA5pahXlQSAuQOB0/OoY760kuntFuITcJ9+ESAuvfkDnpQBcopgIHtTgc0ALRRRQAUUUUAFFFFABRRRQB5F4n/5OF8I/wDXCX/0W1eu+teReJ/+ThfCP/XCX/0W1eu+tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNI9qdRQB5R468M3vh3WP8AhPPDC4vIf+P+zwdlzH3PseB/Ptz3HhfxLY+KtCt9WsSRHKvzRn7yN3U/jW48aupVlDKQQQRkEehFePa5a3Hwn8Spr2lq7eGNQlC6haYysDHpIvp3oA5TxUx0ef4m6Ibby1uobe+hI6bFmRc/iX/SvfPDxz4e07PU20f/AKCK+ffjtIq6pp+safdb7bWdPMDleVKIyuOfqf0r3vSbqKz8L2c9xIsMMVsryM3RQFyaANK7uYrS3kuLiVYoY13O7HAUV41eXep/GLW20/TZJLPwjaSA3F1jm4I/hX/PH6Ut9d6p8YtdfTdOeS08J2rf6Tcjg3P+yvrz37fpXqUVhD4d8OvbaNYq32aFmgtlIUyMF4GfU4HPvQBPpmm2GhaVFZWUEdtaW6YC9AoHck/zrPsvGWgahr50W01KKe+WMuY4juGB/tdD1rhY/CXjfx1L5/ivVf7G01iD/Zlj98j0ZuxwevOfSu88O+DdB8LwrHpOnxQsOshG524xy1AF7WdIt9c0mfTrp5khmG1nhkKOPdSOhrK8N+BtA8K24TTLCNJON08nzyMcYzurpwoxRjigBAO5p1FIRmgDjPinrI0X4eatcqW3ywm3jZTgq7/KD+Gc/hVvwBo3/CP+CNJ05oRDMkCtMgP/AC0PLfrTfGPgbTvG0UMGqXd8lvEdwit5QqsfU5U5p8nhOWWHyW8S67sI2nE8fI9/3dCA4n4pTT+LtS03wTo7PLNLMJb5lUMkUY/vHPBBrqPGgl0nQdN/s25ms4oruC38mHaEMbMF2kEE9PQ1v6P4e0zQonTT7RYzJzJIxLPIf9pjyayvHllc3+jW0VpA80i30EpVf7quCT+VOG+opbHTpkY5BqXvUMTBgCOhqahgthMUm0dqdRSGMIwcjrXDeI/hdo3iHVZ9VNzqFjfyoEaW0n2BsDALDv09a7vHOaCM0AeUDwp8TfD3k/2L4rtNWhRNvk6jCYwMA4A25J+pIr0bSXvm0m1bUtn21olaYRjADEcgDJ6fWtAqKNvOcDrmgDD1LxboWkarDpeoanBa3syCSOOQkZXJGc4x1BrWtru3vYhLa3EU8Z4DxSB1J9MiszXfCOheJVQazpkN3sGFL5BAz6jH+TXEXHwYtbSQS+G/EOqaRIr71UMJY1+icfzoA9RBzS1h+GNO1TTNFS31bVX1K83FnuHULn0AA7YxVTxZ4207wbHazanFdtDcOyB4IgypjGSxyMDn+dAHT0VzGkePvC+uhm0/XLR9pAIdjGcnsNwGfwrohLuAIwQfegCWimg8nOaXPFAHkfif/k4Xwj/1wl/9FtXrvrXkPif/AJOF8I/9cJf/AEW1evUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUhOBmgAPSqd9ZwajZy2d3Cs1vMpSRHGQRjmrW8HH8q4208awal8SZfDNkySxWti81zLjOZAyAKD7Bmz9RQB4L8UvD+p+EQNFaN5tEe4Nxp9wx3eSMENED26qcew6807xf8AEm58UxaboGnRyLpUIiSSMSeW1ywGMEngV9Ma74f07xJpc2m6pbrPbSjBBAyp7MDjgiuC/wCFBeDc5H9oD6Tj0/3aAMvwDb6tZ3Npc6t4k0fStMt1Kx6LayowcEMCXcnIYEg5Gckdq9QHiDRM86zp+R/09Jz+tcGPgD4MAH/IQ9f9ev8A8TR/woHwZ66l6/69f/iaAO+HiDRB/wAxjTv/AAKT/GgeINDB41nT/wDwKT/GuB/4UD4M9dS/8CF/+Jo/4UD4M9dS/wDAhf8A4mgDv/8AhItE/wCgzp//AIFJ/jS/8JFof/QZ0/8A8Ck/xrz/AP4UD4M9dS/8CF/+Jo/4UD4M9dS/8CF/+JoA9A/4SLQ/+gzp/wD4FJ/jSf8ACRaJ/wBBnT//AAKT/GuA/wCFA+DPXUv/AAIX/wCJo/4UD4M9dS/8CF/+JoA7/wD4SHQz/wAxnT//AAKT/GkHiDQx/wAxnT//AAKT/GuB/wCFA+DPXUv/AAIX/wCJo/4UD4M9dS/8CF/+JoA78eIdDH/MZ0//AMCk/wAaQ+INDP8AzGdO/wDAlP8AGuB/4UD4M9dS/wDAhf8A4mj/AIUD4M9dS/8AAhf/AImgDvh4g0Mf8xjT/wDwKT/Gl/4SLRP+gzp//gUn+NcB/wAKB8Geupf+BC//ABNH/CgfBnrqX/gQv/xNAHoH/CRaH/0GdP8A/ApP8aP+Ei0P/oM6f/4FJ/jXn/8AwoHwZ66l/wCBC/8AxNH/AAoHwZ66l/4EL/8AE0Aegf8ACRaH/wBBnT//AAKT/Gj/AISLQ/8AoM6f/wCBSf415/8A8KB8Geupf+BC/wDxNH/CgfBnrqX/AIEL/wDE0Aegf8JFof8A0GdP/wDApP8AGj/hItD/AOgzp/8A4FJ/jXn/APwoHwZ66l/4EL/8TR/woHwZ66l/4EL/APE0Ad//AMJFof8A0GdP/wDApP8AGj/hIdD/AOgzp/8A4FJ/jXAf8KB8Geupf+BC/wDxNH/CgfBnrqX/AIEL/wDE0Ad9/wAJBof/AEGdP/8AApP8ain1jw7cwmKfU9LljPVJLiMg/gTXDf8ACgfBnrqX/gQv/wATR/woHwZ66l/3/X/4mgC5rXg74a660klw2lxXDgfv7e7RGXHpzj9Kv+E9P8MeEYbiK18SrcrMwYm71BJCuM4A5wBzWL/woLwZ66j/AN/1/wDiaP8AhQXgz11L/v8Ar/8AE0AdF4q8c2mhaG9/pn2PVbhHAMEd7GhC92zk9Melc3o3x48I6iRHetc6bJs3M06Bkz6Arkn8hTv+FB+DAf8AmIdMczj/AOJpD8AvBnH/ACEODn/j4H/xNAGLqmr2Gs/Hnwhd6bdxXUJglAeJs4Plt1HUfjXsV1dNbWzzLbTXDLj91CAWbp0yQP1rkPDHwp8NeEtVGpadFO1wEKKZpA23PccDB/xrovEOpro3hvUdSaRY/s1u8gLHjdg7R+eBQBgaX8S9N1mK7msNM1WWG0fy55BCmEOcf38noemeldBofiPSvElo91pF7HdRIxRyoIKMOxBAIrz3wDqul+CfhlaajrN0In1GSS6WFUJd2f8AgVep6frV/wCF2janZT6/rOpWH9nrq1ys0NqTyiAHk9hnI4yaAPSFORmlpm7ApwoAWiiigAooooAKKKKACiiigAooooAKKKKACmuQF56U4nFY3ibXofDuizX8sE9wy8RwwRM7O56Djp9aAKHiTWEhng0e3uooLy8BLPIwAgiH3nPPXoB7nPOMVwvw+0+L/hbviiS0A+yWEC2kbBt2QxD9e/IY/U13eg6Xb/2adUvoVnvLxRPM0sWSgxwgBGcL/PJ71x/wvmabxj41uTYz2kV1cQvAJYGQMq7wSCRjuPzoA9Gu9bsLC/srG5mKXN6zLbpsY7yoyRkDAOATzWgGDDIrlPFa/wDE38KZB51fGf8At3nrqkIKjt7UAOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEJ4rzP4z3xbwvZaFA6CXWb6G1IP3lTduLAexUfnXpjDI461x2sfDyy1vXoNYudT1VLq2Zmt/LljCw5xkKCh9BQBB46tdHsPhxeLqYgCW1oUt5CuGEwHyFCOQdwB49Kj+FJ1ef4c6edXZlnYMIX/j8r+Etnv161ov4C028uIpdXuL7VzCQ0IvpQyxkEHIChQTwOtdMkYiQKiAKBgAcYoA5nwWjwxa1C80s3l6pMgeVtzEfL3/ABrq16Vy3hKK9jfWvtenXNp52oSTRGbb86tjBG1j6fqK6lc45oAWiiigAooooAKKKKACiiigAooooAKKKKAGt0ppHtUlFAEW0hSAPTgcUoBqSkoAwtZ0O41W+0+4W9EAsZ/tEa+TuJfY6cnPTDmtxAQgBPPenUgNAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUmOaWigAAxRRRQAUUUUAf/2Q=='] Multimodal Competition False Theorem proof Solid Geometry Math Chinese 38 " 如图, 正方形 $A D E F$ 与 $\square A B C D$ 所在的平面互相垂直, 且 $A B=2 A D=2 a$, $\angle B A D=60^{\circ}, G$ 为 $B D$ 的中点. 求证: 平面 $B D E \perp$ 平面 $B C E$ 。" ['$\\because A B=2 A D=2 a, \\angle B A D=60^{\\circ}$,\n\n$\\therefore$ 在 $\\triangle A B D$ 中, $B D^{2}=4 a^{2}+a^{2}-2 \\cdot 2 a \\cdot a \\cdot \\cos 60^{\\circ}=3 a^{2}, B D^{2}+A D^{2}=A B^{2}$,\n\n$\\therefore \\angle A D B=90^{\\circ}, B D \\perp A D$,\n\n又 $A D E F$ 为正方形, $\\therefore A D \\perp D E$,\n\n又 $A D / / B C, \\therefore B C \\perp D E, B C \\perp B D$,\n\n又 $B D \\subset$ 面 $B D E, D E \\subset$ 面 $B D E, B D \\cap D E=D$,\n\n$\\therefore B C \\perp$ 平面 $B D E$,\n\n又 $B C \\subset$ 平面 $B C E, \\therefore$ 平面 $B D E \\perp$ 平面 $B C E$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAQcBcQMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAoopDQAUUUyRtiE9hSbBFWbWNPglMUt3Ekg6qTS22qWN3K0VvdRySLyyqelebR3tnP481Ke5dPs1o4BBbqCK7jS9OtPtDX9spQSjoOhqlsJ7m9RRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTXyRgHFADqSmjP1NJkhMkcigB56Vm65eiw0i5nbcdqEAKuSTj0rG8Q+PtD8OXaW19eJHK38JGa1NJ13TfEFr59jcRzx55Pv9KVgR5p4TOjS6JLd6lazPcXBy+6Fs9a9G8Naiup2CzwQGG3GUQMCDx7GtVYoVG1VUAcYC4p6oEwFVQvsMYqk9BPclooopDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiimMTkAfjQA+mtyaTvkHn0pp3HBYhR9aAHH5eB+dcf4u8WjTV/s3TVa41Of5UCDOz3Ip3i/wAVjSVFjYjztQnG1UXnb9fSo/CHhM6eW1LU/wB9qU3zEvzsB5GDQB5V8QPB01toVtcXjNPqFzOGIDHIz2welY3h6G80q4yl21s6MF3FiI4W6BHHcmvXPiQB9q0ZhyTeRqw9s1j+MdFg0PX1vHhMmmXhIuAFziUnCn6470AaNl411nRSq67aG7t26XduoVF+tdvpOt6ZrK+bp95HMSMsFbOPavO7G8k8MXKafqiC90ObiGZ/nIH+0egrbvvA1vOF1HQL17WRlDJHE+2NvrQB6BRXm8Hi7XfDky2viWzMi9EktULDH+0a7PTde0/VkDWlzG7HnYHBYfUCgDVopmTnqPpmkJf2xQBJRSDpS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRVayujd2MFwVKmVA230yKs0AFFFFABRRTfmJ64FADqa3B4HNLn0ppPXPUUANLBT7muV8WeLY9Gi+yWg+0X82Aka87c8Z4+uaTxd4sj0NBZW/wC+1Gc7Yo16jPQ1D4R8JvbSnV9ZHm6lNlhu/wCWYPUUAJ4R8JvYytq+sN5+pzc7m/g+hrs16YOAfan7RjGOKTaAc45oA86+IvOoaMc/8vkX867PV9Kg1XS5rSaNZFcEqG/hbsfzrjviOP8ATdFPf7bH/OvQsA4PfFAHl/h5Y5xdeDdeUSNCQsLyc+Z34+lOsLy/8CauNM1ENPpEjYgnbqrHkjA4AAxWr460mVBDr+nLm8syWAXqfWtSyl0/xp4aBlRZEcbHH+0MZoA2lFpqVmN+yeCQZwTkYrkNU+HkUc5utAuX0qTqRAB859DnNZlpeX3gLVRYX7mXSZSBFMRwhPAU/SvR7W4ju4VlhYNE3KsDQB59F4v13w5KkHiPTwLfO0XEbGRm+oFdrput6fq8Cy2dypzztJAYfUVcuLaKeMpKiurcHIritT+HscU5vdCnayuyc7uWz+FAHej0NLXm0Pi/XPDjiLxFZSNbg7TeZwD74rtNL1+w1m2E9jcpIh6EUAatFMVmK5IwfSgsw6LQA+imo2Qee9OoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCCGNIUWJOijAFT03aOuOaMnFFwsLRUckyQrmRgB6mq/8AatkMn7VDj/fFJag9C7TW64pkc6TJvidXHYg5FLzuBJGcdKqwAT/CvFct4r8WR6LALa1Bm1Cf5YkQZIb6U7xX4ph0O2MUP769l4SJeT+VZ3hbwpMLgazrX73UJMMqHlYx1HXoaQC+EvCkkUh1fWCJ9QlO4FuVQHnAB7iu5XkZpNnAAz09acBigBaKKDQB518SP+PzRf8Ar9j/AJ16HxgZ6Yrzz4kf8fmi/wDX7F/OvQx0FAETRJIGVgCp4wRmvNbcP4E8W+S24aVftsjz0R85Y16hgVheKtATX9FltsYmCkxN/dY9xQBb1GwtdY097e6RZYpQQrd+emD2NcDZ3uo/D/VBYXgefRZT+6l6+V2Csx962vAmuteWsml3fy3dmxjCn7xC8ZrptT0621azeyuUV0cZ5GcH1+vNAFi2uoLyES28gdCMgipSAedteZW1zffD/VI7a7Ly6PM37uXqyfXPSvSLa4juYEmhkV43GQwPBoAJ7WC5QrPFHIvo4BH61xer/DyBrk3+j3EltdfwjeRGD/ujiu7470nGeeaAPOYfF2veHiLfxBYS3SKcG7gULGB712ela/p2tQB7C7ilOMkK2ce1Xp7aG7iMU8ayIeoYZzXF6r8PoxN9r0a5mtJhz5UTbUP1oA7lO/HNPrzaDxhrvh2UWviCxeWMfcltkL8e5rtNL1/T9WjDWtzG7EZ2BwSPqB0oA1aKjEmWx3p5OBnBoAWimq+4+lOoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKZnJ46d6celRnKg4796TQI5b4gXwsfDM8ofbLgbB+NZ2iWmlLo0FpdgSXcwyD1IyMis3x1fW2p+ItK0UMXWUnzeDxjpXY6f4WsLO6W6jTDeWoUehApw03CWpe0uxXTrbyFPy54+lZHinxVb6DaBU/e30mFijHUk8dBXTBMZJNec+EbeHXvGWv396m+bTbs20OeQFKg5ptkou+E/CszXJ1zXf3uoyHcFfnyvoa7oDAxTFQBSOx7VIBSKCloooAKDRRQB518SP+PzRf8Ar9i/nXoY7V558SP+PzRf+v2L+deiDtQAtI33TS0h6UAec+MtNm0XV7fxHpi7W3BLlVH8GeSa7fStRg1bTYL22bMcqhhUl3bRX1lNbyruSQFW+lef+G7qbwn4muNAv8i2uWMlmxPCovGPxJoA7zU9Ns9Vs5bS+hWaKQYKsK89tLnUfh5qv2O9aS40WVsQykZKHrjA6ACvTvlC7u5qrf6bbanYS2l1GJI5BhhQBLbXcV5bxzW8iujjcpB6ipx83UdK8vil1DwBqQjmLXGkSNtWXtF/sn6V6TaXcF5bR3MEgeJxkEUATgdaCADnFNyAfc9KUN2PBoAintorqFopkDxsMFT0NcVqvw7hRzc+H7p9Km6sLcDD/XOa7vGaTZg/LwKAPN7fxdrXhpltfEVmTbDhLmPMjt7kCu10nXtO1i2Wazugynja5Ab8RWhNbRToUkjVgeuRXE6p8PIhO19oc7WN4eS3LA/hQB3CNliCAD9akrzaDxdrXhpxb6/ZvJbLx9tJwD+ArtNJ8QadrVuJ7G5WSM/pQBq0UwyAHB/CnA5oAWimhwTinUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAARkYqPqNuCBUlNIJ47UAVXtbVplka1hMg6OYxkfjVsAYFNKU4dKAFrzr4bf8h/xp/wBhT/2QV6LXnfw2/wCQ/wCNP+wp/wCyCgD0PtS0g6UtABRRRQAUUUhoA87+JH/H1ov/AF/Rfzr0QdBXnfxI/wCPrRP+v6L+deiDoPpQAtFFBoAjz2XA5rlvHHh46zpYng+W8tiJI3HoPmI/HFdSEIPXmhkyhQ9CMUAcz4L8RDXNIBlGL2IbZo+4xxXTY3EfTJzXmut28ngzxSmt2oxZXTZu1HQdhjFeiW86XNvHNG25JFDA/UUAR6jp9vqdlLaXKB0kBBHpnuPevPIpb/4dakIJd9xos7ZVupi7AEn3r07b6Gquoabb6laPb3MayI4xhhnHuPfmgB1ndw3sCXFs6yxOMqw7VPuP3SOa8xVtQ+HmpiKUvNo0h/duckp9ewr0eyvIL61juIHDxuMg5oAtDpS03dj3+lLnFAARyKaQM+lKRk5zS4oAr3FtBcpsmjjdfR1BFcXqvw7iNw2oaNO9re9QC58vP+6OK7zFNKkEkH8KAPOLXxXr3hyUQeIrJrqP/n6hj2xr7k12mleINN1uPdYXkMxxyFbJX61euLSC6iMdzCkiHqrDIrjNX+HsTzG70a4lsZxyI4jtRj70AdsT8wBGPepa82g8Wa34bkW38RWTSx5wslshf8TXa6Z4g07Vog9pcxuT/AGBYfUCgDUoppceo/Ol3DtQAtFJuFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFed/Db/kP+NP8AsKf+yCvRK86+G3Gv+NP+woP/AEAUAeiDpS0nalFABRRSZoAWkNAYEZzSBg3Q0AeefEj/AI+tE/6/ov516IOg+led/Eni50XP/P8ARfzr0QdBQAtFFFABikPSlooAzNY0uDV9Nms5lG2UYzjoe1cd4H1SfTL648L6m3+kQEyRux+8rH5R+Fd+SxbaD9TXEePNFlEUGtWK4u7JzIdv8Yx0oA7sUtYvhzW49a0qK5Q5cDEq/wB1u4rZzkUAU9QsbbUrOW0vIVkgkGGQ9686jbUfh3qflO0l1oUzHaSP9UTyeBXp+MHPWq17YwX9pJBcwh4nHzKe9ACWl/b3lrHcW8ivFIMqwPNT8h8E5B6GvMsX3w71UmTdPos7YBHSMn/CvRbG5iv7SK4gkDxONykGgC2nTB60+mrjk96AwPQ0AOopAwboaWgBD04pD0ABwaU5xxSY7UAQ3FvDcxNFNGsiMMFT0NcVqnw7hE32rQbp9KmHJFuBhz6HOa7vbSFT2OBQB5tD4s13w44g8RWA+xqcC4jJkZvqBXbaXr+m6tAstpcKQ3RGIDfiKvTW8dyhSWNSp6gjOa4rVPh5CsxvNDnNhebs7+Wz+FAHbswB+bgnpUq8DrmvNofFWv8AhyTyPEFm8tsvW8PAx64FdrpHiDTNbt1msLlJUIyMGgDVopNwxmjPFAC0UZpAaAFooooAKKKKACiiigAooooAKKKKACvO/hx/yMPjP/sJj/0AV6JXnfw4/wCRh8Zf9hMf+gCgD0M9KUdKQ0UABprj5TSk8ZHauW8d3507QvOjmdJTKkahTg8mkM6P7+3naO4NTAYPtXDG21aw8NLqMdw0l2F3MsjZXFb3hXW11/R0vuh3FGHYEVRLOY+Jn+v0T/r+i/nXoY6D6V558SuZ9D7/AOnRfzr0JSCODSGOoozSZoAWikyKWgBnCsSehqOSNWjMbruRuMYzTzzwadnoBQB5jEJfA3i4qxJ069fIPYSMa9KRtyBgQQe/rWR4m0OPXdIlt8fvlBaNsdG7Vh+Atcklt5tDvSftunt5JJ6vxnNAHcDpS0g4oyD3oAqajZW9/aPbXMavHIMEMM4z6elecouo/DnUmc77nQ52yVHLRnoOT0FenSKW6Gq97Y21/aPb3MayRsMEMMj/ADzQAljf22p2aXVtKHhfoVqdjtUevtXmcq33w/1YS4km0SU8qOSg+navQrC9gv7RLi1kWWJwCDnp7fWgC6p6D2p9MXk5PWn0AFFJnPeloAKKM0fjQAU3t0pcj1pMnuKAILi2guUKTxJIvowzXF6t8PIWnN7os8lneZyoMh8r/vkcV3eOOuKTovBoA84h8Wa/4dlFtr1g92vQ3MC7YwPU12eka/pesQh7C8imPcK2ce1Xri3hu4zFPGrg9QwyK43Vvh7A07XWj3E1lOORFE21CffFAHbsR34Helj9iCvY15vF4s17w3Itr4isvNhHCSW6lsj3NdrpOvadq0Qa0uI2Y8mPcMr+FAGtRSA5oz70ALRSZozz1oAWijNGaACiiigAooooAK87+HH/ACMPjP8A7CY/9AFeiV538OP+Rh8Zf9hP/wBlFAHodMY5bGcU+msMnINACZw21RXnfjW6j1HxNpujb1+ZfOOT/dbpXoh57ZHesC58H6PeaoNQmtma5UEK+7GAetSBT8WarHZeG5IICJLh12oifN/KpvAujyaL4dS2nzvdzLg9t2DV+18P6bZ3Jngh+fvlsima/wCILTw3p5nnILniOMdXPpV30Ecb8UbqCCXR2km2bLyNyMjoDXaaf4j0vUbpYLS4EkhBOFPFcRpng9/Gc8mr+JIGEcgxFbk4wvY0r/CubSr4Xvh3VDZso4BUvx3HNIZ32oa1Y6Uw+1ylM9OKfY6rZ6lGZbaTevevMdUXXNwTXPD02oQR9bgOFB98VteGvFvhO0UWdvKLOYnBiYk80AdVceI9MtZjHLPtZe2P/r1fjvIpLVbpWzEy7h9KwrjwpoGszG6ljErt/EH/APr1tQWNvb6ctnFH+5C7Nue1AFGPxTpM8gjjuQWPGPer13qNtYwLLO+xG7msiHwRoMFwJorUiQHOd5OK1NR0ey1S0FtdRb4lGAAcUAQWeu2Wo3Xk2swbAycHNcJ49ZPDuu2niC0fy5k/dyw9BIGIyx+gFdrpfhTSNHuDLZWxR9uNxbNN1zwnpXiFQb+3MrhSoIOMZoAs6Lrtnr2nx3dpKShGSfeo5vEemQStG1wFZeo4/wAa4XwxGngrxTPocwK2l0cW2Tx6nmutu/A+hX10Z5rIu7Hlt5oA3/tUf2Y3G4eTt3Z9qzYPEmlXThIroFj0HH+NXhp1utgLIR/uNuzbntWLB4H0C0uBPDZsJBzkOTQBo6zLYCweO/RWhkHKsOD+teaWusf8IZqzPZSm60eX70Q5EPcsAOfTrXpup6LYavbLDeQF41GAM4qhaeDdFsYp0t7PAnTZJls8UAOHinSVihk+2DEyb16dDWpaahb3kTyW8gdF6nNeQa14Sg8La4Ly6tnutJkwGIYgRj/6wr03w/baSmkI+lENZzjeDuzxQA6XxNpkD+W06hgcEZHFab3UUdobpnxCF3Zx2rCm8EaJd3LXMlqRKTncHP8AKtmXTLWXTzYypmArtI9qAK0PiLTLiQRxThnboB/+urN5qVrpyhrqZUBHesmy8FaFYTrPb2pWReh3k1e1TQNP1lAt9AXX0zj+VAD7DWLHUywtZQ+30pl1r1hY3ZtbicJKADg//rqPSvDmmaGWawhKbuvzE1Bq3hDR9auxeX1o0k2AMhsdKANS1v7e9t2nhkDIvU1SPibShIYzcqCGC496sWOlWemWRtbRfLiPVS1ZDeB/D1xdG4e3LTbgxPmd/wA6AN+e8ht7U3MjgRAZJxVG38QabeTCO3nVpDWX4i1vw1p1k9hq1ykMeMFPb8qp+HNH8MXNoNY0OAyqGIVg55I+tAHSaneWNtCY71l2NwVc4BFcTP4P0zUGlufCt82m3SHLm2A+c9eSc1BrMuseI9Q+y3PhWf7Kr7fPEuAR64rof+EVOn6G0eiudPuZCGdm+bHr+lAHML8RL3wtdiw8TxRCNCF+0JJvdvqBXoejavZeINOS/wBPmMls5IDY6kV4bqPhKTXvEr6db3RvZnOJ7kcCP8K9k0DQbfwp4eFlaD5EBcn/AGj1/UUASap4is9NuFtd5e5flI1Gfzqnc6/qlgqSXenRJG5AyjljyfSuZ8AKdX8QapqtySZoZ3hQHstejzW0VzGBIgIznBoApf2qf+eQ/Wj+1T/zyH61f8qL/nnR5UX/ADzoAnooooAKKKKACvOvhz/yMfjH/sJf+yivRa86+HP/ACMnjD/sJf8AsooA9DPSnDpSHpS0AFRsQCOKeelZHiDXbbQbFrm4cZx8iDGSe3FAEXiHX7Tw9p7T3JPIO1d2Ca5PQ9BvfEmqDXdeBCHmC3YYAx0OOnIpNA0W88VakNd1oFYCcwWzdPxBr0URqq7VXAXgD2FACRjYNqgKg4Ue1PGDxgUEZxz2peCfpQA11DDaygqeoNY+peF9J1OMpJaxoGGCY1Ct+Yrazgc0hHHygZoA88m+HVxpsvn6BqU0Ug6LczNIPyzTBr3jDQGxqVidTXv9jh24H416MDjgj8qCoxyM0AcjYfETR7ghL6UafL08udua6e2vrW7TfbTJIp5BU9az7/wto+oAvPp8BkP/AC02DcK5e6+HctrIZ9K1a8STtGZMIKAO9JIPOfwpVI65FecHVvGXh0/8TG1gubcdDBl2IrX0z4iaVdsI5oprST+Lz02D9aAJvG/h46xozS24IvoFJide3+RUngzxCNd0nY7qLuDMbxnqNvGa3be+s71N1tcxTKRzsYH+Vef65bnwh4rTXrZGFpdkR3KjgIBkk0AelqCByQT3p1QWtyl3axTxNuSRQyn1BqagAI5pjE4x60Ssqpl22juajhuIp03ROrqDjI5oAZd2sN3avb3Sq6ONpU+/FecSW+ofD/VxPaRyz6JKcyRE5aM9uTwAPauou/G+lW1w0PzyzB9mI8HnNW9Xl+1eHGlWDzjKo/dsM4H0oA0NO1K31SzS8tpVkgcZVgePpVoFurYIPTA6V4ppdz4j8H6ibuW2L6I7ZaIKcoM9h2r0DVNO/wCEx0+1ew1WaCA8l7eTB6cjjvQB08cofKs4bB/h7Vh6j420PTLh7eW/ia4U48kN81P8N+Gk8OxMi393dZOS07ZNWZfDWjTXT3UmnwSTyHJdkBNAD49VE2jnUIIJJMjIjB5NcxZa94n1HUIgLB7O18zDiePJK+xrtooEt41jiUIo7DgCnqD/ABAZoAxfEOmXmqacsNrceS5Iy2eo/CqPhvwemiTNO15PNK3LbpGIz+Jrp9pFKOnbNAGfc6Hp93cC4uIFkb/bUGrkcEFtEY4IEjjHIWNQo/IVK3PFNdiqA5AA6k0ANGAvOBXAeJfEd5rN+fD+gOPNLbZ58ZVFHUeucGneJfE13ql//YehDfMwxNMORGO/I6Gui8M+GLXw9YKi5kuHA8yZ+XY+5oAk8OeHLTw9ZiCDLO335HO5ifrWxIu5XUjIx+dDRkquecdz1FOwQvykH0zQBxFl4av9C1i4uNLmQW9wxkkRxuO49cV1FlHfGQS3UqMvYKuKuEnbgDB7471IuCQQKAH0UUUAFFFFABRRRQAV518Of+Rk8Yf9hL/2UV6LXnXw5/5GTxh/2Ev/AGUUAeiGmsx5A69qcelZeua3a6Dp73l0wCKM47mgCPW9cg0PT3urpwpH3E6ljXE6Jot54y1Ma9rQK2YOba2bkFeoPqMEU7SNGvvGGqjWtbVlskb/AEe29cchvcEV6OqLGg2qMDhQB0FACxqqKAq7VHAxTxyc5pDgjnt1oQg/dPFAD8UYFFFABjNFFFACYAowKWigAxmkxgcUtFADRzWRqnhjR9YGb7T4rh/V85rYxijHegDz66+HMkJL6Jq0+mDr5MCrg/mKytXXxdBpc2n6jYQ31nIpUzvL8+PXAr1CSWO3RpJGCr1JNZb+INJAYPcqU7gqSKAPMPD3xCn0TRZNP+zSTX0cm2OOZCibccc12PhfXvEmq3Ik1G0sYIT0WG5Dn8q3rnSNK1u2HmxpIjdGAxkVzFx8N47VzLoN02nzf3mbfmgDV8Q+E7/XLpWj8QXdnEOsMaqQfzFamiaOmiWQtfPecd2ccmuPF3420A7ZbeTWEH8UeExV6z+Jml71h1gjT7rOPKfJ/pQB0UXhrR4rpriLT4UlY7i4BzmtRVRAAgwF4FVrPUrW/gE1tOjI3Q5q0CemOPWgCO6toby3eCeNXicYYGvM57a9+HuofarYvNocsmZIccRHOWYAV6jjaD3zVe5t47yB4Z4w6MCCpFAEWnalBqlhFd2zhldc8Hp7H0NWwxO04+bHSvM7u01HwHqhubXdLo8rZmTshPU/gK7/AEvVLTVbCG6s5A8Mi7lbNAF/PzcfjTsCmDIwM8/zqSgAqNiEPvUlMJ68DHvQAhyCWJwPWuA8T+JrnUtQXw9oXzXLnE0448pT3HrzUnirxPcXFz/YWhkyX7/K7p/yy/z0rX8MeGrfw9a/P813N80kp6k9cfzoAm8MeG7fw/ZFceZcsd0kzD5mPQk10CgYz603oABzTlA7UAOpMA9qWigBMCjAzmlooAKKKKACiiigAooooAK85+HZKeIPGBxk/wBpDgf7tejV5V4U1W10jVvGVzdShETUOMnGTt6UAegazrdromnve3kgSNedp4JrhtJ0nUPGerDV9YDR2MTZgtz8uT6kdGBBzRpOnX3jjVf7V1YNHpsZ/wBHtzxu/wB4d69GiiS3jWNVVVHAVemKAFhiSGNVRdqKNqj0FTAcUhUEe1KvSgBAoBzSgAdBS0UAFFFFABRRRQAUUUUAFFFFADc8+1IxABJ7UH0prruRl9RigcTzq51CXxT43fS1dktbFh5m1sbs/Sun1c6Hb2v2C6nt4JJV8tM4yT/kVy9pZy+G/HV/dywyPb3rLtdBwMDvS61A3iTxVp6JasYbaVZHkZeGGCOtASO/06GOCxhji5RVADetWtozTIUWONUUYCjgVJQShjIrZBAOfWqN7omnXsTJNaQnP8WwZ/OtHFFAzz+7+GlrHKbnTLu7guT08ydig/AGqgl8d+HubpodStl6LbwfNj6mvSWHpScHsM+9AHEWXxIsWITVbWXTD3NwwH8q6qw1jT9TQPZXcU6nuhzUd7oemagrfa7GCXPqma5fUPhzasfOsNQu7Fh92OF9q/jQB2lxbxXFu8UqK8bjBDDivNr6z1DwDqT32mJJc6TO+Z7cDLITxkdgBUy/8JzoIwRbXNsvRi+5yKsW3xB0++V7HU9Pu7d8bZHkiIQ/QnrQB2Wlapa6rYpdWcokjbnjnHtV3flyuDwM5ryM3ieEdUXUdHu0utKnb97bxuGKj/ZUd69M03VbbVrCO7tZQysORnkGgDRDnHIxXC+K/FNzLeDQNFUzXsnyySKMiL1BHrzS+LvFkwnTRdFBlv5sKzKMiMHjqOhFaXhXwnHoNv58x82/l5lkbk59jQA7wr4Xt9AtfMmImv5OZZWOTn2J5rpgAR60zjG7GB6U9MYyKADYKdiiigAooooAKKKKACiiigAooooAKbuO48cetOph647UAG7Kk9DXg+qeCvFcXjXUbyLTIL7Tbm58/wAiWXCsR90nHNe6vIkcZkkYIidTWdpWtWusvcrbuGEEmwmgDjYtf8e26CKPwrYKo4VRctwPyqQ+JPiB38Laf/4Et/hXoXykkY6UoAxyBQB53/wknxBII/4Rew/8CW/wpV8S/EFRj/hFrD/wJb/CvRPl9qPl9qAPPf8AhJviD/0K1h/4Et/hR/wk3xB/6Faw/wDAlv8ACvQvl9qPl9qAPPf+Em+IP/QrWH/gS3+FH/CTfEH/AKFaw/8AAlv8K9C+X2o+X2oA89/4Sb4hf9CtYf8AgS3+FH/CS/EL/oVrD/wJb/CvQcD/ACKMD/IoA8+/4SX4h/8AQq6f/wCBLf4Un/CS/EP/AKFXT/8AwJb/AAr0KkwKAPPv+Em+If8A0K2n/wDgS3+FH/CTfEP/AKFbT/8AwJb/AAr0LA9vyowPQUAeef8ACSfEPOf+EV0//wACW/wo/wCEl+IX/Qq6f/4Et/hXoeBjpRj2pAtDziTXviDKMN4U08r6G5b/AAoj13x/CNsfhPT1UdB9qb/CvR8e1G32H5Uwep52PEnxEz/yKun/APgS3+FO/wCEl+In/Qq6d/4Et/hXoW2jbQB57/wkvxF/6FXTv/Alv8KT/hJfiL/0Kun/APgS3+Feh7aTbQB57/wknxFP/Mq6f/4FN/hQPEXxEH/Mqafn/r6b/CvQsew/Klx7CgDzz/hI/iL/ANCpp3/gU3+FN/t/4in73hXTT/29N/hXouB6CjaPQUAedjxB8Rx08K6d/wCBTf4VTv7rxzqieXfeC9KnXGMPdNXp+0egoCj0oEeA6l4Q8aTqw0vw5YaVkf8ALC56fnSeF/CvxL0B5IUhi+zzd/PGYyTksBivf8c1zWp+KPsOtjTEtWmlIU8N61JQzwn4Si0GFri4cz6hN80k7j5snqK6jaG5rE0fxHb6tPLbY8q4jJBiPtW4owoqhAVpQABxS0UAFFFFABRRRQAUUUUAFFFFABRRRQAVGWAfHU96kqlqAuzYzfYRH9pK/Jv6ZoA5fxhrMflTWKTKoWMs7Z/Sqvwvt0i0q8ljYsssoYOT14q5J4cvZfDt3DcRW76jOrYbqoJHTNWPBGiX+g6Mtrf+VvGMiM5FAHUZ6kc04c9qYQCARkAelOQ5Hf8AGgBcUYpaKAExR0paRgMc0AJkd6Mik689qOD0FAC7vWk3fLnH4U3hTgnJoOc5OPbmkMfvB+tBcA4NMHH9KXAxk01sTJ6js+nNGeOlNGM8GlOOufwpXGO7dKQHPbFIMH1pwoAQMCeKGbGeCabu5IwQO5xR09TTEKG9jSlgOp4pjNt556dKToucZBoYx5cYo3DPXtTOhxQoJyWAB9qFsBITRxmmAnAIH504EM3pQAqnnoadTRy30p1ABTQeelKelRr82etJiHM2ASOcda8jnu7268Z6jq9nEZYooQqYXdhlJBzXqV+txJZOlqV8wjHNcDonhjxTpOkXdr/ojSTyO5bdzgnNIok+HkMV/d3urM6m5MrI6qcbfbFejDgVzPhLw2PDunyxswM0z+ZIV6bjXSr90VbJHUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFMYE9BT6KAI1UjryDS7cYAXin0UANK8cce1KOBS0UAFFFFABSE0tMfgZPSgBCcckgAVgW2tyanq01raAeTbttlkPr7Ve1tpE0S8MRJl8pimPXHFc98PFH9kTM777kuPPz1DY5pDOm1G9WxsnmwSccY6k153pfinX9OuLiO+iSUnLIGk7E8dOnFejXzRJbNK6hkAPWvIrjV7C88P394I/KIZwrE9cGgDXsPFGvW+otPe7GimO2KLzOMnpXomnz3ctshvIkilK5Kocj868jjWxv8ARLO4DEeU4d2yeAK9X0W7t77SoJLaTfHtGGx1q+hD3Ga7rKaJpz3bplU61BF4jgbw42ryAKiqTiofGyq3hW7B9BmsJIrS5+HU8dzJ5SMjLvPTtWaepp0NaPxZPELeS9to4oLgqI2Vsk56V1AIddwyBivE9HubyDWrOw8RRsbBdrWkzcA44Wva1bKj3HAq5Ihas4TxLrs1n4jis2vpYIZCQdnXpXP2fiu5XSBI+rXLvLO8UR29SD3/AAqfxnqFlBq9zPNameW1PrjrXO6jYKNKtJbAlLSOUzzKRzHnv+tSi2jttD1lr3XY7RtXumnEQZoivy/nUF3q2oLr2pRNqc8ccZYRouDzjj9aq+DLaaXxGl4gzbG327vU1IweTxhfJDZNcEOTwe9NklCx8Sa4lmn2u6k82RiFCnLdfSt/SLrUl8cXFrNqM0sItY5AjY4Lc1y1xpmrWPiZL9YjJMWzHbcfP7e1bnhy6vbz4gXs1/pz2V19ljVo2YHgZxj86a2EddrOqXGlXUc+3datgH2962LS5jvLWO5hIZJFyp9ay/E4hTw3qHmn/lixBPrjtWd8OHll8D6aHzxCApPXGTSW4HWdwelOpg5Y5p9AwpgU9Sfwp5pKQCbeOBTSmewzUlJTEMK4GB3p6jAxS0UXGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTXGVIp1IaAInQMPLwCCMHPpXOQ6FNo2rveWEgWC4bdNG/OW6ZFdN/y0/Cq93/AKpfqP5ikBBqN59kgLPCZARwoIx+tcJrnhmXXtIubm6WOO2jBaCCDCEMf7xHBrste/49h9Krt/yKlx/uf1FAznJdN1GbwpDbacLWFXQIwkQE9Mda67w7YSaXoVnZyOjNFGFJRcA1R0//AJAsH1Fb0P8Aq1rToZsy/Eel3eraLNZ2ssccsgxucZFZSeE7lvCLaVd3CNcfNtkTIXnHauupJOlZ9S+hw58M3mow2dpdSw7bVlZWVeTtrtOUhIH3lXH1qva/8fQ+hqy33H+hqpPQmO55tr3g++1k6newSxRyTMDhxnpWNqHieW3ji06+0czRRqFfyGRN/GOa9Qh/48Ln8a8d8R/8hKT61K3LZ0HhrWItZ8SxtYaZdWBhh2YknVkKj2B61qw6dqk3jC8ntZYoo2Zsbh7Vzvw6/wCRhl/65V6Dpf8AyG7j/eb+VNiMGbwFqTarFqcWoqJ4znkkj8qk0nTdQi+IF7PeSI+61jXcvGcV3w/1Zrnof+Rvuv8ArgtUthDde0e91qWO2E6JZKcuvc1t2NnDY2MNrarsijG1R7U9P9YfpUkf+rX61K3BDgcn6U6mr9406gYUlLSUALSUtJQIWiiiktxhRRRTAKKKKACiiigAooooAKKKKAP/2Q=='] Multimodal Competition False Theorem proof Solid Geometry Math Chinese 39 " 如图, 正三棱柱 $\mathrm{ABC}-\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ 的所有棱长都为2 , 点 $M, N$ 分别是 $B A^{\prime}$ 与 $B^{\prime} C^{\prime}$ 的中点. 求证: $M N / /$ 平面 $A C C^{\prime} A^{\prime}$." ['连接 $A C^{\\prime}$,\n\n\n\n$\\because M, N$ 分别是 $B^{\\prime} A$ 与 $B^{\\prime} C$ 的中点\n\n$\\therefore M N / / A C^{\\prime}$, 又 $\\because M N \\not \\subset$ 平面 $A C C^{\\prime} A^{\\prime}, A C^{\\prime} \\subset$ 平面 $A C C^{\\prime} A^{\\prime}$. 所以 $M N / /$ 平面 $A C C^{\\prime} A^{\\prime}$;'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAloBqwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKz9a1OPR9Hur+QjbChYA9z2FAGhUZniWVYjKnmN0XcMmuJ8AeNrvxLPeWmp2wtrqIh0UfxRnoa6YaWZNd/tGZ92xNsSjt60AalFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXA/EK9a5u9K8PRsB9tnDSEnACLknP5D8676vLh4bXxp491G+1SC4jtLICG3wxXJ7kflQBJr3k+GvHOhanbMn2e4VbOYI3HoCfzr0tSGAI6HpXmniv4aaenh+5udOF099bqZYA0pb5wMjH5Cux8I38+peGLG4uYXhn2BXSQYII4oA3KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkCgdAKwfFviuw8I6LJqF8444WMH5mPsK4Twp8c9G1m5+y6nGbGZj8rN9088CgD1qkAAGAAB7VFb3MN1CssEqyxsMhlIIqagAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArN1zW7PQNKm1C+lCQxqTycZ46CrN9e2+nWUl1dSrHDGu5mY4r591W/wBV+Mni8aXY749DtpMO/IBAPX3oAzryHxB8XdXvNTVHGmWikwR8gHHatfw/8PNJ8SWUdtqELW13dQ74pIxgqwxkfzr1KezHhHSNO0jRYNse/wDeEL95QOSTVO9uobzR9N8R6fb+ULWbBUDACk4b+dAHmT2PxA+FVz5ts7ahpSnleWGP6V6P4Q+L2heIwlvcyfYr7oY5OAT7Gu+Qw3lqrEK8UqA4PIINeb+L/gxomul7vT/+Jfe8sGjGFJoA9NR1kUOjBlPQg5Bp1fOtv4g8e/C27FtqtvLqGmKcByd3HbBr1fwn8StA8VwqsF0sN1j5oJTtOfagDs6KQEEcHNLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUySVIY2kkdVRRkknAFOJAGScCvDvid48u9a1JfCHhlmeeQ7Z5E6c8YyKAM/xt4r1D4keI08K+Gy5sQ+J5kzhh7n0r1/wd4RsfCGiRWVrGPM2gyyd3asz4deA7XwZoqKVD30o3TSe57Cu2OMUAYT6z5niSTSTCrQxweZJJ6A5/wpmnWul3/hU2unANZSqyrz36/zqbTryz1ee/eKEo0bGB5CPvAe9P8ADmnW2l6NDa2kwmhXJD/U0AU/B9402lNaSn9/ZuYX+gPH6Gujrko1/sfxwR92DUUyB/tjrXW0AQXVnbXsDQXMKSxMOVdcg15J4t+CVrcTNqHhq4awvASwjDYUmvYqO1AHz5pfxF8W/D+7XTfFdjNc2qnaJivOPY969h8NeNdE8VWqzadexs5HMRbDA/StLVdF0/W7VrbULWOeJuMMOa8d8SfBi90m5bVPBt68Eynd5JbH4CgD3EUteDeHvjFq3h66XSvGVlIpQ7PtAGK9l0bxBpmvWi3GnXaTIwzgMMj6igDUooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK87+J3xEh8KacbOyYS6rcDbHGpyVzx0oAx/it8RZNNA8O6G3m6nc/u22clM8dvrV/4WfDmPw1ZDVdRXzNWuRuZn5K55/Osn4VfDyZJT4p8RAzX9wTJEknOwHvg17HgelABUN1cRWttJPM22NFJY+1TVnazDbXWmS2l1N5UdwPLznB544oAj0y2szpTmxGIrgFufU1F4W0qTRtBhs5ZBI65JYHOcnNX4rVbXTBbQZwke1SPpxWZ4St7+28PwR6kXNyCS2/r1oAg8ZW7/2bHqMIzLYSCfjqQOSP0rcsLlL2xhuIyCsiBhUlxAlzbyQuAUdSpBHaud8HSmCC60mUnzLKUou48lfWgDp6KKKACgiiigDD8Q+FNI8TWrQalaRy8YD4+YfjXjmr/C3xH4KvG1TwffSyRKd3kbsHHXp3Fe/0hAxigDxjwt8bVS4TTPFlq1jdL8vmlSAfrXr1hqNpqdutxZXCTxMMhkbNc94p+H2g+K7d0u7REmPSVBtYH1ryK98H+N/hpdm90G6mvdPU5MfXA9CKAPoiivKfCPxr0rV2Sy1kDTr77rbzhS1eowTx3MSywyLJGwyGUggigCWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorB8V+KLLwpoc2oXsiqVX5FzyzemKAM7x945s/BeivPIwe7cEQwg8k44rzb4c+Cb7xZrT+MPEwL7mzBC/cZyDz6VneE/D2o/FTxZJ4l15X/ALLjfMUbcAjPAA9K+hLeGO2gjgiUJGihVVegAoAeqBFCqAAoAAHpTqKKACsXXNK/taayTzgghmWUpnltpB/pW1WH/Z13J4s+3SNi0jiwgDfxHrxQBry5S2cr95UOPrisfwneXt/4fhn1AEXBZtwIx34ramfy4JJMZ2qTj6Csnwxqza3okN68XlMxI2Dtg4oA2a5G/H9j+NbW9GRb3qGKUnoGHI/rXXVg+LLFrzQnaMEzW7CZPqOP5E0AbtLVDR75NS0q2ukIJdAWx2bHI/Or9ABRRRQAUUUUAFIyhlIYAg9c0tFAHA+LvhPoHihXmWEWd72miA5PvXmJXx/8Kbn5DJqOkqegywx/SvowjPWmSxRzRtHLGrow5VhkGgDgfCHxZ0LxMiQzS/Yr3GDFLwCfYmu/V1dQysGU9CDkGvLfF/wV0jWpHvNJP9n32dwMeQpP07Vxdr4q8cfC+5FnrcEl7pwOFfG7j60AfRFFcj4U+IugeLIFNpdok+PmhkO0g/jXWg56cigBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiq95eQWNpJc3MqxQxgszMeABQBW1nWLPQtMmv72URwxgnLHrXgdtBqvxn8ZfaphJFoVq+QoyAVz0+pp+uavq3xe8XjRdM8yLRYGxI/ODg8k17l4c8PWPhnSIdOsYlRI1GWA5Y9yaALmm6bbaTYQ2VpEscMSBVAGKuUUUAFFFFAAehrA8NnUXl1GXUNw33B8pT2WtHV7xrDSri6QFmjQlVAzk03RZrq40i2mvMCd0DNgetAF2VlWJ2YZUKSR7Vl+HL6z1HRobmwi8qBidq4xg55rUlCmJw/wB3ac/Sszw7Hp0WjwrpbBrQZ2n3zzQBrU2RFkjZGGQwIIp1FAHKeFCdOv8AUNFlODDIZIR/sHn+tdXXJ69/xKfEmnasOIpD9nnPrnhf1xXVA7gGB4PIoAdRRRQAUUUUAFFFFABRRRQAGq17YWuoW7QXcEc0TDlXGRVmigDxrxX8Eo3nbUfC11JZXY+by84Un2IrC0j4m+KfA12um+LrJ5bdTtE205x9a+gqzdY0LTdetGttRtI54yP4gCR9KAKfh7xhovie1WbTbxHyMlCQGH4Vu14V4g+DepaDdNqvg2+kjkU7vJDEH1wKXw58ZtR0a6XS/GNhLC6/IbjH86APdaKztK1zTdbtluNPu450YA/K3I/CtGgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQkAZNADZJFijaR2CqoySTgCvAvHvi2/+IHiBfCPhkubYPtnmToeecn0rS+KPj651G/Xwl4aPmXEx2zyJzjPGOK7P4beALbwdo6PKofUZ1zNIeeTzgUAavgnwfZeDtEjs7dFMzDM0ndm+tdNiiigAooooAKKKKAMfX9WGk28GIhM08wiCHnrnmtZMbFwMDHT0rKu76xfXLXTpYvMuMGVTjIWtegBkqCSF0JwGUjPpWV4b0uHSNFhs4JhNGmcOOh5zWrMheCRB1ZSB+VY/hXS7jR9Bgs7qQPKhJLA56mgDbooooAx/Emm/2loVxAOJAu9G9GHINO8N6h/aOh28xPzgbHz1BHFapAIIIzXJ6Ax0vxPqWkucJIfPh9Oeo/T9aAOtooooAKKKKACiiigAooooAKKKKACiiigArA8ReD9F8T2zRajZxyMRxIBhh+Nb9FAHz7qvw08VeBLo6n4Rv5ZrZDuMA5PrjHet3wr8boJJk03xPbNY3YO1pWBCk+9eyEA9q5DxX8ONA8WQv9qtVjuD92aMYP40AdPZ31tf26T2k6TRMMhkYEVZr50uvDXjv4X3LXejXLXumqclDk4HuK7rwh8ZtI1spZaqrWGocKVfhWPtmgD1Gio4Zop4xJFIrowyGU5FSUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5R8VfiM2jxDQtFbzdVuBtPl8mMHjt3rX+JnxCg8IaUbe2YS6pcDZFEpyVz3xXLfCv4e3E103izxGDLeTtuijkGdoPPINAGx8K/hyNAtf7Z1ZfM1a5+Y7+THmvUaTGOAKWgAooooAKKKKACiikZgqlicAdzQBk2kenXetXF7Cwe6iHlOf7v+cVr1kaFplvYrdT283m/apTKzA59/61r0ARzhjbyBM7ipxj1xWN4RS/j8PQLqZc3WW3bzz14ramYpBIy/eCkj8qxvCmoXep6BDdXy7Z2YgjGMYOKANyiiigArlfFSGyvtN1iMH9xLslI/unA5/WuqqhrFiuo6Tc2rD/AFiED60AXEdZEV0OVYZBpxOATWD4QvXu9Dijm4uLc+VIp6gjitq4/wCPaX/dP8qAKOna/perTzQWF9FPLCcSKh5X61YvtRtNORGu51hWRwiFj1Y9BXz54QS60MS+K7Yu0cd+0V2gPBQnr+Fek/Em5ivdE0W5gYPFLeROrA8EEjFAHogO4Ag5B5paig/494v90VLQAUUUUAFFFFABRRRQAUUUUAFFFFACMoZSGAIPUYrzzxh8ItB8Thp4YxZXpyfNiGMn3FeiUUAfOi3Hj/4VXIWRJdR0gHAOdwAr0/wh8VdA8URrE1wtpe9GglODn2zXbz28NzC0U8SSRsMFWGQa8t8X/BbTdVdrzRJDp16DkbDhSf6UAeqhlYAqwIPQg9adXzxZeMfG3wzuRaeILSW904HasrA9PY1654W+IOg+LIFNleRrPjLQOwDCgDq6KQc0tABRRRQAUUlU77UoNPMCy7iZnEaAdSaALtFIDkA0tABRRTJXEULyHoqlvyoAfRXmmmfEXXNcW5n0nw81xawStGX8wAkjHTn3rpfDXi2DxRZ3Igje3vYCUlgk4KNQB0gZWztYHHHBzXLeOvGll4O0WS5mcNcsCIYgeSfpS3V9D4J8M3mqak5ZtzSMASeSeAK+b38Xad4s8cf2r4ruJEsImLRwxqSMZ6YoA7z4d+Dr7xrrr+LvEoZoi26CJwfmOeOvpXviIsaKiDCqAAPavLLf44eB7S3jt4JJkjjG1VELDAH4VN/wvnwZ/wA97j/vy3+FAHp9FeYf8L58Gf8APe4/78t/hR/wvnwZ/wA97j/vy3+FAHp9FeYf8L58Gf8APe4/78t/hR/wvnwZ/wA97j/vy3+FAHp9FeYf8L58Gf8APe4/78t/hR/wvnwZ/wA97j/vy3+FAHp9U9UhkuNNnhikEbuhCsTjBNeef8L58Gf897j/AL8t/hWL4j+Nfhq+tLeKyublf3ytIRGwO0de1AHrGi6d/ZWk29nu3GNcE+prRry5fjv4MUAefPwP+eLf4U7/AIXz4M/573H/AH5b/CgD0yZ/LhdyMhVJxWT4Z1UazokN75Ih3EjZ6YOK4hvjx4LZSpmuCCMEeS3+FV7L43eB7K2WGBpoo15CCFu5+lAHrFFeYf8AC+fBn/Pe4/78t/hR/wAL58Gf897j/vy3+FAHp9HavMP+F8+DP+e9x/35b/Ck/wCF8+DO89xj/ri3+FAHR2R/snxrdWrfLBer5sfu4PP8zXUXH/HvL/un+VeLeIPjH4UvJLC7s5pvtFtMGyYmHy9+1bZ+O3gx4Sjz3HzDBxE3p9KAIfhRYQap4S1uyuF3QzXbqwxXM6tfTaT9m8IagxMtpqEbWrEcNFkY/StTw38Uvh94Ws5rexuLsrNK0rlomPJ/CqviH4gfDXxHqVlf3klyLi0cOjpEwzjoDxQB7jB/x7x/7oqSvLU+O/gtEVRPcYAwMxN2/Cn/APC+fBn/AD3uP+/Lf4UAen0V5h/wvnwZ/wA97j/vy3+FH/C+fBn/AD3uP+/Lf4UAen0V5h/wvnwZ/wA97j/vy3+FH/C+fBn/AD3uP+/Lf4UAen0V5h/wvnwZ/wA97j/vy3+FH/C+fBn/AD3uP+/Lf4UAen0V5h/wvnwZ/wA97j/vy3+FH/C+fBn/AD3uP+/Lf4UAen0V5h/wvnwZ/wA97j/vy3+FH/C+fBn/AD3uP+/Lf4UAen0V5h/wvnwZ/wA97j/vy3+FH/C+fBn/AD3uP+/Lf4UAen0V5h/wvnwZ/wA97j/vy3+FH/C+fBn/AD3uP+/Lf4UAeiX+m2ep2zW97BHNEwIIcZryHxT8E/KnbU/Cd01ncqdwhLYU9+DW1/wvnwZ/z3uP+/Lf4Uf8L58Gf897j/vy3+FAHH6J8VPEfg68XTPGFlLJEp2iYDnFeyaD4q0fxHarcadeJICPuFgGH4V5trfxZ+HPiCze11KOSeM8cwNuH04ryHVtR0LQ9RGoeC9Xuo23Z8pgy4/MUAfYNcJ4r8R6lN4itfC+hN5d5Ou+acjIjTkf0rgPBHx681obHxFEQzEItwg/DnFdfotxFL8X72Rm/wBdZo8RPdeTxQBfPgzX7QLcWfiW4kuVIJSYZRvUV1y6es72s93888K9R03dzir9FABRRRQAVDd5+xz46+W38qmqG6/485/+ubfyoA8S+G/ixtE0PU7ddKvbt/tkhVooyV7V0/wze3utY1rU5iYNSu5N0lm3BiXPHH5Vh/DHxVpXh3SdQstUkkhn+3SHYYzyOP8ACtrw7BNrnxOuvEVpDLBpqweVuZcea2Rz+lAHS/EO1iu/AuqxyorAQMVyM4OOK53wt8LPDa+HrRdQ02Ga6MYZ2JOTn1rqPHfHgrVf+uDVV03T72DU9Ov4HzaS2wSdSfukAYIoAi/4Vb4O/wCgLD+Z/wAaP+FW+Dv+gLD+Z/xrsaWgDjf+FW+Dv+gLD+Z/xo/4Vb4O/wCgLD+Z/wAa7KigDjf+FW+Dv+gLD+Z/xo/4Vb4O/wCgLD+Z/wAa7KigDjf+FW+Dv+gLD+Z/xo/4Vb4O/wCgLD+Z/wAa7KigDjf+FWeDv+gLD+Z/xrCuPhl4ek8V28MWhotnHFukYZwzelen1haJq1zqWpanHJHtgtpvKjJGC3AOf1oAyv8AhVvg7/oCw/mf8aP+FW+Dv+gLD+Z/xrsqKAOLf4XeDQjE6PCoA5OTx+tVNL+Gnga4sI5LbTYriI5w5YnNd5Ku+J0zjcpGayvDWlJo+iQ2STCZUJIdehyc0AYv/CrfB3/QFh/M/wCNH/CrfB3/AEBYfzP+NdlRQBxv/CrfB3/QFh/M/wCNH/CrfBwOf7Fg/M/412VZ+oSpPHLp8V0sV1JGduDyPegDhb34UeE9UeH7DawRwxP+98vJJOOnX1qt4d+H3hU3F3pd9o8JubZ/lYk5dDyDXoOi6TFo+npaxsXI5dz1ZvWsfxGp0nVLTXIgcKwiuAO6k4yfpk0AV/8AhVvg7/oCw/mf8aP+FWeDv+gLB+Z/xrr4pFmjWRDlWGQR3p9AHG/8Kt8Hf9AWH8z/AI0f8Kt8Hf8AQFh/M/412VFAHG/8Kt8Hf9AWH8z/AI0f8Kt8Hf8AQFh/M/412VFAHG/8Kt8Hf9AWH8z/AI0f8Kt8Hf8AQFh/M/412VFAHG/8Kt8Hf9AWH8z/AI0f8Kt8Hf8AQFh/M/412VFAHG/8Kt8Hf9AWH8z/AI0f8Kt8Hf8AQFh/M/412VFAHG/8Kt8Hf9AWH8z/AI0f8Kt8Hf8AQFh/M/412VFAHG/8Kt8Hf9AWH8z/AI0f8Kt8Hf8AQFh/M/412VFAHG/8Kt8Hf9AWH8z/AI0f8Kt8Hf8AQFh/M/412VFAHG/8Kt8Hf9AWH8z/AI0f8Ks8Hf8AQFg/M/412VFAHG/8Kt8Hf9AWH8z/AI0f8Kt8Hf8AQFh/M/412VFAHlfi/wAAeGNLtLG4tNLijka8iUkE9Cwrb8UeDbm7vbLWtBmW21S0QIufuuo/hNW/H/8AyDLD/r+h/wDQxXWJ9xfpQBwkV149v0S2ks7WyIOHuMk59wK7iBXjgjSR97qoDNjqalooAKKKKACg9KKKAKD6Lpkjl30+1LE5JMSnJ/KrscaRIEjUKo6BRgU6igDnPHf/ACJOq/8AXBqkkgubrwfHFZyGO4MClGHrUfjv/kSdV/64NWpo/wDyBrP/AK5LQA7SXuX0u2N2hS42AOPertYVhJqMXiS9t58yWTKHhfHQ9x/n0rdoAKKKKACiiigAooooAgu7hbS0muH+7Gpb8hVPQr1NT0qK+W38gzZYrjHfH9KXW76zsbDN6u6KVhHt9c8VbtYoorWNIVCxhRtA7UAT0UUUAMmUvBIq/eKkD8qxvCmm3Wk6DBaXj7pkJJOc9TWzNu8iTZ97acfXFYvhE358PQHU932rLbg/XrxQBu0HpRTXYIhZiAoHJNAEF3e29jF5lxKqISFBJ6k9qztP0KC31e51V5DPPP8AdZv4F9AKjks9O8Ty2t8JXlgt3OEH3XYdCfoa3VAVQAMAcAUALVXULKLULCa0mGY5UKkfhVqigDm/Cd5I0E+m3LZubKQxnPdexrpK5PWlbR/EFnq8YIhlPk3X/sp/PNdUrB1VlOVIyDQA6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDkfH/8AyDLD/r+h/wDQxXWJ9xfpXJ+P/wDkGWH/AF/Q/wDoYrrE+4v0oAdRRRQAUUUUAFFFFABRRRQBznjv/kSdV/64NWpo/wDyBbP/AK5L/Ksvx3/yJOq/9cGrV0f/AJA1n/1yWgCp4kur6x05bqxTzGjkUyKOpTPNaltL59tFLgjeoOD2qRlBUjAPHQ1iaFq89/c3trdxCOa2l2jHRlwMGgDcooooAKKKKACiiigDH1iHT764tLK8kxIZBLEnqVOf6VrgAAAdB0rHk0uG68RxaiZwz2yFRGD93NbNABRRRQAyZikEjjkqpIz9Kx/CupXOraDDd3iBJmJBUD0NbEr+XC74ztUnHrWV4b1SLWdFhvYYPJRyQEAx0NAGxWRe3Nlqk0+i+e3nFMyBP4R9an1PWLXSlh+0Md0sgRFXkknijT9JtLGee5hQmW5bc7t1PtQBPY2MGnWcdrboFjQYAAqzRRQAUUUUAUtUsI9S0ya1kGQ64H1rL8J30s+nNZ3R/wBLtG8qQHvjgH8sV0NcnqWdD8UwaiP+Pa8Ahmx2PY/nigDrKKQEMMjp296WgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDkfH/8AyDLD/r+h/wDQxXWJ9xfpXJ+P/wDkGWH/AF/Q/wDoYrrE+4v0oAdRRRQAUUUUAFFFFABRRRQBznjv/kSdV/64NWro/wDyBrP/AK5LWV47/wCRJ1X/AK4NWro//IGs/wDrktAF49KxdV1NNHurWRrfMdxII3kUcg9q2qr3kEM0B86ESqvzBSM8igCcHcAR0PNLWXoerw6zYC4iUoVOxo26qRWpQAUUUUAFFFVr4zCxm+zrum2EIM9TQBm6LpdxZ6hqN3cSq5uZdybT0X0rbrJ8OWt3aaLDFeszXAyW3HJ61rUAFFFFADJSoicv90Kc/SsfRr7So/Dy3djiKxQEjPGMVsSqrQurHClSCfauR0D+xry0m8P2Qa5soBh5R90nOcZoA17OOw8QG01gwPujz5Jft74raqOGKOCJIolCogCqo7CpKACiiigAooooAKzdc01dU0me2P3iuUPow5BrSooAw/C+pG/0sRy8XNsTFKD6j/62K3K5O4H9g+LY7n7tnqHyyegk6A/yrq85wQeDQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcl485sNOz/AM/0X/oQrq1+6PpXKePP+PHTf+v6L+Yrq1+6PpQA6iiigAooooAKKKKACiiigDnPHf8AyJOq/wDXBq1dH/5A1n/1yWsrx3/yJOq/9cGrV0f/AJA1n/1yWgC9RRRQBiRXOm6Tq409E8qa8JkHoT3/AJ1t1l6taWDeVqN4hzZkurqORV21uYry2juIHDROMqwoAnooooAD0rE8TXV5a6ahsUczSSqmVGcA55rb7Vh3urzQeJNP02KENHOrNI5H3cYx/M0AbEIcQxiQ5faMnpzUlFFABQelFUtT1GHS9OmvJ8lI1zgdWPpQBR1nXIrGWGxVDNc3RKKiHJUf3jTPCegxeHtFS0jKsxYuzgfeJOeamsQNUsI9RltFjupIjs3DlQelReErG807w/Bb37brhSdxJznnigDdooooAKKKKACiiigAooooAyfEWl/2ro8sKfLKo3xN6MOhpvhzUjqekxu/E0f7uRfQitjiuSRjoHi8xkbbTU/mHorj/wDWaAOtopM5paACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5Lx5/x46b/ANf0X8xXVr90fSuU8ef8eOm/9f0X8xXVr90fSgB1FFFABRRRQAUUUUAFFFFAHOeO/wDkSdV/64NWro//ACBrP/rktZXjv/kSdV/64NWro/8AyBrP/rktAF6iiigCOeFLiCSFwCjqVI9qzNFhs9LT+x4Jy7w5ba3UAnP9a16xrnTIIdcTWDP5JCeXJnow7ZoA2aKRWDAEHIPeloAKx7LUoNQ1q6gS3G+1ABlx3PbNazsEUsxwAMk1l6HJp9zbve2C4W4clz6mgDWooooAQnCk+lYGnaouv315EbQNYwMFV5F+8w9jUmp6zcQ6vaaZZ2/mySnMjt0Va14YkhTaiKg6kKMc0ALNlLd/LGGCHbge3FY3hKa/n8PwSaluFySwYN161tTOY4JHHVVJ/Ssfwtqk2saFDe3EQjldjlQMYwcUAbdFFFABRRRQAUUUUAFFFFABWL4l006hpTNGCLiD97Ew7MK2qQgYoAzNA1Maro9vcdHI2uvow4NalcnYj+wvFk1kfktL397FnoG7j9K6v0oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5Lx5/x46b/wBf0X8xXVr90fSuU8ef8eOm/wDX9F/MV1a/dH0oAdRRRQAUUUUAFFFFABRRRQBznjv/AJEnVf8Arg1auj/8gaz/AOuS1leO/wDkSdV/64NWro//ACBrP/rktAF6iiigArP1nTU1fS57N22+Yvyt/dPrWhRQBS0yN4LCK3klWSWIBGIPp61drCsNLu7HxDeXImBsbhVYITyH5z/St3qKAKuoSQR2MpuJfLiKkM2cY4qPSbC203Tora0/1K8qfrVbX9NXV7NLNpxGGkDFT/GAelakUaxRpGvRQFH4UAPrN1zUn0rTJLmOBp5eiRqOprQdtqMx7AmsTQ7zUNSnubm6i8q037YI2X5uO9AF/TBcPZQzXsaLdMvzY9PSr1FFADJWCQu5GQqkketZXhvU7fVtFhu7aAQRuSAgGMYNa0u0ROX+5tO76VleHG059GhbShi1ydv580Aa9FFFABRRRQAUUUUAFFFFABRRRQBgeK9Pe60v7TbA/arUiaPHU45x+NaOkX6alpkFyhBLL8w9COtXSAVIxx6VymjN/YniO50duLa4/f2x7DPUf59aAOsooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOS8dfNb6Ynrexn9a6tfuj6Vyvjj/VaX/wBfqfzrqx0H0oAWiiigAooooAKKKKACiiigDnPHf/Ik6r/1watXR/8AkDWf/XJayvHf/Ik6r/1watXR/wDkDWf/AFyWgC9RRRQAUUUUAYviSzvbrT0fT5GW5hkEijON3tWrCXaCNnADkDcB2OKkI+UjOOKwtBGpRXOoQXwZo1lPkSE53Lk0APv9NurnxHp92rhbW2DblB5JNbdYOlx6k3iDUp7veltkLAhPBGByP1qx4gudQt9MP9mwmS5kYKp7JnuaAK19darN4htrKyTZaIN88zDgj+6K3gMDFVrCOeKyhS5k8ycKA7e9WqACiiigBsqh4nRjgMpBNZfhywtNN0aG2spfNgXJDfU1pzJ5kEkf95SPzFZHhfSW0XQoLJ5RKyEkuD1BOaANqiiigAooooAKKKKACiiigAooooAK53xZZSPYx39sp+02beYuOpHcV0VIyq6lWGQRgigCrpt9HqOnwXcRBWRQ3Hb2q3XKeHj/AGPrN3okhxET5trnpt9BXV0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHJ+OP8AVaX/ANfqfzrq16D6Vynjj/VaX/1+p/OurXoPpQAtFFFABRRRQAUUUUAFFFFAHOeO/wDkSdV/64NWro//ACBrP/rktZXjv/kSdV/64NWro/8AyBrP/rktAF6iiorliltKynBCkj8qAHg5OAQaceleCeBPEuq2Wui+1C9lmsby7e3becqh7fyr3S5uI7W1luJGAjRC5J9AKAJs84zzXOeJ77UtMa0vLNWkt1crNGq5JBHB/OvOdE1LWb74h2Go3F3MtpfPIIoOceWCMH69a9S8Sak+laHcXMMYecLiJCOrZ4FADfDt5eXegx3l4h85y52YwcBiAPyFN0CLVGFxdaoSryyHZD/zzUdKyfDl1quvpY3d0Tai3yJ4QMBn6/lgiuyxQAYFFFFABRRRQAyYMYJAn3yp2/XFYvhK0vrLw/BBqLM1wpOSxycZ4rZnLC3kK/eCnH1xWN4Sur698Pwz6jkXJZtwIwevFAG7RRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHM+K7ORFttYthmexfcQO6nr/Ot6yu476ziuYjlJFDCpJoknheJwCrqVINcz4YmfT9QvNBnJxC3mW5PeM//XJoA6qiiigAooooAKKKKACiiigAooooAKKKKACiiigDk/HH+q0v/r9T+ddWvQfSuU8cf6rS/wDr9T+ddWvQfSgBaKKKACiiigAooooAKKKKAOc8d/8AIk6r/wBcGrV0f/kDWf8A1yWsrx3/AMiTqv8A1watXR/+QNZ/9cloAvVDdf8AHpL/ALp/lU1RzoZIHQYyykDNAHh3hHRzq/w31pYwfPgvGniI/vAmug1PxVJrvgfSrC0fF/qTC2kUH5lAIVj+WTXQfD7wpd+GdHvbO+ZHM87SDb6HNZvhz4dSaP47vdYlmD2IZms4QfuFuvFAEWpWS6f468KWiAYihYenPGa7PVtStINQstOuIfNe6YlAVyBjvWdrHh26v/GWk6tEyCC0Vg4PU5PatJjpt/4hCkb72yTcP9kGgBlxqr2HiC0sGtwLe5U7ZB2YdjW3VDVpBa2Ml4LcTSQKXQY74p2lahFqmnQ3kP3XHQdj3FAF2iiigAooooAZM/lwSSAZKqT+QrJ8MatJrehw3ssQjdiRtA6YOK1pWCROxGQqkkVl+HNQtNT0aG5sofJgYnamMYOeaANeiiigAooooAKKKKACiiigAooooAKKKKACuX8VRPYy22uQA77VsSgd4+/9a6iorm3iureSCZQ0bqVYEdRQAW86XNvHNGwZHAIIqWuY8K3D2sl1otwx861bKZ/iQ9DXT0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcl42OV0te5vE/nXWDpXJ+M/8AX6T/ANfa11g6D6UALRRRQAUUUUAFFFFABRRRQBznjv8A5EnVf+uDVq6P/wAgaz/65LWV47/5EnVf+uDVq6P/AMgaz/65LQBeooooAKKKO1ACHA5PasnS7KzF/d6jbyiV7g7WPXGO1aVwM28i7wmVI3HoKzfDmk/2NpKWzSeY5JZn9SeaANZlDKVIyCMEVjaffWNtqj6Hbw+S8KeYBjAOT2rarI1RdP0+dNYukIkiHl+YOwPrQBr0UyKVZokkQ5VwGB9qfQAUUUUAMl2+U+/7m07vpWZ4dXTl0eIaWc2nO0/jzWnKgkhdCcBlIJrL8Oabb6To0VpbTCaJSSHByDk5oA16KKKACiiigAooooAKKKKACiiigAooooAKD0oooA5XxJE+m6nZ67CDiNhFOB3U9z9D/OumjkWaNJEYFHAZSO4qK+s476ymtpRlJFK4rC8I3cogn0q6bM9i5jGepTt+lAHTUUUUAFFFFABRRRQAUUUUAFFFFABRRRQByXjP/X6T/wBfa11i9B9K5Pxn/r9J/wCvta6xeg+lAC0UUUAFFFFABRRRQAUUUUAc547/AORJ1X/rg1auj/8AIGs/+uS1leO/+RJ1X/rg1auj/wDIGs/+uS0AXqKKKACiiigDH8SWd1f6PJa2Z2ySHBbOMDvWjZQtb2UELHLIgUn3rI1ZtRbXNMhtQ4tiWM7KeOMcH9a3aAFqrf2MGpWUtrcLmKUYYVaooAztKuLPymsrSYyfZMRMD1BFaNYiWFnpWtzagZxEbvCGM8At6/WtrOaAFooooAZMhkgkQdWUj9Kx/CulTaNoUFlPIJJEJJYHOck1rzhjBIE+8VOPrisbwjFfweHoE1IsbnLFt556mgDdooooAKKKKACiiigAooooAKKKKACiiigAooooAO1cprwbR9estZjBELt5Nzj0PANdXVPVLFNR02e0k+7IhA9jjigC0jiRFdTlWGQadXPeFL55bF7G5P8Apdm5ikBPX0P0xiuhoAKKKKACiiigAooooAKKKKACiiigDkvGf+v0n/r7WusXoPpXJ+M/9fpP/X2tdYvQfSgBaKKKACiiigAooooAKKKKAOc8d/8AIk6r/wBcGrV0f/kDWf8A1yWsrx3/AMiTqv8A1watXR/+QNZ/9cloAvUUUUAFFFNkcRxs56KCaAMKx1K9ufFV7aFQLGGJdpI6vzn+lb9ZGgamdXtZbvyBEvmlVPdgOM1r0AFB6UUUAZWvaOusWSxeZ5UkUiyo/wDdIOavWxBt4wJFkKqFLKepFTMoZSCMgjGKxNC0ybSZ7yJ5w9vNKZIVJ5UccUAblFFFAEc7FIJGX7wUkfXFY/hO+vNR0CG5v1IuGZgwIx0PFbMz+XBI+M7VJx+FZPhnVjrWiQ3phERYkbB2wcUAbNFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQByeqL/YfieDVVGLe6Ahn9Ac8H9TXVgggEHg9Koazpqatpc1m2BuGVPoexqj4V1F77ShFOCLq2PlSqfUd6AN6iiigAooooAKKKKACiiigAooooA5Lxn/r9J/6+1/nXWL0H0rk/GH/H/ow7faRx+ddYOgoAWiiigAooooAKKKKACiiigDnPHf8AyJOq/wDXBq1dH/5A1n/1yWsrx3/yJOq/9cGrV0f/AJA1n/1yWgC9RRRQAVS1XUIdL0ye7ucmKNcsB1PtV2srW/7Pmt47K/fC3DhVXPU0AWtNW3FhC1rGI4XXcqgYxmrdRxRrFEkaDCqoAHtUlABRRRQAVh63p95Ne2F7ZPh4JP3ik4BQ9a3KjmjMsLoGKswIDDtQA8dBmlrE8MpqMWliHU9xnjcjef4h2NbdADZSqxOz/dCkn6Vl+HrywvtIin02MR2zE7VxjBzzWnKFaFw5whUhjnGBWX4bttPs9Fhh0yYTWq52uG3ZOeaANeiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAD0rkrvOg+LIrocWl/wDJL6B+xrraytf00appEsKgCRRvjb0YdKANQHPIPFLWN4a1P+09IjZxiaE+VIp67l4/wrZoAKKKKACiiigAooooAKKKKAOS8X/8hHRv+vkf1rrB0Fcn4v8A+Qjo3/Xz/jXWDoKAFooooAKKKKACiiigAooooA5zx3/yJOq/9cGrV0f/AJA1n/1yWsrx3/yJOq/9cGrV0f8A5A1n/wBcloAvUUUUAFY99pttqOs2krzAyWvz+V/I1sHpWLaaTJH4mvNUeYOssaxqoP3cUAbIGKWiigAooooAKKKKAMC9m1K28UWYjDSWM6lZAOiEdDW/VLVWuY9MuHs8faFUsmaj0S9k1DSbe5lRklZcOpGMMOD/ACoAvSp5kLpnG5SM+lZPhjSV0TQ4bFZxMEJO8dOTmtaZS8Eir94qQPrisXwlpt5pWgQWl826dSSx3ZzzxQBu0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSHp0paKAOTGNA8X4Hy2mpD8Fk7n8a6vOax/Eumf2lo8gj4nh/ewsOzDkfqKk8P6j/AGppEE54kA2SD0YUAatFFFABRRRQAUUUUAFFFFAHJeL/APkI6N/18/411g6CuT8X/wDIR0b/AK+f8a6wdBQAtFFFABRRRQAUUUUAFFFFAHOeO/8AkSdV/wCuDVq6P/yBrP8A65LWV47/AORJ1X/rg1auj/8AIGs/+uS0AXqKKKAGS7vJfb97acfWsbw1Y3lnZytfMTPLKzEZyAMnGKseIJruHRLh7FWa52gIF65JxVnTfO/s6288kzeWpct1zjmgC3RRRQAUUUUAFFFFABisKDVZ08TzaXNCFhMYeFwMAnuK3aytdvzpNgb9bfzTGRux1C9z+VAGjPuEEmz7+07ceuKxfCD6g/h6BtTDi6JbcHHPXitVLsTad9qi6NHvXP0rM8Kapc6zoMN5dx7JmY5UDHfFAG5RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACEZFcnaFtD8XTWrfLZ348yL0D9x+tdbWF4p0573S/Ntxi5tmEsZHXjt+lAG5S1naNqUeraZBdx8blG5f7rdxWjQAUUUUAFFFFABRRRQByXi/8A5COjf9fP+NdYOgrk/Fnzavoi9jcA/oa6xegoAWiiigAooooAKKKKACiiigDnPHf/ACJOq/8AXBq1dH/5A1n/ANclrK8d/wDIk6r/ANcGrV0f/kDWf/XJaAL1FFFAGHreq3Fjeada2sYZ7mXDEjooHNbY9Kx01WK48SyaYLfc0EYfzMdM1s0AFFFFABRRRQAUUUUAFMlijmiaKRFZGGCpGQRT6D0oAxdO1m2nkvrOOExtZEr5Z/iXHUU7w1qsOs6LDewQCCNyQEAxjBqHVrrSdCuTf3SBGuf3byZxn61P4cl0yfRoZNIA+xknZge9AGvRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSFQQQRwaWg9KAOT0o/wBh+JrnS2OLa7Jmt+wB6kfzrrK53xXYSTWUd/bA/abNxKhHUjuK1tMvo9R06C6jOQ6jPse9AFyiiigAooooAKKKKAOS8V/8hvQ/+vj+hrrB0Fcp4r/5Deh/9fH9DXVjoKAFooooAKKKKACiiigAooooA5zx3/yJOq/9cGrV0f8A5A1n/wBclrK8d/8AIk6r/wBcGrV0f/kDWf8A1yWgC9QenPSioLqaOC1klmcJGq5Zj2FAGdpFxYX93eXVrGBMr+XI+PvY962KzdFtLS0sR9jOYpGL5PcmtKgAooooAKKKKACiijtQAVDc3MNpA01xKsUSjJZjxUjusaF3YKoHJJwBXP3EFj4ugidLh2tIZclFOFkIPc+lAEWp+GYPEl8tzfXBm07y/wB1AOhJ/ip2j6CfB+gS2umebebCWiikbpnsKseIPEmleEdOinv5PKgLCNFUZJ+latndw39pFdW7hopVDKR6GgCjo2snVLV3mtpLWWI4kSTgD8a1QQQCDkHvmoLy0ivbSW3lB8uRSG2nB596ytO0640CynH2qa9jA3Ro2NwHoPWgDdorJ0XXrbW4XaFZI3jO145FwwNatAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADXRXRkYZDAg1yugM2j65d6LKcRMfOtvTaeoH0INdYelc14stpI4INYth++sW8wgdWTuKAOloqtY3aX1lDdRHKSKGFWaACiiigAooooA5PxX/wAhvQ/+vj+hrqx0Fcp4r/5Deh/9fH9DXVjoKAFooooAKKKKACiiigAooooA5zx3/wAiTqv/AFwatXR/+QNZ/wDXJayvHf8AyJOq/wDXBq1dH/5A1n/1yWgC9WZr1nFqOkT2MswhE48sMTjrWmelYutaVNql1Y7ZQsUEokde5oA0rO2Wzs4bdDlY1C/lVikAwAPTiloAKKKKACiiigAoorFuddjXW4tJhhaeVxmUr0Qe9ADTfWPiCS80pC7RouJJF4B9ga1LOzhsLWO2t0CRIMACmWOn22nRGK2iVFZtzYHJJpNTvo9M0u5vZmCpDGXJPsKAOB1i1h8ZeO5dNkXzLPTrc7h1Bdun8v1q58L72RNLu9EuW/0jTpzHz1K54P8AKuf8G6Z4uuLa51uxurOJNRlMm2VTux27Uun/ANq+FfiXDNrM1uy6upQtCMKGA4/lQB67RjjFIDnpS0AVp7OOWKZU/dSSLgyIORWVpcOp6TDc/wBo3YurdBujYD58ehrepD0oAz9L1my1dGa0lLFeGVhgr+FaNUl022hknmtokinlGC6jGT71Q0mTWoJriPVvKeBBujnT096ANyiqtnqFrfqzWs6SBThsHkH6VaoAKKKKACiiigAooooAKKKKACiiigAooooAKZJGksTRuoZWGCCOop9FAHK+GpDpmp3egSniL95bk90/xrqq5fxVbPayWutWwPnWz4kx3Q9c/kK6O3nS5t4542ykihlI9DQBLRRRQAUUUUAcn4r/AOQ3of8A18f0NdWOgrk/FRzr2hJ3M5P6GusHQUALRRRQAUUUUAFFFFABRRRQBznjv/kSdV/64NWro/8AyBrP/rktZXjv/kSdV/64NWro/wDyBrP/AK5LQBerCjttRfxfLPJkWCQARgHgtk5/pW4x2oTjOBnHrWD4ZudQu0vZr7cFNywhDDBCAD/CgDfooooAKKKKACiiqOrXklhps08MLTSqPkQdzQBT17WJtMWGG0t2nup2CxqBwPUmtG2t1UCd4UW4dRvYDnP1qroovX06CTUwn2sguVH8Oe1adABVXULC31Oyls7pN8Eo2sueoq1RQBBZ2kFjaxWttGI4YxtVR2FU9T0PT9Ye3e+gWWS3ffE2eVNadFADVXaAo6AYFOoooAKKKKACkZQVIIyCMYpaKAMy30Sysrua7s4hFNIOQpO3P0qrpd/q5vJbXVLIIq5Kzx/dYVu0hAKkYGKAI4biK4BMUquBwdpzipaxbPw7babqct7aSSR+YDuiH3SfWmWGvzT6o+n3lhNbzDJRsZVx65oA3aKarq33WBx1wc06gAooooAKKKKACiiigAooooAKKKKAIriBLm3khkAKupUiuc8KTSWc11oly37y2cmLPeM8j+ddRXK+JY30y/s9dhGfKYRzgd0PGT9KAOqoqOGVZ4UlQ5V1DA1JQAUUUUAcj4o/5GTQf+up/wDQTXWiuS8Uf8jJoP8A11P/AKCa60UALRRRQAUUUUAFFFFABRRRQBznjv8A5EnVf+uDVq6P/wAgaz/65LWV47/5EnVf+uDVq6P/AMgaz/65LQA3WL86bpNzeAFjEhIXHU0/S7iW7023uJkCvIgYgdqqa9q0Gmw26TQ+cLqZYQnXr3rVQAIu1cDHA9KAH0UUUAFFFMeRY1LOwVR3Y4FAAzbVJAyccDPWsbQ01eWa4utUbyw7Yitxj5FB6n601bDUbrxJ9tnnC2MK4hiQ/ePqa3sUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSFQRgilooAwbLQJdO1iS6tr6Y20mS8DsWGfYnpUlp4jtbnV5NLeOWK5XoHXhh7GtqongiaQStGpdejYGRQBIKWsCPT9Ytdb86K+WaylJMkUg+5/ukVbg8QafPqcunibbcxnBRgRn6etAGpRRRQAUUUUAFFFFABRRRQAVXvbSO9spraVQUkUqR9asUHpQBzXhO7kWOfSblibizcgZ7p2rpa5TXozpOuWetoMRsfJuf909DXUo6yIrqcqwyDQA6iiigDkfFH/IyaD/11P8A6Ca60VyXij/kZNB/66n/ANBNdaKAFooooAKKKKACiiigAooooA5zx3/yJOq/9cGrV0f/AJA1n/1yWsrx3/yJOq/9cGrU0f8A5A1n/wBcloArXcmnXWtW9lOm+5j/AHqDGdta4GBisi0tLCbXrrUoZBJcBRC4zkLj/wDVWxQAUUUHpQA1mVFJYgKOpJxWDqVg3iFrNoL3Fgrb5Ah/1hHapL57bxDBc6ba3rIynErR+ncZrR0+wg02yitLdNsUYwB6+9AFiNBFGsaj5VAAp9FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABiqkunWc10l1JbxtOn3XI5H41booAwXGu2utZUx3OnynoeHj/8ArVppqVm921qtwnnr1jJ5q3WXd6Bp95exXjw7bmM5EiEqT9cdaANSisG51DV7LWFjNiJ7GVgqyRnlPrWys8TPsEi7xztzzQBLRRRQAUUUUAFFFFAFPU7GPUtOntJR8sqFf0rJ8KXsj2T6ddHF3Zt5bg9wO9dEelclq4bQ/EltqyDFvdHyLj6nkH8xQB1tFNUhlDDoeRTqAOR8Uf8AIyaD/wBdT/6Ca60VyfibnxLoHqZm4/4Ca6ygBaKKKACiiigAooooAKKKKAOc8d/8iTqv/XBq09JIGiWhJ2/uRz6cVmeO/wDkStV/64NU6wzz+EI4bdgsz26qpJ9qAH6DpK6Yt1IswlNzKZSw755/rWzVDR7FtO0q2tXbc8aAMfU96v0AFZc+r2jaoNIDM1w6Ets/hHuaZrGvQaTJbwsry3Fw22OJByferFnptrbXU15HCFuJ8GRjyfpQAml6Ra6RbtDbJgOxdmbksTWhRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAcVjX3h22u9Ti1BZJYbmPHzI2Aw962aKAMO/1yXTNSit5rKZraTCi4QZAPuK2VkVwCD1Gcd6cQCOQKxNU0Ke71CK+s7+a2nThlBJVh9KANyisW+8QQ6VqEFpeRyqkigLPtyhb0rYVg6hlOQRkH2oAdRRRQAVn6xp6anpc9sw5Zcr7N2rQooAwfCuove6YYJ/+Pm1cxSDvx0P5VvVyd2o0HxXDdqNtpffu5fQP2NdWCCAQcg8g0Acn4k/5G7w9/wBdH/8AQTXWCuT8Sf8AI3+Hv+uj/wDoJrrR0oAKKKKACiiigAooooAKKKKAOc8d/wDIk6r/ANcGqvex6hPomjxafvHzIZWU9EAqx47/AORJ1X/rg1VdKvr6TVbCyiBW0jtFeTK8MTjv+dAHVjgDPWqGs6omkadJctG0jDhEXksewq5PKIIJJCCQqlsDrWPoM9/qcE1zqMCxxtJmGIjkL6mgC3YRG8gt769tI47zbnpyma0qMD0ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAjmginXEsaOP9pQaxdY07VXuobrSr4ReUMGB1yrit6jHHSgDKudds9Omt7fUJlhmlHBPC5+taaMrqGUgqRkEdxVa90+0v4vLu4ElUHOGHSs3WY9ZtvIl0cwvHGNr278ZHtQBu0VSOow26wLeSJDNKOFY8Z9KuAgjIOR7UAZmv6YNW0ia3B2yY3RsP4WHQ1D4Z1I6jpCGT5Z4T5cqnqCOK2q5Js6D4vDfdtNSHJ7Bx/+v9KADxJ/yN/h7/ro/wD6Ca60dK5HxGR/wl3h7H/PR/8A0E11w6UAFFFFABRRRQAUUUUAFFZ+sazY6FYPe6jcCG3XgsaxLX4jeGbydIo9RQF8bS3AoAs+Ocf8IXqmTgeS1R+DdWbU9PZTCqJb7YlYdW4o8dSK3gTVZFw6G2ZgQeoxWZpMF5q+maPLZFbOxKCWYrwzt0xQBuWravd+IZnmXyNNhG2NSOZT61u4HpTAQABkHtTtw9RQAtFJuHqKNw9RQAtFJuHqKNw9RQAtFJuHqKNw9RQAtFJuHqKNw9RQAtFJuHqKNw9RQAtFJuHqKNw9RQAtFJuHqKNw9RQAtFJuHqKNw9RQAtFJuHqKNw9RQAtFJuHqKNw9RQAtFJuHqKNw9RQAtFJuHqKNw9RQAtFJuHqKNw9RQAtFJuHqKNw9RQAtFJuHqKNw9RQAtFJuHqKNw9RQAtFJuHqKNw9RQAtFJuHqKNw9RQBn6rotjrMAivYRJt5RujL9DVLUX1LR7O3XS7T7XFFxIhb58e1bu4eoo3D1FAFW3vklgieYeRJIP9W5wQao+I9OOpaPIsYxPHiSI+jCpNZ0W01uBI53dGQ5SSNsFT7VBeXdxoOmQhLeW+VOJGXlgPU0Acw2pf2pq3heduJA7pIp6hgpzXoY6V5VIBF8QtGuoSU0+8LSIrDGJCpJHt3/ACr0q/1K00u2a4vZ0hiX+JzigC3RXK2vxE8M3VwsKaioZzhS3AJrqEZXUMpypGQfWgB1FFFABRRRQB5t8ayB4GBPQXKZqr4ovfC8vgNbVXtJL2SJEt1QDcJOMVa+NYDeBQCMg3CAirUnhPwkvhcTSWlpG6224ShgGDbeo96ANfQtFe88BW2lauxl8232SkHnB96qW/w6sLWFYbfUdQiiThUScgAVB8KbzULzwjm+ZnEczJC7ZyyA8Hmu6oA5H/hArb/oK6l/3/NH/CBW3/QV1L/v+a66igDkf+ECtv8AoK6l/wB/zR/wgVt/0FdS/wC/5rrqKAOR/wCECtv+grqX/f8ANH/CBW3/AEFdS/7/AJrrqKAOR/4QK2/6Cupf9/zR/wAIFbf9BXUv+/5rrqKAOR/4QK2/6Cupf9/zR/wgVt/0FdS/7/muuooA5H/hArb/AKCupf8Af80f8IFbf9BXUv8Av+a66igDkf8AhArb/oK6l/3/ADR/wgVt/wBBXUv+/wCa66igDkf+ECtv+grqX/f80f8ACBW3/QV1L/v+a66igDkf+ECtv+grqX/f80f8IFbf9BXUv+/5rrqKAOR/4QK2/wCgrqX/AH/NH/CBW3/QV1L/AL/muuooA5H/AIQK2/6Cupf9/wA0f8IFbf8AQV1L/v8AmuuooA5H/hArb/oK6l/3/NH/AAgVt/0FdS/7/muuooA5H/hArb/oK6l/3/NH/CBW3/QV1L/v+a66igDkf+ECtv8AoK6l/wB/zR/wgVt/0FdS/wC/5rrqKAOR/wCECtv+grqX/f8ANH/CBW3/AEFdS/7/AJrrqKAOR/4QK2/6Cupf9/zR/wAIFbf9BXUv+/5rrqKAOR/4QK2/6Cupf9/zR/wgVt/0FdS/7/muuooA5H/hArb/AKCupf8Af80f8IFbf9BXUv8Av+a66igDkf8AhArb/oK6l/3/ADR/wgVt/wBBXUv+/wCa66igDkf+ECtv+grqX/f80f8ACBW3/QV1L/v+a66igDkf+ECtv+grqX/f80HwFbY/5Cupf9/zXXUUAcavw60v7da3c1zeTSWrh4vMlyAfWsTVLd/FHxSj0q6YnTdPgWV4D0dsnGa9Nry+6u18N/F/zrz5LTUbcIszcKrAngmgDurnw3o13bfZ5dPgaMYwNg4xWlDEkESRRjCINqj0FQTajZW8AnluoliPIYuMH6VYjkWWNXQ7lYZBFAD6KKKACiiigDH8R+HbDxRpbadqIcwMc/IQCD+INc9a/CzQ7aRS11qU6LgeVNOpX8goruaKAIbW1gs7eO3t41jiQbVVR0FTUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZet6Dp/iCzNrqEAkTqD0Kn1BrUooA4q0+GWiWk6u1zf3CKcrFPMpQfhtH867KNFjRY0GFUAAegp9FABRRRQB//Z'] Multimodal Competition False Theorem proof Solid Geometry Math Chinese 40 "如图,已知长方形 $A B C D$ 中, $A B=4, A D=2, M$ 为 $D C$的中点, 将 $\triangle A D M$ 沿 $A M$ 折起, 使得平面 $A D M \perp$ 平面 $A B C M$. 求证: $A D \perp B M$." ['连接 $B M \\because A B=4, A M=B M=2 \\sqrt{2}$\n\n$\\therefore B M \\perp A M$\n\n$\\because$ 平面 $A D M \\perp$ 平面 $A B C M$,\n\n平面 $A D M \\cap$ 平面 $A B C M=A M, B M \\subset$ 平面 $A B C M$ ,\n\n$\\therefore B M \\perp$ 平面 $A D M$\n\n又 $\\because A D \\subset$ 平面 $A D M \\therefore A D \\perp B M$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAR0EAAMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopMigBaKMijNABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUZoAKKKM0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUZ7d6M0AFFFGaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooozigAoozSZoAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBDXnPxAvvGWkk3ekXdulr0CuuT/ADr0euO+I3/IvH6n+VAHF6HN8U9d0qO/t9TsFjc4wyc/zqGHx/4p8K681n4qxcQEhVeBMLn613nw1GfBVr6bmpfiHo9tqXha7eZAXijLKcd6AN/R9Xtta06K9tWzHIMgZ6Vfrxb4Oa+troVxFdShYrWINyfpXrml6nDqtlHdQcxuMg5zmgC7RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACGvIPiFP4z0W5a5steEduxLCML0FewV5r8Wv+QfH/ALhoAztO8PfEe/02C8XxciiVN20oeKy9M8feIvCmrNYeKBNcoWIWdhhcfia9Y8M/8i1p/wD1yFcX8ZdLguPB9xdsg86PAVvzoA9Csb2HULOK5hYMjqDxVkHNeffCO/kvvCp8wk+WwUZ9Oa9BFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBk+IbbUbrTHTTLsWs4BIkrxnSPHXiXQvGf2HXtSa5tD8oYjjJOBXvE3+pkP8AsmvDvFXh/wDtKze4hi3TwzFyR6Kc/wBKAPcYJRNBHIpyGUEYrjviP4ln8PaEZrOTbcEkcdRxR8O/EI1fw0HkOJISykH/AGa5nxkjaxcXzt81skTbfTIzQAvwyuPF2v2q6tqGtiW1kJAhK9MV6yOlec/BkY8EwD0dv6V6PQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVHPMlvC8shwijJNSVyHxG1CXT/C87REgujLx+FAHKa14x1nxLrbaR4YkktjC3z3K8qRU8lt468Mxtd3urPqqDnyolINL8FrNR4aivWj/fSp8znvXqDAMpU9DxQBxfgTxLeeIZLx7pHiKAEQv1Wu2qlaaVZ2NxLPbwKkkv3yO9XaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuO+I3/IvH6n+VdjXBeM/A+teJ5mFtrxtbY4/dFf/AK1AF74af8iVa8fxN/Ss74l+LLHTNEnsFnRrqZSnlg8isWw+GXi/TLRbW08ZtHCvIUIf8K5nxD4OfR73fq+pDV9Quj5cWRzE3Y0AYHgrT7/URDY225Ff5btR/d969Ck1XUvA7TR2yyXenW3/ACzjH3F966nwB4TTQ9IWWdB9tlXErkcmuZ8TQaj4e1qWaYvc6ZftiZeixqPWgDe0H4o6Tq8atcFbMEf8tHFdnaahaXybrWdJVxnKHNeIz+AIZ7q31HT1F7ZTHcI0HCD3rpP+EK16wt47vS9Ve2TG42wXn6UAepZpa8utfHGvaPKLbU9FuXQcG4YjH1611+meNdE1JVVL6ITHgx55BoA6Kimq4dQynIPQ06gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzX4s82MY/2DXpJ6V4H40/4RfU9auY77xtcQPHIQ0IAwntQB7N4ZI/4RjTyenkg15j8VvFdvqls3h7TZFnuJTgqvUEHFcnDL4dgiWKP4l3qovAUAYA9K3PCuq/Djw88k9zrseoXTNkTTKNwoA9J+H+gNoPhuOJvvygOwPUV1lcGvxf8AA6qFGsRgDoAKX/hcPgj/AKDMf5UAd3RXCf8AC4fBH/QZj/Kj/hcPgj/oMx/lQB3dFcJ/wuHwR/0GY/yo/wCFw+CP+gzH+VAHd0Vwn/C4fBH/AEGY/wAqP+Fw+CP+gzH+VAHd0Vwn/C4fBH/QZj/Kj/hcPgj/AKDMf5UAd3RXCf8AC4fBH/QZj/Kj/hcPgj/oMx/lQB3dFcJ/wuHwR/0GY/yo/wCFw+CP+gzH+VAHd0Vwn/C4fBH/AEGY/wAqP+Fw+CP+gxH+VAHbz8wyD/ZP8q4rw/ClzLdxOoKv5gwffP8AjWR4g+JXg7WdNa1g8S/ZXJ+/GBmuI0DUfC2k6h9rbx5cSDdny2AwRQBbi1WbwL4xuNMkUrazoQnYbm//AFiu1u7E2vgCZ5lPmsrksx5AIyKw9c8VfDnXbmG4udZi82Mqd23JOCP8Kq+LPE/g3xLbLbxeL3s4hgFYwMEelAHT/BrjwVB/vv8A0r0YV4B4R1Pwf4UuN0XjeaaEdIWAC16IPjB4IA/5DMdAHd0Vwn/C4fBH/QZj/Kj/AIXD4I/6DMf5UAd3RXCf8Lh8Ef8AQZj/ACo/4XD4I/6DMf5UAd3RXCf8Lh8Ef9BmP8qP+Fw+CP8AoMx/lQB3dFcJ/wALh8Ef9BmP8qP+Fw+CP+gzH+VAHd0Vwn/C4fBH/QZj/Kj/AIXD4I/6DMf5UAd3RXCf8Lh8Ef8AQZj/ACo/4XD4I/6DMf5UAd3XO+NNLOq+HLqJATIsZKgVjf8AC4fBH/QZj/Kkb4v+B2BB1iIjHIIoA5f4SeIE06M+HNQIgnt1wA3XNeu3d3DZWslzcSBIkGWY9hXlk+meFviNftJ4d1f7New/PJLAo3H61es/hbqEN3HJdeKr67hU/PDLjDj0PFAHY6Hrp1uSd44QLUf6qYHhxW3VezsoLC2S3t41SNBgKO1WKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiio5pVhieRzhFGSfagChrurw6PpstzK4DBTsU/wAR9K4HwfpE/iTWJPEWoqxhkw0MT8hCDVfUri48deKv7PtmK2Nqwk3r0f1B/SvUbKzhsLVLe3jEcSDhRQBOBxVPVNMt9WsZbW4QMki7TmrtFAHk1hd3ngHXzZXZZ9NuGxEW4WJa7rXRdaloLT6TcurumUKfxVN4i0C217TJLeZQJCuEkxyv0rhfDGuXfhfWToWrlhE77LV3P3wO9AFzQfFH224XQ/EVkI7j7ieYeZPetLVPh1pd3mTTkjsZj/y0jUZzXStpWnXN1FfNaRPOnKSEcis3xF4lTw4FkmjAthjc/pQBxbaT4u8LOZILq51ZAciM8CtOw+JaxOI9etF04jg72rstI1iz1qzW4tJRIhAzjtUd/wCHdK1NSLqxikJ7sKAH6brum6ugayulmB/u1pZrznUvhtOshn0rVp7UjpHGOKpRa14v8Nt5dzpZuLVes7tzQB6nRXGaV8SdCvnW3muljuj1jrrobiKeMSRsCh6GgCWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBDXjvw50bTtU8W+LWvrKC4KXmFMiZxwK9iNeV/Cr/AJGvxh/1+f0FAHdDwj4f/wCgPaf9+xS/8Ij4f/6A9n/37FbQ6UUAYv8AwiPh/wD6A9n/AN+xR/wiPh//AKA9n/37FbVFAGL/AMIj4f8A+gPZ/wDfsUf8Ij4f/wCgPZ/9+xW1RQBi/wDCI+H/APoD2f8A37FH/CI+H/8AoD2f/fsVtUUAYv8AwiPh/wD6A9n/AN+xR/wiPh//AKA9n/37FbVFAGL/AMIj4f8A+gPZ/wDfsUf8Ij4f/wCgPZ/9+xW1RQBi/wDCI+H/APoD2f8A37FH/CI+H/8AoD2f/fsVtUUAYv8AwiPh/wD6A9n/AN+xR/wiPh//AKA9n/37FbVFAGJ/wiPh7/oD2n/fsVDc+GvDVrC8suk2aooJJ8sVuXE8dtE0kjBVUZJJrynWdXvvHWrHStL3Lp6sRLKuVO4HpQBj3+kWHjjWhY6RpVvFYRt888aYYMD0r03TvAugWdlHA2mW0hVQCzRjOav6DoFrodgsECLnALNjnNa9AGJ/wiHh7/oD2f8A37FL/wAIj4f/AOgPZ/8AfsVtUUAYv/CI+H/+gPZ/9+xR/wAIj4f/AOgPZ/8AfsVtUUAYv/CI+H/+gPZ/9+xR/wAIj4f/AOgPZ/8AfsVtUUAYv/CI+H/+gPZ/9+xR/wAIj4f/AOgPZ/8AfsVtUUAYv/CI+H/+gPZ/9+xR/wAIj4f/AOgPZ/8AfsVtUUAYv/CI+H/+gPZ/9+xR/wAIj4f/AOgPZ/8AfsVtUUAYv/CI+H/+gPZ/9+xR/wAIj4f/AOgPZ/8AfsVtUUAYv/CI+H/+gPZ/9+xR/wAIj4f/AOgPZ/8AfsVtUUAYv/CI+H/+gPZ/9+xSf8Ij4e/6A9n/AN+xW3QaAPJvBNpb2Pxg8TW9rCkUSxqAiDAHJr1kV5Z4T/5LR4p/3B/M16nQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAHevPfHviOTcmi6Yd93K22UA/dU8ZrpPFWvQaFpTSyMN8gKIO+49K5fwFoE11O/iHVFJupxt2HoADwf1oA6Twh4ci8P6RHDjdORl5D1Oa6KkHSloAKKKKACuY8X+Fo9f09zGNl2i/u5APmH0NdPRQB514K8USwXTaDq3yXETCOEk8sBjkk13V5p9rqNu0NzCkqEYwwzXJ+OPCTalCNR00bNQhB8vHygk9yaXwT4sGpQNp94dl5b/u2B6kj60AWNH8Fpomsfara9m8g5JhPC/SujfULaK8W0eQCZhkAnqKtda47xh4QfWXF9a3M8d3GMIqNgGgDscg8jBpksMc67ZUDr6GuX8HXWvSWrQ6xAiNGSqlTnIHSuryOeaAOb1XwRpOoodkKW0h/5aRoAa5KfwZr3h+Qy6Ne3F7jpFK5Ar1KjFAHmVr8QNV0phH4msktR0zHlq7HSPFuka2oNncFs/wB4YrRudNs7wET20UhPdkBrj9X+GljeuZrW6ntXHISE7QaAO6DKehBpc15UIvG3hc4tYI7mzHBaVyWxWrpnxO09pBbaissdxnB2xHbn60AegUVUtNStLyJXhmQ7ucbhmrdABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhryv4Vf8jX4w/6/P6CvVDXlfwq/wCRr8Yf9fn9BQB6qOlFA6UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFRzTJBE0kjBVXqTwKJZY4o2eRgqDqTwBXlniHXb3xhqn9h6QSLbdtlcg4yPegBmu61feN9VOi6VuWyyRLIAVOR6GvQfD3h+20GwWCFPnIyzHrn60zw34ctdA09IYUBkIy7Nyd1blABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQaKDQB5Z4T/5LR4p/3B/M16nXlnhP/ktHin/cH8zXqdABRRRQAUUUUAFFFFABRRVW/votPtjPMcIKALVFcaPiRorEhC7YOMrzS/8ACx9H/uyflQB2NFcd/wALH0f+7J+VH/Cx9H/uyflQB2NFcd/wsfR/7sn5Uf8ACx9H/uyflQB2NFcd/wALH0f+7J+VH/Cx9H/uyflQB1Vxe29qVE0ipu6FjgVJHLHKu6N1dfVTkV4p8SPFdpr8dtY2K3HmSDAK5AHPrUmlXnivwZptrPdf6Tp5QZVFLPigD2qiuZ8PeNNM16EFHEMvdJWCt+VdKGBGQcj1oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKgurhLW2knkYKqKW5OM8VMTjJPSvMvG+s3Otaonh3SnzKCryOORtzyPrjNAFK2im8f+KWnfd/ZMRymOMupNerwxJDEsaKFUDGBWb4f0W30TS0toFx/ExPXJ61rUAFFFFABRRRQAUUUUAIRkYIB+tec+NPDM9ldJ4g0cbbqD+AfdYn1Ar0Ce9tbXH2i4iiz03uF/nVV9Z0hwVbULMg8YMq/40AZfhHxPBr+nj5gLiLCSKeDu78V0nUV5B4ijg8Ma0ut6LfQSQg/vIVlDEk+wr0nw/r1trumx3MLgsQNw9DQBqbQoO0KD9K8913xBr/hrWhcXESvpZ4+RdzV6L1qGe1iuYyk0aupGORQBT0XWLfWtPW7t92w8cjFaVULWyt9GsZFgVtihnx1NYmjeOdO1S8a0KyQSqf8Alt8ufzoA6qikUhhkHIPSloAayK4wygj0IrK1Pw3p2qQlJbeNCf40QBvzrXooA8yu/hrcaZM1zoV3cNMTkLNMxX8iaiTxZ4n8OHGvW0bQLwDbxljj8BXqVRSW0Mv+shjb/eUGgDmtE8eaTrOAheFj1Ey7P5100c8UvMciOPVWBrlda+Huj6xud1ljfqPLfaP0rmn8NeLPDvOjXETWq/wync2KAPU80V5pY/Et7KYWur2VyZzwZEibZ+ddtp3iHTdRiDxXMSk/wM4B/KgDVopAwYZU5HqKXNABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhryv4Vf8jX4w/6/P6CvVDXlfwq/5Gvxh/1+f0FAHqo6UUDpRQAUUUUAFFFFABRRRQAUUUUAFFFFABUcsscKGSRwiDqzcCllkSKNpJGCooySa8v8TeJLzxJqX9haIW2Mdk0q/MFoAb4k8QXnivUxoWjZWEsUllxkfmK7bwx4ZtvD+nrFGuZmAMjHnLetM8K+F7bw9p6oig3Dgea/qfWuiFAABiiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoNFBoA8s8J/8AJaPFP+4P5mvU68s8J/8AJaPFP+4P5mvU6ACiiigAooooAKKKKACuV+IGf+EYlwTywHFdVXOeNrKa+8PyxQKzP1AWgDk/AXgvRp9A82SF2dnJJLV1X/CC6F/z7N+Y/wAK838N694m0TTmtG0u6fDnBC1s/wDCa+JP+gRd/wDfNAHX/wDCC6F/z7N+Y/wo/wCEF0L/AJ9m/Mf4VyH/AAmviT/oEXf/AHzR/wAJr4k/6BF3/wB80Adf/wAILoX/AD7N+Y/wo/4QXQv+fZvzH+Fch/wmviT/AKBF3/3zR/wmviT/AKBF3/3zQB1//CC6F/z7N+Y/wo/4QXQv+fZvzH+Fch/wmviT/oEXf/fNH/Ca+JP+gRd/980AdjH4I0SKVZEtjuXoSa3BaxCERbAUAwAfSvKJ/iVq+n3kEd7pl1Gkh+8RwK6698f6ZY6XDceYs9w6ZEKONxPpigDP8S/D6xmLahYSfZrxeVdnwo/Cub8P/EDU9L1ddJ1Mm/6hXthwAPWp/O8U+OZSIGksLE/eSVPvD2rsvDfgTS9ACzRxZuurPnvQB08EvnQJLtKh1Bwe1SUAYooAKKKKACiiigAooooAKKKKACiiigAooooAKM0ZqlqmoQaZYyXNw4RAMZJxzigDB8beJ00LTCsfz3MhCBBycHviqPgHwy9hbHUL/wCe9lJYMeynpWD4bsrjxp4ibXb9GFtEWjWNh1xwD9K9VRAiBFGABgUAOHSiiigAooooAKKKKACiiigDjvH3hrT9Z0eSe7WQvEvy7H21558P/hzoOuwXrXyXLGGUKuJiMCvWvFX/ACL1z/u1434M0XxnenUZNE12K0hE3KsmTQB2E3wo8PwSh9JZluRnAkl3fpWbJZXvw41aKeEl9KYZlRRnDEitbwdpHiLT9a/4nlx9rfPEirgV3up6bb6pZPbXKb0bt70ALpuowanZpcQOrKwBO05wfSrleSWFzefD7XTY3RZtMlJYP/CCTwM16tbXEdzAssTBlYZyKAJCM1yXiLwNZaxOl3GpS6Vg27dxx7V11FAGdpscun6YqX0qb06v0GKt293b3UfmW8ySp6oc1Hf2Ud/ZSW0oysilTXm0Gm6/4N1aKO1eS40yR9qxIvKc9SaAPU6Kjhk8yIPtK5HQ1JmgAoo60UAFJj8vSlrIuPFGh2krRT6nbRyLwVLjNAFq90qz1CIx3ECEHuFGa4rUfhjZxyfaNHZ4LjqC8hIz9OK76KaOeNZInDIwyGHQ08+ucUAeVfa/GnhdgdRlS8t16LDGc4+ua3tH+JFhqBCXNvNZsOCZ+Oa6G68R6HaS+TdajbRyHja7c1R1HwpoPiWLzZ4lmU9GVuKANu21C0uwDb3Ecuf7jA1azXmNx4D1zR2L+HNSS1jH8BUk4/CmW/jjW9Dk8jVtNuroDgzKmBQB6jRXO6Z4z0fUFUG6ihlI/wBU78it+ORJUDxsGU9CKAH0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACGvK/hV/wAjX4w/6/P6CvVDXlfwq/5Gvxh/1+f0FAHqo6UUDpRQAUUUUAFFFFABRRRQAUUUUAFNd1jQu52qoySaHdUUsxwB1NeaeK/FNzrF9/YOh7nZm8uaWM/6r3NADPFPia717UF0PRdxDNsmmj5Efua6zwp4UtfD1llVDXUoBml7s3rTPCXhODw/ZhmAe7kA82QjljXTigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACg0UGgDyzwn/wAlo8U/7g/ma9Tryzwn/wAlo8U/7g/ma9ToAKKKKACiiigAooooAKKKKAExRilooATFGKWigBMUYpaKAExRilooA4r4geGrvxHaxQWkvlPjG/GcVS8M/DCy05Yp9S2XVyg+V+RivQqKAI44kijWNFAVRgAVJRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUZoAa7BQSegHNeV+JL+fxl4hTQ7JibIcySDlQVPT61vePfEz2FuNMsCW1CbBVF6kd6u+CfDCaHpnmSANcTnzGY9QTyaAN7TNOh0yyjt4VACgA47mrtIOlLQAUUUUAFFFFABRRRQAUUUUAcz411fT9P0KZLu6jiZ1+UMetcJ8M/Fug6fb6iLvVLeEvNldx6ivS9X8NaTru3+0rKO42jA3dhWDdfD3wRZQGW40e1RFHLHNAEmp/Efw9Z2bS2moQXkwIAijbk1rJ4js00xb29dbVGUMBIa8u1NPCUV15Phvw5Bfzg4DRdVP51s6X4H1TWjHcazeyC3UcWkg4UelAFHxd4ibxZE2mafpUlzGPmFxHgjI/Guf0nx1r/gaZbHVdPubiMnC5wMZ6DrXt+l6Jp+jwiOytkiA64HWsjxh4Ut/EWnMMKtwnzrJjnI6CgDS8P6w2t6Ul69s9uW/garf9qWXnmD7TH5o5255rgfBHiOSzlbQNWBjuEJKlzyR2rS1zwLcaldNd2GptaSkfeUUAdt1oxmua8LaPq+kqY9S1OS9IH3mFN1zxadFu/LktcxZwZCaALviU6kmnmXTnYSRgnao5b2rB8LeOPtsi6fqsRtLwfKBKeXPtW5o/i3R9bYx2l5G8wHzIDyKnn8O6XcX8d9JaI1wjbg/vQBq0tYOveJIfD8lt9oAEUp+Zyfu1p6fqVpqdss9nMssbDIIoAtEZrxf4r+CNOuP31jaBL2QFt69Sa9prjfFgDaraAjOVIxQBh/CPxFLf6TLYXRxLbOI1BGCcV3+rXyafp0txIcAAjPv2rxxYJfBnj2zl3lbO4DO57A5GK7zxJeDVmt9MibP2iMS8f596APHtM0qHX/imkOrwmaJlZ1Vj78V9GafY2+n2qwWsYjjA4ArxiyhFv8YbKPGMWxB/SvcE+4v0FADqhuLWK6iMcyBlPUGpqKAOJ1P4aaLcu09lbpb3R/5acmsGXS/GHhlvMi1CS/t1+7BGuK9UoxQB53pfxJk3LFq+lzWGOrzED+tdlYa/pepqDZ3sU2f7hpup+HdL1dSL6zjmz/eFcdf/AA2lgcy6FqJ0/b0SMfpQB6LmivKo9b8WeGHENxp9xqcY4aYn9a6TS/iJpF1tjvZ47W4P/LJjzmgDsaKht7qG7iEkEiuhGQR3qagAooooAKKM4ooAKKM0UAFFFFABRRRQAhryv4Vf8jX4w/6/P6CvVDXlfwq/5Gvxh/1+f0FAHqo6UUDpRQAUUUUAFFFFABRRRQAU1nCgsTgDqaGYKCScAda858X+LZ7y8OhaKPMuHOyUqcFAe4oAZ4t8V3GpXp0HRAZJWOyaRDzEPWuh8IeEodBsg82JbyQDzZW6tTfCHhCLQrUS3H768cfPI4+ausoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKDRQaAPLPCf/ACWjxT/uD+Zr1OvLPCf/ACWjxT/uD+Zr1OgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAM1k+Itct9A0mW9nYAKMAGtOWVIkLuQAOcmvKLiWbx94qWCPd/Zduxjmx0JzQBd8GaHPrWqyeINVBLq7CANz8h9K9MXhcdKhs7SOytY7eIAKihR+FT0AFFFFABRRRQAUUUUAFFFIWAHJoAWmvIsaFnIAHXNcv4g8daVohMDTBro8ImMgmuS8vxT42lxMkmn2Lfckibll9aAOg1z4i2NlIbXTNt5e5wIhxzWDb6B4k8W3IudSuZ7C3znyAcqwrr9C8FabpCK0ka3FwP8AltIvzZ9c10oUKAAMAdBQBi6N4X0zRY1+z20YlA5kA5JraxS0UAFIRmlooA4jxv4SOpx/b7BjDfRkOZEHLAc4p3gjxb/asQ069HlahGDuiJ5x2NdoyhgQRkEYNedeNPC1xbXQ13R9yXCndKqcfKKAPReoqrd6ZZX4xdW8co/2hmsXwh4qg8RacjEhbkcOnpiuloAyLHwzpGmXLT2VjDC7dSo61S8WWGp3kMLabcSRPGckJ/F9a6SigDyuNvEN7dRaXq3h/wC020h2m4kPKj1rY0zw8fB1xcXtxqsi6fuysRHyoPSu7IHftVa+sYdRs3t51BjcYIIzQBSsfE+kakyLa3aOz8gVwvjHxv4fttdgil1BFaLIbPY1znjbw7p+ib7uz1q4guI+VhjGBVTRvHvhRtKYa5p1sbyMYR3TJk9zQB13jS0tfF/gs3ukyiWaNV2sg57mq3w9a4a0bVNZzE1mfJDMe3+RS+B/iTpuu6wNFt7KGFJD8qovBArvtYu9G8O6PNc6gscNnkeYAOp+lAHiR8YaGvxah1Br1BbLGUZ/Q8f4V77p9/bahapPayCSMgYI+leZr4u+FUs4xDamRmwP3PUn8a9Mt/stvYiSBVSAJvG3+7jP8qALdFcLJ8X/AAbDK0T6kQ6kgjZ3FdRoevaf4i05b/TZvNt2OA2O9AGlRXJ618R/DPh/Un0/Ub7yrhBkrt/z6VZ8PeOdA8U3MlvpN2ZpI13MNuOKAOjorE8ReLNI8LQRTatc+Skp2qcZ5rGsfip4S1G+hs7bUS08rbUXb1NAHYyRJKhSRQynqDXO6p4H0XUAzrZwwznkSqvINbeoahb6ZYTXt0+yCFdzt6CuN/4XF4L4/wCJmef9igDJuPBfiHQpjcadrFzdR5yLfoB7VNa/EDVtLPl6/pItIl481m6j1r0Kxv7fUrGG9tX3wSruRvUVxWs/EPwKt3NZancI0sRKurpkAj8aAOg0jxjoutBVs7xJHPVRW8CD0rxe+l8F6tZTX2kay9kiEZNuuDn86u2reLdDtkn06N9TtXUFZJXxketAHUeOfG6eGrfyII1mvZMBYs888ZrktN8DeK9Ytv7RufE99ZmQ71hGMYPIFclY6peeJ/ila/2hAAyxkGI9AcivoqBQkEagYAUDH4UAeRXereJ9Eu4dOvEm+y71H2xjyefavXYGLW8bHqVB/So7mztrsAXEKygHIDDPNTgYAA6CgBaKKKACiiigBDXlfwq/5Gvxh/1+f0FeqGvK/hV/yNfjD/r8/oKAPVR0ooHSigAooooAKKKKACmswVSW4A70MwUZJwK8/wDGXjF1n/sbSMS3rna+BwFPvQBH4y8XTS3P9haN+8u3O2U9NoPcGtbwd4Pj0W2E91mW9cfO7jJ/OmeDPBqaNbi6vMy3sg+ZnO73rs6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoNFBoA8s8J/wDJaPFP+4P5mvU68s8J/wDJaPFP+4P5mvU6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiud8X+I4/D+kSzAgz7SUXufwoA5vx9r013NH4c0xibm6BG5T0P4V0/hbQItD0pI1QCdwDKT3auc8B+HJDJLrl+C01yfNjzztB9PSvQhQAg4paKKACiiigAoopMigBaQkAZJwKztU1yx0m3aa5mUBeoU5P5VwF54y1nxLObXw5B+5b7zTIVOPagDtdb8VaZoUJe6m57BRmuEn1nxL4zl8vTbdY9OY/64MVcD8q1tC+HUcc4vtUnmluW5aNm3ID7A13cFrDbJsghjjXGMKuKAOS0D4fWOmAS3cjXk55JnG7B9q7COKOFAkaBFHQAYAp9FABRRRQAUUUUAFFFJkCgBaZJGJEKMMqeCDTty7tuRn0zWdrGt2miWv2i7LhOnyrmgDz7xNol34V1j+3dJBMUjYni6KqjkkAfWu80DX7TXdLjvIJBtI5ya5UfEPStduRp1vDMyudrF4jwDXMeIdM1DwVqUlxYM/2C6+QAE4UdenbrQB7BLfW0GN8yAnoNwpJ7pVsnuE+ZQMivNPD/gS31uGHVZ9Uvcn5gizEj8s16Za2iW1otuCWRRj5jnNAHnt/4q8XXd1JBo+mQSoDjLkg/wAq7XQjqTadGdTiWO4K5ZVORmtFLeKM5SNVPsKfigDmZPBOn3F/Jd3DtMZG3FHGQK0B4X0MBQdLtDjv5YrXooAzbbQNJs51mt9Pt4pV6OqAEVburSC9gMNzCksR6o4yDU9FAGQPC+hqQV0q0BHI/ditTy12bNo24249qfRQBknwxobMWOlWmSck+UKv2llbWMAhtYEhjHREGBU9FAGddaDpV7OZ7rT7eaU9XdASafZ6Pp2nOXs7KCBjwTGgBq9RQBVvdNs9RRUvLaKdVOQJFyBVWHw5o0EySxaZapIhyrCMZFalFAEU1vHcQtDMiyRsMMrDINZv/CL6ED/yCbQf9shWuSB1rC1/xTp+gW7SXEmWx91PmP5UAawFvZW6ooWOFBgKOABXmHiXXNIu7uSz0PR7W71B2wxkixlvrTHPiDx/N08jSieHQlXK13egeFbDQbdUiQSSAf6xxlvzoA4zwr8M4o5ft+pRiKRzvNuozHmvS0gjjtxCqAIBgKBxUuMUYoA8N8eabceFfG1v4htIP9FC7XIHckf4V63oWv2OsaXFcwTqRtXduIGDirt/p1tqVs0FzErq394Zrz1/gtpPmu8Wq6lErEtsSYgA/gaAOm1XxRs1JNM0sLPenBIP3dv1rpYyTGpYYYgZHvWB4b8I2Xhq38uGSS4fP+tmO5/zNdCKACiiigAooooAQ15X8Kv+Rr8Yf9fn9BXqhryv4Vf8jX4w/wCvz+goA9VHSigdKKACiiigApCQM56YzQTjrXB+NPGbWZGmaXmW9kIU7OcA8UAM8aeMpLeQaTpWZLyUhWIXcMGrfgvwYukRfbb397fSD5ix3Ad6Z4K8GjTE/tHUAJL+UZJOcYPI6124GBigBQMCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKDRQaAPLPCf/JaPFP+4P5mvU68s8J/8lo8U/7g/ma9ToAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopGIAJJwBQBXvr2GwtJLmdgsaDJJry/TYbjx34sN9cA/YrGXCL0Djg/j1qz4w1ibxFrEPh/TmPlM3l3LLzj8a7zQtHi0bSoLSJQCihWPrigDQhiWGJY0GFUYFSUUUAFFFFABRmoZ7qC2jLzSqijuxxXDa98RIoJDaaZDLPOeBJGu5RQB2t5f21lE0k8qIFGcFsGvP9T+IdxqF22neH4JDc9N8kZKfn0qtaeD9a8UTLdeI51MBO5UiJU16BpehWOkWywW0Q2r0LcmgDh9M+H13qdyt94jndpuuyKQ7fy6V39nptrYwCKCGNQO+wZNW8UtAAOKKKM0AFFJkUySeKEZkcIPU8UASUZqJ5lWIyA7lxn5e9cBqXxMjju3sbXTrxplbbvEZKigD0PNVrjUbS2UmW5iQgdGcA1Q0C+utQsDLdIVY9Ay4NYWrfD2y1zUfPvnlKeiSEUAdJp+s2mpFhbOG2nBIrC8Uah4ihufI0VYtxA5cVr6J4bsdAg8qyD7f9ps1rlQTkgZ9aAOL8Maf4qj1I3euSQEMuMR102p6Tb6vCkdyCVVtwq9iloAp2ul2dogWK3iGO+0ZpNU02DVLGW1nUFJF257j6VdooA8ksbm6+HuvfYbgM2mTNshOCSO/J7V6tb3EdzCssTB0boQc1meIdBt9d0+S3lRS5GEbpg1wfhjW7rwpqh0DVSTbgiO3Y8D8zQB6pRTUdZF3IQynoR3p1ABRRRQAUUUUAFFFFABRRRQAUUUZFACZqOe4it4y8rqijuxxWJ4g8WafoVuzSP5snaOM5b8q4ZIfEHj643yH7PpZOfLddrEUAaWvePpbm7OmaBG73RO3e0ZKfn0p+g+AJJLpdT16R5LwnfsV8oD9K6nQvDGn6BbCG0j6DBLnca2sUARwwRwIFiREAGPlXFS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAhryv4Vf8jX4w/6/P6CvVDXlfwq/wCRr8Yf9fn9BQB6qOlFA6UUAFISAMnpQSBya4rxn4wGlp9isMzXz8BI/vYoAj8Z+MfsC/2fp2Zr2TC4j5Iz7UngrwcbH/iZ6liW/kyQcfdU+3rUfgzwc9rINW1VvPv5MkMRyqnnFd8BgYFAABiloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoNFBoA8s8J/8AJaPFP+4P5mvU68s8J/8AJaPFP+4P5mvU6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5Dxz4lGk2Bs7Y5vbkFYsHoa6DWNUh0jTZruZgBGucHvXnXhjS5/FmvvrmoBmto38y0DdFoA3/Afhk6daNqV2M3t4A8hbrn/IrtaQDApaACikJAGT0rm9c8aaZo6MqzRz3I6QK3zGgDopJUiUvIwVR1Jrkdf8f2Glgx2qNeyngCBskGuZFz4p8aT7bczabZk8rIDhv85rq/D3gPS9EInEKtd9WkHc0AcpDpfifxjMJr248rTSc+Q6EN+ddzoPhHS/D8QW0gw3dm5ya3QAo6UZoAAAOwpaZLNHCm+Vwi+pqvbanZXkhjtrmOV15KqeRQBbzRXK+KPFV3oYCWuk3F47HAMXas7w9qPiHU70y3STW8B52SDpQB2d3e21lH5l1OkSernFc+3jjTWv4rW3IuDI2N8bggVpa54fstfhWG9jEka9j3qlpXgbQdGKtZWSxsO+aANPVDdyaVK1g2y4K/ISM4rgIvCvjPUZd+qatBJCTkIIyCB+denAYGKAMelAFaytTbWEVs7bti7SaWGwt4S5SMZc5ORVmigBAMDAwPoKWiigAooooAKKKKACiiigArmfF/heHX7EuqgXcQzC/o3r7101JigDzrwV4nntrhtB1ditxBiNXc7d59q9FBBHFcT448J/2jGup2I231tl0IHJNL4J8WjUom06/Pl31vhG3nl29qAO2opM0tABRRRQAUUUUAFFITgZrnPEPjHT9DjKeYk112hVvmzQBu3V3BZxGW4kWNR3Y4rz3XPHN1qFwdN0CGUyngXCjK1QgsvEPju48y7d7TTic/Z5VPP5GvQNC8Nad4ftVhsYBGAOaAOW8PfD/9+uo684ub0/NuTIGfpXexwpCgSNVUDjgYp+KWgAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACGvK/hV/yNfjD/r8/oK9UNeV/Cr/ka/GH/X5/QUAeqjpRmkzXIeMvGMWiw/ZbUCfUHGUhB5PY0AM8Z+MY9Ii+x2Q8/UH+5Eh5x34qj4O8HOko1fV2M16+ShfqgPameD/CErTnWdYJmunO5BJ1QHsK9DVQqhR0HFAAowoA6UtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQaKDQB5Z4T/5LR4p/3B/M16nXlnhP/ktHin/cH8zXqdABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU2R1jQu5AUckntTq4Px94kaCNNHsTuuromJtvVM96AMTXby58aeKE0uyLfY7WT9+y9HWvS9N0+HS7CKzt0CxRjCgVh+C/DY0HSU80brx1xLIerVsaprNho8Bmvp1iQDqaANCsbWfE2maLGTdXUayfwxk8muJ1Dxtquuy/ZNBsWkgc4NzGfuj1q1pHw/yft3iC8a+J+bZN/B7UAZ9z4h8ReLrg2ul21xYwE4FyOVI9a3dE+HdnbOtzqpW9vOvmnqK1k8Q+HNJZbOO6hhx8oRa0769li003VnD9oYjKqD96gC3HGkKKiKFVRgAdqcSFBJ6DkmvMZH8Ya7csvk3Gmpu4KntXoWmWs0FgsV1O077cFm60Ac9qfxB0u0kaK0lju5QcFEPOa1fDetTa7pv2qaze1YkgI/U+9Ni8IaDDcNOmmwiRjuLY5zWxFDHAmyJAq+goA4vX/Ceu6xrDSQ66YbMgfuMVr+HfC8WhEybxJMRgvjrXQ0UANMak5I5pcUtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIRmvOvGnhiazuRr+jKUnhO+SNBzIa9GprosilXUFT2NAHN+EfFEOvWADsFuowBLGTyreldMK8s8TaLd+EtWGvaUG+z5L3ESdGPv+Vd54e16217TkuIXBk2jzEH8J9KANeijNITjr0oACcVXvL63sIDNcyrHGO7Vz/iPxrp+iKYVkWW7I+WHPJzXI22k+IfG92LnUZJrCzznyOzAdDQBa1jxvfazc/2f4ft3lUnH2qLkDsfyrQ8P/D1IpFvdblF9dnnc3UV1Gj+H9P0S3EdnbpGcclR1NatADY41iQIgwo6CnUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTJpkgiaSQ4VRkmgBxryv4Vf8jX4w/6/P6CvSbPU7TUGkFtKHMf3sdq8F0rxxbeDNc8X+aG+1S3WYUKnDcCgD1jxj4vi0G28iDEt/IP3UOfvGsbwf4RmuLn+2tZLSTud8aSDOwEdBXB+GPGPhqXUpNW8QXkxud25Y2j3BPYV6Gnxh8GIoVb2QKOAPKoA75FCKFAAA6AU6uB/wCFx+Df+f6X/v3R/wALj8G/8/0v/fqgDvqK4H/hcfg3/n+l/wC/VH/C4/Bv/P8AS/8AfqgDvqK4H/hcfg3/AJ/pf+/VH/C4/Bv/AD/S/wDfqgDvqK4H/hcfg3/n+l/79Uf8Lj8G/wDP9L/36oA76iuB/wCFx+Df+f6X/v1R/wALj8G/8/0v/fqgDvqK4H/hcfg3/n+l/wC/VH/C4/Bv/P8AS/8AfqgDvqK4H/hcfg3/AJ/pf+/VH/C4/Bv/AD/S/wDfqgDvqK4H/hcfg3/n+l/79Uf8Lj8G/wDP9L/36oA76iuB/wCFx+Df+f6X/v1R/wALj8G/8/0v/fqgDvqK4H/hcfg3/n+l/wC/VH/C4/Bv/P8AS/8AfqgDvqK4H/hcfg3/AJ/pf+/VH/C4/Bv/AD/S/wDfqgDvqK4H/hcfg3/n+l/79Uf8Lj8G/wDP9L/36oA76iuB/wCFx+Df+f6X/v1R/wALj8G/8/0v/fqgDvqK4H/hcfg3/n+l/wC/VH/C4/Bv/P8AS/8AfqgDvqK4H/hcfg3/AJ/pf+/VH/C4/Bv/AD/S/wDfqgDvqK4H/hcfg3/n+l/79Uf8Lj8G/wDP9L/36oA76iuB/wCFx+Df+f6X/v1R/wALj8G/8/0v/fqgDvqDXA/8Lj8G/wDP9L/36o/4XJ4N/wCf6X/v3/8AXoAyvCf/ACWjxT/uD+Zr1OvH/h5qtrrnxU8R6jYlmtpYxsZlxnk16/QAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFIxwCfSgDG8S65DoelSzyMBIVPlrn7zelcN4SsRczTeKtbYKsw3LG/ITHcVxnxI8X3D+LZbKSNvJtWDxrjhz6GuYu/Euo6/OFnklsrbP8AqoSdoFAHs2qfER76ZrLw3At7KTtYg4K1zGo2E9lLFeeJL6XfMcpZvyp9qzvBV5oXhaea7W5lmmmxuDp0/Guxu/H2j35Rrm0jnZOV3x52/SgCXwrrF+19Db2Ph+GCxY4aeM44rstf0aXWrFreK9ktSwxuTrXGQ/ES1gTbb26ovoFIqT/hZLn7tup/A0Aauk/D+ysHWS6k+2Ov8UoyTXXoixoERQqgYAHavOj8Rbo/dtVP4GkPxC1I/dskP50AekUV5qfH+sn7unxn86T/AITvxAfu6ZEfxP8AhQB6XRXmZ8b+Jz93SYT+J/wpD408XH7ujQH/AIEf8KAPTaK8x/4TDxqfu6Jbn/gR/wAKT/hLfHp+7oNsf+Bn/CgD0+ivL/8AhKfiIfu+HrU/9tD/AIUh8TfEs/d8N2h/7aH/AAoA9Rory3/hIviieP8AhGbTH/XQ/wCFH9ufE5uvh21H/bQ/4UAepZory3+1fiUeDoVuPpKf8KPt3xGbro0I+kp/woA9SzRmvLfP+ITfe0uMf9tD/hS/8V63WwUf9tD/AIUAeo5ozXl3keOW62mP+2h/wo+w+NTwYSPpIaAPUMijI9a8v/snxi3VXH/bSl/sPxYeC8o/4GaAPUMijNeX/wDCN+KG6zzD/gZo/wCEU8SHg3lwP+BmgD0/NLmvLz4N8QMedQuR/wADo/4QbW266ndj6NQB6hRmvLx8P9XPB1m9H/AqX/hXGpN112/H/AqAPT6K8v8A+FYXzdfEWoD6NS/8Kpum6+JtSH/AqAPSbm2iu4WhnjV426q3Q15TfRXXw+143sTFtLlYvNngJ6DFXf8AhUUx6+KtT/Oobr4Lx3kRiufEeoyo3VWORQB3kPibTH0pNQadVhZQ2c+oriNT8aal4knbT/DkHmwk4adDgqR2rlrP4e6ppfiy202W+upNNfJJY8YHTivZ9K0Wy0mBUtYI0OOWVcEmgDmPDngCGyYXWqSm+uSc5mGSue34V28aLGiogAUDAApw4ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5XxzqPkaQ9jExFxdKVjwe9dSSFBJrxrxP4+sYvGCR3kFzIljLx5MRYfoKAKHwu1i70bxDd6ZqjsHnkCpuOc9K9kk0LSZ5Wmk061d2OSzRAk187+MPF+k3Piaw1fS7a9iMTF5C8TKM19BeGtTTVdAtLtWyZIwTQA/wD4RzRcY/sq0x/1yFL/AMI7o3/QLtP+/Q/wrTooAzP+Ec0b/oF2n/fof4Uf8I5o3/QLtP8Av0P8K06KAMz/AIRzRv8AoF2n/fof4Uf8I5o3/QLtP+/Q/wAK06KAMz/hHNG/6Bdp/wB+h/hR/wAI5o3/AEC7T/v0P8K06KAMz/hHNG/6Bdp/36H+FH/COaN/0C7T/v0P8K06KAMz/hHNG/6Bdp/36H+FH/COaN/0C7T/AL9D/CtOigDM/wCEc0b/AKBdp/36H+FH/COaN/0C7T/v0P8ACtOigDM/4RzRv+gXaf8Afof4Uf8ACOaN/wBAu0/79D/CtOigDM/4RzRv+gXaf9+h/hR/wjmjf9Au0/79D/CtOigDM/4RzRv+gXaf9+h/hR/wjmjf9Au0/wC/Q/wrTooAzP8AhHNG/wCgXaf9+h/hR/wjmjf9Au0/79D/AArTooAzP+Ec0b/oF2n/AH6H+FH/AAjmjf8AQLtP+/Q/wrTooAzP+Ec0b/oF2n/fof4Uf8I5o3/QLtP+/Q/wrTooAzP+Ec0b/oF2n/fof4Uf8I5o3/QLtP8Av0P8K06KAMz/AIRzRv8AoF2n/fof4Uf8I5o3/QLtP+/Q/wAK06KAMz/hHNG/6Bdp/wB+h/hR/wAI5o3/AEC7T/v0P8K06KAMz/hHNG/6Bdp/36H+FH/COaN/0C7T/v0P8K06KAMz/hHNG/6Bdp/36H+FH/COaN/0C7T/AL9D/CtOigDM/wCEc0b/AKBdp/36H+FJ/wAI5o3/AEC7T/vyv+FalFAHN6rqOg+C7f7TLapbpJwTBDzx64rnV+NXhFyQst0SOoEJNdrrkEM2k3PmwxyYjON6g4/OvL/h1FpSeIdWW6SzXAG0ShOvtmgDqdN+K3hnVL2K0hlnWWRtq+ZFtGfqa7ZHV1DKQQehBryj4oQaC1hB9lCC858n7IB9732123gZbhPCOni6LGTyhnd1zQB0dFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBDdzra2ss7HARSx/CuQ8MePLbxHrNxYRlf3S5z+NW/G9/Jb6bHbwMN87+Ww9jXkU2nzfDzxnFdxlhFdMqEk5HNAHvE2jabcymWawt5JD1ZowTSDQ9KHTT7b/v2KsWV1Hd2sc8ZyrAVYoAoDRNLHTT7b/v2KX+xtN/58bf/AL9ir1FAFL+yNO/58rf/AL9il/srT/8Anzg/74FXKKAKn9mWI/5dIf8AvgUv9nWf/PrF/wB8irVFAFb7Baf8+0X/AHzS/YrUf8sI/wDvmrFFAEP2S3/54x/980otoR/yyT8qlooAj8iL/nmv5Uvkx/3Fp9FADfLUfwil2j0FLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAMMUbOHZFLAYBI5FPozRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcp488SP4f0SQxW80s8qER+WhYA++K5r4ZajZa1DPJc6ZKl6w/fG4iwCfbIr014kkxvRWx6gGkSGOL/Vxqmeu0AUAee/FOHTovDU8B01pJZUwhghzj8hXHfCPxheWk39j31heLGx2ws0LAAe5x9a90eKOT76K3+8AaattAjBkhjUjoQoFAEinIzS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAUtX/5BN1/1zNeJeFfAumeKPEeqG9kuV2AEeVKV/lXq3jPXP7F0eQ/Yp7kyqVCxAnFeR+EPG0vh/VL66uPD+puk4woEZ4/SgDU8WeBX8F2y6v4elZ/I+eQXTGTOPTNd58PvFLeJtDiklUCZEHmYGBn2rzvxd421PxlDFpGk6RfWqzjbI00WRj8q9E+H3hZ/DOhRRTEGZlG8j1oA7CigUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFMkcRozkgBQSc0+sPxTY6tqGkvb6RcRwTuMM0gyCD+NAHnGvxeJ/Eni2U+H5YPJiAYNLyO9Y3jfw58Qr7Slm1aewkhtiZMxIM8D2rtPAHhHxT4auXj1K/tprQ5IVFOQT75rq/FNhqmpaRJa6ZPHFK4IZpBnigDlvhJ4i/tTwzDbTuv2mMHeuea9FBzXiPhT4YeNPDeui+j1W0COw81Qp5XPTrXtkYYIA5y3egB9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSMcAn0FLSGgDzvWvi9o+hXz2t1YX+5TjcImwf0qqPjXpDKGXR9V2nnIt2x/KoPiysMaxO6ooxncR711Wma14cXQrVWvbDcIACNy56dKALXhjxjp3im3MtoWjIOPLl4b8q6EHNeK+FLRbj4kfa9Jt54rEK25iDtZq9qHAxQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIyhuoB+tN8qP8AuL+VPooAZ5aDoi/lTwMUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAmBRj3paKAExS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSGlpGyASBkgUAeVfF6CO5gjilUlGABFW9P8AhH4Sn0e2mNi3nNErbt/fFc18RdW13VL429t4avHSM4Ei4wf1rSs/iT4httNhtR4K1EskYTfx2HXrQBh6Xq+reBPG8eiS3KyWEgLLGo6Dtz+Ir3aB/NgjkAwGUN+YrxDwt4V1rxV4oGv65DLbKhIWGZeQMjFe4RJ5cSJ/dAFAD6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBMUYpaKAExS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/2Q=='] Multimodal Competition False Theorem proof Solid Geometry Math Chinese 41 " 如图, 平面四边形 $A B C D$ 中, $\triangle A B D$ 为等边三角形, $B D=2$, $B C=C D=\sqrt{2}$, 沿直线 $B D$ 将 $\triangle A B D$ 折成 $A^{\prime} B D$. 当 $A^{\prime} C=2$ 时, 求证: 平面 $A^{\prime} B D \perp$ 平面 $B C D$;" ['取 $B D$ 中点 $M$, 连接 $A^{\\prime} M, M C$.\n\n\n\n$\\because \\triangle A B D$ 为等边三角形, $B D=2, \\therefore A^{\\prime} M \\perp D B$,\n\n$A^{\\prime} M=\\sqrt{3}$,\n\n$\\because B C=C D=\\sqrt{2}, \\therefore M C=1$,\n\n当 $A^{\\prime} C=2$ 时, $A^{\\prime} M^{2}+M C^{2}=A^{\\prime} C^{2}$,\n\n$\\therefore A^{\\prime} M \\perp M C$,\n\n又 $D B \\cap M C=M, D B, M C \\subset$ 面 $B C D$\n\n$\\therefore A^{\\prime} M \\perp$ 平面 $B C D$ ,\n\n$\\because A^{\\prime} M \\subset$ 平面 $A^{\\prime} B D , \\therefore$ 平面 $A^{\\prime} B D \\perp$ 平面 $B C D$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIARUBQwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAA9KhByWDcVK2cHFMIGASOaAFOf4SPxpFzg8iqOqarZ6Rbi4vZlhjZtuWqtB4j0a4aJba/ik3njaetAGxyRzilHXNNDZYbTlTThjOKAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAh4HFRMwVSX4GO1SsMqRUbnaADjGO9AHFfEApPZWNntE7NcLuVuwJFO8SaFZaX4XnmsYI4poY9yFeMmsvVJ7lvGpluLaeTT1QbQiZO4d6173Tr/wARPbgt5diG+ZDw2KAN3w3LNceHbCWb/WNCpJrVBG4jvVaytI7O2WC3yFQYG41aUHGTjNADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkzS0UANLHPSjPpQevtSA5PAoAGY44GaYyB0w3JpQMH73XtUVzcwwpmWRVwM5zQASyeTEXKcL14HApsM8Nwqy20ish6kd68e+Injy81ETaX4fLlY0LPMMgnHXmuc+G3jLWdBFvJqheXT707VkJJK9ycUAfRg77ePenKe2cmq1rdR3ttHNbuGiddwYHrVhcE5FAD6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKTNAASM4700kik/wBoc+1G4lCcH6YoAQncCKa52R8Hgck+lKCBgHG7PTNZXiJHfR5/LvRZjYS0p7DFAHM+MviTp/h2B4rZvtFz/sYbb9a8k03WfF3xA1iS3t5AluX+ZtpGO+M06y8J3HibV/s+nFpYA+ZdQHIkHpXu/hjwtp/hvTVgs0VZcfvZB/EfWgDj9X8MW3hbwNLDGEM7q2+RupOOeaTwV4ZttY+FNpZXMalnQhXxyD9a7/VNJt9Xg+zXSiSE84NO07TbfSdPis7dQkMeQFFAHmXhLWr7wlrL+H9Wci3JPkO/A2j3r1qGWOYCRDkGuV8a+E4PE+lHbiK9QZjlHUAdq5rwN4um0+6bw7rWRdx5Kyueo6AUAeq5pMjOKj5CgZyfWg9f9oUAS0UDpRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFJzQAtFJzS0AFFJzQelAATTSaYznJ7YGSaMkuAeB/OgBR1LkgAdq5DxJ480rQo5F815LphhERcjP4V0mo28s1nLDbuEZ1IBbnk15/ZeDtO8LLPq+tzLNdD5/v/KfoDQBW8O6j4gnv213WitvpqksirIeQfVT9Ko3V/qnxC1c2tk8kOjo2GlUlWJB5GPSoymq/Eu+eEI1po8L7cFSvmDrkGvVNK0S10jTorS0jVAoGfUnFADNB0Gy0CxW0tEwVHJxjNahJVc7V5607JXGRyaaFODt6mgDK1fX7LRDCbyRlMsgjUIOMnpWoMyDJA55BrzH4kTJNrenWrDKi4jYAfUV6fCCIVU9QooARkLx7W+X3FcP458IrqduNT08bL6I7ww4LY7E13namMMqQe46UAcL4A8XNqdqbDVCItStxiUHpn2J613KuN2QMj1rzLx34Oe3lXxDpAeO6gPmSBf4+PSuj8E+LLfxHpwDHZd2+I5UJ6t3NAHY0VEXJYgdfWgMxBXuO9AEtFNUkjmnUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFB4FNLYGaAFzQDmmE8ZpFb5c9vegCU8UxiMe1IWzjnr0qtexyS20qIxVmQgEHHJFAGH4m8Y6d4atiZpkMx4SLPLH0rmfDlx4q8R67b6pKZrLTFJKw9VcVY0L4dJ9rOoa1O9zcFs+XId6gZ4610Wua7pvhiy3TNsiUHCIMkfQUAW9e1y00LT3u76QRRrnazHq3pXmFnaar8S9UW/kle20hGz5fVZB6Zp+l6Rqvj3WPt2ql49MU5ij3EBgOQSp716vYWVvYWaW9rCscadFUYFAC2Fhb6ZZxWtqixxRjAUdKtKAG4HXvTVIbkDkU5Qc8gCgB3I96YWbcMDinEHmk25TBJoA8x8S6Rf33xHhmFuzWSRoQ3YEV6cn3Rn0FRiFM4PJ9c8ipFwvGc0AOxxTGGRxUnakZc0AQOu9fLYbl9D/FXlPirQrnwhrC+INFUrb5PnwqOGJIyfyr1ooQSw5PoaiuraO6tpIZY1dH6qaAMbw1r8HiLSI9QgYbWOwgHow61v4+QAnk143e2uo/DjxKLu0zJolwwUpn7pP3jgV6tpWqWmr2Ud5aS74nG4c8ge9AGgOKdUa55J9acDmgB1FIDmloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikJoACcAmo8kgMBjPUU/OBmoyQHGWzu6CgBj7VIIBJrI17xPp+gWzteSqXxxEGwx9hWjdJJLbSxxSGGUqdpxz0rz3Rvh3cXWoyal4lvHvWYkJFKPujt0oATw1r/iPxT4gju4YWs9Kib7kycsvsa9KztU/KTzg0y3torC2jghQJGowMdqnPIBByMYoA53xR4ntfDtk8rzKZ8fJFn5ifQVwWg+G9U8a6nHrPiB/9EXmCAAghT6+tcz8UNNv5viFC3nOYWdVt07bq66y8T+KPDESW+oaK8kAHEzt0HtQB6lDbw29usMKBEUYAHalIZV4OK4PSvix4duZ/s893HDMTgrnODXcW15b30QlhcSIehFAFhOnTmnDrTFBBPOR2p9ACtkqcdaikYpEWzyAalb7vXHvVe4YLayNjOFJoA4Xw14p1DVfFdxZyH9ygbt6E13wXnI6V5f8MInuNRv75zn99LH+TGvU8UAKOlLSCloAafamEnNSYpCoxQBm6tpVtrFjLaXKhlkUg59/SvK9Lu7r4ceJ/wCzbgMdJnfETnoij1Nex7cLjrWF4l8N23iXTZLS4UBipCyHqtAGtb3KXMSzLIrQtypH6VY7nn5a8j8Ma5deEtZPh7xBKRExJtmkOBt7V6w0geFXT/V9fwoAkjz+FSZqCBtwJA+T+GpR1oAdRRRQAUUUUAFFFFABRRRQAUh4FLSEZGKAA8ijt1pvQijI7EUAOApabnFGaABjgZqKVsgAZz1qRnxgAZzUM+4QP5ZwxU4PpQBm614gs9CgM91MuBxtDDP5VwWn+J/EXijxLbvaWyx6Uj5DMCrEVYX4d3mt6ubvxBeJcwhsoiErj616DYWVtYQi1towkcfA4oAmjBKjI5XAOaeyguDnJpql/MJLDZ0xVa9uo7G3eQkCQ8IpPLH0FAFHW9ej0yeK3HzTz8IvvUWs6zcWdpbi1jDXMhUlccYzzXGXV+1z4t0lbixmilmY5kf7or0gWkPmpIV3uq7d3agDz/4o6TLcWemarCo3WkvnSEduK7Dw/PHrnhuxu5USTzY8/Nk1Y16zS+0C+tV/5aRFfpXD/C3VWY32iSttOmOIVB796AOl1LwLouog5tY4mP8AFEoBrlL34Z3lgxn0jVLpmHSOSXAr1FWz/DigovU0AeQR67488PSBdQtIJLUfxR/O2PyrpdN+KOk3REdxHcQS998RUZ/EV3LRo/3lUj0IzWDq3hDRdbUx3dpwe6HbQBoWmtaffoHguoW9vMGatyp5sJC45BFeZXHwp/s6bzvD92bZ85BkYtg/Ss3VNb8beEITcandLeWsZwTFGR/WgD0Tw14YtPDFjNb2sjyCWZ5mZuoLHPFbsZOP9ntmvNdE+LtjfbPtdjLZKRjfMQBn1rtbTxHpF8AIdSt5iegRqANnNAOTTFxtyvAp64POc0AOooooAQjg0wLgHrmnZ5oNAHKeM/Cdv4k09sjbdx/OkoHzDHOAfTiuZ8DeLbi2uX8Oa2NtxD91mz8wPTk16d/FyOK4Lx94T+2x/wBq6cu2/g+ddvU4HFAHeIDsG3oOlKg6k9RXDeA/GL6tbGx1ImLUIQFYPwWNdwGCDk5z3oAk3cZpRyM0z7v0NKG5xQA6lzSdqQdaAHUUUUAFFFFABTW+7x1pSaY/IPNAEc8ghi3OQAOpPaub0XxINV8QX1kqfuYAPLk7uc0zX766v0e30iSF2jBZyzAjA681lfD9GN/fzTtCZCo+WIggHNAHetIA+zjcRkVS1TVrHR7Rrm8mCIoyT1qe6aZrSU24XzV+7urxe3t7rxB4qeDxVctbxqSY0R9qtzxnNAHQ2vjXWPFOuw/2JZltOgfLygkbx716bExKLvG1jyV9KpaZpdrplsIbOGNEAGCgAz+VaAx3GDQAgT5iAaUKBxQBjkHPrTqAGlQewrI1PRTqMsDtcMohfcq4rY70hXvmgDnL3ws99qEV29/JuiOVBHSt+KNo4Uj3E7VA3HvT+hobLAAcUAJ5a7Mdu59a8oNoPDXxShYHEOqSGR/wwK9aOTx/DXmXxbs5Y9Jj1yDIlsFyCKAPSkfcBj7pHBqQA9xWH4X1Ear4ftJwfm8tQ31xW4TwR3oAXFJj8qVegpDQAwgYwOPWuG+LLtF4DvMKCfMXGT05ruT9cV5n8ZPtE3h8W1vFLIZGUkIpbv7UAaPhfwnpF/4Zt1vrKO5ZlVsyDpkVS1L4VRMzS6PqEmmt1CQKDj867fRYFt9FsVAK4gjzxznbWlxg9DQB5Fb2nj3w3LtUT6vCvOZGA/kK0YvivFYSCLW7JLKTocZNel7MZwcg9s1nXehaZqAIuLKFye7IDQBV0bxjo+toDaXKsT2rbEoJ4I/OuDv/AIW6bMWktLm4t5OyxuVFc/LoHjnw5LnTJoriEc/v5Nxx+dAHrh5PWlKmvLbH4o3VgfJ1+wuRJ0JggYj+VdhpHjHR9SXfHdJHn+GVgpH4GgDo+WGCKZt2nkZz3pI5op13RSqw9VbNPcZUA0AeYeOvCtxZXg8Q6MxjmhJZok/5an3rovB/iqHxFpeDj7VGdrr6GuqljjZPKcblb1ryHxVod74L1lNb0UM1uzfvUA9TycD2NAHr2DtHJx3pyjJyKx/DmuWuvaXHfW8gO4YKZ5B78da2V+6KAH9qXFICKWgAoopMigBaKKKAGHNMfBUgjIIxUhpu0GgDEsvDGm2MM8duhVZ2LOCx5z1o0jwnpWhyyS6fEyPJ94ls5rc2gDpSbgKAGtncE28EdfSuP8X+CIPEEJnB2XsfzRyjsR0rsgCR1pgJyQ/SgDy/wt4zvNGu/wCxfEed6nbFcHhXPtXp8UyzIrxsGQjIINZOr+GtM1dkkuLaN5I+UYj7p9q0beJba2S2GF2rjI70ATgDqvTvT1ORkdKiUqchGBA64NOU5YqOgoAlxRSZwcUtABgUEcHApaKAIgpEe3PPrWbrmkpq+hzWE2Csi85rWIpuM8etAHm/wsv9sN7psr4liuHCoeu0Zr0fua8fulbwt8WI5FG22nhOT23NxXr8Z3RqT1PIoAep4FBpRTXNADGxjkZFNKRtGDtDD0IzT8HBwOa5PVfFMun+N9L0RLdSt5G7ls9MGgDqhmNQCMjNOCqp3KDzSKCX3H0+7Uq9ORQAgA64pCGJ44p9FADSM9RTdu4YYZqSigCpcWNtcxGOWBGUjH3RXFan8J/D987TwQPDcHkNvOM13xppJ6UAeVv4U8ZeH4S+nazE8C9IQhJxUMHxJ1zTJBFq2h3jqODJgBfrXrQYd6rXNhb3oK3VukqH+9QBz+meP9C1GMeZeQwSEf6t25rbkks9VspI4yk8TqRkcjkYrndV+Hmh3qsLewht5D/y0QciuRufAHiPR5A2leIb2XB4g4A/lQBXuLG++HHiNbuAtLpFy4UoP+WXck161pup22q2Md1aSrJG4yCp7GvKtV13xDBpT2Ov6DH9lIKmZnJLfhXN+A/iDFoWvT6azM9jLJiMNwIgOw9qAPoPdzjvSksMYFQQXCXFutxjEZXcG9q5r/hJJdY1O40vTV3Kg+abOCgz1oA6wMd2DTgQRxXJxzanpGq2tl815FOpaSZzyhHYV1CYXjPPXFAE24Ubh61Fuo3UAS4oxS0UAIQKTaKdSYoATGKMA9RS4FLQBHs5qC5gWS3kjywJU4IPOatYppUelAHj6avq/gPWyt6JJ9MlY4dQXIJPU+leo6bqtpqtqLm0dXUjOQc0ajpltqFhLaToGjkUqc+9cV4b8J6n4Y1oRW92H0pmwsQH3R7mgD0McKGPenZpjED5Tz6CmF2B6ZFAE4NLUQYmP/apy5yMntQA49KaOtONIRxQB518VtNMmk29/br+/hnjJI67QwJrrfDmqxa1otveQkMCNvX0p+u2KX2k3UBXJaJsfXaa4P4TXMlnFceH5jia0JdvxPFAHqIPNIwzSLnJJNPOMUANFeVXUh1D4u6a3X7OjqD6DivVW4UnpXGWPgyaDxadaa6Vl3HCY5wcUAdgNud3OelSjpUbMVbIGSe1SigAooooAKKKKAE4o2ilxRQAzbTMleDyKkYjHNMRi2Rs2igAAA5XOaiMjB9uBv7nHaia6itEaSZwka/eZugrzbxD8QZri8bS/DkL3cjHDXEJyF5xQB0XirxXo2kWTLcqtzMwKrEo3kH6V5rpXgS68b6ymqXlslnp4YlVRPLbHuK7Dw38PFS+Gsa3ILi9bBHXj8K9EVEUFVUAegoApXFutvoslpDuxHbsifgvFcp4BmtrTTClyyRXwJ8zeQpIzx9a7vC7SMdaw7jwrpF1dvcyW5MjcEg4oA1Yp4bk+YihgvAapcbm54NR2tpDaQrDCu1F6CrIAzmgBmw+lLtPpT6KACiiigAooooAKKKKACiiigBhAJ5GRUbbVGwEjPQelTYphVi2cDFAGF4o1ebRdGe8ihWVkcKc+lQ+F/Flp4ms1nglAl6Mh4xXQSwRyxPFIgdGBBUjNeVeJ/Bl94evP7b8NsytnMsW7jHsKAPWNwzhRn1xSrwcVzXg/wARtr+mZuIJYbiMfvN6bcn2roYmUEgA/jQBNRSbgDQGoAadrEoepFeR39x/wi3xRMyjCakyw5+mTXrZxndg57V518VNHaWzs9VjGJLKTzifwoA9GGMDacjFKOtYvha//tDwzp905y8kQZvr0rZLUAK5AQk8/Woop0cERsCV6gGqmsz/AGfR7mbONiZrgvhMbiaXXZ7icyB7kGPL5wMUAelscEY696kUhhmowvy8de9SCgBaKKQnFACmm5pGfawGOtJ15z0oAdmlzTAwzjIxTTKqAlsKo6k9KAHMRn3rG8R+I7LQLH7RczKCOg65/CuZ8VfEW3sXNhpStdXzggGJd4H1xWPoHgm+126/tTxJMST8ywI5Cj/gNAFOWXXviRcqLZnsdLBw7xE/OPcGvRPD3hjTdBtUS3to/OAAaTGCx71rWlpBaRJHDGqIowAq4qyO/A60ANdTkY5B/SnKmBTgMgilAwAPSgBMZpNtOooAQCnCiigAooooAKKKKACiiigAooooAKKKKACkxilpBnvQBGxwaRx5i7SowexqQqOtIxA4oAgitIombCAA88VTl1rTbe+Wymv4luGGVjPU1fc4yec+lcX438F/26q39nK0N/CMoYxgnHOM0AdnGoYElsv604HcBg5I6ivNPCnjqaK5/sXX4xb3yHapX+L8a9JU/IrDq3p3oAeTghu3pWfr9iNS0W8tWAPmxFRmtAkd+n9aXtzzQB5f8KdXcXOraJOTmymEMYPpjP8AWvTlGCVPrmvKLq0Hhf4oW0ifKmpM0rntkcf0r1bd5kasp68/hQBkeKXMfhfU327sQnj8RXO/C6yWHSJp/KKGYhsH6V28sMdxHJFKoaNhhgehFFtbQWkIjgjWNBxhaAJhkA5OaUHIoxgZoHSgBc0Gm5FIzgdfpQAjdNx7UhZSgycZGaY7ZYD+FTzXLeLfHVh4dVYs+ZNIMIq898dqAN7UtTsdKtjLdTLGi927V5jqXijXPF9+dP0KORLAna10MFWHr60WHhnXPGmorqGtTSW1r1W3Rsq49wa9Q0zSLPSoRFaW6QIONqDAoA5zwp4F0/w7i52CS+fl5ff8a6wosUm/Zlj1NPwWJBAHPUU/bxg9KAI1wGyOQ36VIBTQnzcDA9B3qTFAABS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUnXtS0UAMYd8Uwjg1KRTeBnNAHMeIPBmmeImjnmQpLG2Q0Z2mtrTrb7FYRWysxWJcbmOSatkbEwBnNMfdwAMKRzQAJvwTKRtzxinCQNx09M15bJ4r1fwt4ka01pHmsJXJSYkBUyeBXpNpeW2pW0c0EqyKeVZaAOD+L1hI2gHU4AfOtQApXryc11fhfUk1TQrVwclI1VjnuAKu6pYx6npclnOAVdfmyK4H4W3wiS90iY4mS5kdQTztBNAHX+IvEMXh+3imk6ysQK09MvF1GxgugpHmJnmvNvi7KJLjw/AD/AKy5K4B68GvRdEQw6PaRBSAsYFAGifekzg56ihtoOWPFRlgijaflPSgBSMcgE1XuLqC0tjPM4jjByWY8Vk+IPFen+H7Y+fMvnH7qE8mvPYv+Ei+Il23nGTT9Lzny2AIk/L1FAF/xD45vtauTpXhpGd2+V5wu5PzrT8J/DyGwcahq7fab9v7zblH0BrpPDfhnTvDNkIrO3WMkc962gABnqetAAkaxgKoAAGAB0qSjqKOgoAMYNKOlJnmnDpQAUUd6KACiiigAoppNANAC0UZozQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSEA0tBoAZj5icn6U0LycnOfWnmkoAyda0K01qza3uYw2QQGIyQa4bw9oev+Etfaztj9r02QhQ0z8qPYV6WeJAuOOuaUgmToMetADTv+YEDPQV5Jewt4W+LUdyh/0SeEKc9NzH/69emeINZXQdKkv3heZY+qIMmvOfGuo2Pijw3banYsPOguEkYA/MApBINAGx418Nah4h1vRJrZF+z2c3mud2OMeld5boY7eOLGMDBIrF8K67Frmg214HA3jAHfj1q9q+uWej2xlu50j44DMAT9KALZkSJT5jLsHduP515/4m+IkVtef2Xo0f2i9JwBtO0H6isXUNc17x7ffY9Ija108H53kBG4d8Gu08OeDNP8PplIzLO2N8jnd+VAHOeHfAVxeX39reIbh5J3+ZYCdyYP1r0e1torSERRxhVHQL0p5Q7VB+6O3pUig9+fSgBQN3JoxzSjINDHbQA1XGcUuecGsK48SW1vrraa7guFBKg8ipL/AMQWFi0cPmq8knTB6UAbOcnA605m2rn061StdStZ9iJKnmFchd3NWSAgyQWz1xQA4uWUFOc0ofJwetZqa5pxv/sC30Bus48kONw/Crs8yW6GWVgsY6k0ASs2CKGJyBWQnibQpHWNNVtWYnAUSDJPpWrE6Om5OQaAFzk4FBO0ZNQXF0tnbtLKOBWDJ4tsVktl2uzTvsXnoaAOj34XcTxSlsYNYMviOwtpXQgmX+7nk/hVrRdaTWLZpkgkiCvtxIOtAGtvPpRvNOzmigBaKKKACiiigAooooAKKKKACiiigAooooAKKKKAExRilooAZjPUc0FTtIFOzSZoArXEMdzE0M8QZDxzXjvjPwPe+H4bi90Rme3nBD2qDPJ6tXtRwRVecQtE0c4yvcGgD5d8B+MtV8PXkumyb5nX/U2+cEnPSvS9M8J6z40u21DxJJJFCrfu7WTsOvau7tPCWgw6g+oRWsLSvyPlB2n2rolVUHC0AVNM0630yyW2togiKMYFXAQOAuBSjpSAUAAB7nP9KcoI6mgClNAAahuA7IQnUjinu2KQgsOOv1oA801TSki1zzWIe/JBklPUp6VWmj0y9vLgRKpuIegHUGt6WDUbfxddX00UUlt5ICgtk5HtVHw6z3WtandR2sJywLhxjbQBseEUtb9Humtgs8B8vd68V1fPIDdRx7Vyum3n2DXhpWxFM6tKfL5FdWxIwVA64yaAPJ/Eeiafpfxc8NXltbKLm6kZpnXq5962fi5e3Vl4ShaCYxNLdxRvj+6WwR+RrP8AGlzCfij4TVp4woZtxDD5fr6V3Ou2umappZtr908hsEO2CAex570Aec614A8N6b4PfWLOCKO9ih82OcDnfXceArua+8DaVc3MheeS3DO56sa8uvtAtYdQXR9L1i/vjK2JVkOY1U+navZNB01dG0C0sMDFvGF4oAreJZhHpL7/AJiT0rgHnh8zRwbXYyXGWb0HrXZeNr1dM0yC4IDBrhFIPuRXP6e8934sumt7e3ltgikBz933oAq6beW1z4yuIHthOxc+XJnpxiuo8DSyzabdCdtxW5cAegzWFcaell4thvrNWbGfOAHCk+ldR4WltX0+V7XcUMrZ3LjBzzQB0GPQUc+lN2seaXa1AElFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAnekPWlppzQAhI6GuY8bX/2DRkkMgQtMEzn1rpZGCqSewrznxZqun6pr0Oi3kipDHtmJJ6kHOP0oAguNU1Kw1HRI9Mk89LifbdBedi4JyfSvTkfJwwrzfTFP/CXySaYoNqdu5l6Yr0kKMj1oAdjmlApO1OHSgAxSHNLRQA0gHrUUu8AhamIBo7UAZi2CST+ZLuJHvVKy0JrfU9SnZh5V2RhV4xW8V4PNNTdjGaAOd0nw6LLUZL2c75wSIznop7V0JBIzn3H1pwUZyeTTgowOKAOG1X4W+G9Y1eTU7uO6NzIxZis5AH0rd1bwrp2t6HHpN3532WPbjZIVb5enNbm0UuOMUAYGheFNM8OW3lWEbEDvI24n8a21AC5A+961JgDoKCOMUAYWt6MmustvcDMA+Y/UVgHwdeabczTaFcpE8y7HMuW4Fdzt2jFCgDgdO1AHBRaB4xto3WHUrLc3JLRk5/Wt7wzpV/pNi0d9NFJIzFj5a4GTXQ4Gc45oKqTnHNADAWxS5an8UvFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJS0lAEbnHaqU2m2Mk/2p7SJpcY3FRmrsnSo3/wBXQBDDaW8T+ZDEkZPB2jrV0etQR/dFTjpQAvalHSk7Uo6UAFFFFABSUtJQA0nmgdaQ9aXuKAFp1Np1ABRRRQAUUUUANNGKU9aSgAooooAWiiigD//Z'] Multimodal Competition False Theorem proof Solid Geometry Math Chinese 42 " 如图, 在四棱锥 $\mathrm{P}-\mathrm{ABCD}$ 中, $\mathrm{PD} \perp$ 平面 $\mathrm{ABCD}$, 底面 $\mathrm{ABCD}$ 是菱形, $\angle \mathrm{BAD}=60^{\circ}$ $A B=2 a, P D=2\left(1-a^{2}\right)$, 其中 $0 如图, 在斜三棱柱 $A B C-A_{1} B_{1} C_{1}$ 中, $A C=B C=A A_{1}=a, \angle A C B=90^{\circ}$,又点 $B_{1}$ 在底面 $A B C$ 上的射影 $D$ 落在 $B C$ 上, 且 $B C=3 B D$. 求证: $A C \perp$ 平面 $B B_{1} C_{1} C$;" ['$\\because$ 点 $B_{1}$ 在底面 $A B C$ 上的射影 $D$ 落在 $B C$ 上,\n\n$\\therefore B_{1} D \\perp$ 平面 $A B C, \\because A C \\subset$ 平面 $A B C, \\therefore B_{1} D \\perp A C$,\n\n又 $\\angle A C B=90^{\\circ}, \\therefore B C \\perp A C$,\n\n又 $B_{1} D \\cap B C=D, B_{1} D, B C \\subset$ 平面 $B B_{1} C_{1} C \\therefore A C \\perp$ 平面 $B B_{1} C_{1} C$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAXEBkQMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACijNFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRkDvRQAUUA56UUAFFFFABRRRQAUUUUAFFFFABWL4l8Qw+GNIm1S6tria1gXdMYDHlF9fnZc84GBk89K2q8j/AGgdVex8CwWUTYa/u1RxnBKIC5/8eC0AdLbfEizuPDK+I00TV/7IKl/tAWE7VBIJ2CXdgEH+Gul0HXbDxHpEGqaZOJrScZRxkHjggg9CPSvFrzxCkfwz0rwHY2F9DqN9ax2xn1CA20AZvmkw0mMnO4DAwc9c4Feq+AvDJ8IeEbLRnnE8sIZpXAwC7MWbHtk8e1AHTUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFGaACiikJwM0ANc8HHXH4Gud8O+MbDxJqms2Vkkn/EquBbySNja7HIyuD0ypqn4/1fU7TT7TStBJ/tjVpxbQOF3eQnV5SPRR39SK4L4N28eiePfG2iRTSGG3lURJI+WZVdxuPqeRk+9AHtq9M0tNUjHWnUAFFFFABRRRQAUUUUAFFFFADWIGSSMD1rwH4o6/oviT4leHNGfUrRNPsJWe8nkkHlqxYbkYjocR457vXv56+1VjYWjEs9pAzE5JMYJJ79qAPE/ir4ms/HUGm+FfCxXVrqW5SaSW3BZIgAQAWAxyCST2A5r1K717TvB/h61fX9UijaOFUeR+GmdQAxVRySScn61ux28MAxDCkeefkQCuK+L8at8LNdYqCyxIFJAyP3i5xQB21rOtzbxzoSUkUMpIxkEZH86mqjo3Oi2X/XCPp/uj8quk4/rQB598WPFOreFPD9pdaNIovZLrG14w4aNY3d+voFzXA6F8b9e1a8FpcL4e0yRtuxr5bhUfuOVyF4554rW+IN2da8a61Zo2+20Lw3dSSY5CzSrg5+qFffGaoN8P/wDhIfhfoGuaRbRPrdtZJmKRA8V2i5GxlPBOBwePr0wAehJL8SnQMq+EiG5B33HI9uDT93xM/wCefhL/AL7uf8K5uLw94p0XRrLWfB13cxo0KSSeHNTfdHGCMmOMk5jx0wSMY/Ct3w58R9O1OYafrUTaFrKn57G+/dkn1RmwGB7Y/wDr0ATbviZ/zz8Jf993P+FLu+Jn/PPwl/33c/4V2SMCOCDn9aXIxnIxQBxm74mf88/CX/fdz/hRu+Jn/PPwl/33c/4V2lFAHF7viZ/zz8Jf993P+FG74mf88/CX/fdz/hXaUUAcXu+Jn/PPwl/33c/4UbviZ/zz8Jf993P+FdpRQBxe74mf88/CX/fdz/hRu+Jn/PPwl/33c/4V2lFAHF7viZ/zz8Jf993P+FG74mf88/CX/fdz/hXaUUAcXu+Jn/PPwl/33c/4UbviZ/zz8Jf993P+FdpRQBxe74mf88/CX/fdz/hRu+Jn/PPwl/33c/4V2lFAHF7viZ/zz8Jf993P+FG74mf88/CX/fdz/hXaUUAcXu+Jn/PPwl/33c/4UbviZ/zz8Jf993P+FdpRQBxe74mf88/CX/fdz/hRu+Jn/PPwl/33c/4V2lFAHF7viZ/zz8Jf993P+FG74mf88/CX/fdz/hXaUUAcXu+Jn/PPwl/33c/4Um/4mf8APPwl/wB93P8AhXa0hI9aAOL3/Ez/AJ5+Ecf79z/hXJeJfiH418N6rBpD2vh++1KZDKbez+0MYowCd7k4AHB78Dmt7xl4t1K6vI/DXgp4rnWpT/pNyMPHYR/3nPIDHsOvXjpnK8R6HD4K+HuoHzzeeIdW2WMupTDM08krBCM8kKF3YUelAHYeANa1TxF4PsdX1WOCKe6BdUgVguzOFPzEnJAz+Nb+oXlvp1jNeXc6QW8KF5JZDhVA9fak0+yg07T7aytkCQW0axRqOyqMD+VWJY1lUo6BlYYIYZBFAHlPhifRviVrereINRNpdWNsgtrSxmYs0EQJJlcHoXIz9BiuS+HOq6NY/HDXorOe1Fjeo8Vo8TjY5LoQq+ueePrXv0VtDEW8uJU3csVUDP1pq2Vqrh1tYVcHKkRgc/lQBnr4l0l/Ef8AYKXqSamITK8KZOxAVBLEcA8jAP171srnAz171wF2ip8cNNZVALaHMTjjOJF6/hiu/HSgBaKKKACiiigAooooAKKKKACiiigArN1bRNN123S31Sxhu4UfeEmQMAcEZweD1rSooAr2NpDYWcVrbRJDBEoSONBhVUdAKlbk47Gn1yXxJ17/AIRvwJql+j7LhovIt8dTI/yjHuM5/CgDhfDtg1z8PfHniiXmTXTeSxk9RCocKP8A0IfgK7X4Vtu+F3h//r1x+TEUXWlrpPwiudOVAn2bRHjKj+8IefzIz+NR/CQ5+Fmgf9cGH/j7UAanjDVdR0HQm1TT9OF/9mdXubdWIcwc7ymP4hwefSq1uvhz4j+EoZ3torzTrlSUSRAGibuB3Vh/SuodS39PrXO6P4Ug8P61f3Wn3EkNheYb+zkGIkl53SKOxIxkDHSgDlbDwv4s8CFv7Av/AO3tHHI0u+kMcsa/9M5OQfxA+netnw18RdI1m7OlXaS6PrMbFW0+9Gxz/unow/z7110U0U8W+ORZEyQGVsg4ODyPy/CsjXPCGheI8NqmmQXEyjCXBXEqY6bXHIx1oA3Qwp1eXzWPjrwXerNps9x4q0dztazu5FFzCByCrk/P6c5+neum0Px7oWt3C2IuvserZ2vp14DFOjY5Uqep78Z4oA6qimqwYZBHPT3p1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFGaQnFQzXEUETyzSJHGilmd2ACgdyewoAe7jBwcn0rzrWPFGp+LdTvfDPhDYscX7u91tmzFB/eWPGd0mPfA9qrXOq6p8SNVTTdDF5Y+FlY/a9WT92boDgxxE/wk8bh7/Q99oWg6b4d0uPTtKtEtrVDkInc+pPUn3NAFPwt4S0vwhpMen6XbiNFyXkOC8rerN3/z06Vx3jAN4i+LfhXw6mfJ01Tq1z6EBsIPrkf+PV6cBj/6/U1wvhCKLVvGvivxCpDp58emwPnOEhQF8fVz+lAHeDpS0UUAFIfXFLRQBjT+GNHuNYXVpdNtm1BWBW5MY8xSBgc1sLnHNLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5l8RrdvEfjjwh4XJ/0Rpn1G7x/ciHyg+xOR+NelsQuM964Tw5PHrvxK8TaqACmnJFpUDEZwwLPL/48wH0FAHR+Kl3eDtbHrp9x+sbVgfCA7vhToB/6ZSf+jHro/EYD+FdXXsbKYf8Ajhrmvg22fhPoX+5KP/Ir0Ad3UU0YkBU9CMHHHFS0UAeTwRN8JdZihM9xc+FtWuSqBhufT52zgDH3kbOPqO/U+rLjHWmyRpIAHRWAOQGGefWue8R+L7HwzqOnW2pR3McF+/lJdhN0McnRVYjkZz+lAHR7Qen0rmvFPgbRPFsOb+3Md0oHk3sHyTxEdCrdfzyK6Zeh+vejrQB5rct438BWavAX8Xaaud6OPLu4V9Qwz5g+oz9BXTeFfGuj+LrETadcgXCj97aTcTRHuGX+vT0royPYVzHiXwLoviONpJbYW2oDmLULUCO4ib+8GGCfoaAOnVtyhvXmnV5lYXHjrwSskWrQyeKNHTLJeWxUXcS/7UbYLn6HPueg6rw3400HxXGW0nUUlkT/AFkDApKhHXKHn8envQB0dFJmloAKKKKACiiigAooooAKKKKACiiigAozRWJ4l8TaT4U09tQ1e7WCD7oAyWkbsFA5J/8A19qALmp6rZ6RYT31/cR29rApaSSTgAf54x715rHBqPxfQ3E88+meElkIhgQfv77HBZieFXsBgnrVrTPD2t+NfEKa74rjWDRIvn0/Ric5J5WSYDgtjnac9cHGMH0yONI41RECqBgKowAKAIrOzhsrOG1t4xHDCgjjQdFUDAH5CrAGKKKAMXxZrSeHfC2p6s4BFrbO6qTjc2MKPxJA/GsL4U6XNp3w50z7USbm7DXkpI5JkYuM/gRWb8XYJdag8PeF4GIOramglwf+WKAs5/Dg16NEiRxKkahUUYCqOAPSgB9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUjHAoAzfEGqLonh/UNUcZW0tpJsepVcgf59a5H4P6TLYeA4b+5Ja71aZ9RmJHd/u/htAP41a+KM3n+Fo9Dicrc63dw2EWO25wXP02q1dlbQxW1tHBAgSKNQiKvQKBgD8qAKWuLu8O6knraSj/AMcNcl8Fju+E+h+wmH/kZ67HWBnRb4etvIP/AB01xnwSOfhNo3sZh/5GegD0GiiigArJ8QaHZ+I9HutL1CIvbToUJA5Q9mU9mB5BrWooA5bwfY+I9NsXsPEFxb3n2VhHaXiE+bNHjrIMcNjjIOTj8T06sv8AeHJ9etU9Utrm6024gtLprSd42WO4VA5jJHBweuK43wd4skF9/wAIl4ikdPElnGUZmB2XiDpJGf4sqMkHnIb3oA9AopqtmnUAIa4jxB8NNH1nUhq1mZtI1hG3Jf2OEYn1cdG/IH3ruKKAPMtQ8XeK/Arxr4l00azpPT+1dOiKvGP+mseSPyIH1PFd9pGrWGtafFfaddR3NtKNyujAj6ex9qtum5SPUYrgvEXw0guJjqnhi6bw/rQ+YTWnyRSn0kjGAc+uPrmgD0DI9RSgg9DmvNIfHGt+EbNYvHelSjYcf2rpsfm2zj/bAwyH8K7zStXsNZsI7zT7uK6t3AKyxNkHP48H2PNAF+ikDDGQeKWgAooooAKKKKACkJA6kCjcM4z2rk/FvjW08PXFvpsNrcajrV2pa1sLcfM/YFj0Vc/xe3tQBc8X+KLHwpo5v7o+ZKx8u2tlPz3Eh4VFHrnv2rmNG8H33ifVbPxT41t0F1CubLSl5itQedz/AN6Qnn0GenAxY8IeBZrW9k8Q+JpxqXiKc798gJjtM87Igc7cdMj+XXvYgVTBoAVBhec/jTqKKACmtTqjnlWCF5nOEjUsT7AUAcKl0mtfGV4OGi0DTjjnpNORn8kX+dd6OnXNeZfB20mvNM1jxXdIRPrt/JNHu6iJSQo/Mt+GK9NXpQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1sd+lOprY70AeY6pcS+IfjnpOlIS1poFq15Pjp5sg2rn3G5CPxr05Bhcc/jXm/wAJ7Frn/hIvFM3L6zqUrwnuIUdlUZ+ufyFekjpQBW1IbtOul9YX/lXC/A8/8Wm0j/en/wDRz13l6M2c/wD1yb+VcF8EOPhTpY9JJx/5FegD0WiiigAooooARhuGPUYrn9e8Jafrt7YahL5sOo2Eokgu4CFkAzypJBBBAxyD1roaKAIDMkcnlmRd5BYAnnA7/qKmU5GfWuL8d+FtS1WSw1nw/draa5ppYws+dkyH70Tex9f/ANY0vCHimLxTo5uBD9lvoJGhvbJz89vMpwyn8ehoA6OikHTt+FLQAUhGaWigCJ4lcFHVXRhhlYZBH071wdx8M4NJuJtS8G38uh6k+SUH722lzyQ0bE4B9QeOw7V6DSEA0AeZ6b8Q9R0K7Gl+PtLawn37U1O2RmtJQeh3c7f88DpXolre295AJrWeKeJujxOHU/iOKdPbxzwvFKgeN1KsrDKsD2I6H8q85uPhndaDqrar4D1NdIlkOZrKcGS2lH0wSvfpn2xQB6YGBpa84j+Jw0TVodH8Z6XJpF1IcJdR/vbSX0Kv1H0PTvXoUUiyIHRlZHAYMpyGB75oAlppIFN3/NjGfpXAa14uvvEGp3XhfwVNC9/GubvU25hsx0wMZ3OSCB2GPY4AJ/GPjWW1u08PeGljvfEdwdipjfHaL3klxwMdgf8A9d7wp4Li0GWfUby6l1LXLsA3V9NjJP8AdQYG1c54H/1hQgt9G+FHgia8uZDPInz3VwQPOvJmPuc5JPAycDPXrSWniHxhqeiDXbfRNOt7d4jNDp9xOzTzJtyvzgbULDnGDwRyKAO9UYBHvS1ieEddfxN4WsdYezNn9qUusJffhdxAOcDqAD079+tbdABRRRQAVyvxG1U6R4D1adD+/lgNtAO5kk+RcfQtn8K6knFeYfEGVte8f+EfCcRO1Lj+1Lr02R52g/Uhh+VAHf6BpUGh6BYaXbjEVrAsQ98DBP4nmtGmp93rmnUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVy/xD17/hHPAmraikgSZISkJJ/wCWjfKv5E5/CunJAHJrzH4lRSeIfF3hHwqv+oluWv7r08uIZwfY5YflQB23hPTV0jwlpOnqmz7PaRowIwd20biffOTWzSLwMdhS0AQ3IzbzD1Qj9K4H4I8fC+wHpPcD/wAitXoMgzGw9q8++CXHwztB6XNwP/IrUAeiUUUUAFFFFABRRRQAx13dVzwRWdbaNYWGo3uoW9qkVzelWuZFGPMKggE/rWpTW68Z+ooApadq1hq1u0+n3kNzCrtGzxOGCsDyD6EVeH1rzLxFZXvw+1q78XaLZC50m5UHV9PiJDBhn9/H27jcOmB75HotncxXdpFcxE+XMgkTcMHBGRkdqALNFFFABRRRQAUmAKWmsR1/lQBU1HTbPVLOSzvrWG5tpB88UyBlPvgjrXnWu+FNQ8HWn9o+DNdi0m3iJMmnahcbrN/ZWc/ITj2HuMVseIfiNZaXraaDpdnc6xrj8C1tsbYz6yP0QfgSP559r8P9R8QatHq/ju9g1Pyjm10y3VhawE9eDy/Yc+hySMAAHHr8T9S8eanpPhWKB9H+3vsvbuKUkuq5LLC2DwQODzyfTr7BoHhrSPDNgLPSLKK2iPLFOWkbgbmY8sfrXkDadAml3/xDCIEi8Qw3EO0AH7JC/kYGOACCfbgV7sCGAIIIP60AeA+OLyXxX8dtK8LzlpNMs54d1vn5H+XzZGI9cEL9PrXvgRSm0qCCMEYHSvIvFHhDUdD+Klt4/trSXUdPLj7Xa2yb5o/3RjLBf4h0PHP4E1P4x8T+IPE2nLpXg/RtYgiubiOG51OW2eHywx52g4b6t0AGO4oA9Us7S3sLSK0tYkht4UCRxoMBVAwBU9cz4m8Sw+DtFju7q0vruMYTdCm7acgAux4UEnv1ro4xhTx3oAfRRRQAjetcD4ftE1T4peJ9ePzpZJFplu3UAhQ8uD65YD866/WtTh0fRr7Up+YrS3eZ+eoUE4/HFcp8IbW5i+H9ve3uftWpzy30pPUmRiQfxAB/GgDul6UtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANauF0CSHXPij4h1NcOmkww6ZA46BiWeX8clRXV63qiaNoeoanKMpaW8k5HrtUnH6Vx3wc02a08DLqV0WN3rFxJqEpP+0QB+GAD+NAHoC559KdQKKAEPPFed/BTj4dRD0vLgf8AkQ16Ia89+DAx4C2+l/cj/wAiGgD0OiiigAooooAKKKKACiiigCOWNZQUZQysMMCMgjuMd81navq9p4d0p7+9byrOEoHZVJCAsq5OOwzz6AVq1VvbGC+s5rS6iWa3mQxyIwyGU8EH2oAktbiC6to57eVJYZFDI6HIYEZBHtU1cJ4O8N6p4M1CbRrZ2vPDbKZreSeUCW1ck5iwPvKeuRjBJ+p7kcDmgB1JkUxpFC5JAHqTxx1Nec3fxDvNf119D8EWcd9PGSLjUbnItbcdCcj7x9MfrzgA6/XfFOi+HIBLqmoQ25f/AFcZOZJD6Ig5Y544rjB/wmXj3UNhW88K+HU+bIYLd3eegP8AzzH+ee2ronw4tLTWG1/XLqTXNebB+1XMYVIsdBHGMhcdjyfTFduq49aAMXQvCukeG7doNMsUiDnMshJeSQ9y7tlmOfesr4l6+3hrwFqN5G+26kT7PbY6mR+Bj6DJ/CuwJArz/wAc2a+I/GHhPQm5hiuJNTuVz/DCAFB9izY/OgAfwvNF8EW8PGHN0NIK7Cf+W2wt+e81pfDXWv7f+H+kXjvvnWEQTk9d6fKc+5wD+NdYBwc/j715h8LY30PxJ4x8KHPk2V8t1bZPOyUEj9Av50AeomkAxxjFKOlLQBwvxduIovh5fRPIqyTSQCJT1ciVGIA78An6A12lrdQXtrHc20yTQSDckiNkMPUEdakZckUICBgmgB1BoprHA/CgDg/i0J73whFo1oxE+rX0FkuOuGbc34bVOfYGu10+zh0/T7eyt1CQ28axIo7BRgfyrhNSvv7X+NGi6Mp3RaRYy6jKexkfEa/kGz/wKvQx0oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKCcdaKQ0AcT8T5PP8ACX9jRuVuNau4NPix/tuCx+mwNXX2dtFaWsNvAgSGJAkagYAUcAflivONank17436Do8bZtdEt31C49DI42qD9MqR9TXpygAcUALRRRQAHpXn3wdGPBc6/wB3U7of+RDXoBrgfhDx4Uvl/u6tdj/yJQB39FFFABRRRQAUUUUAFFFFABRRketVb6+ttPtJbu8uI4LeFd8kkjBQi+pNAErjb8w6gcc8V5pN8ULnRfEV74f1rSmuNTMn/Euj0xhL56McKrZOUfAyc4/Tl8fjTXPHN5PaeC44bbS4z5cutXiEjd/0xj43EcHk9+3GVk+DegjRJbWKadNVlkFwdYb5pxMOdw9BnOVGM5PIODQAyPwdr/jPUW1DxndvZafnEOh2dwdmB0Mrjhieent9B6JZafa6fara2VtFb26DCxxKFUfgBVfQIdUg0W2i1q4t7jUVXE0sClUY+oB9voPYdK08+9ACDgUtFFADW6dcV5t4Ju38SfEnxX4gXLWVt5el2jnvsOZMexODn3rt/EeojSPDmpakcf6JayzjJxnahOPx6fjWB8LfDx8OeANOt5Mm5uE+1XDN1LyAEg/QYX8KAOxXoCfz9a4a6jj0r4x2N0xCprOlyWvHG6aFw4J/4ASPwruxXm3xenk0e28O+JIxk6XqsbSf9c3BVvz4FAHpA6UtRxuHQMrAqeQR3HapKACiiigApCMg/wA6WsLxdrg8OeE9U1c43WtuzID0L9FH5kfnQBx/wutn1HW/FfiycbjqGoPBbMeT5EZIGPY8D/gNem1zngbSl0bwXo9kAdyWqNJnqXYbm/UmujoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApCeeOtLXN+O9f/wCEZ8GarqqsBLDARDn/AJ6MdqfXkg/hQBh/D2yF3rfinxSwDf2lqDwW0nXMMJ8sEexIP5Cu/HSuZ+HmmtpXw/0O0kVllFoskgbqHf52z+LGunoAKKKKAENcF8Jhjw9qq/3davB/5ErvTXCfCoY0bWx6a7e/+h0Ad5RRRQAUUUUAFFGaTcvHI56UALnHWmk/TpWN4i8TaT4ashd6neRQIeFBOXk9kUZLH2A/EVxVpL4x+IUkruX8P+FZshMLtvbmP1ychAfXA49etAG1rXxBtLbVG0XRLOfW9aAx9ntMeXGf+mkhOEH5njtkVk6R8PdT1bU11rx1qLajMG3RaXG3+hwegK9H/wA53V1vhvwjo3hOwNno9gtvG5zIclmkPqzHk1vCgCK3gjt4VihjWONRhUVQoH0A4H4VN+FFFAHM+OPDt34k0E22n6lcadfROJraeGQoPMHQPjqpz+GAeehp+DfGsOvmXSr1WtNfsAEvrOQFSrg4LIejIT09iK7Bhk/hisv+wdNXxB/bgs411LyPINwOCUyDg9uo60Aao6c8UE4rK0bXtO1yK4bT5xJ9mneCZSu0o6nByDyB6HvWoTQB5z8V777Rb6L4WgLG51u/ijZVP/LFGBcn8x+Ga9FjxtwOAOw7V51DY/278b7u/mzJBoFgkMI/h8+UEn8QjfqK9GTO0butADq5zx3ov/CReCtX0tUDSzWzeUD/AM9Byn/jwFdHTWHXj86AOY+HV+dR+HmgXTsWY2aRsSeSyDa2fxU11NcH8N7hLca/4fACjSNVmjhTPIhkJkT+bflXdjpQAtFFFABXlvxYkbWtR8N+DLc5k1O9E1wuekEfLZ+vP/fNeomvPNNshq/xp1jV5Bui0iyhsYD2EjjzGx7gNg/7woA9BRFRQqjCgYAA6U+kFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXnHxPsm1/U/CfhoH93e6kZ58f88oULMD/AN9fnivRWOPr2rz3Rb5te+MWuSg77XRLOOyiI5USSNucj3+UA/TFAHoKjAwOg6Yp9IvSloAKKKKAE71wvwv403xAvpr97/6GK7uuG+GYxaeJR6eILz+a0AdzRRRQAUE00tjntXI+KfiBpnh6T7Fbq+o61IMQafagvIWPTdj7o+tAHVSyrGjO7KqKMlmOAPqewrzuX4gXnia/utH8E2DXTISkmsXBxaQH1HUyfT6dRS6P4Q17xLE9x8QL0XEEvzR6PbOY4Yv98qQXPHQkj613un6bZ6VYxWVjbx29tCMRxRrhVHsKAOQ8K/DuHR9Rk1rV9Qm1nXZet3coMRD0jX+Hnv8AoK7iNNoPqTmnAYpaACiiigAooooAKYy7jjsRg/Sn0UAed+K/DOr2XiVPGnhqTdexxhL6wJwL2JecD/bA4Hrgc9c9vc3kdjpkt9c5ihhiMsnQ7VAyRx7CrZUd68k+O2patY+HLKHT7wx21/K1pcwJGGeVSNw2nGQMKwOPUUAb/wAJZJtQ8KXWu3CFZtZ1Ce9IP8ILbFH0ATiu9HSsTwlPpM/hfTjoc0cunLAiwGPsoGMEdj6jqDnNblABSGlooA8ugZvD37QNxC3/AB7+IrBXTB4EsQOf0Rvzr1AGuC+IdotvqfhbxCoCyafqscUkn92GY7Gz+JX8zXeJ0/p6UAOooooArX95Dp9jcXtw22G3iaWRvRVBJ/QGuI+EbzXng+XWrhSsusahcXrA9QC+0D6AIPwp/wAXprr/AIQSbT7JmF3qdxFYxBerF3GV/FQR9K67R9Lt9G0ez021QLBaxLEgHoBigC+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAztc1SLRNEv9UmBaO0t3nZRxuCqTj9P1rjPg3pc1p4J/tS7+a81m4e/lYggncflzn2Gf8AgVX/AIoSed4ROjRS7LnWLmGwiA6ne43fgEDGuusrWGysoLW3jEcEMaxxoOiqBgD9KAJhwKWiigAooooAK4j4cDCeKV9PEV3/AOy12+a4j4fsqHxbuIAHiK6PP+6hoA7Y+x5rK13XtN8PabJqGqXcVvbxjlnYZY88KO5PoK5HWPiDLqgl0zwJbf2zqZO1rgD/AEW1HdnckBj6KD/gZdG+HizPDqXjKY69rS4YSSk+Tb9Pljj4GOOTjJ4oAzZbzxX8SLBV0qOfwvo8nLXtwu65uUPZEBGwY755yMd667wl4O0vwjpX2PT4SXc75riUhpZmPJLt3+nT+Z6FBgdD+NOoAaqnqepp1FFABRRRQAUUUUAFFFFABRRRQAh45rgL2WHW/i7p1kMFdAsZLuQ9QZZtqKMeoUE/8CrvJZI443eRgERSzE9AK81+EUU+q/2/4wu1fzdZvm8kv18iPhAPbkj/AIDQBs6J4XvfD/i2/udMureLQb5TNLYYJMVxwC0fYAgc+9dmOM5NMZcAkJz14HU/5Nee3uual4J8ZSzeIdRkl8L6oQttcOgC2Mwydj45CkZwTnoM9zQB6PRUVvKksCSI6sjgFWVshh2IPcYqWgDkviZYtf8Aw316Jc71tWmXHXKfP/7LWj4Q1pPEPhPTNWXrcW6s49HHDD8CCK17iGOeGSKZQ0ciFHU91PBFedfB1ZtO0jWvDlwW36PqksEasekTYZf13H8aAPShRSDpTX6/560AcHr14uqfFrw1oSgOlhDNqk46jO0xx/kST+Vd8vSvMPh5FJrfjXxd4sm3Or3Z0+yc9oouuPY/L+NenigBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAprHHv3p1MkAI56UAeZ65cP4g+OOhaQhzbaHbSX8//AF0cbVB+nykf7xr05fuivP8A4e2Qu9a8VeKGAb+0tReGB+pMMP7sEfUg/wDfIr0Begz1oAWiikNAC0hYAgZ5PSqWp6pZaRp8+oahOlvaQLvklkPCj/HmvPrzxZ4j8c25i8BW62tgTsm1fUUKDPpCvUkddxHXjjrQB03jDxrpfhGxSa6Zri6mIW2s4cNLMc/wj09/avNvC/hfVvH1vrr6tqF7o+my6tK1xpEAAdpCsZIeU8kY28FTXo/hfwHpPhkfaI0e81OTmbUrs+ZPIe5yfug+g9ar+BQBqHi5eh/t2QkccZiiPagDpNK0my0XT4bHTrWO2tol2rHGuB9T6n3JzV4dKUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUn40Acr8RNWOj+BdVuE5meE28I7mSQiNf1bP4VreHdHh8P+HtP0i3OY7OFYs46kDk/icn8a4Px20niH4meFPC0HMNtJ/a16P4dqH5AfqQw/wCBCvUBQAtUNY0u11rTZ9OvrdLi1uEKSRv0I+vbp1q/RQBz/hbQn8MaFBo7X8l5Fbllt3lUK6xZ+VDjqVHGcD6Ct8YHGaztd0tdZ0a805ppYBcwtF5sLFXTIOCCPSuM8G65q2i6jH4P8XyA6gFJ0+/LZS+jXrg/3wMZB5OaAPRD0NcNppj0n4vavZDAXV9Ohvh7SRM0bfmCpruBwpzj6V5j8SpX0Hxj4M8T8pbQXb2V0w/uSgYz7YDfpQB6eDx1rL8SaumgeHdR1aQAraWzzbT/ABEDIH4nitNeleZ/GKWXU7XQvCNq7CfW75Vfb2hTlz+GVP4GgDpfh7pI0fwJo9tj948AuJT6vJ87Z/FiPwrqaZEixRLGgARQAoHQAdKfQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXOeO9e/4RnwVqurLjzYYCIgT1dvlX9SD+FdETXnXxPtJNf1Dwp4aTJS81H7RcL2MMKlnB/76H44oA3vh3praV8PtDtXBEgtVkcN1DP85z+LGuopiBUQKoAA4AHb2rF8S+K9G8JWAvNZvVtombanyl2dvQKBk4/TvQBtFwDzxXEeMPiNb6BqUOjaXp82s67N92ztiD5fu552/THT0rJul8XfEKSJbcSeHvC82C0hfbeXMfpgZ2A/Uceua7Tw74Y0nwxZfY9JsYoIyPnfGXkPq7dWP1oA5OP4f3/ia9tdT8bam12Im8xdHthttIj/AHTzl8cc8c56ivQoLeOCBIY0VEQBVVRgADsAOB+FSqMCloASuO8EDGseMh6a2x/8gxV2Jrj/AAaNviHxmvpq4P5wRGgDsaKB0ooAKKKKACiiigAooooAKKKKACiiigAprE9uvpTqwvGWux+GvCWp6vIebeE7Md3Pyr/48RQBz/hO3j1bx/4q8SDlI5V0m374ESgyEfV2/Su8FcZ8LNIn0X4d6XDeZ+1zhrqYnqWkJYZ99pXNdpQAUUUUAFYXiPwrpniYWI1CN2ayuVuYHjbaVcdsjse/0FbtIaAM8axYf2udJNzEL9YfP+zbvm8vcV3fTIxXM/FXRv7d+HGrRR5M9tH9qiI/vR/Nx+GfzqXxx4UbWrWPU9K8q38Q6ewmsbo8HIOSjHupGRg8c1Y8JeJf+Eq0q5W70+azvbaU219azLwkmMkA/wASnIwfQ0AbOi339oaBp1/2ubWObP8AvKCP51yb20et/GZbhvmj0DTQAD2nnLD/ANAX9RUXwu1dE8By2lxJtfQ7ieznLdhGxI/8dIH4VB8JJJtTsdd8SzoR/bGpySwbuphQbVH4YI/CgD0helLSDpS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIaWkJxigDm9c8deHfDd4tpq+o/ZJ3GVDQSEN9CFI7inWXjXw9f3i2kWppHcOcRxXCPA0nsocLuPsM1478WdQg1H4x6Bpt5cxW9jYeU88szBUXc25yc/wCyF/KtLxpcL8WvEWj6X4UzdWunSGW81FoysMeduAGOCTgHgeo9DQB7gTkHmvPNO1OPV/i/rczSILTQtPW0VifkWSVtznPr8gB9MV3+G8vAXJ2nGT+n+fSvmTxF4Z8TeFpHu/FmmvqWiXd5JeXMVldbY2nY8GVgpIUDOOOOcHJoA9Y1bx9qOrakdC8DWTX1yZPLl1V1JtLYdzuHDEf5z0rS0r4e2sGpprmvXk+ua0o4uLoDyov+uUY4T8cn0qn4S1vXL/TNN/snw7o0WjYRVa21QkRxnrhBGOQM8HHPXnNdjqkmowWLvpdtBc3nARJ5fKX8WCn1NAGioAGOPypQQehFcd9v+IDcf8I/oa9+dTkPv/zyrpIzenTEaSGJb3ydzRiQmMSY5G7GcZzzigC9ketJkeorjBc/ETJH9k+HBnub2Y/+066DRzrL2H/E6gsorwNjFnKzxleOcsoIPWgDTzzXH+EOPFHjQdjqaEf+A8VOnb4gi5k+z2/howbz5fmTTh9nbOFIzjHSsbwD/b3/AAmHi1NWXTQftMTTfYy5xKYY8bdwHy7R35zQB6ODS5Fc7rY8X/bIzoA0X7OUHmfbzLv3c9NnGMY/WotGTxp/aO7XzoRs9h+WxEu/d2+/xigDp8j1oyPWud8QReKmlgPhyXSY02t5w1BJGJORjG08fxfpWKbb4okj/T/Cw/7d5zn/AMeoA7zI9aKoTx6idJkWCSAaj5JCO4JjEuOuOuM1yBsPik3/ADGfDY/7dJf8aAO+yPWisHw7beI7e0mHiG7sLq4MmY2s4mjULjocn1rG1LTfiHNqVw+m67o9vZM5MKS2bO6r2BOeTQB29JkY6iuJ03S/iFBqUEmpa/pF3Zq4M0SWRRmX2bPB9K3dfs9au9NMehahFYX24fv5oBKpXuMGgDazRmvOh4d+J2Mf8Jtp2P8AsFqK7LRbXUrbSYItWu47y/XPmzxx+WrndkHb2wMUAaea4L4mQR60ug+GC2f7V1JPOQHrBEDI/wDJfzFV5fDPxIaWTy/HltHGzHav9lxnaMnAz+VcLpWl+M/EvxJ1TZ4ujNzoEf2f7d9hTGX++ioOBghuevFAHvkaJHGqqAqqAAB2HYU/IrLez1BvDxs1vtupG18oXoiHEu3Hmben3ucVw/8AwhPxEY/N8Sm/DS4x/WgD0yisbRdO1Sx0CKy1PVDf36qwe9MQTeSSQdoOOAQOvauK/wCEA8fMfm+J1yAey6eo/wDZqAPTqTI9RXP+FdE1fRNOkt9X16XWZ2lLrPLCI9i4A24BPcE9e9YGseB/FOpaxdXVr4+v7C1mbKWsVvkRDHQHfQB3px0459az9ZnvbTR7250uzS7vkjZ4oC+3zGA4GfwH5dR1rL8J+HNW8PQ3San4ju9aMrKUe5TaYwAcgcnrn9K5fx3oV5ay33iGf4hajounKAPs8SkpG20ABRu5JPOMZ5oA85i8VxxT+ObbTX2rr1klxDATh47qRhHLFjruDSNx6KK978NaLF4d8M6do8IG21gVCezN1LfiST+NeJ+A/hXrF54j03xffyp9ja5+1CO9cm5lXGQ7YGAScHBPGK9N8eavd4s/C+ksBq2th4hMRxbQgDzJTjuAcL6k0AdDoHiLTfE1pNd6XcGaCK4e3ZipX51xnHqORzWwOleO/s9TOfB2p2zuCINRYKM88qvP0zmvYRQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFMeRU5YgAdyafVLUtNtdVs5bO9t47i2kA3xSLlWxyM/jigDxrwJ5Hin4zeKvEdx5Ulva5t7ZmwV6hARnrlEP/fdN0y/W4/aJkj8LxxppyweXqTQAeVKQjEsccZDFV+oNelf8K48G4x/wjGl49BbKK2tM0XTdGiMWm2FtZxHqsEQQH64FAF5abJEJRtZQQRggjNPHSloA4PVPhzBCZr/wndy6BqrfPm1Yi3lb/ppFypHXpyPfpWbpXj/V9AuxpnxB07+z3J2xarCCbWU+5HCfjj6CvTT1qGaBJonilRZI3GGRlyCO4IoAS0vLW9t1ntJ4p4H5WSJw6kexHFTgjpmvNbj4aXmiay+s+CdV/syR23y6bMC1pL7bRyv5HHbFWbf4mQaXqyaR4v059CvXH7qV38y2mx1KyAcD6j0yc0AehUVFFKkih0YOrYIIOeMVIDmgBa4zwrx468br/wBPVqf/ACXSuzrjPDBx8Q/G6/8ATazP/kAf4UAdmKKKKACiiigAooooAKKKKACiiigAooooAhuZ47WF7iVwkUalncnhVHJP5CuI+E2lta+EDq1xGVvNauZNQmJHJDsdg+m3B/GovjDq8tj4MOmWnN/rM6WEABx98/MfyyP+BCu402zXT9LtLJMbLeFIlx6KAP6UAWR0paKKACiiigAoJpCQOT0rlvGnjWy8H2ttJLBNeX13J5NpZ24y8rd/oBxn6jigC94l8S2XhrRp9QupAWVcQwKw3zv2RB3JP5de1cX4c8M6h4zmHiHxxYLgPnTNJlGI7WPruZP4mPH3ug7dALvhzwTdXPiM+MPFDebq8g/0SzDlorBMYCg8ZYdz6k/WvQETbzz+NAFeeaGxtZZ7h0ihjXe7McKqj19AK4HwnFJ4vvdQ8XXM11aRXDm204Ry+Wy2idCeOCz5bB9vSu91LTrTVbJ7O+tYrm2kxvimTerYIPIPB5Aqja+FtEsdLuNMtdKtIrG4z51ukYCSZGDuHQ8AD8KAPJPgBNHBqniywGVZLhGAPTaGkGMdu1e6CsDTfBfh3RrtbrTNEsbW4XIWWGFUcA9twGcYrfXp3/GgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEKg9RWfq2i6brNr9k1Kwt7y3zny5ow4B9RnofetGigDzTUfBviPw1tvPBGrXBghOf7DvZPMgdf7sbMcx/TI+o76Ok/EmxzHZ+JbWTw3qbYxBfnbG/YsknCsM8f5BrusVla5oGl+IrM2erWMV3bkfddeR7g9QfcUAaKsGRWVgQRwQeDXHeGuPiT44H+3Yn/AMgVkr4b8V+BbJ38Nag+t2CdNJ1A/Oq+kUo549CMY96ofDzxbb6t488TvewHStQu/spFhdMFlykZVwM43c89OmD3oA9aopBwMUuR60AFFFFABRRRQAUUUUAFFFFABTWOKdTJGVVLNjCjJ+lAHmmp20nib432NtIDJYeH7H7UwP3VuJD8mR64Ckf7temr0rgfhpcDXLfXPFJUbtV1B/KP/TCICOMf+Ok/jXfL0/GgBaKKKACkY7epwKa7EFQO5xXDeKPGd+usQeG/CsFve63KpadpG/dWSDHzyY756L149wCAWfF3jWLTnfRdDAv/ABPMuLeyj+Yxkj78h6KoHPPXj1zUPhHwXPpMq6z4gvX1XxFMuJLmQ5W3XukQ6KOTkgc1e8I+DLTwxFPcPK17q94xlvdQlXDzMTk4HZfYV1IA9KAEjQKuNoH0p9FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhIHJoyKhu5Wt7aWZIXmeNCyxR43OQPujPGT05rz2z+Kp1DXbvRLXwnrEuo2gLTwK0J8vBAOW8zHf1oA9HOD/KsXW/CujeIoTHqumW9ycYEjJiRMf3XGGB/Gqfh3x1o/iO8uNPhNxa6pbA+fYXcflzJjGTjoRyOh7104oA8ws9H8b+BbtjaXb+JPD4B22k8gW7gX/YY/ewMdx9BXTeG/Heh+Ip5LSCeS21CM/vLC8QxTp/wEnn8M11DgkcZH0rk/FPw90TxXKl1dQvb6lHjyr+1by5kI6c9Dj0I+lAHWAgdSBz9KcCD0Oa8y1DWvGPgCGJ9Utx4l0ZeHvLWLyrqEesiDKsPfjvk12PhnxVpHirSV1DSbtZos4ZcbWjPoy9QaANyik3CloAKKKKACiiigAri/itqs2lfD3Ujak/aroLZw4POZDtOPfaWP4V2ZOBXB+LpotW8e+FPDTDckczatP7CJSIx9C5/SgDovCGiDw54R0vSNqq9tbokm3pvxlj/wB9E1t0i9MZpaACmMy84IPHamvIu0kkbR1Ppj/JrzC41+8+Juo3eheGbuWz0OD5b7WEBJlPeKH3OeWPbB6YyAXvEHijVvEt5d+G/BQDSRkRX2rE4itQeCqf3n5PTp+o6Xwz4R0vwppws9Ng255lnf5pZmznc7dSan8M+GtP8KaJDpWmRFII+SW5Z37sx7k/lWyOlACKOOnPvTqKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopCcUAVNUvotL0y61C4/wBTawvNJ67VUscflXj3wBjl1F/E3iG6XdPe3apvPc4ZmH0+cfkK7D4u6zb6b8O9WgNzEl1dQeVFFvAkkDMFbavU4BOawPhrrPhvwd8MrQXWrWYuZQ11cQRzCSbe54XYvzbsBRjHGKAMu/vxP+09p0dl85itfInIIAP7qRyOOvDL17ivcB0rxj4W+DdTn8T33jzXo3t7m9eU21s64dQ55ZvTjgA84r2YcCgBaKKKAGsu459Bxx0rj/Evw70jXZGvbfzdM1ZRmO/sXMUgYcjdjhhn1/MV2VFAHmdr4j8V+C7Zl8ZWJ1SxT5U1TTE3sB/00j4I/wB4cCu20LxFpXiLTY7/AEm8jubd+6nBU+jDqp9jWk8atkY6jHIyK4a++GunpqU2s+HZrjQtYfLebbMDEzf7cRypHXgUAd4GySPSlrzC28deIfCt6bPx7pyLasf3Or2EbPAf98cle3pXodhqNpqNslxZXUNzC4yskLh1P4igC5RSA+9LQA1j74NeYeAoJNf+InivxZKG8iOb+y7Mt2WMjfj6kD8zXouqX8Gl6ZdahcsFhtommkJOBhRk1i+ANOGm+CdMVsefcxfa5z/ekl/eN+rY/CgDpF4GM/hVbUNQtNMs5ry+uEt7aBN0kshwqj1NR6pqdlpFnJe393Da20Yy8srBVHp6Z+lecWFnrPxPmkudfgay8JrJutNP5SW6I+7JIeu3qcAjnBxxmgBJ21j4q3kTadcy6f4JV8TSYKTahg8qvcJ25x369vTLHT7TTbSO1sraK3t412rFEgVQPYCn2tpBa2sUEEKQxRqFSONdqqPQCrAoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGsoJzjnpnHakA9QKfRQA3aM9OadRRQAUUUUAFFFFABRgUUUAMdQRgjIPHTNedan8MDaaw+u+DdQbQ9SY7pYNu62n9mQdPwz9K9IooA86/4WTJ4dv4NN8b6Y2lzTcR30DGW1mPsfvL9CDj2Fd9bzx3MKzwyLJE43I6sCGHqCKi1DTbPVLR7S+tIbq3f70U0YdT+BBGa4TUvAeq6ChvPAuqT2UkR3/2TNIZbSb/ZCsfkPvn6Y60AR/GO9mudG0zwpZttvNfvUtlb+4isrM30BK/hmuo8ReIdM8FeG1u7oOYYlSGCGEAvK3RUUHv9a8sl8alvHFrrHi/RbzTbnSLBxbWexnNxcu20mLjDcYHoOua7Hwp4UvNQvYvE/i2d7zUnzLaWjj91p6tztVem8DAJx/iQCtpnhK78a63beKvFtu0dvGM6fo0nzLCOzy/3mPXbgDpnOAK9LRcIBjGKq3Wqafpq5v7+1tQeR58yp/M0tpq2m6gqtZahaXKt90wzK4PGeMGgC5RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIwyCPWlooAiMZ3evB7Vi+LPENv4U8N3mtXSu6QAYjQ4Z2JAUDPTk1v15j8elmb4ZTmNSY1uYjLjoFyRz+JX8aAM74Wab/wl13d/EHXI45r+4lMVlHt/d20acYUevOM9sH1Oejtvh+LP4qzeLYDbR2s1oY5IlBDtOSAXPGOQBnnrk98mx8MIbez+GmgRWxDBrZZG5B+diWbP0Yn8q0PDHi6w8VHUZNNimNtZ3Bt/tLABJ2HUoRyR05oA6NenOPwpaRTlQaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACq17aQX9rJa3UKT28yFJI5FyrAjGDVmigDz+P4XWMGnNpNrr2u2mjuxb7BDdKEGTkqGKl9pOSRnnPIrpfDHhjTvCeiJpWmLIturs/zkM2WOeTjn0+gFbWB6UtACAYGKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9k='] Multimodal Competition False Theorem proof Solid Geometry Math Chinese 44 "如图, 在凸四边形 $A B C D$ 中, $M$ 为边 $A B$ 的中点, 且 $M C=M D$. 分别过点 $C, D$ 作边 $B C, A D$ 的垂线, 设两条垂线的交点为 $P$, 过点 $P$ 作 $P Q \perp A B$ 于 $Q$. 求证: $\angle P Q C=\angle P Q D$. " ['联结 $P A, P B$, 分别取 $P A, P B$ 的中点 $E, F$, 联结 $E M, E D, F M, F C$, 则四边形 $P E M F$ 为平行四边形.\n\n从而 $\\angle P E M=\\angle P F M$, 由 $M E=\\frac{1}{2} B P=C F, M F=\\frac{1}{2} A P=D E, M D=M C$, 所以\n\n即 $\\angle D E M=\\angle M F C$, 所以 $\\angle P E D=\\angle D E M-\\angle P E M=\\angle M F C-\\angle P F M=\\angle P F C$.\n\n又 $\\angle P E D=2 \\angle P A D, \\angle P F C=2 \\angle P B C$, 得 $\\angle P A D=\\angle P B C$.\n\n由于 $\\angle P Q A=\\angle P D A=90^{\\circ}, \\angle P Q B=\\angle P C B=90^{\\circ}$, 则 $P, Q, A, D$ 和 $P, Q, B, C$ 分别四点共圆. \n\n故 $\\angle P Q D=\\angle P A D, \\angle P Q C=\\angle P B C$, 所以 $\\angle P Q C=\\angle P Q D$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAhAFYgMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiim7gMnPFADqKr/AG223EG4iyO28U6O4jlGUkV/Xac4/KgCaigHIooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQnBxQAtFJuAppfnpQA+imhs/X0pc+tAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAh6Gql0qNaS+cN0YQk5q2eAfpXL+PNZGh+DdRvsjKx7QM+vFAHgXhrTYvFPxgnijM0mmxzmRow527MYx9OlbPjO6u/hX48tX0u5kj066Hmm23ZQAHBxnmtT9nrRgIdS1xw3mO3kgHuODXOfFuaTxh8S7XRLFTI9v8AuCV56kHNAH0jpt2L/Tba6XGJY1fj3Gat1n6JaGx0SztmGGjhVWHuBWhQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVGxypDcZqSmfxMPyoAw/FesXehaLNqFtDFIIVywlOBjivPPDvxS8QeKbG7urHQ7R0sxub5myTnnHNaPxy1j+zPArWwfbJeNsH4YJqL4K6J/ZfgH7SyZ+2EyguOi4/8ArUAbfgr4lad4tlltTE1tfRHa8Tdz7V3Izt/GvlrwhM4+N7HTzmE3OGA6FeM19SLkgdvWgB9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFef/Enwrq3jDTE02ynSGHJLkgc/r7V6BWXrl2+n6Nd3MbKGjjYjP0oA898P+CvFeheHG0W01K3t1J+eYwhyeMdM1teD/hvp3haZr2SRr3U3z5ty57n0BzivJ/C3xn1nTb65bWLWa9gfJRFO0xnI656D/GvVbH4q6DchPtCz2u5c5Klhn6gYoA71cAdvXrTvxrD0/xVo2pD/R9Qhc9cMdv861Y54pB8kqN/usD/ACoAnzSZpu75c9aUdc0AOopO1KOlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVGcbj64qSonxk5JAJ7UAfOvxw1Z9W8V6fpMccklvbMrsyqWHzcHkD2rudY8X2/h3wnDouhwzXd95PkQqkbMqDnqQK6vxJL4Z8P2MmpavaW6KTgs0eS3P0qTwzqHhzU7KO/wBIFqqv1KLgk0AcT8J/htP4faTWdWX/AE+c7kXOQoPXNetdeR3pg+8NpH5U8HBoAeOBRQOlFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU0sA23PzEcCnVG/+s4HzY4oAN+Tg9OmfevPfFN5L4m1+Lwvp7E28ZEt/Kv8ACnYfmK6Hxb4hTw/ojyJ811NiKFO5cnAP5mq/gnQG0jS/tN3zqN3+8uHPXJ5K/SgDyuS1svD3xkl06WxifTtTHlsjDChc/e/QV2d54Q1Dw1m48Pss+nEb5LCToR6KB/U1i/EnSXufGObcYnlsAkB/uvvzkfgDXpXhbVk1vw7Z3qHAdMNz0I4I/SgDjNLsvBHi52hudGgttTX/AFkEwIdPcYOPetF/h7NaqBpHiPUrJQfkiR1CfyrZ8ReDNN8Qxh5E+z3Scx3EIwyn1rnI9d17wg62viKFrvTwcRXqZLD/AHsYAHSgC0LDx9pgL29/Y6go6rcbix/KgeMPEtiQNR8J3sqgZMloo2j8zmuu0/VbPVbVLqxuEuIWHDxtn86uMoPDKCM5oA4+1+KHh528q9nNjL/cnByPyFdHYeINK1NA1nfwTKehVuD+dSXOk2F2pWazgfPXKDNc9e/Dzw5dsz/YPLk/vrI64+mDQB1wcMPlIP0oDZ/+tXAHwBqNl82j+Kb61UdI/LVl+mSDSBfiHpbZQWWooOpmlKsR+AoA9BJxSbh61wiePNUszt1bw1fKO7WkRkUfjxV62+I/hudgkt7Hav3S4O0j8KAOu3D1pA2aoWmr6fqKZsruC4HqjirgGDwOfrQBLRSUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANLYOOTS7h34pCOfSmnjpgjuTQA5nC9T1pQQazZNW0+CYxSXkQcHGwnNWoLqGd2EUitj+6c0AWaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqIuA2Mc9alrnvFevRaBpL3DHMsh8uFR1ZzwB+dAHlXx311by2TQrOLz5osSzN12g9P1Fcb4K8L6vdaGdV0O8uFlgcpcWsZw5GOq54zXr2meAILzQ1utVy2oTl5pWIycsB8n0GK474ay/wDCMeM720IZbO7mNrHnqJRhs/lQBseHZ9bvg8OmeKJjdRnD2epMN6H0+Uf1rojrXjrTDi80aC/Ud7IEMf8AvogVq6/4L07X8z7TaXq8pcQ8MD9OhP1rCtPEmueE5Vs/E1u09ivCX8WWAHbf0CmgC8nxLggXGqaNf6eRwTOF/oTWxp/jrw3qeBa6tbyN3UE5H6VpWs+navbrcW7QzowyGADcVQvvCGg6iSbnTo23dSmV/kaANqO5imUNHIjA9MEVLk9q4OT4a2SOW0u/udOYdDEd/wD6ETUP9heNtNJ+xa5/aAHQXIVMe3yigD0IHikLAd8VwK+JfGWnDGp+HkmX+9ZlpG/LAqzD8TNKX5dQtL7T2HBN3DsH86AO2zQTisKx8YeH9RwLbVbR2PRRJk1rh45BvBDr2KmgCcUU1c88ADtTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKM4oAKilcIC7sFRRkse319qkz71wXjrU59RuofCumMftV3hp2X+CIfeB9Cc0AVdHVvG/ip9amX/iVWDtDbIR95wcM36AivRdoDA4qlpWmQaTptvY26hUiQLwMZI7n8qv4wuKAPPfHaC18U+Frxh8r3vksf9nax/nTfBL/ANj+JNY8OSE7Gk8+1X0j2jP6mrfxQQp4fgvsc2c3m59OMf1qj4r/AOJZq3h/xLCQBlLaY/7Dckn8qAPRgoAqOe2guImjnhSSMjBVlBH606GRZYUkU8Mob86fxigDz6/8FXulXUmq+FLpoJurWjcxyewycL+FXdA8dRXs32DVojp+orwUlOFc/wCyx612AXHPHPtWN4g8M6b4ht/Kv4A7j7kqEI6fQ0AbIbIyCOe/UU4EEev1rzhZPEngYgzltW0gHG5f9ZCPcnJauz0XxDp2uWqzWU6tnqjHDD6jrQBq49APypQBRS5oAayK67WUMPQ81n3WgaTeIVm061bPU+UufzxWl+NFAHFXvw00C5YmL7XbSdjBcuoH4A1VXwXr+nLjSfE0sajos0PmZ9ssa70jnv8AnSfhQBwJvfiFpvzPp9lqMY6t54jOPoFpY/iW1o23V9Ev7dun7iBpRn64rvh+NMeNHBDIGU9iKAOdsvH3h+9IUXywMf4bnER/ImtyG/troZtrqGUesbhv5Vm3vhXQ785uNKsyT/F5A3fnWJN8M9JJZ7S61Kzc9BDdlQPwFAHa7j6/Q0ua8/HhbxjpeTpPiOBkH8N3A0rH8c04a1450wZvNGj1BB1aGRY8fgaAO/z7Ubq4KL4nWML41XTr2yY8f6tpBn6gVuWfjLQdQx5WoRIx6CX5D+tAHQg5FLVeG6gmH7qeJ/8AcYH+tT5oAWikByKXNABRSZ96XNABRRRmgAooooAjkO0Mc9BXhnj34ganrXiqDwl4ccRlpPLkkHUnnI9sV7PrDFdJvmXhlt3x9dp/+tXzh8D4F1Dx/eXN4SbmJfMUnruJINAHs2hfDnStO0jybl7i4uJV/fzSTMTu9snj8KZ8PvClx4ZvNYWaWWWKWdTAZJC2Fwc9fwrtmZVDHcFA5YscCnRurgFcc+lAElFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTSSDnt3pc01zjkZJ6AUANaTykZ5WARed3tXnOmKfHXi99TkVjpOmsY7degeToT7/MtXvHGryXVxD4Y01v9NvOZXHPlxD7x+vIrqNJ0qHRdKisoUxHEo6dS3GT+JoAwdH1271Tx9q1kjodNtbaMqm0Z8wlg3P5flXAavp8sWo+JbiAE3On3rX8aj3IU4/WvRPB+hXemT6reX6gXN3dyFQD/wAs85WskxJb/Fa+t5ADFe6aMKehYuc0Adnot7HqWk215GQUkQEEd+39Ksz2sFzE0U8SSRt1RlBBrhvh1cvaHU/Dlwx3afP5cPupG7P5mu+6A/pQB59feD9R8P3Ml94VuWQ53NZzv8j+oDN0/CtHQPHdtfzfYNTibT9SX70UqlVb/dY9a605POwZFY+veF9N8QW+y7hxIPuTJgOp9jQBrhwQCOQ3TFSgAk8DNebJeeIvArlb/OqaP0WWPmSMe/Umu30bW9P1m0WexuFcHllJww+o60AaeBiq82n2dznz7SCX/fjDfzFWM0uaAOZ1DwJ4fvwxlsvLJ7wN5f8ALFYv/CthaSeZo+tXto3YSSNKPyLV35wRik7YwfxoA4H7D4/04/6NqNvqSj+GSNYce2eaQ+NvEWmcaz4cZVH8VoxmP5AV3w5680ADPBNAHH2fxL0K5bbKL20Pf7VatEPzat618R6ReY8jUrSQnss6k/lmprzSNPvxtu7GC4B/56IG/nWDd/Dvw9c52WrWxPe2fyyPyFAHVLIHGV5HrnigMTn1rgX+Ht9ZuH0bX76Fl6C6meZfyoVPiHp3357PU1HQRQ+Sf1JzQB3+73FBY9sVwX/CfanYnbrHhq5t8cb45BJ+OAKv2PxH8O3bbfPmhfofOhZB+tAHXBiSOlOqhb6tp10A0F7bSZ7CVc1dVtwyDke1ADqKKKACijNFABRRmigAoozRQAUUUUAIfrimbyRkDAzSuMjrjBzXIfEnxCfDvgm9vo2xIQI0x1+Y4oAz/E3xSsdJ1NNJ0uFtT1NyAIYgdoz6sAfxpuo+JfGmkaM2qXWj2sixrvkijuM4HsQK4T4C6AL2e98TXfzyM5jRjyQwPJ/I17pcWsVzbSW8ib43G0j29KAM3wnrFzr3hqz1K5g8iWYElM5xyR/StpGLDPaoLS2isrZbeAFUHQelWFxjigB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU18Y5FLmmucIx6cdT2oAyPEOtweH9EudRn/wCWQyqDq59BWD4F0SeOKfXNSyb+/O8k9Qv8I/LFZju3jfxkEUH+x9Lk+cnpLJ1A9xg16OiBUAUAKOgHagABwQD19akpm09D0p9AHM/EG0+3eBtWtwPmeA4Pocis19P/AOEr+GYtoiPNntisTHswyAf0rrNUtxc6bcQt91kOfyrlPhfKX8F2sDE77cuh/wC+2oAueAdXOr+F4DJ8txATBIp6gqSv9K6cdQB0rgNFI8P/ABHvtKb5YL9PPtwOnygbvzJrv1zn9BQBJSHpS01l3Y5xigBjKrowI3A9Vri9Z8CBrs6j4euRpmpHkleFkP8AtAV2+09eho2cnn8c0AcFpXji5sbsaZ4ptHsbkfKtyceXL9B1H4120UySR745FkXsV71W1bRrLWrNrW+t0nhbgqwrhm0nxF4KlaTRZH1LTQM/YXOXQf7OMfqaAPR0Iye/r7VJXN+G/GOl+Iw0dvKI7yP/AFtq334z7iui3460AOopu6gsAeaAHUUUUAFFFFABRRRQBFNGkibJF3Kex5rnb/wN4av3LT6JbSSH/lpsGRXTHpSBaAOFb4a2tvltN1bULFh0WB9qj8MVCdD8c6Yc2OuW94g/huQzN/Su/KdSAMmjae/WgDgP+Ep8Yaac3/hmW7QdXtiqj6/M2asQfE/RchdSSbTn9JlJ5/AGu3CADoKjls4JlIeJDnr8vWgDMsfFGiaiA1pqEMmemTtz+daaSxyZKup/3Tmuevfh/wCGr8s8mlwrKf8AlopIP86yH+G0loSdJ8RahY/3Y49pXP4gmgDum3EZ6/SnDJ71wK2Hj7Sv9TeWeor63THd/wCOgU4eM/Elg+3UfC13Ko6vZpuA9+TQB3oxnrTq4iD4peHC4jvbg2EmeVuflIrpdP17TNVGbG9iuB1zGaALsqJKGjcAhgQwPcV5Re/CvUNL8Vf294W1CC1kZtzwzqWDflXqUt1bLIiSSqGc4VSeT9KlzjscUAchbaN4k1GQDXby1+zRn/V2qlS49Gz2rrLZFRVVD8qjAHoOwp5Qt34Pf0pyKVJyf/r0APooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooNADRg8CszxBrVv4f0ifUrlv3cK7ivdsdh71o7sZ44rzq6lHjjxktlGd+kaXJm4P8Mkg5x7jBFAGh4I0ef8A0jX9TTF/esHX1iTptH4YzXTaxqcGi6bJez4CJ09yatqiqigDC42qPauI+J00kun6fpcYJa4vISxA6ASLn9KAOzsLlL+xgulGFmQPj0zzXE+Kh9i+Ifhu7z/x8TeR+Ssa7m2iS1t4oFG0Iu1R7CuJ+Jcfl/2JqI4Npd+YT6cEf1oAj14f2B8RNJ1ZPktr8fZZT23k5BP4Cu9zvwO33hXLeO9KfWvBU/kcXcMfnW59HxxWj4T1WPWvDtpeLnONjD3X5T+ooA3h0pGAIpaCM0ARuodGVwGQjBHrXEar4EaK5bUfDVwNOv8A7xVeEkP+1iu4IIPy4xQVJ6HFAHCaP46eC8Gk+J4GsL8fdkI+SX3GM4/HFdxG6SRh0fch5DDkYqlq2hafrVm1tf2ySoemeorh203xH4JnaXTHl1XTF5a3b/Wqv+yOBgfWgD0gAHkGn1zvh7xfpXiOMizuFFwn+ttz95D6GugDDbntQA6imq4bkHIpd3GcUALRQORRQAYpMD0paQnFAC1lX2g6VqgZb6wguFPXzFzWnu554puQCc9+2KAOMn+Gfh1yXsY309s/etPlIqufBniOyBGmeKLh8fdW9Yuv6V3gII4pvl9QcMD2oA4M33xB0z5ZbWy1JR3toyp/8eNOT4kT2h2ax4dv7Ejq7lSPyBJrvNmOAcD0pGiRhh0VvqM0Ac1p/wAQPDeoHbHqKK/911YfzAreiv7WcAx3Ebg+jj/GqN/4W0XVAReabBKD1yCP5Vz83wv0cEtp80+nt2MB6fnmgDtBz905pTnPWuA/4RTxdpzf8S7xNPdKvSO8wF/8dWpBrfjjTgFutEtLxV/58yzN+OTQB3gGOT+lOHSuEX4kQQH/AIm2j6jpuOrXCAL/ADrY07x74X1RglprVpJIf4A/NAHSUVGkqSJuRgwPcGnBjjnP5UAIxOceo61xnxN8PzeI/Bd3Y2ybpxtkUeuOcfyrsz83HSmnng8dvrQB4X8G/FFn4b0u68Pa232KaOVnHmqRvJ4x09q9U0/xMusamINKjaa2Q/vrkqQg9gOufetGbQtOupmmntImZvVe9XYbaO3VVijVQBgYFAEw6UtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUHpRSHoaAGnOCR17Vx3jrX5bS3h0fTQZNR1B/Kjx/B3yfwBrptQv4tN0+a8uG2xQqWYn+lcb4Isptav7jxZfJzdAC0Rh9yP6eue/WgDo/DmiQ6DpFvYQjecbnkPVie5/OtwdKNoIxSgYGKACiiigBrjKEeorgPhyTHdeIdNb5fs12qqPYrn+tegGvPtA/wBC+J2uWw4+1kT4/wB1QtAEvxGtHt49P1+AET2M6K5Xr5RPz/oK7OyukvLOG7j5jlQOuPQ81BrGnpqukXdi4B8+Fox7ZGK5n4b6k8+izafcN/pOnzPbsvoinC/oKAO3ooooAKKKKAEPSomRZAUYHaeo9ampNozQByniLwTp+sOLqEtZ38Y/dzQjB/EdD+NYdp4o1jwxdLY+K4C9ueIr+FSQR23dAK9H2jOe9QXVlbXsDwXMKSxMMFXUEfrQBHZX9rqFstxazpNC3RkOf5VOAc5BBA9a8/u/COqeGbmTUPCly23q9lOxKt6gFjgfhWr4d8cWWrH7JeI1hfocSQTgpk/7JI+bn0oA7CimBjtz/KhX3MRQA+iiigAooooAKKKKACimliDz0o3HGaAHUVFvZm28qfpTt2OpoAfSGsu+8SaTpqsbrULZGH8HmKW/LOa5ef4mWs8pg0jTb69m7b7d40/76IxQB3JB/i+7Ve4mhhi3TSrFGOpbG2uLL/EDWcER2mkQn3WckURfDWC6n8/WtVvbuXusU7Rp/wB8g4oAsat4s8HoHhZbe/kx80dtEsjn8q4fUdK/4SJgdD8KTwE/cluppLcr74HB/GvV7Dw3o2mIq22nWykdHMSlvzxWD8Q/Ey6BoLRwY+2zgrEijkL/ABN9BkGgD57vINWh8XwwSapPPHaTRiaSNtwiJbG3OfavrG1Ty4I4w+8qowT3968T8GeDZJPh3q+pXK77y7kMxc9WCHepr1LwTqP9q+ENOuz/AKx4B5ns2OlAHSduaKB0ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQnA9u9NdjkgcY5qrqGoRabp815cMFjiQsSfp0oA5nx14gl06wh06w+fUtQYxW6Duep/TNanhbQIPD2iRWaHMmMyykcyE9zXN+DLSTX9WuPF14uUmG2wjI+5FnhgOx9+tegIoEYGc0AAC7c9Rmq0i2lxcCFxFJKnOCAWXPIP6VaKj8q4LwlM+q+OvEOp7iYAI4UweAVBU0AdznP3eee9cp8S7Yz+BdSdf9ZEquv8A30tdaPXg554rM8R2323w9fQYzviIx+OaAJdInW90azlwCrwrkde2P6Vx/gpv7D8Rav4dkbaolEtqD3Vhub8ia1/h5d/a/A+myE5fYQ3/AH0ayPG8TaR4n0bxLEQqxP8AZJj6rIw5/SgD0IdKKjjkEkSupyrAEEdxTgTuPpQA6iiigBDUJyWxgcn+IVPSbR6UAchr/ge11SU3lhIbDUU5WWIdT7jp+dZdh4v1Tw9P/Z/iy0Mcf3Y76L5kb/fPRa9DYA9Rmqt7Y22oQNb3cCSxMMEOoP8AOgAsrmC7t1mtZ45kcZVlIII/CrA5zyQRXnlx4W1nwtcSXvhifzoD80lnM+Q3+6WOFHsK2fDvjiw1pza3CtZagnEkFwNmT/s5A3D6UAdaOlFMVwQMc+mKQSHOCO/agCSoLhXdCqSGNmGAwGce9SgnBJrF8W6muj+F9Rv2ba0ULFT74oA8g0nxv4p1z4gTeGrHUyIEZ/33ljI25z2q3o3xM1rTPiAfDmtulxEXKrMAAcc4yBXMfCKDWX1LVdc0zTI7ydy+x3mCYLZ9RXX+Evhfqf8AwlsvijxK0aXDSGRYEwwGT0oA9kA+Yen86kqIAh93Y9qloAKKKKADFIRkUc0mT3FAB14zik74xRn1IpCwzznPtQBE1rDNkSwRuP8AbUN/OsjUfBuh6oNtxYR47+V+7P8A47ita4vbW1Xdc3MMI9ZHC/zrmNU+I+hacxRJZruTOAtpEZQT9VzQBSl+GVhE+dM1G8siOm2QyYP4mom0Lxvpx/0LWkvlXok4WP8AUZoHinxbq4B0nQlghb/ltPKFI99rChvBviDWlX+3fEL+Wxz5VsnkkD03I1AGNffE/WPDcgj1+w00EcA2l0ZXP1XAxS+CvjA3i3xcNGOmLDCwbZOrEnIB6io/HGn+HPAXhuWSG3N1qEylYlun85v975veuC+EsN9oXjO0u9RtjFb6gr4ZlwAcZGPTOaAPptc7RnrS0ijCgUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNJ69/pSMRu61zPjLxF/YOj5g+e+uWENvEOpLHGfwzQBgeIJ38YeKIfD9qx/s62IlvHXnf1wo9wQM16DbRRQwLFCgRE+UKvAAFc/4M0A6FoyibDXtw3nTseu5utdIuM4HAFAD6KKKACiiigBGPSuA1L/QPi/pcw4W4sZEJ9yw/wAK781wXjsfZvEPhu/7fbEgJ9ic0Ad0xAYA8emK8/K/8I58UVkGFtNYj2jsFdAST+JavQCA2fXHBrjfiPpct5oUd5a8XdlIkiEf3cgv+gNAHa9BS1maJqcetaNaahGfkuI1kH481ogjJoAdRRRQAUUUUAFFFFAEZyGPTB9OtYOv+E9M8QLuuITHdKP3dxH8si/8CroqQjg9qAPNl1bxF4FlEWsBtU0pul3GDvh/3gclq7jSdZstYtlnsp0lQjJx1/LrVtokkiKSAOh+8G71xGp+BpLG7bUvC90NPuzy0S8RyfUdaAO9yKWuE0jxzsul0zxHbnTdQJwhl4SX3X/69dujh13K24EcEUASUVA8jKvJUH+8elZ+oeItJ0iPdf30UXpkk5/IUAa9JXAz/EuKeTytE0q71N84DQgBR9c01R481vq9ppdu3qrCQD8MigDuJ7u3txmaeOMf7bgfzrmdS+IOg6czKLiSeXONkKM3P1AxVCL4axXbiTXdVvNTY9YpnBj/AJA10mk+GdH0YbdP021t1H/PNaAOXPi7xNrC7dF8PSwr0FxcOpX67eDSL4S8Vawd2ua+I4yPuWKtER9Tk16FgYpcUAcjY/Dvw/aESS2v26b/AJ6XZEhz+NdLb2kFpEscEUcajoETAFWcUUAMxuHvSc9Cak6VEfvE7vlx+tAEN5dxWdnLcTuFijGWYnGPzrxPWJrnXPN1qcHzbucWdjGc/LGTsY49Dwc12Piu8l8Sa3b+FLNsxH95fSL/AAKP4T9QQahtbRNU+I0FtboDYaHbeWW7FmUFfyxQB2+l6ZHYaDbabjCrAIm44Jxg/wBa5XwDJ/Z+r67oTDCw3TSwr6RkgAV3XP4dq4HU2OifFOwuQMRarGLUnoNy5Yn+VAHoY6UUDpRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR3oAjb5jjt2x1rz7xLcv4s8SxeGrR/9FtyJrx1PGOwz9V/Wt7xj4gXQNJYxnfd3B8uCMddx4B+mSKTwX4eOi6UHuRm+uv3twfc84+gJoA3ba2S1txDCiRovyoqjAUDtVlRjNKOgprjn72KAHd+tYXh3w9b+Hre5jgYu087ysT6sxP9ag8Za3PoegPc24BlZ1ijB7s2cVuWDyS6dbSTDErRKXH+0QM0ASghTgce1MuAHgkX/ZP8qmI4puB0PegDhPhdJ5elX1gf+XKfyiPTjP8AWt/xVpH9s+HbyzZcs0ZdD6OOlc34LP2Hxv4rsunm3QmA9tiivQCAc59PzFAHLeAtZOreF4t/M1qxtpAeuU+Un9K6oc/hXn2hqPDvxF1DSvu218gnh925LY/E13+cEDrk/lQBJRRRQAUUUUAIeBTTxxjIp9FAELqdysq4APODisLxF4R07xAvmTReXdLxHcR4WRP+BV0dJjmgDzePWvEHgqQW+uxPf6Z0W9i6oO24ck12+mapY6pAs9lOskZGQQf596tyxJLGyOodG4KnniuEv/A8+k3b6j4Vuvsk5O57ccJKfQ0AegdTjsa8w+M11eXPhn+ydOtppZ53G7YCRt75rY0Tx4s15/ZWu2503URwok+7L7rjP64rsg0bAHPBHB9aAPOvgzp/9meC1tpomjuw7+aCpXOTxXpG08kDv3pQu3oBg9abuI46/SgBwY55GPen1GSRkkA+wqCa9trZS89wkajk7m6UAW6SuNv/AIl+HrSQw210Ly47QwZ3E+nIxWePE/jDWnC6b4el05D92a+AKn/vljQB37uFU7mCj1PAFY+o+KNG0tc3N9F9Ebcf0rmh4O8QaoS+seJ7hE/ihsmwh9sMK09O+HnhrTz5qafHNOTkzOMsTQBnP8RxfM0WgaPdajKOjAbAP++sVELf4g62P3t3Z6XA3Bi8vdJ/30rcflXexxLCqxxxhEHQCpcAk55oA4e2+G1kcSarf3+ov3Sacsn5EV0uneHtJ0lR9g063tz/ANM0ANamBQAB0GKAGdeoK/Q1XuriKzikuZ3RYo0LMW7D1zVs1574xvH8R6xb+E7FyY5Pmv3Q/cj6FT7nINAHA6uLjxr4ls5pAdtxOBaxkcCFGAkJH5Gu88c2ds/hCC40woW064i5THCo43D8qp+GbaC/8T6hqUK4tdLhFvbN2wV+b9Vqx4BsxfeCdYjkG83N5eY78lj/AI0Ad5pV8mpaXbXsf3Jow4/GroriPhrck+Hn06Q4l06ZrUjPZMAGu1HGBQA6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApMj1oI96bz1UdTQBBdTR28T3EzhY4xliew9a4Dw7FJ4v8VN4ivE/wBCtS0VkhHDEfKzfoDU/jTUpda1W38JaexzP+8u5F/gQdVz6kGuy0+wh0+wgs4EEccSBRgegH+FAFwr8px1zTlXBJHfrTh0ooAKKKKACiiigBrdM1xXxNTHh2G5/wCfW4Wcn0wD/jXbN0rmPH9o134E1mNfvm2fZ9cUAb2nyedp9rL/AH4Vb8wDS3Vst1bTQSfdkQofoQRWZ4Ru/tnhawkB+7CqH6gAVtnkc0AcD8P52spNU8PyZElhMxhHbyui/wBa7xQASR3rz3xBv8PfEXTdYT5bXUcWs/oNoLZP4kV6FGcgsOh5FAD6KKKACiiigAooooAKQ9DS0hxQAzII6ZXHJpoyAOoGOg5rzb4seNNR8EWtldWJST7TL5RjbHy8E5rC1b4h+K9C8JaX4juYIZLW7O1lBAKnn29qAPVdV0Gw121aC8gR1PfuPfPWvFPFd14z8D+JLXStG1C5uNPlZRFvUfxHp07E17H4T8RQeKPD9vq0KbFkGCPfOP6VzvjvnxL4dUjIZ2/mtAENv4T8T63FHJrfiG5giZRutoApUn8s1s6d8OvD1gVkayFxOD/rZGJP5ZxXVdiefTFP7UAQRWcECgRRImOPlUVMVGPenUUAN2n6GjH506igAooooAKTPJ9KWkI96ADIIrA8Va/F4d0Sa7bDykbYox1duwFbckgjRnbhFBJPpivOrIHxx41e+IP9k6Y22IdpJP735HFAFzw5Yjwn4Yv9d1H576dTc3DN1AAOB+WKm+G+mywaDLfXJIubyd5WJ7ruJX9CKi+IU5vE07w7C3z386iRR/zyyQ1dlZQLa2cNso4ijVPyAFAFjowrifiXZyf8I+mpwDM+nyiaP15IU4/A12w4z71T1W1S90q5t3GQ0Z6+uOKAJNOvI73Tre5iOUkQEGrQOa4n4Z3ryeGF0+Yk3GnN9nkz1z1/ka7NOvB4oAkooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGlsVHLcxwRNLMwSNQSzN2A7mnueD6Y7VwPjXU5NX1G28KaexMl0N1zIv/LOIfe/mKAINBR/GXieXX7hD9htGaG0Rx97szfoCPrXoq43EVT03TYNK06C0t1CpEqrx3wOtXVHOaAHU1jzinVHJ94cHPagDk/GekXutzaTbQJm3iu455f+An/69deoCqAOgHFZNtrtnea1daXGzG5tSBIB0GRkVrAYGKAA01gcH0p9JxQB5+i/Yfi6EHS8sHf/AIFuA/pXfDkE1wniofZPiF4cvB0lItSfqxNd2MDC9jQBwnxJt5bWLT9etB+/sp1Vj/sMwDfpXa2VzHe2kV1CcxyqHH41W1eyTUdKurR1z50TqM9AdpGf1rm/hxfO2hy6VcN/pOmytbEHqVXgGgDtqKB0ooAKKKKACiiigAooooAaQc8YxQVPXNOpDxQBj654c07xBaNb39uJB1V+hU+oxXGhfEfgV8pv1fSM/MOssY9AB2r0g8gjoTXD+JPEOq3movoPh+2JuGGJbmUYSIdO/U80AMtPi34UuJmR74QOBysuF5x0+tE3xElvBt0LQ769kPR/K/d/XIOcV5RH4Sl8K+PL67ijF8lj5UlwjoCCJBuY49ua+gdHu7G+0y3vNPVBBMgZfLUDHGcUAcebTx7rvFxPbaRGf+fWQsw+oYVZtvhnZzOJdZv7nVZB/wA9jtGf+AkV24GT269qkoAzbDQtN02IR2lnFEPYZ/U1e2ADAUY9qkooAYEI4zx6Uu0H8KdRQAgzQM0tFABSFsHoaWoZJNgd2bCgd6AMnxR4gh8P6JPdvzLtxFH3duwFcdZwv4S8Eanrl582q3imZz3LY4A/ACpIk/4Tvxs075Gk6U+I/SSUfzGDU3jAjV/Fmi6BH80aYu5gOmxTgqfzFAGv4L0Qaf4RitZSd9yGlc9zvJbn861dD0aDQtPNpb5KeY8vPq3NJrty2leGr65hHz21szL+C8fypvhe8uNR8O2N5c/6yWJX/AjNAHLaO39jfFDUrBvlhvYFmjx3csc/oK79fv8AtiuD8fo2n6xoGuRDAt7gicj+6V2jP4mu8jdZFV1PBFAElFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADHPIBrD8Ua/D4d0O4vpclwCIox1kb0FbcrBI2Y4AAySewrzm2DeOvGn2pwTo+kviIY4lk65+g5H4UAa/gbQZbSyfVNR+bUL795Ix/hHYD04xmuvCg4JycdM0qrgAYHFLkhsdqAHUUUUAFFFFABRRRQAhqlqVv8Aa9NuITyHUgAVdNN4wR2xQBxfwvuWm8HbXPzxXMykewdsV2uTwPWuB+HYNpf69pp/5Y3G8D/fJNd4D1z6mgDmvHGkHV/DF0kfE8eHjJ7EEE4/Krfg7WBrnhawv8/PJH849D6VruqyoyN91htx/n61wvggnRfFGteHX+VPNNzbD0jwBj880Aeg0Ug6CloAKKKKACiiigBCcGkyfSlPeqeoXqWFnJcybjsUkADr/nFAHzz8ab6TWviJp+kWuZfK2jygOr5Of0rd8YaJ4j8bW+maFp2mfY9Mtsb3dxwfXH4muc8IhtX+M7a5fwywo1wZog6E9ePSvpNRuAILBQOBmgDC8IeHV8LeG7XR45PMEI+975yf51heOOPEvh3H/PRv5iu7ORx1rhPHOP8AhJPDv/XRv5igDvsDg06kpaACiiigAooooAKKKKACmtxnmnVn6vqkGk6fNeXDhI4kJ3HpnHA+p6CgDlvHGszf6LoWnP8A6feuVOP+WadSxHoRkfWuh0LRbbQtEg0+EELCmCe7EdyfxrmvA+nS6jPc+K9RjYXN5/x7LJ1jh6qPrzW/4r1caH4Xvb4H544yUB6sfT9aAOa0FP8AhIPiPqWq/et9NU2sRPRtwByPxFegbB71zHgHSv7L8LWqyczygySHuSSSM/gRXVUAIFxSbByOxp1FAHnmiD+xfiXrFh91dRBvEHbPC/0rv0GNuOmK4Lx0g03xFoGuqcCKcRSkdk5JzXexMHjRx0ZQaAJKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAENGaD0qN22IWJ4UEmgDK8Ta7B4f0ae/nG4ovyKP427AVh+BtCntLWbV7/wCfUL9hK7N/CvQAenGM1mKX8c+MixBbR9LfC9xJN/IjBr0JNowAuAowBigCbGR9aAABSiigApjnH5U+opmVBvZgoXk5OKAOF+H0Zu77XtVcfNeXK7SR2QFf6V39U7K2t7OERW8apGCSNvfNXB0oAKMUUUAcJ8Sh5Eeh6gOPsmoJIx/2QDXaW7CS1iYfxID+lcr8T4DL4C1SQdYYS4+ord0C4FzoFhNnJMKD9BQBokYx79a89Ibw38UFf7tprCeUuf8AnouWb+lehE8VxvxJ017vQEvoM/arCQTREfUbv0zQB2Slu578fSnCs/RtSi1fR7TUIjlJow4xWgOmaAFooooAKKKM0AFFFJn0NADS3UA8g+lUtR1S20qCS5vbhIoFU/e4qczxtKYvOUOP4c/N+Vc5rHhGLXNbjuL64ne0iAIti42MwPUigB3hvxRL4iaeaKwlhsUOFmlyGb6KRmujjhiVnZECu+CxAxn60kcaQoqRoFjUYQL0AqRCWU5GDQBwelQpP8U/FEUgBje3t1ZT3Gw11VhptloFl9mgYw25kL/O3GT2Fcxov/JWfEv/AFxt/wD0A10+u6Uus6XcWTMyFlyrg9D2/WgDSUjJxznnNSVw3gfXLtGl8Oau3/Exsfk8w8ecg4DD15ruO3NAC0UUUAFFFFABSE0tNbjmgA3D8OlcT471qeNI9C04ltRvSFAH8K8En8ga6jVdSg0jTp7udgI4lLc8c4rj/BGnTale3PifUB++usC3Vh/q4+qkfyoA6XQNItvDuiRWMJ+SFMlz1fHcn6Vy3gRW1nXNY8SyD5JZtltntHgAj8wa1fH+r/2X4WuFiJF3cfuoAOu7jgfhWp4X0tdH8O2dkABsX5vcnk/zoAZ4rtbi98L6ha2aF5p4WiRT7jGas+H7SSw8PadayLiWC2jjYZ7hQKfq2qW+jWgubpgse8ID7npVmGRJoEkTOGAINAGL410war4VvYMchQ4x2Knd/Sk8Fal/a3hPTrxzmSSMGTHY+lbsqCSNkI+V1Kn8RXC/D8/2Xq+vaEx+W3uS0I/2OOn4k0Aeg0UgpetABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIxwM1GScHH1z6CpazdX1OHR9NmvJ2CJGpPPr0A/E0Act441udhB4e01t9/qB25X/lmnXcfyIrpNC0eDQ9HtrGHgRjBbux75/OuY8B6VPey3HijUo9l1f4MMTf8sY+oUV3YByCcGgBy9KWkAwMZzS0AFFFFABRRRQAUUUUAIelJgEYNOpCM0AcFox+xfFLW4Dwt0kbj/gKc/qa7z1BrgNW/wBD+LmjueFubSbcfUjaK78HOaAGfxEdsVwPjdW0bxBo3iRDtjSUQ3R/6Z8n+eK9B21jeK9HTXfDV9p8g/10eAfQ5oA1YZRLCki/ddQwPsRUo6c1yngLVm1XwtB5pP2mDMUinsQSB+ldYOlABRRRQAUUUUAFJgYxilooAYIowQQigj0FPxRRQAVwHjz/AJGfw7/10b+Yrv64Dx5/yM/h3/ro38xQB3vY06mjoadQAUUUUAFFFFABTXOBnFOpr8DPpQAwlgDjv09q881qZvGfi6HQrds6bZES3br0Zs/KPwINb/jXxB/YukmOD5r25/dwJ6k8D8M0/wAHeHV0DRY1k5upT51w3fceSPoDmgDeiiSGJIkX5FG3FcL41J1rxJo/h5eY/N+0XIH/ADz5GPzrvGcJE0pyAFzz7VwfgtTrPifWPEL5MTSfZ7f/AHOG/nQB3kEaxosaDCooUfQCpqYM7ueKfQAUUUUAcx490s6r4O1GBP8AW+WSn1qz4P1Mat4Ysbod02H6qSv9K2JFV1ZWGV9D0rhvh47afea3oMrY+xXA8seoYFz/ADoA78dKKaGp1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFITjPNAATgcda4rx1rk0EcGhacd2pag2xcfwL1JP4A10+ranBpWmT3s77UjQtn3xwK47wVp0up3tz4p1BD5l2o+zqescecj6fzoA6nw3ocGgaLBYQDiNRuPqfWtbApEB28nJ9adQAUUUUAFcT8TLiUaHBp8DssuoTi3Xb15Fdpu5rE1nw+msanpl687r9hnEyoAMEjNAGjYQ+Tp8EJYuY41Xn2FWx0pirhQB271JQAUUUUAZHiey/tDw3qFqeksJX65rJ+Hl19s8G2j55V3Q/8BYj+ldW4DAqw4xzXBfDAtDpN/YH71tdvkem5iaAO/qveQJc2k0EgysiFT+PH9asUhxQBwPw6mawk1Tw5KxL6fcFIh6xjHP55rvUO5QR0PNee6+T4c+Iulaog2wali0mbsDy2T+VegpgjIPB6UAPoopMj8qAFpvTqc0hdeOeT0qG5u4LSCSe4mSOKMfMzHAWgCRywAwQM+tcv4n17VNOeKx0qwe4u7kEB8ZSPtk96h0vxhc6/rappViJdLQkSXMp25PbZ611ZhBfcyqzrypI5oA5bwt4Rk0yd9V1K6a81OYfM7dEz2GK6xeDt5POcmhVYLk/Nnt6U5Uwck/QUAOxQ3Q0tI3SgDhNE/5Kz4lP/TG3/wDQDXcE88cHPWuG0T/krHiX/rjb/wDoBrutpyMnNAFCXR9Pl1Jb+S1Q3MYBWXnIqeG7hnaRYZVkMR2uo6g1MV4yV7+teea4k3g7xQniGEvJpl2dl4mfuH++B7AfrQB6LHnbzjPtT6rWl1FcWkU8bfu5FDKfXNWNwxnNAC0UA5FITQAtMdsHofbH8qUN8u7tXN+NNfGjaORA269uD5Vug67j0P0BoA57XpX8ZeKodBtW3WNqRLeSLyAw5VfzBBrv4I47eNYIkwiIAoHoKwPBfh8aFoymUZu7k+dO3qzckfma3Lu4FnZzTucCJC5J9u1AHC6yp8RfEfTtOQgwaYPtUueRu5XB/PNehKoUKo6CuE+HFu17FfeIph+81OXzUz1CHt+YrvOelAHEfFB2Hh20jXJMmo26Y9i1djaRiGyhjHO1AKjvrC2vo40uVDKkiyLn+8ORVkemMAUAIxwV4zzzXAaq39ifFDTbvpDqUYtM9t+S38hXoGB2rh/ibZt/wjyapEP3mmSfaVx1z0/rQB3APJPNKvAxVPTbkXmnWtwrA+ZErfpVxCGGcUAOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKY7MvAGSeBQA4ng15pqszeN/Fa6REW/siwIkuZB/y1fP3fwIre8b+I20jS/s1qd9/dnyYYwMnngtj0GaueE9ATQNDit5MNct+8nfuXPX9aAN+NVRQqqFUcAAcAU/FMjHyLz2p9ABRRRQAUUUUAFFFFABRRRQAUUUUAeffEEGz1rQtUX/lncLAfo7DP8q71R0IPBrjfihB5vheOQDmC8hmJ9lbNdTpspudOtJwf9ZErH8RQBdpjjII9RT6RhQB55orNoHxHv8ATG+WDUQbiL0BUAYH1r0NRhQK4P4hwNZpYeIIwd9hcK0hH/PPOWB/IV2lnci6sre4Q5SWNXH4jNAFmimBi2COPWn0AFFFFABRRRQAUUUUAFcB48/5Gfw7/wBdG/mK7+uA8ef8jP4d/wCujfzFAHejoadTR0NOoAKKKKACiiigAqK4njt4HmlcJGgyzHsKcWO4AEdeRXA+NtRl1rULfwnYMRJcfNdOP4Ix1HsTnNAFfw7C3i/xJJ4oukK2Ntuhsom6HnBJH1FejDkZqrpthBp2nw2kCbY4kAA/DqferO4DigDmvHmrHSPC1zJCc3L4jiUdSScf1q54S0caD4ZstPYgyRRgOw7nr/WuZ14nX/iLp2k/fgsFFzMF/wBoFefoQDXoAjAUDnpigBR1NOpAAMUtABRRRQAxh1HrXn2qA6J8VLC5Axb39s6ynsZMgD9K9ErifiXbEaJbanGCJdPuY7jd/srknP6UAdmR6U4dKpafdC8062uVOfNiRiR05ANXFzjmgB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTSewPNADqiP3wT97t707LHtXLeNvELaNpot7bD6jeHybZPc8bvoMigDn9Ylfxn4rXQrYsNNsCJ7qVTw7Z+7+GK9Egijt4Y4olCxoMKB6VieEPDy6DpEcTgm5lHmTuepc8tz6ZroQgHSgBVzjmloAxRQAUhpaRjgZoAYGBySPauX0HxBNqvibWLBV/cWE3kBvU4B/rXSyljBIUX5tpx7nBrlfAOjXWm2d9PexFLi7uPNck9cDH9KAOtAwuAe9SDpSAUtABRRRQA1+w7Hg1wXhI/YvHniiwJ+WSSKSMf8A5/U13rdwOteff8eXxjt4+gu7OVz7lQooA9DpD0pR0ooA5Tx5o51jwpdRQ/8fcY3wn0b2/Cr/hLVV1nw3Z3o4dk2uuehHH9K1nRXVlPQ5FcF4KkfRPEmseHpBhTJ51queiBRn9TQB6FURI3uATuxycdqDLwMA9cfj6VjeI9Wu9LsPMs7R7m5kO2KNT0b1PtzQBoz3trbSRRS3CRPI2EVyAzfTNZPiTw1D4jFtFdSypDHLuZI2IDjHQ1keHfCV1NqA1vxHKbjUM5SMcJEPoa7oKMdOKAKlhYw2FokFvCkKIMbUAFWQMdBzTsAdqAAKAFFFFFABSN0paRulAHB6J/yVnxL/1xt/8A0A13grg9E/5Kz4l/642//oBrvRQA1/umqt1Zw31rJbXMaSRyDBUjtVzGaaUB7UAUXns9MSGB5Y4VJCIrEAn6VbBB6cDsfWsHxb4cTxBpTQI3l3SESQSjqHHTPtVLwN4hl1aweyvUZL+yYxSqwxkA4DfjjP40AdeOlB6UmSPpRu5z2oAiklSGNpZHCRgZJJ4Arzzw9bt4y8Uy+JLpWWytSYbSM9G55P5g1a8dXs2rX9r4T0+XbLec3EinmKPoT7dq7HTNPg0zTILSFNkcYAHufWgC2R17AVxnxHv5BosGlWp/0nUJRGgHXAILfpXZgYODk5zXnaOfEPxRZh81ro8QYehkbKn+lAHcaTp0WlaXa2Nv/q4Iwi/QVoUwHBpcnI54oA4bxrdzR+KdBtYpXUSsWZVJ5AYZ/nXbjAXjJ5xzXPav4el1PxTpeqrOqR2kboYyOWJKnj8q6EHPA5IoAcP0qnq1jHqOl3NpIAUlQqc/n/Srw6U1sYOe9AHGfDS9efwyLOY4uLN2jcHqMkkfoa7Qd6890Rjo3xL1bTjwmoj7Wg/3QF4r0Feee1ADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKa3SgB1VL+6hsrWW5uHEcMSF3c9ABUn1JGTjHrXA+LLqXxLr1t4Vs2IgB8y+kB+6ox8h+oNACeD7afxPr0/irUYisaEw2KHoFGQW/Hg16FjjgZbvUNpaQ2VrDbwJsjiUIqjjgf/qqzigBFA64p1GKKACiiigAooooAKKKKACiiigAooooA57xtbC68H6qg6i3dh9dpxS+DLn7T4Q0xs/MtuiH6hRWpqcP2nTbqD/npEy/mK5T4Yzed4XliJO6C8miI/wB1sUAduKa2c8U4UUAZutacmraNd2D4KzxNHz7iua+HGoST6NLp10T9qsZWiIP90Mdv6Cu1x6+teesf+Ed+KIJIW21WEn0AZFwMfUmgD0Ee/en1GpOACP8A61SUAFFFFABRRRQAUUUUAFcB48/5Gfw7/wBdG/mK7+uA8ef8jP4d/wCujfzFAHejoadTR0NOoAKKKKACimnqaaX2Ju6AdfYUAZHiTW4PD+jz307Y2DKjuT7VieBdDntoLjWNTXdqWoN5jk9UHTH5AVmvnxx402j5tH0qTJYfdlk6Y+mCDXocKqqAL90DAoAeAAfrUF5cLaWstwxASNCx/AZqzXFfEjUZbbRYrC15ur6VYlUd1yA35AmgCt8Orc3jaj4ilB8y/mbyz/0y6rXfDpWZo2mxaNotpp0PMdtEIx7gVpDpQAtFFFABRRRQAVna5p41TRryxbpPEU/MVo0hBOMUAcV8NL9rzwy1tK2ZbS4kgIPorED+VdqOQDXn3h/Gj/EbVtM6Q3aLLCOmSAS36mvQFORQA6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApj8kCn0xyemMg8UAV7u7is7eW4uJAkMa7mJPauC8LQSeKfEE3ibUItttCTFYqw4A6E/iRmpPF17J4i1238JWLZV/3t26n7sY6r9Tmu5sbKDT7OK1gUCONQoGPYf4UATgYY45BNSU1RjrTqACiiigAprDinUjUAZerapa6Lpkl9eOViQ/NjuSQBWhC4kiWRR8rDI+lcJ8RpDdzaHo8ZyL67KScdgu7+YrvIU2QIuMYUCgCSiiigAooooAaxxjjrXn/AIwX7L4+8O6gOMK9uffey8fpXoJ64rhfiZFt0zTL5fvQahAePTdk/wAqAO6HSg0y3kEttFIOjIGH4inPnbxmgBp5AFcD43jTRvEujeJFby1WQWs7D+4xyc+3Fdff6nZ6Vbtc3lwkUa8bpDgZ4rM8XaKviXwpd2cbkmWMmNh+hH50AYsnjW81vVodP8NWv2mBWBuLzH7tR1IHPWu5BO0Y+bj8a5D4az2r+EoIreARNC8kbDHJKsRk/Ug12o6UAMUYxnj09akowPSigAooooAKKKKACkbpS0jdKAOD0T/krPiX/rjb/wDoBrvRXBaJ/wAlZ8S/9cbf/wBANd6KACiiigBjD1GaqGC2t5Z7sRpG5X95LjkgD/Crp64qNkWRWR1+U9fegCtYajaalb+fZzrNHnGRVbxBrNvoWjT6hO20RrlV/vHtj864rbN4B8Ts5DzaLfvkHvDIck8ehyKkuEl8beNfswYjSNIc7/SSXoVP4EGgC/4D0SaCGbX9SG7UdSPmOCP9UOm0fgBXaAAqR27URoqqERdqAcUoOVyPXmgChrmoLpmi3d4SAYoWYZPfHH61zvw8sHg8OHUZEzc6hK10SeuG7VU+IssuoSaZ4dtf9bezrK3PRIyGb8xmu6tLeO1tIoIhiONQqj2oAfgZNBPA56mnH7tNwM7QOOtAHPv4iH/CYxaIIid0Lyl/TAHH61ujHRePeuKs7a4k+KM900ZWGOHYG+oFdwOeMUAOHSgjg0DgUHgZoA4Dx0n9n6/oOvIdrR3C20n+4zZP8q72Jg8SOvRlBFc146019T8H6jDGMzrEzw4H8YHFWvB+pjVvDFncKQSqCJsf3l4P6g0Ab1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNbqPSnVHNIsUTSOwVEBYk+lAHP+MPECeH9Clucb7psrbRjq7npVXwV4dl0jTXu7v8AeX94fNmYnkZzgZ9gcVi6UreNfF76xIC2l2D+XaZHEh678fjivR1ACgAcUAJjoadRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA1hwc9DXAfD0/ZtX1zTzwUuGlx7OxP9K78jk5rgdJ/0D4uaxb9EubWFl9yAxNAHoA6UhGaWigBAOOa4v4j6Y13oa3sIxNYSrOGHXap3ED612tV7y3S8tZbaUZSVGRvoRg0AVNF1BdW0azv1IIniV2x2JGSK064D4d3L2Taj4dnz5lpO8iA/wDPNj8v6Cu/HSgAooooAKKKKACiiigArgPHn/Iz+Hf+ujfzFd/XAePP+Rn8O/8AXRv5igDvR0NOpo6GnUAFFFFADSTvA7VxvjvW5rW0h0mwOb++fykA7DuT+Ga6bVL+LTbKe6mcKkUZfnvgZwPeuM8GWE2uatceLr9SPtA8u0iYfcjBJDY9SDigDpvDfh+DQNCh0+LnC/O/dm7k1sD5RgjAHSnDpSN0oAUnFees3/CR/FIKPntNIi3ZPQu4wfyIrsNavl0zSbu8Y48mJpBn1A4Fc78OdMkg0GXUbgf6TqErzknrtY7lH4ZoA7FceYT7VIOlM708dKACiiigAooooAKa2ccU6kPSgDz3x0x0fxDofiBBxHL9mbHfzCq8/rXoKY28HI9a5rx3po1TwpdRgfvIVNwn+8gLD9cVa8H6j/afhTT7knMhhVZPZgBkUAbtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFI2cGgBNy4zkVg+LfEMXh7RpLvO6Y/LFH3kbsBWxMwjhdyBhVLc+3WvPbBG8beMX1Fxu0nTJClvn7sj/wB/6c4oA2vA+gPplhJf3w3alfN5srHqPQe3GK6/FRqOAOCCOoqUcDFACY5paKKACiiigAprdD/SnU1yFUknAAyaAKU9jaXN9DPJErTW53xnuvUf1NXUzjJ/KuG8FT3Go67r17JKzW8V21tECeoGDmu5Hc0AOooooAKKKKAGk4I/KuU+IUHneDL9wuTbr53/AHyDXVtjIz9ayvEUAuvDmpQHpJA6/wDjtAC+HbtLjw3pku7Ja1jJ+u0VY1O8e0sJZ4Y/NdR8q5wCa8s8O+NbmTRbfRdBtnuNSjLRPI64jiVTjJJGD34r1LTVuF0+3F66SXBQeYyKAC30oA4rTfCmpeI7wat4pIQhsw2MbZSMe57/AI138aLHGqKoCrwB6U7HfNIeoxxzQBwGit/wj3xE1DSjxbagomgHZdg+b8ya9BBAGOeK4P4jWjWx07XoAfOsp1D4/wCeROW/lXa2V0l7ZQ3SEGOVA6/QjNAFjP40tNHFOoAKKKKACiiigApG6UtI3SgDg9E/5Kz4l/642/8A6Aa70VwWif8AJWfEv/XG3/8AQDXeigAooooAa2Bzmm7s4GKVyMgEGqt/exadZT3dw6pHEhdiT6DpQBy3j/VWgsIdLtI0m1C+fZErAHaOCx/AHP4VY8OQab4Xht/Dwui14yBzI/3pj03fXisnwfYza7q9x4tvwQJCY7SI/wAMY6Pj3BrR8Z+GZNYtI7/T2MWp2f7yBwep54/ImgDsMgkHJpDwORg5rC8L60+t6StzLbyW9wvyyI4PB9qPFmqjSPDF9eAkSmMpGPWQg7cfjQBznhxx4h+IGqa1y1taIIIPZgCr/rXoY6Vy/gXSDpHha3Qj97ck3Mhxzl/mI/WuoHQUABOAajyQSfQdKkIyKYRyGHUdqAK8E9rPczrC6NLHgSbeq56Z/KrBU9q4bwJ8/ibxTKN2HnjHJ9FIrvaAAcCkY4GaWigCJkDIynkN/hXC/Dxjpt9rWgMf+PW481PpIWb+td593n3rgNR/4kfxRsLg/Lb6hDIshHTeAAufzoA9ADClByM00ccegpwORmgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikJ4oAbuODg8j2rhPHer3F7Pb+FtNb/S704mdefKj67j+WK6fXdZh0HSJr6Y/d+4v95jwB+ZrnPA2kTGO58R6kpW91DJ2nrFGeQtAHUaPptvo+k29lbIFjiXHH61ojpUSDnpgdh61KvC9c0ALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAw/6wfSuE1gfY/ipok5OBdRyIx/3U4/nXeH74NcD8Qh9m1LQ9SJ/1E+z/vshaAPQB0opB9aWgApjA54I5p9Nbg5NAHnuvf8AFPfEOw1kfLbXy+RcH02j5fzLV34Zsk5G0Dkdwa5nx3pP9r+GpljwJ4GE8Z7jadx/lVnwhq7a74asb9+JpIgZR6NjmgDoFJIGadTV9M5p1ABRRRQAUUUUAFcB48/5Gfw7/wBdG/mK7+uA8ef8jP4d/wCujfzFAHejoadSdjS0AITim7m5xg+gpW6YrnfF/iBdA0R5UP8ApMp8q3X1kbhf1oA5zxRcyeLPEsHhqzYi2gZZbyRe/IKgH8CDXfW1vFaW8VvAoWNAFUDsK5vwR4fbRdIEt2S1/dkzTP3yecfhnFdScA+rZ4FAEg4FIewoFI/3TjqOlAHCfEW6kuxp/h22OZ7ydHYDr5QOG/Q121nbJaWUNvHwkaBF+gGK4PQx/b/xE1HWCcwaeot4P+BD5v1WvQh0GOlACFc49qdRRQAUUUUAFFFFABSEUtI1AEU0KzQSRNyHUqR7GuG+HkzWVzq+gynDwXUkyg9djtx/Ku7B5A6ZrgL5P7F+K1redI9ViEGPdATn9RQB6DnrinUwHd+NPoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApr5I4OKdWZr2rwaHpE9/cOFVF+Uerdh+JoA5bxzq9xPNb+HdMb/Tr87Tj/AJZJ13H2IBFdRoWjW2h6Rb6fajEcKBc929zXMeBdKlmNz4k1Jc3t8S6K3Jij6hR9K7leFxQAioFJx0Pan0UUAFFFFABRRRQAme3eobpDJayoGwWQrn04qXj8a5zxj4ifw7pInt41luGmjRUPcFgD/OgCfwzoQ0DT2t1k8xpH81m963FOc1FEzNEvmYV2GSB2qVfSgB1FFFACE8UhJHPahsEcmo3chGdRuIHAFAEd3ew2MDz3MixxoMlmI6VUtr2y8Q6W8lvKZLWUFNygg9wcZ/GuQbw3qvizV5H8Qlo9Lgf93aDpL7keldxDaw29okMEapFGMIqjpigDgvhTaRWFlqdkFCyx30zM38RUucZ/KvRgMNXA+FU+w/ETxJYk4BihlGfVgSa74HJoAfTHXJXHrT6a3JwOooAz9YsE1TS7yxYcTRNGc+hGOK5f4cajJNo01hOf9JspnhKnsinAP4gV22M/N0Irz+T/AIpv4nCThbTV4tp9Ayj+pNAHoK8YXPIHNPqMYD8HJ71JQAUUUUAFFFFABSN0paRulAHB6J/yVnxL/wBcbf8A9ANd6K4LRP8AkrPiX/rjb/8AoBrvRQAUUUUANbnNed+KbiTxR4jg8LWb4t42E13MvIGMEL+OCK6bxdr48P6JLcIA9y/yQR55dznArP8ABHh06PpTT3Uha9vH8+V+/wAxJC/hnFAHUWlpDaWsUEC7Yo1CqPQCpdiquB0pw6UN90/0oAy9Rv7XRdMuL24PlxRKZGwOoFcT4m1FPFPiPQtG0+ZZIHIvZGDZGEYcH6g139zDDcWjxXMavEww6v0Irxv4ZZs/GF4RYTPY3LSfZbg9F2kqyj2z/KgD2mNMKFHyKAAF9KnHSosjdnnJ/SpFBCjPWgAJqIYZmwD7461KelQuwSNm3fd5agCjpGhWujy3Ult5m65ffIXOcn/JrVrk/h/q93rfh97y6HJuJVX3Acj+ldZQAUUUUAJiuI+Jlmz6DBfw/wCus7mKXPoobLfyruKz9ashqGj3lof+W0Dpz6lSKAHaZdrfaZa3asMTRK2R7jNXh0rifhte+d4YazdiZLKV7cg9cIcD+VdtQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUARkjOSDwcChm25Y8gdaVshvqa47xzr8thax6XpwL6lfN5aAfwoeGb8MigDKuC3jjxoluhLaPpp3SMDxJJ0x+BFeixoqoFCgKBgL6CsbwvoEfh7Ro7JB+8Pzyv1Jc8k5+tbQBGMnNAD8UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADWANcT8ULbzvCYlX70V1A/wCAkBrtz61h+LLP7X4Yv4wM7Ymk/FQT/SgDR025F7p0FyOkiBh9DVscGuZ8AXf2zwPo8hPP2ZA31xXSrzmgB1GKKKAI5Y1ljdGA2spB+hrgfBbtpHijWtAl4QObqAf7DHGB+VegmvPPHKHSPEOi+IogQkc/l3RH/PPBx+poA9BTn5geDT6igkEi7geKloAKKKKACiiigArgfHY/4qbw7/10b+Yrvq4Hx3/yMvh3/ro38xQB3vakpe1NJ56cdKAGyyJHGXdtqDksegFedaRGfG3iyXW5lP8AY9hmO2U9Hfu2PYqRVzx7qU1+8PhXT5MXF/8ALMyHmOLOCfw4rq9I0yDSNKgsreMLFEoGB3Pc0AaKD5RnrSnHXFA6UtADQM81h+LtY/sTwxf3qHEscRMY9WxkCtkkgMfyrgvGsh1fxLo3h5MGPzBdzgf3VbBFAGt4D0ptJ8L26yD9/OzTue5LksP511ajCioY4hHHGifdVQB+HSpl4UUALRRRQAUUUUAFFFFABRRRQAYrhvibbMujW+qRAmaynVlx1wzAH9BXc1m67Zrf6PdW7DO6JsZ9cGgCxYXSXtlFdxEGOVdykelWq4v4Z3jzeEorOYnz7Fvsz57ECu0oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikJxTTIvHPegBCSCNzYHcV5xfE+OfGC2KZbRtOYPJIp4kk9PwIra8da8+nWK6fZnOoXx8uJe6g8FvpyK0/C2gx+HtEhs15lPzyt3Lnkn86ANdEWOPaECoOABUq96MHHrSr05HNAC0UUhOKAFopu8ZxzS7h60ALRSA5paAI24JrjfGGmXereIfD8EURNokzvM/YYAIz+Vdln05yaoWer2V9f3FpBLumtwN4I6dqAL+MjNPHNNGNuO3vQGAOPagB9QO5yNpz9adLPHDE0srhEUZLN0H1rJ0jxFp2vNMtjI0qRsVLhcLkcdaAMnxD4zSyuDpelx/bNVf5RFHzsz3b0GM1peGbfVrXTANZuxPdyfMVGNqewwKsWOgadp95Nd29souZvvSOdxP0NaRjLDDc+/rQA6PkGn4pqjA6Yp1AHAyj7J8YYyeBfWuB/wBf/r13anJ/DNcH41JtPGnhu/HAUyRsfqAB/Ou7Xlgw6EUASUUUUAGK4r4j6XLd6Gl5bD/AEiymSZT6KGBb9BXa1VvIUura4tnGVliZCPqMUAVtD1KLWdGs9RjI23EYcfiM1pjpXA/Dyc2MmpeHZc77GZjGP8ApnnC4/I13oI6UALRSA5GaWgAooooAKRulLSN0oA4PRP+Ss+Jf+uNv/6Aa70VwWif8lZ8S/8AXG3/APQDXd7hkigBT0qF2CksTgAc5qQkHPXArhvHWpXN01v4a0yUi/vxslZf+WUZ4LZ9c0AZ+mxv438XPqs2f7J04mKFe0jn+L8CuK9GUfLggZHYdqo6NpEGj6VDZW6gLGuD7t3P51fKMV64Ynk0ASDpQelLSHNAHI/EPVX07wnciDJurpfIgGf460PDmkpo2gWNqoUFU3FiOdzckfnXN6u5174kafp8YDwaav2mQdvMVuh/Aiu+CpsCnBA4oAxrPxDZX2sXWkrI63luFZkI5IOcEevSt1TlQa4bxnoV2k0HiDSB/wATK0YblUf6yPPzA++M11ulXxv9Ltrt42iaaMOUYYIzQBcPSql+kklhOkI/eFcCrRYEHBqnqWowaVp1xf3JYQ26F32rk4HpQBj+BdIn0Tw1HZ3Aw4mlfHszE/1rph0qpp1/DqdnHd2+7ypBldwwcfSrdABRRRQAU1uTg9O9OprjIx+NAHn2g40f4latpjECO5iSaL0LHJavQgcgH1rgPHOdK8Q6HrqKAIpTFK3rvwo/nXfIwKKR3FADqKTNLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRTWbHQU0OwchhxjIP9KAK2p6jBpVjPe3LhYIU3MTXFeDLG41rVrjxVqaENLlbOJh9yMcZ/EYNReIrmTxf4ph8OWp/4l9sfMvpAeGIx8n4g131tAltbxQRjaqAKo9AOB/KgCziiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKADNVdRjM2m3cY6vC6/+OmrOKQ4wQemKAOK+GT/8U5La/wDPpcvBj024rtVrgvArfZ9e8R2APK3slwB7Mcf0rvRnNADqKKKAEPSsXxPpSax4cvLJh99MqT2I5/pW3UbAHg8huMUAcx8PtXbVfC1uJT/pNuPLnB6hh/8AWxXV153ojHw/8SNT0xvkh1Mm6h9M8Lj9DXoSknHpQA6iiigAooooAK4Hx3/yMvh3/ro38xXfVwHjvLeJ/DyDg72wfxFAHfdqy9b1eDRNHudRuHCxwruIz17cVoqxwc15zqBbxx4yXTYsnSdNcPcn+GZ+RtPr1BoAveA9Hmk87xFqSYv747kRv+WS9MfjjNdwF+UhjkmmQIBFheFPQY6Y4qYKABQAL90UtFB6UAQPIY1kbOAq7sn0rg/BUX9teJ9Z8RSAmPzfJtM/888Ddj8Qa1/H2rnSfCt00TYuZh5cA9W//VmtHwppS6P4cs7NRgqmTnryc/1oA2BkHnmnDgUAUtABRRRQAUUUUAFFFFABRRRQAUxhnIIBGKfTW68dqAOA8PH+yPiLrWmN8sNwn2yMdiWbGB+Rr0EcCvO/G6tpfirw/rScJ5/lXB7eWFOP1Ir0CNy4yBxjIoAkopFOetLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAxuv4VTvr6DS7OW7u3EcMS75HPQAVcYgZyPSvPPFFy/ivxJb+GLTLWcTB79weNv9z8QQaAH+DLKbxDq8/ivUo2yxMdmjdI0HBP44Br0BTljgcetRW9pFa28UEI2pEoVQPQf/AKqnC85oAWiiigAqJ2whYkgDngZqWo2YBWycY70AcbqfxO8LaPqJsL6+eK6zgJ5TEnPTtS3nxN8M2a/6TNdxgjIY2rgfnivD9RvLbxN8bTJORHBBJsZz0/dk8/pXtZ1bRfHN3e6DbKJ7aGIO0yjjJOMD34oA67TL631PT4b21YtDMu5CRjIq52qpp1pDp9hFZ24xHCu1RVugCvcSi3hkmbhUUsePSuI+G0AuINV1dyd1xeyoM/3VbI/nXbzLHNGyyIHjYFTmorKytrCARW8Qijzu2jjk9aALR6ZIJNNcZOTkf0rnfE3i638PokQjee+n4ht0+8x/L/OKg8KWWuyB9Q1u4w84BW1XpEPQ+/0oAp6/omteItXa1ubj7LokbDcIzhpuB3HT0rqNM0yz0q1W3s4EhhA+6oGT7mr21V7fjTtq5zjmgBqgZGOfc9akpAAKWgAooooA4D4qoU0SzvY/9ZBf2/T0MgzXdRSLNGkiHKsMiua+INqLrwldgDLRlZsf7nP9K0fClwLvwtpdxnJe3Q/pQBs0UUUAFRFctk9+pqWmlQaAPPfECN4f+Iemauny22oYtZ/QBQSCfxIr0EHcAfUZrmvHmjtq3hW6jjB8+MCSMjqCCD/SrXhLVxrnhmzvh994/nHofSgDcU9R6U6mqcjIp1ABRRRQAUjdKWkbpQBweif8lY8S/wDXG3/9ANd13weprhdE/wCSs+Jf+uNv/wCgGu5fvzQBna3q0GjaVcX9y+2OJcj3PTj8cVzHgbSZ5ZLrxHqQxeX7F0Rj/qV4G39KpaoX8a+MY9KibOl6a++5K9GfptP6V6LHDGkYRVG0DGMUAKh+XFPpAoHQUtABUF5cJa2k07sFWNC2TUxJ7VxHxJ1OSPRYdIt/+PjVJRbx46gj5j+goAh+G9s88Go+IZx8+p3Hmpnqqgbcf+O13O3KgDAx0qnpVnHp2k21pEMRxRgY/Wr4APJ6dqAGHG4nnOOfSsbxF4gh8O21vc3EbG3eQI7jomeB+prcK5xzVHVLC21XTprO6jDxSDaQR39fwoAnhmSZFeJgUb5lbOQy+tcz8Rpdnw913aCH+yuqH1yO1V/BcGqaLPdaFfRvLbW3Nrck5DR9gfeupu4ILuB7a6jSSFwd2/7v0NAFfw1F5Xh2wGc5t4z+JUVrVFAiRxqkahUAAAHSpaACimZJBweR60gkOcY/GgCSmnG73ppc9BznvTuDj1oA5rxzpTat4UuohjfFidfqh3f0qfwZqZ1jwlpt6x/ePCvmD0bHNbNxCJoXiPRlKn6EYrifh+/2O+1vRH4e3uneNfSM8D+VAHdZ5H15p9MA5P1p9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUhxQAjHArmPGfiH+wtFYQDzL+4Bjtoe7uf8muiuZ47e3kmlbbHGpZiewrz7w4j+MvEs/iS5QjT7dtmnAj7w678UAbvg7w6NC0gGb97eXDCWaQ9WJyR+QOK6fB3fWnL90cU6gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApCM0tIaAPPtM/0H4w6pb9p7GOT6ks2a9BU157ry/Yfijod0eFvP8ARyf91WavQV74oAdRRRQAHpTPpin0YAoA4D4iwtZw6f4hhXDaZOJZG9Yx1H54rtLO5W7tYLhTlJIw/wCdRaxp0WraTc6fOMxTpsbj1rl/hvqD3GhS6bcZ+06fKYpAevJJX9MUAduOlLSKMCloAKKKKACuA8d/8jN4ez93zGB9uRXf15z8RLmK01/Qp55AkERkeQ/TB/pQBseOtfk0jTYrK0G+/vyYoUHX3P5GrvhTQI/D2jx2m7zJ8Zll7yP61zXhK0m8TeIZvFV8h+zqSlip6bRn5se4NeigAAfTFACLx2xTqMUUAGaQmkY4NQXdwlraTXEnCxqXJ9v8igDhNd3eIPiJpelKQ9vp2LuZexPK4P516Ag2nHTHAHtXB/DuJ79tQ8Ryj5tQl8yLP/PI9vzFd8oGODQA6iiigAooooAKKKKACiiigAooooAKaeMmnUdaAOW8faX/AGr4SvIV/wBai7kPoQQf5A1e8LaoNY8MWGoD/ltHn8ckf0rWnjEsMkRGQykfpXB/DmY2k2s+H3PzaddeVGCeqFQ2R+JoA79cZx3FOFMQCn0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUjdKhnlSOJ5HOFRdxJOB0oAw/GPiFPD2kGQDzLqc+Xbxf89G9Pyqv4J8Ptouk+bdHfqF3+9uHPc9v0xXP6LFJ4x8UNr9wN2m2LbbJT0kb+/j6HFejccjp2PtQBIOgpaB0ooAKKKKACsPxXqSaT4Z1G9c4CQttP8AtYOP1xW5XP8Aifwza+J7AWd27rET8wUkZoA8U+Buhx63rGraxqEIlQ8pkcFiTmvT7FPD3hHXvsFsF+26pKzJDEclRjPPp0pmm/C7SdHhkh0+aWGN+WAYj+tW9D+HejaFrH9oRNNNcgfK8jFiv0yaAOxQn5vu9e1OphIQ5PQ9aTlmxnn+lAHE/EfUbm206wtLWYxXNxeRAMpx8m4bv0rU0/xRp2oaw+kWzNczW6/vZV+6p9z+H61478UIfE83j62e6V49FEscaSJ9xFbAY7vWvbfDmkado+nxxadGuxxv80c+Zn1bqaALI0qza+OoNaob3aF8wjJAHYVfj+6DnNPA4pcYoASloooAKKKKACiiigDN1uAXGh6jGed9tIo+u0isD4azGTwZawt1tmMH/fIFdbKgkidD0ZSv6Vw/w2k8qHWLE/ei1KZsexIH9KAO8ooooAKKKKAGSoJEZG+6w2kfWuA8GM2i+KdY8Pvwu83NsvpHwuPzzXoJrz3xuP7E8S6P4kUfu1lEF0R2j5OfzxQB6Cv1p1RwuJIUkXkMoYH1zUlABRRRQAUjdKWmPnBweelAHC6J/wAlZ8S/9cbf/wBANaXjfX30bTFgtl33t8TDbrnueCfw61j6bcx2vxN8UXEzBY47aBnPoBHzTPC1tN4q8S3Hii9H+hxkxWETdscF8e4IoA6PwdoA8PaNHayHzL1/nuZccyP3Jro6jB+bAIPr9KkoAKKKKAGNy2K8/hQeIfilNMfmtdIiCp/12DYP6Guw12/TTNHurtyAUjYrn1xxXOfDaydPDw1OcEXOpt9rlB6jd2/SgDstoIIPfrTh6dqUCloAKifrk9ug9alpuPm9/WgCHIWPcqnIBwv0ycV5n4g8YRavpEMNuXt71dQS3uIhwckE/qMV6ZNPHBGZJZFjReWLdMV87fEMX+v+NLe+8H2dxKsJ/eTxxExebnhsjg4HFAH0VaZFrCpzuEa5z9KmrP0r7T/ZVqLsBbryl34PfHNXQCDnvigDzn4oePNT8CwW11a29tPHM5QJKxGTjParHh/XPGviDw5a6tBZ6Qq3MfmRqzyDj3rzL4238mteObDRbVfO8nawUkgbjkY6V2GmXXipNf0Lw7caZBZWNuod3glLB054ORx+BoA6zwP4h1rW21KHWrGC0ktJxEPJ3EPkZzz9a6+MYPQA/WmxQxxDEaqCTkkDr9alAAoAMV57qOdE+K1rdj5YtVhFtgf3lyxNeh1wvxPtXGiwavCD52nTCRcdeSF/rQB24I347mn1UsLlLyyhuIyGjkQFWHerYoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmbsZJ6U49KwvEmux+HtGlvZMMwO2Ne7MeFA/EigDm/G+ozazqMPhPTnO+bDXjqf9XH/APrH612en2EOmWMFnbRhYYV2gDiuZ8B6FJbWkus36H+0dQPmybv4Af4fwrsMHYQx+Y+lAEg4FLSL90UtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBwHxHHk3nh6/6C2u2Zm9AVx/Wu7iOUB9QK434oQGTwVdTKP3kDxsv/AH2uf0rrNPuFurGGZejICKALVFFFABRRRQA1hkfWvO5t3hz4oo3K2mrwMzkf89Vwqj9TXop5HWuL+ItlI/h8anbLm50+UXIIHJCAkj8aAO0X7opaz9Fv01LRbS7jbd5kSk+zYGRWhQAUE4opr9KAAuAcE1458ULiy8ReMdF8OLId6v5k5XrtypA/HBFejeKdej0DRJ7tjmQjZCg6vIR8q/jXmK6FNpur6BqN22/UruWSR2PZGIKr+AIFAHsVjZw6fYwWlugWKJAqgccVbpinBwPxp9ABRRRQAx85ArjPiRqMltokNjbHN1fS+VGvrjBb9K7JyQ2R1Nefj/iovigEzvs9IQSKeoMpyrD8sUAdlo+lx6Ro9pYQLiO3jCCr6qVYn1pw6UtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACH1rz66UaJ8VrWZRtg1K3KufWXdx+gr0E1wvxLi+z6VZ61GCW0ucXJI7qM5FAHcKcn0p9VNPnW6sLe4BBMkatke4q3QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJnnFLUZGWAPXrQA48g9a4Dxtqtxqd9beFNNfFxckNdOv8Ayzj69ffBFdR4i1yHQdHmvpm+YfLGvdnP3R+dYPgXQ5be3m12/wD+QjfsXfd0jQ8hfqKAOn0zTINI0+Cys4wsMShV+gq4FIP0/WnKAEAHQU6gAHSiiigAooooAKaRzmnUUARkcZYZpN3OcgDHU09vrXMah4vsbfWYNJgRry4mOGEXRB7ntQBa8S+ILTw5YC6ud7E/KkaKWLn04rC0Cw17WtTXWtUma0tF/wBRZKSePUnjNdbPp9tcGM3FskpQ5RnAJWrIX5RgLkcZoAr6hp1vqdhNZ3MStFKCrAgH8awfBel6xolpLp2oYa2hkP2eTfuJTsPbFdWOlQXjPHaTvEMyKhKgdzjj9aAJwQB1oByM1zHhTxR/b1nLHPH5F9bMY5426gjqceldNHwg5z70AOooooAKKKKACiiigBhzj8a4DwsDZ/EvxDYZxugS4A9dzH/CvQOhrz+6Bsfi/BOOBe2qw/Xbk/1oA9CFFFFABRRRQAh6HvWH4p0ca54avdPZRmePAJ/hOa3DTCNwYHoRigDmfAOsnVfC9v5xP2iDMUoI6EEgfpiuo3YAzXnmil/DvxG1DSW+W11NTdQeildq4/E16F1x6UAPooooAKYxOfwp9YfirX4vDuiS3rjdJ92FB1dz0AoA8s1u3v8AWvixquhWZMcVytvJcTA4+RF5X8QSK9jsbGLT7SG2tlCxRKEAHoK8t+GNtfw+NNffVHEtzKsM4Y9VV1LBfwBA/CvXR0oAYAxbOMe9SUUUAITjGe9IWAobhs9hTMbQeevJzQBw/wARJ3vX0zw/A37y/my+OoCYb/Gu1toI7eGKKFdsaDCj2rgvDoPiH4i6rrLgm2tEW3g9N6lgxH4GvQlOOvGelAD6QnFLTHIBGScHigBS2OefyqteX1rZorXVxFCrEKpdwuSewzVbWr250/TZZrW1e6mA+WNWAJ/OuQ0bwrea3eLrPiljJ0aCyJ/dxDqMg8EigDqNf0OHxDZiznnkSJvvCNipYfgatafpVrpNlHa2UCxRRjAVRjd7nHWraoEwEAA6celTUAcprHiVtC1yxsry322d4Cn2ndgK2QAPbr+lbt7exWVi925JjiQsCuSWx+FVfEeiQ6/pM1jMMhuVI6qw6Gs/wpZ6pDoi2euKkk1uzIrAffReFNAHhfhgSa58Z21e8trlLXz3ZPMgbGOcdR619KiFGlDmNSw+623kColsbUneIIgx6ELzVlR/COMUAKBjoKcKKKACs7WrRL7SbyBxkPEQB7gZrRqJ+Wx3PAHrQByHw0vWl8Kw2Eh/f2J8iQHqD1/ka7QdK8+8Oq2i/EfWtMY4jv8AN9H6dkwPyNeg0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNZsZ9qdTG6n17CgBpl2n5iNuOvp9a85g/4rvxYJyCdG0uQhc8iWTOD+RANaXjrWrhVt9A0w5v7/jjqsfRz+AIrf0DRYfD+kQ2MKgBBlmH8bkDOfrigDXVR1xjNLtGQT1FIhyuc8+npT6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAwvFlr9s8MX8RBP7skD1xg1V+H10b3wLpNyxG+SAE47cmt29US2VxH/ejYfpXHfCxynhuSwP8Ay5SmH6d/60Ad3RRRQAUUUUAI3Sq11bpd2skDjKSKVbPcelWG6g+lAHX0oA4P4c3Eth/afh65/wBbY3DOM9drsSv5DFd4WxXnviJz4c+IWm6wBi1vVMFye244WP8AUmvQOgLUAKrE9vpSSMPLJc4Ucsfagkgn1xwPeuK8d6vctHB4e018ajqB2EjrGndqAM20DeOPGX25xnR9LJSJT0llyCG/AqateOQP+Ek8PAcDzGBx9RXT6FpEOh6NDZwxn5RhiByWPUn8c1zHjrjxL4d/66N/MUAd9gc4FPHSmjoadQAUUUUAZ2tXyabpV1eyEAQwsw9zjgfnXN/DqwdNBfVJh++1KVrnPs2CBVf4jTzXh03w/a/66+nVyB12IQW/SuytLWKytILWHiOFQqAeg6UAWh0paKKACiiigAooooAKKKKACiiigAooooAKKKKACsrXdOXVdEvLBwCs8ZTH1/8A1Vq1Exxk46A0Acn8N79rzwvHHI2Z7Z3icemGOP0FdiOlee+F2XRfiBrGj9EvMXEI9Aq/N+pr0GgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACoZH2Hefu9Klri/HmtSwW8Wiaa2dSvztUD+CPozfhkUAZZx468agZL6RpbHkfdkk/8ArMtejCJdm3Ax3rJ8N6HBoGkxWUIGR8zt3Zz94/nWyOBigAooooAKKKKACkJ6UtIaAE3defpTDKFXcTgZ6niqmrapb6Pp8t9cnEaDniuHt7XXfHF9De3ckmmaNFIHihT70+D/ABegoA6zxFa6jqWlyWul3YtpHYK0o6gd8frUXhrwtp/hu2ZLZA1y/M85HzOe+a2lTHygYA7Zp5xzjFACBFbPORTvLA+g7UqdO34U6gAppxTqRs4460AcZq3hm7j8V2mt6PIsTOxS8jPCumD1x712G4hVAA54oAIxkDJ64rk9W8TXGh+KLS3vItunXQ8tLjsJCen5D9aAOtDckelPqBHVlGGyD0Pr6VOOlABRRRQAUUUUANP3jXBeNB9j8X+FtQHa5kRvTGzj9a7w/eP0rhvighj8P218M/6NcI2fqyigDuQ3GfWnLkjmooWWSCMj+6DUoznmgBaKKKACm7adRQBwXxGtms00/wAQRD95YTqZP+uXU12llcreWcM6HIkjV8/UZqvrenLq+kXdhIAUniaM59xXNfDa/ebRZtOuGLXNjM0b5/u7jt/SgDtqRjgZoHQZ60h/+vQA1nwrHpgf5NecwtJ468Zm4cf8SXS2KgH7ssnBDfhgitPx5rdzFbQ6FpvOqaiRGhH/ACzH96t/w/o9voeiwWEQztUb/UseTn86AOY0NR/wtTxHt4Xybfj22HFd+OlcDoh/4ut4mYjGIbfA/wCAGu+HSgAooooAa3UVheLdVXSfDl5c7gHK+Umf7zcAfyrcc/8A1q8+8Zhtd8VaT4dQ/ut4ubn2KYZR+NAG74G0s6b4WtfMyJpx58vrvYZNdJydppEQRoEXoOg9Kr3t7bafavcXcywxIMs7HAFAFhpAvVgD79vrXE6z40urnUhpHhq3F5dhsSz4zHD9a6KZLbxDopWCffa3UfEqHqM9jS6PoVholqlvp8IiQdR1LH1JPNAF23SQ20f2gK020byOhPep9uR6U0kE9M1Iv3RmgBFRVAAGAKdRRQAyQZwMZ+tZ+q3M9nplxc2kKySRKWCepFaLDJBzjFJhcHjjuD0oAwPDHiKDxBo8d3Fj7Qp2TRDqrjqMVvITkA847+tcenhm803xqdU0uREs7lQLqEcAHk7h9TiuwU5ILde4HY0ASUUUUAHeoyMtn0qSm99uKAPP/Gn/ABKvFXh/WRwnnrBM3YR8n+dd9HKJIw46EA/nXMfEDSjqvgzUYUH75Ii8R9D7Ve8K6kuq+G7O6HJZNrfVeP6UAbinPNLTV6cU6gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKRmC8mgBaztZ1S30XTp9Ru32wwIWPv9KveYCCR2rzrV5X8aeMItJhO7S9OcSXTDo7jkL7gg0AWvAumXF7cTeJdUTF1csRCp/gQdMemRiu96gcVFDCsKqiABFG1QO1TUAGKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooNAEbKGGD0OR+lcH4DP2XxR4rsDwPtxkX6bQK77rkY4rgbAfYfi7eQMMC6sfOPu2/H9KAPQKKTcPWloAKKKKACjFFFAHMeOtIGr+GLlMHzLfFzHjruQFgPzAqfwjqg1jwxY3bHMvlhZOejgc1tyKr7o2GVYfNzXAeC5G0bxRrPhuY7VB+1w+4kY8fpQB2mq6hDpOmT31w4SOJclj/n1rkfAumT6hd3HinUkInu+LeNufLj//AFjNVtfd/GXiyLQoWLabZMJL1geCehTPr0r0C3iWGJYlACoMAAYzQBMOlcF47H/FTeHf+ujfzFd9XA+Oz/xU3h3/AK6N/MUAd7S0lLQAh4FNBJJ9Kc3SsHxXqp0fw1fXQO10jIi93IOBQBzOgP8A8JJ8RdR1UZ+z2CCGA9t2CrY/KvQuv9K5fwHo50rwvbbhiS5LXUnrmT5sfgSa6kCgB1FAooAKKKKACiiigAooooAKKKKACiiigAooooAKYVByD3p9MIOc0AcB41jOl+L9C19RhQfsTkcf6xhyfyNd+CGAYHKmuY8e2DXvhG9KjMtuPtEXruUcVoeGtSj1Pw3YXKtnMKK/swUbh+dAG0OlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFMbqSTxilLADNI3OCKAKGqalBo2nTX11KFhgXexJ7d65DwTYT6pqFx4o1SMi4uCVtkYcRxjg/nxUOuTHxl4ri0G3+fTrJw96R0Yj+HPuCK7+C2WCJIo8CNVC4HHSgB6kAgHsMZ9alpgTB55p9ABRRRQAUjdOP1oLAVG8q7Tk4UdS3AoAGY5AzwehHrXNeIPGdrotwllChu7+Q/LbxDcR7n0FbF5HLd6bILO5RJJFxHLjIX3rG8OeDbTRc3EzG71BzuluXPJPoM9BQBuRqb2yjN3DGA4BaMgMP1q6qKqBVACgcAdqaVOMqBn+VSDpQAYHpSYHpS0UAGAKKKKACiiigAwKyfEOh23iDSZrC5X5JFIDd0PYg9jWtTHGWGOooAxfDdlf6bo0VnqE3mzRnargDLLnjP4Yrb471jeI5tTg0SebSwpu4+UVlzv8Ab/69M8L+IYfEOkJcKf3sfyTJ0KuOGGPqDQBujjApaYrK/Q80+gAooooAK5nx9a/a/Bt9FjOAr4+jA/0rpqo6xALjR7yJhkNC4x+FAFHwnef2l4V027zkSwhs+tbY6Vxfwvmb/hBtPtW+/bRiJvYiuzQ5XNADqKKKACiiigBrdRjrXnrEeHfiiuDttNWi3PjoHQAAfiTXoTjg/SuM+IunNPoK6hCp8+wkScMP7qnJ/lQB2B3EjNU9R1CLSrCe9uZMRxLuZuw9P1qPRdSGqaNZXqkMZo1Y49SORXFa/JJ4w8WReHbR2+wWjCW9cHhu238xmgC14I0641O+m8U6muJrk/6NEf8Alkn/AOsV3oAxn171HbwLBEERQFx0AxUg4WgDhdE/5Kx4l/642/8A6Aa70VwWif8AJWfEv/XG3/8AQDXeigAoo6U3ePWgBsrrGjO5AVRnJrz7wKX1vXtZ8SOpIlkNtEW/hEZK8fXFbHxB1NrDwzOkJzPdf6NEAeQz8A49qwYtfTw5o1j4f0aD7dqzxAkR/dVyBksenWgD0GacxQyyrGzMi7goH3vauDtvD2r+LbxNR8SMYLMHMNlExxj/AG8dfoa6/QbbUotMj/tWVJLwnLsgwB7VpiP94X7lcUARQW8NvbRwwoI4oxhVUYFTr0zikKngmlGepoAdgUUUUAFFFFABRRRQBCQPM9MdPeuVPiqTT/GD6NqcflQzjdazY4Y5+79etdY6nPAzWD4r8NJ4l0swlxDcod0EuOUb1oA3Gy2QpI55qRTnvkVm6Mt1BpFrFesHnChWI749a0l6GgB1FJkCloAjljWWJ426MMHNcH8OpTaS6zoT8NZXIVQT2YFsj8678jP49a88vf8AiRfFO2nHFvqUD+Yw7yggKPyoA9BUd+lPpAc5paACiiigAooooAKKKKACiiigAooooAKKKKACiig0AFNbH40ZP4VWv7mO0tJbiZ9iRqWLH6dKAOc8a+IW0XTFt7NPM1K8PlW0Y7t/+rNW/CPh2Pw9o0cG4yXLjfLIerE5P9a5vwpBL4n8Qy+Kbxf9FHyafGegXOQ31r0VRxxwKADFOpu2nUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANHeuB8Qn7J8S9Duhx56i3z68k4/Su/wAc9a4L4jr9mu/Dmor1ttQDt9Njf40Ad2cZGO9PHSoom3xIwHVQaevTrmgB1FFFABRRRQBDL8rAgA5OCK8u+K1zLoOpaPrWnlBdu727AjlwQFH5Zr066mS3jeaThEG4t6Adc+2K8pk0V/iJdalrVzk2NsGSwXsXXPzD68flQB23gvQP7C0RVmPmXly3m3T9d0h6mumUc49K5L4f6m+o+E7b7QxN1aDyLjPXcB0rrUUgj9aAH1wHjz/kZ/Dv/XRv5iu/rgPHf/IzeHf+ujfzFAHe9jTqSloAQ15543kl1fxRovhuAho3b7XPjsI2HB+oNeguwUbicAdTXAeCYzrWv6p4klHyPJ5Nvj+6Mq36igDv4kVIkRBhVGAPQU+kXOOcfhS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBFcRJPC8TjKOMMPauC+GsklomqaLcnElrdSyqD/cdmK/pivQTXn8w/sf4sJITiHVINrZ4wUXt+dAHoA6UtIgwgHtS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSGlpGJAOOtADcbeOpNcv438RNoWkGO1Ak1K7/dWsQ/if/wDVmugurtLO1kuJWAVFLMewwK4PwvbyeLPELeJ7kZtIjtsVboR2f60AdF4Q8PpoGipHIfMu5sSXEpHLN6n8MCukHSo9vJx1I/OpB0FAC0UE4pMn8KAFophfHbn0rB8SeLLHw5bgzHzbmT/VWyH55D6CgDWnnS3gkklP7tBuduwFefzXWueOLtorPzdM0RDtklbhpsddpHTv1Fdpod1c6jpUVxfWq280hJ8odh2z+GK0lRQPlULk9RxQBS06wg0+wt7SAkxRR7Yy3U++a0EXA5696b5Q5OefWpAMCgAooooAKKKKACiiigAooooAKaxx2p1JjmgBuAewIIwa5iy8LHS/FrapYzpFZzqRNb4xlscEfjzXUbRUeNucjPNAAmFIB4J9utTVwtr4jv8ASPF0ukazzbXLbrObPfqVP0GPzrtkZiMMuD6jpQBJRSA89aWgAqOZN8Trn7ykfmKkpDmgDg/h032e48Raef8Al21BlUf7O0V3Y447CuB8Og2vxH1y07TL5/5kDNd+B2oAWiiigAooooAawyetQXVtHd2kttKAUlQq30xipZM8fXNRzTLAjySsFjVdzMewoA8k0/xTJ4W0bVdCkBbUo7hltoz1ZZGwuPpwfwruvBfh46FpCic79QuP3t07d3715kL0aj8U7fxRcWif2XKWtEkbOCy5AP4kivcU5+bnJNAEgobpS0jdKAOD0T/krPiX/rjb/wDoBrvRXBaJ/wAlZ8S/9cbf/wBANd3k8gdaABztUkjNV5LiGGEzSSLGn95zgVMzZAG08+ted69peqa3fXf9qzfY9CtDlkiPMw45OfrjigCpLq9r44+IFhaWUplsNPVpJ2Xp5qsCo/Ku30rw9puhzzy2VokckzF5JQACSTzXLfCjR4bfSrvVUhVDey5QeirlR/KvQhGAoHb0oAcoG0UtIAAAB0FLQAUUUUAFFFFABRRRQAUUUUAFNbODinUh6GgDnPF99qemaMb/AEqDz5YHEkseM7kHXHvWhoWr2+t6TDe20gZXA3ezdwfxzV4xK2VwNp5YetczoHhiTw9q19JbSFbCch1gHRD3x9ev40AdV1606oi7DnbyelSLnaM9aAAjIrh/iTAYtLtNYiX95p9zHMxHXYMkiu5rK13T11XQ72xb7s0TJx15FAFvT7kXmn21ypyJolf6ZANWq434bai174WWGU/vbaZ4CPZWKg/pXYbuKAHUUDkUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUGgCM52+lefeL72bxLrkPhXT3IjBD3rr1VOo/Vf1rpPFmvRaBoskzH99IQkKjks5IA/U1T8D6BJpmnNfXwzqd8fNnbqRnnbn0zQB0NpawWVpHbWyLHHGu1VA6VbHQUADr3paACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAri/ijAZPBF7Oo5t1MgPp2rtKxPF1qb3wpqVsBuMkJGPWgC5pFwLnRrOZejRJ/KryjAxXM+BLoXng2xkBySrL+TEV09ABRRRQAUmaDnIwaxvEetR6Fos99KSWQERqB95uwFAHM+Ob+61XUrbwtpjlbif57lgfuxcFh9SK7HTNOt9K02Kxtk2QRIFAxjNcx4F0Ke2t5ta1H59RvmMnJzsQ52j24Irsx29aAPPtHP/CP/ABG1DTW4ttSX7RHjp5jHn9BXoKd+c1wfxHtZLNNN8Rwr8+lXAlYL1ZSNuPcfNXbWM6XVnDPEQ0boGUg9qALNcD47/wCRm8O/9dG/mK76uA8ef8jP4d/66N/MUAd8OlFJSc9qAOY+IWqtpXhK7MB/0q4HlQD1cjI/lV3wrpKaL4cs7VRzsDt/vN8x/U1zWuMNe+ImmaTGd8Fl/pc/cB1OAD+BFd6q7VGOAMKPpQBIOgpaAMDFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANc8H9K4L4n2ki6ZY6tBnz7K6hJI67Cw3/oK75qzNdsV1DQr21IBMkLgZ9dpxQBcsrpL2yhuY+UlUOv0NWK4/wCHN8brwjDAxPmWTG1bPXKACusAwB3x1oAkooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooNABTHyVI/P6UhJJ4655rE8V+II/D2iy3TMPNYiOBe7SHhR+ZoA5vxdfza9rFt4V02TbvIkvXH8EfVR+JBFdvYWNtp1lFZ2sYSCFdqqOgrmfAmgSafpzalfrnU7/8Aez56rnnb7AGuwQYXnr3oAT68elPpMcU3twcUAObpxTMhT6e5oJOSM/Q1wOsajrviXUp9H0iF7KzjOy5vJFwWGcEID1+ooA7aO5ju45BbSrIyMVJB+6cdKwNK8H2dlqsuqXcrXl5IcgyciP6DpWn4d0G28P6aLO2aR8nc7yMWLH1Oa18DOcc0ANUAAYUDHSgdQAfwp+KMCgAooooAKKKKACiiigAooooAKKKKACiiigAqEHMgz0qajAoA57xL4dt/EenrbyExTo+6KZeqEY/wrUsIZYbGCGWUyOgwzHvVtlBB4rlfGs+s2FhDqek4cWknmz25XJlTGMD88/hQB1S8jOKdWXoWr2+t6TBf2sgeOVc++e+R25rSBz9aAHUjYpR0pD0oA4G9P2H4t2kq9LuzEB9zuJP6V3w6V5946H2TxZ4TvRwPt+xvpsavQEOUB9RmgB1FFFABRSNTR6A9OtAAy7m5PtXBeN9Sm1S9t/CunEi4uDuncH7kYxkH6g11HiHW7fw/o8+o3BJWJSVX++f7o965/wAC6JcxJca1qfzalfnfz/DHztHt8uKAHeJvCsJ8EfYLVAv2MJNGR1LIQx/PFa3g/WP7b8M2N84KyyQq0q/3WxyK2ZY1kSRW5DKVYZ7GuF8GMdG8Uaz4elO1Nxu4AT1RjjA/KgD0GkNJz2pkjhFLE4A6k0AcPov/ACVnxL/1xt//AEA1peJ/GFtojC1twbvU5cLFaR8nJ7tjkDv+FYXhjUbW++KPiKSzbzVMcA3ocrkIQefqDXZLotiNUl1PyUe4dQm5kyRj0J6UAZnha218wPd69MPOlAIt0+7EPrgHP1rN+JF5I2hxaLbn/SdVk+yoR6MDz9eK7UDA5PJHOK4CEDxD8T2bGbbRk8vPbzcgg/XBoA7bR7KPT9JtrWNQojjAIHrjn9av0xBgEY4p9ABRRRQAUUUUAFFFFABRRRQAUUUUAFIaWigBhOO1RuMhlGQcHDelT0yQ9ACMmgDjPD3iK9TXLvQNawLwMZLd/wDnqhOQB7gfzrtRjHFcx4n8MR64LW4il+zXlvKGSZewzyP0roEDLGnmNvKjlgMfpQBPTSMnIz9KQNltu7J604dTQBwHhzGjfEPWNLAAgulSeHtzjLY/E13xOT+JFef+NydF8UaDryj5UkNs/v5hUD+tegAj5ccg8g0AOX7opaBRQAUUUUAFFFFABRRRQAUUUUAFFFFACZpjypGjs7YVRliewofl8dOc1wnjfV57q7t/DGmswvb35pWB/wBVCOGP6igCrpaN448VPq0wzpFizR26no7jhj+GAa9GTpg1n6PpcOi6XBY26ACNQDjue5rRXoaAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUVwgkgkU8gqcipaRhnj2oA4T4YSFfD8lmfvW07KR6AsTXdr90Zrz/wADn7J4q8V6f023SNGPbZk/qRXoCjCge1AC00uAcZpx6VEQOc5HFACu25Gwce+K85YyeOPGi7WP9jaU3zjPEknUfUDkVp+OddntrCLStNb/AImeoHyoQvWMH+I+3H61s+GdDh0DRoLOFcYUGU92bqf1JoA2kTaFCgKB2FGGUgdj1pyjC4pSMjFAFHVrCLU9NuLOZQySoVI/X+grl/hpqMkmiTaRcHFxpUv2dwepz8w/QiuzPC4PSuAdV8N/FCNidttq8fOOB52QB+goA9B3jAPqcVwPjv8A5Gfw7/10b+YrugzYO4ciuF8df8jN4d/66N/MUAd92NQ3U6WtrLPI2FRSxNTdq4v4j6hJDocWm27EXWpSiCIDrnqf0BoAq/De2a8Gp+IZgfM1KfehPZQNuP8Ax2u9wSCMdOlUtGsY9N0q2tIl2rHGAAP1rQoAQdKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEIppGRgjOeDT6KAPPPCzto3xB1vRHwsUirdxj1Lsc/yr0DIH41wHjVRpHi/QtcQYR5GhuD7bcL+rV3y4CgdfegCSiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCJpFjDuxwEGWrzuxQ+OPGT38hLaTp52w+jyA4z+BFX/HWsTSSweGtNY/2hfjDMv/LKPozfqK6bQdHt9D0qCwt1AEa/Nju3c/nQBoqg5Pc0o+UYJpwGKjfng8j09aAH5B+lY+ueIdP0Gyae8mCnokY5Zj7DrViDULOa6a1juY2njOTEhyV+tZU/hDTr/wASrrN7/pUsI/dRSDKxnjkflQAnhbWNS1yCa5vbI2sBJ8kMQSwz146V0QjIX0P86SNdr5wMnripqAEA4zS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjDIqJ4y42kKVP3sjqPSpqKAOd0HwzHoF5fSW8hEFzL5gi7Jxggfz/Gt0SKRnpnpmmXUbSQPHHIYpGGFcdjXFeFtdvLbWrnQNfk3XiOXt52P+sTr+mQKAO9HSkOcGlHSkPSgDhfihFt8OR32PmspRNn07f1rs7GTzrGCQfxIp/Suf8AiDam98C6tCoy5h4/76U/0q/4UuheeGbGcHO6P+RxQBs0UUUAIehqE8KBnnvxUx9hmuN8deIZtNs49N07Lapfny4QvVT6/oRQBjztJ468Yrbof+JLpj5k9JJByB78V6OihYwqrtAGAPSsXwroUGgaFBbJhpMbpH7sxznP54rczn6UAMwMsT1rgPG6HR/EGjeIkGEjm2XTD+5ghR/30a9AxnIPJFcZ8SdQ0+DwxPa3SNLNcLiKFPvEjnj8qAOxik3xo/TcMkZ6VyninRta8QX0NhHdfZdHKk3DR5V2OeAD2rn/AIZ3Gt6vavqepakVigXyhar91T6uPX6V6YgymT3oA848H6Ta6P8AEPxDp9kvlwRxW52+p2Hk+tekHO4ZPFcNon/JWfEv/XG3/wDQDXdHigDP1nUI9K0m7u5DtWKPcT6HoP1rnfhvprW3h3+0ZwftepP9olB7N0/kBVP4iXDX9zpPhuBiG1CfExHZAN367cV3FpbpbWsUCDCRqAoFAE606kX3HNLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUyRSwwKfRQBEI2z1GMciuP8Z32q6JJZ6vaAzWUL4uoVHO3oCPx5rtarXUEVxE8cybkYEHIzQBHp97BqFnFdW8iyRSDKup4NW88VgeGvDqeGrWe1imMlsz7okP8AAPT863hnA4wO9AHNePNN/tLwrdKBloMXC+xTLD9QKteFdS/tHwrp91nLtCu/2bAyK17iKOeCSFx8jqVPvmuG+HExtDq2gz5EtrdySKD/AM82b5f0FAHoFFIORS0AFFFFABRRRQAUUUUAFFFFACEntjNJuI6ih+Oe9MdsA/MBgZzQBm+IdbtvD+lT6ldH93AhYKOrH0Hv1rnfA2jT/vte1VN2oX53Jkf6uPsPxGKzbh28c+NBaR5Oj6Y2ZW7SSjkfXivRo1VVVUGFAAGPagBxTI4JGKcBgUtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNbIBI7dvWnUjdOaAPPrQfY/jDLD0F3aPMfqMCvQV6VwHiYfY/iVoF8OFeFoG/4E1d+OgoAWqWo3sWn2ct5cPshhUsxPSrnNec+KLibxX4mg8MWbEWsLCW+kHdecL+YFAEngqwm17VLjxbqCECc4sYz/AAR//rFegBPkwD1qK1gitoRBCAqINoUDAFWBQAgGBiloooAQrmuJ+JVg7eHf7VgGbnTJBcx474zxXb1DdwR3NtJDKoaN1KsD0IoAp6LfpqWj2l3GQwkjBYj1xz+ua5Lxz83ifw5ngb2yfxFHw7nexOp6BcH57CYeX/tB8t+mab47JHiTw5jqZGz+YoA77JJ46V58f+Kk+J/GTbaOuR6ecCQR+RrstZv003Sbq8kOFjjOPr2rmfhrYzDw8+q3Qxc6lJ9pkP1GMfpQB2qgbuv0p9MQ9BT6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDlPiDpjan4Uukj/wBZHtlB/u7DuJ/Sr/hbVV1nwxYaivSaIP8AnWpdxCe2mhb7siMn5iuJ+HUhshquhv10+4Mca/7Ax/UmgDvh0opByBS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSdaAEYkEdMd6ztb1u10PSJ9RunxFEpb3OOwq9McqQeled3znxt4xTTYTnSNMYG4IPDyDkD6YNAF/wAD6RPNJc+ItUT/AEy7bMS/8806AD6gA125+XJxwOtNijWONERQqKMBfSqWpapZ6Navc39wsUagnLHr7fU0AXvN+YDHXpXIeLdQ1+a6TSNDsyJJkzJduPliGe3v/jTPDmv6x4j1WS7S0+zaKB+5aTiST3IPTjH511yjacEEMepx/WgDB8M+E7Xw9Ezh3nvH5muXOWc/yH4V0YjXO7ue9NBAIGCQOlSjpQAgXBpaKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBrDI4ODWLrPhey1i6tLty0N1bSK6TJ1Izyp9jxW5RQBErbRsyCVA/wAmnB8ntjHWuH8ZS6poeq2mv2JaWzU+XdwZ4weN30HWut0++ttRsob20k82CZQyMPTr/KgBdThFzplzC3RoyDXMfDC4Mngy3if70DMjf99GuvbBjI9VrhPhw/kX3iPT88Wt6qKPQFM/1oA78HNMaQq2McHpTuhpkgAGSCRxjHrQBBeahFY2U11OdkUalmY9q4fwfZy+INZn8VXyERN8llGf4U9R+NM8V3U3ibxHF4XsSRBHiW+kXsnOB+YFd7bW0VnbR20ChI0G1QOgAoAmTCjAGF9PSjd8v3cnPQU05ySOvv3rC8Vafq+qWqWum3It45DiaQH5gvtQA0+MNPl19dHtA9zddZDCNyxj/aPbPStO402xv7iOa5t45ZYuULc4/wA81S0Dw1pvh60SG1XMgOXncZZiepJNbCMo7EHPWgDgNEH/AAj3xC1DTGJFtqX+lRKegb7uB7fLXoYGAcdK4T4jQPZR6f4ihX95pcwlc+seMEfrXa2U6XVhDPGcrIgYfiKAOL0T/krPiX/rjb/+gGu5ZtvXp1NcNon/ACVjxL/1wt//AEA1u+MNWXRvDd5dMOdvlr/vN8o/U0Ac94eT+3fiFq2rOA9vZD7HD3G5Wzu/I136rjnNcv4B0d9H8K2kU3/H1KoluD6yHr/KuqFACAYFLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNZQc+/WnUUAUNVs3u9MuLeCd4JZI9qypyVP41zPg7xFcXMlxomrEJqto21lJ++vXI9eMV2h45rn7/AMN2l3rlpqyEw3cA27l43D39elAG533dQOlcDOP7G+LEM+cR6rAIh6AoCT/MV330HbpXD/EuCSPSbPWLf/j4sbhCvsHYBv0oA7wcgGlqG0uIru0juITmOQblPqKmoAKKKKACiiigAooooAKKD0pMigBHNcb4616XT7KHS7Ab9T1FvJhUc7TgnJ9uDXT6lfRadYTXczqiRKWJb6VxPgy1fXtTuvFV9GyrMdlkr/wR9ePegDqPC+gxaBosFnHgsBl37sx7k9+tbQGDxTVyUHUU7OKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAprDK4p1IetAHCfEZBCdCvugh1CIMf8AZyc12scu+BHPdQR75Fcn8TYs+B72bHNsPPHsQDW/pdyp0GymZgAbRHZj/D8oJzQBneMNfTw/ozzAk3M37qFM9WOAD+oqDwVoMmjaOZ787tRum865buGPVc+grB0dH8beLpNXmGdJsGMdspHDuOCf5GvRAjBs8bccigCRRj696dTQD3p1ABRRRQAU1xuGOx606mvwMjtQB554iU+HviJpesrxa3Stbz9hvYgLn8Aal8cEHxP4cUfeLvj8xWv490w6r4UuljB8+AfaIcf31BIrjb7Vl1c+ELoMN4zG/sw2hv1oA3fiLNJdw6doMJ/e6hOBgHsmGOfbFdtb28drbrbxKFRRhQOgFcDoAPiH4japq75a1sVFtAewkUkN+hr0QZ79aAAU6mqCOtOoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGPXAOw0T4sB2GItUtxEvYF8kk/kBXoDDLVwfxLgkgsbDXIly2mXPnMR6bdv9aAO+oqC0mWezhlU5DIDn8KlDA9DQA6iiigAooooAKKKKACiiigAooooAKKKKACiiigBrZA4po9QSQac3Q1UvryLT7OW6mkVI4lLHJ46UAc54412XS9PWxsstqN6fKgA5wepOPpmr/hbQIfDuiw2yYMpGZpCMl2Pcmub8I2b+ItduPFV4G2E+XYqw42ZyGHpXQ+KbrWLaxjj0S0MtzcOIw5I2xA/wAR9RQBoPq9jBfLYvcp9qk5EeeSPpVPVvDljr15bT3oklW3JKxE/IT7qeDWb4c8ExaXKNR1B/t2quPnmfov+7npXXLHj+InHqaAGxRRxRJHEoWNBgAdqlAHNJg5x2pwGKADFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFW5t4riCWGZN0LqUYHnIPWs/RtGs/Dunta2rssJcsPNfhc9hnoK19uGwBx71m67pj6rotzZiZo5HB2OhxgjkUAXwSQCV6DkZrgvD2LH4n63aYwLs/aRn2AWrXgjXribzdB1d8avYDy3Z+PPX++Px4qvqmLL4uaXOoKrcWToxPTdv/8ArUAd7047+9c/4s16Pw/pMk5YGeX93En95ycLj8TW88qxq8jnCKMknsK8606P/hOvFrapIrHSNOYpbr/z0k5DH8MA0AbvgbQpdJ0o3V7zqN4fOuGPUE/w59Aa1db1m30HTJLy63Mi87Y1LFz6DFZ+t+MbLS76KwiRry7mbaIITyo7kn0rce1gvYYxc26MowyhhnaaAOG0+38Q+LNTg1W8mfT9JhcSQW6ArI4H948Z5zXoKYPbB/lQE5BAUY46c0FGycdSeaAJMAjpmggelKOlIelAGfrFhFqulXFhPjy5kIYH0rmfhxqTzaJNptwT9p06QxOG6kZJB/LFdkRznbkj9RXnzZ8NfFCMbcW2rxF3J6eYMKAPwoAs6H/yVbxK2D/qbfH/AHwah8ZMNc8VaV4dQkjeZpwOgAwVz+Ip+kSpD8U/E7s2EWC3JPp8hzUfgeJtX1/WPEsy581zaxH/AGYycEfUGgD0FAAAAMYp9NX7xFOoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQ9KbjJOegpx5pAM80AcDr99f+FPFUWqM7y6RebYplzkRNwFPsM5zXS6tbx6x4euUTa6yQlkYcgnHFXdT0631WwmsruMPBKpVge3HWodM06DRtOhso5GMUahU8xvbFAGD8N797jwfbWspzNY4tpc9QyjmuuVmyQfX9K4Hw239k+P9d0YkLHc5vYx7s2MfkK75TufP1oAkooooAKKKKACiiigBD0qFmAycE44wP51MTgVxfxJj1x/CU48PFzfll/1Yy23Izj8M0AZviS4k8XeI4fDlkxNlb4lvZV6H0X8xXewW0NtBHDFEiRxAKij+EV454B0Hx9pmjySrBapcTyM8jXDkSHv0x611iwfEZTnGnYx0849fyoA74Ngc4FLu+lcAIfiPj/mHf8Af4/4Uvk/Ef007/v8f8KAO+3fSjd9K4HyfiP6ad/3+P8AhR5PxH9NO/7/AB/woA77d9KN30rgfJ+I/pp3/f4/4UeT8R/TTv8Av8f8KAO+3fSjd9K4HyfiP6ad/wB/j/hR5PxH9NO/7/H/AAoA77d9KN30rgfJ+I/pp3/f4/4UeT8R/TTv+/x/woA77d9KN30rgfJ+I/pp3/f4/wCFHk/Ef007/v8AH/CgDvt30o3fSuB8n4j+mnf9/j/hR5PxH9NO/wC/x/woA77d9KN30rgfJ+I/pp3/AH+P+FHk/Ef007/v8f8ACgDvt30o3fSuB8n4j+mnf9/j/hR5PxH9NO/7/H/CgDvt30o3fSuB8n4j+mnf9/j/AIUeT8R/TTv+/wAf8KAO+3fSjd9K4HyfiP6ad/3+P+FHk/Ef007/AL/H/CgDvt30o3fSuB8n4j+mnf8Af4/4UeT8R/TTv+/x/wAKAO+3fSjd9K4HyfiP6ad/3+P+FHk/Ef007/v8f8KAO+3fSjd9K4HyfiP6ad/3+P8AhR5PxH9NO/7/AB/woA77d9KN30rgfJ+I/pp3/f4/4UeT8R/TTv8Av8f8KAO+3fSjd9K4HyfiP6ad/wB/j/hR5PxH9NO/7/H/AAoA77d9KQnvxmuC8n4j+mnf9/j/AIU0x/EcEcaZ+M5H/stAHSeLrf7V4T1WEoW8y2YY/CvO012fVfC+m+G9LZnvbotHMy9Y4lYBx+Vaer2nxFn0y5jVbEh0IO2Usx+nFcV8OfC/jnTJ765S0hjndjh7lipXOQccd6APcdG0uDRdJt7C3TEcKhQcHLY7n34rQz9K8/WL4jHazf2bux2mP/xNP8n4jemnf9/j/hQB3276UbvpXA+T8R/TTv8Av8f8KPJ+I/pp3/f4/wCFAHfbvpRu+lcD5PxH9NO/7/H/AAo8n4j+mnf9/j/hQB3276U0nPTFcH5PxH9NO/7/AB/wo8n4j/8AUO/7/H/CgDuHG9djIrKww2a+cvFF1N4P8US6OQzKrSzWhHRnl5wPxIr1TyPiPtx/xLs5/wCex/wrzLx/4S8c6t4n0+6nsEneN1Kvb5cLgjrx7UAex+BNMfTfCtqZkKz3I+0XAPXewyc/jXUBuB0rzy3g+I0dugxp24DABmI/MYqbyfiP6ad/3+P+FAHfbvpRu+lcD5PxH9NO/wC/x/wo8n4j+mnf9/j/AIUAd9u+lG76VwPk/Ef007/v8f8ACjyfiP6ad/3+P+FAHfbvpRu+lcD5PxH9NO/7/H/CjyfiP6ad/wB/j/hQB3276UbvpXA+T8R/TTv+/wAf8KPJ+I/pp3/f4/4UAd9u+lG76VwPk/Ef007/AL/H/CjyfiP6ad/3+P8AhQB3276UbvpXA+T8R/TTv+/x/wAKPJ+I/pp3/f4/4UAd9u+lG76VwPk/Ef007/v8f8KPJ+I/pp3/AH+P+FAHfbvpRu+lcD5PxH9NO/7/AB/wo8n4j+mnf9/j/hQB3276UbvpXA+T8R/TTv8Av8f8KPJ+I/pp3/f4/wCFAHfbvpRu+lcD5PxH9NO/7/H/AAo8n4j+mnf9/j/hQB3276UbvpXA+T8R/TTv+/x/wo8n4j+mnf8Af4/4UAd4W6nIrN8Q2CatoF5YtjE8ZX6nr/SuV8n4j+mnf9/j/hTJIPiM0bAf2dnB6TH0/wB2gDT+HWpNqHhK2jlJ+0WxKTDvnJx+mK6xDkk9D6V4p8NNI8ZaX43vjqUciWbklt33SeOle1RscgHrjkmgCWiiigAooooAKKKKACiiigAooooAKKKKACiimljzjGe1ACSDKEdMjGfSvM/F2oprerp4eiuRHZW+JtQnz0UfdBx6kYrR+IHxJsfB0f2VgzXsqHyxj5QccZ59xXOaBd+CZfDpTV9asZrm8cXExabBUk7tpx2B7UAbem69qWtaja23hyyW30O3O1rlxhXA7Lg134VcDgMQcjjoa5WDxt4Hs40hg1zTY4l+6qSgCpx8Q/B+MHxDp+P+uw/xoA6kAYpa5f8A4WN4PH/Mw2H/AH+FH/CxvB//AEMNh/3+FAHUUVy//CxvB/8A0MNh/wB/hR/wsbwf/wBDDYf9/hQB1FFcv/wsbwf/ANDDYf8Af4Uf8LG8H/8AQw2H/f4UAdRRXL/8LG8H/wDQw2H/AH+FH/CxvB//AEMNh/3+FAHUUVy//CxvB/8A0MNh/wB/hR/wsbwf/wBDDYf9/hQB1FFcv/wsbwf/ANDDYf8Af4Uf8LG8H/8AQw2H/f4UAdRRXL/8LG8H/wDQw2H/AH+FH/CxvB//AEMNh/3+FAHUUVy//CxvB/8A0MNh/wB/hR/wsbwf/wBDDYf9/hQB1FFcv/wsbwf/ANDDYf8Af4Uf8LG8H/8AQw2H/f4UAdRRXL/8LG8H/wDQw2H/AH+FH/CxvB//AEMNh/3+FAHUUVy//CxvB/8A0MNh/wB/hR/wsbwf/wBDDYf9/hQB1FFcv/wsbwf/ANDDYf8Af4Uf8LG8H/8AQw2H/f4UAdRRXL/8LG8H/wDQw2H/AH+FH/CxvB//AEMNh/3+FAHUUVy//CxvB/8A0MNh/wB/hR/wsbwf/wBDDYf9/hQB1FFcv/wsbwf/ANDDYf8Af4Uf8LG8H/8AQw2H/f4UAdRSMAQc9K5j/hY3g/8A6GGw/wC/wprfEXwcRg+IbD/v8P8AGgDRm0Oym1mPVjF/pSLsWT1Ge9ct4zZIvEPhy8Rg6rfJbttOcZJP9K1j8RPB5BH/AAkOn9uPOFePfELxDp1hrUN/oWtQX9tNOsstuku4o4GBt/CgD0/x3rcjLB4d05y19fcPk8Rxfxk/QEVsR6DLp/hhNL0mZLaQRqvnds4+Zh7mvCvDesr4q1ufUde16106FiFCtJh9q9RgjjIr2q18d+DLa1jgTxBYhUUKAZhQBa8NeELLQIvN5uL+Xma6k+81dIOo9K5cfEPweDz4isCR0/fClHxF8Id/EVh/3+WgDqB1NOrl/wDhY3g//oYbD/v8KP8AhY3g/wD6GGw/7/CgDqKK5f8A4WN4P/6GGw/7/Cj/AIWN4P8A+hhsP+/woA6iuK+JVjJL4eXUrZP9J06VbkEddq5JA+tXf+FjeD/+hhsP+/wqG58d+Dby2kgk1+wKSqUYeaMEUAeb3HieP+1/EF1C4MmoW9nbAg9Hkj2n8jXrfhfSf7F8OWVlt+dIl8z3bHJr5q8H3Okr8UJ11DUEGliVpVdiNhKn5ea+h/8AhY3g/v4hsP8Av8P8aAOmGAQfU0+uV/4WJ4Pzn/hIdP46fvhTv+FjeD/+hhsP+/woA6iiuX/4WN4P/wChhsP+/wAKP+FjeD/+hhsP+/woA6iiuX/4WN4P/wChhsP+/wAKP+FjeD/+hhsP+/woA6iiuX/4WN4P/wChhsP+/wAKP+FjeD/+hhsP+/woA6iiuX/4WN4P/wChhsP+/wAKP+FjeD/+hhsP+/woA6iiuX/4WN4P/wChhsP+/wAKP+FjeD/+hhsP+/woA6iiuX/4WN4P/wChhsP+/wAKP+FjeD/+hhsP+/woA6iiuX/4WN4P/wChhsP+/wAKP+FjeD/+hhsP+/woA6iiuX/4WN4P/wChhsP+/wAKP+FjeD/+hhsP+/woA6iiuX/4WN4P/wChhsP+/wAKP+FjeD/+hhsP+/woA6iiuX/4WN4P/wChhsP+/wAKP+FjeD/+hhsP+/woA6V8Y59awfFWmT6voc0FpKYLhMSRsO5U5xVY/EXwef8AmYbD/v8ACm/8LC8HEYbxDYH/ALbCgDz9fEDSa9omp3YEWpQzfY9RibqqqpOR7ZOPwr2eNw4Vh0YZBrx7x5q3ge60u/1Wy1S0fVCgEfkyAsxDA9M49a7jwH4wsvF+hR3NqWLQ4ilBHKt/+qgDrqKKKACiiigAoopp65PagAYZUg1GOOSwH+e9Pyemee1eX/FbxxcaNolxZ6SN10cLNIOkQbp+fNAHo1hf22opI9rMsixuY2wehHWrmK8t+Apll8AyTzMXeS8lJYnOelep0ANxRinUUANxRinUUANxRinUUANxRinUUANxRinUUANxRinUUANxRinUUANxRinUUANxRinUUANxRinUUANxRinUUANxRinUUANxRinUUANxRinUUANxRinUUANxRinUUANxSPwBz+lPrN1vUJdM02S6itzOUGSocLgfU0AXgTnpnPc0nR+Twa828GfFu38aeIm0mPSZrWVY2fc04YcHHYV2PiXxDbeGdEm1K8ddsa5Vchdx9MnvQBsc7h0wKfivOPBfxPl8a3UiWWgTRwRY8yVp1OPwxXpI6UANxRinUUANxRinUUANxSgUtNY8dce9ACkVG3ysTWF4l8YaX4Vs/P1CcKSwVI1+ZnPsBzXOal8QdY03RTrc3hqUWGR/y8KW2n+LGPxoA9BVcE+/NOxXP+FfFNh4t0tL+xkGw4DpnlTXRDpQA3FGKdRQA3FGKdRQA3FGKdRQA3FGKdRQA3FGKdRQA3FGKdRQA3FGKdRQA3FGKdRQA3FGKdRQA3FGKdRQA3FGKdRQAmKTFITz1qG6nkgt3lSIuUXOM4zQBIScnqRSjIYDGRjr6V5Vpvxjm1bXp9H07w1PPeR9R9pUA4/CtHw78WbPWvEcmhXemy6feLkYeUPkj6CgD0elqLHBVifqKkHSgBaKKKACiiigAooooAKKKKACiiigAppAOB0p1R9Q2D82e9AHMeJvAWi+KruG51KAvJDgphscir0XhjRY0SMaVaHaB1hU8D3xXM/Ev4hQ+D9NEMTh7+cYSMHkDOM4rrPDtxLfeHNNupv9ZLbo7fiKAEXw3ohz/wASqywOn+jp/hTv+Ea0P/oE2f8A34X/AArUXpTsCgDJ/wCEZ0P/AKBNn/34X/Cj/hGdD/6BNn/34X/CtbAowKAMn/hGdD/6BNn/AN+F/wAKP+EZ0P8A6BNn/wB+F/wrWwKMCgDJ/wCEZ0P/AKBNn/34X/Cj/hGdD/6BNn/34X/CtbAowKAMn/hGdD/6BNn/AN+F/wAKP+EZ0P8A6BNn/wB+F/wrWwKMCgDJ/wCEZ0P/AKBNn/34X/Cj/hGdD/6BNn/34X/CtbAowKAMn/hGdD/6BNn/AN+F/wAKP+EZ0P8A6BNn/wB+F/wrWwKMCgDJ/wCEZ0P/AKBNn/34X/Cj/hGdD/6BNn/34X/CtbAowKAMn/hGdD/6BNn/AN+F/wAKP+EZ0P8A6BNn/wB+F/wrWwKMCgDJ/wCEZ0P/AKBNn/34X/Cj/hGdD/6BNn/34X/CtbAowKAMn/hGdD/6BNn/AN+F/wAKP+EZ0P8A6BNn/wB+F/wrWwKMCgDJ/wCEZ0P/AKBNn/34X/Cj/hGdD/6BNn/34X/CtbAowKAMn/hGdD/6BNn/AN+F/wAKP+EZ0P8A6BNn/wB+F/wrWwKMCgDJ/wCEZ0P/AKBNn/34X/Cj/hGdD/6BNn/34X/CtbAowKAMn/hGdD/6BNn/AN+F/wAKP+EZ0P8A6BNn/wB+F/wrWwKMCgDJ/wCEZ0P/AKBNn/34X/Cj/hGdD/6BNn/34X/CtbAowKAMn/hGdD/6BNn/AN+F/wAKQ+GdE/6BNn/34T/CtfApp4FAGT/wjOif9Amz/wC/C/4Vl634A8Na3arbXWmRIituzCBGR+IxXRy3NvG22SeOM9t7gUJLHOh8uRZPp0oAw9O8F+H9MsY7O30u1MadDJGGP5nmr/8AwjeiHn+yrP8A78L/AIVellihXMsioB3c8UkVxDN80Mscvb5HBoApf8Izof8A0CrL/vwv+FH/AAjOh/8AQJs/+/C/4VpqcnGeadgUAZX/AAjOh/8AQJs/+/C/4Uf8Izof/QJs/wDvwv8AhWtgUYFAGT/wjOh/9Amz/wC/C/4Uf8Izof8A0CbP/vwv+Fa2BSEUAZX/AAjWh/8AQJsv+/C/4U1vDWiAf8gixPt9nTP8q1eO/HvUU0qRLukdVX1JwPzoA5Cw+F3hfTtal1SHTw0kmcq7ZUZ68Hiug/4RrQyP+QVZf9+F/wAKtQX1pPlYbmF3/upKGP6Zq0AD7UAZn/CM6H/0CbP/AL8L/hR/wjOh/wDQJs/+/C/4Vpjrz0p2BQBlf8Izof8A0CbP/vwv+FH/AAjOh/8AQJs/+/C/4VrYFGBQBk/8Izof/QJs/wDvwv8AhR/wjOh/9Amz/wC/C/4VrYFGBQBk/wDCM6H/ANAmz/78L/hR/wAIzof/AECbP/vwv+Fa2BRgUAZP/CM6H/0CbP8A78L/AIUf8Izof/QJs/8Avwv+Fa2BRgUAZP8AwjOh/wDQJs/+/C/4Uf8ACM6H/wBAmz/78L/hWtgUYFAGT/wjOh/9Amz/AO/C/wCFH/CM6H/0CbP/AL8L/hWtgUYFAGT/AMIzof8A0CbP/vwv+FH/AAjOh/8AQJs/+/C/4VrYFGBQBk/8Izof/QJs/wDvwv8AhR/wjOh/9Amz/wC/C/4VrYFGBQBk/wDCM6H/ANAmz/78L/hR/wAIzof/AECbP/vwv+Fa2BRgUAZP/CM6H/0CbP8A78L/AIUf8Izof/QJs/8Avwv+Fa2BRgUAZP8AwjWh/wDQJs/+/C/4Uf8ACM6H1/smz/78L/hWtgUYFAHNap4M8P6pZyWk2mWyLINuY41Vh+IGal8MeEtK8J2JtNKhaOItuYsxOT0zWxNNFAcySpHnoWOBUH9o2mPmu7fBOB+8AoAvClqFJUdQysCOgIORUi9aAHUUUUAFNJ+fHbFOqN8k7d+0k8Y60Acz4p16TTo007Tv3mq3YPkoOdg6Fj7DIryj4i6Pq+ifDe8N60EhnnRppMHLMW6fQV6pZ+DVtvFc+utqNzNNIMCNwu1QBjjj2qHxv4Gi8a2aWl1qt1bWuQSkKqQSPqKAMT4ExNF8OkU5ANw55/CvTq5fwT4QXwZpB06G/nuodxZPNAGM/SuooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ5xx1oACcVynj+d28Ovp0DYudQP2eE/7RGa6jJPfBxXA6rqVrq3xB07SvtIxZAXRz/eyVxQB5F4GjTQPjDJbOxjUL5Z5xtztz/Otj4u602s6NJd5KWMUwht0J/1pBw5/A1X1nwhfa38br5LUtBbgq0sq9AgUZ59apfF29s7vxLo3h2ykQQWu1HK9CzFeT70AemfBDQxpngWO4kT99cSFiSOSpxj+deoCsjw7apZ6BYWyMhEcKLlehwBWuOlABRRRQAUUUUAFVdQu47Cylupm2xRLuY+gq1WR4mspNR8PXtlERvniMY/GgD558Nz3PxG+L6T3bt5NqzSxDPGEYfz4r1/4rXsOk/D69ZsKDtiUDqSeB/OvL/gq0Gi+MNUttRKQXKsyqZfvfh+lbPxGv7n4haxb+HNBRpbSNgbm5X7nBBx+GDQBL+z1b3C6VfzvuMDNtGTn5gef517gOlc94Q8NweFfD9vpkHJj+Zzj7zHqf0roR0oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBrEA81ieKtUXRfDOoag+4LFEScds8f1raZRk8ckda8g+O3iBbLwtFpcU5M12/luox93rzQB5v8OtZuPDg1fxP/ZU94/zATLt2rnByckenauy+Fng+HWtfk8WT6nDctlv3EQIKknvml0jVtD8L/Bk289zFJfXluWMQxkvkgD8qPgFpGoo99qc6NHaSN8ik+tAHugyoAApwzSiigAooooAKKKKACiiigAooooAKTIzjNLTSAW5oAXcDnmsDxN4jt/DumtcMN87nbFGOrt2H+cVq3tybS0lnCNJtBO1RkniuG8OWH/CTX11rGu2jLOH8uCGUYEKeg+uM/jQB4v8AFOKM6lpFxLdfaby4YtOR/CMjC/gMCvpTwyAnhbS/a2jGPwrwv4raJc6j4l0/+ydFna2tiN7IuQeR/wDXr3Xw9n+wLLKPGyRKpQjnpQBrClpq96dQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhOBmlprZ+vt60AeQ/HN/L0GL7DGPte7dI69UTHX86k+BOry6j4UvvtNwZDBOFLMf8AZzVnxHbjxBf+JJj80NrZfZNp7SBwc/rXmnwmub+4i1Pw3YI6yXk+6ab/AJ5RgYJ/UUAWvjB44vtR1aLTdMd4bRWKCRDjzGB5/XIr2TwF4eTSfC9k7qHupolkd2HOSM/1rwu+tItf+L1ppVmoNrayJgf7uN5/E819QQxrFCkaDCqoAFACjOeRyO9PoooAKKKKACkbpS0hoAzdX1a30bSLnUrt9tvAhZq8e8P6zq3xS8VToLmS10G1b5o0biQ8YB/DNav7QF/PaeCreKJ9qT3HluB3GCcVb+BukJZ+A47sLg3b+Yx7kgkUAcf8Wo08B6jo994dU6e8hbzVh+UOVI617T4W1Zta8O2V7IoEkkKu2PUivBvi7dSeLfiFZ6Hp374xDYQv8O7GT+HNe/8Ah7TBo+g2Vh1MEKxsfUgUAafXrTqaBTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo70UUAcB8W7uCx8CX87cXO3EBA5zkV5V4W06N/hVrGr6tduJz89qVcBgAB0/HNbn7QGrF5dM0KGQ+Y8gdlHcHgfrWP438Hjwl4K0e9W6lmMLqGtXPyngnBoA6r4FahrN7p2pHUZZpbZJVETzdcYNeyjnkHrXEfDTWINb8G29zDax2m3iRIxxkZFdrHjHBoAdmjNH40fjQAtIVzS0UAMMeSTml206igBAoBz3paKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBpTkkHGetZ39gacL/wC3C3UXP98da06KAKf9m2++WQRqJZRh3A5NUG8J6I8hkewiaQkEuV5yK28UUAQR2scUSxoCFXgDNT0UUAFFFFABRRRQAVHM4jQuVLbRngZqSmsOnWgD568bv4hufE41ZPCrSWsGVQRblMh7ElRnt61t+HfiBrUKC3XwJLbyNgAxxOwPuxxXs5VWY5wQe2M0xERSSi7e3TrQBQ0WXUrmzE+p28cE7HIjRywA9zxWuKiUnOCuPcd6loAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBCMmsm/8OaZqc/m3dskrAcbhnFa9FAGIPCWigxn7DEfLIKhhkD8K1obeK3Ty4Y0jT0UYqWigAooooAKKKKACiiigAooooAKKKKACkIJ6HFLRQAwxqc55B7HmmiCJTkIo+gqWigCH7OpPIX/AL5FPESjGBjHpT6KAEAxS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFVr83AspvsqK0xUhATgZxVmmtnHFAHDeFNA1ezs9UttYS33XzmYyRyZJY4GDx7VR8MeCL3wfoE/9lpDPqtwxLvK23b7D8MV6GEKkjGVPJJNKOuMbT7UAeMeCPhl4h8N+NX166FrOJRJvHm527j2r2sdKjIP3uB/WpB0FAC0UUUAFFFFABSEZFLTXyFNAHLeOvC9l4q8Nz2d5IItvzLKeiHHWvLfBmv6zpmmXPhezuNLMVs3lR3ct1sYA85UYwetezaxpNtrlibK5MqwScNsYqT+Irzi9+BPh92Lafc3do3U5mZ+fzoA2fCHg3RfChfU7u/hutRmJd7mQjjPp+dehRMskSujBlYZBB6ivPPD/wAKbDR50nutQvb505CyXDbR/wABJxXokaqkaooAUDAA7UAOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEJwQKY7uEYooLDoCcZpzZxwRmk4YZzgj0oA8X8T/DnxN4j8aJrsyWjxwkCKEzYBUHgZAq14k8BeK/HE9vDrFzBZ2ER/wBXbyBz9egr17qCaUepHNAGR4a8PWnhvRIdMtBiOIYyRgsfU1rqAvApfpSigBKKWigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiik3ckZH50ALRTDIoIBbk9KXeM4zye1ADqKTOT/8AWpaACiiigAopM0bh1zge9ABtHpS4qNZkdtqyKSOwOTUg6UAGKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooATAPajA9KWkLAdTigBcUU0MCMg0uRjrQAtFJuHr0oLAdTQAtFJkUuaACiikyKADAowKAQehoJoANo9BS0mRnrSbhnGaAHUUm4UtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAmATmloooAAAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikNAC1yvj3UtQ0rw893ppYzRyKWA5wmeT+VdPvwOevtXFeIfFei3dld6fLDqErOjRnybZn25BAPHuaAOE1HWNfudV8Py6Xq+ob76Ri8c8KqoVQG446EVt+KNb8V2viK00w3NvaQXLkGaBtzxoATnBGO1Y/hyT7bqNne2NqtyLANBuuZfJdABtJ2HviqbSKLySdhJLcXGsTWsIkc/cVQ3fp1oA9U8I2jQwyyHxJNrG44LSIoCn/gNdQOleb/Cq3igm8SRwiQRR6gFjDMSMbAeM16QOlABTXG5SM4yMZ9KdTWzg4644oA8wsbvxFqHiXX7NtXktraydvK2BSAo9ciuZ0bxcNQF8Nf8AF0sEMU/lRLtUCQY69PrXQ2sK6l4k8VW6XX2aHey3EmOnzD/61efapJZx6rDBMnneF7CbfJIluPM2jqeOWHJ5zQB0/i7Q5fD1zo+vaFq9wyyXEcLDdlZN3evaLF3exgaQguUBYj1xzXlvjfXtG1DwlpK6bdQSBdRtmCRsCygE9QOlep2RDWMDDODGp5+lAE9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFMcAkZOMfrT6rXrPFbvLGu5kGQvrQByfjXxtD4UayQxRy3NzKqCMuchCcFsD0zWlY+KtCv4n8vVLYsiB3jEnMfGea8qvtfgkv9Qv76zln1NpRaW6yRny4WfIXnGOcD8qveAbnS9I/ts3GmmLUYF3zbiWEhYnAAPHXPagDuLz4i+G7YSPHqMVw0Iy6wMGx25rc0LXLPxDpcWoWLloZRkZHIrxafS7iz024NtY2jatr0pfyWYKYYjyML36GvYfCejjQPDFjp4A3wxBSQMbjQBsMpAG3BbPeuT8MeKb3XNc1bT7qzSEWMgUEE/MDnFa2t+JtO0BFe9aVt3RYY97flXm3gXxFfav4s1u40WwV7O4kUNPO+wptyPumgD1a+v4NLs3u7mVIoEGXZzjAqHSNasdbs/tOnXSXEP95TxmvMNP1Kx8UX9+PFurRRwWd08cdsZBEG2nGTyM11Mfjvwto4WzsYbiSNTtX7Fa+YrfivBoA7UnYGYtj+lc1B4+0KYyIt1ueJijgDoRW/bXCXlmk6LIiOMhZEIYfUGvKNLlttHsvFzR2guJzcqsKJHuYkrk/QcUAdinj6zuIzPYaZqN+gYput4dwBBx61lR/E5LbXYdM1XR72x+0NiF5Y8ZP5+9ee6De67o1xYaNoV07XN3O01zDJDgxLuyc57YJ/Ku4+Jdis974YmuCPNjuDub1PFAHpigkg8cipaZtJbOe9PoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa/Az2p1IcY5oAiBO3n14rzTxeLzW/Etppfh87DA3n3ckJ25IIZV3D1wRXpkiBkxkqexHUVU07SLTTEk+zworyMWZwOWJ9aAPI9BhtPDWu37eJoLq0lnmaWIh2dCCc8kDH51sLoEmvatNq1g9tFBC7XFqm5ZN0x4LEA8AjjFekahplnqtq1te28c0RH3XGcV5vf8AwkubSZ5PCuuz6SzEtsDELn6CgDa+HLXCx6pDd6dJZ3a3H77c2Vc4HK+2MV3I6Vwfh7wl4ksXVtX8Ty3ZU5KxFhn65rul4VRnIA60APpr4Ckk4GOT6U6muodCp6EYNAHlXhzSbLxF4p8SmdpVhW8YbY5MLIOPvetVPEFrb23jrTLLUNOEenvKI4XgYKhTrtkXHOT610Vn8N0t7/ULmPWNQtVurhpStrLtBB/CrT/DyzlEYm1XVJCp3AvOCc/lQBy3xP07Q9J8HwT6VbWiONSgJ8gKG/i4JFepaQ5k0ayc9WgQn/vkV5h4t+FKT6ZBHpE91I/2qNpIpHBUqM5OPxr1LToDa6bbW5zmKJUOfYYoAtUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUx/vL9afVPU7trHT7i5VC5iQtsHfHagD568ST+dPqLNPMqPqMGFWNtuMkHnpnNaOm3BifxBY2wYSTxwbJJxlwGJy2T6V3Fv4PuZPBlvbO2blb4X5B7lXLAfqKz/BNlNrvivX77WNLZIzsjjEq8EoTyP0oA4O5jm0/xRoqS629wsC7VuUs33j5T36mvYPCviWwvli0yCa8lnhHMs1s6Bj9WrP1uzgh+IfhsQQRxqsjcBe2w13+wKuMYz3FAHFeN9RjSBdOsLOO41u7GyIAAlAc/MT2HT868/wDACa/4bvdRNu0NzpsTFrzgAoTknknkV7JaaJZ21/LfY8y5k481h8wHpXmHg/QtQ12DWbe5ke1t5b1vMBGGdd7DA9iKAJvB3h6y1Pwv4g1a9sbeVrqa5eEyRBio5KkfnWp8H9LtrfwTbyeWjTb8s5XkcV2U9jb6X4XuLO3UJDFauqAey/8A1q5/4WRsnguBm43/ADfpQB2W3YpVcgdjmvJ/C1zqK3OvLp9mk9/Ldq0cpAATC4yT3+lesup2OF7jNeReA9ev9GsdT87Rbq5lkuWfCYGQCR3oAwb3wvqEPixPsd5u1uYGQXySfKCOSjJnOO3XHFaXiyfxLDF4d/4SFIS4u8bo8DPKjtU0w1OLxaniDSvCGqxO6/vESaMK/wBRWV8R/EOq6rHoMeoeHrzTmW9XDSMpH3l9KAPe84xu9eKfUUedoyQeeOKloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//Z'] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 45 "如图, $\odot O$ 切 $A B, A C$ 于点 $B, C$, 过 $C$ 的割线 $C D \| A B$ 交 $\odot O$ 于点 $D, E$ 是 $A B$延长线上一点, 直线 $C E$ 分别交 $B D$ 和 $\odot O$ 于点 $F, G$, 延长 $B G$ 与 $C D$ 的延长线相交于点 $P$. 求证: $A, F, P$三点共线. " ['连结 $A F, F P, B C$, 如下图.\n\n\n\n\n由弦切角性质, 有 $\\angle A B C=\\angle A C B=\\angle B D C=\\angle B C D$, 则 $\\triangle A B C$ 与 $\\triangle B C D$ 均为等腰三角形且相似.因此可得 $\\frac{A B}{B C}=\\frac{B C}{C D}$, 于是有\n\n$$\nA B \\cdot C D=B C^{2}\\cdots(1)\n$$\n\n又由\n\n$$\n\\angle B D P=\\pi-\\angle B D C=\\angle C B E, \\angle D B P=\\angle D C G=\\angle B E C\n$$\n\n可知 $\\triangle B D P \\sim \\triangle E B C$, 则有 $\\frac{B C}{B E}=\\frac{D P}{B D}$, 从而由 $B C=B D$ 可得 $\\frac{B C}{B E}=\\frac{D P}{B C}$, 于是\n\n$$\nB C^{2}=B E \\cdot D P\\cdots(2)\n$$\n\n由(1)与(2)可得 $A B \\cdot C D=B E \\cdot D P$, 故\n\n$$\n\\frac{C D}{B E}=\\frac{D P}{A B}\\cdots(3)\n$$\n\n由 $C P \\| A E$ 可知 $\\triangle C D F \\sim \\triangle E B F$, 从而 $\\frac{D F}{F B}=\\frac{C D}{B E}$, 联合 (3)式, 易知\n\n$$\n\\frac{D F}{F B}=\\frac{D P}{A B}\\cdots(4)\n$$\n\n由 $C P \\| A E$ 可得 $\\angle F D P=\\angle F B A$, 从而由(4)式可知 $\\triangle A F B \\sim \\triangle P F D, \\angle A F B=\\angle P F D$, 故 $A 、 F 、 P$三点共线.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAW4C3gMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKQ+tNJ47+h56UAPoqrb3sF2G+zzJKEbaxVhwRU+cn/69AD6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEo3D1pHyFOBmmYwD6DpQA5vUHqMAV594w8VXM2oL4b8O5m1G4yJZI+kI9Sfx/SpfGPi+4S4/4R7w5i51i4GCVPFuvTca1PCXhK38N2TNIxuL+c77i4f7zse34UAT+EvClv4Z07ykYyzynzJpD/E55J/OuhC7T0pw+6M+neloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKYXOSO4p9RFSWPp1oAVn47gHoa4nxn4vk0+RNG0hRcaxdHYiLyIu+W9uCKf4z8XvpCLpunILnVrn5EjTnywehP4Zo8F+Dv7DiN9qTfadWn5nmc7sHrgZ7ZoAseD/AAbHoNu91dMZ9VuPmnmbnn0Ht/hXWbMtnJ4pUxjpTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmk846D1pcimOcHJ5X0oAX8elcl4z8XpodqtraR/adVusRwQLy2TxuPsMg0/xf4uh8O2ixRAT6lPxbwLyWPT/AAqj4P8ACM9vct4g11jcavcAlQefIU/wj3xwfpQA7wV4QbTp31jWG8/W7gZkdufLB7L6dSK7gAenNRxjCAYA9cdzUgIPegBaKTNLQAUUhOO9GRigBaKTPvR+NAC0U3cAcZpePWgBaKTI6UtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh4FNDZ9gKGbjGKAEPy4/iNc54u8WW/hqyyB519MdsFuvLOf8ADNSeKfFNn4Z0xppiXuHGIYRyzt6fzrm/Cvhi7u7s+JfErA3kg/cxMflhT0+vfPagCbwj4UuJL2TxF4gzLqco/dowyIl68e/Su7B+UbAD6gmuW1j4haDorfZxObu6HCw2o80k++3pWD/wkHjrxH/yCNKi0+A9Jrhvnx67GXrQB6OW2gsSVC9eKx77xh4e01mW81e0hcfwu+DXKJ8Nr/UnEmv+Irq4c/eSHMQ/8datqx+G3huywRaNK4/inkMh/XNAFOX4q+FUJEN0Z2/6ZYb+tRD4r6Y/EWlatKOxjgz/AFrr4NC0m3QLHptoMf8ATFf8KsrY2qjC20Kj/ZQCgDhz8U7QddB1sD1a1/8Ar0o+K2jYzNY6lD/vwY/rXcC1twMeTGfqopjadZt960tzn1jH+FAHKWvxQ8J3DiOTUkgf0mO01v2XiLRtSYCz1G2mJ6BHBNF14Z0W9jKT6ZaHPcQqD+eK52/+Fnhu6UtFHdW75yGgnZcfgDQB2e4dTwO2R/WnA/Lk4/CvNv8AhCfE+ifNoHiF5Yxz5Fyu7PtubNC+OPEfh9xH4l0MmAHHn2jGU/XaBQB6UMCnVz+jeMNG11A1leLv/wCeUpCuPqOoNbwYdufxoAdRTA+SQAcil3HuOKAHUUdaQnAzQAtFRSzCOJpDgKBnk1iDxr4fMjp/altuQEkeauRjj1oA6CiqVpqdrf24ntLiK4jJ4aJgw/Gro6CgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAopu8c+1Jv8Amx2oAfRTcnPTihSSORigB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFIaAFpKYGwTk8DHJryPX/AIj6lrPi7/hFvC23zc/vLnrtx1x+v5UAev0tec6x4d1+y0PzrHXtRn1EFdymXKHJ5wK7PRVuodDskvJGkuViUSsxySe+aANOimFuTzgCjdldw4HvQA1gG3A8BeeKxfE/iaz8N6S95cyfMRiONfvM3YAU7xN4lsPC+jzajfzLGijAGeWbsAO9eF2lv4r+KXig3217WwiOYXkB2ouew9cUAbltrMDaoNd8RK19qcvNlp8YLCMnoSBkKcZHIro49F8W+M2Emr3Z0vTu1tASshHuy/1FdP4b8D6X4fzOsfn30nMtxLy7H611CAgYJyO1AHO6L4O0XQUX7NZI0o6zSgPIf+BYzXQYPQDI9uMVIAB0AFLgUANUAcAU6iigAooooAKKKKACmtwenNOooAYTxjHPtUbxLIpWRQVIwQRmptoznAzS0AcXrnw50XVH8+2R7C86rNat5eD6kDrWD/aHjDwQ23UIhrGkA8TRLiRB7jkmvUenSmMokVldcqwwRQBi6D4o03xDbiWxuAX/AIo5PlZT6YPNbOMchfqK4jxB8Popp21LQZf7O1Qch4/lWQ/7Q71BoHjq6tr9dE8UwfZNQHC3GP3cw7YxyPxoA9DHSkbpUSSKUDBsqw4IOaUnb6kd6AMzxBfR6boF7fSbfLiiLNv5HpXiPwT8OWmuXutatf28cqeaYlV1BBDc8ZrtPjZrLaf4KksIAWkvDsKqCTtx3rD8G+IbHwX8MINgMurTIWFuqHJbnH9KAMP4aajcaT8WrzQ4Lhn09zK2wEkKfT8K+ih0rxj4S+B7yz1S78S6rCY57hmaFX6gNXsw+6KAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACimsSCPSmsxXJLfLQB5b8SvH+reFdds7LTjE7XBUFGUMQDnmqupfEfWvCvizT9J1mOKeK7QOHjULtGT/hXHa2Lzxn8cjDZFP9EPkl3Usq4zycV3kXwuvdW8Xx6/4l1K2vPIOIoYUIUexz25oA9OjkWWFHGRuUN+dSr0FMVAkaqAMAYFSL0oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmtzxTqaSBQBleIpZofDt9LbA+esTGMDucV4h8B7WKXxPrV5Og+2RuwBYc5Oc19AuivGUZQVIwQe9eeS/C2Kz8QT6t4f1a40mWbl44ow6se55oA77zY4nWKR8O3RalK56LgmsLRfDpsLo3d3fzX93jAklULt/AcV0H1oAac/KDk81la/rlnoOlzX95Kqxxj5R/ePYUniXVrfRdCub2eZYgiEruOMn0r5ak/4S251NtVvLK9uLUS+aGlBEW3PBz0xQB6rY+HdT+KGsjWte8y20aMj7Ladnx0Y59RXrVlp8Gn28VrZwrBDEMKijg15jol/491fTo7nS5tJltSAPlnxj8lrSWH4nBiB/Z5PqZ+B/47QB6QowcnNPXHpXm/k/E/103/v+f/iaPJ+KHrpv/f8AP/xNAHpNFebeT8UPXTf+/wCf/iaPJ+KHrpv/AH/P/wATQB6TRXm3k/FD103/AL/n/wCJo8n4oeum/wDf8/8AxNAHpNFebeT8UPXTf+/5/wDiaPJ+KHrpv/f8/wDxNAHpNFebeT8UPXTf+/5/+Jo8n4oeum/9/wA//E0Aek0V5t5PxQ9dN/7/AJ/+Jo8n4oeum/8Af8//ABNAHpNFebeT8UPXTf8Av+f/AImjyfih66b/AN/z/wDE0AekGivN/J+KHrpv/f8AP/xNHk/FD103/v8An/4mgD0Zs9qxPEPhmw8R6ebS8iyB8ysByrdiK5Tyfih66b/3/P8A8TR5PxP9dO/7/f8A2NAFbT9a1PwFqEek6+zT6ZIwWC8I+VR2Un6e1elRTR3EYkicFGAKuteW6zo/xC1PTbiC+i0ya3Kktvm5GB2wK8l8Nar4u0PXU8iZo7cSGDzJWPkgjjG4j3FAH1JdaXZ3zr9st1nYDguKINIsYCGito0b2FcEifE2aJWjbTGBXIcXHH/oNSCD4oYznTs/9dv/ALGgD0QKR0+7UueK828n4oeum/8Af8//ABNHk/E/103/AL/n/wCJoA9Jorzbyfih66b/AN/z/wDE0eT8UPXTf+/5/wDiaAPSaK828n4oeum/9/z/APE0eT8UPXTf+/5/+JoA9Jorzbyfih66b/3/AD/8TR5PxQ9dN/7/AJ/+JoA9Jorzbyfih66b/wB/z/8AE0eT8UPXTf8Av+f/AImgD0mivNvJ+KHrpv8A3/P/AMTR5PxQ9dN/7/n/AOJoA9Jorzbyfih66b/3/P8A8TR5PxQ9dN/7/n/4mgD0mivNvJ+KHrpv/f8AP/xNHk/FD103/v8An/4mgD0mivNvJ+KHrpv/AH/P/wATR5PxQ9dN/wC/5/8AiaAPSaK828n4oeum/wDf8/8AxNHk/FD103/v+f8A4mgD0mivNvJ+KHrpv/f8/wDxNHk/FD103/v+f/iaAPSaK81MHxQI66cP+2//ANjSCH4ng436ceP+ex/+JoA9Icgcnn2qpfi4ks5o7ZlSZkIR26ZrzbU7z4iaTZyXV7caVDGo5drjB/Aba8y1XXviD4m1CGWzhunhjcBZrdSUJ+uOlAHp/gb4daz4c8V3+t39zazPeElthJIOc+leoqST0x9a8w06L4pHToNzWJbyxnfLhjx3G3g1a8n4n+um/wDf8/8AxNAHpFArzfyfih66b/3/AD/8TR5PxQ9dN/7/AJ/+JoA9Jorzbyfih66b/wB/z/8AE0eT8UPXTf8Av+f/AImgD0mivNvJ+KHrpv8A3/P/AMTR5PxQ9dN/7/n/AOJoA9Jorzbyfih66b/3/P8A8TR5PxQ9dN/7/n/4mgD0mivNvJ+KHrpv/f8AP/xNIYfigASP7NPt55/+JoA9JyKWs7S/7QGnxjU1jW7x8/lHcv51fXPfFADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkxzS0UAIBxTdoJz3p9NzzigBOmfWqWp6pa6TYyXl5MsUSKTuY+lSahfW+m2Ut1cSpFHGpZmc+lfPniHXdV+KvjC30PTxJDpIcFjgjcvPLe3FAHT6Wbz4reIvtd3E8fh+0f5IskeefX6V62tlb/ZVhMCNFjYUKgjH0qtoekWmi6RBY2UYjhiTAGOSfetIdN3btQB55qvge/0i+bWfCNz9muQcyWkn+qcd8A8A1d8O+P4L25OnaxC+naihwUm+VHPs5wD9K7MjLEZ575HFYfiLwlpniOEi7iInA/dTj7yHtz1oA3xICoYEEHuDTgwNeXw6n4i8AuLfV0k1PSAQFuU5eIdt3UtXf6VrNjrNml1YzpIjjcADz9COoNAGjnPTrTh05pgOevanjpQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUmKWk70Acj8Q9bOjeGZVjObi5IgjQdTuIBI+mar6N4Js/8AhBIdFvYg8jxhncDDb8dc/hWPet/wl3xQitB+807R1Er46F2GP0IFelEEA85Pf6UAec+EdXu/DusyeFtZk3DP+h3LdHXpjPrXo4wCfSuU8beFR4k0fNsxh1C3zJazdCH+vXoaXwN4mPiDSfLuMR6hbHy7iNuDke305oA6wEHpTqb1p3agAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAppOKdWbqeq2WkW0t1d3CRRqCW3ED8h60AXtwxk8d+eMVxnij4gWWjsbLTk+36q/CQwjcAfcjOK56713xF49n+y+G1ex0pjtkvpVIZl77QMEduea6/wx4J0vw4nmxxebevzJcy/MzHucnmgDmNO8C6r4mu11PxdcOEzujsY5DsHfnHX8a9GtLC2sbZILaGOKNAAqooGKnTqQFwvan4oATHFLRRQAUUUUAFFFFABRRRQAUUUUAFIQDS0UAN207GKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopKAFqneXcVlA89xKscSKWLE46VLcXMNpBJPPKI4o1LMzHgCvLriW9+KGpi3t2kg8NW8mXkX/l5ZT0ye2R7daAMnxFrU/i+K51C4LW/hu0YhS2QLqTooHrzj866r4YeHf7O0x9VuoPKv78bihH+rQ8hfp1rO1u2t9e8ZaZ4U0+MJpunATXKR8p/sgn6qK9P8tUj2KgCgAAAdKAHRjg5HPen4HoKRRinUAJgegoIHXFLSEZoAiniinheOVQ8bDDKelee6l4Eu9GupNW8IT/Z5mO+S1HCSY+nGfrXooBzwMetKRzmgDiPDnj+G/nGm6zGdN1VePJmH3/cY4rtFf5SQTtz3rB8SeENN8RwFbmELcD7lwvDx+47VyEeqeIvh+62+rrNqmirgLeIAZIx2BAwMAUAenCTLAdj3qSsvSNa07W7NbywuYpoWxkqc4NaYPA5oAWik/GjIxQAtFA5FFABRRRQAUUUUAFFFFACE4rG8TawmhaBeX7HBRD5fu5BwP5VsMcV5r45kPiLxXpXhSB/3YYXVwR2CEHB+oNAGl8N9Haz0B9SuVxeajIZ3ZhzhjuAP0zXbAAH3JpsMSQwRxxrtRVCgDsKfj5sY49aAA9z26GvMfE9s/g/xfaeIrRT9hunEd4vbceA5+gFenkH8Ky/EOjxa7ol1p0+AsyFQR2JFAF62nS4hjljIZZFDAg8cirA6CuA+G2rTTabcaNd5F3p0jRsG67cnZ+gFd+OlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhOBRuFIWGPWgBpYg/Kfzo3Y5LgDvWZrWv6ZoNi1zqVykEWON5wWPoK4CXU/EfxAJg0lJdM0YnDXYGJJB6LnIIoA3PE/xEt9LuBpulQvqGqPwscPIU+p7Y/GsvTvAmo+IrqPVPGVwZ2J3x2I+5H3xg5/Suq8MeDtM8NWuy2hVrhuZbhgSzn1Oa3wpAIxgdeOtADLaCG1hS3gjWONBgIo4AqxgelMXIPIp9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFIenFAC1DPKlvE8srhI1BLM3AGKWadYIWlkIVFGSSeleYa1qN58QtXbQ9Lkki0mB9t3OhK7z/dUj2xzQBHfXV98R9bbTLF5IPD9u2J5hwZjnoO/5V3rrZeF/DkpiiWG3tYSygDqQv/1qtaVpVro1jFZ2kKpFGMcDHPrXH/FK9kj0G10u3P8ApF7cxxcddhbDfoaAE+GOntJZ3uvXALXGozu4J6iPOVH616FWfo1gmnaVa2iYxDGqAgYzgYrQoAKKKKACiiigAooooAMA9RVa5jjmjaKaNXjbjDDOc+1Waj2EMSDyaAPO9X8DXmlXkmreEbj7Ncj5ntS2Uk9eucflV7w74+gv5V07WYm07VgcGGT7r/7hOM/lXblB15rB8R+E9M8SWjRXEISXqk8fyuh7YbrQBuqwIzwR7GnfTkV5bHqviD4fSLBqwbUdGUhUuEG6VF9wMs31NehaTrNjrNotzYzrKjjkA4K/hQBpdqKj34xn8KcG5APWgB1FFFABRRRQAUUhOBSBjigCvfXcNjZy3Vw4SKJC7seyiuA+HVrLqt5qfim8U+bdymOIMPuouR+RAFWfidfvLYW3h62Yi51RxC23qI2yCa63SNPj0zSLa0jTiNFBwMc460AaQ6UtFFABTGHzA/pT6a/r3oA8z1snwt8TLHVV+Wy1JfJn9N4wqZ/E16cOnFcV8S9L/tHwjLKnE1o6XKsBzlDux+lbfhXUxq/hnT7vO5nhXec9GwM0AbVFIO9LQAUUUUAFFFFABRRRQAUUUUAFFFIWAoAWimhwaytb8RafoFm1xfXCJgcJu+ZvoOpoA0ZGVAWbgckn0rhPEPxBitrptN0OE6hqZ4CRglFPT5iM4rHkvPE/xFl22Kvpeik4eRgVkkX2PUZFdx4a8J6T4atFisoAZDy08nzSMf8AePNAHK6R4DvNTu11fxbctdXJOUtf+WafiP616HaRJBCsUcSxovAVBgCptuRSgYoAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqOVxHGzs21RyTTXfaxJbAAJ68YrzfxF4hvfFerv4Z8OSOsKH/Tr1T8qjugPrwRQAzXNYv/ABrrMnh/QnaOxiOLy7HQjP3VP4V3eh6LZaFpsdjZRBEVcFgMFj6mofDnh6y8OaXFY2Eaog++R1J9a2Uz+XSgBB229K861hRrXxf02yY5hsLd3cejEBh/KvSMAV5v4PxqnxC8R6oeQnlxqfoCCKAPRlyRk8ZNPpB1paACiiigAooooAKKKKACiiigBGyBxTT6EZp9FAFeeGKeNopkV4mBBDCvPtW8DXej3P8AavhC4NrIDuktD9yT1wvGPrXpGAaTaKAOH8PePoL+7/szV4G03VV4aKXkN7hhxiu0jKttw2eODnOawvE/hLSvE9sUvIQLhOY5lHzIexBrj01XxF8P5Fg1QS6ro+dq3UY+eIf7RPp7CgD1OiszStZstaso7vT7mOaGQcEE/wD6xWiCSP8AGgB1FMycc/pTx0FACGo3fy1Zj0AzUh6GuS8f66+h+Fp2t2zeSjy4FB5Lf5zQBzvh1W8V/EXUNdkO+x0/9xa+hzgk/nmvTV569a57wVoUeheGLW22jzWG+Q+rE55/OujAxQAo6UUUUAFMfPGOtPowM5xQBTvbVbu0ubd1yssZX8xiuI+FVwYdN1HR3Pz2d5KBn+5uIH8q9CwK808Ng6V8VPEFh0WeCOVR7ksTQB6VnjFOpoAGee+adQAUUUUAFFFFABRRRQAUUVGzMOeo9qAHt0qN5I0Qs7KFAySTxWPrvijTfDtk02oTqGx8kY6ufQCuDH/CS/EaQgeZo+hZ4HSSYfrQBr6/8Qlju20nw5bvf6o3HyjKR9uc8Ht3qDQ/h9Nd3a6t4vuft+oMdyQn/Vxf8BOeR7V1nhvwxpXhux+z6fbqhJzI/wDEx9TitzAxjtQBFFCsMSpGoVR0CjGKduDNjGfrUgGKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBO9Jkdc8d/amv9ccZJrzrxZ4ovNSvx4Z8OkyXcx2TzpyIFPBOfXkUAN8T+I7vxDqb+GvDjEucC6vFPEK9wPfrXXeGvDdp4b0mO0t1G/rJJ/FI3cn69ah8L+Gbbwzpy28P7yU5aadvvM3fn8630J7456Y9KAA9ASDTlz1NOpGoAQsACT2rzj4UKZYNYuscS3sqhj32uwrvr1tllOw7Kf5VxPwhXPhCZj3vrg/+RWoA78E+lOoooAKKKKACiiigAooooAKKKKACiiigAooooAiK5PK8Z/WmTW6XCNHMiyRsMMrDirFJ2oA851fwJd6TcvqvhO5a3lzuls/+Wcw9+4/Cr3h7x/DeXC6brMZ0/VBwYpBhXPqmeortsHqDzWB4h8Jab4jt2S5i2TYyk0fDqfY0AbynIz27U4MO55HWvLY9U8SfD+dLfU0fUtHJwtwi5dB7gdvxr0DStZ0/WrRLiwuEnRhk7eo9j6UAaeRjOa8yvgfFvxQisg2bLSP3sndTJyMfka7PxBq0OjaHdX8rY2R4yDxk9MVzvwz0mW30B9VvARfaq32mXPUE8Y/SgDu0AAwBinU0DGeadQAUUUUAFFFFABXm16DbfGy0fH/H1bbD/wABUmvSa861/wDd/F7w6399JR/45QB6GOuadTV6U6gAooooAKQnFLTW6UALkZxRx61GxCgZzk+lYfiHxZpnhu3Z764UOf8AVxIcu/4UAbrypEjPI4VF5LHgCvPtc+IEl5eHSfCls1/fZKPcKCY4j05I7is1bbxL8RJxNfb9J0In93EufNkHqRwRke9d/ofh3TdBtEh0+3VMAAueWOPegDlNA+Hbfahqnie6bUtSJ3AP91D7Y/rXeRpsjCLGi4HAHQCpQOKdQA1Bgc06iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooASk3DBJPAocZU84rg/GPi6aKddA0BTcavcjHy8iBf7zfkaAI/GHiu7ubweG/DgEuozfLLJ1WEH1963PCnhW18NaaUX97dyfPPcNyzk+/WovCXhG38N2bSSsLnUpxuubtuS7fU810xznqMdqAHbflApQuDnPalGcDPWloAKQ9aWkPagCtfJusp19VNcP8IW/4pGdR/DfXH/o1q75gHDKe/FedfCcmKy1axzzFfSt/307GgD0gUtNH3z9KdQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1jtXNOpr/dPNAHIeLviDpng2a3TUY5B5x+Urnnr7e1Q33xBgsdNW+nsLgQFdxYKeF656V5X8Vp5PEfxN0zRbeF7hYQA0cbAMWyfWvRvDuq33ivUL7TL3SHs9OtY/s8sE+GLHA7igDs7OeDV9MjmMWbedc7HXqCO4ridX8DXmkXrav4TnNrMuXe1J/dSdzhegNegxRLDHHFGAEQbVX0AqK9uY7O0luJflSJC59OBkj9KAPANe+Jc3ijU9P8NahaGx8u423zbwQzDGAAPcV9BQRxpbokIURhPl29BXjPhn4faZ40m1PxJqCSQm7uXa12NgquQVb9f0rcg1TxD8P3WLVlk1XR2+WO7TO+H/AHs9fwoA9RGBz3oDZ6Vl6PrdlrVos9ldRTbuTtyMe2O1anUfSgBw6c0UDpRQAUUUUAFedeIsSfFzwynQqsxJ/wCAV6LXm98ftPxqs0/59rct9Ny4oA9GUU6k70tABRRSUANZ9p6de9MuLmG2iaSdwiKMlmOBWD4h8XaX4bty91NmVsiONOWdvTFcZDpvif4hTLc6rLJpWik/LaI2HlHX5iP8KALus+Pr3Ur59G8IWxurz7r3LKRFGfqeD+dWvDXw8iguf7V16c6jqjckyHdGnfhTkflXVaLoen6HZJZ2FvHCgHKquM//AF61FHH+NADREojCDhR2FO29PanUUAJiloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQkDqaAFqMtjJJ+lPyMda4fxn4ybS2TSdKjFxrNz8kMY52g8Fj6dRQAnjPxlLYyLomir9p1i4+XanPlKf4jVrwZ4Sj0C3e4um8/Vbo757h/vE9f51H4L8HJoaPf37G51e6+eed+SCecD2yTXYbc8UAKoHTHSnYHagZ7iloAKKKKACiiigBMDOa848FD+zPH3iPTG43GOVB9QSf516RivN9Vxo3xe0+8J2xahbursemVAVR+tAHoo4IxT6Ypy2O3UGn0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFVr+c21lNKqM7Kp2ovUmrNMcBlwcflQB4J4L0HV7r4rXmvazplxbxFzJCzjjJP+Fe7wwRRvI6RKrOQzEfxHHU0piDEHaMjnOKeoxkkAE0ALtWuA+KGpSLp1podoT9q1GYJ8vUJkBv0JrvmdQhYnAAzmvNPD+fFfxGv9bkGbPTx9nts/dL8q+KAO70XSodI0i20+EfLBEIwR7VdmijljMciBo2BBB9Kco64HGeaXkdOhoA871XwJd6RcPqvhKf7NMDve16RzfX39OlXfDvxCgvbkaZrUR07VR8vlTcBz6jrXcciue8ReEdN8SW4juYQsy/6udeGU/UdfxoA3dzD2GOSe1OQkkENlCMivMY9R8RfD+YW+prJqejDhbv/lpGOwIGBgCu90fXNO1uzS60+5SaNhyVOSv19KANWkY45oBB701+gI6ZoAM8AZ5615v4dJ1X4ta5fHmO3giiU+hGQa9BvLhbW1nuGPEcZf8AADNcH8LbdpbTU9YlJLXl5Lg/7IbK0Aeh8hsdRQWxSckZyRkVzPifxtpXhmIJNJ5t8/EdrGcux7cUAdDPdJawvNPIqRKMlicYHvXnep+PNQ1+9bSPB8DXByVkv/8AlnH6475H0NVoPD/iHx5Ot5r8r2GmZzHZpwzjrlgcfpXoWmaRZaRZJa2NtHFGmMAd/wAetAHMeG/h/bWN1/amsS/2nqzcmeXkofQV3CqAe2elABpcHOcUALgegpcYoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikJwKAFqORQevel8wDrxXK+M/F8Ph60EMKG41Gf5beCPkk9j7CgCLxj4vXQrZbGwUXOqzjbDEvzbfc1D4O8IPppk1bVX+06rc/M7NzsB5wM1F4N8Iva3B17Wm8/V7kZ55EQ9B6dq7gR45DGgB6nsee4p1MVNpyD165p9ABRRRQAUUUUAFFFFABXn3xVsXOkWerW6kz2N1G5x/zz3Zb9BXoNZ2sWK6lpN3aMB++idOeeoxQBJpV7HqWl2t5FgpNGHGPcZq7XAfDDUm/s250O4z9q0+Z1IJ58vOFP6Gu8LcHHagB9FIKWgAooooAKKKKACiiigAooooAKKKKACiiigAprcdKdTHOOnWgDlfH+ttovhe4aM/6RckQQgHncwIz+eKn8D6IND8L2sLj9/KPOmJ/vsMn9a5XU8+Kviha2Iy+n6WnmTHqDJwV/HrXpoX5QOKABcj86fSYO7OeKWgAooooArXEccsTxTRK8bDG0jIb8K4DV/Al5pV7Jq3hG4+yXI+Z7VjlJPXg8D8K9GKncSD1600RhRx0oA4fw58QYLyb+z9ahbTtUQ4ZJBhH+jGu4VgVBB3K3QryKwPEXhXSvE9u0V3EBMvKTp8roexB61x8Op+IfAMnlaqrajoacLcp/rIl/2upagDoviNq/8AZXhK4VSPOu2W2jA6/P8ALn9ateHLa18OeDbOK5kWKKGFTLI52/NgZ615P4u+I+leIfFGlQ6es13aQEyGNUILyDBXgj1zXVWnhfXfG1yL7xNM9ppfDRWEDFSR2DY6/iKAJ9S8bav4kvJNJ8IWhfB2S30oKxgdDtOCDWp4d8B2Hh8fbdSmN7fMdz3E53YJ9Aen4Vs3c2leDPDs9ysKW9rbRA7UGAew/nXlPhC61n4q63cXt/cz2+iwSbUhgcoScdyOtAHsy6jZNgR3cBx2Vx09MVcVlI4yAeQa4bxF4Ft7iHThpkktvLFcIGZHxvTuGx1rt4YxBbRxc/KoXk+goAnooHSigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmSNtXOM9qQtgkFuT0xXPeKvFdr4a05ppGL3D/JBF/z1Y9AKAIvFviq38NaexI827lPlwW6cs7noax/CHhS7N2PEXiL59Wn5jjkHFsOuB+tR+E/Ct1f6h/wk3iQE6hLzHbuOIB1AFeiJgrnbigCJhtI+v4k1MOQMjmjaMYxS0AFFFFABRRRQAUUUUAFFFFABUbAhi3apKMUAeYa/G3hH4gWfiCEbbLUVEN2Oy4Hy/qa9KjZZIw6HIbkVkeKtDh8QaBc2Mo5Yb4yOoccj9awfh9rlxdabJo+pOV1PT2MUwY4LAdx+NAHcilpqHI9qdQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVj+JdYi0HQbzUZSMQxMQp/iPYVrE8/e5rzfx7Mdd8RaV4ViYskjie6A/55g4IP6UAaHw10iW10OXUbwH7ZqEpmkLdcZO3n6Gu6HQVXtoUtraOBVAWJVUAdsCrFABRRRQAUUhNIT3zQA6kPeoxITuxxjoK5TxN48sdCkFnb5vNSfhLaLk59/agDo7y9trC2NxcypFDGMsWIGPpXlHi/wAdX2saZqMGhWZWwjjYT3soG1v93n0rVtvCOteLp1v/ABVcMlrncmnRn5R6bs4qtr6Qa94isPB2kQomnWjCW7EY+UbcAKfwY0AcV4P+FuuWmnQ+J7C5i+37i8cLKfmXOf1r1Hw149gvp/7N1mJtP1IHaY5OFY+1dpDbRW1rHAigJGoVR7DoKxPEfhPS/E1qUu4FEw5SZBhkPrmgDF+K+n3Go/DvUYrVCxEYIRR1+YVznwPktYvAtzEXWORZf3vzAMOOtW1v/EXgNjb6vHJq+iH5RcINzxL/ALXQY6Vp6X4X8J6xFJqOhsIop+Zfs3Qk+uf6UAcH8OdX17xL8Rr0vql6dLhL4QyfLkEYGPwNe8KoA2spOO7c5rF8OeEdH8MxSDS7OKJpTukdern1rdPo3PpQA4DAApaB0ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAELAEZ70Z601gN2Tz6Vi+I/Eln4Z05768fGOEiHLOfQCgCPxP4ls/DOmm6uW3OxIijHLO3YY9M4rl/C3hm91zUB4m8SDM5ObW1JysKdQfriovDXh698TasnifxEMg5FtaHoi9iQfoK9KiUINqY29h6UAGBtA2fL2FOUHHNOooAKKKKACiiigAooooAKKKKACiiigAooooAa33TXm3jXTLrQtag8X6SjHySBfxr/y0i/xya9KPSq1xbR3ULwyrvjkG1l9KAIdH1O31fSre+tpA0UqhgR2q+CCODXlNpJcfDfxKbK4Zm8PX8n7lzyIGPb2FenwyRyxrLGwdCMhlPBzQBYooHQUUAFFFFABRRRQAUUUUAFFFFABSHpS0jdKAK11cR2trLcyMFWJSSTXn3w6tZdX1XVfFV0pL3UpS2z/AApjB/UVb+JupyrpkOhWT7bzVZBAuOoHXP6EV12h6bHpGjWtjCu1Io8Y96AL5AxwPenjpRRQAUmfekbO3jrUTHHByB1yDQBKeue1UtR1Kz0m1e5vJ0hjUZLOcVzXibx7Z6LizslOoak/CQQfNz/tEZxWRp3gzVPEl2mq+K7lin3o7FGIVR1GfU0ARXXiTXPGk/2Tw3E1tp5YpJqUgxn1CZ4I/Kul8N+CNO0ANPg3V8/+tuZRkse+B2rftrW3soUhto0ijUYVY0CgfgKr6zqtpounS3144SOFSwwcbj6YoAyPGfieLw1o7FFMl3L+7t4R1duvT0qv4C8NT6LpT3eoYbVL0+Zcv15/hGfpWH4W0668W64fFerRsIkGNPtmGAo6hiPWvTVAC8AYoAbtyT79KR1GTlTjtipaKAK00Ec8bRTorxt1VhxXA6v4GvdJuZNV8KXbW1wDue0JHlyD8c4/CvRj0pM8UAcR4d8fxX06adrUJ0/VAdpjfhXPqpPUV2qEEZU7l7EVg+JPCWmeJbNobqHZKeUmiO11Psw5ArjV1XxH4A2w6mjanowIC3KKWeIdsgcnjuTQB6mDxRkVl6RrFhrVolzp9ys0TDJA5I+vpWghyRkfNj8KAJaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAazbRnHFIsgZdwzinN0rL1jWLXRdNmvbyQIiKSMnlj6CgBuua7ZaDpkl/eyBY0G4KDy3sB61wugaLf+MNYXxHr6FbIHNnaMPfgn26/nUei6VdfELVU8Qa7G8elxHfZWjjr/ALRB9jXpyrHFEseAF6ADpQAqwhVXaAMY47AU9Y8MWzTx0ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAENIF65p1FAGXrOjWeuadLYX0QkgkBGMcr71wGi6zeeB9VXQPEDs9jK+LO952gZ+6ffnr7V6g/Tg81ka1oVlr+mPp97GpibnpyrdiKANZZVdVKsGDdCDkU4OCxA7dq8ts9X1X4e3sem62XutHZttvd4JKDsD9OP1r0q0nt7uNLq3dZEkUYdTkEUAWqKKKACiiigAooooAKKKKAG5556UjMApZvuryfpSdwDz3rmfHeuHQvC9xNH81xN+6hXuSSB/WgDnNEUeKviRf6tIN9npp+zwem8HO4fgTXpQbsOTXMeBNB/4R7wpa2sq5uHQPcserv0zXTA5YjHI70AO3ccjFG4YphYKCQQB3J6CuM8SeP7fTJRp+mQNqGpvwsMPOM9z/wDroA6jU9YstJtHuL24SJEGTlgCfpXnc+u+IfHs5tPDyNp2l52Peyj53Hfb0I7VZ0zwLea9cxal4xn+0ODvisT9yPuODmvQYIY4Y0hhQRogwExwB7UAYPhvwXpXh6PzIo/NvX5kupeZGP8AvHmuk3AdP0703JxgYPt7Vm61r+n+HtPe5vZljXHyp/Ex9AKALOo6laaZZTXN5KsMUa7mJOPw9683sra8+JmurqFyJIfDls37mNgVM5HqPTpRaadqXxGvkv8AVhJaaDG+YrNuDKR0ZuxB/OvTbWCK0hjt4I1jiQAIqjAAHSgB0VqkESxRAJGvAUDoPSpgCPpTqKACiiigBCCaTb0/pTqKAGlAetRzW8c8TRTKrxsMFW6VNRQB5trHga70u8fVfCNz9knB3SWh/wBXJ9F4FaHhzx/DfXI0vWoW07VI+HWT5Vc+xrs2z83IBB/SsLxD4T0vxPbbL2BWlTmK4I+aM9iKAN8OCuQQQehB604NmvLE1PxL4AmWHVEl1XR93y3KcvEvvnt9BXoOk61Ya1aJc2Fykqv6Hn8qANLd2707tUYwTyORUnWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqIyc4GSfSpMj1qjf31tptrLe3kixRRqfnJoATVdVttH06a+vpligiUkk/oBXnGmWd98R9aj1jVI2g0OE5s7U/8ALYjozZ+oNJaWd78StZW9u0kh8PWz5giPBnYHqfbgfnXp0NstvEsEaqkaD5ABjFAEsUSRxqiIFQDAAGAKkwMdBTY+QcjnvT6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEIB6gUYpaKAKWoWFrqVtJbXcKzRMCGRhmvOH0XXvh/dyXmh+Zf6Ox3NYtkmIeqjg8fWvUSDluf0qNhvVcplPQ0AYPhrxlpvieMi1lCXSf6y3Y/MprfVnbd1rkvEfw/sNZl+2WkjafqK8pNAcc+46GsKLxL4n8ITiDxHaS31kOFu7dNzY9wAAKAPTAWx/jUg6VhaL4p0fxBEslhexyMf+WZOHX6itvPy0AOoo7UUAFFJkUZ96AG8Bx+NeZas3/CW/Ey20xd0ljpWJph2LEEY/AgV3fiDU49I0O7vXYDykO3J6tjgfnXL/AA30wwaNNrV2Nt1qchuGLdlbBwaAO4QEDBwKz9Y13TtAs2u9RuUghHG5j1+g71y3iD4gR29wdM0KE6lqrHbsjGUj92YZxVXSPAt5qd4uqeLLtri4+8topzHH3/GgCrPqXiLx9L9n0tJNM0dvvXLjDyDvs7EV13hzwjpfhq3VLOLzJicvcOMux7k/WtuO3SCFY4I1SNeigYxUhOASzYGOc0AKcjIHT3puRjLDAAyT2rmdb8e6HoreS1wbq75C29v8z59xmuYC+L/HUhRs6Jo7Hkr/AK2QfQ8j8DQBueIPiBZ6fcnTtKj/ALR1ZhhbaL5tp9W9qztI8DX2q6jHrPiuYXE/DR2YyYoh1Hoc10vh7wfpPhyDbaQBpM5aVzlifWug6DGMUACIioFVFUAdAKdtGc96UdBRQAUUUUAFFFFABRRRQAUUUUAJtHpSFR1xzTqQ9KAIZ4YpozFMitGwIKsOtef6z4FvNMum1Xwncm2nB3SWh/1U3rnvn6V6IMjoODQ30xmgDiNA+IEFzcrpetxNp2qdCkw2iT3XrnNdqC2OcgetYfiHwppviO0MN7DtkXlJ4+GU9iDXFxaj4j+H0yw6jFJqeiA4F0ozJGPQgccD1oA9SBLEEH5afWVo2t6drlol3p1wksbDnB5X6itT8aAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa3HrTqY3ByKAMrVPEGmaIN2oXkUOQW2sRnFefRC8+J2seZIXh8N274VMkNcMOQfpwap/FX4Zat4v1q0vdPuVEYXY6sDwSetaml/Ce6sNPt4I/EmpReWvKRzsqj1AH1oA9HtLeG0gS3gjWOGNQECgAYqf5emRXnp+Gl3njxRq3/AIFNR/wrO7/6GjV//ApqAPQsj1/WjI9f1rz3/hWd3/0NGr/+BTUf8Kzu/wDoaNX/APApqAPQ8j1/WjI9f1rzz/hWd3/0NGr/APgU1H/Cs7v/AKGjV/8AwKagD0PI9f1oyPX9a88/4Vnd/wDQ0av/AOBTUf8ACs7v/oaNX/8AApqAPQ8j1/WjI9f1rzz/AIVnd/8AQ0av/wCBTUf8Kzu/+ho1f/wKagD0PI9f1oyPX9a88/4Vnd/9DRq//gU1H/Cs7v8A6GjV/wDwKagD0PI9f1oyPX9a88/4Vnd/9DRq/wD4FNR/wrO7/wCho1f/AMCmoA9DyPX9aMj1/WvPP+FZ3f8A0NGr/wDgU1H/AArO7/6GjV//AAKagD0PI9f1oyPX9a88/wCFZ3f/AENGr/8AgU1H/Cs7v/oaNX/8CmoA9DyPX9aMj1/WvPP+FZ3f/Q0av/4FNR/wrO7/AOho1f8A8CmoA9DyPX9aMj1/WvPP+FZ3f/Q0av8A+BTUf8Kzu/8AoaNX/wDApqAPQ8j1/WjI9f1rzz/hWd3/ANDRq/8A4FNR/wAKzu/+ho1f/wACmoA9CyPX9aMj1rz3/hWd3/0NGr/+BTUf8Kzu/wDoaNX/APApqAPQsr6io5VjkGyRFdGHIYZzXA/8Kzu/+ho1f/wKaj/hWl4DkeKdWH/b01AFzWvhxoepSm6tzNYXh6SWjmMZ91XGazfsPj7w2MWl3DrFsv8AA6hGAHbPPNS/8Kzvc8eKtWUHri6YZpT8M7vqPFWr59TdNQBHD8VVspBDruj3tlIOCUheVfzAxXQ6d488OamP3WpJG392dhGfyJrnZvhXNcJsm8R6nKh6iS4Y1kTfAHR7iXzJb66Z/wC8ZCT/ACoA9Sj1TT5fuahayD/ZmX/Gp1mhAJEikdc5zXl1v8EbO04g1i+j/wB2Yj+lXT8KrhYTHF4m1UEjHNw2KAMf4n+LNMvb2w0BL5TD5omuzGcnCEMF47nBGKlhutb8b26W2nyDRfDYAjV5DtllUegOGGfUZFcnpvwG1GbxHO+p3h+yBy4kU4Zjng555rux8JS8KRvr+pFV4UG4YgD2oA6HQ9O8L+FbPyYLm0jb+KaaZTK31YnNR3/xI8N6eXVr1pnT+G3jMhP0xmuVn+BOn3TEz6peSZ6lpSSf0otfgRpdi4e11K7iYdCJT/hQBoD4i6xq5Mfh/wAPTyjoJbljD+jgZobwr4v8S4bXtbFnak829qoRiPTevNTL8MLlANvibVVx0xcsKd/wrO76HxTq+PX7U2aAN7Q/BOgaBGPs1sssvXzZz5j5/wB4810SkDgbQB2Fefj4Z3QznxTq4+l01J/wrK7z/wAjTq2P+vlqAPQ8qe4oyPX9a89/4Vnef9DRqwHtctR/wrO7/wCho1f/AMCmoA9CyPX9aXI9f1rzz/hWd3/0NGr/APgU1H/Cs7v/AKGjV/8AwKagD0PI9f1oyPX9a88/4Vnd/wDQ0av/AOBTUf8ACs7v/oaNX/8AApqAPQ8j1/WjI9f1rzz/AIVnd/8AQ0av/wCBTUf8Kzu/+ho1f/wKagD0PI9f1oyPX9a88/4Vnd/9DRq//gU1H/Cs7v8A6GjV/wDwKagD0PI9f1oyPX9a88/4Vnd/9DRq/wD4FNR/wrO7/wCho1f/AMCmoA9DyPX9aTI9f1rz3/hWd3/0NGr/APgU1H/Cs7v/AKGjV/8AwKagD0LI9f1oyPX9a89/4Vnd/wDQ0av/AOBTUf8ACs7v/oaNX/8AApqAPQtw9agmjhnVkljV4z8pVxkH8K4T/hWd3/0NGr/+BTUf8K0vQcjxTq3pzctQA3V/A91pN++seErn7LdZ3SWrN+6k9QAeBVnQviLbTzy6dr6f2bqVuP3iynbG/wDuscA/hUB+Gt2P+Zo1Yr6m5bOa5rxX8FZ9V09nj1e6urxBlTcyF8/nigD1zTdTtNVt/PsriOaLplGzg1erzr4S+DNQ8HaLdxahceZJcSBlXsmARivRaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmng59eKdTHJBG3HvQAm0DgAmngcVUubqGyhe4uJAkCjLOxwFFcd4O8fjxdrep29tH/ols4RZR0zg0Ad7RUaFifmI/DvUlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRTGJ3DGa4j4k+N7zwRoi6hb21vOzSBAkrEZBz6UAdqcn5SrdetOUHIH8I6V43rPxY8SaDpOmarf6Ppwtr4qdqysWVeDn8jXqui6imsaPZ38QcJcRrKoYYODQBpUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjDI5pgGf4efWnN0NYnivWpfD/hu/1OJInNtEZMSNgHFAG2voetOryzwR4+8U+NNLur210nTYhC4VfMmcBuvtXTeE9b8Q6pPexa3p1vaNAwWMwsxV+eeTQB1tFIOQKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACo5Nq5YkAY6ntUlc74ttNVvtMNtpT+W8vyyNnBC+3oaAOI8aa+muG+02KO6GnQoftE0SnEj8fKD/dx39aw/wBnhAsHiBkHyLdIBnrjBr0rUNCdfB76bYWqJO0WxeR8hPc+tc98LPBWo+DI9RhvSjfbJBJkdsA/40AekqQWwOo65p9RjIbJxz6VJQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAxuGyeleB/Gu6fWvF+i+HreQ/M22QAZwSQQa95m3EgKAe/NeQy/D/X7j4hS+KZUikwD5MbMDtIGB1PtQByXiCOWz8b6ToPjKQXGnRpGsAj4wcADOPwr6HsreG1tIYLZQkEahUXHQDtXlZ+Geq+IfGKa94muU2REFIY8YBHTvXrMYwqgcUAS0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA1/umvKvjrrJ07wS1qjfvLt/LK5/hPWvVm6dM15N8S/AWueNdVt2gZFs4FxtLAZOc56+9AGP4b0HxPpHg7SIbCZUtbidDdYADBCeufoa9mtERLeNEdSUAXcMHdiuE1XTfGt3o8Wm6cYLSIRiIvlcgAAcc/Wuz0axOm6ZbW7OZJFjUO5PVscn86ANMdBjpS0g6DNLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTSoPanUUARNGWIOcEHIpwU96fRQA0LinUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAMdNxHApdp5p1FADQmAMYoC85706igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBCMim7SCD36Yp9FADduc5NNaLK7c8VJRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9k='] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 46 "如图, 在 $\triangle \mathrm{ABC}$ 中, $\angle \mathrm{C}=90^{\circ}, \angle \mathrm{ABC}$ 的平分线交 $\mathrm{AC}$ 于点 $\mathrm{E}$, 过点 $\mathrm{E}$ 作 $\mathrm{BE}$的垂线交 $A B$ 于点 $F, \odot O$ 是 $\triangle B E F$ 的外接圆, $\odot O$ 交 $B C$ 于点 $D$. 求证: $\mathrm{AC}$ 是 $\odot O$ 的切线." ['如图, 连接 OE.\n\n$\\because B E$ 平分 $\\angle A B C$,\n\n$\\therefore \\angle \\mathrm{CBE}=\\angle \\mathrm{OBE}$,\n\n$\\because O B=O E$,\n\n$\\therefore \\angle O B E=\\angle O E B$,\n\n$\\therefore \\angle \\mathrm{OEB}=\\angle \\mathrm{CBE}$,\n\n$\\therefore \\mathrm{OE} / / \\mathrm{BC}$,\n\n$\\therefore \\angle A E O=\\angle C=90^{\\circ}$,\n\n$\\therefore \\mathrm{AC}$ 是 $\\odot \\mathrm{O}$ 的切线;'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAqMC3QMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APbaQ0ZozWpsFFGaM0DuFFGaM0BcKKM0ZoC4UUZozQFwoozRmgLhRRmigLhRRRQFwooooC4UUUUBcKKKKAuFFFFAXCiiigLhRRRQFwooooC4UUUUBcKKKKAuFFFFAXCiiigLhRRRQFwooooC4UUUUBcKKKKAuMPWikJ5oyDQO4tFFFAXCiik6CgLi0UmaM0BcWijNJQFxaKSigVxaKSigLi0UlFAXFoozRmgLhRRmjNA7hRRmjNAXEopCaM0Ei0UmaM0CFopM0ZoAWikzRmgBaKTNGaAFopM0CgBaKKKACiiigAHWnU2lyaAFopMmjJoAWikyaMmgBaKTJoyaAFooooAKKKKACiiigAooooAKKKKACiiigAp4plPFABRRRQAUUUUAFFFFABRRRQAUUUhoAOKOKbS5oAXijikzRmgBeKOKTNGaAF4o4pM0ZoAXijikzRmgBeKOKTNGaAF4o4pM0ZoAXijikzRmgBeKOKTNGaAF4o4pM0ZoAXijikzRmgCFgd+aUA1OEGKCoHSgCOnFgKa2KryOQaAJi4HemSSqqkkiqNzdCFSzHgc1y2o+J0ab7NA4aU9Ae9DYrnY/ao/7y0ouY/7wrz55teZQ0cIP/AqhvdT1qyRDLFtz15pXDmPSlmVuhBqXcDXG+GtVlvk/e4zmuuFNDRIOlLSA0uaACijNGaACijNGaAENJS8UlABRRRQAUUUUANNFFFABRRRQAUUUUAFFFFABRRRQAU8UynigBaKKKACiiigAopKM0ALRSZozQAtFJmjNAC0UmaM0APooooAKKKKACiiigAooooAKKKKACiiigAp4plPFABRRRQAUUUUAFFFFABRRRQAUhpaQ0ANoozRmgAoozRmgAoozRmgAoozRmgAoozRmgAoozRmgAoozRmgAoozRmgAoozRmgAoozRmgAoozRmgAEuOKRpAagZvmoDUASM+aqTNtUt6CrNY+vTm3sWcehoA4fxl4qW1/cRsdzjbxSeBNL+3x/bLtdzg8GuBlujq/iRYn5xLjmvddD01bO1SNABlRUrVkrU1EjjRdoHFZWt6at+ihQOK2fKNHle1UUc9o2j/AGDqB1roc0nl4oIoAXd704EkVHT1pgOopKKQC0UlFAC0tNp1ABRRRQAUUUUANOKM0jUgpgOopBS0gCilxSUAFFFFABRRRQAU4Gm0ooAfxRxTaKAHcUcU2igAoopcUAJRS4oxQAlFLiigBKKKKAJKKXFGKAEop22kxQAlFKRSUAFFFKBQAlFLijFACUUuKMUAJThTSMUuTQA6im5NGTQA6im5NGTQA6im5NGTQA6im5NGTQA6kNJk0hagBtFN3UZNADqKBQKACilxRigBKKXFGKAEopcUYoASilxSUAFFFFABRRRQAUUh4oBoAWiig/WgAopB1607GRQBEy5NAWpcCgKKAGYrnvFiltKbAycGulK8Vn6laC6gaMjPFAHzboitF4sO8cedX0nZOpiiIIwFH8q8P8S6DPpWrJcwrgeZuOK7nw14lEtgBMx3DjmpWhK0PR/NjHORUX2mAttDDIrmm1uN12o3NFgZpZmY9DTuO5025WFIQDVePIxmpc0xi7fSgDFG+jrTAKKXFGKQCUUuKMUAJTqTFGTQAtFJk0ZNAC0UmTRk0AMagUGgUwFFLSClpALSUtFACUUtFACUUtFACUoooFAC0UUUAFFFFAAOtOpo606gAooooAKDRQaAG0UUUAT0UUUAL2pKXtSUAIaQ0ppDQAlOFNpwoAWiiigAooooAQ9KbTj0ptABRRRQAUUUUAFFFFABRRRQAUhpaQ0AR0UuKMUAOFKKSigB1FJmjNAC0UmaM0ALRSZozQAp6U2lJpuaAFopM0ZoAWikzRmgBGpN2BQxqKRsIcdaAHmZRwWApjXCAfeFcB4p8UTaTI4A6etVNL8RahqUe6OIt3+WlcVz0cXSZ4IzTxc158muXdq5N2nlqOpPFb2na5a6ioMMobPpyKLhc6lZMqDQZMVDC2Yl70r0xknmimlgc+9Q04GgCjqGj2+oIQ8ak9iawf8AhCmi/wBU+wZzxXYIwHU0y8vYbaFnkYBR3xQBy9t4Xlik3NNkV0VvaiFAoAz3qO21GC5QNG4INWhICOtCBDtlP20zdS7qAF20qjFJuFKGzQAtFFFABRRRQAhpKU0lABRRRQAUUUUANNAoNApgKKWkFLSAWlFJSigAxRinUUANxRinUUANIopTSUAFFFFABRRRQADrTqaOtOoAKKKKACg0UGgBtFFFAE9FFFAC9qSl7UlACGkNKaQ0AJThTacKAFooooAKKKKAEPSm049KbQAUUUUAFFFFABRRRQAUUUUAFIaWigBtFLigigBKKKTNAC8UcU3JoyaAHUUZozQAUUZozQAHpTOKcTxTKAF4o4pKKAF4o4pKKAEY8VVmk8uIt6VbYZFZOrv5VhK2cYFAHl/i/bf6nJE3INd/4W0a1stMheJDuZec157HG19rh5yDXrOkp5djEhHQUkSjN1/QYdSs5FK5civJNOurjw34vXTi22Idvxr3mYqIiTgcV4F4tjM3xEKxtyQefxpSCR7ppk63FpHIvORV0qCOaxfDaNHpMAY5OK2d+KopCFBULnaTUpcVl6nqMdlC0jkfnQBLc3fkRsxPAFeWeNPF07s9pbSfM3aoNa8U3Gq3v2a0LqN20kVvaD4REqrJeqJHznJqdydzlfBfii8i1AW94+EGMV7NYTLPCrqchhXB+K/CkdrZfaLKMJJk8r1rP8KeLWtbj7LdZ+U4+ahaBseuKoNPKCqtlex3EasuOQKu71PaqKK5HNSIMCpdoI6U0gDpTASiiikAUUUUAFGBRS4oATAowKXFGKAEwKMClxRigCMj0pMGpKKAGgYop1GBQAlKKKBQA6iiigAooooAKbg06nUDQzFGKfRQOwzFGKfRQFhmKdilooCwmKMUtFAWExRiloNAWGYoxTqKAsSZo4pKKAsOzSZpKKAsBpKWigLDeaUGlptAWH5ozTKKAsPzRmmUUBYcTxTaKKBMKKKKBBRRRQAZozTaKAHZozTaKAHZozTaKAHZpM0lFABTadRgUAMop2BTGHpQA7NIDSDNKBQAtLiil4oAbim8+lScUcUAMxSU449abmlcBM0uRUZBzxTTmncCYEEHmuQ8Y6ilrZSxlsEjiumkk8uNifSvI/Hl81xeBFPGMUmxMk8HAXOpJKeQa9UgdY0Az0rzDwXstoI3c4Irr59ZhVDsfkCkmJF3xDq8VlpsreYAwXoa8b0qK413xgl75ZKHuK6DWGv9XuREozG3BxXaeDvDUOmWSFlxIPajcNzodOhNvZxoRjFWHlA6mnzOiKMHGKwtX1WG0jJZsNjincdyTU9bi0+FnZ1BHrXl2s+Jn1m6a2jPBI5U0a5f3GsTtHAdyt71hw6NdabOLllxzzmk2Js9C8M+E0hUXD8lufmrura2VCFGB9K5jw34it7i3WFmG5RjArrYHDOD2oTC4l3axTIY3AI968p8VeG/s1wbmAkYbcQK9UuphGzE9K4DxNrMLI0KNlm4psGVfCHinkQSsA2ccmvSYbwSLuHQ18+Q2V7aXf2pF+QHOa9H8M+J1lVIZn+b0pJgmekJMCKXeGOaz4pPMQMp4IqzHnbVJjTJ8ijIqEg0oBoGS0EgdaUDNRyA4oAXeDxmnjpVRQ2/OKtjoKYC0UUUgCiiigBtFFFABRRRQAUCigUAOooooAKKKKACnU2nUDQUUUUFBRRRQAUUUUAFFFFABQaKKAEooooAdk0ZNNooAdk0ZNNooAdk0ZNNooAdk0lJRQAtFFFABRRRQAUUUUEsKKKKBBRRRQA2iiigAooooAKKKKACiiigAooooAKTilpp4oAXAoxTM0uaAHUc03d60u4etAAelRFiDUpYYqBjzQAu73pw6VCWApvnqP4sUguWaXiqhukHO4Uw30f98UhXJbtN8ZUd65O88I/bZt7KD9a37jU4IgC0gH1quNfswf8AXpQBnW3hY28e1cYp8fhmQy5JUg1cfxDa9pUpF8R2yn/WpijQNC7a+HreBdxjG71q+qCMbQcCsr/hJ7PH+uSs7VfF1pb2rSiVOKLhoaOq6hFZwszsue3NeYX97daxqAjhY7N208VnXniG48Qag0EZYICORXf+G9ItrSNXkYMxHU0tydyXQfCqwxCSVATWpqegQT2pUR84rZiliAAUgCpyUcdQfwoKPC9UtLzQtRV4ywTfn5R2rufDniVbm2G5vm6c1t67okN9A2VXOK8k1qO70C98uBXdc54NFrE7Hd+KPEaxWpSJvnz/AAmub0HSLnVrtp58lScjNHhzQ7vXJlubhXVG7GvVdM0iOzhVEQAgY4p2HYzR4bt5LMxmMZIrz/XtEn0W6aeHhR0wK9lEBUdKydY0tb6BkZBk+tFgscd4Z8UpMoglOGHHPrXeWs6yx7sjkV47q2hXekXpniD7S2eK7Dwt4iW4h8uQgOOMGhaAju+DTgKqRTB2AzVkE4qiiQU7ANQbyDTlemBKYwBTaXeCKSgAooopAFFFFADaKKKACiiigAoFFAoAdRRRQAUUUUAFOptOzQNBRRxRxQUFFHFHFABRRxRQAUUUUAFFFFABRSjFHFADaKKKACiiigAooooAKKKKAFooooAKKKKACiiiglhRRRQIKKKKAG0UUUAFFFFABRRRQAUUUUAFFFFABSEGlqKRiPagBxBpvQ1E0uOrAD3NU7rUIraJpHkXC9s0XC5eZwMmoTcIo5PSvOtb+JFnbStCiuW9RXO/8JTqeruUs2dSfVTRzC5j1mfWraH70mMVk3PjDTrcnfN+tcLa+GvE903mS3IKH2NbVp4JmkYfawrjvxU3Yrslu/iHp+SsU+W+lZsvjKeUfuGDenNdVD4C0FVBezG7ueKvR+EdGiHy2+PxFGoWPPpNd12a3ZoIwT25qKCbxlcR70tFKn3P+Feqw6HYRrhIeKvw28cKhUXgdqLBynjNzp/jG8GHtPyY/wCFV4fDXiffmW2I/wCBH/CvdkUZ9KeyIRyBRYdjxdfDOtkcwtn60ybw1rSoT5TdPWvYJiqE8gVyviTxDFYW5GctjHFHKhcp5DrLanpnEgKt6ZqhaWOueILQLHGWU+hNdhpGnXHiq/8ANm+aJXI5HavV9I8PWWlwKkMW3FKwkrnh+neE/EmlMJI7QH6k/wCFdHFfa7bp+8iAx1r2Iwxuu0iqz6RZSAh4+vWnyj5TyxPF09sP9IYKR71p2PxEsA22efB9q7Kfwhos+d9sDn3FZdx4A8PkHbZgH8Kdh2K0XjTTLoYW4Boaz0vWZA7tn6CqF14FjRW+yRhD2rnrnwp4qtyTa3Soo9v/AK9K7EepadHa2FssEONq9CRWnFcp1zXg8mr6/oL4v5mkC9dqk1u6V8SbZmWKVHDHg5FFwuexCdT0ob5+1crYazHeIHSQAH3rXiuWOMOD+NMYzU9JF7C6lB09K8q1nTLrw7fieJcRA5YmvZY5WI61nappltqULJOm7PWiwWOX8KeJrfVFjTzAXPau5XlfrXh/iPTrnwpqL31l+7tk6ADmu38JeM4tYt0hLHzVHzbvWhPoCfQ7dkJ6U3aaSOTcM54NTrg0xjApFPpxAxTaACiiigAooooATFAWlozQAbaXaKTNGTQAbaMCjNGaACiiigAooooAKKKKCkLRRRQMKKKKAClpKWgAooooAKKKKACiiigBKKWigBKKWigBKKWigBKKWigAooooAKKKKACiiiglhRRRQIKKKKAGHijNKRmkK8UAJupQaZzSjrQA+igUuOKAGg80tNICmmPMFFAEh4FQtcbc1Xn1GOJNztgCuY1HxVbRbhHIpYdqL2C50k2rxQDLlRiue1Txhbw5CFWPoDXFX2qanqblY4yVJ6g0aV4Rubu4D3AcA+5qbtk3bLl54tvb393DbSDPGQKrL4V1bVQZGvpkU9s13uneGba1jUFBkf7NbsVuka4VR+VOw7HnWlfD1ItpuXErDuwrr7Hw3ZWoBWCPPritsIPQU/bTsg5SFLaNAAEAA9KmEa4+6KXFOFAxuwelHl0/NGaQEZAHSmk4p+KYyZoGML0SXGxCWOAKZOwhXcTwBXEeJfFiW0bQQuC57Gi5LYvifxMLXckTbmHYGuUs9KvfEN1vlZ1TOeaZo2l3Ot34nuFO1vQmvV9L02Kzt0VVGQPSkJK5W0DRI9LhwAMnmt8t6CkEeO1PWM4plEOwls7jT1UingYNLVDEyfWmsuafRQBD5QoEKk81NRQBi6j4fs70HfAhPuK4/VPh/DKSYNsZznIFek8VE4z2FKwrHjcnhzUtFYulzK6jtU1t4yvbBhHLayEDuRXqk9pHOPmRfyrn9S8MW91EwCLn/dpWYmmV9K8XwXgUO6xk9ia6OK/iljwrK+a8ov8Awjc2UxkgDnnPU1JZaxqemMEeP5R3JpXaFdo9B1jSotWtGhdVOfUV5TdaXdeFNUaeMuUdgMCvQ9L8VW8xXz5FDdxVnW7O11mxO3BwpwQKb8g3HeG9ZS/tl/eDcO1dOHKjPWvDra5vPDuoEEERs3JJr03RPEMWowD5wWNCYJnSC4zxipN+RVOMAnIyc1ZB4qiiTdRupuaKQD80Cm8UoNADjTCadUMjhcknFADifekB561Sk1C3TOX4qFdXtCceaKLhc1fxpRzWX/bVlu2+byeK0YpBIoKng80BcmooooAKKKKACiiigpC0UUUDCiiigApaSloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKCWFFFFAgooooAAaD04ppODSryaAGY9qUKRU4XIpHXFAEQ4pS4AqORtoNZl5fpbxlmYce9AF2WdR1PSsLVtdt7JSGOT7VyOs+MCsrRxZLE44rPsNNvtfk3yNIin1pXJuRan4iu9RumitXO09K0dM8K3F0FmmGdxya6rR/B8NiVMgVyO5FdNHbJEm1VAHtQkNIxNN8P2ttHzHzW1DbRRfcXpTiMVJF1pjF20uKk20hoAZinYpaKAE5pKdxQQKGAw4FGRTXOBVZpcZpAW94qKa4SFCzEYqlLdrEu5iBiuA8UeKHLPbW5JYf3TQ2K5e8S+LVyYIGOSccGsDTfD8+rXAnmGRnPNL4e8N3GpXP2i4ZiCc/NXqVlpsdpCEVQOO1SKxQ0rSYrCJVVMYrZjGDSiPHpTgMU7lEq9uamXAFVgcU7fQArYzScUhJNHNaJFWF4o4pOaOaLBYXikJo5pposFhaSilFFgsNIpmwmpcU7bRYLFGW0jlHzisbUfDlvcIcRjP0rqNtBRcdBQwZ5Lq/ha4s4jNAMEVi2niG9sJhFO52jjivari2jlj2soI965PVfCUF2WdEVTUNENHO3Qs9XtdwHz47+tc1BcXGh6gF3YQVpXmlXmmOxUuUHoKybm5W6jIkG1/U1LJZ6noOtx3kCZb5sc810atlcjvXg2kazJpt6AWOzIA5r2HRdVivrZSGGQKpMaZtA07NRA55zTgeaook4peKaMUtIB/as7Um2QOw9K0M8VgeIroQWbH/AGTQ2Js8/vdanl1lLVH4ckV1Fto820Mw5rh9KaO81+OUkAK5/nXptzqEVtGWBB/GpQkcF4it77T7qB4zgNIM/TNenaKzNYRFuuwZqhNYxarbwyMoPORmti1j8mMIMDAwKaGi1RSZpc1QwopBS0WAKKOaKBoWikopDuLRSUUBcWlpo606gLhRRRQFwooooC4UUUUBcKKKKBhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFBLCiiigQUUUUAMYZ7UoODk1KoBByajf7tADvOVR1qN5xjPpVCV2DH0rG1nWU0+2cu2GI4+tDYNmjqeqxWkLsz4x615tquu3Op3TW9su/PZTzWVPqeqa/qPlQNuhY969C8OeFIbSNJpo/wB93NTuTuYeh+BvPkFxdF1Y/Ngk131rZR2iBERfwFaEaKsagcYGKXaDVFWIlOKkBpdi0baYCbN1OVdtA4oB5pAPJpM0hpKAFzSbqaSaaeKAJcigmoqCfU0MBsp4rOurlbeNncgAc1PeXSW8RdzxXl/ibxeLmY2do5LMdhqWxMn8QeJpJ5WtrTDsc4APNR+G/Ctzc3YvLyNgzdQc1f8ABPhMsn22+jzKGyPpXptvbxooAGBRYEjP0+yS2QIFHHtWlgYp8iBRxUVMYtIc0DrTqAI+fSk5qYAUu0UARiloPWirRYUUUUwCkNLSUAJS0lFADs0u6mZozQBJkYpjPikzShQaTExud1MMWamwB0pCaRJQudOinjZGRefavOfE/gx1maa0VmPYCvUyajkAYYPNTYGj5m1mC7suJYimD1NaXhPxpJYTiF2+UnGSa9Z8T+FLTUrZiI8vya8F1/QZ9IviduF3ZBx1qWrENWPo7RtXi1K2WRHDZx0rXBrwvwD4rS0eO1lcjJr2yzukuoVljOVNUmUmXAaUUwfSnimMU9CTXCeONQRLUxhvmIxXZ3E3lI3PGDXifjK+luNTWNWGPMGRUshmf4esdSMr3EMDsA5P610kMuoalqv2KeMqvt1rp/B8Cw6aVI+8BW0lhaQXf2vGJBSQGjp1t5FjFGc5UVeC4HFYGmeJbTUNQms4mJkjODW+GyKtDQppc02lFUUOGKcMUwUtMB9Npc03NJjFopMmjJqRC0UmTRk0AKOtOpgNOyaAFopMmjJoAWikyaMmgBaKQUtABRRRQWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUEsKWkozQIUClwKbuo3UARykqQAetR7iOCafLyR6CuR8T+KotHjdVZTIOimhuwN2JfE/iCDSrUsPmY8YBrzyz+3eJr8/M4jDdx2otYLvxRfl5VdY2ORzxXqWhaHDp0CgKu7HPFTuTa5Donhm306JSY1LgZzXRBAOAOKdgDsKDVFCUUUUAFFFFABSA4NLTWoAk4NTLtx0qqHqRZMUASvsA+7UEjADpQ8vFQPJ8tACPIADWTqGqJZRl3ccds03U9XhsImZ3CkDvXm2ralPr90YYMlW7qaTYmyXXPEtxq0xtLUsvPUelbPhrwUIiLm8USM/zDParHhjweLULPLlm9GruooRGiqAMChIEhbaBYItiAAdMCrCMR0NMAxThxTGPYk9abRmjNABRRmjNABS5NJmjNACjmlxTQadmmMMUYozRmgAxSEClzTaADApDS0hoAaaSlNJQAU5WxTaPxoQmOLimb6DSYpgLy1J5eaUE04GgCNoNwIPOawdY8M2WoQt5kClscE10e4VG2KkR84+LvDU+i6gbi2BVV5worf8CeOzFKltdMTjH3q9P8QaPDqVq8bKuT3xXh2v+FrnSr5p4A+0HjFQ0S0fRFpex3UKSIRhhnip99eOeEvGrQ7LWZgCPl5r1azvUuog6sDkCmmNMxvFOqtaWbbImY89K8NvdSupNVaRrSVgr5+4a+jp7WO4TDqGz6is5vD1kTkwRZ/3RRYTPOdM+IIs7dUOmzZA/uNUerfEGa9tjFb2U8bnvsNek/8ACP2X/PCL/vgU5fD9lu/1Ef8A3zRYLGH4L0d4UXUHGHmGTkc126ZxTIIUhjWNVAA4GKkbAqkNDs0ZpoxS00UOU06mCnA1QCmm8UpptJjY7NGabRUiHZozTaKAFB5p9MHWn5oAKKM0ZoAKKM0ZoAUUtIvSloAKKKKCwooooAKKKKACiiigAooooAKKKKAClpKdigljCaaTTmpjUCFyKY0gUZJ4HNNLY5zWLrerR2Vq+WG7aR1oYFXxD4nt7CBkD4kPSvNksbvxXqqzSDdET1pkNre+JNXDbm8pX5z6V65oegw6ZbKgjww7ipepL1ItA0GHTLVFC8j1rfUAdKNvtS4qihaQ0tIaAEooooAKKKKACmnNOpKAG80vNLig4FAEbdKxdX1aGxhJZsH3qfWdYh023Z2IyPevKbnUrjX9WaKItsBHbik2Jsm1Ka71662R/MmccV1nhTwoLJUklTBrR8P+H47eFXkQbjzXWRRqiYAAoSBIasSouB0FG2pDTaYxKQ0tIaAGmlzSGkoAdmjNNooAdmjNNooAeKWmjpTuKACijijigAoo4o4oAKQ0tIaAGmkpTSUAB6U3cAadUZjzTQC7ge9KDTdhFIWx3qhDzQTiq7zYqCW7AzlgKlsC7vqNm4rDutcitslmB/GuS1fxqFfZDuyeOKlsVzuru+hgB8w1xXiXVtNnt3jVsvg9q5/7fqWpyfK0gU/7Nadl4SublmkmbII6GluG54/dXD22qtKhwN+RXrngXxak0KRTS/NnGM1w3jfRl06RcAZJ5wK5XT9TmsLhXRyAPSp2J2PrWCdJk3Kc5qUmvKvBfjIXKxxSyc98mvULeVZ4w4IIPNUmMcTQHIqTZmkMfFMYCSlDbqZjFOWmCH04U2nCqKAU4U0U4UxhSUtJSYBRRRUiCiiigAHWnUg607FACUUuKMUAJRS4oxQAq9KdTelLmgBaKKKCwooooAKKKKACiiigAooooAKKKKAAU+mU4mglkb0xzxSuwFVLq6SCFnbsKBGfrWqJp9szlhkV5Rc6heeINUeBFfYD1FaninU31O5e2tzkt2zXTeDvDS2cCXDJ87DnIqdydzW8K6HFp1qCygueeldMABUUKGMYqWqKCiiigApDS0hoASig0meaAFooFO2nFADajdttSE461WncAE0APMmASaxdZ8QQadC26RQQOM1X1nXIbKA5cA9q8wu21HxLqAWMbot2CQe1JsTZZvry98TX5jiV/KfuprvPDHhRLCJZZMFiOc1L4U8NR6TZoGX5/cV1qKB0AFCQJAkSqoAAAFG7FSY4qEjmmMdvNGabRQA6ikyaMmgBGFNpx5puDQAUUc0hoAWikyaM0AOFLTQaUUALRS4oxQAlFBpu73oAkpDSBqOtACGkpW4FQtKFFAEvFG5QOTVR76JM5NZt7rVtCpLSAAUXC5rTXKRoWLAVk3OrwRZy4rjdc8bW6wvHBLmQdAa4uS/13UZP3UeUPQ5ocibnpN74st4jgSLntzWBf+Irm5J+zxs+f7tZukeFLu8YPfKV+ma9B0fwvZ2oGASfep1YXZ5+lnqepSYkilQHvXQaf4GDYkllJOc816IthBGowo49qVY1B4xTsBi2OiW9ogHlqce1aBgVEbaoHFX1QYpsqgRtj0oGeE/EePzLyKMdWbFcPNorxzKhBG7mu/8AHYzrVqO3mVHrloIRHcqBhUHOPaoJOKhS50iQTJuwK9d8F+L47iJYpXAYDGCa4v7OuqaaNoBbFcglxcaNqRI4G6gR9UQTLKm5WyCKlPNeeeCPFsd7bLHLJ8/QAV6Cj7hx3q0MMUKMU8UGmNCU4U2nCqKAU4U0U4UxhSUtJSYBRRRUiCiiigBV60+mL1p9ABRRRQAUUUUAFFFFADqKKKCwooooAKKKKACiiigAooooAKKKKACkJwetLUUh5oJZDO+ATngc1wHi/X/KJgifDMMcV0+u6rHYWzEsMlcYrzazs5tc1ZZGztD9/SkyWang7RXu5Y7y5Xd65Fep2saxRhUGAKpaXpaWNqI1A/CtNVAHSmkNAaSlNJQAUUUUAFIaWlwCaAImJpKsGLgUwx4oAjyaQuRnmnkVBKQoJY4A5oAgmmYHrwK5HxP4nTS4Hy2WHpSeI/EsVmGijcM59DXL6do9x4mullmLCNuxqdyWzO083/ijUDtZhEGz8w7V6vo2g2unwLsiw2OSBUujeHoNLhUIihgOorZEYUU0u40u41Bg1KKbjFOpjJO1QHrTz0phoASilxRigBKKXFGKAEp1NpcmgBDTcU+l20AR4FG1fSpdvtS7fagCDFOH0qTaM9KcEoAYCacD607bgVBI+w0AS7QetIVUCqcl1t7VAb/14xQFy8eM1VlkZScNWXe6/aWiktOgI7E1yN947fe0dvb+bz1UUriudzLeiNctIox6muZ1bxnaaeCG+Yj+6c1yM02qa6+As0Ib0q5p/gGcuJLi6aQejUrtiuzNvPHf9oSmK1jkVicZ2mp7Lw/r+qjzDP8Auz2IrvrDwrY26KTBGW9cVuwWCRLiNQo9hVKI7HC6f4FgVg17Ernua6a28P2VuqiOLAHTFbX2bA60eVjvT5UBXitYoxwuKtRxqvQAUBSKcOKbAkzUR4PFOBpGHNIAUn1psxPlt9KctNnH7tvpSA8Q8cf8hy0/6611d5pS3fhx3wCwUdvauU8b/wDIdtP+utem6JEs2lIjDIKjioQkeU6C4tdU+yyg7R2q74u8GNNaLd26gZGTVzxHYfYNZedFwM9q67TpU1bSREcErHigR8/WOpXujXoCMQVY9K908DeLV1O1igmb98cZJrzrxRo4sNTB8nK5zmq+nXcmlzjUYCSv9wUr2EfRIYkZ9adXIeGPFsOqQqjlUcdQTXWI4dcg5zzWiZSH04U2nCqKAU4U0U4UxhSUtJSYBRRRUiCiiigBV60+mL1p9ABRRRQAUUUUAFFFFADqKKKCwooooAKKKKACiiigAooooAKKKKACqtzKsSl26VZPSuR8basLLSmCNhwaGyZHCeK9Ykv78W8TbgrAda7LwbpfkW2915ODXHeGdFk1G/a5lG4Mc163Y2y20KKo7UkSkaCdKdjiowwAqUHIpjI2pKc/Wm0AFFFFABQvBoooAkeQACq8twAetJMxrOvJhGNxIAFAFt71EUljxXGeJfFsUMZhgkBdhtxWf4l8RhIGht2IkrnNB0O81W+M1x86lsipvcncl0nw/c61eC4uA2M9q9Y0bSI9OgVFUceop2kabFZQKoXBxzitXIqkhpAQKaaXNNJoGFIaM0lAC5NJRSigBKKdgUYFADaKdgUYFADDSc04iigBKXdTCaTIFAE24UbxUBYUhcDvQBPvxTTOFqCSVQDkgVj32tW9sDubP40XC5ttdjFZ93qsEGTK4FcZqfi+II3kbs9q4+51LVdUmKxudp/2TSuTc9A1HxXZR/KkwLVy1/4o1OVitpGGB96m0TwjPeHfOoY12dl4UtrYKXj5+lLVhY8sGk6nrFyWuVdc/wB0muw0LwXHbfO4Jz1zXax6ZBE2USr0UYQYp2GkZ1tpcUIG1B+VXRDt7D8qthaXaKYysBjtViFuOaUxZFRn5elNATMQaZxUYY5pcmmIWkIpaBzQAgFBp2KRhzUgIKbOP3TfQ09RzTLn/UP/ALpoA8T8YwvPrtqUGcS816foClbFAR2Fec3cgn15lbnbLXp+lLi1UewqEJHOeNrDzLFpFHPNYHgrUvJupbdz3wK9A1m0F1ZlOvFePys+k65nOAZBTYM7zxdoa31k8ipklR0FeeaLZoLwafc5VR3717FYzLqGmgk5+UZrzTxjZPpVy9/Fxg9aTEzKm0680LUPtFspMbNnk9q9Q8N6/He2yqz/ADAYOKzdLNrrugxqRmUIc59a46drrw/qQUHEbNk8dqExJntSyK2CDmplGa5Pw5rSX0KHdyfWurjYEA1XMVcdtPpRgipQ3FNbmqTKQ3FJin0YFDGMxRin4FGBSEMxRin4FGBQA0DmnUDrTsCgBtFOwKMCgBtFOwKMCgBtLS4FGKqwBRTttIRSKuJRRQKLCuFFLikosFwooopDuFFFFAXDijNNNMZiKVxXC4mWCBpGPC968h8RXjazrz2kZyh/xrs/GesrZaPPGGxIRkCuG8CWU2oXiX0i53d6TJbu7HpXhrS1s7KP5RuxW6wA6UyBdkKrjGKkPPWqKsR5NTxn1qLYKcOOlA7Ej9aZTS2TT+KAsJx60cetMYHPHSmb8daBWJqM1H5o9ar3N4sEZYsAKAJLqRIoyzMMDnmvNvFfifMptbb5ie60zxP4waVjbWzKzH5cA1U8J+FptQuRe3isGU9DU7kbi+HfD0+oOs9zuIbqGr0rT9LhtIlVY1BFXLbT4rePCqv4CrWzAppWKSIlGKUtQ3B4pAN1MAyaSnbMUmKAAUtGKKACnCm0u4UALRmkyD0oxRcBaKSlyM0AB96acetJLIqjrVN7oLyTRcLlhj71G7Ack1k3uuQWyks+MetcvqPjWJcpE4LdAMUriudrNeRxKSZAMVzd/wCMLe0mMeVJ+tcdNq2q6gxSCEsG9DRbeCLy/mE94JYye2TS5mLmuT6j4zmuHKQI/J7VTitNS1RwWMqg12uleArO2CyFyzehrqbewit1CqicdPlppDscLpvgh2jDSyZ9jXR2Xhq3tT/qlJ9cV0aKF6AflTqYWK1vAkIwqgVa+UjFRkHtQqnNAxfKFJtxUtIRQBHmnbvWgr6Um00APD00rvpuPapEOB700AzYRSbTUzEGm1QWI8GlHFOpMUgsLmmnrS4pjNg1Ihw60y5/1D/7pp6jjdUc53QSD/ZNIDxd/wDkYpf+uteraV/x7L9BXlL8eIpf+uteq6V/x7L9BUolGg0e9SMV5b400UpMk6jHzZ6V6ulYHiizFzaHAyQpNX0LexkeArv7RYSIx5Ukc/WrHjXRft+kyIFyx9q5bwte/wBmaqtoxxvc16rdqssBGMg+tQSeGeCNUksNduLOUnap2gHpXo2saDFqtn5qgbtgwa878T6TJo2si9jUgSygk/jXqnh7UI7ywjAIO1AKRJ5lDLc+HtSET7ti16ZomrpeW6ncMkVm+LPDy30UkqL857CuK07VJdDvPJl+VQQBk0AeyrLkDuKkVsisPSNTivoQyPuOOcVtRkFa0RaHmlHSkNKOlMoKKKKQgooooAB1p1NHWnUAFFFFABRRRQAUUUVaAfSNS0jVKAbSikpRTAKDRQaAEoooqQCl7UlL2oAYagmYKpYngc1Oay9ZmEOnzPnG1DUgeXeOb433iOCzQ5Rxg13vhHSE07T40C4x7V5/4dRda1v7U6hjHIRk9ua9jt41jiwBimhR3uS0UUUywooooAKUHmmk4NIDzzQBOFLCqlyQnU1Y3jBGcVl6lcLFGzswwvNAmyKa9jhQsx6VwniTxR5uba3Y78+tUfEXilpZmtbdDubPK1e8KeGnuJFvbtd4bswqdyL3HeFPBy3ErXeoR7gx3Ia9IsrWO1QJGMAUkEKRRKqqAAMYqygqiifNITSCigCJ+tLGcGhutMyQeKAJmOaZSCnqKAGjPpShDUgAxzTximBF5TYqLy2Bq3lQOtQO656ikwGKhXrTt4AqvNMqgneBWTdapDboxaZOO2aQrmu9wgNVJr+KI/McfjXA6n8RIbGUqsBl91rmrrXtR8SS7bWKe3DdDtpXFc9D1LxZZ23DNnFcnqnjdbg7LRmzVXSfAOqTS+bd3bOrHOGxXf2HhLTrZF8y2Rmx1xS1DVnmiaf4h1s5Q5RvUGui0bwCA2+/iyc54r0CKwt7f/Uxqn0FWVT15p2HYyrHQrKzZTHHgj1FbewFcHpSKAO1Shlx0pjIwoUYpaCeeKKYBRRRQAUUUUAOooooAKKKKACm96dTe9NDQDrS0g60tNjYUUUUhCGoXHzVK1RsMmgCVf8AUmoJP9VJ/un+VTjiLFV5f9TJ/un+VSSeMSE/8JJKP+mter6SP9GX6CvJZG/4qWT/AK6165pI/wBEX6CpRKNNKgvYllgkB54qccCkK71Iq+hfQ8S8SpJpWvw3KcKhzXqHhnVv7W0WO4Jzn1rm/HukedaySKOQvHFZHw51J4jFp8jEEY4NQyGdR4x0kahZbgM+Xlq57wJqqLJLAzfdbaPzr026thLYSjAOUOK8EufO0fxTGqEokkpPFIR7w22VPauD8WeFlu0MsSfNnNdjo0wubJSWBJrQktUdDuAOfWmho8X0HXJdFvBbXD4BbbXrml38V7biRD1rkPFfhBblWmtwEZeciuQ8P6zeeH9WjtLt3ZO5bpTWg9j28nNKOlUtPvor62WaNgQ3pV0dKssKKKKQgooooAB1p1NHWnUAFFFFABRRRQAUUUVaAfSNS0jVKAbSikpRTAKDRQaAEoooqQCl7UlL2oAjauN8a3fl2RizguMCuwlYIpYntXlXj3VBJf2UETZJkAYfjUsTLHw00g21tM7gktIzc+5r08dKwfD9oLWzj4xuUE/lmt8VSKiFFFFAwooooAjkJ3CkYkDNK65+Y9qy7/VrewjJmbGKBXsM1HUVs4zI7YrzrWvFVxqE32e3XKsduQad4g1yXWZDBaNkE/pWl4X8JMH86ePknNTuRuHhjwl5rrc3Gd2c4avRYLOO3QIqgAdMCn20CW8QVRUpbNUi0hNvtSqMU4DijGKBC5NHam0uTQAhpNmafgUZCigBAmKUnb2qNpwM1Tlvgp5PSgC7JMVFQPctjise71+2twfMbFc7e+MrckpDIS3ak2K510+orApMjbRjqa5fU/GVrbMVjnUt6Vyt7f61qrbUwUJ/SksPAtxdyCS5iGTSu2K7Y6/8Y6ldnbbwbwf7tV4tH1HW2Bm82MexNd/pfg+3tEUNH0roYdPihACDj6UajscFpXw9iRA0rsxP97JrtNN0C0solQRRkj/ZrVUBR0p24CnYLDPJjUYCgfhSeUKczigMKYxnl+9IUIqUc0pFAERJxTPMPpUrDioytADl5p1IKWgAooooAKKKKAHUUUUAFFFFABTe9OpvemhoB1paQdaWmxsKKKKQhrU1RmnPREOtACtwuKrTHEEn+6asydaqXP8Ax7yf7p/lUsk8VkY/8JNJ/wBdq9h0gf6In+6K8ZiSWfxRLgcCavatKQraqD6CpQkXTRk0pppq+hXQztWtFu7Z1buK8njibRfGXmDhB27da9llGUxXlnj61e0El2gwc9alks9Psbz7Rp6N2Za8r+ImmsmpQ3EacLySK7XwlqkN3o9uitmQLyKTxZYLdaVO5GWC1JJmeAr8z2UYJJOa77dxXkXgS5a0nSFjg5r1qNw8QYd6ECIplEq7SB+VcD4v8Mi5hkniBD9iK9AxzUVxAs0RUjINWWeS+F/FsmkXv9n3JAVMAEnmvXLS8S6t45FYEMM15V4v8GsJDeW0fz5zUnhbxY9o32S7fBX5RSvYV7HrgGRxTtgqlYX0V1EHQ5q7u44qihCopppS3pSDmgBB1p9Jt70tABRRRQAUUUUAFFFFWgHZoY5ptFSAUopKUUwCg0UGgBKKKQctUgKeKAeKV+lNA4oAytavFt7N29Aa8VsGk13xPKGywimyP0r0rxtcmKxYZx1Fcn8MbATateyuP4sgn6Cpe5L3PVrWDZBEBxhAP0qyTt4qZQAoAFV5+HNUihwbNKTio0NK5FAx24Ux5gvJ4qPdjk1z+uazFZREmQA+hoYmzT1PWYLOzldmXIGQM15DqWq3ev6iYrdmCE1LqN5e65ceXArlDwSprrvCPhdbKNHlGX96ncncd4Z8KeRGks6Amu6ggjgjAVQPpU0MKqigAACnMtUUROaaDzTmWkCjPNA7kwPApCcDrQQABzVeeXYO9AibIHem+YAazZL4KCWbFZN14hghzmVRj1ouFzpjdIvpVa41GGNSS6j8a4W98V+apWLk9sVz89xqt85EcUhB9DSuK52up+Lbe2Ugcn2NcfdeI7m/dhBvXJ9KdYeEru/kBuDIgPrXa6V4Qt7EA7g/rmlqxanD22lalqCfvHY59RW/p3gl8q8oU/Wu8jtoUGBEo+gqwqKvQAYqrDsZ1hoVrboMxjNaiW8Mf3VxS54pN1AwYCm5pSSabigAFLs3GjFFADZFwKYM1K3NN20AOWncU3pRQAh6VGetS03ZQA0dKdRtpcUAJRS4oxQAlFLikNADuKOKbRQA7ijim0UAO4ptFFNDQDrS0nelpsbCiigUhDX6U+DGDSFQarvKYzgUATy43VVuh/o8n+6amR/MGajucfZ5P900mSeR6PGp8RXWR/y1r1uyGIVx6CvK9GQf8JDd/wDXWvU7T/Uj6VKEiyaaadSEVXQoYRmub8VaUNR0549oya6U1DMgdMEZqWSzxXwdq0lj4hubN2IVGwM163cKLvTGB5DKK8f8SaVLomvG8VSBLIP516roN2l5p0YyD8ozUknn4xp/iRYhxj/GvV9Ok8yxib2ry7xbbtb+ImmUcYru/DF2ZrGJT1ApoaOg200ipB0pp61aLRVubdJ4irgEY715p4k8KtFKbm3Xbg54r1UpmqVzZpNG6MAc+tDBnmnhXxHLbyrbTMc5716da3QnjDBgc+leYeJ9BksLg3NsCSvOFqx4V8UOkiW9x8pHXNTsTsepLzipQoAqpZ3CTxK6NnPNWy3FUUBxSU3dlsU6gAooooAKKKKACiiirQBRRRUgFKKSlFMAoNFBoASmg/NTqjH3qkCYjOKXZhKQHimzSrHCSe1AHmfxDulSEoT/ABVo+AdN+yQG4xxIM1zPjq4W9umhTruH869H8PQCLRLUdD5fNT1JW5so+WFRzffNIpw3tSykFqpFDFyKbK2B9Kf0XJ7c1zHiLxJBp0LLnLH0NArkmu67FptszM+CK8rmu7/xHqbRx/NHuFXFN54pv9qE+U/qK9J0HwtbabboxjHm45NTuLci8O+G47C2VtmWbk8V08cG1umBTo/kGD0qQuoFUMeGCjBqN51HeoXnXJ5qpLcIOpGBQO5baYHvTWuAozWVLqMESljIg+prjtf8dQ2uY41ZiO6jNJsTZ3E+rRx5y2MVz2p+Lre3ViZOlefQ3Ws65cEQPIiuf4lPSuq0zwFfyYN9IsgPUUrtiu2YuoeLbjUAUsW3sfem2Ph7XdSYPNF8j+hr0ex8FaZa4It1DDuCK3oLdLdAqAAD0p2HY4/R/AltGA06kN3zXU22i2tmP3a5+orRUjvTjz70xlXylHQAfhRsIqztHpTcCgCID1p4pxApKAF4ptFFNAFFFFOwBRRRRYAoooosAUUUUWAKKKKLAJxS5ptFSA7NGabRQA7NJSUUAFFFFABRRRQAUlLSd6aGhR1paQdaWmxsM0mcUh4pjHFIRIWBqrNGS2RUiHJ61KwzQBFCCFwajuztt3J/umpwOcVW1LItH+hpEnl+inOv3Z/6aV6jaH90PpXlmhA/25df9dK9Ptd3lDr0qUJF0HNLzTU9xT+PWqKGGmEU8mkNSyWcZ490xr+xjKoCYzuNY/gK/LCWJz91iOvvXf6jCs1jMGHPlkV4jZ6hJoniLyM7RLIcVJJ2/jWH5pJx2q94Mn3qq+gqv4lIuvDrzA8+v4VX8CFvOIPpQB6MG4pMjNNXlaQ5DVaLRMnJpjjIIp8XU80n8VMZm3lgt0hVx1rzHxP4dn064a6tkPWvZwikdqz9UsIryApImaGgZwfhDxMD/o9w/wAyjbjNehJOsiBlPGK8d8RaRNo9159uCq7snFdF4Q8ULeRiGZsPnHNSnYlM9CTl81LUUJVk3DBzUowaooKKKKACikz6mjNAC0UmfejNUAtFFHFIApRSUCmAtBopDQAUz+Kn8U3HOakB2QBVO9fFu3NWX4WsrUJCIGFAHmeqxmXWmAXdyP516ppY26XbjGMJivOocPrzbh6V6TajFpGB6VKJRIxwCelVnlHJLYqW7YR2zOT0FcFrviZLeFo4HBk9DRcbZq+IPFkGnQFI3V3YbcA1wVtpt34mvxO7usYPeoLHRLvXr/zpw23dng16rpGkx6baKqryB6ULUQ3Q9Dg0uBVAUsO9bxIC9az3mCZJNZ95r9rbKTJLincZsTSYYfNioJLqOFcySBQPWuE1LxohbFpIGx71iXWsa1qqGNIgUPcGlcVzttT8U2dmpKTxu3pmuPvfHN9dM0UFg7A8blFGm+BpL5xJc+YCfc13Ol+E7SxjHygn3WjUDzeHRNW12ZXaWeAHtmux0X4frb7XuZfOP+1XaQ2cUX3VX8quKQBinYEinbaTZWyqqW8akdwK0FAAAxUXOeKkUmmUTVGRTgTS0AV2U/3qfCpB5NSbV9aQ7U70AOJpKZvFG/NAD6Q0gaigBKKXHFJTQBRRRVAFFFFABRRRQAUUUUAFFFFADaKQ9aMmpAWikyaMmkAtFJk0ZNAC0UUUAFFFFABTe9OpnemhoeOtOxTV6innpTY2ROcGq086RIWdtqjvU8lc94skMeiykZB9qTEyaTxDpsDEG7iyO2aaPGGm/wDPzF+deGx6fcapqsih3x2wxrfj8BXLoCPN6epqOZsjmZ6kPF+m+Z/x8xf99VBqXizTmtWC3MRJHrXmn/CCXIcDMn5ms/WfCNxYWwlBk6+pouwuzpvDN0kmsXLqAQz5FeqWtyvlD5O1ePeA4P37hicg17BaRR+WMk9KECLQbzOgxS+XSfKv3TS7z6UFB5dHl0bz6Ubz6UCGvAGRlJ4NeP8AxE0U2mqQXUS5C8nFexbz6Vz3i3TlvtKncgFlXikJo4Oy1H7f4YKN3NanhOQQXJGK5OzmXT9NMDHBB6GrvhvV2OpFARjIxQI9mtZAY8le1RzP8/SmWTZtlJ7rUjpubNMoakmDxUwHQ96jWLFP3GmhjxxSMc0mTTG3UwM7VdNivLdkZFztwOK8j1rRrrQ7/wC0228qpyQte0tvwRisfVNNF5Cyso5pNEswPB3i37ekdvONkh7Gu7jfdgjkGvFNR0+48P6sbuNSFHrXpXhvX7XULSNRKDKB8wHY0J2BHVDGKNlQrMuPrUglGOKZQhiPrTTEfWnmSmmSgBhGDRRnJzRTAfk0lFFIBcmjNJSZAoAdupC1JkU3PvU3YDt1PU561D+NKrc1QE0gHlsfauO1m8aNmQE4rrZG/dN9K4bXOZTxUslmPpimXVy/fFd5Fd+VCoJACiuF0eRI9RLMRgDvUfiHxVFbqYkcbjxxQBp+LvFaW8LW0LHew4xXG6FplxqtwJ7j5laqdn/psxnuJMgHo1bb67FZxeVbxjI9KQjuLSO20uBegIHY1S1LxdBApAzmuDXUdQ1KbYokA6V0GneFprv5pnP/AAKmMzb/AMT3l7kWrsM1HaaVq+ptmZsqfY139h4Rt7UqWCtj2robextoVCrEgx6CiwanCaX4FUAtLGCTXU2Ph+2tUx5VbYUDpxTuKAK8UCQjCjGKkzmn4FJigYyin4oKincAXHepFPNRDGaep560xk2RSGkz70Z96AGHg01jk044zTlAJ5NAEWPalUY7VPsWjatMCKlzUm1aNq0AN3cUzNSFRioyvNNDE30uaTFGKBC5ozSYoxRcBQc07FR520GQ+lK4DicdaaZFXkkCs7UtSSzhLuRxXl/iD4iCB3SI8jjg0nKxLZ6/9oj/AL6/nQJ0PQ185Q/Ei5Nxgl8Z9a77wx43TUJEhZgCe+aXOHMeoAhuaXFV7aQSRKwOQasg0yhMUhp/HrTSKBXG5ApN2TSMKRV+brQFyWilxRigLiUUuKMUBcSmE81JioyBmmh3Hg0u+mYpPxqguI5Fc34u/wCQJLXQvXPeLf8AkBy1LE2eeeEkDay+a9ktoIxAvHOK8h8H7RrD163DKfKXHpUIlMJLZBJnHFc14yijOl8DnJrqJHJQnFct4rP/ABLefehjuch4MX/TpwP71eqWyMIx9K8v8Fj/AE+4/wB6vVYWwg47UkK4/p1pd1I3zUbaY0Luo3Um2jbQMXdUdxGJ7aSM/wAQxT9tKooA8J8d2z6dfPsG1eazvB9wJNRHrkV33xI0sTW8s4FefeD4SmrFT2IpE9T3+xcfZIv90VbUiqNgD9lj/wB0VaXg0yifIpu9c0nWoGJDGmgLSsppTg1XRuKkU89aYD2XNRlB6VLnjrRxQBzmv6JFf2rKUyTXkE8uoeGNWYqWETP/AHT0r6A2LJxxXOeIfCttqUDEom4c5xSauKxV8PeIotStkIbn3NdLG2RkV4iz3HhbV0iZmMbGvVdC1yG/gUhl3GhMEb2CaQg1IpG3I70jEUxiKOKWmqTinUDHUUUUAIajdsCntUEretSIoXerRWv32A5qsPEFuwz5g4rjfiFdSW9unkNhiwH61Q8PaXqd7bO5OcjI4pCPS7XVYLgcSZz6VoIwY8dDXiWqXureHdXVZJMRAc4FeoeE9UGqWMcmc5HencEzoZB+6b6VyGsRAuTXaSR/uz9K5fV4wsbSHtQNnlOv6w+lSuyGvOb7V57q68wk/ez1r0bUdGk8S6rJZ2wy/WmD4Qatk4jH5VJBiaNczX8ILjao9K63TtNseHlmbd71BafDnxBaLsiCgfSrR8B+Jvb8qeo9To7CbTLM5V1P4VsJ4js16Oo+grgG8FeJVPVfypn/AAh3iX+8v5GmM9G/4Si2/wCeq1JH4ptc8yrXmv8Awh3iX+8v5Gl/4Q3xKf4l/I0XYXZ6Z/wlNp/z1Wj/AISm0/56rXmg8F+Jf7y/kaX/AIQvxL6r+Ro1A9K/4Sm0/wCeq0f8JTaf89VrzX/hC/Evqv5Gj/hC/Evqv5GjULs9K/4Sm0/56rSHxTadpVrzb/hC/Evqv5Gj/hDPEv8AeX8jQF2ej/8ACUWuf9atOXxTa/8APUV5v/whXiY/xL+Rpw8EeJ+zL+Rouwuz0oeKrT/nqtH/AAlVp/z1WvN/+EI8T/3l/I0f8IR4n/vL+Rouwuz0U+KbX/nqtA8VWo6SrXnJ8EeJ/wC8v5GgeB/E3qv5Gi7C7PR/+Ettf+eq0f8ACW2v/PVa85/4QXxP/eX8jR/wgvif+8v5Gi7C7PRv+Ettf+eq0f8ACW2v/PVa85/4QXxP/eX8jR/wgvif+8v5Gi7C7PRv+Estf+eq0n/CWWn/AD1Fedf8IN4m/vL+Ro/4QLxN6r+VNNhdnov/AAldp/z2Wj/hLLT/AJ7LXnf/AAgfib1H5Un/AAgPib+8Pyouwuz0U+LLT/nstH/CWWn/AD2WvOv+EC8Teo/Kj/hAfEv+z+VGoXZ6J/wldmf+Wy07/hKLP/nstebt4F8TJ3H5U3/hCfE3qPypXYXZoeOfFcRtZEjkHtzXiF3cNPcPIWY5PrXb+JfCur2sbPd8j2U1wciGORlPUHmpZLGVseHL97HVUm3kAeprHq9pMDXF6qAcmkI+gtH8ZQixiDSKDj1rSHjK3/56D8q4jSfDEklnGdnb0rRHhNyfuD8qu7LuzqR4zt/+eg/Kj/hMrf8AviubHhB/7g/Kl/4RF/7lF2B0TeMYD/GPypv/AAmNuOfMH5Vzx8JSf88xTf8AhEXbgIPyp3YWOk/4Ta3/AOeo/Kj/AITa3/56j8q5v/hCpv7go/4Qqb+4KNQ1Ok/4Ta3/AOeo/Kj/AITa3/56j8q5v/hCpv7go/4Qqb+4KNQ1Ok/4Ta3/AOeo/Kmnxpbf89B+Vc7/AMIVN/cFH/CFS/3B+VF2Gp0X/CaW/wDz0H5Un/CaW/8Az0H5Vzw8FTZ+4Kd/whMv/PMflTuwuzcbxnbn/loPyrG8ReKoLnSpIlkUk1F/whMv/PMVHJ4IkYYMeRS1DU5jw5rCWupPIzAA16ND4xtRGo8wce1cx/wghj5Cc0sfg+XnCD8qm7QrHVHxna7MeYPyrnvEnimCew2K4J+lQHwdLt/1Y/Kom8FPKNpjB/CgDN8La7FaXUzu4G5s13q+NLYKB5g/KuYj8BSR/diqX/hCZv7i/lQB0i+NrUdZR+VO/wCE4tf+eq/lXMjwHO3RFpR8P7j/AJ5rRdhdnS/8Jxa/89V/Kj/hOLT/AJ6r+Vc3/wAK+ue0a0h8AXGPuLRdhdnS/wDCcWn/AD1X8qa3jm1HSVa5k+Arj+4PypyeALhv4F/Ki7C7J/Enii2vtNePepJ9BXBaPqcNpqRlLgDNdfeeA7hIiSi/lXn93o00GomHHIIFIGev2fjS3WBB5g4HpUx8bW+f9YPyrkNL8GzTW6sUHK+laB8B3GMhF/KndhdnRL43t8/61aU+NbY/8tV/Kudi8A3DN/q1/Kpv+FfXH9xaabC7N1fGtsP+Wq/lTh43tR/y1X8qwP8AhX0/9wflTT8Prj+4v5UahdnQnx1bAf61fyph8eW3/PVfyrAPw8uT/Av5U0/Di6P/ACzX8qLsd2dFH47tt3+tX8qWbxzbMuPNXH0rnV+HdyhyY1px+HtweiL+VF2K7MfxjqdrqiGVWXeo4xWL4M8QT2t/HCzcD3rsj8O7llwVBFT6Z8PFs7tZXixRqFjvtLujdWsb+3arrK3pVXT4EtIVQAjFX94NUUiNRgYpaU9aSgY6iignFADGqldyiNC1XWI7VgeILwWtm7HjFSSeW+NL8Xt6kAkxtkGefevRtGms7TS4SJYwdgzzXkdtpj+IvEkyBmIByMGuu1LwjNZ6S7pNLlU/vGkJNmP41Y634gFvbjIYfeUZFej+BtKk03T4kkbJA5rzbwZcRrfrFcEGTJ+9yete1WOBGuBgUIEaMp+TrXNa4hNpIa6GQ5WsLWAWsnGKoo4HwauPGsmD/CP616yowpryjwz/AKN4xkduAQP616ujB4tw7ikhIhXhqlqvuOaeJDTQ0I6g/wANR7B6VYHPWl28UxlcIPSpVjXH3acTjtSebg8CgBCgH8NGwelOEm6lzQAzYPSjYPSn5ozQAzYPSjYPSn5oLUAOWNfSnqg9KjEnNPWTmgCUIvpRsX0pu8+lLvPpQA0ovpRtApGemF80AS/LR8tRc0c0AS/LR8tRc0c0APIXFRnPalwaKpDQ3Jo5p2RRmgQc0c0Zo3UCHRgE8ipDHHjoKi3EUhPFILmR4h0WDUrR4yq5NfPPivwbdafdySojsrHgAV9MsMiqN5pUF0uHjU/VahoTR8kLpl6zYFtKcH+7XqPw78FvJJFfXCkAdVYV6rb+FrKFmPkxnP8AsCtOPT4oV2xqqj0AxStYVrDbeyihjVFQYFWVt0/u1YjTCgVIAPSrLRAIU/u0nkx/3RVojAphpgVjCn9wU0QoDkKKnY0xWyaAG+WvpR5a+lT5ozQBB5a+lHlr6VPmjNAEHlr6UmwelWM0lCAhEa+lO2CpRT+1MCsY1z0qN4x6VbamNQwKXlA9VqzDbx7TlKdVmNvlPFSTYzrlYolJbCgdzVJbm03YEqZ+tU/GU/l6bKdxXA615N4fnudU8QPah32DB4bnvUvcR7ipjYZBBBHaonlhj4d1X6mm6fp/k2qAs2cd65LxuBawvJ5rKVHQGlcDrFvLfOFnQn0Bqyj5GQ2c1434W+0X94reY5U+rGvW7GIxwICTnFNDRdUk96kK5pkYqcLzQMr7Kcox0GKsbRTWWgDN1Qf6KxNeL3qb/ELj/bH869o1jC2LV4w3z+JHz/fH86TJZ6tpceyzix/dFbkCho8EVV021H2GE/7AqWW+gsMmaQKo6k0xl6ONVOSMVExwTWPP4v0o/KtyhbuKB4g09hk3K800wubGfeisj/hI9K3hDdLuNaVvdQ3ShonDA+lO4EwNSCm7afQMawyKaBipQAaHGBxQBH2phGetOpwXIpgRbacDSsAKiDEnikBLRS49/wBKXFAx2BTHHFPprdKAKzMVzXBeONQCWcqE13sykocV5v4x0S7v/MEbHB9qlksr+A7Fbe8N5j74rr9f1OG30udZSMsmABXD6RZahYRLHufgY6VNe2F/qDBGdip65FIDmfDlu134niuIgfLz/Wvd7NNluo71ynhfwumnxB2Ubq7JF2gAdqaBD+q1n6jFm0fNaHaqt8u61YUDPMrb5PEr49q9Qsn3Wqe4ryS/L2uvM+cDI/nXqukN5mnwN3K0kJFswDHSl8oVN2pBVopEapinbadRTGR7aTyhUtFAEIQDtTttOooAbto206igBu2kK0+kNAEeOacBzRS0hC0opKUUAJjNAXmnUo60AG2jbTqKAG7aNtOooAYV4phqY9KiPWqQxKXbRTqBDdtKFFLSjFAhNuBUZIAqRzx16Vh6trUOnqdxGccDNSDNR5VQEk8VTbU4Q+3PNcU2t3GpzYgLBT0qae1u0i37znFTcR2kdyJMYPFXolVlzXk9l4kktNUjgmc/Mcc16hYzrPbh1IIPcUIRZ2807FApao0E5pNtOooAjKZ7UgixUtIaAI9lGyn0UAM2UbKfRQAzbRtp9JTQDcU7miimAhGaQrmnUUCI9lPDbVPpQajlbbEx9qQjgviPfJHo1woPzY6VzXw/tbeAJfuPncdad46uGvL82an74NX9B0eeDSokBIxWfUk79dZt1TrXmPxA1UXeoC2iJIYV0k9hcR27OWPyjNcDcxtda9EW+bqKGB2vgPSPKtYpGXmvQVhxWX4ct1hsYxjGK3QBTQ0RKmKf0FPIprDigYwvTlO6ozTouKAMnX5Nlm4ryC3id/ETtjjcK9U8VyiKydz0FeeaMv2nVmZR3zmhiZ7BpoUafEM9EFcj43YCzlByBXU2T7LRQey1578R7/y9PmA+9j1oBnn/AIbsW1XxHJABlF5/nXqEXhGERrmPmuJ+HVxFbXhupF+Zl6mu0v8AxVEbyKKLjc2MCkhIwdW8MtFq8YiTAxXf+HLN7a0jVh0qSC2S72zMuSAOta8EYjUKKoaRLjig0/tTDTGKh5pZDmmAgUvXpQAzFOBwKDwKiZwBQBHNKACfauS1zxN/Z0qqrgE8Vo6zqS28LYI3YPevFPEOp3F5q0YDNt3VLYmz3fw3qTapponY55rZxXJ/D5Cvh5d3ByK62qRSCmsM06igCIrmonhjb7yA/hVnApNgosFii1lC/wDyzX8qVbOEEEIvHtV3YKXYKVgsQpGEGAABUgFO20YFFgsJjioLhd0RFWu1RMtFgseS+Lf9GvTIRj5v616PoLb9ItW9UrgPiJFiPcP71dn4Tu0uNIto1OSiYNLqStzpO1JTj0ptUihc0ZpKKYxc0ZpKKAEo5pwANLgUXC4zmjmn4FGBRcLjOaDT8Ck20BcjxS0/bS7BTsIYBS4p22jFFgExQKdRgUWAKKKKLAFFFFFgCo8U+kpbANpaDRRcAzRmm0UXAqapdra2kjk9ia8Z1TUrjWtWESFtu4g4+td38Q9Rays41BxvGP1rlvAmnC5lM0g535/WoerJe52HhjQxaWqNJyw9a37iBTEw2jGPSriQqgwBUVziOF2P901Vh2PEfHYFjq0UqHG054r034eX7ah4bjmbrkV5R8QWkvtcghh53HBr1P4c2Mun+G44ZBgjHBqUtSUtTshS5pBS4FaWNAzRmjAowKLAGaQ0uBRRYBtFOwKMCiwDaKdgUYFFgGGinECm0tgCiiii4BRRRQIAMmq2pypBaOxOMLU5kCA9q43xXqchiaGI5LDGKQM4ab/iY+OoFByuCP1Fev2VikVsq4HHtXkvhywuodcju51xg9a9bW8DQBlNJEoo6/cQWOlzb9qkoccV5f4ZhXU9R84cgSEfrXRePJLu/ijitueMGs3wFp0+m5WZcMWzzS6h1PT7KHyIQg7VbWmRYZQak6U7FDuKQjikop2Cw3YKb901JTHHNKwWOQ8cyZ0mVc81h+CbBWmLN3FXvGtypMkBPPpVnwfFsjVh6UupPU6kgRwN6AV5L45k+2XbWynJYHivT9Tu1trSQk/w15IrnVvGkSqcqQR+ooYM0tD8MyRaWsgDA47VFp3hy6fVPMfzMI+ec16xYWCQWSREdKctnHGxKjk+1Ow7EdhEY7dVPYVoIKiRAOgqVeKY7EnamNThQQDQBAxPapoxxQUUCm+aqd6AFl4FZV/dLawF3OAKvSXSY5PArjPEt6bsvaQHJPShsTOb1G7e+u5QrEqPSuamt4jqUS5BJauoi0DVI4nkEYwVNca8dxFrkSzDB31BLPcPCsSw6SFHtW7WN4ayNMX8K2a0SLQUUUUgCiiigAooooAKM0UzvQA/tTWpw5oK8UAed+PbffZMcZwSap/DHU/tFzcwFv8AV8YP0Fdb4m04Xdi6+xry7wXNJpniO7R1KhpMD9Kl6Ml7nuxOVFNpsbbokb1AP6U6qKCiiigAooooActLSLS0AFFFFABR3oo700AUUUVQBRRRQAUUUUAFFFFABRRRQA00lK1JUsAooopAIaSnUYGKAPNvijzFZjrg/wBal8CKiW2QADmrvjfSm1G3RlyfLGa5XwzqU2nTeTLEVG48mpe5L3PXwwzWJ4iv0tbFzuGdpHWqd34hjgti8bB3/u5riL641DxHc+V5MkaA/ep3Hcy9CtTrviBbh1JSOUjke9e428EdvGEiAA9K5nwp4ej0i2OQGZuc4rp1600gSJRRQKKsYUUUUAFFFFABRRRQAUUUUAIabTjTalgFFFFIAooooAesasORmsq+0y1ldS8WSK142A7VFKQT0FAGbb6Xaqn+qq99mjWLAXipYmAXoKkLjbQBlzadbucmLNLFp1shBWLGKvlh6UZHoKAGIAowOlOoooAKKKKACo5Dg89BUlUtSfyrSRs4wKAPNfF9ysniFoRzmuy8OW4isI3xjiuAmtmv/E6zFiwr1XTIRFYRrjGBSQkcp4raeWBo4twyuK4rwvpF3Za3FdzhmCn0r2SS3if70an6impZ24bIhUfhRYLE9tL50CvzzTsU5UCrgDAo70xiDrTxTcU4UAKDSg02loAcwyKoyfxelXl5NNeIMG460AcD4p1o6epiUncw4Iqp4VhfUNlzLlmNdJqvhNNSk3tL+dXtG0NNKhVFbOKVtRW1ItSmWzsX4/hNeQCZLnxEjMhwJc5Ne3ajp4vYfLJxXLf8IFEJ/NEoBzQ0DR0uksn2NRHjHHStCs3TdONhEELlsVpVaGFFFFSAUUUUAFFFFABUf8VSVH/FQBKtOI4piVKQMUAZ97HvhYY6ivG/EIl0nXrdwu0STAn869slHBrzXx9p3mvbzKMhG3E0mJnoOn3SXFnCUOfkX+VXBXG+CL77ZYH5vuYX8uK7Ee1NDQtFFFABRRx60UAOWlpop3FABRRxRxQAUd6OKSmgFoooqgCiiigAooo4oAKKOKOKACijijigBrU3JpW9qbzUsBwopKWkAUuKQU7igCpNaiZWUjINYdx4Ut5pN2MHOeldRkCjcKAOTTwhADyWrYs9GgtV+UD8q1Nwo3CgBixADFO2AUu8elIWBpoBRRSA0vFUAUUcUcUAFFHFHFABRRxRxQAUUcUcUAIabSk0nFSwCiiikAUUUUAOBApGANNpQKAFUAd6UlcYzTSKaetADvl9ad2qMA07FABRRRQAUUUcUAFYPii/jtNLn3HDFeK3ScDJ6DmvKPibqjC9ht4m4cY/SkxMZ4PeS+u45SBgmvV4F2wha87+HtkYbSNmHPvXpCjihAiNhQBzT2pKYx46U3FO7UnFABRRxRxQAUUcUcUAG7HeneZnvTduaYR1oAl3imls9KiBp6qWoAMmlyO9PKHFRHg0AO60tNXpTuKsAoooqACiiigAooooAKAtFIGwaAHhcdKU0wNTs0ARSVz/AIks1n02Y45VDiugfJqpeQedA6f3lxQB5l8Obl7TzoJSQTK2M/WvWI23KDXjeqOfD3im3iGFRiSa9U0m/S8tFkVsg0l2EjWCcUx/lFODcUyQ5pjIdxz1qdORzVfHNTxnAoAceOlGTQaSgBcmjJpKKAFyaB1pKKaAfRSZozVALRSZozQAGkyaXNNoAXJoyaSigBcmjJpKKADGadtoWnVLAZtoxTqKQDDxRSnrSUAJk0gooFADqMUUUAKBSYxTlpDTQCUuTSUVQC5NGTSUUALk0ZNJRQAuTRk0lFAC5NGTSUUAIaSlNJUsBRS0gpaQBSgUlOFADaKU9aSgAyaKKKACgk45opr/AHTQA4Y9aXFVxJzUqnNMBx4puaViah3YNIB1zII7SZycYQn9K8K1SV9d8Tx7clY5CDXqPi7WRpmnEE4MqlRn3ri/Aej+dcT3Mo6yFh+JpPewnuehaDYLaWSAAVs5xTY0EaBRTqYwPNFFFAC5NJRRQAUUUUAFFFFAADim5pTSUAIFqRTimCnUASbzUbDNOFBoAb0oooqwHUUUVABRRRQAUUUUAFRsQDUlQsPmpgOBp4qNakFIBMU1h6VJSH60AeY/ErRpJwb+NfmiXrTPhzrLPYRQTt+87ivQdWsE1CwkgbGXGOa8lhtZPD3icw5/dp3/ABpPuS+57MkgZcjoacTmsvTLpbm2Qg9q0VOTTKFAqRfegDigcUALRSA0tABRRRQAUUUU0AUUUVQBRRRQAUUUUAFFFFABRRRQA5adTVp1SwEooopANPWkpT1pKAG0CigUAOooooActIaVaQ00AlFFFUAUUUUAFFFFABRRRQAUUUUAIaSlNJUsBRS0gpaQBThTacKAEPWkpT1pKACiiigApr/cNOpH5FAFUZzViMe1MUDNWEAAoAay8VTmYIMk9Kvvjaa4/wAZa0uk6a8vUjNDBnC+OtZXV7yCygJLRyAH869B8LaetrYRkDBKgmvLfBmkz634gnupQwRm3LmvbbSAQQqnouKldyV3LNFFFUUFFFFABRRRQAUUUUAFFFFACGkpTSUAAp1NFOoAcKDQKDQA2iiirAdRRmjNQAUUUUAFFFFABUZHNSUw9aAEA5qQUzNOzQAGmNTs0xvagBrHivPfHWnskD3kQy+e1egkE1l6vYfbLYxMBzQwZy3g7WUkQQSNhlGK7yE5wex5rxOSK60LWXf7qF+PpXqvh/URe26knJC4pJkpnQjpTG608cikZT2plDVp1NUEdadQAUUUUAFJk0tJTQBk0ZNJzRzTuAuTRk0nNHNFwFyaBSc0oouAtFFFFwCiiii4Dlp1NU4p2aGAlFHFJSsAh60lKaTmiwDaBS4oAosAtFFFFgHLSGlU4ppNABRRmjNO47BRRmjNO4WCijNA5pXCwUUuKMUXCwlFLijFFwsNNJTiKbzSYhRS0gpaQBThTadmgBD1pKQsAaNwoAWik3A0A5oAWiiigAAoZyooLYqvLIAM56UAMuLry4mYnp7V5H441BtYnk06I7iew611XjDXzZWkqxv8+OK47wXp0+r6omozqDvxUvUl6no3g7SEsNIt/lAcpg8V0x4qvbJ5MYXHFT5BqihaKKKACiiigAooopgFFHNHNFgCijmjmiwCGkp2Kbg0WABTqbg07miwDhQaKDRYBtFFFUAUUUVADqKKKACiiigAph60+mHrQAlFFFABRRRQADrSSKD2paXrQBxHizRVuIhKqjI56VheGNX+x3PkSE8sRzXpN5AJoXX1FeTeJNMm06/E8SnAOTSYmexW9wksYYEGp9wIrzzwh4gNzAkMrYc+9d5HJuHHQ00NEx5NJSA5paACiiigAooooAKKKKACiiigAooooAKKKKACiiigAFPpgp9UgCiiimAUYFFFADKKKKACiiigApDS0hoGFFFFQUFFFFABTlptOWgBaKKKACiiigANNpxptBLCiiigQUUUUARt1pMU8rmjbQAwCngUu2loAKKKD92gCORqytTuhBA7FhnFXbqYRIWY4H0rzPxT4jaSXyITuOcHFJsTZlaiJda1hIwSYySDXp/h3RI9LsURUAI9K5jwXpJZPPlX5s5Ga9DQYHFCQJDGGBxQoqQrmk20xhRS4oxQAlFLijFACUooxS1SAKKXFGKYCUUuKMUAJRRRQAUUUUAFBoooAbRS4oxQAlFFFQA6iiigAooooAKbTqTFACYFGBS4oxQAmBRgUuKMUAJgUAUuKUcUARuvFYms6VFeW7hxzitxzmoJU3DHagDxu4STQdV3rwi16ZoOqLe2UZ3ckVjeKPDxvLd3jHzGuE0PxBNousNaz79oYAccVOxOx7lEc81JVHTLpbq1SRSDkA1eqigooooAKKKKACiiigAooooAKKKKACiiigAooooABT6YKfVIAooopgFFFFADKKKKACiiigApKWk70DCiloqChKKWigBKcKSlFAC0UUUAFFFFAAabTjTaCWFFFFAgooooAAKcQKQUpNADTRQSKaXFACk0x32pnPApC4GTWD4k1mOw0+Q7gGA45oBmN4r8QpbwNGj/ADA9M1yHh/RZtW1BppVyu7PFUbRbnxBq5bJMbY6167oekJZ2qAKA23BxUrUlal2xs47SFUQY454q8KTbijNUUSDmkK4oQilY5oAbRS4oxQAlFLijFACUoFGKUVSAOaOaWimAnNHNLRQA0ikpTSUAFFFFABRRRQAUUc0uKAGUUuKMVAC0UUUAFFFFABRRSZNAC0UmTRk0ALRSZNGTQAtBpMmjJoAYetJilxSigCGWIOuCoI+lcB4s8Jxzo1xHhXXL8V6NVa6tVuI2Rh1oA8q8IeM3tLlrK7GwB9iljXrVvcxXMYeJwwPpXknjDwW0VwLuyU70O7jirHg7xZJYhLLUX2yA9M9qnYnY9ZoqG0uYruJZI2yDVgqMVRQ2ikJIoBJNAC0UuKSgAoopQKAEopwWkxQAlFLijFACUUuKMUAIKfTcU6qQBRRRTAKKKKAGUUUUAFFFFABRRSd6Bj8CjApMmjJqChcCjApMmjJoAXAopMmgUALRRRQAUUUUABptONNoJYUUUUCCigUuKADNIaa3HSgEtQA1jzUbGpGUZ61n6jqEGnwtJOwVRnmgCPU9RhsLSSSaVUIXIB715JqV9N4p1MRxORGSR8p460viDWL3xLqC21qd0QbacHnFdt4S8GQadbrI6nf159ancncueFfDEelW8bEhmHqK7CNQBjHFRJEsYwOlSrxVFDn6VWJOanYk0zyx60ACHmng5poUDpTlAoAfRRRQAUUUUAFLgUlLVIAooopgFFFFADW6U2nmm4oASilxRigBKKXFBFACilpuTRk0AJRRRUAFFFFABRRRQAU2nU2gAooooAKKKKACiiigAooooAKKKKAKl5bpOu1hkYxXl/jDwzJFM95aqFK+gr1dgWOaq3VolzCUdQfrQwaPNPB/iqa2nW1uXOV9a9Ttb1LmIMrA5FeXeJ/DjWZNxbgg5z8tReGvFEttN5FxkYOOTU7E7HrvWjpVKy1GK6jDI6mrm4NVFDs0maQHNGKADdRupMGmkY7UAPD89aeGyKhxzUi9KAJM0ZplFAD80ZplFADs0ZptFUgH5ozTKKYD80mabRQAUUUUAFFFFABSd6Wk70DFoooqCgooooAKKKOKAHZozTeKOKAHZozTeKOKAFHNLt4pAcU/IoJZGc0mTTiM00j2oEA608Uzp1o3gd6AHMmahlby+c1L5w6k1h67q0NlbsxdcgUAP1DV4rKFpGPC15D4i8Q3mvag9nauwXP4VduNTuNdvfIjDhG4yDXZeHvCMNsqzSBS/ckVO5O5H4R8KpawpNLH87Lkmu8RAkYA4plvGsSBAAMccVOQMVRRHRRRQAUUUUAFKKSlFADqKKKACiiigApc0lJVIBaKKKYBRRRQAUUUUAFFFFABQelFB6UAMooooAKKKKgAooooAKKKKACm06m0AFFFFABRRRQAUUUUAFFFFABRRRQBIigqc0x0G2lVgvFIzAigDLvrVLlCjgV5/rXhUpIZ4FJwc8V6a8eary24dGUjOaAseXaTrl1pc4hn4HfJr0XS9YhvYgwcEn0rA1zwxHOjSRphu1cWmoXmg3pWRiIwe1TsTse1IwP41KPrXJ6L4ihvIU+b5vc10cdwGwQRVXKTLgFMYUBwRSk0ARkc04cUhNANADqKTJoyaAFopMmjJoAWikyaMmqQC0UmTRk0wFopMmjJoAWikFLQAUUUUAFJ3paTvQMWiiioKCiiigApKWkoAKKKKACiiigBGpAeacRmkCEUEslTkU84xVcSbRimPcBaBEspABxVCWYIMk8CmXWoJEhZjjiuD8S+K1hR44mbd7UmxNm9q3iSKzQhXGfeuGu7m+8Qz7YwSmcZBqHS9Pvtfud0hzGTnkV6Zofh6DT0B8v5sZzS1YtWZPhbwmmnxCSVSHznkV2QUL0GKnAGOlMK+lUUCE5qbPFQqMVJmgBKKKKACiiigApRSUooAdRRRQAUUUUABpOKDTapAPzRmmUUwH5ozTKKAH5opo606gAooooAKD0ooPSgBlFFFABmjNNoqAHZozTaKAHZozTaKAHZptFFABRRRQAUUUUAFFFFABRRRQAUUUUAROxB6UBs9qeeaMUAKBnvSMmR1oooAhaEMMEZFczr+gRXsTERqHPfFdZUTqG7UAeNT6TqOiStNG8jpnOBW34f8biRhHdRmI5x85xXe3VskqEGNT9RXCeJPBMOoI80bMjjoEyP5VNibHoFnqlvcxh45UYHpirYlDdDXhtjc6z4cxAImaJP4mNdxonjO0lwt1MqSdxRcLndZzTxnFVLS/t7pQ0T7l9qvblx/wDWp3HcYeKM0Hmm4ouFx2aXr2poHtUqnAouFxuDSHIqUsBTWZTVJjGUhNLkU0ketFwFzRmmZFGR7UXAkB96XNMA56U6i4C0tJmlouAUY56UU+M4fmi4DCCBzSE471YkZNtU25NIdyQHPegmmopNOKMe1AXELAd6BzyKjaKTn5TUkREa4bg0BcU5pCcUpZT0NMbJoC47NL1pnPpUikd6AuHQ+1KzJjqM0yeVFQnPaubvdcsrLd58+3HqcUXE2bkkq7jyK57VvEdrYq2ZELDtmuX1PxpO8hTSgs7duK56HwxqXiG8aa+WWIE54Yik3bYm9y1qHie71ifybaGQKTjIWtPRfB887rNdMzjuGrqvD/hi30uIAKrH/aFdVGqKMBVA9hQkNIoaXpNvaRqqRqhHpWgV2dKUkdqTNMYm4+lPXmiigBSvpTOfSnilPSgBooooqrAFFFFFgClBxSUh60WAfn3oz71HRRYCTPvRn3qOiiwEnHrTc02ijYB2aKbThSuAUc0U4UXAaOKdmmt0ptFwJM0ZpgpaLgPzSGkFL2ouA2iiii4DaKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANooooAKKKKACnKuetNpytigGNkiU1XeBSvNXCQaQpkUhHO32kQXalXTIriNa8ERRjzrSLD9elepNBzwKrzW4YYIzQB4zBqmtaJJtd8ID+lddo3j2Ofak7kt3re1Dw/BdKcxKT71yd74R8liYAFPsKmwrHoNlqcV4AUYY9zWgh3dx+FeJzDVdLYss0m0dhWjpvjua2kVZ1c4POaLhc9gxScVy+neMbW/ZVyqZ9TW6l9A4G2RT9DTC5NIxFMDGnFw/ORQFqkUKOlPCA9aQJTwpFACrEpp/kL6VH8w700s47mgCQjFRsTUykY5pjYoAhLGm729RTzjFN49KAHq5xUifNUasop4cdutMCRlGOtQY5pxJPenBTQAinAqTzCKbsNKaQDWmNRgb+TTyBg5FQNcxxHDED8aAJgoFB4BNZ9xq9vEpO9fzrm9W8b29mhAG4npii4rnWSTbFySBj3rEv/EdvZZ3t+ted3Hii91WQpB5iAntU9l4f1G+IeaVmB/vUrivct6z42lnHl2T81zkWla1rspa4+ZM+h6V6BpvgyNSDIoJ966m00eC1TCxqPoKLBY5Lwx4LtrCJJHi/eD1FdrDaRxqAq4qZYgowBilzimVYZs29qaTipWOajIzQAo5p9NUYp1ADqKKKAFFKelIKU9KAG0UUVYBRRRQAUh60tIetACUUUUAFFFFABRRSikwEp1JilqQCnZptFACGkpTSUAKKWkFLQAope1IKXtQA2iiigBtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANooooAKKKKACkpaAMmgAFSZppWkPSgB+RUTrmjdS5zRYCJowe1V2tAxztH5VeGKkAGKAOfu9HinXDIv5Vy+qeDInRmTOT6V6K6A1C8YNKwrHjP/CKXttJuj838CatWtxqWny4dHwPU16uYRj7o/KqFxo9vcZ3p19KLBY4uHxxPbMEdAOe9bNr43ikGXZR+FRal4Js7hsxx8/SsG88C3IB8iL6UtRanb2/iqylIzMtaqa3YuAfPXmvHZvC+tWi7lTp71nFtetZlDdAe9HMw5me8jUIG6OOaGvYsfeFeORa/qEToHarbeJrns1FwuetpOjAfNTt6t3/AEry6LxVcKgy9WE8ZOOslO47npB2+tRsQO9efjxmx/5aUxvGLdpKLhc79pVB5NILhA33hXm8vi+Td9+oh4pnZuG4ouK56j9siXksKX+0rcDJccV5Vc+JblkARsmqT6vqciEKQc/Wi4XPWptfsolJM61i3XjS0iYgSp+NeXG2127bIAI/Gp7Xwjqt0+ZIyfxpXYXZ203j8DITac+1YV54pvL+4HlxnHtViy8CEFfOiPvXUWXhCwgGfL5+lPUNTgJLfU9QfaFkx7GrMPg24umQy+Zx6k16fa6ZBAcqv6VdEar6UWHY5PSvCMFmqnAJ+ldPBbRwoBsXj2qxxTST2pjsSIFB6CpjjFVATnmpt5oARutRt1p55pCuaAGDrTwKQLinDigBDRRRQA6iiigBRSnpSClPSgBtFFFWAUUUUAFIetLSHrQAlFFFABRRRQAU7FNqQUmA2ilNJUgGaTJpKKACiiigBRS0gpaAFFL2pBS9qAG0UUUAJijFLRQAmKMUtFACYoxS0UAJijFLRQAmKMUtFACYoxS0UAJijFLRQAmKMUtFACYoxS0UAN2UbKdRQA3ZRsp1FADdlKoApaKAFNN206igZF5Zo8s1LRTAZsPrRtPrT6KQCAetLx3FFFABhfSkKKewpaKAGGIdqTyqkp1AFZ7RJPvAGqcmhWcpy0IP1rVoxQIwZfC9i/S3T8qhPhKz7Qr+VdJRRYLHMyeE7RlwIVH4VV/4Q2H/AJ5p+VdbRQByn/CHQf8APNPyo/4Q6D/nmldXRRYLHHN4JiLZ2LVu38I2sce1olJ9cV01HSgLGEvhWy3cwL+VWk8PWCD/AFC1rDmigLFBNItEGFiAqZbOJPugCrNFAEYhHcU/aPSlopgIVHYU3YafRSAZso2U+igBmwUmw561JRQA0JinYFFFACEU3aafRQAzYfWjZT6KAG4oxTqKAExSnpRRTAbijFOFFUA3FGKdRQA3FJtNPooAZso2U+igBmyjZT6KAGbKcM0GlpMBMUmKdRUgM2UbKfRQAzZRsp9FADdlGKdRQAmKWiigBuKMU6igBlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUxi0UUUhBRRRQAUUUUAFFFFABRRRQADrTqaOtOpsbCiiikIKKKKAGUUUUAFFFFABRRRQA8UUCigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooopgAooFFUAUUUUAFFFFABRRRQAUUUUAIaWkNLSYBRRRUgFFFFABRRRQAUUUUAFFFFABRRRQB//Z'] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 47 "如图, 在 $\triangle \mathrm{ABC}$ 中, $\angle \mathrm{C}=90^{\circ}, \angle \mathrm{ABC}$ 的平分线交 $\mathrm{AC}$ 于点 $\mathrm{E}$, 过点 $\mathrm{E}$ 作 $\mathrm{BE}$的垂线交 $A B$ 于点 $F, \odot O$ 是 $\triangle B E F$ 的外接圆, $\odot O$ 交 $B C$ 于点 $D$. 过点 $\mathrm{E}$ 作 $\mathrm{EH} \perp \mathrm{AB}$, 垂足为 $\mathrm{H}$, 求证: $\mathrm{CD}=\mathrm{HF}$." ['连结 DE.\n\n$\\because \\angle C B E=\\angle O B E, E C \\perp B C$ 于 $C, E H \\perp A B$ 于 $H$,\n\n$\\therefore \\mathrm{EC}=\\mathrm{EH}$.\n\n$\\because \\angle \\mathrm{CDE}+\\angle \\mathrm{BDE}=180^{\\circ}, \\angle \\mathrm{HFE}+\\angle \\mathrm{BDE}=180^{\\circ}$,\n\n$\\therefore \\angle \\mathrm{CDE}=\\angle \\mathrm{HFE}$.\n\n在 $\\triangle \\mathrm{CDE}$ 与 $\\triangle \\mathrm{HFE}$ 中,\n\n$$\n\\left\\{\\begin{array}{c}\n\\angle C D E=\\angle H F E \\\\\n\\angle C=\\angle E H F=90^{\\circ}, \\\\\nE C=E H\n\\end{array}\\right.\n$$\n\n$\\therefore \\triangle \\mathrm{CDE} \\cong \\triangle \\mathrm{HFE}$ (AAS),\n\n$\\therefore \\mathrm{CD}=\\mathrm{HF}$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAqMC3QMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APbaQ0ZozWpsFFGaM0DuFFGaM0BcKKM0ZoC4UUZozQFwoozRmgLhRRmigLhRRRQFwooooC4UUUUBcKKKKAuFFFFAXCiiigLhRRRQFwooooC4UUUUBcKKKKAuFFFFAXCiiigLhRRRQFwooooC4UUUUBcKKKKAuMPWikJ5oyDQO4tFFFAXCiik6CgLi0UmaM0BcWijNJQFxaKSigVxaKSigLi0UlFAXFoozRmgLhRRmjNA7hRRmjNAXEopCaM0Ei0UmaM0CFopM0ZoAWikzRmgBaKTNGaAFopM0CgBaKKKACiiigAHWnU2lyaAFopMmjJoAWikyaMmgBaKTJoyaAFooooAKKKKACiiigAooooAKKKKACiiigAp4plPFABRRRQAUUUUAFFFFABRRRQAUUUhoAOKOKbS5oAXijikzRmgBeKOKTNGaAF4o4pM0ZoAXijikzRmgBeKOKTNGaAF4o4pM0ZoAXijikzRmgBeKOKTNGaAF4o4pM0ZoAXijikzRmgCFgd+aUA1OEGKCoHSgCOnFgKa2KryOQaAJi4HemSSqqkkiqNzdCFSzHgc1y2o+J0ab7NA4aU9Ae9DYrnY/ao/7y0ouY/7wrz55teZQ0cIP/AqhvdT1qyRDLFtz15pXDmPSlmVuhBqXcDXG+GtVlvk/e4zmuuFNDRIOlLSA0uaACijNGaACijNGaAENJS8UlABRRRQAUUUUANNFFFABRRRQAUUUUAFFFFABRRRQAU8UynigBaKKKACiiigAopKM0ALRSZozQAtFJmjNAC0UmaM0APooooAKKKKACiiigAooooAKKKKACiiigAp4plPFABRRRQAUUUUAFFFFABRRRQAUhpaQ0ANoozRmgAoozRmgAoozRmgAoozRmgAoozRmgAoozRmgAoozRmgAoozRmgAoozRmgAoozRmgAoozRmgAEuOKRpAagZvmoDUASM+aqTNtUt6CrNY+vTm3sWcehoA4fxl4qW1/cRsdzjbxSeBNL+3x/bLtdzg8GuBlujq/iRYn5xLjmvddD01bO1SNABlRUrVkrU1EjjRdoHFZWt6at+ihQOK2fKNHle1UUc9o2j/AGDqB1roc0nl4oIoAXd704EkVHT1pgOopKKQC0UlFAC0tNp1ABRRRQAUUUUANOKM0jUgpgOopBS0gCilxSUAFFFFABRRRQAU4Gm0ooAfxRxTaKAHcUcU2igAoopcUAJRS4oxQAlFLiigBKKKKAJKKXFGKAEop22kxQAlFKRSUAFFFKBQAlFLijFACUUuKMUAJThTSMUuTQA6im5NGTQA6im5NGTQA6im5NGTQA6im5NGTQA6kNJk0hagBtFN3UZNADqKBQKACilxRigBKKXFGKAEopcUYoASilxSUAFFFFABRRRQAUUh4oBoAWiig/WgAopB1607GRQBEy5NAWpcCgKKAGYrnvFiltKbAycGulK8Vn6laC6gaMjPFAHzboitF4sO8cedX0nZOpiiIIwFH8q8P8S6DPpWrJcwrgeZuOK7nw14lEtgBMx3DjmpWhK0PR/NjHORUX2mAttDDIrmm1uN12o3NFgZpZmY9DTuO5025WFIQDVePIxmpc0xi7fSgDFG+jrTAKKXFGKQCUUuKMUAJTqTFGTQAtFJk0ZNAC0UmTRk0AMagUGgUwFFLSClpALSUtFACUUtFACUUtFACUoooFAC0UUUAFFFFAAOtOpo606gAooooAKDRQaAG0UUUAT0UUUAL2pKXtSUAIaQ0ppDQAlOFNpwoAWiiigAooooAQ9KbTj0ptABRRRQAUUUUAFFFFABRRRQAUhpaQ0AR0UuKMUAOFKKSigB1FJmjNAC0UmaM0ALRSZozQAp6U2lJpuaAFopM0ZoAWikzRmgBGpN2BQxqKRsIcdaAHmZRwWApjXCAfeFcB4p8UTaTI4A6etVNL8RahqUe6OIt3+WlcVz0cXSZ4IzTxc158muXdq5N2nlqOpPFb2na5a6ioMMobPpyKLhc6lZMqDQZMVDC2Yl70r0xknmimlgc+9Q04GgCjqGj2+oIQ8ak9iawf8AhCmi/wBU+wZzxXYIwHU0y8vYbaFnkYBR3xQBy9t4Xlik3NNkV0VvaiFAoAz3qO21GC5QNG4INWhICOtCBDtlP20zdS7qAF20qjFJuFKGzQAtFFFABRRRQAhpKU0lABRRRQAUUUUANNAoNApgKKWkFLSAWlFJSigAxRinUUANxRinUUANIopTSUAFFFFABRRRQADrTqaOtOoAKKKKACg0UGgBtFFFAE9FFFAC9qSl7UlACGkNKaQ0AJThTacKAFooooAKKKKAEPSm049KbQAUUUUAFFFFABRRRQAUUUUAFIaWigBtFLigigBKKKTNAC8UcU3JoyaAHUUZozQAUUZozQAHpTOKcTxTKAF4o4pKKAF4o4pKKAEY8VVmk8uIt6VbYZFZOrv5VhK2cYFAHl/i/bf6nJE3INd/4W0a1stMheJDuZec157HG19rh5yDXrOkp5djEhHQUkSjN1/QYdSs5FK5civJNOurjw34vXTi22Idvxr3mYqIiTgcV4F4tjM3xEKxtyQefxpSCR7ppk63FpHIvORV0qCOaxfDaNHpMAY5OK2d+KopCFBULnaTUpcVl6nqMdlC0jkfnQBLc3fkRsxPAFeWeNPF07s9pbSfM3aoNa8U3Gq3v2a0LqN20kVvaD4REqrJeqJHznJqdydzlfBfii8i1AW94+EGMV7NYTLPCrqchhXB+K/CkdrZfaLKMJJk8r1rP8KeLWtbj7LdZ+U4+ahaBseuKoNPKCqtlex3EasuOQKu71PaqKK5HNSIMCpdoI6U0gDpTASiiikAUUUUAFGBRS4oATAowKXFGKAEwKMClxRigCMj0pMGpKKAGgYop1GBQAlKKKBQA6iiigAooooAKbg06nUDQzFGKfRQOwzFGKfRQFhmKdilooCwmKMUtFAWExRiloNAWGYoxTqKAsSZo4pKKAsOzSZpKKAsBpKWigLDeaUGlptAWH5ozTKKAsPzRmmUUBYcTxTaKKBMKKKKBBRRRQAZozTaKAHZozTaKAHZozTaKAHZpM0lFABTadRgUAMop2BTGHpQA7NIDSDNKBQAtLiil4oAbim8+lScUcUAMxSU449abmlcBM0uRUZBzxTTmncCYEEHmuQ8Y6ilrZSxlsEjiumkk8uNifSvI/Hl81xeBFPGMUmxMk8HAXOpJKeQa9UgdY0Az0rzDwXstoI3c4Irr59ZhVDsfkCkmJF3xDq8VlpsreYAwXoa8b0qK413xgl75ZKHuK6DWGv9XuREozG3BxXaeDvDUOmWSFlxIPajcNzodOhNvZxoRjFWHlA6mnzOiKMHGKwtX1WG0jJZsNjincdyTU9bi0+FnZ1BHrXl2s+Jn1m6a2jPBI5U0a5f3GsTtHAdyt71hw6NdabOLllxzzmk2Js9C8M+E0hUXD8lufmrura2VCFGB9K5jw34it7i3WFmG5RjArrYHDOD2oTC4l3axTIY3AI968p8VeG/s1wbmAkYbcQK9UuphGzE9K4DxNrMLI0KNlm4psGVfCHinkQSsA2ccmvSYbwSLuHQ18+Q2V7aXf2pF+QHOa9H8M+J1lVIZn+b0pJgmekJMCKXeGOaz4pPMQMp4IqzHnbVJjTJ8ijIqEg0oBoGS0EgdaUDNRyA4oAXeDxmnjpVRQ2/OKtjoKYC0UUUgCiiigBtFFFABRRRQAUCigUAOooooAKKKKACnU2nUDQUUUUFBRRRQAUUUUAFFFFABQaKKAEooooAdk0ZNNooAdk0ZNNooAdk0ZNNooAdk0lJRQAtFFFABRRRQAUUUUEsKKKKBBRRRQA2iiigAooooAKKKKACiiigAooooAKTilpp4oAXAoxTM0uaAHUc03d60u4etAAelRFiDUpYYqBjzQAu73pw6VCWApvnqP4sUguWaXiqhukHO4Uw30f98UhXJbtN8ZUd65O88I/bZt7KD9a37jU4IgC0gH1quNfswf8AXpQBnW3hY28e1cYp8fhmQy5JUg1cfxDa9pUpF8R2yn/WpijQNC7a+HreBdxjG71q+qCMbQcCsr/hJ7PH+uSs7VfF1pb2rSiVOKLhoaOq6hFZwszsue3NeYX97daxqAjhY7N208VnXniG48Qag0EZYICORXf+G9ItrSNXkYMxHU0tydyXQfCqwxCSVATWpqegQT2pUR84rZiliAAUgCpyUcdQfwoKPC9UtLzQtRV4ywTfn5R2rufDniVbm2G5vm6c1t67okN9A2VXOK8k1qO70C98uBXdc54NFrE7Hd+KPEaxWpSJvnz/AAmub0HSLnVrtp58lScjNHhzQ7vXJlubhXVG7GvVdM0iOzhVEQAgY4p2HYzR4bt5LMxmMZIrz/XtEn0W6aeHhR0wK9lEBUdKydY0tb6BkZBk+tFgscd4Z8UpMoglOGHHPrXeWs6yx7sjkV47q2hXekXpniD7S2eK7Dwt4iW4h8uQgOOMGhaAju+DTgKqRTB2AzVkE4qiiQU7ANQbyDTlemBKYwBTaXeCKSgAooopAFFFFADaKKKACiiigAoFFAoAdRRRQAUUUUAFOptOzQNBRRxRxQUFFHFHFABRRxRQAUUUUAFFFFABRSjFHFADaKKKACiiigAooooAKKKKAFooooAKKKKACiiiglhRRRQIKKKKAG0UUUAFFFFABRRRQAUUUUAFFFFABSEGlqKRiPagBxBpvQ1E0uOrAD3NU7rUIraJpHkXC9s0XC5eZwMmoTcIo5PSvOtb+JFnbStCiuW9RXO/8JTqeruUs2dSfVTRzC5j1mfWraH70mMVk3PjDTrcnfN+tcLa+GvE903mS3IKH2NbVp4JmkYfawrjvxU3Yrslu/iHp+SsU+W+lZsvjKeUfuGDenNdVD4C0FVBezG7ueKvR+EdGiHy2+PxFGoWPPpNd12a3ZoIwT25qKCbxlcR70tFKn3P+Feqw6HYRrhIeKvw28cKhUXgdqLBynjNzp/jG8GHtPyY/wCFV4fDXiffmW2I/wCBH/CvdkUZ9KeyIRyBRYdjxdfDOtkcwtn60ybw1rSoT5TdPWvYJiqE8gVyviTxDFYW5GctjHFHKhcp5DrLanpnEgKt6ZqhaWOueILQLHGWU+hNdhpGnXHiq/8ANm+aJXI5HavV9I8PWWlwKkMW3FKwkrnh+neE/EmlMJI7QH6k/wCFdHFfa7bp+8iAx1r2Iwxuu0iqz6RZSAh4+vWnyj5TyxPF09sP9IYKR71p2PxEsA22efB9q7Kfwhos+d9sDn3FZdx4A8PkHbZgH8Kdh2K0XjTTLoYW4Boaz0vWZA7tn6CqF14FjRW+yRhD2rnrnwp4qtyTa3Soo9v/AK9K7EepadHa2FssEONq9CRWnFcp1zXg8mr6/oL4v5mkC9dqk1u6V8SbZmWKVHDHg5FFwuexCdT0ob5+1crYazHeIHSQAH3rXiuWOMOD+NMYzU9JF7C6lB09K8q1nTLrw7fieJcRA5YmvZY5WI61nappltqULJOm7PWiwWOX8KeJrfVFjTzAXPau5XlfrXh/iPTrnwpqL31l+7tk6ADmu38JeM4tYt0hLHzVHzbvWhPoCfQ7dkJ6U3aaSOTcM54NTrg0xjApFPpxAxTaACiiigAooooATFAWlozQAbaXaKTNGTQAbaMCjNGaACiiigAooooAKKKKCkLRRRQMKKKKAClpKWgAooooAKKKKACiiigBKKWigBKKWigBKKWigBKKWigAooooAKKKKACiiiglhRRRQIKKKKAGHijNKRmkK8UAJupQaZzSjrQA+igUuOKAGg80tNICmmPMFFAEh4FQtcbc1Xn1GOJNztgCuY1HxVbRbhHIpYdqL2C50k2rxQDLlRiue1Txhbw5CFWPoDXFX2qanqblY4yVJ6g0aV4Rubu4D3AcA+5qbtk3bLl54tvb393DbSDPGQKrL4V1bVQZGvpkU9s13uneGba1jUFBkf7NbsVuka4VR+VOw7HnWlfD1ItpuXErDuwrr7Hw3ZWoBWCPPritsIPQU/bTsg5SFLaNAAEAA9KmEa4+6KXFOFAxuwelHl0/NGaQEZAHSmk4p+KYyZoGML0SXGxCWOAKZOwhXcTwBXEeJfFiW0bQQuC57Gi5LYvifxMLXckTbmHYGuUs9KvfEN1vlZ1TOeaZo2l3Ot34nuFO1vQmvV9L02Kzt0VVGQPSkJK5W0DRI9LhwAMnmt8t6CkEeO1PWM4plEOwls7jT1UingYNLVDEyfWmsuafRQBD5QoEKk81NRQBi6j4fs70HfAhPuK4/VPh/DKSYNsZznIFek8VE4z2FKwrHjcnhzUtFYulzK6jtU1t4yvbBhHLayEDuRXqk9pHOPmRfyrn9S8MW91EwCLn/dpWYmmV9K8XwXgUO6xk9ia6OK/iljwrK+a8ov8Awjc2UxkgDnnPU1JZaxqemMEeP5R3JpXaFdo9B1jSotWtGhdVOfUV5TdaXdeFNUaeMuUdgMCvQ9L8VW8xXz5FDdxVnW7O11mxO3BwpwQKb8g3HeG9ZS/tl/eDcO1dOHKjPWvDra5vPDuoEEERs3JJr03RPEMWowD5wWNCYJnSC4zxipN+RVOMAnIyc1ZB4qiiTdRupuaKQD80Cm8UoNADjTCadUMjhcknFADifekB561Sk1C3TOX4qFdXtCceaKLhc1fxpRzWX/bVlu2+byeK0YpBIoKng80BcmooooAKKKKACiiigpC0UUUDCiiigApaSloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKCWFFFFAgooooAAaD04ppODSryaAGY9qUKRU4XIpHXFAEQ4pS4AqORtoNZl5fpbxlmYce9AF2WdR1PSsLVtdt7JSGOT7VyOs+MCsrRxZLE44rPsNNvtfk3yNIin1pXJuRan4iu9RumitXO09K0dM8K3F0FmmGdxya6rR/B8NiVMgVyO5FdNHbJEm1VAHtQkNIxNN8P2ttHzHzW1DbRRfcXpTiMVJF1pjF20uKk20hoAZinYpaKAE5pKdxQQKGAw4FGRTXOBVZpcZpAW94qKa4SFCzEYqlLdrEu5iBiuA8UeKHLPbW5JYf3TQ2K5e8S+LVyYIGOSccGsDTfD8+rXAnmGRnPNL4e8N3GpXP2i4ZiCc/NXqVlpsdpCEVQOO1SKxQ0rSYrCJVVMYrZjGDSiPHpTgMU7lEq9uamXAFVgcU7fQArYzScUhJNHNaJFWF4o4pOaOaLBYXikJo5pposFhaSilFFgsNIpmwmpcU7bRYLFGW0jlHzisbUfDlvcIcRjP0rqNtBRcdBQwZ5Lq/ha4s4jNAMEVi2niG9sJhFO52jjivari2jlj2soI965PVfCUF2WdEVTUNENHO3Qs9XtdwHz47+tc1BcXGh6gF3YQVpXmlXmmOxUuUHoKybm5W6jIkG1/U1LJZ6noOtx3kCZb5sc810atlcjvXg2kazJpt6AWOzIA5r2HRdVivrZSGGQKpMaZtA07NRA55zTgeaook4peKaMUtIB/as7Um2QOw9K0M8VgeIroQWbH/AGTQ2Js8/vdanl1lLVH4ckV1Fto820Mw5rh9KaO81+OUkAK5/nXptzqEVtGWBB/GpQkcF4it77T7qB4zgNIM/TNenaKzNYRFuuwZqhNYxarbwyMoPORmti1j8mMIMDAwKaGi1RSZpc1QwopBS0WAKKOaKBoWikopDuLRSUUBcWlpo606gLhRRRQFwooooC4UUUUBcKKKKBhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFBLCiiigQUUUUAMYZ7UoODk1KoBByajf7tADvOVR1qN5xjPpVCV2DH0rG1nWU0+2cu2GI4+tDYNmjqeqxWkLsz4x615tquu3Op3TW9su/PZTzWVPqeqa/qPlQNuhY969C8OeFIbSNJpo/wB93NTuTuYeh+BvPkFxdF1Y/Ngk131rZR2iBERfwFaEaKsagcYGKXaDVFWIlOKkBpdi0baYCbN1OVdtA4oB5pAPJpM0hpKAFzSbqaSaaeKAJcigmoqCfU0MBsp4rOurlbeNncgAc1PeXSW8RdzxXl/ibxeLmY2do5LMdhqWxMn8QeJpJ5WtrTDsc4APNR+G/Ctzc3YvLyNgzdQc1f8ABPhMsn22+jzKGyPpXptvbxooAGBRYEjP0+yS2QIFHHtWlgYp8iBRxUVMYtIc0DrTqAI+fSk5qYAUu0UARiloPWirRYUUUUwCkNLSUAJS0lFADs0u6mZozQBJkYpjPikzShQaTExud1MMWamwB0pCaRJQudOinjZGRefavOfE/gx1maa0VmPYCvUyajkAYYPNTYGj5m1mC7suJYimD1NaXhPxpJYTiF2+UnGSa9Z8T+FLTUrZiI8vya8F1/QZ9IviduF3ZBx1qWrENWPo7RtXi1K2WRHDZx0rXBrwvwD4rS0eO1lcjJr2yzukuoVljOVNUmUmXAaUUwfSnimMU9CTXCeONQRLUxhvmIxXZ3E3lI3PGDXifjK+luNTWNWGPMGRUshmf4esdSMr3EMDsA5P610kMuoalqv2KeMqvt1rp/B8Cw6aVI+8BW0lhaQXf2vGJBSQGjp1t5FjFGc5UVeC4HFYGmeJbTUNQms4mJkjODW+GyKtDQppc02lFUUOGKcMUwUtMB9Npc03NJjFopMmjJqRC0UmTRk0AKOtOpgNOyaAFopMmjJoAWikyaMmgBaKQUtABRRRQWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUEsKWkozQIUClwKbuo3UARykqQAetR7iOCafLyR6CuR8T+KotHjdVZTIOimhuwN2JfE/iCDSrUsPmY8YBrzyz+3eJr8/M4jDdx2otYLvxRfl5VdY2ORzxXqWhaHDp0CgKu7HPFTuTa5Donhm306JSY1LgZzXRBAOAOKdgDsKDVFCUUUUAFFFFABSA4NLTWoAk4NTLtx0qqHqRZMUASvsA+7UEjADpQ8vFQPJ8tACPIADWTqGqJZRl3ccds03U9XhsImZ3CkDvXm2ralPr90YYMlW7qaTYmyXXPEtxq0xtLUsvPUelbPhrwUIiLm8USM/zDParHhjweLULPLlm9GruooRGiqAMChIEhbaBYItiAAdMCrCMR0NMAxThxTGPYk9abRmjNABRRmjNABS5NJmjNACjmlxTQadmmMMUYozRmgAxSEClzTaADApDS0hoAaaSlNJQAU5WxTaPxoQmOLimb6DSYpgLy1J5eaUE04GgCNoNwIPOawdY8M2WoQt5kClscE10e4VG2KkR84+LvDU+i6gbi2BVV5worf8CeOzFKltdMTjH3q9P8QaPDqVq8bKuT3xXh2v+FrnSr5p4A+0HjFQ0S0fRFpex3UKSIRhhnip99eOeEvGrQ7LWZgCPl5r1azvUuog6sDkCmmNMxvFOqtaWbbImY89K8NvdSupNVaRrSVgr5+4a+jp7WO4TDqGz6is5vD1kTkwRZ/3RRYTPOdM+IIs7dUOmzZA/uNUerfEGa9tjFb2U8bnvsNek/8ACP2X/PCL/vgU5fD9lu/1Ef8A3zRYLGH4L0d4UXUHGHmGTkc126ZxTIIUhjWNVAA4GKkbAqkNDs0ZpoxS00UOU06mCnA1QCmm8UpptJjY7NGabRUiHZozTaKAFB5p9MHWn5oAKKM0ZoAKKM0ZoAUUtIvSloAKKKKCwooooAKKKKACiiigAooooAKKKKAClpKdigljCaaTTmpjUCFyKY0gUZJ4HNNLY5zWLrerR2Vq+WG7aR1oYFXxD4nt7CBkD4kPSvNksbvxXqqzSDdET1pkNre+JNXDbm8pX5z6V65oegw6ZbKgjww7ipepL1ItA0GHTLVFC8j1rfUAdKNvtS4qihaQ0tIaAEooooAKKKKACmnNOpKAG80vNLig4FAEbdKxdX1aGxhJZsH3qfWdYh023Z2IyPevKbnUrjX9WaKItsBHbik2Jsm1Ka71662R/MmccV1nhTwoLJUklTBrR8P+H47eFXkQbjzXWRRqiYAAoSBIasSouB0FG2pDTaYxKQ0tIaAGmlzSGkoAdmjNNooAdmjNNooAeKWmjpTuKACijijigAoo4o4oAKQ0tIaAGmkpTSUAB6U3cAadUZjzTQC7ge9KDTdhFIWx3qhDzQTiq7zYqCW7AzlgKlsC7vqNm4rDutcitslmB/GuS1fxqFfZDuyeOKlsVzuru+hgB8w1xXiXVtNnt3jVsvg9q5/7fqWpyfK0gU/7Nadl4SublmkmbII6GluG54/dXD22qtKhwN+RXrngXxak0KRTS/NnGM1w3jfRl06RcAZJ5wK5XT9TmsLhXRyAPSp2J2PrWCdJk3Kc5qUmvKvBfjIXKxxSyc98mvULeVZ4w4IIPNUmMcTQHIqTZmkMfFMYCSlDbqZjFOWmCH04U2nCqKAU4U0U4UxhSUtJSYBRRRUiCiiigAHWnUg607FACUUuKMUAJRS4oxQAq9KdTelLmgBaKKKCwooooAKKKKACiiigAooooAKKKKAAU+mU4mglkb0xzxSuwFVLq6SCFnbsKBGfrWqJp9szlhkV5Rc6heeINUeBFfYD1FaninU31O5e2tzkt2zXTeDvDS2cCXDJ87DnIqdydzW8K6HFp1qCygueeldMABUUKGMYqWqKCiiigApDS0hoASig0meaAFooFO2nFADajdttSE461WncAE0APMmASaxdZ8QQadC26RQQOM1X1nXIbKA5cA9q8wu21HxLqAWMbot2CQe1JsTZZvry98TX5jiV/KfuprvPDHhRLCJZZMFiOc1L4U8NR6TZoGX5/cV1qKB0AFCQJAkSqoAAAFG7FSY4qEjmmMdvNGabRQA6ikyaMmgBGFNpx5puDQAUUc0hoAWikyaM0AOFLTQaUUALRS4oxQAlFBpu73oAkpDSBqOtACGkpW4FQtKFFAEvFG5QOTVR76JM5NZt7rVtCpLSAAUXC5rTXKRoWLAVk3OrwRZy4rjdc8bW6wvHBLmQdAa4uS/13UZP3UeUPQ5ocibnpN74st4jgSLntzWBf+Irm5J+zxs+f7tZukeFLu8YPfKV+ma9B0fwvZ2oGASfep1YXZ5+lnqepSYkilQHvXQaf4GDYkllJOc816IthBGowo49qVY1B4xTsBi2OiW9ogHlqce1aBgVEbaoHFX1QYpsqgRtj0oGeE/EePzLyKMdWbFcPNorxzKhBG7mu/8AHYzrVqO3mVHrloIRHcqBhUHOPaoJOKhS50iQTJuwK9d8F+L47iJYpXAYDGCa4v7OuqaaNoBbFcglxcaNqRI4G6gR9UQTLKm5WyCKlPNeeeCPFsd7bLHLJ8/QAV6Cj7hx3q0MMUKMU8UGmNCU4U2nCqKAU4U0U4UxhSUtJSYBRRRUiCiiigBV60+mL1p9ABRRRQAUUUUAFFFFADqKKKCwooooAKKKKACiiigAooooAKKKKACkJwetLUUh5oJZDO+ATngc1wHi/X/KJgifDMMcV0+u6rHYWzEsMlcYrzazs5tc1ZZGztD9/SkyWang7RXu5Y7y5Xd65Fep2saxRhUGAKpaXpaWNqI1A/CtNVAHSmkNAaSlNJQAUUUUAFIaWlwCaAImJpKsGLgUwx4oAjyaQuRnmnkVBKQoJY4A5oAgmmYHrwK5HxP4nTS4Hy2WHpSeI/EsVmGijcM59DXL6do9x4mullmLCNuxqdyWzO083/ijUDtZhEGz8w7V6vo2g2unwLsiw2OSBUujeHoNLhUIihgOorZEYUU0u40u41Bg1KKbjFOpjJO1QHrTz0phoASilxRigBKKXFGKAEp1NpcmgBDTcU+l20AR4FG1fSpdvtS7fagCDFOH0qTaM9KcEoAYCacD607bgVBI+w0AS7QetIVUCqcl1t7VAb/14xQFy8eM1VlkZScNWXe6/aWiktOgI7E1yN947fe0dvb+bz1UUriudzLeiNctIox6muZ1bxnaaeCG+Yj+6c1yM02qa6+As0Ib0q5p/gGcuJLi6aQejUrtiuzNvPHf9oSmK1jkVicZ2mp7Lw/r+qjzDP8Auz2IrvrDwrY26KTBGW9cVuwWCRLiNQo9hVKI7HC6f4FgVg17Ernua6a28P2VuqiOLAHTFbX2bA60eVjvT5UBXitYoxwuKtRxqvQAUBSKcOKbAkzUR4PFOBpGHNIAUn1psxPlt9KctNnH7tvpSA8Q8cf8hy0/6611d5pS3fhx3wCwUdvauU8b/wDIdtP+utem6JEs2lIjDIKjioQkeU6C4tdU+yyg7R2q74u8GNNaLd26gZGTVzxHYfYNZedFwM9q67TpU1bSREcErHigR8/WOpXujXoCMQVY9K908DeLV1O1igmb98cZJrzrxRo4sNTB8nK5zmq+nXcmlzjUYCSv9wUr2EfRIYkZ9adXIeGPFsOqQqjlUcdQTXWI4dcg5zzWiZSH04U2nCqKAU4U0U4UxhSUtJSYBRRRUiCiiigBV60+mL1p9ABRRRQAUUUUAFFFFADqKKKCwooooAKKKKACiiigAooooAKKKKACqtzKsSl26VZPSuR8basLLSmCNhwaGyZHCeK9Ykv78W8TbgrAda7LwbpfkW2915ODXHeGdFk1G/a5lG4Mc163Y2y20KKo7UkSkaCdKdjiowwAqUHIpjI2pKc/Wm0AFFFFABQvBoooAkeQACq8twAetJMxrOvJhGNxIAFAFt71EUljxXGeJfFsUMZhgkBdhtxWf4l8RhIGht2IkrnNB0O81W+M1x86lsipvcncl0nw/c61eC4uA2M9q9Y0bSI9OgVFUceop2kabFZQKoXBxzitXIqkhpAQKaaXNNJoGFIaM0lAC5NJRSigBKKdgUYFADaKdgUYFADDSc04iigBKXdTCaTIFAE24UbxUBYUhcDvQBPvxTTOFqCSVQDkgVj32tW9sDubP40XC5ttdjFZ93qsEGTK4FcZqfi+II3kbs9q4+51LVdUmKxudp/2TSuTc9A1HxXZR/KkwLVy1/4o1OVitpGGB96m0TwjPeHfOoY12dl4UtrYKXj5+lLVhY8sGk6nrFyWuVdc/wB0muw0LwXHbfO4Jz1zXax6ZBE2USr0UYQYp2GkZ1tpcUIG1B+VXRDt7D8qthaXaKYysBjtViFuOaUxZFRn5elNATMQaZxUYY5pcmmIWkIpaBzQAgFBp2KRhzUgIKbOP3TfQ09RzTLn/UP/ALpoA8T8YwvPrtqUGcS816foClbFAR2Fec3cgn15lbnbLXp+lLi1UewqEJHOeNrDzLFpFHPNYHgrUvJupbdz3wK9A1m0F1ZlOvFePys+k65nOAZBTYM7zxdoa31k8ipklR0FeeaLZoLwafc5VR3717FYzLqGmgk5+UZrzTxjZPpVy9/Fxg9aTEzKm0680LUPtFspMbNnk9q9Q8N6/He2yqz/ADAYOKzdLNrrugxqRmUIc59a46drrw/qQUHEbNk8dqExJntSyK2CDmplGa5Pw5rSX0KHdyfWurjYEA1XMVcdtPpRgipQ3FNbmqTKQ3FJin0YFDGMxRin4FGBSEMxRin4FGBQA0DmnUDrTsCgBtFOwKMCgBtFOwKMCgBtLS4FGKqwBRTttIRSKuJRRQKLCuFFLikosFwooopDuFFFFAXDijNNNMZiKVxXC4mWCBpGPC968h8RXjazrz2kZyh/xrs/GesrZaPPGGxIRkCuG8CWU2oXiX0i53d6TJbu7HpXhrS1s7KP5RuxW6wA6UyBdkKrjGKkPPWqKsR5NTxn1qLYKcOOlA7Ej9aZTS2TT+KAsJx60cetMYHPHSmb8daBWJqM1H5o9ar3N4sEZYsAKAJLqRIoyzMMDnmvNvFfifMptbb5ie60zxP4waVjbWzKzH5cA1U8J+FptQuRe3isGU9DU7kbi+HfD0+oOs9zuIbqGr0rT9LhtIlVY1BFXLbT4rePCqv4CrWzAppWKSIlGKUtQ3B4pAN1MAyaSnbMUmKAAUtGKKACnCm0u4UALRmkyD0oxRcBaKSlyM0AB96acetJLIqjrVN7oLyTRcLlhj71G7Ack1k3uuQWyks+MetcvqPjWJcpE4LdAMUriudrNeRxKSZAMVzd/wCMLe0mMeVJ+tcdNq2q6gxSCEsG9DRbeCLy/mE94JYye2TS5mLmuT6j4zmuHKQI/J7VTitNS1RwWMqg12uleArO2CyFyzehrqbewit1CqicdPlppDscLpvgh2jDSyZ9jXR2Xhq3tT/qlJ9cV0aKF6AflTqYWK1vAkIwqgVa+UjFRkHtQqnNAxfKFJtxUtIRQBHmnbvWgr6Um00APD00rvpuPapEOB700AzYRSbTUzEGm1QWI8GlHFOpMUgsLmmnrS4pjNg1Ihw60y5/1D/7pp6jjdUc53QSD/ZNIDxd/wDkYpf+uteraV/x7L9BXlL8eIpf+uteq6V/x7L9BUolGg0e9SMV5b400UpMk6jHzZ6V6ulYHiizFzaHAyQpNX0LexkeArv7RYSIx5Ukc/WrHjXRft+kyIFyx9q5bwte/wBmaqtoxxvc16rdqssBGMg+tQSeGeCNUksNduLOUnap2gHpXo2saDFqtn5qgbtgwa878T6TJo2si9jUgSygk/jXqnh7UI7ywjAIO1AKRJ5lDLc+HtSET7ti16ZomrpeW6ncMkVm+LPDy30UkqL857CuK07VJdDvPJl+VQQBk0AeyrLkDuKkVsisPSNTivoQyPuOOcVtRkFa0RaHmlHSkNKOlMoKKKKQgooooAB1p1NHWnUAFFFFABRRRQAUUUVaAfSNS0jVKAbSikpRTAKDRQaAEoooqQCl7UlL2oAYagmYKpYngc1Oay9ZmEOnzPnG1DUgeXeOb433iOCzQ5Rxg13vhHSE07T40C4x7V5/4dRda1v7U6hjHIRk9ua9jt41jiwBimhR3uS0UUUywooooAKUHmmk4NIDzzQBOFLCqlyQnU1Y3jBGcVl6lcLFGzswwvNAmyKa9jhQsx6VwniTxR5uba3Y78+tUfEXilpZmtbdDubPK1e8KeGnuJFvbtd4bswqdyL3HeFPBy3ErXeoR7gx3Ia9IsrWO1QJGMAUkEKRRKqqAAMYqygqiifNITSCigCJ+tLGcGhutMyQeKAJmOaZSCnqKAGjPpShDUgAxzTximBF5TYqLy2Bq3lQOtQO656ikwGKhXrTt4AqvNMqgneBWTdapDboxaZOO2aQrmu9wgNVJr+KI/McfjXA6n8RIbGUqsBl91rmrrXtR8SS7bWKe3DdDtpXFc9D1LxZZ23DNnFcnqnjdbg7LRmzVXSfAOqTS+bd3bOrHOGxXf2HhLTrZF8y2Rmx1xS1DVnmiaf4h1s5Q5RvUGui0bwCA2+/iyc54r0CKwt7f/Uxqn0FWVT15p2HYyrHQrKzZTHHgj1FbewFcHpSKAO1Shlx0pjIwoUYpaCeeKKYBRRRQAUUUUAOooooAKKKKACm96dTe9NDQDrS0g60tNjYUUUUhCGoXHzVK1RsMmgCVf8AUmoJP9VJ/un+VTjiLFV5f9TJ/un+VSSeMSE/8JJKP+mter6SP9GX6CvJZG/4qWT/AK6165pI/wBEX6CpRKNNKgvYllgkB54qccCkK71Iq+hfQ8S8SpJpWvw3KcKhzXqHhnVv7W0WO4Jzn1rm/HukedaySKOQvHFZHw51J4jFp8jEEY4NQyGdR4x0kahZbgM+Xlq57wJqqLJLAzfdbaPzr026thLYSjAOUOK8EufO0fxTGqEokkpPFIR7w22VPauD8WeFlu0MsSfNnNdjo0wubJSWBJrQktUdDuAOfWmho8X0HXJdFvBbXD4BbbXrml38V7biRD1rkPFfhBblWmtwEZeciuQ8P6zeeH9WjtLt3ZO5bpTWg9j28nNKOlUtPvor62WaNgQ3pV0dKssKKKKQgooooAB1p1NHWnUAFFFFABRRRQAUUUVaAfSNS0jVKAbSikpRTAKDRQaAEoooqQCl7UlL2oAjauN8a3fl2RizguMCuwlYIpYntXlXj3VBJf2UETZJkAYfjUsTLHw00g21tM7gktIzc+5r08dKwfD9oLWzj4xuUE/lmt8VSKiFFFFAwooooAjkJ3CkYkDNK65+Y9qy7/VrewjJmbGKBXsM1HUVs4zI7YrzrWvFVxqE32e3XKsduQad4g1yXWZDBaNkE/pWl4X8JMH86ePknNTuRuHhjwl5rrc3Gd2c4avRYLOO3QIqgAdMCn20CW8QVRUpbNUi0hNvtSqMU4DijGKBC5NHam0uTQAhpNmafgUZCigBAmKUnb2qNpwM1Tlvgp5PSgC7JMVFQPctjise71+2twfMbFc7e+MrckpDIS3ak2K510+orApMjbRjqa5fU/GVrbMVjnUt6Vyt7f61qrbUwUJ/SksPAtxdyCS5iGTSu2K7Y6/8Y6ldnbbwbwf7tV4tH1HW2Bm82MexNd/pfg+3tEUNH0roYdPihACDj6UajscFpXw9iRA0rsxP97JrtNN0C0solQRRkj/ZrVUBR0p24CnYLDPJjUYCgfhSeUKczigMKYxnl+9IUIqUc0pFAERJxTPMPpUrDioytADl5p1IKWgAooooAKKKKAHUUUUAFFFFABTe9OpvemhoB1paQdaWmxsKKKKQhrU1RmnPREOtACtwuKrTHEEn+6asydaqXP8Ax7yf7p/lUsk8VkY/8JNJ/wBdq9h0gf6In+6K8ZiSWfxRLgcCavatKQraqD6CpQkXTRk0pppq+hXQztWtFu7Z1buK8njibRfGXmDhB27da9llGUxXlnj61e0El2gwc9alks9Psbz7Rp6N2Za8r+ImmsmpQ3EacLySK7XwlqkN3o9uitmQLyKTxZYLdaVO5GWC1JJmeAr8z2UYJJOa77dxXkXgS5a0nSFjg5r1qNw8QYd6ECIplEq7SB+VcD4v8Mi5hkniBD9iK9AxzUVxAs0RUjINWWeS+F/FsmkXv9n3JAVMAEnmvXLS8S6t45FYEMM15V4v8GsJDeW0fz5zUnhbxY9o32S7fBX5RSvYV7HrgGRxTtgqlYX0V1EHQ5q7u44qihCopppS3pSDmgBB1p9Jt70tABRRRQAUUUUAFFFFWgHZoY5ptFSAUopKUUwCg0UGgBKKKQctUgKeKAeKV+lNA4oAytavFt7N29Aa8VsGk13xPKGywimyP0r0rxtcmKxYZx1Fcn8MbATateyuP4sgn6Cpe5L3PVrWDZBEBxhAP0qyTt4qZQAoAFV5+HNUihwbNKTio0NK5FAx24Ux5gvJ4qPdjk1z+uazFZREmQA+hoYmzT1PWYLOzldmXIGQM15DqWq3ev6iYrdmCE1LqN5e65ceXArlDwSprrvCPhdbKNHlGX96ncncd4Z8KeRGks6Amu6ggjgjAVQPpU0MKqigAACnMtUUROaaDzTmWkCjPNA7kwPApCcDrQQABzVeeXYO9AibIHem+YAazZL4KCWbFZN14hghzmVRj1ouFzpjdIvpVa41GGNSS6j8a4W98V+apWLk9sVz89xqt85EcUhB9DSuK52up+Lbe2Ugcn2NcfdeI7m/dhBvXJ9KdYeEru/kBuDIgPrXa6V4Qt7EA7g/rmlqxanD22lalqCfvHY59RW/p3gl8q8oU/Wu8jtoUGBEo+gqwqKvQAYqrDsZ1hoVrboMxjNaiW8Mf3VxS54pN1AwYCm5pSSabigAFLs3GjFFADZFwKYM1K3NN20AOWncU3pRQAh6VGetS03ZQA0dKdRtpcUAJRS4oxQAlFLikNADuKOKbRQA7ijim0UAO4ptFFNDQDrS0nelpsbCiigUhDX6U+DGDSFQarvKYzgUATy43VVuh/o8n+6amR/MGajucfZ5P900mSeR6PGp8RXWR/y1r1uyGIVx6CvK9GQf8JDd/wDXWvU7T/Uj6VKEiyaaadSEVXQoYRmub8VaUNR0549oya6U1DMgdMEZqWSzxXwdq0lj4hubN2IVGwM163cKLvTGB5DKK8f8SaVLomvG8VSBLIP516roN2l5p0YyD8ozUknn4xp/iRYhxj/GvV9Ok8yxib2ry7xbbtb+ImmUcYru/DF2ZrGJT1ApoaOg200ipB0pp61aLRVubdJ4irgEY715p4k8KtFKbm3Xbg54r1UpmqVzZpNG6MAc+tDBnmnhXxHLbyrbTMc5716da3QnjDBgc+leYeJ9BksLg3NsCSvOFqx4V8UOkiW9x8pHXNTsTsepLzipQoAqpZ3CTxK6NnPNWy3FUUBxSU3dlsU6gAooooAKKKKACiiirQBRRRUgFKKSlFMAoNFBoASmg/NTqjH3qkCYjOKXZhKQHimzSrHCSe1AHmfxDulSEoT/ABVo+AdN+yQG4xxIM1zPjq4W9umhTruH869H8PQCLRLUdD5fNT1JW5so+WFRzffNIpw3tSykFqpFDFyKbK2B9Kf0XJ7c1zHiLxJBp0LLnLH0NArkmu67FptszM+CK8rmu7/xHqbRx/NHuFXFN54pv9qE+U/qK9J0HwtbabboxjHm45NTuLci8O+G47C2VtmWbk8V08cG1umBTo/kGD0qQuoFUMeGCjBqN51HeoXnXJ5qpLcIOpGBQO5baYHvTWuAozWVLqMESljIg+prjtf8dQ2uY41ZiO6jNJsTZ3E+rRx5y2MVz2p+Lre3ViZOlefQ3Ws65cEQPIiuf4lPSuq0zwFfyYN9IsgPUUrtiu2YuoeLbjUAUsW3sfem2Ph7XdSYPNF8j+hr0ex8FaZa4It1DDuCK3oLdLdAqAAD0p2HY4/R/AltGA06kN3zXU22i2tmP3a5+orRUjvTjz70xlXylHQAfhRsIqztHpTcCgCID1p4pxApKAF4ptFFNAFFFFOwBRRRRYAoooosAUUUUWAKKKKLAJxS5ptFSA7NGabRQA7NJSUUAFFFFABRRRQAUlLSd6aGhR1paQdaWmxsM0mcUh4pjHFIRIWBqrNGS2RUiHJ61KwzQBFCCFwajuztt3J/umpwOcVW1LItH+hpEnl+inOv3Z/6aV6jaH90PpXlmhA/25df9dK9Ptd3lDr0qUJF0HNLzTU9xT+PWqKGGmEU8mkNSyWcZ490xr+xjKoCYzuNY/gK/LCWJz91iOvvXf6jCs1jMGHPlkV4jZ6hJoniLyM7RLIcVJJ2/jWH5pJx2q94Mn3qq+gqv4lIuvDrzA8+v4VX8CFvOIPpQB6MG4pMjNNXlaQ5DVaLRMnJpjjIIp8XU80n8VMZm3lgt0hVx1rzHxP4dn064a6tkPWvZwikdqz9UsIryApImaGgZwfhDxMD/o9w/wAyjbjNehJOsiBlPGK8d8RaRNo9159uCq7snFdF4Q8ULeRiGZsPnHNSnYlM9CTl81LUUJVk3DBzUowaooKKKKACikz6mjNAC0UmfejNUAtFFHFIApRSUCmAtBopDQAUz+Kn8U3HOakB2QBVO9fFu3NWX4WsrUJCIGFAHmeqxmXWmAXdyP516ppY26XbjGMJivOocPrzbh6V6TajFpGB6VKJRIxwCelVnlHJLYqW7YR2zOT0FcFrviZLeFo4HBk9DRcbZq+IPFkGnQFI3V3YbcA1wVtpt34mvxO7usYPeoLHRLvXr/zpw23dng16rpGkx6baKqryB6ULUQ3Q9Dg0uBVAUsO9bxIC9az3mCZJNZ95r9rbKTJLincZsTSYYfNioJLqOFcySBQPWuE1LxohbFpIGx71iXWsa1qqGNIgUPcGlcVzttT8U2dmpKTxu3pmuPvfHN9dM0UFg7A8blFGm+BpL5xJc+YCfc13Ol+E7SxjHygn3WjUDzeHRNW12ZXaWeAHtmux0X4frb7XuZfOP+1XaQ2cUX3VX8quKQBinYEinbaTZWyqqW8akdwK0FAAAxUXOeKkUmmUTVGRTgTS0AV2U/3qfCpB5NSbV9aQ7U70AOJpKZvFG/NAD6Q0gaigBKKXHFJTQBRRRVAFFFFABRRRQAUUUUAFFFFADaKQ9aMmpAWikyaMmkAtFJk0ZNAC0UUUAFFFFABTe9OpnemhoeOtOxTV6innpTY2ROcGq086RIWdtqjvU8lc94skMeiykZB9qTEyaTxDpsDEG7iyO2aaPGGm/wDPzF+deGx6fcapqsih3x2wxrfj8BXLoCPN6epqOZsjmZ6kPF+m+Z/x8xf99VBqXizTmtWC3MRJHrXmn/CCXIcDMn5ms/WfCNxYWwlBk6+pouwuzpvDN0kmsXLqAQz5FeqWtyvlD5O1ePeA4P37hicg17BaRR+WMk9KECLQbzOgxS+XSfKv3TS7z6UFB5dHl0bz6Ubz6UCGvAGRlJ4NeP8AxE0U2mqQXUS5C8nFexbz6Vz3i3TlvtKncgFlXikJo4Oy1H7f4YKN3NanhOQQXJGK5OzmXT9NMDHBB6GrvhvV2OpFARjIxQI9mtZAY8le1RzP8/SmWTZtlJ7rUjpubNMoakmDxUwHQ96jWLFP3GmhjxxSMc0mTTG3UwM7VdNivLdkZFztwOK8j1rRrrQ7/wC0228qpyQte0tvwRisfVNNF5Cyso5pNEswPB3i37ekdvONkh7Gu7jfdgjkGvFNR0+48P6sbuNSFHrXpXhvX7XULSNRKDKB8wHY0J2BHVDGKNlQrMuPrUglGOKZQhiPrTTEfWnmSmmSgBhGDRRnJzRTAfk0lFFIBcmjNJSZAoAdupC1JkU3PvU3YDt1PU561D+NKrc1QE0gHlsfauO1m8aNmQE4rrZG/dN9K4bXOZTxUslmPpimXVy/fFd5Fd+VCoJACiuF0eRI9RLMRgDvUfiHxVFbqYkcbjxxQBp+LvFaW8LW0LHew4xXG6FplxqtwJ7j5laqdn/psxnuJMgHo1bb67FZxeVbxjI9KQjuLSO20uBegIHY1S1LxdBApAzmuDXUdQ1KbYokA6V0GneFprv5pnP/AAKmMzb/AMT3l7kWrsM1HaaVq+ptmZsqfY139h4Rt7UqWCtj2robextoVCrEgx6CiwanCaX4FUAtLGCTXU2Ph+2tUx5VbYUDpxTuKAK8UCQjCjGKkzmn4FJigYyin4oKincAXHepFPNRDGaep560xk2RSGkz70Z96AGHg01jk044zTlAJ5NAEWPalUY7VPsWjatMCKlzUm1aNq0AN3cUzNSFRioyvNNDE30uaTFGKBC5ozSYoxRcBQc07FR520GQ+lK4DicdaaZFXkkCs7UtSSzhLuRxXl/iD4iCB3SI8jjg0nKxLZ6/9oj/AL6/nQJ0PQ185Q/Ei5Nxgl8Z9a77wx43TUJEhZgCe+aXOHMeoAhuaXFV7aQSRKwOQasg0yhMUhp/HrTSKBXG5ApN2TSMKRV+brQFyWilxRigLiUUuKMUBcSmE81JioyBmmh3Hg0u+mYpPxqguI5Fc34u/wCQJLXQvXPeLf8AkBy1LE2eeeEkDay+a9ktoIxAvHOK8h8H7RrD163DKfKXHpUIlMJLZBJnHFc14yijOl8DnJrqJHJQnFct4rP/ABLefehjuch4MX/TpwP71eqWyMIx9K8v8Fj/AE+4/wB6vVYWwg47UkK4/p1pd1I3zUbaY0Luo3Um2jbQMXdUdxGJ7aSM/wAQxT9tKooA8J8d2z6dfPsG1eazvB9wJNRHrkV33xI0sTW8s4FefeD4SmrFT2IpE9T3+xcfZIv90VbUiqNgD9lj/wB0VaXg0yifIpu9c0nWoGJDGmgLSsppTg1XRuKkU89aYD2XNRlB6VLnjrRxQBzmv6JFf2rKUyTXkE8uoeGNWYqWETP/AHT0r6A2LJxxXOeIfCttqUDEom4c5xSauKxV8PeIotStkIbn3NdLG2RkV4iz3HhbV0iZmMbGvVdC1yG/gUhl3GhMEb2CaQg1IpG3I70jEUxiKOKWmqTinUDHUUUUAIajdsCntUEretSIoXerRWv32A5qsPEFuwz5g4rjfiFdSW9unkNhiwH61Q8PaXqd7bO5OcjI4pCPS7XVYLgcSZz6VoIwY8dDXiWqXureHdXVZJMRAc4FeoeE9UGqWMcmc5HencEzoZB+6b6VyGsRAuTXaSR/uz9K5fV4wsbSHtQNnlOv6w+lSuyGvOb7V57q68wk/ez1r0bUdGk8S6rJZ2wy/WmD4Qatk4jH5VJBiaNczX8ILjao9K63TtNseHlmbd71BafDnxBaLsiCgfSrR8B+Jvb8qeo9To7CbTLM5V1P4VsJ4js16Oo+grgG8FeJVPVfypn/AAh3iX+8v5GmM9G/4Si2/wCeq1JH4ptc8yrXmv8Awh3iX+8v5Gl/4Q3xKf4l/I0XYXZ6Z/wlNp/z1Wj/AISm0/56rXmg8F+Jf7y/kaX/AIQvxL6r+Ro1A9K/4Sm0/wCeq0f8JTaf89VrzX/hC/Evqv5Gj/hC/Evqv5GjULs9K/4Sm0/56rSHxTadpVrzb/hC/Evqv5Gj/hDPEv8AeX8jQF2ej/8ACUWuf9atOXxTa/8APUV5v/whXiY/xL+Rpw8EeJ+zL+Rouwuz0oeKrT/nqtH/AAlVp/z1WvN/+EI8T/3l/I0f8IR4n/vL+Rouwuz0U+KbX/nqtA8VWo6SrXnJ8EeJ/wC8v5GgeB/E3qv5Gi7C7PR/+Ettf+eq0f8ACW2v/PVa85/4QXxP/eX8jR/wgvif+8v5Gi7C7PRv+Ettf+eq0f8ACW2v/PVa85/4QXxP/eX8jR/wgvif+8v5Gi7C7PRv+Estf+eq0n/CWWn/AD1Fedf8IN4m/vL+Ro/4QLxN6r+VNNhdnov/AAldp/z2Wj/hLLT/AJ7LXnf/AAgfib1H5Un/AAgPib+8Pyouwuz0U+LLT/nstH/CWWn/AD2WvOv+EC8Teo/Kj/hAfEv+z+VGoXZ6J/wldmf+Wy07/hKLP/nstebt4F8TJ3H5U3/hCfE3qPypXYXZoeOfFcRtZEjkHtzXiF3cNPcPIWY5PrXb+JfCur2sbPd8j2U1wciGORlPUHmpZLGVseHL97HVUm3kAeprHq9pMDXF6qAcmkI+gtH8ZQixiDSKDj1rSHjK3/56D8q4jSfDEklnGdnb0rRHhNyfuD8qu7LuzqR4zt/+eg/Kj/hMrf8AviubHhB/7g/Kl/4RF/7lF2B0TeMYD/GPypv/AAmNuOfMH5Vzx8JSf88xTf8AhEXbgIPyp3YWOk/4Ta3/AOeo/Kj/AITa3/56j8q5v/hCpv7go/4Qqb+4KNQ1Ok/4Ta3/AOeo/Kj/AITa3/56j8q5v/hCpv7go/4Qqb+4KNQ1Ok/4Ta3/AOeo/Kmnxpbf89B+Vc7/AMIVN/cFH/CFS/3B+VF2Gp0X/CaW/wDz0H5Un/CaW/8Az0H5Vzw8FTZ+4Kd/whMv/PMflTuwuzcbxnbn/loPyrG8ReKoLnSpIlkUk1F/whMv/PMVHJ4IkYYMeRS1DU5jw5rCWupPIzAA16ND4xtRGo8wce1cx/wghj5Cc0sfg+XnCD8qm7QrHVHxna7MeYPyrnvEnimCew2K4J+lQHwdLt/1Y/Kom8FPKNpjB/CgDN8La7FaXUzu4G5s13q+NLYKB5g/KuYj8BSR/diqX/hCZv7i/lQB0i+NrUdZR+VO/wCE4tf+eq/lXMjwHO3RFpR8P7j/AJ5rRdhdnS/8Jxa/89V/Kj/hOLT/AJ6r+Vc3/wAK+ue0a0h8AXGPuLRdhdnS/wDCcWn/AD1X8qa3jm1HSVa5k+Arj+4PypyeALhv4F/Ki7C7J/Enii2vtNePepJ9BXBaPqcNpqRlLgDNdfeeA7hIiSi/lXn93o00GomHHIIFIGev2fjS3WBB5g4HpUx8bW+f9YPyrkNL8GzTW6sUHK+laB8B3GMhF/KndhdnRL43t8/61aU+NbY/8tV/Kudi8A3DN/q1/Kpv+FfXH9xaabC7N1fGtsP+Wq/lTh43tR/y1X8qwP8AhX0/9wflTT8Prj+4v5UahdnQnx1bAf61fyph8eW3/PVfyrAPw8uT/Av5U0/Di6P/ACzX8qLsd2dFH47tt3+tX8qWbxzbMuPNXH0rnV+HdyhyY1px+HtweiL+VF2K7MfxjqdrqiGVWXeo4xWL4M8QT2t/HCzcD3rsj8O7llwVBFT6Z8PFs7tZXixRqFjvtLujdWsb+3arrK3pVXT4EtIVQAjFX94NUUiNRgYpaU9aSgY6iignFADGqldyiNC1XWI7VgeILwWtm7HjFSSeW+NL8Xt6kAkxtkGefevRtGms7TS4SJYwdgzzXkdtpj+IvEkyBmIByMGuu1LwjNZ6S7pNLlU/vGkJNmP41Y634gFvbjIYfeUZFej+BtKk03T4kkbJA5rzbwZcRrfrFcEGTJ+9yete1WOBGuBgUIEaMp+TrXNa4hNpIa6GQ5WsLWAWsnGKoo4HwauPGsmD/CP616yowpryjwz/AKN4xkduAQP616ujB4tw7ikhIhXhqlqvuOaeJDTQ0I6g/wANR7B6VYHPWl28UxlcIPSpVjXH3acTjtSebg8CgBCgH8NGwelOEm6lzQAzYPSjYPSn5ozQAzYPSjYPSn5oLUAOWNfSnqg9KjEnNPWTmgCUIvpRsX0pu8+lLvPpQA0ovpRtApGemF80AS/LR8tRc0c0AS/LR8tRc0c0APIXFRnPalwaKpDQ3Jo5p2RRmgQc0c0Zo3UCHRgE8ipDHHjoKi3EUhPFILmR4h0WDUrR4yq5NfPPivwbdafdySojsrHgAV9MsMiqN5pUF0uHjU/VahoTR8kLpl6zYFtKcH+7XqPw78FvJJFfXCkAdVYV6rb+FrKFmPkxnP8AsCtOPT4oV2xqqj0AxStYVrDbeyihjVFQYFWVt0/u1YjTCgVIAPSrLRAIU/u0nkx/3RVojAphpgVjCn9wU0QoDkKKnY0xWyaAG+WvpR5a+lT5ozQBB5a+lHlr6VPmjNAEHlr6UmwelWM0lCAhEa+lO2CpRT+1MCsY1z0qN4x6VbamNQwKXlA9VqzDbx7TlKdVmNvlPFSTYzrlYolJbCgdzVJbm03YEqZ+tU/GU/l6bKdxXA615N4fnudU8QPah32DB4bnvUvcR7ipjYZBBBHaonlhj4d1X6mm6fp/k2qAs2cd65LxuBawvJ5rKVHQGlcDrFvLfOFnQn0Bqyj5GQ2c1434W+0X94reY5U+rGvW7GIxwICTnFNDRdUk96kK5pkYqcLzQMr7Kcox0GKsbRTWWgDN1Qf6KxNeL3qb/ELj/bH869o1jC2LV4w3z+JHz/fH86TJZ6tpceyzix/dFbkCho8EVV021H2GE/7AqWW+gsMmaQKo6k0xl6ONVOSMVExwTWPP4v0o/KtyhbuKB4g09hk3K800wubGfeisj/hI9K3hDdLuNaVvdQ3ShonDA+lO4EwNSCm7afQMawyKaBipQAaHGBxQBH2phGetOpwXIpgRbacDSsAKiDEnikBLRS49/wBKXFAx2BTHHFPprdKAKzMVzXBeONQCWcqE13sykocV5v4x0S7v/MEbHB9qlksr+A7Fbe8N5j74rr9f1OG30udZSMsmABXD6RZahYRLHufgY6VNe2F/qDBGdip65FIDmfDlu134niuIgfLz/Wvd7NNluo71ynhfwumnxB2Ubq7JF2gAdqaBD+q1n6jFm0fNaHaqt8u61YUDPMrb5PEr49q9Qsn3Wqe4ryS/L2uvM+cDI/nXqukN5mnwN3K0kJFswDHSl8oVN2pBVopEapinbadRTGR7aTyhUtFAEIQDtTttOooAbto206igBu2kK0+kNAEeOacBzRS0hC0opKUUAJjNAXmnUo60AG2jbTqKAG7aNtOooAYV4phqY9KiPWqQxKXbRTqBDdtKFFLSjFAhNuBUZIAqRzx16Vh6trUOnqdxGccDNSDNR5VQEk8VTbU4Q+3PNcU2t3GpzYgLBT0qae1u0i37znFTcR2kdyJMYPFXolVlzXk9l4kktNUjgmc/Mcc16hYzrPbh1IIPcUIRZ2807FApao0E5pNtOooAjKZ7UgixUtIaAI9lGyn0UAM2UbKfRQAzbRtp9JTQDcU7miimAhGaQrmnUUCI9lPDbVPpQajlbbEx9qQjgviPfJHo1woPzY6VzXw/tbeAJfuPncdad46uGvL82an74NX9B0eeDSokBIxWfUk79dZt1TrXmPxA1UXeoC2iJIYV0k9hcR27OWPyjNcDcxtda9EW+bqKGB2vgPSPKtYpGXmvQVhxWX4ct1hsYxjGK3QBTQ0RKmKf0FPIprDigYwvTlO6ozTouKAMnX5Nlm4ryC3id/ETtjjcK9U8VyiKydz0FeeaMv2nVmZR3zmhiZ7BpoUafEM9EFcj43YCzlByBXU2T7LRQey1578R7/y9PmA+9j1oBnn/AIbsW1XxHJABlF5/nXqEXhGERrmPmuJ+HVxFbXhupF+Zl6mu0v8AxVEbyKKLjc2MCkhIwdW8MtFq8YiTAxXf+HLN7a0jVh0qSC2S72zMuSAOta8EYjUKKoaRLjig0/tTDTGKh5pZDmmAgUvXpQAzFOBwKDwKiZwBQBHNKACfauS1zxN/Z0qqrgE8Vo6zqS28LYI3YPevFPEOp3F5q0YDNt3VLYmz3fw3qTapponY55rZxXJ/D5Cvh5d3ByK62qRSCmsM06igCIrmonhjb7yA/hVnApNgosFii1lC/wDyzX8qVbOEEEIvHtV3YKXYKVgsQpGEGAABUgFO20YFFgsJjioLhd0RFWu1RMtFgseS+Lf9GvTIRj5v616PoLb9ItW9UrgPiJFiPcP71dn4Tu0uNIto1OSiYNLqStzpO1JTj0ptUihc0ZpKKYxc0ZpKKAEo5pwANLgUXC4zmjmn4FGBRcLjOaDT8Ck20BcjxS0/bS7BTsIYBS4p22jFFgExQKdRgUWAKKKKLAFFFFFgCo8U+kpbANpaDRRcAzRmm0UXAqapdra2kjk9ia8Z1TUrjWtWESFtu4g4+td38Q9Rays41BxvGP1rlvAmnC5lM0g535/WoerJe52HhjQxaWqNJyw9a37iBTEw2jGPSriQqgwBUVziOF2P901Vh2PEfHYFjq0UqHG054r034eX7ah4bjmbrkV5R8QWkvtcghh53HBr1P4c2Mun+G44ZBgjHBqUtSUtTshS5pBS4FaWNAzRmjAowKLAGaQ0uBRRYBtFOwKMCiwDaKdgUYFFgGGinECm0tgCiiii4BRRRQIAMmq2pypBaOxOMLU5kCA9q43xXqchiaGI5LDGKQM4ab/iY+OoFByuCP1Fev2VikVsq4HHtXkvhywuodcju51xg9a9bW8DQBlNJEoo6/cQWOlzb9qkoccV5f4ZhXU9R84cgSEfrXRePJLu/ijitueMGs3wFp0+m5WZcMWzzS6h1PT7KHyIQg7VbWmRYZQak6U7FDuKQjikop2Cw3YKb901JTHHNKwWOQ8cyZ0mVc81h+CbBWmLN3FXvGtypMkBPPpVnwfFsjVh6UupPU6kgRwN6AV5L45k+2XbWynJYHivT9Tu1trSQk/w15IrnVvGkSqcqQR+ooYM0tD8MyRaWsgDA47VFp3hy6fVPMfzMI+ec16xYWCQWSREdKctnHGxKjk+1Ow7EdhEY7dVPYVoIKiRAOgqVeKY7EnamNThQQDQBAxPapoxxQUUCm+aqd6AFl4FZV/dLawF3OAKvSXSY5PArjPEt6bsvaQHJPShsTOb1G7e+u5QrEqPSuamt4jqUS5BJauoi0DVI4nkEYwVNca8dxFrkSzDB31BLPcPCsSw6SFHtW7WN4ayNMX8K2a0SLQUUUUgCiiigAooooAKM0UzvQA/tTWpw5oK8UAed+PbffZMcZwSap/DHU/tFzcwFv8AV8YP0Fdb4m04Xdi6+xry7wXNJpniO7R1KhpMD9Kl6Ml7nuxOVFNpsbbokb1AP6U6qKCiiigAooooActLSLS0AFFFFABR3oo700AUUUVQBRRRQAUUUUAFFFFABRRRQA00lK1JUsAooopAIaSnUYGKAPNvijzFZjrg/wBal8CKiW2QADmrvjfSm1G3RlyfLGa5XwzqU2nTeTLEVG48mpe5L3PXwwzWJ4iv0tbFzuGdpHWqd34hjgti8bB3/u5riL641DxHc+V5MkaA/ep3Hcy9CtTrviBbh1JSOUjke9e428EdvGEiAA9K5nwp4ej0i2OQGZuc4rp1600gSJRRQKKsYUUUUAFFFFABRRRQAUUUUAIabTjTalgFFFFIAooooAesasORmsq+0y1ldS8WSK142A7VFKQT0FAGbb6Xaqn+qq99mjWLAXipYmAXoKkLjbQBlzadbucmLNLFp1shBWLGKvlh6UZHoKAGIAowOlOoooAKKKKACo5Dg89BUlUtSfyrSRs4wKAPNfF9ysniFoRzmuy8OW4isI3xjiuAmtmv/E6zFiwr1XTIRFYRrjGBSQkcp4raeWBo4twyuK4rwvpF3Za3FdzhmCn0r2SS3if70an6impZ24bIhUfhRYLE9tL50CvzzTsU5UCrgDAo70xiDrTxTcU4UAKDSg02loAcwyKoyfxelXl5NNeIMG460AcD4p1o6epiUncw4Iqp4VhfUNlzLlmNdJqvhNNSk3tL+dXtG0NNKhVFbOKVtRW1ItSmWzsX4/hNeQCZLnxEjMhwJc5Ne3ajp4vYfLJxXLf8IFEJ/NEoBzQ0DR0uksn2NRHjHHStCs3TdONhEELlsVpVaGFFFFSAUUUUAFFFFABUf8VSVH/FQBKtOI4piVKQMUAZ97HvhYY6ivG/EIl0nXrdwu0STAn869slHBrzXx9p3mvbzKMhG3E0mJnoOn3SXFnCUOfkX+VXBXG+CL77ZYH5vuYX8uK7Ee1NDQtFFFABRRx60UAOWlpop3FABRRxRxQAUd6OKSmgFoooqgCiiigAooo4oAKKOKOKACijijigBrU3JpW9qbzUsBwopKWkAUuKQU7igCpNaiZWUjINYdx4Ut5pN2MHOeldRkCjcKAOTTwhADyWrYs9GgtV+UD8q1Nwo3CgBixADFO2AUu8elIWBpoBRRSA0vFUAUUcUcUAFFHFHFABRRxRxQAUUcUcUAIabSk0nFSwCiiikAUUUUAOBApGANNpQKAFUAd6UlcYzTSKaetADvl9ad2qMA07FABRRRQAUUUcUAFYPii/jtNLn3HDFeK3ScDJ6DmvKPibqjC9ht4m4cY/SkxMZ4PeS+u45SBgmvV4F2wha87+HtkYbSNmHPvXpCjihAiNhQBzT2pKYx46U3FO7UnFABRRxRxQAUUcUcUAG7HeneZnvTduaYR1oAl3imls9KiBp6qWoAMmlyO9PKHFRHg0AO60tNXpTuKsAoooqACiiigAooooAKAtFIGwaAHhcdKU0wNTs0ARSVz/AIks1n02Y45VDiugfJqpeQedA6f3lxQB5l8Obl7TzoJSQTK2M/WvWI23KDXjeqOfD3im3iGFRiSa9U0m/S8tFkVsg0l2EjWCcUx/lFODcUyQ5pjIdxz1qdORzVfHNTxnAoAceOlGTQaSgBcmjJpKKAFyaB1pKKaAfRSZozVALRSZozQAGkyaXNNoAXJoyaSigBcmjJpKKADGadtoWnVLAZtoxTqKQDDxRSnrSUAJk0gooFADqMUUUAKBSYxTlpDTQCUuTSUVQC5NGTSUUALk0ZNJRQAuTRk0lFAC5NGTSUUAIaSlNJUsBRS0gpaQBSgUlOFADaKU9aSgAyaKKKACgk45opr/AHTQA4Y9aXFVxJzUqnNMBx4puaViah3YNIB1zII7SZycYQn9K8K1SV9d8Tx7clY5CDXqPi7WRpmnEE4MqlRn3ri/Aej+dcT3Mo6yFh+JpPewnuehaDYLaWSAAVs5xTY0EaBRTqYwPNFFFAC5NJRRQAUUUUAFFFFAADim5pTSUAIFqRTimCnUASbzUbDNOFBoAb0oooqwHUUUVABRRRQAUUUUAFRsQDUlQsPmpgOBp4qNakFIBMU1h6VJSH60AeY/ErRpJwb+NfmiXrTPhzrLPYRQTt+87ivQdWsE1CwkgbGXGOa8lhtZPD3icw5/dp3/ABpPuS+57MkgZcjoacTmsvTLpbm2Qg9q0VOTTKFAqRfegDigcUALRSA0tABRRRQAUUUU0AUUUVQBRRRQAUUUUAFFFFABRRRQA5adTVp1SwEooopANPWkpT1pKAG0CigUAOooooActIaVaQ00AlFFFUAUUUUAFFFFABRRRQAUUUUAIaSlNJUsBRS0gpaQBThTacKAEPWkpT1pKACiiigApr/cNOpH5FAFUZzViMe1MUDNWEAAoAay8VTmYIMk9Kvvjaa4/wAZa0uk6a8vUjNDBnC+OtZXV7yCygJLRyAH869B8LaetrYRkDBKgmvLfBmkz634gnupQwRm3LmvbbSAQQqnouKldyV3LNFFFUUFFFFABRRRQAUUUUAFFFFACGkpTSUAAp1NFOoAcKDQKDQA2iiirAdRRmjNQAUUUUAFFFFABUZHNSUw9aAEA5qQUzNOzQAGmNTs0xvagBrHivPfHWnskD3kQy+e1egkE1l6vYfbLYxMBzQwZy3g7WUkQQSNhlGK7yE5wex5rxOSK60LWXf7qF+PpXqvh/URe26knJC4pJkpnQjpTG608cikZT2plDVp1NUEdadQAUUUUAFJk0tJTQBk0ZNJzRzTuAuTRk0nNHNFwFyaBSc0oouAtFFFFwCiiii4Dlp1NU4p2aGAlFHFJSsAh60lKaTmiwDaBS4oAosAtFFFFgHLSGlU4ppNABRRmjNO47BRRmjNO4WCijNA5pXCwUUuKMUXCwlFLijFFwsNNJTiKbzSYhRS0gpaQBThTadmgBD1pKQsAaNwoAWik3A0A5oAWiiigAAoZyooLYqvLIAM56UAMuLry4mYnp7V5H441BtYnk06I7iew611XjDXzZWkqxv8+OK47wXp0+r6omozqDvxUvUl6no3g7SEsNIt/lAcpg8V0x4qvbJ5MYXHFT5BqihaKKKACiiigAooopgFFHNHNFgCijmjmiwCGkp2Kbg0WABTqbg07miwDhQaKDRYBtFFFUAUUUVADqKKKACiiigAph60+mHrQAlFFFABRRRQADrSSKD2paXrQBxHizRVuIhKqjI56VheGNX+x3PkSE8sRzXpN5AJoXX1FeTeJNMm06/E8SnAOTSYmexW9wksYYEGp9wIrzzwh4gNzAkMrYc+9d5HJuHHQ00NEx5NJSA5paACiiigAooooAKKKKACiiigAooooAKKKKACiiigAFPpgp9UgCiiimAUYFFFADKKKKACiiigApDS0hoGFFFFQUFFFFABTlptOWgBaKKKACiiigANNpxptBLCiiigQUUUUARt1pMU8rmjbQAwCngUu2loAKKKD92gCORqytTuhBA7FhnFXbqYRIWY4H0rzPxT4jaSXyITuOcHFJsTZlaiJda1hIwSYySDXp/h3RI9LsURUAI9K5jwXpJZPPlX5s5Ga9DQYHFCQJDGGBxQoqQrmk20xhRS4oxQAlFLijFACUooxS1SAKKXFGKYCUUuKMUAJRRRQAUUUUAFBoooAbRS4oxQAlFFFQA6iiigAooooAKbTqTFACYFGBS4oxQAmBRgUuKMUAJgUAUuKUcUARuvFYms6VFeW7hxzitxzmoJU3DHagDxu4STQdV3rwi16ZoOqLe2UZ3ckVjeKPDxvLd3jHzGuE0PxBNousNaz79oYAccVOxOx7lEc81JVHTLpbq1SRSDkA1eqigooooAKKKKACiiigAooooAKKKKACiiigAooooABT6YKfVIAooopgFFFFADKKKKACiiigApKWk70DCiloqChKKWigBKcKSlFAC0UUUAFFFFAAabTjTaCWFFFFAgooooAAKcQKQUpNADTRQSKaXFACk0x32pnPApC4GTWD4k1mOw0+Q7gGA45oBmN4r8QpbwNGj/ADA9M1yHh/RZtW1BppVyu7PFUbRbnxBq5bJMbY6167oekJZ2qAKA23BxUrUlal2xs47SFUQY454q8KTbijNUUSDmkK4oQilY5oAbRS4oxQAlFLijFACUoFGKUVSAOaOaWimAnNHNLRQA0ikpTSUAFFFFABRRRQAUUc0uKAGUUuKMVAC0UUUAFFFFABRRSZNAC0UmTRk0ALRSZNGTQAtBpMmjJoAYetJilxSigCGWIOuCoI+lcB4s8Jxzo1xHhXXL8V6NVa6tVuI2Rh1oA8q8IeM3tLlrK7GwB9iljXrVvcxXMYeJwwPpXknjDwW0VwLuyU70O7jirHg7xZJYhLLUX2yA9M9qnYnY9ZoqG0uYruJZI2yDVgqMVRQ2ikJIoBJNAC0UuKSgAoopQKAEopwWkxQAlFLijFACUUuKMUAIKfTcU6qQBRRRTAKKKKAGUUUUAFFFFABRRSd6Bj8CjApMmjJqChcCjApMmjJoAXAopMmgUALRRRQAUUUUABptONNoJYUUUUCCigUuKADNIaa3HSgEtQA1jzUbGpGUZ61n6jqEGnwtJOwVRnmgCPU9RhsLSSSaVUIXIB715JqV9N4p1MRxORGSR8p460viDWL3xLqC21qd0QbacHnFdt4S8GQadbrI6nf159ancncueFfDEelW8bEhmHqK7CNQBjHFRJEsYwOlSrxVFDn6VWJOanYk0zyx60ACHmng5poUDpTlAoAfRRRQAUUUUAFLgUlLVIAooopgFFFFADW6U2nmm4oASilxRigBKKXFBFACilpuTRk0AJRRRUAFFFFABRRRQAU2nU2gAooooAKKKKACiiigAooooAKKKKAKl5bpOu1hkYxXl/jDwzJFM95aqFK+gr1dgWOaq3VolzCUdQfrQwaPNPB/iqa2nW1uXOV9a9Ttb1LmIMrA5FeXeJ/DjWZNxbgg5z8tReGvFEttN5FxkYOOTU7E7HrvWjpVKy1GK6jDI6mrm4NVFDs0maQHNGKADdRupMGmkY7UAPD89aeGyKhxzUi9KAJM0ZplFAD80ZplFADs0ZptFUgH5ozTKKYD80mabRQAUUUUAFFFFABSd6Wk70DFoooqCgooooAKKKOKAHZozTeKOKAHZozTeKOKAFHNLt4pAcU/IoJZGc0mTTiM00j2oEA608Uzp1o3gd6AHMmahlby+c1L5w6k1h67q0NlbsxdcgUAP1DV4rKFpGPC15D4i8Q3mvag9nauwXP4VduNTuNdvfIjDhG4yDXZeHvCMNsqzSBS/ckVO5O5H4R8KpawpNLH87Lkmu8RAkYA4plvGsSBAAMccVOQMVRRHRRRQAUUUUAFKKSlFADqKKKACiiigApc0lJVIBaKKKYBRRRQAUUUUAFFFFABQelFB6UAMooooAKKKKgAooooAKKKKACm06m0AFFFFABRRRQAUUUUAFFFFABRRRQBIigqc0x0G2lVgvFIzAigDLvrVLlCjgV5/rXhUpIZ4FJwc8V6a8eary24dGUjOaAseXaTrl1pc4hn4HfJr0XS9YhvYgwcEn0rA1zwxHOjSRphu1cWmoXmg3pWRiIwe1TsTse1IwP41KPrXJ6L4ihvIU+b5vc10cdwGwQRVXKTLgFMYUBwRSk0ARkc04cUhNANADqKTJoyaAFopMmjJoAWikyaMmqQC0UmTRk0wFopMmjJoAWikFLQAUUUUAFJ3paTvQMWiiioKCiiigApKWkoAKKKKACiiigBGpAeacRmkCEUEslTkU84xVcSbRimPcBaBEspABxVCWYIMk8CmXWoJEhZjjiuD8S+K1hR44mbd7UmxNm9q3iSKzQhXGfeuGu7m+8Qz7YwSmcZBqHS9Pvtfud0hzGTnkV6Zofh6DT0B8v5sZzS1YtWZPhbwmmnxCSVSHznkV2QUL0GKnAGOlMK+lUUCE5qbPFQqMVJmgBKKKKACiiigApRSUooAdRRRQAUUUUABpOKDTapAPzRmmUUwH5ozTKKAH5opo606gAooooAKD0ooPSgBlFFFABmjNNoqAHZozTaKAHZozTaKAHZptFFABRRRQAUUUUAFFFFABRRRQAUUUUAROxB6UBs9qeeaMUAKBnvSMmR1oooAhaEMMEZFczr+gRXsTERqHPfFdZUTqG7UAeNT6TqOiStNG8jpnOBW34f8biRhHdRmI5x85xXe3VskqEGNT9RXCeJPBMOoI80bMjjoEyP5VNibHoFnqlvcxh45UYHpirYlDdDXhtjc6z4cxAImaJP4mNdxonjO0lwt1MqSdxRcLndZzTxnFVLS/t7pQ0T7l9qvblx/wDWp3HcYeKM0Hmm4ouFx2aXr2poHtUqnAouFxuDSHIqUsBTWZTVJjGUhNLkU0ketFwFzRmmZFGR7UXAkB96XNMA56U6i4C0tJmlouAUY56UU+M4fmi4DCCBzSE471YkZNtU25NIdyQHPegmmopNOKMe1AXELAd6BzyKjaKTn5TUkREa4bg0BcU5pCcUpZT0NMbJoC47NL1pnPpUikd6AuHQ+1KzJjqM0yeVFQnPaubvdcsrLd58+3HqcUXE2bkkq7jyK57VvEdrYq2ZELDtmuX1PxpO8hTSgs7duK56HwxqXiG8aa+WWIE54Yik3bYm9y1qHie71ifybaGQKTjIWtPRfB887rNdMzjuGrqvD/hi30uIAKrH/aFdVGqKMBVA9hQkNIoaXpNvaRqqRqhHpWgV2dKUkdqTNMYm4+lPXmiigBSvpTOfSnilPSgBooooqrAFFFFFgClBxSUh60WAfn3oz71HRRYCTPvRn3qOiiwEnHrTc02ijYB2aKbThSuAUc0U4UXAaOKdmmt0ptFwJM0ZpgpaLgPzSGkFL2ouA2iiii4DaKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANooooAKKKKACnKuetNpytigGNkiU1XeBSvNXCQaQpkUhHO32kQXalXTIriNa8ERRjzrSLD9elepNBzwKrzW4YYIzQB4zBqmtaJJtd8ID+lddo3j2Ofak7kt3re1Dw/BdKcxKT71yd74R8liYAFPsKmwrHoNlqcV4AUYY9zWgh3dx+FeJzDVdLYss0m0dhWjpvjua2kVZ1c4POaLhc9gxScVy+neMbW/ZVyqZ9TW6l9A4G2RT9DTC5NIxFMDGnFw/ORQFqkUKOlPCA9aQJTwpFACrEpp/kL6VH8w700s47mgCQjFRsTUykY5pjYoAhLGm729RTzjFN49KAHq5xUifNUasop4cdutMCRlGOtQY5pxJPenBTQAinAqTzCKbsNKaQDWmNRgb+TTyBg5FQNcxxHDED8aAJgoFB4BNZ9xq9vEpO9fzrm9W8b29mhAG4npii4rnWSTbFySBj3rEv/EdvZZ3t+ted3Hii91WQpB5iAntU9l4f1G+IeaVmB/vUrivct6z42lnHl2T81zkWla1rspa4+ZM+h6V6BpvgyNSDIoJ966m00eC1TCxqPoKLBY5Lwx4LtrCJJHi/eD1FdrDaRxqAq4qZYgowBilzimVYZs29qaTipWOajIzQAo5p9NUYp1ADqKKKAFFKelIKU9KAG0UUVYBRRRQAUh60tIetACUUUUAFFFFABRRSikwEp1JilqQCnZptFACGkpTSUAKKWkFLQAope1IKXtQA2iiigBtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANooooAKKKKACkpaAMmgAFSZppWkPSgB+RUTrmjdS5zRYCJowe1V2tAxztH5VeGKkAGKAOfu9HinXDIv5Vy+qeDInRmTOT6V6K6A1C8YNKwrHjP/CKXttJuj838CatWtxqWny4dHwPU16uYRj7o/KqFxo9vcZ3p19KLBY4uHxxPbMEdAOe9bNr43ikGXZR+FRal4Js7hsxx8/SsG88C3IB8iL6UtRanb2/iqylIzMtaqa3YuAfPXmvHZvC+tWi7lTp71nFtetZlDdAe9HMw5me8jUIG6OOaGvYsfeFeORa/qEToHarbeJrns1FwuetpOjAfNTt6t3/AEry6LxVcKgy9WE8ZOOslO47npB2+tRsQO9efjxmx/5aUxvGLdpKLhc79pVB5NILhA33hXm8vi+Td9+oh4pnZuG4ouK56j9siXksKX+0rcDJccV5Vc+JblkARsmqT6vqciEKQc/Wi4XPWptfsolJM61i3XjS0iYgSp+NeXG2127bIAI/Gp7Xwjqt0+ZIyfxpXYXZ203j8DITac+1YV54pvL+4HlxnHtViy8CEFfOiPvXUWXhCwgGfL5+lPUNTgJLfU9QfaFkx7GrMPg24umQy+Zx6k16fa6ZBAcqv6VdEar6UWHY5PSvCMFmqnAJ+ldPBbRwoBsXj2qxxTST2pjsSIFB6CpjjFVATnmpt5oARutRt1p55pCuaAGDrTwKQLinDigBDRRRQA6iiigBRSnpSClPSgBtFFFWAUUUUAFIetLSHrQAlFFFABRRRQAU7FNqQUmA2ilNJUgGaTJpKKACiiigBRS0gpaAFFL2pBS9qAG0UUUAJijFLRQAmKMUtFACYoxS0UAJijFLRQAmKMUtFACYoxS0UAJijFLRQAmKMUtFACYoxS0UAN2UbKdRQA3ZRsp1FADdlKoApaKAFNN206igZF5Zo8s1LRTAZsPrRtPrT6KQCAetLx3FFFABhfSkKKewpaKAGGIdqTyqkp1AFZ7RJPvAGqcmhWcpy0IP1rVoxQIwZfC9i/S3T8qhPhKz7Qr+VdJRRYLHMyeE7RlwIVH4VV/4Q2H/AJ5p+VdbRQByn/CHQf8APNPyo/4Q6D/nmldXRRYLHHN4JiLZ2LVu38I2sce1olJ9cV01HSgLGEvhWy3cwL+VWk8PWCD/AFC1rDmigLFBNItEGFiAqZbOJPugCrNFAEYhHcU/aPSlopgIVHYU3YafRSAZso2U+igBmwUmw561JRQA0JinYFFFACEU3aafRQAzYfWjZT6KAG4oxTqKAExSnpRRTAbijFOFFUA3FGKdRQA3FJtNPooAZso2U+igBmyjZT6KAGbKcM0GlpMBMUmKdRUgM2UbKfRQAzZRsp9FADdlGKdRQAmKWiigBuKMU6igBlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUxi0UUUhBRRRQAUUUUAFFFFABRRRQADrTqaOtOpsbCiiikIKKKKAGUUUUAFFFFABRRRQA8UUCigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooopgAooFFUAUUUUAFFFFABRRRQAUUUUAIaWkNLSYBRRRUgFFFFABRRRQAUUUUAFFFFABRRRQB//Z'] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 48 "如图所示, 设 $A B C D$ 是矩形, 点 $E, F$ 分别是线段 $A D, B C$ 的中点, 点 $G$ 在线段 $E F$ 上, 点 $D, H$ 关于线段 $A G$ 的垂直平分线 $l$ 对称. 求证: $\angle H A B=3 \angle G A B$. " ['由 $E, F$ 分别是 $A D, B C$ 的中点, 得 $E F \\| A B \\perp A D$.\n\n设 $P$ 是 $E$ 关于 $l$ 的对称点, 则 $E P \\| A G \\perp l$, 故四边形 $A E P G$ 是等腰梯形.\n\n进而 $\\angle P A G=\\angle E G A=\\angle G A B, \\angle A P G=\\angle G E A$, 从而 $A P \\perp H G$.\n\n再由 $H P=D E=E A=P G$, 得 $\\angle H A P=\\angle P A G=\\angle G A B$.\n\n因此 $\\angle H A B=3 \\angle G A B$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAVQEfAMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKTNAC0UmaM0ALRSZozQAtFJmjNAC0UmaM0ALRSZozQAtFJmjNAC0UmaM0ALRSZozQAtFJmjNAC0UmaM0ALRSZozQAtFJmjNAC0UmaM0ALRSZrM1jxDpPh+JJtXvorOJ22rJLkKT6Zx1oA1KKwofF2g3GlPq0WpRvpyEhrpVYxjGc/NjGBjk9qfo3inRPEJcaRqMN75f3zDllX2J6A0AbVFJmjNAC0UmaM0ALRSZozQAtFJmjNAC0UmaM0ALRSZozQAtFJmjNAC0UmaM0ALRSZozQAtFJmjNAC0UmaM0ALRSZozQAtFJmjNAC0UmaM0ALRSZozQAtFJmjNAC0UmaM0ALRSZpaACiiigAooooAKKKKACiiigAoopM0ALRSZozQAtFJmjNAC0UmaM0ALRSZozQAtFJmjNAC0UmaM0ALRSZozQAtFJmjNAC0UmaM0ALRSZozQAtFJmjNAC0UmecUm73oAdRSZozQAtFJmjNAC0UmaM0ALRSZozQAtFJmjNAC0UmaM0ALRSZozQAtFJmjNAC0UmaM0ALRSZozQAtFJmjNAC0UmaM0ALRSZozQAtFJmjNAC0UmaM0ALRSZozQAtFJmjNAC0UmaM0ALRSZozQAtFJmjNAC0UmaM0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRkUVjX+tNY+JdL0yW3/AHGorMqXG7hZUUMEIx/Eu89f4KANmigdKKACiiigAooooAKKKKACiiigArz34gaj4pm1vRtG8G3kMd8S11eK4UhYQVCliwOFJJ4HJxx0rs9Z1S10XSLvUrx9tvbRGRyOpA7D1J6D3IrI8IaXdQW9xrOrQ7NZ1VxPcqTnyUHEcI/3FOP94se9AHSjoM14p+0RqznStG8PW4Mk17cmYxplmIUbVGBzyz/jtr2sDAxXhmr6fq/iT486Zqt7ompx6Dp8iRwztZyFcoGYNgDoZe/TGDQBb8deJdO8N/Bv+wNNTUUla3jsEkudMubZXGBvO6RAMsofjOefauu+EWgf2B8N9LjdNs92hu5TjBJflc+4TaMeoNcV8ZLLWvFmuaNpOn6Pqsml2kpa6uo7STbuZgCRxltqg8jg7jiva7VYltIVhQxxBFCIVKlVxwMHkcdjQBKOlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALRRRQAUUUUAFFFFABRRRQAUlLSUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFZmv6jPpOg3+o21p9sktYHmFuH2+ZtGcA4PYelAGnRVexvIb+wt7y3cPDcRrNGw7qwBB/IirFABRRRQAUUUUAFFFFAHm/xw1G10/4a3i3EUUk11IlvbiRA21iclhnODtD81zPgm68K+E/g3JcXFzo0+py2clzNDJJE8krHLRxlc5PRBtPfJrN+OGq2uv8AjXw34VjvIliSYG7fzBtjaRlUbj0BVQTz0DVpfHnWNK03wdaaJp5tBcXUyFo4du5IVGe3IydmPUZoAf8As++GYIfDV14guLWNri6uCltJIgZljTglT/Dliw6/w16T421WTRvCGpXdrKsd95Rjs8rvLTtxGAvdixGPz6Uvgiwt9K8D6NZW0sUscNqgMkTBlZiMuQR1+Yk1mwbvFfjN7plDaNoUhjtxnie8xh3+kYJUf7Rb0oAj+HWr61Np82jeLJf+KitG3SKwUGSFuUddvysOoyO4wea7euc8TaDNqUcGpaXIlvrljl7Sdwdrg/eicd0foR1BwR0q34d1+HxBppnWMwXULmK6tXOXt5R95D/Q9wQehoA2KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArmfHdpcTeGZb2xTff6ZIl/bL/AHmiO4r/AMCTcv8AwKumprKGyCAQeMHpQBBp99BqWnWt9bOHguYlmjb1Vhkfoas1yPgd2sRq3hqUENpF0Vg97aXMkJ/AFk/4BXXUAFFFFABRRRQAUUUUAFFFYPizWptF0ndZRrPqd04trGBv+WkzdM/7I5ZvZTQBlXv/ABVnjJNOVidJ0KRJ7sg8TXeMxx/RAd5/2igPSuzHTisjw5okXh/RIbFHM0gzJcTt96eVuXkb3JJNa9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALRRRQAUUUUAFFFFABRRRQAUlLSUAFFFFABRRRQAUUUUAFFFFABRRRQAUnelqnqmoRaVpV7qNwcQWkDzP8ARVLH+VAHllrqmp69+0Fdafaanepo2kwebPbpOwieQIBggHH3nHH+ya9cKjaQRkenb6V498BY0u7PXNfupVk1TVLoyyDqVjy2D7ZcyfXb7V7IOnrQByHgWQ2UOp+G5Mh9GujFCCc7rd/3kJ/BW2/8ArrxXI6u39i+P9I1PGLfVYzplwegEgzJAT9f3q/8CFdcOlABRRRQAUUUUAFFFFADcYPTrR354+tOqOaSOJGkldUjRSzs3QAdSaAOd8X6vcWdnbaXpbY1jVnNvaEc+WMZeb6IpJ+uB3rW0XSLTQdHtdLskZbe2QIueSfVj6knJPuawPCcMutX9z4vu0YC8XydNjccxWgPDfWQ/OfbaO1dfQA3bxg9K5PxFpl3pupf8JRokJku0UJf2agf6bAOeP8ApqvO0+mR3rrqRhnjnp2oAp6TqllrWl2+o6fOs9rcJvjde478diDwR2PFXa4jUEk8D6tLrNurt4fvpM6hAoJFnIf+XhQP4D/GO3DetdrG6yRq6MGVhuVgcgj1oAdRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcjrT/2N470bVcEW+pIdKuT2D8vAT+IkX/gYrrR0561ieLtLl1jwxfWltgXioJrU/wB2ZCHjP/fSj8M1a8PavDr3h6w1WEbUuoVk2Hqhxyp9wcj8KANKiiigAooooAKKKKAEJ5xnFcboIHinxHL4okDNYWoez0kE8MOks/8AwIjaP9lc96m8Y3VxfSW3hbTZjHd6oCbiVPvW9oOJJPYnhF92J7V09nawWNnDaW0SxQQII4416KoGAB+FAEo6UtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALRRRQAUUUUAFFFFABRRRQAUlLSUAFFFFABRRRQAUUUUAFFFFABRRRQAVBeWkF/ZzWl1Es1vMhjkjcZDKRgj8jU9FAGZo2hab4esfsWk2MNnbBi/lxDALHGSfU8dfbFaQ6UtFAGF4w0uXVvC97Ba8XsSi4tG/uzxkPGf++lA+hNXNB1eDXdAsNVt+IrqBZQufu5HKn3ByPwrQP06c1yXhN10rXNd8MsNiW8/26zHT9xOSxA9lkEg9higDrqKAMACigAooooAKKKKACuO8VyN4g1W38IW0jCKZBc6q6/wWoOPLyP4pD8v+6HroNc1e30LSLnU7rcYoEztUZZ2JwqqO5JIA9yKzfCGkXWn6fLfamq/2xqcn2q9K8hGIwsYP91FAUfQnvQB0MaJFEscahUQBVUDAAHanUijCgAYGKWgAooooAjkjWVGjkjV43BVlYZDD0IrjNOZ/BOrw6HcF20G8k26ZO7Z+yycn7Ox9D/Af+A+ldvVHV9KtNa0y406+hE1tcJtdT+hB7EHkHsee1AF7+dFcl4e1K807UW8La5KXvIkLWF455v4B3J/56rwGHXo3QmusGcc0ALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNbGcUAOoyPWvOfEPxLu9C8dWPhRdCS8u73YYpEvcKodiBuBj4+7k9ePWr2lfEW0ufGE3hXV7CbStaT/Vxs4kinGMjY4Azkc4IH55FAHcUUg4XmlzQAUUUUAFFFFABRRRQAUUUUAFFFFACGuS8LONJ8Qa94cPyxwzDULRf+mE2SwA9BKJB9CK66uR8VsNH8QaD4jxiNJ/7Ou2HH7qfAUn2WUJ/30aAOuHSijtRQAUUUUAFVNS1C20rTrm/vJBFbW8TSyyHsoBPTv8ASrea4zVv+Kq8Wx6GjBtK0tkutSx92WXhoYD9CBI30Qd6ALPg/T7p47rxFqkDRapqxDmJ+WtoB/qofYgcn/aY11VAGABRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUhIHUgUtABRRketGaACiiigBaKKKACiiigAooooAKKKKACkpaSgBMjOM0tcz468VN4M8Oy60bOO6ghZVeMz+W5LMFG0bSD1JPTAHeuWPxbls/DWmeJNW8Nz2+j37GNZre6EzxHJwWUqvB2kgg+nrQB6fRVexvINQsLe9tZVlt541kjkXoykZBqxkCgAooooAKKKKACiiigAooooAKKKKACuT8TAaV4m0HXxhYzKdNu2/6ZTY2E/SVU/77NdZWT4m0ddf8OahpTNsNxCQkmfuOOUb8GAP4UAao6c9aWsbwpqz634YsL6Ybblo9lyn9yZSVkH4OrCtnrQAUUUUAFJ3xxmlrn/Fus3Gl6YkGmhX1fUJPstgjdPMIJLn/AGUUFj7L70AZcmPFvjTZ8zaR4flDOP4bi9I4HuIhzj+8w9K7SsvQdGg0DRLbTYCXWJf3kjctK5OXdvUsSSfrWpQAUUUUAFFFFABRRRQBjeJNAi1/TxF5rW15A4ms7yMZe2lHRx6+hU8EZFV/DOvy6ms+n6nEltrViQl3boTtOc7ZEzyUYDIP1HUGuhrm/E+hXV3LBrOiskOuWIPks3C3EZ5aCT/ZbAweqtgigDpB0orK8Pa9a+IdKW9tQ8bKTHNbyDDwSKcMjDsQfz4I4IrV+lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRmigApCMn+X1papapDez6dcQ6fcR291IhWOaRC4QnjOAR069aAPEfAxbxr8fdb8RH5rTTQ6QMOR08pPzUO31qDxm769+0loVtpqF5NOa2E5T0RzK+SPRWx+ldj4M+GmveCNM1Cz03X9PD3rBmuX09mkjwCBgeYAcZOM5xnPPSuk8IeAtO8H/armKWe+1W8YtdahcnMkpJyf90E8+vrnigDqwenf3rzYX3xCm+JWtadZT6T/AGXb28Uscd1GdqiTIU/JhyxKPnJxx7ivShnHNcxpv/JSvEX/AGDrD/0K5oAix8Qv7/hkexSf/Glx8Qv+enhn/vif/GusooA5PHxC/wCenhn/AL4n/wAaMfEL/np4Z/74n/xrrKKAOTx8Qv8Anp4Z/wC+J/8AGjHxC/56eGf++J/8a6yigDk8fEL/AJ6eGf8Avif/ABox8Qv+enhn/vif/GusooA5PHxC/wCenhn/AL4n/wAaMfEL/np4Z/74n/xrrKKAOTx8Qv8Anp4Z/wC+J/8AGs/W9H8c67ot5pd2/hrybmJo2KRz7lz0IyeCDyPcCu8pO9AHnvhrVvHmtaBb3kcnh1WBaKVJkm3pIjFHDYOM7ga18fEH/np4Y/74n/xpujEaN471jR8bINRRdVthjgNxHMo/EI3/AG0NdcOlAHJ4+IX/AD08M/8AfE/+NGPiD/z08Mf98T/411lITg0AefeINZ8d6DYJcSHw7LNNKlvbW8ST75pXOAoy2OmST2AJo0DQfHXh/TfssE3hyaR5HmnuJUm8yaRjks2CBnJ9MAYq9o6nxV4qm8QSLnTdNZ7TS88iV84luB26gop9Ax712g6UAcnj4g/89PDP/fuf/GjHxC/56eGf++J/8a6yigDk8fEL/np4Z/74n/xox8Qv+enhn/vif/GusooA5PHxC/56eGf++J/8aMfEL/np4Z/74n/xrrKKAOTx8Qv+enhn/vif/GjHxC/56eGf++J/8a6yigDk8fEL/np4Z/74n/xox8Qv+enhn/vif/GusooA5PHxC/56eGf++J/8aMfEL/np4Z/74n/xrrKKAOTx8Qv+enhn/vif/GjHxC/56eGf++J/8a6yigDk8fEL/np4Z/74n/xox8Qv+enhn/vif/GusooA5PHxC/56eGf++J/8aMfEL/np4Z/74n/xrrKKAOTx8Qv+enhn/vif/GjHxC/56eGf++J/8a6yigDk8fEL/np4Z/74n/xox8Qv+enhn/vif/GusooA5PHxC/56eGf++J/8aMfEL/np4Z/74n/xrrKKAOTx8Qv+enhn/vif/GjHxC/56eGf++J/8a6yigDk8fEL/np4Z/74n/xox8Qv+enhn/vif/GusooA5PHxC/56eGf++J/8aMfEL/np4Z/74n/xrrKKAOTx8Qv+enhn/vif/GjHxC/56eGf++J/8a6yigDk8fEL/np4Z/74n/xox8Qv+enhn/vif/GusooA5PHxC/56eGf++J/8aMfEL/np4Z/74n/xrrKKAOTx8Qv+enhn/vif/GjHxC/56eGf++J/8a6yigDy3xZqXxL0290BYJ9ESO81BbZ/s0bHcSMgN5mcLhX5Xn3r1FRhQK5Pxx/x9eEv+w9D/wCipa60dBQBx/j34gaZ4Fso5LlHub+4BFrZxHDSH1J/hXOOffgGoYZPH1x4ffUpW0a0v2iMsWmG1kkwMZEbyeYPm6AkLge9ea65G2sftTWNnfndb2xjMCt0wkHmqB25kzXvckiRIGZlUHCjJ2gkkADPqScCgDI8Hanf614Q0vVNSjhju7yATskKkKA3zKACSfukd63KRRhQKWgBaKKKACiiigAooooAKKKKACkpaYR9T7UAeJftBX018fDvhWzO6e+ufNKDuc+XH+ZZv++a0fjOll4f+DtvokWNu+3tLYHrhOc/kvJ/2vetHWvhprGr/EO28XS65ZlrNl+zWslmzIirkgH94MnJJ+taFx8OjrviODWfFmo/2qbb/j1sIoTFawn12lmLHgE5POMcjAABa+E+n3ml/C/QrW+RkuBE8hVjyFeRnUH/AICw47VB8TtR8VaZpmmy+FpoIppb6K3lMqqc+YQqD5sjBYgE9eR6V3I6Vy/j3/kE6X/2G9P/APSmOgCNV+IW0Zk8MZ/3Lj/Glx8Qv+enhn/vif8AxrrKKAOTx8Qv+enhn/vif/GjHxC/56eGf++J/wDGusooA5PHxC/56eGf++J/8aMfEL/np4Z/74n/AMa6yigDk8fEL/np4Z/74n/xox8Qv+enhn/vif8AxrrKKAOTx8Qv+enhn/vif/GjHxC/56eGf++J/wDGusooA5PHxC/56eGf++J/8aQr8Qf7/hnPb5J/8a62igDy3R4vGukeKdU0eJ/D4a8zqiCSOYp852SBOcgBgpIPd/eulA+IJAO/wyM9ik/+NJ42VtPuNG8Sxnb/AGZdCO6P/TtNhJCfZSUf/gNdaOlAHKY+IX/PTwz/AN8T/wCNGPiF/wA9PDP/AHxP/jXWUUAcg58fqCzSeGAAOSUnwPrz6VzGgx+NPEmpjxcv9hbRE9rYefHPtMW/mZFzkeZgHnsFrp/F80us3dt4SsZikl6pmv5Yz80NmPvDPYucIPYse1dXBDHbQRwQoscUahURRgADgAUAcsF+IWP9Z4Z/74uP8aXHxC/56eGf++J/8a6yigDk8fEL/np4Z/74n/xox8Qv+enhn/vif/GusooA5PHxC/56eGf++J/8aMfEL/np4Z/74n/xrrKKAOTx8Qv+enhn/vif/GjHxC/56eGf++J/8a6yigDk8fEL/np4Z/74n/xpCvxBx9/wyf8AgFx/jXW0UAeW6rY+PdCv7vxRaJocjmEC+tLZJiJ1X/loFJGXUZ6EEjjnit2wvvG+qWEF9Y3fhae1nQSRyok5DA/jXZnnj+lcTPu8Bau95k/8IxfSjzkxxp8zH749ImJ5/usc9CaALmPiD/z08Mf98T/40Y+IX/PTwz/3xP8A411akYGCDx2paAOTx8Qv+enhn/vif/GjHxC/56eGf++J/wDGusooA5PHxC/56eGf++J/8aMfEL/np4Z/74n/AMa6yigDk8fEL/np4Z/74n/xox8Qv+enhn/vif8AxrrKKAOTx8Qv+enhn/vif/GjHxC/56eGf++J/wDGusooA5PHxC/56eGf++J/8aMfEL/np4Z/74n/AMa6yigDk8fEL/np4Z/74n/xox8Qv+enhn/vif8AxrrKKAOTx8Qv+enhn/vif/GjHxC/56eGf++J/wDGusooA5PHxC/56eGf++J/8aMfEL/np4Z/74n/AMa6yigDk8fEL/np4Z/74n/xox8Qv+enhn/vif8AxrrKKAOTx8Qv+enhn/vif/GjHxC/56eGf++J/wDGusooA5PHxC/56eGf++J/8aMfEL/np4Z/74n/AMa6yigDk8fEL/np4Z/74n/xox8Qv+enhn/vif8AxrrKKAPPfEs/xIsvDeoXltN4eSWCFpA0Ucu4ADJI35XOM9eK6bwdPq914Q0u411om1KWASTNEMKc8rx0zt25xxnNS+K/+RO1v/rwn/8ARbVPoP8AyLumf9ekX/oAoAZr2u2HhvSLjVdTnENpAoLtjJPYADuSeAP5VyHhXxJ4p8dW76vZQWWj6KzMts1zC089xjjcQHVVXOfU5BHvXGftJ3dzHpugWiMRayyzvIO29QgXP4M/+RXs+jWFtpOiWVhabRbW0CRx46bQAAf/AK9AGF4R1PxFfX2uWniCKxX7BcpbwvaRsol+QOWIZm6q6cDpyOcV1Y6VGjJMiyRuHjdQyspyCD3GOoNPGcDPWgBaKKKACiiigArl9N/5KV4i/wCwdYf+hXNdRXL6b/yUrxF/2DrD/wBCuaAOoooooAKKKKACiiigAooooAKKKKACiiigDkfHO3TRpfiYDB0i6VpyOv2aT93L9cZD/wDAK61SCoIIORnI71W1Cxt9T0+5sLtN9vcxNFInqrAgj8jWH4GvZbnw1HZ3bl73S5H0+5Y9S8R2hv8AgS7W/wCBUAdNn9a5TxjfTz/ZfDWmXDRalq2VMycm2tx/rZfyO1f9ph6GuivryDT7Ge8upVit4I2llduiqoJJP0HNc54Osrq7N14n1OExX2qEGGFuTbWw/wBXH9SCWb3b2oA6PT7G20zTraws4hFbW8axRRj+FQMAVZoHSigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5Lxx/x9eEv+w9D/AOipa60dBXJeOP8Aj68Jf9h6H/0VLXWjoKAOR8VfD3SfFWo2uqSS3djqtqAIb6zk2OADkAgggjOe2ferlh4WMN1Ddanq1/q1xAd0Bu9gSJsEbgkaqN2D1OSMnBGTXRUUAA6UUUUALRRRQAUUUUAFFFFABRRRQAUlLSUAFFFFABXLePf+QTpf/Yb0/wD9KY66muW8e/8AIJ0v/sN6f/6Ux0AdTRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFPVNPg1fSrzTbkFoLuB4JAP7rAg49+ayPBF/c3vhe3iv23X9kz2V2fWSIlS3/AgA3/AhXREZrkbYPovxIvLbpZ65bC7j9BcxYSQAe6GM/VTQB1w6CqOs6pbaLpF3qV4+23tojI5HUgdh6k9B7kVf4ArjL0/8JZ4yTT1YtpOhSJPdlTxNd43Rx/RAd5/2igPSgC74Q0q6gt7jWdWi2axqrie5Xr5KDiOEf7inH1LHvXSgYAFKOlFABRRRQAUUUUAFFFFABRRRQAUUUUAFQ3MEV1DJbzxiSKVCkiMMhlIwQfY1NRQBxWjzS+ENXg8NahLJLplwSNHupDnaAP8Aj2c/3gMlCfvKMdRXaDgYrP1rSLPXtLn06+RjDKAQyHayMOVdT1DAgEH2ri/C/wAQbV/Eh8FanP8Aadagdo4ryEBobpUXeGJH3X253DGAVPPagD0WszUfEeh6PMsOp6zp1jKw3KlzdJESPUBiK0hwK8B+N17aax8Q/DPh27uo7eyhxLdzO+1UWRhnJPTCJn/gVAHtmneI9D1iVotM1nTr6RRlktrpJSB7hSa068ASKTxt8drDWvC1sy6PpvlJcahGhSOUJktz3JB2cdQPTmvfx0oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMjxX/yJ2t/9eE//AKLap9B/5F3TP+vSL/0AVX8V/wDIna3/ANeFx/6LarGg/wDIu6Z/16Rf+gCgCn4o8K6V4v0ptN1e3MsOd6OrbXjfpuU9jz9PUGsnTvATWVjHps/iTWrzTIkEa2kskahkHARnRA5XHGN2MZGMV2VFADIkWOJERAiqMBQMAD6U+iigAooooAKKKKACuX03/kpXiL/sHWH/AKFc11Fcvpv/ACUrxF/2DrD/ANCuaAOoooooAKKKKACiiigAooooAKKKKACiiigBD16VyUIXRfiTNFwsGv2onUdvtMGA+P8AejZD/wBszXXVxHxRuo9L8LR64jxrfaVdx3NorE/vXztaPjkhkZxj8e1AD9dK+KvE0Xhlctp9iEvNVYdJDnMUB+pw7D0UDvXaAYGK53wfpX9maBDI9wt3d3p+2XV0vSeWTksPbGFHooFdCOlAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHJeOP+Prwl/2Hof8A0VLXWjoK5Lxx/wAfXhL/ALD0P/oqWutHQUAFFFFABRRRQAtFFFABRRRQAUUUUAFFFFABSUtJQAUUUUAFct49/wCQTpf/AGG9P/8ASmOuprlvHv8AyCdL/wCw3p//AKUx0AdTRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXKePo54NGg120Utc6JcLfAKMl4hlZU/GNn/ECurqOaKOeF4ZlDRupVlboQRgigDC8T+IG0vREm01Y7nUL1lg06LPEsj/AHTx/CB85/2VNWvDmiReH9FgsUczSrl7i4YfNPKxy7t6ksSa4P4XQtrFxLfXV4t3FoDSaTpm04zEDnzj6l4zGoPop9a9SByoNACiiiigAooooAKKKKACignHWigAooqhqmt6XokHn6pqNtZxnoZpQm76Ann8KAL9Fch/wl+pao/l+G/Dt3dIel9fZtLce43De4/3V/GlTwzrmqZbxF4jm8tutnpINrEB6GTJlb8GX6UAaereLNC0SbyL3UIhdN921izLM/0jQFj+VZaa54p1hmXSdAGnW56XWsvtb8IEJb/vplrX03Q9B8L2kzWFlaafEFLzSgBSQOSzueT9Sa59rrUPHchj0+SfT/DQOJL1Dsmv/VYu6R+snVui8ckA5u80nUPFmoz6RHrt3q7ISl7fH91YWh/uLChAmkHPDMwX+L0PRL8L9D07QoLfQreOw1W0xJa6mIwZvNHd26sp5DKeCCeBxjr9P0610qxhsrC3jt7WFdscUY2hR9P6mrY4FAHP+HvEP9q2dwl5AbXVbFjHfWQJZo26gqOrIw+ZSOoOOuRXlvgqy1XV/jnqvibV9G1W0tysgsXubCWNSOETllAX93k89zXpXifRbz7XF4i0JUGs2abGjJwL2DqYWPrnlT2b2JrX0TWrLXtJh1CycmJwQyuMPE44ZHH8LA8EUAXx9KdRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZHiv/kTtb/68J/8A0W1T6D/yLumf9ekX/oAqDxX/AMidrf8A14T/APotqn0H/kXdM/69Iv8A0AUAaFFFFABRRRQAUUUUAFFFFABXL6b/AMlK8Rf9g6w/9Cua6iuX03/kpXiL/sHWH/oVzQB1FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAITzj+dcVaxx+MvFc1/PF5mjaOz21orcrcXJyssmO4UfID6l/Sr/jHU7mKC20TSpvL1fVmMMDjkwRgZlmx/sr0/2iora0nTLXRtJtdNsk229tGsaDuQB1J7k9SaAMHwGzWek3Xh6WQtPoly1mCx+Yw/fhY/8AbNlGfVT6V1Y6DPWuRvV/sX4jWV8G222t25sps8D7REC8RPuU81f+ArXXUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQByXjj/j68Jf9h6H/ANFS11o6CuS8cf8AH14S/wCw9D/6KlrrR0FABRRRQAUUUUALRRRQAUUUUAFFFFABRRRQAUlLSUAFFFFABXLePf8AkE6X/wBhvT//AEpjrqa5bx7/AMgnS/8AsN6f/wClMdAHU0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAVyfjG8ub17bwtpkxivdTDGeZDzbWq/6yT6nOxfds9q6HUr+20vTrm/vZRFbW0bSyueygEn6/SsDwfp9y63XiPU7d4tU1UhzE/Jtrdf9VD7EDlv9pmoAqpaxeGPHunRWkSw6Xq1n9iEajCpPAC0f5xl1/wCACu0HSua8c2VzdeF57ixQvqGnut9agDkyRHdt/wCBAMv/AAKtvTr+DVNMtNQtm3QXUKzRn1VgCP0NAFqiiigAoopCQoJJAA6k0ALRXL3PjvRPtT2mmtPrN6hw0OmRGfafRnHyL/wJhUCf8JtrLEstj4dtT06Xl1/SNf8Ax+gDqLq6t7K3e4up4oIEGWklcIqj1LHgCuY/4Tq1v5Wh8Oadfa5IP+W1umy3B95nwpH+7uPtUtp4C0aO6W81EXOs3ynIuNUk8/afVEI2J/wFRXTqoRQqgAdAB2oA5P8AsvxfrDltS1iDR7U/8u2lKJJj9Z5Bx/wFB9av6X4M0HSrr7bDYia/73l27TzE+u9ySPwIreHSloAQdKo6tq9hoeny6hqNwkFtEOWbqT2UDuT0AHU1T8Q+I7TQY4kdXub66JS0soRuluGHYDsPVjwB1NZ+k+G7u81GLXvEsiT6igP2a0jbdb2IP9zP3pMdZDz2AAoAqxaTqHjKaO81+B7TRVIe20dzhpu4e4x+kXQcbsngdooCoFAAAGAB2oHQUtABRRRQAneuM1u3m8JapL4m06Nn06XB1iyiXJI4AuIwP41A+YfxKPUCu0pjL83TrQAy1uYLu1iuLeVJYZlDxujZDKRkEHvxU1cPGD4C1YQsW/4RjUJvkJ5XT53P3faFyeOytx0au3BGOtAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZHiv/kTtb/68J//AEW1T6D/AMi7pn/XpF/6AKr+K/8AkTtb/wCvC4/9FtVjQf8AkXdM/wCvSL/0AUAaFFFFABRRRQAUUUUAFFFFABXL6b/yUrxF/wBg6w/9Cua6iuX03/kpXiL/ALB1h/6Fc0AdRRRRQAUUUUAFFFFABRRRQAUUUUAFQ3E8NrBLcTyLHDEhkd34CqBkk+w65qauN8TMPE2uweEYnb7Kqrd6uy9PJB+SHjvIw5H91T6igB/hG3m1W6ufFt/A0U9+vl2MUg5t7Qfc+jOfnP1Ufw11w6c0KoVAqqFAGAB2paAOd8b6XPqnhe5+xZ/tCzK3tmQMnzojvUfjgqfZq19L1GDVtJs9RtmzBdQpMhznhgCP51aOea5LwUp0m51nw0x+XT7ozWg9LabLoPoreYv/AAGgDrsgd6Kb157GvK/hz4o1vxV468TPJqkk+gaexhtYzFGoJLHa2VUFvlQ/99CgD1aigUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcl44/wCPrwl/2Hof/RUtdaOgrkvHH/H14S/7D0P/AKKlrrR0FABRRRQAUUUUALRRRQAUUUUAFFFFABRRRQAUlLSUAFFFFABXLePf+QTpf/Yb0/8A9KY66muW8e/8gnS/+w3p/wD6Ux0AdTRRRQAUUUUAFFFFABRRRQAUUUUAFFFY3ifW/wCwdFkuoovtF5IywWlvn/XTMcKv0zyfQAntQBi6v/xVfiuPQUYHS9MKXWpY6Sy5DRQH2GBIw9kHeuzHQVieF9C/sLRY7eWQTXsrNPe3GP8AXXDcu358AdgAK2h0oACARjAOex71yPgl20+TWPDUowdKuz9n97aXMkX5ZdP+AVtaz4i0fQIvM1XUre1B+6sj/O/+6o+ZvoBXAar4l1RvFml6zomh3FvDfJ/ZTXWroYInZm3wtsGZMAhwMqAS4GaAPVKwNU8Y6FpNz9lmvlmvTytnaqZ5z9I0BP54rPXwlqeqIT4k8Q3d0rfes7D/AESAD+6dp8xh9X/Ct7SdC0vQrb7PpOnW9lEeSIIwm4+pI5J9zmgDCTVvF2s5/s7RYdHtmPFzqr75SPUQRn/0J1+lLH4FhvCX8Sapfa655MNw/l2w+kKYU/8AAt31rrRRQBXtLK1sIFt7S3it4VGFjiQIoH0AqxRRQAUUUmffHNAC5AGc1zOueJpLfUBouh26X+uOATGxIitVPSSdh91f9n7zdh3qpe67f+I76bSfCsgjWFtl3rDoGjg9UiHSST/x1cc5PFbmh6DY+H7L7LYRModzLLM7l5JnPV3Y8sx9TQBT0HwymkSy395cPqGs3A/0i+lGGx/cQfwRjso+vJroFztGRg0KMKBjHtS0AFFFFABRRRQAUUUUAV76yt9Qs5rO8gSe2mQxyROMh1PBH61y2g3dz4d1RPCurTSTwupOlX8zZM6jkwuf+eiDp/eXnsa7GsvX9EtfEGlyWN2rqNyyRTRnDwyKcq6nsynkUAaakYHP60tcx4Z1q7mnn0LXBGmt2KjeV4W6iPCzIPQ45A+63HpXTDoKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDI8V/8AIna3/wBeE/8A6Lap9B/5F3TP+vSL/wBAFQeK/wDkTtb/AOvCf/0W1T6D/wAi7pn/AF6Rf+gCgDQooooAKKKKACiiigAooooAK5fTf+SleIv+wdYf+hXNdRXL6b/yUrxF/wBg6w/9CuaAOoooooAKKKKACiiigAooooAKKKQ0AZniDWYdA0a41KZDIYgFjiUfNLISAiL6lmIA+tU/CejXGk6W8uolX1e+kN1fyLyDK2PlB/uqAEHsue9ZcWPF3jMzsC2kaBIUiz924vSMM2O4jGV/3mP92u0HSgAHSiiigArkdfU6T400LXVO2G5J0q7+knzQn6iRdv8A20rrqxvFejtr/hm/02N/LmlizBJ/clX5o29sOFP4UAVPHut/8I54E1nUw22WK2ZYj/00b5U/8eYVzHwN0iHSfh1A4dGu7yQ3VwoYFk3AbFPplNjc/wB7NdBHa6b8RPAtousWplhuo0eaEOUKSqcMMggghww/CtzSNGsNB0uHTtMt1gtYl2ogJJ9MknknHrQBfHSiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooJA6mgAoyK5ybxx4di1GSwi1Bru8T/AFkNhby3TJj+8Ilbb+NT6R4s0bXdQuLHTrp3urYZmhkt5Ini7fMHUEH0BoA3KKQHIBHeloAKKKKACiiigAooooAKKKKACiiigAooooA5Lxx/x9eEv+w9D/6KlrrR0Fcl44/4+vCX/Yeh/wDRUtdaOgoAKKKKACiiigBaKKKACiiigAooooAKKKKACkpaSgAooooAK5bx7/yCdL/7Den/APpTHXU1y3j3/kE6X/2G9P8A/SmOgDqaKKKACiiigAooooAKKKKACimTTRwRNLNIkcajLO5wAPc1y8/j3TJXMOiW93r04ONunR741P8AtSkiMfi2fagDqSc8D9a4SLUrPU/ENx4m1K9gt9A0dntdPkmkCJJP92WbJ4OOY1/4Gaz/ABHf+N9SuNP0aOWy0e41RyvkWubieKAf6yRpCAqYHAwCdzKA3euh0H4deGtChthFYC8nt1CxT3zGZ0H+zu4T6KBQA0+NZNSTb4Z0O91cdFuXX7NbfXzJOWH+4rUf2F4o1mP/AInevjT4W62uir5Zx6Gd8t/3yF+tddjj2ooAxNH8J6HoDGTT9NjS4b79y5Mkz/70jZY/icUnivSpNZ8L6hZQHbdGPzLZs42TId8Z/wC+1X8K3KQ0AZnh3WYte8OafqqKI/tMIdk6bH6Mv4NkfhWpXIeGW/srxPr3h1hsjEo1Kz/65TZ3gD0WUP8A99iuvoAKKKKACikJA6kVna1rNhoNi17qM4jhyFVcZeRj0VFHLE+g60AW7q6gs7aS6uZo4beJS8ksjAKijqST2rji2o+PMrA0+neF2GGmXMc+oD0TvHCf733mHTAOTJbaLqHiy6i1HxLC1tpyNvttFJyCc8PcEfebuE+6vHU12agKoAGB2oAr2VlbadZw2llbx29vCNscUa7VUegFWAMDpilooAKKKKACiiigAooooAKKKKACiiigDA8TaBJq8cN3YSpbazYMZbG6YcBscxvjkxsOGHvkcipfDeupruns7wm2vrd/IvLU/eglAyV91PUHuCD3rZrlPEmlXdjqC+J9Cg8zUYUCXdoDgX8A52/9dF5Kn6g8GgDqx0FLVHSNWstb0uDUdPnWa2mGVYcEHuCOxByCDyCKvUAFGaxdZ8WaD4fljj1PU4YJ5ceVAMvK+em1Fyx/AVUHjnQRqVrp8txd295dOEt4bmxnhaUk44DouQO57c0AdLRSDoKWgAooooAKKKKACiiigAooooAKKKKACiiigDH8V/8AIna3/wBeFx/6LarGg/8AIu6Z/wBekX/oAqDxX/yJ2t/9eE//AKLap9B/5F3TP+vSL/0AUAaFFFFABRRRQAUUUUAFFFJkeooAWuX03/kpXiL/ALB1h/6Fc11Fcvpv/JSvEX/YOsP/AEK5oA6iiiigAooooAKKKKACiiigArm/GGq3NlYw2Gluo1jVJPs1nuGQhIy8pHXCKC31CjvXQTSRxRPJKyrGqlnZugXvn2rkvCkT67qVz4xuoWUXKfZ9Ljccpag5347GQ/N/uhBQB0Oi6RbaFo9rptoD5NugUFuSx/iYnuSSST6mtAdKQcDFLQAUUUUAFIfbg/SlooA5Dw4raP4t17Qm4glcapZ89ElJEqj6SKTj/poK64dK5LxiG0zUtD8SR8LZXP2a7OcD7PPhCT/uv5bfQGuuoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvIfj34wvvD2g2WlabM9vLqbOJZkOGESgZUHtksOR2BHevXq84+L3w9ufHOiW76ayjU7BmeBHICyqwAZST0PyqQenHvkAF7wvpmjfDPwHam7Atx5ay31ysLvmQjJLFVJCjoM8Dir/AIYu/DuuanqXiHQbh7l7tIoZ5xEyofL3Y2llAJ+Y5wT0WuR8a3Pi3xT8PP7EtPDGoQatdtHHdBzGIlAOXKvuwQSAPoa7PwD4dfwv4G0rSJVCXEMOZwMHErEs/I4OCSM+goA6WiiigAooooAKKKKACiiigAooooAKKKKACiiigDkvHH/H14S/7D0P/oqWutHQVyXjj/j68Jf9h6H/ANFS11o6CgAooozzQAUUUUALRRRQAUUUUAFFFFABRRRQAUlLSUAFFFFABXLePf8AkE6X/wBhvT//AEpjrqa5bx7/AMgnS/8AsN6f/wClMdAHU0UUUAFFFYus+K9D0GRYdQ1GKO4k/wBXbIDJNJ/uxrlj+AoA2s0VyLa54n1Zguh+HvsUJ/5fNabZj3EKEuf+BFaR/BEmqkN4k1u+1Qd7WNvs1t9NiEFh/vM1AFrU/HGhaddGzjnk1HUP+fPTozcS/iF4X/gRAqs9z401nAsrKz0C2b/lret9ouMdiI0IRT/vMfpXRWGmWWlWottPs4LWBekUEYQZ+mKtjpQByi+AdNunWbXrm816dTkfb5MxA+0KgR/mpropZLXStPkmcxWtpbxlmPCpGoHJ9AABVquN8RZ8T+IYPC0a7tOgCXeruDwVzmKD/gZXcf8AZX/aoAl8IWs+oS3XirUEZbjUwBaROObe0GfLT2Zsl292A7V1tIoCqFAAA4AAxS0AFFFFABRRRQByPi5hpGtaF4k6RwXH2G7boBBOQoJPosgjP4muurO1zSodd0O+0uf/AFd1C0RPdSRwR7g4I9xVLwdrEmteF7O5uRtvkDW92n92eMlJB/30pP0IoA3qKM5rltb8TTf2lJofh6CK91sKDKXJENmp6PMw/MIPmPoBzQBc8Q+JbfQzb2yQyXmp3ZK2tjB/rJT6k/wqO7HgD1qnovhq4bUE1zxFKl5rAB8lUz5Fkp6rEp6n1cjcfYcVb0Hwxb6J59w8r3uqXWDd304+eU/3QOiIOyDgfrW6OlAAOlLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU0g5p1FAHEanDJ4I1WbX7VWbQ7p92q26AnyHPH2lQPwDgdsN/Ca1fF/iJPD/gnUddttkvkW/mQFTuVmPCHjtkg/SugdFkRkdQysMEEAjFeaavo0ek2N34T1F3XwzrIMFhcY3fYJ2OVhJ7oW5QnoflPUUAYfwR0U31nqPjvWHkvNUvJZI4pmXeyoB8xUY6k8YHYYHUiu0g8S+EPF3iCws7W/a61LTLhriOJIJQ0bBGjO8lBtA3nqRyB9KwPAUfiTwL4bufD2p+H7u7a0eR7O6smWSOcMScHLAqdx7469sct+DHgnWPDUWr6n4htfI1LUJVwrOrsEGSSdpIBJbp7UAeqr0Hp2paBRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBkeK/+RO1v/rwn/8ARbVPoP8AyLumf9ekX/oAqv4r/wCRO1v/AK8Lj/0W1WNB/wCRd0z/AK9Iv/QBQBoUUUUAFFFFABSHr1paqapfw6VpV5qFwcQ2kLzyf7qqSf5UAebWXxH1zU/iNf8Ag/T9O06Z7Mvvu2kcJhQM5ABwQxx9a6nRNZ8ST+KLvS9Y0yyhtIrYTx3dpM0iyMW27eQMEYbI+leM/C7RPE+p6H4m8W6Pqkdrqc8kiLvtBM0zAeYwUlsLlmXnB5HtXvPhm1Ww0Cz08zLNc2kSRXTBwzCXaGbdjoSW3f8AAqANiuX0z/kpXiL/ALB1h/6Fc103PUc15bB4W1i5+L/iK6i8U6haRfY7d9kCoTtcuFT5wygKY2P3f4j75APVM0Vyw8K6v/0O+u/9+rX/AOM0v/CK6v8A9Dvrv/fq1/8AjNAHUUVy/wDwiur/APQ767/36tf/AIzR/wAIrq//AEO+u/8Afq1/+M0AdRRXL/8ACK6v/wBDvrv/AH6tf/jNH/CK6v8A9Dvrv/fq1/8AjNAHUUVy/wDwiur/APQ8a7/36tf/AIzWdremX2g6RdandeNtdaK3j3bVitCznOFUDyeSTgAepoAseK5G1/VLfwhayskc6C51SVD/AKu1Bxsz2MjDb/uhjXXxokUaxxqqIg2qoGAAOgrz7w54G1yCyOoah4r1W31jUNs195KWzDcFwq5MR+6uF4OMgkVtDwrq5Gf+E310e3l2v/xmgDqaK5f/AIRXV/8Aod9d/wC/Vr/8Zo/4RXV/+h313/v1a/8AxmgDqKK5f/hFdX/6HfXf+/Vr/wDGaP8AhFdX/wCh313/AL9Wv/xmgDqKK5f/AIRXV/8Aod9d/wC/Vr/8Zo/4RXV/+h313/v1a/8AxmgDZ1nS4da0a90244iu4HhY9xkYBHuM5rN8FapPqnha0a+IGoW260vV7iaMlH/Mru+hFV/+EV1fP/I767/37tf/AIzXNWvhvUdJ8cXOlr4t1aCPVYDfJKqW4aWdCqSggxY+6YiMY79etAHp1FcsPCur4/5HfXf+/Vr/APGaX/hFdX/6HfXf+/Vr/wDGaAOoorl/+EV1f/od9d/79Wv/AMZo/wCEV1f/AKHfXf8Av1a//GaAOoorl/8AhFdX/wCh313/AL9Wv/xmj/hFdX/6HfXf+/Vr/wDGaAOoorl/+EV1f/od9d/79Wv/AMZo/wCEV1f/AKHfXf8Av1a//GaAOoorl/8AhFdX/wCh313/AL9Wv/xmj/hFdX/6HfXf+/Vr/wDGaAOoorl/+EV1f/od9d/79Wv/AMZo/wCEV1f/AKHfXf8Av1a//GaAOoorl/8AhFdX/wCh313/AL9Wv/xmj/hFdX/6HfXf+/Vr/wDGaAOoorl/+EV1f/od9d/79Wv/AMZo/wCEV1f/AKHfXf8Av1a//GaAOoorl/8AhFdX/wCh313/AL9Wv/xmj/hFdW/6HjXf+/dr/wDGaAOoorl/+EV1b/oeNd/792v/AMZo/wCEV1f/AKHfXf8Av1a//GaAOoorjNR0qfSLVrnUviJqlpAvWS4+xov5mGucS713VCR4a1jxXqQxxdzw2tpbY9neDcw/3VP1oA9Worydfh549v8AVNMv9U8fTL9mlLNFaxhdi+gIAVz2yyfgRxXYf8Itq55/4TbXR7eVacf+QaAOoorl/wDhFdX/AOh313/v1a//ABmj/hFdX/6HfXf+/Vr/APGaAOoorl/+EV1f/od9d/79Wv8A8Zo/4RXV/wDod9d/79Wv/wAZoA6iiuX/AOEV1f8A6HfXf+/Vr/8AGaP+EV1f/od9d/79Wv8A8ZoA6iiuX/4RXV/+h313/v1a/wDxmj/hFdX/AOh313/v1a//ABmgDqKK5f8A4RXV/wDod9d/79Wv/wAZo/4RXV/+h313/v1a/wDxmgDqKK5f/hFdX/6HfXf+/Vr/APGaP+EV1f8A6HfXf+/Vr/8AGaAOoorl/wDhFdX/AOh313/v1a//ABmj/hFdX/6HfXf+/Vr/APGaAIvHB/0rwl/2Hof/AEVLXWjoK8j8e+EtZN/4VI8YapMG1aOL9+kQ2MVZg6+WqcgKw5z97t0PrY6UAYvirxFF4V0C51i4tZrm3t8GRYmUMASBn5iAeSOBXOab8SJ9Z0Ea3p3g/W7nTm3FZEaDLbSQcIZdx6HoK5z9oXWzaeErLRIiTNqdyCVHOY48Ej/vop+tafhKy8VaVqXh3w3d2trY6Tp9i8zva3DSG6kACYclV2/M5fbg8jrxigDufDeuReJPD1lrEFvNbw3aeYkcwAcLkgE4JHIGfoa1aitoIbW2jt7eGOGGNQiRxqFVVHQADgCpaAFooooAKKKKACiiigAooooAKSlpMigDz34ofEG78AQWE1vZ212LxmQRSOysCoySMduVHTqam1bXvHGl6Zb3y6JpVwZWiV4I7mTzIi5C8jbggFgCRXnvxBMvjX47aN4as5Qq6cql3ZN6o+PNY47jaEXnvxXpPhjTNbsfEmq3XiXV0v5ZTHa6cxjWANGF8x9iAnkknPc+XzgYoA7ReVFct48P/Eq0sd/7a0//ANKY66ocjPrXnXxe0W+1fR9IWy1WawK6rbRkx55aSRURuCOULbh/+rAB22qa1peiQefqmoW1nGejTyhN3sM9T9K5/wD4S+/1R9nhzw7eXin/AJfL7NnbgeoLAu3/AAFT9ayrH4T29hqD6jF4k1l79jk3VwtvPKD7PJExH4Gtz/hFdX/6HfXf+/Vr/wDGaAIT4a13V3D694kmjh6/YtIU2qfRpcmRh9Cv0rZ0nw5o2ghv7M023t3b78irmRz6s5yzfiazP+EV1f8A6HfXf+/Vr/8AGaP+EV1f/od9d/79Wv8A8ZoA6jNFcv8A8Irq/wD0O+u/9+rX/wCM0f8ACK6v/wBDvrv/AH6tf/jNAHUUVy//AAiur/8AQ767/wB+rX/4zSHwtq45/wCE21w4PeO1/wDjNAGn4k1yHw7ok+oyoZXUBIIF+9PKxwiL7liB7de1VvCmiS6JpZ+2SCfU7yQ3V/P/AH5mxkD/AGVACqOwUVxVj4e1PxR4luJn8VatLpejzbLSd47Ys92AVkdR5W3aoOwZGd27BGK6z/hFdW/6HfXf+/dr/wDGaAOnB4pa5f8A4RXV/wDod9d/79Wv/wAZo/4RXV/+h313/v1a/wDxmgDqKK5f/hFdX/6HfXf+/Vr/APGaP+EV1f8A6HfXf+/Vr/8AGaAOoorl/wDhFdX/AOh313/v1a//ABmj/hFdW/6HjXf+/dr/APGaAOnzg1yOl7dG8fatpJHlwarEup2+Pu+YMRzAe/ETf8DNJeaDfafaTXd3491iG3hXfJLIloFUDuT5PH+RXmviXRdZ1/TB4huta1lfDtkdoNxHDHdT28jKk0ihI12R7DnD53AcgDFAHo11rV/4quZdM8MzfZ7FDsu9ZC5A5wY7fPDPxgv91fc8DodH0Sw0GxWz0+Hy4wxdmJLPI5+87MeWY+prDtPB19a2kUFp4x1iK2jQLEkUNoFVQOMAQ9Kn/wCEV1f/AKHfXf8Av1a//GaAOnHAFLXL/wDCK6v/ANDvrv8A36tf/jNH/CK6v/0O+u/9+rX/AOM0AdRRXL/8Irq//Q767/36tf8A4zR/wiur/wDQ767/AN+rX/4zQB1FFcv/AMIrq/8A0O+u/wDfq1/+M0f8Irq//Q767/36tf8A4zQB1FFcv/wiur/9Dvrv/fq1/wDjNH/CK6v/ANDvrv8A36tf/jNAHUUVy/8Awiur/wDQ767/AN+rX/4zR/wiur/9Dvrv/fq1/wDjNAHUUVy//CK6v/0O+u/9+rX/AOM0f8Irq/8A0O+u/wDfq1/+M0AdRRXL/wDCK6v/ANDvrv8A36tf/jNH/CK6v/0O+u/9+rX/AOM0AdRRXL/8Irq//Q767/36tf8A4zR/wiur/wDQ767/AN+rX/4zQB1FFct/wi2rf9Dxrv8A37tf/jNL/wAIrq3/AEPGu/8Afu1/+M0AdRVPUtOtNWsLiwvoFmtrhDHJG38QP8iOx7VgSeGdUiRnk8da2kajLM0doAB9fJrl59V33BtNG8Y+KNdugdrR6bbWkiIf9qUxCNfxagDpPDuoXekap/wi2tSvNOiF9Pv5OTexDqCf+eiDAYdSMN611w6DkV49qvw98eeK7XZqXib7Jbowlt4JhHPKrjuZI449hwT93d6V2On+DtbttOtoJvHWttLHEquyx2+CQOSN0Rb8yT6k0AdjRXL/APCK6v8A9Dvrv/fq1/8AjNH/AAiur/8AQ767/wB+rX/4zQB1FFcv/wAIrq//AEO+u/8Afq1/+M0f8Irq/wD0O+u/9+rX/wCM0AdRRXL/APCK6v8A9Dvrv/fq1/8AjNH/AAiur/8AQ767/wB+rX/4zQB1FFcv/wAIrq//AEO+u/8Afq1/+M0f8Irq/wD0O+u/9+rX/wCM0AdRRXL/APCK6v8A9Dvrv/fq1/8AjNH/AAiur/8AQ767/wB+rX/4zQB1FFcv/wAIrq//AEO+u/8Afq1/+M0f8Irq/wD0O+u/9+rX/wCM0AdRRXL/APCK6v8A9Dvrv/fq1/8AjNH/AAiur/8AQ767/wB+rX/4zQBoeK/+RO1v/rwn/wDRbVY0H/kXdM/69Iv/AEAVxXjHwnrL+DtYC+M9YfFpI5WWO3CuAMlSUjVsEAjgjr36HpfA9jcab4H0a0ur17yZLVCZnHJBGQPoAQo9hQBtzs6RO8cZkZRlUBALH05rz7QfixF4nu7y20Xwzq13JZ/6/bJbqF5IGC0gB5B6eldJ461v/hHfA+s6orbZIbZhEf8Apo3yp/48y14p8OrTxTovw6+2aLZWoGu3yQNfeexniQv5QKx7QOGLHduP3s44oA9q8M+Kj4jutTt20jUNNn0+RIpo7xVGWZd3G0nPGD16MPWujHtUMVvFCztHEoaTBdwBliAACT34AFTUAFc/4w8Oy+KvD1xoyag1jFc4E0qR72KgglRk8ZwP1roKKAPPdG+Her+HvDa6HpPi2a1tlZmV1sYzINxJPzE+/Xr6Gum8KeG4vCuhR6bFcS3Ugd5Zbmb780jMSWb+X4VuUUAFcvpv/JSvEX/YOsP/AEK5rqK5fTf+SleIv+wdYf8AoVzQB1FFFFABRRRQAUUUUAITjviuMkx4t8aCIbm0jQJd8nPyzXuOF9xGpz/vMPStPxbrVxpempBpoWTV7+QW1jGx48w5y5/2UALn/dx3q7oOjQ6Bodtp0LFxEuZZWHzTSE5d2/2mYkn60AagooHSigAooooAKKKKACiiigArk/HkRttOs/EMQPnaJcrdttHLQfdnX/v2WP1UV1lRXNvFd20ttPGHhlRo3Q9GUjBH5GgB6ujoHVlZGG4MDkEetOrlvAUskXh9tHupGkutGnewdm6sicxMfrGyGupoAKKKKACiiigAooooAKKKKACiiigAooooAKKCQASeAK5m+8c6HbTva2k8uq3y9bTTIzcSA+h2/Kn/AAIgUAdNUU88VtC808qRQoMu7sFVR6knpXLef411uM+Ta2fh6Buj3BF3c/XYpEan6s30qS38A6WzrPrUt1rtyDnzNTk8xFPqsQAjX8Fz70AMbx7p947xeH7S816ZTgmxj/cg+8zERj8CaRbPxnrQJvr610G3bpDYKLi4/GVxtU/7qH611UUSQxrHFGqIvCqoAAHsKkoA5vS/A+haXdC9+zNe6hnJvb9zcTZ9mbO3/gOK6MflS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQByXjj/AI+vCX/Yeh/9FS11eD29K5Txx/x9eEv+w9D/AOipa60dBQB5N4u+H3inxT8QtL8QSLow0/TWj8u0a7lzIFfeSx8ogEnjGOgFeqruZVLqAxHIByAfrgVJRQADpRRRQAtFFFABRRRQAUUUUAFFFFABUcm7awXhiOCRkD3I7/SpKSgDzXTPhbeaT4tv/E9v4mk/tG+Enms9krqAzBiFBY4xgAewxW1o/gu8tPFLa/q3iC61W5EDQwxyxLHHAGIyVVeAcDGfc9a7CigBB07/AI1y/j3/AJBOl/8AYb0//wBKY66muW8e/wDIJ0v/ALDen/8ApTHQB1NFFFABRRRQAUUUUAGa5rxjq1za2ttpOlsV1jVnNvasP+WK4y8x9kXJ+uB3roJ5oreGSaaRY4o0Lu7HAVQMkk9hjvXK+EoJdYvbrxdeKwN6vladEwwYbQHIOD/FIfnP/AR2oA6DRtJtND0e10yyQrbWyCNQTkn1YnuSckn1NX6B0ooAKKKKACiiigArL1vXbDw/Z/ar+YqHcRxRIu6SaQ9ERRyzH0/pVPxD4mi0eWKxtIG1DWLhd1vp8TgM46b3PREHdjx25NQaL4Ymhv8A+2tduE1DWWBCOq/ubRT/AAQKfujsW6tjn0oAqWehX/iW7h1XxRCI7eJ99nowIaOI9nmPSST2+6vbJya6m8s4L+xnsrpA9vPG0UiHurDGKsDpzR3oA5jwJeyy+G0sLl997pMjadcE9S0XCt77k2N/wKunHSuSTZonxLdeFg1+13j0+0wdfxaNh/36rrh0oAKKKKACiiigAooooAKKKKACiiigAooooAKKKx9Y8UaJobCPUdSt4ZW+7Bu3yv8A7sa5ZvwBoA2KK5BPEPiPWHK6J4ce1g7XmssYVPuIVy5/HbQPBl1qTl/EuvX2pKetpAfstsPYoh3MP95z9KALuo+N9B069NiLtrzUMf8AHlYRtcTfiqZ2/jiqf23xnrT7bTTrTQrMj/X37faJyPaJDtX/AIE59x2roNO0fTtHt/s+mWNvZwZyY4I1RSfU4HJq9QByaeAdPurhbnX7u816dTkLfuPIU/7MKgR/mDXTwwR20SwwRJFEowqIoAA+lS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBj+K/+RO1v/rwuP8A0W1WNB/5F3TP+vSL/wBAFQeK/wDkTtb/AOvCf/0W1T6D/wAi7pn/AF6Rf+gCgDjvin4U8SeNtHj0bSJNOt7QyrLNLczyKz7QcLtVCMZOevYV0nhHSbnRPCemaVdxwJNaQJExglaRWKgZbJVTknJxjvW7RQAgGBiloooAKKKKACiiigArl9N/5KV4i/7B1h/6Fc11Fcvpv/JSvEX/AGDrD/0K5oA6iiiigAooooAKY7KnzMRgDJz6d6fXH+MLmbVr228IWMrRyX6GW/nQ8wWgOGwezOfkHplj2oAZ4YU+JtZm8XTo32YK1rpKv/zwz882PWQgY/2VX1NdmKjt4Y7a3jghjWOKNQiIowFUDAA9gKkoAKKKKACiiigAooooAKKKKACiiigDkZE/sb4lxzA7bbXrTynHYXMALKfxjLf9+xXWjpyMGuZ8eWM9z4ae8slLX+lypqNsB/E8RyV/4Eu5cf7Vb9jeQ6hYW95buHhuI1ljb1VhkH8jQBYoo6jNFABRRRQAUUUUAFFFZ2r67pWhW5n1XULazi7GeQLu+g6k+w5oA0aK43/hLdW1dceGfDt3Oh6XupZtIPqAwMjj6L+NSf8ACLaxq6j/AISLxFcNGTlrPSgbSI+xcEysP+BDPpQBpaz4v0PQpVhvtRjFy3CWkIMs7n2jUFj+VZp1nxXrKf8AEm0JNMhbpday2Gx6iBCW/wC+mWtvSfD+k6DCYtK062tFb7xijAZ/dm6sfcmtOgDkR4H/ALSQf8JNrF9rJP3rct9ntv8Av1HgN/wMtXR2Om2el2y2thaQ2tuvCxQRhFH4ACrdFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcl44/4+vCX/AGHof/RUtdaOgrkvHH/H14S/7D0P/oqWutHQUAFFFFABRRRQAtFFFABRRRQAUUUUAFFFFABSUtJQAUUUUAFct49/5BOl/wDYb0//ANKY66muW8e/8gnS/wDsN6f/AOlMdAHU0UUUAFFFFABRRWZr+s22gaLdandAskC/LGv3pHOAqKO5YkAe5oAwfFDnxFrVv4QhybZlW71Z1P3bcH5Ys+sjDB/2Vb1rr0VURURQqqMAAYAFYHhHRrnTNMkudRcSatqEn2q9ccjeQAEU/wBxFAUD2z3roB0oAWiiigAoozTWITLHAA6k8frQA7Ncpq/iO6udSm0LwwkdxqqAfaLqQEwWIPdyPvPjkRjnucCqs2q6h4xuJLDw/M9poyMY7rVwMNLjgx2+e/YycgdBk9Ol0jR7HQ9NisNPt1ht4x93qWPUsx6kk5JJ9aAKmg+G7bQopnEkl3f3LB7q9uG3SzsOmT2UdlHC9q2k+6M/yxS0UAFFFFAHLePbZv8AhHhq0ClrvRpk1GEDqwjyZF/4FGXGPcV0drcRXVnDcQOJIZY1eNweGUjIP5U+RFkRkcBlYYZSMgj0rlvAh+wade+HXcl9FumtU3HJMBw8J/79so/4CaAOsooHQUUAFFFFABRRRQAUUZqOaeK3haaeVI4kGWeRgqqPUk0ASUVyMnj2xu5nt/D1nd69cDjNkgECn/anbEY/Ak+1C6f4y1pCdQ1O10OBv+WGmr502PeaQYB/3U/GgDodT1fTtGtmudTvrazhHWSeQIP161z0fjG61cEeG/D97fKel5dj7JbEeoZxvYf7qn61c0rwToWk3Iu0tGur/qb29c3E2fUM5O38MV0VAHIp4d8R6sS2v+I3ghP/AC5aOpgUexlOZD+G2tbRvC+i+Hw50vTYLeR/vzAFpH/3nJLH8TWxRQADpRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZHiv/AJE7W/8Arwn/APRbVPoP/Iu6Z/16Rf8AoAqDxX/yJ2t/9eE//otqn0H/AJF3TP8Ar0i/9AFAGhRRRQAUUUUAFFFFABRRRQAVy+m/8lK8Rf8AYOsP/Qrmuorl9N/5KV4i/wCwdYf+hXNAHUUUUUAFFFHSgCjrGqWmiaTdalfSCO1toy8jd/oPc8Ae5FY3g/Sry3tbjV9WTbq+quJ7he0C4xHCPZF4+pY96p3p/wCEq8ZLp4BbSNDdZ7ps/LNd4zHH7hAd5/2igPSuyHQUAA6CloooAKKKKACiiigAooooAKKKKACiiigBrLkYxkHqCM5rkvAqvp1vqXhuQnOj3RS3BPJtpP3kP5AlP+AV19cjrCtpHj/RtWU7bbU420u69N/MkLH8RIuf9sUAddRSDpSO6xqWdgqgZJJwAKAHUZrlrrx5pAme20kXGuXanHk6XH5wU/7Un+rT8WFRbfG2tx/M9j4cgbsn+mXOPqcRqfwegDpry+tdPtnub25htrdPvyzSBFX6seBXM/8ACcw6iCvhrSr3XXB+WWJPJts+80mF/wC+dx9qns/AeixTR3OoJPrF6nIudUlNwwP+yp+RP+AqK6UKFUBQAB0AHA/CgDk10rxdrKH+1tZh0iButtpCbpMe80gPP+6g+tX9H8HaHok5uLWwV7w/evblzNO3/bRiWH0HFb46UUAAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOS8cf8fXhL/sPQ/wDoqWutHQVyXjj/AI+vCX/Yeh/9FS11o6CgAooooAKKKKAFooooAKKKKACiiigAooooAKSlpKACiiigArlvHv8AyCdL/wCw3p//AKUx11Nct49/5BOl/wDYb0//ANKY6AOpooooAKKKKAENcac+LPGmCu7RtBk69p70j09IlJ/4G3+zWj4u1qfTdPhs9NKtq+pyfZbFeu1yMtIf9lFyx+gHer+haLbeH9EttMtSzRwJgyOctIx5Z2PdmOSfrQBpDOOaWgUUAFFFZWu69Y+H7IXN47l5Dsgt4lLyzv2RFHJP+TxQBb1C/tNLsbi+vp0t7WBN8srnCqB3/wA9elch9m1Dx6S99FLY+Fycx2pzHPqA65k7pF6LwW74HBsWHh++168h1jxQiqIiJLLRw26K1I6PJjiSUevRecetdiOnNAEcEEVvAkMMaRRoAFRFCqoHQADtUlFFABRRRQAUUUUAFclqCro3xE07Uc7bfWYDp856DzkzJCfqV81f++a62ue8a6VNq3he6jszi/tyt3ZkDJE0bB0A+pXb9GNAHQ0VS0jU4NY0ey1O3P7m7gSdOegYA4+vNXaACisPVvF2haLOILzUY/tTcLaQAyzufaNAWP5VmprXirWiRpWgJplv2utZfDH3WBDu/wC+mWgDrq5m88daDBePY2k8mq34BzaabEbhx/vFflT/AIERVZfA329jJ4k1m+1knk27N5FsP+2UeAf+BFq6Sx02y022FtY2cFtAOkUEYRfyAoA5sTeNtZJ8m1sfD9oej3Dfa7k+4RSEU/Vm+lSQeANJe5F3rMt3rt0DuD6nJ5iKfVYgAi/gufeurFFAEaRpGgjjQKi/dCjAH4VIKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDH8V/8AIna3/wBeFx/6LarGg/8AIu6Z/wBekX/oAqDxX/yJ2t/9eE//AKLap9B/5F3TP+vSL/0AUAaFFFFABRRRQAUUUUAFFFFABXL6b/yUrxF/2DrD/wBCua6iuX03/kpXiL/sHWH/AKFc0AdRRRRQAVg+LNbk0XSR9kRZNTvJBa2ELdJJnyFz/sryzeymt0n3x71x2gq3ifxJN4nmX/QLXfZ6SvUMM4ln/wCBEbR/sqT/ABUAbnh3RI/D+iQWCytPKC0k9w/3ppWJZ3b3LEmtakHTpiloAKKKKACiiigAooooAKKKKACiijNABRWPrXifRfD+3+1NSgt5JP8AVwklpH/3UXLN+ArHfxF4i1b5dA8NyRRN/wAvmsN5CfVYhmRvx20AdhXB/EPXtHl0K70iG/WXWyFls7a0Vp5hPGweMlEBKjcBycDrV1/Bt5q+D4l8QXt8h62lmfslvj0IQ72H+85+ldBpukado1r9m0ywt7OHOdtvEEB9zjqfc5oA5TTte8WeK9KtrzR7Cy0m1nQEXd/J50h9SsKHAOc/eYY9O1Xh4Ds77a/iK+vddkBDeXdPstww7iBMIf8AgQP1pvhQPpOua94dcYiin+32Q/6YzEsyj/dkEg9gRXWjoKAIra1gtIFgtoI4YUGFiiQKoHsBwKmoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOS8cf8fXhL/sPQ/+ipa60dBXJeOP+Prwl/2Hof8A0VLXWjoKACiiigAooooAWiiigAooooAKKKKACiiigApKWkoAKKKKACuW8e/8gnS/+w3p/wD6Ux11Nct49/5BOl/9hvT/AP0pjoA6miiigApkhCqWJAAGST0H1p9cf4ulfXNQtvB1qzgXsfnajKhx5VoDgrnsZCNg9tx7UAJ4XSTxBq1z4uuFxbyKbbSEI+5bZ5lx6yMA3+6F967GmQxRwwpFCipGihUVRgADpin0AFGRRXJ6p4jvNQ1KXQ/CyxT30TbLy+kG6Cw9c/35PRAf97A6gFvX/EqaZcxabYW7ahrdwuYLKNgMD+/If4EHdj16DJqPQvDEltef2xrVwL/XZFKm424jt0P/ACzhU/dX1P3m/i9Bc0Dw5Z6BBL5JluLu4bfc3lwQ0s7erH26ADAAAArYHSgAGcDPWloooAKKKKACiijNABRVe9vbXT7V7q9uYba3T78s0gRV+pPSuZPjqLUFYeGtJvtcbkLLEnk2+feaTCke67j7UAddWbq+u6VoVubjVNQtrOPsZpApP0HVvoOawxpPi3WUP9r61FpUDf8ALto65kx/tTyAnP8Auqv1q/o/g7Q9Dm+0Wlgr3h5a8uGM07H/AK6OSw+mcUAcV4Q8R6sx1PQdA0V5ooLl57S41BmtY47aZmZPlKmRgG8xRgdFHNdKnhfW9VBbxH4jndG5NlpQNpDj0LgmRh/wJfpR4hZtI8Y6Draj9xdOdKvD7SfNC34SDb/20rrx0oAy9H8O6RoELRaTp1tZh/vtFGAz+7N1Y/U1qDpRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZHiv/kTtb/68J/8A0W1T6D/yLumf9ekX/oAqv4r/AORO1v8A68Lj/wBFtVjQf+Rd0z/r0i/9AFAGhRRRQAUUUUAFFFFABRRRQAVy+m/8lK8Rf9g6w/8AQrmuorl9N/5KV4i/7B1h/wChXNAHUUUVU1G/ttK065v72VYrW3jaWVj2UDJ/HjpQBzvjC7lv5bbwpp07xXmqqTPPH962tF++/sWzsX3bPaums7S30+ygs7SJYraCNY4o16KoGAB+Fc74OsLto7nxBqsZTU9WKyGM8/Z4B/qofqAST/tM3tXUjpQAUUUUAFFFFABRRRQAUVHPPDbwvPPKkcSDLPIwVVHqSa5Z/H1hdztbeH7O916ccFrCMeQp/wBqZiIx+BJoA63Oapanq2naPbG51O+trOD+/cShAfpk9fpXPfYfGesvm91K10O0P/LDT18+c/WWRdqn6IfrVzTfBGhadeLfm0N5qA5+237m4mz6hmzt/wCA4oApHxndakwj8NeH77Ugel3cD7LbD3DuNzD/AHVND+HfEesuG1vxE9pbnrZ6MphB/wB6Zsuf+A7K6/GPrRQBj6R4W0TQyX07TYIZm+/ORulf/ekbLH8TWwKKKACiiigDkfFO7SfEegeIU4hWY6de+nkzkBGJ7bZQn4Ma66szxBpKa7oF/pbttF1A0av3RiPlYe4OD+FV/COry634Wsb26XZebDFdIeNk6EpIMdvnVqANuiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5Lxx/x9eEv+w9D/6KlrrR0Fcl44/4+vCX/Yeh/wDRUtdaOgoAKKKKACiiigBaKKKACiiigAooooAKKKKACkpaSgAooooAK5bx7/yCdL/7Den/APpTHXU1y3j3/kE6X/2G9P8A/SmOgDqaKKKAKGsanbaLpN1qV422C3jMj+px0UepJ4HuayPCGmXcFlPq2qxbNX1Vxc3K9fIXGI4R/uLgfXce9Urzb4s8ZrYK27SdCkSa75+We7xujj+kYw5/2ig7GuzFACL90U2R1jVndgqqMlicADvz+tVtU1Oz0fT5r+/nSC2hXc8j+np7n0A61yaafqPjkifV4ZbLw4cNDpr5WW7OeHnx91OhEff+L0oAdLqOo+N3e20KeWy0JTtl1dMrJceq2/oOxl9fu9MjqdM0qx0XT4rHTrZLe2iHyog/MnuSepJ5NW4o0hjWONFRFG1VUYAA6Ae1OoAB0ooooAKKM1zureNdC0m5+yPeG6vz92ysUNxOT/uJkj6nAoA6LNNd0jRndlVVGSScACuTa+8Y6ygGnaZbaHA//LxqbedMB7QodoP+8/4U4eA7K+KP4jvb3XpFO7ZdybbcH1EKYT8waAH3XjzSfNa30hbnXLtTjytLj84Kf9qT/Vr+LCojH411uP55bLw7A/aIfa7kD0ycRqfoHrqLe2gtIFgtoI4YUGFjiQKqj2AqagDmLTwHokMyXV/HNrF6nIudUkNwy/7qn5U/4CBXShQoAUYAGMAYAp1FABRRRQBj+KdJOueGtQ06Nts0sJMD5xslX5o2z7OFP4UvhjWRr/hnT9TZPLkniHnRnjy5Adrr+DBh+FazdO9cj4ec6T4v13QWG2KYjVbT02ScSgfSUE/9tRQB19FIOlLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZHiv8A5E7W/wDrwn/9FtU+g/8AIu6Z/wBekX/oAqDxX/yJ2t/9eE//AKLap9B/5F3TP+vSL/0AUAaFFFFABRRRQAUUUUAFFFFABXL6b/yUrxF/2DrD/wBCua6iuX03/kpfiL/sHWH/AKFc0AdRmuM1YDxX4sj0MAtpWlOl1qDD7ssww0UB9QP9Y30Qd62fFGuf2Fo0lxFGJryVhBZwE/66duEX6Z5PoAT2o8MaH/YGix2ss32i8kZpry5I5mmY5dvpk4HoABQBtDpRRRQAUUVh6r4u0LR7gW91qMZuzwtpADNOx9o0Bb9KANyjIxntXIrrXirWs/2ToSaXb54utZfDn3WCM5P/AAJl+lIvgf7e5k8S6zf60x/5YM3kWw/7ZJgH/gRagCzeeOtCgvXsbSaXVb9RzaaZEbhx/vEfKv8AwJhVVZvG2sufKtrHw/aH7rzkXdyR6hVIRfxZvpXS2OnWWm2y21jaQWsC9IoIwij8AKtigDlIPAGkvdLeaxJda5dqcrJqcnmqh/2IsCNfwXPvXUJGsaBERVUcALwB+FPooAKKKKACiiigAooooAKKKKAA9PeuR0Yto/j3WtHYbbbUEXVbX/e4jnUfiEb/AIGfWuurkfHLNpi6X4ljXP8AZV2puMf8+0v7uX8sq/8AwCgDrqKQEEcHNL1GaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDkvHH/H14S/7D0P8A6KlrrR0Fcl44/wCPrwl/2Hof/RUtdaOgoAKKKKACiiigBaKKKACiiigAooooAKKKKACkpaSgAooooAK5bx7/AMgnS/8AsN6f/wClMddTXLePf+QTpf8A2G9P/wDSmOgDqawfFmtTaNpObGJZtUu3FrYQt0eZumf9lRlm9ga3SQMknA7muN0Af8JP4in8VSqfsNrvs9JUngrnEs4/3iNo/wBlc/xUAb3h7RY9A0SGwSRpZBueedvvTSsdzu3uWJNR6/4is9Agia4Dy3Nw2y1tIBumuH/uov8AM9B3IqrrviY6feJpOlWv9o63OoKWyHCwqekkzfwJ+p6AHsaD4Z/s+5k1PU7gajrc4xJdsmBGv/POJf4EHpyT1JOaAKum+Hb3VL+HXPFIiku4m32enod0Fl6N/wBNJcdX7HO0DrXWgYpB0561T1LVdO0i2Nzqd9bWcH/PS4lCL9OT1oAu0VyDeMrnUXEfhrQL7U89LucG0tgPXe43MP8AdU0reHvEmsMDrfiFrS3PWy0ZTDn2aZsuf+A7KANbWvE+i+H1X+1NSgtnf7kRbdI/+6g+ZvoAayH8ReI9WwugeG3hiPS91hjboB6iIZkP4hfrWvpHhfRNDZpNP02CKZvvzkb5X/3nbLH8Sa2B0oA5B/Bt5q+D4k1+9vUPJtLM/ZLfHoQh3sP95z9K6DTNG07RbX7Npljb2cPXZBGEBPqcdT7mr9FACDpS0UUAFFFFABRRRQAUUUUAFcj4zcaRfaJ4lAwlldC3u2/6d5sISfZX8tvwNddVLVtNg1nSbzTLkZguoWhfHUBhjI9xnI96ALg6Utc74J1abV/Ctq95/wAf1tutL0HqJoiUcn6kbvoRXRUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGP4r/5E7W/+vC4/9FtVjQf+Rd0z/r0i/wDQBUHiv/kTtb/68J//AEW1T6D/AMi7pn/XpF/6AKANCiiigAooooAKKKKADNFU9Sv7TSrGe/v51gtYELySOeFH+PYVleDfE8PjDw6msQQGKCWWVI1Y8lVcqCfrjOKAOhrl9N/5KT4ix/0DrA/+PXNdQSB1NeTeKtejs/Hmt6RDqEVlc6jY2UT3juFFpCpnMshYnAYKyhR/edaAOm0kf8JX4qm16RCdM0tpLXSyekkuSs049emxT7Me9dnXEad4ptU0u30/wdol7qtvBGsUMiJ5FsFAwMzSY3fVQxPpVgaN4r1lCdY12LS4W622jJh8e87gtn/dVfrQBuaxr+kaDD52q6jbWikfL5sgDN/ur1Y+wzWGnirV9ZQ/8I74duXjPC3mqE2kP1CkGRh/wEfWtLR/CGh6DIZrLT0N0xy93Mxlnc+8j5b9cVujpQByC+FdY1Rc+JPEVzMjdbPTAbSED0LA+Yw+rD6VuaP4f0jQYGh0rTba0RvveVGAX92PVj9c1p0UAAooooAKKKKACiiigAooooAKKKKACiiigAooooAKrahZQalYXFjdJvt7mJopE/vKwIP86s0h54oA5nwJqE974Yitr1i1/psjafdH+9JEdu7/AIEu1v8AgVdPXIxOdG+JMtuVxa69aidD/wBPMICuP+BRlD/2zNdcOlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQByXjj/j68Jf9h6H/ANFS11o6CuO8eTxRXnhESSohOvQ4DMBn93L/AIj8xXYjoKADIHeiuH+Kfiu+8GeE/wC19PltxcCZIUjni3rIW5I4II4DH8K4zX/ib4q8Kab4U1G+TTbv+2ITLPZJbskka/KQFO85yHxyOo70Ae10Ui9KWgBaKKKACiiigAooooAKKKKACkpaSgAoorlI/G+n3nxBk8J2S+fc29q09zMrfLEwKgJ7nDEn09zkAA6uuW8ec6Tpf/Yb0/8A9KY66gdK4z4m6ja6V4bsb29lWO3h1axkcnrtWdWbA7napOPY0AT+Mbq4v5rXwrp0xivNUVjcTIfmt7ReJH9ichF9yT2qtPqs91L/AMI14LSKL7GqwT6gVD29iAANij/lpIAOF6Dgt6V5tofi4eK9Q1CaN7yKTUmDXQ06Jpbt4lyI7ePbkRIF5eRsbmY445r0fTbXxS9lFYaTpmneFtKiXZGJSLm4A6ghFIRSe+Wf15oA3dH0TTfC1hMY2wXPnXd5cyZknbHLyOev6AdqzZPH1hc3LW2gWl7r06naWsEBgU/7UzERj8CadD4A0qW4S71qa71y6U7g2pSeZGh/2IgBGv4Ln3rp441ijEaIFReFVQAB9B0oA5X7D4z1p83mo2mhWh/5Y2C+fcEehkkGxT9EP1q5p3gjQrC8W/e0a91Ef8vt9I1xN+DPnb/wHAroqKAADHQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIetLRQByNgRo3xE1DTiNtvrNuL+H086PEcwH1Xym/OuurlPHg+w6bZ+IkQtJotyt020cmA5SYf9+2Y/VRXUxussSSIwZGUMrDoQe9ADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMjxX/yJ2t/9eE//AKLap9B/5F3TP+vSL/0AVW8XOqeDNcZ2Cj7BPyTj/lm1T+HZEl8M6U8bq6NaREMpyD8goA0qKoa1dGx0W+uxMsP2eB5TKy7goUEnI47CvGdM+JvjO9+G2reL5n0eJLK4SKGBrVsTncu4Z8zI++D36H6gA91orm/AXiaXxd4MsNanthbzThg6LkrlXZSRnsdua6SgAprMqKWZgoAySegp1c74u0G/8RadDYWt/Ha25nVruN4i4uYh96I4IIDdCR2+tAHmHxN19PEfhbV52i1JNLtUUWKixnEV25Zf37S7PL8tQTsG7k5P92u0+C6GP4SaGCBlhM31zNIRWn448L3nizwrLoFreQWUFwEErmAuQFZWAUBlwPlx9Km8D+HLnwn4UtNDuLqK6FruCSxxmPKli3IJPOSaAOjx6cVwd78IvCmp+KrzXtQtp7qW7ALQSSkRKwx8wxhgePXHWu8HApaAOWX4d+GQgAsZwB2+3Tj/ANnpf+FeeGf+fKf/AMDZ/wD4uuoooA5f/hXnhn/nxn/8DZ//AIuj/hXnhn/nxn/8DZ//AIuuoooA5f8A4V54Z/58Z/8AwNn/APi6P+FeeGf+fGf/AMDZ/wD4uuoooA5f/hXnhn/nxn/8DZ//AIuj/hXnhn/nxn/8DZ//AIuuoooA5f8A4V54Z/58Z/8AwNn/APi6P+FeeGf+fGf/AMDZ/wD4uuoooA5f/hXnhn/nxn/8DZ//AIuj/hXnhn/nxn/8DZ//AIuuoooA5f8A4V54Z/58Z/8AwNn/APi6P+FeeGf+fGf/AMDZ/wD4uuoooA5f/hXnhn/nxn/8DZ//AIuj/hXnhn/nxn/8DZ//AIuuoooA5f8A4V54Z/58Z/8AwNn/APi6P+FeeGf+fGf/AMDZ/wD4uuoooA5f/hXnhn/nxn/8DZ//AIuj/hXnhn/nxn/8DZ//AIuuoooA5f8A4V54Z/58Z/8AwNn/APi6P+FeeGf+fGf/AMDZ/wD4uuoooA5N/hv4VkdHfTZWZM7WN5OSuRg4+fuOKk/4V54ZPJsZ8/8AX7P/APF11FFAHL/8K88M/wDPjP8A+Bs//wAXR/wrzwz/AM+M/wD4Gz//ABddRRQBy/8Awrzwz/z4z/8AgbP/APF0f8K88M/8+M//AIGz/wDxddRRQBy//CvPDP8Az4z/APgbP/8AF0f8K88M/wDPjP8A+Bs//wAXXUUUAcv/AMK88M/8+M//AIGz/wDxdH/CvPDP/PjP/wCBs/8A8XXUUUAcv/wrzwz/AM+M/wD4Gz//ABdH/CvPDP8Az4z/APgbP/8AF11FFAHL/wDCvPDP/PjP/wCBs/8A8XR/wrzwz/z4z/8AgbP/APF11FFAHL/8K88M/wDPjP8A+Bs//wAXR/wrzwz/AM+M/wD4Gz//ABddRRQBy/8Awrzwz/z4z/8AgbP/APF0f8K88M/8+M//AIGz/wDxddRRQBy//CvPDP8Az4z/APgbP/8AF0f8K88M/wDPjP8A+Bs//wAXXUUUAcv/AMK88M/8+M//AIGz/wDxdH/CvPDP/PjP/wCBs/8A8XXUUUAcv/wrzwz/AM+M/wD4Gz//ABdH/CvPDP8Az4z/APgbP/8AF11FFAHL/wDCvPDP/PjP/wCBs/8A8XR/wrzwz/z4z/8AgbP/APF11FFAHL/8K88M/wDPjP8A+Bs//wAXR/wrzwz/AM+M/wD4Gz//ABddRRQBy/8Awrzwz/z4z/8AgbP/APF0f8K88M/8+M//AIGz/wDxddRRQBy//CvPDP8Az4z/APgbP/8AF0f8K88M/wDPjP8A+Bs//wAXXUUUAcv/AMK88M/8+M//AIGz/wDxdH/CvPDP/PjP/wCBs/8A8XXUUUAcDq/wh8L6tc2M7LewNaS+YBHdO28cfKd5bHI7YrvR096WkIPb8qAPDvjMX8T+P/C3guGRgkriafy+q7zt3fVUVz+NVLj7L4a+O2l6ReD/AISJbhIEglvjvlsCSdoQDCADhvu9DwQc59Hm+Guny+LW8UHVtWXVypVZ1aE7F27MKpjKj5eOnep9G+HOhaNr0uukXd/q8rFjeX0vmOM8cAAAcDGcdOBQB1y9P880tIowoHpS0ALRRRQAUUUUAFFFFABRRRQAUlLUM6yNFIIiFlKnYzDIU44OPrjj2oA5Txh4le0lj0XTvtZvLlf9IubS0luTYwn/AJaFY1Y7jghM8ZGTwOfLfhFBbRfG3xOLKKWO1htZo4lnV1kx50QG4OAwbgk55yea9e8M6Be6BpNzHcXUF5qdzM88175JXznJ4LjcTwMKADgAVzfhD4bah4a8c6n4luNXt7ptT80zwpbNHtLuH+Ulz3GPpQB6RXLeNvAul+OrS0ttUe5RLWbzUNu4UnIwVOQeDx6EY6+vU0UAcha/DHwjZw+XbaU0KE5Kx3c6gn1xvqf/AIV54Z/58Z//AAOn/wDi66iigDl/+FeeGf8Anxn/APA2f/4uj/hXnhn/AJ8Z/wDwNn/+LrqKKAOX/wCFeeGf+fGf/wADZ/8A4uj/AIV54Z/58Z//AANn/wDi66iigDl/+FeeGf8Anxn/APA2f/4uj/hXnhn/AJ8Z/wDwNn/+LrqKKAOX/wCFeeGf+fGf/wADZ/8A4uj/AIV54Z/58Z//AANn/wDi66iigDl/+FeeGf8Anxn/APA2f/4uj/hXnhn/AJ8Z/wDwNn/+LrqKKAOX/wCFeeGf+fGf/wADZ/8A4uj/AIV54Z/58Z//AANn/wDi66iigDl/+FeeGf8Anxn/APA2f/4uj/hXnhn/AJ8Z/wDwNn/+LrqKKAOX/wCFeeGf+fGf/wADZ/8A4uj/AIV54Z/58Z//AANn/wDi66iigDl/+FeeGf8Anxn/APA2f/4uj/hXnhn/AJ8Z/wDwNn/+LrqKKAOX/wCFeeGf+fGf/wADZ/8A4uj/AIV54Z/58Z//AANn/wDi66iigDlJfhz4WljaN9OldGBVla8nIYehG/pSp8OvC6IqrYTBQMAC9n4/8frqqKAOX/4V54Z/58Z//A2f/wCLo/4V54Z/58Z//A2f/wCLrqKKAOX/AOFeeGf+fGf/AMDZ/wD4uj/hXnhn/nxn/wDA2f8A+LrqKKAOX/4V54Z/58Z//A2f/wCLo/4V54Z/58Z//A2f/wCLrqKKAOX/AOFeeGf+fGf/AMDZ/wD4uj/hXnhn/nxn/wDA2f8A+LrqKKAOX/4V54Z/58Z//A2f/wCLo/4V54Z/58Z//A2f/wCLrqKKAOX/AOFeeGf+fGf/AMDZ/wD4uj/hXnhn/nxn/wDA2f8A+LrqKKAOX/4V54Z/58Z//A2f/wCLo/4V54Z/58Z//A2f/wCLrqKKAOX/AOFeeGf+fGf/AMDZ/wD4uj/hXnhn/nxn/wDA2f8A+LrqKKAOX/4V54Z/58Z//A2f/wCLo/4V54Z/58Z//A2f/wCLrqKKAOX/AOFeeGf+fGf/AMDZ/wD4uj/hXnhn/nxn/wDA2f8A+LrqKKAOX/4V54Z/58Z//A2f/wCLo/4V54Z/58Z//A2f/wCLrqKKAOX/AOFeeGf+fGf/AMDZ/wD4uj/hXnhn/nxn/wDA2f8A+LrqKKAOX/4V54Z/58Z//A2f/wCLo/4V54Z/58Z//A2f/wCLrqKKAOX/AOFeeGf+fGf/AMDZ/wD4uj/hXnhn/nxn/wDA2f8A+LrqKKAOX/4V54Z/58Z//A2f/wCLo/4V54Z/58Z//A2f/wCLrqKKAOX/AOFeeGf+fGf/AMDZ/wD4uj/hXnhn/nxn/wDA2f8A+LrqKKAOK1T4W+F9U024sXtbqITLt8xLyUleQQQGYjr6g10PhzQbTwz4fs9GsTK1vaoVVpW3MxJLEk+5JPpWpRQB5v8AHDXRo3w2vIVbE2outon0PzP/AOOqR+NeYeKNAbwT8OPCd3d3El8skyyTaNen9wXdC5YKm1sr05J+96V7R4x+Hul+N5rZ9Wur/Za5MMMLoqKTjJOUJOdo65+lQah8M9H1vVbfUNfu9S1h7fmKK7mURLk5OEjVB6Z45wM5xigDp9DmhuNA06e3tVtIJbWN47dQAIVKghABwAOnHpV+kUBVAAwBwBS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAC0UUUAFFFFABRRRQAUUUUAFJS0lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/2Q=='] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 49 "如图, 圆 $C$ 与 $x$ 轴相切于点 $T(2,0)$, 与 $y$ 轴的正半轴相交于 $A 、 B$ 两点 $(A$ 在 $B$ 的上方),且 $|A B|=3$. 设过点 $B$ 的直线 $l$ 与椭圆 $\frac{x^{2}}{8}+\frac{y^{2}}{4}=1$ 相交于 $P 、 Q$ 两点. 求证: 射线 $A B$ 平分 $\angle P A Q$." ['易知 $A C=\\frac{5}{2}$, 故圆方程为 $(x-2)^{2}+\\left(y-\\frac{5}{2}\\right)^{2}=\\frac{25}{4}$;\n\n可知 $A(0,4), B(0,1)$, 且直线 $P Q$ 的斜率必存在, 可设 $l_{P Q}: y=k x+1$.\n\n原命题等价于证明 $k_{A P}+k_{A Q}=0$.\n\n设 $P\\left(x_{1}, y_{1}\\right), Q\\left(x_{2}, y_{2}\\right)$, 将直线方程与椭圆方程联立得 $\\left(2 k^{2}+1\\right) x^{2}+4 k x-6=0$, 所以\n\n$$\nk_{A P}+k_{A Q}=\\frac{y_{1}-4}{x_{1}}+\\frac{y_{2}-4}{x_{2}}=\\frac{k x_{1}-3}{x_{1}}+\\frac{k x_{2}-3}{x_{2}}=2 k-3 \\cdot \\frac{x_{1}+x_{2}}{x_{1} x_{2}}=2 k-3 \\cdot \\frac{-4 k}{-6}=0\n$$'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAfECRAMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKQnAJryn4o/EjxB4Cv8ATlt9MsJNPumOJWd2dghG9cAKEOGAHLdzQB6vRXm/i7xj4l0Txv4ZsdP063n0TVHjhaZ1JdnZvmHBG3apDcjnn049G44/TNADqKaXVWUFgCxwAT1NOoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvDP2k4v+JLoE3924lXH1Vf8K9yPTpXmev6E/wATNXtLK/0y6s9L0e9mM0s2FF5j5VWLuVPBLcDsM9QAX/BgbxTLpviOdJF0+wtBb6Ykow0jlAs05H4bF9gx/iFd6elRW8ccMUcUKKkSKFRVG0KBwAB2xU1AHlvxI8YL4f8AH/gm0EoVGumkuRngI48kMf8Avpz/AMBr1AZyB/kV8h/GPWG1r4n6o0bM0NkVtEx22D5h/wB976+ovB2s/wDCQ+D9I1Ync9zao0hH9/GH/wDHgfyoA3KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApkpYROUALAEqCcZNPooA8pXwVYeHda8IWEkaXc9/fXj6lPImftTtay7s/7PJAHYZ9TntfCHhseE9Nm0m3lMmnpcPJaKesUb/NsP0Yv+BHvVHxP/AMjv4J/6/br/ANJZa6+gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDkPE/wDyO/gn/r8uf/SWWuvrkPE//I7+Cf8Ar9uv/SWWuvoAKKKKACiiigAooqte3ttp9o91d3MVtAgy0krhFUe5PAoAs0GuIPj19VfyvCOiXesnp9rYG3tF/wC2jD5v+Ag59aX/AIR3xdrWDrnif7BCetpocfl/nM+WP4AUAdPqWrabpEIl1LULWzi7NcTLGPwya5o/EzQp2KaRBqutMDg/2ZYSSKP+BkBf1q5p/wAPvC+mz/aU0mK4uz965vWa5lJ9d0hJH4YrpkUKoVQAo4AA4oA47/hJ/Ft3g2HgW4WM9Hv9RhgP4qu8igv8SJzlYfC9mp6B5J52H1wEFdnRQBxw0/4gycya/oMPtHpkjAfnLSnS/HqjI8T6Q59G0lx/KauwooA40wfEeL7moeGJx/00s50P5iQ/ypP7R+IVmP3/AIe0TUP+vPUnhP5SR/1rs6KAOL/4TjUbLjVvBOv2x7taRx3aD8Y2z+lWbL4j+Er6byBrUFtcd4L0NbuD6YkA/SurPSqd9pthqcPk39lb3cX9yeJXH5GgCzG6SIrowZW5DKcg/Sn1xj/DbSLd2l0G51HQZid2dOuWWMn3ibKEe20VH5vj3QeZY7LxNaL1MIFpdfXB/dt9MigDt6K5fSPHmiardjT3lm07U+9hqMZgl/AHhv8AgJNdOOtAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAch4n/5HfwT/wBft1/6Sy119cf4n/5HfwT/ANft1/6Sy12FABRRSHocUALUc00dvA800iRxoNzO7BQo9ST0rA1/xdZ6LdR6dDDLqGsTrug061GZW/2mJ4RP9puKyIfCOo+JJ0vfG08c0SsGh0a1Y/ZYz2MhPMrDjrhQegoAc3jO/wDEEzW3gvT1vI1O19WuyY7ND32fxSn/AHQB71NaeALe4u0v/E97L4gv1O5ftKhbeE/9M4R8o+pyfeuthijhjWOKNY40GFVRgKPQDsPpUtADUUKoVVCqOABxgU6iigAooooAKKKKACiiigAooooAKKKKACkPSlooAzNY0LS9fsza6tYQXkPZZUyVPqp6qfcVzP8Awj3iXwud/hnUzqNgv/MK1WQsVHpFP95fTD7h713NB6UAczoXjTTtXvDptwk+maygzJp16Nsg90PSRfdSfwrpayde8N6V4ksxb6pZrMEO6OQHbJE3ZkccqR6iubS+8Q+CQU1YT65oMf3dQjXdd26/9NkH+sA/vrzjkg0Ad3RVPTdTstXsob7T7mO5tZl3RyxtuDD/AD+XSrlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAch4n/AOR38E/9ft1/6Sy119ch4n/5HfwT/wBft1/6Sy11x6UADfdrjNX8T32papL4f8IrHNfR/LeahKCbewB7HH35PRO3U8ZFV9U1fUPF2p3Hh7w3cNbWVu3l6nrEf/LP1hhPeX1YcJ9cV1ei6Np+gabDp2mWyW9tEOFUck9yT3J9TyaAKXhrwxY+HIJPI3z3lwd93fTndLcv/eY/yA4AreoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRvunnFLRQBxGpeFr7RNQm1vwaYobmVt93pbnFven1HaOT/aHB79c1t+GvEtl4ktHkgEkF1A3l3VlPxLbyd1YfyPQjpW233TXKeJvCk19eJrmhzpYeIbZdsU5GY7hP+eUwH3kPr1XqOlAHWUVz3hbxPH4gingnt2sdWs28u9sJT88LeoP8SHqrDgiuhoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBD0rlvHfjSx8EeHZdRuv3k7fJbW4ODK/pnsO5PpWxrut2Hh3RrnVdTnENrboWZu59APUk4AHcmvnH4tzw6loFhrN7qNpdaze3JY29vcrIthAFO2EAHrlss3dgfQUAe9fD/V7/XvBGl6pqZQ3lzG0jlFCj7xxgDpxj+tdNXJ/DKPyvhp4eXOc2SNn6jP9a6w9KAOQ8Uf8jt4J/6/Lr/0llqr4g1S98Raw/hPQLl4AgB1bUoutqh/5Zoe0rD/AL5HPWuU+MHii80rxb4X0/TYyl8Xd47gruCGVWgG0d2G8t+C16d4e0G08N6TDptkGKJlpJX5kmkPLO57sTkk0AT6PpFloWmW+m6dbpBawLtRF/mT3J7k8k1foooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoPSiigDk/FXhue8mh17RSsPiCxU+SxO1blOrQSeqt2PY4PatLwx4itfEulC8gVoZkYxXNtJw9vKv3kYeoP5jFbLdK4nxRpt1oupjxjokLy3EabdTsox/x+246kD/nqg5U9SAVoA7eiqWl6ja6vpttqFlMs1tcoJI3U9Qf8/nV2gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApG+6aWigDznRpv+E88W3d7q1jcw6dpbmPTrG8tWVZSRhrhgwwTyQo7DJ61w3x300Xp0uw0HRJ5JoXle5NnYttXIUKCyryete/0UAcx8P2X/hA9CiWOaKSCyihljmjZGSRUAYEMM9c+1a+uazZ+HtEu9Vv5PLtrWMu57n0A9ycAe5q+eleYa4h+IXxBi8Prh/D+gMtxqR/hnuD9yL3A5J/HPIFAHKDwrN4r1fQNZ8UI63viK5uAkYP/Hnbi2lMKr6EHD57nGeQa9R8EazdXtpcaRq7f8TzSHFvd/8ATUYykw9nXB+ufSofE3HjbwSBn/j9uf8A0llqDxraz6LfWvjXTo2kmsEMWowp1uLMnLf8CT74+hoA7eioLS5hvbSG6tpVlgmjWSOROjqRkEexBqegAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApD0OKWigDgbUf8ACCeL1svueHtclY2+eFs7w8mMeiSdQOzA+td7xnHeszxBolr4i0O60u8yI50wHXho2HKsvuCAR7isvwRrVzqemS2OqYGtaVJ9kvlz99gPlkHs64YH3PpQB1FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQeRiimuQEJJAGOSTjFAHPeM/Eh8N6EZrePztSupFtbC37yzvwo+g6n2Bp/g7w1F4V0CKwEvnXTsZ7u4PWeduXc/U4H0ArgvC98fiP8U7zxBktoXh9Wt9PU/dklfrJ75UE/Qp7162Oo5oA5HxP/yO/gn/AK/br/0llrr2UMpVgCDwQehrkfE//I7+Cf8Ar9uv/SWWuuNAHC+HGPg/xI3hKZj/AGXdh7nRpT0UZzJb/wDAc7h/sn2ruu/vWB4u8PHxFohggl8jULZ1ubC47xTpyp+h5B9iad4S19fEeiR3ckXkXsTNb3lsTzBOvDqfx5HsR60Ab1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACN0rhvFI/4RfxLZeL4+LOXZYasBwPKZv3Ux90c4J/utjtXdVT1XTbfWNIu9Nu13W91E0Mg/wBlhg0AWgME06uV8A3t1ceHPsOoNv1DSp30+5Y9WaPhX/4EhRs+9dVQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV578Sda3W58OQTNGJraS71OdDgwWSD5/wDgUmNg+prs9a1ez0HR7rU7+Ty7a3Tc57nsAPUkkAD1IrzC+0e6k0eytNTX/ieeMNTia/T+KG1j/eGIeyRqF+rH1oA634Y6J/YngeyDwrFc3mby4VRgK8nIX22rtXHbbXY01QFwAAAOPpTqAOQ8T/8AI7+Cf+v26/8ASWWuvrj/ABP/AMjv4J/6/br/ANJZa7CgBD0rhNcz4P8AFsfiiPjSNTKWurAfdif7sVwfbkI3sRXeVW1GxttT065sbyIS21xG0cqHupGDQBMg7/jT647wTqNxbSXPhXVnJ1PSgBG7Hm6tekUo9ePlb0YH1rsaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikPQ9qAOMVm0T4rbCcWviGy3D/r5txz+cZH/fFdpXGfEmN4PDsOuQIxn0S8ivwF6lFbEi/Qxs9dfFKk0aSxuHjdQysO49aAJKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApD0pT0rlvGeu3OladDY6WFfW9Uk+zWCH+Fv4pG/wBlF+Yn6UAZk3/Fa+OPsw+bQ/D026Y/w3F8Oi+4jByf9oj0qwP+Jp8X88NDoulYH+xNcP8A/ERf+PVu+HdCtvDeh22lWpZ44V+eV/vSueWdvcnJP1rD8Ef6ZrnjDViPmn1drVT6pBGsf/oW+gDs6KKKAOQ8T/8AI7+Cf+v26/8ASWWuvrkPE/8AyO/gn/r9uv8A0llrr6ACkPQ+tLRQByHjbSrzZa+JdHjL6vpBMixDj7TAf9bEfXIGR7gV0Gkapaa3pVpqdhL5trdRiSNvY/1HQirzfdNcHp//ABRXjJtIf5dD1uRprE9Ft7rrJF/sqwy6j13CgDvaKaOTnoadQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBX1Czi1DTrqynGYbmJ4XHqrAg/zrm/hrdy3XgLTI7g/6RZo1lMD1DwsYzn/AL5H511h6Vxfgr/Q/EXjHST/AMstUF4v+7cRq/8A6EH/AFoA7SiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopD0oAZcTRW9vJNPIscUal3djgKoGSSewri/BsEviHV7nxtexsqXKmDSYpBgxWoP38dmkPzH0G0U3xRI3inxDF4OtnYWcSrda1Ih58rPyQfWQgk/7I967aKNIY0ijVURAFVVGAAOgxQBJXIfDRd3gqC6I+a8ubm6J9d88jD9MV1N3N9nsp5/+ecbP+QzWB8PofI+HfhxPXToHP1aNW/qaAOlooooA5DxP/yO/gn/AK/br/0llrr64/xP/wAjv4J/6/br/wBJZa7CgAooooAQ9KxvE+gQeJdCn06VzFISHgnX70EqnKOD6g4Pv0rapGGRigDnPBmvza3pbxX8Yh1ewkNrqEI/hlH8Q/2WGGB7g+1dJXC+LI5PDGsw+M7RGMChYNaiQf623/hlx3MZOf8AdLCu0gkjnjSaJ1eN1DI6nIYHoQfSgCaiiigAooooAKKKKACiiigAopD0OawfEPjHw/4WRW1nVIbZm+5EctI/0RQWP1xigDforhrj4p+HLGKOXVI9V0u3lGYpr3TZo0k74B2nPHNddp17HqWn2t9BvENzEsyB12ttYZGR2PPIoAt0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAHpXG2P+ifGDVoR0vtHt7j8Y5JEP8A6EK7I9K4y9/c/GDR5Bx9o0e6iPvtkiagDs6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAA9Kw/FHiCHw1oU2oPGZpsiK2t1HzTzMcIgHqTj6DJrcNcLYN/wmPjaTUiu7R9CdoLPI+We7xiST3CD5B7s1AGv4O0CXQdJIvZBPqt7IbrUJx/HM3JA/2VGFHoAK6Omjg06gDO19tnh3U3/u2kp/8AHDVXwcuzwR4fX+7ptuP/ACGtXtZi8/Q9Qi/v20i/mpFZ3gl/N8B+HpB/Fplsf/IS0Ab1FFFAHIeJ/wDkd/BP/X7df+kstdfXIeJ/+R38E/8AX7df+kstdfQAUUUUAFFFFAEc8Uc9vJDKgeORSrowyGB4IrjPBzTeHdYuvBt07GCBTc6TI5yXtieY89zGxx9CvpXbnpXK+NdGu9Q0631HSSF1rSpPtVln+MgYeI+zrlT74oA6qisrw9rdp4j0Oz1azyI7hM7G+9Gw4ZT7qcg+4rVoAKKKKACio55oraF5p5UiiQZZ3YKqj3JrDtfG3hW9vBZ2viPS5rhjhY0u0JY+g55P0oA3zyCBXnfw9+I95401vWbC40WSwSwb5WLEkckbHBHDcZ/A+lehjrilxgHAwaAOW+IXixPBPg671YIr3AxDbI3RpW+7n2GCSO4Bryr4I+HJfE2rX3jjxAz31ys3l2zTc5kAG5/wBULjgc+gxuftE2dxP4JsLmJWa3gvgZgB0BVgGP4nH/Aq3fge0LfCbSxCVMgkn83B53+ax5/4CV/DFAHTeMPDUHi7wve6LM6oLhRskK52MCCGHvx1rchiSGJIo12xooVVA6AcYqH7darqCWHnJ9raMyiLOW2A4LEdhkgZq1QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVxmt8fFTwie7WeoA/lDXZnpXG6v+8+LHhlB/yy0++kP4mEUAdlRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSHocdaWqupahbaVplzf3kqxW1vG0kkjdFAHWgDm/GesXii28O6K+3WdV3JHLjItYR/rJj9AcAf3iK3tF0iz0HR7TS7CPy7W1jEaDvx3PqScknuSa53wPYXN5Jd+LdViaPUdWwYYX62tqOY4vqQdze5HpXZUAFFFFADXUOjIejDBrlvhrKZPh1oanlobf7OfrGSh/Va6s1x3w6bytM1jTun9n61eQgeitIZF/SQUAdjRRRQBx/if/kd/BP/AF+3X/pLLXYVyHif/kd/BP8A1+3X/pLLXX0AFFFFABRRRQAUh6UtFAHCSf8AFEeM/PBI0HxBPiQfw2t6ejf7soGD/tAetd0OvSqGt6Paa/ot3pd8ha3uY9jY4IPUMD2IIBB9QKw/BOsXdzbXOh6u4bWtHcQXLYx56Y/dzAejrz9QRQB1lVdSv7fS9Mur+7kEVvbRNLI57KoyasngE15x8c5p4fhXqAgyFklhSUjsm8H+eBQB59oF/f8Axr+IUjamZE8Mab+/FgDhWGcIr46scZJPYMBXR/H+w0+1+H2nvFawQyxX0cduY4wu0FHJUYHA4z6cUv7Oenxw+CtRv8Dzbm+KE/7KIuB+bN+dc98eNUn8ReKtH8H6SjXFzCS8kcYyTK4G1fwXn6NQB6T8H9cvvEHw60+61CRpbiJngMrHJcKcKT6nGAT7e5rva5/wX4dTwp4S03REYMbaLEjj+KRiWc/TcT+npXQUAVtQsLXVLCexvYEntp1KSROMhhXA6b8JLXw/czt4e8Sa7pdvOctbQzo0efbcp7cZOT716PRQBj6F4fs9CSTyGnnuZyGuLu6kMk8xA43t7dgMAdhWxRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAHpXGEed8ZkxytroBJ9jJOMfpGa7M9K4vw2ftfxI8YXowY4RaWKN7rGzuPzkH5UAdpRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFB6UAIehx+tcJrQ/4TPxdH4cTLaNpTJc6q38M0vWKD6cb2+i1t+L/ELeHtE8y2iE+pXTi3sbf/AJ6TN0z/ALI+8fYGuc0TXvDfgzSI9Jj1B9Z1dmM92unRtczTzty7sEzjJ6biOAPSgD0JetONcT/bPjjWT/xK/D1ppEB5E+sz75CP+uMR4P1al/4QrVdRGfEHi/Vbod4LDFlFj0+T5yPq1AHTajrOl6Qm/UtRtLNfW4nWP+ZFc4/xP8MO5j0+5utVlHGzTbOW4/VVx+tW9O+H/hPS38y20GzMvXzp086T/vpyW/WulRURAkaqqjgKowBQBxv/AAmmtXfGmeBdbkz/ABXjw2o+vzMT+lcto1941t/Hmv2lto+kWdzqMcOo+ReXruqKF8okGNPmJKAnpjI9a9dPSuK8TH+yvHfhfWwQsdw8uk3Le0o3x/8AkSPH/AqAHfZ/iPNgPqPhm2H/AEytJ5T+Zcf0pTonjyT7/jOwh9otGB/9ClrsRyaWgDyfX9G8XJ4s8KRz+L4JZ5LqcQSjSVUQkW8hJI3ndkAjGRjOe1dKdA8dDkeObU+x0RcfpJT/ABP/AMjv4J/6/br/ANJZa7CgDjDZfEWAYj1rw7df9d7CWM/+OyGjzviRDy9l4XuVHaO5niJ+mUI/WuzooA4z/hJ/FlrzfeBLhkHV7DUYZif+AtsNJ/wsnTLYZ1XSdf0pe73emSbB/wACQMK7SkPSgDA0zxt4Y1khbDXtPnkbpGs6h/8Avk4P6Vvjk1k6n4a0PWgRqej2F2T/ABTW6u34EjIrBPw40+zw3h/VNX0Nh0Wzu2eIn3jk3Lj2GKAO0PSuK8bWlxpN3aeM9NiaS501DHewp1ubMnLj6ofnH0NL5XxB0gfu7jSfEMA6rMjWc59gV3IfyFLH8QrO2Pk+I9K1LQZD8pe8g327HuBMmU/MigDrLK7t7+zgvLWVZbedFkidejKRkGodZ0uy1vRrvTdRiElncRlJVJxx6g9iOoPYiuI8JalZ+H9ek8PQXsE+h32660W4jkDRrzmW3DDjKk7gP7p9q7rULG21Owms7yLzLaYbZE3EBh1wcEceo7jigD558M6/beDNX1Xw7oXjqwh0QyB0u72xaVhKeD5WxsMAAMsxC56DvXpPg/RPBfhmO516PXrPU764y91q1xdRknPJwQcICc8dfUnFX9V+EXgfVxmTQbe2f+9ZkwY/4CuB+lQ6N8GvBOiXsd3DpbXE0bbka6laQKfXbnafxBoA7TT72HUbOG9ty5gmQOhdGQkHocMAR69Kt00YHbFOoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigANcZ8NMXXh+91kfd1fU7m9T/AHC+xP8Ax1FrR8c6s+i+CdWvIf8Aj48gxW4HUyudif8AjzCr/h7Sk0Lw7pulRkFbS2jhyO5VQCfxOTQBp0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFNkkWKNpHZVRRuZmOAAOpJripvGt5rs8ll4LsU1AqxSTVLglLOE+x6yn2Xj3oA6y/1Cz0uzku7+6htbeMZaWZwqgfU1yDeNtS11GHhDRmubfGTquok29ovuoPzyD/AHQB71ZsPAVs97HqXiW8l1/U1O5WuV/cQn/pnD91fqcn3qLxpdz6nd2fgzTXKT6khe+lTrbWYOHP+8/3B9TQBy3hbwlJ4/uJfEXjG8k1ezSRo9KiCG3iMYOGkCKckMRgZOSACRzgeqafptjpdsttp9nBaW69IoIwij8Bipba3itLaK2gjWOGJBHGi9FUDAA9sVNQAUUUUAFFFFACHkGud8c6PLrng/Uba1yLxEFxakdRNGQ6Y+rKB+NdHSE4GaAMzw5rEXiDw7p2rQ4C3kCy7f7pI5X8DkfhWpXEeDD/AGH4i17wm42xQzf2jp47fZ5iSyj2WTcP+BCu3oA5DxP/AMjv4J/6/br/ANJZa6+uQ8T/API7+Cf+v26/9JZa6+gAooooAKKKKACig9Kx9e8S6T4btlm1S8WEyHbFEo3SSt6IgyWP0oA1z0rnvEHjDR9AKWt3LJc383+q0+0Tzbib2EY559Tge9Y5k8YeLf8AUq/hfSG/ikUPfzD2X7sI+uW+lb3h/wAK6R4bWT+z7XFxLzNdTMZJpj6u55P8vagDy3XfhPqHjyQ6hJYaZ4W5zHBDF5k0v+1MUYID6AAkZPNdfZnxj4NsrezmtYvEul20YjWa1/dXiIowNyMSsmBgcEHvXf0h6GgDD0DxZo3iNnTT7v8A0mL/AF1pMpjni/342ww+uMe9btYGv+EdG8RlJL60xdR8w3kDGOeI+qyL8w+nSsM3Hi3wef8ASxJ4m0Zf+W8KBb6FfVk+7KB6rhvagDu6KzNE1/TPEVkt5pV3Hcwk4bacNGe6up5VvY4NadABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUHpRSHpQBxXij/ic+NfDfh8fNHDI2r3eOyxfLEPxkYf98V2o6571x3gsrrOr674pHzR3dx9is27G3gyuR7NJ5h/KuyoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopG6c9KAFrF8Q+JtN8NWiTX0jmSU7YLaFS8079lRB1P+cis3xB4rmtdQGheH7VdR16RQ3lFsRWqH/lpM38I9F6t261L4d8JR6ZdnVdSuW1TXZVKy38o+6P7kS9I0HoOvc0AZSeHtV8ZSrdeLVNppmQ0OhwScH0Nw4++f9gfKOM5rtre3htYo4LaFIYI12pHGoVVHoAOlTUh6GgChrer2mgaLd6rfOVt7aPe2OSx6BQO5JIAHqRWH4J0e7tra51zV0C6zrDie4XOfITH7uEH0RePqSaz3H/Cb+NDDy2g6BMC+D8t1ejovusY5/3j7V3fegBaKKKACiiigAoooPSgApDyKoapqtlo1m13fzGG3X70m1iF4zk4HH41gD4n+CijOviKzKjGSCcDPTnFAFfx5HJpM+m+MLZGLaRKVvFQcvZycS8d9vyuP9012cMqTRJLGyvG6hlZTkEHkEVQsdR0rxHpryWN3bahZSgo7RSB1IIwVOOh9q5zwVNJoeoXngu8di1gPO013PMtmx+UZ7mM/If+A+tAE/if/kd/BP8A1+3X/pLLXX1x/if/AJHfwT/1+3X/AKSy12FABRRVTUNQs9LspLu/uobW2jGXlmcKqj3JoAtHoaz9W1nTdCsXvNUvobO3XgySuBn2Hcn261yx8R+IPFJCeFLAWVgx51jUoyFYesMPDP8A7zYFaGl+B9OtLyPUdTln1nVl6XuoNvKf9c0wEjH+6M+5oAzv7b8T+K/l8O2Z0bTG/wCYpqMX72QesUB5/wCBPx7Vr6B4N0zQ7x78ma/1WQYl1G9cyTP7AnhV7bVAFdEOo/OnUAFFFFABRRRQAUjdOKWigDlNb8Gx3V8da0W5Oka6BzdwrlJwP4Zo+kg9z8w7GotG8YSjUo9C8TWY0vWWH7khs215j+KF+/rsPI/WuvblTWfq+iadr9i1lqdrHcQMQwV+qkdCp6qfcUAXxyadXADUtU8BXcdvrt1LqHhyVhHBqsnMtkxOAk5/iQ8Yk7HhuxruonWQK6NuRhkMCCCO3SgCWiiigAooooAKKKKACiiigAooooAKKKKAEPSuT8e6rc2ehrpumtt1bVpBY2Z/uFh80n0RdzfhXWMQFJJwByTXDeFx/wAJV4ou/F0oJsIA1lo4PQoDiWYf77DAPovvQB1ej6XbaJpFnplmuy3tYlhjHfAGOfc9Sav0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSHpQAN0Nch4h8SX8mp/8ACM+GRHJrLpuuLl13RafGf+WjjoWP8Kd+/FWPFniKfSkttL0mNZ9c1EmOzhPIjA+9K/oijn3PHernhfw5beGtL+zRO89zM5mu7uQ5e5lb7zsf5DsMUAO8NeG7LwzYG1tTJLNI3mXN3O26W5kPV3bqT/IcCtqiigAPSuV8a61dadYQaZpOG1vVpPs1kP7nd5SPRFy2fXFdLc3ENray3FxIscMSF5HY4CqBkkn0xXG+DLeXXdTufGt/GyG8TydLhccw2YOQ2OzSH5j7bRQB0Xh7RLXw5odnpNpkx26Y3t96RjyzH3Y5J9zWrRRQAUUUUAFFFFABQelFBoA4X4va0mh/DLV3yPMu4/sUanuZPlP5JuP4V5L4Q1LRfDfwQ1eOeaC51fXfOjhsUIeVsjy0yg5AB3PnjqMdq1f2jNYaa40Lw9DlnbddyRgZJJ+RMe/+sqT4seGND8JfDnRpbS2gstct5IYY7q1URzSkIQxZl5PTOT3x60Aa3wD8Ka14f0zVL3VYJrSK+MfkW8ylXwm7LlT93O4AZ5OPTFdz420a7u7W21rRgP7b0hmntV/57rj95CfZlGPqBVH4R61qev8Aw8sL3VpGmuN0kYnYcyorYDH1PBGe+PXNdy2NpzQB5/da1aeIdc+H+qWLEwXF1cthuGQ/ZZQVYeoOQfTFd5cTxW0DzzypFEg3O7ttVR6knpXzz4w8VWvhv4oWV34YlgvrRrlp5YPMxbpeOjxOQ44GVdWYeuPWvVIPA82sTR3njO/OrSqd6WMYMdlCe2I+rnr8zk/QUAJJ41vdeke18F6d9vAO19Vucx2cf+6esp9lwPep7DwHBJex6n4lvJNe1JDuT7QALeA/9Mofur9Tk+9dZDFHDGkcUaxogwqoAAo9AO34VLQA0dcDpTqKKACiiigAooooAKKKKACiiigAooooAiuYIbq2lt7iJJYZVKSRuoKsp4IIPBFcCpuvhpOEkaS58HSNhXJLyaWxPCknloc9D1Xvx19DpksaSwvHIiujgqyMMhgexHpQA2CWOeJJoXDxyAMjqchlIyCCOxqWuB02aTwFrkWh3TE+G7+UrpVw3P2SVufszH+6eSh7cqc8Y70daAFooooAKKKKACiiigAooooAKRunTNB6Vi+JvEVt4b0Zr6dHlkdhFbW0Y+e4lbhI1HqT+maAMTxre3Oq3Vt4M0uUx3eooXvZ062tnnDN/vN9xfqTXXWNnb6fYwWdpGIraCNY4o16KoGAB+FYHg7QLjSra41DVXWbXdScT30q8hTj5Yk/2UHA/E966egAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAA1ma9rdn4e0S61S+YiCBc4TlnPRVUepJAHua0j0rhrhR4u+IEdpnfpHh1xNMOqzXrD5F9xGp3exYDtQBd8H6Hdxz3PiPW1H9uakBvTORaQjlIF+nVvVs+ma62mjrmnUAFIelB6VjeJ9fg8NaFPqMsZlkGEggQfNPKxwiAdyTgUAYPigP4r1yHwhAzCxjCXesSr2jzmOAe7kEn0Vfeu1jRY1VEUKgGAB0A9q5/wboM+iaSz6hIJdXvpDdahKDndK38I/wBlRhR7CujoAKKKKACiiigAooooAKRuFOaWkPSgDzXWvhDba74pTxFd6/qR1GN43iZUi2xlDlcKUIwDzg9eadqXwi07xBqEN74j17WtW8n7kMsqIgHcbUQYzgZIwT3NdHrfjXS9Huxp0Qm1HV2+5p9ivmS/VucIO+WIrL/4R3xF4oPmeKb82Gnt00fTpSNw9Jphy59lwPrQBNJ4t0rTXTQPC+nPq13bKIxa2AAhtgP+ekp+VOnTkn0NRt4S1jxI/meLtUH2M8jR9NZo4P8AtpJ9+T6cD2rq9M0uw0eyjs9NtIbS2T7sUKBVH5d/c81doA8/8U6FpR1zwboo0+3TTZLi6iNqiBU2m1lBAAxj69al0LUrrwpqdv4V1yZ5rWbK6RqTn/WKOkEh/wCeijof4hjoetzxR/yO3gj/AK/bn/0llrb13QrDxHpM2nalFvgkAOVOGRh0ZT2IPNAGkOvTFOriNB16/wBF1WPwv4pm33LZGnamw2pfIP4W/uygdR36/XtR1oAdRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBn61o9lr+j3Ol6jCJrW4TY65wR6EHsQcEH1ArA8HatfJdXfhfW5TLqumorpcEY+2WxJCTY/vcbWHqPeuuPINcZ46tZ7BrLxdYRtJd6MWaeJOs9o3+tT6gDePdaAO0oqvZ3UF/ZwXltIssE8ayxSL0ZWGQR+BqxQAUUUUAFFFFABRRVbUL6103T572+nSC1hQvJK7YCj60AM1bU7PRtKudS1CZYbS2QySyN2A/mfQDnNcroGmXviDWY/FmvQNAUQrpWnSdbVG6yP/ANNHGMj+Ecc1W021u/HerQa3qcEttoFrIJdNsJRhrlh0uJV7D+4p5HWu+HWgAFLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIehpaQ9KAMLxdrx8OeGru/ij826AEVtCOskzkKij/gRH4UvhLQV8N+H7ewaTzrpszXU+OZp3O53P1JP4Y9KxtYH9u/EjRdJwTa6TC2q3C9jKcxwg+4PmN+FdoOT1oAdRRSHpxQAN901wenf8Vp4ybV3+bQ9EkaGxHVbi6+7JL/tKoyin1yau+NtWuylr4a0aQpq+rExiRRn7Lbj/WTH0wOB/tEV0Oj6XaaJpVpplhH5VraxiONPYf1PUn/GgC6ODjv606iigAooooAKKKD0oAKQnArK1vxJpPh2BZdUvo7fdxHH96SQ+iIMsx9gK5v7R4r8Xtizjl8M6Sf+XidA17MP9lDxEPdst04FAG3r/i/R/DrxxXdw0l7L/qbG2QyzzH0VBz+J4rDFl4u8WndqEz+GtKb/AJdbWQNeSr/tydIx7Lz2zW94f8J6P4b8xrC2JuZeZrudvMnmPq8h+Y/Tp7Vu0AZOheHdJ8OWhttKsY7ZGOXYDLyH+87HJY+5Na1FFABRRRQByHif/kd/BP8A1+3X/pLLXXHoa5DxP/yO/gn/AK/br/0llrsKAMvXNC0/xFpcun6jAJYZDkEEhkYdGUjlWHXNcvY6/qHhC9h0bxZOZ7KQhLDW9uFk9I58cLJxgN0f65rvKr39lbajYzWd5BHPbTLskikXcrL6YoAnBBAIOQfelrz9Ydd8AfLClxrfhheBEDvu7Bf9n/nrGPT7wHqBXYaPrOna7Ype6XeRXVu38SHkH0YdQfY4IoA0KKKKACiiigAooooAKKKKACiiigAooooAKa4DIVYAg8EHvTqD0oA4fwcT4b12/wDBkxP2eEG80lj/ABWzH5o8+qOSPoVruK4rx/8A8S3+xvFSDB0e9X7Q3/TtL+7k49sq3/Aa7NcHkUAOooooAKQ9DQxwpOM1zGveMoNNuxpWm2smr644+SwtmGU9GlfpGvufwBoA1Nb1zTvD2nSX2p3KwQLwMn5nY9FUdWY+lcvY6NqXjS9g1fxPA9ppcLCWw0Vuue0tx6v3Cfw9+c1c0XwlcSalHrvii6j1HWVH7iNFItrIHtEnr6ueT7CuuHBoAUcYHb2paKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRvumloPSgDi/BYF34l8ZaoeWfVBZhv8AZhiQY+m5n/Wu0rjPhj++8JPqP8Wo393eH/gc74/QD867OgAqpqmpWmj6VdajfSiK1tozJI57AfzPt3q0ehrg9WH/AAmfjBdCT5tG0d1uNSPVbi46xQH1C/eYf7ooAu+CNMupjdeKdXiKarq+GWJv+XW2H+riHpx8zerE+ldhTVp1ABRRRQAUh6VWvr+00yzku725htraMZeWZwqqPcmuPPirWvFB8rwfp4jszwdZ1FGSHHrFH96X2Jwue9AHT6zrul6BYm81W+htIOm6RuWPoo6sfYVzA1bxX4sO3RLU6DpTf8xG/j3XMq+sUJ+7n+8/5VoaP4H06wvV1PUJptY1jHN9fney+0a/djX2UD6mupHWgDntA8G6ToFw95Gkt3qcg/e6jev5s8n/AAI/dHsuB7V0VFFABRRRQAUUUUAFFFFAHIeJ/wDkd/BP/X7df+kstdfXIeJ/+R38E/8AX7df+kstdfQAUUUUAI3SuS1nwVFcX76xod3Jo2tn71zAoMdx/szR/dce/BHrXXUUAcPB42utDkWy8a2K6Y5O2PU4MvZTH/e6xn2bj3rs4JoriJJYZVljcZV0IKsPUHuPpSzwx3EDwyxrJG42sjgEMD1BB61xsngSbSZWuvB2qPosjHc9i6edZyH/AK55+T6oR9KAO2oriB401TQ12+LfD9xaRrw2oafm6tj7naN6D/eH410uka5pOuwefpWo2t7F1JglD4+uDx+NAGlRRRQAUUUUAFFFFABRRRQAUUUUAUtY06PWNFvtNm/1d3A8DH0DKRn9axPh3qMmp+AtGmnz9ojtxbzA9fMiJjbPvlTXTscKTnHvXlvhjxlo3h6PW9KuJpZ72PW7z7PYWcRmndDJvBCrk/xHk4HFAHqZrI13xJpHhu2WbVr6K3VziNDkvI3oqKCzH2ANc99o8b+JABb28PhexbrLc7bm8YeyD5E/4ESR6VqaH4K0jRLo3+2a+1Rxh9Qv5POnPsGP3R7Lge1AGQZvFXjAEQJN4Z0Vus0gBv5x/sr0h+py3sK6bQtB0zw7ZfY9MtlhjJ3O3V5W7s7HlmPcnNaveigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKjnmjt4HmmkWONBlncgAD3JqSobq1gvbWS2uYY5oJRteORQysPQg8GgDPHiXQTz/bWm/wDgWn+NO/4SXQf+g1p3/gUn+NUx4I8Jf9CvouP+vCLj/wAdp3/CEeEv+hX0X/wXxf8AxNAFr/hJdB/6DWnf+BSf40f8JLoP/Qa07/wKT/Gqv/CEeEv+hX0X/wAF8X/xNH/CEeEv+hX0X/wXxf8AxNAFr/hJdB/6DWnf+BSf41S1jxdotpol/cxaxYNJDbySKq3KEkhSQBzT/wDhCPCf/Qr6L/4L4v8A4mqWr+AvDFzot9Bb+G9Iimkt5FjkSwjDKxUgEELkEGgCp4E1XRNM8B6DZyavp8ckdjDvRrlAVcoCwIz6k10J8S6Dj/kNab/4FJ/jXKeBvDPhbVvA2hX0vhvR5JZbGLzXaxiYs4XDEkrzyD710DeCvCKqWbwxoigDJJsIhgf980AUPFPjvStG0KW4stRsbq/kKw2kK3CNulfhc88KCck+gNHhaXw74a0OGwXX9PmnJaW6uGuk3Tzty7nnqT+mPSuc8K+E/D/inW7rxM3h/S49HXdbaZbLZRqkyg4e4YAYbcRhc9AM967T/hCPCX/Qr6L/AOC+L/4mgC1/wkug/wDQa07/AMCk/wAaP+El0H/oNad/4FJ/jVN/BXhFELN4Y0RVHJJ0+LAH/fNcddP4Tv7p7Dwl4I0fXLtG2STpZRJZwH/bm2YOP7q5NAHeN4n0FVLHW9NAAz/x9x/41x998UbS/vJNO8LNZXcyHEl/eXKw2kP4nmT6IPxpmmfCTR5bqPUPEVnp13dqPltbKzS2tI/+AKMyH3cn6CuoHgnwmSM+F9F/8AIv/iaAOZsdJ8O3F3HqPirxPY69qCHdGs9xGttAf+mcOcA/7Ry3TmuwHiTQRwNa00AcYF0n+NV/+EI8Jf8AQr6L/wCC+L/4mj/hCPCX/Qr6L/4L4v8A4mgC1/wkug/9BrTv/ApP8aP+El0H/oNad/4FJ/jVX/hCPCX/AEK+i/8Agvi/+Jo/4Qjwl/0K+i/+C+L/AOJoAtf8JLoP/Qa07/wKT/Gj/hJdB/6DWnf+BSf41V/4Qjwl/wBCvov/AIL4v/iaP+EI8Jf9Cvov/gvi/wDiaALX/CS6D/0GtO/8Ck/xo/4SXQf+g1p3/gUn+NVf+EI8Jf8AQr6L/wCC+L/4mj/hCPCX/Qr6L/4L4v8A4mgC1/wkug/9BrTv/ApP8aP+El0H/oNad/4FJ/jVX/hCPCX/AEK+i/8Agvi/+Jpr+C/CEcbO/hnQ1RQSzNYRAAd8nbQBc/4SXQf+g1p3/gUn+NIfEuhEf8hvTf8AwKT/ABrgv7T+Ht3dXFvovgmDXTb5Ez6ZpELRoQOm99qk+yk5q54Ul+G3jOOYaZ4d0lLq3P7+0uNMiSaLnHI2nvxkE4oAj8W+LvD0HjXwYzazZlI7udpGSUOEDQOilivTLMBzXaL4l0HA/wCJ1p3/AIFJ/jXB+K/AnhZ/Gfg+NdBsYo57udZo4IhEsipC8i7guAfmUdfp0NdkPBHhPIz4X0X0/wCQfF/8TQBc/wCEl0H/AKDWnf8AgUn+NH/CS6D/ANBrTv8AwKT/ABqr/wAIR4S/6FfRf/BfF/8AE0f8IR4S/wChX0X/AMF8X/xNAFr/AISXQf8AoNad/wCBSf40f8JLoP8A0GtO/wDApP8AGqv/AAhHhL/oV9F/8F8X/wATR/whHhL/AKFfRf8AwXxf/E0AWv8AhJdB/wCg1p3/AIFJ/jR/wkug/wDQa07/AMCk/wAaq/8ACEeEv+hX0X/wXxf/ABNH/CEeEv8AoV9F/wDBfF/8TQBZPiXQcf8AIb03/wACk/xrm9W0f4favc/aprnS4L7qLyzvFt5gfXejAn8c1t/8IR4S/wChX0X/AMF8X/xNH/CEeEv+hX0X/wAF8X/xNAHKD7dpXOifEmwu4V6W+tPFOPxlQq/55pR8RNW0/wCXUdK0q+VfvT6TrMLA+4jkKt+prqv+EI8Jf9Cvov8A4L4v/iaP+EI8Jf8AQr6L/wCC+L/4mgDmI/jX4QVguoS32mt0xc2rMD9DHuBrZtfib4JvADF4n05c/wDPaYRf+h4q9/whHhL/AKFfRf8AwXxf/E0f8IR4S/6FfRf/AAXxf/E0AOXxh4ZkXdH4h0l165W9iP8A7NVDTPiN4Q1S5uoLbxBZmS2bbJ5r+UD2ypfAYcdVz+oq23gfwlj/AJFbRf8AwXxf/E1nab8LfBWl3NzND4fs5WnbcRdRiZU9kD5CjntQBpTeOPCcAPm+JtGX2N9Fn8t1Y958XfAdmCJPEVu5/wCmMby5/wC+VIrZ/wCEI8Jf9Cvon/gvi/8AiaP+EI8Jf9Cvov8A4L4v/iaAOV/4XDpV3ldJ0q/vCeVeVorWM/RpXU/pQfFniXU8eVe+EtDibgm41D7ZKvuApVM/ia6r/hCPCX/Qr6L/AOC+L/4mj/hCPCX/AEK+i/8Agvi/+JoA5T+xdG1LnxL4/l1ZTw1ul/Ha27D0McRBP4sai8C3nhrQPEfizT7O60y0s1u4ZLcpMgUq0CZCnPIDA5981158EeE8H/il9F/DT4v/AImuT8LeEvDl74q8XSS+H9Kkt4b+K2hjayjKR7IE3bQRgZLZOPWgDt/+El0H/oNad/4FJ/jR/wAJLoP/AEGtO/8AApP8aq/8IR4S/wChX0X/AMF8X/xNH/CEeEv+hX0X/wAF8X/xNAFr/hJdB/6DWnf+BSf40f8ACS6D/wBBrTv/AAKT/Gqv/CEeEv8AoV9F/wDBfF/8TR/whHhL/oV9F/8ABfF/8TQBa/4SXQf+g1p3/gUn+NH/AAkug/8AQa07/wACk/xqr/whHhL/AKFfRf8AwXxf/E0f8IR4S/6FfRf/AAXxf/E0AWv+El0H/oNad/4FJ/jR/wAJLoP/AEGtO/8AApP8aq/8IR4S/wChX0X/AMF8X/xNH/CEeEv+hX0X/wAF8X/xNAFr/hJdB/6DWnf+BSf40f8ACS6D/wBBrTv/AAKT/Gqv/CEeEv8AoV9F/wDBfF/8TR/whHhL/oV9F/8ABfF/8TQBa/4SXQf+g1p3/gUn+NH/AAkug/8AQa07/wACk/xqr/whHhL/AKFfRf8AwXxf/E0f8IR4S/6FfRf/AAXxf/E0AWv+El0H/oNad/4FJ/jR/wAJLoP/AEGtO/8AApP8aq/8IR4S/wChX0X/AMF8X/xNH/CEeEv+hX0X/wAF8X/xNAFr/hJdB/6DWnf+BSf40f8ACS6D/wBBrTv/AAKT/Gqv/CEeEv8AoV9F/wDBfF/8TR/whHhP/oV9F/8ABfF/8TQBa/4SXQf+g1p3/gUn+NH/AAkug/8AQa07/wACk/xqr/whHhL/AKFfRf8AwXxf/E0f8IR4S/6FfRf/AAXxf/E0AWT4l0HH/Ib07/wKT/GuH8aeOdT8NbtW0W+0bWtOHM9k06rPEPVGU/MvqCCR9OnXHwR4T/6FfRf/AAXxf/E1xXjD4dXGvsdN0DQfDmjWJGJr+Szjad/aNVX5R7kgn0A6gFHRf2hvDN6UTVbO902Q9Wx50Y/EYb/x2vRdG8YeHfEIH9k61Z3TEZ8tJQJPxQ/MPyrzjSP2dvDlptbVdRvtQfjKpiFD+Ay36132jeAfCnh8qdM0KzikXlZWj8yQf8DbLfrQB0mB3FGF9KM49PxNG73X86AHUUUUAFFFIeBQAtFU9R1Oy0m1N1f3UdvApw0kjYUfU1hD4jeDDjHijSuf+nlaAOpoPSqlhqNlqtst1p95Bd25+7LBIHU/iDVs9KAOM+GP7nwi2nc7tOv7uzP/AACd8foR+VR+NbmbWb618FadKyTaghl1CZOsFmDhv+BP9wfU1R0nW7PwnP49N+5WGz1EXu0dXE8SFVX3LhgPc1X0fXLXw0lxPqiy3/jHWWFxPptihlmiGPki9ERFIGWIGST3oA9GtbaGys4bW2iWKCGNY4406IoGAo9gBXM6p46s4r99L0O1m1zV14e3syNkP/XWX7qD8z7VT/sLxN4q+bxHenSNNb/mFadKTI49JZ/5qmB711Wl6Rp+i2UdlplnDaWsfCxRLtA9/c+55oA5VfCGqeI3E3jTURLbn5l0iwYx2y+0jcNL264GR0rsbO0t7G2jtrSCK3t4xtSKJAqqPQAdKsUUAFFFFABRRRQAUUUUAFFFFABRRRQAh6Gvnz47+NryfVI/BWlSOFwhvBGfmlduUj+mCCfUkelfQlfLV7p8h/aWWHUFxv1dJl3d14eP9AtAH0L4O8N23hPwtY6NbKo8lB5rgf6yQj52P1P6YHavnrwFfy3H7RU09gzeRdaheswXo0R8xsH24B/CvdfiT4ti8H+DL2+80LeSoYLNe5lYEA/h978K8/8AgL4Bn0yKTxVqcLRzXMXl2UbjkRnBLkf7WAB7Z9RQB6D4n/5HfwT6fbLr/wBJZK6+uQ8T/wDI7+Cf+v26/wDSWWuvoAKKKKACiiigAooooAKKKKACiiigApD0paRvumgDn77xx4W0y9ltL7xBp1vcxHbJFJOqsp9CKr/8LH8GHgeKNKyf+nlf8a4Xxxodj4I+HXiLV5I4LjXtWldZbxk5zM5yqE8qoTPA9Kp/AnwlZXPgLUrvU7OK4i1Scx7JU3Bo0BA699xfp6UAexaXqun6zZreaZdw3dsxKrLC25SR15FXawfB3h5PCnhTTdERw5tYtruBgO5JZ2HfBYn9K3qACiiigAPSuM+HY8y28RXfVbnX7x1PqFYRj9ErptY1GLSNFvtSm/1VpA87fRVJ/pWJ8O9Ok0zwFo8M+ftEsH2mYnqZJT5jZ98sR+FAHUUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh6UtVdTupLHSru7iga4kgheVYU6yFQSFHB64x0NAHifxcu9c8EeLND1+y1fU5NMkmzLaPdMY9ykErjONrKcYx2NdbD4Y8ReKNZ0nxZdeJ7vT7cMlwmkW6fIIc7lRmDAFiPvEqeuBwBXPeMtM8TfE/wDLfTaNPpItAJ7PTXO6a4lGAzNwCo2Fwq4BJ5PBArd+E+seJL/w7pem6hotxZRadGYZ7m8iZPOVRiNY1ODkDGSRj5cDJb5QD0vIHcCjcP7wp1FABRRRQAUHpRRQBxXxV1saF8NdZnyPNnh+yxj1aT5f0BJ/CvLvhhpmnaP8ABrxNr+sxxG3vleNRKBh1RSqgZ7l2YD3qz+0frZ26L4fjY/MWvJUH4on/ALUrt9F+EfhhPDek2mradLdT28KM6S3k5jEuPnIj3bR82e3egDhP2brbVFuNZudsg0lkRMtnDTA9vcLnP1FfQB6Gqthp9pplrFaWFtFbW0Q2pFCgRVHsBVo9KAPDviD4S1jUPixpV1d37Wug6hcQW6SwSbHV41Z1U4/jLb9rdiR6V63oPhvSPDdqbfSbGO3VzukccvIfV3OSx+pqv4w0FvEfhi8sIX8q7wJbWbvHOhDRsD/vAU/wnr6+JPD9vfmPybnJiuoCeYZkO10I7YYHHqMHvQBuUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIelct4p8AaF4unt7rUIZo723IMN5ayGOVMHI5HHB6ZrqqKAOLj+GWhS6pDqOqy6hrVzAP3DanctKIvooAX35B55rsgAOBwB09KdRQBx/if/AJHfwT/1+3X/AKSy12Fch4n/AOR38E/9ft1/6Sy119ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNkBMbBThiOD70AeC/tHa3+70Tw/Ecs7Ndyp9PkT+cn5V7B4P0QeHfCGk6SAA9tbIsmO8mMufxYk1x2t/B2z8ReIhruo6/qcl6hQoVESquzlQBs6f4mvR7aN4oESWZppAPmkZQpY+pA4oAmooooAKD0oprsFQsxwB1PpQBxfxCJ1KHSfCsf3tZvFWcZxi1i/eTHP0Cr/AMDrs1ULgAYUcAVxXg8N4k8Qah4ymBNu+6y0lT0Fup+aQf8AXRwTn+6BXcUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSN9046+9LRQB5n4h+Dtj4n8RHXL/XNSN3lfL2CMLGF+6ANvTPP416LaxyxQIk07TyDrIVClvqBxU9FABRRRQAHpXCzt/wiPxBS5A2aP4jcRSk8LFfKPlb2Eijb7soPeu6NZfiDQ7TxFod1pd4G8qdcBl4aNgcqyn1BAI9xQBpDGQKdXJ+DddurkXGhayQNc0zCTnoLiP8AgnT1Vh19GBHpXWUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQByHif/AJHfwT/1+3X/AKSy119ch4n/AOR38E/9ft1/6Sy119ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAITgZrjfHV3cXy2XhPT5GjvNZLJNKnWC1X/AFr/AFwQo92rpdY1Sz0TR7rU9QmENpbRmSRz2A7D1J6AdyQK53wbpt7c3d34r1iFotR1NQkNs/WztV5SP/eOd7e5AxxQB1FlaQWFlBZ20axW8EaxRRr0RVGAB9BViiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQ9KWigDl/Fnh241NbfVtIkWDXtP8AntZScLKP4oZPVG6exwe1XfDHiO28S6abqGN4LiNzFdWsoxJbSr95GHsenrmtpvumuP8AEPh2/g1X/hJvDHlprAQLcWrnbFqEY6I56Bx/C/boeKAOxorG8N+I7LxNp32q03xSxt5dzazDbLbyDqjr1BH68EVs0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHH+J/+R38E/8AX7df+kstdhXIeJ/+R38E/wDX7df+kstdfQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFMlkSKJ5JHVEQFmZjgKB3J9KbczxW1tLPcSJHDGpeR3ICqo5JJPAGO5rgQLv4lXBJM1r4OjbgcpJqpHc55WH9W+nQAk0+F/H+tR6zdKf+EZspCdMtzwLyRePtDj+6DnYP+BccZ74dajghit4Y4IUWOONQiIq4CqBgAAdABUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSN92looA5LxB4Unm1H+3/Dt0mna8ihS7DMN2o/5ZzKOo9G6r+FT+GfFcWs3M2nX1u+na7bDNzp8xywH9+M9HjPZh+NdKelYXiHwrp/iOKJrkSQXlud1tfWz7J7dvVG7D1B4NAG9RXCr4l1TwjMlt4vHn2DELDrlvEQnsLhB/q2PHzD5TntXaQTw3UST28ySxONyPGwZWHqCODQBNRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHIeJ/8Akd/BP/X7df8ApLLXX1x/if8A5HfwT/1+3X/pLLXYUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUhOBQApqhq+safoWmy6hqd1HbWsQ3PJIf0A7nsAOScCsTW/GUVlff2PpFqdW11hxZwOAsI/vTP0jX68njAqHT/B893qcWt+KrpNS1GP5oLZFxa2Z/6Zoerf7bEn0AoAzksNS+INxFcazazaf4YiYSQ6ZIMTXpHKtOB91OhEfc8nsK72JFjVURQqqMKAMADtwOKcvXvTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGSxpLE0cih0cbWVhkEHqCPSuKm8F32gzve+Cr5LEMS8mk3GWs5T32jrEfdePUYruKDQBx+n+PLX7Ymm+IrWXQNUb5VjumHkzH/plN91x7cH2rrgcnI6VW1DTrLVbN7TULSG6tnGGimjDqfwNcn/wh2q+Hxv8Ia08EC8jS9R3T2p9kbO+MfQke1AHb0VxC+Pv7KcReLdHvNEfOPtWPPtGPtKg4/4GBXW2GoWepWyXNjdQXVu/KywyB1P0IyP1oAtUUUUAFFFFABRRRQAUUUUAch4n/wCR38E/9ft1/wCkstdfXIeJ/wDkd/BP/X7df+kstdfQAUUUUAFFFFABRRRQAUUUjHCkkgY7mgBaQ9DXK6j8QdBs7s2NnNLq2oj/AJc9MjNxIPrt+Vf+BEVTNt438S/8fE8XhjTz/wAsrcrPeOPQv9yP/gO40AbOv+LdG8OBF1C8xcS8Q2sKmSeU+ixqCT9elYRi8W+MD+/MnhjR2/5Zowa+mX0LD5YQeOmW9xW7oHhDRvDrPLY2u67l/wBbeTsZZ5f96RssfpwPat6gDL0Pw/pnhyyFnpVolvETucgZeRv7zseWb3Oa1KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEdVdCrKGUjBBHBFclefDvQJ7prvT459Fvm63OlSm3Zvqq/K34g111FAHFfYvH2i/wDHrqem6/brz5d/EbafHoHjBUn3KipU8b3NoNuveF9Z01gMtLDELyEf8Di3EfiorsKKAOcsPHfhXU5PLtdfsDNnHlSTCOT/AL4bB/SuhRldQykFTyCDxVDUtC0nWUC6npdneL6XECyfzrnT8MPDUbs+mxXukSE536beywfoDt/SgDs6K4z/AIQ3XbQAaZ471hB6X0MN0PzKA/rR9h+IdqAItc8P3uO9zp8kRP8A3xIR+lAHZ0Vxn2v4jQf6zSPDl17w300f6NGcfrQde8dpw3gizk949aUA/gY6AH+J/wDkd/BP/X7df+kstdhXk2v634tk8WeFJJvB6RTxXU5gi/tWNhMTbyAjIXC4BJyRzjHeum/4SDxweB4Egz/ta1Hj/wBAoA7OiuM+3/ESfmLw/oNrnp5+pSSY/wC+YqNnxJl4a48LWwPdIZ5SPpllFAHZ0h6Vxv8AwjXi+5P+m+OpI0PVLHTIosf8CcuaT/hW9jP/AMhTW/EOqIesdzqThD/wGPYKAOg1LxFoujgnU9WsbP2nuEQ/kTWIfiJpFwp/se21PWm/6h9mzp/38bCf+PVd03wN4W0gh7Hw/YRSA5EhgV3/AO+myf1roF4wB0oA4z+0fH2r8WejadocB/5a6jObiXHqI48AH2LGgfD/APtMh/FGvalrZPW3L/Zrb/v1HjP/AAImu1ooApaZpen6RbC102ygs4B0jgiCL+g5NXaKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDkPE//I7+Cf8Ar9uv/SWWuvrkPE//ACO/gn/r9uv/AEllrr6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKD0oA4/xP8A8jv4J/6/br/0llrsKxtU0Q6lrmiaj9o8saZNLL5ezPmb4njxnIxjdnoelbPegAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP//Z'] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 50 "如图, 在锐角 $\triangle A B C$ 中, $M$ 是 $B C$ 的中点, 圆 $O$ 过点 $A$ 且与直线 $B C$ 相切于点 $C$, 直线 $A M$ 与圆 $O$ 交于另一点 $D$, 直线 $B D$ 与圆 $O$ 交于另一点 $E$. 证明: $\angle E A C=\angle B A C$. " ['由圆幂定理知 $M C^{2}=M D \\cdot M A$, 所以 $B M^{2}=M D \\cdot M A$, 易知 $\\triangle A B M \\sim \\triangle B D M$, 所以 $\\angle A B C=\\angle B D M=\\angle A D M=\\angle A C E ;$ 又弦切角 $\\angle A C B=\\angle A E C$, 易知 $\\angle E A C=\\angle B A C$, 证毕!\n\n#'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAY0B1wMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK5Xx742sPA/h+W/uWV7pwUtbbdzK/8APaOpPYe5GQDqqK5P4aaxqWv/AA+0rVNXlEt9cCVpHCqoIErhcBePugV1lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRUF1cR2lvLczyCOGJGeRz0VQMkn2AFAFPXdbs/D2lz6lqEpSCIDCqMs7HhVUd2J4A/8Ar188/Gayv5NH0nXtdRk1XUZ28u1DnbZW4XKxe7HcCzY+9kdAK9N0MWfxUvZtb1KKG40C1d4NP0+T5g7dGuJVPcjhQRwCe5NeafHvSvD2h3Oi2Wi2FhaTsJpLlLeNVOPkCbsc/wB+gD2j4WQmD4X+H1Jzm1D9P7xLf1rr65X4cyWz/Dfw8bWZZY1sIVYq2cOEG5T7g5GPauqHSgAopDWbqniHR9DiEmq6pZ2Snp9omVN30BPP4UAadFcSPir4YuXaLSn1DV5l6x6dYSzH89oH61J/wmeuXQzp3gPWpB/09ywW3/oUhP6UAdlRXGf2348m/wBV4OsIPe41gH9Fj/rS/a/iM/3dJ8Np/v38x/lHQB2VFcb9r+Iy8nSfDUg9Ev5h/OKk/tvx5D/rPB1hP7wawAfwDRigDs6K4z/hMtctc/2h4E1pP+vSWC5/9BcH9KjPxV8M2ziPVZNQ0mRjwmo2EsX67cfrQB29FZmleIdH1yMvpeq2d6AMkW8yuR9QDkVpjpQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU10SRGR1VkYYZWGQR6GnUhPPWgCC2sLOyLm1tIIN+N/lRhd2Omcdep/OoJdH0uadpZdNs3kc5Z3gUlj9cVkeIfG2leHrhLJzPe6pL/qtOso/Nnb32j7o92IFeCfGPX/EGq65ptlqaRacsK+f9kt5TK1vu6NKwwpfapIA6DvzQB77qXiXwv4RAt7i6tLSV2ytpbpulc+0aAsfrish/E3jHWmCeHvDAsbdul9rcnl8e0KZc+2cdqyvAkmkeFL6Pw/qmjwaPrrrlbtn8xNR9XSdhkknkoTkZ4FenjkUAcUPBer6lhvEPjHU7kHrb6eBZQ47g7Mufxar+nfD7wnpcvm2+g2bTdfOnTzpPrufJ/WunowKAGpGkaBI1VVHQKMAU6iigAooooAKKKKACmuiSIUdVZTwQwyDTqKAOY1L4feEtUk33Og2Syk582BPJkz67kKt+tUf+EK1fTs/8I/4x1S2A/5YahtvYvp8/wA4H0au1ooA4VPEfjLRWK+IPDK39uP+XzQ3Mh9swvhvrgn6GtrRfGWg6+3lafqcT3IOHtpcxzIe4MbYb9K6CsLxB4S0LxMm3VdPillA+SdRtmj/AN1xhhQBuDkd/wAaWuEXS/GXhZR/ZOoL4i09OllqT7LlR6JPjDH/AHx7ZrT8P+OdJ1+8fTv39hq8Q/e6dep5cy+4HRh7jIoA6iikHSloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoppOD9K5nxP4wi0OWLT7G2l1TXLkf6Pp1uRux03uf4E6fMf8cAGvrGt6boOny3+qXkdrbR/edz1PYAdST6DmuQe68U+N3X+z2n8N6AfvXEiAXt0P9hT/AKpSM4Y/N0OKu6T4MmuNTh13xXdLqerR8wxAYtrM5z+6Q9SMD5m54zXYHtmgDkri28PfDTwzeaja2AUgDJHz3F3IT8qljlmZmPf1rzpPCN1qfimDT9Uw+sXOjX2p38n92a4Hkog9Ai8AdsHHWu1SX/hN/HxUAtovhuXqPuz35BHB7iIZ/wCBNmrfhsfbviJ4u1E/MkBttPib2SPzHH/fUo/KgBfDkOm+OvhnpH9p2kV1FLaokqyDlZUGxyD1UhlbBHIqks/iDwE7C8e41zwwo+SdRvvLFf8ApoOssY/vD5gOoOKsfDqM6a3iXQWxnTtWlaJPSGUCWP8A9Cau34PagCppmq2OtWEV9pt3FdWsoyssTZB/wP1q6OlcTqHg660rUJ9Y8G3KWF5KTJc2Ei5tLw/7QH+rf/bX8Qc1e8NeM7XXJ3026t5dL1uAZn0664cf7SHo6Hsw/KgDqKKQciloAKKKKACiiigAooooAKKKKACiiigAwPSsjX/DWk+JLVYNUtEl8s7opQdskLf3kccqfpWvRigDgBL4r8EyEXIufEugjkSoAb62H+0v/LZfcfN1znFdZo2u6b4g09L/AEq9iurZujxt0PoQeVPsa0sD0rj9Z8GSR6nJrvha5TStZfmZSuba974lQdyf41w3XrxgA7AdKWuV8M+ME1id9K1K3/szX7cfv7CRs7h/z0jPR0PYiupXoKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApp4NBJBrivEniK+1HVj4V8LThdTOGv74KGTT4j1J7GQ/wr+JwKAJNf8AFV7carJ4Z8LIs+shR9pun5g09W6NIe7/AN1O/U8Vo+F/Clj4ZtpDE8l1fXB33d/cHdNcN/tHsB2XtVrw74dsPDWlrY2SOckvNPK26SeQ/ed2/iY+v4dBitigBB0/rXL+N/EE2jabFZ6cA+tao/2XT4/+mhHLn0VBlifYetdNK4jR3dlVFUsWY4Ax3J9K4XwiP+Es8QXXjS4Qtarus9GVxjbCD88wHYu2cHrtGO9AHTeGtBtvDXh+z0m2yyQIA0jDmV+rOfckk1g/DP8A0jw7e6t21XVLu9H+6ZCi/wDjqCtrxdqh0TwdrOpo22S2s5XjPT59p2j88VH4H07+yfAuh2JXa0VlEHH+2VBb9SaAMq3H9nfF6+iAxHq2kxzgnvLA5Q/+OyL+Vdp2riPG0n9meJ/B+tdETUG0+Q+i3CbRn23KtdsOlAC4HpWH4k8L6d4ntFiu1eO4iOba7t22T27/AN5HHI/ke9blFAHAxeJNY8Gulp4wH2jTMhIdehXC8nAFwg+4eg3j5SSOnJruYZo54ElilSWNwGV0YFSD0II7UTwRXMMkE8SSwupV43XcrA8EEdxXCXHh/WfBbm78HAXWmFsz6FcOcDuTbOfuHr8h+U5PegD0AUVh+HvFWl+Jrd3sZmWeI7bi1mXZNbt3V0PIOa2xyKAFooooAKKKKACiiigAooooAKKKKACjFFFAGD4m8L2PiW2RZt1vfQfPaX8IxNbP2ZW/mOhrJ0LxPqFnqkXhvxYsUOqsp+yXkRxDqCr1K/3ZBwWT3yOK7TAPasfxF4e07xNprWGoxFlyHjkQ7ZIXHR0bqGHY0AbAorifDuv6hperL4U8TSE32D/Z+oFdqahGB+QlUY3L+I612w6UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRWJ4p8RQ+GdGkvZEaadiIrW2T71xM3CIv1P5DJoAzPFviK+tby28P+H40m1/UFJjL/6u1iH3pn9hxgdzxWp4Y8OWvhjRo7G2Z5XJMlxcyf6yeU8s7HuSfyGB2qh4O8N3OjwTajrEy3Wv6gRJfXAHC+kaeiL0A9s11IoAQUtFZ+saraaHpV3qd/OIrW2jMkjew7D3PQUAct45uZNZvrTwRYylZ9TXzL+ROsFmD85+r/cH1NdnZ2sFlZw2ttEkUEKBI40GFVQMAD2ArkvAukXMcF34k1eIprGssJ5Vbrbw/wDLKH2Crgn3Jz0rsx0oA4j4pJ9s8Jw6KpKtq+oWtgCOoDSBmP8A3yrV2yqFQKoAAGAB2rjPFOb3x/4O0370cctzqEi+nlxbEP8A31L+ldoORmgDj/ifp8mofD/VDb/8fNogvYT6NCwk/UKR+NdPp95HqOm2t7CcxXEKTIf9lgCP50+5gS6t5beVd0cqGNx6gjB/ma5X4ZTyS+ANOtZmP2iw8yxlHo0LtHj8lBoA7CigUUAFGB6UUUAcv4k8HW+tXkWp2VxJpWuWw/cajbqC2P7rr0kT/ZP581R07xlc2Gpw6F4ugSw1GU4tr2PJtL302t/C3+w34HkV21UdU0qw1mwlsdRtYrq1lGHikXIP+B9xzQBdXoKWvPkj8QeApG+zi98QeGx/yx3eZe2Q/wBnP+tT2+8BjsK6/SNb0/X7CO/0u8juraQcPGe/oQeQfY9KANKikHSloAKKKKACiiigAooooAKKKKACjAoooAxfE/h608TaPNp90zxnIkhuIzh4JV5V1PYg+nXkVl+FPEF7Ld3Hh3xAUXXrFQzOg2pdwnhZkHueCB0b2rrq5fxl4al1u3t73TJVtte08mWwufRscxt6ow4IoA6cdKWsHwt4kg8T6SLqNGguYmMV3bP9+3mX7yMP5HuK3h0oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAjdwmSzBVUZJJwAPU1wnh+M+MvFEni25y2mWDvb6NC33W/hkuffccqvoFzU/jyebWZ7XwVYTPFPqamS9mj+9BZr98/Vz8gHua7GztLexsoLS1hSG3gjWOONBwigYAH0oAlX7tOoooAQ9a4HWkXxr42h8P536PoxS81LH3Zbg8xQn1A++w/3RW94v8QHw5ocl1FF517M621lB3muH4Rfz5PsDSeDfDS+FvD8Nk8xuLyRjPeXDfennblmP49PYCgDoQBgUewoHSg/eoA4qyddR+MWqSqcrpWkxWx9nmcyH/wAdRfzrthwK4T4dqbzUfFutN/y+axJDG396KFRGp/MGu7HSgBp6+9cT4Ok+w+M/GWhkYUXkepQk/wASzoC2PYOrfnXcVw+oxDTPjBpF6Puatps1iy9vMiYSqfqVLD8KAO4HSigUUAFFFFABRiiigAwPSuM1bwXJb6pNrvhW4TTNYk5miKk2157SoOhP99cH1zXZ0YGc45oA5Lw54zTU7ttJ1e2bSNejHz2M7giUf34W6SKfbkY/GusXO3nrWP4h8N6X4lsxbalbhyh3QzIdskDf30ccq3Hb8a5hNd1vwMqweKnfUdFB2R63DGfMhHYXKD8vMXjpnrmgD0CioLW7gvrWK5tZ45oJlDxyRsGVlPIII9qmByAfWgBaKKKACiiigAooooAKKKKACjFFFAHn3iiM+C/ES+MbKFjp90yW+txRj+HpHcAeqHIPqD+Nd9E6SxJJGwZGG5WByCD70y4gjuYJYJ41khkUo8bDIdSMEEe9cX4IuZdC1G68D3zuXsF87TpXOfPs2b5R9UPyH2xQB3VFA6UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUF3dQ2NrNd3MqxW8CGSSRjwqgZJP+e1T1wvxBkk1a60nwbbEg6xKXvXU4MdpHhpPoW4UH3NAD/h/Z3F5Fe+LtSVhfa2wkjjf/AJYWq58pB6fKdx9S1duOBTUjSONURFVFACqBgADoBTqACmt1P+NOrjfHmp3bQ2nhnSJvK1fWmaFZB/y7wAZlmPphcgf7RGOlAFPSE/4TLxvN4hcl9I0d3tNLU/dlm6Sze+D8i/Qmu9X7tUtG0q00PR7TS7GMJbWsSxRjvgdz6k9T7k1eoAKrX93HYafc3kxxHBE0rH0CqSf0FWa5H4m3T2nw61ryuZbiH7LGM9WlYRgD/vugB/w0s3tPh1oolH72eD7VIT1LSsZDn/vqurqCytY7Cwt7OEYit4liT6KMD+VT0AFcZ8RD9itdE1oHaNM1e3kkf+7FITE/6SV2dc9450w6x4H1uxQEySWchjx/fA3L+oFAHQDpS1j+FNX/ALe8J6TqpxuurWOR8dmKjcPwOa2KACiiigAooooAKKKKACo5Y0lRo5EVkYbSrLkEd+PTtUlFAHA3fhjVfCk76h4JcNBnzJ9BmbEEoJ5MTH/VN14+6Sfat7w74t03xIkiWzSwXtudtzYXKGOeA/7SnnH+10NdBgHqK5rxN4PsvEMkN2k82n6tbc22o2p2yx+x7Mp7qePpQB0inK5pa4az8X6hoV9BpHjOGK2kmbZa6rCcWtyeysf+WT/7J4POCeK7hTlQQc0ALRRRQAUUUUAFFFFABRRRQAYrjPiBaXFtaWvijToi+oaHIZ9ijma3PE0f4r8w91FdnTJFVwUYBlPBB9KAIdPvrbU9Otr6zlEttcRrLE4/iUjINWa4bwGDoN9rHg52Ji02UXFjk8m1mJZR77G3qT9K7kdKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBDnNcR4SP9ueLfEXiVjvhWQaXZNjP7qLmRh7NIx/75HpW14z1lvD/g7VtTj/18Nu3kD1lb5UH4sRTvB+gr4a8I6XpHWS2hHmt13SHLOfxZmP40AbgoopO9AEF5eQWFpPd3Uqw28CGSSRjwqgZJ/LNcf4HsJtTu73xpqMbJd6qAtnHIObezBzGvsW++frUXixT4v8R23g2J2FhEq3usOveMN+7hz2LsCT/sr713aoqoqqoCqMAAcAUAOHSiiigArhPiGxu9V8H6Mp/4+9ZjnkX+9HADIwI9M7a7uuIvI11H4yabG2Suk6RLcAjs8ziMf+Oo1AHbDpS0g6UtABTWAOQQCCMYNOooA4n4ZL9h0LUNDyf+JPqdzaKD18sv5iH6bXFdqOgrjdIA0/4peIrE8LqNpbahGO2VBhf/ANBT867IdBQAtFFFABRRRQAUUUUAFFFFABRRRQBUv7G01Ozlsr63iubaUbZIZVDKw9CDXE/2f4g8CS+Zo6z6z4bHL6aW33VoP+mDH/WJ/sHkcY716DgZz3owKAMnQvEWl+JLEXuk3iXMJO1guQ0Z/usp5U+xrVU5Ga5LW/BYm1V9d8P3n9ka4wxJMqborpf7sydG/wB4YI96bofjVp9WHh/xBZnStdAysbHdDdAdWhf+Id9vUcg9KAOwopFOVBpaACiiigAooooAKKKKAOE8a79D8TeHvFUPywxT/wBnagR0+zzEBWY9gsm0/U+5rux0rH8UaKniLwzqWkPgfa4GjUn+F8ZVvwIB/Cq/grWpPEHg3SdSmJ8+WACfjH71flf6fMDQB0FFA6UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcV46/4mGreFtAB4vdSFxMv96K3UyEH23bK7QdK4aN21P41T87odI0dUUf3ZZ5Mk/wDfCCu5HAoAWsfxPr0HhrQLrVJ1ZzEuIol5aWRuERR6k4Fazce1cDGr+NfHxnZs6F4dmCxoPuz32OW9xGDgf7RoA1/A/h640PRHl1KQTazqEhur+UHrI38A9FQYUD2rqB0oXlQfWloAKKKKAEJrjPC4+2+PPGWpdY0mt9Pjb08qLc4/76kNdi7KgZ2OFAyT6VxfwtY3fhCTWHBD6tf3V8wPo0rBf/HVWgDt6KQdKWgAooooA4bxU50v4i+D9VB2RXLT6XcN/e8xQ0Y/77Su4HSuM+KMB/4QuTUo0LT6RcwalFjsYnBb/wAc3V2MTpLCkkbBkZQykdCDQA+iiigAooooAKKKKACiiigAooooAKKKKAEwM5xWXrugab4isGsNUtUngyGXPDRt2ZGHKsPUVq0Y5z3oA8+TUPEHgN2j1hrrXPDgOU1JE33NovU+co5kUdd46AHNdtYaha6pZRXljcxXNtKuUlibcrfj/SrJrh7vwfeeHrqbVvBUsVrLI2+40mY/6LdH/Z/55P6MOOmR1oA7kdKWua8N+MbLxAXtHjk0/WIOLnTLo7Zoz6j+8vcMOOnTpXSDOOaAFooooAKKKKAEPXPeuF8DBtM8T+MNAORHb3y3sAPQR3C78L7Bg34mu7xXF3oGn/F/TJ+i6ppM9s3u8LrID+Tt/kUAdmOlLSDpS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUnelpD1zQBxXgmMXXiXxpq5+9NqotAf9mCNFH6lv1rtR0rjfhoPN8LXF7/AM/2qXs5/Gdx/SuvlkSKN5JHCRoCzMTgAdyaAOY8c63d6bpsOnaTg63q0n2SxGfusR80p9kXLH8PWtbw3odt4c8PWelWpLJbphpCMGRzyzn3LEk/WuW8HpP4n1688aXqn7KytaaNG4xttwfmlx6yEZ+gx0rvhQAUUUUAFFFFAHP+OdR/srwLrt6Dh47KURn/AGypC/qRU/hPS/7F8IaPprAB7azijfj+IKN365rE+JeLnQbDSDyNV1W0tGH+yZA7f+Ooa7QdKACiiigAooooAo6xYJqujX2nSY2XVvJA2fRlK/1rF+HmoNqPw/0SeQnzUtlgkyed8f7ts/iprpyK4X4fs1lq3i3QmOPsWqtPEv8AdinUSKB7ZLUAd2KKKKACiiigAooooAKKKKACiiigAooooAKKKKACjAoooA5/xL4T07xKiG4Vre/h5tb+3Oye3PqremeoPBzWDb+K9T8JSRWPjcxm2dhHb67AmIJT2Eq/8smPr90+td9gelQXVrb3ttLbXUEc9vINskciBlYHsR3oAkjYPGrKwZWGQwOQR60+vPptG1vwK4ufDHm6nogOZtElbMkK92tmP4nyzx6ckV1GgeJdM8S2ZuNMuN+xtksTqUkhburoeVNAGzRSDpzS0AFcZ45/0XWvB+pj70WsLbE/7M0bxn9StdnXE/FV/svgr+0f4rC/tLoH02zoM/kTQB21FIOlLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSHrS0h5BoA474U8/DPRn/56JJJ/wB9Su39ar+OLm41vUbTwPpzMj6hGZtRnQ829mDhvxf7o/Gq3gXWLXQfgrpWq3shW3tbHewHU/MQAPUk4A98VpeBdLvo7K717WYxHrOsSC4nQ/8ALCMDEUX0VcZ9yaAOstYIbW1ht7eNY4YkCRog4VQMAD2xUtIOlLQAUUUUAFFFIaAOL8SH7d8SPCOmg7lt/tOoSr6bU8tD/wB9SH8q7QdK4XSs6j8ZvEF3yV0zTbexHoDITK36ba7sdKACiiigAooooAK4ogaZ8YQfuR6zpGD/ALcsEn/xEn6V2tcX45xY6x4T1roLbVBaynsI50aM59t2ygDs1+6KWgdKKACiiua8eWevah4Pv7Xw1cm31V1XynV9jY3DcA38JIzz+ooA6WiuV+H9l4i07wda23ii7NxqiltzM/mMqk/KrN/ER68/U11POaAForzr4hfFS08HTLpVhb/2jrswHl26n5Yy3C78c5J6KOT6jINVr7SfH8fhC71i78YyW+sQ27XK2lvaRfZ49q7vLOVLMeOpP4HrQB6dRXmPwj+JcnjfT57PUyi6vZjc5UbRNHn74HYg4B+ox1r00dOaAFooooAKKKKACiiigAooooAK5PxH4Mi1PUk1vSryTSdehXCXcABWUf3Jk6SL7da6yjANAHF6R41mh1RNC8VWi6Vq7/6iVXza3nvE57/7Lc12a/dFZ+saLp2vafJYanZQ3Vs55SRc4PqD1B9CK45ZfEPgF389rnXPC6/dkA33liv+1/z1jHr94D2FAHoVcV8W4/N+Fmvr/wBMFP5Op/pXTaVq+n63YR32mXkV1ayfdkjbI+h7g+x5Fc98U/8Akl/iDPX7If5igDq7WTzrSGX++it+YqWqmmf8gmzz/wA8E/8AQRVugAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkNLXOeM/EZ8N6KZ4ITcajcyLbWFsOs07/dH0HUn0FAHmngDzPFtnofh4xt/ZHh4me+JGFmuVkbyovdQPnI+le2jpXA/CK1ksPCN1YXBRry01S6guZEXHmSCQ5b8QR+GK74cjNAC0UUUAFFFFABSHrS1U1S9TTdKvL6X/V20DzN9FUk/yoA5X4eqLkeI9XIBN9rM+xv70cRESfh8hrtR0rlvhxYtYfDrQopf9a9qs8meu6QmQ5/FzXU0AFFFFABRRRQAVyXxMsH1H4d63HDkTwwfaYivUNERIMe/yV1tRyxpKjRyKHRlIZSOCDxQBV0XUF1bQtP1JMbbu2jnGP8AaUN/Wr1cZ8MXaLwXFpjsWl0q5uNPfP8A0zkYL/46Vrsx0oAKMD0oooAMD0rO13U00TQdQ1SRN0dnbSTlQcZCKTj8cYrRrJ8T6Udd8MappSuEa8tZIFc9FZlIBP4kUAfN3wltbnxv8XW1rVH86S23ahKccFwQqAegBYEDsEr3v4k6qui/DnXbsnB+yPAhz0aT5F/Vgfwrxv4J39n4N8W69pPiOaLTL1o0RftTCMZUncNx45yCOecVrfEbWrn4o6rZ+D/B/wDplpBKJb29GRACOBlgPujJORnJxjNAGX+zfpMz6/q+tFSLeK1FoCRwzO6tx9Ng/MV9GjgVz/gvwpZ+DPDFrpFodxjG+eYgAyyn7zEfoOuAAO1dCKACiiigAooooAKKKKACiiigAooooAKTHOcUE8GsbXfFeheGoQ+s6pb2m4ZWN3zIw/2UGWb8BQBh6l4NudO1GbWfB10mm38h33Fk65tb04/iX+Bv9tefXOa5Xxz46tNU+GviDTb+FtK12KBUm0+5bDHLqN0Z6SIecEfpXUjxfr2tY/4RrwvcGFh8t9q7fZYvYhMGRh9AK4b4k+BdZ1fTtOuvEPiMXN7NqEFpbW9tarHBB5rBWxnLN0zkkdKAParRVWzhVGDKEABU5BGKlP1qhoelxaJoNhpULu8VnAkCs55IUYyfyp2r6jBpGj3upXJ/c2sLzP8ARQSR+lAHzlrOq63qXxubw3o3iDXINOa+jt2jTUpztCgeaQS2RyHPtXqfijwPIdLuk0XxX4lt9XW3kmtYBrMr+cUAz8rNkgkqMjoWH0Pj3wf0fW/E3jLUtcsdQhs7y2RpWuZrX7R+8lJGMblwSN/OT0PBzXsnw/0jxBB4m8Tah4m1AX92ssdlBMq7UEYUSYRegB8xQR6qeSeaAOx8N2l1YeGdMtb6ea4u4raNZ5ZpC7vJtG4knJPOa1KQdKWgAooooAKKKKACiiigAooooAKKKKACiiigBrHBySAo5JJrg9BceM/GE/iV8tpOll7PSdw4kk/5bT/psB6YBq1491S4kS08K6XKU1XWy0Xmr/y7W4GZZT6EKSF9yPSup0zTbXSNLtdOsohFbW0axxoB0AH86AOS8GSfZfGPjXRyMbL6K+X3E8Sk/qh/HNdwOBXDSRnTPjPDMTiDWdJaIe80Dhv/AEB/0NdwOgoAWiiigAooooAK4r4rXctt8PNThtz/AKRfeXYxDP3jK6oR/wB8k12tcR46j/tLxD4O0btLqZvn91t42fB9txWgDsbW3jtLSG2iGI4Y1jUewGBU1AooAKKKKACiiigApp5p1GKAOG8MSHTviN4v0c/LFO0GpwL6+YgSQ/8AfSD867kdK4nWkGnfFbw3qQGBqNpc6ZK3b5QJk/VXrtqACiiigAooooAo3uiaTqTq9/plldOg2q09urkD0GRU9rZWljCIbS1ht4h0SKMIo/AVPRQAUUUUAFFFFABRRRQAUUVHLLHDG0ksipGoyzMcAD3PagCSkNcVdfEzSDePYaFb3niC9U7fL02PfGhxxvlJCKPfNIYPH2uZM9zYeG7YjiO2H2y59wXbEa8dwGoA6rUdV0/SLZrrUb63tIF6yTyhF/MmuUl+IZ1IFPCeh3+uP0Fxt+zWoPvLIBn8AasaT8OPD2n3ov7mKbV9Q/5/NUlNxIPoD8o+oArr1ACgAcDpQBw6eH/GWujdr/iNdMgbn7HoabGH1mfLZ/3QBWtovgjw7oU32iz0yJrs8tdz5mnY+pd8n9a6OigBB0rjPGeLvxP4M0sDl9Ta8OPSGFzn82Wu0rinYaj8YolGGj0jSGJ/2ZZ5AAP++IyfxoA7UdK83+Msur3Xg6XRdE02/vLm+ZVlNtbuypEDk5YDGSQBjrgmvRx0FLQB4h8J5bjwN4Wu7fUPCXiI6hPcmSTydPLblC4UAkjgYbrjk9a29O1nxl4x8d2UVxo1/oHhyyLXDiZWSS6YcIrN0IyQdg4wDnPFep4BGMDFLgelACDoKWiigAooooAKKKKACiiigAooooAKKKKACq1/fW+m2U97dzLDbW8bSSO3RVAySfyqwTg1wXikr4v8T23g2M77CALe6ztbqgOYoCe29huPfavvQBP4GsptTnvfGWowst5qpAtEkHzQWQ/1Sexb75x3YV2w4ApERVRQqgADAAGMfh2p1AHF/EH/AEA6B4hHyjS9Tj85/wC7BLmF/wD0NT+FdmpBUEdDWT4o0ZPEPhjU9Jfj7XbtGp/utj5T+Bwao+BNbl8QeC9NvrnIuxH5N0G6iZCUfI7cqT+NAHS0UCigAooooAK4ubN98YoEPzRaXozSf7sk0oH57YjXZnrXE+D5BqHjPxpqoO6P7bFp6H08iMbv/HpGoA7cdKKB0ooAKKKKACiiigAooooA4z4kj7NodhrPP/Eo1O2vGI/ubwj/AIbZG/KuyHQYORWN4t0w6z4S1jTQu5rmzljQf7RU7fyOKh8C6s2u+BdF1KRt8s1onmt6yAbX/wDHgaAOgooooAKKKKACiiigAoopDnNAC0Vh614v0Dw6ANV1W3gkJwsO7dI30RcsfyrAXxX4q15ynh3ww9nbH7uoa2xhX6iEfOw9OlAHcscVy+pfELw7p1ybOO8bUdQ5xZabGbmY+2EyB+OKoN4Du9aRv+Er8R32qRsfmsrX/RLY+xVDub8WrqdI0LStBsxaaTp9tZwd0hjC5PqfU+5oA5STUfHuvkLpem2vh61brcamwmuCPVYUOAR6Malh+HGnXTpceJL++8Q3C/N/p8v7hW9VhXCAexzXbUYoAhtbS3srZLe0gighQYWOJAigewHAqbAoooAKKKKACiiigBDnPFcL8PVbUb/xP4lbldS1Fo7dv70EA8pD+JDVueNNZbw/4Q1PUo+Z44StuvdpW+VAP+BFan8K6Mvh7wrpmkqQTa26I7D+J8ZY/ixJ/GgDYHSiiigAooooAKKKKACiiigAooooAKKKKACiiigAooprHANAGR4o1+38M6BdarODIYhtihX700p4RB7kkVQ8E+HJdA0Rnv2EmsX8hu9QmB+9K38I/wBlR8oHtWTGg8a+Pjcsd+ieG5dsI/hnvsfM2e/ljj/eJrvR90d6AADA4paKKAGnrmuK0D/iRfELXdCc7bfUwNWswf7xwk6/XcFbH+0a7euJ+ItlPBZ2XimxRmvdAm+0lF6y25GJk/FMn/gNAHajpS1DaXMN5Zw3VvIskEyCSORejKRkEfUc1NQAUUUUAMlkSKN5XbCopZiewHWuJ+FEDnwHDqEqlZ9TuZ758/8ATSRiD/3ztrV8f6h/ZfgHXrtSRItlIsZHXey7V/UitTQdPGk+HtN04KALW1jhwP8AZUD+lAGhRRRQAUUUUAFFFFABRRRQAhxnpXFfDlP7Pttd0L7q6Xq06Qp6QyESp+khrtq4uxH9nfFvWLYcLqumQXi5/vxMYmx/wFo/yoA7QdBRQOlFABRUF1d29lA891cRQQL96SVwir9SeBXIzfEfT7l3g8N2N94huVO3FjERCp9GmYBAPoTQB2hrO1fXdL0G1N1q2oW9lB0DzSBcn0A7n2FctFYePfEGW1PVLXw7aMcfZ9NQT3BHoZXyoPuq1o6Z8PvDunXQvXsmv78f8vmoyG4lz6gvkD8MUAUU8e3etKP+ET8O32pxk4F7c4tbXHqGcbmH+6tMfwt4p1+QP4i8UNZ23ex0NTCuP9qZsu3uOK7oAYxilxQBhaH4R0Dw7l9L0q2t5iMNPt3St9XbLH8TW4AKWigAooooAKKKKACiiigAooooAKKKhurmK0t5bieRY4YUMkjseFUDJP0xQBxXihW8Q+PfD/h6M5trFv7YvueCEO2FT65fJwf7td0Ogrifh7HLqUGoeLbpGSfXJ/MhV+qWqZWFfyy//Aq7ZfuigBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACuV8ca3dadpsGm6Uw/tnVphZ2Q/uEjLynHZFy35V0s0qQRPLLIqRou5mY4CgdST9K4bwdDJ4l8QXnja8B8iZTa6PG4/1dsDzJg9GkIz9BQB1HhrQLPwz4dstIsgTDbJjew+Z26lj7kkn8a1qQcCloAKKKKACo5USVGjkUMjDaykZBB6ipKQgHqBQBwvgeWbQdR1DwTduSLD9/prseZbR2OBnuUbKH2xXdDOOetch470288i08Q6RCZdW0eQzJEnW4hIxLD77l5HB5UetdDo+rWmu6Ra6pYSiS2uYxIjD37EdiDwR2IoAv0UDpRQBxfxJIudK0jSDyNT1i0gcD+4r+Yx/KOu0HQVwmvk6h8W/Cung5jsra61CRPcgRIfwLGu6HIoAWiiigAooooAKKKKACimk1z2seOPDuhzC3vNTiN2xwtpBmaZj6CNMtQB0dcJ42b+zPGngzWt22P7ZJps3oROny5PsyA05/EPjHXBs0Hw8ulwt0vdbbawHtAp3Z9CxH0rm/HXga/n8D6lqOua9fazf2kX2pIuIbZdh3NiJeD8oYZJPX1oA63U/iP4f066NjazT6vqWT/oWlxfaJRjqDt+VfxIqAXPj7XQPItbDw3av/AB3J+13WOxCLiNfoSa6bRLLSrPS4P7Hs7e1s5UV0WCIICCMg4FaOKAOItfhpo7Xi3+vXF54hvl+7JqcvmRof9iIYQD2wa7OGKOGFYoo1jjUYVFXAA9hUlFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVw/jyZtZu9P8FWshWTVCZb5k+9FZpjf9N5wgPua6zVNTtNH0251G+nWG1t0LyOx6AD+ftXL+BdMuJUvPFWqwlNU1lhII3621sP9VEPTC8n1JoA7CCKOCCOKFFSNFCoqjAUDgAD0qSkHQUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRWbrusWvh/RrvVb1ytvbRl2x1PooHck4A9zQBzHjWWXxDqtn4Is5WRb1PP1ORDzFaKeV9jIflHtmu0treG1tYreCNY4YkCRoowFUDAA+grlPAmh3VlY3GtauM65rDC4u89Yl/giHsq4H1zXXjpQAtFFFABRRRQAUUV4f8AG7xfrnhDVNLj0PXbm3kukkeaDCMqgFQhGVJGTv8AyoA9uPf075rgbZ28CeL/ALAy48Pa5OXtXPAtLtuWiPoshyV9GyMc1yesXPxD8O/Duw8XQeJpbqTyIp76xurWIhVfGNpCgjG4ZH1OeMHpfCPiTTvi94EvLTUIEjuVxDeRRn7j9VlTuORkdwVPPFAHoy9KCcZrjvB+t6hHcTeGPEcg/tyyTckw4W9g6LMvv2Ydj9a7DPANAHFaMgv/AIr+Jr9ufsFpa6dE3b5gZXH5slduOlcX8Of9JsNb1X7y6jrN1LG3rGjCJf0jrsx0oAWiiql/qdjpVubjUL23tYB1knkCL+ZoAt009a4s/ESLUWMfhfRtR1184E0cfkWwPoZpAB+QNRLonjfX3L61r8WjWZ62WjLmXHvO4yD/ALoFAHS6z4k0fw7bG41jUrazj6jzXwzfRep+gBrm4vG+sa+CPCvhi6liPS/1U/Zbf6gcuw+gFa2j+BvDehzm6tdMje9PJu7pmmmY+u98kfhiuk+tAHDnwjr2tgnxL4oufLb71lpC/ZYsf3WfmRh+K1vaF4V0Lw1EyaRpdvabuHdFy7/7zHJP4mtqigAFVr+0iv7C5s5wDFcRNE/GeGBB/nVmkPWgDk/hrey3Xw+0lZzm4tIms5h3DwsYyD7/AC5rrRXCeB86f4t8aaI2cR6gt/ED3W4QMcewZW/Emu7HSgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKaxwetLXHeMtfvBcQ+F/D5Da7qCbjL1Wxgztad/5KO7evQgGdfsnxC8UnSFBbw9os4bUG/hurpeVhHqqHlvfaPevQQMqMgZ+nes/QdEsvD2iW2l2EeyCBMZblnbqWY92JySfetKgAooooAKKKKACiiigAooooAKKKKACiiigAooooAQ8E9a4HUkHjbx5Hpm4tovh+RLi7wfluLs8xxn1CD5j7kA1ueNNel0HRM2KCXVb2QWmnw/35n4BP+yv3j7CpvCXh2Pwx4dt9OEpnnyZbm5b700zHLuT3JJ79gKANwDK8jr2NLSDAAx0paACiiigAooooAQ57Cvlz4gs3jn48x6OhLwJPDp4KdQindIfwJkP4V9G+JddtvDeh3Wp3W4iJD5caKWaR8HaoA7k8V81/Ci/tNN+IFzr/ihrmGQQyyxyvayPumc8n5VJyVL9u/4EA91+K1zBp/wv1xnVAr2wgRfd2CgD6Z/T2rzT9mq2uPN8Q3RDC3Igj9mf5z+gP/j1XvG3/CTfFq6tdG0PSbyx8PQyiWW/1CJoRMem4KcEgZOAMkk84xXqfhDwvZeDvDVro1lgiIbpJCMGWQ/ec/U/kAB2oAi8WeGDr8Ftc2d0bLWbBjLY3gGfLc/eVh3RhwR/k51j47Sfwpq93eQLaa1o9vK19YscmN0UnI9UbAII7EVd1f4geHNGuvsMl/8AatQzhbKyjM8xPptXOD9cV5X8VbbxD4ls7TUbXw0+jvJKliss10q3V2kp2rEyLwF3dmb8uaAPU/AFquk/DnQ45mCYsknlZ+NrON7ZJ92NV7/4k6JDM1ppC3Ov3o62+kx+fs/3nHyqPqa5LwP4a0zxDbNB4svNQ1LWdMxFdaXfzbYbUrwpWJcK6kYIY7gfrXq9nZWthbLb2ltDbwp0jhjCKPoBQBx8f/Cfa+gaR7Hwzav/AAoPtd0B9TiNc9ejYzU9p8N9Aju1vtUW41y/Xpc6tN5xH+6p+QfgK7HA9KMD0oAaiKkYRVCqBgKBgAelOxRRQAYHpRRRQAUUUUAFFFFAHF3v/Eu+LunT4wmraVLbEDjMkLiRfx2u/wCVdoK4r4gsLB/DmufdGn6vEJX/ALsUoaFz9PnFdqOlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXPeKfFdv4bjt4lglvdTvG8uy0+DmSdu/+6o6ljwBQA3xb4nHh6ziitYftesXreVYWQPMsnqfRF6segApPCnhp9DhubzULkXutX7iW+vMYDsBhVUdkUHAH+NVfCvhaeyu59f1yVLrxFej97KPuW0fVYY/RR3Pc8mutX7o/rQAAYGKWiigAooooAKKKKACiiigAooooAKKKKACiiigAprNjJJwo5J9PrTq4vx5qF5cmz8J6RL5epaxuWSYdba1X/WS+x52j3PtQBU8PrJ4w8X3Hiqck6Rp5e00dD912+7LP+JBUH0zXfL93mqumafbaVpdrp9nGI7a2iWKNPRVGB+NW6ACiiigAoopDQAtFUtR1Ww0i2a61K+gtLdeTJPIEX6ZNcivxDk1pzH4R0C/1kA/8fUn+i2o+kj8t9ADQB3J61ja14r0Dw4g/tbVba1cjKxM2ZG+iDLH8BWDJ4b8W+IEI17xKNOtX+9aaGhRsehnfLfkBmtjQPBfh7w2N2mabEk5OWuZMyTOfeRstQBjSeLfEutEJ4W8LyRxEf8AIQ1vNtF7ERj94w/75qT/AIQfUdXG7xV4mvr1W+9ZWJ+yW2P7pC/O4/3mrtR0pcUAZmj+HtH0CDydJ0y1s1PBMMQUt/vHqfxrnvGOLzxd4M0nHytfyXz47CGJsZ9tzrXaVwsbNqXxruMHMWk6Mqf7ss0m7P8A3ygoA0vE3hNdWuItW0y4OneILVcW98g4Yf8APOQfxofQ9M5HvF4Z8XvqNy+ja3bf2Z4hhXMloxysy/8APSFujqevHI6H1rrBWJ4m8L6d4pslt79HWSFvMt7mFtksEnZkYcg/oaANteRS1wUPibVvB88Vh4y2y2DERwa9CuI2PYTqP9Wx4G77p9q7mOVJo1kjkV0YZDKQQfyoAkooHSigAooooAKKKKACiiigDmfiDpT614A1yxjUtI9ozxqOpdPnUfmorR8M6mNa8L6VqeQTdWkczY/vMoJH55rTPOcjIrjfhmfsvhi40YnLaRqFzY5/2VkLJ/46y0AdpRRRQAUUUUAFFFFABRRRQAUUUUAFNJ60yWRYkZ3ZURRuZmOAo759K4aXxVqfi64msPBhWK0jby7jXp490SHuIF6SsPXhRjvkUAafiXxiNLuV0bSIBqXiOdf3Fkh4jH/PSUj7iDrzye3qF8N+FDpd1LrGq3Z1LX7hQs124wsaf88ol/hQfmepq54Z8Laf4XsGgs/MmmlbzLm6nbdLcOerO39O1boAx0oAB0+tLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU0nB9qAK+o39tpWnXN/eSiK2t4zJI56KoGTXJ+A7C9vHvfFusRNHqGrEeRC/3ra0H+rj9ifvN6k1W8SyN4u8XW/hCIbtKtAl5rLjkNzmK3P8AvEbiP7orvlA2jigAAwoFLTScZycCuW1b4ieHdLuDZx3balfgcWWmobmYn0wvA/EigDq6gurqCzhae5njghUfNJIwVV/EnFcZHqHj7xEP9G06z8M2h6S3p+1XJHYiNcKv0YmpY/hvpl3Ml14kvb7xBcodw+3y/uUPfbCuEA9jmgB03xH0ueZrbQLW+8QXKnaRpsW+JT/tSnCKPfJqu1n8QPED5ur+z8N2J6xWY+03RHoXYbFPuoNdtbW0FnbR29tDHDBGNqRxIFVR6ADgVLigDlNO+Hnh6xuhe3FrJql+P+XvU5DcyZ9Ru4X8AK6pQNoAAAHQUtFABgelGBnOKKKACiiigBDnNcT4HQXfiHxnrZ+9cap9kQ+qW8aoP/Hi1dnPMlvBJPKwWONS7MewAyTXJ/DCGRfh/ptzMv76+Ml7IT3MsjSZ/JhQB2AoxRRQBFPBDcwyW88aSwyKVeORQysO4IPUVw8vhPWPC85uvBM8f2MkmXQ7yQ+Q3c+S/WJuvHK5PQV3uKTA9BQBy+i+ONN1W9OmXSzaVrAAzp9+PLkb3Q5w4PYqTXUDpWVr/hzSfEtl9k1ewiuoVOULZDRn1VhgqfcGub/snxh4YjJ0PUU12wT7thqj7ZwP7qTjr7bx7ZoA7qiuN034j6PcXC2OrJcaFqJOPs2qJ5O7/ccnaw+h59K69XDqGUhgQCCDkGgB9FAooAKKKKAE71xeguNO+JvijSmO1b2K31OBPX5fKkP5ov512tcL4kRtN+KHhTVl4ivI7jTJ2+q+ZGPxZTQB3Q6UUUUAFFFFABRRRQAUU1mCgknAAyST0rkNT+I2jW9w9lpIn13Uh/y66Whm2+7OPkUepJ4oA7A9a5jWvHGm6Xe/2baiXVdYYfJp1iBJJ9XPSNeRyxHHrWYNK8ZeKEzrmoLoFg45sNLffcMPR5yML9EH410mg+G9I8N2ZttJsIrZGOZGAy8h9WY8sfcmgDmI/C2s+K5xdeNbhI7IHMWh2cp8kennPwZT7fd4rubeCG2t44beJIoY12oiKFCgdgB0qTAPbrS0AGB6UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWH4r8QxeGNBuNSeJp5Rtjt4F4M0zHCIPqT+ArcryPxp8LNc8U/ESLWB4he30oKm1I3YTWzKuMRjpycnOQeTwe4Br6RquifD7RFi8RavbjXr6Q3V6ifvJpJpP4VRctgcIOMYXtV4eJPFmsjboPhhrGEj/j711zFj6Qrlz+JWsrRvhI3h9i+leKL22lPWb7HbtK31dkLH8TWz/wh/iH/oftX/8AAW2/+N0AV1+H1xqzmbxd4ivtYB5NlEfs1oPby0OWx7mut0vSNN0a0FtplhbWcH9yCJUB+uOp965v/hD/ABF/0P8Aq/8A4C23/wARR/wiHiL/AKH/AFf/AMBbb/4igDscD0FLXG/8Ih4i/wCh/wBX/wDAW2/+Io/4RDxF/wBD/q//AIC23/xFAHZUVxv/AAiHiL/of9X/APAW2/8AiKP+EQ8Rf9D/AKv/AOAtt/8AEUAdlRXG/wDCIeIv+h/1f/wFtv8A4ij/AIRDxF/0P+r/APgLbf8AxFAHZUVxv/CIeIv+h/1f/wABbb/4ij/hEPEX/Q/6v/4C23/xFAHZUVxv/CIeIv8Aof8AV/8AwFtv/iKP+EQ8Rf8AQ/6v/wCAtt/8RQBP8SdTOlfDvXLhc+Y9q1vHg8l5P3a4/Fga3tIsF0vRbDT1xttbeOAEeiqF/pXlnjz4X+K/EVpZwW3jGa8EUu5474LCo6YYeUoyRjoR34PY9XH4O8RrEin4gauSqgE/Zrc5x9UzQB2tFcb/AMIh4i/6H/V//AW2/wDiKP8AhEPEX/Q/6v8A+Att/wDEUAdlRXG/8Ih4i/6H/V//AAFtv/iKP+EQ8Rf9D/q//gLbf/EUAdlijA9K43/hEPEX/Q/6v/4C23/xFH/CIeIv+h/1f/wFtv8A4igDp7/T7LU7ZrXULS3uoG6xTxh1P4EYrkJfh1HYOZ/CuualoEgORBE5ntSfeF8j8iKsf8Ih4i/6H/V//AW2/wDiKT/hD/EX/Q/6v/4C23/xFADRqHj/AEkAXejaZrkQ483T7k28uPUpJ8ufYNSN8T9GsiBrllq+iE8Zv7FwhPs6blP1zUn/AAiHiL/of9X/APAW2/8AiKa3g3xA6lW8e6sVPUG0tsH/AMh0AbWmeLPD+tELpmt6fduf+WcVwrN+K5yK2ASfavL9Q+C9vqu77brskrH/AJaf2baK/wD30IwagtPgiLDiy8a+IrYDoIJ9mPyxQB6yOlcZ8TUaHwmuqopZ9JvbbUFA/wCmcg3f+OFqowfDvWbYfJ8Q/EZA/wCejo//AKEDVPxJ8PPEer+Hb3TofHGoXDTJtEV3HGscnIO1mRdwH0/IigD0tGDIrKwZSMgg5yPWl715t4X+HfiHTfD1pZ3/AI41aOaNcNHaMhjTk8KzoWIx6/hxWx/wgLyf6/xl4rk9hfrH/wCgIpoA7DPv+tY2p+LvDuisU1LXLC1cfwSXCh/++c5rHPwx8OTHN/8A2nqLet5qc8n6b8Vp6f4I8LaWc2Xh7TImH8f2ZC//AH0Rn9aAMhPidpF9kaFYaxrhzjfYWLGMH3d9q/rSm/8AiBqwItNI0vQYj/y0v7g3MuPUJHhQfYtXahQqhQAAOAB2paAOFi+HUV83m+K9c1HX26mCaTybYH1EKED8ya7DT9PstMtEtrC0gtbdfuxwxhFHvgcVaooAMUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhPvilrG8VSWsHhfU7m9LiC3tpJWKSNGflUnhgcg0AbFL2r5u+C1hf+MNQ1WbXNW1aawtYVVQNRmjxI5yGyGBOFU+3IpfhF4s8QS/E19ETVr7U9Gk88H7TKZdiKGKSDJyMkKOODu+lAH0hRSDkUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFeWfGPxZrPg2ws7zRtWkiuLibZ9la3jkTYq5ZgSuQQSvc9e1AHqeKOgwK89+EHizU/F/g2W/1adZruK8kgLKgTgKrAYHH8XWsj4wfE+bwjBFpehzqNYdleWTyw628Z6A543Ng4HoCfSgD1mivO/hZqHifxB4bg1/X9WaRbh38i1jgjRNgyu5iF3E5BIwRwB1zXoYzjk5NAC0UUUAFFFFABRRRQAUUUUAFFFFABRRTWYICzMAoGSScACgB1FeO658WtR1vxPH4Y+H9vDdXTNiW/uATEgH3iB/dHdj9ADXQXfhnxxbaHJc2vji6utZjQyCJ7SBbeVuuzbtyM9M5680AehUVxXwv1bWNe8D2ur63c+bdXkkki4VUCoGKgAD/AHc/jXajpQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXl/wAeta/sv4cS2qHEuozpbgd9oy7H/wAdA/GvTia8D+M+leKfGevWNtpWg6hJptijDzfLwJJGI3EAnoAFA6d6AMrw/wCDvEdp8ELzWNN16S0t7mKa9uNPECjzokyD+9BDLlFJwODn3rsvgRqXhzUNJvo9K0SPTdStxGLtxIZPOBzhgzcgZB+XtTfFV34kv/BCeEfC3g/VoYTAlo9xeCKLbEoAIADnJIGCSRjJrZ+EXw6uPAulXUuoSo+o32zzEiOViVc4XPc8nJHtQB6SOgpaQdKWgAooooAKKKKACiiigAooooAKKKKAEPXrXjvxEs/+EiuvGNy3MGhaMLaIHp574nkI9wixj8a9U1XVbHRLCfUNSuo7a0hXc8shwFx+pPoBkk1534PubTxJ8L/Ed3DNFLdaub6e5hVtzQl9yojDORiNUGPTGM9SAcP8GPFcXhzwLrzeS1xdG9iS0tUHzXE0ilUQfimT6AH6VyvxWhuIPElloTSJeatgXN/NGMmW7mI+Uf7CqI1Uen1Ndv8ABXwna+HtNfxr4imgsxKhWy+1OECJg7pOe5GQPbPrXHeGNSs/Ffx6i1m+uY4bSS+e5jadwuAgJiXnHPyoPwoA+nPD2kx6F4d07So8EWltHDkfxFQAT+JyfxrTpB0FLQAUUUUAFFFFABRRRQAUUUUAFFFFABXnnxp16bQfhxeNbMUnvZFs1cHG0Pksf++VYfjXodcN8WfCtz4u8C3NlZKHvLeRbqBDj52XIKj3Ks2PU8cdaAOD/Zx0KOPSdV8QOMzyzfY4zjlUVVZsfUsv/fFe6KMLivBfgj400bw/od54d127j0u9ivGkUXbeWCGCggluAwKnIOOtep2PjKz1zU0tPD2NSiR/9KvEJEEK46B8YdzwAq+pJx3AOjtrW3s7dLe1giggQYSOJAqqPYDgVLSKcqDnNLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRiiigAxRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA2SNJUKSIrqeqsMg02O3hhz5UMaZ67VAzUlFAEbW8LoqPDGyr0BUECo/sFnjH2SDH/AFzH+FWKKACiiigAooooAKKKKACiiigAooooAKKKKACkwM5wPWlooAz7zQdH1Gbzr7SbG6lxjfPbo5x6ZIq5Dbw20SxQQxxRr91I1CgfQCpKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/2Q=='] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 51 "已知函数 $f(x)=\frac{x}{\ln x}, g(x)=k(x-1), k \in \mathbf{R}$. 证明: 对任意 $k \in \mathbf{R}$, 直线 $y=g(x)$ 都不可能是曲线 $y=f(x)$ 的切线;" ['$f(x)$ 的定义域为 $(0,1) \\cup(1,+\\infty), f^{\\prime}(x)=\\frac{\\ln x-1}{(\\ln x)^{2}}$.\n\n假设存在 $x_{0} \\in(0,1) \\cup(1,+\\infty)$ 使 $f(x)$ 在点 $\\left(x_{0}, f\\left(x_{0}\\right)\\right)$ 处的切线方程为 $g(x)=k(x-1)$, 则\n\n$$\nk=f^{\\prime}\\left(x_{0}\\right)=\\frac{\\ln x_{0}-1}{\\left(\\ln x_{0}\\right)^{2}}\n$$\n\n切线方程为\n\n$$\ny=k\\left(x-x_{0}\\right)+f\\left(x_{0}\\right)=k x-\\frac{x_{0} \\ln x_{0}-x_{0}}{\\left(\\ln x_{0}\\right)^{2}}+\\frac{x_{0}}{\\ln x_{0}}=k x+\\frac{x_{0}}{\\left(\\ln x_{0}\\right)^{2}}\n$$\n\n对比系数得\n\n$$\n-k=\\frac{x_{0}}{\\left(\\ln x_{0}\\right)^{2}} \\Rightarrow \\frac{1-\\ln x_{0}}{\\left(\\ln x_{0}\\right)^{2}}=\\frac{x_{0}}{\\left(\\ln x_{0}\\right)^{2}} \\Rightarrow 1-\\ln x_{0}=x_{0}\n$$\n\n易知此方程有且只有一个实根 $x_{0}=1$, 此实根不在函数的定义域内,故假设不成立,证毕;'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAmgCgwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6SlpKACkyfWlriviv58fw21i5tbu5tbi3jWSOW3mZGB3rkfKRkEZH40AdpuP1pa8f8Nrf+JYfh3eQ6xdi5trZ5r2JZSUeFPk3P6szBVGeo3EfdNewUAFFVft9v/aR0/zV+1CHzvL77M7d30zVqgAooooAKKKKACiiigAooooAKKKKACiiigAxRjmiigAooooAKKKKACiiigApMClooAKKKKACiiigAooooAKAMdKKKACiiigAooooAKKKKAAADoMYooooAKKKKADFFFFABRRRQAUUUUAFFFFABSEA9eaWigA6UUUUAFIAAMClooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAFpKWkoAK4z4kXMc/hO90KIl9T1W3eGytwpJmfKggemNwOT0AJOMGuzphijLhyil1BAYjkA4zz+A/KgDlvh/4Oj8F+GLfTy4mvCAbif8AvNnO1f8AZGSAPqepNdZSYFV768jsLC5vJdxjt4mlYKMkhRk4HfpQB4pD4xz+07JB5v8AorQnSgSeMhd+Pr5oI/GvdK+Xh8OfEyeIv7XVx/wkSQLrxs8c7vPP7vP97jP1496+mbO6S9soLqPISaNZFDDBwRnp+NAFiiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBaSlpKACiiigApCoPUZpaKAOSGP+FuyDHP9grz/ANt2rrAoAAAxjpXJj/krsn/YBX/0e1dbQAUUUUAFFFFABRRRQAUUUUAFFICSKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAFpKWkoAKKKKACiiigDkh/yV6T/ALAK/wDo9q62uSH/ACV6T/sAr/6PautoAKKKKACiiigAooooAKKKKAOY8EMzaZqQZiSmsX6jJzgC4fA/LFdPXL+B+LPWV7jW779Zif611FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALSUtJQAUUUUAFFFFAHJD/kr0n/AGAV/wDR7V1tckP+SvSf9gFf/R7V1tABRRRQAUUUUAFFFFABRRRQBy/gr/V6+vprd3+rA/1rqK5fwZxJ4kX01uf9VQ/1rqKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAWkpaSgAooooAKKKKAOSH/ACV6T/sAr/6Pautrkh/yV6T/ALAK/wDo9q62gAooooAKKKKACiiigAooooA5bwhxf+K0/u60/wCsEJH866muW8M/J4n8YxdhqMUgH1tYf8K6mgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAFpKWkoAKKKKACiiigDkh/yV6T/sAr/6Pautrkh/yV6T/sAr/wCj2rraACiiigAooooAKKKKACiiigDl9D+Xx14sQ/xGzl/OIr/7JXUVy2nnyviZr8R/5babYzD8HnU/0rqaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAWkpaSgAooooAKKKKAOSH/JXpP+wCv/o9q62uSH/JXpP+wCv/AKPautoAKKKKACiiigAooooAKKKKAOSJ8v4uAE48/Qs/9+7j/wC2V1tcjqw8n4o+G5h/y3sL63Y/QwuB+hrrqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAWkpaSgAooooAKKKKAOSH/JXpP8AsAr/AOj2rra5If8AJXpP+wCv/o9q62gAooooAKKKKACiiigAooooA5XxOoi8T+D7w9F1CW3P/bS3lx+qLXVVy/jj91Y6RddrfWbNmPoGlEZP/j9dRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAC0lLSUAFFFFABRRRQByQ/5K9J/2AV/9HtXW1yQ/5K9J/wBgFf8A0e1dbQAUUUUAFFFFABRRRQAUUUUAcv8AEQEeAtWmAJNtGtzx/wBMnWT/ANlrpwwZQwOQRkEVneILL+0fDWqWIGTc2ksWP95CP61U8HX39peCdDvS2WmsIWb/AHigz+uaAN2iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAWkpaSgAooooAKKKKAOSH/JXpP8AsAr/AOj2rra5If8AJXpP+wCv/o9q62gAooooAKKKKACiiigAooooAK5T4eRi28K/2d3068urP8EmcL/46V/OurrlvDOLbxL4rsMcC+jvF9hLAmf/AB6N6AOpooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAFpKWkoAKKKKACiiigDkh/yV6T/ALAK/wDo9q62uSH/ACV6T/sAr/6PautoAKKKKACiiigAooooAKKKKACuSZzY/FdFPyx6po+PrJBLn89s5/KutrlPFii11jwvqw62+pfZnP8AsTo0f/oZj/KgDq6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBaSlpKACiiigAooooA5If8lek/7AK/8Ao9q62uSH/JXpP+wCv/o9q62gAooooAKKKKACiiigAooooAK5vx3aS3fgnVRAMzww/aofeSEiVQPclRXSU1kV1KsNykEEHoQaAK+n30Wpaba39ucw3MSTIT3VgGH6GrVcn8Pg1t4abR2Ys+j3U1gSepVGyh/79sn511lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAtJS0lABRRRQAUUUUAckP8Akr0n/YBX/wBHtXW1yQ/5K9J/2AV/9HtXW0AFFFFABRRRQAUUUUAFFFFABRRRQByVlINL+JWpWJyItWs472I9vMi/dSD67TCfwNdbXJ+NlWwbRvEIwp0y+Tzmz/ywm/cyfgNyt/wCuryaAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACik3ev403dk4yMjqO9AD6KKKAFpKWkoAKKKKACiiigDkh/yV6T/sAr/6Pautrkh/yV6T/sAr/wCj2rraACiiigAooooAKKKKACiiigAooooAo6rpsOsaReabcDMN3C8L+wZcZrK8Eajcah4Xt1v2J1GzZrK8Gc/vom2sfxwG+jCujrj4HOh/Eee1YFbTXoRPEewuYRtkH1aMI3/AGoA7CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACik/GgsAMngdTnsKAFornb7x34X02byLjXLM3H/PGF/Nk/74Tcf0qv8A8JjcXRI0rwxrd5n7sksC2kZ/GZlbH0U0AdVSEn8a5SSbx3f/AOpttD0iM/xTSyXcg98AIv6mnL4U1W6X/ib+L9VnP/POyWOzj/8AHBv/APH6AOjuLu3s4WmubiKGNfvPK4UD6k1zr/ETwx5xgtNS/tK4HSLTIXuyf+/YYfmRUkHgHwvFKssukxXkq9Jb9muWH0MpbFdDDbw28QigiSKNeiIoUD8BQBzX/CT61d/8gzwfqDL2k1CaK1X8ss//AI7Ub2vjy/YiTUtF0mP0tYHupB/wJyi/+O11tHWgDlR4L+086v4g1zUCR8yfazbxn/gMAT9a19I8O6RoKSrpdhDbeaQZWUEtJjONzHk9T1NaZAPXmigAooooAWkpaSgAooooAKKKKAOSH/JXpP8AsAr/AOj2rra5If8AJXpP+wCv/o9q62gAooooAKKKKACiiigAooooAKKKKACue8ZadcX2hG4sE3alp8i3tmP70kZzs/4Eu5Po1dDRigDP0fVrfXNGtNUsn3W91EJYyewPY+hHQ+4NaFcfo7jw54uu/D7jZY6kz32mnHyh+s8I9MH94B6M3pXYUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVHJKkUbSSOqooyzMQAB71zMnji1u5Wt/Dtlca7cKdpa0wLdD/tTthP++Sx9qAOprC1Lxfo2magmnPdGfUXIAs7VDNLz3KoCVHu2BWamg+Idccv4h1j7Lan/mHaSxjA/wB+f77H/d2Vv6ToelaHbGHS7CC1Q8t5SDL+7Hqx9yTQBo0VTv8AVtO0qPzdRv7Wzi/v3Eyxj82rCPxA0GYldOkvNUcfw6dZyzj/AL6C7fzIoA6miuW/4SDxJeZ/s7wjNEp6SapeRwD/AL5Te35gVGNO8cXzZu/EGm6Yn/PPTrIyv/33KSP/ABygDrM+nNZWq+J9D0NT/amr2Nm2OEmnVWP0UnJ/Csw+BrO4H/E11TWtU7lLi/dIyfeOLah/KtLTfC2gaOwbTtFsLZ/+ekduoc+5bGSfxoAy08eWN2m7SNN1jVQej2tiyxn6SSbUP5mh9U8Z3q4svD1hp4PSTUb7e3/fuEMD/wB911eOc0mBjGPzoA5JNA8U3pJ1Xxc8KN1h0qySEfTfJvY/hipV8AaDKd2ox3eqv1J1G8knU/8AAGbZ+ldTgUUAU7DSdN0uPy9P0+0tI/7tvCsY/IAVcwKKKADAowPSiigAooooAKKKKACiiigAooooAWkpaSgAooooAKKKKAOSH/JXpP8AsAr/AOj2rra5If8AJXpP+wCv/o9q62gAooooAKKKKACiiigAooooAKKKKACiiigDC8U6PLrGkYs3WLU7OQXVhKeizr90H/ZYZVvZjU/h3XE8QaNFerE0E2TFcWz/AHoJVOHRvcH8xg961do9K43WVfwnrr+JISf7Juyq6vGq58sgbUuQPbhX/wBnDfw0AdnRUcciyxq8bq6MAVZTkEHkYPepKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikoAWikJwM1hX/jTw1psnlXWuWCzdPJSYPJn/cXLfpQBvUVwGqfFzRbG4S1tdN1rULuX/UwQWLI8nuqvtYj3AIrCXxF8TNf8YDS7aytfDtpNaeev2pUuJIkzt3kA/eLfwkYxQB6dqesadoto13qd7BaW68GSZwoz6DPU+wya5q58X6pqMW/w9pQjtep1TWCba3Ueqof3j/ko96yrH4UP/aQ1PV/Feq6hqI5FwFjjZPZCQzRj2Qit+L4eeGBMs93pv9ozjnzdSme6Yn/tozYoA5eW48J3twB4j8Tt4nulOfsNohlt1b2t4Q2T/vlj710cfiS/a3SHQvBepPEgwv2ny7KJR6AMd4H/AACupt7W3tIFgtoI4YV4WONQqj6AcVLgUAckkXju/wD9fc6JpEZ5xFFJdyD8WKKPyNP/AOEPnuudV8T63e56pHOtqn4eSqn/AMerqqKAOesPAvhbTJvOttDszP8A895k82T/AL7fLfrXQBQoAAAA6AUtFACEA9RS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALSUtJQAUUUUAFFFFAHJD/kr0n/YBX/0e1dbXJD/kr0n/AGAV/wDR7V1tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTJIo5YnikRXjdSrIwyGBGCCO9PooA4iylfwLqEek3TN/wjlw+2wunOfsbk/wCokJ/g/uMemdpPSu2zx/8AWqC+sLXU7GexvYEntZ0KSROOGU9q5GC/vPA8q2eqyS3Xh0/Lb6m53Paekc56lfSTt0b1IB21FMjlSWNZI3V0YbgynII9QafQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFJk1XvNQs9OhM17dwW0X9+aQIPzJAoAs0Vy7fEHw4zlLK+k1OQcBNNtpLrP4xqR+ZFRv4m8QXeP7J8H3ZB48zUrmK2X/vkF2P5CgDrKQHnn0zXKpZ+OL4f6Xq+kaYP7ljaNcP/wB9yMB/45SnwRFdZ/tbXNc1IHlke8MEbfVYQgP40AbGo+IdG0gZ1LVrGz9ri4RP5msgePdKn40y11TVT62VhIyf9/GAT/x6r2leD/DmiSCXTdEsbeYf8tlhBk/77PzfrWle31rp1s1ze3UNtboMtLM4RR9SeKAOabWvGV85Ww8L21inUS6rfrkD/rnEG/VhUn9j+K7wZ1DxVHaqfvR6XYomB/vymQ/jgVE/i+81UeX4U0abUFPS9ugba0UeoZhuk/4ApHvQfCF3rC58VatNqEZ5Nha5t7UexVTukH++xHtQBzt9beFLq5ezH9s+Mr5OGgF5JPEh/wBs7lgT8efatTSvCWrSw7ZTZeGrJuljoMarKR/tzlev+4F+tdrZWNpp1pHa2NtDbW8YwkUKBFUewFWMA9RQBlaN4a0fw/G6aZYxQtKcyy8tJKfV3bLN+JNNOjk+Kv7ZMw2/Yvsnkbf9vduznp7YrXrnTe3I+IQsPOP2T+yTN5Xbf5uN2PpxQB0WAO1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAtJS0lABRRRQAUUUUAckP+SvSf8AYBX/ANHtXW1yQ/5K9J/2AV/9HtXW0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTJIo5o3jljV0dSrK4yGB6gg9RT6KAOMfQdV8KEzeFQtzpwbdJos74C+pgkP3D/sHK+m2tfRvFemazM9rHI9tfxjMlhdp5VxH9UPUe4yPc1uYHpWXrXh7SvENssOp2cc2w5jk5WSJvVHGGU+4IoA08nFLXJJo/inRUA0nW4tUthwttrAPmAegnTn/AL6VqE8a3Nm2zXvDWraeRy01vF9tgA/3ossP+BKKAOtorn7Xxz4WvW2Q+INO83/nlJOscn/fLYP6Vtw3MNyu+3mjmT+9G4YfpQBLRSds0ySZIYnllkSONBlnY4Cj3P8AWgCSiubHj/wl9lW4/wCEk0wxscLi5Usx6cL1P4Cq7+PLebjSNE1zVfR4LFoo8/78uwH8M0AdZSZrlY9Q8baguYNF0rSl9b28a4f/AL4iAX/x+h/DviG9UjUfF9zGjcmPTLSO3H03N5jD8DQB08kqxoXd1VQMlmIAH41g3XjvwvaTeS2t2k03/PK1Yzyf98xgmq0Hw78NCQTXtpNqsw/5aapcvdZ/ByV/SuktbK0sYfJtLWG3i/uRRhB+QoA5xvGF3dDGkeFdavCfuyTxLaR/iZWVvyU01X8eX5BKaFo0TdmMl5KP/Ra5/OusxSYFAHL/APCJ6jdc6p4t1if/AKZ2hjtE/wDIa7//AB+pLX4f+FLS4+0f2Lb3Fz/z2u91w/8A31IWNdLRQA1I0jQIihUAwFUYA/CnU0k4yMVzupeNtKsbp7G1M2q6kvBstOTzpVP+3j5Yx7uRQB0eTj6e1ZWseI9I0FUOp30UEjj93F96WT/cQZZvwFY4tPFuvoDeXcXh6zf/AJYWRE90R6GUjYn/AAFW+tamieFtH0AvJZWg+1Scy3UzGWeU+rSMSx/OgDKOr+KtdlCaRpaaPZEZN7qq7pSP9i3U5H/AyPpU9r4H043aX2sSz63fIdyy6gwdIz6pEAET6hc+9dRijFACYHoKMD0paKACiiigArP/AOJb/bg4i/tP7P8A8D8nd/LNaFc79iuf+FiC/wDKP2b+yfJ8ztv83OPrigDoqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBaSlpKACiiigAooooA5If8lek/7AK/+j2rra5If8lek/7AK/8Ao9q62gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApMD0paKAK13p9lfpsvLS3uF9Jow4/UViXHw98H3TbpPDOlhv70dsqH81ArpKKAOTPw08Hk5/sZB9J5B/7NQfhn4MZSr+H7V8gjL7mIyMcEnj8K6yigDgfhJoWm6X4GtZrW0jjmmlmaSQjLsRIyjk8j5VWu+rO0bUrHVtJhvtOP+iSMwT5dvRip4+oNaNABRRRQAUUUlAC0VnarrmmaFbifVNQt7SNvumVwpY+ijqx9hWEviHX9ckKaBoxtLX/AKCGrq0YI9Ug4dv+BFB70AdTNcRW8LzTSJFEg3O7sFCj1Jrln8b/ANoSeR4X0ybWpM4a5U+VaRn3mIIb6IGp0Xge1urlLzxFeXGvXKHci3YC28Z/2IR8n4ncfeuqVFRQqqFAGAAMYFAHJP4W1XXAP+En1p3tyedP0wtbwEejPnzH/wC+lH+zXSadpdhpFmlpp1nBaW6fdjhQKo/AVbooAMUYoooAKKKKACiiigAooooAKyP7Yb/hLRovkrt+w/a/M3c537duP1rXrM/slP8AhJf7Z81932P7J5ePlxv37v6UAadFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAtJS0lABRRRQAUUUUAckP+SvSf8AYBX/ANHtXW1yQ/5K9J/2AV/9HtXW0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAc/4L0q70Twpa6ffBRcRNKX2nI+aV2HP0IroKwPB2r3Ou+F7XUrtY1mleUMI1Kr8sjIOvstbrOEQszBQOpJwKAHUlcrc+OrSWZrXw/Z3Gv3anafsOPIjb0knPyL+BJ9qjfQPEOvLnXdZFjank2Ojkpu9nnYbz/wEJQBo6v4v0jR7j7JLcNc6gRlbGzjM1w3/AF5X6tge9Zyv4w19c7YfDdm394Lc3bD/wBFx/8Aj/4VvaRoOlaBafZtKsILSLqwjXBc+rHqx9ySa0MD0oAwNG8HaPo1wb2OKS71Fvv397IZpz/wNvuj2XA9q6DAoxRQAmAOgxS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAVzXny/8LLFt5r+T/ZBk8vcdu7zsbsevbNdLVH7VYf22LTKf2j9n837h3eVux97HTd2zQBeooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAFpKWkoAKKKKACiiigDkh/yV6T/ALAK/wDo9q62uSH/ACV6T/sAr/6PautoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikycZrF1rxXpGgMkd/dgXMv8AqrSJTJPKf9mNcsfy/GgDbqpqOp2Wk2jXWoXcFrAo5kmcIv5k1zhvPF+vJ/oNpF4etG/5eL4Ca6I/2YgdiH/eY/7tWdL8FaVY3KX1152q6kvIvdRfzpFP+wD8qf8AAQKAMXQ9Vuf7Ji07wZo0r2ERfZqOrFoIfmYsWVceZIMk9lHvWjH4JGoS+f4o1KbW3ByLZh5VonsIVOG/4GWpfhqhj8BaepUqQ85wRj/ls+P0rraAI4beG2hSGCJIokGERFChR6ADpUmAeozRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWB/Ztz/wAJ2NU2L9k/sz7Pv3DPmebuxj6c5rfrF/teX/hMxo3lx+T/AGebrfzu3eZtx9Mc0AbVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAtJS0lABRRRQAUUUUAckP8Akr0n/YBX/wBHtXW1yQ/5K9J/2AV/9HtXW0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVBdXlvY2z3F3PFBAgy0srhFUepJ4rl18aT6yxj8KaTLqSDj7fOTb2Y+jkFn/4Ap+tAHXZzwOuM1zN94406G+bTtLhuNa1JTta309Q4jP/AE0kJCJ+Jz7VXHhG91lzL4q1eW+jPI0603W9oPZgDvk/4Ecf7NdPZWFpptqlrY2sNrboMLFAgRF+gHFAHMSaV4q1/nVNTTRbM9bTS23TMP8AanYfL9EUfWtvR/Dmj+H0caZYQwPJzJLy0kn+87ZZvxJrUwPSigBMAdqWiigDM0LWIPEGkQ6napJHDMXCiUAMNrlTkAkdVPetOsLwjo9xoHhm20y5eN5oWkJaMkqdzswxkD+8K3aACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACs7+yYf+Eg/tnfJ5/wBl+ybMjZt3bumOufetGuX3t/wtALk7f7GJ257+dQB1FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAtJS0lABRRRQAUUUUAckP+SvSf9gFf/R7V1tckP+SvSf8AYBX/ANHtXW0AFFFFABRRRQAUUUUAFFFFABRRRQAUUU3JoAdSZPf/APXXP6l4z0mwv202FptR1RetjYR+bKv+90VB7uVFUTaeLtff/SrmHw9YHrBaMs924/2pCNif8BDf71AG1rHiLSvD9uJtUvorfdwiE5eQ+iIMsx9gCaxl1nxNr6D+xtKXSbRul5qoJlI9Ut15+m9l+laekeFNH0SVrm1sw96/+svLhjLO/wBZGJbHtnFbWBQBy1l4HsBcLe61cT67qCncJtQIZIz/ALEQGxPwXPvXU4A6Cl6UUAGKKKKACiiigAooooA53wPqd3rPhGzvr6QS3EjShmChchZXUcAAdAK6Ks/RbTTbDSobbSQgsUL+XskLjJYlvmJP8RbvWhQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVn/2ja/26NL2t9r+zfaM7ePL3bcZ9c1oVh/2Vcf8JuNWzH9n/s77NjPzb/M3dPTFAG5RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALSUtJQAUUUUAFFFFAHJD/kr0n/YBX/0e1dbXJD/AJK9J/2AV/8AR7V1tABRRRQAUUUUAFFFFABRSVn6vrmmaDafatUv4LSHOFMrYLH0UdWPsM0AaNRTXEVvC000qRRINzO7AKB6k9AK5Y+IfEGuR48O6MbaBumoaurRKR6pCPnb23bB706HwTbXTxz+JL24165U5C3Xy26n/ZgHyf8AfQY+9AAfG8epO0PhjT59bdTtNxGRFaKfeZuG/wCABj7VGvhnWdZzJ4n1pjEx/wCQdpTNBCB6NJ/rJPzUf7NdckaRIqRoqIowqqMAD2p1AFLS9H03RbQWml2NvZwDny4IwgJ9TjqfertFFACYFLRRQAUUUUAFFFFABRRRQAUUUUAcr8O7aaz8D2MFzBJBIrz7o5UKEZmcjIPsRXVVk+HdZi8QaLBqkMLwrMXAR+o2uUPP/Aa1qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsM6pc/wDCcDSQV+y/2abnGOd/mbevpityqH9n2f8Abv8AaPP237N5GN//ACz3bvu/XvQBfooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAFpKWkoAKKKKACiiigDkh/yV6T/sAr/wCj2rra5If8lek/7AK/+j2rraACiiigAoppYAEk4A71y83jqyuLiS08P20+vXcZ2uLEAwxn0eY4RfwJPtQB1Ocf/WrD1fxfo+jXS2U9w02oOMpY2qGad/8AgC8ge5wPeswaJ4k11y+vauNPszyNP0lipx/00nIDn/gAT61vaRoGk6DC0Wl2ENqrnLsi/NIfVmPLH3JJoAwnbxhr74jWLw5p54LOFuLxx/ujMcf5ufar+meD9H025+3GB73UMYN9fSGeb8Gb7o9lwPaugwM5xRgZz3oATaOeOtGBS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGL4W0R/D3h220uSVZmhaRi6rgHdIzjj/gX6VtVzXgO/utU8G2V5eztPcO8oaQ4ycSsB046ACuloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5jy3/4WcJNreX/AGMV3YOM+d6/SunrN/taD/hIRo/lyfaPsv2rfgbdm7bjrnOe2KANKiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAWkpar3N3BZ27T3U8cEK4LSSsFVfqSRigCeisf/hLPDf8A0MGlf+Bsf+NH/CWeG/8AoYNK/wDA2P8AxoA2KKx/+Es8N/8AQwaV/wCBsf8AjR/wlnh3r/wkGlY7f6ZH/wDFUAZQ/wCSvSf9gFf/AEe1dbXll/8AEDwtpnxPuLy41m2eFNGWHdATNmTzidg2g5OCDgVc/wCE6utek22OqaLoFgelzfXcU1y4/wBmEPtT/gRJ/wBmgDutR1Ww0i0a61K8gtIFHMk8gRfpk45rnX8V6rrACeFtFkmjb/mI6kGt7YD1VSPMk/AAf7VUrC28EWt6mpXniCy1XU4z8t5qGoRyvGf9gZ2R/wDAVFdH/wAJX4b/AOhg0n/wNj/xoAzB4LbU28zxRqlzq5P/AC6D9zaL9Il+9/wMtXT29rb2dulvbQRQwRjCRxoFVR6ADgVl/wDCWeG/+hg0n/wNj/xpf+Es8N/9DBpX/gbH/jQBsYHpRWP/AMJZ4b/6GDSv/A2P/Gj/AISzw3/0MGlf+Bsf+NAGxRWP/wAJZ4b/AOhg0r/wNj/xo/4Szw3/ANDBpX/gbH/jQBsUVj/8JZ4b/wChg0r/AMDY/wDGj/hLPDf/AEMGlf8AgbH/AI0AbFFY/wDwlnhv/oYNK/8AA2P/ABo/4Szw3/0MGlf+Bsf+NAGxRWP/AMJZ4b/6GDSv/A2P/Gj/AISzw3/0MGlf+Bsf+NAGxRWP/wAJZ4b/AOhg0r/wNj/xo/4Szw3/ANDBpX/gbH/jQBsUVj/8JZ4b/wChg0r/AMDY/wDGj/hLPDf/AEMGlf8AgbH/AI0AbFFY/wDwlnhv/oYNK/8AA2P/ABo/4Szw3/0MGlf+Bsf+NAGxRWP/AMJZ4b/6GDSv/A2P/Gj/AISzw3/0MGlf+Bsf+NAGxRWP/wAJZ4b/AOhg0r/wNj/xo/4Szw3/ANDBpX/gbH/jQBPoq6YNKhGjmI2GX8vyTlcliW/XNaNcD4B17RtN8F2Vre61psE6PNuje8jBGZnb+96EV03/AAlnhv8A6GDSv/A2P/GgDYorH/4Szw3/ANDBpX/gbH/jR/wlnhv/AKGDSv8AwNj/AMaANiisf/hLPDf/AEMGlf8AgbH/AI0f8JZ4b/6GDSv/AANj/wAaANiisf8A4Szw3/0MGlf+Bsf+NH/CWeG/+hg0r/wNj/xoA2KKx/8AhLPDf/QwaV/4Gx/40f8ACWeG/wDoYNK/8DY/8aANiisf/hLPDf8A0MGlf+Bsf+NH/CWeG/8AoYNK/wDA2P8AxoA2KKx/+Es8N/8AQwaV/wCBsf8AjR/wlnhv/oYNK/8AA2P/ABoA2KKx/wDhLPDf/QwaV/4Gx/40f8JZ4b/6GDSv/A2P/GgDYorH/wCEs8N/9DBpX/gbH/jR/wAJZ4b/AOhg0r/wNj/xoA2KKx/+Es8N/wDQwaV/4Gx/40f8JZ4b/wChg0r/AMDY/wDGgDYrG/smb/hMf7Y8xPJ+wfZdn8W7fuz9MUv/AAlnhv8A6GDSv/A2P/GsT/hNdM/4TYWf9v6d/Zv9nebj7RFt83zMfeznO3tnFAHZ0Vj/APCWeG/+hg0r/wADY/8AGj/hLPDf/QwaV/4Gx/40AbFFY/8Awlnhv/oYNK/8DY/8aP8AhLPDf/QwaV/4Gx/40AbFFY//AAlnhv8A6GDSv/A2P/Gj/hLPDf8A0MGlf+Bsf+NAGxRWP/wlnhv/AKGDSv8AwNj/AMaP+Es8N/8AQwaV/wCBsf8AjQBsUVj/APCWeG/+hg0r/wADY/8AGuD8S/FxvCepK00OnaxpErfJcadeL50X+y8ZJz/vZAPt0oA9Uorz7R/jV4H1cKDqjWMrfwXsRjx9WGU/Wu4sr+z1G3W4sby3uoT0kgkEin8RxQBZooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAFqG4toLqB4LiGOaFxho5FDK31B4NTVWur22sLZ7m8uIre3QZeWZwir9SeB+dAFP/hGtC/6Aunf+Aqf4U3/AIRzQs/8gXTsf9esf+FY7+MrjVP3fhXSZtTz/wAvs+be0UevmMMv/wAAVh70n/CJX2tIT4q1eW8jbrp9lm3tfocHzHH+82P9mgCpeal4PjuXstM0O11m/Q7WttOso5Nh/wBt+Ej99xB9qrR+Cr7Xvm1Wz0nRLRulppltG85H+3Oy4H/AF/4FWhrHivQvBQsdB0+yWbULgiO00mwVVY57t/Ci+59zzg4o6r8Q7zwrq+mW3izS7Wys9S3CO6tbwzCFhjIkBRePmHzDNAGbY/D3wnY/Ew6emh2slquiiXy7hTMGkMzAsd+ctgDk1uXfwn8HTyme30sWNx2ls5Gj/wDHc7D+INWl5+Lsh/6gKc/9t2rrelAHnknhfUNAxJBpeleI7Ifeims4YLxV9VdQI3+hVfrWxog8Ja9FIbTSdPWeE7Li1mskjmgb0dCMj9QeoJFdXXO694aTU549T0+YWGu26EQXqLklevlyD+OMnqD06jBoAvf8I1oX/QF07/wFT/Cj/hGtC/6Aunf+Aqf4VV8N+IG1iCa3vIRa6vZsI76zzny27MvqjDlW9Pocb1AGX/wjWhf9AXTv/AVP8KP+Ea0L/oC6d/4Cp/hWpRQBl/8ACNaF/wBAXTv/AAFT/Cj/AIRrQv8AoC6d/wCAqf4VqUUAZf8AwjWhf9AXTv8AwFT/AAo/4RrQv+gLp3/gKn+FalFAGX/wjWhf9AXTv/AVP8KP+Ea0L/oC6d/4Cp/hWpRQBl/8I1oX/QF07/wFT/Cj/hGtC/6Aunf+Aqf4VqUUAZf/AAjWhf8AQF07/wABU/wo/wCEa0L/AKAunf8AgKn+FalFAGX/AMI1oX/QF07/AMBU/wAKP+Ea0L/oC6d/4Cp/hWpRQBl/8I1oX/QF07/wFT/Cj/hGtC/6Aunf+Aqf4VqUUAZf/CNaF/0BdO/8BU/wo/4RrQv+gLp3/gKn+FalFAGX/wAI1oX/AEBdO/8AAVP8KP8AhGtC/wCgLp3/AICp/hWpRQBl/wDCNaDnP9iadn/r1T/Cj/hGtC/6Aunf+Aqf4VqUUAZf/CNaF/0BdO/8BU/wo/4RrQv+gLp3/gKn+FalFAGX/wAI1oX/AEBdO/8AAVP8KP8AhGtC/wCgLp3/AICp/hWpRQBl/wDCNaF/0BdO/wDAVP8ACj/hGtC/6Aunf+Aqf4VqUUAZf/CNaF/0BdO/8BU/wo/4RrQv+gLp3/gKn+FalFAGX/wjWhf9AXTv/AVP8KP+Ea0L/oC6d/4Cp/hWpRQBl/8ACNaF/wBAXTv/AAFT/Cj/AIRrQv8AoC6d/wCAqf4VqUUAZf8AwjWhf9AXTv8AwFT/AAo/4RrQv+gLp3/gKn+FalFAGX/wjWhf9AXTv/AVP8KP+Ea0L/oC6d/4Cp/hWpRQBl/8I1oX/QF07/wFT/Cj/hGtC/6Aunf+Aqf4VqUUAZf/AAjWhf8AQF07/wABU/wo/wCEZ0HGP7E03H/Xon+FalFAGX/wjWhf9AXTv/AVP8KP+Ea0L/oC6d/4Cp/hWpRQBl/8I1oX/QF07/wFT/Cj/hGtC/6Aunf+Aqf4VqUUAZf/AAjWhf8AQF07/wABU/wo/wCEa0L/AKAunf8AgKn+FalFAGX/AMI1oX/QF07/AMBU/wAKP+Ea0L/oC6d/4Cp/hWpRQBl/8I1oX/QF07/wFT/CuC8UfC5fFN2Wv7uz0nSLdyY7XTbRRJJxjc8hA5x/CFIHTJ616jVW9vrLTLc3N9dW9rBkAyTyBFyenJIoA8s8PeCfhLZ6Zdapbtaajb2Dbbm6vZzIqH0K8Lzn056V6Xoc+lXWj28+ifZv7OcEw/Z1CoRkjgAY6gj8K8L0H+xLX44arbX6o+hasj3toLoAQStgsHw3ysnM4U9DkEdjXvWmR2UWm26abDDDZlA0McMYRAp5GFAGOvSgC5RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALXPXPhHR7/WTqepQPfShg0Md1K0kMJAwdkZO0HgnOM89a6Gm4oAAABgAAe1LiiigD58+Dzy+MPivr/iq+y7woxiDc+UZCVUD0wgZak+NHneMPiF4f8G6aN9xEpeZgM7DIQTu9NqJuPsa9A0r4d3PhjxBq2qeGtYgs4tTIaa1urIzqjAkgoRIhH3jwc9a0vC3gSw8N397qz3E2oa3fEm5v7gAMcnOFUcKuQOB6D0FADYYxH8WWQZwugIMn/ru1dfXJD/krsn/AGAl/wDR7V1tABRiiigDkPF1pJpc8Hi6wgZ7rT123kcY+a5tCQXXHcp99foR3rqLW5ivLaG5t5BLBMgkjkXoynkEexBFTFQeozXJ+DXGl3Wq+FnJH9mTCS0B/itZctHj/dO9P+ACgDraKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqOq6Pp2uWX2PU7SK7tt6uYpRlSVORkd6vUUAY+peFNA1i8tLzUNJtbm4tMCB5EyUAOQPcA9jWuQD1paKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAWkpaSgAooooAKMDGMUUUAckP+SvSf8AYBX/ANHtXW1yQ/5K9J/2AV/9HtXW0AFFFFABXJ66o0zxr4e1gDC3Jk0q4PqHHmRn8HTH/A66yuX+IME0vgfUp7cZubJFvof9+FxKMf8AfGPxoA6iioLO6jvbGC7hOYp41lQ+zDI/Q1PQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALSUtJQAUUUUAFFFFAHJD/kr0n/AGAV/wDR7V1tckP+SvSf9gFf/R7V1tABRRRQAUyWKOeJ4pVDRupVlPQg8EU+igDmPh87t4G0yCQkvZq1k2euYXaI/wDoFdPXLeDv3Nz4lsCcG31iVgv+zKqTZ/OQ/lXU0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAC0lLSUAFFFFABRRRQByQ/5K9J/wBgFf8A0e1dbXJD/kr0n/YBX/0e1dbQAUUUUAFFFFAHI6KTB8SvFNuePPtrK7QevyvGT/44K66uTK+T8W1YdLnQ2Gf+uc4/+O11lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAtJS0lABRRRQAUUUUAckP+SvSf9gFf/R7V1tckP8Akr0n/YBX/wBHtXW0AFFFFABRRRQBy+r/ALv4ieGpenmWt9AT658lwP8Axw11Fcv4j+Txd4QlPQ3k8Wf962lP/sldRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALSUtJQAUUUUAFFFFAHJD/kr0n/YBX/0e1dbXJD/kr0n/AGAV/wDR7V1tABRRRQAUUUUAcv4v+S/8Ky/3NaQZ/wB6GZf5kV1Fcv42+WHQpP7mt2n6vt/9mrqKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBaSlpKACiiigAooooA5If8lek/7AK/+j2rra5If8lek/7AK/8Ao9q62gAooooAKKKKAOW8eHZodjMekWr6e5/8CYwf511Ncp8Rvk8FXD/887qzf8rmI/0rq6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBaSlpKACiiigAooooA5If8lek/7AK/8Ao9q62uSH/JXpP+wCv/o9q62gAooooAKKKKAOS+Jny/DzV3/uLG/5SKf6V1tcl8TlL/DPxD6izZh+HNdWjb0VuzAH9KAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALSUtJQAUUUUAFFFFAHJD/kr0n/YBX/0e1dbXJD/AJK9J/2AV/8AR7V1tABRRRQAUUUUAcz8Q03/AA48SD006c/khNbunvv061f+9Erf+Oisnxwm/wAAeJF7nS7kf+Qmq/obeZ4f01+u61jP/jgoA0KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAFpKWkoAKKKKACiiigDkh/yV6T/sAr/wCj2rra5If8lek/7AK/+j2rraACiiigAooooAyPFUfm+Edaj67rCdfzjNHhZ/M8I6K/96wgb/yGtWdZj8zQ9QQfx20g/wDHTVDwS3meAvDr/wB7TLY/+QloA3aKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAFpKWkoAKKKKACiiigDCGj3A8dPrm9Psx01bPZk794kL5xjGMHHWt2jv8AjRQAUUUUAFFFFAEVynmWsqf3kI/SsDwAxb4eeHAe2mwL6dEA/pXRt9w/Q1zvgP8A5ELw/wD9eUf/AKDQB0dFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9k='] Multimodal Competition False Theorem proof Elementary Functions Math Chinese 52 "如图, 在锐角 $\triangle A B C$ 中, $D, E$ 是边 $B C$ 上的点, $\triangle A B C, \triangle A B D, \triangle A D C$ 的外心分别为 $O, P, Q$, 证明: $\triangle A P Q \sim \triangle A B C$;" ['连结 $P D, Q D$, 如下图.\n\n\n\n因为 $P, Q$ 分别为 $\\triangle A B D, \\triangle A D C$ 的外心, 所以 $P Q$ 为线段 $A D$ 的垂直平分线, 所以\n\n$$\n\\begin{aligned}\n& \\angle A P Q=\\frac{1}{2} \\angle A P D=\\angle A B D=\\angle A B C \\\\\n& \\angle A Q P=\\frac{1}{2} \\angle A Q D=\\angle A C D=\\angle A C B\n\\end{aligned}\n$$\n\n所以 $\\triangle A P Q \\sim \\triangle A B C$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAlUCUQMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6bTqbQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUZo9K4n4k+PrbwLoZlGybU7gFbS3J+8e7N/srx9Tge9AHbA0VkeFb+fVvCej6jdlTcXVlDNLtGBuZATj8TWvQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADqbTqbQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRVLVdTtdG0u61K+mENrbRmSRyM4A9u57Ad6AKfibxJZ+FtGl1G8LMF+WKFOXmkPREHcn/E9q+VviudXbxes2uSj+0bi1SWW3U5W1DE7Yl+i4J9yTXtqaR4w8WeILbxaP7Ns7aEH+y7DUopJDEpxiZgjLiQjPBzgEdxXifxdfUW+Id2mrS2ct9FFCsjWcbJH9wEABiT0I70AfVXhRGj8IaKjqVdbCAMp7Hy1yK16qaVG0Oj2UbjDJbxqfqFFW6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAdTadTaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4nxz4X13xLf6V9g1C1j02znS4uLO4RttyysGUMR1HB46flXbUUAV2+0CzyFj+0hD8pJ2bseuOBn2rxHxZ8FPEfi3xPe65c6vpkUlyykRqJCFCqFC5x6AV7qQD1pRxQBR0hNRj02GLVDbtdogV2t8hGI7gHpV6iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAHU2nU2gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikJ+v4UAISRkjHH+ea4nwp8UdA8Ya/d6PpxuVngUujyIAsyA4JXBz3HUCuc+JfxTbTdOu7Lwyyz3UR8q5vl5jtmOcIp6NIeeOwB9DjkfhxpLeBZPDXiy8G6x1uOS0uZJBxauz5ifPowAyf/AK1AH0QORS0g6CloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigB1Np1NoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikY4GcgCgBCTnj16eteea/4hvPFury+EfDEjrEp26rqsf3bZO8cZ6GRhx7fgSI9W1e7+IGrS+HPDt9Jb6TbNjVdUh4Lf8ATCFu7cckf/WNrxTHbeFvCNr4Y8NxJZ32quLGzSMcqW4klJ6kquSW9cUAeX+KLK1vraey0KBV0fTJ00fTFHIvNQmIEspP8RVd2D64Oa9s1DwlY6h4Gbwuy4tfsa20bd12gBGH0IB/CuPg0O0T4j+G/C1ko/s7w3YNezcffmc7ELf7XV/xr1IDKjIoA474b69c6t4dNjqZK6vpMpsb1T1LLwr/APAhg5+tdkOlcFrZg8KfETS9d4js9aA029PRRMOYZD7/AHkyfUV3o6DFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAOptOptABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRUU0yW8UkssiRxRqWd3OFVRyST2FADncRqzMyqqjJLdAPX6V5zd6hqnxIvLvS9Glew8MwuYrnU4+ZLxhw0cPovUF/yqK7utS+KF4bHTGnsfCCN/pN+AUe/x1SLPITqC3evRNP0+00vTrewsoVhtbeMRxxp0UCgCrpunaZ4Z0VLWxiitNPtYyRg8AAZJJ7nvmuM8HRt4s8QXHju+Ux2qq9ro8JGBHADhpT6M/P4D6VY+ILXGu3Vj4L0+UpJqP73UJEPzQ2SkbyfTc2FHrzWj41mTw98NdRh06IRFLQWdpGnUO+I0A/FhQBl/DBW1aTX/ABfKCG1m+YW+e1vFlE/k35V6EOBisrw1o8egeGdN0lORaWyREj+Igcn8Tk/jWrQBi+K/Dtv4q8N3mj3JKrOvySDrE45Vh9CKy/h/4hutc0FrfUsJq+mSmzv0HXevR/8AgQwfzrrTXnms28vhT4mWPiGEbdM1wLp+oc4WOb/ljIfqcLn656igD0Ttz1ooHIooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAHU2nU2gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiq19fW2m2c15eTxwW0Kl5JZDhVA65NAD7i5itIZJ7iVIoIlLvI52hVAySSewHOa80aW/8Aive7ITLZ+C7eT55OVk1Nwfuj0jyOfX89stol38Ur37XfRTW/g6Fv3FsxKNqTA/6xx18oYyB3r0iG3ht4EghiSOKNQixouFUDsB6e1ACW8ENvbxwQRpHDGoWNEGFVR0AHYVW1XU7XRdLutSvJAltaxNLIe+AOg9z29Sau96848Q7vHHjuLwspJ0TSglzq392aT70cHuBwxH+FAFv4b6beXEd74u1VNt/rjLLHG3PkWwz5Sj/gJB9880eM5jqHjbwh4dTJVrptSuMc4SFTsyPQuR+Vd0MKgGAB6AcVwHhEf278RvFXiNzmK0kXSbQ+gjw0uPqxFAHoI6DNLRRQAVi+K9DTxF4Y1HSSwja5hKxyf3HHKt+DAH8K2qQgEYoA5T4e+I5vEXhWNr3KarZObO/jI5WZOCSPcYP411leca1/xRXxIstcT5NI15hZ6gOipc/8spD6bsbT24JNejj3oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAHU2nU2gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKo6tq1lomnTahqNwkFrEMs7HH4D1J7AdaAF1LU7PR9Pnv9QuY7e0hXe8jnAUf1z0A6ntXAQadd/FG5t9V1ZJrPwtE2+002T5XvGB4llx0T0Xv170mnaNqHxC1KLXfE9s9toUDb9P0iTjzPSWcfyU+vPHX0tQNowO3HbFACRxpHEscaBUUAKoGAAO1PopD7UAYXi7xLB4U8P3GpzK0jrhIYF+9NK3CIPqf0Bqv4H0CbRNBD6gVfVr6Rru/kXvK5yR9FGFH0965u3x49+I/2zAk8P+HXKwEfduL0jlh67Bx7HmvSR0oAyPFOtJ4c8L6nrD4/0S3aRQf4m/hH4sQKzPhzokmheBdMtp+bqVDc3DHqZJDvOfpkD8KzPiZC+sP4d8Mrymp6kjXC9jBEPMkz/wCO13oGBgdKAFooooAKKKKAMXxV4ft/FHhy+0e5O1LiIqj/APPN+qv+BAqj4E1mfVfDUcV83/E00+RrG+U9pY+C3/AhhvxrpyK86v8A/ijfihDqZbbpHiNVt7kt92K7UYjYntuA2/Xr2oA9GHTmiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigB1Np1NoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKxPE/ifTfCmkvqGpSlVB2xRJzJM/ZUHcn9Op6UATeIPEGneGdKl1LU7gQ26cAfxO3ZVHcnsP8AI4zRdB1Lxpq0PijxZCYLSFvM0vR26RA9JZR3cjt2qx4e8Pap4j1FPEvjGFBKvzafpR5SyH95h3k46np7V34A6985oAAoxyPwpaKKACuS+IOvy6PoS2diQ2rarILKxQ/334L/AEUHNdTLKkMbyyOEjRSzM3AAHJJ9q888Go/jLxNdeOLxSbOItaaLE4+7EDh5gPViD+GaAOy8O6DaeHNAs9ItF/c20YXJ6u3Usfckk1qf40o6VXvbqKxsri7nbbDBG0kjf3VAJJ/SgDjtPuP7Z+MOpsMNDoenR2w9BNMd7Y99qKK7muD+FNpK/hSTXbpQt7rl1JqEvsGJCD6BQMfWu8HQUAFFFFABRRRQAVieLfD0HijwzfaPNhftEZ8uQj/VyDlW/AgH8DW3RQByXw88QXGu+F0TUAV1XT5Gsr5D1EseAT/wIYP4mutrz/U7hPCHxMs7zb5emeI1FrcN/Cl2n+rY+hZSV9OAe1egCgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigB1Np1NoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo/CkNYPinxXZeFrDzpyZruX5LSzi+aW5kPRVUc9e9AB4q8W6d4T05bm8LyzSMI7e0hG6W4c9FVe/bntWJoHhe91bXE8WeK41OoAf6DYBt0dgnY+hkPUnt26Cm+FfCF6+qHxR4sZLrXpVxFCMNFYRn+CMf3vU/XnnJ7sDj1oAAOBS0AYooAKPwoqnqup2uj6Zc6jeyiK1tozJK57Af19PXpQBx/xAluNbnsvBWnTeVPqgaS9mXrBaJjefqxO0fjXZ2Fjb6bYW9laxLFBbxiONF6KoGBXF/DuxvL1tQ8Y6qjR32tMrQxP/wAsLVc+Wg9M/eP4E813g4AHpxQAtcL8Vb2YeFU0S0OLzXLqLToTn7oc/Mx9toYH6iu5rz67/wCJ/wDGqytx81r4esWuJCOn2ib5QD77OaAO6sLOHT9PtrK3XbDbxLEg9FUAD9BVikHAH0paACiiigAooooAKKKKAMDxl4bj8V+GbzSnYRyuoeCXvFKvKt+fH0Jqr4D8SyeI/Dge8Xy9Usna11CI9VmTgn6Hr+NdQRzXnl/E3hH4p2upxLjSvEe20u/SO6Ufu3/4EPl9zn2oA9EopAcgUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAOptOptABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUZpD9a5Pxh4zGgPBpem2x1DxDejFnZL05yN7/AN1Bg+mcHpgkAFjxh4sTwzZxJBbte6tdN5djYxn55n/ooHJPtWd4R8GTWV8/iLxFOt/4iuVw0g5S1T/nnH6AevUnPrU/hbwe+nXza9rd1/aHiKdNkk5+5Ap/5ZxL2X36nr3rrgOMUAAHfvS0UUAFFFFAAa868UI/jPxxZ+E0DHStOCX+qlTje2f3UP4kbj7c9RXUeLvElv4T8N3erzjcYl2wxd5ZT91B9Tj8M+lUvAehXekaD9o1VhJrGoym8v3/AOmjD7n0UYXHQYPrQB1CoqqFAAA4AHSnUDpRQAh+tcT8OIku4Na8Rj5v7Y1KV4m7mGM+VH+ik/jV34ja3JoPgTVLuAn7TJF9ntwOpkkOxce/zZ/CtTwvpA0Dwtpekg5NpbpGx9WA+Y/icmgDWHAooooAKKKKACiiigAooooAKwvF+g/8JJ4X1HS1cRzTRfuZP7kqnchz7MBW7SGgDmfAXiRvE3hW1up18u/hJtr6IjBjnThgR2z1x7104rzi+H/CDfEq3vk+TRvErCC6H8MV4B8j/wDA+QffJr0cdKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAdTadTaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikJNcb4v8AGkul3EOhaHbjUPEl2P3Fsv3YV/56y/3VHXHU0ATeKPGa6VeJomkWx1PxFcpmCzj6Rj+/K3RFHXnr+OaXwd4Tl0RZ9U1adL3xDffPeXgHAHaNO4QcemcZqXwf4Pt/DNpNNLIbvVrwiS+vn+9K/U49FGcAdhiunx3oAMY4o6UUUAFFFFABSEnPFLXJ+P8AxBJomgeRZ4bVtSkWxsI88mV+A30XOfwA70AYUQ/4WB8Qlu1y3h7w7KRGf4bm99R6hO3v9a9IA4HArJ8MaBa+GfDtlpNoCY4IwGdusjnlnPuTk1r0AFFFIaAPP/GP/E++IXhbw0nzRW0h1e8A7LHkRg+xc4r0GvPfAudb8ZeLPFDEmJrldNtD/wBM4QNxHsWOfwr0KgAooooAKKKKACiiigAooooAKKKKAMHxh4ci8VeGb3SnYJJIgaCTvFKvKMD2wR27ZqLwT4gPiHwzb3Eg23kBNrexnqk6fK4P48/Q10RANecuR4L+Kiyfc0jxR8h7LFeoOP8AvsfmfpQB6OOlFIOlLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAOptOptABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNJOcDFKTzXB+JPE+qalrp8KeEgjagoDX2oSDfFYIenHeQ9h2/PABJ4t8UXkuoJ4W8LyJJr90mXkP3LGLvK57HB+Udc/gK1/CvhGw8L2LJFuub2b5rq+m5luHPUsT0HoOgp/hfwjpvhe0ljtFeW5uH8y6u5zumuH/vM34nAHArfoAMUUUUAFFFFABRRRQAySRYlaR2VY1GWZuAAOuT6YrzvwereM/Ft742uVLWFuWs9FjYcbAcPN9WPAPpmrvxAuLvVZ9O8H6bKY59WLNeSJ96GzX/AFh+rZ2j6muw07TrXStOt9Ps4RFbW0YijQdlAwP/ANdAFoe1FFFABWR4o1RdE8LarqbMB9mtZJVz3YKcD6k4H41r1wPxLle/m8PeF4uTq+oIZ1/6YREO/wDIUAbvgTRP+Ee8E6VprDE0cAebPXzG+Zs/iTXQ0i9KWgAooooAKKKKACiiigAooooAKKKKACuf8ZeHI/FPhi80tvkmdQ9vKODFKvKMD25/QmugowDQBy3gDxHJ4j8LwzXa7NRtna0voiOUnThvz4P411PavP7iVPCHxOiIHl6b4nXa5JwqXqDg57b1OPdhXfg5UH1oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigB1Np1NoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkJI55P4UhJB6/nXneveJdS8VatN4V8ITBAh2anq4G5LVT1RP70h6cdP1ABNrninUfEN/c+HPBbA3MTeXfasw/cWY6EKf45PQDp/LpfDHhiw8LaKmn2W9yWMk08pzJPIerse5P6VZ0HQ7Dw7pEGnadCIoIh1PLO3dmPdieprS6UAFFFFABRRRQAUUUUAFU9U1O10bTLnUb6URWttGZJHPZR/n+VWya858WrJ4y8aWPg+PP9m2YW/1dgeGA5ihP+8Rk+2D2oAt/D6xvNQuNQ8Z6tG0d3rG0WsDdbe1X7i/U53H8DXeDp0x7U1EVFCqoAAwABgCnUAFFFFACHP+FefaX/xUXxh1bUfvWug2i6fEexmk+eQj3A+Wu21S/h0vS7zULg4htYXmc5/hUEmuS+FNhNbeBotQux/purzSajOSOrSHK/8Aju2gDuaKKKACiiigAooooAKKKKACiiigAooooAKKKKAOb8ceGh4p8MXNhGwjvExPZzZwY5k5U56jnjjsTR4I8S/8JP4bhupFMV9Cxt72E9Yp14YH+Y+tdJgE151NG/g/4qxzxArpPicCKUfwxXiKdrH/AH14+uT2oA9FHNFA6D+tFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADqbTqbQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1m2gnsKR5BGGZiAqjJJOAB6k9q85vNRvfiXdXOlaHePZ+HIG8q91OL790/eKE9Avq3Pt7gCatrF34/wBWl8N+HriaDR4G26pq8LYJ/wCmMR7k4wWHA5/Hu9I0bT9D02Gw020jtraIYVIxj8T6n1J5pNG0jT9E0q3sNNtkt7WFcRon8898+p61oDgY7UAFFFFABRRRQAUUUUAFFFISegoAxfFfiG28LeHLzV7kbhAn7uMHBkkPCoPqcD261neANEvNK8P/AGrVsNrGpSm8vmI5Dt0T/gI2jHbFYJx8QvHzE/N4d8OTjbjlbq8H6EJ6ep969JA45wTQADpiloooAKKKKAOC+Kzy3egWHh63YrLrl/DZFl6rHnfI30AUZ+tdzBDHbwRwxIEjjUKiDooA4FcZPImtfF22tsAx6DYPO3/Xef5VB+iKx/Gu3oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuf8aaE/iLwte2Nu2y82iW1kHBSZDuRge3IA+ma6CkwM896AOd8D+JP+Eq8K2eosvl3ODDdRYx5cycOuO3POPQiuiHIBrzkk+B/iaCONG8USfQQ3qj9PMH6/SvRh0oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAHU2nU2gAooooAKKKKACmswUEnoBk06jvQBzN18QfCljcPb3uvWdtOhw0crbWGemQeRUcXxI8GTuETxNpu4+swAH1J4r58+JUp8Y/GltMtiMfaIdOVh2IIDn8GZvyrt/2hdO0uy8PaG0NvAl4J/KjfA3NCqHIJ6kA7fzoA9zjdZIlkVlZGAIZTkEHuPan15l8CL2+vPhrGb1ndIbmSK3Z+piGCPyJYfh7V6Z0z7UALUc00cEbySuscaAszsQAAOpJ9K5bWviV4T8P6uNM1HWIo7sEB41Rn8snoGKg7fxrmna++LF5tjMtl4Khf5nGVk1Ngei91jz1PGf8A0EAlvZtS+KF0bGweay8HoxW5vVBWTUCOqR+kfHLd69C07TrPS9OgsbGBIbWBNkcaDAA/z3qa2t4bW2igt40jhjQJGiDCqo6AD0qWgAooooAKKKKACiiigAooooAK5bx54hfQtBaK0HmarqDfZNPhHVpX4B+i/eJ6cV0zuEUsSAoBJJ6CvOvCoPjbxnd+M5gW02y32OjqehHSWb/gR4B9PpQB13hXw7beFvDdnpFsSwhT95KeDLIeWc/UkmtrpRRQAUUUUAFNZwgLO2FUZJPQD1p1cd8UNVk0vwFqItsm7vQtjbqv3mklO3A98EkfSgCh8L1OpRa54plBJ1m/ZoSept4/3cf8mr0AdKzdA0mLQ/D2n6XEPktLdIgR3IAyfxPP41pUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBzvjfw4PFPha701CEuiBLay945l5RvbnjPoTT/B+vr4j8MWl/jbcBfKuoj1inXiRT7hv0IrfxzXnEH/FF/FOW2PyaT4nzLF/djvU+8P8AgY59zx2oA9HooAwMUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA6m06m0AFFFFABRRRQAVna9qkWiaDf6pNjZaW7zEE9doyB+J4rRryP48+I1tvCJ0C1JkvL6VPNjQElIl+bPHTJVR9M0AeQfCzTtZ8Q/EJb6we1N9bLJePLeozRljxkhSCSS3YjpXrOo/B/WvF2uRX/jDxOtzFH8sdvZ2/lhV64GeFH4En1rH/Z4j06xg1VrmeOLVLqVI44JDtYxqCcrnk5JPT+7XvIAx+VAFTS9Ms9I023sLCBILWBdscaDAA/qfU96tEH/ACadQRmgD5A+IngfxHo/inVby5sbq4s5Z5J0vUQvGUY5G5h93ggc4r2XwuvxC8F+F9Ps30Ww17To4QV+yXW2dFb5tp3cPjdgY7AV6dqen2+q6Zd6ddLut7qF4XBHZgQf51yHw01G5j0+98LaixOoeH5hasxPMkGMxP8AiuB+FAC2PxX8Ny3P2TVJLnRL3qbfVIGgP/fR+XHvkV2ltdQXdus9vPFNCwyskbhlI+o61He6bZanbG3v7S3uoT1jnjDr+R4rjp/hVokF0brQLvUfD9yxyx0y5KI5/wBpCCpHtxQB3f40Vw7WnxB0VM2uo6Z4hjH/ACzu4TazfQMhKn6kVW/4Wg2lHZ4r8M6topHW4EX2m3H/AANP8KAPQaKy9H8R6Nr8Pm6TqlpeLjP7mUMyj3HUfiK089v5UALRQKKACiiqep6hb6Tp11qF5KI7W2iaWR8fdAGT9fpQByfxBu7jUFsfCOnXBhvdZfbNIp5htV5lf2yPlH1NdbpunWmlabb2FjCsNrboI4o1HCqOn/664r4f2F1q95c+OdXjMd7qiBLOA8/ZbQHKL9W+8f8A69d+OlAC0UUUAFFFFABXnviTOvfFTw3oZybbTYpNXuR2LZ8uL8Q2fzr0KuH8F+Xq3iTxT4jzkS3g063zz+6gGCR/vOWP4UAdx9KKBwKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5zxv4cHifw1PZRMY76MieymU4MU6cowP14/E10dJtB5xQBzfgXxIfFHhS0vpF2XiAwXcWMeXMnDgjtzyB6GulrgI2i8H/E5rcDZp/icGVT0VLxB8w/4GvP+8K78dOaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAdTadTaACiiigAooooAKTAyT3NLRQAmBS0UUAFFFFABivOvFo/4RTx5o/i5MpYXQGmao3ZVYjypD9G4J9MCvRayvEei2/iLw9qGk3X+puoTHux909j+BwaANQdKWuW8Aa0+teEbQ3HF9Zk2V6rHJE0XyNn3OAfxrqR0oATAPagqCMEAilooA5DWPhl4T1mf7RJpUdpdA7hc2TGCQH1ymAT9c1mDwt440A58P8AitdSthyLTXYt5/7+p830GK9CpCAeoz9aAOFg8beIdPYp4k8GahAi8G60xhdx/UqvzAfga1dN+IHhTVZxBa65aCc8eTM3kyZ/3XANdNWRrHhfQvEEZTVtJs7vsGliBYfRuo/A0Aau7oQQQe/+favPPF/meMvFll4Mtwx063KXusyLx8gOY4T7scE+3NZnibwr/wAIFoN5rWheK9W0qK2TclnKwuoXYn5UVH6Fjx1qv4XuvHHhOynvtV8KnVzqcv265uLGcfaFLKMK0ZAzgcYHA6UAeuxxokSoihVUAAAYAFPri9M+KXhbULn7LPevpd4OtvqcZt2H4t8pPsDXYxypKivG6sjDKspyGHtQA+igdKKACiig0AYvi3W08OeE9U1d2UG1t3dN3QvjCD8WIH41S+HmiSaB4E0mwnDC5EPmzhvvCRyXYH3BYj8Kw/iQf7X1bwv4UXldQvxc3K+sEA3sD9ePyr0IcCgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOW8f+HJPEnhaaC0YpqVsy3VjKvVJ0OVx9eR+PtVnwd4kTxR4attR2+Xcf6q6hHWKdeHQ/j+hrfwDXn1tC/hL4rSxoAuleJozKo7R3kY+Yf8CXJ9z9KAPQhRSDoO1LQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAOptOptABRRRQAUUUUAFFFFABRRRQAUUUUAFGOc0UUAedceD/iyEH7vSfFCE4/hjvUH/ALOv5mvRRXK/EDw7L4i8LTRWbbNStXW7sZB1WaP5l/PkfjV3wh4ii8VeFrLV4l2GaPEsfdJFJDr+BFAG7RRRQAUUUUAFIe/UH2pa5jxz4nbwzoitax+dql7ILWwg7yTNwD/ujqfy7igDnXI8ffEVoG/eeHvDknzrjKXN76H1CZ6evsa9IAGB7VieEvD0Phnw3aaah8yRF3zy95Zm5dz7kk/hgdq3MY4HSgCjqWi6ZrNuINT0+2vIh0W4iDgfTPSuZf4aaRbbm0G71PQpDyTp924Rj7xtlCPwrtKKAPPmt/iZoB/0e80nxLbj/lncR/ZLjHsVOz8TSw/FWxspFt/FGlal4fuDxuuYTJCf92RAQR74FegYpksMc8bRzRpJG3VXUEH8DQBT0zWtM1m38/TNQtryHu8EgfH1x0/HFXs8c1xeqfC/wxf3P2u0tZdJvh0utLlNu4/754/MVnXOm+N/COnXd9beK7XVrG1iadodVtcSBFGWxIhyTgdx3oAf4c/4qD4qeI9ab5oNKSPSbY9g/wB+Yj33YH0NehjpXjvgrxFqPgzwpANa8K6u6XjtfS6hZqs6uZTu3MoO5eCo59K7/QvHfhnxHhdM1e3klP8AywcmOXP+42GP5UAdHRSZ9qWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArmPHuhXGu+F547Fimp2jC7sZF6rPHyuPryv4109Ievv/SgDC8H+I4vFPhiy1WMBGkTbNH/zzlXh1P0Irerzi0X/AIQf4lSWJwujeJnM1vxgQ3agb1+jjke/Ar0cUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADqbTqbQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAnOePyrg/DUaeF/H+uaATsttSA1WxU9Mn5ZlHuCFbA7NXe1wXxQsriDTbHxVp6ZvvD8/2oAcGSE8Sr9CvX/doA70dKKrafewalp1rfWrh7a5iWWJh3Vhkfoas0AFFFFADXcICzMFUDJJ4AFec+GlPjfxzc+LZgW0nTC1npAPAdjxLOPr90H0+laHxFuZ7+1svCWnT+Vf63L5TOOsVsvMsn/fI2++6ut03TbXSdLttPs4hFb28YijQdgBj8/wCtAFsfh+FFFFABRRRQAUUUUAGK4f4o3Jfw7aaFEx8/XL6GwAB58tmBkP02gg/Wu3zXn0x/t/41wx/etvDlgXb2uJ+MH/tmM/WgD0BFVI1VVCqAAABgAelYGveCPDXiTLaro1rPKRjztuyT/vtcN+tdDRjmgDz3/hX+t6H8/hLxbe2yD/lz1LF1CR6DPKj6GgeK/HGhkDX/AAiL+AdbrQ5PM4/64t8xP416FR1GDzQByem/EjwrqMohOrR2Vzjm3v1NtID6YfGT9M11Ec0csYkjdWjboynIP41DqGl6fq1qbbULK3u4T1jniDr+RFcVN8KtMtJ3uPDWqap4dnY522M5MTH/AGo2yCPYYFAHf0V555vxM8Pf6yLTfFNqvXyiLW5+uPuH6YzU1r8V9ESdLXXrXUPD903AXUrYojf7rjIx7nFAHe0VVs9Qtb+AT2dzDcwt0khcOp/EVaHSgAooooAKKKKACiiigAooooAKKKKACiiigAooooA5jx54cfxN4XuLW3fy7+BlubGXPKTpypB7en41d8K67H4i8M2OqJw0sY86PvHIOHQ+4YEfhWzXnOmk+Dfihc6TIduleI913aE9I7of6xB/vD5vr0oA9Hoo+lFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADqbTqbQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVHNDHcRPDKqvHIpVlboQRgj6YP61JQRmgDzz4dyy6Fqer+B7hmb+zX+0WBfq9pISVH1UnB/LtXoY6VwfjoRaBr2i+MyNsdpJ9ivyO9tMcBj/ALsmDj3Nd2pDKGByCMg0ALVW/v7fTLC5vruURW1vE0srnoqgZJ/Q1ZNed+MzN4w8S2ngm0LLZRbL3WZV42xZykX1YjJ9gPegB/gCyudcvbnx1qqMt1qS+VYQnpb2gOVx7sfm9cfWvQh0qOGKOCGOKJFSNFCoqjAUAYAH4VJQAUUUUAFFFFABRRRQBHNNHbxPNK4SONSzMegAGSfpxXCfCqF7vRL/AMT3SEXWu3j3Zz1EQJWNfoACR9atfFPUZbTwVPYWn/H9q0senWw9WlOD+G3dXUaRp0Ok6PZadbj91awJCme4VcUAXelFFFABRRRQAUUUUAGMnmobm0tr23e3ureKeFxh45UDK31B4NTUUAcRP8KvCy3Ru9NgutHuj/y20y5eA/kDt/So59J+IGk/8gjxFY6tEvSDVrfY+PTzI8ZPuRXd4ooA89/4WNqOigr4u8Kajpqjrd2g+1W/1JXkfrXTaL4w8PeIVB0nWLS6Y8+UjgSD6qeR+VbeB6VzGt/D3wtrxMt5o8C3Gci5tx5MoPrvXBP40AdODmlrzweDPF2h8+G/Gc80Y6WetoLhT/20HzgfSrUXirxZpaY1/wAIS3Cr1udFmW4De/lMQ4H50AdzRXCN8X/BsVpcTT6hLbzW4y9pPA0c30CkDJ+mcd8VU8K/Gfw14r1uLSLeO9tbqYkQ/aY1CyEDOMqxwcA9aAPRqKRTkA0tABRRRQAUUUUAFFFFABXLePPDkniPw66WjGPU7Nxd2Ew6pMnIH0PT8fauppCM9aAMHwb4iHinwrY6qF8uaRSs8X9yVcq6/wDfQP4Vv15/p048JfEm70aRfL0/xATe2LY+VbkLiVPbIAbH1x1r0AdO/wCNABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADqbTqbQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZ+uaTba7ol7pV2M293C0L46jIPI9xwR7iuZ+Ger3N34bfSNRP/ABNdEmOn3Q7ts+449mXHPfBrtsV514h/4pT4naV4hU7LDWVGmX56BZOsLn8tuewoA6/xHr1n4a0K81e9YeTboW25wXb+FR7k4A96xvh9pN9ZaDNqWsKF1jVp2vLsEcxluEj56bVwMduaw7lv+E7+JKWuC+heGXEk3dZr3+FSO4jGT9cjvXpQoAWiiigAooooAKKKKACiikPQ9aAOJ12NNZ+J/h3TcgppcE2pzjrycRxfjkufwrtlJKgnqa8/+HztrPiXxZ4mbmK5vRY2p/6ZQDGR7En8xXoNABRRRQAUUUUAFFFFABRRRQAUUUUAFFITg9KwvEXi/RfC0Ak1S9RHb/VwL80sp7BUHJP6e9AG6eM461ia74t0Tw3Hu1W/iikP3IFO6WQ9gqD5ifwrk/tXjzxnj7JbnwppDn/XzqJL2Qeqp0j/AB5HYmuk8NeBtD8Mgz2lt5t/JzNf3B8yeQ9yXPT6DAoA878Y6V4m+LOm4s9Ci0mwtj5sE2pgrdXDAEAKoHyLz/F7GuV+G/wj8U2PjWx1HWLQWVnYzCUkyqxdh0ChSevHJ7Zr6RxRtB7UAC9KWiigAooo4oAKKKKACiiigAooooA5H4ieHZ/EHhl2sCU1WwdbywdeolTkKP8Ae5H4j0rS8K+IYPFHhqz1aAhfOT96n/PKQcOp9wcityvPNMhbwj8UbrT1wuk+IY2uoFxgR3SD94o/3l+agD0OigdKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAdTadTaACiiigAooooAKKKKACiiigAooooAKKKKACiiigArhPi5Naf8ACBXNhNC1xeX8iW9hDGfna4JBQr9MZPsPeu4d9gJJAAGcmvOvDw/4TzxtJ4skBOi6ZuttIB6SydJJ/wD2Vf8A61AGj8LBZjwFZ/Z1ZJ98gvvMbLm5DHzdx9cjI9iK7cV5zpv/ABR3xSvNLcBNL8SZu7Q9kulH71P+BDDflXoo6UALRRRQAUUUUAFFFFABXOeO9dPhzwTq2pocTRQFYfeRiFX9WFdHXn3jz/ieeLfC3hVMsjXJ1O8X/pjCPlB9mY4/CgDofBOhDw14N0vSsfvIYF84+sjfM/8A48TXQUgpaACiiigAooooAKKKKACiuf8AFnjLR/BenJfaxO6RyPsjSNCzOcZwBXNWHxs8HahatJDcXfnhgiWn2VmmlY9AqrkH8xQB6Jn371z3iTxvoPhRVXU71RcSf6q1iG+aUnoFQc+3OBmsC4m8e+KyEsoI/C+mMP8Aj4uCst4y/wCygysZ+pzW34b8CaJ4ac3NvC9xqMnM2oXR8yeQ9yWPQewwKAMSC58ceL33xxN4V0k8b5UEl9KPZT8sf45IrZ0LwDoOg3h1CO3ku9SY/NfXshmmz6gt938AK6fAxjHHpS4oAMYOeM+tFFFABRRRQAU1m2gknAHOT2FOryP47eNX0Dw9FoljK0d9qQPmMpwUgH3se7Hj6A0AP1n4rX2q+Kk8L+BbW2vb0krLe3GfJjwfmIAxkD1zz0ANTeMrjx54R8Lya/F4ltb42rKbm1k05EQhmC/KQd2BuHuevtWH+zpoaw6LqeuyxjzbiX7NE567EGWA9iWH/fNdX8bb2Oz+FmqJIfnuWigj92MgY/orH8KANL4c+PYPHmgtdCNYL63YR3VuDkK2Mgr/ALJ5x9CO1diOlfPX7NsM51HX5xn7OIoUJ7bizED8AD+dfQwORmgAooooAKKKKACuV+IGjXWreGnm01iuq6dIt7ZNj/lomfl99wyuPcV1VIRySB6UAY3hXxDB4o8NWOsW42rcx5dO8bg4dT9CCK2q840n/ih/iNdaLIdmka+5u9PP8MdyB+8i9t2dwHTpivRgcqD60ALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAOptOptABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRVa9vIdPtJ7u6lWK3gQySSN0VQMkn6AGgDkfiNe3VxY2vhbS5/K1LXJfIDjrFABmaQ+wXj6tXVaVpdpo+lWunWUXl21tGI419gO/r61xXw+trjXtQvvHWpxus2o/utOhfrb2in5cejMcsf/r16COgxj8KAOO+JWiXGq+FWu9PBXVNKkXULJgOfMj5I98rkY78Vu+HNct/EXhyw1e2x5V1CsoXOdpx8yn3ByPwrTIyfX2rhPB5i8P8Ai3XvCKjy4Sw1SwXp+6l4kUDsFkB/BqAO9ooooAKKKKACiiigBCcVxHh6Ean8TPE2tkhls0h0qBh2KgSSj/vpwPwrqtY1GLSNGvtSnI8q0geZvooJ/pXN/C6xntfANhcXf/H3qDPfznoS0rFwT77So/CgDsqKB0ooAKKKKACiiigAoopCce2KAPGv2htCn1HQdIv4G3NbXLQ+SMlpDKFACjucr09zWR8E/hxrmkeIm1/WrOSyiihaOGOb77s2BnHYAZ/Me9eh6ssfiD4paRpZ+eDRIG1K4HYzN8kIPuMuwruQoH1xjNACjoKKAMDAooAKKKKACiiigAooooAK+Y/2iI5h4+sncN5LaegjY9Mh3z/Mfn719OVyPxA8GaP4x0Mw6tJ9lNsDLFeDAMPHJJPG3pkH9MZoAq/CS0is/hfoaxADzIWlYnuXcnr+NeX/AB5199c8QaZ4R0zdcSwN5kqRjJaZ+EQD1A/9Cp/gXUdaXS7zw9pfjzRbTTIJzDaXF0qi5de5ijZshck4LdzxivTPB3wz0TwlO+oDzNR1WU5k1C7O5yT1K/3c59yc8mgCf4Z+Df8AhCfCEGnyhTeyt592y9N5H3Qe+AAM+xPeuxHTrk1UtNQs76S5jtJ45ntZDFMqHJjfGSp9+auDpQAUUUUAFFFFABRRRQBynxB8Oy+IPC8osSU1SyZbuwkHVZU5GPr0/H2rV8N63D4h8OWGrQEbLiEOwH8LdGU+4OR+FahGTn6V53obHwf8Sb/w/ISuma4Gv9OB6RzD/Wxge+d2B2+tAHo1FIM4560tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA6m06m0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAITivP/ABss/izxDZ+CLZ2SyeMXmryIcMIFYbIx6F2H5c11viHXbLw3od1q1++2C3TcR3dv4VHuSQBXP/DzRtQtNNu9Z1pdusazP9quUPWFcYji/wCAj+ZoA7C3hjgt4ookVI41CoijhQBgAe2KkoHSigArz/4lW02knTfG1ijPcaLIftEa9ZrV+JF/D7w9Oa9AqC7tYb61ntbhBJDNGY5EPdWGCKAFtbmG8tYbq3kEkEyLJG69GUjII/A1NXn3wzu5tLi1HwZfuTeaJNtgLdZbVjmN/wBdvtxXoA5FAC0UUUAFFFITzigDgfirLJfaVpnhaBys2v38dqzL1WFTvkYfQAfga7uCJIYI4o1CxooVVHQAdq4GD/ioPjRcT/etfDtgIQRyBcTct+SDBr0EcCgBaKKKACiiigAooooAKr313DYWNxeXDhIII2lkf+6qjJP4VYrgPihcy39pp3hCyci7124WKQr1jtlOZX+mMD8aAHfDGzmutOv/ABZeoVvdfnNyFPVIFysS/Tbz+Nd7UVrbxWdpDbQIEhhRY41HRVAwB+QqWgApkkiRIzyOFRRlmJwFA5JJp9eJfH7xq+n6fD4YsZyk92oluip5WLJAX/gR/Qe9AGzL8VbzxH4pHh7wNZQXjqCZtQu93kRqDgsFGCRk4zkZOOO9O8ba/wCN/Aekxa4+o6bq1oJhHPbmwMJTdnBBDnjIxz69DWd+z74dFn4VutduI/3uoS7Ys9okyP8A0Ld/3yKvftA30dr8OFtSQZLq8jRRnkBQWJ/8dx+NAHY+CfGFl428PRatZq0XzGOaBjuaNx1GR1HIIPHXoOldIOleG/s3RXA0bXZmDfZ3uIlQk8bgp3fjgpXuVABRRRQAVzXi7whB4wto7K/v7yGwBJe3tnEfmt2LNgkgdQOmeua6WjFAHiOofs46VKR/Zmv3tsPS4iWb+WyrWkfAq400eRN431VrBuJLe1U24dfQ/Owx+FeyYHpRQBQ0fRtP0LS4dO022SC2hGFUdz3YnuT1JNX6KKACiiigAooooAKKKKADFcl8QfDs2u6Ck+nkpq+mSi9sHHXzE52fRhx9cV1tIcZ/WgDF8KeIIvFPhix1eFdn2iP94n/POQEh1/Bga264DRJl8KfELUfDbgRWOsE6jpxP3TLgCaMe+Rvx6E4rv6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigB1Np1NoAKKKKACiiigAooooAKKKKACiiigApDntS1zXjnxN/wi/hya6hTzb+Zhb2MHeWZ+FHuB1PsKAOavh/wnvxHj00YfQvDkizXXpPefwxnsQg5PvkV6SoAUDtWH4Q8PR+GvDdrYD5rjHmXUx5aWZuXYnvk5/St2gAooooAKMZzRRQBwfi6OLQPGegeLM7IXf+yr49B5cp/dsfZXxn2b2Fd5WT4l0O38SeHr/SLnAju4Wj3Y+4f4WH0ODWL8N9cudX8KpbahkappkrWF6pPPmR8Z/EYOaAOwooHSigAqG5nS1tpZ5WxHEhdj6AAk/oKmrjfidqD2fgi7tLdsXepyJp0HPV5jsP47Sx/CgCr8J7WVvCcmtXa7bvXLybUZR6B2IQfTaAR9a7wdBUFnaQ2NjBZwIEhgjWKNR2VRgD8qnoAKKKKACiiigAooooAQk4NcB4bhfXviT4j8Ryjdb6fjSLL0BX5pj/AN9HGR710HjbxAvhjwhqWrdZYotsC/3pW+VB/wB9EfhmjwTor6D4N0vT7jm6SEPcEnJMzEs+T3+ZjQB0A5FFFFAC9q+S/jmk6fFTUDNkRvFAYs908sA4/wCBBq+s64f4h/DXTvHtrE0kptNQgBEN0ibuD/Cw7jPvxQBq+BLOOx8A6BbxgADT4ScDglkBJ/Ekn8a8K+Nuty+LfHtj4a0kG5NmfJCR8755CMgewAUexzXoll4P+JFn4bj8Px+J9LitI18pLpbdzOkeMBQTx049fetrwP8AC7RvBUjXiu9/qsn+svbgfMM9do5xn16+9AGt4F8LQ+DvCVno6MryRgvPIvR5W5Yj27D2ArpKQUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcb8SNCuNV8Oi+035dX0mVb6yYDnenJX33AEY9cZrb8Na9beJfDtjq9rxFcx7iv9xhwyn3ByPwrW5zkCvPNDifwf8AEq/0EcaRraNfWIA4imX/AFsYHuDux7fWgD0SikHSloAKKKKACiiigAooooAKKKKACiiigAooooAdTadTaACiiigAooooAKKKKACiiigAooooAax2gktgDrXnOg7vH3jWTxNMCdF0eV7bSU6iaXpJP7gdFP8AUVqfEPVJTp1v4b02Urq+uMbWDaeYo/8AlrKcc4Vc/ia6XRtJtND0a00uxTZbW0Qjj9SB3+p6n3NAF4dBS0UUAFFFFABRRRQAhrzrUP8Aijfija6iDt0vxLi0uc9I7pR+7f8A4EPl+uTXo1c3468OnxR4SvtNjO26KiW0ccFJl5Ug9uRjPoTQB0g6UVieE9dTxF4XsdTUjfJGBMnQpKvDqfowIrboAPpXnuv/APFQfFrQNEBBttIhbVrkdvMzsiB9xkn8a9BY4B9Oprz74bD+2NQ8S+LGGV1S+MNq3rbwjYh/E7vxFAHoI5ANLQOlFABRRRQAUUUUAFJn8KWobm4itLaa5nYJFEhkdj2Cgkn6UAcD4l/4qv4k6P4ZX5rHSgNVvx/eYHEUZ/E7iD1B9q9DHT1rgvhjZz3Onaj4pvYyl3r90blVbqkAyIl+gHP413w6UAFFFFABRRRQAmBnOOaXH1/OiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArkviDpV3e+H01DSx/wATbSJlvrPj7xX7yHvhl3LgdSRXW0negDL8Oa7beJfD1jrFmf3N1GH25+4f4lPuCCPwrVrzjw5jwV48v/C8vyaXq7Nf6UTwqv8A8tYR7jhgPT616PQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA6m06m0AFFFFABRRRQAUUUUAFFFFABUN1cw2drNc3EixwwoZJHY4CqBkk/lUxrz7xv9o8TeI9O8FWsjJaSr9s1d0OCLcHCx+29uPoPSgCP4f283iPV7/x5fxMpvR9n0uNxgxWing+xc5P8uK9FHSooLeK2t47eGNY4o0CIijAVQMAD2FS0AFFFFABRRRQAUUUUAFIR9D6UtFAHnXh4nwr8TNX8OuSLHWQdTsM9pek0Y9/4vQAV6KOgriPibpVzceH11vTFI1bQ3+22rDqyj/WIfUMoPHfGK6jRNWt9d0Wy1W0bdBdxLKntkZwfcHj8KAMT4jaw+ieAtXu4QTcNCIIAvUySEIuPcFs/hWl4U0dPD/hPS9KTH+i2yRsR3bHzH8WJP41g+MSmqeLfCvh9vmR7ltRuFH9yFSVz7F2UfhXajpQAtFFFABRRRQAUUUUAFcP8T7+RdAttBtj/pmvXSWCY6rGx/et9AoIPpmu3JrzzRj/AMJX8V9T1dvnsfD6f2daf3ftDczMPcD5aAO/toI7W1ighTZFEgRF/ugDAFS0DpRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUdaKKAOP+IuiS6p4cN7YjGqaTIuoWbAc74+Sv8AwIAjHrjNb+iava65odlqtm263uoRKgHOMjlfqDx+FXyM+/bBrzrwqT4O8d3/AIRfK6XqAbUNJz0TJ/exD6E5A9MmgD0eiiigAooooAKKKKACiiigAooooAKKKKAHU2nU2gAooooAKKKKACiiigAoopCcfhQBl+IddtPDOh3er3zYt7aMuR3Y9Ao9ycD8awfh/pF9b2V5r2sDGq61ILmWP/njHtxFF/wFT+ZNZOqf8V58Q4NGX59D0B1uL4/wz3X8EXodvUivSB09+9AC0UUUAFFFFABRRRQAUUUUAFFFFADWUHOQCDwfcVwvgTy/D+r6z4LzgWcv2yyGettKc4H+45YE+4rvK82+J5uPDd5pnjuwh82XTc215EDjzbeTjBPs2D+PtQBP4Yb+3/if4k18822nKuj2x7Eqd0p/76wK9BHSuP8AhhpDaV8P9M89i91dobydz1Z5TvyffBA/CuxoAKKKKACiiigAooooAwPGniFfC/hPUNWI3SRRbYU/vyt8qD/voj9ag8B+HW8M+ELOwnO68bM92/dpnO5s/TOPwrK8VRJ4h8eeHdA3B4LFjq16nUYT5YlP1dicHstd0BxQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVx3xD0K61TR4dS0r5dZ0eYXtmf75X70f0ccY9h2rsaQ/hQBleGtet/E/h2y1i0yIrqPdtPVG6Mp9wwIrWrgPDMsfhnx1q3hIjyrW9P8Aaem54B3YEsY+jAsAOgJrvwcjI70AFFFFABRRRQAUUUUAFFFFABRRRQA6m06m0AFFFFABRRRQAUUUUAFc5428TJ4V8N3F+qebePiGzgAyZpm4RR688/QGuiJwOnFeb6Hnx547ufEEp36JosjWulp/DNOPvz++OAD269c0AdT4M8Or4Z8NWtgx33JzNdS95J35die/Jx9AK6AdKQdKWgAooooAKKKKACiiigAooooAKKKKACvPPimDq8eheEkZgdav1WcIcH7PF88n8lr0I/XFcJYwHWfjDqmoSfNDoljFZwr/AHZZf3jke+3AP1oAT4YahcRaVe+F9Qk3X/h+c2hPeSHrE/0K8D2Arva4LxHEnhzx/oviZCIre/I0q/xwCWyYXP0Ybc+hFd4OlAC0UUUAFFFFABTJZEijZ5HCooLMx6AAZp9cL8Ub+4Gg2/h+wkKahr1wtjEw/gjPMrfQKD/31QBX+GiyazLrnjKZSDrN1ttQf4bWLKJ+fzH8K9BHSqumafb6VpltYWsYjt7eNYo19FAwKt0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcV8StHubzQotY0tT/a+iSi9tcdWC/fT6MuRjuQK6PQdZtvEGhWWrWb7re6iEi+oz1B9wcg/StBhnPGT6f5/GuA8K2zeEvHGq+GAdulX8Z1LTI+gjyQJox9CQQB0GaAPQaKKKACiiigAooooAKKKKACiiigB1Np1NoAKKKKACiiigAooqK5uIrS3kuLiRY4YlLu7nAVQMkk0Acl8QNXmjsLfw7psvl6xrjG1t2B/1SY/eSnvhVz+OK6DQ9FtNA0S00myTbbWsYjTjk46k+5OSfrXGeBIJvE+v3/jy/jZUuFNrpMbjBjtlP38di55/+tXouaAAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBDdXEVpaz3M7hIYUMkjH+FQMk/lXHfC8TXfhabXLhDHPrV7NflT1VGbagz6BVXFN+K97ND4Kk0y0P+naxNHp1uvqZDhv/AB0NXXaZYQ6ZpVpYQDENtCkSf7qgAfyoAzPGPh9fFPha/wBIZ/LeePMUn/PORSGRv++gP1qr4B8RSeIvC0Et0pj1C1c2l7GeqTJw358H8a6fHNedA/8ACIfFthyul+J4sj+6l5GOntvX82NAHo3WiiigAooooAQnFcFY258RfFe91Zm3WXh+AWFv6G5kG6Vh7hSqmup8SazB4d8O6hq9wR5dpA0mCcbj/CPxOB+NZHw30m60nwVafb8/2hes97d7hg+ZK2459wCB+FAHWUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAHWuK+I2l302mWmu6SAdU0Of7ZCh/5apgiSP/gS/wAq7WmkAnBwQex70AUNC1i11/Q7LVrJ91tdxLKnqM9QfcHIPuK0a848JE+EvG2p+DZiUsL0tqOkE9NrH97EPdTyB6ZNej0AFFFFABRRRQAUUUUAFFFFADqbTqbQAUUUUAFFFFABXnvj0z+JNc03wPasywXI+2arIDytqjcLntvYY/DuM12Gv61a+HdDvNWvX2W9tGXb1J7KPcnAHua5z4eaXfrp114h1lcaxrbLcSp0EEYGIoh9FOfXJNAHYwwR28EcESBIo1CIijAAAwAPwqSjp0ooAKKKKACiiigAooooAKKKKACiiigAo70Uh45JwKAPP9RP9vfGjS7L71toFk97IOo86X5EB9wvzCvQR0rgfhnC16mueKJuZdY1BzE3/TCImOMfo31rvh0oAK5b4g6LJrPhC7FtkX1mVvbNh1E0R3Lj64I/GupppGc8Zz2oAzfD2tW/iHw/Yatan91dQrIBnOD/ABL+ByPwrUrznwgD4T8b6v4Nf5bG4B1PSs9kY4ljH0bkD0zXoo6UALRRTJHWNGd22qoJJPpQB5944/4qXxn4d8Hp81t5n9p6io5HlRn5Fb2Z+Pwr0QdMivPvhtE+tT6v41uVIk1ecpaA8bLSM7U+mSCfwr0GgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKCM0UUAcZ8R9HlvNBj1ewB/tTRZRqFsV6ts5dD7MoIx34FdNpWp22s6TaalZyB7e6iWWNu5BH86tuoZSGGQRgj19q888Gs3hLxhqPgiViLF1N/o7N/wA82J8yIf7rZI9sk9qAPRaKQcAUtABRRRQAUUUUAFFFFADqbTqbQAUUUUAFITilrnvGfiWLwp4budSZfMn4itYR1mmbhVHvn9AaAOZ1pG8eeO4tBjBbQ9DlW41Jj92efGY4fcDqf/1V6MOAK53wRoMugeGbeC82tqM5NzfSD+Odzuf8icD2UV0dABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXNePtc/wCEd8E6rqCkiZYDHAB1Mr/Kn6kfka6U15545/4nfjfwl4ZX5o/tDapdDr8kIOwH2LHFAHX+G9KXRPDWmaYAAbW2jibHdgoyfzya1KB0ooAKKKKAOD+JmnXEVjYeKdOj3X2gT/aio6yW5GJk/FRn8K7HTdQt9V0u11C0fzLe5iWWNvUEZqeWNZY2jdA6OCrKRkEHggj6Vw/w6UaIdY8ISSEtpFyWtweptZfnjP4ZZT6YoA7yuP8AiRqslj4VewtG/wCJjrEq6baD/bl+Un2AUsc+wrrs+9eeK3/CU/GFn+9YeGLbb6qbuUc/Xaox7GgDudL0630nSrTT7VNsFtCsSA9cKMDPvVyiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKADFcT8SNFu7rS7XXdJXOr6HN9rgUcGVMfvI/+BKPxwBXbU1hkEHkeh70AUND1q08QaHZ6tYvvtrqISKT1HqD7g5H4Vo1wPhBo/Dfi/WfB5+SCRjqenBuMxSH94g/3Xz+BrvgcjNABRRRQAUUUUAFFFFADqbTqbQAUUUnfFAATjvXm+kj/hPfiDPrkg8zQtBdrbT1/hnuf45vfHQHt1q5458WQlB4V0a/h/4SHUpFtAiNua2V/vyNjptXJx1yRXVaDodl4d0O00mwj2W1tHsXdySe7H3JyT9aANIdKWk/GigBaKSigBaKSigBaKSigBaKSigBaKSigBaKSigAPX/PNefeCh/bnjvxX4kJ3RRzLpVo3osQBcj2LEH8K6Dxt4ntvCfha+1KaeKOdYWFqjkDzJdp2qB35xnHaoPh3o66L4D0m2JDSyQC4mcHO+ST52Pvyf0oA6kdKKT8aKAFopKKADArzzx3nwz4q0TxpENtukg0/VMdPIkPyuf9xj/48K9DrP1vSbXXdFvNLvQWt7qIxOB1we49wcEe4oAh8R63D4e8M3+sTFSlrbtKATw7Y+UZ9zgfjWP8N9Dm0bwdbvehv7RvmN9eM3DeZId2D7gEL+Fed6bf3Xiw6H8PNTkD3Wl3sg1X0lhtx+7ye4YlRxz8pNe5Dp/jQAo4FFJ+NFAC0UlFAC0UlFAC0UlFAC0UlFAC0UlFAC0UlFAC0UlFAC0UlFAC0UlFAC0UlFAC0UlFAC0UlFAC0UlFAC0UlFAC0UlFAC0UlFAC0UlFAC0EZpKKAOG+JelXX9mW/ibSkJ1XQpPtUe3rLEP9ZGfUFece3vXV6PqtvrejWeqWbh4LqJZVI9x0+o6fhV1lDghsEEY56H2rzTw3f23gPxff+EL67it9NuXW80YyttAEjEPFn2Y8DvmgD02ikHQUtABRRRQAUUUUAOptOptABSHr1ozz1FL1FAHkF58DIb7x/c6/NrM62dxM9w0EYKSqzZ4EgPABPp04rf8A+FQeHf8An91z/wAGUgrvjjOPU9+KdQB5/wD8Kg8O/wDP7rn/AIMpKP8AhUHh3/n91z/wZSV6BRQB5/8A8Kg8O/8AP7rn/gyko/4VB4d/5/dc/wDBlJXoFFAHn/8AwqDw7/z+65/4MpKP+FQeHf8An91z/wAGUlegUUAef/8ACoPDv/P7rn/gyko/4VB4d/5/dc/8GUlegUUAef8A/CoPDv8Az+65/wCDKSj/AIVB4d/5/dc/8GUlegUUAef/APCoPDv/AD+65/4MpKP+FQeHf+f3XP8AwZSV6BRQB5//AMKg8O/8/uuf+DKSj/hUHh3/AJ/dc/8ABlJXoFFAHkXij4F6fqtnDHperX0E6SZJvJ2nUqRg4BPBrWsvgz4ftbKCBr/WWaNApZL50BwOoUcAe1ej4ooA8/8A+FQeHf8An91z/wAGUlH/AAqDw7/z+65/4MpK9AooA8//AOFQeHf+f3XP/BlJR/wqDw7/AM/uuf8Agykr0CigDz//AIVB4d/5/dc/8GUlKPhD4fGSL7XP/BlJ/jXf0cZz3oA8b0/4B2Fp4quNQm1i8ewfc0MMblJsn+9IDkgfQGukHwg8PY5vdc/8GUlegUUAef8A/CoPDv8Az+65/wCDKSj/AIVB4d/5/dc/8GUlegUUAef/APCoPDv/AD+65/4MpKP+FQeHf+f3XP8AwZSV6BRQB5//AMKg8O/8/uuf+DKSj/hUHh3/AJ/dc/8ABlJXoFFAHn//AAqDw7/z+65/4MpKP+FQeHf+f3XP/BlJXoFFAHn/APwqDw7/AM/uuf8Agyko/wCFQeHf+f3XP/BlJXoFFAHn/wDwqDw7/wA/uuf+DKSj/hUHh3/n91z/AMGUlegUUAef/wDCoPDv/P7rn/gyko/4VB4d/wCf3XP/AAZSV6BRQB5//wAKg8O/8/uuf+DKSj/hUHh3/n91z/wZSV6BRQB5/wD8Kg8O/wDP7rn/AIMpKP8AhUHh3/n91z/wZSV6BRQB5/8A8Kg8O/8AP7rn/gyko/4VB4d/5/dc/wDBlJXoFFAHn/8AwqDw7/z+65/4MpKP+FQeHf8An91z/wAGUlegUUAef/8ACoPDv/P7rn/gyko/4VB4d/5/dc/8GUlegUUAef8A/CoPDv8Az+65/wCDKSj/AIVB4d/5/dc/8GUlegUUAef/APCoPDv/AD+65/4MpKP+FQeHf+f3XP8AwZSV6BRQB5//AMKg8O/8/uuf+DKSj/hUHh3/AJ/dc/8ABlJXoFFAHn//AAqDw7/z+65/4MpKP+FQeHf+f3XP/BlJXoFFAHn/APwqDw7/AM/uuf8Agyko/wCFQeHf+f3XP/BlJXoFFAHn/wDwqDw7/wA/uuf+DKSj/hUHh3/n91z/AMGUlegUUAef/wDCoPDv/P7rn/gyko/4VB4d/wCf3XP/AAZSV6BRQB5//wAKg8O/8/ut/wDgykrnPEHwFsdS1WzubLWLyKBOLhbhzM5AORsYng9f85r2OjAzQAijaoXrjilo6UUAFFFFABRRRQA6m06m0Acp8RG+y+C9V1Jb+8sp7O1klhktrho/nx8oIHBBbA5rxz4UXfifx5quowah4r1yK2tbcMGtrgA+YxwoOQQRgNxwTiut/aF142HhC10eN8SalPlwD/yzjwT/AOPFPyrz/wAEa34k8BfD691nT/DRng1GQMNTklBSNV3IoMY54bdycDmgC5oHxD8U+Hvil/wjl7rcuq2H9p/YJPPAYnMmzcDjII4OAa+lB0rwL4UeBPD2rapF4oPiM6rf28vnyW/lGPy5TkgvuO4885HHHfv76DkA8/jQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYnijUNT0rR7jUNNjtJRawyTyx3BYFlVc/KR9D1rbrzn42a7/Ynw4vI0bE2oMLRMHs3L/8AjqkfjQBynhn41+JfFusDS9K8NWLXRjaTD3TKML15I+n51raf8cLe315tF8V6NNol4jBJGMnmRqccE4GQDnORkY71y/7OWgb59X16ReEC2cXHGThn/EYT86oftGWkEXijSLmIDz57RlkAHUK3yn6ncfyoA+kUYOoYEEHoRS1x/wAKtSn1X4ZaFdXJ3S+QYixOSRG7ICffCiuwoAKKKKACvL/iX8S9X+H9/aINMsru2vA/lEyurrtC53cY6t616efrXyx8etTOo/Ed7NT8ljbRw89AzDeT/wCPgfhQB6z4c8beOvFPh6LWtO8OaR9mlZhGst66M204JA246g96Xw38QvE2p/EH/hFtY8Nxae8cTTTOsxc7BwGXjBBYqPxqiPiD4d8GeDdM0Hw/f22q6qsUdrbRQtuRpTgFnI6LubPHXp649Kh0a0XWF1l4lOom1Fq0y5A2bt2AO3zc+tAGkOlFA6UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZut65p/h7TpNQ1S7S1tY/vO/c+gHUn2FaJz2r5U+K/i298b+Ov7DsctZ2lz9ktYh/y1lLBSx9cnge2KAPUbD4peJPGmovaeCfD0It4ziTUNUZhGo46quOvYAk+1Hirx3498B2wu9Z0rRtRspCY0uLEyRiJz90OGLccfj0zXfeEPC9l4R8N2uk2ag+WMyy4AaVz1Y+uf5Yp/ijw3aeK/D9zot4zJBPty0YG5drBhjP0xQBZ0C7u7/w9p15fxxx3c9tHLMkYIVHZQSBknoTjqa0aaiqqAKMADAGMYp1ABRRRQA6mE4Bp9V7iJpoJIlleFpFKiRCNyE8ZGQRnnvxxQB8v/HHVJdf+Jo0q2BkNlHHaxovO6R/mOPU/MB+Few+LpdN8EfBu4024aMY042MSdfNkZCvA+pJqGb4I+G59XbVpNR1r+0Gm8/7R9qUOJM53AheDnpjpU1z8GfDuo3SXGq3+uamU6C8vi459CACPwoA8o/Z9sNQfxvcXsMcgsorR453HC5JXavucjOO2M19NjGOOnas/RtC0zw9pyafpNlFaWqciOMdTjGSTyT7nmtGgAooooAKKKKACiiigAooooAKKKKACiiigAr5x/aN1rz9e0nRVf5baFriQD+85wM/QJ/49X0VK0ixt5Sq0mDtDMVBPucHj3rwPxb8GvGvi/wATXWt3d9oUbzlQIlnmIRVACj/V+g/MmgD0j4UaL/wj3w30qCRSk88Zu589dz8/ou0fhXhPxS1Wbx58TPsWiq96IVWztVhGfMYZLEe2S3PTAr2HVPDnxG8QaWNHvtY0HSrF0Ec02nJK8rjoR820AEehHp0rX8D/AAy0HwKDLZo1zqDjD3c4G/Hog/hH6+pNAG94U0RPDnhXTNITB+ywKjEdC/Vj+LEmtikXgYxiloAKKKKAIbmeO2t5Z5nCRRoXdj0Cjkn8q+VPAtu/j741Jf3UfmQvdSahMpGdqKcoDntu2LX0N490zxBrvh250fQXsYmvI2imnu5XXYhxwoVGySMjJxj37ec+Bvhf468B6jc3thP4buHni8phcST5C5zwQgx0BNAHoGt+BdLvtd0PVoLGytm027+0yyJGELqEO0HA5w2w8ngA4roNI1nT9cszdaZcpc26u0QkQHaWXggHv35HFeYeKvCXxX8WWf2O41nw/Z2b53w2TzoJBj+IlCce2cc16T4Y0OLw54Z07R4SCtpAsZYdGbqzfiST+NAGuOlFAooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAa/Q49K+PPh/bvF8XtIt9QUCeLUSJAT0kUnj67hX2LivH/iJ8IbnWPEA8SeF7mGz1XessiSEqrOvR1IBw3A7Y70Aevg8daj86NpjDvXzAu7Z3we+PTI6157Y33xXktY7W60jQYpwAGvJJ2ZQB3KKSS3fjj2ArqfDnhwaKs1zdXT3+q3WDdXsoAZyP4VA4VR2UfqeaAN6igdKKACiiigB1NxTqbQADgYooooAMUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJtHPHXrS4oooATAxilxRRQAUUUUAFFFFACYGc96AoHQClooATApaKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAMCkwKWigAooooAKKKKAP/2Q=='] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 53 "如图, 在锐角 $\triangle A B C$ 中, $D, E$ 是边 $B C$ 上的点, $\triangle A B C, \triangle A B D, \triangle A D C$ 的外心分别为 $O, P, Q$, 证明: 若 $E O \perp P Q$, 则 $Q O \perp P E$." ['连结 $O A, O B, O P, P B, Q C$, 延长 $O Q$ 与 $A C$ 相交于点 $F$, 如下图.\n\n\n\n由 $O, P, Q$ 分别为 $\\triangle A B C, \\triangle A B D, \\triangle A D C$的外心, 知 $O P, O Q, P Q$ 分别是线段 $A B, A C, A D$ 的垂直平分线, 所以\n\n$$\n\\angle A P B=\\angle A P D+\\angle B P D=2(\\angle A B D+\\angle B A D)=2 \\angle A D C=\\angle A Q C\n$$\n\n又\n\n$$\n\\angle O B P=\\angle O A P, \\angle A Q F=\\frac{1}{2} \\angle A Q C=\\frac{1}{2} \\angle A P B=\\angle A P O\n$$\n\n所以 $A, P, O, Q$ 四点共圆, $\\angle O A P=\\angle O Q P$.\n\n又 $E O \\perp P Q, D A \\perp P Q$, 所以 $E O \\| D A$\n\n$$\n\\angle O E C=\\angle A D C=\\frac{1}{2} \\angle A P B=\\angle B P O\n$$\n\n所以 $P, B, E, O$ 四点共圆, $\\angle O E P=\\angle O B P$.\n\n设 $E O, Q O$ 的延长线分别与 $P Q, P E$ 相交于 $M, N$, 则\n\n$$\n\\angle O E P=\\angle O B P=\\angle O A P=\\angle O Q P\n$$\n\n所以 $M, N, E, Q$ 四点共圆.\n\n又 $E O \\perp P Q$, 所以 $\\angle Q N E=\\angle Q M E=90^{\\circ}$, 所以 $Q O \\perp P E$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAlUCUQMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6bTqbQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUZo9K4n4k+PrbwLoZlGybU7gFbS3J+8e7N/srx9Tge9AHbA0VkeFb+fVvCej6jdlTcXVlDNLtGBuZATj8TWvQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADqbTqbQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRVLVdTtdG0u61K+mENrbRmSRyM4A9u57Ad6AKfibxJZ+FtGl1G8LMF+WKFOXmkPREHcn/E9q+VviudXbxes2uSj+0bi1SWW3U5W1DE7Yl+i4J9yTXtqaR4w8WeILbxaP7Ns7aEH+y7DUopJDEpxiZgjLiQjPBzgEdxXifxdfUW+Id2mrS2ct9FFCsjWcbJH9wEABiT0I70AfVXhRGj8IaKjqVdbCAMp7Hy1yK16qaVG0Oj2UbjDJbxqfqFFW6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAdTadTaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4nxz4X13xLf6V9g1C1j02znS4uLO4RttyysGUMR1HB46flXbUUAV2+0CzyFj+0hD8pJ2bseuOBn2rxHxZ8FPEfi3xPe65c6vpkUlyykRqJCFCqFC5x6AV7qQD1pRxQBR0hNRj02GLVDbtdogV2t8hGI7gHpV6iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAHU2nU2gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikJ+v4UAISRkjHH+ea4nwp8UdA8Ya/d6PpxuVngUujyIAsyA4JXBz3HUCuc+JfxTbTdOu7Lwyyz3UR8q5vl5jtmOcIp6NIeeOwB9DjkfhxpLeBZPDXiy8G6x1uOS0uZJBxauz5ifPowAyf/AK1AH0QORS0g6CloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigB1Np1NoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikY4GcgCgBCTnj16eteea/4hvPFury+EfDEjrEp26rqsf3bZO8cZ6GRhx7fgSI9W1e7+IGrS+HPDt9Jb6TbNjVdUh4Lf8ATCFu7cckf/WNrxTHbeFvCNr4Y8NxJZ32quLGzSMcqW4klJ6kquSW9cUAeX+KLK1vraey0KBV0fTJ00fTFHIvNQmIEspP8RVd2D64Oa9s1DwlY6h4Gbwuy4tfsa20bd12gBGH0IB/CuPg0O0T4j+G/C1ko/s7w3YNezcffmc7ELf7XV/xr1IDKjIoA474b69c6t4dNjqZK6vpMpsb1T1LLwr/APAhg5+tdkOlcFrZg8KfETS9d4js9aA029PRRMOYZD7/AHkyfUV3o6DFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAOptOptABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRUU0yW8UkssiRxRqWd3OFVRyST2FADncRqzMyqqjJLdAPX6V5zd6hqnxIvLvS9Glew8MwuYrnU4+ZLxhw0cPovUF/yqK7utS+KF4bHTGnsfCCN/pN+AUe/x1SLPITqC3evRNP0+00vTrewsoVhtbeMRxxp0UCgCrpunaZ4Z0VLWxiitNPtYyRg8AAZJJ7nvmuM8HRt4s8QXHju+Ux2qq9ro8JGBHADhpT6M/P4D6VY+ILXGu3Vj4L0+UpJqP73UJEPzQ2SkbyfTc2FHrzWj41mTw98NdRh06IRFLQWdpGnUO+I0A/FhQBl/DBW1aTX/ABfKCG1m+YW+e1vFlE/k35V6EOBisrw1o8egeGdN0lORaWyREj+Igcn8Tk/jWrQBi+K/Dtv4q8N3mj3JKrOvySDrE45Vh9CKy/h/4hutc0FrfUsJq+mSmzv0HXevR/8AgQwfzrrTXnms28vhT4mWPiGEbdM1wLp+oc4WOb/ljIfqcLn656igD0Ttz1ooHIooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAHU2nU2gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiq19fW2m2c15eTxwW0Kl5JZDhVA65NAD7i5itIZJ7iVIoIlLvI52hVAySSewHOa80aW/8Aive7ITLZ+C7eT55OVk1Nwfuj0jyOfX89stol38Ur37XfRTW/g6Fv3FsxKNqTA/6xx18oYyB3r0iG3ht4EghiSOKNQixouFUDsB6e1ACW8ENvbxwQRpHDGoWNEGFVR0AHYVW1XU7XRdLutSvJAltaxNLIe+AOg9z29Sau96848Q7vHHjuLwspJ0TSglzq392aT70cHuBwxH+FAFv4b6beXEd74u1VNt/rjLLHG3PkWwz5Sj/gJB9880eM5jqHjbwh4dTJVrptSuMc4SFTsyPQuR+Vd0MKgGAB6AcVwHhEf278RvFXiNzmK0kXSbQ+gjw0uPqxFAHoI6DNLRRQAVi+K9DTxF4Y1HSSwja5hKxyf3HHKt+DAH8K2qQgEYoA5T4e+I5vEXhWNr3KarZObO/jI5WZOCSPcYP411leca1/xRXxIstcT5NI15hZ6gOipc/8spD6bsbT24JNejj3oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAHU2nU2gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKo6tq1lomnTahqNwkFrEMs7HH4D1J7AdaAF1LU7PR9Pnv9QuY7e0hXe8jnAUf1z0A6ntXAQadd/FG5t9V1ZJrPwtE2+002T5XvGB4llx0T0Xv170mnaNqHxC1KLXfE9s9toUDb9P0iTjzPSWcfyU+vPHX0tQNowO3HbFACRxpHEscaBUUAKoGAAO1PopD7UAYXi7xLB4U8P3GpzK0jrhIYF+9NK3CIPqf0Bqv4H0CbRNBD6gVfVr6Rru/kXvK5yR9FGFH0965u3x49+I/2zAk8P+HXKwEfduL0jlh67Bx7HmvSR0oAyPFOtJ4c8L6nrD4/0S3aRQf4m/hH4sQKzPhzokmheBdMtp+bqVDc3DHqZJDvOfpkD8KzPiZC+sP4d8Mrymp6kjXC9jBEPMkz/wCO13oGBgdKAFooooAKKKKAMXxV4ft/FHhy+0e5O1LiIqj/APPN+qv+BAqj4E1mfVfDUcV83/E00+RrG+U9pY+C3/AhhvxrpyK86v8A/ijfihDqZbbpHiNVt7kt92K7UYjYntuA2/Xr2oA9GHTmiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigB1Np1NoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKxPE/ifTfCmkvqGpSlVB2xRJzJM/ZUHcn9Op6UATeIPEGneGdKl1LU7gQ26cAfxO3ZVHcnsP8AI4zRdB1Lxpq0PijxZCYLSFvM0vR26RA9JZR3cjt2qx4e8Pap4j1FPEvjGFBKvzafpR5SyH95h3k46np7V34A6985oAAoxyPwpaKKACuS+IOvy6PoS2diQ2rarILKxQ/334L/AEUHNdTLKkMbyyOEjRSzM3AAHJJ9q888Go/jLxNdeOLxSbOItaaLE4+7EDh5gPViD+GaAOy8O6DaeHNAs9ItF/c20YXJ6u3Usfckk1qf40o6VXvbqKxsri7nbbDBG0kjf3VAJJ/SgDjtPuP7Z+MOpsMNDoenR2w9BNMd7Y99qKK7muD+FNpK/hSTXbpQt7rl1JqEvsGJCD6BQMfWu8HQUAFFFFABRRRQAVieLfD0HijwzfaPNhftEZ8uQj/VyDlW/AgH8DW3RQByXw88QXGu+F0TUAV1XT5Gsr5D1EseAT/wIYP4mutrz/U7hPCHxMs7zb5emeI1FrcN/Cl2n+rY+hZSV9OAe1egCgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigB1Np1NoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo/CkNYPinxXZeFrDzpyZruX5LSzi+aW5kPRVUc9e9AB4q8W6d4T05bm8LyzSMI7e0hG6W4c9FVe/bntWJoHhe91bXE8WeK41OoAf6DYBt0dgnY+hkPUnt26Cm+FfCF6+qHxR4sZLrXpVxFCMNFYRn+CMf3vU/XnnJ7sDj1oAAOBS0AYooAKPwoqnqup2uj6Zc6jeyiK1tozJK57Af19PXpQBx/xAluNbnsvBWnTeVPqgaS9mXrBaJjefqxO0fjXZ2Fjb6bYW9laxLFBbxiONF6KoGBXF/DuxvL1tQ8Y6qjR32tMrQxP/wAsLVc+Wg9M/eP4E813g4AHpxQAtcL8Vb2YeFU0S0OLzXLqLToTn7oc/Mx9toYH6iu5rz67/wCJ/wDGqytx81r4esWuJCOn2ib5QD77OaAO6sLOHT9PtrK3XbDbxLEg9FUAD9BVikHAH0paACiiigAooooAKKKKAMDxl4bj8V+GbzSnYRyuoeCXvFKvKt+fH0Jqr4D8SyeI/Dge8Xy9Usna11CI9VmTgn6Hr+NdQRzXnl/E3hH4p2upxLjSvEe20u/SO6Ufu3/4EPl9zn2oA9EopAcgUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAOptOptABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUZpD9a5Pxh4zGgPBpem2x1DxDejFnZL05yN7/AN1Bg+mcHpgkAFjxh4sTwzZxJBbte6tdN5djYxn55n/ooHJPtWd4R8GTWV8/iLxFOt/4iuVw0g5S1T/nnH6AevUnPrU/hbwe+nXza9rd1/aHiKdNkk5+5Ap/5ZxL2X36nr3rrgOMUAAHfvS0UUAFFFFAAa868UI/jPxxZ+E0DHStOCX+qlTje2f3UP4kbj7c9RXUeLvElv4T8N3erzjcYl2wxd5ZT91B9Tj8M+lUvAehXekaD9o1VhJrGoym8v3/AOmjD7n0UYXHQYPrQB1CoqqFAAA4AHSnUDpRQAh+tcT8OIku4Na8Rj5v7Y1KV4m7mGM+VH+ik/jV34ja3JoPgTVLuAn7TJF9ntwOpkkOxce/zZ/CtTwvpA0Dwtpekg5NpbpGx9WA+Y/icmgDWHAooooAKKKKACiiigAooooAKwvF+g/8JJ4X1HS1cRzTRfuZP7kqnchz7MBW7SGgDmfAXiRvE3hW1up18u/hJtr6IjBjnThgR2z1x7104rzi+H/CDfEq3vk+TRvErCC6H8MV4B8j/wDA+QffJr0cdKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAdTadTaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikJNcb4v8AGkul3EOhaHbjUPEl2P3Fsv3YV/56y/3VHXHU0ATeKPGa6VeJomkWx1PxFcpmCzj6Rj+/K3RFHXnr+OaXwd4Tl0RZ9U1adL3xDffPeXgHAHaNO4QcemcZqXwf4Pt/DNpNNLIbvVrwiS+vn+9K/U49FGcAdhiunx3oAMY4o6UUUAFFFFABSEnPFLXJ+P8AxBJomgeRZ4bVtSkWxsI88mV+A30XOfwA70AYUQ/4WB8Qlu1y3h7w7KRGf4bm99R6hO3v9a9IA4HArJ8MaBa+GfDtlpNoCY4IwGdusjnlnPuTk1r0AFFFIaAPP/GP/E++IXhbw0nzRW0h1e8A7LHkRg+xc4r0GvPfAudb8ZeLPFDEmJrldNtD/wBM4QNxHsWOfwr0KgAooooAKKKKACiiigAooooAKKKKAMHxh4ci8VeGb3SnYJJIgaCTvFKvKMD2wR27ZqLwT4gPiHwzb3Eg23kBNrexnqk6fK4P48/Q10RANecuR4L+Kiyfc0jxR8h7LFeoOP8AvsfmfpQB6OOlFIOlLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAOptOptABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNJOcDFKTzXB+JPE+qalrp8KeEgjagoDX2oSDfFYIenHeQ9h2/PABJ4t8UXkuoJ4W8LyJJr90mXkP3LGLvK57HB+Udc/gK1/CvhGw8L2LJFuub2b5rq+m5luHPUsT0HoOgp/hfwjpvhe0ljtFeW5uH8y6u5zumuH/vM34nAHArfoAMUUUUAFFFFABRRRQAySRYlaR2VY1GWZuAAOuT6YrzvwereM/Ft742uVLWFuWs9FjYcbAcPN9WPAPpmrvxAuLvVZ9O8H6bKY59WLNeSJ96GzX/AFh+rZ2j6muw07TrXStOt9Ps4RFbW0YijQdlAwP/ANdAFoe1FFFABWR4o1RdE8LarqbMB9mtZJVz3YKcD6k4H41r1wPxLle/m8PeF4uTq+oIZ1/6YREO/wDIUAbvgTRP+Ee8E6VprDE0cAebPXzG+Zs/iTXQ0i9KWgAooooAKKKKACiiigAooooAKKKKACuf8ZeHI/FPhi80tvkmdQ9vKODFKvKMD25/QmugowDQBy3gDxHJ4j8LwzXa7NRtna0voiOUnThvz4P411PavP7iVPCHxOiIHl6b4nXa5JwqXqDg57b1OPdhXfg5UH1oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigB1Np1NoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkJI55P4UhJB6/nXneveJdS8VatN4V8ITBAh2anq4G5LVT1RP70h6cdP1ABNrninUfEN/c+HPBbA3MTeXfasw/cWY6EKf45PQDp/LpfDHhiw8LaKmn2W9yWMk08pzJPIerse5P6VZ0HQ7Dw7pEGnadCIoIh1PLO3dmPdieprS6UAFFFFABRRRQAUUUUAFU9U1O10bTLnUb6URWttGZJHPZR/n+VWya858WrJ4y8aWPg+PP9m2YW/1dgeGA5ihP+8Rk+2D2oAt/D6xvNQuNQ8Z6tG0d3rG0WsDdbe1X7i/U53H8DXeDp0x7U1EVFCqoAAwABgCnUAFFFFACHP+FefaX/xUXxh1bUfvWug2i6fEexmk+eQj3A+Wu21S/h0vS7zULg4htYXmc5/hUEmuS+FNhNbeBotQux/purzSajOSOrSHK/8Aju2gDuaKKKACiiigAooooAKKKKACiiigAooooAKKKKAOb8ceGh4p8MXNhGwjvExPZzZwY5k5U56jnjjsTR4I8S/8JP4bhupFMV9Cxt72E9Yp14YH+Y+tdJgE151NG/g/4qxzxArpPicCKUfwxXiKdrH/AH14+uT2oA9FHNFA6D+tFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADqbTqbQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1m2gnsKR5BGGZiAqjJJOAB6k9q85vNRvfiXdXOlaHePZ+HIG8q91OL790/eKE9Avq3Pt7gCatrF34/wBWl8N+HriaDR4G26pq8LYJ/wCmMR7k4wWHA5/Hu9I0bT9D02Gw020jtraIYVIxj8T6n1J5pNG0jT9E0q3sNNtkt7WFcRon8898+p61oDgY7UAFFFFABRRRQAUUUUAFFFISegoAxfFfiG28LeHLzV7kbhAn7uMHBkkPCoPqcD261neANEvNK8P/AGrVsNrGpSm8vmI5Dt0T/gI2jHbFYJx8QvHzE/N4d8OTjbjlbq8H6EJ6ep969JA45wTQADpiloooAKKKKAOC+Kzy3egWHh63YrLrl/DZFl6rHnfI30AUZ+tdzBDHbwRwxIEjjUKiDooA4FcZPImtfF22tsAx6DYPO3/Xef5VB+iKx/Gu3oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuf8aaE/iLwte2Nu2y82iW1kHBSZDuRge3IA+ma6CkwM896AOd8D+JP+Eq8K2eosvl3ODDdRYx5cycOuO3POPQiuiHIBrzkk+B/iaCONG8USfQQ3qj9PMH6/SvRh0oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAHU2nU2gAooooAKKKKACmswUEnoBk06jvQBzN18QfCljcPb3uvWdtOhw0crbWGemQeRUcXxI8GTuETxNpu4+swAH1J4r58+JUp8Y/GltMtiMfaIdOVh2IIDn8GZvyrt/2hdO0uy8PaG0NvAl4J/KjfA3NCqHIJ6kA7fzoA9zjdZIlkVlZGAIZTkEHuPan15l8CL2+vPhrGb1ndIbmSK3Z+piGCPyJYfh7V6Z0z7UALUc00cEbySuscaAszsQAAOpJ9K5bWviV4T8P6uNM1HWIo7sEB41Rn8snoGKg7fxrmna++LF5tjMtl4Khf5nGVk1Ngei91jz1PGf8A0EAlvZtS+KF0bGweay8HoxW5vVBWTUCOqR+kfHLd69C07TrPS9OgsbGBIbWBNkcaDAA/z3qa2t4bW2igt40jhjQJGiDCqo6AD0qWgAooooAKKKKACiiigAooooAK5bx54hfQtBaK0HmarqDfZNPhHVpX4B+i/eJ6cV0zuEUsSAoBJJ6CvOvCoPjbxnd+M5gW02y32OjqehHSWb/gR4B9PpQB13hXw7beFvDdnpFsSwhT95KeDLIeWc/UkmtrpRRQAUUUUAFNZwgLO2FUZJPQD1p1cd8UNVk0vwFqItsm7vQtjbqv3mklO3A98EkfSgCh8L1OpRa54plBJ1m/ZoSept4/3cf8mr0AdKzdA0mLQ/D2n6XEPktLdIgR3IAyfxPP41pUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBzvjfw4PFPha701CEuiBLay945l5RvbnjPoTT/B+vr4j8MWl/jbcBfKuoj1inXiRT7hv0IrfxzXnEH/FF/FOW2PyaT4nzLF/djvU+8P8AgY59zx2oA9HooAwMUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA6m06m0AFFFFABRRRQAVna9qkWiaDf6pNjZaW7zEE9doyB+J4rRryP48+I1tvCJ0C1JkvL6VPNjQElIl+bPHTJVR9M0AeQfCzTtZ8Q/EJb6we1N9bLJePLeozRljxkhSCSS3YjpXrOo/B/WvF2uRX/jDxOtzFH8sdvZ2/lhV64GeFH4En1rH/Z4j06xg1VrmeOLVLqVI44JDtYxqCcrnk5JPT+7XvIAx+VAFTS9Ms9I023sLCBILWBdscaDAA/qfU96tEH/ACadQRmgD5A+IngfxHo/inVby5sbq4s5Z5J0vUQvGUY5G5h93ggc4r2XwuvxC8F+F9Ps30Ww17To4QV+yXW2dFb5tp3cPjdgY7AV6dqen2+q6Zd6ddLut7qF4XBHZgQf51yHw01G5j0+98LaixOoeH5hasxPMkGMxP8AiuB+FAC2PxX8Ny3P2TVJLnRL3qbfVIGgP/fR+XHvkV2ltdQXdus9vPFNCwyskbhlI+o61He6bZanbG3v7S3uoT1jnjDr+R4rjp/hVokF0brQLvUfD9yxyx0y5KI5/wBpCCpHtxQB3f40Vw7WnxB0VM2uo6Z4hjH/ACzu4TazfQMhKn6kVW/4Wg2lHZ4r8M6topHW4EX2m3H/AANP8KAPQaKy9H8R6Nr8Pm6TqlpeLjP7mUMyj3HUfiK089v5UALRQKKACiiqep6hb6Tp11qF5KI7W2iaWR8fdAGT9fpQByfxBu7jUFsfCOnXBhvdZfbNIp5htV5lf2yPlH1NdbpunWmlabb2FjCsNrboI4o1HCqOn/664r4f2F1q95c+OdXjMd7qiBLOA8/ZbQHKL9W+8f8A69d+OlAC0UUUAFFFFABXnviTOvfFTw3oZybbTYpNXuR2LZ8uL8Q2fzr0KuH8F+Xq3iTxT4jzkS3g063zz+6gGCR/vOWP4UAdx9KKBwKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5zxv4cHifw1PZRMY76MieymU4MU6cowP14/E10dJtB5xQBzfgXxIfFHhS0vpF2XiAwXcWMeXMnDgjtzyB6GulrgI2i8H/E5rcDZp/icGVT0VLxB8w/4GvP+8K78dOaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAdTadTaACiiigAooooAKTAyT3NLRQAmBS0UUAFFFFABivOvFo/4RTx5o/i5MpYXQGmao3ZVYjypD9G4J9MCvRayvEei2/iLw9qGk3X+puoTHux909j+BwaANQdKWuW8Aa0+teEbQ3HF9Zk2V6rHJE0XyNn3OAfxrqR0oATAPagqCMEAilooA5DWPhl4T1mf7RJpUdpdA7hc2TGCQH1ymAT9c1mDwt440A58P8AitdSthyLTXYt5/7+p830GK9CpCAeoz9aAOFg8beIdPYp4k8GahAi8G60xhdx/UqvzAfga1dN+IHhTVZxBa65aCc8eTM3kyZ/3XANdNWRrHhfQvEEZTVtJs7vsGliBYfRuo/A0Aau7oQQQe/+favPPF/meMvFll4Mtwx063KXusyLx8gOY4T7scE+3NZnibwr/wAIFoN5rWheK9W0qK2TclnKwuoXYn5UVH6Fjx1qv4XuvHHhOynvtV8KnVzqcv265uLGcfaFLKMK0ZAzgcYHA6UAeuxxokSoihVUAAAYAFPri9M+KXhbULn7LPevpd4OtvqcZt2H4t8pPsDXYxypKivG6sjDKspyGHtQA+igdKKACiig0AYvi3W08OeE9U1d2UG1t3dN3QvjCD8WIH41S+HmiSaB4E0mwnDC5EPmzhvvCRyXYH3BYj8Kw/iQf7X1bwv4UXldQvxc3K+sEA3sD9ePyr0IcCgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOW8f+HJPEnhaaC0YpqVsy3VjKvVJ0OVx9eR+PtVnwd4kTxR4attR2+Xcf6q6hHWKdeHQ/j+hrfwDXn1tC/hL4rSxoAuleJozKo7R3kY+Yf8CXJ9z9KAPQhRSDoO1LQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAOptOptABRRRQAUUUUAFFFFABRRRQAUUUUAFGOc0UUAedceD/iyEH7vSfFCE4/hjvUH/ALOv5mvRRXK/EDw7L4i8LTRWbbNStXW7sZB1WaP5l/PkfjV3wh4ii8VeFrLV4l2GaPEsfdJFJDr+BFAG7RRRQAUUUUAFIe/UH2pa5jxz4nbwzoitax+dql7ILWwg7yTNwD/ujqfy7igDnXI8ffEVoG/eeHvDknzrjKXN76H1CZ6evsa9IAGB7VieEvD0Phnw3aaah8yRF3zy95Zm5dz7kk/hgdq3MY4HSgCjqWi6ZrNuINT0+2vIh0W4iDgfTPSuZf4aaRbbm0G71PQpDyTp924Rj7xtlCPwrtKKAPPmt/iZoB/0e80nxLbj/lncR/ZLjHsVOz8TSw/FWxspFt/FGlal4fuDxuuYTJCf92RAQR74FegYpksMc8bRzRpJG3VXUEH8DQBT0zWtM1m38/TNQtryHu8EgfH1x0/HFXs8c1xeqfC/wxf3P2u0tZdJvh0utLlNu4/754/MVnXOm+N/COnXd9beK7XVrG1iadodVtcSBFGWxIhyTgdx3oAf4c/4qD4qeI9ab5oNKSPSbY9g/wB+Yj33YH0NehjpXjvgrxFqPgzwpANa8K6u6XjtfS6hZqs6uZTu3MoO5eCo59K7/QvHfhnxHhdM1e3klP8AywcmOXP+42GP5UAdHRSZ9qWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArmPHuhXGu+F547Fimp2jC7sZF6rPHyuPryv4109Ievv/SgDC8H+I4vFPhiy1WMBGkTbNH/zzlXh1P0Irerzi0X/AIQf4lSWJwujeJnM1vxgQ3agb1+jjke/Ar0cUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADqbTqbQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAnOePyrg/DUaeF/H+uaATsttSA1WxU9Mn5ZlHuCFbA7NXe1wXxQsriDTbHxVp6ZvvD8/2oAcGSE8Sr9CvX/doA70dKKrafewalp1rfWrh7a5iWWJh3Vhkfoas0AFFFFADXcICzMFUDJJ4AFec+GlPjfxzc+LZgW0nTC1npAPAdjxLOPr90H0+laHxFuZ7+1svCWnT+Vf63L5TOOsVsvMsn/fI2++6ut03TbXSdLttPs4hFb28YijQdgBj8/wCtAFsfh+FFFFABRRRQAUUUUAGK4f4o3Jfw7aaFEx8/XL6GwAB58tmBkP02gg/Wu3zXn0x/t/41wx/etvDlgXb2uJ+MH/tmM/WgD0BFVI1VVCqAAABgAelYGveCPDXiTLaro1rPKRjztuyT/vtcN+tdDRjmgDz3/hX+t6H8/hLxbe2yD/lz1LF1CR6DPKj6GgeK/HGhkDX/AAiL+AdbrQ5PM4/64t8xP416FR1GDzQByem/EjwrqMohOrR2Vzjm3v1NtID6YfGT9M11Ec0csYkjdWjboynIP41DqGl6fq1qbbULK3u4T1jniDr+RFcVN8KtMtJ3uPDWqap4dnY522M5MTH/AGo2yCPYYFAHf0V555vxM8Pf6yLTfFNqvXyiLW5+uPuH6YzU1r8V9ESdLXXrXUPD903AXUrYojf7rjIx7nFAHe0VVs9Qtb+AT2dzDcwt0khcOp/EVaHSgAooooAKKKKACiiigAooooAKKKKACiiigAooooA5jx54cfxN4XuLW3fy7+BlubGXPKTpypB7en41d8K67H4i8M2OqJw0sY86PvHIOHQ+4YEfhWzXnOmk+Dfihc6TIduleI913aE9I7of6xB/vD5vr0oA9Hoo+lFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADqbTqbQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVHNDHcRPDKqvHIpVlboQRgj6YP61JQRmgDzz4dyy6Fqer+B7hmb+zX+0WBfq9pISVH1UnB/LtXoY6VwfjoRaBr2i+MyNsdpJ9ivyO9tMcBj/ALsmDj3Nd2pDKGByCMg0ALVW/v7fTLC5vruURW1vE0srnoqgZJ/Q1ZNed+MzN4w8S2ngm0LLZRbL3WZV42xZykX1YjJ9gPegB/gCyudcvbnx1qqMt1qS+VYQnpb2gOVx7sfm9cfWvQh0qOGKOCGOKJFSNFCoqjAUAYAH4VJQAUUUUAFFFFABRRRQBHNNHbxPNK4SONSzMegAGSfpxXCfCqF7vRL/AMT3SEXWu3j3Zz1EQJWNfoACR9atfFPUZbTwVPYWn/H9q0senWw9WlOD+G3dXUaRp0Ok6PZadbj91awJCme4VcUAXelFFFABRRRQAUUUUAGMnmobm0tr23e3ureKeFxh45UDK31B4NTUUAcRP8KvCy3Ru9NgutHuj/y20y5eA/kDt/So59J+IGk/8gjxFY6tEvSDVrfY+PTzI8ZPuRXd4ooA89/4WNqOigr4u8Kajpqjrd2g+1W/1JXkfrXTaL4w8PeIVB0nWLS6Y8+UjgSD6qeR+VbeB6VzGt/D3wtrxMt5o8C3Gci5tx5MoPrvXBP40AdODmlrzweDPF2h8+G/Gc80Y6WetoLhT/20HzgfSrUXirxZpaY1/wAIS3Cr1udFmW4De/lMQ4H50AdzRXCN8X/BsVpcTT6hLbzW4y9pPA0c30CkDJ+mcd8VU8K/Gfw14r1uLSLeO9tbqYkQ/aY1CyEDOMqxwcA9aAPRqKRTkA0tABRRRQAUUUUAFFFFABXLePPDkniPw66WjGPU7Nxd2Ew6pMnIH0PT8fauppCM9aAMHwb4iHinwrY6qF8uaRSs8X9yVcq6/wDfQP4Vv15/p048JfEm70aRfL0/xATe2LY+VbkLiVPbIAbH1x1r0AdO/wCNABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADqbTqbQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZ+uaTba7ol7pV2M293C0L46jIPI9xwR7iuZ+Ger3N34bfSNRP/ABNdEmOn3Q7ts+449mXHPfBrtsV514h/4pT4naV4hU7LDWVGmX56BZOsLn8tuewoA6/xHr1n4a0K81e9YeTboW25wXb+FR7k4A96xvh9pN9ZaDNqWsKF1jVp2vLsEcxluEj56bVwMduaw7lv+E7+JKWuC+heGXEk3dZr3+FSO4jGT9cjvXpQoAWiiigAooooAKKKKACiikPQ9aAOJ12NNZ+J/h3TcgppcE2pzjrycRxfjkufwrtlJKgnqa8/+HztrPiXxZ4mbmK5vRY2p/6ZQDGR7En8xXoNABRRRQAUUUUAFFFFABRRRQAUUUUAFFITg9KwvEXi/RfC0Ak1S9RHb/VwL80sp7BUHJP6e9AG6eM461ia74t0Tw3Hu1W/iikP3IFO6WQ9gqD5ifwrk/tXjzxnj7JbnwppDn/XzqJL2Qeqp0j/AB5HYmuk8NeBtD8Mgz2lt5t/JzNf3B8yeQ9yXPT6DAoA878Y6V4m+LOm4s9Ci0mwtj5sE2pgrdXDAEAKoHyLz/F7GuV+G/wj8U2PjWx1HWLQWVnYzCUkyqxdh0ChSevHJ7Zr6RxRtB7UAC9KWiigAooo4oAKKKKACiiigAooooA5H4ieHZ/EHhl2sCU1WwdbywdeolTkKP8Ae5H4j0rS8K+IYPFHhqz1aAhfOT96n/PKQcOp9wcityvPNMhbwj8UbrT1wuk+IY2uoFxgR3SD94o/3l+agD0OigdKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAdTadTaACiiigAooooAKKKKACiiigAooooAKKKKACiiigArhPi5Naf8ACBXNhNC1xeX8iW9hDGfna4JBQr9MZPsPeu4d9gJJAAGcmvOvDw/4TzxtJ4skBOi6ZuttIB6SydJJ/wD2Vf8A61AGj8LBZjwFZ/Z1ZJ98gvvMbLm5DHzdx9cjI9iK7cV5zpv/ABR3xSvNLcBNL8SZu7Q9kulH71P+BDDflXoo6UALRRRQAUUUUAFFFFABXOeO9dPhzwTq2pocTRQFYfeRiFX9WFdHXn3jz/ieeLfC3hVMsjXJ1O8X/pjCPlB9mY4/CgDofBOhDw14N0vSsfvIYF84+sjfM/8A48TXQUgpaACiiigAooooAKKKKACiuf8AFnjLR/BenJfaxO6RyPsjSNCzOcZwBXNWHxs8HahatJDcXfnhgiWn2VmmlY9AqrkH8xQB6Jn371z3iTxvoPhRVXU71RcSf6q1iG+aUnoFQc+3OBmsC4m8e+KyEsoI/C+mMP8Aj4uCst4y/wCygysZ+pzW34b8CaJ4ac3NvC9xqMnM2oXR8yeQ9yWPQewwKAMSC58ceL33xxN4V0k8b5UEl9KPZT8sf45IrZ0LwDoOg3h1CO3ku9SY/NfXshmmz6gt938AK6fAxjHHpS4oAMYOeM+tFFFABRRRQAU1m2gknAHOT2FOryP47eNX0Dw9FoljK0d9qQPmMpwUgH3se7Hj6A0AP1n4rX2q+Kk8L+BbW2vb0krLe3GfJjwfmIAxkD1zz0ANTeMrjx54R8Lya/F4ltb42rKbm1k05EQhmC/KQd2BuHuevtWH+zpoaw6LqeuyxjzbiX7NE567EGWA9iWH/fNdX8bb2Oz+FmqJIfnuWigj92MgY/orH8KANL4c+PYPHmgtdCNYL63YR3VuDkK2Mgr/ALJ5x9CO1diOlfPX7NsM51HX5xn7OIoUJ7bizED8AD+dfQwORmgAooooAKKKKACuV+IGjXWreGnm01iuq6dIt7ZNj/lomfl99wyuPcV1VIRySB6UAY3hXxDB4o8NWOsW42rcx5dO8bg4dT9CCK2q840n/ih/iNdaLIdmka+5u9PP8MdyB+8i9t2dwHTpivRgcqD60ALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAOptOptABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRVa9vIdPtJ7u6lWK3gQySSN0VQMkn6AGgDkfiNe3VxY2vhbS5/K1LXJfIDjrFABmaQ+wXj6tXVaVpdpo+lWunWUXl21tGI419gO/r61xXw+trjXtQvvHWpxus2o/utOhfrb2in5cejMcsf/r16COgxj8KAOO+JWiXGq+FWu9PBXVNKkXULJgOfMj5I98rkY78Vu+HNct/EXhyw1e2x5V1CsoXOdpx8yn3ByPwrTIyfX2rhPB5i8P8Ai3XvCKjy4Sw1SwXp+6l4kUDsFkB/BqAO9ooooAKKKKACiiigBCcVxHh6Ean8TPE2tkhls0h0qBh2KgSSj/vpwPwrqtY1GLSNGvtSnI8q0geZvooJ/pXN/C6xntfANhcXf/H3qDPfznoS0rFwT77So/CgDsqKB0ooAKKKKACiiigAoopCce2KAPGv2htCn1HQdIv4G3NbXLQ+SMlpDKFACjucr09zWR8E/hxrmkeIm1/WrOSyiihaOGOb77s2BnHYAZ/Me9eh6ssfiD4paRpZ+eDRIG1K4HYzN8kIPuMuwruQoH1xjNACjoKKAMDAooAKKKKACiiigAooooAK+Y/2iI5h4+sncN5LaegjY9Mh3z/Mfn719OVyPxA8GaP4x0Mw6tJ9lNsDLFeDAMPHJJPG3pkH9MZoAq/CS0is/hfoaxADzIWlYnuXcnr+NeX/AB5199c8QaZ4R0zdcSwN5kqRjJaZ+EQD1A/9Cp/gXUdaXS7zw9pfjzRbTTIJzDaXF0qi5de5ijZshck4LdzxivTPB3wz0TwlO+oDzNR1WU5k1C7O5yT1K/3c59yc8mgCf4Z+Df8AhCfCEGnyhTeyt592y9N5H3Qe+AAM+xPeuxHTrk1UtNQs76S5jtJ45ntZDFMqHJjfGSp9+auDpQAUUUUAFFFFABRRRQBynxB8Oy+IPC8osSU1SyZbuwkHVZU5GPr0/H2rV8N63D4h8OWGrQEbLiEOwH8LdGU+4OR+FahGTn6V53obHwf8Sb/w/ISuma4Gv9OB6RzD/Wxge+d2B2+tAHo1FIM4560tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA6m06m0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAITivP/ABss/izxDZ+CLZ2SyeMXmryIcMIFYbIx6F2H5c11viHXbLw3od1q1++2C3TcR3dv4VHuSQBXP/DzRtQtNNu9Z1pdusazP9quUPWFcYji/wCAj+ZoA7C3hjgt4ookVI41CoijhQBgAe2KkoHSigArz/4lW02knTfG1ijPcaLIftEa9ZrV+JF/D7w9Oa9AqC7tYb61ntbhBJDNGY5EPdWGCKAFtbmG8tYbq3kEkEyLJG69GUjII/A1NXn3wzu5tLi1HwZfuTeaJNtgLdZbVjmN/wBdvtxXoA5FAC0UUUAFFFITzigDgfirLJfaVpnhaBys2v38dqzL1WFTvkYfQAfga7uCJIYI4o1CxooVVHQAdq4GD/ioPjRcT/etfDtgIQRyBcTct+SDBr0EcCgBaKKKACiiigAooooAKr313DYWNxeXDhIII2lkf+6qjJP4VYrgPihcy39pp3hCyci7124WKQr1jtlOZX+mMD8aAHfDGzmutOv/ABZeoVvdfnNyFPVIFysS/Tbz+Nd7UVrbxWdpDbQIEhhRY41HRVAwB+QqWgApkkiRIzyOFRRlmJwFA5JJp9eJfH7xq+n6fD4YsZyk92oluip5WLJAX/gR/Qe9AGzL8VbzxH4pHh7wNZQXjqCZtQu93kRqDgsFGCRk4zkZOOO9O8ba/wCN/Aekxa4+o6bq1oJhHPbmwMJTdnBBDnjIxz69DWd+z74dFn4VutduI/3uoS7Ys9okyP8A0Ld/3yKvftA30dr8OFtSQZLq8jRRnkBQWJ/8dx+NAHY+CfGFl428PRatZq0XzGOaBjuaNx1GR1HIIPHXoOldIOleG/s3RXA0bXZmDfZ3uIlQk8bgp3fjgpXuVABRRRQAVzXi7whB4wto7K/v7yGwBJe3tnEfmt2LNgkgdQOmeua6WjFAHiOofs46VKR/Zmv3tsPS4iWb+WyrWkfAq400eRN431VrBuJLe1U24dfQ/Owx+FeyYHpRQBQ0fRtP0LS4dO022SC2hGFUdz3YnuT1JNX6KKACiiigAooooAKKKKADFcl8QfDs2u6Ck+nkpq+mSi9sHHXzE52fRhx9cV1tIcZ/WgDF8KeIIvFPhix1eFdn2iP94n/POQEh1/Bga264DRJl8KfELUfDbgRWOsE6jpxP3TLgCaMe+Rvx6E4rv6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigB1Np1NoAKKKKACiiigAooooAKKKKACiiigApDntS1zXjnxN/wi/hya6hTzb+Zhb2MHeWZ+FHuB1PsKAOavh/wnvxHj00YfQvDkizXXpPefwxnsQg5PvkV6SoAUDtWH4Q8PR+GvDdrYD5rjHmXUx5aWZuXYnvk5/St2gAooooAKMZzRRQBwfi6OLQPGegeLM7IXf+yr49B5cp/dsfZXxn2b2Fd5WT4l0O38SeHr/SLnAju4Wj3Y+4f4WH0ODWL8N9cudX8KpbahkappkrWF6pPPmR8Z/EYOaAOwooHSigAqG5nS1tpZ5WxHEhdj6AAk/oKmrjfidqD2fgi7tLdsXepyJp0HPV5jsP47Sx/CgCr8J7WVvCcmtXa7bvXLybUZR6B2IQfTaAR9a7wdBUFnaQ2NjBZwIEhgjWKNR2VRgD8qnoAKKKKACiiigAooooAQk4NcB4bhfXviT4j8Ryjdb6fjSLL0BX5pj/AN9HGR710HjbxAvhjwhqWrdZYotsC/3pW+VB/wB9EfhmjwTor6D4N0vT7jm6SEPcEnJMzEs+T3+ZjQB0A5FFFFAC9q+S/jmk6fFTUDNkRvFAYs908sA4/wCBBq+s64f4h/DXTvHtrE0kptNQgBEN0ibuD/Cw7jPvxQBq+BLOOx8A6BbxgADT4ScDglkBJ/Ekn8a8K+Nuty+LfHtj4a0kG5NmfJCR8755CMgewAUexzXoll4P+JFn4bj8Px+J9LitI18pLpbdzOkeMBQTx049fetrwP8AC7RvBUjXiu9/qsn+svbgfMM9do5xn16+9AGt4F8LQ+DvCVno6MryRgvPIvR5W5Yj27D2ArpKQUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcb8SNCuNV8Oi+035dX0mVb6yYDnenJX33AEY9cZrb8Na9beJfDtjq9rxFcx7iv9xhwyn3ByPwrW5zkCvPNDifwf8AEq/0EcaRraNfWIA4imX/AFsYHuDux7fWgD0SikHSloAKKKKACiiigAooooAKKKKACiiigAooooAdTadTaACiiigAooooAKKKKACiiigAooooAax2gktgDrXnOg7vH3jWTxNMCdF0eV7bSU6iaXpJP7gdFP8AUVqfEPVJTp1v4b02Urq+uMbWDaeYo/8AlrKcc4Vc/ia6XRtJtND0a00uxTZbW0Qjj9SB3+p6n3NAF4dBS0UUAFFFFABRRRQAhrzrUP8Aijfija6iDt0vxLi0uc9I7pR+7f8A4EPl+uTXo1c3468OnxR4SvtNjO26KiW0ccFJl5Ug9uRjPoTQB0g6UVieE9dTxF4XsdTUjfJGBMnQpKvDqfowIrboAPpXnuv/APFQfFrQNEBBttIhbVrkdvMzsiB9xkn8a9BY4B9Oprz74bD+2NQ8S+LGGV1S+MNq3rbwjYh/E7vxFAHoI5ANLQOlFABRRRQAUUUUAFJn8KWobm4itLaa5nYJFEhkdj2Cgkn6UAcD4l/4qv4k6P4ZX5rHSgNVvx/eYHEUZ/E7iD1B9q9DHT1rgvhjZz3Onaj4pvYyl3r90blVbqkAyIl+gHP413w6UAFFFFABRRRQAmBnOOaXH1/OiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArkviDpV3e+H01DSx/wATbSJlvrPj7xX7yHvhl3LgdSRXW0negDL8Oa7beJfD1jrFmf3N1GH25+4f4lPuCCPwrVrzjw5jwV48v/C8vyaXq7Nf6UTwqv8A8tYR7jhgPT616PQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA6m06m0AFFFFABRRRQAUUUUAFFFFABUN1cw2drNc3EixwwoZJHY4CqBkk/lUxrz7xv9o8TeI9O8FWsjJaSr9s1d0OCLcHCx+29uPoPSgCP4f283iPV7/x5fxMpvR9n0uNxgxWing+xc5P8uK9FHSooLeK2t47eGNY4o0CIijAVQMAD2FS0AFFFFABRRRQAUUUUAFIR9D6UtFAHnXh4nwr8TNX8OuSLHWQdTsM9pek0Y9/4vQAV6KOgriPibpVzceH11vTFI1bQ3+22rDqyj/WIfUMoPHfGK6jRNWt9d0Wy1W0bdBdxLKntkZwfcHj8KAMT4jaw+ieAtXu4QTcNCIIAvUySEIuPcFs/hWl4U0dPD/hPS9KTH+i2yRsR3bHzH8WJP41g+MSmqeLfCvh9vmR7ltRuFH9yFSVz7F2UfhXajpQAtFFFABRRRQAUUUUAFcP8T7+RdAttBtj/pmvXSWCY6rGx/et9AoIPpmu3JrzzRj/AMJX8V9T1dvnsfD6f2daf3ftDczMPcD5aAO/toI7W1ighTZFEgRF/ugDAFS0DpRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUdaKKAOP+IuiS6p4cN7YjGqaTIuoWbAc74+Sv8AwIAjHrjNb+iava65odlqtm263uoRKgHOMjlfqDx+FXyM+/bBrzrwqT4O8d3/AIRfK6XqAbUNJz0TJ/exD6E5A9MmgD0eiiigAooooAKKKKACiiigAooooAKKKKAHU2nU2gAooooAKKKKACiiigAoopCcfhQBl+IddtPDOh3er3zYt7aMuR3Y9Ao9ycD8awfh/pF9b2V5r2sDGq61ILmWP/njHtxFF/wFT+ZNZOqf8V58Q4NGX59D0B1uL4/wz3X8EXodvUivSB09+9AC0UUUAFFFFABRRRQAUUUUAFFFFADWUHOQCDwfcVwvgTy/D+r6z4LzgWcv2yyGettKc4H+45YE+4rvK82+J5uPDd5pnjuwh82XTc215EDjzbeTjBPs2D+PtQBP4Yb+3/if4k18822nKuj2x7Eqd0p/76wK9BHSuP8AhhpDaV8P9M89i91dobydz1Z5TvyffBA/CuxoAKKKKACiiigAooooAwPGniFfC/hPUNWI3SRRbYU/vyt8qD/voj9ag8B+HW8M+ELOwnO68bM92/dpnO5s/TOPwrK8VRJ4h8eeHdA3B4LFjq16nUYT5YlP1dicHstd0BxQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVx3xD0K61TR4dS0r5dZ0eYXtmf75X70f0ccY9h2rsaQ/hQBleGtet/E/h2y1i0yIrqPdtPVG6Mp9wwIrWrgPDMsfhnx1q3hIjyrW9P8Aaem54B3YEsY+jAsAOgJrvwcjI70AFFFFABRRRQAUUUUAFFFFABRRRQA6m06m0AFFFFABRRRQAUUUUAFc5428TJ4V8N3F+qebePiGzgAyZpm4RR688/QGuiJwOnFeb6Hnx547ufEEp36JosjWulp/DNOPvz++OAD269c0AdT4M8Or4Z8NWtgx33JzNdS95J35die/Jx9AK6AdKQdKWgAooooAKKKKACiiigAooooAKKKKACvPPimDq8eheEkZgdav1WcIcH7PF88n8lr0I/XFcJYwHWfjDqmoSfNDoljFZwr/AHZZf3jke+3AP1oAT4YahcRaVe+F9Qk3X/h+c2hPeSHrE/0K8D2Arva4LxHEnhzx/oviZCIre/I0q/xwCWyYXP0Ybc+hFd4OlAC0UUUAFFFFABTJZEijZ5HCooLMx6AAZp9cL8Ub+4Gg2/h+wkKahr1wtjEw/gjPMrfQKD/31QBX+GiyazLrnjKZSDrN1ttQf4bWLKJ+fzH8K9BHSqumafb6VpltYWsYjt7eNYo19FAwKt0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcV8StHubzQotY0tT/a+iSi9tcdWC/fT6MuRjuQK6PQdZtvEGhWWrWb7re6iEi+oz1B9wcg/StBhnPGT6f5/GuA8K2zeEvHGq+GAdulX8Z1LTI+gjyQJox9CQQB0GaAPQaKKKACiiigAooooAKKKKACiiigB1Np1NoAKKKKACiiigAooqK5uIrS3kuLiRY4YlLu7nAVQMkk0Acl8QNXmjsLfw7psvl6xrjG1t2B/1SY/eSnvhVz+OK6DQ9FtNA0S00myTbbWsYjTjk46k+5OSfrXGeBIJvE+v3/jy/jZUuFNrpMbjBjtlP38di55/+tXouaAAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBDdXEVpaz3M7hIYUMkjH+FQMk/lXHfC8TXfhabXLhDHPrV7NflT1VGbagz6BVXFN+K97ND4Kk0y0P+naxNHp1uvqZDhv/AB0NXXaZYQ6ZpVpYQDENtCkSf7qgAfyoAzPGPh9fFPha/wBIZ/LeePMUn/PORSGRv++gP1qr4B8RSeIvC0Et0pj1C1c2l7GeqTJw358H8a6fHNedA/8ACIfFthyul+J4sj+6l5GOntvX82NAHo3WiiigAooooAQnFcFY258RfFe91Zm3WXh+AWFv6G5kG6Vh7hSqmup8SazB4d8O6hq9wR5dpA0mCcbj/CPxOB+NZHw30m60nwVafb8/2hes97d7hg+ZK2459wCB+FAHWUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAHWuK+I2l302mWmu6SAdU0Of7ZCh/5apgiSP/gS/wAq7WmkAnBwQex70AUNC1i11/Q7LVrJ91tdxLKnqM9QfcHIPuK0a848JE+EvG2p+DZiUsL0tqOkE9NrH97EPdTyB6ZNej0AFFFFABRRRQAUUUUAFFFFADqbTqbQAUUUUAFFFFABXnvj0z+JNc03wPasywXI+2arIDytqjcLntvYY/DuM12Gv61a+HdDvNWvX2W9tGXb1J7KPcnAHua5z4eaXfrp114h1lcaxrbLcSp0EEYGIoh9FOfXJNAHYwwR28EcESBIo1CIijAAAwAPwqSjp0ooAKKKKACiiigAooooAKKKKACiiigAo70Uh45JwKAPP9RP9vfGjS7L71toFk97IOo86X5EB9wvzCvQR0rgfhnC16mueKJuZdY1BzE3/TCImOMfo31rvh0oAK5b4g6LJrPhC7FtkX1mVvbNh1E0R3Lj64I/GupppGc8Zz2oAzfD2tW/iHw/Yatan91dQrIBnOD/ABL+ByPwrUrznwgD4T8b6v4Nf5bG4B1PSs9kY4ljH0bkD0zXoo6UALRRTJHWNGd22qoJJPpQB5944/4qXxn4d8Hp81t5n9p6io5HlRn5Fb2Z+Pwr0QdMivPvhtE+tT6v41uVIk1ecpaA8bLSM7U+mSCfwr0GgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKCM0UUAcZ8R9HlvNBj1ewB/tTRZRqFsV6ts5dD7MoIx34FdNpWp22s6TaalZyB7e6iWWNu5BH86tuoZSGGQRgj19q888Gs3hLxhqPgiViLF1N/o7N/wA82J8yIf7rZI9sk9qAPRaKQcAUtABRRRQAUUUUAFFFFADqbTqbQAUUUUAFITilrnvGfiWLwp4budSZfMn4itYR1mmbhVHvn9AaAOZ1pG8eeO4tBjBbQ9DlW41Jj92efGY4fcDqf/1V6MOAK53wRoMugeGbeC82tqM5NzfSD+Odzuf8icD2UV0dABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXNePtc/wCEd8E6rqCkiZYDHAB1Mr/Kn6kfka6U15545/4nfjfwl4ZX5o/tDapdDr8kIOwH2LHFAHX+G9KXRPDWmaYAAbW2jibHdgoyfzya1KB0ooAKKKKAOD+JmnXEVjYeKdOj3X2gT/aio6yW5GJk/FRn8K7HTdQt9V0u11C0fzLe5iWWNvUEZqeWNZY2jdA6OCrKRkEHggj6Vw/w6UaIdY8ISSEtpFyWtweptZfnjP4ZZT6YoA7yuP8AiRqslj4VewtG/wCJjrEq6baD/bl+Un2AUsc+wrrs+9eeK3/CU/GFn+9YeGLbb6qbuUc/Xaox7GgDudL0630nSrTT7VNsFtCsSA9cKMDPvVyiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKADFcT8SNFu7rS7XXdJXOr6HN9rgUcGVMfvI/+BKPxwBXbU1hkEHkeh70AUND1q08QaHZ6tYvvtrqISKT1HqD7g5H4Vo1wPhBo/Dfi/WfB5+SCRjqenBuMxSH94g/3Xz+BrvgcjNABRRRQAUUUUAFFFFADqbTqbQAUUUnfFAATjvXm+kj/hPfiDPrkg8zQtBdrbT1/hnuf45vfHQHt1q5458WQlB4V0a/h/4SHUpFtAiNua2V/vyNjptXJx1yRXVaDodl4d0O00mwj2W1tHsXdySe7H3JyT9aANIdKWk/GigBaKSigBaKSigBaKSigBaKSigBaKSigBaKSigAPX/PNefeCh/bnjvxX4kJ3RRzLpVo3osQBcj2LEH8K6Dxt4ntvCfha+1KaeKOdYWFqjkDzJdp2qB35xnHaoPh3o66L4D0m2JDSyQC4mcHO+ST52Pvyf0oA6kdKKT8aKAFopKKADArzzx3nwz4q0TxpENtukg0/VMdPIkPyuf9xj/48K9DrP1vSbXXdFvNLvQWt7qIxOB1we49wcEe4oAh8R63D4e8M3+sTFSlrbtKATw7Y+UZ9zgfjWP8N9Dm0bwdbvehv7RvmN9eM3DeZId2D7gEL+Fed6bf3Xiw6H8PNTkD3Wl3sg1X0lhtx+7ye4YlRxz8pNe5Dp/jQAo4FFJ+NFAC0UlFAC0UlFAC0UlFAC0UlFAC0UlFAC0UlFAC0UlFAC0UlFAC0UlFAC0UlFAC0UlFAC0UlFAC0UlFAC0UlFAC0UlFAC0UlFAC0UlFAC0EZpKKAOG+JelXX9mW/ibSkJ1XQpPtUe3rLEP9ZGfUFece3vXV6PqtvrejWeqWbh4LqJZVI9x0+o6fhV1lDghsEEY56H2rzTw3f23gPxff+EL67it9NuXW80YyttAEjEPFn2Y8DvmgD02ikHQUtABRRRQAUUUUAOptOptABSHr1ozz1FL1FAHkF58DIb7x/c6/NrM62dxM9w0EYKSqzZ4EgPABPp04rf8A+FQeHf8An91z/wAGUgrvjjOPU9+KdQB5/wD8Kg8O/wDP7rn/AIMpKP8AhUHh3/n91z/wZSV6BRQB5/8A8Kg8O/8AP7rn/gyko/4VB4d/5/dc/wDBlJXoFFAHn/8AwqDw7/z+65/4MpKP+FQeHf8An91z/wAGUlegUUAef/8ACoPDv/P7rn/gyko/4VB4d/5/dc/8GUlegUUAef8A/CoPDv8Az+65/wCDKSj/AIVB4d/5/dc/8GUlegUUAef/APCoPDv/AD+65/4MpKP+FQeHf+f3XP8AwZSV6BRQB5//AMKg8O/8/uuf+DKSj/hUHh3/AJ/dc/8ABlJXoFFAHkXij4F6fqtnDHperX0E6SZJvJ2nUqRg4BPBrWsvgz4ftbKCBr/WWaNApZL50BwOoUcAe1ej4ooA8/8A+FQeHf8An91z/wAGUlH/AAqDw7/z+65/4MpK9AooA8//AOFQeHf+f3XP/BlJR/wqDw7/AM/uuf8Agykr0CigDz//AIVB4d/5/dc/8GUlKPhD4fGSL7XP/BlJ/jXf0cZz3oA8b0/4B2Fp4quNQm1i8ewfc0MMblJsn+9IDkgfQGukHwg8PY5vdc/8GUlegUUAef8A/CoPDv8Az+65/wCDKSj/AIVB4d/5/dc/8GUlegUUAef/APCoPDv/AD+65/4MpKP+FQeHf+f3XP8AwZSV6BRQB5//AMKg8O/8/uuf+DKSj/hUHh3/AJ/dc/8ABlJXoFFAHn//AAqDw7/z+65/4MpKP+FQeHf+f3XP/BlJXoFFAHn/APwqDw7/AM/uuf8Agyko/wCFQeHf+f3XP/BlJXoFFAHn/wDwqDw7/wA/uuf+DKSj/hUHh3/n91z/AMGUlegUUAef/wDCoPDv/P7rn/gyko/4VB4d/wCf3XP/AAZSV6BRQB5//wAKg8O/8/uuf+DKSj/hUHh3/n91z/wZSV6BRQB5/wD8Kg8O/wDP7rn/AIMpKP8AhUHh3/n91z/wZSV6BRQB5/8A8Kg8O/8AP7rn/gyko/4VB4d/5/dc/wDBlJXoFFAHn/8AwqDw7/z+65/4MpKP+FQeHf8An91z/wAGUlegUUAef/8ACoPDv/P7rn/gyko/4VB4d/5/dc/8GUlegUUAef8A/CoPDv8Az+65/wCDKSj/AIVB4d/5/dc/8GUlegUUAef/APCoPDv/AD+65/4MpKP+FQeHf+f3XP8AwZSV6BRQB5//AMKg8O/8/uuf+DKSj/hUHh3/AJ/dc/8ABlJXoFFAHn//AAqDw7/z+65/4MpKP+FQeHf+f3XP/BlJXoFFAHn/APwqDw7/AM/uuf8Agyko/wCFQeHf+f3XP/BlJXoFFAHn/wDwqDw7/wA/uuf+DKSj/hUHh3/n91z/AMGUlegUUAef/wDCoPDv/P7rn/gyko/4VB4d/wCf3XP/AAZSV6BRQB5//wAKg8O/8/ut/wDgykrnPEHwFsdS1WzubLWLyKBOLhbhzM5AORsYng9f85r2OjAzQAijaoXrjilo6UUAFFFFABRRRQA6m06m0Acp8RG+y+C9V1Jb+8sp7O1klhktrho/nx8oIHBBbA5rxz4UXfifx5quowah4r1yK2tbcMGtrgA+YxwoOQQRgNxwTiut/aF142HhC10eN8SalPlwD/yzjwT/AOPFPyrz/wAEa34k8BfD691nT/DRng1GQMNTklBSNV3IoMY54bdycDmgC5oHxD8U+Hvil/wjl7rcuq2H9p/YJPPAYnMmzcDjII4OAa+lB0rwL4UeBPD2rapF4oPiM6rf28vnyW/lGPy5TkgvuO4885HHHfv76DkA8/jQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYnijUNT0rR7jUNNjtJRawyTyx3BYFlVc/KR9D1rbrzn42a7/Ynw4vI0bE2oMLRMHs3L/8AjqkfjQBynhn41+JfFusDS9K8NWLXRjaTD3TKML15I+n51raf8cLe315tF8V6NNol4jBJGMnmRqccE4GQDnORkY71y/7OWgb59X16ReEC2cXHGThn/EYT86oftGWkEXijSLmIDz57RlkAHUK3yn6ncfyoA+kUYOoYEEHoRS1x/wAKtSn1X4ZaFdXJ3S+QYixOSRG7ICffCiuwoAKKKKACvL/iX8S9X+H9/aINMsru2vA/lEyurrtC53cY6t616efrXyx8etTOo/Ed7NT8ljbRw89AzDeT/wCPgfhQB6z4c8beOvFPh6LWtO8OaR9mlZhGst66M204JA246g96Xw38QvE2p/EH/hFtY8Nxae8cTTTOsxc7BwGXjBBYqPxqiPiD4d8GeDdM0Hw/f22q6qsUdrbRQtuRpTgFnI6LubPHXp649Kh0a0XWF1l4lOom1Fq0y5A2bt2AO3zc+tAGkOlFA6UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZut65p/h7TpNQ1S7S1tY/vO/c+gHUn2FaJz2r5U+K/i298b+Ov7DsctZ2lz9ktYh/y1lLBSx9cnge2KAPUbD4peJPGmovaeCfD0It4ziTUNUZhGo46quOvYAk+1Hirx3498B2wu9Z0rRtRspCY0uLEyRiJz90OGLccfj0zXfeEPC9l4R8N2uk2ag+WMyy4AaVz1Y+uf5Yp/ijw3aeK/D9zot4zJBPty0YG5drBhjP0xQBZ0C7u7/w9p15fxxx3c9tHLMkYIVHZQSBknoTjqa0aaiqqAKMADAGMYp1ABRRRQA6mE4Bp9V7iJpoJIlleFpFKiRCNyE8ZGQRnnvxxQB8v/HHVJdf+Jo0q2BkNlHHaxovO6R/mOPU/MB+Few+LpdN8EfBu4024aMY042MSdfNkZCvA+pJqGb4I+G59XbVpNR1r+0Gm8/7R9qUOJM53AheDnpjpU1z8GfDuo3SXGq3+uamU6C8vi459CACPwoA8o/Z9sNQfxvcXsMcgsorR453HC5JXavucjOO2M19NjGOOnas/RtC0zw9pyafpNlFaWqciOMdTjGSTyT7nmtGgAooooAKKKKACiiigAooooAKKKKACiiigAr5x/aN1rz9e0nRVf5baFriQD+85wM/QJ/49X0VK0ixt5Sq0mDtDMVBPucHj3rwPxb8GvGvi/wATXWt3d9oUbzlQIlnmIRVACj/V+g/MmgD0j4UaL/wj3w30qCRSk88Zu589dz8/ou0fhXhPxS1Wbx58TPsWiq96IVWztVhGfMYZLEe2S3PTAr2HVPDnxG8QaWNHvtY0HSrF0Ec02nJK8rjoR820AEehHp0rX8D/AAy0HwKDLZo1zqDjD3c4G/Hog/hH6+pNAG94U0RPDnhXTNITB+ywKjEdC/Vj+LEmtikXgYxiloAKKKKAIbmeO2t5Z5nCRRoXdj0Cjkn8q+VPAtu/j741Jf3UfmQvdSahMpGdqKcoDntu2LX0N490zxBrvh250fQXsYmvI2imnu5XXYhxwoVGySMjJxj37ec+Bvhf468B6jc3thP4buHni8phcST5C5zwQgx0BNAHoGt+BdLvtd0PVoLGytm027+0yyJGELqEO0HA5w2w8ngA4roNI1nT9cszdaZcpc26u0QkQHaWXggHv35HFeYeKvCXxX8WWf2O41nw/Z2b53w2TzoJBj+IlCce2cc16T4Y0OLw54Z07R4SCtpAsZYdGbqzfiST+NAGuOlFAooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAa/Q49K+PPh/bvF8XtIt9QUCeLUSJAT0kUnj67hX2LivH/iJ8IbnWPEA8SeF7mGz1XessiSEqrOvR1IBw3A7Y70Aevg8daj86NpjDvXzAu7Z3we+PTI6157Y33xXktY7W60jQYpwAGvJJ2ZQB3KKSS3fjj2ArqfDnhwaKs1zdXT3+q3WDdXsoAZyP4VA4VR2UfqeaAN6igdKKACiiigB1NxTqbQADgYooooAMUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJtHPHXrS4oooATAxilxRRQAUUUUAFFFFACYGc96AoHQClooATApaKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAMCkwKWigAooooAKKKKAP/2Q=='] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 54 "已知梯形 $A B C D$, 边 $C D 、 A B$ 分别为上、下底, 且 $\angle A D C=90^{\circ}$, 对角线 $A C \perp B D$, 过 $D$ 作 $D E \perp B C$于点 $E$. 证明: $A C^{2}=C D^{2}+A B \cdot C D$." ['由于 $\\angle A D C=90^{\\circ}$, 故 $A C^{2}=C D^{2}+A D^{2}$, 因为对角线 $A C \\perp B D$, 所以\n\n$$\n\\angle D C A=90^{\\circ}-\\angle B D C=\\angle A D B\n$$\n\n而 $\\angle A D C=90^{\\circ}=\\angle B A D$, 则 $\\triangle A C D \\sim \\triangle B D A$, 故\n\n$$\n\\frac{A D}{C D}=\\frac{A B}{A D} \\Rightarrow A D^{2}=A B \\cdot C D\n$$\n\n因此, 有\n\n$$\nA C^{2}=C D^{2}+A B \\cdot C D\n$$'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAfAEGgMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoqlqWrabpEIn1PULWyiY4ElzMsak+mWOKyx478If8AQ1aH/wCDCL/4qgDoaKz9O1rS9ZjeTS9Ss7+NDtd7WdZQp9DtJFX16UALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSHrQB5x8cdaGk/DS8hBAlv5EtU/E7m/wDHVI/EVy3w41Twv4e+HGlafM1hqOs6rcg/2eHSSQvI4VdwwdgCBSSR2OMk4rJ+PN7Lr3jbw/4TtHHmDbkdvNmcKAfoFB/4FXo/iLSfBfhOLR9av1s7D+x8mHbEolucRFAgxyxBIP1A6c0AdD4W8K6f4Utr6305Fjhu7yS68tVwI9wA2D2AAxW8OlVtNuXvNNtrqSBrd5olkMLkZTIB2nHcVaoAKKKKACikPWsLVPGPhvRSy6jrthbyDjy2nUyf98g7vyFAG9RVDTtTtNX0yHUdPkM1tMpaNwpG8Djo2D271zY8UeK7nabHwHdBD0a+1CGDH1C72H5UAdnRVGB9Ql0mNpYoYNQaHLR7y8aSY6Z4JGfTFcz9h+Icx/ea54fts/8APDTpH/8AQpKAO0oqi8N42kPALtEvjAUFysOVWQrjeEJ5552556VzJ8P+OO3jqEnrzo0f/wAXQB2lFUdQiv5NMmjsLqO3vCuI5pIfMVT7qCM9+9c2lt8Q4ZF/4mXhy4j3fMHs5oyRnsRIRmgDsqKz9VuL+102SbTLKO+u127Ld5/JD8jOXwccZPTtXP23inX1uoYNS8E6lbiV1QzW9xBcImTjccMDtHc46DpQB2FFZmsa5pvh+w+26tdx2ttuCeZIDgE9AcZpNM8Q6NrQzpmq2V5j/n3nRyPqAeKANSikFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1vTv2p1FAHH3vwx8HajqEt9e6KtxdyvveaS4lZmPrnfTG+FfgmS5FzJoccswIIeSeVzx9WNdgx5/CuRk+JvhcpIun3kup3Ky+SLXT4GllZ+uAMYxwfmJC8HnigDsFGBVa/1Gy0u2a5v7uC1gX70s8gRR+JNYmhah4k1O+afU9Ht9L00xkRRST+Zcs2RgsF+VRjPGSc45qze+E9B1TWE1XUNLt7u9jQRo9wC6qASRhD8oOSecZ96AHaH4m0jxKLh9IuWuYoGCNMInVCT/dYgBvqM1nalaeNdQ1GaKy1TS9J00MPKmS3NxcMMc5DEIvf1rqUUIgVQAo4AAxinUAZmi6bPpVh5F1ql3qUzOXa4udu7nAwAoAA46e5pLPw9o2n3Ut1aaVZQTyuXeWOBVdmJySWHJOa1KKAAUUUUAFFFFABRRRQAUUUUAFFFFACMAwwRkdwehrI/4RfQf7Ui1IaNYrewtujuEt1V1P1HPetiigDF17S9T1GGD+y9cn0qeEk70hSVZPZ1bqPoQap6MPGFvqAg1s6Rd2O04u7TzIpc9t0bbgc+xrpqKAMTVPFWhaJqFvY6pqUFlPcLui88lFYf75+UHjoTmtiGRJYlkjdXRhlWU5BHqKju7S3voGt7u3iuIHGHjlQOrD3BGDWVovhTR/Dk9zLpFqbNbjBkhSRvKBHdUJ2r/wABA6CgDcorlNX8Qa7ompyNL4clv9G423OnSeZPHwM74SATzn7pPGK2dC17TfEenfbtLuRPBvMbHaVKuMZVlIBBGRwaANKiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiimt1FADqpapeNp+n3F2lpcXbRJvEFuoaSTHZQSMmuU1M+KNbuLuDzR4a0KBmWS98xWup1XqyclYkIyQxy2O1ct4i8Rape+HIovD0Oor4StNsN7rActcTRDhmi3fMUGBufr1xwCaAMzWPGHjbxFq0lnp15baHaWbFr1rfFx9nA6o8p+VpPVUGB3bqKzfh/FL8PdNtPEkMUtxpmoRA6lCV3SRR7iY5Ux12g/MO/J9K1/EC2Vl4Ej0zQ/KSLUDHZWnlcqwlOC2e+V3NnvjNdXDbxW9rHbRpiKOMRhT2UDAH5DH50Ad9aXMF5aRXVtKk0EyiSORG3K6nkEHuMVNXjmg+JrXwL4ll0KS4L6BKPOIUFhpLscAOcYWJiwxk8E+5r2FMbQVOQec5zmgB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAAajK7c7QAT6etSUUAcM174x8LE/boB4m0sH/X2kaxXkQ/2oshZAP9nB9q7WCUTwJKFdQ6hgrqVYZ9QehqSs7W9Pl1TTJbSG/urCVsFbi1YB0IIPfjHGCO4yO9AGjRXJaPfeJ7LU49I1+wW9ifPk6vZAKj4BP72MnMbcfw5XJ4rrF70ALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVHUNX03TCg1DULW0L52efMse7HXGTzV6vIf2htXSz8DW2mjBlv7pcAjkIg3Ej8Sg/GgD0QeLPDY/wCZg0r/AMDI/wD4qr9lqdhqcbSWF7bXcanazQSq4B9MgnmvKfB9v4W8PfDzw9p1/a6bqOqai0X+iyLG8jvM4PIIJAVWGe3y+pr0Hwh4TsfB2mXVhp/+onvJboKBgJvPC9T91Qq574oA6AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFRysqAu7KqqMkngAeue1cVaa1rfjHUoZtEY6f4cglDPfSxgy3+08rEp+7GcY3nk54oA2fE2p6xaC3s9D0n7be3QYLNM222twMZaVhz34UAk4PpVSwtk8H6Ve6v4j8QTXUsmJLq5uG2xJjoscY+6OcYGS2ec9tLxB4j07w1p4u7+RiXYRwwRDdLO56Ii9WP8Ak1z2meG9R8QahBr3i2MKYm32Gjht8Vp6O/Z5ffovagCCLTtQ+IUsd3rUEtj4ZUh7fS3G2W8x0efHRO4Tv1Pau7WONIBGsaiNV2hQOAPTH0qVTkHFBoA8E8Q6faeEPiTY2iSy/wDCPwZvvJCZisZZt0a5P8MZYEgfwlq6E3OpeJ9Sl0bw2yqImC3uqMu6O277VH8cnoOi963vCVpb+IbvxZq97Ck9rqd69kiONyyW0A8oYHoW8w/jXX6PpNjoWlW+m6dbJb2sC7UjTt7k9yepJ5NAGbo3hHRtE0OXSbe1EsFwp+1NcfO90zfeaQ/xE/p0GOlYOj3U3gbVrfwzqU0kui3TbNHvZD/qz2tpG9R/Ae447V31Z2uaNY6/pNxpmowia2nXDLnBB6gg9iDyD6igDQXp60tcT4Z1m+03Vf8AhEvEUpl1CNC9hfHgX8K9/wDrooxuH412q8CgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArmvEem6+19Dqvh7UwlxDHsfTrrm2uVyT1HKPz94Z7AiulooAx/DutPrentNPpt5p1zFIYp7a6TlHABOGHDryMMOD9citgdKZJnB2kBscE1xen+Kb/Q9Rh0TxgIklmbZZ6vGuy3vPRW7Ryf7J4J6dqAO3opB0paACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBrV84/FWdvGfxm0nwtCSYLVo7Z8dAXIaRvwXb/3zX0bICylQSMjGR1Fefr8HvDQ1h9YWfVV1JpWmN0l4yvvJySCPqaAJNZ8J+DvDWqWHix7XT9Ii0vzHfyYRH5pZNqjC9T1IABJPSu3sbn7bYW915UsPnxrJ5coAdNwzhgCcEZ55NcTd/CXw7qN5Dd6nc6vqEkLhkF7fvKOCOMHscc13ooAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqOq6nZaPp82oahcx29rAu55JDgAf1PoByTwKXVNUsNGsnvtSuora1QgNLK2ACTgfjnFVNU8P6drd7p13fxvP9gczQxM58ovjh2ToSOxPTJoAi8N6vfa7Yy31zpcmn20khNmkzfvZIscM6/wZOeOwxVfxJ4pt/D6wWVrbNf6xdfLZadB9+T/aP9xB3Y8CoPEXiqW01BdC0C3XUNfmXIhLYitU/wCekzD7q9wvVug6irXhnwrBoQmu7ieS+1m7w15qEow8h9AOioOyjgUAVNA8KXEWof2/4iuEv9edcIyj9zZqf+WcKnoPVjye9dYKBS0AFYvi7Wf+Ef8ACOq6qD89vbO0Q9ZCMIPxYqK2q4vx1/xMtU8M+HByL6/FzcL2aG3HmEH6t5Y/GgDa8I6P/wAI/wCEdK0oj95b2yLKfWQjLn8WJP41tUgpaACiiigDD8UeHLfxLpgtpZHt7mJxNaXcXEltKPuup9u47jIrP8J+I7q/kuNF1uNLbxBYAfaY1+7Omflmj9Ubv/dPFdZXM+LfDUurrb6jpcy2mvafl7K5I4PrE/qjdD6dR7gHSrnHNLXP+F/EsXiPT3ZoGtNQtm8m9spPvW8vofVT1Vu4I963x0oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKguraC7jEVxDHKm4MFkUMNwOQcH0IzU9FAHO6/wCKIfDd3ZHULSaPS7g7JNRGDHbSHG0SAchTk/N0HA75rfiKtGrIQykZBHcVHdW8V3A9tcRJLBKux43AIZTwQQevFZOj6TY+D9EngW+mXToS8q/a5QVtYsZKKxAwi4OM5wO9AG7RTIZEliWSN1eNwGVlOQQehB7in0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNNKa84+IHjeOK11Hw9ou241D7LIby4DYjsIip3MzD+PH3VHOeTjHIB6FbXMF1GZLeeOZAxUtGwYZHUcVNXgPwnM3gA251Rv+Jb4hjhKz5Ki1nwdqOM4AYMBu9cA176vTpQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1vpUdxLHBE800ixxRoXd3baqqOSSewHvXJ+HtY1PxFqNzr3mtZ+Goo2iso5EAa75ybhi3KpxhR3BJOKAFh8O32teKZNX8ReWbaxmYaVYI26NMcee/96Q9h/B9TUWq+JL/AFrU5fD/AIRaM3Mbbb7VGXfDY+qgdHl9F6Dv0NV7jVNR8e3D2Ggzy2Ph5GKXWrpw9zjgx2x9Oxk/Kuv0bSLDQtLh07TbaO2tYRhY0H5knuT1JPJoAp+HPDVh4a0829mHkllbzLi6mbfLcyHku79ya2h0paKACiiigBDXFaWP7W+KWs3/AFg0i0i06I9jJIfNkP1A8pa7C6uIrS1muZnCRRIZHY/wqBkn8q5b4aW8v/CHpqdwhS51i4l1OVfQytlR+CbB+FAHXDpS0UUAFFFFABSMKWigDjfFOhXtvqKeKfDqA6vbpsuLXOF1CDvG3+2Oqt68Hrxv+H9csfEejQ6lp8haKTIZXGHjccMjDswPGK0Wrhtdt7jwbrU3ijTIHl0u4/5DFnCuWGOlyg/vKPvDuuD2oA7uioLO7t76ziu7SaOa3mUPHJGcqynoQanoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqKaOOeN4ZUV43UqyMuQwPUEelS0UAcXoWj6p4T11dLso2u/DFzuaDdJl9Ofrs5+9G3bGSD7V2SdOetKetcnJ4hvdF8XHTtc8v+zdRcf2Zeou1UfABgkP944yp75I7UAdbRQKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAprYz+FR3M8VrDJPcSpFBGhZ3kbCqB1JPYe9cALvUPiXmOza50/wiGKy3HKT6kP7qd1i9W6t0HegDO8S/EU6xrMXhrw3dtapM7xTaxsOzcoBaOA9GkwRz27ZNYXiPS7TSvCkWhadGYm1S6jtWkzl3LMDI7nuSgbJr1HVPCGkar4YXQfs621pEAbY242Nbuudrp6MOue/PrXk9q+qTfEO00PXVjF3olvLKJUb5bsuFRJAvY7SxI9c0Adjd6faXunSafc26PaSJsaJum30/lz6gYpfB3iO50fVYfCGuzvMWU/2XfyNzcIP+Wb/9NFHf+Ie9UNW1s2l3Bpen25v9Zu+Le0UgY9Xc9EQdyfwzzWlafC2yuLG4m8QXEl9rlygJvoyy/ZWBDL5A/gCkZB6nnPpQB6IvSlrjvCniO7N/P4X8QkLrtkm8TBdqXsPQTJ7/AN5R0OenQdgowKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKr3j3Mds7WcUMs4GVSaUxofqwViOM9jQBYoryHwt8YdX8ZX17ZaR4QilltYTMxbVNqsAwGAfK6nPH0PSun8F/EvSfGV1daekE9hqtrnzrK5xuGDglSOuDwemKAO3prDmlXp0xXIfEnW7nRfCrmyuUt7m6lS2SQcygMcExIOXkxnC8euRg0AW7nxJ4cvtK1kX00Emm2Mhtr5rhMw5wCy5PDEZxjrntWDBYX/xAaObU4ZdP8KoQbfTSCkt+B0abptj9I++MngCovCngWSWDT7nXbdYbOxwdO0YNuSA9fNmPSSYnJJ6Ak4r0dcEcUANhjjhhSKJFSNAFVVAAAHAAAp9FFABRRRQAUUUhoA5D4lzyN4SbSbdylzrVxFpkZ9PNbD5/7Zh66u2hjtraKCFAkUSBEUdFUDAH5Vx+pn+1/ipo9kPmh0ezlv5P7vmyHyowfcASGu0HSgBaKKKACiiigAooooAKawzxj86dRQB55Kj/AA21VrmPP/CJX0uZ0AyNMmY/fHpExPPoTnvXoKMrIGUhlIyCDnIqO6t4bu2lt7iJJYZUKPG65DKeCCO4NcNpM8vgPWIPD2oSvJoV2+zSLyQ5MDnn7M5/PYfTjtQB39IcUL0qtqNw1np11dIoZoYXkCk8EgE4/SgDz7xr8U/7G12Hwx4dsl1TxBM6x+WxxFCzdN2DknuRxgck1cv7Px5Y+HZ9SXxHbT6nBE07WYsF8hioyY1P3/oc8kdAOK8r+ANk2s+O9X16+YzXUEJfzH6+bK3L/XAb/vqvpHAIIwMelAGJ4Mu9R1HwdpV/qzq17dW6zybECgb/AJgAB0wCB+FbtIAAMDpS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFUdX0uy1rTZ9P1C2S5tZlw8bjg85H0OQDkcjAq9RQBQOqWMepxaSbhFvJIjNHCx+ZowcEj6Zq8vSud8YeHZNesIpbGUW2sWD/aNPuf+eco/hOOqsPlI6YPfArV0a6u73R7W4v7M2V5JGDNblw3lv3GQcEZ/wDr80AXqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKz9Z1ew0HS59T1K4W3tYFyzt/IDuT2A5qp4l8TWHhmyjnu/Mkmnfyra1gXdLcSHoqL3Pv2rC0vwzqWtalBr/AIw8priJt9lpUTb4bI9mJ6SS/wC10HOKAK1tpmpeP5Yr/wAQW8lh4fVhJa6O337n0kuMdu4jH49K76NVSNURQqKMKFGAB7CnKcjiloARgCOefavI9K8JR+OLXW/EwnNrqV5qbyaXfKoJiihzFGCD1VsNuXuDXeeOdWfQ/BerX8OftCQGODHXzXOxP/HmWrvhvSE0Hw1pukx422lukRI/iIHJ/E5NAFDwt4QsPDEEjRF7rUZzuu9Qn5mnb3PZfRRwB+ddEOlLRQBz3ivw0viC0hkt5zZ6rZP51heoMtDJ7+qHow7j8Kj8JeJTrtrcW17ALTWrB/Iv7XOdj9mX1RuoPpXSGuS8V+Gri5u4fEOgssHiGyQrGScJdR9Whk9j2PY8+tAHWilrG8M+IrTxNpC3tqrxOrmG4t5RiS3lX70bDsR/Ig962aACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuU+JWuf8I98PtZv1fbN9nMURB5DuQgI+m7P4V1LV458c4td16wstC0TRdRvI0m+0XMsVuxQEKQqhu/3mJx7UAH7O+h/Y/CF9rEifPqFxsQ+scYI/9CZ/yri/Dkxuf2nZ5bAfu/7Qut5ToQEcMT9SM/WvQtO1PXdI+HmmeH/CvhjVP7VS1SIy3lv5EVu5++5LkbjuLEAZ9+Bg6Hwv+GUfge2mvr6ZLrXLpcTTDJEa5zsUnk8jJPGePSgDsPEuqJo3hjUtRknEHkW7skm3OHwQuB3JYgAd+K+ffC03i+znt/FOu3z/AGfdJbR6nfW7XwsmVyrhl3gxAkEbgD2GQM19B6ro1jrq2S3m6WK0uhcIiv8AK0iZA3juAeceoFYPw2VZPCM6uoZW1G+BVh1BuJOKAGW1j45u7eO4tvF+izQSKGSRNLLKw9QRLgipf7J+IH/Q1aR/4KW/+O1XuPCOoeHLiS/8FTxQxs2+fRrgn7LMe5j/AOeT/TgnGRxWroHjCx1y4ksJY5tP1eAfv9NuxtlT3Xs6+jL/APWoApf2T8QP+hq0j/wUt/8AHaP7J+IH/Q1aR/4KW/8AjtdivSloA43+yfiB/wBDVpH/AIKW/wDjtH9k/ED/AKGrSP8AwUt/8drsqKAON/sn4gf9DVpH/gpb/wCO0h0nx8OT4p0n/wAFJ/8AjtdnWH4x1k+H/B+q6ov+tgt2MQ9ZDwg/FiKAPP8AwhpnjPVbrW/ENt4h02N727a2819OZxMlvmNWX94Nq5D8c85Peuq/snx+enirSMf9glv/AI7Wz4T0ceH/AAlpWkj71tbIjn+8+MsfxYk1s0Acb/ZPxA/6GrSP/BS3/wAdo/sn4gf9DVpH/gpb/wCO12VFAHG/2T8QP+hq0j/wUt/8do/sn4gf9DVpH/gpb/47XZUUAcb/AGT8QP8AoatI/wDBS3/x2j+yfiB/0NWkf+Clv/jtdlRQBxv9k/ED/oatI/8ABS3/AMdo/sn4gf8AQ1aR/wCClv8A47XZUUAcb/ZPxA/6GrSP/BS3/wAdrnvHGm+J4vBmptrviTR5rDyTui/slsu38AX97w27GD2OK9RY45rhLc/8Jz4x+0kbvD+gzFYARxdXo6v7rH0H+1z2oAwvhbqHiXRbyTw543urr7ddoLnTTdyeaXUA71EmSSw4O08gZ9a9WdVZCjAFSMEEZBHpisbxP4btfE+kfZJ5HgnjcTWt1FxJbyjlZFPqP1GazvCfiW7vp7jQdejSDxBYAeeo4S5jzhZ4/VT39DxQBw2kfDnxP8PfFl1qfhI2WoaVdqUe0u5jE6LnIG7HO3oG7g8ivQdMg8Sahfw3mtrb6dbwkvHYWVw0jOxGMyyYUMACflAxnBJ4FdKvSloARelLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc74t1668N21rqQt1l0uOYLqLAEyRRNwJFHcKxBPXjNdFUNzBFdQSW08ayQyoUdGGQykEEH8M0APiZZIldGDIwyrKcgg9CD3p9Znh/SI9B0O10qGeaaG2UpE0zAsEySq5HoCAPYVp0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNPXnpQA6ua8T+Ko9Gmg0yytm1HXLxT9lsIzgkf33bokYxyT6cZqpr3iq6k1VvDfhmJLrW9oaeSQnybBCOGlI6seyDk9TgVe8NeFLfw+JrmW4l1DVrrm71GcfvJj6AdFQdlHAFAFTw74UmgvzrviG6TUdfcbfNVSIbVT/yzgU9F9W6nvXWL0oFLQAUUU09R/P0oA4zxof7T8R+FfD45Sa8N/cenlW43AH2LtH+VdovSuH0CT+2/id4i1TGbfS4Y9JtyOhb/WTfiCVH4V3AoAWiiigApDycUtFAHD+ItGvtB1eTxd4djeSbaP7T01Ol7GP4lH/PVR09QMd+eq0bVbLXNIttT06dZ7S4TfG49PQ+hB4I9QauN16V5/qdvcfD7VJ9dsEMnhm6ffqdnGuTaO3W4jHdem9fxwecAHoVFRW08VzbR3EEqywyqHSRDkMpGQQe4IqWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArnvGWuyaB4fee0jEuo3Ei2tjERxJPIcIPoOSfYGt9vrWdpmsWOtPeraMZBZXTWsrFPl8xQCwU98Zxn1BoAg8LaDH4b8PW+nLI00q5knnY5aaVjudyfUsTWP8Mf+RSl/wCwne/+lEldj2rjvhj/AMilL/2E73/0okoA7KsTxF4X0vxJBGt9C63EJ3W93A3lz27f3kccg+3Q9wa26KAOC/t3XfBbCLxQrajo4OI9atovmhHb7RGvT/fUY9QDmu1sru3vrSO6tJ457eUbo5YnDKw9QR1qVwGG0gEEYIPI/GuKuvCF9oV3JqfgueOzeRt8+lTkm0uD3IA/1T+68HjIoA7iiuY0Dxjaazdtpl3BLpetxLmXTrogP/vIw4kX/aX8cV0y9Dg55oAWuL8cf8TLWfDHh0ZK3d/9ruB2MNuPMIP1fyxXZmuK0fOr/FDXNRIzDpNrDpkJ7b3/AHsv4jMY/CgDtRxS0CigAooooAKKKKACiiigAoorO1zWLTQNHutVvn2W1tGXcjqfQD1JOAPc0AYPjbVbx2tvC+iy7NY1UEeav/LrbjiSY+hHRfVjx0rodG0q00PSLXS7CLy7W2QRxr3x6n3J5J7k5rA8GaPeRpc+IdaTbrWqkSSxk/8AHrCP9XCPTA5P+0TXWL0oAWuZ8X+GZNbit7/TJ/sevaeTJY3WOM9439UboR+PtXTU1hnj2xQBz3hPxOniOxkE0DWmqWj+TfWT/egk/qp6g9xXRL0rjfFnh+9jvo/FPhxVGt2qbZbcnCX8HeJv9rurdj19t7w7r9l4l0aLUrBm8tyVeOQYeJx95HHZgeDQBq0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQByXjy3v4tOt9d0oyte6M5uvIVjtuIsYljI7kpkjvkDHWuj0zULbVtMttQs5RLbXMayxOO6kZFWGGTis23uNL028ttCtjDbzGBpYbWNNoEakAkAcdWFAGpRSCloAKKKKACiiigAooooAKKKKACiiobm4htYHnnlSKFFLPJI21VA7k9APc0ASN179OMVw2oeINQ8U6jPofhOYR28D+XqGshQywHvHCOjy+/Rfc4qCS61H4iytBps1xp3hVSVlv0yk2oeqxd1j9W6t0HGa7XSdMsdG0yDT9OtY7a0hXbHFGMAf4n1J5J60AVfD3hzTfDWnfZNOiYBmLyzSMXknc9XdjyzH1rXFFFABRRRQAVV1G9h03Tbq/uCRDbQvNIf9lQSf0FWq434lyPN4Zi0WFmWbW7yHTgV6qjtmQ/givQBL8NrCSz8E2lzcKBe6mz6jdN3aSY7+fcKVH4V1tMijSGJY41Cog2qo6ADtT6ACiiigAooooAKjljSVGjkVWjdSrKwyCD1BqSigDzq3nk+GuqR6fdF38J3suLScnP8AZ0rH/VOf+eRJ+U9jwa9EXpVTUrC11Wwn0++t1uLW4QpLE44Ze/4//WxXHaFqd14T1eHwnrly8ttMSNG1GU/65B/ywkPaRegP8Q96AO9opqjAx706gAoopD65xQAtFczN4+8NQ6i9gmom6vEBLw2NvLdMmOuRErY/Gn6N418PeINRaw0rURcXaRtK8IidGRVIU7gygryRweaAOjopF6UtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUhoAy/EUmpRaBfto8An1PyGFrGWABkPAJzgcdefSm+GNDh8OeHLLSoW3+Qn7yTvJIeXc+5Yk/jVe2157zxlqGiwQK1vp9rG9xcbuVmkJKxgf7g3E+4reXpxQAGuO+GX/IpS/wDYSvf/AEokrsT0rjvhj/yKUv8A2E73/wBKJKAOyooooAKKKKAMnXvDul+IrUW+pWyy7fmikUlZIW/vI45U/T8etcuNU8QeCf3eu+brOgrgLqsMebi3X/pvGvLAf31+pFd9TWxnkZ4oAoR6zp0uhtrEN3FNYLC0/nxMGUooyTn2xWF8NrWaLwZb310u281WWTUp/wDemYsPyXaPwrkviP4VXTtOb/hGbh9Nu9euk0+Wyj4t7kyZDMy87CFDfMo6A5zmuu8OeLrS4nj0K/s30XWIYwo0+4OQ6jjMUnSRfpyMcigDraKRenWloAKKKKACiiigAooooAa34fjXDhU8aeMi2d+heH5toX+G5vu591jBH/Aj7Ve8a6zeQx2ugaM+3W9WJigkHP2aMf6yY+yg8erEVt6Do1n4f0S10uxQpb26bRnkse7E9yTkk9yaANAdKWiigAooooAQjmuF8R2Nz4T1d/F2jW7zQSADWbGLrNGP+WyD/nonf1X6A13dNbr0oAr6bqFpq2nwX9hOk9rOoeORDwwP+ce3SrVedXCP8NdXe9iDN4Qv5f8ASo1Gf7NmY48xR/zyY4yOx574r0KJleJXRgyMAVYHII7c96AH0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXJePNMu5rCz1rSoGl1bRpxcwRxj5poz8ssQ/3kJ47lVrraa3WgBI23xhtrLuGcMMEZ9afWLp2vR3+vato7QPDcac0TZY5Esci5V19shh/wGtkdKAFooooAKKKa33hQA6ivl/4tafZ618Y7XQ9ItILeebyYLh4owu6aRixdsdSFdST14NdD8U9Hf4YyaXr/gy4m0oTSGG4t4pCYpGAyCUPB6HPHYGgD3+isPwfro8TeEtM1nYEa6hDug6K44YD2yDj2rK8Z/Ejw/4IuYLfVZZzczRGRIYI9x28gE9hkggfQ0AdDrGsWGhabNqGp3Udrawrl5JOg9MY5J9AOT2rjV03UPiHJHd63by2PhhWElvpb/LJe45Ek/dV7iP15PQVi6Zrvh7xDqdvr/i3xJoiNC3mafpAv42jtPR5DnDy/ovau3/4WB4OHXxTo3/gbH/jQB0MMaQwpFEipGgCqqjAAHAAHYVJXN/8LB8G/wDQ06N/4Gx/40f8LB8G/wDQ06N/4Gx/40AdJRXN/wDCwfBv/Q06N/4Gx/40f8LB8G/9DTo3/gbH/jQB0lFc3/wsHwb/ANDTo3/gbH/jR/wsHwb/ANDTo3/gbH/jQB0ZODz6Vxd9/wATf4raZagZg0SwkvJD286Y+WgP/AFkP41oH4geDsceKNHP0vY/8a5DwT408NSaj4l13UNf0y2n1HUDHCkt0isLeJdkXBPGfmP40Aepilrmh8QPB3/Q06N/4Gx/40v/AAsHwb/0NOjf+Bsf+NAHSUVzf/CwfBv/AENOjf8AgbH/AI0f8LB8G/8AQ06N/wCBsf8AjQB0lFc3/wALB8G/9DTo3/gbH/jR/wALB8G/9DTo3/gbH/jQB0lFc3/wsHwb/wBDTo3/AIGx/wCNH/CwfBv/AENOjf8AgbH/AI0AdJWT4j0Cx8S6RLpt+hMb4ZJFOHicfddD2YHkH8Ko/wDCwfBv/Q06N/4Gx/40f8LB8G/9DTo3/gbH/jQBS8La/eR3z+F/ETqNatk3RTgbVv4R0lUevGGXsenBrsF6V534s1jwR4ls4Wj8X6Ra6pZP51hepex7oJfz5U4wy9x+GJPBPxR0vxPfJok7pHrkasJRCQ8EpT7zRuOqkDcPQcc4oA9AOO9eE/HLx5qFvfweEdGmkilljDXjQn5nD8LEPTI5PqCO2QfdRjjtXzL8TrY6H8e7PWNSQpp09zZ3Ik2naY4xGr49SNh49x60Ae5eBPB1p4K8M2+nQIpuWUSXc46yykc8+gzgD0H1q1ZeF7Sx8aap4jjwJ7+3hhZQuMFN2TnvkbP++K0LvV9OsNMOpXd7bx2QXd57SDYR6g9/w61Pp92L6whu1hmhWZd6pMu1wD0yOxxzg8jocHigCwOlLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNbrTq5nxjrF5pyaTZaYwW/wBS1CK3jbaG2Rg75WweuEVvzoAn8L6A+hwag91Otxe397LdzyqpA+Y4VRnsECj8K3xSL0paAEPSuO+GP/IpS/8AYTvf/SiSuxPSuO+GP/IpS/8AYTvf/SiSgDsqKKKACiiigApD/wDXpaQ8c0AcVqGNX+K2lWnBh0WxkvpPTzZT5SA/8BEhrf13w9pfiSy+x6paLNGDujfJWSJv7yMOVI9RWF4D/wCJjeeJPEZ5/tHUWhgbs0EH7pCPqQ5/GuzHSgDg/t/iLwQCuqefrugLwt/Gm67tV9ZUH+sUddy89SQa7HS9TsdY0+K+067iurWUZSWJgwP/ANf2PSrTYJx3rj9R8GTWd9Lq/hO7TStSkO6aBlJtLs/9NEH3T/trg/WgDsqK5PRPGkV3qC6Nrdo2j64RxazsCk/+1C/SQe3Ucg11YoAWiiigAqjq+qWmi6TdalfSiK1tozJI3sPT1PoO9XGGeK4S5z448X/YQN3h/Qpg10c5W6vBysfuseQx/wBrA7UAXPBul3U8tz4q1iIx6pqgGyFv+XS1HMcXsedzerH2rsF6UL0paACiiigAooooAKKKKAIbm3iuoJLeeJZYZVKSRuuVZTwQR3FcFplxL8PtZg0C+ld/Dt6+3SrqRv8Aj1kP/Ls7f3f7h/CvQ6z9a0my13SrnTNRt1ns7hNsiH9CD2I6g+tAF9elLXDeGdWvdD1dfCHiKdpp9pbTL9/+X2Efwsf+eqDGfUc13C8rn154NAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHOX+iXf/CdaXr9kYwi2stnfq7EF4vvx7eOocH8GNdEtVdUa8TTLp9PVHvFiYwJJna0gB2g4IOM4zVPwtrS+I/C+m6woCm7gWRlH8L4+Yfg2RQBr0UUUAFRyuscbSOwVEG5iewFSVkeJNKn1zRbjTIL97H7QhjklSMO2wghgM8DPr2oA8F+E9u3jT4x6v4qnXMNs8lygPZnJWNfwXd/3yK0Pj/qx1jV9F8JaYr3V6rmaSGLk73GEX643H6EV2vhb4VT+DobyLRfFN3breFTKTaRO3y5xgkcHDH/Ct3wz8O9D8L6jcanEtxe6rcEmW/vJPMlbPLYwAB+AzQBoeCdCfwz4M0rRpXDy2sIWQg5G8ks2D6ZJrk/iZ4Z0jXvE/hFdRslm8+7ktpCGKlo/Kd9uQR/EM/yr0pRgVxnjT/kavBH/AGFH/wDRElAGGdAufA5OdEg8ReH16FbRGvrVfToPOX8m9c11miQ+EfEOnJfaVY6Xc27cErbJlT3VhjII9DzXRmuR1fwVnU5Nb8NXn9ka0/8ArWVN0F1joJo+/swwRmgDc/4R3Q/+gNp//gKn+FH/AAjuh/8AQG07/wABU/wrA0vxm0d/Ho3ii0/sjV2+WJi+ba794pDxn/YPzDpzXYr0oAzf+Ed0P/oDad/4Cp/hR/wjuh/9AbTv/AVP8K06KAMz/hHdD/6A2nf+Aqf4Uf8ACO6H/wBAbTv/AAFT/CtOigDjPG9po+heC9Vv4dHsPPSApAFtUyZXOxMcf3mFXtA8GaNpHh/T9Ok0yxmktrdI3la3Vi7BRlskc5OT+NZ/jT/iZ+I/Cvh9eVmvTfz+nl243AH2LlBXaigDM/4R3Q/+gNp3/gKn+FH/AAjuh/8AQG07/wABU/wrTooAzP8AhHdD/wCgNp3/AICp/hR/wjuh/wDQG07/AMBU/wAK06KAMz/hHdD/AOgNp3/gKn+FH/CO6H/0BtO/8BU/wrTooAzP+Ed0P/oDad/4Cp/hR/wjuh/9AbTv/AVP8K06KAMz/hHdD/6A2nf+Aqf4Uf8ACO6H/wBAbTv/AAFT/CtOmtQBy/iVPDXhrQ59SutHsGCALFCtqm6aQ8Ii8cknFcbafDC/06yj8T6a8Nr4y8xrqSPAFswfObbaOAu07dw5yM9+NzToh478Vprkg36Do8rJpq5ytzcjh5/dV+6vuCa70Y6jue9AGL4X8S2vifSvtUSPBcxOYru1kyJLeVfvIw9v5EVPrnh3SPEtmLPWbCG8gDbgsg5U+oIwQfpXOeJdH1HRdYbxf4at/OuygXU9PBwL6FehX0lUfd9ckex6jQ9ZsfEGj2+p6dMJbadcqcYKnupHYg5BHbFAGBpPww8HaJeR3dhocSzxHMTSyyTCM+qq7EKenIGa68UtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZF5oUF54l03WZZZDJp8UyQxcbd0m0FvrhSPoTWsa5XwJf3Wr2Gq6rcXDzW91qlx9jDNlVgRvLUD2JQn8TQB1S9/rS0UUAIelcd8Mf+RSl/7Cd7/wClEldielcd8Mf+RSl/7Cd7/wClElAHZUUUUAFFFFABWF4y1k6B4O1bU0OJoLdvJx3lb5Yx+LFRW7XF+N/+Jnrvhfw6M7bm++23Hp5NuN+D7FzGKAN3wro6+H/Cul6SMZtbZI3I/ifHzH8WyfxrXpBS0AFFFFAGZrmg6Z4hsGstVtEuIDyueGRuzKw5Vh6jBrlTeeIfA4KaiLjXPDy8LexrvvLRf+mq/wDLVR13D5sZyDXe0h60AVNL1Ox1jT4r7TruK6tZRlJYmDA//X9u1XK4zUfBs1rey6x4Tu00rU3O6aFlJtLv/rrH/Cf9tcH61XX4m6dpUUkPi2KTQtShXLQSgukw/vQuow4Pp1HfpQBo+Ndbu7KC10fRyDrurMYLTuIV6yTt7IOfc4HNa3h7RLTw5oVtpVkp8mBcFmOWkbqzse5JyT9a57wVY3GoTT+MtVTF9qiKLWE8/ZbQcog92zvY+px2rtF6UALRRRQAUUUUAFFFFABRRRQAUUUUAYnijw3aeJ9JayuXeGVWEttcxcSW8o+66HsR+oyKy/CXiS7uri48O+IFSHxBYLmXHypdRdBPH6qeh9D6dK6+ua8X+GG12CC8sJ/seuaeTLYXYH3W7o/rG3QigDpF6Utc54S8UL4is5Y7m3Nnq9m/k39k33oZMdR6oeobuDXRL0oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBpPNY3hfQD4csLqzW4823kvJri3j2bfISRt3l9TnBLHPHXpW3XMajq97YfELRtPeUHTtStJ1SPaOJ4yr5z15TcMe1AHT0Ui9KWgAooooAKKKKACuL8af8jV4I/7Cj/+iJK7SuL8af8AI1eCP+wo/wD6IkoA7SiiigDP1nSdO1zT5dP1WziurSUYaORcjPqO4PuORXIJb+IfAiBbYXPiHw4v/LEnde2a/wCwf+WyjsOGHAGcV39Nb+lAGZoXiDSvEeni90q8juYckNtyrI3dWU8qfY81qiuR13wYLrVBrmh3baTrqjBuI1zHcAfwTJ0ce/BHbpUem+M5rW/i0fxbZppGpyHbDMrbrS6P/TOQ9D/sNg+maAOypDSL0qvqN9DpmnXV/cNthtoXmkPoqjJP5CgDk9EZdY+J3iDVBzDplvFpULdi5/ey/kSg/Cu2Fcf8MdOnsvBFtc3YAvdTkk1G5x/fmbd/6CVH4V2FABRRRQAUUUUAFFFFABRRRQAh61xXjbUbvUbq38G6M5W+1GMteXC/8udpnDyf7zcqo9fTFdD4i1y08OaLcapek+XCvyoPvSOeFRfUk4GKyvBWh3dhaXOrauB/berSC4u8f8shjCQj2RePrmgDf0zT7bStMttPsohFbW0axRIOygYFW6RelLQA1q891eCf4f6zc+JNPgkn0G+fzNXtIhk2797lF9P749s9q9EpjgH5SMgjBHrQAyzuoL6zhurWVJreZBJHIjZV1IyCD9KmrzmB/wDhWesfZZP+RQ1CYmCUn5dNmY52Me0THoexOD1r0RDuXI5B5B9qAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADHG4FckZGMg4/Wqei6TZ6Fo9tpdhGY7W2XZGpOSBknr+Nc78S3d/C0OnRuySalqFrZqynBAaZS3/AI6DXYCgBaKKKAENcd8Mv+RSl/7CV7/6USV2J6Vx3wx/5FKX/sJ3v/pRJQB2VFFFABRRRQAhritE/wCJx8S/EGqdYNLhj0q3btuP72b8QTGPwrsbiaO3gknmYJFGhdmPYDkmuY+HFq8Xgy3vp123OqySalNn+9MxcfkpUfhQB1Y6UtFFABRRRQAUUUUANYZxXkHji3tPiL4lGkMGGk6KzCe4iPzSXJAzGpIxhR973OOMV1/xD8VNoGm29hYTRprOqyfZrLewAjz96U+yjHHckDmsTSNKg0XS4bC33FIhy78s7HlmY9yTkn60AVtN1bW/BEMFqY5NZ8PQosaBFH2u0QDAAAwJVHpwwHrXomia5pniDTkv9KvI7q3fgMh+6e4YdQfY81yX4VzGlaNqGu+MtR1PwteLpAsV8m4u1TdHfXPB8uRAdrKgJBb7wLDGcUAezCiuN0rxo8Wox6N4osxpOqudsL7yba7PrFIeCf8AZbDD3rsV6c0ALRRRQAUUUUAFFFFABRRRQAUhpaKAOQ8VeHLxryPxJ4dZYtftEK7G4jvYs5MLj36qex/OtXwx4jtPE+jpf2qtE4Yx3FvJxJBKvDRsOxB/x71smuG8S6dceGtXfxlotu8u4BdYsIv+XqIdJFH/AD0Tr/tDI+oB3QoqppmpWer6bBqFhcLcWtwgeOVejD/HsR2ORVugAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArK1bQ7fVr3TLqV5Y5dOuPtMLREAltrIVOQcqQxyBg8DmtWsLxot03grW/sM8sF2tlK8MkTlWVwpIwR7igDcXpS1n6HfjVdA07URjF1bRz8f7Shv61oUAFFFFABRRRQAVxfjT/kavBH/AGFH/wDREldpXF+NP+Rq8Ef9hR//AERJQB2lFFFABRRRQAVR1bS7LWdPlsNRto7m0mXa8Ui5B9/Y+h7Hmr1FAHn8en+IPAi400XGveH0/wCXJ23Xlqv/AEyY8SqP7pwR2zVfxZ4n0zxX4Lj0/RL5Zn1i9h05goIeLc2ZA6HlSEV+DXozda8t8S+HF134sW0mjTR6Zqml6c13LfRxK++R32RpIO42iT3waAPUYo1iiWNAFRRtUDsB0p9cTYeM7jTryLSvGNpHpV9I22C7jJNndH/Yc/cb/YbH1Oa7Ven9aAFooooAKKKKACiiigAprA59sdDS9643xtq9xPNb+EdGl26vqkZ8yUci0ts4eY+/VV9z7UAUrONfHXi9NUf5tB0KZksh/DdXYyHlz3VPuqf72TXfrjHFU9I0u00XSLXTLGPy7W1jEUanrgevqe5PrV2gAooooAKKKKAKmpWFrqlhPYX0CT2twhSSNxkMp/z+FcV4evLnwXq0HhDV5nk0+YkaLqEh++o5NvIezr/Cf4h0weK9ArI8S+H7DxPolxpWpITBKMiRDh4nHIdT2IPP6Hg4oA1V6Ee9Ori/Ceu31rft4T8Rvu1a2TdbXRGF1CAdJB/tjGHXsa7NenPU0ALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBSv7Gxv5LUXkUcj28wuYA5+665AYfTP61dFcZqP8ApXxe0OE8/ZNJu7gf8DkiT+ldkOlAC0UUUAIelcd8Mf8AkUpf+wne/wDpRJXYnpXHfDH/AJFKX/sJ3v8A6USUAdlRRRQAUUUhoA5H4l3Mq+DptOtm23erzRaZD9ZmCt/45vP4V1VtBHbWsUEK7Yo0CIPRQMAflXH6v/xN/ijoWmjmHSbWXU5h2Lt+6iH15kP4V2g6UALRRRQAUUUUAFU9Tv7XStOuNQvZVitreMySSN0VR1q03auE1IHxt4s/sVRu0HRpFl1A9VubkfMkPuq8Mw7nAoAi0LwxD4rt73xB4q04TSaugS3s7gc2loDlE9Q5++SOQSMYxWbf+Htf8HZl0/z9d0IZP2cndeWq/wCwf+WqjtnDfWvUx0oNAHjV34iXXLW00/wxcpPqOpuYYWA5tgP9ZI46rsBzg85xwc16n4f0Sz8OaHa6TYoVgt12gscs7dWZj3JJJP1og0HSrXWbjWLewgj1C4Ty5p0UBpADnnHU5A59q0h0oApatpNhrdhJY6lZw3drIMPFKuQff2I7Ecj1rkPK8QeBubZbvX/Do6wli17Zr/sE/wCuX2PzDtmu9pDQBnaJrmm+INOS+0u8jubduMp1U91I6qR6HmtEdK5LWfBaT6i+taBdto+tn708S5iuf9mZOjj34YdjxTdM8aPDqEWi+KbNdJ1Vztifdutbs/8ATKQ9/wDYbDemaAOwopFORzS0AFFFFABRRRQAUUUUAFITzS0UAed3cUnw41iTU7cM3hS+lzewqMjT5W485R/zzJ+8Ox59q9AhkSaFJI2DxsAVYHII7EHv9abcRRzxPDNGskUiFXR13KynggjuD71wOnTS/DvWItDvZXbwzfSbdMuZGz9ikP8Ay7ux/hP8BP096APRKKRenf8AGloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqOeJJ4JIpBlHUqw9QetSU1uvagCppGmW+i6RaaZaBxbWsYhiDtuIVeBk1drkfh/PM9nrtvPLJK1rrl5CpckkLv3KOfZhXXUAFFFFABRRRQAVxfjT/AJGrwR/2FH/9ESV2lcX40/5GrwR/2FH/APRElAHaUUUUAFFFFABRRRQAhrh/h2/9rS+IfE/G3VNQaO3b+9bwDyoz+JDn8a1/HWrNongnV76LPnrbtHBjr5r/ACJ/48wq74a0hNA8M6bpMYUC0tkiJXoWAG4/icn8aALV/YWmp2UtnfW0Vzbyja8UqhlYe4NcVHpPiDwK5k0RrjW9AHLaXNJm4th/0wc/eH+w3pwa9AprDJ/CgDH0HxLpXiS0afS7tZSh2yxMNssLf3XQ8qQeOf8A69bK9K5bxD4MtdYuV1TT7l9I12IfudStgNx/2ZF6SL7H9KpWXjO80m8h0zxlZJptxIQkGoRNmzuT7MeY2/2Wx9aAO3opqHK5zmnUAFFFNY45z+dAGdr+s2fh7RbrVb5ysFshYgdWPQKv+0SQB7msbwVol3awXWuaygGt6s4nuV6+QmMRwKfRB+pNZUYbx341W5JJ8OaDOViQj5by8HV/dI+gP96vQB0oAB0paKKACiiigAooooAKKKKAOe8X+GU8S6YiRTtaanauJ7C9QfNbyjofcHoR3H4VX8I+Jp9XSfTNWtls9fsCEvLZT8rA9JYz3Ruo9OR2rqa5Lxl4cutQltdb0N1h8Q6b81uW4W4jzloJP9lv0PPGaAOtHSisDwt4ntvE+mNcRxSWt3C5hu7ObiS2lHBRh/I9x6dBvL0oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQ9aWg0AUvKsG1czBbc6ikGxnAHmiItnHrtLD6ZBq4K43Shv+LXiJj/yz0yyT82lP9K7MUAFFFFACHpXHfDH/kUpf+wne/8ApRJXYnpXHfDH/kUpf+wne/8ApRJQB2VFFFABSNmlrG8WayPD/hPVNV/itrZ3jHq+MIPxYgUAYfgjOp6z4o8RHO28vzZ257GG3Hlgj2L+YfxrtR0rD8HaOdA8HaVpbD97BbqJfeQ/M5/Fix/GtygAooooAKKKgvLmCytZbq5lWKCFGkkkY4CqBkk/hmgDB8Za/NounQ2+nIJta1GT7Np8J7yHq5/2UGWJ9PrV/wANaHF4d0G305HMsiZeedh800rHLufckk1zvhG0m17U5vGuoxNGbmPydKt3H+otc5Dkdnk+8fbaO1duvSgBaKKKACiiigAooooAKo6tpVhrVhJYalaQ3VrIPmimUMp9/Yj1/Wr1FAHA/ZfEXght1ibrxD4fTraO269tV/6Zk/65f9lju6YJrqtD1/S/EWni80u8S4iyQ2MhkburKeVI9DWketctrfg2K91E6xo93Jo+uAf8fcCgrMP7sydJB9eRxgigDqxRXF6d4ymsb6LSPF9qml6jIdsF0jE2l4f+mbn7rf7DYPTrxXTW+qWFzey2UN/ay3cI/eQJMrOn1UcigC9RSCloAKKKKACiiigAqhrGlWWt6ZcabqECz2lxGUkjI6j29COoPUHpV+igDg/DerXvh7V4/B/iC4adyCdJ1Fz/AMfcQ/5Zsf8Anqo4/wBoc/XuxjHFY3ifw7ZeJtIewu96MGEkE8XElvKPuyIexH69KyfCfiG8nup/DfiEJHr9im5mXhLyHos6ex6MOzenQAHYUUg6c0tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1qdSGgCnp2l2WmG7ezg8pry4a6n+YnfIwALck44UcDjirtcb4YYjx943jLHatzZsB6ZtkH9K7HOOKAFooooAKKKKACuL8af8AI1eCP+wo/wD6IkrtK4vxp/yNXgj/ALCj/wDoiSgDtKKKKACiiigAoopDQBxfjT/iZ+JPCegLyJb438/tHbruAPsXKCu0HSuL0X/ibfE7xBqZH7nTbaHS4SOhc/vpfxG5B+FdoKAFooooAKrX1nbahaS2l5bx3FvKu14pUDKw9wetWaKAPP10TxB4IdpfDzyavoYwTo08n723X/phIfvAf3G+gNdL4f8AFGleJbVpdPucyRnE9tKNk0Dd1dDyprZPJx7VzPiPwZZa5OuoW00ml63FzDqdqAJVx/Cw6Onqp4PtQB046Vx/jjWLktb+FtFlK63qylVkX/l1g6STN6YGQvq3TpWRefEa58FweR4402WOQDEN7p6+ZBd49ASDG3faffBxitTwBYyXVlN4sv2R9S1vE/yHcILf/llCD3wuCf8AaJ+pAOm0bSrTQ9HtdLsYxHa20YjjUeg7n3JyT6nNXqBRQAUUUUAFFFFABRRRQAUUUUAFIevXFLRQBw/inRr7StWTxh4egaW9hTZqFinH2+AfzlXkqfqO+D02g65YeI9Gt9U0yfzraYcE8Mp7qw7EHgitBq8+1q1uPAuuXHinTo3fRbw/8TmzhXJhbtdIvqB98dxzz2APQ6KhtLmC8tIrm2ljmglQPHJGcq6kZBB+lTUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSH9O9LSEUAUYZtPbVrqGF4DqKRxtOox5m052bu+OGx+NXhXHab+7+LuvL/AM9dKs5PyeUV2I6UALRRRQAhrjvhl/yKUv8A2Er3/wBKJK7E9K474Y/8ilL/ANhO9/8ASiSgDsqKKKACuL8df8TPU/DfhocrqF+Li4XsYLceYwP1YRj8a7M1xWlZ1b4pa1qB5h0m0i02I9jI/wC9lP1H7taAO1FLSDpS0AFFFFACHqPeuF1st418SHwxET/Y1gyTavIOk75ylsPbgM3tgd61vGfiCbRNOht9OjWfWdRk+zafAejSHq7f7KjLE+g96ueF/D8PhrQotPjdppcmW4uH5aeZuXdj3JP6YHagDXQAKAAABwAOmKdRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGbr2kwa3o13p1xFFJHcRMgEyblDEcHHscH8K+ZvC3w/8d+F/GkGpf2FeummzLLM0Dr+/jBwyoSQGypPHWvqumt1oAydB8SaX4ktGuNNuPM8ttksTqVlhf8Auuh5Uitdelcxr/g201W6Gq2NzLpOtoMJqNrgMR/dkXpIvsfwxVGy8Y3ej3kWl+MrWOwuJG2W+oxHNndH2Y/6tv8AZbr2NAHbUU1Dlc5z706gAooooAKKKKACuc8WeGBr8NtcWtwbLV7FjLY3qrkxP3DD+JD0I7iujooA5rwp4nbXorizv7f7FrlgwjvrLOdjHo6HujdQa6QdK5Lxf4bu7ue38QaAyQ+IbBSIixwl1F1aCT2PYnoeeOtafhnxJaeJ9HW9tlaKVGMVzayjElvKvDRuOxH8iD3oA26KBRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU09fanU1vpxQByugXQl8d+LIFtoYzAbQNKoO+UtFnLE+gwPwrqs44yaxdL0E6f4i1zVTceZ/ajwsI9mPKEcezrk7s4z261t0ALRRRQAUUUUAFcX40/5GrwR/2FH/APREldpXF+NP+Rq8Ef8AYUf/ANESUAdpRRRQAUUUUAFVtQvYtN066vrhtsNtC80h9FUEn9BVmuN+JjvP4Yi0WFmWbWryHT1K9QrtmQ/9+1egB3wxtZ4vA9rfXYxearJJqNx7tMxYf+O7R+FdhUcMccMKRRKFjjAVVXoAOAKkoAKKKKACiiigAprdadXDfErxUdE0yDSbG8it9Z1Zvs9q7uF8kHhpSe2B0/2sYoA5nxU0HxC8Stp0sQk8OaM7CRwxH2m6xtIDAg7UBxx1JPXFLZx674KlB8Psb/RVP7zR5ny0f/XCQ5I/3SSOvrxqaZpttpGmwWFmu2CBdi56n1J9yck+5q3/APqwe9AHReHPFek+KLdpdPnIlj4mtZl2TQnuHQ8j69PStwV4v/YUvjPx1v0u4fTU0dWW41a2XErTFflhB/jVc5YHIxgcZrrrXxbqXhuVNP8AG8KwoTsi1uBf9Fm548z/AJ5Me+ePQ0Ad3RTI3WSNXRgysMhlOQR60+gAooooAKKKKACiiigAooooAKZIodSrAFSMEEZB+tPooA83Rf8AhWOtCMbl8H6hL8pPK6ZcMeh/uxMfyPpmvR1OVzxg9MVXv7K21GymsryBJ7adCksTjIZT1FcN4furnwPrMPhbV7mWfSrpiNFvpTkj/p2kP94fw+o44xgAHoVFNXOOfWnUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFJtRsxrC6YZl+3PAZxFg5MYYKW/AsB+NXAciuQ1iN4Pil4auURitxY3lq7AcLjy3GfyNdeDkUALRRRQAh6Vx3wx/5FKX/sJ3v/AKUSV2J6Vx3wx/5FKX/sJ3v/AKUSUAdlRRRQBDdTxWlrNczOEhhQyOx/hUAkn8q5b4aQS/8ACHR6ncKVutYnl1OUehlbKj8E2D8KT4l3En/CIPpdu+251i4i0yI+8rYbP/AN5/CurtreO0tYraFQkUKCNFHZQMAflQBLRRRQAVBd3MNlay3VzKsVvChkkkY4CqBkk+2KmPXFcJr7nxn4mXwrCSdKsSk+suvAkPWO2/H7zewA70ASeEbWbxBqsvjTUYnQ3Efk6Vbyf8sbXP3yOzSH5vptHau3ByKRFCoFVQoHAA7CnUAFFFFABRRRQAUUUUAFFFFABRRRQAU1uop1ZniK8l07w1qt9Apea2s5Zo1HUsqEj9RQB5t4o+I2pap41g8D+DHjjvmkMd3qLpvFvjlwoPBKgHJPfgc81V+KFvqPgPwxY65o/iPWmv4rxY5Dd3rzRzhlYndGx2dVyNqjv7Y5n9nLTReeINc1mUlpYIEhUtzkyMWY59f3f/j1a37QupPfy6D4UsVM13PMbhoU5Yk/JH+e5/yoA9W8D+Iv+Es8G6brhiET3UZ3oOgdWKNj23KcVr31la6jaS2l5bxXFtKu2SKVAysPQg1leCtA/wCEX8G6XoxIL20IEhXoZGJZ8e25jW9QBwR0TXvBR8zw2X1bRAfn0a4k/ewj/p3kPYf3GPbgjNdF4f8AE+l+JbVpNPnPmRHbPbSrsmgb+66HkGtluv6VzfiDwdZazdpqNtLLpusxD91qVqAJF/2XB4kQ91bjGelAHSilrh7XxffaBdx6b41gjtC52QavCD9kuD23E/6p/ZuOuDXaxsGTcCCDyCDkEUAPooooAKKKKAGt1rifE2k3mhau3jDw/A0lwqAarYpwL2EfxAf89UGSPUZHpnuKax5oAq6VqdnrOl2+o6fcJcWlwgeKRehH9COhB5BBq5XneoRS/DjWJdXtEL+Fr2TdqFugz9hlPHnoP7hONw7da9AgljngSaJ1eORQ6srZDA8gg9xQBJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSHOaWkPX8KAOb8K6vd6veeIvtDh4bLVXtLcBQMKscZPTr8zNzXRnbnrWT4f0OPQo9RVJ2mN7fzXrllxtMjZ2/QDArYoAKKKKACiiigAri/Gn/I1eCP+wo//oiSu0ri/Gn/ACNXgj/sKP8A+iJKAO0ooooAKKKKAEJx19K4u+/4m3xZ0y1AzDouny3b46ebMfLQfXash/Gu0NcV4AcarceIvEo5TU9QaK3fs0EA8pCPqQ5/GgDtRS0i9KWgAooooAKKKawyeooAp6vqtpoml3Op30oitbaMySOewHp6k9AO5IFcf4c8Kxa3a3+u+KtPjnvtbXBtp13C1tuscIH8JHDEjnd9KbcM3jnxkLFE3+HdCm3XLZ+W7vF+7H/tLHnJ9WxnpXfJ059aAPLL/wAMa/4PlabR/P1rQV5NgxzdWw/6Zsf9Yo7KeegGazb3xVDf6dDb+HZ0udWv5PstrABtaOQ/eZ16qEHzHPTjPWvZWGT+FZaeHtIi159cj0+3j1N4zG9yqAOy98469uaAE8MaBbeGdAttLtiXEYzLKR800h5d29ycmtG5t4rqF4J40likUq6OoZWB7EHg1KKWgDgJPDmueELj7T4PdbvSs7ptCuZCAP8Ar3c52H/ZPy/ToOh8PeKtM8RxyLavJDeW5xc2Vwnlz27ejIeR9enpW6a57xD4P0zxDLFdSLJa6nAP9H1C1cxzxH2YfeH+y2RyeKAOhFLXBW3irVPCzJY+Nol8jISLXLaMi3kz080D/VN7/dPbFdzBIk0KyxOrxuNyMpyCD0INAElFFFABRRRQAUUUUAFFFFABWZr+iWPiLSJ9L1GIvbzDGQcMjdQynswPIPtWnRQBw/hPXNRsNSPhLxPIH1SFC9neH7uoQD+If9NBj5h+Peu3U5HXNYPizw1D4m0wQeY1tfwN51jep9+3mHRh7diO4/Sl4R8Uzav5+lavD9k8Q2ACXlv0D+ksfqjdfbpQB1lFIOlLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBn6pq9lpAtGvZTGLq5jtYsKW3SOcKvHTPvV9elcp8SLK4vPBV09nBJPeWksN3BHGCWZo5VfAA6kgED611UZ3IDzyM8jH6UAOooooAQ9K474Y/8AIpS/9hO9/wDSiSuxPSuO+GP/ACKUv/YTvf8A0okoA7KkNLSHrQBxeq/8Tj4p6LYDJh0i0l1GX+6ZH/dRg++PMP4V2g6Vxfgb/iZ6p4m8Rtyt9qBtYG7GC3HlqR7FvMP412ooAKKKhuZoraCSeeRI4YkLu7nAVQCSSewHrQBh+MfEEmhaXGtlELjVb6QWun2+fvyt3P8AsqMsT6DtU/hTw9H4a0KOz80z3UjtPd3Lfennbl3P1P6AVgeFIJfE2sSeNL9GWJ0MGjwSDmK37ykdnkIz7Lgd67lTkZoAWiiigAooooAKKKKACiiigAooooAKKKKACo5EWQFHUMrDDKehHvUlFAHmfh/4a6h4K1jUrrwrrFtFY3+N1nf2jyiMjJXayupONx69uvPNafhv4dW2k6/c+JNWvpNY1+463cqBFiGMYjQZ28cDvgcYya7migBqZ24PrTqKKACiiigCC7tYL23ktrqCOe3lUq8cihlcehB4NcU+h614KJn8L+ZqOkDJfRJpMtEPW3kPT/cbg84wa7ymtQBjaB4n0vxLbNJp87ebEQs9tMuyaBvSRDypz/8AWraFc14g8H2Ws3KahbyyabrMI/c6na4WRf8AZcdJEPdW469KzbbxdfeH7qPTvGsEdrvOyDV4Afslwewc9YW9m464NAHcUUyNlZAykFTyCDkYp9ABRRRQBFPHHNE8MsYkjkUqyMMhgeCD7VwFhLJ8ONYj0m7kZ/Ct9LtsLhj/AMeMp58hz/cJ+6e3IPqPRKparptnrGm3GnahAs9pcIUljccEf4+nuBQBbUYXmnVwfh3Ur3wxrEfhDXp3mVwf7H1CT/l5jH/LJz/z1Uf99DHeu7XpQAtFFFABRRRQAUUUUAFFFFABRRRQAVV1C6WxsLi7f7kETSH6KCT/ACq1VDWdOTV9GvdNllkiiu4Hgd4sbgrKVOMg84NAGf4Hur++8EaNeanOZ7y5tI55JCoXcXG4cDjoQOPSt+q9jaRWFhb2cIIit41iQHsqgAfoKsUAFFFFABRRRQAVxfjT/kavBH/YUf8A9ESV2lcX40/5GrwR/wBhR/8A0RJQB2lFFFABRRRQBzvjrVn0TwVq19CSJ1tzHBt6+a/yR4/4Ewq14U0VfDvhTS9IXGbS3SNiP4mxlj+JJNYXjP8A4mfiXwpoAyVlvTf3AH/PO3XcAfYyFBXaDpQAtFFFABRRRQAVynjfW7yytbbR9GYf25qzmC07+SvV5j7IvP1x1re1XUbXSdNudQvplhtLeMySu3QAfz9Md65bwVpl5dXFz4v1pGXU9TXbbwP/AMudr1SP2J4ZvegDpNA0W08O6Ja6VYoVgt12gscs56szHuSSSfrWlSD6YpaACiiigAooooAKKKKAI54kmieKVFkR12sjjKsD2I71w1z4Y1nwk7Xfgl0ltCxaXQrl8QsOpML/APLJvblTnPGK72igDn/Dvi3TvESyQxeZbajBxc6fcrsmhPup6j0YZB9a3xWD4j8JaZ4jMM1wJYL+3/49761fy54P91x29jkVz8PibWPCM/2TxmvnadkLb67bxHYQeguEH+rb/a+6c9sE0Ad/RUVvNFcwJPBIkkUg3I6MGVh2II4xUtABRRRQAUUUUAFFFFABXK+MfDc+qLb6to8i23iHTsvZzn7sg7wyeqN09iQRXVU1v6UAYHhTxTa+KNLM6I1vewN5N7Zyfftph95WHpkcHuK6AdK4jxXod9p+or4u8NQbtWgULeWi8DULcdUI/wCeg6q3XjHPSum0LW7DxFo8GqadOJbaYZHqh7qw7MO4oA0qKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAY3X+lZ3h/XLbxFo0Wp2sc0ccjOhjmUK6sjlGBAJwcqe9aTfXFcv4T0u80a+8Q2ssJWxl1J7uzfcpDLIqs6gDkBXLUAdVRSLwKWgBDXHfDL/kUpf8AsJXv/pRJXYnpXHfDH/kUpf8AsJ3v/pRJQB2VYnjDWf8AhHvCOqaqP9Zb27NEPWQ8IPxYgVt1xfjj/iZa14X8OjJW7vvtdwOxhtx5hB+r+WKANrwlo3/CPeEtL0k4321uqykd5CMufxYsfxrapBS0ANP0rhfEbv4y8QHwjall0212Ta1OpxuHVLYH1bGW9F+tb3i3xD/wjuj+fDD9pv7hxb2VqOs0zfdH0HJJ7AGneFNAXw7ocdq0nn3kjGe9uD1nnbl3P48D0AA7UAbUaJFGsaKqoowqqMAD6U6iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACoLu2hvbeS2uYI57eRSrxSKGVx6EHg/jU9FAHDL4d1nwjIZPCs32zS+raJdy/cH/TCU52eyN8vXkVteH/Fum+IvNhgaW3v4OLmwuk8ueE/7SHt7jIPrW/WB4i8Jab4haGebzbbUbfm2v7Vtk8J9m7j/AGTkGgDeFLXCR+JtW8KSJaeMYxJZEhItdtkIiJPAE6f8sj/tcqc9q7eCaO4gSaGRJInAZHRgVYdiCOtAElFFFAGP4l8PWXibR5NOvQygkSRTRna8Eg+7Ih7MD/h0NY3hfxDfC/fwv4kKLrdvHvjnUbY7+EZHmoOx4+Zex6cGuxrnvFvhmPxJYReVO1nqdo3nWF9GPnt5fX3U4wy9x+FAHQL05696WuY8JeJ5NajuLDU4Fs9d08iO+tQcjPaRD3RuoP4dq6YUALRRRQAUUUUAFFFFABRRRQAVyfi6+u11vwtpNlcSQy3mo+bKUbG6GFGd1PsTtB+tdZVCfSbOfWrbVpIi13axPFE5Y4VXI3cdMnaOaALy9OKWkXpS0AFFFFABRRRQAVxfjT/kavBH/YUf/wBESV2lcX40/wCRq8Ef9hR//RElAHaUUUUAFIeo9aWquo3sWnaddX1w22C2heaQ+iqCxP5CgDk9F/4mvxO8Q6njMWmW8OlwHsWI82X8QTGPwrtR0rj/AIYWs8fge1v7sYvNVkk1Kf3aViw/8d2j8K7GgAooooAKa3anVy/jbXbrTLC307Sdr67qsn2exQ9EPV5T/souWP4UAY99Ivjrxh/YyASaDosgl1E9UuLocpB/tKn3mHqADXfJ07/jWZ4c0G08NaHb6XZ7jHCPmkf78rnlnY92JyTWrQAUUUUAFFFFABRRRQAUUUUAFFFFABTJUSRGR1VkZcFWGQQexp9FAHB3XhTVfC8sl/4IdBEzb5tDuHxby+piP/LJv/HT3HFbXh7xdp+vtJabZbLVYP8Aj4066G2aI+uOjL6MMg10VYXiLwrpfiNYmu0kivIOba9tn8ueA+qOOR9Oh9KANwdKWuBj8Q614NmFr4tzeaSSFg12GPG3PQXKD7h/2x8vTOK7m2uIbu3S4tpo5oJBuSSNgysPUEdaAJaKKKACiiigAooooAY45yTXn+uWE/gXWZfFWjwu+lXLZ1uxiHAH/PzGvZl/i9Rz2zXodMkAZSrAEHsaAI7K6t76yhu7SZJredBJHJGcqykZBB9MVPXmx834ZayGUn/hDL+U5B5Glzseo9ImJ6dFJ7d/R0OVByCDyCKAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWJrGvf2Trei2MlsWh1OWSD7QXwIpAhdVIxzuww69q2657xnodzr2hCGweKPUba4hu7OSUkKksbhhnAJwRkfjQB0C8D8aWmqSVyRg+lOoAQ9K474Y/wDIpS/9hO9/9KJK7E9K474Y/wDIpS/9hO9/9KJKAOxNcVo5OrfFDXdRIzDpVrDpkJ7b3/ey/iMxj8K6+7uYrO0mup22wwRtJI3ooGSa5f4aW0qeDIdRuV23WrzSanN9Zm3L+SbB+FAHXDpTJnWKN5XZURFLFmPAA5yfank81wviuV/FGtR+C7ORlttq3GtTKcFIM/LCD/ekP5KD60AHhmOTxZr0njG6RvsMKvb6JC/GI+jz/WTGAeyj3rul6UyCGO3t44YUVIo1CoijAUDoAOwqSgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAI5o0mjaORFdGBVlYZBB7EdxXES+FdU8LSPd+C5VNqWLTaHcNiB/Xym6xMemPu+oru6KAOf8PeLdM8RebBCZbbULfi50+6XZPCf9pT1HuMit8VheIvCem+IjDPMJbbULfm2v7Vtk8J9m7j/ZOQfSsKPxNq/hN0tPGMYlsSQkWu20ZEZ7Dz0/5ZH/AGhlTntQB3dFRwTR3ECTQyJJE43I6MCrD1BHapKAOT8X+G7q+mt9d0J1g8Q6ep+zu3C3EfVoJPVW7E/dJzxWh4X8SWviXSftUKvBPG5iurWXiS3lX7yMPb+RHTpW2etcR4n0a+0fVj4v8OwGW8RAupWCnAv4R6D/AJ6qM7T1PI9qAO4FFUdG1Wz1zSbfUrCYTW1wgdHH6g+hByCOxFXqACiiigAooooAKKKKAGuwUEkgADJJNcd8OS99ot/r8rMTrOoTXcYb+GEHZGP++EB/Gupvp7SNEhvJIFS5byFSZgBKzA/IAepIB4781JaW0FlaQ2ttCkMEKCOOOMYVFAwAB2FAEo6UtFFABRRRQAUUUUAFcX40/wCRq8Ef9hR//REldpXF+NP+Rq8Ef9hR/wD0RJQB2lFFFABXGfEx2n8Mw6LGWEmtXsGn5XqqO2ZD+CK9dkTjr6Vxd9/xN/ixptr1g0TT5Lx/Tzpj5aA/RVkP40AdjDHHDCsUShY0G1VXoAO1SUg6UtABRRTWODQBW1G9ttMsJ768lWG2t4zJLIxwFUcn/wDV3rkvBVle6tdz+M9agMF7fJ5djbOObS0zlQf9puGY/QcYxUWsMPG3i1fDyfPoWlMtxqhHKzz5zHAfUDG9h3+UV3g4FAAvfjFLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUARyositG6BkYYKsMgjuDXFXXhC+8OTyah4IljttxLz6POT9luPXZ/wA8n9xweMiu5ooA5fw14ytNekksbiGbTdYhH7/TbriVf9pezr6MtdOvSsXxF4X0vxJbxrfQus8B3W93A5jnt2/vRuOQfboccg1zR17XfBMyw+Jt+p6ITtTWoYsPb+n2hF7f7a8etAHoFFQWd1b3tpHdWs8c8Eo3JJE4ZWHqCOtT0AFFFFABRRRQBXvbWC+s5rS6hSa3mQpJE4yHU9Qa4LRry88C65b+F9TkaXQ7ptuj6hKf9W3a2kPrj7p4z057ei1m67otj4h0ifS9Rh822nXawHVT1DA9mB5B9RQBor096WuF8La9f6drLeDfEkhkv4kLWF+4wuoQDv8A9dFH3h+Ndwn3e/40AOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa2cjnjvmnUhoA5zw7rt3fazr2k6gsSXem3I8sRggPbOoaJjknn7wPuDXSCsSXQIz4uh8QRzNHKLN7SaIDKzLuDISexU7v++q2l6fjQAHpXHfDH/kUpf+wne/+lEldielcb8Mv+RSl/7Cd7/6USUAP+Jc8jeEjpNu5S51q5i0yNvTzWw+f+2Yeurt4Y7a2jghQJFGoRFHQADAH5Vx2pf8Tj4raPY/eg0eylv5PTzZD5UYPuAJDXZOyohZ22qASSTjA/pQBjeLPECeG9Fe7WI3F5K629lbL1nnbhEH48n2B9Ki8IeHm8P6Swu5ftGqXchub+46mSZuuPRRwoHoBWL4dU+MfEjeLZ1P9mWha30WJhw3aS4x/tEbV/2QT3rux0oAF6UtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUcqJLG0UiK6ONrIwyCD2IqSigDhZvCup+F5mvvBcqC1JLTaHcsRBJ6mI/wDLJvb7pOM4rY8PeLtP195bQLNZarB/x8afdDbNEfXHRlPZhwa6KsLxF4V03xGkTXSPFeW/zW19bNsngb1RxyPpyD6UAbg6UjGuFTxDrfg91t/FqfbNMyFj1y2jwEz0+0Rj7n++Pl9cV21rcQ3dslxbTRzQyDckkbBlYeoI4NAHA6nDP8PNYm12zR38NXsm7VLWIZNpIetyg/u9N4/Hmu/tpY7i3jnhkSWKVQ6OhyrAjIIPcUsyJLG0UiB0dSrKwyCD1BHevPrOST4baxHptw5bwnfTbbOdz/yD5if9Ux/55sfunsTg0Aei0Ui9O/40tABRRRQAUhIzS1U1G9g02wuL66kEdtbRNLK542qoyf5UAcpeA698UbG02k2mgWxvJf7rXEuUjU/7qB2/EV2q9KgsLuK/0+3vIN/lTxrKm9SrYIyMg8g+1WKACiiigAooooAKKKKACuL8af8AI1eCP+wo/wD6IkrtK4vxp/yNXgj/ALCj/wDoiSgDtKKKKAEJri/AX/Exu/EniJgD/aOpPDA46NBAPKQj6kOfxrU8da2/h7wTq2pxHE8VuVgP/TVvlT/x4irHhPRx4f8ACel6Vj5ra2RJD6vjLn8WJP40AbA6UtFFABXMeNtfudI02Gz0tVk1vU5PsthGecOfvSH/AGUXLE+wz1rfvby30+ymvLuVYreBDJJIxwFUDJJrjPBdpda9fzeNdWt3hluo/K0y1k/5d7XOQSP77/eJ9MUAdF4X8PWnhjQ4tNtC0hBMk078vPK3LOx9Sf0wO1bNIvT8aWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApkih/lZQysMEHoRT6KAOHuvBt1od1Jqfgq4jsZnYvPpcoJs7o/7o/wBU3+0voMir3hzxnaa3ctpt5bTaTrcQzLpt2cP/ALyHo6+jL6V1VY3iHw1pfiS2WHUYNzRndBPGxSWB/wC8jjlSOv4cg0AbC9Dg55pa8/fV9f8AA8gTxC0ms6ATtGqwxYntR/03RfvKP7688ciu4sby21Cyiu7O4iuLeVd0csTBlYeoI4NAFiiiigAooooAwvFXhq28T6WLaV2t7mFhNaXkfEltKPuuprO8IeJrnUvtGj60iW/iHTzsuohwJl/hmjHdWHPtyK66uW8X+Fn1j7PqulyraeIdPBayuuzesUnqjDII7ZyPcA6gdKWue8JeJ4vE2lGYwtaX9u5gvbN/v28w4Kkdx3B7giugHSgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAKuo2z3mnXVtHcSW8k0LRpNEcNGSCAyn1HX8Kw/A+tT6t4eWLUMDVrCRrO/XPPnR8FvcMMMPZq6VjjmsxrbStHurvVH+z2kt48a3E7uF8xh8qZzxnnH40AafauN+GZx4Sm/7CV9/6USV2I+7XmOi6wdA+EOt6mh/fQ3d+Icd5WuHWMfi7LQBt+Bf+Jlf+JPEh5Go6g0FuR0MFv8AulI+rCQ/jUfiu5m8SasngzTpGWORBLrE8Z5htz0iB7PJgj2XcalNxF8O/h3p1osP2i9hhitLa3X71zcsMBR9WJJ9s1o+D/Dr6BpLfbJftGq3khub+5PWSZuSB6KOFA9BQBu2tvDZ2sVtbxrHBCgjjRRgKoGAB+FTUg6UtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADJFDqyMoZWGCCMg+1cTceEdQ8OXEl/4KnjgVmLzaNOSLWb1MeP9U/uPlJxkV3NFAHOaF4v0/WJ2sJVl0/V41zNpt2Nsq+69nX0Kkj+Va2pWFpq2nT6ffW63FrcIUljYcMO/wCP9apeIvDOmeJLeOK/hbzYjuguYm8uaBv70bjlT3/DkGucGs694LYR+JA+qaKOF1i3i/ewL/03iH/oagjuQKAE0DUbzwjqkPhTXpnmtZDt0fU5f+W69oJD0Eg7H+Ie9d6vSsPUtO0fxp4cMEjpdWF0oaKeCQHB/hdGHQgjIP8AiRWT4V16/t9Rfwp4kfdq9um62uyMLqEA6SL/ALYxhh6896AOzopF6c9TS0AFcp420u+19dM0SGFjpt1ch9SmyMLBH8/l4zn52Crx2zmukvbuCws57y6kWK3gjaWV26KqjJJ/AVm+FdWu9d8OWuqXln9ka63SxQ5yRESTGT7lcE/WgDXThQO3p6U6iigAooooAKKKKACiiigAri/Gn/I1eCP+wo//AKIkrtK4vxp/yNXgj/sKP/6IkoA7SiikPWgDi/Gn/E08S+FPD+MxzXjX9x6eXbruAI9C7J+VdoOlcVog/tX4m+IdTPMWm28OlQEdNxHmy/kSg/Cu2FABSGlrmvGmvz6LpkNvpyLNrOoyi10+JuhkPV29FUZYn296AMfXs+NPFa+F48nSNNKXGsMOkznmK3+nG9vYAd67tAAuB0rG8K+HofDOiJZLK1xcO7TXVy/3riZuXc+5P6AVt0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAMZd2QQCMc5rjLvwXNpN5Lqfg25TTLyRi89jICbO6P+0g+43+0n4g121FAHJ6B41ttV1F9G1Kzm0nXIxl7G5OfMH9+J+ki+459q6telZOv+HdL8SWi2up2olCHfFKpKyQt/eRhyp9x+NcvJqXiPwIgbV2l17w+nH2+KP8A0u1X1lQcSL/tKARySDQB39FVNN1Cz1WwivbC5iubWYbo5YmypFW6ACmt6HpTqKAOJ8VeHby11EeLfDa41m3TFxa52x6hCOsb/wC3j7reuAfbovD2vWXiXRLfVLB2MMw5Vxh42HDIw7MDwRWk/PFef69ZXvgrV7jxXosLTabOQ+tacg5YDrcRD++B94fxAe2aAPQqKraffW2p6fBe2cyT206CSORDkMpGQRVmgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArN17RrXxBol5pN6ube6jMbYHI9GHuDgj3FaVFAHNeCtR1G70Q2msRSLqmnSmzuXZTtmKAYlU9wylW+pIrzzS3W/wBP8O6ATiKfxBfX1yT0ENvPI/PoC5jr1LxFrSeHtHl1SW3mmghK+cIuSkZYBpCPRQST7A14D4OjvPF/jDVNEtGZLJTNb3N3GeEtGuXlkVT/AHpCUQf7IPpQB6x4dVvGPiR/FlwCdMsy9vosTDh+cSXOP9rGF9FBPeu7HSorW3htLSG2t4lighQRxxoMBVAwAB7VNQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTXUOCGGRjBB6EU6igDiLvwdeaNey6n4LuY7CeRt8+mzAmzuT3+Uf6tunzL7ZBqhd3lh46hXR7tJvD/AIssT59qk5HmwyD+OJuksZwQcZBHUdMejVj+IPDml+JLRLfUrYOYzvhmRiksDdmRxyp/w5oAzvCXiebWFuNM1WBbTX9PIS9tx91h2lTPJRhyM+47ZrqRXjXi7T/FPhp7fVi76hJpoP2TWYo/3yx94LuNcB4iP41HykZI9eu0v4laJqXgOXxSrlI4ExPbZ3SJKcAR47kkjHrnNAG54o0D/hJdNi02S6aG0a4jkuo1XPnxKcmPOeATjJ54471sooVdoACjgADGBWL4St9Uh0FJtZlkfUbqR7maNnLCAuciJfRVGF/AnvW5QAUUUUAFFFFABRRRQAUUUUAFcX40/wCRq8Ef9hR//REldpXF+NP+Rq8Ef9hR/wD0RJQB2lV768g0+wuL25bZBbxNNI3oqjJP5CrFcX8TnkuPC8OhwOUn1u8h04OvVVdsuf8AvhXoAl+GltKngq31C5XF1q0smpT/AO9M24f+O7R+FdfUVtBHa20dvCoSKNQiKOgUDAH5U9qAIru5gsrWW6uZFit4UMkkjdFVRkk+wHNcX4Qim8S6o/ja/jZEmQwaRBIOYbbvIR2eQ8/7uB3pPEZPjHxOvhKFj/ZdlsudZdf488x2/wDwLG5vYD1ruYkVI1VFCqBgKBgAemO1ADlJI59aWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa2M8jPFOooA4q+8FS2N7Jq3hC7XSb92Ly2zKTZ3R/6aRj7p/2kwfrU+heNob7U/7D1i0k0jXVHNpOwKzerRP0kH05HOa66svXdA0zxFZfZNUtEniHzI3R42/vIw5Uj1HNAGmKWuAku/EvgVC1/wCd4g8PJx9qRc3tqvrIvSVQP4h8w5JyBXZaVqljrOnRX+m3Ud1azDcksbZB/wAD6jtQBdpjAEgHp70+igDzecv8MdW+0Rqz+Dr+ceag/wCYXMx+8B2iYnkdj+R9GjdZIwyncpGQc5yPWoru2gvbaW1uYklglQpJG4yGU8EH2NcFpd7L8PtbtvDWpTPJoV65TR7yQ58hv+fZz6f3D6YHagD0SikHSloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoqC8uYLK1lurmVIYIkLySOQFRQMkknpxXjvhb4hXvjf4zfZrUzQaLZ20yxwElS+MDe6nvnGB2+uaAPXtTtPt+mXdnv2faIXi34zt3AjP615b4H+EWr+GLS8ik8V3Vo00wYf2aECuoHG7ehIPXpxXri9OmKztes7zUNGubbTr9rC9dP3Fwqg7GByMgg5GRg+xNAHPDwRquP+R78RfnB/8AG6X/AIQjVf8Aoe/EX5wf/G6veEfEh1/T5Y7yH7Lq9lJ5GoWhz+6l9RnqjdVIJ4PtXRjpQBx3/CEar/0PfiL84P8A43R/whGq/wDQ9+Ivzg/+N12VFAHG/wDCEar/AND34i/OD/43R/whGq/9D34i/OD/AON12VFAHG/8IRqv/Q9+Ivzg/wDjdH/CEar/AND34i/OD/43XZUUAcb/AMIRqv8A0PfiL84P/jdH/CEar/0PfiL84P8A43XZUUAcb/whGq/9D34i/OD/AON0f8IRqv8A0PfiL84P/jddlRQBxv8AwhGq/wDQ9+Ivzg/+N0f8IRqv/Q9+Ivzg/wDjddlRQBxv/CEar/0PfiL84P8A43R/whGq/wDQ9+Ivzg/+N12VFAHG/wDCEar/AND34i/OD/43R/whGq/9D34i/OD/AON12VFAHG/8IRqv/Q9+Ivzg/wDjdH/CEar/AND34i/OD/43XZUUAcb/AMIRqv8A0PfiL84P/jdH/CEar/0PfiL84P8A43XZUUAcb/whGq/9D34i/OD/AON0f8IRqv8A0PfiL84P/jddlRQBxv8AwhGq/wDQ9+Ivzg/+N0f8IRqv/Q9+Ivzg/wDjddlRQBxv/CEar/0PfiL84P8A43R/whGq/wDQ9+Ivzg/+N12VFAHG/wDCEar/AND34i/OD/43R/whGq/9D34i/OD/AON12VFAHG/8IRqv/Q9+Ivzg/wDjdH/CEar/AND34i/OD/43XZUUAcb/AMIRqv8A0PfiL84P/jdH/CEar/0PfiL84P8A43XZUUAcb/whGq/9D34i/OD/AON0f8IRqv8A0PfiL84P/jddlRQBxv8AwhGq/wDQ9+Ivzg/+N0f8IRqv/Q9+Ivzg/wDjddlRQBxv/CEar/0PfiL84P8A43R/whGq/wDQ9+Ivzg/+N12VFAHG/wDCEar/AND34i/OD/43R/whGq/9D34i/OD/AON12VFAHG/8IRqv/Q9+Ivzg/wDjdH/CEar/AND34i/OD/43XZUUAcb/AMIRqv8A0PfiL84P/jdH/CEar/0PfiL84P8A43XZUUAcWfBeqKefHXiEjryYP/jVcDpvwgs77xlY+JNE8SC60+2vQ9yZIl3vNE/IXaqoQSMZx6nnNem+MYdbv7K30rRlaH7dJ5V1fhgPskOMswHUswyox0JzkcVs6Tplpo2lW2m2EKw2tsgjiQdgP5n36nvQBbUYHPrXAfFnxdqfgrw5Bqmmz2wledYRDPBvD5DHOQwIxtz3rvz1r5++OdzN4i8d+HfCNm37z5SccgSTOFGf90Ln6NQBqaz8RPGnh/wDoXiy5l0mT+0pQDYtaOpCMGZSGEnOVUHoMZFer+F9aXxF4Y07WFi8n7ZAspjznaSORnuM14N44gTSPG2h6V4/mN/oMVugs103/Ro4VzsO9DuYgBRna2cAYPavoq1t4bS1itraJIYIkCRxxjCooGAAOwAoAmooooAKKKKACiiigAri/Gn/ACNXgj/sKP8A+iJK7SuL8af8jV4I/wCwo/8A6IkoA7InGc1xd6f7X+LOnWvWDRLCS8f086Y+WgP0RXP412p45NcX4C/4mN34k8Rnn+0dRaGB+zQQfukI+pDn8aAO0HSud8Y+IJdC0yJLGIT6tfSC10+3P8crfxN/sKAWY+g7ZrcuJ4raCSeeVY4YlLyOxwFUckk9gBXF+FYZPFGtSeNLxGFttaDRYXGPLgz802OzSf8AoOB3oA3fCfh1PDWiratObq9mdp727f71xO3Lv/QDsAK3h0pB0paACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBrYzjvXHal4Je2v5dX8K3o0jU3O6WIKWtLo/wDTWLse25cEe9dnRQByGj+N45dUj0PxBato+utwkEj7orkdmhk6MD6dR0PSuuByM1na3oWmeIbBrLVLOO5gPIDDlD/eUjlSPUYNcmZfEvgfIdbjxJoC/wAYIN9aqPUdJl9xhvrQB31Z2t6PY6/pNxpmowCa1nTayHgj3B7EdQfWl0XW9N8QaZHqOlXcdzaydHQ9D3BHUEeh5rQoA4fwxrF7o2rjwb4imMt4qF9Nv3GBfQjsf+mq9CPTn3rtkGFxz+NYfivwxaeKdNW1uHeCeFxLa3cRxJbyj7rqazvCXiS7vZ7jw/ryJB4g04AzheEuY84WeP1U9/Q8UAdfRSLwKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApjnBBOcDk0+sTxXoL+JdAuNJTUbjTxcALJNABuKd159f5Z9aAON1jUNV8YapCNP0OXU/C1pKSxS4jjS/nQ8Z3H5oVOe2GYegrz/4PtJe/HPxHdTAxymO7ldSQcFp0yOOO9e9W1jc2eiQ2NvcRJLDEsUcqwfKAMDOzd6D1rivB/wni8HeJ5ddtdbuLie4R47hJYVw4ZgxwR0+ZRQB6QKa2Dx68Uo6UtAFH7BZW99camtqgvJI1SWZI/ndVyQvHJ6nj/61Jo2rWGuaVDqGm3Cz2soyrrxz3BB5BBzkHnNXW9PauUTw5eaT4uOq6LLClhqDE6paSZVS+PlmjwOHPAYd+vagDraKRenFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXO+LPEo0C0iitoDd6teHybCzQ/NLIe59EXqzHgD3rV1HVLDTPs/wBuuo4DcTLBCHPMkjHAUDuTUC6Hp6a9LrX2fN/JAtv5rMWxGCTtUHhck8464oAt6f8Aaxp1uL94XvPLXz2hUhC+Pm2g8gZz1qzSL0paAI5mZEZkUu4UlUBA3H0yema8UtfBPi//AIWxP42vtHtrhd7tb2y3igrhdkYYnjhfTPIr2+igDxbU/hl4j8e+N4tb8VmzstNgColjbzGZyiknZuwBySct+nFe0L065paKACiiigAooooAKKKKACuL8af8jV4I/wCwo/8A6IkrtK4vxp/yNXgj/sKP/wCiJKANLxzrb+HfBWrapET58UBWDH/PVyET/wAeYVP4U0ZdA8JaVpPG62tkRz6yEZc/ixY/jWL40H9q+JfC3h4cpNeHULgdvLtxuAPsXZPyrU8X+Iz4c0dZLaD7VqN1KLaxtQf9dM3QfQckn0FAGJ4nZvGGvr4OtpHXT4FW51qVGx8h5jtwfV+p9FX3ruIIY7e3jghjWOKNQiIowFAGAAKwvCPh86Bo5S5l+0aldO1xfXJHMszct9AOFA7BRXQCgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQ0tFAHH6r4JxqL6x4ZvW0bVm5k2Lut7o+k0ff03DBGabpPjbGpRaJ4ltP7H1qT5YlZswXfbMMnQ5P8J+YZrsqztZ0XTdfsWsdVs4rq3b+B15B9QeqkeowaAL69K5nxd4Wk1v7NqGl3P2DX7HLWd4BkEd43H8SN3HbqPQ5JTxL4HH7pbnxHoC/wZzfWqjsCeJl+uG+tdVomu6Z4j0xNQ0q8S5tmJUleCp7qwPKkeh5oAz/AAl4nXxHYyrPbmz1Wzfyb+ybkwS/1U9Qe+a6NTkZri/Ffh/UYNQXxT4YCDWrdNk9sx2pfw/8829HH8LevB9t/wAN+IbLxPosWp2LNsYlJI5BteKQcMjjswPagDWooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAprdadRQBxWv32seE9ak11pJr7w7MFW9twNz2BAAEsYH3kP8S9R1HeuvtbmC8tIrm2lSaCZQ8ckbbldT0IPenuMgg4wR36Vj67q3/CM6Ol3Fps9zawMqyx2qjdDD3cL3C8ZA5oA26Kq6dqFpqunw31jcx3NrMu6OWM5VhVqgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApjjI98VleJPEVl4a037Xdl3kkYR29vCu6W4kPREXux/8Ar1U8MQeIWW41HxBcKk12VaLTosGOzQZwu7GWc5+Y9MjjgUAUdD8PX93rh8TeJxGdRXcljZo26OwiPBwf4pGH3m/AcCuvXpSr0paACiiigAooooAKKKKACiiigAooooAKKKKACuK8a/8AI1eCcf8AQTk5/wC2EldrXCfEC6iste8H3U7bYYdQlldj2VbeQn9KAHaVKl/8RvEmtSsq2mk20emxyM2FBx50xJ7YJQH/AHfam+Go38Wa9J4xukb7DCr2+iRPxiM8PP7GToPRR71yWgw3HifR7bwyhdP7VdtZ8QTIcFIp3Lxwg9mddoPoqn1r2O2gitbaK3gjWOGJAkaKOFUDAA9sUASL0paKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQ1yOseCVk1F9Y8PXj6LrLcyTQqGiufaaM8N9eGHauvooA4zTvGrW17Fo/i60XR9TkO2KUvm0uj6xSHHP+y2DyOtU9esLvwdq8/i3RLeSeym51rToRkyAf8ALxGOnmL/ABDowz35rsNX0rTtbsH0/VLOK7tZR80cq5H1HcH3HSuQW28R+BlH2AXPiDw+v/LqxBvbVf8Apmx4lUf3ThumM0AdnpepWesaZb6hp86T2lwgeORDkEH+vYjscirdeTaXr+meGLiXWdGufP8AB19N/psCqQ+k3JPLFPvLGx6qRwcEcHn1WCWOaFZYnV43AZHU5DAjgg9xQBJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTW/p2FOooAwNJ8MWOhapfXmnPNbxXpDSWSMPIWTvIq4+VjxnHHtWnp+p2WpxyvZXcVwIZWhlMTA7ZFOGU+hB7VbNclrfhGc6m2veGrmPTdbIAl3qTb3gH8MyD/wBCHzDPegDrqKihLrCnnbRIQNwUkjPfGe1S0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNbNADq53xP4stvD/k2kUMl9rF0CLPT7fmSU+p7Kg7seAAas6b4k0vWdRvrHT7j7TJZYWeSNS0asc/KHxtLDHIHrRpfhzTNK1G+1G3hZr6+kLz3Mrl3PooY9EHQKOBQBfjTz4YJbmBUlXDhSd/lsVwcN9CRn3qyKUdKKACiiigAooooAKKKKACiiigAooooAKKKKACiiop5YreKSeaRY440Lu7HAVRyST6UAS14j+0Rq0MOn6PpsNyEv3leQpnBETI0ZJPQA7iOfevZ7O6gvrKC7tZVlt541likU5DIwBBH1BzXPeJvAHhzxbqNnfazYmea1G1CHKhlznawB5Ge3vQBieCLrwr4X0FYJ/E+iy6jcMJr2UX0XzSED5R83CqAFA9Frph408K4/5GbRv/A+L/4qmr4K8KFefDOin/twi/8Aiad/whPhT/oWNF/8AIv/AImgA/4TTwr/ANDLo3/gfF/8VR/wmnhX/oZdG/8AA+L/AOKo/wCEJ8Kf9Cxov/gBF/8AE0f8IT4U/wChY0X/AMAIv/iaAD/hNPCv/Qy6N/4Hxf8AxVH/AAmnhX/oZdG/8D4v/iqP+EJ8Kf8AQsaL/wCAEX/xNH/CE+FP+hY0X/wAi/8AiaAD/hNPCv8A0Mujf+B8X/xVH/CaeFf+hl0b/wAD4v8A4qj/AIQnwp/0LGi/+AEX/wATR/whPhT/AKFjRf8AwAi/+JoAP+E08K/9DLo3/gfF/wDFUf8ACaeFf+hl0b/wPi/+Ko/4Qnwp/wBCxov/AIARf/E0f8IT4U/6FjRf/ACL/wCJoAP+E08K/wDQy6N/4Hxf/FUf8Jp4V/6GXRv/AAPi/wDiqP8AhCfCn/QsaL/4ARf/ABNH/CE+FP8AoWNF/wDACL/4mgA/4TTwr/0Mujf+B8X/AMVR/wAJp4V/6GXRv/A+L/4qj/hCfCn/AELGi/8AgBF/8TR/whPhT/oWNF/8AIv/AImgA/4TTwr/ANDLo3/gfF/8VR/wmnhX/oZdG/8AA+L/AOKo/wCEJ8Kf9Cxov/gBF/8AE0f8IT4U/wChY0X/AMAIv/iaAD/hNPCv/Qy6N/4Hxf8AxVH/AAmnhX/oZdG/8D4v/iqP+EJ8Kf8AQsaL/wCAEX/xNH/CE+FP+hY0X/wAi/8AiaAD/hNPCv8A0Mujf+B8X/xVH/CaeFf+hl0b/wAD4v8A4qj/AIQnwp/0LGi/+AEX/wATR/whPhT/AKFjRf8AwAi/+JoAP+E08K/9DLo3/gfF/wDFUf8ACaeFf+hl0b/wPi/+Ko/4Qnwp/wBCxov/AIARf/E0f8IT4U/6FjRf/ACL/wCJoAP+E08K/wDQy6N/4Hxf/FUf8Jp4V/6GXRv/AAPi/wDiqP8AhCfCn/QsaL/4ARf/ABNH/CE+FP8AoWNF/wDACL/4mgA/4TTwr/0Mujf+B8X/AMVR/wAJp4V/6GXRv/A+L/4qj/hCfCn/AELGi/8AgBF/8TR/whPhT/oWNF/8AIv/AImgA/4TTwr/ANDLo3/gfF/8VR/wmnhX/oZdG/8AA+L/AOKo/wCEJ8Kf9Cxov/gBF/8AE0f8IT4U/wChY0X/AMAIv/iaAD/hNPCv/Qy6N/4Hxf8AxVH/AAmnhX/oZdG/8D4v/iqP+EJ8Kf8AQsaL/wCAEX/xNH/CE+FP+hY0X/wAi/8AiaAD/hNPCv8A0Mujf+B8X/xVH/CaeFf+hl0b/wAD4v8A4qj/AIQnwp/0LGi/+AEX/wATR/whPhT/AKFjRf8AwAi/+JoAP+E08K/9DLo3/gfF/wDFUf8ACaeFf+hl0b/wPi/+Ko/4Qnwp/wBCxov/AIARf/E0f8IT4U/6FjRf/ACL/wCJoAP+E08K/wDQy6N/4Hxf/FUf8Jp4V/6GXRv/AAPi/wDiqP8AhCfCn/QsaL/4ARf/ABNH/CE+FP8AoWNF/wDACL/4mgA/4TTwr/0Mujf+B8X/AMVR/wAJp4V/6GXRv/A+L/4qj/hCfCn/AELGi/8AgBF/8TR/whPhT/oWNF/8AIv/AImgA/4TTwr/ANDLo3/gfF/8VR/wmnhX/oZdG/8AA+L/AOKo/wCEJ8Kf9Cxov/gBF/8AE0f8IT4U/wChY0X/AMAIv/iaAD/hNPCv/Qy6N/4Hxf8AxVH/AAmnhX/oZdG/8D4v/iqP+EJ8Kf8AQsaL/wCAEX/xNH/CE+FP+hY0X/wAi/8AiaAD/hNPCv8A0Mujf+B8X/xVH/CaeFf+hl0b/wAD4v8A4qj/AIQnwp/0LGi/+AEX/wATR/whPhT/AKFjRf8AwAi/+JoAP+E08K/9DLo3/gfF/wDFUf8ACaeFf+hl0b/wPi/+Ko/4Qnwp/wBCxov/AIARf/E0f8IT4U/6FjRf/ACL/wCJoAP+E08K/wDQy6N/4Hxf/FUh8Z+FT18S6Nj/AK/4v/iqX/hCfCn/AELGi/8AgBF/8TR/whPhT/oWNF/8AIv/AImgDj/Elt4L1e6m1LTfFmj6bq8sflyzJdQvHcoeCk8ZbbIpHrg9Oa4/wd8SYvAdzP4b8R3VrPpaZawu9On+1RxqTymQS23uA3zAcc8V7B/whPhT/oWNF/8AACL/AOJrM1r4YeDdbtkgn0Gztwjbw9nEsDfQlAMigDqLC7t7+wgvbSUS21xGssUg6MjAEH8sdasVXsLO30+wgsrSNYra3jWKJF6KqjAH4AYrO8WT2Nr4V1O61KBJ7S3tnmeJxkNtGQPrkCgDZor5f+Fuk2d94Z8UeIPEs0z6fZweTEzTMCshBJI54YfJj3auu/Z61DxBe22qrfXFzPpMexYGnYttk5yEJ7YwSPcetAHuVFIOlLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGT4g0Cy8R6cLK+81VVxLHLDIUkikX7rqw6EZPt7GsvQI/FGnag2l6u0Wo2Kput9VVhHIQCAElj7tg/eXg45rqqawzQAJ92nVymueGL2fUm1jQdYuNO1TaFdZCZba4AxgSRE4HpuXBGe9bGhXOq3GmhtasYbK9VyrpDN5qMB/GpwCAewPIoA06KQEEZHSloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKq399a6bbSXd9cw21rGuXlmcKq/UniqlpqNvr+hfbtHvCI7iNxb3PlHg8gNtYAkZGcd8UASarrOm6MsL6lew2wmkWKLzGwXcnACjuee31ql4h0GTxDbQWb6ndWlluzdRWxCNcJj7hfqq+u3qMjNVtC8F2Gk3J1C6lm1TWGzv1G9O+T6IOka+gXFdMowKAKumabZaRp8Vjp9rHa2sQ2pFGu0D/6/v361boooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ0AI3UV8+/G/wAb3t9psem6UWTRJZnhmugeLqRMblT1RSRk924/hr03xLfah4lu7rwr4du1tXWMrqWp7dwtVYHEaDIzI3fkbRz1Irxr44aVfaJa+GNOur+yuIIIpltorSxNuIVHljnMj5zgenQ9c0AfQHguMw+BfD8ROSmm2yk/SJa3KzPDkaxeGdKjVdqrZwqBnOAEFadABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5X8ftc/sz4emwRgJdSuEhx32L87Efiqj/AIFXqTcevSvOfiB8L5vH9/bTXuvG2t7VWEFvFaZ27sZJYvyeB2HTpQB5rf8AgOw0b4D2evXEs8WpqYr0RySloXZ3AVTC3yk7GHb+HnjIr1L4N+JbjxP4BjnubWCCS0na1/0eIRo4VVbcFHA+9jjjIPTpUHiP4Z33i+O1tdc8UStpluwZbOys0gXIGAc5bsSBxXaaBoWn+G9Ft9K0uDybSAYVc5JJ5JJ7kkk0AadFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTW54459adRQBw58F6j4fbzvBurG0iBydKvt01q3rt53xnvlTj2rqLzVLXSdNW81a6t7RBsWSR32xhzgYDHtmtCobm3huoXguIkmhcYeORQysPQg8GgB0E0dxCksMiSRuAVdDlWHqD3FSVyll4E0zSNWjvtEnvNKQPulsraY/Zps+sbZC/wDAQK0Ne1q60WOGaDRb7U4CSJvsW1niHGCEJBfP+znpQBt0Vz2ieM9B8QXDWtjfD7YgJks5kaKdMdcowBroF6UALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFZOv64mhWaTtYX99JI/lxwWNuZXZsE89lGAeSQKzdIv/ABbqOopNfaPZaVpYDbopbgy3LnHy/d+RfcZagDb1PVLHSLRrvUby3tLdBzJPIEX8zWb4f8UWfiZ53062vvscQXy7ua3aOKfOf9Xu5bGOuMc1ZvfD2japqUGoX+m291dWylYZJ037ATk4B6H3rVAxmgDmJfBGl32uvq2rPc6nKr77eC7ffBbf7kYG38Tk10yLtXA/L0p1FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNbr+lOooAwNA8I6V4auL2XTEnj+2ymWZWnZ1ZyclgCcA/4VmeIfhn4b8Vah9t1mG7uplGF3XcoVB6KobAH0rsqKAKel6fFpWmwWFu8zQwLsQzSNI+B0BZiSf8ACrlFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBE8ETTrMY180KVEmBkA9Rn0rD13w9fandx3mneItR0q4RNipEEkgbknLRuCCeeuR2roaKAMHQYPEts00eu3+n3sQAEE9tbtDI3XO9SxUdsYqvq/jCHQ9Re2vdH1lrdQD9ttrJpoeRnqmSCOh4rpqKAMjQvEeleJLaW40m6+0RRP5b/u3Qq2AcFWAIOCK0o5opGZY5EdlOGAOcVIa5jUvh74U1e9kvL3RLdrqQ7nnjLROx9SyEHP40AdQKKy9F0Kx8P2JstPWZYN5cLLO8pBIA4LknHHTOKxbrwdeTXk9zb+MPEVsZZGkESzRPFHk52qrR8AZwOegoA66is7SLC503TktrrUrjUZVJJuJ1UO3PT5QBWDN4X8RSTu6+OdTjRmJEa2dsQoJ4AzHn86AOvoqjpttPZ6bDbXN9LezIMNcyKqtIcnnAwM/h2rmf+EAdxm48YeK5B6DUBH0/3EU/rQB2Zqhfa1pWmc3+p2doB1M86J/M0+20+K20uPT2eWeFYvKZp5C7MuMfMx5J96xrH4feENPA+z+G9MDD+J7ZXb82BoA2ZtRtotLk1BWM1ssJnUwL5hdMZ+QDO7I9K5ceMtZvyBpHgrWJFyMy6g0dkoHqAxLH6ba7ONEjQJGoVF4VVGAB7U6gDO1a1vL7TZbew1BtPuXI23KRLIyDIJwrcHIyOc9awbP4f6dHfQX+qX2p6xewSCWGS/umZYnByCqLhBzz0rr6KAEXpS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9k='] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 55 "已知梯形 $A B C D$, 边 $C D 、 A B$ 分别为上、下底, 且 $\angle A D C=90^{\circ}$, 对角线 $A C \perp B D$, 过 $D$ 作 $D E \perp B C$于点 $E$. 证明:$\frac{A E}{B E}=\frac{A C \cdot C D}{A C^{2}-C D^{2}}$." ['由于 $\\angle A D C=90^{\\circ}$, 故 $A C^{2}-C D^{2}=A D^{2}$, 所以\n\n$$\n\\frac{A C \\cdot C D}{A C^{2}-C D^{2}}=\\frac{A C \\cdot C D}{A D^{2}}=\\frac{A C \\cdot C D}{A B \\cdot C D}=\\frac{A C}{A B}\n$$\n\n因为\n\n$$\n\\angle B A D+\\angle D E B=180^{\\circ}\n$$\n\n所以 $A 、 B 、 E 、 D$ 四点共圆, 故 $\\angle A E B=\\angle A D B$.\n\n由于 $\\angle B A C=90^{\\circ}-\\angle C A D=\\angle A D B$ 且 $\\angle A E B=\\angle B A C, \\angle E B A=\\angle A B C$, 则 $\\triangle A B E \\sim \\triangle C B A$, 故\n\n$$\n\\frac{A E}{B E}=\\frac{C A}{A B}\n$$'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAfAEGgMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoqlqWrabpEIn1PULWyiY4ElzMsak+mWOKyx478If8AQ1aH/wCDCL/4qgDoaKz9O1rS9ZjeTS9Ss7+NDtd7WdZQp9DtJFX16UALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSHrQB5x8cdaGk/DS8hBAlv5EtU/E7m/wDHVI/EVy3w41Twv4e+HGlafM1hqOs6rcg/2eHSSQvI4VdwwdgCBSSR2OMk4rJ+PN7Lr3jbw/4TtHHmDbkdvNmcKAfoFB/4FXo/iLSfBfhOLR9av1s7D+x8mHbEolucRFAgxyxBIP1A6c0AdD4W8K6f4Utr6305Fjhu7yS68tVwI9wA2D2AAxW8OlVtNuXvNNtrqSBrd5olkMLkZTIB2nHcVaoAKKKKACikPWsLVPGPhvRSy6jrthbyDjy2nUyf98g7vyFAG9RVDTtTtNX0yHUdPkM1tMpaNwpG8Djo2D271zY8UeK7nabHwHdBD0a+1CGDH1C72H5UAdnRVGB9Ql0mNpYoYNQaHLR7y8aSY6Z4JGfTFcz9h+Icx/ea54fts/8APDTpH/8AQpKAO0oqi8N42kPALtEvjAUFysOVWQrjeEJ5552556VzJ8P+OO3jqEnrzo0f/wAXQB2lFUdQiv5NMmjsLqO3vCuI5pIfMVT7qCM9+9c2lt8Q4ZF/4mXhy4j3fMHs5oyRnsRIRmgDsqKz9VuL+102SbTLKO+u127Ld5/JD8jOXwccZPTtXP23inX1uoYNS8E6lbiV1QzW9xBcImTjccMDtHc46DpQB2FFZmsa5pvh+w+26tdx2ttuCeZIDgE9AcZpNM8Q6NrQzpmq2V5j/n3nRyPqAeKANSikFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1vTv2p1FAHH3vwx8HajqEt9e6KtxdyvveaS4lZmPrnfTG+FfgmS5FzJoccswIIeSeVzx9WNdgx5/CuRk+JvhcpIun3kup3Ky+SLXT4GllZ+uAMYxwfmJC8HnigDsFGBVa/1Gy0u2a5v7uC1gX70s8gRR+JNYmhah4k1O+afU9Ht9L00xkRRST+Zcs2RgsF+VRjPGSc45qze+E9B1TWE1XUNLt7u9jQRo9wC6qASRhD8oOSecZ96AHaH4m0jxKLh9IuWuYoGCNMInVCT/dYgBvqM1nalaeNdQ1GaKy1TS9J00MPKmS3NxcMMc5DEIvf1rqUUIgVQAo4AAxinUAZmi6bPpVh5F1ql3qUzOXa4udu7nAwAoAA46e5pLPw9o2n3Ut1aaVZQTyuXeWOBVdmJySWHJOa1KKAAUUUUAFFFFABRRRQAUUUUAFFFFACMAwwRkdwehrI/4RfQf7Ui1IaNYrewtujuEt1V1P1HPetiigDF17S9T1GGD+y9cn0qeEk70hSVZPZ1bqPoQap6MPGFvqAg1s6Rd2O04u7TzIpc9t0bbgc+xrpqKAMTVPFWhaJqFvY6pqUFlPcLui88lFYf75+UHjoTmtiGRJYlkjdXRhlWU5BHqKju7S3voGt7u3iuIHGHjlQOrD3BGDWVovhTR/Dk9zLpFqbNbjBkhSRvKBHdUJ2r/wABA6CgDcorlNX8Qa7ompyNL4clv9G423OnSeZPHwM74SATzn7pPGK2dC17TfEenfbtLuRPBvMbHaVKuMZVlIBBGRwaANKiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiimt1FADqpapeNp+n3F2lpcXbRJvEFuoaSTHZQSMmuU1M+KNbuLuDzR4a0KBmWS98xWup1XqyclYkIyQxy2O1ct4i8Rape+HIovD0Oor4StNsN7rActcTRDhmi3fMUGBufr1xwCaAMzWPGHjbxFq0lnp15baHaWbFr1rfFx9nA6o8p+VpPVUGB3bqKzfh/FL8PdNtPEkMUtxpmoRA6lCV3SRR7iY5Ux12g/MO/J9K1/EC2Vl4Ej0zQ/KSLUDHZWnlcqwlOC2e+V3NnvjNdXDbxW9rHbRpiKOMRhT2UDAH5DH50Ad9aXMF5aRXVtKk0EyiSORG3K6nkEHuMVNXjmg+JrXwL4ll0KS4L6BKPOIUFhpLscAOcYWJiwxk8E+5r2FMbQVOQec5zmgB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAAajK7c7QAT6etSUUAcM174x8LE/boB4m0sH/X2kaxXkQ/2oshZAP9nB9q7WCUTwJKFdQ6hgrqVYZ9QehqSs7W9Pl1TTJbSG/urCVsFbi1YB0IIPfjHGCO4yO9AGjRXJaPfeJ7LU49I1+wW9ifPk6vZAKj4BP72MnMbcfw5XJ4rrF70ALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVHUNX03TCg1DULW0L52efMse7HXGTzV6vIf2htXSz8DW2mjBlv7pcAjkIg3Ej8Sg/GgD0QeLPDY/wCZg0r/AMDI/wD4qr9lqdhqcbSWF7bXcanazQSq4B9MgnmvKfB9v4W8PfDzw9p1/a6bqOqai0X+iyLG8jvM4PIIJAVWGe3y+pr0Hwh4TsfB2mXVhp/+onvJboKBgJvPC9T91Qq574oA6AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFRysqAu7KqqMkngAeue1cVaa1rfjHUoZtEY6f4cglDPfSxgy3+08rEp+7GcY3nk54oA2fE2p6xaC3s9D0n7be3QYLNM222twMZaVhz34UAk4PpVSwtk8H6Ve6v4j8QTXUsmJLq5uG2xJjoscY+6OcYGS2ec9tLxB4j07w1p4u7+RiXYRwwRDdLO56Ii9WP8Ak1z2meG9R8QahBr3i2MKYm32Gjht8Vp6O/Z5ffovagCCLTtQ+IUsd3rUEtj4ZUh7fS3G2W8x0efHRO4Tv1Pau7WONIBGsaiNV2hQOAPTH0qVTkHFBoA8E8Q6faeEPiTY2iSy/wDCPwZvvJCZisZZt0a5P8MZYEgfwlq6E3OpeJ9Sl0bw2yqImC3uqMu6O277VH8cnoOi963vCVpb+IbvxZq97Ck9rqd69kiONyyW0A8oYHoW8w/jXX6PpNjoWlW+m6dbJb2sC7UjTt7k9yepJ5NAGbo3hHRtE0OXSbe1EsFwp+1NcfO90zfeaQ/xE/p0GOlYOj3U3gbVrfwzqU0kui3TbNHvZD/qz2tpG9R/Ae447V31Z2uaNY6/pNxpmowia2nXDLnBB6gg9iDyD6igDQXp60tcT4Z1m+03Vf8AhEvEUpl1CNC9hfHgX8K9/wDrooxuH412q8CgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArmvEem6+19Dqvh7UwlxDHsfTrrm2uVyT1HKPz94Z7AiulooAx/DutPrentNPpt5p1zFIYp7a6TlHABOGHDryMMOD9citgdKZJnB2kBscE1xen+Kb/Q9Rh0TxgIklmbZZ6vGuy3vPRW7Ryf7J4J6dqAO3opB0paACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBrV84/FWdvGfxm0nwtCSYLVo7Z8dAXIaRvwXb/3zX0bICylQSMjGR1Fefr8HvDQ1h9YWfVV1JpWmN0l4yvvJySCPqaAJNZ8J+DvDWqWHix7XT9Ii0vzHfyYRH5pZNqjC9T1IABJPSu3sbn7bYW915UsPnxrJ5coAdNwzhgCcEZ55NcTd/CXw7qN5Dd6nc6vqEkLhkF7fvKOCOMHscc13ooAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqOq6nZaPp82oahcx29rAu55JDgAf1PoByTwKXVNUsNGsnvtSuora1QgNLK2ACTgfjnFVNU8P6drd7p13fxvP9gczQxM58ovjh2ToSOxPTJoAi8N6vfa7Yy31zpcmn20khNmkzfvZIscM6/wZOeOwxVfxJ4pt/D6wWVrbNf6xdfLZadB9+T/aP9xB3Y8CoPEXiqW01BdC0C3XUNfmXIhLYitU/wCekzD7q9wvVug6irXhnwrBoQmu7ieS+1m7w15qEow8h9AOioOyjgUAVNA8KXEWof2/4iuEv9edcIyj9zZqf+WcKnoPVjye9dYKBS0AFYvi7Wf+Ef8ACOq6qD89vbO0Q9ZCMIPxYqK2q4vx1/xMtU8M+HByL6/FzcL2aG3HmEH6t5Y/GgDa8I6P/wAI/wCEdK0oj95b2yLKfWQjLn8WJP41tUgpaACiiigDD8UeHLfxLpgtpZHt7mJxNaXcXEltKPuup9u47jIrP8J+I7q/kuNF1uNLbxBYAfaY1+7Omflmj9Ubv/dPFdZXM+LfDUurrb6jpcy2mvafl7K5I4PrE/qjdD6dR7gHSrnHNLXP+F/EsXiPT3ZoGtNQtm8m9spPvW8vofVT1Vu4I963x0oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKguraC7jEVxDHKm4MFkUMNwOQcH0IzU9FAHO6/wCKIfDd3ZHULSaPS7g7JNRGDHbSHG0SAchTk/N0HA75rfiKtGrIQykZBHcVHdW8V3A9tcRJLBKux43AIZTwQQevFZOj6TY+D9EngW+mXToS8q/a5QVtYsZKKxAwi4OM5wO9AG7RTIZEliWSN1eNwGVlOQQehB7in0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNNKa84+IHjeOK11Hw9ou241D7LIby4DYjsIip3MzD+PH3VHOeTjHIB6FbXMF1GZLeeOZAxUtGwYZHUcVNXgPwnM3gA251Rv+Jb4hjhKz5Ki1nwdqOM4AYMBu9cA176vTpQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1vpUdxLHBE800ixxRoXd3baqqOSSewHvXJ+HtY1PxFqNzr3mtZ+Goo2iso5EAa75ybhi3KpxhR3BJOKAFh8O32teKZNX8ReWbaxmYaVYI26NMcee/96Q9h/B9TUWq+JL/AFrU5fD/AIRaM3Mbbb7VGXfDY+qgdHl9F6Dv0NV7jVNR8e3D2Ggzy2Ph5GKXWrpw9zjgx2x9Oxk/Kuv0bSLDQtLh07TbaO2tYRhY0H5knuT1JPJoAp+HPDVh4a0829mHkllbzLi6mbfLcyHku79ya2h0paKACiiigBDXFaWP7W+KWs3/AFg0i0i06I9jJIfNkP1A8pa7C6uIrS1muZnCRRIZHY/wqBkn8q5b4aW8v/CHpqdwhS51i4l1OVfQytlR+CbB+FAHXDpS0UUAFFFFABSMKWigDjfFOhXtvqKeKfDqA6vbpsuLXOF1CDvG3+2Oqt68Hrxv+H9csfEejQ6lp8haKTIZXGHjccMjDswPGK0Wrhtdt7jwbrU3ijTIHl0u4/5DFnCuWGOlyg/vKPvDuuD2oA7uioLO7t76ziu7SaOa3mUPHJGcqynoQanoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqKaOOeN4ZUV43UqyMuQwPUEelS0UAcXoWj6p4T11dLso2u/DFzuaDdJl9Ofrs5+9G3bGSD7V2SdOetKetcnJ4hvdF8XHTtc8v+zdRcf2Zeou1UfABgkP944yp75I7UAdbRQKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAprYz+FR3M8VrDJPcSpFBGhZ3kbCqB1JPYe9cALvUPiXmOza50/wiGKy3HKT6kP7qd1i9W6t0HegDO8S/EU6xrMXhrw3dtapM7xTaxsOzcoBaOA9GkwRz27ZNYXiPS7TSvCkWhadGYm1S6jtWkzl3LMDI7nuSgbJr1HVPCGkar4YXQfs621pEAbY242Nbuudrp6MOue/PrXk9q+qTfEO00PXVjF3olvLKJUb5bsuFRJAvY7SxI9c0Adjd6faXunSafc26PaSJsaJum30/lz6gYpfB3iO50fVYfCGuzvMWU/2XfyNzcIP+Wb/9NFHf+Ie9UNW1s2l3Bpen25v9Zu+Le0UgY9Xc9EQdyfwzzWlafC2yuLG4m8QXEl9rlygJvoyy/ZWBDL5A/gCkZB6nnPpQB6IvSlrjvCniO7N/P4X8QkLrtkm8TBdqXsPQTJ7/AN5R0OenQdgowKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKr3j3Mds7WcUMs4GVSaUxofqwViOM9jQBYoryHwt8YdX8ZX17ZaR4QilltYTMxbVNqsAwGAfK6nPH0PSun8F/EvSfGV1daekE9hqtrnzrK5xuGDglSOuDwemKAO3prDmlXp0xXIfEnW7nRfCrmyuUt7m6lS2SQcygMcExIOXkxnC8euRg0AW7nxJ4cvtK1kX00Emm2Mhtr5rhMw5wCy5PDEZxjrntWDBYX/xAaObU4ZdP8KoQbfTSCkt+B0abptj9I++MngCovCngWSWDT7nXbdYbOxwdO0YNuSA9fNmPSSYnJJ6Ak4r0dcEcUANhjjhhSKJFSNAFVVAAAHAAAp9FFABRRRQAUUUhoA5D4lzyN4SbSbdylzrVxFpkZ9PNbD5/7Zh66u2hjtraKCFAkUSBEUdFUDAH5Vx+pn+1/ipo9kPmh0ezlv5P7vmyHyowfcASGu0HSgBaKKKACiiigAooooAKawzxj86dRQB55Kj/AA21VrmPP/CJX0uZ0AyNMmY/fHpExPPoTnvXoKMrIGUhlIyCDnIqO6t4bu2lt7iJJYZUKPG65DKeCCO4NcNpM8vgPWIPD2oSvJoV2+zSLyQ5MDnn7M5/PYfTjtQB39IcUL0qtqNw1np11dIoZoYXkCk8EgE4/SgDz7xr8U/7G12Hwx4dsl1TxBM6x+WxxFCzdN2DknuRxgck1cv7Px5Y+HZ9SXxHbT6nBE07WYsF8hioyY1P3/oc8kdAOK8r+ANk2s+O9X16+YzXUEJfzH6+bK3L/XAb/vqvpHAIIwMelAGJ4Mu9R1HwdpV/qzq17dW6zybECgb/AJgAB0wCB+FbtIAAMDpS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFUdX0uy1rTZ9P1C2S5tZlw8bjg85H0OQDkcjAq9RQBQOqWMepxaSbhFvJIjNHCx+ZowcEj6Zq8vSud8YeHZNesIpbGUW2sWD/aNPuf+eco/hOOqsPlI6YPfArV0a6u73R7W4v7M2V5JGDNblw3lv3GQcEZ/wDr80AXqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKz9Z1ew0HS59T1K4W3tYFyzt/IDuT2A5qp4l8TWHhmyjnu/Mkmnfyra1gXdLcSHoqL3Pv2rC0vwzqWtalBr/AIw8priJt9lpUTb4bI9mJ6SS/wC10HOKAK1tpmpeP5Yr/wAQW8lh4fVhJa6O337n0kuMdu4jH49K76NVSNURQqKMKFGAB7CnKcjiloARgCOefavI9K8JR+OLXW/EwnNrqV5qbyaXfKoJiihzFGCD1VsNuXuDXeeOdWfQ/BerX8OftCQGODHXzXOxP/HmWrvhvSE0Hw1pukx422lukRI/iIHJ/E5NAFDwt4QsPDEEjRF7rUZzuu9Qn5mnb3PZfRRwB+ddEOlLRQBz3ivw0viC0hkt5zZ6rZP51heoMtDJ7+qHow7j8Kj8JeJTrtrcW17ALTWrB/Iv7XOdj9mX1RuoPpXSGuS8V+Gri5u4fEOgssHiGyQrGScJdR9Whk9j2PY8+tAHWilrG8M+IrTxNpC3tqrxOrmG4t5RiS3lX70bDsR/Ig962aACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuU+JWuf8I98PtZv1fbN9nMURB5DuQgI+m7P4V1LV458c4td16wstC0TRdRvI0m+0XMsVuxQEKQqhu/3mJx7UAH7O+h/Y/CF9rEifPqFxsQ+scYI/9CZ/yri/Dkxuf2nZ5bAfu/7Qut5ToQEcMT9SM/WvQtO1PXdI+HmmeH/CvhjVP7VS1SIy3lv5EVu5++5LkbjuLEAZ9+Bg6Hwv+GUfge2mvr6ZLrXLpcTTDJEa5zsUnk8jJPGePSgDsPEuqJo3hjUtRknEHkW7skm3OHwQuB3JYgAd+K+ffC03i+znt/FOu3z/AGfdJbR6nfW7XwsmVyrhl3gxAkEbgD2GQM19B6ro1jrq2S3m6WK0uhcIiv8AK0iZA3juAeceoFYPw2VZPCM6uoZW1G+BVh1BuJOKAGW1j45u7eO4tvF+izQSKGSRNLLKw9QRLgipf7J+IH/Q1aR/4KW/+O1XuPCOoeHLiS/8FTxQxs2+fRrgn7LMe5j/AOeT/TgnGRxWroHjCx1y4ksJY5tP1eAfv9NuxtlT3Xs6+jL/APWoApf2T8QP+hq0j/wUt/8AHaP7J+IH/Q1aR/4KW/8AjtdivSloA43+yfiB/wBDVpH/AIKW/wDjtH9k/ED/AKGrSP8AwUt/8drsqKAON/sn4gf9DVpH/gpb/wCO0h0nx8OT4p0n/wAFJ/8AjtdnWH4x1k+H/B+q6ov+tgt2MQ9ZDwg/FiKAPP8AwhpnjPVbrW/ENt4h02N727a2819OZxMlvmNWX94Nq5D8c85Peuq/snx+enirSMf9glv/AI7Wz4T0ceH/AAlpWkj71tbIjn+8+MsfxYk1s0Acb/ZPxA/6GrSP/BS3/wAdo/sn4gf9DVpH/gpb/wCO12VFAHG/2T8QP+hq0j/wUt/8do/sn4gf9DVpH/gpb/47XZUUAcb/AGT8QP8AoatI/wDBS3/x2j+yfiB/0NWkf+Clv/jtdlRQBxv9k/ED/oatI/8ABS3/AMdo/sn4gf8AQ1aR/wCClv8A47XZUUAcb/ZPxA/6GrSP/BS3/wAdrnvHGm+J4vBmptrviTR5rDyTui/slsu38AX97w27GD2OK9RY45rhLc/8Jz4x+0kbvD+gzFYARxdXo6v7rH0H+1z2oAwvhbqHiXRbyTw543urr7ddoLnTTdyeaXUA71EmSSw4O08gZ9a9WdVZCjAFSMEEZBHpisbxP4btfE+kfZJ5HgnjcTWt1FxJbyjlZFPqP1GazvCfiW7vp7jQdejSDxBYAeeo4S5jzhZ4/VT39DxQBw2kfDnxP8PfFl1qfhI2WoaVdqUe0u5jE6LnIG7HO3oG7g8ivQdMg8Sahfw3mtrb6dbwkvHYWVw0jOxGMyyYUMACflAxnBJ4FdKvSloARelLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc74t1668N21rqQt1l0uOYLqLAEyRRNwJFHcKxBPXjNdFUNzBFdQSW08ayQyoUdGGQykEEH8M0APiZZIldGDIwyrKcgg9CD3p9Znh/SI9B0O10qGeaaG2UpE0zAsEySq5HoCAPYVp0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNPXnpQA6ua8T+Ko9Gmg0yytm1HXLxT9lsIzgkf33bokYxyT6cZqpr3iq6k1VvDfhmJLrW9oaeSQnybBCOGlI6seyDk9TgVe8NeFLfw+JrmW4l1DVrrm71GcfvJj6AdFQdlHAFAFTw74UmgvzrviG6TUdfcbfNVSIbVT/yzgU9F9W6nvXWL0oFLQAUUU09R/P0oA4zxof7T8R+FfD45Sa8N/cenlW43AH2LtH+VdovSuH0CT+2/id4i1TGbfS4Y9JtyOhb/WTfiCVH4V3AoAWiiigApDycUtFAHD+ItGvtB1eTxd4djeSbaP7T01Ol7GP4lH/PVR09QMd+eq0bVbLXNIttT06dZ7S4TfG49PQ+hB4I9QauN16V5/qdvcfD7VJ9dsEMnhm6ffqdnGuTaO3W4jHdem9fxwecAHoVFRW08VzbR3EEqywyqHSRDkMpGQQe4IqWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArnvGWuyaB4fee0jEuo3Ei2tjERxJPIcIPoOSfYGt9vrWdpmsWOtPeraMZBZXTWsrFPl8xQCwU98Zxn1BoAg8LaDH4b8PW+nLI00q5knnY5aaVjudyfUsTWP8Mf+RSl/wCwne/+lEldj2rjvhj/AMilL/2E73/0okoA7KsTxF4X0vxJBGt9C63EJ3W93A3lz27f3kccg+3Q9wa26KAOC/t3XfBbCLxQrajo4OI9atovmhHb7RGvT/fUY9QDmu1sru3vrSO6tJ457eUbo5YnDKw9QR1qVwGG0gEEYIPI/GuKuvCF9oV3JqfgueOzeRt8+lTkm0uD3IA/1T+68HjIoA7iiuY0Dxjaazdtpl3BLpetxLmXTrogP/vIw4kX/aX8cV0y9Dg55oAWuL8cf8TLWfDHh0ZK3d/9ruB2MNuPMIP1fyxXZmuK0fOr/FDXNRIzDpNrDpkJ7b3/AHsv4jMY/CgDtRxS0CigAooooAKKKKACiiigAoorO1zWLTQNHutVvn2W1tGXcjqfQD1JOAPc0AYPjbVbx2tvC+iy7NY1UEeav/LrbjiSY+hHRfVjx0rodG0q00PSLXS7CLy7W2QRxr3x6n3J5J7k5rA8GaPeRpc+IdaTbrWqkSSxk/8AHrCP9XCPTA5P+0TXWL0oAWuZ8X+GZNbit7/TJ/sevaeTJY3WOM9439UboR+PtXTU1hnj2xQBz3hPxOniOxkE0DWmqWj+TfWT/egk/qp6g9xXRL0rjfFnh+9jvo/FPhxVGt2qbZbcnCX8HeJv9rurdj19t7w7r9l4l0aLUrBm8tyVeOQYeJx95HHZgeDQBq0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQByXjy3v4tOt9d0oyte6M5uvIVjtuIsYljI7kpkjvkDHWuj0zULbVtMttQs5RLbXMayxOO6kZFWGGTis23uNL028ttCtjDbzGBpYbWNNoEakAkAcdWFAGpRSCloAKKKKACiiigAooooAKKKKACiiobm4htYHnnlSKFFLPJI21VA7k9APc0ASN179OMVw2oeINQ8U6jPofhOYR28D+XqGshQywHvHCOjy+/Rfc4qCS61H4iytBps1xp3hVSVlv0yk2oeqxd1j9W6t0HGa7XSdMsdG0yDT9OtY7a0hXbHFGMAf4n1J5J60AVfD3hzTfDWnfZNOiYBmLyzSMXknc9XdjyzH1rXFFFABRRRQAVV1G9h03Tbq/uCRDbQvNIf9lQSf0FWq434lyPN4Zi0WFmWbW7yHTgV6qjtmQ/givQBL8NrCSz8E2lzcKBe6mz6jdN3aSY7+fcKVH4V1tMijSGJY41Cog2qo6ADtT6ACiiigAooooAKjljSVGjkVWjdSrKwyCD1BqSigDzq3nk+GuqR6fdF38J3suLScnP8AZ0rH/VOf+eRJ+U9jwa9EXpVTUrC11Wwn0++t1uLW4QpLE44Ze/4//WxXHaFqd14T1eHwnrly8ttMSNG1GU/65B/ywkPaRegP8Q96AO9opqjAx706gAoopD65xQAtFczN4+8NQ6i9gmom6vEBLw2NvLdMmOuRErY/Gn6N418PeINRaw0rURcXaRtK8IidGRVIU7gygryRweaAOjopF6UtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUhoAy/EUmpRaBfto8An1PyGFrGWABkPAJzgcdefSm+GNDh8OeHLLSoW3+Qn7yTvJIeXc+5Yk/jVe2157zxlqGiwQK1vp9rG9xcbuVmkJKxgf7g3E+4reXpxQAGuO+GX/IpS/wDYSvf/AEokrsT0rjvhj/yKUv8A2E73/wBKJKAOyooooAKKKKAMnXvDul+IrUW+pWyy7fmikUlZIW/vI45U/T8etcuNU8QeCf3eu+brOgrgLqsMebi3X/pvGvLAf31+pFd9TWxnkZ4oAoR6zp0uhtrEN3FNYLC0/nxMGUooyTn2xWF8NrWaLwZb310u281WWTUp/wDemYsPyXaPwrkviP4VXTtOb/hGbh9Nu9euk0+Wyj4t7kyZDMy87CFDfMo6A5zmuu8OeLrS4nj0K/s30XWIYwo0+4OQ6jjMUnSRfpyMcigDraKRenWloAKKKKACiiigAooooAa34fjXDhU8aeMi2d+heH5toX+G5vu591jBH/Aj7Ve8a6zeQx2ugaM+3W9WJigkHP2aMf6yY+yg8erEVt6Do1n4f0S10uxQpb26bRnkse7E9yTkk9yaANAdKWiigAooooAQjmuF8R2Nz4T1d/F2jW7zQSADWbGLrNGP+WyD/nonf1X6A13dNbr0oAr6bqFpq2nwX9hOk9rOoeORDwwP+ce3SrVedXCP8NdXe9iDN4Qv5f8ASo1Gf7NmY48xR/zyY4yOx574r0KJleJXRgyMAVYHII7c96AH0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXJePNMu5rCz1rSoGl1bRpxcwRxj5poz8ssQ/3kJ47lVrraa3WgBI23xhtrLuGcMMEZ9afWLp2vR3+vato7QPDcac0TZY5Esci5V19shh/wGtkdKAFooooAKKKa33hQA6ivl/4tafZ618Y7XQ9ItILeebyYLh4owu6aRixdsdSFdST14NdD8U9Hf4YyaXr/gy4m0oTSGG4t4pCYpGAyCUPB6HPHYGgD3+isPwfro8TeEtM1nYEa6hDug6K44YD2yDj2rK8Z/Ejw/4IuYLfVZZzczRGRIYI9x28gE9hkggfQ0AdDrGsWGhabNqGp3Udrawrl5JOg9MY5J9AOT2rjV03UPiHJHd63by2PhhWElvpb/LJe45Ek/dV7iP15PQVi6Zrvh7xDqdvr/i3xJoiNC3mafpAv42jtPR5DnDy/ovau3/4WB4OHXxTo3/gbH/jQB0MMaQwpFEipGgCqqjAAHAAHYVJXN/8LB8G/wDQ06N/4Gx/40f8LB8G/wDQ06N/4Gx/40AdJRXN/wDCwfBv/Q06N/4Gx/40f8LB8G/9DTo3/gbH/jQB0lFc3/wsHwb/ANDTo3/gbH/jR/wsHwb/ANDTo3/gbH/jQB0ZODz6Vxd9/wATf4raZagZg0SwkvJD286Y+WgP/AFkP41oH4geDsceKNHP0vY/8a5DwT408NSaj4l13UNf0y2n1HUDHCkt0isLeJdkXBPGfmP40Aepilrmh8QPB3/Q06N/4Gx/40v/AAsHwb/0NOjf+Bsf+NAHSUVzf/CwfBv/AENOjf8AgbH/AI0f8LB8G/8AQ06N/wCBsf8AjQB0lFc3/wALB8G/9DTo3/gbH/jR/wALB8G/9DTo3/gbH/jQB0lFc3/wsHwb/wBDTo3/AIGx/wCNH/CwfBv/AENOjf8AgbH/AI0AdJWT4j0Cx8S6RLpt+hMb4ZJFOHicfddD2YHkH8Ko/wDCwfBv/Q06N/4Gx/40f8LB8G/9DTo3/gbH/jQBS8La/eR3z+F/ETqNatk3RTgbVv4R0lUevGGXsenBrsF6V534s1jwR4ls4Wj8X6Ra6pZP51hepex7oJfz5U4wy9x+GJPBPxR0vxPfJok7pHrkasJRCQ8EpT7zRuOqkDcPQcc4oA9AOO9eE/HLx5qFvfweEdGmkilljDXjQn5nD8LEPTI5PqCO2QfdRjjtXzL8TrY6H8e7PWNSQpp09zZ3Ik2naY4xGr49SNh49x60Ae5eBPB1p4K8M2+nQIpuWUSXc46yykc8+gzgD0H1q1ZeF7Sx8aap4jjwJ7+3hhZQuMFN2TnvkbP++K0LvV9OsNMOpXd7bx2QXd57SDYR6g9/w61Pp92L6whu1hmhWZd6pMu1wD0yOxxzg8jocHigCwOlLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNbrTq5nxjrF5pyaTZaYwW/wBS1CK3jbaG2Rg75WweuEVvzoAn8L6A+hwag91Otxe397LdzyqpA+Y4VRnsECj8K3xSL0paAEPSuO+GP/IpS/8AYTvf/SiSuxPSuO+GP/IpS/8AYTvf/SiSgDsqKKKACiiigApD/wDXpaQ8c0AcVqGNX+K2lWnBh0WxkvpPTzZT5SA/8BEhrf13w9pfiSy+x6paLNGDujfJWSJv7yMOVI9RWF4D/wCJjeeJPEZ5/tHUWhgbs0EH7pCPqQ5/GuzHSgDg/t/iLwQCuqefrugLwt/Gm67tV9ZUH+sUddy89SQa7HS9TsdY0+K+067iurWUZSWJgwP/ANf2PSrTYJx3rj9R8GTWd9Lq/hO7TStSkO6aBlJtLs/9NEH3T/trg/WgDsqK5PRPGkV3qC6Nrdo2j64RxazsCk/+1C/SQe3Ucg11YoAWiiigAqjq+qWmi6TdalfSiK1tozJI3sPT1PoO9XGGeK4S5z448X/YQN3h/Qpg10c5W6vBysfuseQx/wBrA7UAXPBul3U8tz4q1iIx6pqgGyFv+XS1HMcXsedzerH2rsF6UL0paACiiigAooooAKKKKAIbm3iuoJLeeJZYZVKSRuuVZTwQR3FcFplxL8PtZg0C+ld/Dt6+3SrqRv8Aj1kP/Ls7f3f7h/CvQ6z9a0my13SrnTNRt1ns7hNsiH9CD2I6g+tAF9elLXDeGdWvdD1dfCHiKdpp9pbTL9/+X2Efwsf+eqDGfUc13C8rn154NAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHOX+iXf/CdaXr9kYwi2stnfq7EF4vvx7eOocH8GNdEtVdUa8TTLp9PVHvFiYwJJna0gB2g4IOM4zVPwtrS+I/C+m6woCm7gWRlH8L4+Yfg2RQBr0UUUAFRyuscbSOwVEG5iewFSVkeJNKn1zRbjTIL97H7QhjklSMO2wghgM8DPr2oA8F+E9u3jT4x6v4qnXMNs8lygPZnJWNfwXd/3yK0Pj/qx1jV9F8JaYr3V6rmaSGLk73GEX643H6EV2vhb4VT+DobyLRfFN3breFTKTaRO3y5xgkcHDH/Ct3wz8O9D8L6jcanEtxe6rcEmW/vJPMlbPLYwAB+AzQBoeCdCfwz4M0rRpXDy2sIWQg5G8ks2D6ZJrk/iZ4Z0jXvE/hFdRslm8+7ktpCGKlo/Kd9uQR/EM/yr0pRgVxnjT/kavBH/AGFH/wDRElAGGdAufA5OdEg8ReH16FbRGvrVfToPOX8m9c11miQ+EfEOnJfaVY6Xc27cErbJlT3VhjII9DzXRmuR1fwVnU5Nb8NXn9ka0/8ArWVN0F1joJo+/swwRmgDc/4R3Q/+gNp//gKn+FH/AAjuh/8AQG07/wABU/wrA0vxm0d/Ho3ii0/sjV2+WJi+ba794pDxn/YPzDpzXYr0oAzf+Ed0P/oDad/4Cp/hR/wjuh/9AbTv/AVP8K06KAMz/hHdD/6A2nf+Aqf4Uf8ACO6H/wBAbTv/AAFT/CtOigDjPG9po+heC9Vv4dHsPPSApAFtUyZXOxMcf3mFXtA8GaNpHh/T9Ok0yxmktrdI3la3Vi7BRlskc5OT+NZ/jT/iZ+I/Cvh9eVmvTfz+nl243AH2LlBXaigDM/4R3Q/+gNp3/gKn+FH/AAjuh/8AQG07/wABU/wrTooAzP8AhHdD/wCgNp3/AICp/hR/wjuh/wDQG07/AMBU/wAK06KAMz/hHdD/AOgNp3/gKn+FH/CO6H/0BtO/8BU/wrTooAzP+Ed0P/oDad/4Cp/hR/wjuh/9AbTv/AVP8K06KAMz/hHdD/6A2nf+Aqf4Uf8ACO6H/wBAbTv/AAFT/CtOmtQBy/iVPDXhrQ59SutHsGCALFCtqm6aQ8Ii8cknFcbafDC/06yj8T6a8Nr4y8xrqSPAFswfObbaOAu07dw5yM9+NzToh478Vprkg36Do8rJpq5ytzcjh5/dV+6vuCa70Y6jue9AGL4X8S2vifSvtUSPBcxOYru1kyJLeVfvIw9v5EVPrnh3SPEtmLPWbCG8gDbgsg5U+oIwQfpXOeJdH1HRdYbxf4at/OuygXU9PBwL6FehX0lUfd9ckex6jQ9ZsfEGj2+p6dMJbadcqcYKnupHYg5BHbFAGBpPww8HaJeR3dhocSzxHMTSyyTCM+qq7EKenIGa68UtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZF5oUF54l03WZZZDJp8UyQxcbd0m0FvrhSPoTWsa5XwJf3Wr2Gq6rcXDzW91qlx9jDNlVgRvLUD2JQn8TQB1S9/rS0UUAIelcd8Mf+RSl/7Cd7/wClEldielcd8Mf+RSl/7Cd7/wClElAHZUUUUAFFFFABWF4y1k6B4O1bU0OJoLdvJx3lb5Yx+LFRW7XF+N/+Jnrvhfw6M7bm++23Hp5NuN+D7FzGKAN3wro6+H/Cul6SMZtbZI3I/ifHzH8WyfxrXpBS0AFFFFAGZrmg6Z4hsGstVtEuIDyueGRuzKw5Vh6jBrlTeeIfA4KaiLjXPDy8LexrvvLRf+mq/wDLVR13D5sZyDXe0h60AVNL1Ox1jT4r7TruK6tZRlJYmDA//X9u1XK4zUfBs1rey6x4Tu00rU3O6aFlJtLv/rrH/Cf9tcH61XX4m6dpUUkPi2KTQtShXLQSgukw/vQuow4Pp1HfpQBo+Ndbu7KC10fRyDrurMYLTuIV6yTt7IOfc4HNa3h7RLTw5oVtpVkp8mBcFmOWkbqzse5JyT9a57wVY3GoTT+MtVTF9qiKLWE8/ZbQcog92zvY+px2rtF6UALRRRQAUUUUAFFFFABRRRQAUUUUAYnijw3aeJ9JayuXeGVWEttcxcSW8o+66HsR+oyKy/CXiS7uri48O+IFSHxBYLmXHypdRdBPH6qeh9D6dK6+ua8X+GG12CC8sJ/seuaeTLYXYH3W7o/rG3QigDpF6Utc54S8UL4is5Y7m3Nnq9m/k39k33oZMdR6oeobuDXRL0oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBpPNY3hfQD4csLqzW4823kvJri3j2bfISRt3l9TnBLHPHXpW3XMajq97YfELRtPeUHTtStJ1SPaOJ4yr5z15TcMe1AHT0Ui9KWgAooooAKKKKACuL8af8jV4I/7Cj/+iJK7SuL8af8AI1eCP+wo/wD6IkoA7SiiigDP1nSdO1zT5dP1WziurSUYaORcjPqO4PuORXIJb+IfAiBbYXPiHw4v/LEnde2a/wCwf+WyjsOGHAGcV39Nb+lAGZoXiDSvEeni90q8juYckNtyrI3dWU8qfY81qiuR13wYLrVBrmh3baTrqjBuI1zHcAfwTJ0ce/BHbpUem+M5rW/i0fxbZppGpyHbDMrbrS6P/TOQ9D/sNg+maAOypDSL0qvqN9DpmnXV/cNthtoXmkPoqjJP5CgDk9EZdY+J3iDVBzDplvFpULdi5/ey/kSg/Cu2Fcf8MdOnsvBFtc3YAvdTkk1G5x/fmbd/6CVH4V2FABRRRQAUUUUAFFFFABRRRQAh61xXjbUbvUbq38G6M5W+1GMteXC/8udpnDyf7zcqo9fTFdD4i1y08OaLcapek+XCvyoPvSOeFRfUk4GKyvBWh3dhaXOrauB/berSC4u8f8shjCQj2RePrmgDf0zT7bStMttPsohFbW0axRIOygYFW6RelLQA1q891eCf4f6zc+JNPgkn0G+fzNXtIhk2797lF9P749s9q9EpjgH5SMgjBHrQAyzuoL6zhurWVJreZBJHIjZV1IyCD9KmrzmB/wDhWesfZZP+RQ1CYmCUn5dNmY52Me0THoexOD1r0RDuXI5B5B9qAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADHG4FckZGMg4/Wqei6TZ6Fo9tpdhGY7W2XZGpOSBknr+Nc78S3d/C0OnRuySalqFrZqynBAaZS3/AI6DXYCgBaKKKAENcd8Mv+RSl/7CV7/6USV2J6Vx3wx/5FKX/sJ3v/pRJQB2VFFFABRRRQAhritE/wCJx8S/EGqdYNLhj0q3btuP72b8QTGPwrsbiaO3gknmYJFGhdmPYDkmuY+HFq8Xgy3vp123OqySalNn+9MxcfkpUfhQB1Y6UtFFABRRRQAUUUUANYZxXkHji3tPiL4lGkMGGk6KzCe4iPzSXJAzGpIxhR973OOMV1/xD8VNoGm29hYTRprOqyfZrLewAjz96U+yjHHckDmsTSNKg0XS4bC33FIhy78s7HlmY9yTkn60AVtN1bW/BEMFqY5NZ8PQosaBFH2u0QDAAAwJVHpwwHrXomia5pniDTkv9KvI7q3fgMh+6e4YdQfY81yX4VzGlaNqGu+MtR1PwteLpAsV8m4u1TdHfXPB8uRAdrKgJBb7wLDGcUAezCiuN0rxo8Wox6N4osxpOqudsL7yba7PrFIeCf8AZbDD3rsV6c0ALRRRQAUUUUAFFFFABRRRQAUhpaKAOQ8VeHLxryPxJ4dZYtftEK7G4jvYs5MLj36qex/OtXwx4jtPE+jpf2qtE4Yx3FvJxJBKvDRsOxB/x71smuG8S6dceGtXfxlotu8u4BdYsIv+XqIdJFH/AD0Tr/tDI+oB3QoqppmpWer6bBqFhcLcWtwgeOVejD/HsR2ORVugAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArK1bQ7fVr3TLqV5Y5dOuPtMLREAltrIVOQcqQxyBg8DmtWsLxot03grW/sM8sF2tlK8MkTlWVwpIwR7igDcXpS1n6HfjVdA07URjF1bRz8f7Shv61oUAFFFFABRRRQAVxfjT/kavBH/AGFH/wDREldpXF+NP+Rq8Ef9hR//AERJQB2lFFFABRRRQAVR1bS7LWdPlsNRto7m0mXa8Ui5B9/Y+h7Hmr1FAHn8en+IPAi400XGveH0/wCXJ23Xlqv/AEyY8SqP7pwR2zVfxZ4n0zxX4Lj0/RL5Zn1i9h05goIeLc2ZA6HlSEV+DXozda8t8S+HF134sW0mjTR6Zqml6c13LfRxK++R32RpIO42iT3waAPUYo1iiWNAFRRtUDsB0p9cTYeM7jTryLSvGNpHpV9I22C7jJNndH/Yc/cb/YbH1Oa7Ven9aAFooooAKKKKACiiigAprA59sdDS9643xtq9xPNb+EdGl26vqkZ8yUci0ts4eY+/VV9z7UAUrONfHXi9NUf5tB0KZksh/DdXYyHlz3VPuqf72TXfrjHFU9I0u00XSLXTLGPy7W1jEUanrgevqe5PrV2gAooooAKKKKAKmpWFrqlhPYX0CT2twhSSNxkMp/z+FcV4evLnwXq0HhDV5nk0+YkaLqEh++o5NvIezr/Cf4h0weK9ArI8S+H7DxPolxpWpITBKMiRDh4nHIdT2IPP6Hg4oA1V6Ee9Ori/Ceu31rft4T8Rvu1a2TdbXRGF1CAdJB/tjGHXsa7NenPU0ALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBSv7Gxv5LUXkUcj28wuYA5+665AYfTP61dFcZqP8ApXxe0OE8/ZNJu7gf8DkiT+ldkOlAC0UUUAIelcd8Mf8AkUpf+wne/wDpRJXYnpXHfDH/AJFKX/sJ3v8A6USUAdlRRRQAUUUhoA5H4l3Mq+DptOtm23erzRaZD9ZmCt/45vP4V1VtBHbWsUEK7Yo0CIPRQMAflXH6v/xN/ijoWmjmHSbWXU5h2Lt+6iH15kP4V2g6UALRRRQAUUUUAFU9Tv7XStOuNQvZVitreMySSN0VR1q03auE1IHxt4s/sVRu0HRpFl1A9VubkfMkPuq8Mw7nAoAi0LwxD4rt73xB4q04TSaugS3s7gc2loDlE9Q5++SOQSMYxWbf+Htf8HZl0/z9d0IZP2cndeWq/wCwf+WqjtnDfWvUx0oNAHjV34iXXLW00/wxcpPqOpuYYWA5tgP9ZI46rsBzg85xwc16n4f0Sz8OaHa6TYoVgt12gscs7dWZj3JJJP1og0HSrXWbjWLewgj1C4Ty5p0UBpADnnHU5A59q0h0oApatpNhrdhJY6lZw3drIMPFKuQff2I7Ecj1rkPK8QeBubZbvX/Do6wli17Zr/sE/wCuX2PzDtmu9pDQBnaJrmm+INOS+0u8jubduMp1U91I6qR6HmtEdK5LWfBaT6i+taBdto+tn708S5iuf9mZOjj34YdjxTdM8aPDqEWi+KbNdJ1Vztifdutbs/8ATKQ9/wDYbDemaAOwopFORzS0AFFFFABRRRQAUUUUAFITzS0UAed3cUnw41iTU7cM3hS+lzewqMjT5W485R/zzJ+8Ox59q9AhkSaFJI2DxsAVYHII7EHv9abcRRzxPDNGskUiFXR13KynggjuD71wOnTS/DvWItDvZXbwzfSbdMuZGz9ikP8Ay7ux/hP8BP096APRKKRenf8AGloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqOeJJ4JIpBlHUqw9QetSU1uvagCppGmW+i6RaaZaBxbWsYhiDtuIVeBk1drkfh/PM9nrtvPLJK1rrl5CpckkLv3KOfZhXXUAFFFFABRRRQAVxfjT/AJGrwR/2FH/9ESV2lcX40/5GrwR/2FH/APRElAHaUUUUAFFFFABRRRQAhrh/h2/9rS+IfE/G3VNQaO3b+9bwDyoz+JDn8a1/HWrNongnV76LPnrbtHBjr5r/ACJ/48wq74a0hNA8M6bpMYUC0tkiJXoWAG4/icn8aALV/YWmp2UtnfW0Vzbyja8UqhlYe4NcVHpPiDwK5k0RrjW9AHLaXNJm4th/0wc/eH+w3pwa9AprDJ/CgDH0HxLpXiS0afS7tZSh2yxMNssLf3XQ8qQeOf8A69bK9K5bxD4MtdYuV1TT7l9I12IfudStgNx/2ZF6SL7H9KpWXjO80m8h0zxlZJptxIQkGoRNmzuT7MeY2/2Wx9aAO3opqHK5zmnUAFFFNY45z+dAGdr+s2fh7RbrVb5ysFshYgdWPQKv+0SQB7msbwVol3awXWuaygGt6s4nuV6+QmMRwKfRB+pNZUYbx341W5JJ8OaDOViQj5by8HV/dI+gP96vQB0oAB0paKKACiiigAooooAKKKKAOe8X+GU8S6YiRTtaanauJ7C9QfNbyjofcHoR3H4VX8I+Jp9XSfTNWtls9fsCEvLZT8rA9JYz3Ruo9OR2rqa5Lxl4cutQltdb0N1h8Q6b81uW4W4jzloJP9lv0PPGaAOtHSisDwt4ntvE+mNcRxSWt3C5hu7ObiS2lHBRh/I9x6dBvL0oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQ9aWg0AUvKsG1czBbc6ikGxnAHmiItnHrtLD6ZBq4K43Shv+LXiJj/yz0yyT82lP9K7MUAFFFFACHpXHfDH/kUpf+wne/8ApRJXYnpXHfDH/kUpf+wne/8ApRJQB2VFFFABSNmlrG8WayPD/hPVNV/itrZ3jHq+MIPxYgUAYfgjOp6z4o8RHO28vzZ257GG3Hlgj2L+YfxrtR0rD8HaOdA8HaVpbD97BbqJfeQ/M5/Fix/GtygAooooAKKKgvLmCytZbq5lWKCFGkkkY4CqBkk/hmgDB8Za/NounQ2+nIJta1GT7Np8J7yHq5/2UGWJ9PrV/wANaHF4d0G305HMsiZeedh800rHLufckk1zvhG0m17U5vGuoxNGbmPydKt3H+otc5Dkdnk+8fbaO1duvSgBaKKKACiiigAooooAKo6tpVhrVhJYalaQ3VrIPmimUMp9/Yj1/Wr1FAHA/ZfEXght1ibrxD4fTraO269tV/6Zk/65f9lju6YJrqtD1/S/EWni80u8S4iyQ2MhkburKeVI9DWketctrfg2K91E6xo93Jo+uAf8fcCgrMP7sydJB9eRxgigDqxRXF6d4ymsb6LSPF9qml6jIdsF0jE2l4f+mbn7rf7DYPTrxXTW+qWFzey2UN/ay3cI/eQJMrOn1UcigC9RSCloAKKKKACiiigAqhrGlWWt6ZcabqECz2lxGUkjI6j29COoPUHpV+igDg/DerXvh7V4/B/iC4adyCdJ1Fz/AMfcQ/5Zsf8Anqo4/wBoc/XuxjHFY3ifw7ZeJtIewu96MGEkE8XElvKPuyIexH69KyfCfiG8nup/DfiEJHr9im5mXhLyHos6ex6MOzenQAHYUUg6c0tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1qdSGgCnp2l2WmG7ezg8pry4a6n+YnfIwALck44UcDjirtcb4YYjx943jLHatzZsB6ZtkH9K7HOOKAFooooAKKKKACuL8af8AI1eCP+wo/wD6IkrtK4vxp/yNXgj/ALCj/wDoiSgDtKKKKACiiigAoopDQBxfjT/iZ+JPCegLyJb438/tHbruAPsXKCu0HSuL0X/ibfE7xBqZH7nTbaHS4SOhc/vpfxG5B+FdoKAFooooAKrX1nbahaS2l5bx3FvKu14pUDKw9wetWaKAPP10TxB4IdpfDzyavoYwTo08n723X/phIfvAf3G+gNdL4f8AFGleJbVpdPucyRnE9tKNk0Dd1dDyprZPJx7VzPiPwZZa5OuoW00ml63FzDqdqAJVx/Cw6Onqp4PtQB046Vx/jjWLktb+FtFlK63qylVkX/l1g6STN6YGQvq3TpWRefEa58FweR4402WOQDEN7p6+ZBd49ASDG3faffBxitTwBYyXVlN4sv2R9S1vE/yHcILf/llCD3wuCf8AaJ+pAOm0bSrTQ9HtdLsYxHa20YjjUeg7n3JyT6nNXqBRQAUUUUAFFFFABRRRQAUUUUAFIevXFLRQBw/inRr7StWTxh4egaW9hTZqFinH2+AfzlXkqfqO+D02g65YeI9Gt9U0yfzraYcE8Mp7qw7EHgitBq8+1q1uPAuuXHinTo3fRbw/8TmzhXJhbtdIvqB98dxzz2APQ6KhtLmC8tIrm2ljmglQPHJGcq6kZBB+lTUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSH9O9LSEUAUYZtPbVrqGF4DqKRxtOox5m052bu+OGx+NXhXHab+7+LuvL/AM9dKs5PyeUV2I6UALRRRQAhrjvhl/yKUv8A2Er3/wBKJK7E9K474Y/8ilL/ANhO9/8ASiSgDsqKKKACuL8df8TPU/DfhocrqF+Li4XsYLceYwP1YRj8a7M1xWlZ1b4pa1qB5h0m0i02I9jI/wC9lP1H7taAO1FLSDpS0AFFFFACHqPeuF1st418SHwxET/Y1gyTavIOk75ylsPbgM3tgd61vGfiCbRNOht9OjWfWdRk+zafAejSHq7f7KjLE+g96ueF/D8PhrQotPjdppcmW4uH5aeZuXdj3JP6YHagDXQAKAAABwAOmKdRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGbr2kwa3o13p1xFFJHcRMgEyblDEcHHscH8K+ZvC3w/8d+F/GkGpf2FeummzLLM0Dr+/jBwyoSQGypPHWvqumt1oAydB8SaX4ktGuNNuPM8ttksTqVlhf8Auuh5Uitdelcxr/g201W6Gq2NzLpOtoMJqNrgMR/dkXpIvsfwxVGy8Y3ej3kWl+MrWOwuJG2W+oxHNndH2Y/6tv8AZbr2NAHbUU1Dlc5z706gAooooAKKKKACuc8WeGBr8NtcWtwbLV7FjLY3qrkxP3DD+JD0I7iujooA5rwp4nbXorizv7f7FrlgwjvrLOdjHo6HujdQa6QdK5Lxf4bu7ue38QaAyQ+IbBSIixwl1F1aCT2PYnoeeOtafhnxJaeJ9HW9tlaKVGMVzayjElvKvDRuOxH8iD3oA26KBRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU09fanU1vpxQByugXQl8d+LIFtoYzAbQNKoO+UtFnLE+gwPwrqs44yaxdL0E6f4i1zVTceZ/ajwsI9mPKEcezrk7s4z261t0ALRRRQAUUUUAFcX40/5GrwR/2FH/APREldpXF+NP+Rq8Ef8AYUf/ANESUAdpRRRQAUUUUAFVtQvYtN066vrhtsNtC80h9FUEn9BVmuN+JjvP4Yi0WFmWbWryHT1K9QrtmQ/9+1egB3wxtZ4vA9rfXYxearJJqNx7tMxYf+O7R+FdhUcMccMKRRKFjjAVVXoAOAKkoAKKKKACiiigAprdadXDfErxUdE0yDSbG8it9Z1Zvs9q7uF8kHhpSe2B0/2sYoA5nxU0HxC8Stp0sQk8OaM7CRwxH2m6xtIDAg7UBxx1JPXFLZx674KlB8Psb/RVP7zR5ny0f/XCQ5I/3SSOvrxqaZpttpGmwWFmu2CBdi56n1J9yck+5q3/APqwe9AHReHPFek+KLdpdPnIlj4mtZl2TQnuHQ8j69PStwV4v/YUvjPx1v0u4fTU0dWW41a2XErTFflhB/jVc5YHIxgcZrrrXxbqXhuVNP8AG8KwoTsi1uBf9Fm548z/AJ5Me+ePQ0Ad3RTI3WSNXRgysMhlOQR60+gAooooAKKKKACiiigAooooAKZIodSrAFSMEEZB+tPooA83Rf8AhWOtCMbl8H6hL8pPK6ZcMeh/uxMfyPpmvR1OVzxg9MVXv7K21GymsryBJ7adCksTjIZT1FcN4furnwPrMPhbV7mWfSrpiNFvpTkj/p2kP94fw+o44xgAHoVFNXOOfWnUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFJtRsxrC6YZl+3PAZxFg5MYYKW/AsB+NXAciuQ1iN4Pil4auURitxY3lq7AcLjy3GfyNdeDkUALRRRQAh6Vx3wx/5FKX/sJ3v/AKUSV2J6Vx3wx/5FKX/sJ3v/AKUSUAdlRRRQBDdTxWlrNczOEhhQyOx/hUAkn8q5b4aQS/8ACHR6ncKVutYnl1OUehlbKj8E2D8KT4l3En/CIPpdu+251i4i0yI+8rYbP/AN5/CurtreO0tYraFQkUKCNFHZQMAflQBLRRRQAVBd3MNlay3VzKsVvChkkkY4CqBkk+2KmPXFcJr7nxn4mXwrCSdKsSk+suvAkPWO2/H7zewA70ASeEbWbxBqsvjTUYnQ3Efk6Vbyf8sbXP3yOzSH5vptHau3ByKRFCoFVQoHAA7CnUAFFFFABRRRQAUUUUAFFFFABRRRQAU1uop1ZniK8l07w1qt9Apea2s5Zo1HUsqEj9RQB5t4o+I2pap41g8D+DHjjvmkMd3qLpvFvjlwoPBKgHJPfgc81V+KFvqPgPwxY65o/iPWmv4rxY5Dd3rzRzhlYndGx2dVyNqjv7Y5n9nLTReeINc1mUlpYIEhUtzkyMWY59f3f/j1a37QupPfy6D4UsVM13PMbhoU5Yk/JH+e5/yoA9W8D+Iv+Es8G6brhiET3UZ3oOgdWKNj23KcVr31la6jaS2l5bxXFtKu2SKVAysPQg1leCtA/wCEX8G6XoxIL20IEhXoZGJZ8e25jW9QBwR0TXvBR8zw2X1bRAfn0a4k/ewj/p3kPYf3GPbgjNdF4f8AE+l+JbVpNPnPmRHbPbSrsmgb+66HkGtluv6VzfiDwdZazdpqNtLLpusxD91qVqAJF/2XB4kQ91bjGelAHSilrh7XxffaBdx6b41gjtC52QavCD9kuD23E/6p/ZuOuDXaxsGTcCCDyCDkEUAPooooAKKKKAGt1rifE2k3mhau3jDw/A0lwqAarYpwL2EfxAf89UGSPUZHpnuKax5oAq6VqdnrOl2+o6fcJcWlwgeKRehH9COhB5BBq5XneoRS/DjWJdXtEL+Fr2TdqFugz9hlPHnoP7hONw7da9AgljngSaJ1eORQ6srZDA8gg9xQBJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSHOaWkPX8KAOb8K6vd6veeIvtDh4bLVXtLcBQMKscZPTr8zNzXRnbnrWT4f0OPQo9RVJ2mN7fzXrllxtMjZ2/QDArYoAKKKKACiiigAri/Gn/I1eCP+wo//oiSu0ri/Gn/ACNXgj/sKP8A+iJKAO0ooooAKKKKAEJx19K4u+/4m3xZ0y1AzDouny3b46ebMfLQfXash/Gu0NcV4AcarceIvEo5TU9QaK3fs0EA8pCPqQ5/GgDtRS0i9KWgAooooAKKKawyeooAp6vqtpoml3Op30oitbaMySOewHp6k9AO5IFcf4c8Kxa3a3+u+KtPjnvtbXBtp13C1tuscIH8JHDEjnd9KbcM3jnxkLFE3+HdCm3XLZ+W7vF+7H/tLHnJ9WxnpXfJ059aAPLL/wAMa/4PlabR/P1rQV5NgxzdWw/6Zsf9Yo7KeegGazb3xVDf6dDb+HZ0udWv5PstrABtaOQ/eZ16qEHzHPTjPWvZWGT+FZaeHtIi159cj0+3j1N4zG9yqAOy98469uaAE8MaBbeGdAttLtiXEYzLKR800h5d29ycmtG5t4rqF4J40likUq6OoZWB7EHg1KKWgDgJPDmueELj7T4PdbvSs7ptCuZCAP8Ar3c52H/ZPy/ToOh8PeKtM8RxyLavJDeW5xc2Vwnlz27ejIeR9enpW6a57xD4P0zxDLFdSLJa6nAP9H1C1cxzxH2YfeH+y2RyeKAOhFLXBW3irVPCzJY+Nol8jISLXLaMi3kz080D/VN7/dPbFdzBIk0KyxOrxuNyMpyCD0INAElFFFABRRRQAUUUUAFFFFABWZr+iWPiLSJ9L1GIvbzDGQcMjdQynswPIPtWnRQBw/hPXNRsNSPhLxPIH1SFC9neH7uoQD+If9NBj5h+Peu3U5HXNYPizw1D4m0wQeY1tfwN51jep9+3mHRh7diO4/Sl4R8Uzav5+lavD9k8Q2ACXlv0D+ksfqjdfbpQB1lFIOlLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBn6pq9lpAtGvZTGLq5jtYsKW3SOcKvHTPvV9elcp8SLK4vPBV09nBJPeWksN3BHGCWZo5VfAA6kgED611UZ3IDzyM8jH6UAOooooAQ9K474Y/8AIpS/9hO9/wDSiSuxPSuO+GP/ACKUv/YTvf8A0okoA7KkNLSHrQBxeq/8Tj4p6LYDJh0i0l1GX+6ZH/dRg++PMP4V2g6Vxfgb/iZ6p4m8Rtyt9qBtYG7GC3HlqR7FvMP412ooAKKKhuZoraCSeeRI4YkLu7nAVQCSSewHrQBh+MfEEmhaXGtlELjVb6QWun2+fvyt3P8AsqMsT6DtU/hTw9H4a0KOz80z3UjtPd3Lfennbl3P1P6AVgeFIJfE2sSeNL9GWJ0MGjwSDmK37ykdnkIz7Lgd67lTkZoAWiiigAooooAKKKKACiiigAooooAKKKKACo5EWQFHUMrDDKehHvUlFAHmfh/4a6h4K1jUrrwrrFtFY3+N1nf2jyiMjJXayupONx69uvPNafhv4dW2k6/c+JNWvpNY1+463cqBFiGMYjQZ28cDvgcYya7migBqZ24PrTqKKACiiigCC7tYL23ktrqCOe3lUq8cihlcehB4NcU+h614KJn8L+ZqOkDJfRJpMtEPW3kPT/cbg84wa7ymtQBjaB4n0vxLbNJp87ebEQs9tMuyaBvSRDypz/8AWraFc14g8H2Ws3KahbyyabrMI/c6na4WRf8AZcdJEPdW469KzbbxdfeH7qPTvGsEdrvOyDV4Afslwewc9YW9m464NAHcUUyNlZAykFTyCDkYp9ABRRRQBFPHHNE8MsYkjkUqyMMhgeCD7VwFhLJ8ONYj0m7kZ/Ct9LtsLhj/AMeMp58hz/cJ+6e3IPqPRKparptnrGm3GnahAs9pcIUljccEf4+nuBQBbUYXmnVwfh3Ur3wxrEfhDXp3mVwf7H1CT/l5jH/LJz/z1Uf99DHeu7XpQAtFFFABRRRQAUUUUAFFFFABRRRQAVV1C6WxsLi7f7kETSH6KCT/ACq1VDWdOTV9GvdNllkiiu4Hgd4sbgrKVOMg84NAGf4Hur++8EaNeanOZ7y5tI55JCoXcXG4cDjoQOPSt+q9jaRWFhb2cIIit41iQHsqgAfoKsUAFFFFABRRRQAVxfjT/kavBH/YUf8A9ESV2lcX40/5GrwR/wBhR/8A0RJQB2lFFFABRRRQBzvjrVn0TwVq19CSJ1tzHBt6+a/yR4/4Ewq14U0VfDvhTS9IXGbS3SNiP4mxlj+JJNYXjP8A4mfiXwpoAyVlvTf3AH/PO3XcAfYyFBXaDpQAtFFFABRRRQAVynjfW7yytbbR9GYf25qzmC07+SvV5j7IvP1x1re1XUbXSdNudQvplhtLeMySu3QAfz9Md65bwVpl5dXFz4v1pGXU9TXbbwP/AMudr1SP2J4ZvegDpNA0W08O6Ja6VYoVgt12gscs56szHuSSSfrWlSD6YpaACiiigAooooAKKKKAI54kmieKVFkR12sjjKsD2I71w1z4Y1nwk7Xfgl0ltCxaXQrl8QsOpML/APLJvblTnPGK72igDn/Dvi3TvESyQxeZbajBxc6fcrsmhPup6j0YZB9a3xWD4j8JaZ4jMM1wJYL+3/49761fy54P91x29jkVz8PibWPCM/2TxmvnadkLb67bxHYQeguEH+rb/a+6c9sE0Ad/RUVvNFcwJPBIkkUg3I6MGVh2II4xUtABRRRQAUUUUAFFFFABXK+MfDc+qLb6to8i23iHTsvZzn7sg7wyeqN09iQRXVU1v6UAYHhTxTa+KNLM6I1vewN5N7Zyfftph95WHpkcHuK6AdK4jxXod9p+or4u8NQbtWgULeWi8DULcdUI/wCeg6q3XjHPSum0LW7DxFo8GqadOJbaYZHqh7qw7MO4oA0qKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAY3X+lZ3h/XLbxFo0Wp2sc0ccjOhjmUK6sjlGBAJwcqe9aTfXFcv4T0u80a+8Q2ssJWxl1J7uzfcpDLIqs6gDkBXLUAdVRSLwKWgBDXHfDL/kUpf8AsJXv/pRJXYnpXHfDH/kUpf8AsJ3v/pRJQB2VYnjDWf8AhHvCOqaqP9Zb27NEPWQ8IPxYgVt1xfjj/iZa14X8OjJW7vvtdwOxhtx5hB+r+WKANrwlo3/CPeEtL0k4321uqykd5CMufxYsfxrapBS0ANP0rhfEbv4y8QHwjall0212Ta1OpxuHVLYH1bGW9F+tb3i3xD/wjuj+fDD9pv7hxb2VqOs0zfdH0HJJ7AGneFNAXw7ocdq0nn3kjGe9uD1nnbl3P48D0AA7UAbUaJFGsaKqoowqqMAD6U6iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACoLu2hvbeS2uYI57eRSrxSKGVx6EHg/jU9FAHDL4d1nwjIZPCs32zS+raJdy/cH/TCU52eyN8vXkVteH/Fum+IvNhgaW3v4OLmwuk8ueE/7SHt7jIPrW/WB4i8Jab4haGebzbbUbfm2v7Vtk8J9m7j/AGTkGgDeFLXCR+JtW8KSJaeMYxJZEhItdtkIiJPAE6f8sj/tcqc9q7eCaO4gSaGRJInAZHRgVYdiCOtAElFFFAGP4l8PWXibR5NOvQygkSRTRna8Eg+7Ih7MD/h0NY3hfxDfC/fwv4kKLrdvHvjnUbY7+EZHmoOx4+Zex6cGuxrnvFvhmPxJYReVO1nqdo3nWF9GPnt5fX3U4wy9x+FAHQL05696WuY8JeJ5NajuLDU4Fs9d08iO+tQcjPaRD3RuoP4dq6YUALRRRQAUUUUAFFFFABRRRQAVyfi6+u11vwtpNlcSQy3mo+bKUbG6GFGd1PsTtB+tdZVCfSbOfWrbVpIi13axPFE5Y4VXI3cdMnaOaALy9OKWkXpS0AFFFFABRRRQAVxfjT/kavBH/YUf/wBESV2lcX40/wCRq8Ef9hR//RElAHaUUUUAFIeo9aWquo3sWnaddX1w22C2heaQ+iqCxP5CgDk9F/4mvxO8Q6njMWmW8OlwHsWI82X8QTGPwrtR0rj/AIYWs8fge1v7sYvNVkk1Kf3aViw/8d2j8K7GgAooooAKa3anVy/jbXbrTLC307Sdr67qsn2exQ9EPV5T/souWP4UAY99Ivjrxh/YyASaDosgl1E9UuLocpB/tKn3mHqADXfJ07/jWZ4c0G08NaHb6XZ7jHCPmkf78rnlnY92JyTWrQAUUUUAFFFFABRRRQAUUUUAFFFFABTJUSRGR1VkZcFWGQQexp9FAHB3XhTVfC8sl/4IdBEzb5tDuHxby+piP/LJv/HT3HFbXh7xdp+vtJabZbLVYP8Aj4066G2aI+uOjL6MMg10VYXiLwrpfiNYmu0kivIOba9tn8ueA+qOOR9Oh9KANwdKWuBj8Q614NmFr4tzeaSSFg12GPG3PQXKD7h/2x8vTOK7m2uIbu3S4tpo5oJBuSSNgysPUEdaAJaKKKACiiigAooooAY45yTXn+uWE/gXWZfFWjwu+lXLZ1uxiHAH/PzGvZl/i9Rz2zXodMkAZSrAEHsaAI7K6t76yhu7SZJredBJHJGcqykZBB9MVPXmx834ZayGUn/hDL+U5B5Glzseo9ImJ6dFJ7d/R0OVByCDyCKAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWJrGvf2Trei2MlsWh1OWSD7QXwIpAhdVIxzuww69q2657xnodzr2hCGweKPUba4hu7OSUkKksbhhnAJwRkfjQB0C8D8aWmqSVyRg+lOoAQ9K474Y/wDIpS/9hO9/9KJK7E9K474Y/wDIpS/9hO9/9KJKAOxNcVo5OrfFDXdRIzDpVrDpkJ7b3/ey/iMxj8K6+7uYrO0mup22wwRtJI3ooGSa5f4aW0qeDIdRuV23WrzSanN9Zm3L+SbB+FAHXDpTJnWKN5XZURFLFmPAA5yfank81wviuV/FGtR+C7ORlttq3GtTKcFIM/LCD/ekP5KD60AHhmOTxZr0njG6RvsMKvb6JC/GI+jz/WTGAeyj3rul6UyCGO3t44YUVIo1CoijAUDoAOwqSgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAI5o0mjaORFdGBVlYZBB7EdxXES+FdU8LSPd+C5VNqWLTaHcNiB/Xym6xMemPu+oru6KAOf8PeLdM8RebBCZbbULfi50+6XZPCf9pT1HuMit8VheIvCem+IjDPMJbbULfm2v7Vtk8J9m7j/ZOQfSsKPxNq/hN0tPGMYlsSQkWu20ZEZ7Dz0/5ZH/AGhlTntQB3dFRwTR3ECTQyJJE43I6MCrD1BHapKAOT8X+G7q+mt9d0J1g8Q6ep+zu3C3EfVoJPVW7E/dJzxWh4X8SWviXSftUKvBPG5iurWXiS3lX7yMPb+RHTpW2etcR4n0a+0fVj4v8OwGW8RAupWCnAv4R6D/AJ6qM7T1PI9qAO4FFUdG1Wz1zSbfUrCYTW1wgdHH6g+hByCOxFXqACiiigAooooAKKKKAGuwUEkgADJJNcd8OS99ot/r8rMTrOoTXcYb+GEHZGP++EB/Gupvp7SNEhvJIFS5byFSZgBKzA/IAepIB4781JaW0FlaQ2ttCkMEKCOOOMYVFAwAB2FAEo6UtFFABRRRQAUUUUAFcX40/wCRq8Ef9hR//REldpXF+NP+Rq8Ef9hR/wD0RJQB2lFFFABXGfEx2n8Mw6LGWEmtXsGn5XqqO2ZD+CK9dkTjr6Vxd9/xN/ixptr1g0TT5Lx/Tzpj5aA/RVkP40AdjDHHDCsUShY0G1VXoAO1SUg6UtABRRTWODQBW1G9ttMsJ768lWG2t4zJLIxwFUcn/wDV3rkvBVle6tdz+M9agMF7fJ5djbOObS0zlQf9puGY/QcYxUWsMPG3i1fDyfPoWlMtxqhHKzz5zHAfUDG9h3+UV3g4FAAvfjFLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUARyositG6BkYYKsMgjuDXFXXhC+8OTyah4IljttxLz6POT9luPXZ/wA8n9xweMiu5ooA5fw14ytNekksbiGbTdYhH7/TbriVf9pezr6MtdOvSsXxF4X0vxJbxrfQus8B3W93A5jnt2/vRuOQfboccg1zR17XfBMyw+Jt+p6ITtTWoYsPb+n2hF7f7a8etAHoFFQWd1b3tpHdWs8c8Eo3JJE4ZWHqCOtT0AFFFFABRRRQBXvbWC+s5rS6hSa3mQpJE4yHU9Qa4LRry88C65b+F9TkaXQ7ptuj6hKf9W3a2kPrj7p4z057ei1m67otj4h0ifS9Rh822nXawHVT1DA9mB5B9RQBor096WuF8La9f6drLeDfEkhkv4kLWF+4wuoQDv8A9dFH3h+Ndwn3e/40AOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa2cjnjvmnUhoA5zw7rt3fazr2k6gsSXem3I8sRggPbOoaJjknn7wPuDXSCsSXQIz4uh8QRzNHKLN7SaIDKzLuDISexU7v++q2l6fjQAHpXHfDH/kUpf+wne/+lEldielcb8Mv+RSl/7Cd7/6USUAP+Jc8jeEjpNu5S51q5i0yNvTzWw+f+2Yeurt4Y7a2jghQJFGoRFHQADAH5Vx2pf8Tj4raPY/eg0eylv5PTzZD5UYPuAJDXZOyohZ22qASSTjA/pQBjeLPECeG9Fe7WI3F5K629lbL1nnbhEH48n2B9Ki8IeHm8P6Swu5ftGqXchub+46mSZuuPRRwoHoBWL4dU+MfEjeLZ1P9mWha30WJhw3aS4x/tEbV/2QT3rux0oAF6UtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUcqJLG0UiK6ONrIwyCD2IqSigDhZvCup+F5mvvBcqC1JLTaHcsRBJ6mI/wDLJvb7pOM4rY8PeLtP195bQLNZarB/x8afdDbNEfXHRlPZhwa6KsLxF4V03xGkTXSPFeW/zW19bNsngb1RxyPpyD6UAbg6UjGuFTxDrfg91t/FqfbNMyFj1y2jwEz0+0Rj7n++Pl9cV21rcQ3dslxbTRzQyDckkbBlYeoI4NAHA6nDP8PNYm12zR38NXsm7VLWIZNpIetyg/u9N4/Hmu/tpY7i3jnhkSWKVQ6OhyrAjIIPcUsyJLG0UiB0dSrKwyCD1BHevPrOST4baxHptw5bwnfTbbOdz/yD5if9Ux/55sfunsTg0Aei0Ui9O/40tABRRRQAUhIzS1U1G9g02wuL66kEdtbRNLK542qoyf5UAcpeA698UbG02k2mgWxvJf7rXEuUjU/7qB2/EV2q9KgsLuK/0+3vIN/lTxrKm9SrYIyMg8g+1WKACiiigAooooAKKKKACuL8af8AI1eCP+wo/wD6IkrtK4vxp/yNXgj/ALCj/wDoiSgDtKKKKAEJri/AX/Exu/EniJgD/aOpPDA46NBAPKQj6kOfxrU8da2/h7wTq2pxHE8VuVgP/TVvlT/x4irHhPRx4f8ACel6Vj5ra2RJD6vjLn8WJP40AbA6UtFFABXMeNtfudI02Gz0tVk1vU5PsthGecOfvSH/AGUXLE+wz1rfvby30+ymvLuVYreBDJJIxwFUDJJrjPBdpda9fzeNdWt3hluo/K0y1k/5d7XOQSP77/eJ9MUAdF4X8PWnhjQ4tNtC0hBMk078vPK3LOx9Sf0wO1bNIvT8aWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApkih/lZQysMEHoRT6KAOHuvBt1od1Jqfgq4jsZnYvPpcoJs7o/7o/wBU3+0voMir3hzxnaa3ctpt5bTaTrcQzLpt2cP/ALyHo6+jL6V1VY3iHw1pfiS2WHUYNzRndBPGxSWB/wC8jjlSOv4cg0AbC9Dg55pa8/fV9f8AA8gTxC0ms6ATtGqwxYntR/03RfvKP7688ciu4sby21Cyiu7O4iuLeVd0csTBlYeoI4NAFiiiigAooooAwvFXhq28T6WLaV2t7mFhNaXkfEltKPuuprO8IeJrnUvtGj60iW/iHTzsuohwJl/hmjHdWHPtyK66uW8X+Fn1j7PqulyraeIdPBayuuzesUnqjDII7ZyPcA6gdKWue8JeJ4vE2lGYwtaX9u5gvbN/v28w4Kkdx3B7giugHSgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAKuo2z3mnXVtHcSW8k0LRpNEcNGSCAyn1HX8Kw/A+tT6t4eWLUMDVrCRrO/XPPnR8FvcMMMPZq6VjjmsxrbStHurvVH+z2kt48a3E7uF8xh8qZzxnnH40AafauN+GZx4Sm/7CV9/6USV2I+7XmOi6wdA+EOt6mh/fQ3d+Icd5WuHWMfi7LQBt+Bf+Jlf+JPEh5Go6g0FuR0MFv8AulI+rCQ/jUfiu5m8SasngzTpGWORBLrE8Z5htz0iB7PJgj2XcalNxF8O/h3p1osP2i9hhitLa3X71zcsMBR9WJJ9s1o+D/Dr6BpLfbJftGq3khub+5PWSZuSB6KOFA9BQBu2tvDZ2sVtbxrHBCgjjRRgKoGAB+FTUg6UtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADJFDqyMoZWGCCMg+1cTceEdQ8OXEl/4KnjgVmLzaNOSLWb1MeP9U/uPlJxkV3NFAHOaF4v0/WJ2sJVl0/V41zNpt2Nsq+69nX0Kkj+Va2pWFpq2nT6ffW63FrcIUljYcMO/wCP9apeIvDOmeJLeOK/hbzYjuguYm8uaBv70bjlT3/DkGucGs694LYR+JA+qaKOF1i3i/ewL/03iH/oagjuQKAE0DUbzwjqkPhTXpnmtZDt0fU5f+W69oJD0Eg7H+Ie9d6vSsPUtO0fxp4cMEjpdWF0oaKeCQHB/hdGHQgjIP8AiRWT4V16/t9Rfwp4kfdq9um62uyMLqEA6SL/ALYxhh6896AOzopF6c9TS0AFcp420u+19dM0SGFjpt1ch9SmyMLBH8/l4zn52Crx2zmukvbuCws57y6kWK3gjaWV26KqjJJ/AVm+FdWu9d8OWuqXln9ka63SxQ5yRESTGT7lcE/WgDXThQO3p6U6iigAooooAKKKKACiiigAri/Gn/I1eCP+wo//AKIkrtK4vxp/yNXgj/sKP/6IkoA7SiikPWgDi/Gn/E08S+FPD+MxzXjX9x6eXbruAI9C7J+VdoOlcVog/tX4m+IdTPMWm28OlQEdNxHmy/kSg/Cu2FABSGlrmvGmvz6LpkNvpyLNrOoyi10+JuhkPV29FUZYn296AMfXs+NPFa+F48nSNNKXGsMOkznmK3+nG9vYAd67tAAuB0rG8K+HofDOiJZLK1xcO7TXVy/3riZuXc+5P6AVt0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAMZd2QQCMc5rjLvwXNpN5Lqfg25TTLyRi89jICbO6P+0g+43+0n4g121FAHJ6B41ttV1F9G1Kzm0nXIxl7G5OfMH9+J+ki+459q6telZOv+HdL8SWi2up2olCHfFKpKyQt/eRhyp9x+NcvJqXiPwIgbV2l17w+nH2+KP8A0u1X1lQcSL/tKARySDQB39FVNN1Cz1WwivbC5iubWYbo5YmypFW6ACmt6HpTqKAOJ8VeHby11EeLfDa41m3TFxa52x6hCOsb/wC3j7reuAfbovD2vWXiXRLfVLB2MMw5Vxh42HDIw7MDwRWk/PFef69ZXvgrV7jxXosLTabOQ+tacg5YDrcRD++B94fxAe2aAPQqKraffW2p6fBe2cyT206CSORDkMpGQRVmgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArN17RrXxBol5pN6ube6jMbYHI9GHuDgj3FaVFAHNeCtR1G70Q2msRSLqmnSmzuXZTtmKAYlU9wylW+pIrzzS3W/wBP8O6ATiKfxBfX1yT0ENvPI/PoC5jr1LxFrSeHtHl1SW3mmghK+cIuSkZYBpCPRQST7A14D4OjvPF/jDVNEtGZLJTNb3N3GeEtGuXlkVT/AHpCUQf7IPpQB6x4dVvGPiR/FlwCdMsy9vosTDh+cSXOP9rGF9FBPeu7HSorW3htLSG2t4lighQRxxoMBVAwAB7VNQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTXUOCGGRjBB6EU6igDiLvwdeaNey6n4LuY7CeRt8+mzAmzuT3+Uf6tunzL7ZBqhd3lh46hXR7tJvD/AIssT59qk5HmwyD+OJuksZwQcZBHUdMejVj+IPDml+JLRLfUrYOYzvhmRiksDdmRxyp/w5oAzvCXiebWFuNM1WBbTX9PIS9tx91h2lTPJRhyM+47ZrqRXjXi7T/FPhp7fVi76hJpoP2TWYo/3yx94LuNcB4iP41HykZI9eu0v4laJqXgOXxSrlI4ExPbZ3SJKcAR47kkjHrnNAG54o0D/hJdNi02S6aG0a4jkuo1XPnxKcmPOeATjJ54471sooVdoACjgADGBWL4St9Uh0FJtZlkfUbqR7maNnLCAuciJfRVGF/AnvW5QAUUUUAFFFFABRRRQAUUUUAFcX40/wCRq8Ef9hR//REldpXF+NP+Rq8Ef9hR/wD0RJQB2lV768g0+wuL25bZBbxNNI3oqjJP5CrFcX8TnkuPC8OhwOUn1u8h04OvVVdsuf8AvhXoAl+GltKngq31C5XF1q0smpT/AO9M24f+O7R+FdfUVtBHa20dvCoSKNQiKOgUDAH5U9qAIru5gsrWW6uZFit4UMkkjdFVRkk+wHNcX4Qim8S6o/ja/jZEmQwaRBIOYbbvIR2eQ8/7uB3pPEZPjHxOvhKFj/ZdlsudZdf488x2/wDwLG5vYD1ruYkVI1VFCqBgKBgAemO1ADlJI59aWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa2M8jPFOooA4q+8FS2N7Jq3hC7XSb92Ly2zKTZ3R/6aRj7p/2kwfrU+heNob7U/7D1i0k0jXVHNpOwKzerRP0kH05HOa66svXdA0zxFZfZNUtEniHzI3R42/vIw5Uj1HNAGmKWuAku/EvgVC1/wCd4g8PJx9qRc3tqvrIvSVQP4h8w5JyBXZaVqljrOnRX+m3Ud1azDcksbZB/wAD6jtQBdpjAEgHp70+igDzecv8MdW+0Rqz+Dr+ceag/wCYXMx+8B2iYnkdj+R9GjdZIwyncpGQc5yPWoru2gvbaW1uYklglQpJG4yGU8EH2NcFpd7L8PtbtvDWpTPJoV65TR7yQ58hv+fZz6f3D6YHagD0SikHSloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoqC8uYLK1lurmVIYIkLySOQFRQMkknpxXjvhb4hXvjf4zfZrUzQaLZ20yxwElS+MDe6nvnGB2+uaAPXtTtPt+mXdnv2faIXi34zt3AjP615b4H+EWr+GLS8ik8V3Vo00wYf2aECuoHG7ehIPXpxXri9OmKztes7zUNGubbTr9rC9dP3Fwqg7GByMgg5GRg+xNAHPDwRquP+R78RfnB/8AG6X/AIQjVf8Aoe/EX5wf/G6veEfEh1/T5Y7yH7Lq9lJ5GoWhz+6l9RnqjdVIJ4PtXRjpQBx3/CEar/0PfiL84P8A43R/whGq/wDQ9+Ivzg/+N12VFAHG/wDCEar/AND34i/OD/43R/whGq/9D34i/OD/AON12VFAHG/8IRqv/Q9+Ivzg/wDjdH/CEar/AND34i/OD/43XZUUAcb/AMIRqv8A0PfiL84P/jdH/CEar/0PfiL84P8A43XZUUAcb/whGq/9D34i/OD/AON0f8IRqv8A0PfiL84P/jddlRQBxv8AwhGq/wDQ9+Ivzg/+N0f8IRqv/Q9+Ivzg/wDjddlRQBxv/CEar/0PfiL84P8A43R/whGq/wDQ9+Ivzg/+N12VFAHG/wDCEar/AND34i/OD/43R/whGq/9D34i/OD/AON12VFAHG/8IRqv/Q9+Ivzg/wDjdH/CEar/AND34i/OD/43XZUUAcb/AMIRqv8A0PfiL84P/jdH/CEar/0PfiL84P8A43XZUUAcb/whGq/9D34i/OD/AON0f8IRqv8A0PfiL84P/jddlRQBxv8AwhGq/wDQ9+Ivzg/+N0f8IRqv/Q9+Ivzg/wDjddlRQBxv/CEar/0PfiL84P8A43R/whGq/wDQ9+Ivzg/+N12VFAHG/wDCEar/AND34i/OD/43R/whGq/9D34i/OD/AON12VFAHG/8IRqv/Q9+Ivzg/wDjdH/CEar/AND34i/OD/43XZUUAcb/AMIRqv8A0PfiL84P/jdH/CEar/0PfiL84P8A43XZUUAcb/whGq/9D34i/OD/AON0f8IRqv8A0PfiL84P/jddlRQBxv8AwhGq/wDQ9+Ivzg/+N0f8IRqv/Q9+Ivzg/wDjddlRQBxv/CEar/0PfiL84P8A43R/whGq/wDQ9+Ivzg/+N12VFAHG/wDCEar/AND34i/OD/43R/whGq/9D34i/OD/AON12VFAHG/8IRqv/Q9+Ivzg/wDjdH/CEar/AND34i/OD/43XZUUAcb/AMIRqv8A0PfiL84P/jdH/CEar/0PfiL84P8A43XZUUAcWfBeqKefHXiEjryYP/jVcDpvwgs77xlY+JNE8SC60+2vQ9yZIl3vNE/IXaqoQSMZx6nnNem+MYdbv7K30rRlaH7dJ5V1fhgPskOMswHUswyox0JzkcVs6Tplpo2lW2m2EKw2tsgjiQdgP5n36nvQBbUYHPrXAfFnxdqfgrw5Bqmmz2wledYRDPBvD5DHOQwIxtz3rvz1r5++OdzN4i8d+HfCNm37z5SccgSTOFGf90Ln6NQBqaz8RPGnh/wDoXiy5l0mT+0pQDYtaOpCMGZSGEnOVUHoMZFer+F9aXxF4Y07WFi8n7ZAspjznaSORnuM14N44gTSPG2h6V4/mN/oMVugs103/Ro4VzsO9DuYgBRna2cAYPavoq1t4bS1itraJIYIkCRxxjCooGAAOwAoAmooooAKKKKACiiigAri/Gn/ACNXgj/sKP8A+iJK7SuL8af8jV4I/wCwo/8A6IkoA7InGc1xd6f7X+LOnWvWDRLCS8f086Y+WgP0RXP412p45NcX4C/4mN34k8Rnn+0dRaGB+zQQfukI+pDn8aAO0HSud8Y+IJdC0yJLGIT6tfSC10+3P8crfxN/sKAWY+g7ZrcuJ4raCSeeVY4YlLyOxwFUckk9gBXF+FYZPFGtSeNLxGFttaDRYXGPLgz802OzSf8AoOB3oA3fCfh1PDWiratObq9mdp727f71xO3Lv/QDsAK3h0pB0paACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBrYzjvXHal4Je2v5dX8K3o0jU3O6WIKWtLo/wDTWLse25cEe9dnRQByGj+N45dUj0PxBato+utwkEj7orkdmhk6MD6dR0PSuuByM1na3oWmeIbBrLVLOO5gPIDDlD/eUjlSPUYNcmZfEvgfIdbjxJoC/wAYIN9aqPUdJl9xhvrQB31Z2t6PY6/pNxpmowCa1nTayHgj3B7EdQfWl0XW9N8QaZHqOlXcdzaydHQ9D3BHUEeh5rQoA4fwxrF7o2rjwb4imMt4qF9Nv3GBfQjsf+mq9CPTn3rtkGFxz+NYfivwxaeKdNW1uHeCeFxLa3cRxJbyj7rqazvCXiS7vZ7jw/ryJB4g04AzheEuY84WeP1U9/Q8UAdfRSLwKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApjnBBOcDk0+sTxXoL+JdAuNJTUbjTxcALJNABuKd159f5Z9aAON1jUNV8YapCNP0OXU/C1pKSxS4jjS/nQ8Z3H5oVOe2GYegrz/4PtJe/HPxHdTAxymO7ldSQcFp0yOOO9e9W1jc2eiQ2NvcRJLDEsUcqwfKAMDOzd6D1rivB/wni8HeJ5ddtdbuLie4R47hJYVw4ZgxwR0+ZRQB6QKa2Dx68Uo6UtAFH7BZW99camtqgvJI1SWZI/ndVyQvHJ6nj/61Jo2rWGuaVDqGm3Cz2soyrrxz3BB5BBzkHnNXW9PauUTw5eaT4uOq6LLClhqDE6paSZVS+PlmjwOHPAYd+vagDraKRenFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXO+LPEo0C0iitoDd6teHybCzQ/NLIe59EXqzHgD3rV1HVLDTPs/wBuuo4DcTLBCHPMkjHAUDuTUC6Hp6a9LrX2fN/JAtv5rMWxGCTtUHhck8464oAt6f8Aaxp1uL94XvPLXz2hUhC+Pm2g8gZz1qzSL0paAI5mZEZkUu4UlUBA3H0yema8UtfBPi//AIWxP42vtHtrhd7tb2y3igrhdkYYnjhfTPIr2+igDxbU/hl4j8e+N4tb8VmzstNgColjbzGZyiknZuwBySct+nFe0L065paKACiiigAooooAKKKKACuL8af8jV4I/wCwo/8A6IkrtK4vxp/yNXgj/sKP/wCiJKANLxzrb+HfBWrapET58UBWDH/PVyET/wAeYVP4U0ZdA8JaVpPG62tkRz6yEZc/ixY/jWL40H9q+JfC3h4cpNeHULgdvLtxuAPsXZPyrU8X+Iz4c0dZLaD7VqN1KLaxtQf9dM3QfQckn0FAGJ4nZvGGvr4OtpHXT4FW51qVGx8h5jtwfV+p9FX3ruIIY7e3jghjWOKNQiIowFAGAAKwvCPh86Bo5S5l+0aldO1xfXJHMszct9AOFA7BRXQCgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQ0tFAHH6r4JxqL6x4ZvW0bVm5k2Lut7o+k0ff03DBGabpPjbGpRaJ4ltP7H1qT5YlZswXfbMMnQ5P8J+YZrsqztZ0XTdfsWsdVs4rq3b+B15B9QeqkeowaAL69K5nxd4Wk1v7NqGl3P2DX7HLWd4BkEd43H8SN3HbqPQ5JTxL4HH7pbnxHoC/wZzfWqjsCeJl+uG+tdVomu6Z4j0xNQ0q8S5tmJUleCp7qwPKkeh5oAz/AAl4nXxHYyrPbmz1Wzfyb+ybkwS/1U9Qe+a6NTkZri/Ffh/UYNQXxT4YCDWrdNk9sx2pfw/8829HH8LevB9t/wAN+IbLxPosWp2LNsYlJI5BteKQcMjjswPagDWooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAprdadRQBxWv32seE9ak11pJr7w7MFW9twNz2BAAEsYH3kP8S9R1HeuvtbmC8tIrm2lSaCZQ8ckbbldT0IPenuMgg4wR36Vj67q3/CM6Ol3Fps9zawMqyx2qjdDD3cL3C8ZA5oA26Kq6dqFpqunw31jcx3NrMu6OWM5VhVqgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApjjI98VleJPEVl4a037Xdl3kkYR29vCu6W4kPREXux/8Ar1U8MQeIWW41HxBcKk12VaLTosGOzQZwu7GWc5+Y9MjjgUAUdD8PX93rh8TeJxGdRXcljZo26OwiPBwf4pGH3m/AcCuvXpSr0paACiiigAooooAKKKKACiiigAooooAKKKKACuK8a/8AI1eCcf8AQTk5/wC2EldrXCfEC6iste8H3U7bYYdQlldj2VbeQn9KAHaVKl/8RvEmtSsq2mk20emxyM2FBx50xJ7YJQH/AHfam+Go38Wa9J4xukb7DCr2+iRPxiM8PP7GToPRR71yWgw3HifR7bwyhdP7VdtZ8QTIcFIp3Lxwg9mddoPoqn1r2O2gitbaK3gjWOGJAkaKOFUDAA9sUASL0paKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQ1yOseCVk1F9Y8PXj6LrLcyTQqGiufaaM8N9eGHauvooA4zTvGrW17Fo/i60XR9TkO2KUvm0uj6xSHHP+y2DyOtU9esLvwdq8/i3RLeSeym51rToRkyAf8ALxGOnmL/ABDowz35rsNX0rTtbsH0/VLOK7tZR80cq5H1HcH3HSuQW28R+BlH2AXPiDw+v/LqxBvbVf8Apmx4lUf3ThumM0AdnpepWesaZb6hp86T2lwgeORDkEH+vYjscirdeTaXr+meGLiXWdGufP8AB19N/psCqQ+k3JPLFPvLGx6qRwcEcHn1WCWOaFZYnV43AZHU5DAjgg9xQBJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTW/p2FOooAwNJ8MWOhapfXmnPNbxXpDSWSMPIWTvIq4+VjxnHHtWnp+p2WpxyvZXcVwIZWhlMTA7ZFOGU+hB7VbNclrfhGc6m2veGrmPTdbIAl3qTb3gH8MyD/wBCHzDPegDrqKihLrCnnbRIQNwUkjPfGe1S0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNbNADq53xP4stvD/k2kUMl9rF0CLPT7fmSU+p7Kg7seAAas6b4k0vWdRvrHT7j7TJZYWeSNS0asc/KHxtLDHIHrRpfhzTNK1G+1G3hZr6+kLz3Mrl3PooY9EHQKOBQBfjTz4YJbmBUlXDhSd/lsVwcN9CRn3qyKUdKKACiiigAooooAKKKKACiiigAooooAKKKKACiiop5YreKSeaRY440Lu7HAVRyST6UAS14j+0Rq0MOn6PpsNyEv3leQpnBETI0ZJPQA7iOfevZ7O6gvrKC7tZVlt541likU5DIwBBH1BzXPeJvAHhzxbqNnfazYmea1G1CHKhlznawB5Ge3vQBieCLrwr4X0FYJ/E+iy6jcMJr2UX0XzSED5R83CqAFA9Frph408K4/5GbRv/A+L/4qmr4K8KFefDOin/twi/8Aiad/whPhT/oWNF/8AIv/AImgA/4TTwr/ANDLo3/gfF/8VR/wmnhX/oZdG/8AA+L/AOKo/wCEJ8Kf9Cxov/gBF/8AE0f8IT4U/wChY0X/AMAIv/iaAD/hNPCv/Qy6N/4Hxf8AxVH/AAmnhX/oZdG/8D4v/iqP+EJ8Kf8AQsaL/wCAEX/xNH/CE+FP+hY0X/wAi/8AiaAD/hNPCv8A0Mujf+B8X/xVH/CaeFf+hl0b/wAD4v8A4qj/AIQnwp/0LGi/+AEX/wATR/whPhT/AKFjRf8AwAi/+JoAP+E08K/9DLo3/gfF/wDFUf8ACaeFf+hl0b/wPi/+Ko/4Qnwp/wBCxov/AIARf/E0f8IT4U/6FjRf/ACL/wCJoAP+E08K/wDQy6N/4Hxf/FUf8Jp4V/6GXRv/AAPi/wDiqP8AhCfCn/QsaL/4ARf/ABNH/CE+FP8AoWNF/wDACL/4mgA/4TTwr/0Mujf+B8X/AMVR/wAJp4V/6GXRv/A+L/4qj/hCfCn/AELGi/8AgBF/8TR/whPhT/oWNF/8AIv/AImgA/4TTwr/ANDLo3/gfF/8VR/wmnhX/oZdG/8AA+L/AOKo/wCEJ8Kf9Cxov/gBF/8AE0f8IT4U/wChY0X/AMAIv/iaAD/hNPCv/Qy6N/4Hxf8AxVH/AAmnhX/oZdG/8D4v/iqP+EJ8Kf8AQsaL/wCAEX/xNH/CE+FP+hY0X/wAi/8AiaAD/hNPCv8A0Mujf+B8X/xVH/CaeFf+hl0b/wAD4v8A4qj/AIQnwp/0LGi/+AEX/wATR/whPhT/AKFjRf8AwAi/+JoAP+E08K/9DLo3/gfF/wDFUf8ACaeFf+hl0b/wPi/+Ko/4Qnwp/wBCxov/AIARf/E0f8IT4U/6FjRf/ACL/wCJoAP+E08K/wDQy6N/4Hxf/FUf8Jp4V/6GXRv/AAPi/wDiqP8AhCfCn/QsaL/4ARf/ABNH/CE+FP8AoWNF/wDACL/4mgA/4TTwr/0Mujf+B8X/AMVR/wAJp4V/6GXRv/A+L/4qj/hCfCn/AELGi/8AgBF/8TR/whPhT/oWNF/8AIv/AImgA/4TTwr/ANDLo3/gfF/8VR/wmnhX/oZdG/8AA+L/AOKo/wCEJ8Kf9Cxov/gBF/8AE0f8IT4U/wChY0X/AMAIv/iaAD/hNPCv/Qy6N/4Hxf8AxVH/AAmnhX/oZdG/8D4v/iqP+EJ8Kf8AQsaL/wCAEX/xNH/CE+FP+hY0X/wAi/8AiaAD/hNPCv8A0Mujf+B8X/xVH/CaeFf+hl0b/wAD4v8A4qj/AIQnwp/0LGi/+AEX/wATR/whPhT/AKFjRf8AwAi/+JoAP+E08K/9DLo3/gfF/wDFUf8ACaeFf+hl0b/wPi/+Ko/4Qnwp/wBCxov/AIARf/E0f8IT4U/6FjRf/ACL/wCJoAP+E08K/wDQy6N/4Hxf/FUf8Jp4V/6GXRv/AAPi/wDiqP8AhCfCn/QsaL/4ARf/ABNH/CE+FP8AoWNF/wDACL/4mgA/4TTwr/0Mujf+B8X/AMVR/wAJp4V/6GXRv/A+L/4qj/hCfCn/AELGi/8AgBF/8TR/whPhT/oWNF/8AIv/AImgA/4TTwr/ANDLo3/gfF/8VR/wmnhX/oZdG/8AA+L/AOKo/wCEJ8Kf9Cxov/gBF/8AE0f8IT4U/wChY0X/AMAIv/iaAD/hNPCv/Qy6N/4Hxf8AxVH/AAmnhX/oZdG/8D4v/iqP+EJ8Kf8AQsaL/wCAEX/xNH/CE+FP+hY0X/wAi/8AiaAD/hNPCv8A0Mujf+B8X/xVH/CaeFf+hl0b/wAD4v8A4qj/AIQnwp/0LGi/+AEX/wATR/whPhT/AKFjRf8AwAi/+JoAP+E08K/9DLo3/gfF/wDFUf8ACaeFf+hl0b/wPi/+Ko/4Qnwp/wBCxov/AIARf/E0f8IT4U/6FjRf/ACL/wCJoAP+E08K/wDQy6N/4Hxf/FUh8Z+FT18S6Nj/AK/4v/iqX/hCfCn/AELGi/8AgBF/8TR/whPhT/oWNF/8AIv/AImgDj/Elt4L1e6m1LTfFmj6bq8sflyzJdQvHcoeCk8ZbbIpHrg9Oa4/wd8SYvAdzP4b8R3VrPpaZawu9On+1RxqTymQS23uA3zAcc8V7B/whPhT/oWNF/8AACL/AOJrM1r4YeDdbtkgn0Gztwjbw9nEsDfQlAMigDqLC7t7+wgvbSUS21xGssUg6MjAEH8sdasVXsLO30+wgsrSNYra3jWKJF6KqjAH4AYrO8WT2Nr4V1O61KBJ7S3tnmeJxkNtGQPrkCgDZor5f+Fuk2d94Z8UeIPEs0z6fZweTEzTMCshBJI54YfJj3auu/Z61DxBe22qrfXFzPpMexYGnYttk5yEJ7YwSPcetAHuVFIOlLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGT4g0Cy8R6cLK+81VVxLHLDIUkikX7rqw6EZPt7GsvQI/FGnag2l6u0Wo2Kput9VVhHIQCAElj7tg/eXg45rqqawzQAJ92nVymueGL2fUm1jQdYuNO1TaFdZCZba4AxgSRE4HpuXBGe9bGhXOq3GmhtasYbK9VyrpDN5qMB/GpwCAewPIoA06KQEEZHSloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKq399a6bbSXd9cw21rGuXlmcKq/UniqlpqNvr+hfbtHvCI7iNxb3PlHg8gNtYAkZGcd8UASarrOm6MsL6lew2wmkWKLzGwXcnACjuee31ql4h0GTxDbQWb6ndWlluzdRWxCNcJj7hfqq+u3qMjNVtC8F2Gk3J1C6lm1TWGzv1G9O+T6IOka+gXFdMowKAKumabZaRp8Vjp9rHa2sQ2pFGu0D/6/v361boooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ0AI3UV8+/G/wAb3t9psem6UWTRJZnhmugeLqRMblT1RSRk924/hr03xLfah4lu7rwr4du1tXWMrqWp7dwtVYHEaDIzI3fkbRz1Irxr44aVfaJa+GNOur+yuIIIpltorSxNuIVHljnMj5zgenQ9c0AfQHguMw+BfD8ROSmm2yk/SJa3KzPDkaxeGdKjVdqrZwqBnOAEFadABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5X8ftc/sz4emwRgJdSuEhx32L87Efiqj/AIFXqTcevSvOfiB8L5vH9/bTXuvG2t7VWEFvFaZ27sZJYvyeB2HTpQB5rf8AgOw0b4D2evXEs8WpqYr0RySloXZ3AVTC3yk7GHb+HnjIr1L4N+JbjxP4BjnubWCCS0na1/0eIRo4VVbcFHA+9jjjIPTpUHiP4Z33i+O1tdc8UStpluwZbOys0gXIGAc5bsSBxXaaBoWn+G9Ft9K0uDybSAYVc5JJ5JJ7kkk0AadFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTW54459adRQBw58F6j4fbzvBurG0iBydKvt01q3rt53xnvlTj2rqLzVLXSdNW81a6t7RBsWSR32xhzgYDHtmtCobm3huoXguIkmhcYeORQysPQg8GgB0E0dxCksMiSRuAVdDlWHqD3FSVyll4E0zSNWjvtEnvNKQPulsraY/Zps+sbZC/wDAQK0Ne1q60WOGaDRb7U4CSJvsW1niHGCEJBfP+znpQBt0Vz2ieM9B8QXDWtjfD7YgJks5kaKdMdcowBroF6UALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFZOv64mhWaTtYX99JI/lxwWNuZXZsE89lGAeSQKzdIv/ABbqOopNfaPZaVpYDbopbgy3LnHy/d+RfcZagDb1PVLHSLRrvUby3tLdBzJPIEX8zWb4f8UWfiZ53062vvscQXy7ua3aOKfOf9Xu5bGOuMc1ZvfD2japqUGoX+m291dWylYZJ037ATk4B6H3rVAxmgDmJfBGl32uvq2rPc6nKr77eC7ffBbf7kYG38Tk10yLtXA/L0p1FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNbr+lOooAwNA8I6V4auL2XTEnj+2ymWZWnZ1ZyclgCcA/4VmeIfhn4b8Vah9t1mG7uplGF3XcoVB6KobAH0rsqKAKel6fFpWmwWFu8zQwLsQzSNI+B0BZiSf8ACrlFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBE8ETTrMY180KVEmBkA9Rn0rD13w9fandx3mneItR0q4RNipEEkgbknLRuCCeeuR2roaKAMHQYPEts00eu3+n3sQAEE9tbtDI3XO9SxUdsYqvq/jCHQ9Re2vdH1lrdQD9ttrJpoeRnqmSCOh4rpqKAMjQvEeleJLaW40m6+0RRP5b/u3Qq2AcFWAIOCK0o5opGZY5EdlOGAOcVIa5jUvh74U1e9kvL3RLdrqQ7nnjLROx9SyEHP40AdQKKy9F0Kx8P2JstPWZYN5cLLO8pBIA4LknHHTOKxbrwdeTXk9zb+MPEVsZZGkESzRPFHk52qrR8AZwOegoA66is7SLC503TktrrUrjUZVJJuJ1UO3PT5QBWDN4X8RSTu6+OdTjRmJEa2dsQoJ4AzHn86AOvoqjpttPZ6bDbXN9LezIMNcyKqtIcnnAwM/h2rmf+EAdxm48YeK5B6DUBH0/3EU/rQB2Zqhfa1pWmc3+p2doB1M86J/M0+20+K20uPT2eWeFYvKZp5C7MuMfMx5J96xrH4feENPA+z+G9MDD+J7ZXb82BoA2ZtRtotLk1BWM1ssJnUwL5hdMZ+QDO7I9K5ceMtZvyBpHgrWJFyMy6g0dkoHqAxLH6ba7ONEjQJGoVF4VVGAB7U6gDO1a1vL7TZbew1BtPuXI23KRLIyDIJwrcHIyOc9awbP4f6dHfQX+qX2p6xewSCWGS/umZYnByCqLhBzz0rr6KAEXpS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9k='] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 56 "设锐角 $\triangle A B C$ 边 $B C, C A, A B$ 上的垂足分别为 $D, E, F$, 直线 $E F$ 与 $\triangle A B C$ 的外接圆的一个交点为 $P$,直线 $B P$ 与 $D F$ 交于点 $Q$. 证明: $A P=A Q$. " ['\n\n如上图所示, 由于 $D, E, F$ 是垂足, 则 $\\angle B F C=\\angle B E C=90^{\\circ}$, 故 $B, F, E, C$ 四点共圆, 从而\n\n而\n\n$$\n\\left\\{\\begin{array}{l}\n\\angle B F D=\\angle F Q B+\\angle F B Q \\\\\n\\angle B C A=\\angle P C B+\\angle P C A \\quad \\Rightarrow \\angle F Q B=\\angle P C B=\\angle P A F \\\\\n\\angle F B Q=\\angle A B P=\\angle P C A\n\\end{array}\\right.\n$$\n\n故 $A, F, P, Q$ 四点共圆 $\\Rightarrow \\angle A Q P=\\angle A F E=\\angle A C B=\\angle A P Q \\Rightarrow A P=A Q$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAcYCOAMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APfWGRTMZOMlR9ae5UDcxwB3rzzx74uurLWNM8N6Q/8AxMNQcAP2UHigDvvNUjCMC3pmn8AgV5F4o1a/8L+MvDFnbXjzyXh23Csf9pc8fjXra9VY87gOaAJqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAI5RlRwTzxXk/j61g0Px7o/iOS4gyMI0U7hB94/MK9bIz3qjqGi6dqsbJfWcNwCMAyoGKj2zQB59olnYa/wCLB4iv9TtZ7gDZbWsMgkVM45B+vNelqwzjnjA6Vl6b4Z0jSWY2VjDEc54jAx9MDisdvHcEPjpfDM9q8TtHvWZuFPGcf0oA7Gio/MwpPXFEcnmZPQUASUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFNJwetG5vQfnQA6iqs12kUsUTyKjSHChjjJxnA9Tjmpo2ZuSMDt70ASUUUUAFFFFABRSE4pASaAHUU3OOppc0ALRTdx7D9aMnuKAHUU3OOuaUHNAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUARsDvGOneuM8f+GV1zRjc25EOo27CWOZeu1eT/Ku3prAFSD0I5oA4fwf4qmntobDVBtuGUeTKeknHT6iu0iG3AxyOprgZtIjttck0u4UJaXjGeynHG2U8tz+ArX0bWbizu/7G1httwp/cT9pl7fj/hQB1maUHNQfw5BI9PapgMACgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAae/rVPUL+DTrU3E5yAMhR1Y+gq2w69+OnrWReaR9vv7W6eR/LgJIiJ4oA8mbWr7XfjHoSyTSC0RRMkByNmQw5z1PvXuC9c9SK5C48ERXPji38TSXbieBAqxL9zHPb8a6v5sD+93FAE9GahZggJdwoHqcVi33i7RtPk8mW7VrjtGuST+lAG/mjNckfEer3h26fodwob7lxOBsP65p32LxbeDFxfWduh/wCfcMGH50AdS7qBlmCj3NQNe2sZw1zCD7yAf1rnV8JXMrZutf1CbPWPcu3+VTL4E8PMM3OmxXEneSQHJ/WgDTm1qwh+/dwj6HNVG8WaPGcPdj8EJpYfCPh+AfutLt1x6A1bTR9PjwEtIQO3BoAoHxnoYOPtTf8Aftv8KcPF2iv0uz/3ww/pWmNOswMfZ4/yqOTR7B/vWsbZ9RQBHDrumzDKXiD/AHjj+dWkv7Rh/wAfUH/fxf8AGs2bwnoNx/rdMt2/A1UPgXw4DmHTYoX/ALyAg0AdKkiSDKMGHqDmnVyb+DpE/wCPPXtStR2SJhj+VILDxRYjbbalb3A/vXhJY/lQB1uaTIrkjr+t2Bxe6JLcgfeltQNo9+TVu08aaNdSiE3SQz94XB3A+lAHR5oqESLIMq4wRkEHrSqeOQQR60AS0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFB6UUHoaAOf8S6S+p6SxjdkuYW82OQdVxjIH1AxVOKO38ZeHkllUQXSj7yfeif/ADx+NdQQeQRkYwPeuOd18N+LOrJZam+FIHCzdTn0GBQBZ0bW57S/Gi6wgiuVGIJe0o6dfWupU8AHqayNZ0WDW7LynPlyY/dzL95G7EVm6JrVzb3g0LWGCXgH7mTtKg9/XpQB1RcDHv0p1QAbjkfdzx7VNQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACEgdaN3tQfp9Kjc7eTkn0FACv1PPOO1NI4yw7YrN1TXbHSEP2iTLDrFH80me2F6msQT+IfEGTbgaZYt92UjdK491P3aANTXvE2m+HbZ5ru5CsF3JCOXf6DvXNaJ441HxjZST+H9PjVFba8lwdv5etTeIPD9honhXUrmOI3FwU275W3nJIHGc7eCelc/4V0W70W1vH0gfv9NkET2+/wCWUEBiPrzQB18fhOW+k8zWtSuLvjJg4VF+hHNblloWnWEXl21rGq+43H8zk1Fo+swa1Yi5tjtYfK8bDBVh1BHatZTkA5zQA1Ywi7RjH0pduepP5U+igBMcU3ac9KfRQA0KcdaXFLRQA3B7ijGKdRQAlGKWigBpUn+I0YI6U6igBhUn6elVLnSbK7jKT20bg9TjB/MVeooA5ObwalsS2iX0+msOcR4YE++7NR/2n4h0dgNSsRd2y8efbHdIfqOgrrjjPHWmY6jn3z0oAzNN8S6XqjeVBcKJx1hc4cfUVrFwOvFYepeHNP1NQs0GyQHO+D5CfxHNZjxeIPDygwSDU7JOsbjDxj2xksaAOvDgjI6UobNYuleJbDVFCh/JnHDQzfI+fYHmtlcAcUAOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBCuce1ZWv6QmraXLBjDkZRx1VvX9K1qa/AoAwPDOrf2lpIWYEXVsfKnU9mHT9MVY1vRYNYsyjrsnTmGVfvIaxb9G8PeJYtQQbbK+IjnHZXPRj7YFdWSHCujA8Z+ooA5zQtduLe9/sTWcLeIP3U38Mq/X16V03mHljwB1FZWtaJBrNr5cn7uVDvhkXhkYdP6Vm6JrM8d0dJ1ceTfRcJI3SZe2D34oA6hHZmORj0qSo04OCME1JkUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAHpUZZiM8fSnnoawNY8Q22lJsw01yeIoI+Wc5x26fjQBrXV7DZwmW4kWOMD77HFctJreqa+7waHH5VsG2yXkq4x9FOCfrS2egXusyrfeIZAwPMdmnCAf7Xqa6qKFYIgkSKiqMKoHSgDI0jwrY6fieQNcXZ5M0rbjn2J5FbhQde/86SPJX5uvvUlAHIeL5PMu9EsP+Wd5dbXUdxtJ/pTLQf2b42u7REGLqD7Syj+JhheKkuFGoeP4bZuRY263CD0JJX+VP8AEP8AoXiLRb9R80swtSfVSSTQA3WdEuLW6/tXRsreKN0kGflmA7H0PGM1q6LrsGr2hePCTJ8ssR6ow4I/OtAgliQODywHrXOaxoVxBcf2tozrFepzKh+7Mo7MO7Yzg+9AHUbzlQV69fan1h6Jr0OrIV2GG8Tia3YjcprbzxmgBaKKKACiiigAooooAKKKKACiiigAooooAaVB60uOMZpaKAE2j6UhUU6mt06ZFAGLq3hvT9TG+RGilH3JYTtYfU96xxqGs+Fht1QG908HCzxqdyDtkck12AGOO3pTCgkyrDjp9R6UAQ2WpW+oWyz2sqyIwyADyPqO1WBISvI2k9PeuWvPDU9jctf6DIYJicvAxyj/AIetW9G8SQ3z/ZLyI2d/Hw0MnHPqO1AHQqWJyeBTqYp596fkUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSMcClpCMjFAGdq2mxaxpVxYyn5ZEK59KyPCmovPaSWN42LuxbypQeuOdv6Cum8vGcd65DX4G0XXbXXoARE58m6jHRskAOfcDNAHW7cqeeexrJ1rRotYted0VxEcwzDhlPr9K04pBOqSIQyOoYY9D0NSbD+PrQBzOia3cR3P9j6wBDqCD5G/hmHTIro92cYOQeKy9d0GLV7faWMVwnzQzp95WrO0TWphdNpmqp5GoINqntKo4yPU9KAOqXOKdUaOAoz1pfMBIHc0APooooAKKKKACiiigAooooAKKKKACiikJwKAFqJ225J6d/b3pfNXHcfWuU1TWLvWL1tK0R8AHE9yOijuB60ASap4ile6Ol6QDcXx4d/4YgfX3qxovhyPTnN3ct9p1GUAyzP1z/L9KvaRotto9sIYE+fq8n8TE9TmtHYduCcn1oAVcH696fTEXHtT6ACimlgvWoLycRWFxLnG2Jm/Q0Ac34dP23xHreoH70M5tc+w5/rUvjmNovDU18vL2QM6exANJ4IUNoK3xGGvf9If6kf8A1q3NRs0v9PntJBlJUKn3oAdZyefZ28mcl0Vz+VSsQDsB5xkVheDLl7vw5DJIfnRnT6AMQP5VvmMMv8j3FAHMaxoTSSDU9IIt9Rj5JX/lsvdW/X86vaFr0erQPFInk3cHyzwt1RuMg/nWx5Zxzz64459a57W9Ae5mGoaa3kajGM/LwJR6H2zQB0SdTknnt6VJWBoGvxamjQzqYb6H5ZY246dx61u7xk+3egB1FJmloAKKKKACiiigAooooAKKKKACiiigAooooAKTFLRQAhHBzz7VhaxodvrMJLZjuU/1c0fDofb/AOvW9UezPGMe4oA5Ow1y70q7i0vXFCljtguVHyv6Bj/erqlwFJJ+UjIIqtqemWmqWj295CssTjDA9fz7VzNnf3fhi7TTtVle4sXbbBduOUz91H9PagDs0PyjHSnVHG6lQUOQRkUpkG7HegB9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVLUbWK/sZ7WdcxSKVbj1GM1dqJgN/J6jp2NAHMeErueB7jRLxh9otDlD/ejOdn6Currj/E8UunXVpr9pGWe2fy5UUdVbAJP0Ga6a2vUu7eKeFg0Uihg3tQBYcZXjg+uKxtc0OLW7UAt5NzCd0Ey/eQjp9R7Vso+7qKXyxknue9AHL6Hrk/2htJ1VRFfxj5Sekyj+Ie/SujRlOApyp5FZWv6HFq8C7T5N5HzDOv3l/8ArdKo6Frcy3h0jU08q+hGB6SjsQemfagDqqKi80jqP/109SSeRxQA6iiigAooooAKKKKACiiigApkmChDdMUws+8KCBgZJPeuX8Q6zcXFzHoOmMftc/DzAZ8kc8n36fnQAzVNTuNbvpNG0mQiID/SrkfwD+6PfGa6HS9LttKs0t7ZAFAyW7k9zUGk6VBpVosEQGP427yN65rUVcKKADtjNPpMCloAKKKKAGMPnB9B+dYHi69ax8OXEi/ekZY/wY4/rW+9cv4uxdXOmaYTlbuc7h/ufN/SgDZ0jTxpujW1iOkUYT8qvntilA70hAHPSgDlfC2bXVtc04nEcMyGMezDcf511i8DFchMfsPxEtI0+VLu1kkkJ7spUD9Ca68UAKelRt2XjOODUlN2jGKAOd1zw+15J9v09vJ1KH7jH7rexp2h6+upKba7Bhv4eJYT39GHtW9IoK8nisDxBoI1B1vLSQQ6hEP3Mo798H1HAoA6BCcc80+uc0LxC940mn30P2fUYPlaMn7/ALj1rf3ngYz7+9AElFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjDiqN7ZW9/byW11EJIpAQfX6/WrxGRikCgdKAOKs7y58LX66fqEpfTZGxb3J52n+6x/lXXqNxyp+UnNV9SsLXULR7O5jDRyjGMd+x+orndGv59C1BdD1SQtGOLSdv4x2U+pA70AdjS1F5uemOOTz0pysSee9AD6KKKACiiigAooooAKKKKACiiigAooooAKjYkvt7HvUlFAFWaH7RFJHIPldSje4IxXMeGpTpepXXh643YjPmWzHoYyThR74FdjXLeKrGcww6taKTeWTblA7qeufwzQB0y43cdjin1Q0q+h1PT4L62bdDOgdTV+gCNlGdx6jofSsXWtCj1i2TBMNzESYZRwVP+GRW9SEDHP50Actomuyea2l6opiv4ztG7pMOzL7frXTIeTyeDisTW9Di1SDcWMd5HzDMn3gfX+n41U0TXp/MOlaooh1GIbd3abnG5T39KAOqyKKhQnccg4P3TUq9KAFooooAKKKKADNISAOtRyDcV7VVvL2GwtJLud9sca5//VQBneI9ZOmWqRW6ebe3B2W8I6k9/wAOv5Unh/RP7LgeecrJfXB33E395iO1UfDlnLql03iC+XDTcW8ZHCR9j9etdWoO87vwoAbxjAzn09KlXOOaXFFABRRRQAUUUUAMPU/SuTmYah8QoLfq2nwib/vsEf0rrD978K5TwyPtviHV9VxnLfZc/wC4x/xoA66mt0xnrTqa/TOOaAOU8YJ5Eml36f62O8ihLf7DHn+VdWhDKCOQelYXiuAS+G7x8ZaJDKn+8oOKv6LOLnRrKTOSYU3fXAzQBoUUUUANc4GaiClTgMNvXB61PSYoA5/XNAXU9l3CzQ6hBkwzJ976H/ZPcVFoPiBruRtP1FBBqMHEino/+0vtXQSAmQdwOCPWsTXNAGpRebG/kXkB3QTp94H0x056GgDoM0ua5nQtdke4bS9UQQalGPmGeJQON6+o966Nc7vUetAD6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCGRNzY7Yyazda0mLV7EwyKBKvMUgGCjeorYxSYoA5bw3qskiy6ZfJt1G2Hzg4/fD++vt2rpkOcHt2Nc34k0qcpHq2mqzX9sQ4VQB564P7s+2a1dG1OPVdPiuovuvxx2IODQBp0U00q9KAFooooAKKKKACiiigAooooAKKKKACiiigAPSoJEV1dG6MMMPapz0qNiBgN1NAHJaE/9g+IrrRZPktpT5loD0A6bR+RNdeJFYgA5yMiuc8W6VNe6cl3aYF/ZN50Bz1boQfzrQ0LU49W0e3u4j8jrjBGCCOufyoA1c0HoaQdKWgCPyxjGB9ax9e0FNViWWN/IvoeYLhR8yn+tblNbp1wfpQBzOha3JNNJpepL9n1FBggnIkA/iGe3TpXSIwCgVh69oSavbxyRnyryBt1vKOCCOgJ7r6iq+h67NcTNp+pARXsY2lTx5qj+JaAOn3DOM80tQoemRz2zU1ABRRRQBE+fM6444HrXIamX8S+Ik0qE5sbMiS4cHhj2A9cEc1seJtWOl6axj5uJmEMIB5DNwD+eKTwzpI0jTFib5p5HMkrf7bct+tAGstvsxswFA4UDgc1Kq4p1FABRRRQAUUUUAFFFFAFTUJzbWVxP2jiZ+PYE1i+DIPJ0PzDj/SZXuPrvwc1L4uvfsWgT88zMIBj/b+X+tXtFtPsWj2duww0cKRn8BQBpU1unHWnU1uooAguIRcQNC4yrqQa57wJcPJos0M3+siu5lA9FDkD9K6YZCnua5jRwLHxpq1mvywyJHJEPfGWoA6oHNLTFBHHvT6ACiiigBjKeoppjy3I7dc1LikPAOaAMTWtCi1a3UiUw3cZ3QTrwyN/Ue1UtB12b7UNL1ZPKvV4jbtIB3z610hxgcAge1ZOuaJDrFttZ/LnXmOVeCpoA2Q6sCQeBSg5rldF1uaC+XRtZHl3YH7mT+GVe349K6lcYoAdRRRQAUUUUAFFFFABRRRQAUUUUAFNLgep+lKelMB4OeFPQCgB5bFAbIzg1BI8dvGXdtq/3mPFYGoeLrK3uBaWkct5dHoIVLJ+LjIFAHS7xnHeszUfEWl6WSlzdxibtECC5+g71htb+JdcH7+VNMtT/wAs0+Z2H1BGK0tM8Mabpq5ERuJevmXB8xgfqaAM6TW9b1hhHo2neXbt1nuiY2T3A5zWfp1nd+Ddb3XN1JcWWosPMcrjy5eigAdsZ5ruhtKhDkD2GMVT1jTItX02azlfaJAQHHVT60AXwwKAg9RmlXkcVzXhXVJrm0lsrwbb60by3U90zhW98gV0qnigB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFN2DGOvenUUARugKkYBz61x9oD4d8UzWoO2z1IiSIdlfgBR6Z5rsXUEZOePSsXxLpT6npTCDi8gPn27f3ZAODQBtITgZNOzg81j+HdVTVtKjkJ/eoTHJnruU4P8q1gecdqAH0hANLRQA0oCpFYevaDHqiLNCywX0P8AqZ+49j7Vvdqic8n5eR096AMDQdbe5d9O1FPI1K3+8rfxL2YHpz6V0G9uBjBrD1/QV1SKN4HEF5Ad0Enp7H1FQ6Hrcl27affg2+oQ/LIj9ZB2dfY0AdCruzHooHH1p245zn5QOaamBnnPNY3ifU307RZHi/4+5v3Vun96QjgUAZMIHiHxY1wR5lnYgpE/8LE/ez6kEGuuQYwR0zz9azPD+mLpWjRW4Uhj+8cd9zcn9a1QCCOw9KAJKKKKACiiigAooooAKKKTPWgDkfGY+3XOl6SD8006zgD0jYGurH3h9a5ecfbfiHbOOmnwOrD3ccV1AGAO5FAElBGRRRQAm0ZrldT/ANF8caVODtjmilWRvUgDH866uuR8eRuNJguYciWG8hO4dlLjd+lAHVKSW3dsVJUEUizQxyIcq4yP8/hU9ABRRRQAUUUUAN2DOaRkDDbgbT1FPpCOODigDJ1nRbfWLQxSDEqcxuOGUjpg/WsvRtburG8Gja4QLgf6m5xhZV7D6105HGDz71m61o9vrNm1vOnIO5GHVWHQ59jQBoiU78YJHBqWuQ0zWLjS75NG1lvm/wCWN4w4lH19fWuuBz/jQAMcA4603ccbu3pSsASK868ZeM9X0XxXpGjaWtm5vMl2mz8oBA5596APRN/GT07UuScc49q5rRLzWL3UZzcSWE1gnCvCG3bx1HPpXQ/e+bGCPWgCamsxUdM0vamSMoXlgvPc9aADzOemR6ikMhB9vYVh3/ifTNNkNuJBNdn7sEfU/nxVBJfEutbjDGmlwP8A89QfOx6gjigDobzVrSxiaS4nRAv3hnkfhXPyeKL7VGMeh6bJJH0F25AQf8BPJqxa+D9PSZZr4NqN2ORNcYYqfaugSJUUJtCgcDFAHMQ+F7zUn87XtSkmf/nlb/ImPQrzmuhsNJsdLh8qyto4E7hFAz9atLnoefen0AMEYBzk/jShADnvTqKAExTJQFQvjJAzUlIwyKAON1wPoevWmuwozQSEQXKDrlsBT9BXXI4dAyMGU9CO9VdRsUvtOuLVjjzUI3HscdayfCV672DWFxkTWcjQDPVkXgN+OKAOjJOPSlHSmZ3DPpT6AFooooAKKKKACiiigAooooAKKKKACiiigBDyKaBxgmnEZ70Y9aAONnP/AAjXilbjBXTr/CSY6LL0UY9zmuvHDDuDWbrmlrq2nSWrD5j88f8AsuPunPsap+FNWa/03yJ+Lq2cwyKepKnG78cUAdFRSBs0Bg3SgBaTFLRQAhHHb2rA13Qk1GMTwyGC+i5inQfNkevrmugqMJ82elAHP6Hrj3Lmw1BFt9Rh4kT+EgfxIe4PFUronW/GMFt1tbBS8meqTZBX9Cat+JdHS6tG1CKT7JfWw3wzL2PuPTnpWH8O9RivIr43itHq1w++6DjbvxwGH4YoA79eVH5Zp9RxsuwAHIp5YCgBaKKKACiiigAooooAQ9KYOOe560587TjrVW9uVs7O4uXOEiQsT9KAOe8NN9t13V9VTlZmWEH3TKmupUYGPU5rnfA9m9p4e+YcyzSTD6M2a6QA8ZoAdRRRQAVl6/bC50S8jxk+SzD6gEitSopU3xsp+6Rg/SgDJ8LT/aPDdgScssSq3+8BzW3XKeDWMSX9nJ8skd5K6J6ISAP5V1dABRRRQAUUUUAFFFFABio3OHWpKYxweSOaAM3VtJg1iykt7lfdXHUHsaxdM1W60a5TSdZbLsdttcnpN6An+9wePauq3HPJwPfiqGpaXZ6paNbXCZQDAYfeT6HtQBeLbeeT6AdTXi9zp0utfErUdS1nS7ttOii8qL5cZJXtg+1d1YarceG7pdL1tgYWH+j3ZPDD0b0Nat74i0Wziy08c7EZ8qL53b6CgCt4PbdpWyKxlsrZZHESzAiQ88kjJ4Nbl1dwWVuZ7mZYok+87nAFc0uqa9rAC6XZLa2rcCec4dffYRz+dWLfwfbvdrdapczXt0o++WKL9NgO39KAGSeLmvJDHollPfHoLgL+5/Fh0qP+xNY1dt2s6iYIW62duQUYe56108VpFCmyKNUQdFRQtShDx0GKAM7T9D07SofLtLREX8yfzrTUHHNJ5fcE5pwGB1oAMUtFFABRRRQAUUUUAFIaWkIzQAneuR1Af2N40t74nEOooIJT6FASPpkmuuxxWD4t057/AESYR48yMrKCOoCndx+VAG2CFwMEbjgVLWVoOof2to1pfjrNEGI9DWoOlAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANboeK4zWCfDviWPWVXFvdFYbtVPTsh/M12hXPeqWp6bFqOnzW0ig70IBx37H8DQBYVw6jBBUjIIp6np6VzHhC/Y2kmk3Lf6VYsYyD1ZB0b8ea6ZSMjB47UASUUUUAB4FMbOART6Yc9fTtQBzXjaYvpCaarbZNRk8hcdc4z/Sl1Pw7HdWMDWx8m9towYpV6ggdD6jPX1qvfr/AGj44srU8paw/a0PowYr/I11YTBHPI70Ac9oOuSXwks70CG/hGJIz1cD+JfUVuxkbs5A7HvWLr2gjUGW+s3FvqUH3Jx3HofUdKboWuC+Jsr2P7PfwjMkTfxL2ceoP50AdJRULTYAI59h3p6Pv5B49PSgB9FFFABRRRQAjVz/AIwl2+GbuFSQ9wpiT3ZhxXQHtXJeK3F5c6Pp0ZO9ruOfA7qp5/nQB0Okw/Z9Is4iMMsCBvrtFXaai4GB9adQAUUUUAFMbJIxT6aeooA5GyBsviNqAb5Ybi0jEY9XDEt+ldhXJeJALbX9BvvuxpNIJT9VGP1rqt3agB9FIDk0tABRRRQAUUwPnODnFI0hCZKHPZfWgCSmMOckZHvVC+1ux02JpLq4VMdVHJH4DmsGTxHqmqkLomnHym4F3NjZ+K5BoA6eeaK3QySuqIP4nOB+tYFz4ttxcNZ6fDJe3YP/ACzUiMn/AH8YqKHwrNeSedrd/Lcv3hRsQn/gJ/xqpe3UXnf8I/4chjQgYuJUX5YV+vrQBy2up4i8bXjaOHhtLYHdcDYJDH9GHfrWn4a0qHwNNFp+pwpMsh/c6g4yQT2PpXc6RpUOkWa20IOT8zyd2Y+pqa/sLfUrOS2uY1eNxjkd6ALUbB0VgMjHBHPFPwBzXG2V9d+F70afqDF9OJxDcN1XP8JPpXXRyrIA6HKMMhux+lAE1FNJIFAOTigB1FFFABRRRQAUUUUAFFFFABRRRQAVFJGJEZGHDAr+dS0x89u9AHLeEibO51TS2yPJuGaJT2j4AxXVjpXI3JGmeP7e5YkJfxC1Udiy5Y/pXX0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQehoooA47xJA2kaxbeIrckAEQ3YX+JOcD8zXVWzrJGJEIKtyDUF3ax3djJbum5HUhs/wA/zrnfClzNYy3Og3ZZprMkwE9Xh45/OgDsKTNQgttIBzkcGpU+6M9e9ADqYSASc9qeeAaq3b7LSZvSNj+lAHOeGc3fiDXbyTkxXJgib/pngH+ddUAAc9a5rwIm7wxbXZ+/dDzGPqen9K6igCL/AJaqNuQQcn0rA17Qv7RVbq1fy7+Fi0co9fT3yOK6PHvQRxx+VAHOaDrf9oI1pdIYNShOJYj1443D2NdBGMAcckZJFc/rmhC/f7ZZP9n1GLlZF4Jx2Pt1/OnaF4gOoK9tcxeRfw8Swn+Y9e1AHRUVVDOSWHOB09asKcqDQA6iiigBrVyLL9r+I8DrzHZWskZHozFSK68+tcn4XXz9Z12+HKzTpsPsFwf1oA6wdKWkU5FLQAUUUUAFNb+VOpp60Ac341t2n8NyeWP3sbxuD6YYE/oK2rO7S+tLe5jI2SjP86TUoftGnXMeM7omH6GsTwRLnwxaWjHdJaKIZc9Q45NAHSr1NPqLcRkNgZ6DNVb3ULXTYjLeXUcKdmkbb/OgC9mmu6qp3MF+pxXKTeKZ7xzFoenyXDdpphtib6EZpqeH9S1YiXW9QkER5+xQn5B/wLg0AXL3xfp1pKbS3Z7y8H/LCHBf/CqH/FS651B0m0P8PSc/zFdFY6TZadGI7W1RB/ePLfmeatyKGXg4x39KAMHT/Cem2E63EkZubwf8vMw+f9K29oBAC43dSOKUsdpw2R0J965vWtanmm/sjRgst/IPnYniNO5z2OM8e1ADdb1e5u7waRowRrpj+/kPIiX1/nWroujW+i2awxAvJkGWY8s7Y6k+vajQ9Ft9IgxGxkmc/vJm+8575rYxQAwLhiQMbu9BA+6RxUmKMUAUr2yt9QtZLa7jV4nHKsK5a2u7vwldC1vmabSHbEVweTB/st7V2jAEYNV7u0hvYHhnUFGGDkZoAmRxIoIwQe4OacBg5ri4Z7jwbcpBcs8uiyHEUx5Nv7H/AGfeuvjlSVVZDuVhkEUATZpaZxjjrTh0oAWiiigAooooAKKKKACiiigAprc8d6dTG4OaAOV8ZxiKCw1U9NOuDLn6jb/WupiYvEjf3lBrH8U2f27w1eQAclQR+BH+FWNEuxqGiWl0DxJGP8P6UAalFNHX6U6gAooooAKKKKACiiigAooooAKKKKACiiigAoIyMUUUARMjFTtODXLeLLOWye31613CWy5mA6vH/d/PmuuqKaNJImR1DKwwQe9AFezuYrm2WdGBV1zwe9XB0Fcb4clk0fVrrQbg/KhL2RPdO/6muyXoKAFPINY3iW4NvoV1IODjH58f1rZrl/HbFfCN2FPLGMD/AL6FAGl4btRZaBZW4GBHHtH861qht0EcUajoFFTUAFFFFAEXl5LZAOawvEGgSX8kd/YSCHUIOY5B0b2P410VRyD5Cc4I6UAYWg66NS/0W5XyL6HiSI98fxD1FbwYAGue1zQHvwl7ZN9n1GLlJfXHY+o6U7QNdXVVa2uYzDfQfLLC3BJHf6GgDoN4yPf0p1QYUOCMj1FT0AVr66Szs5riU4jjUsT7Vg+Crd4fDULSjEjM5J9QTkH8qf45mZPCN/DGf300Rjj924rX02FYdMtogMYiUH645oAuDoKWkXpS5oAKKKY5x1oAUOCSPShmA61WnuobcFp540Qf3iF/nXP3Hi5ZZmttJsptQuBwQP3aj/gR4NAHTl12nkY71wGm+IrDQ9Y1yGZnlL3bTLHbrvbnHYVoLouu61/yFr/7NbE5FtbAo6/Vgeap2mkWWgeOonRQVubcQhpOWLgkk565xQBfW/8AEmtlfsVvHp9s3KzyYZyPdD/jVqy8HW0U/wBqvZpLy5PLGQ5Qn/d6V0Sr8+Tye3f9akoAgitkhj8uKNYkHQIMU/ZgdPzNSUh6UARbgPmGcjjBNDNzgH8MUmPnySN3pXPa5rc1tOumaYQ+pTj92MZEQ9WH5GgBNd1mT7Wuk6Uvmai6kFv4YVP8R9xnIFX9E0GLSbcgnzLiT5ppT1Zjz/Oo9C0WLSbZ8sXuZTvlmbkux6/hW3H9ygBNhDZHFSCiigAooooAawORQc+lOo7UAV57aK5geCZFeNxgqwyCK5JTc+DrlVZnl0SRsI55eAnsfVfc9K7LOetR3EEU8DRSoro4IKkZBoAIbiOeJJomDI4yCD1qYMDXEYufBd6WQPcaNK2XGcm3J/pXXW11DdwLNAwkRxkEUAWcilpnQ7RT6ACiiigAooooAKKKKACkK5paKAK90he0mX1Rv5Vg+Bnx4WtID96FSrD0+YmukkBaNh6giuW8HOEfVrb+G2utmPT5Qf60AdQud1PpB7UtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1xnFOprHGKAOZ8WWL/Y4tUtkJubFvNVV+86jkr+JrZ0zUI9S0+C4hdW3r82OzDqPwNWWUOmGGSK5LRyPDviSbRyAlpdZnt/Y/wAf6mgDrxJu4A5rm/G43aQkR6SSgH8x/hXSdDjjiua8ZnNvYr2aagDpo+EX6Cn01PuL9BTqACiiigApCoIwaWigBpQHryMYwa5nX9De5uFv9OfydQiGQ/ZgP4W9c11B6VRvb+0sSpuriOIN0DHg/WgDO0HXE1WMwyjyb6H5ZYTweO9bm5ug5Irj9WhsdTu1vNIvkj1WHsrY8zHOD6//AF609C13+1Ea3mHlX8GBNE3GDQBU8UsZ9V0C1U7v9MV5B6rg/wBa6bASPaPpXLv/AKT8QY26w29kc/7+/wDwNdQzLGpZmAXrk+lADt2ABj8aQuwOMYHrXOXPjCwSVrawWTULoHBht8MV+tVTb+JNbG2aZNMtjziA/vSPRgeKAN7UNe0/S03XdyiDtj5ufTisJtd1vWSY9K0420Xa5usFJB7AHNX9N8LaXYv5otw9x/FLIOWPrW2qgDA2qAOMcUAcxF4QW9ZZdZvJb6Tr5DnMSn2GK6S1tLe1gWG3jVI142qMD8qm59sU5enagBpQf/WrlfGMbRXGj6kPuWV0ZJD7FSK62sLxXaNqHhe/t4x85QY9iGBoA2Y23KrDoRzUlZmhXgv9GtLlejxj9OP6Vp5oAaWxTSxC9eT0NKzAZyOlYGva8bB0sbJfP1KYfLCOSoPegCLX9dazljsLGMz6nKcRJkHy/wDab0FWfD/h9NLV7mdjLfz/ADTSt1+g9qh0LQ/7LDXd0xn1Kc5mmbqc84X2zXQKQTx+NAC+WM5ycDtTwMUUUAFFFFABRRRQAUUUUAJtoKgilooAhltopYmjkUMjAhlI4b61x8sNz4NuzPbq82kSN86DloSe59q7aoZ4kljeOQB1cYKkcUAQ2t3De26TWsivFIMrIpyD7VZ3EdeAO5rjJ7e78I3TXNkpn0pzmS3/AOeHuK6iyvYNQtY54JBLDL0I6UAW1JzzyPan1GmAxA6CpKACiiigAooooAKKKKACuQ8KD/ie+LF7f2gP/Ra119cj4U/5GDxX/wBhAf8AotaAOtUY4paQdTS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAYrA8VaW1/pvnW4H2u2IliI65XnGfQ1v1G5PYDPvQBmaFqiarpMFxnEhG2QejjqKzfGvy2FtJjiOYH9R/jVWJR4a8XeXnbY6lkpk8JIOWz6Zq347OPCtxIOSroR/30tAHSx/cX6Cn1HFyinOflFSUAFFJkUZ4zQAtIaAwIpM5AOKAEyemK8k+MF9Pdajomh2mWlnnEr+WfmAVh6dq9Zdgqlt2AO5FeY61ZafaeOYPEcupNdyBDElrawGUjIwSSucflQBt+FbBdS8nUruyNtJZu8MQDEbscEke9T+K7W1tGTVIr+Kzv4xuG5tqy+x9aVJfE2sEfZootKt+okOHaQH1XgqaevhPTdNtLi6uWlupihLPPIXXPspzigDzTw18TJbvWNTZLSL7Vczbo2uJNqJHgDrj1Fd1Z2Frr2JNU19L4dfs0DgKh9mXGao6X4QjvPDVhqtpbQJqaguQyDa/J+Uj8q0tMsNF8SW8iS2zWl7Gds8ULmIqfUYxQB1dnp9pYoFt4kUAYBAGfzHJq3wRlhx71yq+DnsRu0vVLuFh0NxI02PzNO+z+L7PB+2W2pDqFMSxfrQB1Gf93b9acBnkHIrk28R6zYDzNU0Ty4R1MEglP5AVPaeOdIuX2lbuH1MtuyL+ZoA6bFLVGHWNNuMeTfWzk/wrKpP5Zq4GBAxzn0oAceRVe5TdBKg/iUj8an3D6UzPPOMfWgDmPBcgi0t9LB+ewfypPZiS39RXS7hxg4XPfua5XRQNO8Z6xalSGv3+1AeuAFrR1/Xo9Jt/LiTzruY7beEclj649M96AG69riaUiW9snn6hOcQwDnr3PoKboOhmw3Xt+wn1SY5kcnOzvtX2FN0DQJLV21K/fzr+f5mJ/gH91fSt/wAs5yTyeuKAJcZ5owBS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUhFLRQAx41kQo4DKRgqRkGuMurO68KXj6hpyNLpch3XFsvJX/bQdSfbiu2PSoWi3Dn1zkdqAK9lqEOoWsdzbMrxSD7ynODVrOM85Arj7/T7nwxfSatpqs1nIc3NqnQe6jtx2FdJp+oW2pWa3Fs4dJB69/SgC8vSnUxSAvJ6U7cD0oAWiiigAooooAK5Lwp/wAjB4qP/T+P/Ra11jHCk+1cn4RG7VPEso+7Jf5U+2wf4UAdWOpp1NFOoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApj5xjr6U+mkZ70AY3iLSk1bSJIekyESIw67l5Fc9d37614CuVm4vImWOdf9tWGf5V27Ac5HNcPr0A0TWJbv7tjqCMkvojAFtx9MnigDsdMlE+nwSqchkFXK5vwRcNP4O012/wBZ5XzD05NdCXwCWwMetACkUhOFOf8ACsnU/Emm6UMXNzGHI+RBklj6cdKyE1jxFrWRYaadPhPSW8Gd49V2n+dAHRz3traxmSeVYgOu5sf/AK6wZvF4upGg0aymvJehONgX3yeo+lJF4Nt53WbWJ5dSkHIjnO5FPtXSwW8VtEIIUEcYHCqOlAHKLoGtay4fWtRaKLqsNmTEw/3jk5rc03QdO0wlrS1jSQjDSBRuP4+tam3jGTQEA4AGDQBCcKuGz169awvG1w9v4XuxGcSuFWMDv8wz+ldGFAHHFcn4rYz6voFkvzRy3bCUeihCaAOisLdLaxhhjXAVBgGsLXtBkml/tPS2EOpQ857TDqQR+ArpQvAUHgDFOKjGO2OlAGJoWvJqsWx1MN7ENssDdcjv9K2QMj+hrntf0KSWZdU01vKv4eeDgTAfwn8sVPoOvQ6vEUKGG9j+WaFuqkd6ANrBI4wvtVe4sra7XZcQRSjuHXIqfPH+6eTSjLd6AMObwhor5MVkkDn+OABG/MCqTeEJbbL6fq+oCU9Bc3BkQfhxxXWbR2phBzhevqaAOTWHxnZHMl9YXkQPCJblWx9c0o8SapGwF54dnhiA+aUSqwP0A5rqicAnpx1rI1zXIdJtfnUyXEp8uC3B+eV/QfzoA4LXvH2m2Piey1C2WaS5Nu1v5JUqcls4GR+tdT4ct7V5m1XUL23n1Cbod4/dqf4VGeO2a53XfDsn2EeINXKz3UEolMZHyRRgfcx6V1Mfg7w/cwRXMWmwQSMquJYhhhkdqAOjQgjcCDn+73p+e5FcqfCV3Axe113UFH8MRcbR+lHl+L7TgS2FzCPVW3n8elAHWZpa5D/hKtXtWCXXhm+Yd5oym369atR+OdE3rFc3a2056xyA5H5CgDpaKp2+p2l0geC5jdT0IOKsCQEZBBHtQBJRTA5PY0u6gB1FN3HPSjf7GgB1FIDmloAKKKKACiiigAooooAjlUMhUjIPWuQvtPudAuzqujoZLRj/AKVajt6uvpjk45zXZEAjB6U0IAO5oApaZqVrqlmlxauHVuo9D3q71OBxjrXI6npNzoV42q6LGWjJzcWadH9WUevWt7StZtdYtEuLVgwbgjup9xQBp0VHv9uPWnBjnBoAdRRTS2DigBs7bYJD6KT+lc14JG/SZbzr9qkMmfXHH9K2dVuja6XcSvgBUOfx4/rWf4Pt2tvCenwN1EZ/Uk0AbynNOpiDv60+gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ9KAF7VBPcQwcyyKg9zUoOFOa8m+MmpMX0bRYxJuvLhXcxZ37VYZ6UAeppcxTrmCRHx1waz9b0+HV9Ju7KcfLJGfm9CORXnfgzQ9XTx1Jqcaz2+jrAIhHO5BdgMZ2mvV8DGCMigDyHwB4veztbzQ/sk15f2k2xVjGcKB94+2Tiuy/s/wASa0wa7vP7NhPOy3OWYehzXL6kV8IfFVL2JAtpewb7p9uNo3Y4/SvUY3VlDBshhuB7AUAZmm+GNM0tt9vbjzTy8jksWPrz/StYrj+EAdqkUkjmlxQBHnnOD+NKv3uTzT6TAznvQAtFFFABXIgfa/iHMH5jtrRJE9nLEH9K648A56VyfhcC61jWr1hllumt1P8AsjBH86AOqH3uOmKdTEySeKfQBG3p37YrnNd0KSW4TVdMby9Qj67ekwHZh/nrXTEZoIGDnpQBh6HryavG8ci+VeQ/6+DuprZXG7P5VzmuaJPJMmraWfK1CL5ig4Ew7g1Z0LXItYtWGNl5DxLEeCh/rQBvUxicn0Hb1poYDgHjufes/WtXt9GtPtM75P3UReS7dhQBHrOtQaPbGSQ5kPCRHkse1Zui6NNcXDaxqw3Xj8xxHkQL2Uf49eaZo2jXF/ef2zq/zSPzBD1Ea+/vXW45zQBk6/YHVNAvrNOTPCUHvmofC16t/wCHbeQHIXMef904/pW5jHSuT8G/6J/aOlAf8ek+cez5agDq+cAjBpm1RkgYJ71IOlLQBGwDAg9PSoHsraVSslvG2f7yireB6UUAc5c+DNDuHMhsQk399Hbj8M4qq/hK/hbdY+Ir2BR0i2qV/UV1tGKAOQVPF9jwkdheKD/rJXIc/kOtSf8ACS6lbDbe6DfSEdWtosj9TXVY7UFQRggEehoA5pPG+iLhLq7WykP/ACzuCFb8q2bTUbK+QPa3UcwI6o2afNYWcv8ArLWFye5jFYl94O0e7k8ySOdH7GKVlA/AGgDoxwM0ua5M+Fb+1BXS9cntwOitGJP1JpG/4TCwXEMVrqRHVppPK/kDQB12aK5EeKr6yH/E20aZG7/ZFMo/kKtweMdImwZJZLUf9PK+X/OgDo6Kz7fVbK8GbW8hmH/TNw38quBsjOfy5oAkozTM56Z/Gk5/yaAJKKaCc4zTqAI2HJGM5H51yeqaPd6XfHV9GXax/wCPm3X7sg6/nXX45zQRwQMUAZWlavbataLLCQW2/NH0KnvWkpwcda5XVtFutPum1jRMCcczW3RZR6e1a2j63Bq9uJoGw4wskTDBjb0I/OgDYzTWxkZqNQdvOBzxz1oJyDjk9xQBzvjeQjw1cW6N+9uMIn13A/yretYRFbQoowFUDFcz4izeeJtAsY+VinMsy/7BUgfrXXgYGKABeBS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA0jg1xF/wCBbq/8eW3iOTUVMVuhRLZkJxnGec+1dzRQBHsOOOD6nmlwwHvT6KAOJ8d6fDL9guJUzB5wW4Y9o+f64qz4Tv3NvLpF42bi2O0sf4wRkEewGK1vEmnDVPD95Zkf6yMgY6iuQNywsdN8TxceSfIuQO0WfmJ9+BQB6In3QPSnVBazrcWsUyEFHUMD9Rmp6ACiiigApC1LTDnOaAK+oXAi065kB5ETkfgDWH4KQ/8ACM2t0wxJdr5zH1JxS+Nbp7Tw47RHDvJHGB7FgD/OtrT7NLHT4LRBhIkCr7UAWlp1NUU6gAoPSig9KAIvUn8K5zW9Dm89dV0nCXsRyVHAlHoa6MsMH+6Kpapq1tpNk13cuqIBnHcn2oAyIPGFi+jS3dzmK4h+WS3x85fsAO+cHFQ6Ppdzql4utawmHI/0e3P3Y16gn36fSsCXwxe6vdN4maDybwOHhtzwNo7kf3jgY9K7LQtdt9ZtSVytxH8ksTcEEdTQBrqwYZXAGcYqWogMvzjH8NS0AI3SuRhf+zviDJAeP7QgMuPXYAK61vSuT8Tr9i1jStWHXzBabvTew/woA60dKWmryo57CnUAFFFFABRRRQAUUUUAIRmmBSCcZ/OpKKAI9r5PPB7ClC8YIz9afRQAzb7YHpVS40qxuj+/sreX/fjU/wBKvUUAc7deDdKuTlVntz/07SmL+VUx4Uv7DjSdYlhHUfaiZ/5muuoxQByePF1h98W2qDttVYaQ+KruzQtq+kSwKP8Ani3mn/x0V1hHFMPX39aAMGz8ZaPdniWaEf8ATeFo/wCda8Gp2NyP3F3byH0SUH+tR3el2N8uLy1hn/3lrIn8HaQSDbRNYMf4rY7W/OgDpQwPTp60EjFcmfDOo2mTpus3O4/8/chkH5cU0P4wsT+/NrfoOggj2H9TQB1YwB2x0rl9Z0S5t7saxo2EvY/9ZEOk464I9eODSDxXfW+Dqeg3VpH3kMisPyXJqzb+MtDu5NiXR3998TDH5igCbQtYg1i1dkDRyrxJG/VGFbI4QfTk1yOrWUbXI1fQr2Nb5R80QcYnHoR68cVbt/E9vdaJcTufIu4kPmQSHkPjAGPrQBDo/wDp/jLVNRxlLcfZAPRlOT/OuuBrmvB9u0Wgw3Uq+XdXv76YN13nr/KukHTnrQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA1xkVxdhBFZeItS0K4QNBfAzQRH7pQABh+ddo+Mc9O9cr4tt3thba3GP3lm4MhHURdWFADfDF1Jp15daDcszSQuXgZurIefyAxXVhmzyMDOK5LxHC81tZ+ILE/6RbAOdv8AFEcFx78V0WnXkd/YwXkbbllQNj0yKAL1FFFABTf4jTqY/tQBy3igfatV0awPKXEjlh6bRurqgvIrkUc33xGnhfldPto5U9i+Qa7CgBoXBJ9adRRQA0tz6AUF+MgZFNf5mCmqd/qNvptm91cyeXEnGO59BQAmoajbaZZyXFzKqRxjcST/AJ71z+l6bd+Ib5dY1iMpADutbVv4R2LD170zTbG58SXyavqcZS0ibdZWx+7js7D1PpXYIu3AGAvtQAeUu0Lj5R0HYVzeu6LcpdjVtIby76Pl0/57qOx9T6V1FQykj1GeAaAMvRNah1a1yPluE4mhY8xN6H/62a195GAQee9cxreiTQ3KavpJ2X0XMiKMCdfQj8+laGi61BrFozj5Jo/lnhPVG/8A10AazFsY4z2rA8ZQ+doEkw62rrcf985NbygAKCckd6rajard6dcWp6SxlT9CKAH6bObnTbWfj95Er8e4zVuub8E3Zu/D4yeIJpLcfRDj+ldJQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAB6Go8U8ng1DPPHbxmWaQRovUt0oAeSo+7gmlGT0GPrWDL4x0KNiqahFLKOPLjYFvyqo3iue5bZZaJes38LyxFUP40AdQ54/TkUjNheRwB1JwK5bzPF17lGgsrOI9HikJcfgRSr4Uv7ht1/r93cqf+WRRVA9sjmgDdutQsbSPzrmaNIx/Gx4/SudvPFHhfUFMEXl6jIePLiXk+3OKvweDNDtpBL9kLSdctIx5/OthbS3RcJBGp7bUFAHnL6St/xpXhSfTJVbP2iYDB9xg1yWreBvEzeI7ISa9HLPdSKXVTyFXDc8fWvdmYQgs+AoX5mPFct4eD6treoa4chSfs0cZ6DYTkj60AdPDGIoIojjKgAH0NSiTIOP4etYNx4q05NQewiaS6u0zvjt13eX25qxomt22tLci3iljNvJ5cqyrgg4z/AFoA2QxyOMg96dTE7elPoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGScrg9+Kr3UC3MUkEoDRyKRg9D7VaYE8Z4pmPlPy59BQByfhd3tze6BeEGW2YlSx++j5IA+gxTdBZ9E1y60KUnyZGM9s5/iLEll+gGKl8UW0tjd2uu2iZkt8xzehQkbifoBT9etf7U0e31TTz/pFviaF+h28Fs/UCgDpsngZGe9OU1m6PqsOraZDfRAgOOQeua0V68d6AH0x+/tT6papP9l0q8uB1jhd/yBNAHPeER9uvtV1Vh873DW34If8A69ddXO+D4PK8O282MNck3B99/NdCTgZoAGpnI5DYX3pxOelVr27gsrV7idgsSdST1NADL29t7C1mubhtsaDJP+e9cxY2dx4ov49QvlMenR/NbQf3v9pv8O1FpbXHi7UI7+7Dx6XCSIYTx5p9TXXxwiMBUUKo7AUASKgUAAAAdgKXFLRQAUmAevNLRQAhGAee1crreh3MF1/bGj4S7U7pIc4WcdwfeurqMpg5I3YH60AZWi65a6xatLESJo/llhYYZG+laZYEgDlmHB7VzOu6JdWt2da0bC3a8yxY/wBcOv58AVp6JrMGr2pkjO2VPlliJ5Ru/wDWgDK8Mj7Br+r6SBtSLbOBnu5JJrrM9K5OfFj4/tGXIW+hYMfUIvH866pWBwR36UASUUmeaN3OKAFopCwFG7NAC0U3cKN646j86AFNJ+NVpdSsosiS7gQjqGkAP5Vi3XjXSLdzGPtE0nYRwMwP4gYoA6InjIpC3HLY461y48R6vdD/AEHQnmiPR2lCY+oIpDaeLrsB21G0tUP/ACxMG4gfUGgDp2kCpuZgAO9Z0/iHSrZiJdQt9w/hEg3fl1rKTwVHOwlvtRvpJPSK4ZE/KtODwvo8GD9ggkYfxyIGb86AM2XxvZhjFb2d9PJngrbttP40wap4qvBm30i3jgbo7zfMP+AkV1EcEcSBY41QDoFGKdsBH9aAOXGi+Ibv5rnXyinrCkC8fjRF4I0sTCS4lu55Qc5adsZ+mcV1IXtigggYxQBTg0nT7fASygDAcMYwT+dXQiqMAAD0AoUEfSnUAGKTFLRQAYprHAz6UbxTZJFSMuzAKOST2oA5zxdqLwWSWNv81zeMIto6hScMR9M0+7hOg+DpYrYZaG2OCOudvX61S0MHXddudakQm3hzDbZ9shz+eK6to1lQqygqRgg9DQB5V8F0h/4Re51O7kU3s1wTJKx56Dgn616faQW0e6aBVHnNuZlH3jjGf0FYtv4H0i1upJ4EliDtuMSviPP+6K6FEEcYRFACjAxQA5PQjGKfSc7ulLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEFzHHNDJFKoZJAVZT3B4rk9Clk0XVZvD94xMLsZLR26ODnKfgMV17ICSxGTisTxLo76nZRzWx2Xlsd8Lp94dCR+OMUAZdix8P+K309+LS9YyQeivzx+QrsFPJzXGyyHxX4bMkYEWp2h+ZR96OQdR+Vbnh/Vxq+kxzkYmUbZUPVGHY0AbNc54zvDaaGcH/j4lS3OP8AbO3+tdDk8elcn4pAv9Y0nSSeJW8//v2Qc0AdBp1r9h062tx0hQIB7AYFXC2FzTQCoz146VHPOlvE0kjBVUEk5oAS6uYrW3aed1SNBlmJ4FcjFDceMbxbifdFoyN8kR4MxHf6UqLJ4zvN7bk0NDjjgXX/ANh1FdhHBHDGqRqFVVCqAOgoAdBGsUSxooVVG0AdABUlIvApaACiikJxQAtFNDZ7YpN49aAH0UzcRyen0pd4xk8D1NAA3SuV1jR57O6fWtGQLdRj97GOlwO/Hr6V1JcEdRWXqPiDRtM4v7+CA9hIaAOT13XIL3T9P1eJiktvcRwzR/xIXYA/h1rvV+YbhyCMqR6YryPxveW15G2oeGEe6n3AypbjKS+hPuDzXSaBrXinVNDtHj0qCGUKFkN2COg9qAO5XI4Oc+9NkuIU4kmRT7sBXMtoviPUPmu9aexH92ywR+oqSHwPpsgzqEk2oHruuDz+mKALV74t0TTn8ue+UN02qrNn8gaz38YSTPjTdGvL1D0eNgo/XFb9lomnacmyztI4h7An+dXREq9MD6CgDkxJ4vvfniNlYIekdwhZx+INSDwxqF38+oa1dq/payFFrqdo7cfSlK5HNAHNr4L0Mur3Vqt5KP47gBj+eK2rayt7KMJbwpGg6KgxirOwHrS7RQAxcfj6mnYwaXaKAKAFooooAKKKKACiiigAooooAKKKTPpQBHgk/P2ORXL+Kr2S6MehWZP2i6yZSv8ABH0b+dbWsarDo+ny3lwTtQZUd29hWV4Z0qb97quoD/TLvDBe0Seg+oxmgDc0+0isbKK2iChY0AIHc461aXkUbB2OKUDAoAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBM+9M4z0NPwKCMgigDj9agn0LVf7es13W7jZdxr/d7OB3bOM1BbXMWj+IY7y3bOm6x8xPrN04/AV10kKTEqQGVl2sCOCK8/1fTv7I36XNIRplyx8iY/8ALo/YZ7fWgD0YHKnnIPSuW5v/AB+0g5OnRbfoJF/+tVzwvq7anpSiYbbqA+XLGTyvpn6gZqh4WlW5u9V1h3XZPJ5ZJ4wI8jn24NAHUySLDC8kpARRknPQetcgxuPGd+URmj0SJuXXg3B9Pp3zRLNP4yvGt4WeHRYWw8g4adgeg9un1zXW29vDaQpDAiRoowqLxgdMUALbwR28SwwqFiQYAAqakJIHHFRS3ENuN08qoPVjigCcUucVh3XifSrWMt9ujmI7W5Ep/IGs3/hNlvDs0zT7yaQf89oWjU/iRQB1uaCa5MXXi2+AVbO308HpL5qyn/vkgUjeGtVvBjU9baaM9RDH5RH5GgDorvUbSyXdc3UcI9XbFY8vjLSEz9nne9Ofu2q7zSWXgzSbR/MAuJ2PUXMzSD8jxW1Bp9lbj9xaQRY/uRgfyoA51vEuqXgP9laLNu7fa1aMf1potfFupLi4uINK/wBq1YSn9QK67aPSjFAHKjwb9o41TU7m+OOpHl/+g1esvDOkaaR5FrknqW+f+dbtJjAoArLbQKuI4Y1HThAM1IFCqAoCj24FUPEFylnoV/PIxUJA7DHXO014jpwv4/hZfeKGvrv7ek2Yd0zFVTKnGM0Ae/gn2/OnDrXPeCdVuNb8IaZql0u2aeBWcH1roFPTjrQA+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAaetRyyiFCzcKASfYDrSyMQNy4zjvXH6vd3HiHVRodhIwtl/4/LheOAfug+ucfnQAW6t4s1g3UygaXav8A6Op+7K4/ix6YyK7GMAZCnK+npUFraw2dvHbQoFRBhVA4FWQADxQA6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKDnBx1opD0OOtAEABIye3BA71XvdPtr61ks7qJZIpR8ykdat4IGQfyqMzwqSDMpwecsKAPIbu/vfhz4jlN2JJtKukKpN1O/gDcfzFT6FqMOq6StjDdpHpYkkmuJVYbpWZt20d8dQa7/xR4btPFuiS6Zd5ELMGV1I6/wCTXGaB4b0jwffrpeo6bBtJ/cX4X/WZ/hb3/CgDobfxXo1vF9k06GedogAkSwsoPb7xGKmOseIr1sW2hG2z92aWRWH5V0cAjEaiLHlgAKo6AVPg9AMCgDkxo/im9O2+1m2EB52W8JRx+OasQ+DLRW3T3moXJP3kmuCyflXSj0p1AGVbeHtJs3D22nW8TeqIB/KtHy8LhQFx6CpKKAGYJ+n1pApzkZz9akooAjKnOeaeOlLRQAUUUUAFFFFAHKeP9F1PxB4bl03TJBFNKRmU9h3H41zp8AX+paFpWh3My22m2gX7RGo5uCMe/HSvTaTHNAFWysYdPsYrS3j2RRIERfQVZXPenUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAATimLIrj5Tmkk5Qjj8a5bVdbuby8GkaKA0x4muMZWAdx9euKADXtWnv7v8AsXSHDXDYE8qjIiXuPqea2tJ0e30iwS1gXgcsSclm9SfWo9E0S20Wy8qHLyMd0kjHLMx65P51p5xtB70AOA9qFBGc06igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACg4wc9KKD0NAFK9lS2sZpHYKqIWOTx0r5qgle/wBO1K6ljkt5dTvNlndzORHGMDkHPtX0J4m0661jw/d2FnKqSTrtDk4285riX+GE2o6HpWh3F80VhYsGYKoy7ev60Ad1oFu9noNnbzXBuHRFXzf73HarWoadbahaNb3aCRWBHPUfQ9RUsESwQRQKCREoQEjHAGKeT82MH8KAOQtr6/8ACzi31ItPprt8l2efKHYN6V18FzHcRq8Lh1YZBHcUy5tkuYDDIiyRuMMrDINcrNY6n4Wka40zN3pRO6S2ZvmiHqvUn6cUAdmPQinVmaRrFnq8IltnycfMjDDKfcVp0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFITzilpjdc5HHagBSSFzgn2FNMqiMu2FA657VU1DUrXTLc3F1KI0Hb1NcwF1LxdLl99nowONvSSb6jsKAJL/WbvXrltO0PcIQds16vRPXHvW7pOkWukWhgt0+b7zyHlnbuSfzqeysLawt1t7aIRxKMYUYz7n1qyVOBg4UUAOVcqM9adt6e1C9KWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAbsHoPypcUtFACYoxS0UAIRwcVGRuxnqO2P0qWmbcnkc+tAHM6n4aD3P2/SpzY3i8kgZU/Ve9R2PiqW1u/sGvwm1uf4JB/q5B67ug+ldSVYjt7VVvdMt9RtTbXcKSxH+Fh0NAFhX3hWRhtYZDDkGk3kMDjIzgnPSuUk0fV9AkMmj3DXVr1a0mO58eiHIAFXtN8VWV7OLa4R7O7UcwS9v+BdDQB0mc0UwOrLuBDD1FKXAoAdRSbhnFJvFADqKM0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUhIHWjIoAWikzRketAC0jHijcMZrE1XxPYad+7Dme4PCxRckn6jOKANcttB56dc1zmpeKgtybHSYftt6fuqp+Ue5YZAx6VS+xa/4jffezNptieRBHxKw929PwrotO0ez0mER2cCqP4mPVj6mgDF07w1LPdDUdem+1XLciIDEcftt6H611aqFACgBQMDFIE/L0p9ABikxmlooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoPSiigCJyd2Mbsdh2rP1PRLDV4BFe2yzAcqzDlT6itQqDn3pAoAwOlAHINo+t6Pl9KvftMS9Yro5wPRcU+38YwxOkGs2cumyNwPOAxIfbGa6sxg468dOTUU1lBcKyyxq4YYO4ZoAiguoJ4w1vIjxnkbDz+tWVyq4ySfQ1zVz4Lsi5l02ebT5ycmSJi2fwJxUPl+K9LAWAwajGPvSTvtc/QKOtAHWe9PrlU8XtA2zUNJv7fA+aUxfux75q/beLdBuyFh1S2d/7ofJzQBt0UxJVlUMh3KehHSnZoAWikzx0NJu9qAHUU3d7Gl3e1AC0UmaQtjtQA6imGQAFiRtHU1lXfirRLF/LuNSto3/us+KANZsY6U0gjoCfpXNS+Mo5G2WWm313n7skMW5D+IqAzeLNTIURWmn27fxK5MoHupGKAOmluIokZpnEaKOS5wK5658Y2YkaHSoZdRnHBht+o+uccUkHgm3uXE2s3c+pSg5Bl+UD6bcV0dvYW1pGsdvCiBRgEDn86AOXFh4i1zaby7GnW56QwcSY9GzkVsab4f0vSTm2to1mI+eUj5mPqa1vLHqfxpQgHSgBg4BIOSTT16c0beevHpShQOlAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhOKWjGaAGYzyKMH1p2KWgCu8EbIysgdD/e5/SqFxoGlXSYayhX/cUJ/KtbHajANAHJnwHpSzGSCS7ikPf7Q5A/DNP/AOEc1mD5bPxC8Uf90wK36k11OKXFAHKDSvE8X3daWb3aFRRt8WR8BoJfckD+ldVilxQBym7xd/zytv8Avv8A+tRs8Wv8pa3iHqCD+mK6ukxQByv9l+J5uW1tYP8AdhU0h8Oa1KMXXiKSWPuqwKv65rq8UuKAOSHgTTJSHuJryV+uftDL/I1q2nh7TLNNq2kbgd5B5h/M1rkA0AAdKAIY4Yo1AijVAOyripOD15/CnkZooAaoPenUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k='] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 57 "如图, 设 $\triangle A B C$ 的外接圆为 $\odot O, \angle B A C$ 的角平分线与 $B C$ 交于点 $D, M$ 为 $B C$ 的中点, 若 $\triangle A D M$的外接圆 $\odot Z$ 分别与 $A B, A C$ 交于 $P, Q, N$ 为 $P Q$ 的中点. 证明: $M N \| A D$. " ['设 $A B=c, B C=a, A C=b$.\n\n在 $\\triangle A B C$ 中, $A D$ 为 $\\angle B A C$ 的平分线,\n\n$$\n\\therefore \\frac{B D}{D C}=\\frac{A B}{A C}, \\quad \\therefore \\quad \\frac{B D}{B D+D C}=\\frac{A B}{A B+A C}, \\quad \\therefore \\quad \\frac{B D}{a}=\\frac{c}{b+c}, \\quad \\therefore \\quad B D=\\frac{a c}{b+c}\n$$\n\n又 $B M=\\frac{a}{2}$, 由 $B P \\cdot B A=B D \\cdot B M$ 得 $B P=\\frac{B D \\cdot B M}{A B}=\\frac{a^{2}}{2(b+c)}$.\n\n由 $C Q \\cdot C A=C M \\cdot C D$ 得 $C Q=\\frac{a^{2}}{2(b+c)}$, 因此 $C Q=B P$.\n\n连接 $B Q, P C$, 并设 $X, Y$ 分别为 $B Q, P C$ 的中点, 如下图所示.\n\n\n\n易证 $X N$ 平行且等于 $M Y$, 所以四边形 $N X M Y$ 为平行四边形, 由 $C Q=B P$ 知 $N X=N Y$, 所以四边形 $N X M Y$ 为菱形, 从而 $M N$ 平分 $\\angle X N Y$.\n\n又 $A D$ 平分 $\\angle B A C, A B\\|N X, A C\\| N Y$, 所以 $M N \\| A D$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAqsCsAMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiimk84BwaAHZFGaZ0GCOaTORzk0APyB1paheVIxud1UDrk9KoXHiHR7bP2rUrSLHXfKBQBq0VzMnjzwxC2DrVo5/wBiUH+tRN8RPDo+7dM/+6oP9aAOrozXIH4kaCOjzn/tn/8AXoHxF8PN8xnlX6oP8aAOvorl0+IPhpvvalFH/wBdCFqzF4y8OT/6rW7Fj6CYUAb9FUbfVbG6x5F1BJnpscGrSZ9Bj2OaAJM0Uz3wfyoIBHUigB+aKQdKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEzzSbhnGRmg9TzUE08NvGZJZI4lHO5yAKAJ91J5gz7Vxt98QdNgk+z2Ec2oXecbIVKjP1IxVDyvHXiBs+Zb6LaN1jdN0jD2ZW4oA7i71WwsVLXV3DEB/fkAP61yt/8AErRrdzFbRXl3L/D5Ns7qf+BAYpbT4c6SrCTUpbvU5DyTdy+YufYEcV0ljpljpqlLSzit1Xp5a4oA5JfEHjHVlDafoMdtAf8AltNMN3/fJFB8O+M9S+a98RRQRn/lnHbAH8813IBXJ3Ek+vancdT/ACoA4RPhfZXD79R1PUp27hbyRQfwzWna/Drw9a9LeWX/AK7yl8/nXVDmloAyIvC2hQrhNIsR7+Qv+FWF0TS04TTbMfSBR/Sr9JkGgCn/AGRp3/Phaf8Aflf8KRtI00jnT7Q/WFT/AEq9mkPSgDNk8P6NKMPpVif+3dP8Ko3HgvQJ+ul2yH1jjVf6VuPIkYy0ir/vHFRm8t1PzXEQPu4FAHKXPwx0CfJVr+FvWG7dMfkapj4d3dlzpXiC7iYdDcO03/oRrtzf2fe7gH1kFM/tGwXj7Xb/APf0f40Acd9k8facAqXlrqUa/wAJiWIn8TTW8d6tpJxr3h6aFf79oTcf+gg12n2+yPS7gP8A20BppvLR/lW6hI9FlWgDG0zx3oOpYVbpoHP8N0nlH/x6uhhuIbhA8MqSIejIwYfmKxL7w34f1PJubK0lfswAz+dYM/gK8sXM/h7W57Q/887hzJGPwFAHebhjPajzB715+viLxXoAxrmlC+gHBubUBRj/AHSSa39I8X6PrQza3QSQdUkBQg+mD1/CgDodxP3RSg5pmQyj5s56EU4cZoAdRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRmgAqPcRwxG72qTNREgP0Gf1oAcxI6ZNQXN9BZwNPczxxRr1Zj0rlNV8cwi7fTdBgbVNQU4ZYvmVP94jpVS28Gajrl0moeKLsv3SxjP7pR9eGNADrzx/PqE72nhnTpdQkBwbjH7pfrnBpsXgjUNckFx4n1V7hDz9lhJEX0wea7O0063sYfLtoUhQDA2KBj/Gp/4cfeoAq6ZounaPAIdPtIrePHSMYq/ikDDOM8+lLkflQAuKYSF+lKXUAnPA61z2q+NfD+lOY7jUYPOxnyg2XP4UAdATxkDJ9qQsVH3Sfxrhm8capqIA0Tw5eS9hNdxlYz+IzTG0XxvrJBvtWTSYz1Wxbf/wChigDt5bu3t1LSzImOu44rn7/4heGbBjG+qRvMP+WaBif5YqhbfDLTGYNq11c6o3rO23P/AHziuisfDOj6aoW1sIUA9RuP5mgDl3+JBm403QNQvc9Cm0D9SKauv+OL4k22gpZg9PtYz/Imu5WCOM4jjVT6qoGKkIJxwM/WgDhvsHxBvBmfUtKt1/6YK4NA8IeIrk7rjxbqEeeogcD+a13XIAoPPSgDhh8O5pGzc+KdYm9jIP8ACpB8NdMYfvby7lPq7Cu1xQVBzmgDiv8AhWPh8/ehkf64pR8L/C2ObFD+FdpgDpR2oA4o/DDw50jtgo/2RR/wrPRRwjTxH1Uiu12n1xRjjp+dAHEH4bxLzBr2qW5H/PJ1H8xTD4H1mHm38ZawfZ5R/wDE13eKZgk/MooA4c6F43tiDa69bzjGP9KDHP5Cud13wr4lvZDPeaZpMtyv3bm2jYOp9s/4V60AepXgdMGl5YY5HvQB4ZYeIviJ4Xutlzol/facvBaYqzAexzXc6d8V/DkyIuoXJ06Yj/V3Gc/oCK7kqHHIyPQ8isLX/CGj+JLYw39lE2R8rhcMv0xQBfsdc07UohLZ30M0Z6FW6/nV3zNwyrA/Q5rxO/8AhrN4XnM0FvJqVjnrvYSR/QA4rW0Oyvb+Mv4d8W3e6M/PYTqo2N3U8EigD1gNkZB4pf0rgP7e8ZaP/wAhTRI7yBejWRZn/I4q9a/EfRHlEGpGTTZz/BdDYfyzQB2Qz3pagtbuG7hWW3lWWNujIciptwPegBaKTNLmgAoozSZFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUjMFGTQAuaikIU5zz6Uvmjn+nNcn4n8YwaZILCyQ3moycLFFyEP+0R0/GgDY1rXLLQbP7VfShOM7Afmb2UdzXGqviDx4z+YZNK0M8RkZEsw9xwV/Oruh+EJ7m/XVfEshutRPzGEcQxf8B+6T7iu4VAqhQBs9AMAUAZmi6BYaHbJBZwouByx5Yn6nn9a18VGDhun4inGVB1NAAfvHn8Kbk885PtXOa7420fRTsMpubg/KIrZDIxP/AAHJFYTSeMvFKgQomj6e/d8O7D+lAHWan4g0rR0Jvr6JGHSMuA5+gzXLy+NtW1iTyfDOjSSKeDNegwAfTI5rS0n4d6Rp7Ca582/uBzvu5DKAfYNnFdVFAkCBIlVEH8KjA/AdqAOE/wCEO13WWWTX9ckCH/l2hG0D23A1vaZ4N0PSlAgtEkfOd0x8xs+uTzXQFfy9KXaM5AGfpQBEsKIAERUAH3RwBUuPSjGTzS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUnf2paQjNADCpIIPINcprvgi11KZb6xkaxv4+UliGAT7qMA59664DA60hQE5Oc0Aee2Pi7UNEuxp3i2ERMW2xXaDKye7HAANdZNpmk6xagy2tvcI4yHChuPZhzVnUtLs9TtXhvYUljYYwV5HuK4OWx1jwFI09iZb/AEQNvkhc7pIvoTkn8qANC4+HcEMzT6JqVzp8h5wCZRn6McVD/afjTw+2L2yj1O0HBnVsSY/3AK6nRNasNf05LyxlyhzkN8rL9QeRWmcqCB09TQBzWmePNE1FhDJM9nP0Md2nlHPpzXRK6yBWjIdD0OeD9DWZqfhjSdYiIurKIsf40UK4PruxXLv4S13w9IZPDupyzQZy1rdsZSw9AzH5aAPQDj/Jpw6Vwtl8Qo7e6Wx8QWM1hcZwH2loz9Xxiuztry3uo1lgmSVG6MjBh+lAFiimbx9D6U7PFAC0UgbPSloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACo5WCxljwo5JNNdyjL8wAzgk1wGua9e+KNSk8P+HnZYFIW7vl6R+wPrQBPrvim6v77+w/DKedePhZLn7yQL0JPqcfyrZ8N+E7Xw+hmP7+/l5muj95j9euOTxVnQdAs/D1l9ntIwBjLuRzI3cn9a1lJxznpkj0oAFwF244XsOlKGyM5G09DWZrOu2Gh2pub25jjTHRjyfpXINqXiXxixj0+J9J0xjg3TDEkg/wBnGf6UAb+ueMdJ0PETSeddHhIIeSx9OOB+NYP2fxX4tcfaZX0XTT/yxXPnSD/eBNdB4e8I6Z4fk3wRGa5cZa5k+8T3zXShcdBigDn9F8I6PoR321qn2jvPIAXb3JrcVQpP9akwM5xRjORQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACMfl6ZqEKHQ7wDngj1FT4pMDOcUAcBrPhi80e8fXPDLCOUYaazA+SUZ5wBjB/xrb8NeKrXxBCY9phvYh++tXPzIf8AIromXIA/SuM8U+FZZrpNZ0Rvs+qQ8ts/5aj0P+e9AHZrnuMcUY4wCPyrmvC/i2LXFe0uE+zapAD59s3BHv8ASujDfMB2PQ0AV77TbLU7Y21/bR3MDdY5RuBrjLnwReaPMbrwvqDWwHJtJstCfooxiu/x7UhHHSgDhrDx79lu007xLZS6fdngSH5kk+mMgfia7OK5iuEV4ZEdO5U1Ff6baanaPbXlvHLG4wVYVxE3hbWvDUxuPDF1utkPNhIfkC/3Vx/jQB6EMEZ6U6uQ0HxxaandfYL5G0/UwdptZ/vE+wGa6sPkcEE+1AElFNXNOoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBMjGaTzFxnIxjOaYx5x61w/irXbm7v18NaEN99P/wAfEgPECeufrxQBDr+s33ibUpfDvh9yEztvLsceWvop9a6vRNFs9F09LS1hCIg5z1c+pPfqai8O+H7Pw/psVnbqS+MySNyzH3NS6vrdjotmbjUJ1QD+EHLMewA7mgDRaQJGzsQEHXnpXE6p43kurptM8NQG+vAdjTD/AFafiP8ACqWNd8eyAv5mm6BnjqJZ/wAOCB/jXbaVollotqttYWyxxgfe/iJ9Se9AHN6R4G/0oalr0x1C/wA7gGOEiPsBjP5V2KRhUCIAijjaBgAe1P4BwOncmpKAGKvIJ+8O9PoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAac7ge1JjtT6KAOM8VeGXu5V1fSm+y6tAdyPH/y1Ho35mrvhXxTDrts8Esf2fUbfi4t24KH29ua32A8wMOvf3rjfFvh+5juk8QaKCuo243PGOky/wB0+v8A9agDuCwBxnmjrWB4d1+28QaUl3EcSLxLH3RvTFbqdM54oAdjPWmgHBBA9sU+igDB13wtp2v2pS5t180D5JRwyn14rllvvEHgiYw3qNqmjKP+Pof62IehHTH49q9GPSoHQNGUkVXU8FSOMe9AFXSNasdasRd2NwssZ4yD0Pp9a0cjOK4LVfB9zp+oNq3hebyLgcvbE/u5B346Cr3h7xpBqUpsNRi+xamnEkMnAY/7JP3qAOwpNwzjPNR8AbRkEdKXq+MY460ASUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJS1WvLqGzgee4kEUSDLMelAE+7jpzTqrWlzHeW0dxE4eORQyMOhFWaAEJxSB1PTtQ2MfSs7V9Ut9G0ue+u2xHGmcZ+8fSgDI8YeJho1nHbWiGXUrw+XbxL1zxz+Gc0eEvDv8AYWntLdHztTuTvupj3Y9QPbOcCsvwhplzqV9J4p1aMGe4yLWFx/qo+xHvg81J4g8VzzXB0Tw2n2jUW+WV15WAepoA0PEni+00NRbQIbu/k4jgjOTn39PxrL0Xwfc6nerrPieTz7k8w2wGEjHuOhPTmtPw34Sg0P8A0qXNzqUg/fXL8sx9iece1dNEMAjjHtQA5YwihV4AGABShBnOT9KdRQA3ackZ4p1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAMKbj6AUFTtOME/Sn0hHB5oA868QWFx4R1w+JdOUmykP+nW6jjHA3fkK7jTtQg1CwjvLdw8coBBH8vrU80ST27JMgkjZdrIeQfWvO9Mlk8B+IhpNyWOkXrl7aRukbsfu/maAPSd4zjvSg5qPO4Z4yehFSDPegAI4NIV44A9+KdRQBGIwPoe3asHxF4UsdfiDOvlXcfMVwnDKa6Eg9qMUAeead4l1DwveJpHiYloWO2C9QfK319PzrvI50eBZVYPGeQ68gj61W1PSrXVrWS0u4FljkHIcVwpbUvh9cZkllutAdsZ6vb/U+lAHpO8UK2apWN7bahBHc2siSq65Dq39Ktx9D8u2gCSiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKazbV4606mtwKAIWl2R7ncDbyT2Arwr4v8AjHUL20itNMm2ac8hRpFPMjAgEfSvQ9d1R9b1z/hGLVzCm3ddyDgleMqp9wa8w+Lug2umQ6RaWDvIY5CWiXkKMg8/WgD2fwWpTwXo4K7dtqgx+FdAOaxfCjA+F9NUEErboCPTitvIHegBr/dJz0rzjUWbxp4rFnHJnSNOIe4P8LOOR9ec1ueOtdl03RxaWDqdRvT5NuM8gn+L6VxunJc31tH4b8OM0dsp36jqB+9uJy6D15yKANrVNevfEF9/YHhc+XFENtxeDoi4xhffiun8PeHbLw9Z+TbKXlY5kmf70repqzouiWehaclpaRADqzHqx7kmtILntznigB+0ZHtRj2xS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA3aMYxWN4n0KHxBo0lnJgN9+N+6uOVP51t01sAUAcd4G12S9sp9Lv2K6jYN5Uu7q6g4DfQ12dcD4yspNE1S18VWMZZoiEuo1H+sQ4AJ+mSa7TT76HUbCC8t5BJDMoZHXoRQBaoozRQAUUUUAJgVFNbwzwtFLGrxsOVIzmpqTHHFAHmt9pN/4Gu31PR1kudJdv8ASbLqI/Vl+nPeu40fVrPWLCO7s5FkVx0B5HqD7irrAPGwdMqflK46jvXn+r6HfeEr5tc0FXe0Zt1zZr09Syj1yTQB6Hz69qcpyKydC1y117TkvLRwQw+de6H0IrWDAigBaKTI9aWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAprDIp1IRQBWFtALgzCCMSHjzQBu6U2aws7ht01rBK3qyAmrW3KgHHWmkbegGaAGxxJDGEjjVFHZRioLu4gsrWSeaZIYwMtJIwwKshhyc9OteH/GrxKmqNa+FdMlZrt5SZQje3Q0DSu7FbzNU+JPjm6NkzR6XBmEXOcfIcE7T2Oc17Po+j2miadHZWaKscfU45J7knvk15R8NdafwfosNhq9m6W8jfu7pBkA8/eHY9ea9jgmguIVeCRZFcZypzSTTHODg7MsJjbkHOadTFII47U7PtTJFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApDS0hFAFa8tI7y2ltpRmORdp/LFcR4QnbQtdvvC102Ej/e2fOP3ZOAo/WvQMcVw3xA06eKG08QWK/6Zpsvm4A5demD7c5oA7cE5x09afVDS76LVNNt763cPFMu4EetX6ACiiigAooooAKjYZ4YAhhj/ABqSmsu4Y6UAedazpd34R1OXxBoMbSWTt/p9mPTruX05rs9H1iz1vT4r20lDxyc8dQfQitB4g4IIBUjBB7153qtlP4C1ZtZ05GfRZTm8gHPln+8P0oA9Cz85OOnapqp2F7BqFpFd20gkikXIYHNWt1ADqKQGloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooJxQAVGThv505jgdawPFXiSDw5phmkw08hCQRjkuxOOlAGX4y8ST2Yi0nSSJdRuCVbb/AMsVH8RryPwbocerfFs7GNwum/PPMefNbON2fxrurq3m8LeEdQ8QX5L61qA53dY1YjCD6AmmfBnQxZ2GoX0nzO8hRZD1K8H8aGtAvZXXQ6CxtoF1zUtHu40ltroGSJXHBUAD+dZ9zpOs+BnM+jGS+0hjmSzJy0fqU7Ada2fE0ZsNV0/VE4HmeU5/2Sefw6V1CbZYg3BVl6diKiO51YjWMZ9zM0PxJp+vWqNaTgS/xRNwyn0wf6VtZycelcVr/gsyXLapoE7WOpLhmCfclHo319qdoHjbzLpdJ12IWGqDgK/AlP8AsnvVs5WrHa0VHuJUkdf0oVmyM9/TpQBJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUFxCLiCSKQAo67SDU9MIODQBwXgSaTR9W1TwvPuC2spa0z/FFgEkfiSK9ArgPGgOj+ItH8RR8RxOLa5I7Rk7iT+ldzFIJII5FfKsoYH1BoAmopq8806gAooooAKKKKACq11DHPBJFIiurrtKsMgirNJgHqKAPNYTcfDvXEtzvl8O3b4D9rZyeF+mSfwr0aKVZo1dGDRuAVYdwRmq2q6Vbavps1ldxh4pFIwe3GM/WuL8MajdeGtXPhbWZS4YtJYXL/8ALRD1X8OBQB6AOSSKdTEPXgjJ4zT6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRuhpaY5BGKAK19fQ2FnLdzMEjiQsS3AFcN4dsp/Futt4m1FGFtExS0hccccb8fgDTdbnn8Y+Jf7AtWxplmwa8kXkO3UJn3BNd7HHDp9iqoFSKGPgDoAB/8AWoA8m+KOq/aNZh0xDmKyXzZQOp8z5QPwNeg+DtIOieFbCwcHfFEBIT3Pc15Tax/8JN40QtljdX0iS+8CfMh+ma91C4AxTQdTK8Q2J1LRbm3ThmQ7T/dNV/C1+b/RImJy6Ext/wAB4rcf7hz3rkdCb+y/E1/pZ4SQ+ZCD37t/Os3pqdUHz0ZRfQ60g+vHoBWRr3hvT/EFoYbqIAnpKo+cfj1/WtsdKWqWpy7aHmsOr6z4Iuls9bRrvRkOIL5eXUf7Y6Dv3rv7C9t763S4tZRLE4yGQ5FLNDHOhinhSSM/LtddwauDuvDmqeEbmXUfDckktox3zWEh35P+wTnH4CmB6KGBpa53w74rsPENvmHMc6kiWFxtdW/3Tzj3roFPHNADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApvc4HNOooAw/EujjXPDt/p+MNPEybvQkdaoeAtVOpeGIBIczQEwuD1G0kD9BXVNwM4zXn3h0jRfH+r6MeI73FzAp/2R836mgD0EdaWmJ1NPoAKKKKACiiigAooooAK5zxV4ci8QaYyBil3CfMt5R1VxyvPpkDNdHTMfL175oA5bwX4hk1Wzex1EhNWtCUuE7tg4D/AENdXkVwPi/SLnS7+LxTpCEzwkC5jH/LSP3+nJrrNK1Oz1nTLa/spQ0Eq7kb29/SgDTopAMDiloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAG7hjPWuW8beIpNH0xbayG/U7s+XaoOu4966K4uYre2e4kYJGi7mJ6Yrg/ClvL4o12bxPdoTbREx6esnQL1Dj8aAOi8J6AmgaNHbj5p5f3s0h/iYnJz9M4FJ421EaZ4UvJSdpkXyAT6uNo/nW8uAoA5AP515l8ZtQ26Paabuw0z+co9TGQwoAq/CjT2l1O4v3Hyw26W4BHSRSdx/UV63muU+Hun/AGLwjaysm2a7H2mQHqGYDIrqsUAxH6Yrk/FKGz1PTdTjXlXELAejEV1xGcVk6/ZfbdGuIwMyKhZPr2qZbG+HkozV9np95pxSK8YZTkHkGpawfCl6LzQ4cnLxfun+o4Nbmeeaa2M6kOSbi+gmxs/e+lJsxyMAd/8APapKQnApkHIeIfBkV9cf2lpUv2DVY8FZ48qHHowHUVU0TxpLa3S6R4ki+z3g4W4/5Zy/THT867gZ79PWsvXdB0/X7H7LqMCyxg5Ut1Q+o/SgDUWRXUMpyp5BHTFKWCgk8CvOPP1zwFIIroS6pogOEmHMkQ/2j6fTNdtpuq2eqWMN3ZzJLHKPlYHNAGkGDDilqNT87DB4x+NSUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACNkKcda8/8aRtpvirQtcQcq4tG+kjD/4mvQa5P4g2jXPg+5lQZktWFyv1TJFAHURkMN2Qc+lSVmaBci80CwuAQWkt0ZvqVGa06ACiiigAooooAKKKKACkxjpS0UAQyxq8TI43K4KsPUHj+Vee6Y//AAhXi19Gm+XSNRbNoT0R/wC5+QzXozdQfSsDxZ4ei8QaJPbNhZlG+GQdUf1H4ZH40AbyupAwevSnbh71yXgrX31TS3trobdRtD5Vwp657fpXUoSQCPXBzQBLRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTWOPpQxqnqmoRaZpk15I6qkabsk8UAcf42vZtV1C08K2LFZLog3Dp/BF1B/MV2On2UNjYRWsKKkcS7Nq9MVwvhG8sraGbxNrd1Db3GpsZIftDhdsZ5CjPpzXW2/inQ7q4EEGrWUkjHhEmBJ/CgDW2DcG6dgK8Q+JiS6/8VNE0SBjut8SsB/d4JH5V7Y80ccRkkYKi5YknoPWvI/Cklr4j+Mura0kqOLWFIowpzn5SDQB63BAlvAkSKAqDAHpxVio1OR9KfkUANY7UJA6UhGSAehBBpzHjgZpAMcGgEchohbS/FN9pYGIm/fp7s+Sa60Eg881ynitW0+/sNWj6Rvsf33YArqUYMgIOfl61Edzpr+8lU+X3EoNHX3pB92lFWzl6i7RjGOKMe1LRQMjkhjljKSIHQjBVuRXA6l4TvtDv21nws7K55msmPySD09R+FehVEAMFSST3PSgDm/DnjCz11mtmU2+pRcS2r8OvqcV0QlfA6cnr2rnPEXg+z1sJcRFrO+iwYriLgj6gde3WsnTPFmoaJeDSvFcCxknEN6vKSDsT2BoA79c0tRxSxyxLJHIro4yrKcgin5Gcd6AFooozQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACE4qhq1oL3Sru2YbvNhZMfUVfPSmnGR7UAcf8M7s3PhZo2OWt7qaHHoFcgV2def/D5TYaxr2ljhY5zcY95GJr0CgAooooAKKKKACiiigAooooACM03aM5xTqKAPPPEkB8KeKLbxBbqVsblxHeqOgJx+8P0AxXdQukyxzoflKgrjuD0NV9Y0yHWNMuNOuFzFcIUY+grl/AWpTol1oN+x+26fJtBbqyHOPrgYoA7mijNGaACiiigAooooAKKKKACiiigAooooAYzDOO/pXA+MLh9e8Q2Hhi2Ybcia7IGdq4BUfiQRXaaheR6fZz3sxASGNnyfQDP9K4zwHZtLFqHia9B+0X0jbWP/ADxDEpj8DQBwHx0uLaW90XQbeJEeNxIAO6EdPpWR4302HUNa0PR/C9vi6hiCyXECbArZPUgVeRI/F/xy8+6RjZ2r7V3ocOvPFe7WmjabYsWs7KCBiR8yLjP5UAVdQRYfCU6XjDYlniU9xheT+deM/DTwZf3FjceJNC1Bbad7mZFWSPeHVWOK9G+KuoPZ+DpbaFv3t44gIHXa2QTTPg/ZGy8AwQsxJWeUc/71AC23jq70q5Wx8UafLazHgTxAyI/5DArsba9t723Wa2njlQ90OafdWFvfQGC6iSWIjBVxkfrXFXXga60yY3XhfUXsZs82zEmBv+AigDvF4PfGKfXBWXji702ZbXxPp8to+dv2pRmNj9BnFdpa39rexCS2mSRT/dP+cUAUfENit/pE8LDPyl1/3l5FVfCl+19oVv5hzNEuyQH+9W4wBBz+v0rktHYab4qv7CT5UmHnr9SelRsdVP36bh2Ow4pR0ph5HFKvQVd7nJ0uPooooGFFFFADWPFUNT0qz1a1a2vI0kiI4BHI+laJGaaEFAHnDwa34DdpLfzNR0Mtl48kyQ+/OSR7DFdlpGtWOu2i3NlMrqe2cMPqOo/GtMx7gQ2CCMVw2seDbiwum1jwvKLK7Y7pIQP3cv1A6/WgDu84oAwcg8Vyfh7xrb6jL/Z+oI1lqS8GGU/ePsehrq92B0NAD6KbvHNKGBGaAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQ9Kb/AFp9NI60AcJpRFp8WNbiHSe2gI98Ka7vNcLMPK+LVu3ee3IP/AVrue/0NAD6KB0ooAKKKKACiiigAooooAKKKKAGmvP/ABnDJoWu2Piq1X5EcQXSj+JWIG78AK9AIJIqlq2mx6rptzZy42TRsnPbIxmgCa2uEurdJ42DRSoHVh3BqZRzntiuJ+HuoSNZXWh3RP2nT5WQA9fLBIU/kK7dTkUAOooooAKKKKACiiigAooooAKM01uMH86jkZgDzjB496AOI+IF1NfT6f4as8ma9kEkpHURKRv/ADBrsrOyis7CKyiUCCKMRqPYDFcT4V/4qDxfqfiAjdDGfs9uf7mBtcD64rvhxkCgCnFpdlFIZUtollzncowaudD7CnbRzTJWVYiXbauOT6UAeX+M2bWPFrwDmDT7GZ5B2EnBX9M11fw+UL4St8DGXZvzNcrowa/8M+KvEcikPfK4T6IpX+ldd4EG3wjZ/QmgDpajHXj8qkpMc5xQBUurS3uoWhuY1mRhgq47elcbc+ApdLla98KXjabITue1XiJ/qAM13pGfrQBznvQBwNv47m0qVbXxTYyaeScLdYxE59B3/SptfuIPtema5azpJAsvztGeCuMD9TXW3dnbXcbQzwJIpGMOvB+npXn2u/DmSK2nk0C+lsy4DSWoOUbBBxzn9Klo2oSsz0dHDRqVOQRmpFxXmXhv4imC1ih8QWr2hXCtc4/dg+5r0Oy1C2v7cT2kqzRHo6HIpoVWHLKxcophYg4wc+valUkjmmZDqKKKACiiigBrEjpSHBHU0/HOaTFAHOeIvCdl4iiDSfu7uP8A1N0g/eJ+J/zxXOW/iPVPClxFp/iYl7Uttj1BBkewf3r0baDVe9sra/tnguoUljcYKsM0AFvdxXMSyxSJJE4yjKc5FTrwO2e9edT6RrPgmU3ei77vSd2ZLFznZ7r/APrHSus0HxNp/iC28yzfEq/62F+HjPow7UAbdFRByWI6Dpk9zUtABRRRQAUUUUAJkUtea/FXxP4j8PQ2X9gWrTea2ZHAztI6D8a7TQL28vdAs7m9i8u5kiVnU9jigDWoqMOSM/5FAbBwc0ASUVHkjufyp46UALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU006m9aAOG1g+X8V9Bx/HBPn8EruR3rhde4+KXhs9zDcf+gCu6A60AKOlLSDoKWgAooooAKKKKACiiigAooooAKD0opD0oA898RqfDXjWx1qEFbe9xBdY6DHC5/FjXoK47d6wPF2kprPh26t2GXQeah/2l+YfrUXgfVn1XwvbPMc3MKiKfPUOOtAHTUU3Pel7UALRRRQAUUUUAFFFFADXAI56d65vxzqsmleFrp4TtuZR5MH++RxXSOAVI7GuA8Tuda8caPoS8wwj7bL/ALLI3A/KgDovCekR6N4dtbdFw7r5sh/2m+Zv1rcA5pVUKgUdAMCnUAJkVyvxD1F7DwferCxFzcIYocddx6Y/KunOMj261wvitjqnjfQtFA3JGwvZR6KpI/nQBoNpq6b8OJrOIfN9idse7DJqfwC27wja+2V/KtTV4c6JdRL18kgfSsL4azeb4SU91uZk/JsUAdhRSdaWgAooooAiYsCcc5/SkKBkI2gggg5p5XnrSjpQ9gjojiNOs4IvEWpaTdwxyQ3LGdFkUEAcL3/GobrwPdadctqHhm/ktpv4oH+dH9sE4FXvFH+garp+rqDhJRHM3oneuridZokcYIIBFStzqr6pSOHsvHNxp92LLxNp7WUx+UTRkvE3uT0FdtZ3ttfQiW1mjmjP8SMGH5io72xtr+3MN5bxzRsMFJAG/nXGXXgi70yVrzwvqL2cueYZt0kR+i5GKo5TvsilzXBWXjq4065Sw8T2EtncngTqC0b/AIjgV2UF5BcQLLBcRyq3QxkMP0oAt0Uxcg+1PoAKKKKACkbpS0UAREEgD14P0rjde8GM90dU0Gc2Opr8zBR8ko9COn6Gu3qNxz25656UAcXoHjLz7ttL12E2GoJxtfiOX3Vjwfwrtg4K7s8YzmsTX/Den6/aCG8QiRf9XMhxIv0bqOprlLfV9Z8D3CWmsq95pBYiO8QZZPZhycUAej5ozVSzvbfULZLm3mWSJhkFGB/OrGSBxyPegCSimqMfjTqAIJoY5hiVFdRzgjPPY0Ip2YxjHA+lT0yTG3DZxQBieI5dSj0aZtI/4/5AFiOMqDnrivMvG3ivxJ4K0pWufEsU2qSrlLYWiYWvQPGXi6y8G6JLeXDhpiMQxD+NvpXkfgbw1e+MNbk8Y+KpFW0jffEkvCH354x7UAekfDafxXqWkDUPEl0jG4w0UQhC4Wu+HSqVnNb3Vsj2z5iIAUjuB6e1Xh0oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEPSkHU06m54oA4bWvn+Knh0f3Yrj/0AV3QrhbxhJ8WLDv5Nu+fbKV3JAJHqKAHUUUUAFFFFABRRRQAUUUUAFFFFABSY44paKAIiokBDAEYrgtCc6F8QdV0p+Le9X7VGO29icgfgK705ZDjg5rhfiDA1jPpXiG3GDZT5lPqpG3+tAHeAAHb2py9KihmE0SOvIYZB9alXpQAtFFFABRRRQAUUUUAMcgIWPQVwPgZTqWua7rco3LLPst2/uptwQPxFdF4x1T+xvCmoXynEkUR2D1NQ+CtM/snwpZ27jlgWb/gRJ/rQB0aEkcgj606kUYFLQBE7BBu7Dk1wfg8NrPjDX9YfmOCb7Lbk87oyFY4/HNdL4q1JdI8O316WAKR7V+pIH9aqeA9LbSvCNnDIP35XdIT3OSf60AdDJGJI2RucgiuH+FchHh69tWyHi1K6/LzTiu86H61wXgcfY/E3iDTjx5cglx6byxoA70HBp1NPA/GnUAFFFFACE0nag9aO1NB1MrXbIahol3bEYLR4DGq/hW9N5oUJk4kTKEHr14raZQw2t0Iwa5TRm/s7xVfae3CTHzYh7ACs3udVP8AeUpQ6nW7AccClK5NKT+VLVnL5FS+0211G0e2vIY54mGCkgyD+dcVceB7zSHN14V1BrPBz9lfJhb/AICK9ApoPqaAOEsfHsthOtl4msJbCU8CfGY3/LOPxrtba9tryJZbeZJEPdSDUN3ZW2oQtBdW6SIw5Vx1rjLnwRe6NcNeeF9Qa0PBNmxPkt/M0Aegbh2oz7Vwlr48k06ZbXxRYyaa56XMgxC307/nXZQXcN5AstvMjxOMqynrQBaopKWgAppXJ7Yp1FAEZi3Hn8PamXFrFdQvDNGrxyDDK3Qj0qem0AeeXnhnUvCc76l4adpLTduksPr1Keneui8O+K7LxBACjiC5TiSBzhh+FdC+ApOO2K5DxH4Mh1ORdR0uT7DqyHKXEfG72Pt+FAHXbwNxJ4FKZFFcNo/jC4sL1dK8UQi1vfux3A/1c3+6e/5V2aSh8EYIbpjnFAFikIyOuKB0paAPPvGXwvg8Y6pHeXV9KixqAkQb5QfX+lNvfhrc39ktg+uXMNkBt8iByq4r0OigCrZ2MdlbQwRKAkSBFq1RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFRg5H1qSmADbj8qAOFtB5/xZ1Ij5hb20PT/aWu6x85+lcJ4MP23xf4i1PqH8uHP+5kV3nTNADs0UgGBS0AFFFFABRRRQAUUUUAFFFFABRRRQA3byDWZ4h06PU9BvLSUZR4ycfTkfqK1aaw3Aqeh4P0oA5P4eajJfeELNJzm5hHlS56g//qxXWr0rz7woW0jxx4g0lvljuJTdQL7YC8frXoK8CgBaKKKACiiigApgYkE+lPpmMfzoA4T4iyfbLjQtGBz9tvNki+q7Sf6V2sKeXCsYGPLUL9cCuJlA1f4qxKRuSwtPMX/ZcNj+Vd2Ac59OtADx0paQcCjIoA4D4gyHUL7RPD6tlb25xMPRQuRn8VFd3Cnlxqg5AAFcHpaf2z8S9Sv2G63sIRbxjsJA388Gu+Xg4oAdjnPeuDt/+Jf8XLpfurqNsmPfYhzXe1wPjU/2f4q0DVh8ux2hZuw34AoA7wjPFOpgOQT74HvT6ACiiigAxzRRRQBGc7W9q5TxTEbHUbDV4x8yuIGPorEZP5Cus98cGszXrE3+jXNug+ZkO32PapktDahPkmrl+J/MjVwcgqDUoNc/4U1A32iIzH54mMLf8A4/pW+tOL0FVhyScew6jA9KaKfTMUJjv3pNo9Bn3p1FAyleafbX0bQ3MEckR6hlzn/CuNufBF9o8jXXhe/ltjnJtGO6NvbJziu9Iz9KY6sQRnjHSgDiLPx9Np8iWvimxbTrgnasyZaEj13HFdpbXkF5As8EySRMMq6HINR3mnWl9A0N1BHMjdQ6hh+Rri5fA19os73fhfUZLck5NvP+9VvYbun5UAd7u7YNKrZzyOOtcLY+PJbO6+weJtPlsbjoskas8T/V8YrtLS6t7yES200UqH+KNwwP4igCxRSZpaADGRzSbRgcdKWigDH13RLDWbQwXsAkDDAPQqfXPb8K41Jtc8AzrHcB9R0LtN1khH+H416M+7cMdO/vTGgWSMxyRhkPBU8gj39aAK2l6taaxZrdWU6Swt0KnofQ1eBrgdS8JX+h3z6x4Uk2SfemsmPyS+uPT8q1/Dfi+z1tzBLutdQT5ZLeYbMn/Zz1/CgDqaKTcKUHNABRSZGcZpaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqrdzrbW0k7HCxoST6VZb7tc344uvsvhHUsEB5IjGn+8RxQBlfC63K6BeXTA7ri/nfJ7qXOK7nFYvhOzWy8MafEBjMCM31Kgn9a26ACiiigAooooAKKKKACiiigAooooAKKKKACkbpS01zgUAcF4lB03x/oGo5wLgizZvUZLf0rvVOVzXFfE6EjwsdSUfvNOf7SmPUCus024FzplrMGDB4lOfwoAt0UUUAFFFFABTGbCMR2GafVLUZhb6Zcy5+5Ex/SgDj/AAOPtniXxLqB7XhhQ+2FNd7XFfDCInwjDfMMPffv2z6njn8q7WgBpIzn0qhq96un6Pd3THHlxsRn1xxV5sbsZ61xPxJuJDpNrpsBxPeTqox3AYbv0zQBL8N7V/8AhGv7SlBEupSG7fPqQBXZLyAfaoLGyjsLKG0hAEUSBFA7CrAGKAFrj/iLpz3/AIXkZFG+2lS4H0Rt39K7Cql/bLdWc8DYxJE0f5gj+tAFTQdQGq6HY3w586FH+ma1q4f4cXJTS7vSX4ksLp4gp7IMBf5V3FABRRRQAUUUUAFMcZXFPpr9KTGt0cdouNJ8UX+l/dil2yxA9yclq7BTXI+LQ1le6dqiLzHJ5TAejkD/ABrq43V0VlOQRkGpTsdFb3oxn3JBjNOpgzk0+tDm6hRRRSAKKKKACmsOPWnUhGRQBTvtOtNSt2gvbaOeI/wSKGH61xt14M1HSJ2uvC+oNbkcm2my8bD2HGK7zZgdcn3pdmDnv6mgDh7Hx4bScWPiKxnsLvpv++jn2I4Fdhb3cN1GJIJkkU9CpzTL/SrPU7Y299bx3EJ6pIMiuLm8F3+iP9o8L6k0C9WtJyTE30AoA74N3pa8mvvjBLoGpwaZrmh3UE7sqtIpUL16jnp3r1Cxv4L61We3kWSNhkMp4pXC2ly3RTAwA54+tOzimAg5HrXNeIfCFlrX+kIz21+nMdzC21gfqO1dNjj0pCpIIzQB5/pvivUNBuY9J8VqAc7Y75FxHL9Rzj867qKWKeMSRNuQ9CvINV9T0e01iza1voUlicYKsO/rXDS2uu+ApPNsxNqmiA7mgU/vIV/ligD0YnnpgetPrI0XX9P1yzW5sp0dG4I6FT6H3rVVgV45oAdRSbhnH5e9LQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRmgBD0NcD8QpmvbrRtEj/wBZPdJMyjuiMN386708jHNef2w/tr4qTXXWHSoTAvoTIAf6UAd5boscKoowqqFA9hU1NA5Jp1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTWHAPpTqSgDL8RWC6n4fvrJuk0RSsn4f3v23wfZyH7ylkI+jECumfOxuM4HSuI+HTfZTrOlkYFndBQPTdlqAO8ooooAKKKKACub8b3X2LwhfzA44UZ+rAV0lcR8T5C3hN7RT808yL+TA0AbfhG0+weFNOtQMCOED9TW5UNrGIbaONeiqAKmoAjfA6/hXBzP/AG58UoYB80Ojxeb7FpAQfyxXcXU6WttLO/CxqWJPoK4z4dW7XEeo61KMy3d1Iob1jDZX9DQB3dFFFABUbsAQT2qSmNk9OORQB5/tPh/4pGb7tnq0KxKD0Ei5Yn+Veh1xfxDsJJtHj1K2z9psJRJHjtk4Y/lmui0jVItX0u21CFsxTxhkPqM0AaVFMU5Y+1PoAKKKKACkbOOKWmPwKaBGbrVkL3SbiMjLhGZfqORVTwpeG60SEOcyRAxv7Eda2mG4D3GK5LRWOmeK7/TCMROBOme7MTn+VZvc6qV6lGUOq2Ox3U4VEowAT3qUdKs5FsFFFFAwooooAKKKKACiiqeo38em2b3MquUQFjsGeKALdRbc8nHXNc/4f8baN4mklh025aSSMZIIAP8AOpp/FNhb63Ho7R3H2yQblQRdR60Ba+jMbx94R0vWbD7bcWaPcwEP5mDnYuMr+I4rJsPDF7b2Vvq3hTUZbaOVPM+wsQYTxnGcFq9DuYxc28kBBwyFTkdQRXPeEZTb/atNcjfbSsFHTCZwKzb946oRU6NuqKFp49NjMlr4msjpdw3/AC0biJvoTz+ldlb3EM8IkjlEsbjKsO/0qO80601GBoLq3jkRuCGUcD2NcZc+C9Q0N3uvCmoPEepspSSje2Tkj8BWhynoAPFLmuF0/wAfm1kFn4ls3024+6JcExH/AIEcV2NveQ3MSSQSLJEwyHByCPY0AWajcAjBXdnrml3DOCQD6UD5s5zxQBwmseDbi0vTrPhmY2l8D+9t04jm+vU/l61e8PeNItRujpWoxCy1dPv278Fh6j1rr9tc94g8K2HiGDbOvk3KHMc8XDIe317UAbiA78k8dBmpq86svEGr+EbxdP8AEsXnWGdtvfx8nH+2OgrvLa7ivIEnt5FkhkGUZTkEUAWaKYjFgcjkU+gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKaxxjFOphJyaAKuq6hDpWmXF9OQI4ELtn0Fct8OrGSPQ5dQuV/0i9mMjk+gY7f0xUXxCuWvILTw9Ef3mpSiJwP+eZOCa7Cytls7KG3QfLHGF/IYoAsIxYZNPpiDAp9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTX+7TqCM0AN+vXFcHoJ+yfErXoOguyswH+6oH9a73AzmuAvB9h+MOnkfKlzYTE/72VAoA9AooooAKKKKACuD+IY8y40G26+ddkEeuADXeVwfjM+d418H23b7XKT/wB+6AO4j/1a/QVJkU1RhR9KOODjk0Acn8QtQax8LSxxn95dyJagDrh8r/Wtfw7Yf2ZoNlZ4A8mFVPHVgBk/nXLeIgdb+Iej6SD/AKPbo9xMPR1wU/rXe9vl4oAfRRRQAU09adRQBWuIEuLaWFlysiFDn3GK4rwHI2k3+oeGJ24s5CbQHr5XH9a76vPPHMU2i6xp/im1Q7IW8u8x3i65P44oA9AXAJHc8mn1XtbhLq3jmjIZHUEMOhqxQAUUUUAFNcjvTqRhnFCExny9Oa5PxWhsL2w1ZBxDIVk9wcKP511oHNZfiCxW/wBHmhYZ4LAe46VLWp0UJ8sl5mhGwZFIPG2pxXO+EdQe+0G384/6REmyUHs3vXRU0RUjyScQooopmYUUUUAFFFBoAK5vxreNa+Grvyj+9lUJGM9TkZx+FdEDkciuE8VXgufF+gWbRS+Vb3BmkIQlWBUjB7dcUAeU3dnJ8KfiXY36b10u9ALnPAUnn+VeteHXTXfE17rUeySGJVjt3wPusozz9RVb4qeFD4o8F3CxRiS7tx5sO0YJ4Py1pfDzQ5tA8G2dnOMTgEyA9uc00HWx1QOWxngD1rkr9f7J8ZW92vCX4EL+gxk/zrrsAKQK53xdaPPo/wBojBM0Db1x655rOa6m2GlafL3OjXlcmkZN2Qec/hVTSL1NQ02G6jPyOuRir9UtUZSVpNFK80u1v7cw3dvFNERjbIgbHuMiuNm8FanoU7XfhbUXTnJtbhjIp9lLH5fyrv8AHFIeBzz9aYjhrLx79lu00/xFZy2F3nAkCl42/wCB4wK7W2uYbqESwSxyoejRsGB/EVV1DTrLVoDb31rFcQ/3JEDc/jXH3Pg7U9Gma68Lak8QB3NaXJMkZ9gOMUAd/uHrzUTL2C8k8muLsvHhtrhLDxFZyabdngOeUk+hHA/Guxt7qK5iEkDpICMgqwNAEd3Z299bPb3UaSxMMbSK4O50bWfBEr3eil73SN2ZrKQ7nQeqsc/yr0U54xj3oOP7ozjGKAMnw/4k07X7XzbSUiQcPFINrqf9081s5FcVr/grfMdU0Ob7BqY5yM7HPuBjNJoPjN2uho+vw/YNTXgb/uSj1B6CgDt8jGaKiVlb+IHIzxyKeCM4NADqKKKACiiigAooooAKKKKACiiigAooooAKiZwoZj0A5qWuU8da0+laE8NsR/aF2RDbqOrMeT+maAMbw4W8S+OtS1iT5rXTybW19CDhtw/HNegDOBj8axvC2jpoWgW1gq/Oi5dv7xJJP863aAGJzk4p9FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVwHi0CLx/4eujxhWjz9WFd/XB+Px5Wq+Hrg9BfRp+bUAd5RRRQAUUUUAFcD4jBf4i+Hf8AZlYj/vk131cFrXzfE3Rl/ugt+amgDuz79BTWbbGzdPrTnGVrnvGuptpPhO/uEbExiZYh6vjgUAYXgonVtd1nX2BIlkESE9vLyp/lXfBunvXP+DdKXSfC9pAgwZR575/vP8x/U1vY+ZfQUASUUUUAFFFFABVLUrGHUtPns7lA0cybWHqP/wBdXaibhgT68YoA4jwJqMtlNd+G9QYi5sWIiZv+WiHByPxNd0GyM4NcH460+XT7q38U2CEz2RH2hF/5aR5yc11+mahDqdjFeQMHWRQcA9DQBeBBGRS01MbelOoAKQ0tI1ACVGwySCMjGKkzSNkA4oEm9bHJaPjT/FupWX3Y5szr6ZJxj9K6/Oa5DxUhsdR07VI+FjmxMR/dwf611cLh4kZehGamJ1YhXUZrqiWikBzS1RzBRRRQAUUUUAJg800x85/yKfRQAzacc4puCORjJ61LTeKaDyGHIz+lRzRCa1ljYcMCD+NTZG2mtjGKTQQdrROV8Hz/AGZbzTH4FrLsjB7r611m7nFcdqCnSfGVrcqMRXi+S3pnJOf0rrlI25BqIvWx04pXaqLqS01lDDBAP1oozzWjOVaC7eMd/Wgrng4I96dRSGUr/SrLVLV7a+t0uIX6q4rjJ/Bmp6FIZ/Cuo+SoOWspiTER9BXoFY9/r2kabdR2l7qMEM8h+SN2wWoA5yw8erb3IsfEtlLpdznCO4/dyf7oGSPxrtYJ4bmJZYpFdG5DKetVLzTbPVLdorqFZYmGMMAfyPUVx1x4L1TQp2vPCt8yDOWsZj+6b2zgsKAO/wAjP3qxte8Oaf4isjb3sSuRyr45U+ozWBY+PktZVs/Elo+mXHQvIMRN9Cef0rsoLmC5gE0EqyRMMqy9DQB5/Dqms+BpltNUR7zSskLcoM+UO27/ACa7ywv7XULVLm0mSaBhlXU54p1xBDPCyTwh4yNu1hx71w194b1TwreNqfhmUyW5O6bTWPyf8B7/AKigD0LzF6c59Kdmua8PeK7HxBG8ds/l30IxLaycOh/2h2rok6ZNAD6KKKACiiigAooooAKKKKACkJCjJpaa35+1ACNKqAljgAZJPpXn2nqPF/ji41CQFtP0ttlt6NIP4h7YOK0fHOtS2dhFpth+8v70+XGg6heMn/vnNbHhvQovD+iW1hENxjUB5D1Y+tAGwMHBAzx1p9MXoMcDHSn0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVwvxMwLDRX7jV7cZ/E13VcP8TFzpOlH+7qsB/ImgDuKKKKACiiigArgdYyvxT0k9mT+hrvq4LX/l+JPh9v7zEf8AjpoA7o9K4XxrKdQ1/Q9BjO7fOtzKv+wrYIP513eRjNcB4fH9tfEXVtVblNP/ANFi9CGAY4/GgDvo41jjVFGFUAAewpxXIxQvSloAKKKKACiiigApNuevrS0UAQzwJPbvC6ho2BDKejD3rz7QpZPBnieTw/O5k0+7JmtJG4CEcsufqa9GPArnfFnh5df0doE+S6jKywOOquvI57jPWgDfU4z6U4HjmuU8HeIW1Szawvcx6jZny5VPBODgH8a6rqaAH0UUUAJikb7wHrTqaeT9KAMvXLBdS0e6tmGcr/8AX/nVTwrfvfaLA8hxIoKsO4Of8K3WG5D75zXI6OX0zxXf2DnEdy32iIei4ANRLRnVT96k4djrhkcU+mDk0rdas5HpYdS0gpaBhRRRQAUUUUAFJtHNLRQAm0UmwU6imHU5rxlZtLo5uYh+9tT5iY+laWk3S3emwyqwYFetW7qITQPGwyGHIrl/CEht3vNKY/8AHnIVTPcHmsnpI60+eg12OtJNHeinCtDis9xaKKKCgrzfxv8ADH/hLfEdlqq6g9u0DAsqjOQMe/tXo+ahlmihQySOiJ0LMwAH40AMs4FtbeO3VmYRqFDHqasFc9aqw6haTSeXDdwSMOSqyKT/ADq3kUAUtQ0uy1OEwXltFNGwwdy8/nXFzeDNT0CZrrwvqDoucmxuDuRvYFicV37Ak8dMU0KR0Qn6mgDi9O8fLBMLPxFaPp1103kHySf944rsbeeC5iWWCRJUYcOh3Aj6iq17pNnqdu0V3bRTo2fldAce4yOD71xsvgzV9AlNz4W1KQRnlrS6JlB9lJPy0AaniPwbBqzi8sJjY6lGcrPHxvPuOAfxHaqWi+MrqwvBpHiiEWt0Dtjucny5R/vdM06w8eiO4Fjr9o+n3Y6sRvjH/A8Yrf1HStK8S6f5c6x3MTj5JEcNj3UjgH3oA1vNyoKYORke4p4Oa83WfXPAMu2cPqWhZ4kHMkI9O5Nd3pmr2Wr2a3NnMskbDPXlfYjsaAL9FNB9aXIzjPNAC0UZooAKCcCikIyOaAG89OaqalfwadYS3Vw4EUSliSe+M4/GrW7KgnrnFeeaxI/jnxGmiWzEaTZsJLyROjuOVUfrmgCXwdY3OuarP4r1NTvlJjtIiOEjGcMPcg4r0DaCc1BDbLbwRwxLtjRQqgcYA6VYByKAFxRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXE/Ev/AJBGmjsdSh/rXbVw/wATD/xLdFHrq9uPzJoA7iiiigAooooAK4LxWPL+IHhGTs9zIpP0jJrva4Px/mLV/DFz/wA8ryQ5+qYoA6nXdRTSdEvL+U4SCMsTWF8PNOktPC8Ms+RcXLNLKT3OTj9MVS+I1w11Z2Ghx5zqc/kSH0XBOfpkV2dtb+RZxQLgBECjHtQBYQ5FOpq/dFOoAKKKKACiiigAooooAMUwDjBp9JzQBwvi7R7vTr9PEujKTeRAC4iH/LWMdfyGfpXS6Jrdrr2lQ6haNmOQfcJ5B9DV+VFZSjAbWzuP8688v4LnwNr39p2UTS6JcvuuIlH+rY9WFAHpVFVrS/t761S5t5FkicZDL6VOG3djQA6iiigArj/FS/YNT07V1H+rlEUp9IycmuwPSsnXrIahot3bYALxEAnse1TJGtGXLJeen3l+CQSxLIDkEAj8alyOKwPCl8bvRIt/DoShB/2TxW6c5GKadxVYcs3HsPFLSClpmQUUUUDCiiigAooooAKKKKAI3yCPTvXI35/sjxpbXGP3N2hRj6uSMV1snXHbvXO+MrcyaIbhFzJbN5yY65FTJdjow0v3ig9nozo1bcuTT6ztKuUutMt5Q2coMn371fHNNMwmnGTQ+mselOpjfe9sUxEF5dxWNpJdTOFijUsxPYCvF9F12/8Aij43uYjJLDodk3zQoeXI6EnoRxXpXj22nufBOqxWysZDA2AOp4Nec/AhYNP8M6hPO6wyLITMT1GCetAGf8UrmPwf4t0ebQsWlyXUSCLgMh9QPxr3KxnNzaRTOu0uNxX3rwlNLuPif8VG1NYyNHsyE83B2ybScY/Svf1j2BQoAA6CgByjApaQAjOaWgAprcLnGcU6kKhhg80AZ2o6XZaxbG3v7WOeI/wSLuFchceEdX0GVrjwxqLLGOTZ3BLpj0A4xXfbDz8340MmRjg/WgDiLLx1AZRpniKyewujwfM+ZH+hHA/Oqd94ZuNNuG1fwldLHk75LVW/dS564A6HnvXbaho1jqts1vfW6TxMMbWFcbL4O1Xw9MbjwxqGI+9hPnyiPbHOf8KANjw74xtNc328qG01CLiW1k+8p9j0P4V0uBuxkZ/WvKNUvtO1q6ji162m0LWo/wDU3bDG5vbr79RWvpPjC60aeLT/ABIVKPxb6gp/dyfj/wDWoA9CTOT6dqfUEVxFIoaNg4YZG30qXzFzjPPpQA6kJ4pA4IyORXPeKfE8Wg2IEaGa+mOyC3X7zt/kGgDM8Za/cRyRaDpB/wCJpeYXevPkLnG5q2vDOgW/h/SUtYOXPzyyHqznlj+JzXN6LaWvhTT5/EXiO6T7fdHdLK56dcAfgBUtz8SoLXSm1VtG1BrDeF84bcYPfr0oA7qlxWbo2tWWuabFfWMokhkGeO3sa0gc0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcL8RT5sug23c6lDJj6E13VcF4zPm+LvD8HX94H/JqAO9ooprHAoAdRUYYkYOAfajfleePpQBJXCfE/MWi2t4P+Xe4U59MsBXbknI6be5zXFfFORE+Huol3VXG0puOMkMDQBXhI174mhh89tp1sOewlz/ga7/GCa86+EWLzQrrV5XR7nUJfPkCtnacAY/SvRMkcHpQA4dKWmbsUbhtzkYoAfRTA2fWlDUAOooooAKKKKACiiigCN+oHrUFzaxXds0E6b4pF2lCOKtEZoKg0AeZpLdfDrUylwWl8PTyfu5DybY+n+71Nei288c8SzROGRwGBHpUV/Y22o2b2l1GskMq4dGGciuAtp774eaglrcGS58PzviKY8m39j7daAPTKKrW13HdQrNDIkkLDKupyDU0ZJXmgB56VEwDAg9CMGpaiOdretD2DZXOT0g/2Z4qvbBvljnIkiB9hz/Ouu3Y6VyPiuM2eoWGrqDvSQQN7KxGTXUQt5kKuCCCAfwqI7nViPejGfcsA0tNWnVozlCiiikAUUUUAFFFFABRRRQA1sEH6VBcQJPC0b8qwIIqcjrSbRgCgafK1I5Pwc72xvdLlOZLaUspPUhiSK6xTyK5C9H9leM4LnO2G6Uh/TdwFrrlOTmojuzoxEdpdGSU1gWyO2KdSY96s5iMoJFwfmXGCPUVz7eCPDz3EkwsEV5DlyrEbvqAcV0gUA5FG0fSgClY6fbadGILWFIol5VUGAKvUgGKWgAooooAKKKKACiiigAqIhh6Ed81LSEZoAz9Q0ix1WBoby2ilQ9yMH65HIrg9W+H95axTNotyJ7STrp85/dn3DcsPwI616YFxRt4oA8DsvGereAb8W2q20408H5opBxH/uE8kfXFew6F4i03xJYi80u4WWIryF5Kn0NW9U0mx1W3MN7bRzI3B3ICR9PSvG/F3hY/DqKTWfC+oyW8rOALI/OHz6Annr6UAer+IfEVp4d0v7RO2+QkokajLM3pisHw14fu73Um8QeIRuvW+a3gzkQL7e/+NcV8OdUm8Ta79t8XuRqUYxbwzp5SY9kPBPJ7V7SVV+AcH68gelAHz34u1S58a/Fy38PiRm022mVWRejDg5P4mvRPirdwaB8NpYRtUbUgWMdDn5c1yGr6K/gf4nr4lkRZbG8byxGh3Mucc4HPat7XPD2pfEvVbR5wLbQIOQN3zSnjselAFr4G2N1afD6I3IZS8zsgP93jFenDkc1nada2+nWEVnagJBCoRO54ArRHQUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFIc0ALXn+t/6X8W9EgH3YrGZyPcMuK77J5/SuBsP9M+LN5P1+xwND9NwU0AegUxwSBggc+lPpj8AHoAeaAOR+IXiW68LeGn1S1kjUocBWXOTXD3HxM8SWPgyy8UXEcLWtxKE8kIA2M461D8eL97x9K8NQ8S3TeaMd+o5rnvFlo+h6n4c0jxJL9p0ueIMsFudpQ5GS27rye1AHuvhzV017RbfUkR0E6g7WbNZ/jnw3B4l8M3NnOWyELLg9wBW1pcFtbaZarZIEtxGuxR0AIFW5o/NhdfVSB+IoA8e8AeALK68I2lzbahqdteFcS+XdsEB/wB0V0y+H/HGnAmx8Q2k0Q6Ry2xLfmWqX4cv5EmvaaePsl8Y1HttBru8UAcENc8a6eSbvQY7xF6yxTImfwpV+JdnAwTVdNvbN/TyWlH6Cu8wR3pjxLIMNyD60AYFl430C+IC3wiY9BMNh/WtqK9tJuYrmF/92QGse+8GeHNS5vNItZm/vPHyPxrHk+G2kxt/xL7m907HT7LIEH06UAdxkEZHI9qMiuCbwt4rsju07xGJgPurebn/AJUxtR+IGnf8fOn2uogdfsibCfzagD0GiuCT4iT2/wAuq+HL+wI6l2Vh+ma07P4heGb3CpqSKx7OrD+YoA6rNFU4dRsbhQ0V1E4Powz+VWAysMq276c0APyKXNMBOM4pCf8AYNADM8bsFfQ1FeWUN9ZyW1xEskMowykdRVug0Aeatb6j8PLvzbaKS80GRhvjzl7cnqQfT2rvtO1S01OyS6tJlkhcZBB6ex9CPSp5okliZJFDIwIIxXBX/hvUPC102qeGSzwMd09gejepTpgnv64oA9CLAd6ZnHJ4BrB8P+LLDX4CYnMV0vEltJwyH05rcK5IzmmgW+pn69ZG+0e5hXljGdnse1VPCt8bzRY9xzJD+5b3K8VuEDn6EVyOjH+yvFN9pp+WGXEsXuxyTWex1QfPSlDsdivSnU1emadVI5bWCiiimAUUUUAFFFFABRRRQAmeabnmlI5pMUIT13Ob8YWRutKMy8PbsJ1/4Bg4rU0a8+3aZbXJx+8XcfY1YuIBPFLC/KupH5iuc8H3Bhe70uTiSCViM/3CflrPaR1pudHl6o67NGaaQaUVoct+ouaKSloAKKKKACiiigAooooAKKKKACkzxmlqL5d+3B4/KgCTIpc1C7hULEgY6k9Pzri9c8Xz3V2dG8Nobq/PyySoPkgHqe35ZoA0/FHiy10GNIoh9o1CU7IbdOSW98dB7msvQvCdxJef234jkFxev/qocfLCCemO59/ar3hzwfFpMx1G7c3epSfenfnb6gZ5x/hXT7QF2E5Oc0AYeveEtP121CPH5E6D93PD8jofZhXN2fiDVfBsyab4kQz2JO2HUI14x6MBn8zXooz61WvLK31C2kt7qJZYXGHRujCgDh/EXgSz8ayLfvqsxYD9x5EhUKfU4rK0n4V6rptxmTxTfTWhyPKWV1b67s1oXWi6z4Jne+0NmvNJ6y6eTkqP9jsK6jQPE1h4itRNaSDeOJIGOHQ/SgC/p1hFp9iltHvYIPvSNuZvcnvV9c7RnrUXOT/M9KlHSgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAprfdp1BGaAI2OCW9FrhvBH+l+JvE2pfwzXKBT9Fx/Suy1CdbSxmuGOBGma5T4aW5Xwkty4xLcSSM3/AH0cfpQB21NdSVwMZ96dRQB5Xq/w41rVPHkHiSW6tXFu+6KBidoHp0+tOvfhfe+JPFEGr+ILuIxQf6u2gztUegyO9eogYpaAIYYBBGkSACONQqj2Ap2cnjpnmpKZjr9aAOE0n/iV/FHU7VuEvoPtQI6biwH54rvdwrgPGedM8YeHdWXhHuBbzN/sYJ/niu8UgxqR0OMUAPoxQKWgBME9TTdnzZAAPrT6KAE2j0pNv0p1FAEbwxv99Fb6gGs698N6RqPF3YQyj3BH8q1aKAOKuPhhoBcyWMTWMvZ4Scj8zVVvBHiCxOdN8WX7qOkVxt2foua7+igDg/O+IGmDBttMvY17hn8w/j0pF8danbcap4V1KPH8caDb/Ou6YZPIGKY6JIuHRSv+1zQBydt8TvC8jbLjUY7R/wC7Mef0rorLWtN1JQ1neRTKe6mkuNG027TE9lbt/wBsxn+Vc/d/Dbw5dsXW0eKT+/HM64/AGgDrww9RTGXcx5BU9jXCnwBqNnltK8TXtuF6RmNWH5mm7PiFp3+raz1FV7yy7CfyU0AaXiDwVDqc39oafO1jqkZyk8XBb2YdP0rO07xndaPcR6Z4rha1nc7Y7o8RSD1Gf8KE8ba9ZD/ia+GbgEdTao0n9BRc+NPCuqWrQatby28cgwftcfl4+hz/AIUXEzuFlSaJXRlYMMgg9RXL+LVNndafqsa8wybGx1IOBXJ2lzPoLef4V1eDV9Ozl7Npc7Qeu0jJyO1dDH4p0jxVpU9kS1teKhb7NONjbh3AqZbHRh5ctRSfp9520UoeJXXkHkYqTcM1z3hG7NzoMKyFWkhHlSYOSGHUGt4fLggDb6nrTjsRVhyTcSSijNFMzCiiigAooooAKKKKAGGk7044pON2KaJauho5bn8K5K/xpfjW2ugNqXieW57fKOP1NdccHmuc8XWDXejtLH/rYGVwfYEE1El1OvDTXPZ9UdGHBUGnA1m6LejUtLt7sADzUDECtEHinF3RzzhyzsOpaZninDpTF1sLRRRQAUUUUAFFFFABTS4BxyT7UZ71Dc3MVvEZZXWNFGWduAKAJg4P9ay9a1vT9Bsjdahcpbx9AWPLH0rmNR8cTahObDwvatez9GuQP3Kf8CHen6V4GaS6Gq+Ibhr6/wDvBXOEj9gBgfp2oAoNNr3j6XbbrLpejE8yn78q+1dpovh7T9Bsxb2NvHHx8zgcsfXNXokjjVVXAGMDAwPwFT0AN2+hoKn256mnUUAIBgYo25BFLRQBGI/lwTntyO1cf4h8Fie7/tbRpfsepJ3XhZB6HH+ea7So5ASMdB6+9AHF6J4zZr0aP4gi+w6p0UPwso9R/wDXxXaqw2A5yPWsbXPD1hr1l5F5ErOPuyr95T6g9f1rk4dT1rwNMLbVfM1DSc7Y7sD541/2x2FAHo5YA4paoWF/a6lbR3VnIs0L9HU5FX6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigApM0tITQByfxGvjZeB9T8s/vpISkY9WrY8PWYsdCsoAMYiVjj1Iya5fx2Rfa54d0gcrLeq8y+qYI/niu6jUJGqr0UAD8KAH0UUUAFFFFABRjmiigDkPiPYPdeELqaAf6RbDzYz6NW1ol6mo6JZ3aHKNGOR6jg1evIVuLSWFxlHUgiuM+G05h0280WVsyabNsOevzZb+tAHcr0paQdKWgAooooAKKKKACiiigAooooAKbtH/ANanUUAJilxjpRRQAm3nNG0egpaKAE2jGMCqk2k6fcjE9jbSD/biVv5irlGaAOV1H4f+H7/cWtHhLdfs0hi/9BrktT+CunTSGbTtQu7WZOUczM5z6Ek5xXqxPHFR++AAO5o30Gj590vw58R/BWpXeoQIt1bBiShnB3n12+prpNJ+MOozs8eoaD9nkXgh5Ssh+iEZNevDOOATknvWLrHhLSNbO65tVFwOlxGNsg+jdaByk5O7MO1+KOjyMI7q11C2kP8Az0tXCf8AfRGK6Cz8V6LegbNTtFJ/haZQfyzXIXPhHxFpWf7MvYtQsu9veRmSRvbcT/SsqS58NI4i8Q+Fm0eXOPOhjDbvxQcUEnrMVxFOu6OVGX1VgakzzntXm8PhLRr9Fn0TxHeRMfuobw/+g9asDQ/Hem82XiCxuIh0jktmZj+O6gD0Ase2PxNNVw2cVwo8QeM9NUm/0D7ao/igkWOnJ8S9PhIXUrC9sz3JjaQD8hQB3OTnrTq5+w8Z6DqIH2e+jBP/AD0+T+dbMN7a3AzHcQv/ALrg0AT7Rmk285pQQelG4etAJCbBg1DcwiW1ljPR1Kn8qnyPWkbkGlLVDTt8jkfCTtbNeaYx5t3KoP8AYHQ11q9MVx+og6R4wtbtRhL39y3tjJzXXo25Ae9KOiOnFR5pKqtmhcfNinDpSZHrzSg5FUcotFJkUbgOpx9aAAnFJk+9NkdEUs7BVHUk4FYGqeMtF0hT512JXH8MXzn8hQBviQHndxUVxeQWkRluZ44ogMlpHCj8zXDN4p8Q68Cug6O8UbdLu5YFQP8AcODUtp4BuNQlF14m1Sa+mJz5cDGOL6bOaAJNR+IIlvDp3h6wl1K8JxuwREP+BgYqsng/WPEEyz+Jr4iIci0tm2Y9iynn8q7Ky0q002AW9laxQRD+FEAB/CrgUjI2jBoAqWGl2emW6wWkCQoowNowT7kjrV3aOcgGkHHJ5NPHSgBuwZ6dOlOoooAKKKKACiiigApCoJ5paKAE2gjpVee3jniaGVVeNhgowyDVmmNjqeMdDQB55e+G9T8KXkup+G3aWBjulsnfII9FznFdH4c8W2PiCBljZoruPiWCVdjg+ynkj3reIzn5f/r1yviTwZFqUg1Cwl+xasn3LiPjd7MBjI6UAdUrsS3Ax2NPJz0NcJpHjK6sLtNI8S2/2e7Pypcj/VyD144z+Ndwjo4BUgqRkMOQfxoAkHQZpabkY5pc0ALRRRQAUUUUAFFFFABRRRQAUUUUAFNY8UuRUF5OLeymmzjYhNAHD2x/tv4pXMvWHTYDCMdBJkNXfjpXCfDOBptKu9akU7tUuPtGT9Nv9K7teBQAtFFFABRRRQAUUUUANY4Ht3rz7P8Awj3xSweLfVojIT2Egwqj64zXoLgFCD0riviLaMuiw6xCn73TpluDjrtXqB+lAHbDpS1S029W90y1ulbPmxK30yOat7x+uKAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFRkgcGpKiGSoAO098c0AeZ/Evx7q3giW0WyS0lFznZGyHdxxUGqfEDX/C0Gl6jrdrbzadfKCxthtMWQOpP1rkPG0r+K/jTp+ko3mxaeyNjHGCQzVs/Hm6gi0XS9HhjRpZWwkY6gDHQflQB7DpV/BqmmW99asGgmQOhHcGrtct8PNPn03wPpdvcbhIsC5Vuq8dK6mgAxUNxbxXELRTRrIjDBVh1qamsoYc80AcdefDfQpZjc2MR065PJls/lJP45qodA8Y6Ud2ma7DdIvOy/DOxH4V3gUY6UYPbH0oA8/wD+Et8T6YdmpeFrm5UdZbXaF/U1Zh+JPh6bEWou1kx6pOuf5A127IGXaQCPQ1Xn060uFKy28TA+qjNAHIS6Z4A8QDdJb6dcFv4mUj+dQt8P9Gj+fStUuNNP8ItZVUfoK2Lv4feGL45n0mFm/vZYY/I1nP8AC/SFObOee09BGc4/OgCH/hG/FtmB9g8TrcDt9tZnz+Qpjat470sf6VpMOpgd7Ndv/oTU8/DrUI/+Pbxlq0PptWPj/wAdpB4K8URNlPHOpy+gdIh/7LQAR/Ej7OduraFfaf8A7UmD/wCgk1rWvjzw1ehRHqce9uikMD/KsZ/B/iojB8U3D567o0P/ALLWZd/C7U9QBF14huPm6lVUH9AKA30On8VtBeaI1xaXUXnRHfG+7OPX+taukara6jpUNzBOhjZRwD0Poc15gPgOILeX7P4j1ASPnhtpU+3SqWlfBjxHp+mzRf8ACQvC7NkRwsNp/Eik0aSqN01DsezvfWsaF3uIlUdSXFZF7458N6cMXGrQoewwxz+QrzSD4eazpbb9Q0TTtWX+95sm8/qBW1Y6pp2iOFufA97a4H+sWIlf/HmNMiekrLY2pfiXbTZGk6Xeah6GLCg/99YqNNW8c6swFlpcOmRN/FeqWI/75arll8RfCLt5T6hb2kv/ADzk4I/KulstVsNQjD2d5FOvYoeKAORHgfVtROdc8RXMqnrbwPiI/gRmtvSfBugaI4ex02FJf+egXk1vbckHbSnGeoNAhQOBzxTqZvVRycU7cKAFopN3saXNABRSbuehpc0AFFFFABRRRQAUUUUAFFFFABRRRQAYooooAzNZ0Sw12yNpqFuk0eMqGGcH1HvXDpLr3gGRRKJNU0IthSv+stvqT29ua9IdN2OcEU2WBJkaORFeNhhlI4NAFLTtXstWtFurO5SWJhwQeaugjK+p5xXB6n4SvtFv21bwpN5TA5nsc/u5T6dyPwIrV8OeMrLWJPsFwDZarF/rLR+H/AdxQB1lFN3jj3pQcjNAC0UUUAFFFFABRRRQAUh6UtHagBg4HP41yHxE1F7Xw39ktz/pN84iiA6nnJ/TNdcCSScEdRXA3oHiH4mwWxObfSIxcH0LnKkfyoA6/R9PXSdEtrGEDEMe1f1rSHSkxhePSlUYFAC0UUUAFFFFABRRRQAx+nPTvVW9tEv7KSynGY5kIceo9KuYyOaTy1xj9aAOE+Hd1LDHf6Fd/wDH1YzMV3HkxsSV/Su6AHSuA8Qn/hHPHthrWMWl4PInPq5wqn8K78Y4PbtQA+iiigAooooAKKKKACiiigAooooAKKKKACiiigAqtMHEcixHbIw4NWabtBxkdOlAHkWifDTW9G8XT+IftUU1zIHUK7dA1btn8O0uPEQ1rxBeyaheD/VRsgCRY6Y/T8q9A2jOcUoUAYHFADIvuAYxipKQDApaACiiigAooooAKKKKACiiigAooooAYSB14pHbGMBT9aXb05715X8ZtUutI0y3l02aWO8kYglXOAoGelAHqeVYAnv0waM46jgHGetedfDrxSZ/h0NW1OfPlHDMevQf4159ofirX/HHxRNiZ5INPSTLwqSCE9MigD6FG1GwAcn0HFJJGjp86I31XP8AOkggWCFYlZiq8fMck1KFwPX60AZl1oOl3gAmsYHz38sf4Vg3Xw08PzyGSOCeCT+9FcOuPwBxXZAYoxQBwZ8CapYnfpfie5hA6RPErA/iTUYf4iabkpHY6kg/56TbCfyBr0AqD1AP1pNtAHBL441eyP8AxN/Ddyg/iNpG0uP0FX4PiN4em2iaS4sj3+1x+Xj8zXXBQBjAxVS40jTLrJudPtZiepkhVv5igCta+I9HvwptdStpP92QGtFTv+YYKnuDXMXvw78PXm7/AEeW2z/z6ymLH/fOKyx8OJ7Ft2k67ewEdPPlab/0I0Ad704B5pw6c1wf2Tx/pygpf2epIP4fIWM/nzSN4x8S6audW8MlUH8cE3mZ/ACgDvqK4i1+J2iysEuIb+3c9fMtXAH4kVv2nifRb1QYdStsn+F5VU/kTQBsUVClxFKMxSo4PQqwINSZwcGgB1FNz70m4diD9KAH0Um72NLkGgAooooAKKKKACiiigCBtxfAUbQeexrnvEHhK01pVdWNrex8x3UQww+vr/8AWrp8c5oOMUAee6b4pvvDl2uk+KI/Ky2Ib1fmRx/tHoDXfQypMiyI6srDIKnORVXUdLtNVtHtr2BJYX7EdPce/vXCta634BdprMSahoectEzFpIR6gnJx7UAek0Vj6H4hs/EFmLmxlDpjlWG1l+oPIrVDHGTigB9FN3YOT0p1ABRRRQAUHpRQelAFHUb1LDTbm7kIURRswJPoM1y3w7s3l0+4164XFxqcpuFz1VG6CofiDcyXf9n+HbVv319OGfHUKp3EfiM12llZw2VpHbQriKMbUHoPSgCxS0mKWgAooooAKKKKACiiigAooooAwfFujrrnh+4tsfvU/exH0dfu1V8E6w2r+Hot5/0i2Jt5Qeu9OGNdI7bR93JJrz8Z8J/EI7iE0zVhhCeAkgyWP1JIoA9EozTBz9aF6/XmgB9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBHxkA968q8Wwf27J4gm4aC1tkWPuFYbg9epOrNE6Atkg4PcVz2leEbXTra9gW6uJortnaRXPdjzQB4t8ORcv4CuptSUrpFi7zYJwJSQFC59uDW18BNLNzcatr0vzSPIY0Y9xxXpF34D0258ProSyyw6eF2NEh+8O1W/C3hGy8J2j2mnzSGFm3bXPTigDoNpA49eakFNHQ96cOlABRRRQAUUUUAFIenNLRQA3np1FHf7pp1FADMden5UAY6U+igCpc6faXilbm2jlB/vrmsK88AeGbwljpUEb/wB+JQrD8a6iigDhZPh0sJ3abrOqQP2D3JZB+FVxo/xA00Zttc0+6i7I9s27891ehUmKAOBXxN4v04f6f4bkuwOC8EiqD+Galj+JemRlV1K3ubB+6PGz/qBXckZ7CopYUljZHXKnrQBj2Hi7Q9RA8jUIxnoJDtP5GteK7t5hmKaJx/sOD/KsC+8CeGNTYvd6NbO//PRl5FZT/DS0hOdN1S/0/HQW7gD9RQB3eQelJkVwQ8O+MtPBay8QreAdFvSzfypp1/xvp3/H7oSX2Ov2LjP/AH0RQB3+cUtcFH8SoIjjVtHvtNK/eM+ML+RNa9l488NX4Ag1aHd6EEfzFAHTUVXivLedQ0U8bA+jVMDxkYx60AOpD0poJI9aUH5sc4oAQDBzmmSKG4Zfl6H0NS0tAHDa14Mntro6r4amFlqAOXjA/dyj3UYqx4f8aRX850/Uo2stTiO14pDgE+x6H8K7DFYHiTwpp/iOJVuIwlyn+quE+/H7g0AbQbOD156VNnivObXX9W8I3aWHiNXlsfuw36jhR/t9zXdW93DcxLPBKJY2GQUORj1oAuUU1TkZHSnUAGcUySVI4mkZgFUZJoPDDvXH+PtWay0dNOtOby/cQIg67WOGb8KAM/wmreIPFepeI5gTbqfstrn+EpkMfxGK9AXk+wFZXh7Sk0fRbWyTH7tAHP8Atd/zNayjFADqKKKACiiigAooooAKKKKACiiigBhQlgRjjiue8ZaF/behSovFxDiWFu6kYPH1xXSUmOOfxoA5rwZrh1zw/DPOMXcX7q4XuHFdGnACkdq88ui3gzx2LvH/ABK9WOxvSOTklvyAFegxHd8wxg89e9AEtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAwp827PI6UBCM80+igCLYwwBjHcmn7fpTqKAExxxxS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACYNBG4EHkUtFADdvGM4o2npmnUUANZc9gaAgHbH0NOooAhe2ilGJIo37fMoPH41mXvhXRtRH+k2ELf7o2/yrZooA4if4YaNktYyTWTH+KNicfgTVf8A4RDxTpnOneKrm4UdIrlVA/MA139GKAOA/tDx/p3/AB8aVYXcY4zDI7Mw+mKenxBntyF1Lw5qlue7CH5QPXrXcEZPI47YprpHIu10Vh0wwzxQBzFt8SfC0zBJdVgtpD/yzncK35V0VnqljqC7rS5jmX1U1VuvD+k3UZE+nWzZ7+WM/niueufhpoM770F1Cw+75dw6hfwBoA7XcB14qM4fkdOxBrhv+EJ1yx+bSvE8yKOkbwq4/MmmiT4gaaMpb2OpAdXknERb8ADQB2t5ZQXtu8N0iyRuMMGGQfeuButH1fwXctfaCHu9MJ3Sae5ztz1Zf1OM1ZXx7qdiQuseHbqNh1+xRNOP0FXbf4h+G7kBZZ5rXPLC6j8s/jk0AavhzxRp3iG2ZrSQCVOJYG+/G3uK3N4Hrj1rz3VdH0fVboan4c1m2tdSTkGF1KP7FQcevY1b0Pxm4uF0rxFD9h1L7oc58qb3DHAP4UAdo8iRozswVRySe1ef+Ho28V+MLjxHJk2dnut7MHoeMMfqCKu+PNWka2h0LTmzfaj+7DL/AAoe9dFoWlw6NpMFnCu1UUZH+1/EfxOTQBpeVwV7dfxp4B79aWkyM4oAWikBBpaACiiigAooooAKKKKACiiigAooooAxPEmix65ok9jIMFxlX7qQQQR+VZHgTXZL+zm028wNR09/JnB6scZzXWEnfgg7ccVwXi6zk8OatF4sslOyM7b9FH3kzkn69BQB3+45JzwKepyM1Tsr2K+sorqFgUdAwxzVwZwM9aAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQijaDzilooATbzmjANLRQAgXHpRtz1paKAGlAQQQMGqNxoWlXYP2jTrWXPUvErfzFaFGaAOQvPh14fuARHFPasTnNtKYsf984rkvEnwtthYTXEWtXMMcPKyXMrSMv4k5r1eRhgdxnGR2rz/AMTXEvinX4PDFif9FT5tQcf3P7v1yBQBxvwf8P8AiH/hIW1nVWeezaB0hlmOT1GOvToa9z6Kagt7aO1t47eFcIgAAXgDFT4JA420Ac34r8b6X4Stke+kzNL8sUK8lj+FUIvE/iKfSW1RdGCxBN4iMgyR9a8hspG8b/HN4L9ma3tZXURMcj5M4PH0r6M8tDGUIwpBG04xigDJ8Ja/P4k0GDUpbM2pmGQjNnFbw6VWtreK0thDBGqxJ91VHAqyvSgBaKKKACiiigAooooAKKKKACiiigAqG5t4rq3aCZA8TjDKwyCKmpD2oA860C6k8I+JJfDt65Gn3R8ywlbovP3c/UnH0r0RTkCuf8V+Hk17SZIU+W5Q+bDIOquM4/DmqfgrxG+qWT6ffDy9SsyY5EPUgcBvxFAHXUU3eAATnmnUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAB6VE3XqcevpUhPFVLy9t7GymubhwsUaMzZoAxPFniBdC0oGL5rq4JjgjHJdvWofBegvo1g013mTUbw+bPMepY9f5VkeGNPm8Ta4/ibUFP2RfksIW6BeRu+pBr0HYex4xwtADhyKCcCjHFGOKAPINX+HesaT46Hijw28buxJeKTuT16Cu0s4vEmpXEcmpSQ2dvGclLfcC/sc9q6kqRnb3p23k5AoAjAC45+XHFSLnHNN2HPXI9KfQAUUUUAFFFFABRRRQAUUUUAFFFFABSGlpGXcpHrQAw8k+q1xHjDRrqyvY/E2ipi9hwLiMcCSP+I/UCu52jbj261HIvy7cAhhjBGeO9AGZoeuWuvaVHqFsSVcYZe6nuMe2a2a821GC48C+IP7WtAzaPdNtubcf8sSf4/xOPyrv7a9ivII7i3kWSF13BlOQRQBaopivuOKfQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJzS00tjNACNIqjn9elecahPL4915tLtnZNEs3DXM68ea4P3PcZBBq74s1251C8Xw1opLXc4xPMvIiTjI9jz1rpNB0S20LS4LC3QbVG5yeSz9z+fNAGhaWsdnAtvAgSJBhVHQCrNMQHJp9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUT7t+B/+qpaTFAFO9s4b2CSGeISI67XU/wAQrgrOWbwBrS6dcuz6DMf9GlPS3P8AdNek1l6rp1prFjNY3cSvHIOjDvQBfhdHUPGRsYZUg5yKmrznSNVvfBupRaDrTNJYyHFreN9fut6d677zVxuOGjbGGHv0oAsA5opkeNntT6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKa3TigBQQcY71yPjDxLNpqrpmlqJ9XuhiGMc7Pcj0qXxZ4oi0KGO2tV+0alc/Jb2ycsx9v8APaq3hPwtLp7SajquZ9VuTvaU8+X7D06A0AXfCnhoaDZM87+be3J8y4mbqzc/44rogGBIA4PekyQw79sevvUtADQeeOlOoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmbMjBx9afRQBla1odpremyWd5GHRvut0Kn1Fcbo2t3XhXUV0TXpC1u5xaXZ5D56KfQjivRWOFz2rL1fQ7LWrCS1vIVeOQH5h1U+o9D70Aaauu1ccg9MU7cO3Neb6brF/4L1FNH11ml02Q7bW8PO0ejnt2616DG8cgRo3BX+Eg53UAWKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkJwM0tIxwCaAEDqelc54p8Vw6FAkMA+0ahNhYbdeSx9T7VX8T+LY9GKWNin2jU7g7Y4RyQfVvSq/hjwnJZ3jaxrL/adWmB3M33Yx6KOnc0AHhfw1PBM+t63iTV7nli3IgX+6v6jPFdiUJyM8HqKYiALtBOM/MGHWpgMAZoAaUywbuOPwp9FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACEAjB6UhUHHb2p1FAGfqemW2qWUlldwLLC45U+vrXBRyap8PrvybgSXugu3yy9Xtx79yPavSmB3cHmq11BFcQPbzQh4nGGBHBoALK/gv7VJ7WVZY3GQVNWVYljkcetec3Wk6p4JmN9oaSXekE5m04clPdOwrsNA8Q2PiC28+0mUkDDx9GQ+4oA2aKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBpJ7Ck3ndt70rcjGcVDPcRQQtLK4jjUZLGgB/mNkjHSuO8QeLpWuf7G0BBdalJ8hdeVh/wBpj0/Cs+98Q6n4pvH0vw1uht1O2bUSOF/3e/6V1Hh7wxZeHbYrbx7riTmac8tIT1JoApeF/CUekbr68Y3OqTcyTyHJGeoX0Ht7V1G0fdwMelKAFyRnmlFAAFx7/WloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAxSY4paKAISm4YIH+0PUVxut+DJkvRq/h2QWl+vVM4SQdwQK7YAjHQj1NNMZIIY5yOvSgDkdC8bR3F3/ZOtRf2dqy9IpOBIPVT3HT8664HPUn6Vi674T07X4Nl3Hh15jlQ7WQj0IwfTv2rlU1LxD4ImWDVUbUNIBxHdIN0ij0I9OnegD0ZskcHFOrP0zV7DV7ZbmxuUmjYZwrAkfUVe3rjO4Y9c0AOopM0tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFIWA4J5oAWik3D0NJuFADqjOScZwaGmjVTuYDHXJxiuH1nxqZbhtN8NwnUrxm2l1/1UR9S4zigDotc8Qad4esvteoTLGCcRgnlz2Az61yC2Gu+PJ0nvTJpuibspbqfmmH+1/8AWNaWheCmF5/auvzm81I8hSP3aemF6cdOnauy8shcKAmOBt6Y+lAFew0y10y1jtbKFYYEGFRRwBVs0oGAM0uKADHFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFQTRLKrI4VkIwysMhvqKnpNvP4UAcDqXguezvG1PwzcvZ3LfMbYkmKT/gOcLU2k+Owt4NK1+2fT78d3U+Ufo5GK7fYMYwPf3rO1XRNO1m0aDUbSOaM9Ayg4+lAFyGZJVDRMHj/vqcj8+9TAg152+g+I/Cr+d4fvPtunj71nPlnH+6cjFa+iePtO1KcWd2r2N6DtaKbpn2boaAOuoqMSh0yhDD1HIoD9OOPWgCSiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACim5pN+R8vNAD6aR7AmjccZIrK1fxHpmiwGW8ulQj+EfMx+gFAGkTt4JOT15rB17xdpegIBNP5s+dqwRDe5P0HP6Vzsms+JfFR8rR7Y6bp78G5mXJce2MEVvaF4I03SSLibde3x5e4nO859RnpQBzosPEnjfLahnStJflYo3xK6+5GCK7PStGsNHtVt7G3RNuMnGGc+pPWtPyweO1Hlj8R3oAFzz0/Cn0gGBiloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqPGDuHHsakoxQBEU6kqpJrJ1vwxpev24j1G0jn2/cLDOw+orboxQB54+ieK/DQMmlX51GzU5W1uOWA9B/+urumfEOxnn+x6vFJpN5nBiucZP0xkV2Z4ySeMVnajolhq0JhvrSOVD36H/H9aANFJo5VDRuGBGQQc07Irz+bwLf6Q/2jw1rE1sgOfskmDGfYk5NPj8Y65o58vxFocgQcfaLJSyAepJxQB31FYOk+LdE1shLDU7eZu6BxuU+hraHAyc0ASUVGencVJQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUw5zxQA+jNRkgZO7pRznJJIPtQBJmiqOoajZ6Zbma8uY4Ih1aRsAVyk/xGsrhjBoNvNq03Z4F3IPqQf6UAdrkBScjHrmsPXPFmj6HH/pl4vmj7sK5JY+lc5/ZnjPxKQ+oXy6RbHnyrQ7yw99wrc0bwTo2iSrNFbebdN96aTkk+voKAMI6t4u8UNs0qy/sm0bj7Tc53kf7O08VpaX4DsLK4F7qDPqV/1Ms2CQfY4yK7BUCjCgAeg6U6gCNFVRtVQFHYCpBxRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAmDnrx6Um3J5p1FADNh74J96Y0CyIUdVdT1DAEY9MVNRQBzGq+A9D1Yl3tvs8nZ7djGc+vy4rG/4RnxToeTomtfaol6Wtwqj/AMfOTXoFNP1oA4BPGuuaWSNf8PvGB/HYlpyfyFbdh498O32FN+trIf8AlndYif8AImuiKhhggN7Hmsm+8MaNqIP2jTbRmP8AH5K7h+OKANSG7t7lQ0MqOp6FTkGpdwrhbn4a2Sy+dp+o6jayj7oNyxQf8BqMaP460wYtNatbqEdI5LcZP45oA77cM9/yo3AVwX/CR+MtP4vvDaTR95I7hP5Cmx/E2xt22ahp+o2z+1vJIPzC0Ad+GBoBzXJ2vxB8O3GMXM8ef+e8TR/zrXh8RaNcgNHqlmR/18Ln+dAGtSFgO9VI9TsJPuXls3+7Mp/rUongflZoiPZgaAJgQelGaYHQjh1/A07I9R+dADs0maYzAD/7KmmeNR80iAe7CgCXI9aMiqz39mh+e6gX6uB/WoW1vSk+/qVkv+9Oo/maAL+R60bhXOXPjfQbYnN/HJjtF8/8qyZ/iloUZ2Qx6hI56BbKQg/jigDudwo3CuCTxprd+P8AiU+GJZkPR5ZRF+hFL/xcG+bAa005W/vqJcfrQB3bOqLuZgB6msq98TaJYKTcalbIR/D5gyfwrl/+EBvr4l9c1+5uCe1qzQj8gTWnY+A/D9oyyfYzcuP47o+Yfr8woAz5/iNDOzQ6Rpd7dydFLwMsZ/4FUSjx7r3En2fRbduMxMJWx9CBXcxW0NvGI4YYo07KqgCpMY7AmgDjLP4cWAmFzqd1c39wOpeRlU/8BBxXV2um21kmy3ghjX0RAP8A9dWlzk06gBmwjGCOPalCYOe9OooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkIBpaKAExRjilooAQjIwaNtLRQAmOtNeJZF2sAR70+igDLuvDuj3uftWm202f76A1lS/DrwpKc/wBi2iN/eWMA11NFAHHN8NNA/wCWKSwf9cmA/pUT/DWwJ+TVtWj9luf/AK1dtTTQBxB+HCD7niLXV+l4f8KQ/D2YdPE+vf8AgYf8K7gGlIoA4b/hXW7mTxNr59vth/wpy/DW0Jy+ua249Guv/rV23elFAHHJ8NtIH+sub6X/AK6TZ/pUq/Dbwv1l0yGb/rooNdbRQBhW/g3w5aY8jRrNCO6xgVrQ2cFuAsMSRgf3QBU9FADSoPXrRsBOSAT7inUUAJijaD15+tLRQAhUHsKAoFLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//Z'] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 58 "如图, 在圆内接四边形 $A B C D$ 中, 对角线 $A C$ 与 $B D$ 交于点 $P, \triangle A B D$ 与 $\triangle A B C$ 的内心分别为 $I_{1}$ 和 $I_{2}$, 直线 $I_{1} I_{2}$ 分别与 $A C, B D$ 交于点 $M, N$, 求证: $P M=P N$. " ['因为 $I_{1}, I_{2}$ 分别为 $\\triangle A B D$ 与 $\\triangle A B C$ 的内心, 所以\n\n$$\n\\begin{aligned}\n& \\angle I_{1} A B=\\frac{1}{2} \\angle D A B, \\angle I_{1} B A=\\frac{1}{2} \\angle D B A, \\\\\n& \\angle I_{2} A B=\\frac{1}{2} \\angle C A B, \\angle I_{2} B A=\\frac{1}{2} \\angle C B A\n\\end{aligned}\n$$\n\n故\n\n$$\n\\angle A I_{1} B=180^{\\circ}-\\frac{1}{2}(\\angle D A B+\\angle D B A), \\quad \\angle A I_{2} B=180^{\\circ}-\\frac{1}{2}(\\angle C A B+\\angle C B A)\n$$\n\n在 $\\triangle A B D$ 与 $\\triangle A B C$ 中, $\\angle A D B=\\angle A C B$, 所以\n\n$$\n\\angle D A B+\\angle D B A=\\angle C A B+\\angle C B A\n$$\n\n因此 $\\angle I_{1} I_{2} A=\\angle I_{1} B A=\\frac{1}{2} \\angle D B A$, 则\n\n$$\n\\angle P M N=\\angle M A I_{2}+\\angle M I_{2} A=\\frac{1}{2}(\\angle C A B+\\angle D B A)\n$$\n\n同理 $\\angle P N M=\\frac{1}{2}(\\angle C A B+\\angle D B A)$, 所以 $\\angle P M N=\\angle P N M$, 即 $P M=P N$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAm4CUgMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKSgAzRmiigAzRmiigAzRmiigAzRmiigAzRmiigAzRmiigAzRmiigAzRmiigAzRmiigAzRmiigAzRmiigAzRmiigAzRmiigAzRmiigAzRmiigAzRmiigAzRmiigAzRmiigAzRmiigAzRmiigAzRmiigAzRmiuW8XePvD/gm3Dard5uGXdFaRDfNJ24HYe5IFAHU5ozXmGjeK/iD4xiGpaFoekaXpLj91JqzyO8y9mUR4wPrx6E1Tk+IvjLTvFumeEtY8PadHqF9cRhb6CZ2t3h3DcyIfmyAG6sMHqKAPW80ZoooAM0ZoooAM0ZoooAM0ZoooAM0ZoooAM0ZoooAM0ZoooAM0ZoooAM0ZoooAM0ZoooAM0ZoooAM0ZoooAM0ZoooAM0ZoooAWkpaSgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDH8Ta5B4a8M6hrNxzHaQmQLnG9uir+LED8a+WfBWm3XxL+KETaw73SzSNd3z/8ATNedvspO1MDoCAMV7v8AHNZW+FWpeWGIEsO/H93zF6/jivPv2a4IDqXiG4cr9pjhgSMEjOxi5Yj2yqfpQB9CxxpEipGgRFGFVRgAdgBWTqHh2z1HxJpGuTbvtWliYQgDhvMUKc+uMZH1rZpqyI+7Y6ttO04OcH0oAdRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALSUtJQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAGQOporA8VazqWgaLc6pZ6bbXsNpDJPcJNdtA21Ru+TEbBjgHrjpXm/hr446n4t1hdL0nwYstyyNIA2qBVAA5yfK46gfjQB7PketFeW2Xxr0uLXH0bxNpV3oGoI2x/OYSRIcjGXGDg5znG3HevUVZXUMrAg8gg9aAFooooAKKKKACiiigAooooAKKKKACijNFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFLVNMtdY0u506+hEtrcxmORD3U/yPevDrH4UeN/APic6p4Ou7S/tyCpiuW2GRM52yL0OCByCDkdq9+ooA8+jX4ma4n2e5XSfDsJAEk8LG5n99gPyDPqckdq6/RtHtNC0qHT7KNhDHnLOxZ5GJyzsT1ZiSSfU1pUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAtJS0lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5v8cNbGkfDS7hRsTahIlomOuD8zf+OqR+NcL+zfomZ9a16RT8qpZwt65+dx+kf51S/aO1sT67pOiRni1geeQg/xSHABHqAmf+BV698LtD/4R/4c6PZsm2eSL7RNkYO+T5+fcAgfhQB5F+0hplrb65oupxgC4u4ZY5sdxGV2k+/7wj/gIr1L4O6rc6t8MNJlumLSQq9uG/vKjFV/JQB+FeI/G/XT4j+Iq6dYkzJYItoipzulJy2O5OSF/wCA19AfDvw1J4T8C6bpVwB9qRDJP3xIzFiM98Z2/hQB1VFFFABRRRQAUUUUAFFZ+qa1peiW/wBo1TULWyiPRriVU3ewyea42X4s6VdytB4Z0vVfEM44zZWzLEp/2nYAAe+DQB6FmkyB1I45rzvz/iprnyx2mjeG4G/ilkN1Ov0x8h/Gq7/CE6vJ5vinxbresEnLRLIIID7eWM4/DFAHWar458K6Nlb/AMQafDIOsfnqzj/gKnNc63xj8OTuU0e01nWn9NOsHf8A9CxW1o3w78I6CgWw8P2St/z0lTzX/wC+nyR+BrplRUUKihQOgAwPyoA8+/4Trxfen/iVfDjUSp6Nf3Udrj6qQT+tKLv4s3Y/daZ4XsAf+fmeWVh/3xxXodFAHnv9i/FG5/13i7SLP1+zad5mP++6P+EK8cTf8fPxMuj6+RpcMX8jXoVFAHnv/Cu/ED/634ja8f8ArmqJSf8ACtdWPJ+IfifP/Xdf8K9DooA89/4VzrqHMfxG8Qg/7ZRqP+EG8ZRf6j4lX4PbzdPik/ma9Cqpearp2nLuvr+1tl9Z5lT+ZoA4g+HfiZb/AOq8d2N16fadJSP/ANANGPi3ZjhvCd+nv58b/wCFad78UvA+n58/xLYNjr5Dmb/0AGsz/hcOhXPGkaXr+rnt9h052z/31igBo8VfEOxGL74fx3Sd5LHU4zn/AICeaX/hbEFn/wAhrwp4l0wDrJJYl4h/wJTz+VH/AAnHi++P/Eq+HGobW6PqF3HbY9ypBP60on+LGoY22fhnS4z182SWaRf++floA0NO+KvgfVCFt/EVmjntcloD+bgVoTeOvC1vqlvpkuvWIvLjb5UYlBzu+6MjgZ7ZPNcPrXwy13xDbSS+KfF9l9nQF5PI0iFdoHU+afmGK8auPAH/ABLZfFFpLOvhRL9bcXEozcNDuCtOFwBt3ZwOvTrgmgD6/orzePRfiVocSnSfE+m69bYykeqwGNyPZ0OWPuxp/wDwsXW9E+XxX4K1K0QcG708i7h+p28oPbmgD0Wiua0Lx/4W8SlU0vWrWWZukLt5cn4I2CfyrpaACijNFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAC0lLSUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFV7qWW3tZZYreW5dVJWGIqGc+gLEDPuTViigD5h8VfDr4ieKfGN3r1z4Xws8qsIDfwHCKAoXO/+6MfjXrGt6j8RNW0x9P0XwqmjyzIEN7d6hE4hB67VjLc+jfjjPT0aigDyz4efBy08J3o1jVLkajq+SyNtIjhJ7rnlmP8AePT0zzXqdFFABRRUc9xDawPPcTRwxRjc8kjBVUepJ6UAPyPUUMyopZmCqBkknAFed33xPTULiTTvBOl3HiC/HymaMFLWE/7chwPy4PrVa2+HWu+I2+0ePvEEt7ExyNJsHaK1X/eIwW/Lj1NAGlqvxV8O2N4bDTDc67qJPFtpUXnHPbLD5frjJrPmt/iX4vADTW3hDTz/AAxn7Rdt9SMBR9CD9a7vStF0zQrQWmlafb2cHdIIwu73OOp9zk1okgDJPFAHB6N8JvDuny/bNTSbXtSbl7vVHMxP0U5H8z7128EMVvGsUMSRIowqIoUD8B0rMv8AxV4e0wkX2uabbt/dlukVj+BNc7dfGDwNat5a62tzJ2S2gkkz+IXFAHdUV55/wtRbr5dI8HeKL70cWPlxn/gRPH5VHL4m+Jd+v/Es8DWtiD92XUb9H/NFIP60Aej0V5l/Y/xe1A5uPEuh6Wp/hs7XzSP++1/rUsXwy1i8H/E9+IHiG7z1js5Bap+IBOaAPRJriG3jMk80cSDqzsFA/E1z994+8I6cCLnxLpasOqrdK7D/AICpJrDh+DXgwSCW7sbm/mH/AC0u7yVz/wChYroLHwP4U07BtPDmlxMvR/siFv8AvojP60Ac8/xm8HM/l2NzfalL/cs7KRyfpkAU0/EjWLz/AJBPw98RTdla8RbUH8ya9AjjSJAkaKi9lVQBTh7dOmKAPPf7X+Kl+P8ARfC+iaWD/wA/98Zv/RVV38LfE/VG/wBO8c2enIesenWIYD6FsN+tel0UAeZD4QyXp/4nfjXxLqC/88xdeWh/A7v6VqWXwh8DWRDDQIp3/ie5leUsfUhmI/Su5ooAy7Lw3oem4+w6Np9rjp5FsifyFaeMjrS0UAFGaK5Xxz4q/wCEW0BpYIzPqt232bT7cDLSztwvHcDqfwHegDnPHF9N4u12H4f6NOyiTEutXMR4t7cY/d5/vNwMfQHgmu01Hw5Y33hW58PJCkNlLaG1RFXiNcYUj6cEe4rM8BeEB4U0MrO3natet9o1G6Y5aWZuSM+g5A7dT1NdZQBxHwr1ebUPBUNhe5Go6RI2nXaMckNHwPzXHP1rtSM9u2DXnMbDwr8apUYiPT/FFqHTnC/a4eCPxU/iWFekUAc3r/gXwz4mDHVdHtpZj/y3Vdko/wCBrg/qa5RPAfjHws4l8J+LZbu2Tppus5kjK/3Q45X8Aten0UAecL8Tp9EdYPGnhq/0U52m8hX7TaH33ryPpgmu40vWNN1uzF3pl9b3duf44JAwHscdDVySNZY2R1DKwwVIyCPQ1wur/CrRrm4a/wBBluPD2q4+W401/LUntujHykfTFAHe0V5hF4o8aeCQYvGGlNrOmr01bSky6j/ppFxj68Ae9dt4f8U6J4os/tWj6jDdIPvqrYdD6Mp5X8aANmijI9aKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBaSlpKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooozQAVXurqGztJbqdwkEKNI7noqryT+VYvizxlo/g7Thc6pOTI/yw28XzSzHsFXv9elca2k+K/Hlq994mu5fDvhwoX/sq1bFxNHjP79z0GOq+mcgHmgDG1L9ozR0sJ/7L0m8lu1fbCLjasbD+8SCT+H61z9nr0PjBo77xTF4g8RvnfFpGkWMiWcXoD0LkdyenqRTvBvgvUdJ8J2PxA8NQefqPmTSSaZMu5ZrbeQETjIcBdwI6/Xg+2+FPFFh4v0GHVNPLKr5WWFvvwyDqje4/UUAcTaeKfGot1tPDnww+wWyf6v7TcRwKo/3MLVgRfGHUiPMn8N6Qh7xo8rr+B3CvTKKAPPP+EB8VXo/4m3xH1Z89RYQJa4+m3NA+Dfhq4wdWu9a1c9zfag7f+g7a9DooA5Ow+GXgrTgPI8Nac2O88XnH/x/NdFa6dZWKbbOzt7dfSKJUA/ACrVFACAcUtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFa9vbfTrGe9u5VitoELyO/RFHU1514Kt5/G/iafx5qUMiWcW630K3lGNkXO6XH95vX6jkAGjxNI/j/xmvgy1kZdG07bca3IhwJT1jgBHrjJ+nqtekW8EVrBHBBEsUMahERFwFA6AD0oAmooooA4L4taHcar4Ne+04Y1TSJVv7VgOcpywH4ZOO5ArqfD2sQ+IPD2n6tAQUvIElwOcEjkfgcj8K0ioYbSuVIwR6+tedfDdjoGt+IvBMrfu9PuftViD3tpfmwPXaxwfdqAPR6KKKACiiigBMHpXGeIPhtpGsXn9p2DTaNrIyV1DT28tyf9sDhh655PrXaUUAeWx+L/ABZ4In8jxzZC+0nOE1vT4shfeVB938APbNei6bqljrFjHe6fdQ3VrIMrJCwZT7cdxVt0DoVZQykYIbkH6157qPw0+w30ms+Cb5tB1NvmeBRm0n/2Xjxhf+A9Ow70AeiUV59ofxJH9sr4d8WWX9i670Tcc29ycdY39/Q/TOa9BoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAWkpaSgAooooAKKKKACiiigAooooAKKKKACiiigAoozWfq2safoemS6jqV3Ha2kQy8rtx7cDqT6DrQBoEgDJOBXm+o/EC717UptB8AW6X99Hxc6nL/AMetoD3z/G3BwBxxxnBFU/P174rNtt/tWieDSfmlPyXOoDuF/uxnv6++cD0LR9D03QNOi0/SrOK0toxwka9T6k9SfUnk0Ac74a+HOnaJe/2xqEsuseIJOZdRu/mYHv5anhB6Y57ZxUnxS1X+x/htrc4JEktubePHUtIdgx/31n8K7CvMPigf7W8U+CfC6/Ml3qP2udP+mcIyQfqC35UAdz4a0kaH4X0vSwADaWscTY7sF5P4nJri/E+h6h4P1mXxr4VhMkb86xpS8LdJ3lQdpB+vXqTu9Kpu3OcjIx0/nQBmeH/EOm+JtHh1TS7gTW0ucdipHVWHYj0rVry3WtFu/hvq0vinw1bPNocx3axpMX8Iz/r4h0BHcentyPQ9I1ax1zS7fUdOnSe0nXfHIvcd+OxB4I7UAX6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAri/iD4qutCsLbTNFiE/iLVpPIsIePlPVpGzwAo/Ujtmum1XVLPRdLudSv5RDa2yGSR27AenqT0xXEeBNMu9d1Wfx9rkJju75PK0y1fn7Ja9v+BNySfc+uKAOh8GeFYvCXh+OxDme8lcz3tyes8zfeYnrjPT6CukoooAKKKKACvNvHZHhrxl4c8ZR/LB5n9l6iR/zxk5Rj7K3P5V6TWH4v8AD8fijwnqWjSY/wBJgYRluiyDlD+DBT+FAG5miuL+F+vXGu+C7cahvGqae7WN6r/eEsfGW9yu0n3zXaUAFFFFABRRRQAUUUUAZOu+HNJ8TWDWWsWEV1Cc7d6/NGTxlW6qfcYrgnk8T/C9CZfP8Q+E0HJJBvLFP5SIP84A59TppGRgjjvQBm6Dr+meJtKj1LSbpLm1k43L1B7qwPIPsa1K861rwNf6JqUviLwG6Wl8/wA13pbHFtege3RX9D0+mSTr+EfHVl4maSxngl07W7f/AI+dNuhiVCO4z95eRyPUUAddRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALSUtJQAUUUUAFFFFABRRRQAUUUUAFFFFABRRketc14u8Y6b4Q09ZrrM97OdlpYw8zXDk4AUdcZPX+tAE/ijxZpPhDSzf6tcbFY7YoUG6SZv7qr1JP5DvXH6b4U1Px3qMPiDxtbmGxibfp+hEkrF/tzf3nPp+fcVb8KeDL661g+L/GASbXJB/o1qPmi0+Psqj+/6nPH6n0PjFADQAFChQABgAdKdRRQAV5zYIuufHXVLsjdFoOmxWq+gllJcke+3Ir0avO/hP8A8TC08Q+Izz/a+rTSRN6wp8qD8OaAPRKKKKAGMoYYYZz1BH4V5Xfade/CjVJtZ0mOW58IXMu+/wBPQZayY9ZY/wDY9R/Tker0x41lRo5EV0YYZWGQR3BFAEFhfWup2MN7ZTJPbTqHjkjOVYHvVqvJiLv4Qas7JDNdeCL2be23LPpbnvjvGf0+v3vVLe5hu7aK4t5UmglUOkiMCrKehBHUUAS0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUZHrRXD/EDxLc2MEHhzQmEniLViYrZFPNuh+9M3oAM4Prz2NAGHq6SfFDxi2iwuw8KaLMp1B1PF7cDkQj1Ve//wCya9SRFRAiqAoGAAMADsPasbwr4ctfCfhyz0ezyyQL88hGGkc8sx9yc/TpW3QAUUUUAFFFFABRRRQB5vY/8Ur8Zby0Py2Hie3+0w9gLqIfOPxU7j7kV6RkVwXxY06d/DEGvWK7r/QLqPUIsdWRD86n228n/drsdM1C31bS7TUbVt1vdQpNGc/wsM/1oAuUUUUAFFFFABRRRQAUUUUAFch4w8C23iSWHVLKd9N8QWYzaahDwynnCuP4k5OR7n1IPX0UAcF4X8dXUurL4a8W2Y0zX1GIzn9xegfxRH/2Xr+oHe1z/i7wjp/jLRzYagrIynfBcRnEkDjoyn1rl/DvjG/0HWIPCHjUhNQb5bHU8Yhv1HAyf4X6fj9RkA9IoozRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAtJS0lABRRRQAUUUUAFFFFABRRRQAUUVz/i3xVZeEdCk1G7JeUny7a3X79xKeiKPc9fQUAQ+MfF1p4R0tZ5Ea4vp38qyso+ZLiU8AAenPJ/qQKxfBfgm6t70+KPFbLe+J7kZ3H5ksk/55RjoOvJHqQO5ZPBfhDUW1BvF3i5/tHiC4X9zAeU0+M/wIOgbB5P16kkt6DQAUUUUAFFFFAHP+N9V/sXwPreoB9jw2knltnGJCCq/wDjxFRfD/S/7F+H+h2JXZIlojSLjo7Dc36k1gfFwm90TR/Dyk7tZ1a3tnUdfKDbmP4YWvQlUKMAYAwAB2AoAdRRRQAUUUUAV7i2ju7aS3uIllhkVkdHAIZT1BHoa8vtJ5vhLrv9n3kkj+Cr6X/RJ2O7+zpTyY2PXYT0J+vXcT6xVLUdOtNW0+ex1C2S5tZ1KSRSDIYf5/zmgC3HJHLGskbq6MNyspyCPUH0p1eV6Re3Pwy8Qx+GtWneTwvePjSb+Y5+zP18iQ9h6E/449UzQAUUUUAFFFFABRRRQAUUUUAFFFGaAMrX9esvDeh3Wrag5W3tk3HHVj0Cj1JOAK5L4deG7wyXXjLxAh/t7VssI2zi0t/4IgO3AGe/AHUHObFKvxQ8dh1Pm+E/D8mQcfJe3n/syqOf8Q1ep9KAFooooAKKKKACiiigAooooAjmijuYJIZkDxSKUdGHDAjkH8DXm/wnuptKk1zwReyEzaJdN9m3dWtpDlPrzz7bgK9Mrzbxrjw18QfDXixP3dtcOdJ1Fu2x/wDVs3sGBJP0FAHpNFFFABRRRQAUUUUAFFFFABRRRQAVj+I/DemeKNGm0vVLbzbeQZBHDRsOjKexGePy6ZFbFFAHmfhbxFqPhXV18G+MrrfKx/4lWqScLeR8YQt/z0B9eTnr0J9MyB3rE8S+GNL8W6TJpmq2xkiPzRyA4eJ+gZD1BH69ORkVyvgzX9T0rWpPBPiuXdqMSltOvm4F/APfu4A5HXr15JAPRaKMj1ooAKKKKACiiigAooooAKKKKACiiigBaSlpKACiiigAooooAKKKKACiikZlVSzMAoGSSeBQBna5rdh4d0a61XUZlitrZNzEnlvQD1JPAHeuF8G6Te+L9aj8d+JLdoSo26Ppzj5bWPp5h9Xbrk/4ba9gG+Kniv8AtOdSfCOjXBWzhbpfXC9ZSO6L27H8WA9SwaAHUUUUAFFFFABRRRQB5pqcza78eNG07hrfQ9PlvXH/AE0k+QZ+gKEfjXpdeafDmI6r4z8a+KH5We/+wQH/AGIQFJHsfl/I16XQAUUUUAFFFFABRRRQBm65otj4h0m40zU7cT2k67XUjke4PUEdjXA+HdVv/AXiKHwb4iumuNLuP+QNqcvBOMfuHPTI7fh6gD1CsfxF4c07xRos+l6nB5kEvII4aNx0dT2Yev4dCQQDYorzXwt4j1bw34hi8FeLpBJI6/8AEq1Tot2g/hc9A4GPqfXILelZB70AFFFFABRRRQAUUUUAFee/ELV728urPwRochTVNXBNzMnJtbXOHkPoT0H4jriui8YeKbTwd4cudYvBv8vCxQg4Msh4VR9evsAfSsb4feGryygufEWukv4h1gia5JH+oT+GFc9Aoxn3AHOKAOm0LQ7Hw5o9tpWmwCG1t02qO59ST3JPJPqa06KKACiiigAooooAKKKKACiiigArn/Gfh9PE/hDVNHKjfcQkxMf4ZV5Q/wDfQFdBRQBynw88QP4l8D6ZfTE/a1TyLpTwRKnytkds43fjXV15loMx8J/F7VvDbDbYa8h1Oyx0WbnzVH12s3tgetem0AFFFFABRRRQAUUUUAFFFFABRRRQAVzfjDwlbeLdJFvI5tr63cS2V4g+e3lHRgR2zjI7/gCOkooA4XwJ4rvr+a68OeJI1g8S6bxMAfluYz0lT2PfHTI6ZwO6rifHXhO61aK21zQ3Fv4j0s+bZy9BKv8AFE3qCMjB47dCa0PBfi6z8ZaGmoW6tFco3lXdq3DwSjqp9vT29waAOmooooAKKKKACiiigAooooAKKKKAFpKWkoAKKKKACiiigAooooAMivMvGF3e+NvEbeBdFunt7WJRLrl7GeUj/hgU/wB5u4/n8wre8e+Lx4V0qKK0j+061qD/AGfTrUDcZJSRgkeikj8wKn8DeFP+EU0LyZ5PtGp3Tm4v7o8tLK3J59B0H59SaANvTdMtNJ0230+xhWG1t0CRRqOFA/mau0UUAFFFFABRRRQAVna7qa6N4f1HU3wVs7aScj12qTj9K0a4H4wXMi+A5NMt223Or3cGnw47s7gn/wAdVh+NAFr4U6a2l/DXRlkyZrmI3crHqzSkvz74IH4V2lQWlrHZWcFrCNsUMaxoPRQAB/Kp6ACiiigAooooAKKKKACiiigDC8U+FdP8W6O+n36spzvgnj4kgkHR1PY9PrXM+EvF17Y60PBXi5gmuRDNpd/wahFzhwf7+Acg9we/Feh1zXjDwfZeLtMWGfdBe27eZZ30XElvIMEMD3HAyPYegIAOlyPWiuE8G+L7ye+m8LeKI1tvElmM5HCXsY/5ax/gOR9fcDu8igAooooAKQsqqWZgFAySTwKMj1Feb+OtW1HxDrUfgHw/KUmnQPq14vP2S2PYf7bDt7j1yACDREPxJ8Zf8JJcLu8N6PI0WlREfLczg/NOQeoBxt/DoQQfUP5CqOk6XaaJpVrplhEIrW2QRxqB2Hr7nrmr1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHnvxX02RNDtPFNhHu1Hw9cLeJjgvFn94h9scn/AHT613FhfQalp1tf2zb7e5iWaJv7ysMj9DUl3aw3tnNa3CB4J0aORD3Uggj9a4P4V3M1lp2qeEbxy134fujbqzdXgYlom/EZ/ACgD0KiiigAooooAKKKKACiiigAooooAKKKKACvMvF+mT+Cddbx7ocDNbthdcsk6TxE/wCuUf31zk//ALWfTajmhjuIXhlRZI5FKujDIYHgg0AQaff22p2FvfWcqy2s6LJG69GUjg+1W68t8PXUvw68Yr4OvmdtB1KRpNFuXPETHkwN+J4+o9ePUsj1oAKKKKACiiigAooooAKKKKAFpKWkoAKKKKACiiigAqG5uYLS2lubiRIoIkMkkjnAVRySfYVNmvNPiBfSeJ9ds/h7pkjiS6IuNVmQ/wCotRztPu3H5j+9QA3wPZyeMfE918QdRhIg5tdEhkHMcIyDLjszZP5ntivTar2trDZW0VtbRLFBEgREQYCqOgHsKsUAFFFFABRRRQAUUUUAFedeMANW+KPgvRRylq02qTj+6EGIjj/eyK9FzXmfhORtc+MXjDWCd0OnRRaXAT/Dg5cD/gan86APTKKKKACiiigAooooAKKKKACiiigAorz7xX8WNL8G30dprWia1EZAzQyIkDrIoOMgiXI/HBqhL8cNEg0y31Kbw94li0+c4iums0ETHOMBvMx2P5UAdD458EQ+LrCBorhrLV7J/Osb2M/NEw5wf9kkD8RmovBXjGfV5bjQtehWy8S6eMXMBPyzL2lj9VP6Vs+G/FWkeLdKGo6PdieENsdcFWRv7rA9DWP478GzeIIbfVNHnFl4j05vMsrocbh3if1Q+/Q+xIIB2dFch4K8aL4liuLG/tTp+v2BEd9Yv1U9mX1Q54PbP0J6m4uYbS1lubiVYoYkLyOxwFA6knsBQBg+NfFMPhLw+9+Y/Pu5WEFnbKMm4mb7qgdf/rZqn4A8KT+HNGln1J/O1vUpTdahNnOZDztB9F7ds5rnfCdrceO/GB8c6hGy6RalodDtZOpHRpyO2ecfX/ZGfUqACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzHxTKfCHxW0TxGPl0/WU/sq+J6K+QY3Pv29gpr06ub8eeHf8AhKfBmpaUqg3EkRe3J4xKvzJz25AGfQmgDpKK5nwF4hHifwXpmpOf9IMQiuVPBWZOHyO3Iz9DXTUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAc5418Lw+MPDNzpbt5Vwf3lrP3hlXlWz9eD7E1U+H/ieXxFoTQ6ivla1pz/ZNRhPVZRxu+jYz9cjtXXV5f42jufBPjGz8d2Mbtps4W01yJB/yzyAkuO5HAz7AdzQB6hRTIpo54UlidXjdQyMpyGB5BB7in0AFFFFABRRRQAUUUUALSUtJQAUUUUAFFFFAGbr2tWvh3QrzV71gtvaRGR+evoB7kkAe5rk/hjoVxbaTP4i1ePOua4/2q4ZusaEkxxj0AHOOxOD0FUvGP/FX+PtH8GqN9haf8TLVwOm1f9VG31Pb0INekgYAAHA6cflQA6iiigAooooAKKKKACiiigCC6uYrK0nupm2xQxtI59FUZJrgvg1p7xeBf7VuAftWsXc1/Lnr8zFR+GFz+NX/AIsai+mfDTWGhz51zGLSNR1YyMEIH/AWP5V0mh6auj6Bp2mIPktLaOAY77VC5/TNAGjRRRQAUUUUAFFFFABRRRQAUZoqveXcNhZT3lw2yGCNpJG9FUZJoA+XvjprTa58Rv7NtgXTT41tlCjO6VuWx+ar/wABr034mpYeFPgZHoUpj84wQWkKcZeRSpZvw2sc+vHevF/BGm3Xjz4oxPJNLBLPcS30s8QDGIjLgjcCMb9o5B6ivdL/AOCthrmppfeIPEet6oyLgJLKigDuBheB7DFAHIfs3Wl2p1+7ZJBZsIo1Y52s43E49wDz9RXv9Z+k6Pp+h6dDp+mWcVpaRABIo1wB757k9yeT1JzWhkHpQBwfj/wrPeRxeJ9BlSz8R6WpkjmPCzxDJaKTsQRnr06dDXAN8RV+Leo6R4PtYJdMt7yTzNSdpOZkRN7RRkdjhuT6D3FemfEPxM3h7w95FnEtxrGpP9k0+1KhvNkbjJXuAOefYd64JPg9deDtMstf8L3M03ijT1EjxSkNDcfLtkjUYBGQSBz+R5AB7JbW0NnbRW0EaxQRIEjRRgKq9APYVYrn/CXiuw8YaKl9ZtslU7Lm2f8A1lvIOqsPUH8xXQZHrQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHm/hX/imPif4j8NMdlpqYGrWK9ACeJVHvnnHotekV5x8V0m0m30fxnZxF7jQrsNKF6vbyYR1/l9Mk139pdw31nBd27iSCeNZI3H8SsMg/kRQBYooooAKKKKACiiigAooooAKKKKACiiigAqrqFjb6np9zY3cQltriMxyRkcMrDBH+elWqKAPO/hlfXGnNqfgjUpS99okmLd26zWrHMb++M4PoNor0SvNviXFL4d1DSfH1jEzyabIINQROsto5wQfUqxyPQtntXoNpeQX1nDd20qyQTxrJHIvRlYZB/I0AWKKKKACiiigAooooAWkpaSgAooooAKzdd1i30HQb/Vrk/ubSFpWGeuBwB7nitKvN/iIf8AhI/EegeBomPlXkv27UQv/PtGSQp/3mGB6FaAJ/hVol5a6DceINW+bWNel+2TseqRnlE9sA5x23Y7V6DTQgUBVGFHAGOMelOoAKKKKACiiigAooooAKKKKAPO/iJ/xNPFPgnw6OVudTN7Kvqluu4g+xz+leiV53a/8Tj47X8p+aHQtJjtwD/DNM2/P/fHFeiUAFFFFABRRRQAUUUUAFFFFABXnfxd1TUo/CF5o2j6Rqt9fahH5e60s3lSOMn59zKCMlQRjr82a9EooA+dPgfpGoeGvE15NrXh7WrWW5iS3t5n02bYNzgtuO3CjhfmPGM19F0UUAFUtT1G10jTLnUb2QR21rG0sjHsAMn8fQVdJwMngV5hrrt8RvGh8LW5P/CPaPIsmryKcC4mBykA9gRk+4xxgGgB/gO0ufF2tS/EHWITGJVMOjWknP2e3yQZP95+efTOOCMemUyKJIYljjRURRhVUYCjsABT6APOvFvhO+0nVpPGvhFCuroM3tiD+71CMdQQOj+hHUj1rqfCviaw8XaDBq+nt8knyyRt9+Jx1RvcH8wQa3D375rzPxL4e1bwnrM3jDwhCHWXDatpAOFulH/LSP0k69OT+JDAHpmRRWT4d1/T/E+i2+q6ZN5ttMM8/eVu4I7H1rWoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAKmpadbarptzp95F5lrcxNFKp7qwwf5/hXE/Ci8mt9G1DwveyF7zw/dvaFm6vESWjb8sgewr0GvN9Z/4pX4v6Vq4Oyx8Qxf2ddY6faF5iY+5+6PoaAPSKKMj1ooAKKKKACiiigAooooAKKKKACiiigAooooAq31lBqVlPZXcSy208ZjljYcMpGCD+FcJ8MLibSX1jwReyM0+hz/AOjO3WS1f5oz74yc+mQK9Frzbx1jwv4z0DxpEdlu7jTNTx0MMnKOfZWGT68CgD0miiigAooooAKKKKAFpKWkoAKKKKADIrzf4ep/wkXibxH42l+aK6n+wacT2t4jgsPZm5+oNaXxV1ubRPAd4tnuN/qBWwtVX7xeT5ePfbuI9wK3PCWhR+GvCemaOgGba3VHI/ifGWP4tk0AbVFFFABRRRQAUUUUAFFFFABSFlUEsQAOSSaWuZ+IOrjRPh9rl+Gw6WjpGw7O/wAi/qwoA574TSDVofEfiggj+19UkaEnr5EY2p+XzV6PXL/DvRjoHw/0TTnQpLHbh5FPVXcl2B+hYiuooAKKKKACiiigAooooAKKKKACiiigAoorP1rWLLw/o11quoSiK1tU8yRu+OwHqSSAPUmgDmPiD4ru9Gt7XRdCiFz4i1VjHaRDnylH3pW9l9/QnoDWt4O8LW/hHw9DpsLGWYkyXVwes0rcs5+p/QCue+H+j3up3114616IpqepoFtLdufsloDlE/3jgE/0JNehUAFFFFABSfUdaWigDy7XNMvvhvrM/inw9bPcaFctv1bSo+sZPWeIdAfUf0+76Do2s2HiDSbfVNMuFntJ13I4/IgjsR0Iq8RkYxXll/Y3Xwp1m41vS4JJ/CV7IH1GyjGWsnPHnRj+76j+gGAD1XNFVbG+tdSsobyynjuLedQ8csZyHU96tUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFch8SdBl8Q+Cb2K13DULTbeWbKPmWaM5G33Iyo/3q6+k6igDC8H+JLfxZ4VsNZgIBuIx5iD+CReGX8Dn6it6vM/AsI8IePNf8HMStnc/8TXTc9NjHbIg+hwB7AmvTKACiiigAooooAKKKKACiiigAooooAKKKKACsTxboEfijwrqWjSgAXUBVGbosnVT+DBT+FbdFAHFfDDxHL4k8GW7XgK6jYsbO9VuvmR8ZPuRtP1JHau1rzbSY18K/GXUtNUbLLxJb/boB2+0xkiUD3IJY/hXpNABRRRQAUUUUALSUtJQAUUUUAec+IP8AioPjD4e0dRuttGt31S4Hbe3yxg+4Iz+NejV5z8Nv+Jv4g8YeKW+ZLzUfslux7xQDaCPY5/SvRqACiiigAooooAKKKKACiiigArzv4r41G18PeGxydW1eFJVz1hQ7nP4fLXoledX+dY+OmlW4+aLRNKlumPYSStsx9duDQB6IBxj2xS0UUAFFFFABRRRQAUUUUAFFFFABRRRketABXlV753xR8brYxnPhHQrjNy4Py310vRB6qvf6n1GNj4ia/drFbeFNBcnX9ZzHGyn/AI94ed8remBkAjnqeorpfDWgWnhjw/Z6PYpthtYwu7GDI38TnHdjk/jQBqhQvAGPwp9FFABRRRQAUUUUAFRywxzRNFKiyRuCGRhkMD2NSUUAeS+RN8HtXM8QluPBN9KDKvLPpkrcbsd4z/nkfN6tBcRXNvHcQSJJDIodHRgVZSMggjqCKjurWG9tZbW5iWWGZCkiOuQyngg/UV5dZS3vwj1gWN/JJceCbuXFpdE7m052Odj/AOwfXp365yAes0U1JEkRXR1ZWGVYHII68U6gAooooAKKKKACiiigAooooAKKKKACiiigDzn4oI+i3WgeNoEJbRrsJdhRy1rL8j/XGRj65r0RJEmiWSNlZGAZWU5BB6EGqWtaVDreiX2l3IzDdwvC3GcAjGfqOv4Vyfwq1aW78IrpF6//ABM9ElfTrpCeQYzhT9CuOfY0Ad3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB538WEbTrLRfFkKkyaFqEcspUcmBzscfjla9CjkWRFdGBVhkEHII9azPEekrrvhrU9JbH+l2skILdAzLgH8Dg1hfCzVm1f4c6RJLkXFvF9kmDdQ0R2c+5Cg/jQB2VFFFABRRRQAtJS0lABWH4v1b+wvB+saor7ZLa0keM/wC3g7PzYityvNfjJO91o2i+G4WIfXNUhtXA6+WGyx/PZ+FAG98NtJGifDvQ7MqVc2yzSg9Q8mXIP4sR+FdZTVRURVQAKowABwB0xTqACiiigAooooAKKKKACiiigArzv4e51Txh448QH5ll1FbCJv8AZgXHHsciu21jUU0nRL/UpMbLS3knOe+1Sf6Vy3wl097D4a6S82TcXiteSserGVi4J/4CVoA7eiiigAooooAKKKKACiiigAooooAKxfFHiKy8K+H7vV75sRW65CZ5kfoqL7k8e3WtkkBdxIA65ry6zZfib48N+x8zwt4fl22o6peXeOX9Cq9vw9SKANP4deGb22W58U+IAzeItX+eUEY+zRHlYlB6cAZHqAP4c139H8hRQAUUUUAFFFFABRRRQAUUUUAFVb+wtdUsJrG+gWe2nQpJG44YH1/zxVqigDynSdVufhfrsfhrW5pJfDF0+NI1GU5+zsT/AKiQ9gOxP16cL6qCCMg1n6vo9jr2l3Gm6lbLPazrsdHGfxB7Edj2NcD4b1e98C+IYvBniK4abTZx/wASXU5uN4H/ACwc9Nw4A/D1AAB6fRRkHoaKACiiigAooooAKKKKACiiigAooooAK8wu4m8JfGy11AYTTfFEH2abn5VukHyn8RgD3Zq9PrjPidokus+B7xrQsuoWBF/ZuvLLLEd3HuRkD6igDs6Kx/DOtxeI/DWm6zFtC3cCyMAc7WP3l/BgR+FbFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXmXgKRtH+JHjXwwxxAbhNTtk9pQC+PbJQfhXptebeIoRo3xq8Lawp2x6pbT6bP6ZUF0/Ekgf8BoA9JooooAKKKKAFpKWkoAK801+I618dPDNh96HSLCbUZB7udi/iCqGvS6888L/8TD4weNNQPKWcVrYxH0+Xcw/76FAHodFFFABRRRQAUUUUAFFFFABRRRQB5z8ar2WLwD/ZtsxFxq95DYpg8/Mdx/A7cfjXe2NnFp9hbWcAxFbxLEg9FUAD+VcB4riXXfi54S0Zvmh0+KXVp09SMJEfwYfrXpFABRRRQAUUUUAFFFFABRRRQAUmR6ilrm/G3iu28HeHZdSmj86dmENrbDrPKfuqO/qfpmgDnviBqd5rGq2ngLRZWjvdRQyX9wh/49rT+I8fxN0H5dxXZ6Hotl4e0a20rToPJtbdAiLnJ9SSe5JyT7k1znw/8MXej2V1rGtnzvEOruLi9k6+WOqxD2UcYH0HAFdrQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVj+I/DWneKtGm0vVYPMgk+YMOGjcdHU9mH+IOQSDsUUAeb+Fde1Dwz4gTwN4pmM0jKW0nU36XcY6Ix7SDp+HuC3pFYPizwpYeL9GawvgyOp8y3uU4kt5B0dT6j9a5rwh4n1PTda/4QvxfIh1dF32V6OFv4h0P++MHI7/qQD0OiiigAooooAKKKKACiiigAooooAKaVBGCMjv7+tOooA84+HZ/4R/xJ4j8EscRWc/26wB7W8uDtHsrH82r0evMfiYkvhzxB4f8AHdsreXYzCz1Hb3tZDgZ9QCW/4Ewr01WVlDKQQRkEHrQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFed/GDNn4b0zXF4bR9Wtrskf3d20j6HcK9ErlPiTp41T4beILbGSLN5QPdPnH6rQB1YIIyDkUVi+Er86p4O0W+LZa4soZGP+0UGf1zW1QAUUUUALSUtJQAV558K/9K/4S3VT1vNeuQjesa4C/wBa9AkkWKJpGPyquSa4L4Lo3/CsdPuZBiS7mnnb6mVhn9BQB6BRRRQAUUUUAFFFFABRRRQAUUVDcXEdrby3ErbY4kZ3b0A5NAHAeFP+Jx8WPGGs/eisVh0uA+hA3Sj/AL7Ar0WvP/g/BIfBDatOpW41i+n1CQHrlnwP0UH8a9AoAKKKKACiiigAooooAKKKM0ANkkjiieWR1SNAWZ2OAoHJJPavM/DcT/EPxd/wl15Ew0LTWaLRYHHErg4a4IPuOPTA7jNL44v73xfr6+ANDfZEyiTW7xcH7PCf+WY/2m9PQjtmvQ9PsbfS9PtrGziEVtbxiOONRwqgYFAFqiiigAoorNm8RaJbyvFNrGnxyI210e5QFT6EE8GgDSorOt9f0a7nWC21awmmfhY4rlGZvoAc1o0AFFFFABRRRQAUUUUAFFFFABRWfca9o1ncNb3OrWEEyfejluUVl+oJzTYfEWiXEyQw6zp8krkKiJdIWY+gAPNAGlXNeMPCFp4u0tYJXa2vrdvNsr2Lh7eTruB9DgZHf8AR0tFAHBeDfGV7PqUnhbxVALPxFarlX6R3qD/lrGfXjkD+hC97XKeN/Bsfi7TovJmNlq1k/nWF8n3oZB/7KcDI/HqKqeC/GbazLLomuwrY+JrH5bm1JwJQP+WsfqpHPt9OaAO2oozRQAUUUUAFFFFABRRRQAUUUUAZuv6Pb+INAv8ASLkfuruBoi2M7SRwR7g8/hXNfC3WJ9S8GxWN+SNT0iRtOu0J5DR8A/iuOfXNdvXm8P8AxSvxpmiJ2WHii28xOwF1D1H4qc+5agD0iiiigAooooAKKKKACiiigAooooAKKKKACq99arfafc2jj5J4mib6MCP61YooA4P4N3T3Hwt0dZP9bB5sDA9tsjAD8sV3lee/CP8AcaP4g0/p9h1+7twPQAg/1NehUAFFFFAC0lLSUAZfiSf7N4W1e4Bx5VnM+fohNYnwugFv8MfDydM2iv8A99Et/Wrnj6Xy/h54kfOD/ZlwB9fLYU/wLH5Xw/8ADiYwRpltn6+WpNAHQUUUUAFFFFABRRRQAUUUUAFcb8U9TOlfDTW5VJ8yaD7MgXqWkITj/vo12VebfEqb+1PE/gvwso3i71IXk6+sUILEH65P5UAdr4d0saL4a0vTBgG0tYoDjuVUAn881qUUUAFFFFABRRRQAUUUUAGa5fxx4rTwpoJuY4zPqFw32extVGTNM3CjHUgHk/l1IroLu7gsLKa7upUit4UZ5JHPCKBnJ/CvN/BVhd+MvFMvj7Vo2SyUNDodrL/yziyQZSOzN1B9z2AoA6PwD4TfwtoGy8fz9XvJDc6hck5MszdRn0HQdup711tFFABRRRQAV83ftG3lq/iLR7GKKNbiK2eaaRAMsHYBQT3xsJ/4FX0jketfHfjW5m8b/F68htm3G6v1soD1G1SIw304z+JoA98+C/huLRfh3YXTW6Le34NzI5X5irH5Bn02bT+Jr0jIrMur7SfDWjxtd3VtY2FsixI00gRVAHyqM9TgdKpeGPF+j+L4byfRZ3uILWbyWlaMqGOM/LnnHPegDoKKKKACiiigAooooAKKKKAPA/2kL20SDRbARR/a3eSd3AG5UA2gZ9yT1/u10HwD8NQaf4IGsTW6fa9Qmd0lK/MIl+QAHqBkMfxryT4x6q/iD4qX1vbkyi1KWEKr1yv3h/32zivpA3ukfDzwTZDU7pLezsYIrfeFJ3sFA4UckkgnH1oA6fNFcT4U+KXhjxlqLadptzMl3sLLDcR7C4A528kH6deK7agArjPHXgn/AISSCHUtNl+w+IrA+ZY3qcHIOfLb1Q+/T6Eg9nRQByPgvxiviaCe0voDYa9YMI7+xfqjdmX1Ru3pn6E9dkVwvjnwZd6nJBr/AIamWx8TWI/czDhbhP8Ank/qD2z0+hNaXgvxfb+K9OkLRm01S0byr+xcYeCUcEYPODg4Pt60AdRRRkUUAFFFFABRRRQAUUUUAFcF8WtLurzwf/amnErqeizrqFuyjJ+T7w+m0k474Fd7TGUOpVlBUjBBHBH9aAM/w/rMHiHQLHV7bHlXcCygZzjI5X6g5H4Vp15v8NSdC1nxF4KlbC6ddm5sVP8Az7S/MAP90nB92r0igAooooAKKKKACiiigAooooAKKKKACiiigDz34dHyfFXj207LrHn4/wCui5/pXoVeeeDf3fxV+IcPpJYyAf70LGvQ6ACiiigBaSlpKAOU+JjbPhn4iP8A05SD8xitPwouzwfoif3bCAf+Q1rK+J4z8MvEQ/6c3Na/hc58JaMfWxgP/kNaANaiiigAooooAKKKKACiiigArzOxjbXPj7qd6Rut9B02O1VvSWTLcf8AAWcH6V6ZmvO/hN/p2ma74jbltZ1aeaNvWJTtQfhhqAPRKKKKACiiigAooooAKM8ZorjPiH4oudB0iCz0lRNr2qSfZrCEdQx6yH2UHP1x2oAxPFc7+PPGEPgmxlY6TaET67NE3UAkpBn1JGSP6qRXpMMEdvCkEMaxxRqFRFGAoHAAFc/4K8I2vg3QFsIWae4kYzXdy/LTynG5jn9B2Hqck9LQAUUUUAFFFFAHP+NNej8N+DdV1VpUSSC3fyc95SMIPxJFfN/wK0lNV+JsE82GFjbyXWG5y3CKfrl8/hX01rHhvR/EKQpq+nW96kJJjWZM7ScZx+VZ9t8P/CVnOlxbeHrCGZDuV44grA/h70AXPE8SN4W1YtGuRZXABIHGUOcH3rzD9m7/AJFPVx/0/D/0WteoeJzN/wAIzqUMFtPczzWskUcUK5ZmZSAOwxz3rzz4H6DrfhjStS0zWtJubN5pxPHI4DI/ygEcHgjA+tAHrlFFFABRRRQAUUUUAFZ+s6rb6Hot7ql26pBawtK27vgE4HuelaFZuraFpevWq2+rWEN5ErbhHKu5Q3rQB8qfCzTn8T/FjT5rxg5Wd7+YtzuZcuPrlsV9XXOl2d9c2tzdW6zSWjM8G7kIx4LY6Zxxk9Mnpk1jR/DrwfDIskPhzT45FOVdIQCD7Yqr8Qr/AMS2Xhtrfwppc13qNyTGJUIAtl7vyeW5wPz6DBAOE07QI9Y/aMvtV06FY7DSAv2mWHhXuDHtKcd8k5/3TnrXtteJeCT8SbO60rRJvDVtpGjrcrJdXUK5lkAO5i7NI2S5GCcZ54x29toAKKKKACuA8b+Fb+K/j8YeFF8vxBaKBNCPu38IxmNx3OBwevAHXaR39FAHN+D/ABbYeMNFW+tAYbiNvKurV+JLeTurf0P9a6SvOvGPhzUNH1VvG3hSE/2pEoF/YqPl1CH0wP4x2xycfn1XhjxLp3ivQ4NU06UPHIPnTI3RP3Rh2I/Uc0AbdFFFABkZxmjIxnNcH8SPFWveC9FbWrGLTbizR1jeGcOsiluAQQ2G5xxgcZrE+Fnxan8d6veaZqNpbWlwkPnQeSxxIAcMDuJ55B496APV6MisHxdqOp6N4ZvtU0xbRpLKF7mSO5ViHRFLMAVIweOKzvA2reJdf0e01jV4NPtbe7i82KCBHMm0/dZmJwARk4APBHPWgDr6KKKAPNvHZHh3xv4Y8YJhYGl/svUGzx5MmShPsGyc/SvSMj1rE8X6BH4n8J6lo0gH+kwsIyeiyDlD+DAH8Kxvhbr9xr3ge0N9v/tGxZrK7WT7wkjOPm99pUn3oA7WiiigAooooAKKKKACiiigAooooAKKKKAPPfC2F+Mvj4f3otPbH/bEivQq888Nf8lr8ce1vYg/9+69DoAKKKKAFpKWkoA5n4iR+b8OPEi+mnTt+SE/0qz4Mk83wL4fk/vaZbN+ca1J4uh+0+DNdgAz5mnzrj6xtWd8Np/P+Gvh1wc4sYk/75G3+lAHVUUUUAFFFFABRRRQAUUUUAc5491b+xPAet6iH2vFaOI2Bxh2G1f/AB5hR4D0kaJ4E0TT9u14rRDIP+mjDc//AI8TXPfFrN/pei+HFyTrWqwwSKP+eStuc/otehAAAAcAY4AoAdRUUrOkbvHH5jhSQucbj2Ga8u1/44WPhnV5tK1Xw/qMV3EFLqssTcMu4chvSgD1ais7RNVh1zQ7DVbcFYryBJ1VjkqGAOCfbOKyvGvjPTfA2iDUtRDybnEcVvHjfKSedoJxwMkn0HuKAOmorzjwl8V18bXk0GjeHNQdYADLPLJGqR5PGTnvg8Dng16PmgChrGrWWhaTc6pqEwitLZC8jkZwB2A7knj61w/gPTrrxFq83xA1qIpNdr5ek2r8/ZrXPDf7zdc+hPY4qrq3/FzfGbaFGxPhfRZA2oyKcLeXH8MIP91ep/8A2TXp0caRRpHGiqiqFVVGAAOgA7UAPooooAKKKKACiiigAoprOiKzM6qqgkknAAHWqWma1pesxSSaXqVpfJG212tplkCn0O0nFAF+ijNU59X021z9o1G0hx/z0mVf5mgC5RWBceN/CltnzvEujoR2N7Hn8t1Zs/xV8DW+d/iWyP8A1zLP/wCgg0AdjRXnz/GrwGG2w6xJcP2WKzmJP5rTT8YNFk/49NF8R3np9n01jn8yKAPQ6K88/wCFnX83/Hp8PvFj+89mIh+pNL/wnHjSf/j0+Gl6fT7RqMUP8waAPQqK89/t/wCJ0/8AqvBemWv/AF8amsn/AKBSGX4tzDIh8H2i9zI9wx/SgD0Ok3AkjIyOozXgmp+OPiC+pHS9E1rTNY1IEBodIsDLHFnu8r/KP198Vza+BPiro2v3XiPyrs3ZzJPcWtxHJJKG+8FTPzEZPy4xxx2oA+oKK8d8MaSfGlo81v8AEvxI00ZxPaIy200DdMMg6fhxW/8A8KksZv8Aj88VeLLz1E2qEj9FoA9DJwMngVm3XiLRLHP2vWNPt8dfNukT+Zrjh8FfBb/8fVpe3fr599Kf5MKuQfCLwFb42eHLc/8AXSSR/wD0JjQBdn+JPgu24k8T6Wf+udwr/wDoOazZ/jJ4At/v+IY2PpHbyuP0SteD4feDrcYTwtpH1ezjb+YNaUHh3RLXH2fR9Phx/wA87ZF/kKAOIb46eCi/l2099dt2WCzck/mBXm3iXxunhzXW8T+DdK1jS2viY76PULHZaXB5KuPm4fIPTryf72fpBIkjUIiKqjsBiq2o6XY6xZtaalZwXduxyYp4w657HBoA5v4b+LLnxp4Ng1a7t0huC7xSCMfIxXuM5wOeldhXleraHqHw21SbxH4XgM3h+Qh9T0WIfc7GWEdBjqRxwPT7vomj6vYa7pVvqem3CT2k67kdf1BHYg8EUAcf4yjTXvHnhXw0ypJbwvJq14jcjbGNsYI6EF2P5V4H4gs7n4T/ABaEtlnybeYXNsM/fgfOUP4bkP0Jr3/wpjWviL4r8QNl4rV49HtW9BGN0o/77YflXO/HzwgdY8Lpr9rFm70vPm7RkvAfvf8AfJwfYbqAN74haxFqvgSytNMnDf8ACSz29nbyL12SnLN7fID+dd5b28drbQ28CBIokVEUdAAAAPyFfOfwQub/AMRa1pun3RZtO8OpcXURPTfLtVVP0zIw/GvpGgAooooAK84sR/winxlu7L7mn+J7f7TCOgW6iHzgfVfmPuRXo9cF8VtPuG8Nwa/YLu1HQLhNQi/2kU/vFPsV5P8Au0Ad7ketFU9M1C31fSrTUrVt1vdQpNGc/wALDP8AWrlABRRRQAUUUUAFFFFABRRRQAUUUUAeeeE/3nxf+IMvXaNPQf8Afk/4V6HXnvgH9945+IF11DajFDn/AHEI/rXoVABRRRQAtJS0lAEF3ALqynt26Sxsh+hBFcT8GZzP8K9GDffi82Jh6FZXGPyxXe1558Ix9m0jX9LbhtP1y6gA/wBnIIP45NAHodFFFABRRRQAUUUUAFFFFAHnOpuNa+OOiWS4eLQ9PmvZPQSS4QA++MEV6NXmHwzzq/jLxx4lPzJNqAsYG9UiGMj6gpXp9ABXx78SFk1O9Xxa7M0etXl19mbsYISkaceuB/KvpT4k68fD/gPUrqIFrqaP7NbKOCZJPlGPcZLf8BryP42eH10T4f8Agy0CjNgrWrNn+Iopb65KZoA9N+GOq26fB7R9Qu51itra1fzJX4VFjdlP5ba8M+Les6j4gn07V7/MFtdrI+mWWMGO1BGJH/2pDz9FHXPHT/DIXfjbwrpvhAJImi6fO1zqsx6TL5heOBfYnLH2HrXF/Eu/l8XfFi6s7M71W4TTbSMcgbTswPYuWP40Ae5/A7Qho/w2tJ2j2z6g7XUhI5wThPw2gH/gVY/j34zWWmXOoeGtFEi6qr/ZjfS4WC3cnDNnqSvPbGR37+i3t9pvgnwj9ouX8uw021WMYAyQoCqoHqeABXmnhj4UW/iS/HjXxNFJFfX1y16umR7ViRScqsmRlj3IyOuD3oA0vDPjr4b+CfDltpMHiOKTyxummWKVzLIeXc7VJ5P9K1P+F0eD5f8Aj0l1C89Ps9hKf5gV29vplha/8e9jbw/9c4lX+Qq1j17UAeej4s20vFp4Q8XXR7GPSyR+rUp+Imvzf8enw519vTz9kP8APNeg9etLQB57/wAJb8Qrgf6P8NxGv96fWIR+mM0f2n8VZ/8AVeHvD1r/ANfF48n/AKBXoVGaAPPfs/xbuP8AWXnhK0B/54xTuR/31R/wj3xNuP8AW+OtPtc9fI0pHx/30a76eeG2geeeWOKKNdzySMFVR6knoK8yvvEer/Ea5n0bwbI9noy/u73XmXG4HqkA6k/7XGOenBIBx/iaPxRqd+/hLSvHF74h1KYGO7ht7SOC3t4+jea6k49No56j0BztO+Cvj/RLaa5sdVjhkZgJLSxvnge4Qdt+0KD6Z4/GvdfDHhPSfCOkLp2k2/lIOZJW5kmbuzt1J/l0GBxW7QB872ei+AZbxbHxoniPSdT6bNYvC0Tn/ZlAAI9+K9Csfg18O2gSeHR1uUYZWQ3srq35Pg/lXdX+mWOq2jWuoWcF1bt1injDr+RyK4Bvhjf+G7l73wHrsumluW068JmtZPb+8v15PuKANyD4XeB7f7nhmwP/AF0Qv/6ETWpbeD/DNkwNr4e0mE/3o7KNT+YFcmnxF1Tw6yw+OfDs+nx9P7TsQZ7U+5xlk+hya7fSdb0vXbQXOl39tdwnq0EgbHscHg0AXI4khQJFGkaeiAAflT6XIooAB07YorkfEnxD0Lw3crYu8t9qz8RadYp5s7H0wOn4mufk0bxt4/jK61MfDOhvybG0fddTL6O/RR7AfUUAbOvfEvR9JvP7M05Zdb1lshLDTh5jA/7bDIUD8T7Vjt4U8ZeN1z4v1RdJ0mQfNpGmN87j0kl5z7gZHsK7Hw74S0XwnYfY9FsUtkPLuOZJD6sx5P8AnFblAGVofh7SvDWnLYaPYQ2luOSEHLH1Ynkn3Oa1aKKAOI8TfD6LU9TGv6Fdvo3iOMfLeQjKTf7MqdGHGM/TrjFUtJ8f3elahFonjuzj0rUH+WC+Q/6HdY/uufuH2P6dK9ErN1rRNP8AEGlz6dqdrHc2sw+ZHHfswPUH0I6UAaIIIyCMetLXlcVh4q+GABsTceJPC6Hm1b/j7s0/6Z/31Hpx9B1rvfD3ibSPFOmrf6RepcQg4YA4aM+jL1B9jQBr0UhIHUiloAKKKKAGlQwIYZB7Y/CvItftNb+E8uoax4XskvfDl1uluLBiQLKXH+sTH8HAyPbHAxj1+mPGsiMjqrKwwQwyCO4oA8++Elpq1h4VSK+WyuIrmSS8S/tZw4nMjAkkbRg8n8sV3l7aQahZT2dzGJIJ42ilQ/xKQQR+teXss3wg1p5Qkk3gm/n3MFBZ9Mmb27xn/wCt1HzepW11Be2sVzbTJNBKgeORGBDA9CCOooA4P4W/DyXwFBrKXE0c0l3d/unQ5zAg+TdwMN8zZA46Yr0KiigAooooAKint4rq3lt50DxSqUdT0IIII/I1LRQB5p8KryfTH1rwPfMWuNBuMWzN1e2c7kP4Z/JlFel15v40A8M/ELw54tHy2tyTpOoMP7jnMbH2DdT6ACvSKACiiigAooooAKKKKACiiigAooqOaZLeF5XOERSzH0AoA4H4VHz08W3/AFF14iu2Q+qAqB/WvQq8/wDgxG//AArSxuZBiS8mnuWHuZWH8gK9AoAKKKKAFpKWkoAK888FH7D8T/HmlnhXmtr2Meu+P5j+eK9Drze+mGj/AB905yMRa1pD25PYyRMXB/75AH40AekUUUUAFFFFABRRRQAVm+INUXRfDupamxAFpayT89yFJA/MVpVwHxinc+Bf7KgYi41e9t7CLHUlnBI/JSPxoAt/CnSv7J+GuixsuJbiH7VKT1ZpDvyffBA/Cu0qG3gjtbaK3hXbFEgRFHZRgAfkKmoA8o+Ilzq2p+LvD1jD4a1W70fTL9Ly7mjttyysPu7OfmAy2fXPtVr4weHdQ8Z+DNMt9Hs3kuW1CKTbJGUZEKOp3ZGVALDOemK9NooA4GxsI/hn4JTStI0u/wBTvxC0h+y2rETTkY3O3QDOOCSQo78Z8U+H/g7xJpHxC0zV9c8Oar9khleWVxbMxDbG2nA5+/tNfVNeffEXWb2d7PwXoEm3WNYOJZFH/Hraj78h9Mjgfj3xQBkrLJ8U/G8bRqT4P0KbdvZTi+ugOBg9VXP+d3HqwGKzdB0Sz8O6La6Vp8Xl21sgRB3PqSe5JyT7k1p0AFFFFABRRRketABWVr3iHS/DOlvqOr3aW1snGWPLN/dUDkn2FZHi/wAdab4SiSB0e71W44tNOtxulmY9OB0Hv+WaxfDvgi/1jUY/E3jspdaoMm104YNvYqewXJDN7n9cAgAzotN1j4q3kV5q8VxpXg+N/Mg09jtmv8HIaXHRT6fl/er06zs7fT7SO1s7eO3t4l2xxRIFVR7AVOBTqACiiigAoooyKAGOquhVlBUjkEZBrhNb+FOjXlz/AGhoM0/h3VVJIutOOxW9mjGAR9MZ75rofEXi/Q/ClqJ9Y1COAtzHF1lk/wB1Byfr0rilv/Hvj2YpZW8nhTQWJ/0udQbyVP8AZU/cz68Y9TQBRuviH4j+H19b6X4tSx1tJCFS402ZVuiD0LwHGSfbA9zVSx8T678WbyWz03W7bwzpiOyPbpMGv5h3OONo+hH/AAKvQvDfgDw/4Xf7RZWZlv2yZL+6PmzyE9SWPTPfGKXxD4A8N+KCZdS0yM3XBW7hJjmUjod64Jx2zmgCbwx4N0PwjaeVpVmElYfvrqT5ppj6s/U+uOnsK6LNeYzaT8QvBhVtEvx4p0pTk2eosFuox/sy/wAX4/gK1dD+KOh6jdLp2qibQtXAAey1JfKOf9lzhWHp0J9KAO5opMgjII9aXIoAKKKKACiiigBCM/1964DxR8N/tmqHxD4WvDoniFessX+pufaVcc/XBz3B7egUUAcFoPxDT7euheLrT+w9c/hWRsW9z/tRSdPfBOewJrvc1k674c0nxLpzWOsWMV1AeQHGCp9VYcqfcYrgDN4m+Fs6ib7Tr/g0f8tcb7uwHv03oPX+XQgHqtFZmia9pXiPTU1DSL2K7tm/jQnKn0IPKn2NaeR60AFFFFAFe6tYby1ktrmFJoJVKSRSLuV1PUEdDkV5haST/CTWzYXbvL4Lv5s2twxLf2bKesb/AOwex/HrnPq9VNR0601bT57C/t0ntZ0KSRP0YGgCyjrIoZGDKRkEHIIp1eU6NeXnwv16Lw/rN1JceFr1sabqE5ybWTtDIew9CfbpyB6tmgAooooAKKKKAOe8beHx4o8G6ppAUGWeE+TngCRfmT9QKr/D3xAfEngfTb6Un7WkfkXSnqJk+VsjsSRn8a6mvMtBm/4RT4u6x4cddlhrq/2pYjsJsESqPrgn2Cj1oA9NooooAKKKKACiiigAooooAK57x3fjTfAWv3WdpSwlCH/aKkD9SK6GvPvjJI8ngMaXGxEuq31vZJjrkvuP6IaAN3wFZHTvh/4ftWXay2MRcf7TLk/qTXSVHHEsUSRRjaiKFAHYAYFSUAFFFFAC0lLSUAFeY/FtTpt34S8SqDjTNWRZWH8MUmA2fb5QPxr06uX+ImkDXPh9rlhjc7WryRjuXT51A/4EoH40AdRRWD4K1f8At3wXo2ps2ZLi0jaQ/wC2AA//AI8DW9QAUUUUAFFFFABXnfiwjVviv4N0c/NFZifU51+g2xn/AL7z+deiV514a/4m/wAYvFurH5o9Pt4NMhb/AMfkH4MP1oA9FooooAKKKa7pGhd2VVUEkscACgDD8XeJbXwl4autYufn8pdsMQ6yyH7qD6nH4ZrD+HnhO50qC48Q62TL4i1gia7Zlx5KnlYgOwAwD7gDoKx9FP8Awszxq2vyZbw1ocpj02JlwLm4H3piD1C/w/h0O4V6lQAUUUUAFFFRzTw28LzTypFFGpZ3dgqqB1JJ6AUASZrzzxP4+uW1c+F/BkCajrznE0x5gsVzgtIR1I9PX1PynOk8Tav8TbybS/CUsunaDEdl7rTLiSXPBSAHp0+91Ge3Ge68OeGNJ8KaYlhpFoIIxje55eVv7zt1Y/Xp0GBxQBl+EvAtp4bkl1G6mfU9duebnUrgZds/woP4V9v8AB11FFABRRRmgAorP1fWNP0LT5L/AFS8itbWMfNJK2Bn2Hcn0FcBH408VeON8XgnSlsdNJwda1NcA+8cXO72JyPUCgDudc8R6N4bsjd6zqMFnD/CZG+ZyOygcsfoK4SLxF4x+IDGPw1aHw/obddWvo900w/6ZR9B9f1BrZ0T4Y6RYXn9qaxLNr+snBa91H58EdNiHIUDt1I7Gu2xwOPyoA5Hw78ONE8P3R1CRZtU1hjufUdQbzZc/wCznhfqOfUmuvAx7YpaKACiiigArL1nQNK8QWZtNX06C8hwcLKmdue6nqD7jBrUooA83Pw61nw0fN8D+I57WJTkaXqJM9qfZc/Mn1GT71HafFKfSLtLHx1oF1oUpO0Xqgy2jt7Mo4z+OO5FemVDcW8V1A9vcQpLC4wySKGVh6EGgBtjf2epWiXVhdQ3Nu/3ZYZA6n6EcVYzXn958KdOgu3v/C2pXvhu9fk/YmzA5/2oTwR7DA9qozeLvGPgpR/wlmhrq2nrwdU0gZI95IjjH6D0zQB6dRWD4c8YaF4ss/tOjahFcAcvHnEkf+8p5H16VvUAFFFFABTSMg/T+dOooA8+1v4eS2uovr3gq6GjaweZYVX/AEW79pEHQn+8Oep681L4V+I0eqaidC8QWL6J4gTANrOcLN/tRMfvA+n5E13lYfiTwno/izTvsWrWgmVcmKUHEkR9VbqD/PvmgDczRketeVvrHin4ZEJriy+IPDCttXUo+bq1Xt5o/jHv9eegr0bStUsdb02HUNNuY7m0mG9JUOQf8CD27UAXqKM0UAZ2saNY6/pU+malbrPaTqVdGGMe4PYjsfWvP/D2t6l4E8QweDvEsrTaXN8mkavLxvA6QyHpuA4H0A6EY9RrI8QeHtP8UaPPpeqQCW3l79GjYdGU9mHr/iQQDXyKK828MeJL/wAM6/H4I8WT+ZOw/wCJVqbcLeRdlY9pB09/xBb0mgAooooAK89+LGnSR6HaeKbGMnUvD9wt4mOrxZHmIfbHJ/3T616FUF3bQ3tpNa3EYkhmQxyKehUjBH60ANsbyHUtPtr62ffBcRLLE47qwyDVmvPfhVczWemap4Tu5C9z4eu2t1ZurwOS0TfiN34AV6FQAUUUUAFFFFABRRRQAV5x4zkXVfih4J0HOVgll1OYf3fLU+Wf++gwr0evMfCoOufGfxdrZy0OmwxaXAx6Z6yAfRlP/fVAHp1FFFABRRRQAtJS0lABTSoZSGAIIwcjr606igDzr4Tn+zLbX/CrkhtF1ORIgf8An3kO+M/j81ei15zcf8U58b7a4Py2viSwMLHoPtEPIJ/4Bx+NejUAFFFFABRRRQBWvbuKwsLm8mP7q3iaRz/sqMmuE+DMU0vgiXWrvm61m/nv5T7ltv5fLkfWrvxZ1J9P+G2rLBzPeKtnEo6sZWCkf98lq6Lw5o6aB4b03SUORZ2yQlh/EQOT+JyaANWiiigArzfx3qF34k1y3+H+jTtDJcp52r3KHm3tePlz/eccY9CM8Gug8beLrfwdoLXkiG4vJ38mztE5aeVui4649f8AEiqvgHwrc6Bps9/qrifX9Uk+06hMecMeRGP9lc/nnHHFAHSaTpVnoemW2m6fAIbW3QJGg7f4n1NXqKKACijI9a5Hxb470/wq8discuo63c8Wum23MkpPQnH3R7n0OAcUAa3iLxHpXhXSX1LWLlYLdSAMjLO3oo7muEg0rWvijNHfa8k2l+FNwe30pGKzXg6h5iOinsP5YDHQ0PwNfatqsfiTxzJHeakvNrpyDNtYj0A/if3/AJ4BHoAGBgDHtigCK0tLewtYrWzt44IIl2pHGoVVHsKsUUZHrQAUVDc3VvZW0lxdTxQQRjc8srhVUepJ4FefXHxGvdfunsfAWjtq0iHa+pXGY7OE/wC8eXPqBj2zQB3epanY6PYSX2oXUNtaxDLSysFUZ6de9eft8QNY8XyyWvgDShNCDsfWb9THbof9lT8zn27HqCKsWfw1k1W8TUvHOqSa7dqdyWfMdnAfRYx976nqOorvre2htbdIIIY4YY12pHGoVVHoAOlAHC6Z8LrR75dU8VahceJNTHzA3nFvE3fZD90D26ewrvlVUUKihVAwAowBTqKACiiigAooooAKKKKACiiigAooooAKbzjpTqKAOP1/4a+HdeuftwtpNP1QHcl/p7mGZW/vEjhj7kE+9Y/kfEbwhzDNB4u01f8AlnLiC8QezfdbHvkntivSKKAOI0D4o+G9cvf7Nlmm0zVVbY1lqKeTJu/ug9CfbOfau3rE8QeEtC8UweTrOl291xgOy4dR7OMMPwIrkf8AhDvGXhf5vCXiU31mnK6ZrQ8wY9FlHzD2HAoA9Jorzu2+KdvYXC2XjLSbvw5dnhXmUy28h/2ZV4P8veu9tLy11C2S5s7mG4t5BlJYXDqw9QRwaAJ6KKKAGMiupVlBUjBBHBFed6j8PtQ0PUJta8AXq6bdSHfcaZMM2lyfTH8B+n0G0V6PRQBxXhbx/a63fvompWr6R4jhOJtPuD944yWjb+MY59ce3Ndrmub8U+CdH8WwL9vheO7i5t723bZPCevyt9ex4z2rlIvEPiP4dyi28WiTVtBzti1yCMmSEek6Dn/gQz+JJoA9Poqrp+o2Wq2Ud5YXUNzbSDKywuGUj6irVAGF4o8K6d4t0l7DUYiCPmhuEOJIH7Mh7EHH1rm/CHifUbHWD4K8WSD+2ok3Wd3/AA6hDzhh/tjByO+D6GvQa5jxl4NtPGGmxxSSyWl/bP5tlfxcSW8gxyO+DgZGR0HQgEAHT5HrRXB+DPFt7JqEnhTxQq2/iO0XKyDhL6LtKnqcDkD0+oXvKACiiigDzTxJIPCHxW0fxCfl0/W0/su8I6LNnMTn6/d9gpr0uuW+IPhceLfBl9pi8XQHnWrjqsy5K89s9M9gTUngPxF/wlHgzTdTc/6S0fl3IPBWVeHyO3Iz9DQB0tFFFABRRRQAUUUUAVNTv4dK0m71Cc4htYXnk/3VBY/oK474R2Ett4Ct7+6X/TdWmk1Gdv7zSMcH8V2n8ab8W7yY+EYtDs2xe65dxafFjsHbLE+20EH6121lZw6fY29nbrtht41ijX0UAAfyoAsUUUUAFFFFAC0lLSUAFFFFAHn/AMXrC5fwlHrtgP8AT9Buo9Rh4zkKfmB9sHcf92ux0fU4Na0Wy1S2P7i7gWZfYMAcH3GcVanhjuYJIJo1khkUo6MMhgeoP4GvP/hVK+lw614NuXJn0K8ZYd3VreQl42/U/TigD0WiiigAooooA87+IX/E18W+CfDo5WbUWv5h/sQLnB9iSfyr0SvO7L/ib/HbU7gfNDomlR2o9Fllbfn67eK9EoAKinnitreS4nkWKGJS7uxwFUDJJPYAVLXl/jS+uvG3iVfAOks62aFZtbvEPEUYORCD/eOBn8B2agBfCsD/ABA8Wt431CJhpFkWg0K3kHBGfnuCPUkcfT/ZBr0+q9paQ2NrDa20SxW8KLHHGowEUDAA9gKsUAFFQ3V1b2dtLc3U0cMESl3kkYKqqOpJPQV5hea7rXxOZ9M8KmfTvDocrd626lXnA6pCp7HuePfHQgGlr3j2e61aTw14Jt01LXOk9yf+PayHQs7dyP7o7+p+U6nhDwJa+GZJ9Su531LXrv5rzUZvvOf7qj+FRgcD0HoANjQPDmm+GNIh0zSbVbe3jwSR952xyzHuff8ApWvQAUUmQASSMCuE1j4m2EV82k+HLSbxDrPTyLP/AFUZ/wBuT7qj86AO5lljgieWWRI40BZndsBQO5PavPr74oRX13JpngvTZvEOoKdrSxfJaxH1aU8Y+nB9aqp4B8QeLrtL7x9qoe0Vg0eh2DssC+m9urH+R6NjivRLKwtNMs47OwtYra2jGEjhQKq/QCgDz5PhtqHie4jvviBq76iyNvj0uzJitIj6f3nPucHtkivQrKyttOs4rSzt44LeJdscUahVUewqzRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAVr2wtdSs3tL+2hubaQYeKZA6t9Qa4GX4WtotzJfeB9audBuHO57Rv31rKfdG6H35x2xXo9FAHm3/Cc+JfC2Y/G3htjarwdV0jM0OPV0PzKPc/lXY6H4m0TxJb+do2qW16oGSI3y6/7yn5l/EVrY46dq4nxD8L9A1qb7bZRPo2rKdyX+mnyXDepxgH3PX3oA7iivM47z4jeDlMd/Yx+LNNTpc2h8u7VfdD98+w5966Dw98Q/DXiOT7Pa6gLa+3bXsbweTOrf3dp6n/dJoA6yoZYI7mF4poleN12ujqCGHoQeo9qmyPWigDzS68Cat4OuZdU+HsypG7b7nQ7lyYJ/eMn7jfj6DIAxW54W8f6V4mnbT3Emna3FkT6ZdjZMhHXbnhh7j8QK6+uX8WeB9K8X2gF3Ebe/iwbbUIPlngYcghupAPY8fQ8gA6jNFeYWvjHWvAskWl+O4nuLLO231+2QtG49JlHKsPXnPvgk+lWt3b3trHc2k0c8Ei7kkjYMrD1BHBFAHMeNfBqeKLW3uLWc2etWD+dYXq9Y34+U+qnAzVbwV4yuNWnuNA8QW62PiaxH7+36LOvaWP1U9/Su1rjfHfguTxHb2+oaVcfYvEOnN5ljdrxz3Rv9k/ofUEggHZUVx/grxtF4oS4sryA2Gv2B2X1jJwyHpuT1Q/pkZ7E9hketABXm/hT/AIpf4m+IfDDfLZ6jjV7AdstxKo/EZA9Fr0ivOvilHJpY0PxlboTJoV6DcBerW0mEkH8vpkmgD0Wiobe4iureK5gkWSGVA8cinIZSMgj1FTUAFFFFABRkUVR1fU7fRtHvNTum2wWkLzP9FGcD34xQBw1x/wAVN8bbaAHdZeGLMzSHt9pn4A/74APsQa9Hrz34Q6Td23hWfW9SX/iY67dPfyk9QjfcH0xyP96vQqACiiigAooooAWkpaSgAooooAK828Wf8Ut8TfD3igfJZaip0nUHHAG75omP/Aup7Ba9JrA8ZeHk8U+EdR0dhh54iYXPGyUfMh/76AoA380Vxvw18USeKfCEMt4Nup2jm0vkPBEqcZI9xg/XI7V2VABRketFc9451oeH/A+s6nv2NDav5R/6aMNqf+PFaAOc+FP/ABMIfEniM8/2rrEzQt6wJ8qfl81eiZ5xXL/DzS/7E+HuhWO3a62aSSL6O43t/wCPMa3r+/ttMsLi9vZVitrdDJK7HhQOSaAOc8e+KW8M6CPsiefrN8/2bTbdfmMkzcA4PZSc8+w71L4F8KDwp4eS1lYTajOxuL+6PLTTtyxJ7gZwD7Z6k1zHgOwvvFuvy+P9bieONwYtDtXA/cW54L4/vMOM+mccEY9PyD3oAMj1rH8R+JNK8LaU+o6tcpBCOFGMtI391R3NZHjHx3ZeFvLs4YZNR1u5GLTTbcbpHJ7nH3V9+vBxWX4Y8D313qcXijxtIt7rnWC0GDb2C9gg6Fh6849yAxAM620bWfibqEeo+JYJtO8LxsHtNHZislyR/HNjoPQfy6n023t4raBIbeJIoY1CIiKAFA6AAdAPSpRwPb/PFcp4m+IeheG5fsjStfao5KR6dZDzZmb0Kj7v40AdbmuJ1/4maLo96dMsUn1nWD8osdOTzGU9tzDhffqfasWHRPHXjrMniW8bw7oz8rpunv8A6RIvYSSdhjqPzAruNA8MaN4XsfsmjWENrH/EVGXf3ZjyfxoA4ePwf4r8cTG48b3xsNKblND0+TAI9JZB976DI7jaa77RtC0vw/YLZaTYQ2duv8ES4zjuT1Y+5JPvWlRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWB4h8F+HvFMe3WNKguGC7VlxtkUegdcED2zit+igDy+Twx488Hyl/C2rrrmlj/mF6q/7xR/dSU/pkgDuDWnpvxT0lrtdO8RW114b1M/8sdRXEbf7sv3SPc4rvao6npNhrNk9pqVlBdwN/wAs50Dr9ec4PvQBcjkSWNZI3V0YZVlOQR7GnZHrXm0/wzu9AL3PgLXLrR5clvsE7mazkPoVbJXPqM49qjt/iTq3h+T7N4+8PT6aoO0anZo09q3ucZK/Tk+woA9HuLeG5t3t54Y5YZF2tFIoZWHoQeD9K81u/COveBL59U8CD7TpjsXutAmkO0nu0LH7p9v59B6Fper6drdkt3pl9b3lu3HmQOGX6HHQ1eoA5jwr430rxXHJFbM9vqEPy3On3I2Twn3U9R7iunyPWuS8VeBNN8TzJeq0una1B/x76la/LKh7A4+8vse3pk1z+l+NtZ8J6gui/EOONFkbbaa5CuILj2fH3G/AfTAyQDV8c+D7rVTBr3h51tPE2n/NbzdBOg6wv2IPv9OhNaXgzxfa+LNMeQRta6jbt5V9YuMPBIOCCDzjjg/1BrpI5EljWSN1dGAZWU5BB7g1wHjXwdeNqC+L/Cv7jxLaKN0Yxsvox1jkHrgYBz7ehUA9ByPWqWq6bBrGk3mm3S7oLqFoZBj+Fhj8+ay/CPiqy8XaKt9bZinQ+VdWz8PbyjqjD2PT1rocigDzv4R3dxD4du/DOpPnUfD9y1pJk53R5LRsP9nHA9lr0SvN9Y/4pj4xaTqg+Sx8RQnT7n089OYmPuR8o/GvSOlABRRRQAV5x8UJH1qfQvBVs58zWLsSXe0/dtYvmfPp2x64Ir0YsqgkkADqSa828Af8VP4t17xvKN1u7/2dpbEcfZ0PzMPZn5+u6gD0aONIY1jjQKiKFVVHAA6AfhUlFFABRRRQAUUUUALSUtJQAUUUUAFFFFAHmd2q+CPi3a3yDy9J8U/6PcDoqXi8o3plgcY7ksa9MrnfGvhiPxb4Wu9JZvLmceZbTY/1Uy8o3qOePoTVT4feJn8S+GUa8GzVrJ2tNQhPDJMnBz9ev4kdqAOtrzP4yE6jp2geGo9xbWNWiikC/wDPJTlvyypr0yvO7v8A4nPx00+AjdDoelSXBz0WaZtmP++cGgD0FQqKFAAVRgAdB6V5l4jkf4g+NV8HwO39g6WVuNZkQ4E0mcx2+R+Z/HoVrb+IPie60q1tNE0QeZ4h1hzBZKP+WQ/ilPsoyR789AaueGPD+m+APCnkSXKBYg1xe30p2mSQ8u7H04A+gHWgDpUjSKNY40CRoMKoGABjAHtXnviPx5fXmtt4W8E26X2rcC5vTzb2AJ5LEdWHXHr6n5apPreufFCV7Pw4Z9I8Lhitxq7DbNdAHDLCp6An+Lt9flO5PqXgv4T6FFYmWKyQLujt0+ee4buxA5Yk9zwOnAoAueEvBFh4Y867eSS/1m7+a81K4+aSU9wP7q8Dgeg64FSeKvHWh+Eogt7c+bev/qbG3G+eUnphR0+p4rmxP4/8cgm2X/hEtGfO2SVA97Mv+70j/mPU10fhnwDoXhZ2uLS2afUJMmXULtvNnkY9SWPTPfGM96AOYht/Hnj8F755fCOiMf8Aj3h5vZl92P8Aq/yB7YIrrvDngrQPCcJXSNPjilcYkuG+eWT/AHnPP4dK6GigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqN4kkjMboGQjBUjII9MVJRQBwep/CrRJrttQ0Sa78Pakf8Al40yQxqT2DR/dI9hisybxD4+8EsE17Sh4l0wf8xDTI9s6j1eLoT9MD3r0+kIoA5zw1438O+K4h/ZOoxyTYy9rIdkyfVDz+I4rZv7C01Oyls762iuLaUbZIpVypH0rB8R/D7w54nf7RfWAjvc5W9tT5U6n13L19s5rA/sf4heEW3aRqkXijTl/wCXPUiEulHos3Rj7tx7UAVbjwz4i+HW6+8Hyz6poobdNoVyxd41zyYG659v/QjXYeFvGGkeL9PFzps4EqjE1pJxNAw4IZe2PXoaw9J+K+hXV+NL1iO50DVOAbbUk8sEn0foc9s4zVrxN8O9O1y8XWNOuJdI16PBi1CzO0se29ejj689s4oAzPGHhjVNH1Z/Gfg6Mf2ooxf6ePuX0Q6nH98du5+vXq/Cviaw8WaFBqunt8r/ACyQsfnhkH3kb3B/MYIrkrHx/e+Hb+LRPiDBHY3TnFvqsQzaXQHfP8Dc8gjHrjimeJdFvvCOry+NvCkXmwyDdq+locLdR9fNQdnHXjr16k7gDc+JWhSa74Gvo7csL6zH220dfvLLF8wx7kZX/gVavhTXI/EvhXTdZj2j7XAruF7N0ZfwYMKk8O+IdO8U6NBqulz+bbS/99Iw6qw7EVw/gJX8J+PfEXgyXK2kp/tTTQegic4dR9DgAezUAen0UU13SNGd2VUUZLMcAD1oA4D4p6ndnSbLwtpLhdU8QTfZEOf9XD/y1fjnAHB9ifSuw0LR7bw/oVlpNmuILSJYlPQtgck+5OSa4XwIjeLfFWp+PbhD9lObDR1YfdgQ/NJj1ZvxHzDpXpdABRRRQAUUUUAFFFFAC0lLSUAFFFFABRRRQAV5b4jt2+H3j2LxjBxomrMtprEY6ROThJsemeD6ZP8Aer1Ks7WtHtdf0a80q+TfbXUZjcDqM9x7jg0AaAYMoZSCDyCO9eW+FNZsbTUvH3jfVJ1isxf/AGRZG6GO3Xau31LFhwOpp/hPxTceH9D1vw7r7htU8M2zyI7f8vVqqkxyD14wp+o75rxOLxjpp0PSNIv0kutOsWa9uLdDtN9duxYBz2RVIU9yc+uQAevaPqVtpiXHxM8ZuYLzUV8vTLHG6SK3/gjjXqXfqT0wcnGTVPWrxtfSPWfiJd/2F4aVt9noJc/aLojo0oHzH/d7e3U8/wCHbPxr491iPxH9ijS4/wCXfUL+PFtZJ1H2aE53sP7xyMjHX5q9S0D4aaXpmpjWdXuJ9d13IJvr47thHTYnRfbrjsRQBjwap4y8V28dp4Y0hPCuiIAiXt9CPO2Dj91COF44549DW/4d+HGhaBcjUJI5dU1gnL6jqDebKW9RnhfbHOOpNdeOKdQAgHGPbFLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZWteHtI8RWZtdY06C8i5wJEyV91PUH3GDXGf8K/8Q+GTv8EeJ5Ybdemlapme3/3Vb7yD6c+9ekUUAeVaj42tPsjaR8TvCclhBIQpuPL+02jt/eDrkqfTGSPUVBYf2v4Ns1v/AAldjxV4QzlrBJRJPaDuImGdwH93r+ZNerTQRXEDwzRRyxONrRuoZWHoQeD9K4G8+FVpZ3smpeD9TuvDeov977Md9vJ6Bom4x6AcD0oA5e11iy0m5n8Z+By11o0jZ13QlGyW3PTzkT+EjuBwcemdu1441K0a08NfEjRpluLfTpwJ3j/jtZfkcEeoJAwehJ9K5DxNpHjDQ9TOvXWl+VqsY51vQl3pMvHy3FuevQZYAe4bAxxGiePbLTZtQ0ya2Meg6urxX9nDlo4nYYE0GcFcddh9Bz02gH1tHIssayIwZWGVIOQR615z8SNXvdSvbPwJoTEahqyk3ky/8utpnDsfQkZH5jqRVX4e+O7GH4TPf6ldI39hBrSZlP8ArAmBHt9dylVHqa1Phxot4UvfF2tx41nXGWUxn/l2t/8AlnEM9MDr+HcUAdjpWm2ujaVa6bZReXbWsSxxqOwA/U9/ertFFABRRRQAUUUUAFFFFAC0lLSUAFFFFABRSZHqK8w+L3xKTwfpTaVpr51u8jIUhv8Aj3jPHmH37KPXnoMEA9QzRXJ/DSeW4+G+gzXEryyvahmd2LM3J6k11lAHhPx+8Oa1qV9pOoaTpU9zHHDJBNLaRM0gyQQGC87cZx9T6iuZ+G/w68QXFjbeJdNtvCuorMD5Sao00hhZSQQUUBdwx3zjjGK+m8Zryy+k/wCFW+NZdUKsPCeuyj7SqD5bG6/56Y/usOuP/ZQCAaOfi+MAR+CQPb7VS7/jB/zz8E/ndf416AjrIiujBlYZDA5BFOoA893/ABg/55+Cfzuv8aN/xg/55+Cfzuv8a9CooA893/GD/nn4J/O6/wAaN/xg/wCefgn87r/GvQqKAPPd/wAYP+efgn87r/Gjf8YP+efgn87r/GvQqKAPPd/xg/55+Cfzuv8AGjf8YP8Ann4J/O6/xr0KigDz3f8AGD/nn4J/O6/xo3/GD/nn4J/O6/xr0KigDz3f8YP+efgn87r/ABo3/GD/AJ5+Cfzuv8a9CooA893/ABg/55+Cfzuv8aN/xg/55+Cfzuv8a9CooA893/GD/nn4J/O6/wAaN/xg/wCefgn87r/GvQqKAPPd/wAYP+efgn87r/Gjf8YP+efgn87r/GvQqKAPPd/xg/55+Cfzuv8AGjf8YP8Ann4J/O6/xr0KigDz3f8AGD/nn4J/O6/xo3/GD/nn4J/O6/xr0KigDz3f8YP+efgn87r/ABo3/GD/AJ5+Cfzuv8a9CooA893/ABg/55+Cfzuv8aN/xg/55+Cfzuv8a9CooA893/GD/nn4J/O6/wAaN/xg/wCefgn87r/GvQqKAPPd/wAYP+efgn87r/Gjf8YP+efgn87r/GvQqKAPPd/xg/55+Cfzuv8AGjf8YP8Ann4J/O6/xr0KigDz3f8AGD/nn4J/O6/xo3/GD/nn4J/O6/xr0KigDz3f8YP+efgn87r/ABo3/GD/AJ5+Cfzuv8a9CooA893/ABg/55+Cfzuv8aN/xg/55+Cfzuv8a9CooA893/GD/nn4J/O6/wAaN/xg/wCefgn87r/GvQqKAPPd/wAYP+efgn87r/Gjf8YP+efgn87r/GvQqKAPPd/xg/55+Cfzuv8AGjf8YP8Ann4J/O6/xr0KigDz3f8AGD/nn4J/O6/xo3/GD/nn4J/O6/xr0KigDz3f8YP+efgn87r/ABo3/GD/AJ5+Cfzuv8a9CooA893/ABg/55+Cfzuv8aN/xg/55+Cfzuv8a9CooA893/GD/nn4J/O6/wAaN/xg/wCefgn87r/GvQqKAPPM/F8j/V+Cfp/pX+Ncd4r+GPjXxeTLe6Z4Kguic/a7Q3Ech+p5DfiDXueR61wPxC167YweEfD8m7X9WGzeOlpb/wAcrHtxwPz64oA+ffDHhLxBN4zg0y0tH1Gxt9TRLmWEO1nJ5TgsWbgEAZ684PuK+v8AGB/9asrw34fs/DGgWmkWKYhtkC5xgue7HHcnJrXoAM0ZrmPHot4vBmqXtxdX1r9ktpJY5bO7kgcPtO3lSM84wDke1eD/AAkk8SeNvFklpqPijxCbC3t2mm8vUplJbIVRndkdc/8AAaAPp+ivlrVfGviX4c/Eq8sI/Ed/rFjaToHjvLgzeZGQGKknowDYJGOR+FfUtABRRRQAUUUUALSUtJQAUmR60tYvibxHYeF9DuNUv5AEiBEcYYB5n7IgPVjjH60AUvF/in/hHLSCCytje61fu0Wn2SdZX6sT6Ko5Y9BXzb8WtCm0HW9Oi1G5a81q7s/tmoXGTh5HkYAKOygLtwMDjoOle16X8P7vxDKPFPiTU9Wsdcu0+WGwumgFpCeVg4GeOrdPmJ47nxn41aVHo/jaGyS/1O+C2KM0uoXJncEu5wGPO3px6k0AfSfgQY+H/hsY/wCYXbcf9slroayPC4C+E9GUYAFjBwO37ta16ACqmpabaavp89hf26T2s6lZI3GQwNW6KAPM/Bl9c+ENefwFrkzyQHMmiXkhyJoRyYSf7y9MentivTK5zxj4TtvFujfZJXaC7icS2l3Hw9vKPusp9M9R/LgjH8CeK76+uLvw14lRYfEmmnEmD8t1F2lT69/T2zgAHd0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFZmv67Y+G9FudW1GUR21uu5jkZY9lHqSe1AGb408V2/hLQ2u2T7RezN5FlaKMtcTHhVA6/X29yKzfAHg2bQILjWNZk+1eJNTPm3twTnZnkRL6KOBx3HoABmeDNI1DxTrK+O/EsBhlKlNJ05ulpFnG856u3XPp9QF9KoAKKKKAPJP2g9bGn+A4tNR8S6jcqpXpmNPmY/99bB+NedfDzWNe8E+ANY13TfDFxei7bC6gXBiiRMjlB8xALMT0HvxTf2gtbOoePIdMRsxabbKpXP/LR/mJ/752flXsrxWngP4LtBdoqpZ6YUlR+jzOvK/wDAnb9aAPL/AIUeBdD8Ua0fEGp+IbfVb6OU3MunorA+YSDvk3AFhk9hjOOT0r6Nr5O+BFvey/FC0ltt/wBnhgla5Kg7dhQgA/8AAip/CvrGgAooooAKKKKAFpKWkoAK47xb8O9O8Y6rYaje6hqdtNYDMC2sqBVbdu3YZG+bgc+wrsaKAKyW8q2SwG7meQJtNwwTzCcY3YChc/8AAce1ed658E9F8S6o+paxrmvXN24CmQywLwOgAWIAD6Ada9NooAytC0htC0qHTlv7u9jhUJHJdeXvCgAAZRFBHHUgn3NatFFABRRRQAVx3jfwdL4gittU0qb7F4i04+ZY3Y4z6xv6offpn3IPY0UAcd4H8bw+LLee2uYDY65YN5d9YycGNgcZX1UkH6d+xPY1xHjTwbcajdQ+I/Dkq2XiayGYpcYS5XHMUvqCOM9vp0u+DPGdr4stJUaM2erWbeVfafLw8Dg8/Vc9DQB1VFGaKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo60Zqre3ttp1jNeXcyQ20CF5JHOFRR3NABf39rpljPe3s6QWsKl5JJDhVArzbRLS5+J+uQ+JtXgeHwzZSZ0nT5B/x8uOBPIPT0H9M7o7a1ufi7qaahqCTW3gy1k3Wlo2VbUXH/LRx1CDsO/516nFFHBEkUUaxxqAFRRgKB6CgBwUDtj8KdRRQAVBPFJLBLEk0kLupUSxhSyEjAYbgRkdeQR6g1PRQB5bcfAzQbvWW1i41rXpdQaYTtM80Jy4OQceVjsOMYq9q3wi07XpEOs+JPEt/GpJEM12nl/98rGAPwxXolFAGD4b8I6J4Rs2tdE0+O2R2BlfJZ5COm5mJJ/PA5wBmt6iigAooooAKKKKAFpKWkoAKKKKACiiigAooooAKKKKACiiigArhvF3gV9R1FPEnh2cab4mtVxHMOI7hQMbJR3GOM/nkAY7migDkPB3jSLxKs1jewHT9fs/lvdPk4ZSMfMmeqHse2R7E9fkVxvjDwHF4huINW028k0rxDZ5+zX8I+vyOP4lOT9Mnrkg1/Cvjie61FvDXii3XTfEkI4TP7q8X/npE3fp93r+RwAd1RRketFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFGR61ieJfE2l+E9LfUNVufKj+7Gg5eVv7qL3J/IUAXdU1Sx0XTp9Q1G5jtrSAbpJXOAP8ST2715vbafqvxWvI9Q1VZtP8GxvvttPztkv+eHkx0Qnt/8AtVLYeGdb+IN9BrHjSD7Ho0L+bY6CCck9nnPc4/h/lyG9PVAihVACgYAAxgdhQBHBDHbwxwwxrFEihVRFwFHoB6VNRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAtJS0lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXO+LPCGneMNMFpfI0c0Z3213FxLbv2ZW7dBke30NdFRQB5hpfijV/At5DofjmTzrSRtlnr4H7uT0Wb+63bJ/XBavTVdXRXRgysAQwOQQehqtqGnWeq2Utlf20dxayrteKRcqR9K80fRfEvwyuDc6AbjWvCu4mXSnYvPaKephJ+8B/d/QnLUAerZorD8N+KdH8VaeL3SLyOdOjx9JIz6MvUGtygAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApMj1FNkljhieWV1SNAWZ2OAoHUk9q801PxjrHjK6k0f4eqBCjbbrXZlxBFjtH/AH27ZA/TkAG94s8dW3h6aPTbK3fVNfuBi306A/Nz0Zz/AAp7n/HGb4Y8CX02rjxR40njv9bPNvbLzb2I7BB03e/b3PzHZ8I+CNN8Jwu8Qe71OcZu9RuPmmnY9SSeQM/wg46Hk811NAAO3bFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAtJS0lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUnWlooA4bxH8OLTUb9tc0K4fRPEKnct5bcJMfSVOjA9+Oe+elZ2kfEe40m7TRfiBZro+o5CxXgBNpc+hD9FPqCcfTpXpVU9R0ux1ezks9QtIrq3cEGOVAwP50AWkdJEV0dWRhlWByCPanV5jL4P8S+B99z4GvDeacp3NoN/IWUDv5MhPy/Q/mTWx4Y+JOl69dHTL+KXRtcT5X06++VyT/cJxvH5H2oA7aiijI9aACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKx/EHibRvC9gbzWdQhtYhnaGb5nI7Ko5Y/SgDYzXK+KPHuieFiLaeY3WqSYEOm2o3zyseg2joD6muWh1rxp8Q2Mei2kvhfQj1v7pM3M49Ik6KPft1BzxXWeGfAWg+FFMllbGW+kB86+uT5k8pPUlj0z6DA9qAOVtfCPiPx7It/47lkstMyGg0G0l2qVzwZmHJOO3/oPSvSLKxttOtIrSzt47e2iG1I41Cqo9hVmigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBaSlpKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsPxD4S0TxVZ/ZdY0+K5VfuOeJI/dWHI/r3rcooA81/wCEe8c+DcP4c1U+INNXk6dqr4nUekc39DwOwq94f+Kug6xfHTNQE+iauvyvZ6ivlnd3CscA+2cH2rvKytb8N6N4jtPs2sabb3keMDzF+Zfow5H4YoA1c5orzc/D/wAReHPm8F+KZ4bZfu6Zqg8+D/dVvvIPpz70o+I2reHx5XjXwreWKLwdQsB9ptj7nHKD25NAHo9FYmg+LPD/AIliD6Pq1rdkjJRHxIPqp+YfiK280AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFGaACioLy+tNPtmub26gtoF+9LNIEUfUniuFuvi1oks72fhy1v8AxFfA4EenwMUU/wC05AAHuM0Aeg1g+I/GOg+FLbztZ1GG2J5WLOZX/wB1Byfr0rlTp3xJ8U839/ZeFrF+sFl+/usehk+6p91xWxoHw18NaDP9rWya+1Anc19qDefMx9cnhT7gCgDBh8S+N/HCZ8M6cnh/SWOBqWppvnkHrHFyPzyPetnQvhrpGl3w1XUpJ9c1ngm+1BvMIP8AsL0UencetdmB/hTqAGgH/Jp1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAtJS0lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNI4xTqKAOK1z4VeFNcuDeNp5sL/O4Xenv5Ein14+XPuQTWf8A8Iz8QdA/5AniyDVrdeRba3Dlv+/qfMT9a9FooA85/wCE/wDEujnHiTwHqUSD71zpci3afUgcqPqTWlpfxV8F6o/lJrsFtNnDR3gNuwPp84ANdnjIOazdU8P6PraFNU0qzvARjM8CuR9Cen4UAXre5gu4Vmtp45om6PG4ZT+IqXNebXPwS8Lic3Gkz6po0x72F2yjP/AgTj6EU6LwZ4+0dNukeP2vIx0h1a0Ep/GTJagD0eivO/tnxXsBibSPDmqL62ty8LH/AL74pf8AhO/F1r/yEPhtqSAdTZ3kdx/ICgD0PPGe1FeeH4sW0P8Ax++EPFtme7S6WcfmGpf+F0eDUGLqe/tf+u9hKP5A0AehUVwSfGn4fOOPEKj/AHrWcf8AslOPxl8AAZ/4SKM/9u83/wARQB3dFcCfjT8PQM/8JCv0FpOf/ZKjPxr8DuP3GoXM59I7KY/zWgD0KivPf+Fv6TL/AMemgeJ73/r30xj/ADIo/wCFi67c/wDIO+HXiF/T7WFtv5k0AehUV55/b3xPvv8Aj18G6Xpw7G+1ES/pHzTTonxS1LIvPFOjaSrdRp1kZiPp5mD+tAHouRXPar458LaKHF/4g06F1+9H54Z/++FJP6Vyf/CnLfUTu8ReKvEGrnOTHJc7Iz/wHkj8CK6XRvh34R0EKdP0CzWReRNKnmyD6M+WH4GgDCb4s22onb4X8Oa3rhPSWK2MUB+sjDj8qTHxS8QHppPhe2b/ALfLhf8A2Q/pXogAAwOPanUAedw/CLSry6W98UanqXiK7Xp9smKxL/uxr0HtnHtXc2Gm2Wl2iWthZwWtun3YoIwij8BgVbooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAFpKWkoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAE7UYPalooAikt4Zf8AWwxv/vKDTPsNp/z6Q/8AfsVYooAiW3hXlYUH0UVLj8KKKAA0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9k='] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 59 "如图, $\triangle A B C$ 的内心为 $I, D, E, F$ 分别是边 $B C, C A, A B$ 的中点. 证明: 直线 $D I$平分 $\triangle D E F$ 的周长. " ['如图, 不妨设 $A B \\geq A C, \\triangle A B C$ 的内切圆切 $B C, C A, A B$ 于 $T, K_{1}, K_{2}$, 过 $T$ 作内切圆的直径 $T K$, 过 $K$ 作 $\\odot I$ 的切线分别交 $A C, A B$ 于 $M, N$, 则 $N M \\| B C$.\n\n由于 $\\odot I$ 是 $\\triangle A M N$ 的旁切圆, $A K_{1}=A K_{2}$, 因 $M K=M K_{1}, N K=N K_{2}$, 所以有 $A M+M K=$ $A N+N K$.\n\n延长 $A K$ 交 $B C$ 于 $G$, 则由三角形内切圆性质知: $B G=C T$, 因此 $D T=D G$, 故 $D I$ 是 $\\triangle T G K$ 的中位线, 所以 $D P \\| A G$, 因 $B D E F$ 为平行四边形, 所以 $\\triangle D E P \\sim \\triangle A B G$, 相似比为 $\\frac{D E}{A B}=\\frac{1}{2}$.\n\n同理 $\\triangle D F P \\sim \\triangle A C G$, 相似比为 $\\frac{D F}{A C}=\\frac{1}{2}$.\n\n又注意 $\\triangle A M K \\sim \\triangle A C G, \\triangle A N K \\sim \\triangle A B G$, 相似比均为 $\\frac{A K}{A G}$.\n\n既然有 $A M+M K=A N+N K$, 所以 $A C+C G=A B+B G$, 因此, $D F+F P=D E+E P$, 即所证结论成立.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAeYETAMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAopKKAFopKKAFopKKAFopKKAFopKKAFopKKAFopKKAFopKKAFopKKAFopKKAFopKKAFopKKAForP1i6u7LTJ7mzigmliQvsnkMakAZPzBWx09K8q8KfGTWvGWqTadpPha1a4jgM7ebqJVdoIGM+WeSWGOg96APZaK8o8PfGaLUPFv8AwjWu6M+j6gZ/s65n81PNzgKTtGM9B15xXqo6UAOopKKAFopKKAFopKKAFopKKAFopKKAFopKKAFopKKAFopKKAFopKKAFopKKAFopKKAFopKKAFopKKAFopKKAFopKKAFopKKAFopKWgApKWkoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKa3Q8UAV7++t9Nspr28nSC2gQvJI5wFA7msTwV4sh8Z6I+rW1u8Fv8AaZIYw5yWVTwx9OvSvJvjJrd94h8Jz39nM0fhyK6S3geNv+P+Xnc//XNdrAep57V2nwJTb8LbJtuPMnmbPr85Gf0oA9KHIFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHGfFbWBonw21q43ASTQG2j55LSfJx7gEn8K8j+CGt+HfCuia3rWsapaW9xI6xJC0gMzIo3HCdTkt19V9q1v2kNbVbfRtCR/nZmu5Ez0AGxD+r/lXonw+8JWGl+AdFtbvTbd7kW6ySmWFWYM+XIJI7FsfhQB4h4R8Par8SPie/iQ2cttpf2/7XLKwONqsCIw3QtwAfzr6jHSkSNY0CooVR0CjAFOoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAClpKWgApKWkoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQ8c1wmu3U/jTU7nwrpVzJDp8Hy6vfwEBhkf8AHvGT1dh944wo9ziu6bJBGa57QfBOheF7iabR7aa3afJlU3Uro5P8RRnK5464zQB5J8bfD40HwLpkEesahdQC+RIrWcwiJFEcmCAka4x0HbBrvPgkm34TaM2c7mnb/wAjSD+lbXiD4feHPFNyJ9btLi8ZfuI17METgD5UDgDp2HNXvDvhfSvCtk1no8E0NsTuET3Ekqr/ALoZjt9eKANodKKBRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSEHnmlooA8i+Ifw88HyXD+I/F/iXV4t7LCrmSPaOuEVViPQbj+ZNekaFGi6RbPDqc+pQOivDcy+XlkIyMbEUYI9q85+OW7V9Js/D9qsbTbvt08jDPkRL8gPtuaQAeuD6Vk/C74h3OkSN4O8Up9nawf7LBdMMKhU7RG/44AbocgHkjIB7gOlLSKcqD/KloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAClpKKAFpKWkoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK57xj4usPBWhnVtRjnlh8xYlSBQzMxz6kDoPXtWzeXdvYWk13dzJDbwoZJJJDhVUdSTXCrosnxAhn1PW4ni0ySF49Lsph90MpH2mUf3znKj+Ee5yADttK1G31fSbTUrUsbe6iWaMsMEqwyMj8auVzvgO9lvvA+kSXClbiOAW8ykYxJGTG4x2+ZDXRUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIxwpb05pa5Tx/fSxaCNKspSmo6zMthbkfwb/vv/wABQOc+woA4+7B1fwp4p8WOP+QlNHBZ5PS1hlCoR6bm3sf94VB438LhPHBls7WJ5tVgaeFJB+7lmjUCaBh/dlix/wACjBHrXZeMrKDTfhpcWNsoWC2hghjUdlV0A/QVZ8d6Xcah4be4sf8AkIadKl/ae8kZzt/4Eu5f+BUAcv4W8UDQrKw+1XE0/hi8ISyvLj/WWMmcfZrg+xyoY+mDXpy42jHT3rzE3Gn2dxBrSxJL4S8VBPtscgysFw4wrsOwfIV/RgDnrWha3l18P7qHTtRmkuPDEzCOyv5Dk2RPCwyn/nn/AHXPToeMUAd/RSA5AI5B6GloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKWkpaACkpaSgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmSusSNI7KiqCSzHAAHr7U4nHWuIvZZPHepS6XayNH4dtJAl/cKcG8kByYEP9wdHPf7vrQAlsj+PtRS/nBHhe2fNpC3TUJAeJWHaNT90fxHk8AV24UKMDt2xSRRJDCkUaKkaAKqqMBQOgAp9AHK+F5VtNf8AEui4x5F4t5EOxjnUMcf9tBJXUjgAVyWolNK+JmkXnQatZy2D+nmR/vY8/h5o/KutHAoAWiiigAooooAKKKKACiiigAooooAKKKKACiiigBaKKKACiiigAooooAKKKKACiiigAooooAKKKKAEooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEPsM1xlif+Eh+JF5enD2WgxfY7dhyDcyANKR7qmxfxat7xLrUfh3w7f6tIpcW0JZYweXc8Ko9y2APrVXwboj6F4XtbWdi97LuuLuTu08hLOfzJA9hQBX+IPPgXUfpH/wCjErpiM5B5HpXNfEL/AJEbUv8Atn/6MSunoA4LQNOt4rnxF4G1GFXsNxubOJujWsxJKj/ck3D2ytTeG5XKXvgjxCRdT2seIXn5+3WZ4Vz6sPut74PcU/xuBo2o6P4uTgWEwtrz0NrKQrE/7rbG/A1c8X6Hc39tb6ppO1Nb01jNaMxx5i/xwt/suOPY4NAGTBc3Pw8u4rG/lefwtM4S0vZOWsGJ+WKQ94z0Vz04B4xXeowZQR0PSsXSdT07xf4cS5WEPbXUZjmgnTJQ9HjdfUHII9q521urr4fXUWn6nPJceGZmEdnfSNlrFieIpmP/ACz7K/bgHjBAB3tFIpBUEHIPSloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApaSloAKSlpKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApDS1y/iXXLtbuLQNCIbWrpdxkK7ksoehmcdP90H7x46ZoAq65qN14i1OXwxok7RIgB1TUI+TboefKT/AKaMP++Qc9SK6jTdPtdK023sLGBILW3QJHEnRQP5/XvVbQ9FtdB0uKytgW2kvJK/LzSHlpGP8TE5OfetMdKACiiigDkviGv2fw2mshS0mjXcOoADuqNiQfjGziurRg6KykFSMgjvVfUbKHUtOurG4XdDcxNDIvqrDB/Q1ieAr+S/8G6cJzm5tVayuM9fMhYxsfxKZ/GgDpaKByKKACiiigAooooAKKKKACiiigAooooAKKKKAFooooAKKKKACiiigAooooAKKKKACiiigAooooASiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqK4mjghkmmdUijUu7McBQOSSaAOQ8Rf8AE98baN4fQ5t7I/2rfAdwpxCh+r5bH+xXZjgVx/gCGa8sr3xNeRFLrW5/tCBhhkt1+WFf++Bu/wCBV2IoA5j4hf8AIjal/wBs/wD0YldPXMfEL/kRtS/7Z/8AoxK6egCpqdhDqumXen3Izb3ULQyD1VgQf51z/gO/nufD502/k8zUtIlbT7o9NzJ91/oyFGz6murri77/AIp74j2d9gJY67F9juCeguYwTEx92Tcn/AVoAg1HPgrxU2rJhNB1iYJfjoLa5OFSb2V+Fb0IBrs7u1t7+0mtbqFJreZSkkci5DAjkGm3tnb6jYz2V3EstvPGY5I2GQyngjFcz4Rv7ixurnwlq0xkvtPQPbTv1urQnCP7sv3W98HvQBRguLr4eXUdjfyyXHhaZwlreOctYMTxFKf+eXZW/h4B4wR3iMGQMpBBGQR0qOe3huoJLeeJJIpFKujrkMp6gg9Qa4ZHuPhzciGZpZ/CMrAJKTubTGJ6Mf8AniSeD/D06UAd/RTY5EljWSNg6MAVZTkEeoPpTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApaSloAKSlpKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiisjxDr1v4f043MsbTzyOIre1j/wBZcSt91FHcnv6AEngUAVvE3iBtHjhtbGFbrWb0mKytSeGbuz+iL1J/DuKXw34eGhwSyTzG81K7YS3l46/NK/oPRFHCr2FQeGtAubOafWtakSfXLwDzXUfLBHnKwx+ijue5ye9dKBgY9PSgBQcjIooooAKKKKAE74rkvDbrp/jHxPo20qjyxanCD3Ey7Xx/20jY/wDAq66uR11hpfj7w7qW3CXyTaXM3uR5sX6xuP8AgRoA66ikHSloAKKKKACiiigAooooAKKKKACiiigAooooAWiiigAooooAKKKKACiiigAooooAKKKKACiiigBKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuO+IMz3ljY+GLdmW4164+ysy9UtwN07f98Ar/wIV2FcXoBbXvG+sa9u3WlgP7Kss9CwO6d/xbauf9g0AdjBFHBbxwxIEjjUKijsAMAVJQOlFAHMfEL/AJEbUv8Atn/6MSunrmPiF/yI2pf9s/8A0YldPQAVz/jPRH17wxd2sB23se24tHHVZ4zuQ/mAPxNdBSEZ7CgDL8M63F4j8OWGrRKUW6iDsh/gboy/gwI/Cs7xjodzqFrb6lpRVNb0xzNZMx+V8jDxN/suPl9jg9qo+H2/sHxtrWgO2IL0/wBq2APT5ziZPwcbsf7ddkcHj/61AGZ4e1y18RaNBqNsCgkBEkT8NE4OGRh6ggj8K0JoY7iCSGZFkikUqyOuQwPBBHcVxWpD/hCvFJ1pMpoOrOqaioGEtZzhUm9lbIVvfBruV6UAcCrXHw3uArGSfwhK/DE7n0wk9/WEnp/d+ld5DIksKSRuro6hlZTkMD3FJNEk8UkMiK8bqVZWGQwPGDXCCS4+HN1smLzeEpX+WQ8tpbMfun1hJPB/h+lAHf0UyJ0liWSN1eNhuVlOQQehB9KfQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUtJS0AFJS0lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFQXV1DZW0tzcypFBCheSRzhUUdST/AJ6UAVda1iy0LTJtQvpdkMIB4GSzHgKoHJYngDvmsPQNHvb2/HiTxBFjUGVlsrMnK2ETfwj/AKaED5mH0HFV9Gs7nxTqsHiXVoXisLcltJsZl5Tt9okH98j7o/hB9TXaKMKB/WgAX7opaKKACiiigAooooAK5b4hRSHwfd30CBrnTCmoQ5/vQsHI/FQw/E11NRzRJPDJFIoeN1Kup7gjkUANtbiO7s4LmJt0c0ayKfUEZBqauV+Hs8reE4rC4ObjS5pdOkP/AFxYqp/FNp/Guq680AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGF4v1iXQvDN7fWsfmXu0Q2seOXmchIx7/Mw/WpfC+ix+H/DdjpiHc0MY81/+ekh+Z2/Fix/GsXVnfW/iHpmkx5az0mP+0bzHTzWykKE+o+d8f7Irsh0oAKKKKAOY+IX/Ijal/2z/wDRiV09cx8Qv+RG1L/tn/6MSunoAKKKKAOO8fxyWNtYeJ7VN1zok/nSY5LWzDbOP++Tu/4AK6+N1kjV0YMjDKkdxUd1bxXVtLbzJvilQxuuOqkEEflXL+AbqddHn0K9fde6LO1k5PV4xzC/0MZX8QaAOk1GxttTsLixvIRNbTxmOWNhwynjFcv4RvrrTb6fwhqsrSXdigezuG/5ebXore7r91voD3rsh0rmfGOhXGqWcF/pbLHremuZ7F26M2MNG3+yy8H8D2oA6btUU8UdxE8MyLJFICrqwyGBHIIPUVm+HNet/Eeiwahbgxl8rLC/3oZBw8bD1BBH4VrDpQBwA+0fDe5APmXHhCV+vLPpbHp9YSf++PpXewyxzwJLE6yRuoZXQ5DA9CDSTRrNG0ciB42BVlYZBB45zxjrXBstx8OLndGJJ/CErfMgyz6WxPUdzD7fw9elAHoFFR28sU9vHNBIkkMiho3QgqynkEEcEYqSgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAClpKWgApKWkoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiimmgBHO0Ek8Ac5OK4df+Lg6iHIY+FbOTcgPTUplPBz/zxU9P7xHoOZNTuJvGmqzaDYSyR6Lavs1W7iJBmYc/Zkb/ANDI6A47nHZW0ENrbRW9vGkcMShERAAqqOAAB2oAkXG0Y6UtFFABRRRQAUUUUAFFFFABSEfr7UtFAHI6Ozaf8RPEGm42w30EGpQgdN2DDIf/ACHGfxrrR0HGPauT8UM+neK/C2rL9w3L6dMf9mdfl/8AIkafnXWDoMdKAFooooAKKKKACiiigAooooAKKKKACiiigBaKKKACiiigAooooAKKKKACiiigAooooAKKKKAEooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqC9uYrKynu53CRQxtI7HsqjJP4DJqeuM8eu2pnS/CkDkSavP/pGDjbax4aXntkYX33UAP+H9tLJpE+v3SFb3XZjfSBuqRniFPoIwv4k1146CkRQsaqowoAAGMYFOoAKKKKAOY+IX/Ijal/2z/wDRiV09cx8Qv+RG1L/tn/6MSunoAKKKKACuL1j/AIp/4haZrCAi11hRpl4OwlGWgc+5+ZPxWu0rF8V6IfEPhq+01H8ueVN0En/POVSGRs+zKDQBsjpQRk1i+E9cHiHwzZagy7J3TZcRtwY5lJV1/BgwrboA4bWAfBfiQeIYsromoOsWqoPuQSHhLgDt2VvbB7V3C42jGMe3SoL20t760mtLuFJreZGjkjdchlIwRXK+Eb2fSb+bwfqTkz2SeZYSu2Tc2mcKc92T7h+gPegDsqjlRZUZHUMjDDAgEEdxzUg6UUAcBPFdfDy6a8tI5Z/Ckr7p7VQWfTif44wOsWckr/DkkV3Nrcw3lrFc200c0Mqh0kjYMrA9CCOo96fIiyKysoIIwQRwa4KeO4+Hdy91aq83hKVi9xbxqd2mk9XQDrGSeV6rkkd6APQKKitbiK6toriCRJIpVDo8bBlYHnII6j3qWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKWgApKWkoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuP1/VLvWNTbwxoMxjnKhtRvk6WUR/hH/TVh0HYfN6VZ8Ta7dQ3UOhaJtk1y8QlNwylrF0M7+w6AfxHgd8aOgaFa+H9NW1ty8jljJNcS8yTyHlnc92P/wBagCzpOl2ejaXb6fYQiK2gTYij09T6knknuSau0g4ApaACiiigAooooAKKKKACiiigAooooA5zx1ZT3vgvVFtf+PuGL7TBjr5kREif+PIPzrZ0y9j1PSbO/i/1dzAky/RlBH86sMAQeBz61yfw98y10C50eXPmaTfT2Qz18tW3R/8AkN0oA66ijpxRQAUUUUAFFFFABRRRQAUUUUAFFFFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADWrjfCwOueK9a8SuMwRN/Zmnse8cZ/euPZpMj/AIBWj431ibRfDM8lmCdQumS0slHeeQ7V/AE5PsK0fD+jweH9AsdItsmK0hWIMerEDlj7k5P40AaQ6DHSiiigAooooA5j4hf8iNqX/bP/ANGJXT1zHxC/5EbUv+2f/oxK6egAooooAKQ+nrS0UAcXpGdA+IGqaRjbZ6sn9p2g7CUELOo/8cfH+0a7MDAxXI/EG2eLSrbxDaxs95oU4vVVeskWNsqfQoW/FRXU2lzFeWcF1C4eKaNZEYdGUjINAE1c14v0GfVbSG+0xli1rTn8+xlPGWx80bH+44+U/XPaulpp60AZPhvXoPEeiwX8CNE75SaBx88EoOHjYeoIIrXHSuF1dT4K8T/29GNuh6m6xaog6QzH5Unx/dPCt+B7V3SnKg5z7+tAC0x0DgqwBDDBBGRT6KAPP57e4+HVy95YxyTeFJXL3Fqgy2nMTzJGO8fqg5Gciu6tLqC8tIrm2lSWCVA8ciHKsp6Ee1PYAgqQCCMEH0/wrgri3ufh7dSahp8ck/heVzJd2aDLWDE8yxDuhOSydskjvQB6BRUFndQX1nDdWsqS28qh45EOQynoRU9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABS0lLQAUlLSUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYPibXzo0MVvaRi51a+bybG1OfnfH3mI6Iv3mPYfUVP4h1228Paa13cK8jsRHBBEN0k8h+6iDuT/wDX9azvDOh3UF1NrmtlJNcvU2uEOUtos5WBD6Duf4jk0AWfDnh0aJbySTzteancsJLy+kADTP6eygcKvQCt4HIoHIzS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAL2rj7UPp3xR1GEnEGrafFdJnp5sLGN8e+xovwFdfXI+M0a01Pw3raHAs9RWCZj0EU48o59txj/AC9qAOuHTiikHSloAKKKKACiiigAooooAKKKKACiiigBaKKKACiiigAooooAKKKKACiiigAooooAKKKKAEooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiqGsalDo+kXmpXJxDawtK3vgE4/HGMUAc3PnxB8S4YVbdZeHofOkHY3Uq4Tjvtj3H/ALaCuyHSuZ8CaZcWPh1Lu/TbqepyNf3ue0knO3/gK4X/AIDXT0AFFFFABRRRQBzHxC/5EbUv+2f/AKMSunrmPiF/yI2pf9s//RiV09ABRRRQAUUUUAMkRZEZHUFWGGBGciuP8BSNpseo+FZ5C02jz7YM8k2snzQkH2GU/wCAV2dcX4oB0Lxbo3iaNdsErjTNRbt5Uh/dOf8AdkwM+jmgDtKKRfuj6UtAFe+tINQs5rO6iWWCdDHJG3RlIwRXJ+EryfRb+TwbqcrPNZx+Zp07nJubXOBk93T7p/A967Sud8XaDLq9jFc6fKLfWLF/OsLjH3Xxyh9VYZUj3z2oA6EdKWsXw3r8XiHRkvFjMFwjGG5tnOWt5l4dG9wc/UYNbQoAKawB4PI96dRQBwN1aXXw/vJdT02GS58NysZL2wjG57Nj1liHdT1Ze3JHeu3sru3v7KG7tJ0nt5kDxyxtlXU9CDUxAPB6e9cJfWl34Du5dT0mCSfw7ITJf6fGuXtmJ+aeLvjuyfUjkmgDvKKrafe2uo2EF5ZTJPbTIHikjOVZT0IqzQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABS0lLQAUlLSUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVR1fVLTRtMnv76URW0K7nY/oB6k9AO5IHep7q4itYJZ55ViiiQu7ucKoHUk/wCcVx+mQTeM9Wh16/jeLRrVg+lWjrgysM/6TIP/AEAdhz1IoAn0DTLvWNTXxRrkLRT7SNOsnOfsUR7sP+erDG70Hy+tdeOAKB0HaloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsTxfpT654R1XTYv9dPbOIfaQDKH8GANbdIfc4FAGb4d1Rda8N6bqakH7VbRynHYlQSPwORWnXJeBY20+31fRGIA03UpliGc4ikxMn5CTH4V1o6UAFFFFABRRRQAUUUUAFFFFABRRRQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXF+Msa5rmi+E1yY7iT7de46fZ4SCFP+9JsH512TEBSSQB3J6CuN8FbtY1DWPFcnMeoTeRYk9rWIlVI9Azb2/EUAdoKKQdKWgAooooAKKKKAOY+IX/Ijal/2z/9GJXT1zHxC/5EbUv+2f8A6MSunoAKKKKACiiigArM8QaPB4g0G+0m5JEV3C0RI6qT0Ye4OCPetOkIPODQBzvgnWZta8LwS3o26halrS9XuJ4jtf8AA4z9DXR1xcJ/4R/4lywM2yw8QQ+dEvQLdRAB8f70YU/8ArtB0oAKKKKAOG15f+EM8QjxPCpGk3pSDVo1HEbdEuAOwHCt7EeldwpDKCpBB6EHNQ3VvDeW0ttcRrJDKhR0cZDKRgg+2K5LwpcPoepT+Dbx3zaJ52mTSHPnWpPC57tGTtPttPegDtKQkDJJwPU0AYGKMDPSgDn28eeEY3aOTxPo6upKsrXsYII6g80xvH3g4jB8U6Kc+t7GR/Ovnb4iAeM/jg2lWZADXEOn+YB3GFdj9Du/KvoPVNJ8K7rDRL3SrKVr4PFDGbdS21ELFumQAABn1Ye1AHPw3VvoE9zr/hK6h1bw68pOpWNlKJfIYjJlixxwOWTvkkV6Bpt/aanp8F7Y3CXFtMgeOVDkMD3rB8C+EYfBfhr+yoyrEzyzO4ydwZjtBz3CBAfpWZqGnXfgi+n1nRIJLjRpmMmpaZGMmM95oR692XvyetAHd0VV03UrTVtPgvrGdLi1nXfHKh4YVaoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAClpKWgApKWkoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmswXk9PrSk1xWsXcvi7VJ/DenMw0uA7dXvI2Knsfs6EdWb+Ij7q5HVhQBF83xB1Db/zK1pLhsdNSmU8j3hUj/gRHoDXcooRAoAAAwAKjtbaGztYra2jSKCJAkcaDAVQMAAVNQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQByazf2d8UJbcjEWr6Ysin1lgchv/HJV/wC+a6wdK5Hxuy6dLoWvBebDUUjlb0hm/ct+ALq3/Aa60dKAFooooAKKKKACiiigAooooAKKKKAFooooAKKKKACiiigAooooAKKKKACiiigAooooASiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5Xx9fXMHh3+z7Akahq0y6fbEdUMmdz/8BQO2faug0ywt9K0u10+0QJb20SxRqOyqMCuYgkfXfiXPIFDWOg23lIeoa6mALY/3YwB/wOuxByKACiiigAooooAKKKKAOY+IX/Ijal/2z/8ARiV09cx8Qv8AkRtS/wC2f/oxK6egAooooAKKKKACiiigDlvHunXN54ca8sIt+p6XIt/Zju0kfJX/AIEu5ce9b2lahBq2kWeo2zboLqFJoz/ssAR/OrRrjvBbtpmoaz4XmUKNPuPPswRjdazEun12tvX/AIDQB2VFFFABXOeMNAl1iwhudOdYNasJPtFhO3RZAMFW9VYfKR757CujrnNf8X2OjXS6fDHLqOsSLmLTbQbpWHq3ZF/2mx+NAFrw34gh8R6LHfRoYpgWiuIH+9BMpw8bfQ5571c1fUYdI0e91Kc4htIHmceyjP8ASvD9LfXLX4hXfj2+dLXQ01A2l/FaTFo0PlhNx4AdVfaGfHUEjiu4+LB1/UvC02h6Bo1zevfqokuIyqpGm4EjlsljjHpgmgDxf4R+HpPGvjy+v7m7u7byUkumntJNkgldsABu2cuc+1ex+F/h/NoHxJ1DVp9T1DUrdLBEtp9QmMsgd2bcu7AzgIP++65L4V2HiP4f6fqMd74J1Se6upFbzYJIcbFBwpywxyWP41raxceP/Gus2OkSeHp9D8PTTKL52mV5JIwcspKngEDGAPTJxkUAewj2pD1pEAVAAAAOgFOoA4TUdMvfBd/PrmgW73OlzMZNR0qPqD/z2hHZupZf4ucc4rsNL1Ky1jTYL+wuUubWdN8cqdGH+e3arRGTXDalp934N1KfXtDtXuNNnbzNT02LJYHvPCOgb+8v8XsaAO6oqppmpWer6dBf6fcR3FrOu+OWM5DD+nuOx4q3QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUtJS0AFJS0lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXM+J9euLSeDRdHVJtcvVzErfdgj6NO/+yvYfxHgewBBr+rXuo6p/wAI14flMd6yhr69UAixiP8A7UYfdH49hW9o2kWWhaXBp1hEI4IhgAsWLHOSSTySSSSe5Jqt4d0C28P6aLaF3mmkYy3FzJzJcSn7zse+f0HFbA6UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFeY/Eb4o33w/1G0t20e1vY7pWeMi7KOoXHVdnHJ4wTnBqrrnxU8QeF9M0vV9Y8JRDTb9EKyQX5LRsy7gjKyDDYyfTgjNAHrFFZnh7XbLxNoNprGnsxtblNybhgjBIIPuCCPwrToAKKKKACiiigDI8TaYNa8Nanpu3LXFuyJ7Pj5T9QwB/AUnhLVzr3hPStUf8A1lzbI8g9Hxhh+DAitcnHPFcl4Kc2d34i0JgFXT9SeSEDtFOBMv5Mzj8KAOuooooAKKKKACiiigAooooAKKKKAFooooAKKKKACiiigAooooAKKKKACiiigAooooASiiigAooooAKKKKACiiigAooooAKKKKACiiigArM8Q6zB4f0C/wBWuFLR2kJlKjqxH3VHuTgCtOuM8UZ13xbovhpGzBEw1TUB28uM4iQ/70mDj0Q0AaPgvR5dF8NQpeHdf3bNeXrHvNIdzfgPuj2FdFSL90UtABRRRQAUUUUAFFFFAHMfEL/kRtS/7Z/+jErp65j4hf8AIjal/wBs/wD0YldPQAUUUUAFFFFABRRRQAVxfjIDRNc0bxYmdlvILC+x0NvMwAY/7r7G/Ou0qjq+mwaxpV3pt0oMF1C0T8dmBH9f5UAXR0HeqWq6nZ6NYTX+oXKW1rCN0kj9u35+3Oe1cDoXjHW5tJj8P2WlyX/iTTybS+nuN0drCyEqHeTHzbgFYKuSQT0r0GyguP7Nt4tRkiuLkIvnSJHsV2HUhSTgZ7UAYWi65rWvakt1Bpa2Wg7TtkvQy3Fz6FYx9xe+X5PoK07+80vR7iCe5EUVzqEyWqOkfzzOegJHOAATk9ACa1RXLzaReal4/j1G9iVdN0y3xY5YHzJ5P9ZJgdNqgKM/3moA2jpmnnTpbD7HbizmV1khEYCMGJLZUcc5Ofqa5jwtdTeH9Wk8H6jLI6xp5ul3EpyZrcdYye7x9D6rtNdqOlc94u0B9c0xGs5Rb6paSfaLC5P/ACzlA7/7LDKkehNAHQDpS1ieGPECeIdFS7MJt7qNjDd2znmCdeHQ+2eh7jBrboAKKKKACkPJpaKAOG1LSb7wjfT634egaewnfzdS0lM8/wB6W3HaT1X+IDscZ6vSdWstb0yC/wBPuFntplDK6nn6EdiDwR2OauH06e9cTqukX3hfUp/EPhu3aa2mPmalpKdJvWWEDgS+o6Nj1xkA7iiqGj6vY65pkN/p1wJreQZVh1B6EMOoIPBB6EEVfoAKKKKACiiigAooooAKKKKACiiigAoopaACkpaSgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoDZFFfNfx++zXPjfS9M061iF80IMrQqA0jyNhAxHJI29+zCgD6UzRnmvO5vAfgWxstJ0bUdFsnurpRbRskW2SV0j3MxZfmHCk5yMHHtWj8OvBn/CE6Rf2WQfP1CaaM53HyshYwT67QCfc0AdnRRWV4g1u08P6W97dFmywjihQZeaQ/djUdyTx6dSeAaAK/ibxAuiW0UdvA13ql23lWVmhw0r9z7KvVm6Ac+gMfhrw8dHhmury4+16vesJL25xjc2OFUHkIvRQfr1qv4b0O7W8m1/XQra1dpt8vO5LOLqIEPfH8R/ibntXUDpQAo6UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhOKWq97eQWFlcXlzIscEEbSSOx4VVGT+goA+ZfipqMPif40Q6fMzGxs3htHKqWwgO6U4GTxub8FrpfijqWp/Ee4sPD3hbSL67s7eXzZ7l7Z4Yy+Cq4ZwNoALcnrxjpWR8EoW8R/FXVvEU+MxLNcc9Q8rEf+gl6+lB0oA5zwL4a/4RHwdp+itIsssCsZXUYDOzFmx7AkgewFdEOlLRQAUUUUAFFFFABXI3LHTfilZyDiHV9PeB8dDLA29M++yST8q66uS+IDNZaVYa3GPm0nUILlyOvlE+XJ/45I/5UAdaOlFA5FNYnBwOaAHUVwPiD4t+H/C+qNp2sWup29zjco+zghlJIDKQeckH8qn1H4mWGk2rXd/ofiK3tlGWlfTm2KPUtnAoA7eisrw7r9n4n0K21iwEwtbjcY/NXaxAYr0+oNatABRRRQAUUUUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADJHVEZmO1QMkk4wPrXHeA0bUxqfiudNsmr3H+jZ/htY8rFx7jL/8AA6l+INzLJpEGg2kjJe65OLFHXrHGRmV/oEDfmK6m0tYrGygtLdAkMEaxxoP4VUYA/IUATDp0xRRRQAUUUUAFFFFABRRRQBzHxC/5EbUv+2f/AKMSunrmPiF/yI2pf9s//RiV09ABRRRQAUUUUAFFNbvjrXGXOu674iuZbLwzaNZWsbmKbVr6IqFI4PkxHBcj+8cLkd6AOg13W7Tw/Y/bLtbiQM4jjht4mkklc9FVR3OO/HvVLw/L4kvbiS+1iK3sLORMW9go3yp33SPnAOP4VBA9a34gyxIrvvYDBbGMn1p9AHFSA+H/AIlRvt2WXiGDy5D2W6iGV5/2o8j/ALZiu1HSub8caPNrHhqdbM41C0ZLyzI7TRHco/Hlfo1aegavBr+gWGrW2RFdwrKFPVSRyp9wcg/SgCt4q1xfDvh661EJ5k6gJbxf89ZmO2NePViP1rTsjcGxgN4I1uvLXzhHnaHx82M9s5rP1bQ4NW1LS7q5lkKafM06QDGx5NuEZvdckj3PtWsBgelAC0d6KKAOH8Qxt4R8Q/8ACWW6n+zbkJBrMQ6Ko4S4A7leh/2fpmu2jcSRq6sGUjIIOQRUdzBFcwSwTxrLFKhR0cZVlIwQfbFcj4Wnfw7rEvg68md0jQ3Gkyynl7bODHnu0ZwP90qaAO0opF5ApaACiiigApDS0UAcRq2jX/hrU5vEXhqDzI5Tv1LSVGFuB3ljHQSgdv4/rjPT6NrNjr2mQ6hp83m28oznoVPQqwPIIPBB6EVePNcZrGkXnhvU5vEnhy2aZZSG1LTIzgXCjrLGOnmgf99DjrigDtB0paz9G1ix13SodQ06cTW0oyrDIIPcEHkEHgg981oUAFFFFABRRRQAUUUUAFFFFABS0lLQAUlLSUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIfw/Gvl7TLM/Ef49Xs8dxMtok8kv2m3fa6RxDZGynHByEP419CeKpdaXSZ4dCsFub2aJ0jd51jWJiMBjnk9eg9K8z+EfgDxJ4G1q9uNT0yGVLqNYlmiuVJjAOTkdwePyoA6Lw74Bl0P4lT6tNqGpalax6cqQTajOZnWRnIZQx9Ao/76r0cdKB0qOaRIInlkZURFLMzHAAA6mgDM8UeILbwt4dvNZvFleC2UFlhALEkhRjOB1I6mvPfD3jbR/EGpL4n1iW8jRQyabYrYzyLbr0aRmRCrO2OoPyjjua37WB/H2oJqd5Ef8AhG7Z82FtKuPtjjjznHQoOdinr19KvfDp3h8LnSpBiXSLubTz7qjnYf8Av2UNADx8Q/DYA/0i+/8ABZc//G6X/hYfhv8A5+L7/wAFlz/8brqRyMjpRQBy3/Cw/Df/AD8X3/gsuf8A43R/wsPw3/z8X3/gsuf/AI3XU0UAct/wsPw3/wA/F9/4LLn/AON0f8LD8N/8/F9/4LLn/wCN11NFAHLf8LD8N/8APxff+Cy5/wDjdH/Cw/Df/Pxff+Cy5/8AjddTRQBy3/Cw/Df/AD8X3/gsuf8A43R/wsPw3/z8X3/gsuf/AI3XU0UAct/wsPw3/wA/F9/4LLn/AON0f8LD8N/8/F9/4LLn/wCN11NFAHLf8LD8N/8APxff+Cy5/wDjdH/Cw/Df/Pxff+Cy5/8AjddTRQBy3/Cw/Df/AD8X3/gsuf8A43WZr/jfwXeaPcDU4rm9tY1MrQy6ZPtYqCcfMgX16nFd5XJeO53u7O08NW7Mtxrcv2ZnQ4MduBunf/vj5fq4oA5Twr4i+GklpBq+n6K2nXBJ4j0uVmUgn+KNWU/gf8K6/wD4WH4b73F9/wCCy5/+N10VjZW+nWUVpaQJBbxLtjijUAKPTAqegDlv+Fh+G/8An4vv/BZc/wDxuj/hYfhv/n4vv/BZc/8AxuupooA5b/hYfhv/AJ+L7/wWXP8A8bo/4WH4b/5+L7/wWXP/AMbrqaKAOW/4WH4b/wCfi+/8Flz/APG6P+Fh+G/+fi+/8Flz/wDG66migDlv+Fh+G/8An4vv/BZc/wDxus7XvG/hfUPD+p2c094Yp7WWNgdNuBwVI7pj/wDVXc964i+kfx5qculWzFfDlo+y/nU4+2yD/lih/uA/fPcjb60ASfDDxbH4w8GWt0BL9ptQtrctIPvSqgywPcHOfxrs+oyPwrjvBsK6TrvifQkjWOCG8W9tlVdoEU6ZwB2AdJBW94h1aPQvD2o6pIRttbd5ue5UHA+pOBQB83+JNTsvEf7QW7U7qGLTLO8WFmncIipDyyknsWDf99V7jYeNdJ8WeIn0PSJIdQs47R5L6YKWj5IVUXsScsc8jC4715L+z3oqaprWuazfRLP5caw5lUMC8jFmPI6/KP8AvqvV/s3h7wRr91fIscV5r88EENnboqszL8vyrkDGWLMeB60AdTo+mW+i6NZ6XaAi3tIVhj3dcKMc+9XaQHIzgj2NLQAUUUUAFFFFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSHFLWL4r1v8A4R7w3eaksfmzRptgi/56ysQqJ+LED8aAMXSSfEHxB1TVid9jo6f2daHsZjhp2H0+Rc+zV2Y6CsXwnoY8PeGrPT2cyTqm+4lPJkmYlnY/VmJrboAKKKKACiiigAooooAKKKKAOY+IX/Ijal/2z/8ARiV09cx8Qv8AkRtS/wC2f/oxK6egAooqOU7VZtpbAztHU+2KAJKxPEOuz6PHDFZaVd6lfXJZYIYVwmQOskh+WNeep/AGseKXxT4mdJFWXw5payAgSBXvLgA9xysQPpyfpXZDoKAMLQLTXYvPude1CGaecrstbaPENsBnhWPzOTnkn04AFbo6UtFABRRRQAhx1P415zba1F4DuvE2nXhxbQqdV06LPLpKcNEvv5xwB/00Fej9q868c31guqxapDGLm68OSRyX8Rj3L9mm4YHtldqy89NoNAHT+ENNvdL8O26anKZdRnLXF2xJIEshLMq+gBOB7Ct4cCmoyuiujBlYZDDoRTqACiiigArnvF2gS63p8cljL9n1aykFxYTgfdkH8J/2GGVYeh9q6GigDD8Ma/H4i0SO88ryLpCYrq2blredeHQ/Q5we4we9blcNr8beD9fPiu1U/wBmXOyHWIVH3R0S5A/2ejeq/Su3jdZY1kRgysMgg5BBoAdRRRQAUUUUAFNYZ9qdRQBxOs6NfeHdTm8SeGoTKJTv1LS14FyO8keeBKB/30BjrXSaJrNjr2lw3+nzCWBx3yGU9CrA8gg8EHuK0TzxnFcbq2hX2h6nP4j8MRb5ZRvv9LB2pef7a5+7KB+B6H1oA7OisvQtesPEOmpfafIWjJKsjjDxOOqOD91h0xWoOlABRRRQAUUUUAFFFFABS0lLQAUlLSUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFIeDmgBGIUEnGPU9q4d3fx9qLW8bFfC1nIVnboNRmU8x+8Snqf4iMdAal1e8uPF2py+G9LlePToG26tfREjj/n3jYfxn+Ij7o9yK6+0tYLG0htLWJYreFAkcaDAVRwAKAHxIscSoiqqqoCgDGBXK6cG034maxaHIg1Kyhvox28yM+VJ+nlV1tct4pkXTtf8Naq3CC8axlP+zOhC/8AkRIqAOpoo7UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANbPv+Fch4X2694g1XxOctb7jp2ng9PJjb946/78gP4ItW/G2o3Fpoy2NhJs1PVJVsbRh1Rnzuk+ioGY/wC6PWtrStPg0nSLPTrZdsFtCsSD2UY/OgC4KKKKACiiigAooooAKQ9aXoK5XxJrd3Jep4d0FlOsXK7pJyNyWMPQyuOhPZV7nnoDQBX1u8u/EurP4a0md4bWLadUv4mwYweRBGeu9h1YfdU+pFdTYWNrplhBZWUCQW0KBI4oxgKPaqmhaJaeH9LjsbNW2qS0jyHLyyH7zue7E5JrUByMigDktVD6f8SNEvwcQ6jazadLnpvX99H+OBL+dWfF3hK18Y6cun399fwWmcyQ2siqJuhG/KknBGQBj+VVviLDIPCzalCCZdJuItRUD0icM4/FN/8Ak11aOrxq6MGVhkEdxQB57o3wi0zw/bywaT4g8RWUUx3OsN2i7j2J+TrVjR/hVo2keJofELX+q6hqEW7bJqFyJcEjGfug8ZNd5RQADpRRRQAUUUUAFFFFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXF6xt8QfEPTNIBJtdGQandjsZTlYFPuPnf8ABa627uobK1muriRY4IUMkjt0VQMk/gMmuX8AW00mkz69exlL3W5zeMG6pERiFPoIwv4k0AdcOgpaQdKWgAooooAKo6rAJ7GXddz2iKNzTQMAygDJ5II9e1Xq5L4k301r4LurW1OLvUnj06D/AHpmCE/gpY/hQB4f4I+JXiu8+JGk2F9rV1Np9xchPLmVPmRx8mcKPVa+kdS1G10jTri/vZVhtbeMySu3ZRXzH41tIPCfx0sXt08u0t57CSJP7saLGuOv+yRXq/ivVk1691Bmw/hvwyrXF7g/Le3SDKwD1VTjd6kgUAeXx/Erxp4w+IEWnaVqs+mW95dCGOFEU+THnljkE5Cgk+9fSem2D6faiGS9ubt85MtwwZj27DgV84/ALSm1j4g3utXOZGsYWl3HvLIdoP5b6+nKAOY+IX/Ii6j/ANs//RiV0/avP/jFrbaJ4CndbOS5+0TxwttPEYzv3McHAym36sKp+FNbbxprEV9qPiBLWaBvMh0C1kaJ4j/03zh5CAeQBtFAHVeIL/X0uYtO0DTkeaZCzX902Le3HuB8zt6KB3yTgVb0HSLnSrJ0vdUudSupn8yaefCjcQBhFHCLx92tZfuiloAB0ooooAKKKKACiijtQBHKWCMUXcwBIGcZOOn/ANeuY8L+HZIfDt4usxI2oaw0k+opnI3SDHlj2VcKPpVm61u5fxvZ6HYxxvFHbtdahKwJ8tD8sagjgMzAnnstdEOlAHIfD+6lj0i40C7dpLzQ5zYuz9ZIxzE//Aoyv4g119cXq+dA+IOmatkJZawn9m3ZPQTDLQMfc/Omfda7MdKAFooooAKKKKAIp4Y7iGSGZFeKRCrIwyCDwQR3HtXGeF5n8M6w/g68kL22xp9GmY5LwA/NET3aMkYPdSDXcVgeLNAOvaWFt5fs+o2ri4sbkdYpl6f8BPRh3UkUAb46UVheFfEH/CQaP50kP2a/t2MF7aseYJl+8p9u4PcEGt2gAooooAKKKKACkPU0tFAHG67oN7peqP4k8MRr9sIH27T87Y79B6f3ZR2b2weK3NA16x8R6Yl9YuxGSkkTjbJDIOqOvVWHcVqmuP13Q7vS9VbxL4biZr4AC9sAdsd/EO3oJR/C3/ATwRQB2I6UVlaBr1j4i0uO/sZCyElHRhh4nH3kYfwsOlaoGBigAooqK4mitoZJ53EcUal3djgKAMkn24oAqazrFjoOlz6nqVwtvaW67ndvyAHqSTgD1Iq3bTpdWsNxHnZKgddwwcEZGRXy38ZfGuoeJdQtYVR7fRDH9os42ODcKSVEzD3IO325719QafCLbTbWBTkRwogJGMgACgCzS0lLQAUlLSUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAGcCuU8RarfXuoL4b0KQR38qB7u8HIsYDxvx3c8hV/E8CrPifxBNpxg0zSoUudbvgwtoGPyoo+9LJ6Iv6nAHJqx4b8Pw6BYsnmtc3s7+beXcg+e4lPVj6DsB2AAoAtaNo9loWlwWFhF5cEY78sx6lmPdickn1JrQoHSigArnPHWnPqfgzU4Yf+PiKP7RB/wBdIiJE/wDHlA/E10dNYBgQe/UUAVdK1GHV9Is9Stz+5u4EnT6MAR/Orlcj8Pyttol3onOdHvZrIA90Dboz/wB8OlddQAUUUUAFFFFABRRRQAUUUUAFFFFABSHBOKWsPxXrMmh+H7m7t4xNetthtIT1lnc7Y1H/AAI/z9KAMnTs+IPHd7qrbZLDRlaxtPRrhsGZx9BtTP8AvV2IxjjpWT4a0VPD/h6z01W8x4kzNKesshO53/Fix/GtegAooooAKKKKACiisfxHr8Hh/TxM0TXF1M4itbSMjfcSnog/qewyTwKAK/ibxBJpSwWGnQLda1ekpZ25OF/2pJCOiKOSfwHJqXw34eTQrNzJO13qF03m3l44+aaT+ijoB2AA7VW8NaBPp7T6tq0q3Gu3o/0iUDCRJ1WJP9hf1OT3rpB04oAKKKKAIL21jvrG4tJl3RTxtE49VYEEfka574f3Msvguwt7l913YhrGf13wsYz+YUH8a6cnHeuS8Pp/ZnjfxLpZP7u6aLVIF9pF8t//AB6LP/AqAOuHAooooAKKKKACiiigAooooAWiiigAooooAKKKKACiiigAooooAKKKKACiiigBKKKKACiiigAooooAKKKKACiiigAoopCcUAcd4/Z9Ri03wtFuDa1cBJ2XqttHh5j+Iwv/AAOuwjRI4kSNQqKAFA6AVyHh6Rtc8Z65rbL/AKLZ40qyb12HdO34uVX/ALZ12NABRRRQAUUUUAFee65qdnrPxX8P6AtzG40+ObUZ4sj/AFoXbEPqNzNj8a9APPFZJ8LeH3uTdNommNcM/mGY2kZcsec5IzmgDxX4x+FrzxH8WtCsdPG2a9s1Uvg4jCu5ZzjsFx+XuK1fi7Pp/gr4W2nhPTnVZbt1RgSN7qp3vI3fLMBk98mvZGtLc3K3XkR/aEQxrLtAZV6lQcZxkCqE3hPw7cyvLPoGlSyuSzvJZxsWPuSvNAHnf7PmlRWfgOfUFwZ766YswPIVPlUH8dx/4FXrlZ9hoek6S7vp2l2VmX4Y29usZYf8BArQHSgDmPiEP+KG1L/tn/6MStXUND0rVJoZb/Tra4lgdXikkjBZGU5BDdRzisr4hf8AIjal/wBs/wD0YldPQBka5DrzwRNoNzZRTxtl0vImdJR/dypBX1zz9KqaLresXd89hq/h+ewmRC/2iOZZraTBA+V+GB5zgqOAa6KigBqurHaCCw6g9RTq5zW/Bek63ff2g32mz1IAKL2xnaGXA7Ejhh7MDWhpFnf2Fj5N/qL6jMGO2doljbb2BC8Egd+KANOiuTtfiBor3KWeptPot85wtvqcfkF/dWPyNn2Y/geK6tGDIGByD6UALSH8/rS1xni931rXNK8JQO6rOwvr5kP3baJgQp/33wPorUAbumaHa6XqGp3sTySXGoziaZ5GyQAoVVHsADj6mtYdKB0ooAw/F2if8JD4avdPRilwyeZbSDgpMhDRtnthgP1qTwrrX/CQeGbHUmj8qWWPE0RGPLkUlXX8GDD8K1z19q4/Q5G0bx3rWhyLttr4f2rZk+rYWdfwfDf8DoA7GigdBRQAUUUUAFH86KKAOH8SRv4U11PF1ojmxkVYdYgjHWMcLOPVkzz/ALGf7tdrDIksKSRsrI6hlZTkEHoR7U2eNJonikRXjdSrKwyGBGCCK43ww0nhfV5PCV1Jus9jXGjSO2S0I+/CT3MeRj/ZYelAHb0Ug6UtABRRRQAUUUZHSgAorD1/xGmiNFDHpuo6jdzAmOCygLcDAJZzhVHI6kVW8O65f6pqF9bapDp9pcwCNhYwXfnzQhs/60gBQTgYAHHrzQBheNFh8G3MnjDTry2s5sBbyzmk2pqCDso7Sj+EgH0PBra8C+NbTx1ocmqWdtNbrHOYHjlxkMADwRwRhhXnfiT4cWl14mWG7uJNR1rXbqRlfLCOwtAcu6qSecEIMnALDGMCvYdO02z0qyjtLC1itrdBhY4kCgflQBaB4ry3xPq+qeMNSGmaHo1xqfh2zn26jJBcRRC7kXB8kF2X5QcbiOv3eK6b4g2vifUPDz2PhZ7eK6uG8uaaWQqUjIOdh7E9M9u3OCNbQbL+yvDdpZwacln9ni2rarIGAI/2gOc9ScZJPPNAHzD8YLu+1Lx7AL3R20yVLWKFLVpI5MLuYjlCRySR+FfWgAAAAwK+f/Gvww8beLPG83iBbTT4I2aPy4Wu8kKgA5O3qSCfxr3qykuJbKKS6gFvOy/PEr7wp9M4GaAJ6WkpaACkpaSgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsTxLr8Wg2KMIpLi9uHEVnaRY33Eh6KPQDqW6KMmrOuazZ6BpkuoXzsI0wFVFy0jHhUUd2J4ArF8O6JeSX7+I9fjUatOmyC2U7ksIf+eakcFj1Zu5wBwKALXhrw/Npvn6nqk0dzrd9hrqdc7EA5WKPPIjXtnk9T1roh0pB0FLQAUUUUAFFFFAHIWhTSvidqFsBhNXsEu1z/z1hPlt/wCOtF+VdeOlcl4zddO1Hw5rpX/jz1BbaVvSK4HlH8nMZ/CutHT1oAKKKKACiiigAooooAKhluYIW2yzRo2MgOwFTV49+0NPYQeDbaOWCF7+5ulSF2Qb1RQWYg9cdB/wKgD1pLy2kcIlxG7HoquDmp68p+BvhOz0zwRaazLaxNqF8zzCZkG9E+6qg9hgE/8AAq9WFABXHXA/4SH4hRQFS1h4fQTuez3cikIPfZGSf+2grf13VrfQdDvdVuQTFaxGQqOrnso9ycAfWqHg3SJtI8Pxi9YtqF27Xl6x6maTlh9F4UeyigDoB0paB0ooAKKKKACiiq93dQ2dvLc3EqRQQqXeRztVVAyST6epoAra1rFloWmTahfS7IYRnCjLOx4CqByWJwAO+aw/D2kXt3qLeJtej2ajImy0sydy2MJ/hH/TQj77fgOBVfRrWXxbqsPiXUY2XToDu0izlXbt/wCnhwf42H3QfuqfU12i9BQADpS0UUAFFFFABXI+IEGn+OvDer7tsdwZtLmPr5ih4/8Ax+LH/AhXXVy/xBtHufBt5PAM3NgU1CD13wsJMD6hSPxoA6iiobO5ivbKC6gbfDNGskbeqkZB/I1NQAUUUUAFFFFABRRRQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACUUUUAFFFFABRRRQAUUUUAFFFFABWB4y1t9B8M3V1bqXvZMW9nGOrzyHag/Mg/QGt+uMvT/wkPxItLIENY6DF9quB2N1ICIh9VTc3/AhQBveGdEi8O+HLDSYn3/ZogjSf336s34sSfxrVoHSigAooooAKKKKACiiigAooooAKKKKAOY+IX/Ijal/2z/8ARiV09cx8Qv8AkRtS/wC2f/oxK6egAooooAKKKKAK17Y2moQNBe2sNzCeTHNGHU/geKr6pZ3s2lNa6ReJp1wAoimMAlVACONhwMEcfjWjRQBy1hqPiaxmWLX7CwktgGaTUrOfYiKATl435Xoehbk9hWjpeuaXqkFldQypFLeQCaGKYhZnjPQ7ckkVV8Y6Vf67ow0m0YJBeTJFeybsMlvnL7fcgbf+Be1T6p4U0HWraG21HS7eeOBQsJKYaIDgBWHK/gaANodKWsbRNCOhRTRJqeoXkDsDHHeS+aYgMjaGxuI+pNZd943TRb2WHXNI1CxtVkIjv1j8+3ZOzMyZKZ9GAwO9AHW1x3j+F7OzsfE8Cs02hT/aXVPvSW5G2ZB/wE7vqtdVZXlvfWcV1aXEdxbyruSWNgysPYjrTp4Y7iGSGVFeORSrqwyGBBBBoAWCaO5t454XDxyKHRh0IIyDUlcd4Cmls7S/8M3crPc6JcGCMscs9u3zQt/3wdv/AAGuxHTjpQAUUUUAFFFFABXP+LfD7a7piG1mFvqdpILmxuSM+XMOmf8AZI4I9DXQUUAYfhfxAviDSjM8LW97byNb3ds/3oZl6r7juD3BBrcrh/E0TeFddXxfaozWcirBrMS94R9yYDuUzz/s59K0tV8TXkNytnouhXmqXLxLKs2RFbBW6EytwfooJ9qAOmrD1vxbomgEJfX6LcPxHbRAyTOf9mNQWP5VPon9smyLa79iW6d8iOz3FY14wCW5Y5zzgU3SvDWi6HJNLp2m29rNOS0sqJ87knPLdTz70AP1CTUrrR/M0ZreK7lCtG17E+1AcZ3KMHOM8ZHNc4dKi0OeDXfFfiq6uZ4Wwm+UW1srEYwsS/eODj5i1dNY6xYarLdR2F5FcNayeVN5Z3KjYzjI4z9D9eax9M8GwQ6p/a+sXUur6qCTFPcKAlup/hjjHyrx1PJJzyOlAF/XtM1DWLWK1sdVfTYnfFxJDGDK0eD8qMT8hz3wT6YpdK0bR/C+mSQ2VvHa26AyTSucs/UlpHPJPUkmtgdK4/xtKur3Fh4Pidg+qEveFOqWiYLnPbccJ/wI+lADfBUEurXl94xu42STUgsdlG3BjtEJ2f8AfZJc/Va7MdKZFEkEKRRKFjRQqqOgA7U+gAooooAKKKKACiiloAKSlpKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqnqWo2uk2M99fTJDawLvkkc8KP89upqxK6RI0jsqqqklmOAMDrXF2Sf8J5qkeqThx4ds33WUDjAvJVP+vb1QdFHc/N6UATaJp954g1GLxJrlu8KxnOl6fKCDbIRjzZB3mb/wAdBAHJNdiOlC9BS0AFFFFABRRRQAUUUUAYvizSjrfhXU9OUZlmt28nHUSD5kI+jAH8Kl8NasuveGNM1VRj7XbJKR6Ejkfgc1pnrXJeBm+yDW9BK7BpmoyLEnpDL++T/wBGFf8AgNAHX0UUUAFFFFABRRRQAV80fHfUH1/4jab4ftWLG2jSEL6TTEH+Xl19IXBlWGVoEV5QvyK7lQx7AnBwPfBrxGy+FfjD/hZSeL9SGjXJ+1m5a2W6lAB6KATGfu/Kf+A0Ae1aXp8Gk6TaadbDEFrCsMY/2VGB/KrdNjLGNS6hXxyqnIB+uBUV5cxWVpPdXD7IIYzI7H+FQCSfyFAHLay3/CQeNNP0FGJtNOC6lfjszZIgjP8AwIM+P9gV146V5z8KfB1x4f0+91m6u55LnWylw0Ehz5K/MygnnLYbk4GOlejDkUALRRRQAUUUh9aAGyOqKzO20KMkk4AFcRErfEG+8+UZ8K20gMUZ4GpSqeHP/TJSDgfxEZPAAL9Qml8canLo1m7poFrJs1K6QkG6cdbdD/d6bz/wH1rs4Io4LeOGGNY4kUKiKAAoHQADtQA8dKWiigAooooAKKKKACmTRJPE8UihkdSrA9weDT6TvQBynw8kMXhYaU8hebR7iXTnJ7iNsIfxjKH8a6yuU0mFdM+IWuWwOI9Rt4L9F7BlBifH/fMf511dABRRRQAUUUUAFFFFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJRRRQAUUUUAFFFFABRRRQAUUUUAVdRv4NL066v7lwsFtE00hPZVGSa53wDYzRaA2qXsZTUdYma/uVPVN/3E+ioFX8KreOSNZv9I8JIxH9oTfaLzHa1iIZgf8AebYv4mu0HSgBaKKKACiiigAooooAKKKKACiiigAooooA5j4hf8iNqX/bP/0YldPXMfEL/kRtS/7Z/wDoxK6egAooooAKKKKACmsQoJOAB3PTp1p1UdWsotV0y602aaWJLmFo2eFtrhSMEg/jQBleEtbvPEVneapKiJYS3Trp+FwzQr8oYnPO5lZhx0Iroh0qGxtIdPsLeytoxHBbxrFGg6KqjAA/AVPQAUhAIIIyDwaWigCpdWfn2E9rDM9r5qMgkgwGjJB+ZcgjPPcHp0rnLSDxjpF5bW8l1Za3pzSBZJ5h9nuYlJ5J2go+BzwFJrrqKAOD8S3lt4Y8e6DrUs0cSaoG0y7DMFzj543x7NkE+jiu6RgyBlIIPII6GsfxXoEHifw1qGkXG0C5hZUdgD5b4+VvwPNc78NNOsI9BgvrE3VrIUa2u9P89mginRtshVD905U9OxFAHeUVzOreIdV0XUJTN4eurvSgARdWDCWQHjO6HhsZzypPHatTR9csNe08XunzGSEkqSyMpVh1BVgCCD6igDSpDXLalr+vyX8+n6D4dlmeJgj3l/KILcEjOVxlpBz2A5zzWzZ2t3NpAttZe3nuJEZJzBGyRsCTwASTjGByeaAM3UfG+g6depY/azd3zNj7LZI1xKPdlUEqPc4q9rdtqt7ZJDpOoxafIzjzJ3t/NZUwfugkDdnHXIxnipNJ0TTNCtPsulWFvZwZzshjCg+59a0aAOa0nwdZ6dcvd3V3e6pqEsTQyXN9MXJQ4ygUYVV9gtZnhqR/C2uN4Ru2Y2UqmbRpnOcx9Wtz7x9R/skelds7KilnYKo5JPQD3rldWg07x3oc39k6hGbmznzaX0Q3C3uUAIIPccgHGQQSDzQBt6jrOnaS1uL+8iga5kWKFXbmR2IACjqeo/Dn1qlr+gS+IY4LabUrq2sBuNxb2rBGuQRwpcfMq9QQOSD1rnfh5p9ldwyaxqHn3HiiKRra/lvDukt5B95IwAAiHORt6gjrmu/X7oxQBV07TrPSrCKysLaK2tolwkcS7VA9hVuiigCK5nitbeW4ndY4YlLu7dFUDJJ9q5HwNDNqj3vi68Vlm1Yj7JG/WG0X/Vr9WyXPuwpPGkj63qen+DrZ2H27/SNQZf4LRDyp/wB9sL+ddlGixxIiKFRQAoHQCgBRwAPSloooAKKKKACiiigApaSloAKSlpKACiiigAooooAKKKKACiiigAooooAKKKKACkJorjdc1C68RarL4Z0WdooowDqt9GcGBG6RRn/nqw5z2XnqRQBBeO/j3U5dLt3ZfDdrLsvp1OPtsg6wJ/sAj5z3I2+tdvFGkUKRxoqRooVVUYAA6ACodO0+10zT4LKyhWG2gQJHGo4UCrNABRRRQAUUUUAFFFFABRRRQAVyLsdN+KcYxiDWdNI/3prd8j/xyU/98111cj49Y2NrpWuIBnTNRhkkb0ikPkyf+OyZ/D2oA64dOOlFA6UUAFFFFABRRRQAUUUUAFcf4zb+173TPCcTEfb38+9I/htIyC4/4GxRP+BGuuZgoJOAAOSew965HwaG1e81PxZKSV1F/Ksc/wAFpGSEI/3m3v8AQrQB14GFAwBjsKWgDAooAKKKKADmuO17UrvXdUk8M6HO8RAX+07+P/l1jb/lmp/56ODx3UfN6VZ8S63drex+H9C2NrN2m4yMMrZxdDM/bPZR3PsDWnoOhWnh7TI7K0DnBLySytukmc8s7t/ExNAFrS9NtNI023sLGFYbWBAkcajgD/H1Pc1bpB0paACiiigAooooAKKKKACiiigDkvE7vp/i3wtqq5ETXEmnTkf3ZlBX/wAfiT8660dK5vx5aTXfgvU/so/0u3jF3b46+ZEwkXH4qPzra029i1LS7S/hOYrqFJkP+yyhh/OgC1RRRQAUUUUAFFFFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJRRRQAUUUUAFFFFABRRRQAU1u/NOrmfHep3Gn+G3t7HB1HUZFsLMdxLJxu+iruY/7tAFHwfnW9d1rxTJhoZpPsGnk/wDPtESGZfZ5Nx/4CtdmOlUtG0u30TRbLS7QYgtYViTPUgDGT7nrV6gAooooAKKKKACiiigAooooAKKKKACiiigDmPiF/wAiNqX/AGz/APRiV09cx8Qv+RG1L/tn/wCjErp6ACiiigAooooAa3T/AD0rjfC+df8AFOq+KHLfZY92m6erDGY0b97J/wACkGB7JXQarrdppV3p1tOXae/uPs8CRruJbBJJ9FABJNaYAAwKAAcDFLRRQAUUUdBzQAUVEJUd3VWUleGAPIz6+nr+Ncxe6p4svr2S10fRILO3RyrX+pyjDYOMpFGdxHcbmXNAHUyOkal3YKqjJYngCvM9J8V6TpvxPv8ASNPuBfWuslJk+xfvFgugMSgkcAbVVye3Nd/Lpkeo6MLDV0ivVkjVLjMe1JSOp2knAJ5xmud8Y6Ktn4YgvdFs447nQ5lvrSCFNqsEzvjAH95C4+pFAGxrum6rqcUMWn602lxZJneKBXkccYCs2QnfJwT0qPRfC2naEJ3t3u5rq5AFxeXVw0k0uM4yx9MnAGAM8Vq6dfQanp1tfWr77e4iWWNh3VhkGrNAHGDQfFWhqW0XXxqUHT7HrS7iB6LMoDf99BvwrotT1qw0TT/t2qXK21vuCmVgSqk+pHQe54rRqC7ngtraWe6mSK3RS0jyMAqjuSTxigBLO9tNQt1nsrmG5hbpJDIHU/Qjiqt9runafqFpYXN2kd3eMUt4RyznucDt7niuf0bQvDOpK/iDwugsZrhZUju7RHiRyQV3GM4STB5BKkEjNVYtE1Dwjei80vR/7ekuExf3s12FvXYHtuG0rjGFBUDFAG1r/hdfEd5At/f3R0tFxJp0ZCRzt6yMOSP9nIH1rdtbaCztY7e2hjhgjUKkca4VQOwHpVDR9aj1mGRltL61kibbJFd27RMpxnvw3/ASRWmOlAHE+KYpPC+tp4xso2a32LDrMSj78APyzAd2jz/3yW9K7OCaO4gjmhcSRSKGR1OQwIyCKWRVkRo3UMrDBDDII9MVxfhwy+FNebwrcFm06cNNo8zH+Hq9ufdOSvqp/wBmgDt6gvbyCwsp7u5kEcEEbSyOeiqoySfoKnHSuK8WhvEeu2PhCLcbd9t7qjL0Fup+SM/9dHGPopoAl8C2c9xBd+J79GS91p1mWN+sFuoIhj+u05PuxrsKQYwMdO1LQAUUUUAFFFFABRRRQAUtJS0AFJS0lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFc74n8QSaX5Gn6dCtzrV9lbSAnCr6yOeyL1P5Dk0AV/Eet3j36eHNAZf7YuE3yzsoZLGHp5rDuTyFXueegNa+haJaaBpUVhZo2xSXZ5G3PI55Z3buxJJP1qv4a8PR6BYuHma6v7lvOvLtx808hHJ9gOgHYADtW32oAB0ooooAKKKKACiiigAooooAKKKKACs7X9NXWPD+o6a2MXVtJDk9iy4B/A81o0hGc8f/AF6AMTwbqkmteDtJv5hieW3UTD0kX5XH/fQNblcj4PLWWseJ9FfO211A3MP/AFyuB5nH/A/MrrqACiiigAooooAKKKaeDnNAHLeOrqeTT7bQLGTZfa1L9lUjqkOMzSD6Jn8WFdLZ2sNjZQWltGscEKCONF6KoGAPyrk/D6nXfF2qeIXQ/ZrQnTNOPYqpzM/4uNmf+mddiOgoAWiiigArA8TeIf7FghgtIPterXjeVZWgODK2Mkk9kUfMx7D6irPiDXLbw/pxu7gPI7sIoLePmSeU/dRB3Y/yBPY1meGNCure4m1zWysut3qAOF5S2jHKwofQZ5P8Tc0AW/DXh8aJayy3EouNUu38++uyMebIRzj0QdFXsAK3R0HX8aUdKKACiiigAooooAKKKKACiiigAooooAawBBB/WuU+Hhkt/Ds+kS58zSL2exG7/nmrZj/8hsldbXI2O7Tfidqtqf8AUapYw3seenmRHypMe+0w0AddRQOlFABRRRQAUUUUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAlFFFABRRRQAUUUUAFFFFACE81xkJHiH4mSTA7rLw9B5K8cNdyjLYP+zGAP+B10WvavBoOh32q3JHk2sRkI7seyj3JwB7ms3wTpE+k+GIFvwP7Suy13ftjkzyHcwP0yFHsBQB0g6DBzRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBzHxC/5EbUv+2f/AKMSunrmPiF/yI2pf9s//RiV09ABRRRQAUUVzvjPWrjR9Dxp+06reyraWCMMgzPwCfYDLH2WgBF0O6uPHUmt3rxva21qLfT4lJJQscyuwIwCcIOD0FdEvSordJI7eJJX3yhQHfH3mxz9KRLmOdGeB1lCkqfLYHkcYoAnqrfX9ppts91fXUNtbx8tLNIEUfUniuV+0eN9eUfZ7W08N2hPMl0RdXJGc5CKQi/iT9K6ifT7W/to4r62hulQh9s0Qcbh/Fgjg0AY+leM7DXtRS30m2vru1YHOoLAVtlI/hDtjcf90HrUmueH7rXblFbXL+z0/wAvEltZkRNI2fvGTG4DHGBj61vIoRAqgBRwAOwp1AGTofh3SvDlobbSrNLeNzukIOWdvVmJJJ+prWoooAKQ4IIPelpe1AHE+CMaRf6v4SkP/IOn8+zz0NrKSyAf7rb1/AV2o6VxHjSVfD2taP4tLLHbQSfYdSc9Ps0pwGP+7JtP4n3reEyeJ/DvmWF5eWkV3HiO4SPy5VGcblDjjIHBI6HIoAfJ4h0tNfi0QXYfUpEMn2dAWKKBnc2AQgOMDOMkjFVNV8J2eu6tDeapNcXVtAFMVhIw+zhwc+YyYG9v94kD0zVvQvDmmeHbQ2+nW/l7julmc75Jm/vO55Y/WtagBqKERVVQqgYAXoPpTqKKAGEcmuTuPBlxa3dxe+Hddv8ATLmZzI8MrfabZ2JJJMbnIJJ6qRXX0UAZ32i407RPtGog3E8MIM/2OBm3tjnYgy34da5y+u9B+IWkPa6Rq8X9o2zi4t3U7ZrWZfusUIDDnggjkZFdpWFcaf4c1nWw0kNhcapYsk25SvnQ8/KTj5gDg+xxQBR0nxjBN4VvNT1ULaXelhk1KDP+qlQc49m4K+oIpPA+m3MGnXGs6lE0eq6zL9ruEbrEuMRxf8BTA+pNedeKdH8Q+Jvi2LPTLOG3sofs0mpYuMpPGkhaNpl6ZIGAnJwM9K9wX7oznp3oAUdKKyfEOqXWjaRcajbWaXYtkaWWNpvLOxVJJB2nJ9uPrXnnhn4zXXi++lsdG8JXFxNFF5r7r5EAUEDOSMdT60Aes0V5jrnxQ1rw3JbjVfAl5CLiUQxSfbY3V3J4XKggH0zXpqklQT1oAWiiigAooooAKWkpaACkpaSgAooooAKKKKACiiigAooooAKKKztb1iy0LTJtRvpfLhiHYZZ2/hVQOpJ4A75oAr+I9eg0CwEzRPcXUzCK1tYvv3Ep6IPb1PYAk8Cq3hrQZ7Ezapqrxz63e83Uy8rGv8MUf+wv6nJ71U8PaPeXeoHxNr8e3UpU221qTkafCf4AehZhgs3rwOBXWDoKAAHIzS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcjqG/TvidpNyOINUspbKT0MkZ8yP8AHaZq66uS+IayQeHotWhBMuk3kN9x/cVsSZ9vLZ/1rrFIZQQcg8g0ALRRRQAUUUUAFc5401O507QjFp+f7Uv5FsrLB+7I+Rv+iruYn/Zroia4+yI8RfEG5v8ALGx0FTZwf3XuZADK3/AU2qPdmoA6PRtKttD0Wz0y0UiC2iEaZ6nHc+561eoHSigArP1jVrPRNNuNQv5THbwpliBkn0AHck4AHerF5dQWVrNdXMqwwQqXeR22qqgcknsPWuR0m1n8X6pB4j1KJ4tNt23aTZyrgk/8/Lj+8R91T91eep4ALGgaVe6lqA8TeIItl664srIncthEf/ajfxN6YHQV1q/dH9aB0paACiiigAooooAKKKKACiiigAooooAKKKKACuS8YhrLV/DWtrwtrqAtpz6RTjy/y3+X+VdbWH4x0uTWvCGq6fDnz5bdvJx1Eg+ZD+DBaANscgGlrN8P6mus+HdN1NCMXVtHNx2LKCR+daVABRRRQAUUUUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAlFFFABRRRQAUUUUAFFFIxwpJoA4zxXjXPFWieF8FoA39p3w7eVE37tT7NJj/vg12grjvBEn9r3GseKJF+XUrkw2n/XrFlEP/Am3t/wKuwHAoAWiiigAooooAKKKKACiiigAooooAKKKKACiiigDmPiF/wAiNqX/AGz/APRiV09cx8Qv+RG1L/tn/wCjErpHZYwzMwVQMkk9P/rUAPoqhLfq2lSX9govwImkhWF1/ekDgBjgc9OTiuftovGuqXlvcXk9jodkjqzWcCi5ncZ+68hG1c/7IP1oA39X1rTdCtTdapf29nAeA0zhcn0AzyfYc1zumalp3jHX7XUodL1Awaakhtb64jMUTu2FbarEMTjIBIwPm9a0fGF5Bpfh2fUnskvLq2GbOMxhyZ2+VNuemWYZPoTVjwvocfh3w5aacrGSSNd00pOTLKxLO+fdiT+NAFLV/CC6/fPJqWrajJp5wF0+GUwxYxzuKYZ8nJ5OOcVs6bpVjo9mlnp1pDa2ydIoUCr9TV2igAHSiiigAooooAKKKzNZ1zTfD9k95ql5FbQAhQX5LN2CgcsT2AGeDQBpGsmHxJpVzrsujW9yJ76FPMlSFWdYh2DMBhSewJzRe2q+IdCES3V9ZRXaI5eE+VMqnB28jKkjg9+eoNTaPounaDp62WmWkVvCv8KjJY/3mJ5Y+55oAxNc8CaZ4kubm41iW5uxJCYoIHf91bZUgvGgwN/U7jk1N4E1OfUfDMcF7/yENPkawux6yR/Lu/4ENrf8CrpR0/xrjxI2hfEsw7cWWvW25T6XUI5H/Aotv/fugDsaKKKACimscE+vpXJXmqeK9TvLiy0XSIrCKGQxtqWpn5XwSCY4l+ZgeCCxUUAdTcTxW0LzTypFEg3NI7BVUepJ4A9zXN2njmw1bUorXQ7e71SJpNst7bx4toR3zI2FY+y5Nba2AuNLSy1VYb7dGqzs8I2SkdSU5ABPOM1chijhiWKJFjjUYVFGAo9AKAMbXvD/APb4ghl1K/tbRM+bBZyeV5/TAZgNwA54BGc1XNtoHgLw5eXttZQWlpbRGRyg+aUjoCx5ZiSAM9z710lcXrnl+JvGll4fwXs9M2ajf46F8/uIz9SC5Hog9aALngrR7jT9Jk1DU026vqkpvL0H+BmA2xj2Rdq49s104ORmlooA88+Nettovw0vljfbLfOtmh9m5b/x1W/OvLfgz4s8MeC9A1e+1e+8u+uJFCW6RM7uiDIxxjkuepH3fyt/tH6yZdZ0fRI34gha5kUHu52rn3wp/wC+q9R0XwXEPhPaeGrmONJJNOMUjPGGMckgLMQOOjNnr2oAteGmfxl4UsNV1q3Ueddfb7WLp5SK5MOSOpwFOfeuuHSq2m2cenaZa2UIxFbxLEg/2VGB+gq1QAUUUUAFFFFABS0lLQAUlLSUAFFFFABRRRQAUUUUAFFFMkdY1ZnYKoGSSelAEN9eW2n2c15eSrDbwqXkkc4CqPWuT0WzufFWqw+JNWieKxgO7SbGQYKj/n4kXp5h7D+Ee5qKFG+IGpLdyqf+EXs5d1vG3TUZQeJD/wBMlI+UfxHk8AA9yOlAAvSloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAKuo2ceo6bd2M3+quIXhf/dZSD/OsTwFdz3XgnTFu/8Aj7tozaXA7iSJjG2fxQ10h9R1rkvDSHTvFvijSmOI5J49SgBP8My7Xx/wONvzoA66iiigAooooAxfFOtf2B4eu79V8ydVEdvEP+WkzkLGv4sR+vpTvC+inQfD1pYyS+dcKpe4mPWWZiWdj9WLGse8P/CReP7ayXDafoSC5uB2a6cERKf91dz/APAlrsKACmscc5/WlPBziuK1W7uPGGpz+H9MmePSrVtmq3sZILng/Zoz6kffYdAcdTQBFGD8QNSExB/4Ra0l+RT01KVT1PrEp6f3iOeAK7oAAADpUdtBFa2sVvBGsUMSBEjUABVHAAA4AAqWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQ98DNLRQByHgNDYW2raGx50zUpo4x3EMhE0f4Ykx/wABrrx0rkQn9mfFN3LbYdZ00ces1u/89kv/AI6a60dKAFooooAKKKKAFooooAKKKKACiiigAooooAKKKKACiiigAooooASiiigAooooAKKKKACuT8fX08WhLpNjJs1HWJRYW7L1TePnk9flQMcj2rqye1cZp4PiD4j32oEh7HQ4/sVqeoNy4DTMPcLsT8WoA6vT7KDTdNtrG2QJBbRLFGo7KowB+lWaQYI46UtABRRRQAUUUUAFFFFABRRRQAUUUUAFFVr2+s9Ot2ub66htbdfvSTyBFH4k4qvqV5eJpLXOj2sWoTsFMMZnEaODjkvg8YOfwoA0aydZ8S6RoJjXUb1IpZRmKBQXlk/3UXLH8BWVpul+KbjUYNQ1vW4oViJI03Tof3RyCPnkfLP16Db0rpjFG0olZVMgBUNjkA9s0AcF4k1y41vwTrMj6Lf6fbJ5IhkvkVGmzKMny85A4H3sZzWxd+BbHV7+S61y8vtUjLlo7OeYi3jGeFEa7Q2PV91P+IRz4F1E/wDXP/0YldPQBFbW8Npbpb28McMMYwkcahVUegA6VLRUU/miJ/JCmTB2BjgE44zjtmgDNs9cttR1vUdNt0kdrARiaX/lnvcFtgPcgYJ/3hWsOlYPhHQpNA0BLe7lSbUJ3e4vbhc4lmc5Zsnt0A9gK3x0560AFFFFABRRRQAU1jjJ7Vj+IPEumeHYUe+mPnTNthtolMk0zeiIOW/kKdq2jW/iTS0trx7uK3kKvLFHIY2kXB/dvjnHPI9qAG2HiXTNX1O4sNOna6a3XMssKFoUOcbN+NpbnoCTxUcfhTTx4gl125Et5ft/qXuX3rbDH3YlxhB7jk9zWtYWNrptnFaWVvHb20S7Y4olAVR7CrFACDpzS0U1j19utADq5fx7ptxe+GpLqxx/aGmSpqFpkEgvF8xU467l3L/wKqs3ivV9UlktvDXh+eba5R73UgbW3QjjgEb359F/Gt6/0eDXNHWw1qCKdJAhnjVmCM4weOc4yOh7UAZmjeOdC12Szh027a6luIxIVhjaQQgruxKwGEPbBI5qxrmlazqtzFFZ642mWBUicW8Kmdz/ALLtkJ9QpNY/g1F0DXNZ8KBUit4ZPt+noBgfZ5SSygdgkgYf8CWu3HSgDG0Hw1p/h2GVLJZmkmYPNNcTPLJK3qzMa2RRRQAUUUfzoAzNf1i20DRL3VLvJhtoi5VfvOeiqvuSQB7kVmeCtGudL0Z7nUiG1bUZWu71vR26J9FUBf8AgNZ+okeKPH1rpS5bTtD2Xt2f4ZLhv9TH/wABGZPrtrth0oAB0qG5WV4JFhdY5Cp2uy7gD64yM/TNTUUAeQa38Dj4g12bWtR8U3Ml7I4YsLRdoxwABu4GAK9S06G8t7UR394t3MDzIsQjyPoCau0UAA6DNFFFABRRRQAUUUUAFFFLQAUlLSUAFFFFABRRRQAUUUlAAfauI1GWXxxqk2j2sjx+H7STZqNyhKm6kHW3Q/3f757/AHfWrGv6neazqjeGNDmeKbarajfR/wDLnE3RVP8Az1YdB2HzHtnpdM0210jToLCyiEVtAgRFHPHue5PUnuaAJ4Io7e3jhijWOONQiogwFA4AA7CpKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5LWo2sfiH4f1NTiK8hn02Y+5XzY/1jf8662uW+IJa28Jy6pGm+TS54r8D2jcFx+Kbx+NAHU0UyKRJoUljbcjqGU+oNPoAKo6xqcOjaPe6lcE+TawtKwHU4GcD3PAH1q9XIeJWfWvE2k+GoWHlKw1HUMdoY2/dof96THHohoAueDNLn03QRPqCbdUv5Gvb7HaWTkr9FG1f+A10Y9KRfuiua8Ta9cWtxBoujok2uXilolf7lvGPvTSeijsP4jwO+ACv4h1a81LVP8AhGNBlaO8dA19ep0soT6f9NW/hHYfN6Z6DR9Js9E0q306whEVtAu1F7nuSfUkkkn1NVvD+gW/h/Tfs0DvNNIxkuLmU5kuJT953PqfTt0rXoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5Hx0gtF0XXt20aXqUTyn/AKYy/uX/AAHmA/hXXDkVleJdJXXfDWpaU3/L3bPCD6MRgH8Dg/hUfhLVTrPhPS75zmWW3UTe0gG1x+DBhQBs0UUUAFFFFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJRRRQAUUUUAFFFFAGR4n1uPw54av9XkTf9liLJH/AH3PCL+LED8ar+DtEbQPDFpZzMXu2zPdSE5LzuS0hP8AwJj+VZfiD/ifeOdH0FGzb2H/ABNL4DocHbCh+r5bH+xXZjpQAg6UtFFABRRRQAUUUUAFFFUdS1jTdIRX1G/trVXOF86UJuPYDPWgC9RWTrk+sxWiHQrO0ubmSQKTdTmNI0wcucAlucDAwefaqOi6LrUF+dR1nxBJeTMhUWdvAsNtHn0XlmIx1LUAP1vxlpWh3gsJDc3eosu9LKygaaYj12joPdiB71c0a+1HULV5tQ0p9NfzCI4XmWRymB8zbeFPXjJrSCKGLAAMepxzT6AOVtvAWjLfLf6kLjWL5GJSfUZDN5fsin5V/AZrqVAVQFGAOgxjFLRQAUUUUAcx8Qv+RG1L/tn/AOjErp65j4hf8iNqX/bP/wBGJXT0AFctLqt9f+P49KsJgljp9sZtRIUHdJICIo+ehxlz7bfWuiuLiG2jaW4lSKIY3PIwVR2GST3JxVfT9Is9NlvJbWLZJezGedixJZ8AZ59gOO1AF4dBS0DkZFFABRR0rB13xXpmh3EFrO0k9/cECGytV8yeTPGQo6AdySBx1oA2pZFiRndwiKMszHgD1/8A11k6J4ksPEMl2NO86SC3fZ9q8siKVuciNjw+MckUut+HrHxHBBbakJnto5N7W6yFI5j6SAfeAODjpkDrWrBDFbW8cEMaxxRqFRFXAUDoAKAMjTfDGl6Zql1qqRPNqNy7F7qdzJIFJ4RSfuqOgAxwBW0OlI7BVLEgAclj0HrXIS+Pbe8uZLTw3p93rlwh2s9uuy3Q+jTN8o/DceMY9ADsf89azv7c0r+2F0kahbtqDKWFssgMm0DOSByB9abq2mLrWn/ZZbq7tUZlZ2tJjG5A6ruHOD7YPvTNF8O6R4et2g0jT4LSNjltg+Zz/tMclj9TQBS1q38T31+LXS76y07TzGC92YzLcbsnKopwgGMckn6Ve0TRv7Fsmga/vb+R2LyT3kvmOzEAegCjjoBWrRQADpRRRQBxfjjGj3ukeLUHGnT+ReehtZiFYn/dbY34GuzX7o5zxVbUbGDU9OurG6Xdb3MTQyL6qwwR+tc74CvppNAbSr2TfqGjytYXLd32fcf6MhU/jQB1lFFFABWT4l1yLw5oF3qkqGQwp+6iXrLIeEQe5YgVqnvxXE3H/FV+P47cfNpfh4ieQjlZLxl+Qe+xCSfd1oA1vB2hyaDoCJeP5mo3MjXd9L/fnk5f8B90ewFdDRRQAUUUUAFFFFABRRRQAUUUUAFFFFABS0lLQAUlLSUAFFFFABRRRQAVy/iXW7wXsfh/QWVtZuU3tKyh0soc4Mzjv6Kv8R9gaseJvEDaOkFpYQLdazet5dnbE4BPd3PZFHJP0HcU7w14dXQ7WRppjd6jdP5t5duOZZMfog6KvYAUAWdB0G10DTRaWgclmaSaWVizzSN953Y9Sa1RzSDpS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFQXlrDfWc9pcJvhnjaKRfVWGCPyNT0hoA5jwBey3Xg60huD/pVgXsJv8AfhYx5/EKD+NdRXI6E/8AZ3jrxJpG3bHcCHVIB6718uTH/Aos/wDAq60dKAIrm4itbeW4nkWOKJC7u3RVAySfbArmPA9vNc2t34lvI9t3rMnnIG6x2w4gT/vn5j7uab43Laq+neFIQSdWkJu2BwUtI8NL/wB9ZVB/vn0rY1zWLTw7pP2mVC2MRW9tH96aQ8JGg7sf069jQBX8TeIDo0MNtZwfa9XvSY7K0U4Lt3Y+iL1Zuwx6ik8N+H/7Fimuruc3erXhD312VP71wOAo/hReQqioPDWgXVtPPretFZdcvAN4Q5W1j6rDGf7ozyf4m5PaumX7ozQADpS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIeo9e1cj4MC6dqXiLQAeLO/NzCvYRXA8wAfR/MH4V2HauQvAml/E7Tro8JrFjJZsB082I+YmfqrSD8KAOuopB0paACiiigBaKKKACiiigAooooAKKKKACiiigAooooAKKKKAEooooAKKKKACop5o7eGSaV1SONSzuxwABySTUtcd8QJnvLCy8MwMy3Guz/ZWZesduBumf/vgEf8CFAB4BhlvLO+8S3cZS51u4NwgYYK26/LCv/fA3f8CrsB046Uy3hjtraKCJQkcShEUdgBgCpKACiiigAorNu9d0mzv7exudRtoru4YJFbtIPMcn0Xr+NVtdfxFut4dAg0/LhvOuL13Ii6Ywi43k89WHSgDaJ5rl9S8b2VtqMulafZ32ranEcSQWUOVjOOA8jYRfxNW9B0a/0x7ifUtdu9UuJsbvMRYokxn7iKPl685J4xW6qgDigDNsmv8AUNHzqNv/AGdeSqweOGcSGLOQCHxjOMHoRn1rP0vwPoWlXQvVtDd6iBzfXrmecn13Pnb/AMBAFdHRQADpRRRQAUUUUAFFFFABRRRQBzHxC/5EbUv+2f8A6MSunHSuY+IX/Ijal/2z/wDRiVu6hfQabp9xe3LiO3t42lkc/wAKqMk/kKAOX8T283iDxRo/h8wSf2bCf7RvpCp2OEbEUWehy/zEeie9diOlUtFv21TRrO/a2ltjcwrL5MuN6ZGcHHerxOOvFABUF3dW9jbSXV3PHBbxjdJLIwVUHqSelZGp+K9N07V7bSU8681KdgPstonmPGpIG9+yLznLEcA4zUmseG9L165s5dVhNzHasXjgeQmLcf4mToxGDjI4yaAHaFr9r4jtprqwiuRbI5SOaaIos2B95M8le2eOhpmi+GNL0OSea0gZrq4YtPdzOZJpee7nnHt0wKpXnjfRLTUI9NtpJdRvshTa6dEZ2jHT59vyoB/tEVo65pt9q1kkFnq0+mEyAySwRq0jJg5VSwIU5wcgdqANEzRrOsHmIJiu4JuG4gd8enNYGs3nil9QNloWmWcUIUbtSvpdyD2SJPmYjP8AEVFTaJ4Q0fQrhry3gebUJF2y31zIZZ5B7u3P4Dj6VvDpQBmaNYXthYmLUNUk1K5ZyzzvEsfB7BVHAHb+ZrRhijhhSOJFjjUYVVAAA9Bin0UAFFFFABRRRQAUUUUAHauLvQfD/wASbS+GEsdeiFncHsLqMExN9WTcn/ARXaVz/jPRX17wxdWtuxW9j23Fo46rPGdyH8wB+JoA6Cisvw3rUfiLw5YatEuwXUQdk/uN0ZfwYEfhWmetAGJ4q13/AIR7Qbi+SLzrriK1g7zTMQEQdzk46ds+lN8JaCfD/h+G0eQy3chae7mYcyzudzsfxJx7YrGj/wCKq+IBfAfSvDp2owPyy3zAZ+ojQ4/3n9q7YdKAFooooAKKKKACiiigAooooAKKKKACiiigApaSloAKSlpKACiiigArH8Ra7baBp4uJUeeeRxFbWsf37iU/dRfc9z2Gc1Z1fVLPRtNn1C/mWG2hXLO3f0AHck4AHcnA5rA8O6Te3uo/8JPr0ZS/kQrZ2jHcLGE9vTzW/ib8OgoAseGvD9zaSXGsaxIlxrl8o850HywIOVhjz/CO5/iOSa6Vfuj/ABzQv3RS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQByXiJ/7M8beGdUCgJcvLpk7d8SLvj/8AH4sf8CrqyRjPAyO9cz8QbeaXwZf3FqubuxCX1v8A78LCQf8AoOPxqn4z12OXwna29ldfZ5tdURRTk48mFk3yy57BYwxz2OOnWgCtompWbvrfjzUpRBZSH7PaySdEtImIDDvl5CzYHX5O+KuaFpt5rmpx+KNdgaGQKV03T5OfsiH+N/8Apq3f+6OPWqOhaYPEsljfS27Q+GtNCrpNk64+0FQAtw4/u4+4v4ntXfDpQAL90UtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVyPxCC2uh22t87tGvYb3jvGG2Sf+Q3f8hXXVT1XT4dW0m8064GYLqB4X+jKQT+tAFtGDKGBBB6Ed6Wud8C6g+o+DNMkm/wCPmGL7NcA9RJETG/8A48hroqACiiigBaKKKACiiigAooooAKKKKACiiigAooooAKKKKAEooooAKKKKAEPvXGeHs69421jxCW3Wln/xKrIH/ZIaZ/xfC/8AAK1PGWtvoXhu6uLba2oSAQWURYAyTuQqAevzEcfWqXhS/wBA0aCx8JWmp29xqVtD+9ihJdi/V2bAwpLFjyR1oA60dOetITzXPa5beKLy7SHSdQsdOsdgMlw0JmnLZOQqnCgYxyc/T1t6Fov9i20qtqN/fSzP5kk15NvbdjGFGAFHsAKAMe58ZXF1dPZ+HNCvdVljcxvcuPs9qjAkEGR+TgjnaG/Otq4099X0P7FqTPDJNEonNnO6YbgkK4w2M/jjrWoOBS0AY+i+GNG8PRbNL06C3Y/ekC5kf3ZzlmPuTWuOlLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBzHxC/5EbUv+2f8A6MSrHinQpPEdpaae04jsftUct4mDmaNDuEf0LBc+wNU/iRKkHgLVJpGCogjZiRkACRK5Pw38VrGa8tLW7uLi9v8AWLxnhtbeIP8AYYDgRrIV6nADNjJG49AKAPR9U1ew0SwkvtSu4rW1j+88jYGfQdyfYZz6VW0fVf8AhI9LluDYXtlBIzJF9oXynlTH3wAdyg54zg96yvFHhO41vUrDULCe0t7u3BQT3MJn8peu6KNm2B+24g8fre0Pwta6LdS3zXd/fahOmyW5vLgyMVznaF4VRnsFFAGLEtx4ell0Lwj4Vd3UgzX94/lwM5G7c0hy8x55wDzxkY46fTbO+bRxba7PbXlxIGE5ihKRsCT8oUk8AYHvitIdKWgCrY6dZaZarbWNpBbQL92OGMIB+Aq1RRQAUUUUAFFFFABRRRQAUUUUAFFFFABSGlooA4rQP+JF431jQXOLfUP+JrYg9AWO2dPwbDY/2zWp4w1yXQ9AeSzVZNSuXFtYQsf9ZO/Cgj0H3j7Kaz/H8M1nZ2Xia0i33OiT+e4AyWt2+WZfpsJb6oKg0y4t/GHjeTVIWE2l6EpgtJAcpLcSKDI4P+yhVR7s1AHQ+GtCi8OaBa6bGxkeNSZZW+9LISWdz9WJP41r9qB0ooAKKKKACiiigAooooAKKKKACiiigAooooAKWkpaACkpaSgAqjrGpRaPo97qc6u0NnA87rGMsVUEkD34q9TWRXUqyhlIwQRwR6UAeRaP4203xpqUWu6rb6hFptk/+g2Eenz3CtKBzNIyRlCRyFGflxnqa7j/AITzRBx5er/+Ca7/APjVdFb28NrAsNvEkUS/dRFCgfgKloA5n/hPNE/556v/AOCa7/8AjVH/AAnmif8APPV//BNd/wDxqumooA5n/hPNE/556v8A+Ca7/wDjVH/CeaJ/zz1f/wAE13/8arpqKAOZ/wCE80T/AJ56v/4Jrv8A+NUf8J5on/PPV/8AwTXf/wAarpqKAOZ/4TzRP+eer/8Agmu//jVH/CeaJ/zz1f8A8E13/wDGq6aigDmf+E80T/nnq/8A4Jrv/wCNUf8ACeaJ/wA89X/8E13/APGq6aigDmf+E80T/nnq/wD4Jrv/AONUf8J5on/PPV//AATXf/xqumooA5n/AITzRP8Annq//gmu/wD41R/wnmif889X/wDBNd//ABqumooA5n/hPNE/556v/wCCa7/+NUf8J5on/PPV/wDwTXf/AMarpqKAOZ/4TzRP+eer/wDgmu//AI1R/wAJ5on/ADz1f/wTXf8A8arpqKAOZ/4TzRP+eer/APgmu/8A41R/wnmif889X/8ABNd//Gq6aigDmf8AhPNE/wCeer/+Ca7/APjVH/CeaJ/zz1f/AME13/8AGq6aigDmf+E80T/nnq//AIJrv/41R/wnmif889X/APBNd/8AxqumooA5Z/HOhyKyNFq5VgQR/Y92M8cjmOvFPCep2/irVrePWpb06Fodv9khtrexmm+0LvLKH2I20bVjBB67AO5r6TPNQ29pb2gcW8EcQdtzbF25PqaAOeTx1oUaBFi1ZVUYAGi3YAHt+66U7/hPNE/556v/AOCa7/8AjVdNRQBzP/CeaJ/zz1f/AME13/8AGqP+E80T/nnq/wD4Jrv/AONV01FAHM/8J5on/PPV/wDwTXf/AMao/wCE80T/AJ56v/4Jrv8A+NV01FAHM/8ACeaJ/wA89X/8E13/APGqP+E80T/nnq//AIJrv/41XTUUAcz/AMJ5on/PPV//AATXf/xqj/hPNE/556v/AOCa7/8AjVdNRQBzP/CeaJ/zz1f/AME13/8AGqP+E80T/nnq/wD4Jrv/AONV01FAHM/8J5on/PPV/wDwTXf/AMao/wCE80T/AJ56v/4Jrv8A+NV01FAHM/8ACeaJ/wA89X/8E13/APGqP+E80T/nnq//AIJrv/41XTUUAcz/AMJ5on/PPV//AATXf/xqj/hPNE/556v/AOCa7/8AjVdNRQBzP/CeaJ/zz1f/AME13/8AGqP+E80T/nnq/wD4Jrv/AONV01FAHM/8J5on/PPV/wDwTXf/AMao/wCE80T/AJ56v/4Jrv8A+NV01FAHM/8ACeaJ/wA89X/8E13/APGqP+E80T/nnq//AIJrv/41XTUUAcz/AMJ5on/PPV//AATXf/xqkPjzRD/yz1f/AME13/8AG66ejqKAPMfAPi3Trrxx4k8OWUN0qG4fUImmiaPG8R+YpVgCDvJYcdGNenVAtpbpcyXCwRrPIAryhQGYDoCepqcUAFFFFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUARTSiGN5CGbaCcKCScDOAB1NcTc/F3wbZ6i+nXN/cxXqP5bQPYTh93YY2da7eVgiMzHCqMk+lfLHg+W38ZfHOTWrp0SyjuZdQZpGChEQ/u8n0B2daAPdV+K3g4an/AGdcanJaXYO0xXdrLCQTjGdyjHUda7ReRnOfevmL4pXJ+IvxGgsfCts2pG1t1t2mhXKs24knd0CjdjJ46+1fRnh7T5tK8OaZp1zP589raxQyS5zvZVAJ/EjvQByXjr4YWvjfX9M1K61S5to7RQkkEYyHXdu+U5Gxu2cHjHTFO0/4UaJpduIdP1LX7OLqY7fVJI1z9FNd7RQBx3/CurM/8zD4p/8ABzN/jR/wrqz/AOhh8U/+Dmb/ABrsaKAOO/4V1Z/9DD4p/wDBzN/jR/wrqz/6GHxT/wCDmb/GuxooA47/AIV1Z/8AQw+Kf/BzN/jR/wAK6s/+hh8U/wDg5m/xrsaKAOO/4V1Z/wDQw+Kf/BzN/jR/wrqz/wChh8U/+Dmb/GuxooA47/hXVn/0MPin/wAHM3+NH/CurP8A6GHxT/4OZv8AGuxooA47/hXVn/0MPin/AMHM3+NH/CurP/oYfFP/AIOZv8a7GigDjv8AhXVn/wBDD4p/8HM3+NH/AArqz/6GHxT/AODmb/GuxooA47/hXVn/ANDD4p/8HM3+NH/CurP/AKGHxT/4OZv8a7GigDjv+FdWf/Qw+Kf/AAczf40f8K6s/wDoYfFP/g5m/wAa7GigDzbxL8IrTXdJaxXxHrytuDg3d69zHx1yjMM8d8ipdJ+DugaNCFsNQ1y1YqBI9vqDxeYcdSFxXolFAHHf8K6s/wDoYfFP/g5m/wAaP+FdWf8A0MPin/wczf412NFAHHf8K6s/+hh8U/8Ag5m/xo/4V1Z/9DD4p/8ABzN/jXY0UAcd/wAK6s/+hh8U/wDg5m/xo/4V1Z/9DD4p/wDBzN/jXY0UAcd/wrqz/wChh8U/+Dmb/Gj/AIV1Z/8AQw+Kf/BzN/jXY0UAcd/wrqz/AOhh8U/+Dmb/ABo/4V1Z/wDQw+Kf/BzN/jXY0UAcd/wrqz/6GHxT/wCDmb/Gj/hXVn/0MPin/wAHM3+NdjRQBx3/AArqz/6GHxT/AODmb/Gj/hXVn/0MPin/AMHM3+NdjRQBx3/CurP/AKGHxT/4OZv8aP8AhXVn/wBDD4p/8HM3+NdjRQBx3/CurP8A6GHxT/4OZv8AGj/hXVn/ANDD4p/8HM3+NdjRQBwt98MrK8sri1bxF4lAljMf73VZZF+YEcqTgj2PWtDwB4Nj8DeGl0lL6S8JmaZpWTYMnHAXJ2jA9fWt7UryWwtHnhsLm+YY/cWxTzDz23so/WvN7T466BqGqjTLTQ/EM98zMqwRW8TOWAJIA8zqAD+VAHqg6DHSiuI0P4peGdb1Q6WZrjT9T3+WLO/hMMm7+71Iz7ZzXbDkUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABS0lLQAUlLSUAZ+saj/ZGnT35s7i7SFS7x25TcFAJJ+ZlHb1zXDaF8Y9K8Sm6/sbw/4gvPssfmSiOGHKr9DLyeDwMng1ofF7W20L4a6rLGQJrlRaR5/wCmhw3/AI7u/KvIPhd4z0bwH4M1Ge58yXWdQmxBbiIqrqgwm6QgKBuZ888AUAex+Dvib4e8b3ctppz3EN3Gm829zGEcqDgkYJHcd67WvDfg58M9X0fWm8Ua20cTNCwggSRXLl+rsVJAGM8Z6ntivcV+6Op9zQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAYXijxNF4V0qbVLrT7y5tIF3TPbeWTGMgZw7qT17ZrkNN+NGj6xZXd9YaD4hntbML9oljtomEYOcEgS57HoOKq/H/WjpvgBdPjYebqVwsRH+wvzt+qqPxq38DNFOlfDW2ndNsuoSvcnPXbnaufbaoP40AdP4V8a6F4ytnm0e980xcSRMu2SP3IPb3HFdGOlfKng+7bQfj+9tpzNHatqtxZlI+hiLsoBHoMA/gPSvqsDAxQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUh680AZ+s63pugafJf6rexWltH1kkOPwA6k+wya5PTfiNceIg8/hzwtqeoWSEj7VK8dsjn0Te3zV43rGqXvxd+Ldto4mcaPFcNHEit8qwpkvJx/EwB591FfTdnaW1hZw2lpCkNvCgSOOMYVVHAAFAHH+G/iLaeJvEs+gxaTqNne2sLS3S3aKvlYZQF4JzndkHjgV2o6VlW2gWdn4lv9cjX/Sr2GKKQ47JuwfxyAf8AdFaw6UALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBx/xQ13/AIR/4eaxeKcSvCbeLHXfJ8oP4ZJ/CvIfgf4B0fxHoOsahrunR3cTTLbw78gqVUs5BByCd6j8K9B+Kvg3xV46gh0vTJ9KttNikEzG4nkEkr4IGQIyABk9/eqOieE/iP4c8HReHdHk8L24QOPthlmaXLEkt/qwN3OMnPagDzvwx4mvvAnxZm8MaddS3Oivqn2M28jZA3OEBX0IJ5PfHNfTq/dFeT+A/gxB4Z1oa5rF+NS1NSWQCPEaMer5OSzenTGT7EesLnaM9aAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArkPiVdTab4H1PVINQurKa0hLRPbsBlyQFByOmSPzrr68W/aM1k2vhnTdIjchr24MsgB5KRjofbcwP4UAZ/wd1LxX42vr+61fxFftYWYRQkZRfMkbPBIHQAdPcVa+N3ibWfCV5pZ0TXL6Ce78x5YQysiqu0DAxxkk1Y+FEfirw54FtY7LwnDdxXjG7E76msJkDAAHaUOPlC968y+IGo6l45+K0GmXNqtpOksWmrBHMJQh3YY7gBnlj2oA92+GFrrVz4V0/XNd1q+vLq8i80RSMBGqN93gAEkjBz713w6VFa28VpaQ20CCOGFBHGg6KoGAPyqWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMvxFqiaH4d1LVJCALW2eUZ9QpwPqTgV8+/s9aQdR8YalrU4Dmzg2q7DnzJT97/vlX/Ou8/aC1saf4Dj01JMS6jcKpUd40+Zj9M7B+NTfATQv7J+H32+VQJdSnabJ/uKdij81Y/8AAqAOH/aN02C017RNVhXZc3MUkcjLxnyypU/X5zz7CvYvhrrU3iD4eaLqNyxad4Nkjnq7IxQsfc7c/jXg/wAWNRn8e/FGDRNFU3f2VRZxBTw0uSZG+g6E9gpNfRfhbQo/DXhfTtGiYOLSAIzgYDt1ZvbLEn8aANeiiigAooooAKKKKACiiigAooooAKKKKAClpKKAFpKWkYZoA8A/aN1d5brRPD0LEk7rqRB3JOxP/an510Xj2w07wv8AARNHv0ieaG2hhhUjkz5BLL7glm+mfWug1X4SeG9a1c6rqEmpTXxYEStdnK46AemKdd/Cbwzql4l1q51PVXQYQXt/LIF+nIP60Acn+zrJqT+FtSW5aVrFLhVtd2cA4O8DPbO3p3zXs46VWsLC10yyis7K3jt7aIbY4o1wqj6VZoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo6GimSLvVlyRnjIOD+BoA+bPjtf3Ov/EbTfDlp87QRpEkfrNMw/p5de1eINe0z4deCUlmddlnbrBawk4MzquFUD8OfQZPasab4MeFbjU21KV9Ta+aTzTcG8bfvByGB9cgflWovwy8My3qXupW9zq10h+STUruS42j0CsduPbFAHlHwT8D32p+IH8aaujLCru1tuHNxK2cv/ujJ+pPtX0RTY40ijWONVREG1VUYCgdABTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa/3Wx1xTqOo5oA+XfgrCuifF2fTtUxHdLBPbKHOCZQw4+uA1fTF7e21haS3d5OsFvEu53dgAoH+RXLeLPhj4b8X3YvryGe21BSuLyzkEcpxjGSQQcYHJGeOtP074eaZaXEM+oahq+tSQOJIRqt4ZkiYdwgAXPuQTQB1NlcreWUNyiSIsqBwsqFWAPqDyD7HpU9IOgzS0ALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjEAEkgYHU9q+Uvi9rUPi34ni1tLuM2luIrKOYv8gJOXJ9gzEE/7NfVjoHVlZQykYIIyCD1zWQPCnh3GP7B0v6/Y4/8KAGXmo6Z4W8LfaWmiSysrXEZ3j5lReAD3JwBXzj8GAmt/Fo6pqE0fnIk15mRgN8rHHHvmQn8K+l5vD+jT28VvLpFhJDCCIomtkKpnk7QRgc88UxPC+gRyCRND01XVtysLSMEH1BxQBqjpS0gGABS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTWzzTqKAPKfH/wAKdU8faxHd3PiSG2t7dSlvbrZFggJ5JPmck45PsKu2/wAP/FMXhu18Pjxotvp0EPkZtdNCSvH02ly5x+GK9JooA5Dwd8O9B8DxOdOikku3GJbuchpWHXGcYAyOgrrhwAP5UtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABS0lLQAUlLSUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFLSUtAH//2Q=='] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 60 "如图, 四棱雉 $S-A B C D$ 中, $S D \perp$ 底面 $A B C D, A B \| D C, A D \perp D C, A B=A D=1, D C=S D=2, E$为棱 $S B$ 上的一点, 平面 $E D C \perp$ 平面 $S B C$. 证明: $S E=2 E B$;" ['以 $D$ 为坐标原点, 射线 $D A, D C, D S$ 分别为 $x$ 轴, $y$ 轴, $z$ 轴建立直角坐标系 $D x y z$, 如下图.\n\n\n\n设 $A=(1,0,0)$ ,则 $B(1,1,0), C(0,2,0), S(0,0,2)$.\n\n$\\overrightarrow{S C}=(0,2,-2), \\overrightarrow{B C}=(-1,1,0)$.\n\n设平面 $S B C$ 的法向量为 $n=(a, b, c)$, 由 $n \\perp \\overrightarrow{S C}, n \\perp \\overrightarrow{B C}$ 得到 $n \\cdot \\overrightarrow{S C}=0, n \\cdot \\overrightarrow{B C}=0$, 故 $b-c=0,-a+b=0$.取 $a=b=c=1$, 则 $n=(1,1,1)$, 又设 $\\overrightarrow{S E}=\\lambda \\overrightarrow{E B}(\\lambda>0)$, 则\n\n$$\nE\\left(\\frac{\\lambda}{1+\\lambda}, \\frac{\\lambda}{1+\\lambda}, \\frac{2}{1+\\lambda}\\right), \\quad \\overrightarrow{D E}=\\left(\\frac{\\lambda}{1+\\lambda}, \\frac{\\lambda}{1+\\lambda}, \\frac{2}{1+\\lambda}\\right), \\quad \\overrightarrow{D C}=(0,2,0)\n$$\n\n设平面 $C D E$ 的法向量为 $m=(x, y, z)$, 由 $m \\perp \\overrightarrow{D E}, m \\perp \\overrightarrow{D C}$, 得到 $m \\cdot \\overrightarrow{D E}=0, m \\cdot \\overrightarrow{D C}=0$, 故\n\n$$\n\\frac{\\lambda x}{1+\\lambda}+\\frac{\\lambda y}{1+\\lambda}+\\frac{2 z}{1+\\lambda}=0, \\quad 2 y=0\n$$\n\n令 $x=2$, 则 $m=(2,0,-\\lambda)$, 由平面 $D E C \\perp$ 平面 $S B C$, 得到 $m \\perp n$, 所以\n\n$$\nm \\cdot n=0, \\quad 2-\\lambda=0, \\quad \\lambda=2\n$$\n\n故 $S E=2 E B $ .'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAdcB1AMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAoorL1XXtP0cqLu4VHfhEByzH2FAGpRWLZ+JdNvrhbe3uA1wRnyTgMPqO1bVABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSN0oAMj8q8P+LcGoaT400rxYkRudPtlCsg5APPJr2a9WVrGcRf6wxMFHvjivO4T4jl8HXek6rokt1M64V1ZQpGOMg0AaXhSLR/Eepx+LtM2DzrX7PJGFwVJbPPvXejpXnnwn8J3vhLw3LDf/JPczea0ec7eMYr0MdBQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh6UtNflSPWgBp6845FYQ8WaKmuHRTqUR1AjiFick88D8q2+cbQOVFfOXjaNovjbBJo7BZ9u5mJwFb5s/n/AFoA+iggZwVwUznI/rVmuY8LeI49Zje3lQwajb/LcwH19R610wOR2oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmt0xTqRulAEbEIjFjwATmvGpvDMGsxeJPEYVjfR3rLA4zjarA9O/Ga9b1SYQaTeTZxtgYj64NeXeDWm+3WsZlfyNQshMyE8bmzzQB0V3pja/pen+ItFcQ6msYcMOA45+8O/Irb8N+J49Zie3mHk6jD8ssLcEH1+lZXw/naCwvNFb72kz/Zzu5JGN39as+JvDMl1Iuq6QRb6pAMqw6SL1KsO9AHVo+8d81JXN+GPE8etxNFMvlahD8s8TcYx3HtXR54oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa2ccU6kb7poA5fx1eGx8KTuTw8iRf99MBS6L4XtbKOwuG3CeG2SADtgVQ+IINxBpmmqc+fcoxX12sDVm51C7Tx5bWKTstsYgxjHQnmgCnEP7H+JbRniLUrfeT/013Y/kK7UgfT371x3jxPsaabrKjH2G5EspHUoAeK663kE1vFIOVdA35jNAHLeJfDU01wur6Q3kalDyoXjzB3GO+au+G/EkWuQNDJ+41GH5Zrd+Cp6Z+mc1vsvoT9a5PxJ4ckklj1bSCsGqJyxTjzlH8J/WgDr1PH0p1c74c8Tw6xA0M0Zt7+A7Z7dhgoeP0ya6AN60AOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRulLTSM8UAcVrP8Ap/xI0W3HKWqyPIPTKcVvXGhQz+IYdVaQiWNQoX16/wCNc/pH+m/EvWpz80UVtCqezc5q7qGqXkfjiw09GH2Z13OCOe/+FAGn4k0waz4evrE8+dEQD6VS8EX7aj4ZtZJj+8Qsjc9CpI/pXR7cjGMVxPhM/wBmeKNd0djtj81ZLZP9jb836mgDtWBweelN5ZQR8uec9xUmPm60u3rQBx3iPw1LJP8A2zozmPVIPnKDgTjnKt+dX/DniWHW7cpIDDfRfLNCRyhredcMrY71x/iXw9Mbk63pDmHUrb5ioHEw68jvQB2g6Utc94Y8TJrtoVkTybyH5Z4G6o3/ANcc1uqzFsGgCSiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmsdoJJwMdTTqztfuTaeH9QuB1jt5GH1CmgDmfh8PtEeraiw+d7+aLJ9FYgVt3OhLceIodVLkGJQMfn/jVPwLbfZ/ClvJjm4JuD7l8GjUtXubfxjYacv+onHP1x/wDWoA6XOAOea4jxCn9l+PNI1cHEcqGzkPTLOwx/Ku24PbkVy/j+0M3hW4uox+9s2F0n1UHFAHVAgnj0p1Z+jXf2/SLS63AmSFC312jP61oUARvkkDPTqPWkbPB2jPrUvejtQBx3iPw5M9wut6K/2fVoTl1H3Z0HUMPXHQ9qv+GfE0GvRMu3ybyL5Jrdj8yMOv4da22UlyuD83OewNcj4h8N3P2pNb0Ui31OL7wX/luo7H9aAO03DGe1LXPeHPEMGu2W108q9i4ntm4ZGHB/Xit9fu5znNADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBCcVzHj26+z+FpFBx9okWD/vriumJx1PeuJ8fE3cukaYnLSXkUxX1CMCaAOn0O3Nrodjb4x5cKoR9AKoX2hNd+JrTVVbH2ft+FbajhSOicYrntS1m4tfFdhp6Y8q44P5UAdEMgniobu2W9tZbaQAxyoUYeoIqxwT70g4P0oA434dXTjSLnT5z+/trmUY9FLHb+grtA2a4e126N8TJ4F+WPVIt6+gKLz/Ou3zkc96AFBzS0i9MUtAEbIW/iIpGUhc5OMY+lS01+lAHGeIvD9wl2Ne0UbNSiGHVR8twg7N7jnpWr4b8Sw65ZspUxXsPE9u33ozWyRnjcc9c+lcn4h8OXEd0dc0FhDqMZ3tCDhbkeh/n+FAHYCQE4wff2p/UVz/hvxJb69Y+YoMd1GdtxARhkb0xW+Og6UALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAxgDjNcVqX+nfFLSYhzHbWsxf2JAIrtTw+e2K4zw/i8+IGv3XVYliRD9VOaAO1xXPanoMt54m07U1kAS2PK/ga6Kuc1XXJbHxRpmnBN0d2xUn0wpP9KAN8HBBz1NKeR+NJtyFPTBzTuKAOI8frJp8mm65CMyW9wkOR2R2AbP4CuzjYNGrq25cZH0rN8SWQv8Aw7ew7dzeUzJx/EAcVT8F3pvfDNmzktNEvkyn0ZQAaAOjXpmlpBS0AFFFFACbR6CopFGRhRjoST0qamP34yDQBxniPw/cR3o1vQz5eow8yxqMCce/vjHNa3h7xJFrtpuG2G5i+WaBzgqf8K28NuzgdOOORXH+JfDs0Fz/AG5oeIdRi+/H/DOnGQR64FAHYIz5AOCe/tUtYPhzxFba/bb1Biuk+WaFuGVh14+ufyrd3DHXp1oAWijINFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAMZsfTv/n8a4v4cg3Nhfagw+ae6kXPqFYgVveJ7ttP8N6jdKcGKBnyKq+CLYWnhe1QLgSFpf++jn+tAHR1zWr6HcXfijS9SjdRFbuTIp642kf1rpa53VtcksvEemaaIlKXblWYnkfKT/SgDeGOe2D2qQdKjAxnHepKAGONykHoRzXEeD3/s/wASa3oR4VX+2KD38xj/AICu5b7prhtcT+yPHmkakvyx3qtBMf8AdGVz+JoA7lTkZpaap4p1ABRRRQAUUUUAFQsuXKkFgemegqamMhOeePSgDi/EPh65t77+3tEIi1BR+9iXpOg7H9a1/DniK28QWQlUGK4QlZ4G4MbDGQfzra2FY8EAD07YrjPEPh68h1Bde0E7LyNf3sK/cnUZ4+vNAHbJ05696fWF4b8SWuv2O+IeXcR8TQtw0Z96294JwOaAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHI/ESYr4VmtVPzXjfZx7kjpXQ6VD9n0m0gxgpAin64Ga5XxqxudY0DTxyftiXBX1UEg/zrtFG0baAH1zGt6NcXninRL+P/VW0pL/TaR/WunrA1fXhpmuaXp5hLnUJDEGB+7hSf6UAbgJPbBp9MOccjFOHQUABOATXJeP7F73wy0sK/vrd0lUjqAGBP6CutPSql9CLmwnt9uRJGyAH3GKAGaPfpqmlW19GcpOgcVfrjfh7KYNHn0hmydMnNrz1wo611+48+1AD6KB0ooAKKKKACiiigBrA4PNQuAAAxbrxtHSrFNKg9yPpQBxniDw9d2l//b2gKqXqHdNCOFnX0PvWx4f8Q2+u2TSxuBKh2yxYwyEdQRWw64YHjr3PT0rjNe8PXFlff25oXyXsZ3TxDhZl78evvQB3A6UVh+HfEUOv2RlQeXOh2ywvwyEcH8Mg1sq+T9aAH0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUmaAOIu/9N+KtnGTlLexk/BtwIrtVIbnvXE+GQL7xx4jujyLadYUPsUBrt0JOc0AOrlfEOk3V54o0C8t4i0VtcM07Z6KUIH866qsPVtdj03WtLsGi3NfytGGx6KT/AEoA2QSB0xTx0pgOetPoAQ0zq+fwxUlFAHC2JXRviXewEkQ6hCJAOxlLc/oK7UZ3Ak5xwa4zx7H9jvtF1wDC2N1ulP8AslSBn8TXYRndGjrjBAJAoAsUUA5GaKACiiigAooooAKKKKAGOgbOeQe1MwQTuxjGBgdKmooA4nxBoFxZXj69oIK3igefD/DOnfI9cdK2fDniK21+zEkIMUycSwSffQ9wa13IPyt0auO17w9dWeoHXtDxHegZuIF+7Mo659+tAHbA5pawPDviK38QaelxFlJxxNE33om7git1c4yaAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACZ5xUc0gSJyeyk089c1j+KL7+zvDV/d5x5UWc/jigDE+HkZl0q61HHzXsxkz7qSv9K7NTkVgeDrM2HhWzhIw20sR9ST/AFroB+tAC1yXijTrq78UeF7mCPMVrdvJKfQeWwrraxdW1y30zVdMsZULSahKYozjoQpP9KANcAZp9RjHTPSpKACiiigDE8V6euqeGr60IyWTI/A5/pUXhDUm1bwxZXTEeY0eHHoQcf0rbmAMbAjIIxXFeCSdO1zXtHfhEut1up/557Rkj8aAO6ooooAKKKKACiiigAooooAKKKKAI9hJJbnsBS7AFwANven0x87eMUAcV4g0K9sb3+3fD5KXSDNxCPuyr1x9a3fDviK017T1mgO2RRiWJuGjI6g1qMd2P0IHFcfr+gXWnX/9v6Eu24Xm4t84Wde4+uPbtQB2gkUnA5p9Yega5a69ZefA4Dj5ZIjw0behFbY6CgBaKM0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANP3q5D4izbvDMunqcNfN5Cj1PBrryOMiuH8YEXfijwxZD+G9Ezj22sKAOxsoRDZW6AY2xqP0qxgA5oUYUD0FLQAVyHiuwubrxT4VmiRmit7x3kI7fu2Arr6yNV1e20+/wBOspmxLfymKH2YKT/IUAaYAJIqTtUYqQdKACiiigBrCuK1Yf2V8RNKvgNsV5CbP2MhbP8AIV2rcmuQ+IkLf8I7/aMXMmnP9pTHUED/AOvQB1+fegE55qpps6XmnW06nJeJWJ/DmrY5ANADqKKKACiiigAooooAKKKKACkZQwwaWigBuwYwOB7UhVQSSPzp9RuPmBAzng0AcVr+gXGl3x1/Qv3c45uYV6TL3OOxxxmt/QPEFvr9gtxD8kg4khb7yHvkfnWttHYZxxk+lcZrmgXemX8mvaCoW4IH2qAjK3CD29etAHaK5Oc9KfWN4f12112xW4g+SUcSQsfmjPcEVsAg0ALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADT1riZf9O+Kka4yltYh/o2/wD+vXbOwA59a4rwsDeeLPEd6eRDcm1B9sBqAO3HIooooAK43xfYz3XibwpNDEWjt72SSZgPugxkA12VZep6raade2Ntc7vMvZDFFhc8gZoA0e3TBp46Uwn7ue9PoAKKKKAGMu4g9hVa+sor+yntZQGSYYYHuP8AIq2Rmk2+3TpQBx/w9upX0J7K4Yme0ldHHcAsdv6CuvUVxGmOdI+JN/Yn5V1GPz4x2wgAP6tXbqwYA0APooooAKKKKACiiigAooooAKKKKACiiigAxUJKk4OMdKmpmw7ic9aAOJ17QbrSb59f0FAJf+Xq3H/LVfp61vaBrtrr2mR3dqx3EfvFb70Z9G9DWvsJ4PSuK17QbvSNROv6ABvU5ubTokq+3vQB26cjOadWPoXiGz1zTluYGw/SSJuGRu4IrW3gAZoAdRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAV72TybKeQ9FjY/pXKfDxGfRJtRI5v5fPz6nGP6VseLLwWPhq9nJAGzafx4/rUXg2xbTvB2l2jAhooApz65oA6AcCiiigArivGtvPNr/heSKNmSG8d5NvYbCBXa1m6hqtnp93aQ3TAPcPsiyM84JoAuhQFxzzUo6VGCQoIOc1JQAUUUUAFFFFAHDeNYmsdW0nXIjhoJ1tnIH8DkE5/Ku0iKyIjr0IyPfNYvi+wa/8ADN/FGMyrGXiP+2AcU7wnqSal4ds5VOWRBC/++owf1FAG7RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA1s7eKYB8pGBjsakxmk2D8PSgDh9e0O60W/fxD4fjLTAf6Tak8Sj1Hoegziui0LXrPXbEXVq3zfdkRuCjehH4VqMOenSuH13RLvRNQ/t7QRsYn/AEq2xkSj1x64z+dAHdj7opayND16212xS5tmx2dG+8p7gitQMSwP8JFAD6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOM+JDmTw/HYofmuplXHrhgTXWwqEjVRwuBgVx3i3F54u8N2XULcO7D22cfrXaegHSgB9FFFABXFeN4Xk1rwy4GVjvHZuM4Gw12tUL+9s7SW3S6dQZX2xhh1bFAFsZ4B/SpB0pgwcZ9KeOlABRRRQAUUUUARuAwIIyOQRXE+BQdL1DVtBf71vO1yoPpKxYV2x4kHHBritSP9k/EjT7s/LFqETJMfdFwv6mgDuc0UwEdPypwOR70ALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA1qYR1yAT3yKlpMUAcLrmi3miai/iDw+hLED7VaD7sy9zj1rpNC12112xiubVucfvIj96Nu4PvWkVByBwtcTrWiXeh6i+vaGg2k5urYdJB3OBQB3WaWsfQ9atdc09Lm2fLdJFP3kOOQR2rWTpQA6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooADSbh3oPSmNynzYGM0AcUmdQ+LFwg+aOys45B7MSwNdsCF4PXOK4rwYv2vxDr2qHvO1sG9kb/AOvXakc/jmgB9FFFABXE+O4jJqnhtsEqt4xbH+5XbVRvXtEngF0I9xb91v8AXB6UAWUAZB2yBUo4GKaCD06dqdQAUUUUAFFFFADWUmuP+IlnLJocd5AuZre4ictnogcFv0Brsqp6pai80q7tiAfNhdOnqCKAEsLpL3T4LmM7lkQMD7EVDret2nh/S5tRvRIbeEZcxruIHrisT4f3Rfw19ikPz2EzWrbjyQgAzXOfG7WDp3gz7Ch/eXz+R8p5xjP/ANagDatfilod5p7X1taarLbqMl1tCR/Oun0fWbbXNNjv7RZRDJkKJU2tx6ivMfBia9pWm6NoLaZFb2mzzZrh3DCRcnqOxwa9VtreK2gWKFVWMcgAcUAWFYMMilpmORjin0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANKk5470wqepGc8YNS0hOBzQBwuuaLeaBfNr2gjODuvLboso7kD1/wrptE1y01qwW5tX9nRuGRvQitArvGMDHfI6iuH1rRbvw9fHXtBUsvJurY/wDLQdyB64oA7veMZ5p1ZGha3ba7Yi8tpMjoyNwUbuD+tawztGetAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIwyMVUvpTbafczD/lnC7jPsKtmsLxddiy8NXhJx5qGIf8CGP60AZ/w9hH/COtdHObu4e4+u7BrrcVi+EbQ2PhPS7YjBjt0U/UCtugAooooAK4rx4p+26AwB4vDnHptNdrVK+W0LwG7CE7/wB3u9aALEY+UewHFS1GDwpBAx1qQdOKACiiigAooooAKQjg0uaaTweDQBwujuNK+Iep6a3EFxCk8Z7M7ElvxwBWV4+8Baz4w12zuYb63htbVt6pIhO4/nWZ8UfGC+HfFWiy2UYlu4HLTqOfkYYGfxrutG8caHqiLCt5HHdY+aAnBFAGTcaP4w1C7so5dQtYrBCBKIoyHYDqM5/pXeRRCOFIwSQqgZNM3xvjaQcDIIPFTA/KKAFxRSZpaACiiigAooooAKKKKACiiigAooooAKKKKACkIzS0UAN2jjk8U1l5z15z+NSUjUAcJrej3nh7Ujr2iLhW/wCPq3AyHHc49etdNo2u22t6el1bOMHG5T1U91I9q0mXcCCBkjBz6VwusaNeeHdTfXtBUtGx/wBLsx0kHcqPWgDutzbgccHt6VJWToOs2et6cl1aMCCPmTPKH0P0rVzQAtFGaKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQ1xXxJdpNGtLNPvzXkJx6gSLn9K7UjNcV4jP2zx74fsesYWWSQe4AIoA7KKMRxKg4CjGKkpF6UtABRRRQAVxfj0usmjlGYYuTnH0FdpVG/hs5miF2E+VsoWPegC0u3Yv0qSo1YYA7jipKACiiigAopGYKMmmiQEZ7UARNu3lskqP4a5DxF4ouxJLo/h6IXOqFDuLcLACOp/wAmqXi/xoyibTtKI3ID9puTwsQ7gH+JvQcVJ8NtEu7XTri8vQQbptybvvMM53E9efTtQBlWnw6kt/C2oXOqyG61mdRLNK4BIKndgfrXQ6JYaX4u8IabeXllE3nQhmU/KV/KutkjE0ZRhwwIOPyrj/BJ+w3mtaOx2rbXTeSv/TPAGfzoAZJ4GvLBi+ha3cWa44gwCh/E5NA1rxZo4A1LSUvYR/y1tMu+PXGAM123Q9OfWlIyMADBoA5ey8eaJcyCGe5FlcE4EF2Qj/lXSLOjoroSyEZDAcEVUvdB03UUZbqzhckY3BAGH0PUVzTeAHsJGl0LVrixY84cmYH2wxoA7QMSOBRjI9K4htU8YaK3+n6fDf2q/wDLeJ/3h/4ABWhYePdGvHEc7y2UndbtPKH5nrQB1Q6CioILu3uYw8E0cq+qMCP0qXeD0P5UAOopNwo3UALRSBgc+3rS0AFFFFABRRRQAUUUUAFFFFABio3QEHd908EdjUlNweR+OaAOD1jR7zw5qT69oqboXO67th0ZfUD2rp9F1y01zTkvbSQMDw4PBQ+h9K03UMp3DIIwR7Vwms6Pd+Gr59d0KPfCctdWfZ/cCgDvIz8uafWTomt2mtael3ayblb7yngofQjtzWoHBGenbmgB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAh6EVxNoft3xRvcjK2NtGVPoXGD/Ku1Y4Vj0461xHgbN5qmtaoRnzJjDu/3GIxQB26DC4p1IvTrmloAKKKKACuL+IEjRppZDMM3BBx9BXaVQ1GztLvyvtKxkq2V3+tAFpcbE5GMCpahUDGNvC1MOlABRQagmuY7eN5ZmCRKMl2OBQA6aRUUl2AXHU1wOsa9c+I5ZNN0WcW9hEP9Lv2+VVGeQpOPXrTru/vfG189npsjQaLGcT3SggzD0U0moaHcXl5D4bsrU2eiqubiRTjzh3H0NAGxp3hrQ5dHtoYozLbxyLKSx5kdTnLHvyTXQxALhFXCKPlwMfhii0soLO0it4F2xRrtUY7VOEAbd3oAQEgH61xF8Ro/wASLS6xiLU4hbexfJb+ldziuM+ItuU0eDV0Hz6ZL54x2/h/rQB2IJxTh0qraTrcW0E6sCsiAj8qt0AFFFFAEbZzx271n3mi6bqUR+1WcMmerMg3fnWnijHvQBxU/gKO3f7Ro2p3dnOPu+bKzxj/AIDnGKjW68aaLn7bbwaxF18yDbCQPpya7jaCeaXaKAOPsviBpFxILef7TaT558+Fgo/4ERiumtry3u0DwTxy/wC44P8ALNNv9JsNUhMN/axXEZ6rIuRXM3HgC0gJfSL2501hyscL7Y8+4xQB2HJIJ4PoacOnTFcL5njXRAGkSDWLdeiQJskI/wB5jjNXLX4g6eZVg1O3n024PHlzAv8AqoIoA6+iqlvqNtdor20yShum1h/KrAfJIHPtigB9FM34PI4pVcNQA6iiigAooooAKKKKAGsQF5qEgHjjaeoIqwRmmeWKAOE1fSrzw1qba5osZe2Y5u7UdG9x9BXUaRrFprlolzaSBwQNyHqp7g+4rRcFVOMYx3rhdV0i+8NXza1oURaBjm6s15yO7r6HvQB3y/dH0pazNG1m11vT0urSTch6+qn0I7Voq4Y8c0AOooooAKKKKACiiigAooooAKKKKACiiigAoopM0AU9VuRaaVd3B6RxM35Cud+HtqbTwz8xy01zLcfUOxP9aueObjyPCN+ucGeMwr9WBxV7w/bfZvD+nQ4wy2yKf++RQBqClpq8KM9adQAUUUUAFcb4/eRLfTzHKY/9I5I79K7KqGo6baakI1vI1dI23Lk4waALSMPKTJ6gAflUtRKuFAK4xyB6VT1DUrfSbOW8vZ1jgUHJPY+goAs3l5BY2slxcSBIkBLEmuEJvvH90u3zbPQI3+jXeP8A2X8qLey1DxzeLd6hE9to0bZhgYkNOR0Zh6dCK7VI4lhNtDJ5JCYAUAHngEigDnJNYjsNZsvDmhWcTiMZuOu2GPp19c4rqgqttG0HPYisrQfD1toiSskrz3Ez75ZnGGc+9bQB3A0AOooooAKoavZR6hplzayruSWMqR+v86v01hxQByfgC9efwzHbXDZubRjHID1zkkfpXXdq4TQQdI8f6ppzfcvv9JjB9FAHFd3QAUUUUAFFFFABRRRQAUxuuMkfSn0UAMC46daq3Vja3kTQ3MCSI3BDDOau0UAcXdfDzT1dpNHnn0mU8lrbHzH3zmoAPGmicKbfVLZfXJlI/QZru8UYoA4qD4gWkcnl61Z3OlODjNyAAfpjNdNZajZ6lCs9pcRTRn7rIetTXNnbXKlbiCKRcfxrmuZu/h9pMshuNPeWwuDz5sLZ5+h4oA60NkcU7NcI1r400Q/6LdprMI6m5PluB7BRU0Hj2G2by9Z0+6sXH3pGj/dj/gVAHa0VmafrVhqsW+wvYLgDrscGr6sSOn5cigCSioySPX8elPX7ozjp2oAWiiigCOQjcO1ROpeMqc8kg1YIBpaAOB1TSbvwtqEmuaMrSWrc3NkOhz1ZRXUaJqtrrFjHe2kgKP8AeGehrQmTem04Kng5HWuE1fTLzwtqr6zoas9s/N3Zg8Ed3A9c+lAHoNFZelaxa6xYJd2cgkjI+bB5U+hrRQ7l/wAaAH0UUUAFFFFABRRRQAUUUUAFFFFABSZ5xS0zOCc9+lAHG/EGQvZ6dZqcvLqEBK+qg812EaCNEQdEUAVxOu5vviVodgOY47aWVx/tAqRXb9c+9ADl5z9adSDpS0AFBOKKRsYoAAwNcd8QJ5YbC2a3naJml25B69OK644wD+QrmPGN3pEFgh1M7mVt0cSnlm7dKANPVtctdD0t7y8k2hEyoHLPx0A7n2rmtP0i98V6hDq+uqyWSHNvZg8HuC3r+VO0PQLvV71db1873J3W1qfuxDtnsT711WpajaaTp0t1cP5cMSbmPsO1AFXXtUTQdHkufKaQnEaJGM8ngcdhWd4R0i7iE2q6lK7Xt3jKM2VReoAHt61raTeprenJcvblFc7lV+6g5BrSCYUAY4oAVVGTxTqB0paACiiigAprZ4xTqa2QKAOK8WqdP8UaHq6/KDKLV2/2GOT/ACrtBIpUEdCARXN+OLF77wlfRwjNxHE0kPs46Vd8OXy6l4ftJtwJCBW+q8H9RQBs5paRaWgAooooAKKKKACiiigAooooAKKKKAGlc03YcYJz9OKkooAjKE856dBmo5rSC5jCXEEcqY+7IoYfrViigDlNQ8BaTeTfaIhNazjlDbSmNQfdV4NUjpvjLR/+PK/h1KAdIZVCED03c5ruMU0+lAHFQePGtJPs+u6TdWco4JijaSP/AL6AxXS2GvaXqSg2t7A5I+6JFyPYjPFWJoIZwY5oxIv91l4rAv8AwNot3l4Y3spuu62by+fwoA6jdQGBGa4T+xPFujYGl6vFc2y8mC4jLu3tuJ4p6+ObiwPl65pE9jg4MqgyhvwUUAdxuGaM1k2Gv6XqCK9veRgN/A7bG/75PNaSuOgJx9DQAroWINMaEEncBj1P8qmHSg9KAPP9V0q58KXz61okbtZSfPd2a85PTco+nauv0fV7TWLBLy0kDRuMn1B7gjt0q0eCSeSfbv8A4Vwmo6ZeeE9Tk1rSI2axJ3XloOeO7j9eO+aAPQQ4xntTqy9M1a01awS4sXEqMASM8j1H1FaakFQRyKAFooooAKKKKACiiigAooooAKYRuIz2p9MP+yeQaAOK0sf2h8StVn6ixRYgfTcuf6V2+K4rwGRd3etaqvS7nAz/ALmVrtqAADAoopM0ABbnFIWx1pCTjoBmuY8ReKV02VdNsYzdarPxHCPQ/wAX0GaAJ/EnieDRIRHHGZr+U7IYF+8T6+mK4TXdEvIbCHX9UuDJqRlBjUHKxKSOB6HrXYeG/C32C5k1LVJ/tmqy8tIf+Wa9Qq+w6eta+s6ZFq1qIJ3ZUyGOMc0AX4yHt0JbIKj8a53WfD1zrevWjXNwP7KiUu1uv8bg/Lu9e/51nXOrXmu+IYtL0ad4rWzP+lXA6bv+eefXHOK7QLtRQclsDk0ALFGiIqIoRVG1VA6CpcDNMHJB60/PrQAAYpaM0maAFooooAKTHNGaM0AMeMOpRgGB4Oa4vwEzWX9q6G5+ezuNxz6SEsK7c9K4W6P9lfE+3Zflh1G3czH1dcBKAO4Ukk8dKfUa8tzxjpT8+2aAFopM0ZoAWikyKM+1AC0UZpM0ALRSZozQAtFGaKACikzRmgBaKTNLmgApMUuaTNABijGKXNFACYpjRK6FWG5TwQRnNSUUAcvqPgXQLuUzR2SW12eRPAoDj3z61nPoXifScPpOtfaYl6xX5MjH6EYrtm4YdMUc59qAOJXxtqWnHZrehXESKcG5QrsPuBnOK39N8UaRqy7rS9Rx3BypH54rUZFkADqrKexGaw9S8GaFqZLzafEJeolXIKn1oA3QcqCuCSOMdDTHCsuCBjHIYcGuN/4RjxFpDNJpGvS3UY+7bXeAi/TaM/rR/wAJZremjGsaDcBQeZrRcx49SSaAK+o6XeeEb2TWNDhaWwdt11ZJ2yctIP1JrsdL1i01exiurKVZIn6Y7e1ZmmeKtB1ktb2l/C8hyHgz8yk9QR69qw9R0288JX8msaVG02nSNm7s1Gdvq6D+fNAHfK27p09adWZpOq2us2UV7ZyCSFxxt7VpZoAWijNFABRRRQAUUUUAFZ+r3o07Sry8bhYYy5P0FaFcn8RZingrUYUP7yeJo1HqSOlAB8PbU2nhK3Ujl5JZPrlyRXWVn6LALXRbOPGMQrn64Gavhge9ADHPzjn6+1NLFdx2nGOOetObB64x3ritZ8Q3eoai+ieHwHuyNs8+flgHr7n8qALHiHxRMs/9j6EBcarLwMfdi9Sx7HkVc8O+GI9HiNxcv9p1Cb5pp365PUD25NS+H/DlpoFoQmZLqTma4f7zH61oW2pWV3cyw291FNLD98IwO3PrigCS6uYLK2a4nmWOJfvMxwBXnvjq98Ra3pNnP4Pl3x+eVkY/KCuO3tXQ3vg5tZ1g3Wr3zzwIcxW6Eoq+meefyrVnvtL0KNIJbi2tFK4VWZUB+mfpQBx+j6d420+xTy7exLvhnLS7Sx/BeuK7mY3n9nEwrG13sHBPy7vrUdvrOnXjhLe+t3c8hRIpY/QCrwB55H8qAOMD+PlY4stNZc8ZuSOP++a6qI3n9mq0nli7EfzKG+Xfj19M1bwRgUu36Y9KAOG+0/EIMo/s7TGwfmzdEZH/AHzXW2rXx09WuYoUu9vzIjZXP1xVsLzS7fegDiZLv4gB2EWk6W0W7gtdkHH/AHzXTWDak+nhr6GGO8CnCxvuXP1xV8JhiR+tBU+tAHFz6h8QRM32bQ9Ikizw0l6ytj6ba6LTJNVlsGOp29vFd44SGQsv51olWwB39aXacYOMe3egDjrrUPHkdzILTQ9JktxwpkvWU4+m2s3xPHrMnh+11PU7W2tr6zuo5CtvKXXywctk4HpXoQTPJH51n63Yi/0S8tTyZYHTkeooA5o6542lCTWOiaVNbyKHVzeMCQeRxt9K39EudantXfWbK3tZ93ypbymTj8QKz/AV+194ajViA9rI1qwxgnZ8v9K6YIc55yRg80AcpqOq+L4b+eOx0WyuLZf9W73LKW+oxxWloN5rV5E76xYW9owPyiKUtn9K2VQjA7ChY8NnH60AcvrGr+J7TUHXTdItbm0wMSSzlST9MGr2h32t3pm/tawgtNoBjMUpfd+YrZKNkkcGlVSuR29aAOa1rWPENpfeTp2kQXMP995CP6VPoep61eyyLqOmwWgXoySFs/mK3gnHf86XbxxQBzmtaxrVjdqmn6Wl3GRy7OR/Sn6DrGr6hKV1DTFtAM8hia6AAjApwBA5OaAOf1vWNVsJlSy0wXMZHLEn/CotE1vVtQuzHd6V9lQd8mukK57H86MHPNAGDr+sahpska2emtdhlJJGePaq2jeINUv70xXWlPbJ64P+FdLs5HJ+madj/OaAMTXtVu9MWM2ti9yW6gAmqGleJtSvtQjt5tGlt0Y4MhBAFdQEI6fqTS4YdSOtAGRrusT6TbrLBZS3RY42xjOKzNP8V3t5eRwy6PeQqxALNEcCupI4AGBil2g+h5zQBma3qz6VaebHZzXJ6bY0JNY9h4vubu7SBtEv4gxxvMB2j6murCYGP60MoOOPxoAzdX1RtMszOLSa4/2YlyT+FYln41kubpIDoepxhv4mtiB+ddaT9frRtGck80AZ+qaoNN083ZtrmYD/AJZwx7n/ACrn4fHXnXUULaFq67zgObU4X6muvJAGS2B+VVZtUsLVSZ761j/66Sqv8zQAy+1EWOntd/Z55gBnZChZvyrnI/iDAzIjaFrql2CgmyOM/nVy+8baFaIW+0NOVP8Ay6gyf+gmstviDFdjZpmlajOzf897Z4hn6sKAOrur8WemveeRPIEG4xomX+mK5sfEC1mcxvoGubTwxexOP1NRrqXjS9X91odvBE3/AC0a7BI/DFO/sXxpeqRP4ht4Ij/AtqrH880AW9U0XQtS0o3dzp8qjYXCxKUk4Geg715ZeeN9O0HCadqmsQxjj7Hc2a4PsWJ3Yr0gfDq3u3EmqalfzyAYzFcvEOnoDWlZeBtCsVUJZiYj+K5Pmn825oA8Qg+I2qeGdQbU7PTo/sdyPMmt43LRqCeSTjg+1e7+Ftc/4SLQLPU/K8ozJuKjovPSrX9h6YITGdMsyhPKmBcH9KtQ20FrbrDBGsUS9FQYA/CgBl7fW9hbGa7njhhXq7tgCsg+L9GUb2vVSFj8lw3+rb2B9a8n1bUbrx98WodADuunWgaRo92BJtwSCO9eu6h4Y03UdHTTvs8SW6sjKqoOMGgDZt7iO6t454jmOQblPqKlqK2t47W2jgiGERQqj0FS0AFFFFABXFePiZ5tBsF587UY/MH+xg5rte1cTqx+2/EvSrLPyw2rXJz6h6AOxVBFbpGvAVQopmVVNzHCqMsxommSKNpJWCxqMkk9q4S+1a88XXslhpUpttNiO2e7zjzexRT/ADoAn1XW77xFeSaP4f3eWD+/vMcIO4Fbek6dpfhxYLO3aNZ5DhsndJK3uaY2lTaXoC2nh0QRSqPvSKfmz1J96r6N4Pgs75dT1Kdr/UwMi4mwxQ+i8cCgCbxDo+q6xPBb2+pJa2R5lVVPmN9Gzx+VXtF0DT9ChZLO3VWc5eQj53P+0e9ayqAoFBGAaAEGcdOa8O+Nki6z4k0Hw/DGJLjzhKwxyVINe2SFxEzqrMQpwq9Sa8SGj+JLr4tDxDfeHL2SztjsiIK/MOcd/egCp8W7aHwjLot3oyra3iYXKDGV59K9z0yZp9MtnkB3tEpJPc4FeZTeD9V8beMItY1y2a006y4hs36vz37V6vHGEiRFG1VUAD0FAAv0p9IBiloAKKKKACiiigAooooAKjfn5cdc1JTD94GgDiPDgOk+OdY0s5WGZUmhHu24tiu5rhvFROleKdF1ocRKWilJ/wBoBV/U12+7jPbtQA+ikBzS0AFFFITigBaKQN7UZoAWim7hnFLu/wA5oAWimlsAkAmmmZFHzsqn0LUASUVnXmuabYKXub2KNRySTn+VYU3xI8OBilreC6k6bI1YEn8RQB11NOcVxDeOdVucrYeE9SlGeJCybfr1p63HjnUBuhh0+xU/w3KMWH4g4oA7EEHODyOuahkvLWH/AFlxCnrlwK5Q+GPEd6Qb/wATTQeq2TFQfzFSx/DzT5edRu7rUPUXLBgf0oA1rzxVotihaa9jPsnzfyrHk+I2kv8AJZQXN2/QKsZX9SK1LLwR4a05/MtNGtYX/vImDW3HBFEAERQB0wKAON/4SjxFeD/Q/CtwqHpK86YH4VF9l8f37Z/tHTrGI9Ue3LP+Yau6xRj3NAHEr4Hvrtg+p6/eO3cW0jRj8uauQfD/AEKI7p4prw/9PTiT+YrqtvHU/nRjigDJtPD2j2Rza6ZbW5HeOMCtLaMYUcCpMUYoAaAfUfhThRtFAGKAFxRRRQAh6UzGSCeMdKkPNN2epoA8en8I614Z+Jb+JNLsDqFtOjI0aOqspOOeT7V6Dpd5rWpXKTXVkbCCPIaGRgzOfUEdK6DbxjJo2UAKOg/rS0AYGKKACiimsQMAnGaAFPSuA0+7gPjnXNQuJAsVgDbszn7uQrY/Wuw1O8ey0y5uI4zI8SEqvvivmy2uPEHivVNVE9nfwafd3QluUt4ixYgYAzx2FAHrVxcal46Mi2Ae30SLPJ4NyR/D9M5HFTaZ4Jurx4jrUkcdnCR5OnWzExrjoSeueB3qHQPEdn4c0mDTrPQ9XFvGOCbZyc9T+taX/CwYVBB0PWMf9ebUAdjGiRRCJAcKMAU75sLjAFcaPiLaL97RNaz7WLUv/CxrHvo2u/8AgA1AHa0jdK4z/hZGnd9J10f9uDf40o+I+mE/8g3WR7GxI/rQB1pXd2UgdM0oXK4YAY6YFcmPiLpXT7Dqw/7czTh8Q9J72eqD62h/xoA6n5gOCWA796lByoPtXJf8LC0j/n31Ef8Absf8aUfEHRz1jvR9YD/jQB1tFcp/wn+i/wDT0PrCRTh4+0M9ZZR/wCgDqaK5f/hPdB73Dj6r/wDXp3/CeaB/z+Y+o/8Ar0AdNRXNDxz4fPXUIh9WFO/4Tnw7/wBBSAfVx/jQB0dFc6PG/hw/8xe1H/bVf8aUeNvDZ663Zj6yj/GgDoaYCN30rC/4TXw0f+Y5Y/8Af4U8eMfDR/5jlhz/ANN1oAreONN/tLwvcIo5gZZwf9w7v6Ve8OaiNU8O2F8TxLEr9faqtz4p8OT2ssR1rTysiFCDOvORiuO8EeONBso9R0ma/jU21w4hBYbTF22noaAPUhS1x0vxD0tCUt7PULk9jDbFgfxqt/wlXiXUOdI8OK3/AF+SGH+hoA7qkPSuIW38c34/0me10on/AJ92WXH5gU7/AIQzUbs7dU8RXV2D1URiP9VNAHVXV/aWSF7m5SJR1LNjFYFx8QfC8DmMazayTdo1kG4/SmW/w70KBxJItzM47vcOR+RNblroWl2y4jsYPYmME/nQBzj+PfPG2w0HU7v0dYgV/PNNOs+Mr0D7DodnEp73jMpH5V2ccMcYwiKv+6MU/FAHDtonjDUcfata/s4MeRZYYf8Ajwp8fw+E53aprV7f+olAXP5YrtcUtAHMWngTw7ZMGi05d453MzH+ZrcisLaFAEgjAHQbBVuigCJVVRhQB9BQ3DDqc+wxUuBSYoAYAw9Pzp4+uaMUAAUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTGxvXNPppPI9B1oAY2CCpAweuRwaht7S3tQxgiSMMcttUDJ/CuO+I/jePwrormCMy3bjAC/8sh/ePtWt4Evp9T8EaXeXTb5po9zH/gRoA6JBhj60+kHWnUANx7UbAadRQA3y1PUCmGFD/Ap+oqWigCE28J6wx/980n2SA/8sY/++BU9FAFY2Fq3W3iP/ABSf2bZnrawf9+hVqigCkdLsT/y525+sa/4Un9j6eetjan/ALYr/hV6igCgdG03/nwtf+/K0h0TSz1061P/AGyFaFFAGd/YOk99Ms/+/C/4U0+HtGP/ADCrL/wHX/CtOigDLPhvRD10iw/8B1/wpP8AhGtD/wCgNYH/ALd0/wAK1aKAMn/hF9BPXRrD/wAB0/wph8KaB/0B7Ef9u6/4Vs0UAYcnhLQihxpNl7/6Ov8AhWNpfw08L6brE2qQ2AM8vJWXDIvJPC4wOtdk+ccDNcVrXxEtNG8TLoMlpJJeSANGqsPmzn/CgDr4LW3gX9xDFGPRFAqVdp9fTBrlPD/jvTte1e60dYnttQteJInIJH+c11f8IyckUAPxxx/KkC4HJyfWnDpRQBHs2tkZ/OnilooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArF8Q65Do1qpb57iY7IIxyXb/61bVUb7TrW/ZDcwq7RndGSOh9qAPE/ifpGqWXhue8v7q3llu3+YqCTjj5R7V6l8P1SLwLpSgbcQ4I9OTWnf6PYartF/arMcdDyKs2lnBYW0dtbxhI0GAB2oAtDrzTqaOTzTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGO21Sc4ABJr57hk1TxH8Wtb1bT1ieTSAyo0xJXaMjj3wa951WG4n0y4htdolkQopY4Az3rzXQPh7rnh7S760tbxBJdlhLdk/vOfT1oAofByDTdVvdR8QtJI+sSvtm34xnAPFeyDBGBziuQ8C+BLXwXYSpFNJPPM293cAZOPauvUDGQOtADx0ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQjPWlooAMUYoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKADFJilooAKMUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q=='] Multimodal Competition False Theorem proof Solid Geometry Math Chinese 61 "如图, $F_{1}, F_{2}$ 是双曲线 $x^{2}-\frac{y^{2}}{4}=1$ 的两个焦点, 一条直线与双曲线的右支相切, 且分别交两条浙近线于 $A, B$, 又设 $O$ 为坐标原点. 求证:$|O A| \cdot|O B|=\left|O F_{1}\right|^{2}$." ['若直线 $A B$ 的斜率不存在, 即切点位于实轴的顶点, 则 $A, B$ 的坐标分别为 $(1,2),(1,-2)$, 这时 $|O A|=|O B|=\\sqrt{5}=\\left|O F_{1}\\right|$, 结论成立.\n\n若直线 $A B$ 的斜率存在, 可设直线 $A B$ 的方程为 $y=k x+b$, 由于 $A B$ 与双曲线相切, 所以关于 $x$ 的方程\n\n$$\nx^{2}-\\frac{1}{4}(k x+b)^{2}=1\n$$\n\n有两个相等的实根,即\n\n$$\n\\Delta=\\left(\\frac{1}{2} k b\\right)^{2}-4 \\cdot\\left(1-\\frac{1}{4} k^{2}\\right) \\cdot\\left(-\\frac{1}{4} b^{2}-1\\right)=0\n$$\n\n整理得 $k^{2}=b^{2}+4$, 由于 $A, B$ 的横坐标 $x_{1}, x_{2}$ 是方程 $x^{2}-\\frac{1}{4}(k x+b)^{2}=0$ 的两个实根, 我们有\n\n$$\nx_{1} x_{2}=\\frac{-\\frac{b^{2}}{4}}{1-\\frac{k^{2}}{4}}=1\n$$\n\n注意 $A, B$ 的坐标分别为 $\\left(x_{1}, 2 x_{1}\\right),\\left(x_{2},-2 x_{2}\\right)$, 可知 $|O A|=\\sqrt{5}\\left|x_{1}\\right|,|O B|=\\sqrt{5}\\left|x_{2}\\right|$, 因此\n\n$$\n|O A| \\cdot|O B|=5\\left|x_{1} x_{2}\\right|=5=\\left|O F_{1}\\right|^{2}\n$$'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAj4B9AMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACikooAWikooAWikooAWikooAWikooAXNGaSqFvq9pcavd6WjN9rtUSSRGUj5XztIPcfKRx0IwaANCikooAWikooAWikooAWikooAWikooAWikooAWikooAWikooAWikooAWikooAWikooAWikooAWikooAWikooAWikooAWikooAWikooAXOKTcOOetY3ijWTofh+4u4Y1mu32w2kLdJZnO1F+mSM+wJrStfP+zQi6ZDcBB5pjBCFu+AecZ9aALFFJRQAtFJRQAtFJRQAtFJRQAtFJRQAtFJRQAtFJRQAtFFFACUUUUAFFFFABRRRQAUUUUAFFFFAAenFch4xWTRriw8XQg403Md8q8+ZaPjf9djBX+it6119RzxRzwSQzIrxSKUdWGQwIwQfagBY3WRVeNgyMAQQcgg9DT65LwXJLphvvCt1IXl0ph9lduslo+TEfcrhoz/ALnvXW5oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKD0orE8Va4dC8Pz3cCebeORBaQ/89ZnO1F+mTk+wJoAyI1Pibx+0zDdpvh3KR+kl66/Mf8AgCNj6ufSuxA5rI8MaKPD+g21g0pnnUF7ic9ZpnJaRz9WJP0wO1bFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAtFFFACUUUUAFFFFABRRRQAUUUUAFFFFABQaKKAOP8YxPpNzYeL7eMtJpmYr1VGTJZuRv6ddhCyD/dPrXWROsiK6MGRgCrA53D1pZoo54XhlQPHIpVlYZDA8EH2rk/BU8mnPe+FLuRnuNKYG2dzzLZsT5TZ7lcGM/7g9aAOvoozmigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuOhJ8SePnkwG03w9mND2kvXX5j/2zQ4+sh9K1vFWtvofh+e6toxNfSFYLOE/8tJ3O1B9MnJ9gaf4Z0RfD+hWunBzLKgL3E56zTMd0jn6sSf0oA1xS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAC0UUUAJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAAa5Dxij6PNY+LLeLLaaTFegDJezcjf067CFkH+6fWuvpk0Uc8EkMyK8UilXVhkMCMEGgAidZEV0YMjAEMDncCOvFPrkfBUp0xr7wncSM0ukMPszOcmS0ckxHPcrgxn/c9666gAooooAKKKKACiiigAooooAKKKKACiozcQjzMyoPLGXyw+Ue/pTkkSVA8bqyMMhlOQfoaAHUZpGxtOTgY5NZ2haza+INFtdVsm3W9yu5CfqQf1BoA0qKKKACiiigAooooAKKKKACiiigAooooAKQ9KWuf8aeJI/C3hS91QhXmVdlvGx/1krcKPpnk+wJoA4/Q/Ew8cfFW6s5LOe3tvDXnCJX5Etxu8syN2XC52ryfmJz2r0/oOa474X6XJpvgHTXuMteXym+uZCMM7ykvk++CB+FdienHWgBc1Vj1Kym1KfTo7mN7yCNZJYQfmRWztJ9M4NZXiDW5bJoNO0tFn1i9yLaM8qij70smOka5H1OB1NeU/s93M2pax4w1C6uXuriV7dmncYMm4ykkjt0HHagD3WiiigAooooAKKKKACiiigAooooAKKKKACiiigBaKKKAEooooAKKKKACiiigAooooAKKKKACiiigAooooA4/wAZxvpE9j4vt1w+mEpfADJks3I3jj+4dsg/3T611kUiSxo8bB43UMrA5yD3pZYo54XilRXidSrqwyGB4II9K5XwXNJpz33hS6J83SnH2VmPMtm5PlH3K4MZ/wBwetAHW0UUUAFFFFABRRRQAUUUUAFNkVXjZXXcpHK4zkU6qmp6hb6TplzqF2xW3tozLIyruIUck4HWgDwHw2lja+JviboE8EkljO7rFZwkhpH81ljROeCS6j8uwr2vwZoLeGPCGl6O8xlktoQruSTlySzY9ssce2K5Dwd4FRvGuseNb5GzeXDtp8LqUKRn/loVOCrEZAB5AOep49MGR1oA5r4h6x/YXw+1u/Vtsi2rRxn0d/kX9WFcN+zzrJvfBN1pcj5fTrohB6RyfMP/AB7zK6D4meHr/wAZQaT4btHaK1nuftN7cr0jhQdPcszAgeq+gNch8HfDV34avtP1SFnm0vX7AiT5eYLhDuAP+yVD4Prx6ZAPbqKKKACiiigAooooAKKKKACiiigAooooAQ9DivI/Hko8V69/ZSFjaW93HpcRHRrqb5p29/Ltw4+sh9K9B8Wa42g+H5rq3jE17IRBZw/89Z3O1B9M8n2BrmNA0KKz8W6XpYk+0HQtPe6uZj1lu7piN7e+El/BxQB6BFGkUaxRrtRFCqvYAcVT1rUJNK0a6vorK4vZIU3JbWy7pJD2AH+cdavY6UtAHn9p4csb3Q28R+ILG6u9auYvMmVI51aL+7CkY+bavTpycseprlfgBomraCmuwavpd7YyTtC8X2i3dAwG/OCRjjcOOvNe04745oA6cD/CgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKAFooooASiiigAoopMjOM0ALRRRQAUUUUAFFFFABRRRQAUUUUAFch4yj/siex8XxKd+mEx3gUZ32jkB8467DtkH+6fWuvpk0Uc8LwyorxyKVdGGQwPBBHpQARusiK8bB0ZQVZTkEHoafXJeC3l0s33hW6kLy6U4NqzHmS0cnyj7lcGM/wC4PWutoAKKKKACiiigAooooAKRhlSPWlooAYqkEHAz0pxzjjrS0UANC4Ofb865P4YD/i2mg5P/AC7/APsxrrq5L4Yf8k00H/r3/wDZjQB1tFFFABRRRQAUUUUAFFFFABRRRQAUHpRWJ4r1ttB8Pz3UCCS8kKwWcR/5aTudqD6ZOT7A0AZEDHxH4+kmbDaZ4ezFGT0kvXX5j/wBDj6ufSn+Al+3Qar4iJ3HWL6SWInr5Ef7qL81Td/wKquqWx8GfDGaws3Ml9JH9nSUn5pbudtpc++9y30HtXWaTpsOj6RZ6bbjENpAkKfRVAoAu0UUUAFFFFABRRRQAUUUUAFFFFABRRRnNABRRRQAUUUUAFFFFAC0UUUAJRRRQAGuW8Qarqfh3UotTlUXHh0oI7pUT95ZHJ/fZ/ijwcMOqgBhxmupprKGUqQCD1B6GgCOC4iuIY5oZY5IZFDI6MGVgRkEHuMYqauEeOT4c3Jmi3yeE5n/AHkYyTpjE8svrCSeR/DnI4zjt4pUmjWSN1dHG5WVsgjsQfQ0ASUUZooAKKKKACiiigAooooAKKKKAOP8ZQyaTcWPi62QtLppKXqqM+ZZuR5g467CFkH+63rXWRSpLGkkbBo3UMrA5BB5znvSyxpNC8UiK8bqVZWGQQeoNcp4Ml/sqS+8JTuzSaSym1ZzkyWj5MRz3K4MZ/3B60AddRRmigAooooAKKKKACiiigAooooAK5L4Yf8AJNNC/wCvf/2Y11tcl8MP+SaaF/17/wDsxoA62iiigAooooAKKKKACiiigAooooAQ9DmuPhH/AAknj6S4Zt2m+H8xxr2e9cfM3vsQgfV29K1vFetSaF4fnurWMS30hWCzhP8Ay0nc7UH0ycn2Bp/hrRE8PaBbacshkkRS08x6yysdzufcsSf0oAyte26r418O6RwyWpk1WdfTYPLiz/wOQn/gFdYAfwrkfCgGp+J/EuvnlDcLptvntHADvI+sjv8A98iuvoAKKKKACiiigAooooAKKKM4oACcDJ6U0nIwM80pPHv+Vcbq+o3niTU5/DehO8EMPyanqaD/AFGesMR7ykdT0QHPXAoAnOuXuteIk03QHj+w2MoOp3xTchI/5d4+xb+8eijvk4rqwCPpVTTNMtNH0+DT7C3WC1gXZHGvYe/qe5JyTnJ5zVygAooooAKKKKACiiigBaKKKAEooooAKKKKAGSIskbpIqsjAhgwyCO+RXDh5Ph3dlX3v4SmbIbJY6Y5/h/64nPH9w+3Tu6imhSaF4pY1ljcFXRxkMDwQR3H1oAejK6hlIZSMhgeCKdXCwTSfD28is7qZ5PC077La4lYs2nux4ikb/nkeisfu8AnHNd0CD0NABRRRQAUUUUAFFFFABRRRQAVyHjKGTTJrDxZbDD6WSt4oGTLZuR5gPrswJB/un1rr6ZNFHPC8UqK8bqVZGGQwPUH2oAIpElRXRgysoZWUggg9KfXIeCmk0qS+8J3JYtpBU2bucmW0fPlH3K4aM/7o9a6+gAooooAKKKKACiiigAooooAK5L4Yf8AJNNC/wCvf/2Y11tcl8MP+SaaF/17/wDsxoA62iiigAooooAKKKKACiiigApDyPalrE8V6y+iaBPcW6rJfSlbezibpJO52oD7ZOT7A+lAGRAT4m8fPcZJ03w8TFGD0kvXX5j/AMAQ4+rt6V0GvarHofh/UNUk5W0gebB/iKgkD8Tx+NReGtEj8PaDa6ajmV4wWmmb70srHc7n3LEmsbxsBqU+heHQ3/IRv0knHrBB+9b8yqL/AMCoA1PB+ktofhPTdPkyZ0hDTserSt80hP1dmNblJ3zS0AFFFFABRRRQAUUUUAFJkEcUEjFcjresXuqao/hnw7N5d7tBv78LlbGMjt6yn+FewOTQAms6rf67qcvhvw9OYTGdupamgGLRT/yzjPeYj/vkHJ5wK6HR9IstC02HT9Pt1ht4hgKvOSeSxPUknkk85NN0XRbLQNMi0+wiKQR5OWO5nY8szHqWJ5JPrWjQAUUUUAFFFFABRRRQAUUUUALRRRQAlFFFABRRRQAUUUUAQ3FtDdW0lvcQpLDIpR43UMrKeoIPUVxljPJ4Cv4dK1CZ5PDs7eXp93Idxs27Qysf4TnCOf8AdPY13J5GKr3tlbajZTWd5BHPbzIUkilG5WB7Ed6ALGaK4rTL268H6nb6Bq0sk+lTt5el6hIclCfu28x/vdlb+IYHXr2mRnGeaAFooooAKKKKACiiigAooooA5DxmkmkzWHi2AHOlkpeqoyZLRyBJ067DtkH+6fWurhkSWNJI2DxuoZWByCD3pZY0mieORFdHBVlYZDA9QR3Fcp4Lmk02S+8KXJJk0ll+yOxyZLN8mI+5XDRn/c96AOuooBB6UUAFFFFABRRRQAUUUUAFcl8MP+SaaF/17/8Asxrra5L4Yf8AJNNC/wCvf/2Y0AdbRRRQAUUUUAFFFFABRRRQAVxkCt4k+IElww3ab4fzDBnpJeOvzt/wBCF+rt6VseLNbfQdAmubeMS30rLb2cP/AD0nc7UH0zyfYGpPDOiL4e0G104StNJGpaaY9ZZWO6Rz7lix/HFAGsa5OwUan8StVvusWlWkdhF3HmSfvZfxx5IrqLi4itbaW4mcJFEhkdj0CgZJrmvh7bSr4Vj1G5XFzq00mpSj0807kH4JsX8KAOqooooAKKKKACiiigApDjHtQSMHNcz4h168F+nh/QPLl1qdN7u4zHZRdPNf3/ur/EfbJABDr+t3t1qX/CN+HHU6q67rq6ZQ0dhGf43B6yEfdTv1PFbWh6HaeH9NSys1baCXklc7pJpDy0jseWYnuaZ4f0C18PacLW3Z5ZHYy3FzKcyXEp+87nuT+nAGABWtQAUUUUAFFFFABRRRQAUUUUAFFFFAC0UUUAJRRRQAUUUUAFFFFABR2oooApanplprGnT2GoW6XFrOpWSN+hH9Pr1BrmdH1G98M6pF4e164ea2mbZpepynmb0glP8Az1A6H+Me+a7M9KztX0ay1zS59P1GAS28y4Yd1I6FT2I6g9qANDIzilrkND1a70bVk8M+IJjJMVP9nai/AvUH8LdhKo6j+L7w711+aACiiigAooooAKKKKAA9K5DxpDJpctl4utYy0ulkreKg5ls3x5owOpXAkH+6fWuvpkqLJE6OqsjKQVYZBHofagBIpFljWRHV0cBlYHIYEcEVJXIeC5n0ua+8JXMjPJpRDWjvyZLNs+Uc9yuDGf8AdHrXXAg9DQAtFFFABRRRQAUUUUAFcl8MP+SaaF/17/8Asxrra5L4Yf8AJNNC/wCvf/2Y0AdbRRRQAUUUUAFFFFABQelFYnizW20Hw/PdQRia9kKwWcJ/5azudqD6ZOT7A0AZNuT4l8fSXBw+meH8wxntJeso3t/wBDt+rmuwPCn2rJ8NaHH4d0K102NzI0alpZm+9LIxLO59yxJ//VWselAHK/EFnn8M/wBkROUl1i4j05SOyu37w/8AfsSflXURRpDEkUahURQqqOgA6Vyl0Dq3xOsIOtvotk904HTzpiY0B9wiy/8AfVdbigBaKKKACiiigApM/Wg9OOtc74m8RSaUYNP0u3W81u+z9ktyflUDrJIR92Nc/j0HJoAZ4j8RXFncw6JosUd1r90m6KJiQkEecGaU9kB6Dqx4FXfDnh2Dw9ZNGsj3N3O3mXd7LzJcSf3j6DsB0AwBTPDfh1dCgnkmuHvNSvH829vJOsr44AH8KKOFUcAVuUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALRRRQAlFFFABRRRQAUUUUAFFFFABQelFFAGZreiWev6XJYXqOEchlkjO14nH3XRuzA8gisfw9rV9baj/wjniJ1/tREL210owl/EP41H8LgY3J2zkcHjqjyDWRr/h601/TxBcu8MkDCW2uoTtkt5B0dD2x6dCOtAGxnmiuY8Oa/dSXUug695cWuWq5JXhLyPtNGPQ8ZH8J46YrpgQehoAWiiigAooooAKDRRQByPjNJNKew8WW8RZ9KJW8VRkvZvjzPrsIWQf7h9a6qGRJYkkRlZHAZWUghgec5HX8KWWNJoXikQOjqVZWGQQex9q5TwZJ/ZU1/wCEpmYvpTA2jOcmSzfJiOe5XBjP+4PWgDrqKTINLQAUUUUAFFFFABXJfDD/AJJpoX/Xv/7Ma62uS+GH/JNNC/69/wD2Y0AdbRRRQAUUUUAFFFBOKACuMtSfE/j2W7OW03w+TBFnpJeOvzt/wBCF+rt6Vr+LdbfQvD809sglv5iLeyhz/rJ3O1B9MnJ9gam8N6Mmg6Fa6cr+Y8alppe8srHMjn6sSaANUUHoecUtYHjXUJdN8H6lLbNi7ki+z22OvnSERpj/AIEwP4UAZ/gNft0Wr+IjydXv3eI/9MIv3Uf5hC3/AAOuvqjo+mw6Lo1jpduP3NpAkCe4VcZ/Sr1ABRRRQAUUVj+IvEFt4fsFlkie5uZn8q1tIRmS4kPRV/mSeAASaAIfEviNNDt4YIITd6resY7GyU4Mr+p/uoOrMeAPcgFvhnw62kie+v7gXus3pDXd3jAOOiIP4UXoB+J5NReGvD9xaTy61rTRz6/drtmkTJjt0zkQxZ6IO56seT2x0gGDQAUtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAC0UUUAJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGH4k8OR6/aRbJntNRtWMllfRD57eT191I4ZTwwJFQ+GfEUmqSXGnalbiz1uy4urcHKsOiyxnujdR6cg8jnoj0rnfE3h6XVEh1HTZ1s9bsctaXJGVPrHJ6xt3HbgjkUAdDkHvS1h+G/ECa5bSpLAbPU7RhFfWTtl4JOo5/iVhyrdCDW5ketABRRRQAUUUUAFch4ygk0uSx8WWwxJpRK3iAZ82zfHmDj+7gOP90+tdfTJo45oJIpUDxupV0YZDA9QfagBInWVFkRg6MAyupyCD3/lUlch4Kd9KmvvCVyxLaUwaydjzLZuT5Z+qHdGf9wetdeCD0oAKKKKACiiigArkvhh/wAk00L/AK9//ZjXW1yXww/5JpoX/Xv/AOzGgDraKKKACiiigAoPSisTxXrL6JoE01uqvfTMttZRHpJO52oD7Z5PsDQBkWu3xL48luSpaw8PZhhz0e8dfnb/AIAhC/V2rsQKyvDeiR+HtCtdNRzK8alppj1llY5dz7sxJrWoAQjIIrkfEYOq+NPDejKQY7d5NWuB3AiG2LPt5kgP/AK6+uS8NR/2h4t8Sa4x3KJk023J7JCMvj2Mjv8A980AdYBiloooAKOlFUtW1ay0XS59Qv5xDbQrlmOc5PAAA5JJIAA5JIoAg1/XbPw9pL392WYAhIoYxuknkP3Y0X+Jieg/HoDWT4d0O8l1B/Eev7W1aZNkNuDlLCI8+Up7seNz9zx0AqHQdKvNY1RfE+vxFJgCNMsG6WUR/iI6GVh1PYcDvXXKu09BjHagBcc0tFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAtFFFACUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcv4k8P3ct1Hr+hbItctVK7WO1LyLqYZD6H+Fv4Tz0zWl4f1y28QaWl7bhkYM0c8EgxJBKD80bjswPX6g9MVrGuP1/SrzRtSfxToNu8txgf2lYRD/j+iXgFR/wA9VHKnqfunPGADr8g96WqWlanZ6zpsGo6fcJPazruSRTx6EexBzkdjkVdyKACiiigApD0paKAOQ8axHS2sfF0KMZdJJF2F5Mlo+BKMDqV4cf7vvXVwyLNGssbq8bqGVgchgehHt0pZY0lheORVZHUqysMgg9iPSuV8GM+lSX/hW4kLNpjBrNmPL2b5Mf1KENGf9wetAHW0UgIPSloAKKKKACuS+GH/ACTTQv8Ar3/9mNdbXJfDD/kmmhf9e/8A7MaAOtooooAKKKKAA9K42BT4l8fzXLLnTfD+YYM9JLx1Bdv+AIQv1Zq1vFmuPoPh+a5t082+lK29lF/z0nc4QfQHk+wNS+G9EXw/oVrpwkM0kalppj1llYlnc+5YsfxoA1hS0UUAZ+u6rHomgahqsmClpbvPg/xbVJA/E8VR8GaXNo3hHTLO5JN15Xm3JPUzOd8hP/Amas/xwh1I6JoA5GpaghnX1ghzK/4HYq/8CFdaAc80ALRRTWdQhYsoAGcnp9aAIry8t7Gzmu7qZIYIUMkkjnAVQMkk1yGk2k3jLU7fxDqkLR6XbMX0mxlGC/8A08SKf4j/AAg/dBz1PEcSH4g6iJpEJ8KWcm6FDx/aUynIkPrEp6Do556AZ7gA9TQAvfvS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAtFFFACUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHE6rFN4I1O416xhL6HdPv1W0jXJgbvcxgdv74743dc57G3niuYI54JElilUOkiNlXB6EH3FSMAykEAg8c1xFuzeAtYWzfjwvfS7bVx00+dj/qj6RMT8p/hJweCCADuKKMg0UAFFFFAAa4/wAawSaXJY+LrWMvNpRK3aqMmWzcjzR7lcCQf7h9a7CmSoksTxyKrIykMrDII9D7UAJFIssayI4dHG5WU5DDsR7VJXIeC5X0ua+8J3Ls0mmENZu5yZLNyfL57lcGM/7g9a68EHpQAUUUUAFcl8MP+SaaF/17/wDsxrra5L4Yf8k00L/r3/8AZjQB1tFFFABSHpS1h+LNal0Xw/NPaRiXUJmW2soT0knc7UB9geT7A0AZVso8S+Ppbwtu07QM28A7Pduv7xvqikL7FmrsBWV4a0SPw9oNrpyMZHjUtNMessrHLufUliTWtQAUhxjnpS1HNKkNvJNIwWNFLMx6ADkmgDlbEtqnxM1K5PNvo9lHZx+nnS4kkP4KsQ/GuurlPh7BKPC66lcKVudXnk1KUHqPNbcg/BNi/hXVZFAAWGPWuJ1OSXxvqk+g2UrR6FaSeXql1G2DcOME2yH0/vkdjt9as+ItTvdT1IeFtCneK8dQ9/eJ/wAuEJ7g9pHHCjnHLdq6DStLtNF0230/T4FgtYE2oi/mSfUk5JPUnmgCzBClvDHDFGscUahURRgKoGAAPSpaKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAFooooASiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAD0qrqFhbapp9xYXsKzWs8bRyxt0ZTVqkPTjr2zQByHh6+utD1b/hFdZuGmZY9+l3sh+a5hHWNj3lTv8A3h83Y46/IJxmsjxHoEHiHTDaySPBPGwltbqP79vKOVdT6g9R3GR3qt4V12bVIJ7HUoxDrWnMIb6JeFJx8sif7DjkenI7UAdDRRRQAUHpRRQByPjRJNKNl4rtoi0ulsReKBkyWb4Eo46lcK4/3T611UMqzRpLG6vG6hlYHIYEcEUssaSwvHIqtG6lWVhkEHqD7Vyfgt30ma/8J3Bb/iWEPZO55ktHJ8v6lCGjP+6vrQB19FICDS0AFcl8MP8Akmmhf9e//sxrra5L4Yf8k00L/r3/APZjQB1tFFHSgAPSuMts+JfH012Mtp3h4tbw56S3jr+8b/gCkL9WatfxbrcmheH5bi2jEt/My29lCePMnc4QfTPJ9gam8N6KugaDaacH8ySJMzS95ZDy7n3ZiT+NAGqKWiigBD0Ncr8QriUeF2022Yrc6vPHpsRH8IlYBz+Cbz+FdUeBmuSvA2q/EzTrUc2+jWT3knoJpsxxg+4QSn8fpQB1MUSW8EcUShI41Coo6KAMAVheKdfn0qGCw02NZ9Z1BjHZxNyo/vSP6Iucn14HU1f1zW7Pw/pE+o3jN5UQG1FG55GJwqKO7McAfWsvwto11FLca9rUa/23qAHmKDkWsQPyQKfbqT3Yk+lAF7w5oEPh6wMCStcXMzma7upB89zMfvO38sdAAAOlbNIBjtjFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALRRRQAlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIehxXLeKdHvEng8SaKgbWLBCpiHAvLcnLQn34yp7MB2JrqqQ9OOtAFLSNVs9a0u21KxlEsFwm9G7j1BHYjoQehFXq4oqPBnixZAwTQdcnwykYW1vGHBHosvQ/7eD/FXa0AFFFFAAelch41il0w2Xiu2DGTSmIu0Xky2b4Eq8d1wrj/AHD6119NkRJI2SRVZGBDKwyCPQjvQA2GWOeJJomV45FDIy8hgeQR7VJXI+DJm0ue+8J3B+bTGD2bMcmSzcny/qUIMZ/3B611uRQAtcl8MP8Akmmhf9e//sxrra5L4Yf8k00L/r3/APZjQB1tIehpawvF2uSaH4flntUEuoTsttYxH+OdzhPwH3j7KaAMu2VvEvj2e8cbtN0DMFtnpJdso8x/fYpCexZq7AVleG9Fj8P6Da6YjtK0KkyzN96WRiWdz7liSfrWtQAUUUUABrkPBK/ak1rxFIw/4ml/I0THoIIv3Uf4EIW/4FWh411WbRvB2p3drk3fleVbAdTM5CRgf8CYVz17ZvJbaZ8PNLlZI4rOP+07mP8A5ZWyjbtB7PKQQPRQx9KALekhvGWvrr03Oi6fIy6VG44nkHDXOO4/hT2y3cV2g/zzUdvbxWtvFbwRrHDEgSNEGAqgYAA7ADipaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAWiiigBKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAKGr6Va61pNzp17Hvt502sO49CPQg4IPYgVkeDtTup7O40jVJRJq+kv8AZrl+8y4zHNj0dcE/7QYdq6auO8UxtoWtad4shVVijxZaoB/FbOwCv/2zcg/7rNQB2OaKQGloAKKKKAOQ8aQf2W1j4sgRjLpTEXQQZMlo/Eo99vEg90966uGVZo0ljdXjdQyspyGB6EfpTpESSJ0kVWRgQysMgjuCPSuS8GSPpFxfeEblyzaYRJZO3/LS0cny/qUIMZ/3R60AdfXJfDD/AJJpoX/Xv/7Ma60EGuS+GH/JNNC/69//AGY0AdaelcdaMfEnj+e7ID6boAa3gPZ7xgPMb/gCkJ9WatXxZrb6FoEtxbIJb+Zlt7KE/wDLSdzhB9AeT7A1N4c0WLw9oVppkTGQwp+9lb70shOXc+7MST9aANaiiigAoPSig9KAPP8A4haxDZanokcyu9vZu+qTxR8s5iAWFAO5aaVMD/Z9q3/COjTaVpslxfgHV9Qf7VfyDn9438AP9xBhV9h7muJ0u1k8Y/GjV9QmGdL0DyraJT0e4XcRn12s7n6hK9VGe/8A+qgB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALRRRQAlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVbULG31TTbmwuk329zE0Ui+qsMH+dWaDyMUAcx4Evri58OLY30nmahpcr2F0x6s0fCt/wJCjf8Crp65CyI0z4palar/q9X0+O9HtLC3lN+aNF/3zXX0AFFFFAAea5HxpHLpn2LxVaRF5tKYi6VfvSWb4Eo/4DhXH+4fWuupsiJLE8ciqyMCGVhkEehoAbBNHPFHNE6vHIoZHU5DA8gj2rlfhh/yTTQv+vf8A9mNJ4MkGkXF/4SmZidMIls3c8vZuSY+e5Qhoz/uj1rE8O65LofwW0aa0QSajPCttYwt/y0ndiEH0HLH2U0AbNso8SePZbzdv07QAYIB2e8YDzG+qKQnsWauwxWV4c0WPw9oVppsbGQxKTLKesshO53PuWJP41rUAFFFFABVDW9Tj0XQr/VJfuWlu8xHrtUnH44xV88AmuO8fzC5i0Xw/1Or6jFHKvrBGfNk/MJj/AIFQBP8ADvQ5NC8HWcdyv+n3e69vXPVppDubPuOF/wCAiuqpAOaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoozziigAooooAKKKKAFJwKQkUp6Vg6x4Us9bukubm81SF1jEe2zv5YEwCT91GAJ56+woA3aK5H/hXel/8AQT8Q/wDg5uP/AIuj/hXel/8AQT8Q/wDg5uP/AIugDrqK5H/hXel/9BPxB/4Obn/4uj/hXel/9BPxB/4Obn/4ugDrqK5H/hXel/8AQT8Q/wDg5uP/AIuj/hXel/8AQT8Q/wDg5uP/AIugDrqK5H/hXel/9BPxD/4Obj/4uj/hXel/9BPxD/4Obj/4ugDrqK5H/hXel/8AQT8Q/wDg5uP/AIuj/hXel/8AQT8Q/wDg5uP/AIugDrqK5H/hXel/9BPxD/4Obj/4uj/hXel/9BPxD/4Obj/4ugDrqK5H/hXel/8AQT8Q/wDg5uP/AIug/DvS+2peIP8Awc3H/wAXQB1Uk8UWzzJETe21dxxuPoPfin7hnGR6V5xrnwb0fW57GR9W1tfsspceZfPNnp0LklTx1HP6Y2h8PNL/AOgn4h/8HNx/8XQB11Fcj/wrvS/+gn4h/wDBzcf/ABdH/Cu9L/6CfiH/AMHNx/8AF0AddRXI/wDCu9L/AOgn4h/8HNx/8XR/wrvS/wDoJ+If/Bzcf/F0AddRXI/8K70v/oJ+If8Awc3H/wAXR/wrvSv+gl4g/wDBzc//ABdABrn7v4j+ErgdJIr62J9SURwP/IZrrq8t1vwTp0fjHwtZLf60wme6dmfVJ2ZVSEj5WLZXlxkjGRxXSf8ACu9L/wCgn4h/8HNx/wDF0AddRXI/8K70v/oJ+If/AAc3H/xdH/Cu9KH/ADE/EP8A4Obn/wCLoA66kPI964XVPCXhrRLF73U9f1q0tk6yTa5cKPoPn5PsOaxYU8Ey6ja2MuueKbSa7z9mN7fX1us/+60hAPbvzketAHT+M4JNOax8V2obzdIYm7CjJls2x5o9yoxIPdPeuP8AhOP+EistIvHjJsdBtTb2+fuyXb8yOPZE2qD6u1aHjPwdpen+GbpIb/XJr28xZ2kEmrzsJJpflUFS+CBksQeMKa5b4P8Ahm0v9CksdQutVt7oBbyL7LqU0UcsEnAYKrAZDKwP0XrkUAe7ClrkB8PNKPTU/EH/AIObn/4ul/4V3pf/AEE/EP8A4Obj/wCLoA66iuR/4V3pf/QT8Q/+Dm4/+Lo/4V3pf/QT8Q/+Dm4/+LoA6415de3U2r/tA6TbqCbTR7KY/SZ4xv8AyWSL866CXwBpEETyvqviBURSzMdZucAAcn79ee+GvCNnc6v4av7m51aM65Bf3GV1CZXUb42i+YMDnygM+uBnOAaAPcqWuR/4V3pf/QT8Q/8Ag5uP/i6P+Fd6X/0E/EP/AIObj/4ugDrqK5H/AIV3pf8A0E/EP/g5uP8A4uj/AIV3pf8A0E/EP/g5uP8A4ugDrqK5H/hXel/9BPxD/wCDm4/+Lo/4V3pf/QT8Q/8Ag5uP/i6AOupnnRed5PmJ5u3ds3fNjOM49PeuU/4V3pf/AEEvEH/g5uP/AIuscfBzR/8AhKDrZ1bXN5i8vZ9vffnGP9bnfjHbP6cUAejUVyP/AArvS/8AoJ+If/Bzcf8AxdH/AArvS/8AoJ+If/Bzcf8AxdAHXUVyP/Cu9L/6CfiH/wAHNx/8XR/wrvS/+gn4h/8ABzcf/F0AddRXI/8ACu9L/wCgn4h/8HNx/wDF0f8ACu9L/wCgn4h/8HNx/wDF0AddRXI/8K70v/oJ+If/AAc3H/xdH/Cu9L/6CfiH/wAHNx/8XQB11Fcj/wAK70v/AKCfiH/wc3H/AMXR/wAK70v/AKCfiH/wc3H/AMXQB11JmuS/4V3pf/QS8Qf+Dm5/+Lo/4V3peP8AkJ+IP/Bzc/8AxdAF7xN4nTwrbC+vrC8l08f624tVEnk+7r1C+4z74qrovxI8H68UWw1+zMrnCwzN5MjH0Cvgn8K5jxZ4Nmt7FrTw9Dr+o6jcIR++1qdII1PBZ2Ljd6bRnNcPo37OOozBW1vW4LcdTFaIZCfxbAB/A0AfRAINLXIeEfh1pfg4L9hv9Wn2ggLcXjGP/v2uEP4g119ABRRRQAtFFFACUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUHpQBkeIfE+k+FbJb3WbiW3tidvmrbySqp9yinb174rFPxT8ILp41A394LIjcLg6ZdeWRnGd3l461wn7RGruNH0jw/bZee/uDK0acswXhQR7s/Hutb/hHUpbqe08EjQr7T9OsNJIvWvogjXGR5YCbSeGO9s9TigD0PTdRtdW0231CykMtrcxiSJyjLuUjIOGAP5irVZ1nPpdjPBoVtc26TwQDy7QSAyLEoABxnOOgzWjQAUUUUAFB6UUmR60Aclc/6b8WdPjHKadpM0zEdmmkRV/MRv+VddXIeCc6lda54lblNTu/Ltj620OY48exbzG/4HXX0AFIfunnFLSEZBoA8A0DUZvif8b5Li6Jk0XRfMkt7dj8g2sFRsd2ZsPz6Y5Aq5+0bfRrYeH9Pj/4+HneZQhyVAAUY+pbj6e1WvAPhrUvhn4s8QQ3Wi315p12q/Y7u0QTfIpYhSM5BIYA5xytVdb0PW7/xDN438R2Kw3AK2eg6M7h3MpOImkxkYBLSEZ7HpigDtvD0N5r/AIitrq/PmQ+HrdbVSTkS37Rr5z++0HZn1Z/SsLRopdN+GvhXxXahi+kQN9qRR80tm7YlXjuuFkH+5716N4d0WPw/odppschlMKkyzN96WQks7n3ZixP1rF+GiJL8MNEjkUMjW2GVhkEZOQRQB1UEsdxDHPEweORQ6ODwQRwalrkPBhfR7i/8J3EhY6awksmY5L2j52fUoQ0Z/wB1fWuvyKACg9KKD0oA5T4hXMq+FJdOtiVudWmj02Ijt5p2sfwTefwqv4nt49K1nwZdQoEtrXUPsW0dFSWF41H03bR+IqS9Dap8TNMtBk2+j2b3sncebLmKP8QolP41peMtNm1TwlqFvaj/AEtIxPbEDkTRkPHj33KKANwUtZ2g6tBruhWOq23Ed3CsoH93IGR+B4+orRoAKKKKACiiigCtf38Gm2Mt5c+YIYl3OY4nkYD12qCT+ArlbP4q+D9RSV7HULu5SHHmtDpl04T/AHiI+Pxo+Kuvf8I/8ONXukbE00X2aIZx80ny8e4BJ/CvMfhhqt74Y8KaTplrol+l7r2oK39ozRAW6occqcksRGjMBgdT6UAe0+HvFOjeK7Sa60W7a5hhlMMjGF49rgAlcOoOcEVsVgNe+GvCly1vPf2GnTX873BjmnWNpZGPzMATzkgVv5oAKKKKACiiigAooooAKKKKACg0UUAJ05/GjIPelPSvJfiN4t8ReCPHGgXSXj3Wg3xZJbIpGuGBwfn2g4w6kZPUHmgD1kEHpS1y/h3TfFdvrF1e69rttdW08Y8qxgtgiwPx0f7zAcjnr14rqKACiiigBaKKKAEooooAKKKKACiiigAooooAKKKKACiiigApHO1CeePQZpaCMigDw3WtC17xD8cNN1270K/XQbGSNY5GjBJCZYHbnODIfTpXtiwRiVrhY1Erqqs+MEhclQfYbjx7mpccUYJGP/rUAeV2dvFb/tI3awwxxhtE3tsUDJLrk8Dr716rWSPDWkDXTrYs1/tIrsNzubdt/u9ent0rWoAKKKKAEPQ1zPjfUZrfRl0yyfbqWryixtT3UsPnk+iJub8B610xIxgHn/PNcf4fU+JPE114odg9jbK9lpI6gqCPNmH+8y7Qf7q+hoA6bTbC30nTbXTrRNltaxLDGvoqjA/lVukHHHaloAKKKKAEI9ziuPsmPiTx7PeY3aZoG62tz2ku2A81h/uKQn1Zq1PFusz6LoEslkiy6lcOttZRH+OaQ7V/AcsfZTVjw7osXh7Q7XTImMhiTMkrdZZCcu592Ykn60Aag7VyXww/5JpoX/Xv/wCzGuurkvhh/wAk00L/AK9//ZjQA3xrBNpws/FlpGXuNJJ+0ovWW0b/AFq++MBx7p711cMqTxJNE4eORQ6uOQwI4I9u9OkRJI2SRQyMMMrDII7g+1cl4MeTSLm/8I3Llm00iSyZuslm/wDq/qUOYz/ur60AdfQelICD0NYfjPVpdF8Iane2wJulh8u2A6mZyEj/APHmWgDO8DudSl13xAR8uoag6QEdDBD+6T8yrt/wKuuPSs3QNKTQ9A0/SoyCtnbpDuH8RCgE/UkE/jWielAHIeGg2g+J9W8NyELbSsdS0708t2Pmxj02yHIHo4rr8j1rmfGemXc9lba1pcZfV9Ic3NvGOsy4xJCf99eB/tBTW1pWpW2saZa6lZvvtrmISRt7Edx6/wAsUAXaKKKACiiigDx3426d4i8U2un6PomjXl1BDMbi4lVQE3Y2qBkgnALfnXpuk6dZW+j6Xbw2xWKwjRbUTx4eMqhQHkcNtJGR2JrU5o5xx196APNPilpGj6tYf2OY7GLWNVkjK3dwVBt4Y2BeTcfuqBkADqXPq1d/pX2caTZC1m863ECCKXdu3rtGDn6Vlav4G8Na/fG91bR7e7uCAvmS5JwOg61u28CW0EcEKCOGJQiIvRVAwAPbAoAlooooAKKKKACiiigAooooAKKKKAEIyK8o8VfDvxT448Jka5qNguuQMGtIbXelsn94sTklmB69BtGBySfWKKAMPwxba/b6XF/wkV1bS3ojRGW2B2AqMFiTyzN1PQDAAHUncoooAKKKKAFooooASiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPSlrM1/XLXw9o82oXO5tmFjijGXmkPCxoO7McAUAYni66udSuIPCemzmO71BS93Kh5t7QEB29mYnYv1J7V01lZ2+n2cFnaQrDbQII4416IoGAB+FYnhTQ7nToZ9R1Vll1vUWEt5Iv3Ux9yFP8AYQHA9Tk9TXR0AFFFFABQaKwvF2ty6HoEktmiy6jcOttYwn/lpO5wg+g5Y+ymgDKs8+JfHk98c/2doG61twekl2w/ev8A8AUhB7s9dj36VmeHtGj0DQrPTY3MhhT95KesshOXc+7MST9a1KACuS+GH/JNNC/69/8A2Y11tcl8MP8Akmmhf9e//sxoA62uR8aRTaatj4ptYy02ksftSr1ks3wJR7lcK4/3PeuupkqJLE8ciK6MpDKwyCO4NADYZY54klicPFKoZWU5DA9DXL+JpBqXinw1oa/MpnfUrjHaOEfJn2Mrxn/gNM8GyDSbm/8ACMrH/iWESWRY8vaOTs57lDmM/wC6vrS+HD/avjXxHrBG6O2ePSrY46CMb5cexd8f8AoA64ZzS0UUAI33T/jXFWbDwf4uewkJXRdanaS0Y/dtrpss8R9Ff7y/7W4dxXbVma5otpr+kT6deqfJlGQ6nDRsOVdT2YEAg+1AGnkUVzPhLW7q7Fxo+sbU1zTSI7kDgTr/AAToP7rD8jkHGK6UEHoaAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAFooooASiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQkAc9KAGSypFC8juqoqlizHAAAzkmuN0WF/F+tReKLtCNMttw0e3cffzwbph6tyE9F5/ipNUZvG+tyaFbO39h2MmNVlXpcSjGLYH0HV8ey+tdnFGsSLGiBEUYVRwAPTFAD1GB0xS0UUAFFFFAAa46yI8S+PLi9wWsNA3Wtvn7r3bAea4/wBxcIPQs9afi/W5dF0F3s083Ubl1tbGLH353OF/AcsfZTVnw7osXh/QrPTImMhgT95KfvSyHl3PuzZJoA1AP0paKKACuS+GH/JNNC/69/8A2Y11tcj8MOPhpoR/6d//AGY0AddSE8dM+1YnjK/tdL8G6vfXkaSQwWzvscAhmA+Uc/7WPxr5y0ZrYfCS8la6uLzxRqN4qadBBMz3Eaoy5IUElR9/tzwKAPbviPdp4ZtLHxkmfO0uURSxjrcQSlVePPrna4J7p71o/Dho5vAOk3SP5j3cbXUz4wTLI7PJ/wCPMR+FV/AmlalL8ONPsPF0H2u6eMieC8AlJTcSgfIOSFxwfx5p/g520m8v/CdwcHTm82xJOTJZuTs/74OUPphfWgDr6KAQelFABQaKKAOY8VaNeSvb67oqp/bWng7FbgXUR+/Ax9D1B7MAfWtTQtZtNf0m31OyLeVMvKSLh42BwyMOxByCPUGtM9K4rWIpvB2sS+JLRGOjXRB1i2X/AJZHp9qUeoAAcDqOe1AHa5oqOKWOeJJYnWSORQyupyGBHBFSUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAC0UUUAJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUdBmikJwMk4oACe3euT8SateXmpJ4Y0KUpqM6b7u5UZFhAeC//XRuiD8egq34m8Qy6WsGn6bCt1rV8Stpbk8DH3pH9EXIJ9eAOSKseGtAXw/p7RvMbq+uH869u2GGnlPVvYDoB0AAFAFvR9Is9C0u303T4fKtYF2oM5J9ST3JPJJ5zmr9FFABRRRQAUHgZorC8W61LomgvLaIJNRuXW1sYj/HO5wmfYcsfZTQBl2LHxL48ub7htN0HdaW3o92w/euP9xcIPdnrsBWX4d0SDw9oVnpduSywR4eRvvSOeWc+7MST7mtWgAooooAK5L4Yf8AJNNC/wCvf/2Y11tcj8Mf+SaaF/17/wDsxoA4v9oXXBaeEbTRYXzPqNwCyDqY0+Y/mxT8q5b4nW2laD4b8J6FoDRP4ltmQedYEeeMJhslecs5BH0Ne+XWjabezeddabZzy4wXkhVmx6ZIpbbSNOspDJaadaW7nq0UKoT+Q96AGaL9t/sPTxqZX+0RbR/atvTzdo3/APjxNYfjWJtN+x+LLeNmn0hibhUHMto5AlXHfAw490966sLz9OlEiK8bI6hlYEFWGQR6GgBkEsc8Mc0Th45FDo6nIYHofxzUtcf4NLaLdX/hOeTP9nES2JY5L2bk7B7lGDIfZV9a7CgAooooAKbIiyRsjAFWGCCMginUHpQBxFgX8CaxDpUzE+G76TbYSsf+PGU8+Q3/AEzY/cPY/L6V2+Rx71U1PTbPV9NuNPv4FntLiMpLG/Rgf6+9c34f1G70TVV8La3cPNJtLaZfSf8AL1CP4HPTzVwc/wB4AH1wAdfRSZ5paACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAFooooASiiigAooooAKKKKACiiigAooooAKKKKACiiigArH8Ra/B4f0v7S8bXFxK4itbWI/PcSn7qL6dCSegAJ7VZ1nWbLQtLn1C+lKQxD+FdzMTwFUDqxOAB71g+HdGvL3UT4m1+MDUZFK2doeRp8J/hHYyMMFm/4COByAWvDGgXNg02q6xLHc67egfaJVGFiQcrDH6IuT/vEkn26KiloAKKKKACiiigBD056Vx9kB4l8eXGoFt1hoO61th2e7YDzX/wCALtQehL1qeLtZm0bQJZLJBLqVwy2tjEf453OF/AcsfZTVnw7osXh/Q7TTYmLmJMyynrLIeXc+7Nkn60AaffpS0UUAFFFFABXJfDD/AJJpoX/Xv/7Ma62uS+GH/JNNC/69/wD2Y0AdbRRRQAUh6UtFAHIeNYJdOWz8V2cbPc6SxNwidZbRuJU98ABx7p711UE0dxDHPDIskUiB0dTkMDyCPY0+VFkidHUMjKQwIyCO9cl4Pk/se81DwlKxA04+dY5Od9o5JQD12Nuj+ir60AdfRRmigAooooADWT4g0G08Q6WbO63oVYSQTxnbJBIvKuh7EH8+hrWpCMigDmfDOv3U91PoWuqsWu2a7nKrtS7i6CeMeh6ED7pyPSumBBOKwvEnh861bRT2tz9i1WzYy2V4oyY27hvVGHDL3FJ4a8Rf2zHPa3lv9j1ixIS9syd2xj0ZT/EjYJB/DqDQBv0UAg9DRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAC0UUUAJRRRQAUUUUAFFFFABRRRQAUUUUAFFFHSgAqrqGoWmmafPf3twkFrAhkklc8KBUs9xDbW8k88qRwxqXeR2AVVAySSegxzXF2EE3jrUYNYvYWi8PWz+bp1pKpV7qQdLiRT0UdUU9fvEdBQBNo2nXHijU4PEmswPFbQndpOnSrgwqR/rpB3kYdAfuA+pNdkOD0pFUinUAFFFFABRRRQAUUVheLtZl0fQZGs8NqV0y2tih/inkOEz7Dlj7KaAMqy/4qbx5cXxydO0DdbWw/hku2H71/fYpCD3Z67EdelZnh7RYfD2hWelwMXEEeHlb70jk5dz7sxJP1rUoAKKKKACiiigArkvhh/yTTQv+vf/ANmNdbXJfDD/AJJpoX/Xv/7MaAOtooooAKKKKAEPSuT8aQS2C2Xiq1Defo7FrhVGTLaNgTJ74ADj3T3rrabIiyRsjKrKwIIYZB9iKAGwSxzwpNE6vE6hkdTkMD0I9qkrkPBxbRbq/wDCc5bbpxEunknJe0cnYPcodyH2C+tdfmgAooooAKKKKAEOccVzfiXw/dXc0Gs6LMttrlkpEDMf3dwnUwyjup7Hqp5FdLQaAMbw7r9v4g083MaNBPCxiurWQ/vLeUdUb19Qe4wRwa2NwzjPNcr4g0K7t9RTxLoEa/2rCoS5tiwRL+EclG7Bx1Rj0PB4PGxoWt2niDTItQsWby3yrxuu14nU4ZHHUMDwQaANOijIzjPNFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAtFFFACUUUUAFFFFABRRRQAUUUUAFFFFABTHkREZmYKFGSScAD3pxIIwD1HBFcNcO/wAQbySxtZGj8L20my7nTgai6nmFD/zyBGGYfeI2jjJoAArfEO9JOR4St34UjH9pyA5z/wBcVOP98+w57dVwRwAB0A7UkMKQRJFGipGihURRgKB0AA4GKkoAKKKKACiiigAooooAK46zVvEnj241B8Np2hbrW09JLpgPOk/4ApEY9CXrT8X61Nougu9kok1K6kW0sY8fenkOFz7Dlj7Kas+HdFi8PaFaaXCzSCBPnlf70jk5dz7sxZj9aANTvS0UUAFFFFABRRRQAVyXww/5JpoX/Xv/AOzGutrkvhh/yTTQv+vf/wBmNAHW0UUUAFFFFABQelFFAHI+NYZtOWz8VWiM0+kMxuUjHM1o2PNT8MBx7pXU280VzBHPDIskUih0dTkMCMgj2NPkUPGyMAVYYIIyCPp3rk/B8j6Reah4TuCANOIlsDnl7Nydg/4AQU+gX1oA66ijNFABRRRQAUUUUAIc4OOtchrmlXuh6nL4n0C3aaR8f2lp6HH2yMfxqOnmqOh/iHB7V2FIelAFLStTs9Y02DULCcTW0wyrAYwehBHUEEEEHkHIq9XF6pYXfhLUrjxFo8TS6fO3mappqDOT0M8QH8YA+ZR94DP3hz1djf2uo2MF7ZzpPazoJIpUOQwPSgCzRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAtFFFACUUUUAFFFFABRRRQAUUUE4oAKTIIPPHehunv2zxXGapqF14n1Wbw5odxJb2sHy6pqcX/LIf88Ij08w9z/APc4oAbqNzceNNTm0PTJXh0WB/L1O/jODO3e3iI/J2HQcDmuvtLS3sbWK1tYI4LeFAkcca7VUDgAD6YqLS9NtNI06CwsbZLa0gQJFEnRQP5nvk8nqauUAFFFFABRRRQAUUUUAFB6ZorB8Xa3LomgySWaCXUbl1tbGL+/PIcL+A5Y+ymgDMsSfEvju5v8AhtM0MNa23o92wHmuP9xcIPdnrsO/Sszw9osPh7QrPS7cllgjw8h+9I55Zz7sSSfc1qUAFFFFABRRRQAUUUUAFcl8MP8Akmmhf9e//sxrra5L4Yf8k00L/r3/APZjQB1tFFFABRRRQAUUUUAFcl42tprJbLxTZRF7rSGLTonWW0biZPfAw490rraa6h0KMAVIwQehFADIJ4rmGOeCRXikUOjLyGUjII9qlrj/AAdI2jXt/wCEZ2JGn4msGP8AHZv90D12NlPpt9a7CgAooooAKKKKACiiigBCMiuIvbabwHfzavYQvJ4cuGMmoWcfJsm7zxqP4O7qOn3h3ruKQjIIIyD2oAhtbmG8torm3lSWCVFdJIzlWBGQR7dKnzXCTpJ8PLxriCJpPClxIXuIlBZtOkJ5dB/zyJOWX+E5I4zXbxSJJGjxuro43KynII7Ee1AElFFFABRRRQAUUUUAFFFFABRRRQAUUUUALRRRQAlFFFABRRRQAUUUUAFITwPegkYI74rktd1i+v8AU28NeHJEW/KA3l6RlNPjI4JH8UjD7qe2TgUAM1jVbzXtTn8M+Hp2iZMLqepR4xaIR9xD3mYf98g5POK6PSNJs9E02DT9Pt1gtoVwqjqT3JPck8knqTTNE0Wz0HTY7CyRhGhLM7nc8rn7zu38TE8k1o0AFFFFABRRRQAUUUUAFFFFAAelcbYD/hJvHdzqZydO0EvZ2gPR7ph++k99owg9y9ani/W5dF0F2sgH1O6dbWxiP8c7nC/gOWPspq34e0eLQNBs9LiYv9njAeQ9ZHPLOfdmJJ+tAGl3paKKACiiigAooooAKKKKACuS+GH/ACTTQv8Ar3/9mNdbXJfDD/kmmhf9e/8A7MaAOtooooAKKKKACiiigAo7UUUAcl42hm0+Oz8UWcZefR3LTonWW0YATKPXAAce6V1EE0VzDHPDIskUqh0dTkMCMgj2NPkUPGyMAVYEEEZGPpXJeD3Gj3moeEpcgaewmsST9+0kJ2D/AIA26P6KvrQB19FGRRQAUUUUAFFFFABRRRQA10WSNkdVZWBBB5BH0rhkL/Du72OzP4UnfEZOSdMdux/6Yk9P7h9undnpUU0Mc8EkM0ayQupV0cAhgR0IPBH1oAkVgwBUhgeQQeopa4W1nl+H13Fp12WfwvM+yzumJP8AZ7HgQyE/8syThGPTO08YNd115oAKKKKACiiigAooooAKKKKACiiigBaKKKAEooooAKKKKACkPQ0GuZ8Q+ILtL+PQNBSOfWrhd7M4zHZxdPNkx+O1erH2yaAIvEGt3txqP/COeHWQ6s6h7i4ZdyWETD/WP6uf4U78E8ZNa+g6DaeHrAWlorHJMk08p3SzyH7zu3VmPc/06N8PeH7Xw7p/2a3LyyysZbm5lOZLiU/edj6n8hwBwK16ACiiigAooooAKKKKACiiigAoPSisHxdrMuj6DI1nhtSunW0sYz/FPIcL+A5Y+ymgDMsSviXx3c37KWsNC3WlqSOHumH75x/ujagPqXrsB16VmeH9Fg8PaHaaXAzOtumGlflpHJJZ2PqzEsfc1qUAFFFFABRRRQAUUUUAFFFFABXJfDD/AJJpoX/Xv/7Ma62uS+GH/JNNC/69/wD2Y0AdbRRRQAUUUUAFFFFABRRRQAHpXJeNbeWxSy8VWqk3OjsXnVBky2jcTJ74ADj3T3rraa6LJGyOoZWGCCMgg0AMt5oriCOaF1kikQOjqchlPII9iKlrkPB7to15f+EpydunnztPJOS9o5O0epKMGT6bfWuuBBoAWiiigAooooAKKKKACg9KKKAK93aQXtpLbXcMc1vKpSSJ1DK6nqCD1FchYXNz4I1GLSdTmebQZ3Een3znJtmPSCU+nQI59lPOK7equoWFrqenz2N9AlxazoUlikGQymgCzkHoaWuK02/n8H6nBoOsXEk+mTsI9M1KY5IPaCZv7w/hY/eHHXr2uaACiiigAooooAKKKKACiiigBaKKKAEooooACcDJ6UmeKU9K5vxJ4ilsZ4dI0mJbvXbsfuYT92FO80pHRB+bHgUAN8ReIZ7a7i0PRES4126QtGj58u3j7zSkdF64HVjwKu+HPD0Ph6yeNZnubudzLd3kv+suJD1Y+g7BRwAABTfDnhyLQIJWad7vULphJe3sgw9xJjGcfwqBwFHAHTvW3QAUUUUAFFFFABRRRQAUUUUAFFFFAAelcdZIfEnjy41FwG07Qt1raej3TD98/vtGEHoS9aXjDW5tG0B2sVEmpXTra2MeM7p34U49F5Y+ymrfh7RYfD+h2mlwsziBMNK3WRySXc+7MSx+tAGn36UtFFABRRRQAUUUUAFFFFABRRRQAVyXww/5JpoX/Xv/AOzGutrkvhh/yTTQv+vf/wBmNAHW0UUUAFFFFABRRRQAUUUUAFIRkEUtFAHJ+NYHsIrPxTbRs1xo7l5lQfNLatxMnvgYce6Cunt54rmCKeB1kikUOjqchlIyCPY091V0ZXUMpGCCMgj0rk/B5Oi3uoeE5nytgRPYZPLWjk7V99jBk+gX1oA66ijNFABRRRQAUUUUAFFFFABSEZHHWlooApalplpq2nT2N/bJcWsyFHik5BB/r7jkVzGkaldeFtSg8O65O89rO/l6XqknJl9IJm7Sjop/jAH8Wc9menTNUdU0iy1nTZ7DUIFntZl2ujdfUEEcgjsRyKAL2Qe9LXHaPq174f1WPw74hufNWViumanJx9qH/PKQ9BKP/HxyOciuwzmgBaKKKACiiigAooooAWiiigBKKKKAEIyDioUtolupLkQxrO6hGlCjcyjOAT3AycfU1PRQAlLRRQAUUUUAFFFFABRRRQAUUUUAFHaisHxfrFxpGgyGwAfU7p1tLFD0adzhSfZeWPspoAzbAL4k8d3OqE77DQ91naDs1ywHnP77QRGPQl66+s3w/o0Hh/Q7TTICWECYaQ9ZHPLOfdmJY+5rToAKKKKACiiigAooooAKKKKACiiigArkvhh/yTTQv+vf/wBmNdbXJfDD/kmmg/8AXv8A+zGgDraKKKACiiigAooooAKKKKACiiigBD0Ncl42t5rFLPxVZRl7nR2LzInWa1b/AFye+AA4909666muqujKwDKwwQRkGgBkE0VxDHPC4eORA6MvRlIyCPapa4/we7aLfX/hKdiVsT9o09j/AB2bk7VHqUbKfTb612GaACiiigAooooAKKKKACiiigAoPSiigCCW2inCLNDHIqOrqGUHaw5BGe4PT0qbHNLRQAUUUUAFFFFABRRRQAtFFFACUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAB5Fcbp//FTeOrnU23f2doReztAekl0w/fSe+0YQe5etPxhrU2j6DIbEB9Uu2W1sIj/FO/Cn6Dlj7KauaBo8Wg6FZ6bCxcQJhpD1kc8u592Ykn60AaQ69KWiigAooooAKKKKACiiigAooooAKKKKACuS+GH/ACTTQv8Ar3/9mNdbXJfDD/kmmhf9e/8A7MaAOtooooAKKKKACiiigAooooAKKKKACg9KKKAOS8bQzafFZ+KLOMtcaO5eZF6y2jYEyD6ABx7pXUW88VzDHPDIskUqh0dTkMpGQR+FSOquhR1DKwwQRkEelcj4PL6Lfah4TnJ8uxPn6cxOd9o5+VR6+W25Ppt9aAOvoozRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAC0UUUAJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQeO+KK5/xjrU+kaC32FRJqd462lihGczPwpPsoyx9lNAGdYKfEnju61N1B0/Q91nZjs9yw/fSf8BGIx7l67AdelZugaND4f0O00uB3dIEwZH+9I55Z2PcsxLH3NadABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABnHJrl/h1a3Fj8P9FtbuCWC4jgw8UqFWU5PUHpXTnkUgB3Z9aAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVyXjaCaxis/FFmjNcaMzSTRp1ltWAEyfXADj3QV1tI6q6FWAKsMEEZBoAjtriK6toriB1kilQSI69GUjII9qlrkPCDto99f+E5+FsT9o08k/ftHPygf7jbk+gX1rrsg0ALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALRRRQAlFFFABRRRQAUUUUAFFFFABRRRQAUUUZxQAHoa47TifEvjm61PhtN0TdZ2mOj3LAedJ77RiMfV60vGGtTaNoTfYlD6ndyLaWKYzmd+FJ9l5Y+ymrugaPBoGh2ml22THBHguert1Zj7sck+5NAGiM0tFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUHpRRQByfjWCSxis/FNrG73OjMXlRPvS2rYEye+B8490FdPbzxXNvFPBIskMiB0dTwykZBFPdQ6MrAFSMEEZGK5Dwgx0PUb/AMIzE7bL/SdOY/xWjnhfrG2U+m31oA7GijOaKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBaKKKAEooooAKKKKACiiigAooooAKKKKACiiigCNowxUsoJU5UkdD6j8zT+/SlooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooADXJ+NYLiyt7PxNZxtJdaO5klRB801q2BMg/4CA490FdZTXAKEEAjuDQBHbXEN3bR3NvKssMyiSN0OVZSMgg+nepqpaVplpo2mwafYxeVawLtjTczbRnOMkk45/DpV2gAooooAKKKKACiiigAooooAKKKKACiiigAooooA//Z'] Multimodal Competition False Theorem proof Conic Sections Math Chinese 62 "如图, $F_{1}, F_{2}$ 是双曲线 $x^{2}-\frac{y^{2}}{4}=1$ 的两个焦点, 一条直线与双曲线的右支相切, 且分别交两条浙近线于 $A, B$, 又设 $O$ 为坐标原点. 求证:$F_{1}, F_{2}, A, B$ 四点在一个圆上." ['在 $\\triangle O A F_{1}$ 与 $\\triangle O F_{1} B$ 中, $\\angle A O F_{1}=\\angle F_{1} O B$, 且 $\\frac{|O A|}{\\left|O F_{1}\\right|}=\\frac{\\left|O F_{1}\\right|}{|O B|}$, 所以 $\\triangle O A F_{1} \\sim \\triangle O F_{1} B$.\n\n同理 $\\triangle O A F_{2} \\sim \\triangle O F_{2} B$, 这样, 我们有\n\n$$\n\\begin{aligned}\n\\angle F_{1} A F_{2}+\\angle F_{1} B F_{2} & =\\left(\\angle F_{1} A O+\\angle O A F_{2}\\right)+\\left(\\angle F_{1} B O+\\angle O B F_{2}\\right) \\\\\n& =\\left(\\angle B F_{1} O+\\angle O F_{2} B\\right)+\\left(\\angle A F_{1} O+\\angle O F_{2} A\\right) \\\\\n& =\\left(\\angle B F_{1} O+\\angle A F_{1} O\\right)+\\left(\\angle O F_{2} B+\\angle O F_{2} A\\right) \\\\\n& =\\angle B F_{1} A+\\angle B F_{2} A\n\\end{aligned}\n$$\n\n即四边形 $F_{1} A F_{2} B$ 中一组对角之和等于另一组对角之和, 从而对角之和为 $180^{\\circ}$, 该四边形内接于圆.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAj4B9AMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACikooAWikooAWikooAWikooAWikooAXNGaSqFvq9pcavd6WjN9rtUSSRGUj5XztIPcfKRx0IwaANCikooAWikooAWikooAWikooAWikooAWikooAWikooAWikooAWikooAWikooAWikooAWikooAWikooAWikooAWikooAWikooAWikooAXOKTcOOetY3ijWTofh+4u4Y1mu32w2kLdJZnO1F+mSM+wJrStfP+zQi6ZDcBB5pjBCFu+AecZ9aALFFJRQAtFJRQAtFJRQAtFJRQAtFJRQAtFJRQAtFJRQAtFFFACUUUUAFFFFABRRRQAUUUUAFFFFAAenFch4xWTRriw8XQg403Md8q8+ZaPjf9djBX+it6119RzxRzwSQzIrxSKUdWGQwIwQfagBY3WRVeNgyMAQQcgg9DT65LwXJLphvvCt1IXl0ph9lduslo+TEfcrhoz/ALnvXW5oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKD0orE8Va4dC8Pz3cCebeORBaQ/89ZnO1F+mTk+wJoAyI1Pibx+0zDdpvh3KR+kl66/Mf8AgCNj6ufSuxA5rI8MaKPD+g21g0pnnUF7ic9ZpnJaRz9WJP0wO1bFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAtFFFACUUUUAFFFFABRRRQAUUUUAFFFFABQaKKAOP8YxPpNzYeL7eMtJpmYr1VGTJZuRv6ddhCyD/dPrXWROsiK6MGRgCrA53D1pZoo54XhlQPHIpVlYZDA8EH2rk/BU8mnPe+FLuRnuNKYG2dzzLZsT5TZ7lcGM/7g9aAOvoozmigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuOhJ8SePnkwG03w9mND2kvXX5j/2zQ4+sh9K1vFWtvofh+e6toxNfSFYLOE/8tJ3O1B9MnJ9gaf4Z0RfD+hWunBzLKgL3E56zTMd0jn6sSf0oA1xS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAC0UUUAJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAAa5Dxij6PNY+LLeLLaaTFegDJezcjf067CFkH+6fWuvpk0Uc8EkMyK8UilXVhkMCMEGgAidZEV0YMjAEMDncCOvFPrkfBUp0xr7wncSM0ukMPszOcmS0ckxHPcrgxn/c9666gAooooAKKKKACiiigAooooAKKKKACiozcQjzMyoPLGXyw+Ue/pTkkSVA8bqyMMhlOQfoaAHUZpGxtOTgY5NZ2haza+INFtdVsm3W9yu5CfqQf1BoA0qKKKACiiigAooooAKKKKACiiigAooooAKQ9KWuf8aeJI/C3hS91QhXmVdlvGx/1krcKPpnk+wJoA4/Q/Ew8cfFW6s5LOe3tvDXnCJX5Etxu8syN2XC52ryfmJz2r0/oOa474X6XJpvgHTXuMteXym+uZCMM7ykvk++CB+FdienHWgBc1Vj1Kym1KfTo7mN7yCNZJYQfmRWztJ9M4NZXiDW5bJoNO0tFn1i9yLaM8qij70smOka5H1OB1NeU/s93M2pax4w1C6uXuriV7dmncYMm4ykkjt0HHagD3WiiigAooooAKKKKACiiigAooooAKKKKACiiigBaKKKAEooooAKKKKACiiigAooooAKKKKACiiigAooooA4/wAZxvpE9j4vt1w+mEpfADJks3I3jj+4dsg/3T611kUiSxo8bB43UMrA5yD3pZYo54XilRXidSrqwyGB4II9K5XwXNJpz33hS6J83SnH2VmPMtm5PlH3K4MZ/wBwetAHW0UUUAFFFFABRRRQAUUUUAFNkVXjZXXcpHK4zkU6qmp6hb6TplzqF2xW3tozLIyruIUck4HWgDwHw2lja+JviboE8EkljO7rFZwkhpH81ljROeCS6j8uwr2vwZoLeGPCGl6O8xlktoQruSTlySzY9ssce2K5Dwd4FRvGuseNb5GzeXDtp8LqUKRn/loVOCrEZAB5AOep49MGR1oA5r4h6x/YXw+1u/Vtsi2rRxn0d/kX9WFcN+zzrJvfBN1pcj5fTrohB6RyfMP/AB7zK6D4meHr/wAZQaT4btHaK1nuftN7cr0jhQdPcszAgeq+gNch8HfDV34avtP1SFnm0vX7AiT5eYLhDuAP+yVD4Prx6ZAPbqKKKACiiigAooooAKKKKACiiigAooooAQ9DivI/Hko8V69/ZSFjaW93HpcRHRrqb5p29/Ltw4+sh9K9B8Wa42g+H5rq3jE17IRBZw/89Z3O1B9M8n2BrmNA0KKz8W6XpYk+0HQtPe6uZj1lu7piN7e+El/BxQB6BFGkUaxRrtRFCqvYAcVT1rUJNK0a6vorK4vZIU3JbWy7pJD2AH+cdavY6UtAHn9p4csb3Q28R+ILG6u9auYvMmVI51aL+7CkY+bavTpycseprlfgBomraCmuwavpd7YyTtC8X2i3dAwG/OCRjjcOOvNe04745oA6cD/CgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKAFooooASiiigAoopMjOM0ALRRRQAUUUUAFFFFABRRRQAUUUUAFch4yj/siex8XxKd+mEx3gUZ32jkB8467DtkH+6fWuvpk0Uc8LwyorxyKVdGGQwPBBHpQARusiK8bB0ZQVZTkEHoafXJeC3l0s33hW6kLy6U4NqzHmS0cnyj7lcGM/wC4PWutoAKKKKACiiigAooooAKRhlSPWlooAYqkEHAz0pxzjjrS0UANC4Ofb865P4YD/i2mg5P/AC7/APsxrrq5L4Yf8k00H/r3/wDZjQB1tFFFABRRRQAUUUUAFFFFABRRRQAUHpRWJ4r1ttB8Pz3UCCS8kKwWcR/5aTudqD6ZOT7A0AZEDHxH4+kmbDaZ4ezFGT0kvXX5j/wBDj6ufSn+Al+3Qar4iJ3HWL6SWInr5Ef7qL81Td/wKquqWx8GfDGaws3Ml9JH9nSUn5pbudtpc++9y30HtXWaTpsOj6RZ6bbjENpAkKfRVAoAu0UUUAFFFFABRRRQAUUUUAFFFFABRRRnNABRRRQAUUUUAFFFFAC0UUUAJRRRQAGuW8Qarqfh3UotTlUXHh0oI7pUT95ZHJ/fZ/ijwcMOqgBhxmupprKGUqQCD1B6GgCOC4iuIY5oZY5IZFDI6MGVgRkEHuMYqauEeOT4c3Jmi3yeE5n/AHkYyTpjE8svrCSeR/DnI4zjt4pUmjWSN1dHG5WVsgjsQfQ0ASUUZooAKKKKACiiigAooooAKKKKAOP8ZQyaTcWPi62QtLppKXqqM+ZZuR5g467CFkH+63rXWRSpLGkkbBo3UMrA5BB5znvSyxpNC8UiK8bqVZWGQQeoNcp4Ml/sqS+8JTuzSaSym1ZzkyWj5MRz3K4MZ/3B60AddRRmigAooooAKKKKACiiigAooooAK5L4Yf8AJNNC/wCvf/2Y11tcl8MP+SaaF/17/wDsxoA62iiigAooooAKKKKACiiigAooooAQ9DmuPhH/AAknj6S4Zt2m+H8xxr2e9cfM3vsQgfV29K1vFetSaF4fnurWMS30hWCzhP8Ay0nc7UH0ycn2Bp/hrRE8PaBbacshkkRS08x6yysdzufcsSf0oAyte26r418O6RwyWpk1WdfTYPLiz/wOQn/gFdYAfwrkfCgGp+J/EuvnlDcLptvntHADvI+sjv8A98iuvoAKKKKACiiigAooooAKKKM4oACcDJ6U0nIwM80pPHv+Vcbq+o3niTU5/DehO8EMPyanqaD/AFGesMR7ykdT0QHPXAoAnOuXuteIk03QHj+w2MoOp3xTchI/5d4+xb+8eijvk4rqwCPpVTTNMtNH0+DT7C3WC1gXZHGvYe/qe5JyTnJ5zVygAooooAKKKKACiiigBaKKKAEooooAKKKKAGSIskbpIqsjAhgwyCO+RXDh5Ph3dlX3v4SmbIbJY6Y5/h/64nPH9w+3Tu6imhSaF4pY1ljcFXRxkMDwQR3H1oAejK6hlIZSMhgeCKdXCwTSfD28is7qZ5PC077La4lYs2nux4ikb/nkeisfu8AnHNd0CD0NABRRRQAUUUUAFFFFABRRRQAVyHjKGTTJrDxZbDD6WSt4oGTLZuR5gPrswJB/un1rr6ZNFHPC8UqK8bqVZGGQwPUH2oAIpElRXRgysoZWUggg9KfXIeCmk0qS+8J3JYtpBU2bucmW0fPlH3K4aM/7o9a6+gAooooAKKKKACiiigAooooAK5L4Yf8AJNNC/wCvf/2Y11tcl8MP+SaaF/17/wDsxoA62iiigAooooAKKKKACiiigApDyPalrE8V6y+iaBPcW6rJfSlbezibpJO52oD7ZOT7A+lAGRAT4m8fPcZJ03w8TFGD0kvXX5j/AMAQ4+rt6V0GvarHofh/UNUk5W0gebB/iKgkD8Tx+NReGtEj8PaDa6ajmV4wWmmb70srHc7n3LEmsbxsBqU+heHQ3/IRv0knHrBB+9b8yqL/AMCoA1PB+ktofhPTdPkyZ0hDTserSt80hP1dmNblJ3zS0AFFFFABRRRQAUUUUAFJkEcUEjFcjresXuqao/hnw7N5d7tBv78LlbGMjt6yn+FewOTQAms6rf67qcvhvw9OYTGdupamgGLRT/yzjPeYj/vkHJ5wK6HR9IstC02HT9Pt1ht4hgKvOSeSxPUknkk85NN0XRbLQNMi0+wiKQR5OWO5nY8szHqWJ5JPrWjQAUUUUAFFFFABRRRQAUUUUALRRRQAlFFFABRRRQAUUUUAQ3FtDdW0lvcQpLDIpR43UMrKeoIPUVxljPJ4Cv4dK1CZ5PDs7eXp93Idxs27Qysf4TnCOf8AdPY13J5GKr3tlbajZTWd5BHPbzIUkilG5WB7Ed6ALGaK4rTL268H6nb6Bq0sk+lTt5el6hIclCfu28x/vdlb+IYHXr2mRnGeaAFooooAKKKKACiiigAooooA5DxmkmkzWHi2AHOlkpeqoyZLRyBJ067DtkH+6fWurhkSWNJI2DxuoZWByCD3pZY0mieORFdHBVlYZDA9QR3Fcp4Lmk02S+8KXJJk0ll+yOxyZLN8mI+5XDRn/c96AOuooBB6UUAFFFFABRRRQAUUUUAFcl8MP+SaaF/17/8Asxrra5L4Yf8AJNNC/wCvf/2Y0AdbRRRQAUUUUAFFFFABRRRQAVxkCt4k+IElww3ab4fzDBnpJeOvzt/wBCF+rt6VseLNbfQdAmubeMS30rLb2cP/AD0nc7UH0zyfYGpPDOiL4e0G104StNJGpaaY9ZZWO6Rz7lix/HFAGsa5OwUan8StVvusWlWkdhF3HmSfvZfxx5IrqLi4itbaW4mcJFEhkdj0CgZJrmvh7bSr4Vj1G5XFzq00mpSj0807kH4JsX8KAOqooooAKKKKACiiigApDjHtQSMHNcz4h168F+nh/QPLl1qdN7u4zHZRdPNf3/ur/EfbJABDr+t3t1qX/CN+HHU6q67rq6ZQ0dhGf43B6yEfdTv1PFbWh6HaeH9NSys1baCXklc7pJpDy0jseWYnuaZ4f0C18PacLW3Z5ZHYy3FzKcyXEp+87nuT+nAGABWtQAUUUUAFFFFABRRRQAUUUUAFFFFAC0UUUAJRRRQAUUUUAFFFFABR2oooApanplprGnT2GoW6XFrOpWSN+hH9Pr1BrmdH1G98M6pF4e164ea2mbZpepynmb0glP8Az1A6H+Me+a7M9KztX0ay1zS59P1GAS28y4Yd1I6FT2I6g9qANDIzilrkND1a70bVk8M+IJjJMVP9nai/AvUH8LdhKo6j+L7w711+aACiiigAooooAKKKKAA9K5DxpDJpctl4utYy0ulkreKg5ls3x5owOpXAkH+6fWuvpkqLJE6OqsjKQVYZBHofagBIpFljWRHV0cBlYHIYEcEVJXIeC5n0ua+8JXMjPJpRDWjvyZLNs+Uc9yuDGf8AdHrXXAg9DQAtFFFABRRRQAUUUUAFcl8MP+SaaF/17/8Asxrra5L4Yf8AJNNC/wCvf/2Y0AdbRRRQAUUUUAFFFFABQelFYnizW20Hw/PdQRia9kKwWcJ/5azudqD6ZOT7A0AZNuT4l8fSXBw+meH8wxntJeso3t/wBDt+rmuwPCn2rJ8NaHH4d0K102NzI0alpZm+9LIxLO59yxJ//VWselAHK/EFnn8M/wBkROUl1i4j05SOyu37w/8AfsSflXURRpDEkUahURQqqOgA6Vyl0Dq3xOsIOtvotk904HTzpiY0B9wiy/8AfVdbigBaKKKACiiigApM/Wg9OOtc74m8RSaUYNP0u3W81u+z9ktyflUDrJIR92Nc/j0HJoAZ4j8RXFncw6JosUd1r90m6KJiQkEecGaU9kB6Dqx4FXfDnh2Dw9ZNGsj3N3O3mXd7LzJcSf3j6DsB0AwBTPDfh1dCgnkmuHvNSvH829vJOsr44AH8KKOFUcAVuUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALRRRQAlFFFABRRRQAUUUUAFFFFABQelFFAGZreiWev6XJYXqOEchlkjO14nH3XRuzA8gisfw9rV9baj/wjniJ1/tREL210owl/EP41H8LgY3J2zkcHjqjyDWRr/h601/TxBcu8MkDCW2uoTtkt5B0dD2x6dCOtAGxnmiuY8Oa/dSXUug695cWuWq5JXhLyPtNGPQ8ZH8J46YrpgQehoAWiiigAooooAKDRRQByPjNJNKew8WW8RZ9KJW8VRkvZvjzPrsIWQf7h9a6qGRJYkkRlZHAZWUghgec5HX8KWWNJoXikQOjqVZWGQQex9q5TwZJ/ZU1/wCEpmYvpTA2jOcmSzfJiOe5XBjP+4PWgDrqKTINLQAUUUUAFFFFABXJfDD/AJJpoX/Xv/7Ma62uS+GH/JNNC/69/wD2Y0AdbRRRQAUUUUAFFFBOKACuMtSfE/j2W7OW03w+TBFnpJeOvzt/wBCF+rt6Vr+LdbfQvD809sglv5iLeyhz/rJ3O1B9MnJ9gam8N6Mmg6Fa6cr+Y8alppe8srHMjn6sSaANUUHoecUtYHjXUJdN8H6lLbNi7ki+z22OvnSERpj/AIEwP4UAZ/gNft0Wr+IjydXv3eI/9MIv3Uf5hC3/AAOuvqjo+mw6Lo1jpduP3NpAkCe4VcZ/Sr1ABRRRQAUUVj+IvEFt4fsFlkie5uZn8q1tIRmS4kPRV/mSeAASaAIfEviNNDt4YIITd6resY7GyU4Mr+p/uoOrMeAPcgFvhnw62kie+v7gXus3pDXd3jAOOiIP4UXoB+J5NReGvD9xaTy61rTRz6/drtmkTJjt0zkQxZ6IO56seT2x0gGDQAUtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAC0UUUAJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGH4k8OR6/aRbJntNRtWMllfRD57eT191I4ZTwwJFQ+GfEUmqSXGnalbiz1uy4urcHKsOiyxnujdR6cg8jnoj0rnfE3h6XVEh1HTZ1s9bsctaXJGVPrHJ6xt3HbgjkUAdDkHvS1h+G/ECa5bSpLAbPU7RhFfWTtl4JOo5/iVhyrdCDW5ketABRRRQAUUUUAFch4ygk0uSx8WWwxJpRK3iAZ82zfHmDj+7gOP90+tdfTJo45oJIpUDxupV0YZDA9QfagBInWVFkRg6MAyupyCD3/lUlch4Kd9KmvvCVyxLaUwaydjzLZuT5Z+qHdGf9wetdeCD0oAKKKKACiiigArkvhh/wAk00L/AK9//ZjXW1yXww/5JpoX/Xv/AOzGgDraKKKACiiigAoPSisTxXrL6JoE01uqvfTMttZRHpJO52oD7Z5PsDQBkWu3xL48luSpaw8PZhhz0e8dfnb/AIAhC/V2rsQKyvDeiR+HtCtdNRzK8alppj1llY5dz7sxJrWoAQjIIrkfEYOq+NPDejKQY7d5NWuB3AiG2LPt5kgP/AK6+uS8NR/2h4t8Sa4x3KJk023J7JCMvj2Mjv8A980AdYBiloooAKOlFUtW1ay0XS59Qv5xDbQrlmOc5PAAA5JJIAA5JIoAg1/XbPw9pL392WYAhIoYxuknkP3Y0X+Jieg/HoDWT4d0O8l1B/Eev7W1aZNkNuDlLCI8+Up7seNz9zx0AqHQdKvNY1RfE+vxFJgCNMsG6WUR/iI6GVh1PYcDvXXKu09BjHagBcc0tFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAtFFFACUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcv4k8P3ct1Hr+hbItctVK7WO1LyLqYZD6H+Fv4Tz0zWl4f1y28QaWl7bhkYM0c8EgxJBKD80bjswPX6g9MVrGuP1/SrzRtSfxToNu8txgf2lYRD/j+iXgFR/wA9VHKnqfunPGADr8g96WqWlanZ6zpsGo6fcJPazruSRTx6EexBzkdjkVdyKACiiigApD0paKAOQ8axHS2sfF0KMZdJJF2F5Mlo+BKMDqV4cf7vvXVwyLNGssbq8bqGVgchgehHt0pZY0lheORVZHUqysMgg9iPSuV8GM+lSX/hW4kLNpjBrNmPL2b5Mf1KENGf9wetAHW0UgIPSloAKKKKACuS+GH/ACTTQv8Ar3/9mNdbXJfDD/kmmhf9e/8A7MaAOtooooAKKKKAA9K42BT4l8fzXLLnTfD+YYM9JLx1Bdv+AIQv1Zq1vFmuPoPh+a5t082+lK29lF/z0nc4QfQHk+wNS+G9EXw/oVrpwkM0kalppj1llYlnc+5YsfxoA1hS0UUAZ+u6rHomgahqsmClpbvPg/xbVJA/E8VR8GaXNo3hHTLO5JN15Xm3JPUzOd8hP/Amas/xwh1I6JoA5GpaghnX1ghzK/4HYq/8CFdaAc80ALRRTWdQhYsoAGcnp9aAIry8t7Gzmu7qZIYIUMkkjnAVQMkk1yGk2k3jLU7fxDqkLR6XbMX0mxlGC/8A08SKf4j/AAg/dBz1PEcSH4g6iJpEJ8KWcm6FDx/aUynIkPrEp6Do556AZ7gA9TQAvfvS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAtFFFACUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHE6rFN4I1O416xhL6HdPv1W0jXJgbvcxgdv74743dc57G3niuYI54JElilUOkiNlXB6EH3FSMAykEAg8c1xFuzeAtYWzfjwvfS7bVx00+dj/qj6RMT8p/hJweCCADuKKMg0UAFFFFAAa4/wAawSaXJY+LrWMvNpRK3aqMmWzcjzR7lcCQf7h9a7CmSoksTxyKrIykMrDII9D7UAJFIssayI4dHG5WU5DDsR7VJXIeC5X0ua+8J3Ls0mmENZu5yZLNyfL57lcGM/7g9a68EHpQAUUUUAFcl8MP+SaaF/17/wDsxrra5L4Yf8k00L/r3/8AZjQB1tFFFABSHpS1h+LNal0Xw/NPaRiXUJmW2soT0knc7UB9geT7A0AZVso8S+Ppbwtu07QM28A7Pduv7xvqikL7FmrsBWV4a0SPw9oNrpyMZHjUtNMessrHLufUliTWtQAUhxjnpS1HNKkNvJNIwWNFLMx6ADkmgDlbEtqnxM1K5PNvo9lHZx+nnS4kkP4KsQ/GuurlPh7BKPC66lcKVudXnk1KUHqPNbcg/BNi/hXVZFAAWGPWuJ1OSXxvqk+g2UrR6FaSeXql1G2DcOME2yH0/vkdjt9as+ItTvdT1IeFtCneK8dQ9/eJ/wAuEJ7g9pHHCjnHLdq6DStLtNF0230/T4FgtYE2oi/mSfUk5JPUnmgCzBClvDHDFGscUahURRgKoGAAPSpaKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAFooooASiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAD0qrqFhbapp9xYXsKzWs8bRyxt0ZTVqkPTjr2zQByHh6+utD1b/hFdZuGmZY9+l3sh+a5hHWNj3lTv8A3h83Y46/IJxmsjxHoEHiHTDaySPBPGwltbqP79vKOVdT6g9R3GR3qt4V12bVIJ7HUoxDrWnMIb6JeFJx8sif7DjkenI7UAdDRRRQAUHpRRQByPjRJNKNl4rtoi0ulsReKBkyWb4Eo46lcK4/3T611UMqzRpLG6vG6hlYHIYEcEUssaSwvHIqtG6lWVhkEHqD7Vyfgt30ma/8J3Bb/iWEPZO55ktHJ8v6lCGjP+6vrQB19FICDS0AFcl8MP8Akmmhf9e//sxrra5L4Yf8k00L/r3/APZjQB1tFFHSgAPSuMts+JfH012Mtp3h4tbw56S3jr+8b/gCkL9WatfxbrcmheH5bi2jEt/My29lCePMnc4QfTPJ9gam8N6KugaDaacH8ySJMzS95ZDy7n3ZiT+NAGqKWiigBD0Ncr8QriUeF2022Yrc6vPHpsRH8IlYBz+Cbz+FdUeBmuSvA2q/EzTrUc2+jWT3knoJpsxxg+4QSn8fpQB1MUSW8EcUShI41Coo6KAMAVheKdfn0qGCw02NZ9Z1BjHZxNyo/vSP6Iucn14HU1f1zW7Pw/pE+o3jN5UQG1FG55GJwqKO7McAfWsvwto11FLca9rUa/23qAHmKDkWsQPyQKfbqT3Yk+lAF7w5oEPh6wMCStcXMzma7upB89zMfvO38sdAAAOlbNIBjtjFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALRRRQAlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIehxXLeKdHvEng8SaKgbWLBCpiHAvLcnLQn34yp7MB2JrqqQ9OOtAFLSNVs9a0u21KxlEsFwm9G7j1BHYjoQehFXq4oqPBnixZAwTQdcnwykYW1vGHBHosvQ/7eD/FXa0AFFFFAAelch41il0w2Xiu2DGTSmIu0Xky2b4Eq8d1wrj/AHD6119NkRJI2SRVZGBDKwyCPQjvQA2GWOeJJomV45FDIy8hgeQR7VJXI+DJm0ue+8J3B+bTGD2bMcmSzcny/qUIMZ/3B611uRQAtcl8MP8Akmmhf9e//sxrra5L4Yf8k00L/r3/APZjQB1tIehpawvF2uSaH4flntUEuoTsttYxH+OdzhPwH3j7KaAMu2VvEvj2e8cbtN0DMFtnpJdso8x/fYpCexZq7AVleG9Fj8P6Da6YjtK0KkyzN96WRiWdz7liSfrWtQAUUUUABrkPBK/ak1rxFIw/4ml/I0THoIIv3Uf4EIW/4FWh411WbRvB2p3drk3fleVbAdTM5CRgf8CYVz17ZvJbaZ8PNLlZI4rOP+07mP8A5ZWyjbtB7PKQQPRQx9KALekhvGWvrr03Oi6fIy6VG44nkHDXOO4/hT2y3cV2g/zzUdvbxWtvFbwRrHDEgSNEGAqgYAA7ADipaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAWiiigBKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAKGr6Va61pNzp17Hvt502sO49CPQg4IPYgVkeDtTup7O40jVJRJq+kv8AZrl+8y4zHNj0dcE/7QYdq6auO8UxtoWtad4shVVijxZaoB/FbOwCv/2zcg/7rNQB2OaKQGloAKKKKAOQ8aQf2W1j4sgRjLpTEXQQZMlo/Eo99vEg90966uGVZo0ljdXjdQyspyGB6EfpTpESSJ0kVWRgQysMgjuCPSuS8GSPpFxfeEblyzaYRJZO3/LS0cny/qUIMZ/3R60AdfXJfDD/AJJpoX/Xv/7Ma60EGuS+GH/JNNC/69//AGY0AdaelcdaMfEnj+e7ID6boAa3gPZ7xgPMb/gCkJ9WatXxZrb6FoEtxbIJb+Zlt7KE/wDLSdzhB9AeT7A1N4c0WLw9oVppkTGQwp+9lb70shOXc+7MST9aANaiiigAoPSig9KAPP8A4haxDZanokcyu9vZu+qTxR8s5iAWFAO5aaVMD/Z9q3/COjTaVpslxfgHV9Qf7VfyDn9438AP9xBhV9h7muJ0u1k8Y/GjV9QmGdL0DyraJT0e4XcRn12s7n6hK9VGe/8A+qgB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALRRRQAlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVbULG31TTbmwuk329zE0Ui+qsMH+dWaDyMUAcx4Evri58OLY30nmahpcr2F0x6s0fCt/wJCjf8Crp65CyI0z4palar/q9X0+O9HtLC3lN+aNF/3zXX0AFFFFAAea5HxpHLpn2LxVaRF5tKYi6VfvSWb4Eo/4DhXH+4fWuupsiJLE8ciqyMCGVhkEehoAbBNHPFHNE6vHIoZHU5DA8gj2rlfhh/yTTQv+vf8A9mNJ4MkGkXF/4SmZidMIls3c8vZuSY+e5Qhoz/uj1rE8O65LofwW0aa0QSajPCttYwt/y0ndiEH0HLH2U0AbNso8SePZbzdv07QAYIB2e8YDzG+qKQnsWauwxWV4c0WPw9oVppsbGQxKTLKesshO53PuWJP41rUAFFFFABVDW9Tj0XQr/VJfuWlu8xHrtUnH44xV88AmuO8fzC5i0Xw/1Or6jFHKvrBGfNk/MJj/AIFQBP8ADvQ5NC8HWcdyv+n3e69vXPVppDubPuOF/wCAiuqpAOaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoozziigAooooAKKKKAFJwKQkUp6Vg6x4Us9bukubm81SF1jEe2zv5YEwCT91GAJ56+woA3aK5H/hXel/8AQT8Q/wDg5uP/AIuj/hXel/8AQT8Q/wDg5uP/AIugDrqK5H/hXel/9BPxB/4Obn/4uj/hXel/9BPxB/4Obn/4ugDrqK5H/hXel/8AQT8Q/wDg5uP/AIuj/hXel/8AQT8Q/wDg5uP/AIugDrqK5H/hXel/9BPxD/4Obj/4uj/hXel/9BPxD/4Obj/4ugDrqK5H/hXel/8AQT8Q/wDg5uP/AIuj/hXel/8AQT8Q/wDg5uP/AIugDrqK5H/hXel/9BPxD/4Obj/4uj/hXel/9BPxD/4Obj/4ugDrqK5H/hXel/8AQT8Q/wDg5uP/AIug/DvS+2peIP8Awc3H/wAXQB1Uk8UWzzJETe21dxxuPoPfin7hnGR6V5xrnwb0fW57GR9W1tfsspceZfPNnp0LklTx1HP6Y2h8PNL/AOgn4h/8HNx/8XQB11Fcj/wrvS/+gn4h/wDBzcf/ABdH/Cu9L/6CfiH/AMHNx/8AF0AddRXI/wDCu9L/AOgn4h/8HNx/8XR/wrvS/wDoJ+If/Bzcf/F0AddRXI/8K70v/oJ+If8Awc3H/wAXR/wrvSv+gl4g/wDBzc//ABdABrn7v4j+ErgdJIr62J9SURwP/IZrrq8t1vwTp0fjHwtZLf60wme6dmfVJ2ZVSEj5WLZXlxkjGRxXSf8ACu9L/wCgn4h/8HNx/wDF0AddRXI/8K70v/oJ+If/AAc3H/xdH/Cu9KH/ADE/EP8A4Obn/wCLoA66kPI964XVPCXhrRLF73U9f1q0tk6yTa5cKPoPn5PsOaxYU8Ey6ja2MuueKbSa7z9mN7fX1us/+60hAPbvzketAHT+M4JNOax8V2obzdIYm7CjJls2x5o9yoxIPdPeuP8AhOP+EistIvHjJsdBtTb2+fuyXb8yOPZE2qD6u1aHjPwdpen+GbpIb/XJr28xZ2kEmrzsJJpflUFS+CBksQeMKa5b4P8Ahm0v9CksdQutVt7oBbyL7LqU0UcsEnAYKrAZDKwP0XrkUAe7ClrkB8PNKPTU/EH/AIObn/4ul/4V3pf/AEE/EP8A4Obj/wCLoA66iuR/4V3pf/QT8Q/+Dm4/+Lo/4V3pf/QT8Q/+Dm4/+LoA6415de3U2r/tA6TbqCbTR7KY/SZ4xv8AyWSL866CXwBpEETyvqviBURSzMdZucAAcn79ee+GvCNnc6v4av7m51aM65Bf3GV1CZXUb42i+YMDnygM+uBnOAaAPcqWuR/4V3pf/QT8Q/8Ag5uP/i6P+Fd6X/0E/EP/AIObj/4ugDrqK5H/AIV3pf8A0E/EP/g5uP8A4uj/AIV3pf8A0E/EP/g5uP8A4ugDrqK5H/hXel/9BPxD/wCDm4/+Lo/4V3pf/QT8Q/8Ag5uP/i6AOupnnRed5PmJ5u3ds3fNjOM49PeuU/4V3pf/AEEvEH/g5uP/AIuscfBzR/8AhKDrZ1bXN5i8vZ9vffnGP9bnfjHbP6cUAejUVyP/AArvS/8AoJ+If/Bzcf8AxdH/AArvS/8AoJ+If/Bzcf8AxdAHXUVyP/Cu9L/6CfiH/wAHNx/8XR/wrvS/+gn4h/8ABzcf/F0AddRXI/8ACu9L/wCgn4h/8HNx/wDF0f8ACu9L/wCgn4h/8HNx/wDF0AddRXI/8K70v/oJ+If/AAc3H/xdH/Cu9L/6CfiH/wAHNx/8XQB11Fcj/wAK70v/AKCfiH/wc3H/AMXR/wAK70v/AKCfiH/wc3H/AMXQB11JmuS/4V3pf/QS8Qf+Dm5/+Lo/4V3peP8AkJ+IP/Bzc/8AxdAF7xN4nTwrbC+vrC8l08f624tVEnk+7r1C+4z74qrovxI8H68UWw1+zMrnCwzN5MjH0Cvgn8K5jxZ4Nmt7FrTw9Dr+o6jcIR++1qdII1PBZ2Ljd6bRnNcPo37OOozBW1vW4LcdTFaIZCfxbAB/A0AfRAINLXIeEfh1pfg4L9hv9Wn2ggLcXjGP/v2uEP4g119ABRRRQAtFFFACUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUHpQBkeIfE+k+FbJb3WbiW3tidvmrbySqp9yinb174rFPxT8ILp41A394LIjcLg6ZdeWRnGd3l461wn7RGruNH0jw/bZee/uDK0acswXhQR7s/Hutb/hHUpbqe08EjQr7T9OsNJIvWvogjXGR5YCbSeGO9s9TigD0PTdRtdW0231CykMtrcxiSJyjLuUjIOGAP5irVZ1nPpdjPBoVtc26TwQDy7QSAyLEoABxnOOgzWjQAUUUUAFB6UUmR60Aclc/6b8WdPjHKadpM0zEdmmkRV/MRv+VddXIeCc6lda54lblNTu/Ltj620OY48exbzG/4HXX0AFIfunnFLSEZBoA8A0DUZvif8b5Li6Jk0XRfMkt7dj8g2sFRsd2ZsPz6Y5Aq5+0bfRrYeH9Pj/4+HneZQhyVAAUY+pbj6e1WvAPhrUvhn4s8QQ3Wi315p12q/Y7u0QTfIpYhSM5BIYA5xytVdb0PW7/xDN438R2Kw3AK2eg6M7h3MpOImkxkYBLSEZ7HpigDtvD0N5r/AIitrq/PmQ+HrdbVSTkS37Rr5z++0HZn1Z/SsLRopdN+GvhXxXahi+kQN9qRR80tm7YlXjuuFkH+5716N4d0WPw/odppschlMKkyzN96WQks7n3ZixP1rF+GiJL8MNEjkUMjW2GVhkEZOQRQB1UEsdxDHPEweORQ6ODwQRwalrkPBhfR7i/8J3EhY6awksmY5L2j52fUoQ0Z/wB1fWuvyKACg9KKD0oA5T4hXMq+FJdOtiVudWmj02Ijt5p2sfwTefwqv4nt49K1nwZdQoEtrXUPsW0dFSWF41H03bR+IqS9Dap8TNMtBk2+j2b3sncebLmKP8QolP41peMtNm1TwlqFvaj/AEtIxPbEDkTRkPHj33KKANwUtZ2g6tBruhWOq23Ed3CsoH93IGR+B4+orRoAKKKKACiiigCtf38Gm2Mt5c+YIYl3OY4nkYD12qCT+ArlbP4q+D9RSV7HULu5SHHmtDpl04T/AHiI+Pxo+Kuvf8I/8ONXukbE00X2aIZx80ny8e4BJ/CvMfhhqt74Y8KaTplrol+l7r2oK39ozRAW6occqcksRGjMBgdT6UAe0+HvFOjeK7Sa60W7a5hhlMMjGF49rgAlcOoOcEVsVgNe+GvCly1vPf2GnTX873BjmnWNpZGPzMATzkgVv5oAKKKKACiiigAooooAKKKKACg0UUAJ05/GjIPelPSvJfiN4t8ReCPHGgXSXj3Wg3xZJbIpGuGBwfn2g4w6kZPUHmgD1kEHpS1y/h3TfFdvrF1e69rttdW08Y8qxgtgiwPx0f7zAcjnr14rqKACiiigBaKKKAEooooAKKKKACiiigAooooAKKKKACiiigApHO1CeePQZpaCMigDw3WtC17xD8cNN1270K/XQbGSNY5GjBJCZYHbnODIfTpXtiwRiVrhY1Erqqs+MEhclQfYbjx7mpccUYJGP/rUAeV2dvFb/tI3awwxxhtE3tsUDJLrk8Dr716rWSPDWkDXTrYs1/tIrsNzubdt/u9ent0rWoAKKKKAEPQ1zPjfUZrfRl0yyfbqWryixtT3UsPnk+iJub8B610xIxgHn/PNcf4fU+JPE114odg9jbK9lpI6gqCPNmH+8y7Qf7q+hoA6bTbC30nTbXTrRNltaxLDGvoqjA/lVukHHHaloAKKKKAEI9ziuPsmPiTx7PeY3aZoG62tz2ku2A81h/uKQn1Zq1PFusz6LoEslkiy6lcOttZRH+OaQ7V/AcsfZTVjw7osXh7Q7XTImMhiTMkrdZZCcu592Ykn60Aag7VyXww/5JpoX/Xv/wCzGuurkvhh/wAk00L/AK9//ZjQA3xrBNpws/FlpGXuNJJ+0ovWW0b/AFq++MBx7p711cMqTxJNE4eORQ6uOQwI4I9u9OkRJI2SRQyMMMrDII7g+1cl4MeTSLm/8I3Llm00iSyZuslm/wDq/qUOYz/ur60AdfQelICD0NYfjPVpdF8Iane2wJulh8u2A6mZyEj/APHmWgDO8DudSl13xAR8uoag6QEdDBD+6T8yrt/wKuuPSs3QNKTQ9A0/SoyCtnbpDuH8RCgE/UkE/jWielAHIeGg2g+J9W8NyELbSsdS0708t2Pmxj02yHIHo4rr8j1rmfGemXc9lba1pcZfV9Ic3NvGOsy4xJCf99eB/tBTW1pWpW2saZa6lZvvtrmISRt7Edx6/wAsUAXaKKKACiiigDx3426d4i8U2un6PomjXl1BDMbi4lVQE3Y2qBkgnALfnXpuk6dZW+j6Xbw2xWKwjRbUTx4eMqhQHkcNtJGR2JrU5o5xx196APNPilpGj6tYf2OY7GLWNVkjK3dwVBt4Y2BeTcfuqBkADqXPq1d/pX2caTZC1m863ECCKXdu3rtGDn6Vlav4G8Na/fG91bR7e7uCAvmS5JwOg61u28CW0EcEKCOGJQiIvRVAwAPbAoAlooooAKKKKACiiigAooooAKKKKAEIyK8o8VfDvxT448Jka5qNguuQMGtIbXelsn94sTklmB69BtGBySfWKKAMPwxba/b6XF/wkV1bS3ojRGW2B2AqMFiTyzN1PQDAAHUncoooAKKKKAFooooASiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPSlrM1/XLXw9o82oXO5tmFjijGXmkPCxoO7McAUAYni66udSuIPCemzmO71BS93Kh5t7QEB29mYnYv1J7V01lZ2+n2cFnaQrDbQII4416IoGAB+FYnhTQ7nToZ9R1Vll1vUWEt5Iv3Ux9yFP8AYQHA9Tk9TXR0AFFFFABQaKwvF2ty6HoEktmiy6jcOttYwn/lpO5wg+g5Y+ymgDKs8+JfHk98c/2doG61twekl2w/ev8A8AUhB7s9dj36VmeHtGj0DQrPTY3MhhT95KesshOXc+7MST9a1KACuS+GH/JNNC/69/8A2Y11tcl8MP8Akmmhf9e//sxoA62uR8aRTaatj4ptYy02ksftSr1ks3wJR7lcK4/3PeuupkqJLE8ciK6MpDKwyCO4NADYZY54klicPFKoZWU5DA9DXL+JpBqXinw1oa/MpnfUrjHaOEfJn2Mrxn/gNM8GyDSbm/8ACMrH/iWESWRY8vaOTs57lDmM/wC6vrS+HD/avjXxHrBG6O2ePSrY46CMb5cexd8f8AoA64ZzS0UUAI33T/jXFWbDwf4uewkJXRdanaS0Y/dtrpss8R9Ff7y/7W4dxXbVma5otpr+kT6deqfJlGQ6nDRsOVdT2YEAg+1AGnkUVzPhLW7q7Fxo+sbU1zTSI7kDgTr/AAToP7rD8jkHGK6UEHoaAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAFooooASiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQkAc9KAGSypFC8juqoqlizHAAAzkmuN0WF/F+tReKLtCNMttw0e3cffzwbph6tyE9F5/ipNUZvG+tyaFbO39h2MmNVlXpcSjGLYH0HV8ey+tdnFGsSLGiBEUYVRwAPTFAD1GB0xS0UUAFFFFAAa46yI8S+PLi9wWsNA3Wtvn7r3bAea4/wBxcIPQs9afi/W5dF0F3s083Ubl1tbGLH353OF/AcsfZTVnw7osXh/QrPTImMhgT95KfvSyHl3PuzZJoA1AP0paKKACuS+GH/JNNC/69/8A2Y11tcj8MOPhpoR/6d//AGY0AddSE8dM+1YnjK/tdL8G6vfXkaSQwWzvscAhmA+Uc/7WPxr5y0ZrYfCS8la6uLzxRqN4qadBBMz3Eaoy5IUElR9/tzwKAPbviPdp4ZtLHxkmfO0uURSxjrcQSlVePPrna4J7p71o/Dho5vAOk3SP5j3cbXUz4wTLI7PJ/wCPMR+FV/AmlalL8ONPsPF0H2u6eMieC8AlJTcSgfIOSFxwfx5p/g520m8v/CdwcHTm82xJOTJZuTs/74OUPphfWgDr6KAQelFABQaKKAOY8VaNeSvb67oqp/bWng7FbgXUR+/Ax9D1B7MAfWtTQtZtNf0m31OyLeVMvKSLh42BwyMOxByCPUGtM9K4rWIpvB2sS+JLRGOjXRB1i2X/AJZHp9qUeoAAcDqOe1AHa5oqOKWOeJJYnWSORQyupyGBHBFSUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAC0UUUAJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUdBmikJwMk4oACe3euT8SateXmpJ4Y0KUpqM6b7u5UZFhAeC//XRuiD8egq34m8Qy6WsGn6bCt1rV8Stpbk8DH3pH9EXIJ9eAOSKseGtAXw/p7RvMbq+uH869u2GGnlPVvYDoB0AAFAFvR9Is9C0u303T4fKtYF2oM5J9ST3JPJJ5zmr9FFABRRRQAUHgZorC8W61LomgvLaIJNRuXW1sYj/HO5wmfYcsfZTQBl2LHxL48ub7htN0HdaW3o92w/euP9xcIPdnrsBWX4d0SDw9oVnpduSywR4eRvvSOeWc+7MST7mtWgAooooAK5L4Yf8AJNNC/wCvf/2Y11tcj8Mf+SaaF/17/wDsxoA4v9oXXBaeEbTRYXzPqNwCyDqY0+Y/mxT8q5b4nW2laD4b8J6FoDRP4ltmQedYEeeMJhslecs5BH0Ne+XWjabezeddabZzy4wXkhVmx6ZIpbbSNOspDJaadaW7nq0UKoT+Q96AGaL9t/sPTxqZX+0RbR/atvTzdo3/APjxNYfjWJtN+x+LLeNmn0hibhUHMto5AlXHfAw490966sLz9OlEiK8bI6hlYEFWGQR6GgBkEsc8Mc0Th45FDo6nIYHofxzUtcf4NLaLdX/hOeTP9nES2JY5L2bk7B7lGDIfZV9a7CgAooooAKbIiyRsjAFWGCCMginUHpQBxFgX8CaxDpUzE+G76TbYSsf+PGU8+Q3/AEzY/cPY/L6V2+Rx71U1PTbPV9NuNPv4FntLiMpLG/Rgf6+9c34f1G70TVV8La3cPNJtLaZfSf8AL1CP4HPTzVwc/wB4AH1wAdfRSZ5paACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAFooooASiiigAooooAKKKKACiiigAooooAKKKKACiiigArH8Ra/B4f0v7S8bXFxK4itbWI/PcSn7qL6dCSegAJ7VZ1nWbLQtLn1C+lKQxD+FdzMTwFUDqxOAB71g+HdGvL3UT4m1+MDUZFK2doeRp8J/hHYyMMFm/4COByAWvDGgXNg02q6xLHc67egfaJVGFiQcrDH6IuT/vEkn26KiloAKKKKACiiigBD056Vx9kB4l8eXGoFt1hoO61th2e7YDzX/wCALtQehL1qeLtZm0bQJZLJBLqVwy2tjEf453OF/AcsfZTVnw7osXh/Q7TTYmLmJMyynrLIeXc+7Nkn60AaffpS0UUAFFFFABXJfDD/AJJpoX/Xv/7Ma62uS+GH/JNNC/69/wD2Y0AdbRRRQAUh6UtFAHIeNYJdOWz8V2cbPc6SxNwidZbRuJU98ABx7p711UE0dxDHPDIskUiB0dTkMDyCPY0+VFkidHUMjKQwIyCO9cl4Pk/se81DwlKxA04+dY5Od9o5JQD12Nuj+ir60AdfRRmigAooooADWT4g0G08Q6WbO63oVYSQTxnbJBIvKuh7EH8+hrWpCMigDmfDOv3U91PoWuqsWu2a7nKrtS7i6CeMeh6ED7pyPSumBBOKwvEnh861bRT2tz9i1WzYy2V4oyY27hvVGHDL3FJ4a8Rf2zHPa3lv9j1ixIS9syd2xj0ZT/EjYJB/DqDQBv0UAg9DRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAC0UUUAJRRRQAUUUUAFFFFABRRRQAUUUUAFFFHSgAqrqGoWmmafPf3twkFrAhkklc8KBUs9xDbW8k88qRwxqXeR2AVVAySSegxzXF2EE3jrUYNYvYWi8PWz+bp1pKpV7qQdLiRT0UdUU9fvEdBQBNo2nXHijU4PEmswPFbQndpOnSrgwqR/rpB3kYdAfuA+pNdkOD0pFUinUAFFFFABRRRQAUUVheLtZl0fQZGs8NqV0y2tih/inkOEz7Dlj7KaAMqy/4qbx5cXxydO0DdbWw/hku2H71/fYpCD3Z67EdelZnh7RYfD2hWelwMXEEeHlb70jk5dz7sxJP1rUoAKKKKACiiigArkvhh/yTTQv+vf/ANmNdbXJfDD/AJJpoX/Xv/7MaAOtooooAKKKKAEPSuT8aQS2C2Xiq1Defo7FrhVGTLaNgTJ74ADj3T3rrabIiyRsjKrKwIIYZB9iKAGwSxzwpNE6vE6hkdTkMD0I9qkrkPBxbRbq/wDCc5bbpxEunknJe0cnYPcodyH2C+tdfmgAooooAKKKKAEOccVzfiXw/dXc0Gs6LMttrlkpEDMf3dwnUwyjup7Hqp5FdLQaAMbw7r9v4g083MaNBPCxiurWQ/vLeUdUb19Qe4wRwa2NwzjPNcr4g0K7t9RTxLoEa/2rCoS5tiwRL+EclG7Bx1Rj0PB4PGxoWt2niDTItQsWby3yrxuu14nU4ZHHUMDwQaANOijIzjPNFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAtFFFACUUUUAFFFFABRRRQAUUUUAFFFFABTHkREZmYKFGSScAD3pxIIwD1HBFcNcO/wAQbySxtZGj8L20my7nTgai6nmFD/zyBGGYfeI2jjJoAArfEO9JOR4St34UjH9pyA5z/wBcVOP98+w57dVwRwAB0A7UkMKQRJFGipGihURRgKB0AA4GKkoAKKKKACiiigAooooAK46zVvEnj241B8Np2hbrW09JLpgPOk/4ApEY9CXrT8X61Nougu9kok1K6kW0sY8fenkOFz7Dlj7Kas+HdFi8PaFaaXCzSCBPnlf70jk5dz7sxZj9aANTvS0UUAFFFFABRRRQAVyXww/5JpoX/Xv/AOzGutrkvhh/yTTQv+vf/wBmNAHW0UUUAFFFFABQelFFAHI+NYZtOWz8VWiM0+kMxuUjHM1o2PNT8MBx7pXU280VzBHPDIskUih0dTkMCMgj2NPkUPGyMAVYYIIyCPp3rk/B8j6Reah4TuCANOIlsDnl7Nydg/4AQU+gX1oA66ijNFABRRRQAUUUUAIc4OOtchrmlXuh6nL4n0C3aaR8f2lp6HH2yMfxqOnmqOh/iHB7V2FIelAFLStTs9Y02DULCcTW0wyrAYwehBHUEEEEHkHIq9XF6pYXfhLUrjxFo8TS6fO3mappqDOT0M8QH8YA+ZR94DP3hz1djf2uo2MF7ZzpPazoJIpUOQwPSgCzRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAtFFFACUUUUAFFFFABRRRQAUUUE4oAKTIIPPHehunv2zxXGapqF14n1Wbw5odxJb2sHy6pqcX/LIf88Ij08w9z/APc4oAbqNzceNNTm0PTJXh0WB/L1O/jODO3e3iI/J2HQcDmuvtLS3sbWK1tYI4LeFAkcca7VUDgAD6YqLS9NtNI06CwsbZLa0gQJFEnRQP5nvk8nqauUAFFFFABRRRQAUUUUAFB6ZorB8Xa3LomgySWaCXUbl1tbGL+/PIcL+A5Y+ymgDMsSfEvju5v8AhtM0MNa23o92wHmuP9xcIPdnrsO/Sszw9osPh7QrPS7cllgjw8h+9I55Zz7sSSfc1qUAFFFFABRRRQAUUUUAFcl8MP8Akmmhf9e//sxrra5L4Yf8k00L/r3/APZjQB1tFFFABRRRQAUUUUAFcl42tprJbLxTZRF7rSGLTonWW0biZPfAw490rraa6h0KMAVIwQehFADIJ4rmGOeCRXikUOjLyGUjII9qlrj/AAdI2jXt/wCEZ2JGn4msGP8AHZv90D12NlPpt9a7CgAooooAKKKKACiiigBCMiuIvbabwHfzavYQvJ4cuGMmoWcfJsm7zxqP4O7qOn3h3ruKQjIIIyD2oAhtbmG8torm3lSWCVFdJIzlWBGQR7dKnzXCTpJ8PLxriCJpPClxIXuIlBZtOkJ5dB/zyJOWX+E5I4zXbxSJJGjxuro43KynII7Ee1AElFFFABRRRQAUUUUAFFFFABRRRQAUUUUALRRRQAlFFFABRRRQAUUUUAFITwPegkYI74rktd1i+v8AU28NeHJEW/KA3l6RlNPjI4JH8UjD7qe2TgUAM1jVbzXtTn8M+Hp2iZMLqepR4xaIR9xD3mYf98g5POK6PSNJs9E02DT9Pt1gtoVwqjqT3JPck8knqTTNE0Wz0HTY7CyRhGhLM7nc8rn7zu38TE8k1o0AFFFFABRRRQAUUUUAFFFFAAelcbYD/hJvHdzqZydO0EvZ2gPR7ph++k99owg9y9ani/W5dF0F2sgH1O6dbWxiP8c7nC/gOWPspq34e0eLQNBs9LiYv9njAeQ9ZHPLOfdmJJ+tAGl3paKKACiiigAooooAKKKKACuS+GH/ACTTQv8Ar3/9mNdbXJfDD/kmmhf9e/8A7MaAOtooooAKKKKACiiigAo7UUUAcl42hm0+Oz8UWcZefR3LTonWW0YATKPXAAce6V1EE0VzDHPDIskUqh0dTkMCMgj2NPkUPGyMAVYEEEZGPpXJeD3Gj3moeEpcgaewmsST9+0kJ2D/AIA26P6KvrQB19FGRRQAUUUUAFFFFABRRRQA10WSNkdVZWBBB5BH0rhkL/Du72OzP4UnfEZOSdMdux/6Yk9P7h9undnpUU0Mc8EkM0ayQupV0cAhgR0IPBH1oAkVgwBUhgeQQeopa4W1nl+H13Fp12WfwvM+yzumJP8AZ7HgQyE/8syThGPTO08YNd115oAKKKKACiiigAooooAKKKKACiiigBaKKKAEooooAKKKKACkPQ0GuZ8Q+ILtL+PQNBSOfWrhd7M4zHZxdPNkx+O1erH2yaAIvEGt3txqP/COeHWQ6s6h7i4ZdyWETD/WP6uf4U78E8ZNa+g6DaeHrAWlorHJMk08p3SzyH7zu3VmPc/06N8PeH7Xw7p/2a3LyyysZbm5lOZLiU/edj6n8hwBwK16ACiiigAooooAKKKKACiiigAoPSisHxdrMuj6DI1nhtSunW0sYz/FPIcL+A5Y+ymgDMsSviXx3c37KWsNC3WlqSOHumH75x/ujagPqXrsB16VmeH9Fg8PaHaaXAzOtumGlflpHJJZ2PqzEsfc1qUAFFFFABRRRQAUUUUAFFFFABXJfDD/AJJpoX/Xv/7Ma62uS+GH/JNNC/69/wD2Y0AdbRRRQAUUUUAFFFFABRRRQAHpXJeNbeWxSy8VWqk3OjsXnVBky2jcTJ74ADj3T3rraa6LJGyOoZWGCCMgg0AMt5oriCOaF1kikQOjqchlPII9iKlrkPB7to15f+EpydunnztPJOS9o5O0epKMGT6bfWuuBBoAWiiigAooooAKKKKACg9KKKAK93aQXtpLbXcMc1vKpSSJ1DK6nqCD1FchYXNz4I1GLSdTmebQZ3Een3znJtmPSCU+nQI59lPOK7equoWFrqenz2N9AlxazoUlikGQymgCzkHoaWuK02/n8H6nBoOsXEk+mTsI9M1KY5IPaCZv7w/hY/eHHXr2uaACiiigAooooAKKKKACiiigBaKKKAEooooACcDJ6UmeKU9K5vxJ4ilsZ4dI0mJbvXbsfuYT92FO80pHRB+bHgUAN8ReIZ7a7i0PRES4126QtGj58u3j7zSkdF64HVjwKu+HPD0Ph6yeNZnubudzLd3kv+suJD1Y+g7BRwAABTfDnhyLQIJWad7vULphJe3sgw9xJjGcfwqBwFHAHTvW3QAUUUUAFFFFABRRRQAUUUUAFFFFAAelcdZIfEnjy41FwG07Qt1raej3TD98/vtGEHoS9aXjDW5tG0B2sVEmpXTra2MeM7p34U49F5Y+ymrfh7RYfD+h2mlwsziBMNK3WRySXc+7MSx+tAGn36UtFFABRRRQAUUUUAFFFFABRRRQAVyXww/5JpoX/Xv/AOzGutrkvhh/yTTQv+vf/wBmNAHW0UUUAFFFFABRRRQAUUUUAFIRkEUtFAHJ+NYHsIrPxTbRs1xo7l5lQfNLatxMnvgYce6Cunt54rmCKeB1kikUOjqchlIyCPY091V0ZXUMpGCCMgj0rk/B5Oi3uoeE5nytgRPYZPLWjk7V99jBk+gX1oA66ijNFABRRRQAUUUUAFFFFABSEZHHWlooApalplpq2nT2N/bJcWsyFHik5BB/r7jkVzGkaldeFtSg8O65O89rO/l6XqknJl9IJm7Sjop/jAH8Wc9menTNUdU0iy1nTZ7DUIFntZl2ujdfUEEcgjsRyKAL2Qe9LXHaPq174f1WPw74hufNWViumanJx9qH/PKQ9BKP/HxyOciuwzmgBaKKKACiiigAooooAWiiigBKKKKAEIyDioUtolupLkQxrO6hGlCjcyjOAT3AycfU1PRQAlLRRQAUUUUAFFFFABRRRQAUUUUAFHaisHxfrFxpGgyGwAfU7p1tLFD0adzhSfZeWPspoAzbAL4k8d3OqE77DQ91naDs1ywHnP77QRGPQl66+s3w/o0Hh/Q7TTICWECYaQ9ZHPLOfdmJY+5rToAKKKKACiiigAooooAKKKKACiiigArkvhh/yTTQv+vf/wBmNdbXJfDD/kmmg/8AXv8A+zGgDraKKKACiiigAooooAKKKKACiiigBD0Ncl42t5rFLPxVZRl7nR2LzInWa1b/AFye+AA4909666muqujKwDKwwQRkGgBkE0VxDHPC4eORA6MvRlIyCPapa4/we7aLfX/hKdiVsT9o09j/AB2bk7VHqUbKfTb612GaACiiigAooooAKKKKACiiigAoPSiigCCW2inCLNDHIqOrqGUHaw5BGe4PT0qbHNLRQAUUUUAFFFFABRRRQAtFFFACUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAB5Fcbp//FTeOrnU23f2doReztAekl0w/fSe+0YQe5etPxhrU2j6DIbEB9Uu2W1sIj/FO/Cn6Dlj7KauaBo8Wg6FZ6bCxcQJhpD1kc8u592Ykn60AaQ69KWiigAooooAKKKKACiiigAooooAKKKKACuS+GH/ACTTQv8Ar3/9mNdbXJfDD/kmmhf9e/8A7MaAOtooooAKKKKACiiigAooooAKKKKACg9KKKAOS8bQzafFZ+KLOMtcaO5eZF6y2jYEyD6ABx7pXUW88VzDHPDIskUqh0dTkMpGQR+FSOquhR1DKwwQRkEelcj4PL6Lfah4TnJ8uxPn6cxOd9o5+VR6+W25Ppt9aAOvoozRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAC0UUUAJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQeO+KK5/xjrU+kaC32FRJqd462lihGczPwpPsoyx9lNAGdYKfEnju61N1B0/Q91nZjs9yw/fSf8BGIx7l67AdelZugaND4f0O00uB3dIEwZH+9I55Z2PcsxLH3NadABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABnHJrl/h1a3Fj8P9FtbuCWC4jgw8UqFWU5PUHpXTnkUgB3Z9aAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVyXjaCaxis/FFmjNcaMzSTRp1ltWAEyfXADj3QV1tI6q6FWAKsMEEZBoAjtriK6toriB1kilQSI69GUjII9qlrkPCDto99f+E5+FsT9o08k/ftHPygf7jbk+gX1rrsg0ALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALRRRQAlFFFABRRRQAUUUUAFFFFABRRRQAUUUZxQAHoa47TifEvjm61PhtN0TdZ2mOj3LAedJ77RiMfV60vGGtTaNoTfYlD6ndyLaWKYzmd+FJ9l5Y+ymrugaPBoGh2ml22THBHguert1Zj7sck+5NAGiM0tFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUHpRRQByfjWCSxis/FNrG73OjMXlRPvS2rYEye+B8490FdPbzxXNvFPBIskMiB0dTwykZBFPdQ6MrAFSMEEZGK5Dwgx0PUb/AMIzE7bL/SdOY/xWjnhfrG2U+m31oA7GijOaKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBaKKKAEooooAKKKKACiiigAooooAKKKKACiiigCNowxUsoJU5UkdD6j8zT+/SlooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooADXJ+NYLiyt7PxNZxtJdaO5klRB801q2BMg/4CA490FdZTXAKEEAjuDQBHbXEN3bR3NvKssMyiSN0OVZSMgg+nepqpaVplpo2mwafYxeVawLtjTczbRnOMkk45/DpV2gAooooAKKKKACiiigAooooAKKKKACiiigAooooA//Z'] Multimodal Competition False Theorem proof Conic Sections Math Chinese 63 "如图, $D$ 为锐角 $\triangle A B C$ 内一点, 使得 $\angle A D B=\angle A C B+90^{\circ}$, 且 $A C \cdot B D=A D \cdot B C$, 延长 $A D 、 B D$ 、 $C D$, 分别与 $\triangle A B C$ 的外接圆 $\Gamma$ 交于点 $G 、 E 、 F$. 证明: $E F=F G ;$" ['注意到,\n\n$$\n\\begin{gathered}\n\\triangle E F D \\sim \\triangle C B D \\Rightarrow \\frac{E F}{F D}=\\frac{B C}{B D}, \\quad \\triangle F D G \\sim \\triangle A D C \\Rightarrow \\frac{F G}{F D}=\\frac{A C}{A D} \\\\\nA C \\cdot B D=A D \\cdot B C \\Rightarrow \\frac{B C}{B D}=\\frac{A C}{A D}\n\\end{gathered}\n$$\n\n故\n\n$$\n\\frac{E F}{F D}=\\frac{F G}{F D} \\Rightarrow E F=F G\n$$'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAioCRAMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKRjgGgBTUMk8cbojyBXYZAJ61De38Gn2slxdSiOKNSzMemK+d9Q+I154o+KWmJaOYrGO6WJF6b1LAEn1HH60AfSPXqeaeOBUeOR6CpBQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTW6jHXHFADqKydU12w0aIS38xjQnDOVOFrNtvHnh67Zltr9Zdoy2xGbA/AUAdRRXO2PjTQr+/FjBfq9yc4jKkE/ga6IUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAmRTJHVULFgBg8n6UNww9M81xnxGuNbTQ0t9Ds3nkuG2SMnVF65/SgDm/EWtDxbrY0iJHbRbVv9KuU+65/u5/GvKfB1nZXfxgijt8C3ikLR4HHykYr6E0Sxt9A8Hwi002V3WPLR+XmRmz3z9a8X8FeDvEmjfERdVuNGuhbtJIS3l9AzZGeaAPpDPyenPFSCo0wygkEZGdpqQcigBaKKKACiimnHoaAF3D1pajye2KcM+1ADs0ZpvPekoAfRTfxxSigBaKKKACiiigAooooAKZJzgZIz3FPprZ/CgDzn4zalFp/gC6jlCFrlfLTd1yOePwrgPgello+gatrmqOkcStsAfGWG3ORzSftB6s0l/p+ipISE/eEepIIra034Uwar8MdOg2fZb+SPdLJvIByT1HT0oA7DRfC+kal4ltfF1rE0ZaF1MR75IwePpXeisLw5dWBsTYWEqyCyCxSFDkbsc/yreoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBCvfvTDGNuOfwqSmv9w9RQBHtC8jOfWnZ45Ofp1rzfXvjHoHh7Wn02Qu7RnDsMnFR3Xxftbh1i0XS7u+kYcMsbKM/XFAHpgwQMfrTZbiOAZlkRB6sQK8sNz8SfEIIit7fS7duQX2uw/LmnxfCzVtQYPrfiS5mDcskDsg/Q0AdzeeMdAsc+fqlsCOoEqn+tc/c/F3wxCxWKW4uD/wBMYS/8qfZfCrwxZkM0E1w46maXf/OuhtvDGh2ajydLtFI6HyVz/KgDiZfi4JW/0DQdQm9N9u6/0NQn4g+Lro4tvCZUHoXkYfzWvS47SBBiOGJceiAVOBheT+VAHlT+IfiVcfNBoNlED03XHP8A6DTzqHxUdfl06wX/ALbA/wDstepADr/SlzQB5WL34qKObKwP/bZR/Sk/tX4pLydJsHx6XA/+Jr1XPvTWOMf4UAeWjxj4+tc/aPDMUmP7kpP8lqRfijrVtxqHhaePHXywzf0r08Zx601olccqPxGaAPPYfjDo4x9tsdQt/XdbNxW1Y/Enwvf4EepJET0E5CH9TW9NpNhcDEtnA/rlBWLqHgHw1qGRLpkKk90QKf0FAG1b6xp93j7PewS5/uODV0NkZ7e3Neb3Xwf0sfNpt9f2UnYrcNj8hiqI8KeP9Bbdpuux3qL92OZTn8yaAPVt3cjjtRu9eK8r/wCFgeJ9Bwuv+H5WA4aW3+cfXCiuh0j4neHdWCxm5a3mPGydCnP40AdmCxPbFNkLFSEOGxxUVvcwXKb4Z4pV9Y2BH6VP157UAePeKfg3feKPEB1WfWSHBGxTEOADnFdHqfhTxRfaYLCPX/Ih8vY2yFc/XPau+/DFJ06DNAHL+B/CS+EdINn9pa4mdt0kzHlj711YpvOeRTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKM0AIelNzzwTn0pWPBqreX1tYWzXF1MkMCjLO5xigCxls9RmoLm9gtITNcTpGgHJZsV5xqfxRlv7lrDwlp76lPnb5yj5F+vNRW/w81zxHKt14u1eZ0b5vscP+rX2ORn9aANLWPizpVvKbXSIJtUuc42wjGD+IrI+z/ELxdl7mVdDsm58vB8x19iDjNehaN4Z0jQIlh02wht1xyVHJqLxbrEWgeGL6+c4Mcfy+pJ4/rQB8ua54WF54/n0Owu3u5lfaZXbcXbg4r3z4Ya3Z3Omf2RLbR2uqWnyywgYLAdGFec+E9Ek07xt4WupwRcXkZuZ89d3mEDP4YrvvHvha7s72PxZ4fBTULbDTRJwJU7/oP1oA9I3ZUbTknkVKAMVzfhHxRZ+JtGS7t3Al+7LH3Rhwf1BrowexIz7UAOxRSZFLQAUUUUAJgCloooAKKKKACjFFFACYBpcUUm4ZxnmgBaTFGRmkLDucUANYK2VYZz61zWteA/D2thjd6bD5p/5aqo3CujllSJSzsoGM5Y4riNb+KWgaZO1naTm/venkW5DNn6cUAY9x8OdX0X994Y1+4iRPm8iZiVP4Vg6t8WfEfhKE2etadHJdHPlzxEbD+Gc1oXep+OvEdvLdOB4e01QWZ2ysjKPrkV41No8/iLxdb2NrcT3aTS7Vnm6vj7x/KgD3/4cfE6PxnbSx3XlQXcYztyOfwr0PzQCASQT0GK8yj+C2jWtkiWNxNaXS/8vMWN+fT0x0qt/aHjvwQ+b+N9b01TzIgzIq+/QUAesBjn5uPQVJXJ+GvHuheJVC2l3Ek/8UEjfOp/lXVhhjOeDQAtFJuFGaAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAopM01nwQAM/4UAPqGZ1RSzHAHJJ4ArI1/wAVab4csXur+YIB92MDLsfp/wDWrzoy+KviW5WIPpWhluSciRx+QIoA3fEXxNtrS4OnaFbvqWoZ2hYgSAfqKyrLwBrXiy4XUPGN4yxE5WyhY7QPQ8A+ldv4a8HaR4ZtkisoFL95n+Zifqea6HYMjk8UAZumaJYaNbpDY2kcKKMDA5H41o4APA5Pel285owc8nigBuMV5Z8SbiTXfE+ieFLflZJhLdY7Jg8H8QK9Pupkt7WSZ2wsalz9BzXmfw7iPiHxZrXiuTmKRzBbg8gKCCCPzoAZqMSJ8Y9BgjGEgsthA9Q9eouN0ZR1BBGMHv7V5jORJ8c7bj7lo3/oQr08Rhl2sc0AeTeItLvPAHiEeJNIiZtNlbF5bL91c/xD8yfwr0nSNWtNa02C/s5N8UwBUjtx0NXbqzhu7WS3mVXjkUqQwyCCMV5JFLdfCzxR9ncs/h29fMZPPlMeo/lQB68mS3TkcGpagtpkuIEmicOjAEMp4PvUu4dB1oAdRSKSRz1paACiiigAopA1Bb0oAWimlu2RmmvKsakuyr6ZIFAEhqLJLbQFNcr4g+I2haApjkuftNx0EVsPMOfwzXKHX/HPjCTZo1gumWL/APLxOAHx/ukUAehapr+maLC02oXsUKD+8wBzXC33xRudSc2vhXSrm/cnHntGQg/EVY0v4T2huRd69qFzqU5+Yq0jBAf93JFd7ZafZ6fEsVpbxQoowAiAY/IUAeZxeBfFPilxP4q1p4ISdwtrZuAPTOBmux0jwl4f8M2pa2tIwFGXmcbifc5zXRMwRtzYxjk15R4q1+98Zaz/AMIpoDlYAdt5dJ0UdxmgCtrepXXxD1h9J02R4fD1n893cJwDt5I/Q034baLDqXjC+1eKFVsLEfZrXA4YqSC31ORW14tjs/AvgP8AszTU/wBIumWFR3dn4J/M11HgXQ10Lwra2uMSMPNkyOd7AE0AdEAOPXrTWUMpVgDx36VIVJBFIUBIJ7UAcT4k+HGk6y32u232F6PmWa3yOfoDiuct9f8AFfgSf7Prtu2p6WDxdQAsyj3AHFesiNd+4daZNaw3ETRTRI6MMEMuc0AZOh+JtL8Q26y6ddRy5HzLkZH1Fa5AODz/AIV5trvw3lsbttY8LXLWl2p3GD+B/bGcD8qf4b+Isv21dI8UQfYdRA2iQ8I/5gCgD0lPu9c06ollV1DRlWUjIIPBp3mD04oAfRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh6U0k5xTJZFjRndgqKMlm4AoAcSR04HfNcF4s+IkWmONN0eE32pycKqYIQ+/+RWV4i8aaj4n1JtA8IhnQnbPfL91B3wa6jwh4F0/w0jXDKLjUpDulun5cn0z6UAc74c+Ht1f3o1rxdP8Aa7tjvSDB2Jntgkj0r0iOJYo1RY12rwFUYAFT7V9B1zRgUAMXk8du1SUUUAFIaQ9QKQ8E9xQBw3xR1ltM8MmzgJ+03riKPHHUjP6GtrwVoa+HfCthp4XDxxKHz1LVw9458XfFxLQfvbHR4xIQem9gQf5V6sVyDg8g0AeXWP7/AOO1yMf6q0bHtyteqL0ryrQMv8dNabskDL/6DXqiDC4oAcayNe0az13S5rK8jDRyDrjlT6j8q16YVycgc0AeTeFNZvPBOtHwtrzk27NtsrhjwR6E/nXqwO4Bd2c8gjuK5zxp4Sg8U6U0JIS6QboJO6N6/wCfWuf8A+Lbh7qXw5ri/Z9UtTtAc/6xR6fpQB6OhyM06o1JGQDx2pSzcgDt1oAfSHpTC+1QXI9+1c9r3jfQvD8bG7vk8wdIl5JoA6LkdKp3+qWWnQmW8uY4lXklmx+leay+N/FfilzD4a0WW3tm/wCXybGAPwOas2vwsfUpVufFOqyag2d3lZ+QeowR9KAJNS+KtrNO1n4dsp9QuugZVIXP1Ix+tUF8NeN/F0ok1zUl0y0bk28AIfHoWBr0jStE07RrYQadaxwRDsorSAoA5HQvh74f0ArJBZrNP1Ms4DsT9a6lUUDaq7R6DpUuB6UtAESEbiox+AxTi2B1AA7mlYfX8K888feMpbJ4/D2ioZ9Wujt2of8AVA9zQBT8b+KLvVLz/hFfDjFry4+WedeRCPwrqfCPhS18L6UttDhp3G6aVuS7cc/SqngXwbF4as3uLhvO1O5G6eZupOemfwrW8U6xF4e8O3epyYDQxnb7n0oA4G8/4rP4rpbD5tP0pMs3YyHBH6ivWI12riuA+FWjyWmhS6lcjNxqErSsx64ySP516AgKgg0AOooooAKKKKAGucdOtc94j8KaT4ntfJvbcGRRlJVwGU+1dEQD1oKgnpQB47DfeI/hpdCHUmk1LQt2EmUHdGPcnNeo6Tq9jrVml3YzrLGwz8pzj6irN3aQXtvJb3MayROMMp7ivKtU8Mav4CvH1jwtvnsd26WxH3QvcgetAHropa5vwr4usfFFgskEoFwP9ZD/ABJ9a6JDkdQfpQA6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAM0m4E4zSMO/pUFxcR2sLTTOsaKMs7cAUALcXEdtBJNMwSNAWZicACvJdR1fVviTqz6VocrwaPE22W7To+D0GfpSalqOo/E7WX07SpHttAhfFxcjgykdh7cGvTtD0ay0PTYbKxhWKFBwAME+5oAh8PeGbDw3p0dpYRLHtHzMOrn1NbKAgc06igAooooAKKKKAGt1z3xWT4i1aPRtBvL2RgvlRMVz3bBwK1mOD+FeXfFO8k1S+0nwtaEmW7lWWbHZFIJ/Q0AX/hRpTw6JNq9yhF1qMzTMT12nlR+tegj5vbFV9Oso9PsILSIDZFGEX6AVZPAJoA8q8Jnf8ZvEr9duV/8dWvVl6mvKPAw8z4q+LJOwm2/+OLXq4oAWmHkZHBp9MP1xQAZ3AjiuD+IHhCTVIk1fSyY9Xs/njKDlwOdprotY8U6NoETNf30UZX+EsAx+grhbj4ha3rknkeE9GlaJjxdXKsi/XkEGgDf8HeOrXWNJkF86217a/JcJIcYIzz+lUtV+LGlRXDWWio2qXo/hg+Zc+nWvOfEfwx8QW8L+ILuY3E5YNcW8DbVKDk8r14zXqfgJfDtzodvNo9tHGxXDgruKt3yTQBzr2HxA8YtuuZv7GsX5MaffI+hFdFoPwz0PRnE8kbXV31M03JzXbqOKWgCGOBYlCxIqrjtxTtuCcZB/nUlFAEeT71IOlFFAAaaWx7UrHAzXK+NPF1v4T0tpmIkvJPlgtx952PT/PvQBW8deMl8P2q2doBPqlzlIYV+8Djr+oql4C8FzaWr6zrDefq92d7s4/1YPQD9aqeBvB93cXT+JfEZ8y/uDvSNufKXqAPzH5V6T2zQAwHhVAwCOpry/wCIl2+veJNJ8KW+WWSRZrgDsoPOfwNemXlzFa2stxMdsSKWY15l8NLV9b13U/Fd183my+XB7L0P6igD020tVtbSO2iG2OJVRQPQCrI6mgDFLQAUUUUAFFFFABRRRQBGVJYn9KHVWXaygZ46cVJSHpQB5j4s8D3dhfHxH4UY216h3S26fdlHfr+Nb/gnxta+J7RonAg1CEfvrc/eX3rqiGZCMc9sntXnnjPwPcNeDxB4cf7NqsPzlF4WXHY/rQB6PuxnPbrThXE+CPG0PiayaOceRqNsdlxbN94H1Hr1FdomMcUAOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAJxTQxIzilNMYYX72MUAJM6oCzMAo6n0968k1rUr/wCI2vHRNJdo9IgbbdXA/iPoP1q34y8QXniTVV8J+HXO+UYurgHiNT1HHfkV3Phnw9aeHNJjsrVAMD537ufU0AWNG0Oz0TTobSzjVEjUDgdT61ohMNnPFOFLQAUUUUAFFFFABRRSGgBk8ixRGRzhF5Y+gryzwWD4m8fav4ldMw25+zW+eegIYiul+JetnR/CNwIj/pFz+5jHu2f8Ks+AtDGheE7SAjEki+bJnrubk0AdMCMcfrSSN+7Y+gNKRxz0rL1fXNN0e1klvbyGFVU7stz09KAOA+HeG8feLZweGuwB9Ni16g9xHChklcIgzlm4x+dfPfhPxhqcet6+PD+lyajNd3QeKYEbEG0DocV2MPgbxP4mn87xRrEkVuxybS3Yp+B5IoA39e+KmhaQ7QW5lv7kf8s7ZC4/NQcVz73fj7xkNkMaaPYS8hmAZ9v14IrtdE8E6DoAX7BYosi9ZCBvP1NdEowMZNAHA6J8KtHsZEudSlm1G6zkvPIXXP0Oa7m3s7e1QJbxJEgGNqAAfpUoABzjr3p+KAIXiRkZGAdGBGw9DXkerWF18NfER1jTkd9Du3/0mAH/AFbZ6j05NevSsFUZ6Hiqt9Y2+pWMlldxiWKQYZf60ALpup22qWEV7ayiSGVdysDnIq2CSeOleP6deXfwx8RjS7zdJoN5Ji1k/wCeJPOD7V63DIssaSo4ZGGQV6H3FAE9FFFABTS+GApTWZrOr2uiafNfXkqpFGMkk4z7CgCv4m8T2XhjR5b+9bCqvyJn5nbsAPeuC8IeHL3xVrH/AAlniRCcP/ocB6KvYkevAqroWmX/AMR9fXX9XRotKt5AbS3f+MDox/GvXIoVhUJGAqBcKo7UAOB2qAoxjjFLnOQKFx97I4pDhUJzjHJoA8++LOryW+iR6RaE/a79/LUDqAe/6V1nhjR49D8P2djDgbEBbA6k8/1rz/TB/wAJl8Vbi8ILWOkfLG3UFwc/1r1ZQMg4wRxQBJRRRQAUUUUAFFFFABRRRQAUUUUAIVBIqNl2DGeD0zUtMcZAB6dxQB5v448G3a38fibw4PJ1S2O5kU4WQehA68muh8F+MYPFOliXHl3UPyXETHlW+nvXSMBuwe/AIFeW+M/D934X1ceLfD6nahDXlqo4kHGSB64BoA9VDgtj2p9YnhvxBbeJNIi1C1b5WHKH7yHuDW0KAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKTI9aABuBXBfEPxfLo1rFpemqZdVvz5UKD7yk85P4ZrpfE2v2vh3RZ765cDYMIvcseAPzriPh/oF3qeo3Pi3XUJurg/6NE//LJM5BH6igDoPAPhGPw3pjSzN5uo3J8yeU9c+ldcEUAADgc0kY2rjrjvT6ACiiigAopMgd6XNABRSZoLAd+aAAnFRs57naeg+tV9Q1Sy0yBpry6igjUZLSMBivOPEHxisLe2nOiWsuomMHdKi5RffOaAIPEUzeKfijYaQBmy01TNMexYYIB/Ouo1/wCIXh3w8PJluxJdJgLbRnLH2FeYeEfA2u+MnuNdu9Sksbe/fdJHEASwHGORXqug/D7QNCw8NkJZ+8s2WJI78mgDkj4i8deL8x6Lph0q1c8XFyCGC+vBNXLL4U2pBvfEV7Nq92ASfNPy5x9BXpMcaoMBQPYDim3Sj7JN/uH+VAHl3wVtYYU8TCKJUjGoAIAOg2DivVlUbcHmvMPgzzpmtyD+O9z/AOO16iKAE2j0FLRRQAYooooAQqG6jNAUAAY6UtFAGJ4l0Gz8Q6PcWN2B8y/K+OUPYj9K4TwT4gvfDWr/APCIa+SrIdllOx4kX/Oa9TK85rkvHHg+PxPpmYv3V/B89vMOqt2H60AdWCSB82B60ozzlufSuA8AeLpL0S6HqpEWqWrbNr/xgd/5V3ksqwwvK7BURSzE8YHqaAI7y9i0+zkurh1SOMFmYnsK8kC3fxV8QfaJN8PhuzlyAekxH/66fqN7e/E3XhpWmO8WhW8n+kzjpKR2HtkV6npWlWuj6dFY2cSxwRqFVQP50AS2ttHawRQRIqRxrtRF7CrW1cg45FN2/NT6AGFQB8o4zzXMeOtcXw/4UvLncTK48uMdyTx/WuoY4xzxXk3jCZvFfxE0zw9GS1tZkXE+OnORg/kKAOk+GmgPovhOGSY/6XdjzpT3Lf5xXZjO8A+lNiQRxqirgAcVIoycnrQA6iiigAooooAKKKKACiiigAooooAKCAaKKAE2j0qGeFJImRo1dSMbW6EelT0xh8wJ6CgDx69in+F/ij+0LZWbw/fPiZQOIXPfH/Av0r1u2uYru1iuYJA8LruVgeCKraxpNtrelT2N7GGjlU8HsexrznwVq114U8Qy+ENXcmEtuspW7oeg/AYoA9WU578U6o04Ygj6U/NAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU0tg0bqAHUU0sRk46DP1oU5APPPNADqKKQ0ALULnqW4VeWPSpQ2a8/+JviGWw0uLSLAk6jfsIkCnlVJAY/k1AHP3Ms3xJ8d/ZIsnRdLbMjHpI/II/MCvWoIUgiWKMYRBgVgeCvDkfh3w9BagDzmG+Z+7OcZ/WulxjgUAIn3celOpv3c4HNG7A560AOpG6c0m/ioLm+t7OJpLieKNV5yzgUASn5eh496aQQcnnHPJxXBaz8VdLtpGt9Jt5tSu84CRKcfXOMVjGz8f8AjAj7TcJpFlJ/Ag+cj/eBoA7XXPHGhaErfab1DMP+WcZ3N+XWuNfxv4r8TuYvDmjtBA52/abgFTj1wwrodE+GOhaUyzzxvfXI+9Jct5mT+NdlFBHAgjhRUQDhVGBQB5rY/C6a+nW88TatPezZyYkYqg9sAgGqXxFsrKzsNP8ACmkWsUNxqMgjbYgD7D3J616xIQkbE/KFGTj2ryzw8T4s+KWo6qw3WumAwW7+/DZ/WgD0jRLCLTdItrSJdqRxgY98c1oU1AAOKdQAVXvm22M7eiN/KrFUdYfy9Hu39Im/lQB5/wDBZMeGr1/79yTXpo9a85+DSbfBm7+/IT+pr0YDAoAWiiigAooooAKKKKACkbocdaCwFIxIFAHnPj7wi7mPxFo2Y9TsgXwvAde4P5VyUnjHVfiUbbQNMBgYbft0inB4xkD8jXReN/FN3rOoHwl4fJe5l4uJ1+7Gvfp9axr/AMGX3w5a11/RC8wQAXqdS+epHp3oA9T0DQrPw/pUWn2kYSNAMuOrHufzFbA6VjaBrtn4h0yK9tHBWQZ291PfNbAPy80AOopu7pgUgYlc4oAp61qEelaTcXspwsSFs/QZrz/4V6c90mo+J7gbrm/lJQn+51GPzpfivqM14NO8M2bZmvpgZAp5CAgn9K73R9Nh0rSLSwtwFjgjVVx7CgDQFLSDpS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACHpXDfETwq2taWl7ZYTUbQiSJx1OOcfkDXcsMimEDbtPQ+tAHJfD7xV/wAJLoMbTDbewKEuEPUN3/nXXcA8mvJdehbwF45g1u3BXS799l2o4CnBJb6ZxXqkEy3FuJkYMjgMGHSgCdelOpF+6KWgAooooAKKKKACiiigAooooAKKKKAIpWKg4UsQM4GK8gu/jTJbeJpNAOjzPciQRggr1I+tetX1wtraT3DNgRxljXyf4furzW/ii2sLYy3zx3HnGNB2XigD33xB4v1vQNMXUP7DluoMBmMRA2j8TXT+HtT/ALY0e3vjG8RmUP5b4yua4/wRrd74zutVbULR49PVhEtu/QcEGvQIII7aJIYVCxooVVHYCgCamuSFJHpTqY/9MUAQXdzFZWslzMwSKJCzN6DFeX+CLeTxl4svvFt6n7iJmhslPQAEgn9BV34p6rPPDaeFrFiLvVDtYqeVj6E12+g6TBoWj29hEiqsSBSF7nAyfxNAGmnvjjqR3NO6VDNKkEZd3CAckmuK134qeH9Jka3tp/t17nAt4CC2fpQB3THAyenrWJrPirSNEgZ7y9jUj+BTlvyrg2ufH/jAgwxf2LZPxu/5aY+hyK19D+FmlWUv2nVnbU7zqZJ//rUAZVx8Rtb164Nr4V0WaYHj7TKBtX3xnNPt/htrGuP9o8Wa1JPu5+z2xKqPYhq9Nt7O3toVihhSOMDAVRipdi4xgY9qAMTRPDGi6Eqpp1lDEwGC6r8x+pra+pp2AO1GBjGKAGgKM4A5oIPGO1OwMYppxnHPHFAHMePdd/4R/wAK3d0pzNIuyNfUkgf1qr8NNB/sPwhbK/8Ax83I82Unrmua8bSv4k+IGk+GofmhtiLi4xyOQRg/lXqcMKwxpGn3EXaKAJRS01AQvPWnUAFZXiZ/L8N37ekRrVrC8Zv5fg7VHzjEB/mKAOd+ES7PAVo397J/8eNd8K4r4WRbfh1pRAxuRj/48a7UYoAWiiigAooooAKKa5Ixt60xmJzg8etAC5JOQK898eeMri2lTQdCHn6pdDYCh/1R9TV3x340TQIV0+yXz9WufkhhU8jPf8qi+H/gxtHjbVtUY3Gr3Z3zPIOYz6D8hQBd8FeDoPDVh5kh8zUJ/nuLg9ST2HtXUzwRXETRyqHRxgoRwam2L6UMDjigDx+6t7z4Z+KDeWqmTQLt/wB6AP8AVHvj0616vY3tvf2kdzayrJC6gqwOcioNU0q21eyls7qNXhddoyM4P+cV5joWpXfw58QDw/qzM2lXD7bO4c8J7fpQB67kkZHSmSSrHA8jnaigk/ShCHUFW+8OPTFcd8S9cbSPCUywEm5u2W3iUdcvxmgDmvByv4p+Imp+JZVLW1mTb2+OhwWU4/SvWQNpz26VzfgPQU0DwpZ2pUCVl86U+rtyf51020YxigAHApaKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApn8XPIp9JgUAYvifQ4Nf0K5sLldwdfl9Qe1ch8Mddm8q58N6iT9tsG2DJ5ZcA5/WvR3Ht14ryrx/bN4T8TWPi+1TbDv8u8C9Cp5LH8h+dAHq69OuaWqtndJd2kNwhysyBxj35qwTjvQA6iiigAooooAKKKKACiiigApM0GkxQBw/xX1uPSPAmojzVW4mi2xjPJORXm/7PWlLJdahqz7Q4JjUZ6gjJr2PXfCek+IZo31GJpNnRS3H5UzRvCGjaBMz6dC8RbqA5wfwoA1bPTrfTlcW0aoHbc20Yyf8mrQHzk9jTgKD0oAM1Uv9RtNNtjcXc6QxD+JzgVZ+6MEZrw79oFb/AMvTGt5WMbvtEKkku2Cfu9+lAFnwvq2m6j4r1PxfrV5FFBCxisxI4A245x+IrZvvihdam5tvCmky37fd8+RSqA+uRmvG/Ap06y23XiPTr2508tlZI95jj+qDI6+tfS3h3UNBvLNDoz22zaCEh2q2PcCgDh7fwJ4o8SsJ/EusPbRscm2tjkEfXArtND8F6JoEYSys03/xPJ87MfXmt8ZLAjB96loAiCAYXGB2A7U7bjgU+igBBwKWiigAooooAKp392tnp9xcueIkZs+mBn+lXDXnXxX1WWDRbbSbViLnUZhEB325GT+RoAqfC61k1S91XxVcL815KyQn/YzkY/OvTQMLgZrJ8MaVHomgWWnxjAgiCH6962MUAA6UtFFABXNfEBwngPV2z0g/qK6M9a5T4mNs+HmsnsIR/wChCgBPhmvl/DvRVPXyTn/vpq6xelc14BXy/AukIe0P9TXTDqaAFooooAQnApaDUecck0AOfleuM1y3jPxfaeFdMMjN5l4/yW8I6s30/GrvibxLZeF9Ikvbt+2EjH3nY9AB164rhfB/hq+8SasfFfiMZZzm1tmH+rXnGR64I7UAXfAXhC5advE3iIGXVLj5ljbkRA8jH516OoO48d6co+UcY4p1ABTW9adRQBGFI+nWsLxV4as/E+jy2dwuHAzHJ3UjniuhxUbAF1ycc/nQB5n4D8SXmlak3hLxC5W7hz9mmbpKn19eaqX4bxp8WLeyU7tO0hdzlehfhl/ka1Pixo9m/hiXWzIba/sFMkEinksM8frWD8Dr6zfTL8TSEarK+6ZZOGYc4Iz7UAexRMCp24wDjin1HGACcAjOOKkoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARhkYrH8R6RBr2g3mmzgFZ4imT2zWwRyKaeWxjigDzr4VatN9gu9Bv3zeafIVUHqUOSP0r0TqzCvKPEyN4R+Juna3GNtlqH7qbH944C/1r1aI7lV1OVIyD9aAJaKKKACiiigAooooAKKKKACiiigBCuaTbTqKAEFDdM0tIaAGAkjce4rye4X/hMPi8IWG600cfMOqs3/AOo16TrmoR6Vot3eyttWGMkfXHFcP8JNOmTRZ9auhm61ObzST1AwB/SgDH8NQw+HfiFqfhW+jVtNv8zQLIPl4A+UD6k1tax8LbYTG98N3cmk3wJYCNiIz7FRUXxY057WLT/FFqhNzpsys20clM5b+Vd3pGox6rpVpfRuCs0SvjOeozQB5zbeOPEvhFhbeLdNe5hU7ReW4AGPcZJNd9o3irSddtlnsLuOQHqucMD9DzWlLBHcxNFKiuh4ZXHFcBrXwrsXumv9AuH0fUc7g8PAb60AeiiTIBxx607dXksXjDxb4Pl8nxLp73dkvBvo+mPfvXd6D4u0XxDAJNPvY5GYZ8vOGH54oA6Ac0UinI/CloAKQnFLTW6Z9KAELgc9RivKLRj4w+Lk90w3WOlRgID0LkEH9RXceLtZTQfC97dltriNhH/vEcVh/CvRH03wz9tuVP2q/czuT6Mdw/nQB3a/fPpT6Yow2B0xTxQAUUUUANPWuM+Ksuz4b6wO7RAf+PLXaHrXBfF6TZ4Avk/vgD/x4UAb3g6Py/COmD/pkP5mt8d6yfDiCPw5Yp/dhFay0ALSFgOtLTDgdaAF3cD0NZms63aaDpcl9fSCOKMZ5PJ+lT6jfwabZS3V3IscEa5J9BXlFtBefFLxD9ruUaHw7bPiJWH+tI9fyoAm8P6Pf/ELXz4h1lCmmQP/AKLbOPv8/eP5D869bjhjjjVEUKoGAAMVHZ20NpbJBbxiOJFAVQMYqxQAgGBgUtFFABRRRQAVE/zMARk54OOlS1VvJ47a1mmlYIiKSWJ6UAeafEWc6/4l0bwpAA0czie5/wBlQSCKd4y8FzaaLbxF4dj8u/sVVXiVeJkAGeB7Co/hrbS694g1XxfcrxNKYrdT2XAz+or1FgroWOCMYoAwPB3iu08UaQtzCxFwvyzQt95GHB/WuiD8kYNeSeKdJuvAWv8A/CUaLExsZmAvLaMdMnG4fmT+FelaNq9rrmmxX9nIrwSKCMckexoA0wcilpFOVBxiloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApCKWigDj/iPon9teEblUwJ7f8A0iNsZ+ZckCn/AA81z+2/B9pMwIliHkuCcnK8H9RXUTIJEaNl3KwwR7V5b8Py3h3xzrXhmY4jdzc24/3mZj+lAHq9FIKWgAooooAKKKKACiiigAooooAKKKKACmscDmnU1sY56UAec/Fy+dfD9tpUZPmX84ix64wa7XRLFNL0aztEAAjjC4HavOda3eIfjDYWOd0OnIJ2HbJBH+FerBRgcfSgChq2nR6tplzYS/cmjKYPoRXn/wAJ7+W1TUvDN4SLixmYx7u6knGPwAr09sd88+leUeMg/hP4k6X4ijGLe7It5wOBklVBNAHq6jnk5p+BUUUiSIrowYMMgjvUtAEE0EUsbRyIGQ9VIyDXCa78MNPvpze6TI+nX3XzIv8AA8V6Cc5pCM0AeUReJfGPgthBr9i2o2K8C6g5YL2JHAzXbaB400TxLGDp99G0uOYWYBgfcVuyRJKjI6BlPUEZriNf+F+mapK11YSy6ZeZyJLckc+4BoA7dZDnGSP96lLk5GDkDj3ryhda8Z+CJRHq1p/aumqcCeIbpAPXaB/M12Gj+PtD1m0eWC7SOVRzFL8jD8DQBynxGuZNe8U6P4WgY7WkE9wB6KQf5GvUbW3jtbWKCNdqRqFA+leX/DqFvEHifVvFVwMhnMEHpgZU4/KvVARwCeaAFAApaSjIoAWiiigBo615z8ZnK+CyM/fkA+vIr0fpXmXxrb/imLVB/HcAD9KAO+0lNmj2ox0iUVeUcVXsRixtwOnlr/KrOaAFqtczJbQSSynbGgLFjwKnZwilmIAA5J7V5J4l1m+8c6//AMI1oUjDTkcC7uV/kD+FAFe/u734oeIWsbAvHoFs+J5h/wAtfb9f0r1XTNNt9Ls4rK1jCQxLgACoNA0G08PaZFYWiBY41xkdW9z+dagzyccUAEZyv40+kX9KWgAooooAKDRQaAEJPavOvizrj2mgppVtk3Wov5KKOoHXP6V6G7hELnoATXlFgv8AwmHxZub4/PY6N8kZ6qzg4/kaAPQPC+jxaFoFlp8YA8uMbsdyef6mtgKB26UwDBBHHt6VLQBBd20V3bPBMgeN1IZWGQcivIla7+FviYB9z+HL2T5SOkLHsK9ibp0zWZrWkWut6ZLZ3sQeOQEAEdD6j8qALtvPHcQJNDIHjdcqR0NS7vmyW4HUV5N4X1a98C+IP+EW1qQtZSN/odw/cZ7n869YUgjPXPIoAkopOlLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFBoooAY2d231HWvKvHzf8ACP8Aj7QPESDKyubeU/XCjP516sxwelcL8VNLOoeCbiSJf30DpMhx02tuP8qAO3DEqdp9wafu5xWD4M1L+1vCWm3xYFpYVLc9Dit0Dkn3oAXLY4oBbvUF1dQWcRlnkCIOpJ4FYf8AwnvhkOU/te23A4x5i9fzoA6PJ96XOe9c63jrw2vXVrYc45kXj9a2bO8gv7VLm2kSSJxlGQ5BFAFjJHHWjd7UA8cnBo3D1oAdRRRQAUUUUAFRzOIoWkbooyafms3xDdCz8P385/hgf/0E0Aee/D9DqfjzxJrJ+6JDAh9drZ/rXqg71578ILXZ4NF2337qVpc9+cV6Cn3cHrQA6uU8e6Cuv+E7y2I+eNfNiYddygkfrXV1E6hlYEZBGCPWgDj/AIZ64dY8KQRzEfabP9xKPdcCu1ryPSc+DPixd6cTiw1VfMRuwk5ZsfpXrQbJNADqKRW3DNLQAUjAY6ZpaRuBQBE6LKpWRVZTxtYZrx74u+GtHtNOimsbfydTuZBEgh+XJOeSAOelex4GcmvJ7lz4u+LttChzbaMh3kcgtkEfzoAo6I/i34c6Zbwz2K6jpYTzC0ChWQtyeOp613fhzx3oviFAsNx5M3eOcGNs/Q4rqwqshQrlemD6Vx3iH4b6Frkhuli+yXo5WeEbWB+tAHYDkAjLD604eleSmTxz4Hk/fBtZ0wH7yf6wD6k11vh34h6Nr2IvN+zXQ4MMxw2fyoA68UtRrICNwOQe45FOLgUAKa8v+M5B0rRYu73uP/Ha9P3cZxXl3xj+ZvDCD+PUSMf8ANAHpdqNtrCPRF/lUjnCn1xmo7YgwIBnhAP0rz/x54xnW4j8OaFmXVLnqV/5Zjvn86AKnjPxNe65qY8J+HW3zyf8fM6/djX6+vWux8KeF7TwtpUdtAN0uMSSHq57mqPgrwbB4Y0/cx8y+n+eaY9z6V1iqSvNACj72KfSBcUtABRRRQAUUUUAFNY4FOprDIoA5jx1rw0Hwrc3OcSuPLjX1J4H86z/AIY6E+i+EIJLjP2u6AllJ9cY/pXO+Lpj4r+IWn+HkbNvaMJrkjp7D8xXq8UapEqKuFUYA9KAFUU+iigApMUtFAHL+M/C1v4p0mS3kxFOgJhm7q3auc8BeK547p/DWut5epWnyxux/wBao5z79RXpBTJJPpXC+PvBzatCmraaRDrFr80cgH3vY0AdzkH5ec9achJzmuL8BeMV8Q2H2e6Uxanbkxywsfm44z9OK7ReMg0AOoozRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANbnIqlqtsL3SLy2YZMkDoPxUj+tXSuSCOKD70Aec/CCZovD93pUrfvbG7kix32jAFeiYx34ry3wWTp3xX8Sae5wsyCdB7sx/oK9SB9s5GaAK1/BHPZTRyIGRlPBr490GGOT4mxRSRK0f9oEbWHBHmYr7FuTm1lzx8pr4+8OZb4pw5G4/2ieP+2lAH054h8CaNrukzWp023hdl+V4o1U5/Cr/AIP0STw74ZsdKlfe0EQXP4VubR09hTgMDrQAg44PWlyvpQRzSYoAfRRRQAUUUUANzxXF/FK8Nn4Gutp+eR0jH/Ajj+tdmeo9M15r8YZm/sSwtAfmuLyLj1AdTQB1PgiyGn+DNLtwMFbdM/XFdGvSqmnwiCyhjAwFQAD0q2tAC0xsg5Hen0m0Zz3oA85+LWkSzaNbaxZj/StNlEnA5KkgGut8M6xHr/h+z1KJh+/jDnHYntWhqFol7YT2zqCsiMpH1BFeafDOd9G1jVfCdwxBtJC9uD/cyAB/n0oA9TTBGR1706mr35zTqACkbpS0jEAcmgDI8RatFomgXeoSsAIoyQD69K5H4T6S9t4fm1i4U/atSl85ieoA4H6AVQ+KV5NqeoaV4UtWKvez/vsf888E8/iK9LsLWOzsobaJQqRIEAH0oAnwMj6c0Z44yacFA7UYFAETAOMMuR6EVyPiT4f6F4hbzHgW1vCfluI+HB9q7PaKMD0oA8jEPjrwO2Y2fWtMXkITmRF/Suo8OfEnRNeYW7zC0vuhtZzhs12bKCCD0PWuV8Q+AtE8RBmnt/KueqzxfKw/KgDp0kDqGQgjvXlvxXIk13wlDnIN/ux/wBqhbT/G/gWQyWE39saYn/LGU4YD2wM1wPjv4nx6vrGjT29k8Vzp8m+WOZSuHKlSP1oA9d8b+MW0Oyj07TQJdXulCQInJTPr/nvS+BPBw0WFtV1NvP1W6O95G6pnnA/Os34ceFpZx/wlWsuLi/uyJIgTkRj0H5V6VtO4MRkigAwMbNx9c1IPam4564z2pw6UALRRRQAUUUUAFFFFABVDWtRi0nSbm+mcKsMbMCfUDirgY9M8npXmXxXv5b0ad4YtZD9ovZkZwOyqRnP4GgB3ws0t7mO/8SXaEz6hMdu7tHnK4/OvTQMVn6TpyaXpNvZQgKIUCYHtWgKAFooooAKKKKAE4pGxjrinYzSECgDy7xx4butG1FPFvh9Cs8JHnwJx5i8ZP5A12fhXxNaeJ9GivbdhuIw6d1YdRWw6JLEQ65XBUg+leTa5p938OPEf9u6crvpF0/8ApMC9E/2h6daAPX/XFKKoaXqdvq+mw31lIJIZVDKQavigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQ9KWg0AeT6uG07466bcL8sV5AsZx3IDH+teq42jFeX/EtfsPi7wtqXT/SXTP/AADH9a9Oj+ZQTQBT1KO6msZIrNotzKRmTPH5V41ZfBDUrPxAmrxalB5yz+dt529c9cete67Rzx160YGMY4oAqWZuFhC3Zj87v5ZJH61cpNoHaloAKKKKACiiigAooooAZnJPHSvL/ikfP17w1bAZ3XBbH02//Xr1EjJry/xqftHxO8N2v93zG/8AHRQB6evyrgdO1OXpTQMKF9KfQAUUUUAIRmvJviFFJ4b8X6T4st/9XvEVyB3Xnr+Jr1k9K57xhoia/wCGryyZMuUJT/eoA3LaVZraOVGDK6ggjvU2a4D4Wa4+o+G20+4b/TNPbyZRnnPX+RFd4DxQA7IqOeRYoXkb7qDccdsc05wSuF65rjfiXrp0LwtMYj/pF0RDEPUkgH9DQBzfglD4o8e6z4jm+a3gb7PbdwBwePzNerR/dJznJzXL+ANAHhzwjY2Tr+/8sNMfVq6pcY4oAWiiigAooooAa/bPT1zTCeeGxjqCKc43cf5FZet63Z+H9IlvbyULGgOM9WPbFAFLxV4ls/C+kSXly3JyEjPJcnoAOp59q+drvwte+I/HOmXGqItq2uT7vKVQCqlSQcceleneHdGv/HviE+JNcUrpqHNpbMDk474/KpvFC/8AF5vC6KNoUA7R24agCKPQfGfgSMNolwNV05Rk28uFZR6A8+9dB4d+J2k6pILa/SXTrz7rR3ClBn2Jxn8K7scknpXPa94M0TxHEy39inmHpMigSD6NQBvpIksYdWDKRkMDmpB0615LL4b8Y+CJDNoN+dQ01Dn7NcDc4HsxP9K2tD+KWm384sdVhl0y96bJgcMfrjFAHoBOKMjPWq8M8cyh4pFdSM/KwP8AKpRu6kgjtxigCSikX155paACiikNAEcjiNGZjgKM5ryvwep8W/EDU/EkyloLTNvB6ZBIJH5V0PxN1xtJ8Iyxwti8uiIIhnnLA1peBNBXw/4WtbXH71182Q/7Tcn9aAOjUNnJ70+iigAooooAKKKKACkPSlooAYQRjjiq1/ZxahZS21xEHikUqVIzVymscED170AePWNzdfC7xSNPuyzeHr1gLd+vlE9j+WK9eglSaBJEcOrAEMOhrJ8RaBaeItIlsLpchh8rd1NcH4N1+88L623hDXnwgbbY3DdJFz6+uSfyoA9WJxS1GvJ5781JQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeX/GSMrpej3A6wXgY/iQK9Lt2DQxkd1BrgPjGgbwZ5neOZD/48tdro0hl0i1kP8UYNAF+iiigAooooAKKKKACiiigAooooAafavLfE37z4x6GB2jf/wBBr1E9M968w8RDHxk0P/rm/wD6DQB6geBTh0prfdNOHSgAooooAKjYbkIIzx2qSm4xQB5NsHg34toQQtjrTZ44CuTgZ/AV6spzj+dcN8VdEk1Dw0b60GLuybzo2HXjmtrwfrK+IPC1pexnDbQjj0I4P8qAOgOTyO5xXlGvOfF/xUstGB32OnKJpT1G45GPzFeka1qcelaTdXsjBUiiZhn1wcVw3wm06SW1v/ENyv77UJmcEjoucj+dAHpIUgYBHvmnKMCj1paACiiigBCcDNMEqnBB4PensQBk1XuJ47W1aecqkUY3MT2FADNQ1G202zlu7pxHFGpJLeleTWdve/FXxEL28VovD9q48tD/AMtSP/1Ut7cX/wAUde+xWjPD4ftX/wBImH/LU+n869V07T7bTLKO0tIxFAgwqgdfegCeG3itbZYYI1jjQAKqjpXmGujf8ddGjJOI7YOPrlhXqhGFx7V5bqA87472hz/q7Nf/AEJqAPTZpWSIuEL4BIVcZNed6l8YtG0rU5dOvLW5iuEONu5a9GfEcW52ACjk18owMfGXxmEpHyfaQX46qhoA920/4p6Bc6ilndO1hLIMxmbjcD0rb1rwvoXim1AvraK4Djckp5YD1Brxn9oSBLa50cwII2Xd8ycZwBivS/hFqtxq3gC0luizSRMYsk8kAD/GgDDl8J+KvBgM3hrUXu7NWyLOfLHHoMcCtPQvilZT3Qsddtm0q+HBE3AY/hn9a9DK5HPI9DWPrPhrSPEFo0OoWscy/wB4g5H5UAakF1DcxiWCVXRhkEHrU24YzmvJ5vA/ibwnMbvwrqjzW45NnMRtI9B3/WtDS/ilDDdLYeJrGTSbw/LukGEb6ZPP/wBegD0jdz049aMg9e9VbWeC8tklt5BLG/IYHrWd4p1yPw/4cvdRYj9yhKg8ZIoA8/vyfGXxXtrIfNY6WpkkJ5VnGCtetRgBdo6DgV5/8KtGktdDl1a5X/StQkMhJ6gZIFegoNvFADqKKKACiiigAooooAKKKKACmsCelOooAZs69Olcr458Hw+KtKKIfK1CEb7aYdVb/DmutqNyoBJ4PTNAHn/w+8YS3Qbw/rWYtXtflw5/1qjuP0r0HzBxnv0rz/4g+D5b1o/EGijy9WtPnBTrIB2P5Y/GtTwP4xg8U6VuYeXewkxzQnqrDg/qDQB1wOaWmIDzmn0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcF8XFz4AvWPZk/8AQxXTeGG3+G9Pb1hFcz8Xmx8Pb0DqWT/0MV0vhUY8MacO/kigDYooooAKKKKACiiigAooooAKKKKAGN049a8v8Vt5Xxb8Py9AyyLn/gIr1HvXl3xGX7N4y8MXQ6mV1/8AQaAPUCfWnjpUZIPPanJnbzQA6iiigAxRRRQBDcQxzxtFKoZHG0g968t8AzP4b8Y6p4TuGAQsZ7fPdcZP869Vb74z25ry34m2L6RqeleK7cENayCObHVkJ5z+AoAl+LN/LdQaf4etSfOvpkLgddgIz+hNd/o+nx6VpdrYxKAkMYTA9q8v8HXX/Cc/EGfxGBm0tYxHFnkZIIOPyr11CcenJoAkooooAKaSRTqjJCsTzz2oAbK5UFmIVQM5JrybxHq954/11fDuiSMmmI+28uV/l+WKt+MfEd7r+pp4T8OuHkkbbdTqeIx35rs/C/hiz8M6OlnapucjMsjdXP1oAu6HotlomlxWNnEEjjA5A5Y+prT2gHNIvI9qdQAw5JFeXQ4m+OU5J4js1H0+c16iTjI9K8w0UCb426132WgH0+egDpviHqo0nwPqtxvCuIG2c8k14t8BdIN34lvdalHyQIykt0y3Of0r23xX4PsvF1oltfyyiJeGVGK7vyrC0/4TaTpFncWun3d7BDcEGTbcMC2PxoA8s+Kd8/j3xtbaRohef7O2xjt+VWxgnP4V7p4J8OL4X8L2enEfOiAyc5y3em+HfBOj+GVIsbceYcs0knzMx+p5rowvQmgBRyOaXA9Kbklvan0AIRgccVk6x4d0zXLZor+0jl3fxFfm/PrWq2RjFGM896APKLvwJrvhac3nhPUGMIOWtZ3yCPQZBNch4q8a3Wv3GmeG9ft/7N/fA3TEnDLg+30r368njtrSWdyAI1LZPbAryTwRoNv431XWfEOrQedBcSGOBH5wuB0z70Aeo6PPZvp0AsZkkgWMAMnI4GKvozbeeee1eXXnw61fw/cNe+EdTkjIO42kzFlb8zgflUunfFC40+5Wx8T6bLZz52+aqHy29ecY9O9AHp+TjuKUdKpWGpWmqQLNZ3McqNz8rA/41dBz3oAWiijIoAKKKKACiiigAooooAKaVBOcc06igBpUAHA7dK8q8Z6De+FtX/4S7w/GSVwLq2QcOvrj869XNV5oROpR0BUggg9DmgDM8O+IbbxDo8WoWsgZHXLAHJU9x+FbG47iD07GvIdQtbr4Y+Jv7StFd9BvJNssfaJj1Pt1r1SwvLa/sY7u2k8yGQblIOeKALgz3paRRgdaWgAooooAKKKKACiiigAooooAKKKQ9DQB5/8AGBseB5l/vyIP/HlrrfDqbNBs0I+7EBXD/GWYjw3aQD/lpcIPr8y16JZQiC0ijXoqAUAWKKKKACiiigAooooAKKKKACiiigBp+8DXmHxeUwjQr0dIbtQT9WUV6fgmuA+L1qZPBRmHJhuIm/8AHwf6UAd1byCWNWHQoGH41MvTNZHhq5F14b0+4XnzIFOfwrXXpQAtFFFABRRRQA1scZ49a4v4oX1va+BrwTpuaYeXGP8AbYECu0avJ/GczeJ/iFpfhyIgwW5M8+OmVII/TNAEfwIvLdfDU2lmMx3kMjM6kc4YkivXV715Hqsa+CPibY30SiPT9Qj8lgOgYAAfqa9aRgQCvQ80APpr9qN/HPFIzc5xxjrQAZwxx0xXnPjzxbcfaU8OeHz5up3PyuyHIjXjJP61d8e+Mxo0SaXpuZtXuTiOJeo7ZP51J4E8FDQoX1K/YT6rdfPLKeq57D6ZoAueC/B9v4Y0/wCY+dey8zzY5Zu/611mKYq4xg/Wn0AFFFFADT1rzDwl8/xn8UOOgg2f+RBXp5HJNeYeCPn+LHi5vRiv/jwoA9QpaKKACiiigAooooAKQ0jNtGcZpC4UEtwAM80AeffFfWZLbRItItG/0vUXES88gdc/oa6nwzo8eg+HrPT4xxFGAT3JzmvP9OT/AITL4t3N4/zWOjDbFnlWfJB/Q16uowcA8UAO61R1TR7DV7Zre/topom7OoIq+BxTSgJyQDjpmgDy6/8Ahxf6NcNeeEdTltiORaOxKH6DIxTtO+Jd9o86WHizTpbWQHb9pVdyH8B/jXpoiPOWLZ7Gq9/pdpqdq1veW8c8TDGxxxQAyw1az1WBZbO5jlQjIKtn9KtBg5IHUV5pqHwvuNJne+8I6i1hLncbf/lmfaorX4kan4enWx8X6bNCOn2xB+7/AJk0AeqJ06Yp1Zula3p+sWyXFhdx3ETDgqa0N3Gf6UAOopocHoaN4zgc0AOooooAKKKKACiiigCjq2nW2q6dLZ3UYeKUbSCP1ry3RL66+HHiX+w9SkZtEum/0Wc9Iz/dP4D9a9dcZxjr2rC8TeGrXxJo01ndpliMo46o3qKANuORXjVg3ysMqR3FOHzD0NeX+CPEd5o+pP4S19iJozttbhjxIv8Ak16fyXHPSgCSiiigAooooAKKKKACiiigAoNFIaAPLvi4TPdeGrJfvSXpyPoAa9PjGFA9ABXlfi4m++Lvh2y6rETIR6ZQjNeqJx06UAPooooAKKKKACiiigAooooAKKKKACuf8a2A1DwjqEOM4iLj6gZroKr30P2ixuIT0kiZPzGKAOR+Fl8bzwFYBvvQqIj9QBXaivM/hNN9lXWNFc4e0u3IU9lyAK9LTkZ9aAHUUUUAFFB6U3J7mgCtqV9FpthNezttihXex9q84+Fli+o3WqeJbpcyXcxEWeoUZFW/i3qcv9iQ6Fati51VvIA/2Wrr/DulJo+g2lkg2iONQR745/WgDB+JWgtrnhWbygftVoRcRMPVfmx+lW/AGuDX/CNncscTqoSYdww6iumkiWRHjflHXaR6g9a8p8JTN4V+JGp+H5jstr0+fbg9ASTkfkKAPV93APXJ4rk/G/jG28L6ZjHnahL8sFuvJZ+39Pzq54r8U2fhXRjeXRDSBf3UYPLt6YrkPBPhe+1fU28UeJFzcOd1vEeiL1HHTtQBb8BeDpo5X8Ra+fO1e4O4bukSnoB+BFejr04pgUDgcDGOOlPAwKAFooooAKKKKAGO2BXmPw++f4keMpf+nll/8eFelzHbGx9AT+leafDMmTxV4sn6lr58n8qAPURRRRQAUUUUAFFFFADXIGDXM+PddXw/4WurnI8518qMZ6luP610sjbRk/yrynxkW8V/EPTvDMZ3W9ri4uSOmcZX9VoA6D4X6G+j+EYJLgf6Zef6RKT1ywziu2UAH6DFCIiKAq4A6AdqdtHpQAtFFFABRRRQAjDjGOKp3en2t/E0d1CksTDBVlBq7SbR6UAeYat8MDaztqXha/fT7rORHn9231zmoLT4g654alWz8Yaa6Jnb9tiUsh+p4r1UxqTkqD9agurC1vYWhuYI5kYY2yKGH60AUNG8QaXr1qJ9OvI7hCMkKwyv4VqBgADjg9M9a851n4VxJdHUPDd9Npt2DuCKxMbH0xnA/KqEHjvxL4WnFr4r0tpolOPtdsN4x9AKAPWaKxtF8TaVr9uJtOvEmyM7ARvX6jPFapdiRtAI7n0oAkopgbtnP4U4HNAC0UUUAIfWm4Oc9vSn0mBQBxnjzwhH4k04SWzeTqUB3wTL1BHOKreAPGL6xC+kamvkarZnY6t/GOeR+Vd0VBPv2rzrx54VuY7uPxNoS7L+1G51XjzFGMgjp0FAHpFFcv4O8X23ijR0uVJW4T5Joscqw4P8jXTKST146igB1FFFABRRRQAUUUUAFIeQaCaiuJhBbyyt0jQsT7AE0AeX6Xt1r436ndDlLC1RAfQhmBr1ROgry/4VQm+1PxDrg+7dXciIfVQ2R/OvUF6k0AOooooAKKKKACiiigAooooAKKKKACkYZFLSHgZoA8o08nw/8a7uBuItThUjPQtkk/yr1ZDxXlvxThOm6toPiKIZNvcbXx6EYH6mvT7aVZoEkU5VgCDQBLRRRQAjdKjJwMntzUhOBXP+M9bTQPC17fOcMqYQepPH9aAOE0928X/Fqa6b5rPR/wB2h6gvwwP616xgDArh/hZoT6Z4WS6uB/pF6fPfPXPT+ld1xngUANyST2FeW/F63/s2Gw8TQOq3djJk5ON4xjHv3r0fUdQtdLspbu7lEcMalizHH4V5L/Zl/wDFfUp768LQaFAGW2jP/LRvX+VAE/hTSL3x/q8XizXY/wDQ1ANlb5+UjsSPxr1yKMIixqo2qMAelebfCe8lsl1Dwvd4+0aZKUQf9Mxjp+Nemp3Ocg9KADk9eKUdKWigAooooAKKKDQBDc4+zSn0Rv5V5t8JwXvPEkx/i1Bxn8BXo18dthcH0jb+Ved/Bz95p+ty9m1FyPptWgD02iiigAooooAKM0GmdR9KAKes6hFpWlXN/KwCwRM/J7gE4/SuA+Fmny3cWo+KLsH7RqEreXu7Rgkrj86b8V9Skuv7P8L2mWnvZkLgdkDDd+hrv9IsI9K0u1sY8YgjVPyFAGgO9LSCloAKKKKACiiigAooooAKKKKAImGTgrkVDc2sNzE0dyiSREfdK1booA841v4W2kkrXvh+6m0u++8vlMRHn3UYrLg8ZeKfB8i2/ijTmurYcC7t1BP4gZP5163gVDcwR3ERilRXRhghulAGPofirSPEFss1heI4P8DHDA/TrW4p+XJI+orz7WvhZp1xMb/Q3bSNQ6+Zb/KGPvisdPFfi7wXKIvEWntqFipx9qgHOPUknJoA9bzRXOaH4x0XxDCHsbxC5/5Zk4IPp2rfDcA8UASUU0cHGeadQA3nfntTHClGB5B4IqWkPSgDyTxVpF/4K18eKtDQm1kYLd2yjgL/AHgPXk16RoWtWevaXFf2MoeGQZGDnHsfpmrc8EdzbyRTLvSRSjD2NeTFLr4WeJ1KKT4cvZNpA6Qt1J9s0Aew560tVbe6hurdLiCRZIpFBVlOQRVhenFADqKKKACiiigCNsDrXPeOdUGkeD9Ruj/FEYx9WGB/OuhYnPAzXmPxcupLoaToERJN7coWH+yrqaANz4Xad/Z3gPTs8POgmb6kCu0B+bjpVaytY7KyhtYx8kSBRVlegoAdRRRQAUUUUAFFFFABRRRQAUUUUAFIelLSN0+tAHL+PdL/ALX8IXtuFBkC70J7EEH+lVvhnrP9reC7IuSZoU8uX/eya6uSHzY3jflGXaRXl3gd/wDhHfHuteHpTtgml+0W2eOOBj+dAHq27nGKdTAPmPvT6AEPTivKfiLcP4g8V6L4XgyVMvm3OOgXBwD+IFeoXlwlpaS3EhwsaliT7V5h8OIG13xJrPieZSyyyGKDPZcg5/nQB6fBGlrbpEuFRAFFJcXUdtbPPKwSNBlmPAAp0riONnYjC8nPYV5Lr2rX/wAQ9dGgaKzx6TG2Lu5Hc/3f50ARzy3nxU8QeTAZIfD9vJ87j/loVP6jj9a9V0/T7fTbKK0to1jgjXair0xxUGkaPaaNpsNjYoIkjGDgferSxzu6jHT0oA8o8XI/hL4k6X4hi+W0vWFvd4/Fs/oK9VgkDwJIvzBgGz9a5nx54fHiLwrd22MThS8RHUNVf4aa8db8J24lbF3bDy5l9Dk4/QUAdmD7YpaZjgk9acOgoAWiiigAooooAp6kcabeE9PJf/0E1598FBnwxfSf89Lxm/QV3+rHGkXh9IJP/QTXB/BIZ8EB/wC/KW/QUAelUUUUAFFFFACN064qJpFjQu52qOc1KwBGD0rifiZrj6R4TlSA/wClXR8iFR13NnBoA53wbF/wlXxB1PxG4LW1mTBBu9eQ2PxFeqgEEeveuc8BaCugeFbW1IzIy+bI3qW5P866fFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSFQeo6UtFADCu7qM4pssCSoUkVXUjowzUtFAHAeIPhZpWozG80tm0u9HzCW37t75rEh13xn4HzHrVkdU01Ot3Fyyj36CvWW6GoSqyDbLGGXHQ0AYPh7xxoniONWs7xDIeDGSMg10QcE4BzXD6/8ADPSNVla7tA9hfdRLASOfoDiucGpeOPBEgi1C3/tnTF4Eyn94g+gHNAHrm8ZxQWHSuW8PePNE8QgJb3flTj70MwCsD9M10wO5dygEnvQA7ac9eB2rP1nR7XXNKmsL1A8cy4wR0NadNc7Rn8KAPI/C2pXfgHxCPCusOzafI3+g3LdG56fzr1pZQVBBBBGRj0rm/F/ha38VaW9nKdkqjdFOBzG3bB/Gub8B+KbiC9fwvr2Y9TgJEDN/y2T1/lQB6UrhjinVChGNy/l6VNQAUUUUARtw2ePTmvK7U/8ACT/GSa4GWtNMiCgHs5BB/UV6D4l1OPRtBvL6VgBFEzKD64OK4/4R6XJDoU2q3Cn7RqE7yknrtLZH86APRcdqUDHFLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhAry34oWz6Lq2k+LoFz9jkC3AXunJr1OsjxNo8Ou6DdabNwJ0Kg47/5FAFywukvbGG6jO6ORAwP4VYDZyc8HpXnXwq1mWXSrvQr3i80yXy9p6sp5BxXohPynccAelAHC/FTXJNO8MC0gP+k3sghQY5wSAf0NbnhHRk8O+F7CwCkNHEFb1JFcJOx8Y/F1bcMWsdIQMw6guQR/MCtHx34uuWu18MeHD5mpXPEjjkRL/kUAVPF/iO88T6sfCHh6Q7j8t1dL0Uf3c/iDXc+GPDln4Z0pLO1T5jhnY9Wb61U8G+EbXwtpSxL+8unw08zDlmrpfXj6GgB4HcjmkI9KUdKDQBG/zqQenQ15PpBbwZ8WLjS5PlsNYbzoR6PwoH869a2gg+9ed/FnS5W0WDXrUf6TpTicEddq84oA9CBbOSc+tS1j+HdWTWdCsr2Js+bEN3Ofmxz+tbA6UAFFFFABRRRQBma+/l+H7984xA//AKCa4z4Kps+HlkcfeGa6nxfJ5fhXUW/6Yt/KsD4QR7Ph1pfvEDQB3lFFFABSClpp60ADHg+1eS6gx8YfFq109PmtNJBkkP8ACXBBH6GvQ/FGsxaF4evb+VsLFGT169v61ynwp0eS20KXVbwf6ZqUnnMxHIxkAfligD0KNQqAL0HAp1MjBGR27U+gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkwPSlooATaPSmvGkiFHUMp6qwyDT6KAOI8R/DbRtbJnhiayuxysluxj599vWuaW78ceBjsuIhq+nJzlQA6r68ZJr1oqCc0xlDjaV3A9QaAOV8OfEPRPEShI7gW9z3hn+Q/kcE11W7euQQR2PauR8RfDnRNeLTeSbS8/huIDsYH3wOa5Tb468CyYz/bOlrxjpIo9cknP5UAer5ycAZx+VcX8QPB51uwXUdP8A3Or2nzQyDjOOx9am8PfEXRNfAhMjWd0vDRTApz9SBXWiRXxsZXzyCGoA5DwF4yXxDZm0ul8rVLXKTwngnHGR+Wa7UNXmXjnwzd6dfp4r8PApeQEGdFHEiDGfxwP1rq/CvieDxPo63UBAmA/eR91Pv+tAHRZJHBoJ4pvcnpx0qOSRYYGkdsKBkn096APNfinfvqN/pXhe3yZLyQPIB/cBGR+Rr0XTLSOw062tIwAsUapx7AV5n4JibxX421TxTOuYIWMNsDzx0OPxFeqDrxnJ5oAlooooAKKKKACiiigAooooAKKKKACiiigAopCaM0ALUcnb16A+9PzzTSCx+lAHlHiuN/BvxEs/E0QIsr39xd4HAZsAE/TBrvtf1qDTPDN1qjOFiEBdG/vErlQKi8X6DF4j8NXmnS4VnQ+Wx/hbsa+dvEHxAutR8JW3hQbnvIbnynxyGCNtXH4CgDrND1yXw/4ec2kfneItbmZ1VTkojYKk/ma9F8A+C/8AhHbU3moHz9WuRumlbkj2rH+GnguLRLaPVtWkWXUpY1VQxyIlxwB7816N58BX/XKD3OepoAsqMD19adUC3UAH+uSl+1wf89k/OgCaioftcH/PZPzo+1wf89k/OgCaquoWcN/ZS2ky5jmUo30PWn/a4P8AnqtNe7t8AmUYBzmgDzT4X3Mmj6rqnhS8bEltKZbcH+JGyf8ACvUxXknj0/2D4z0jxRakbSwguCO4YgZ/CvULbUra4t4pllXbKgZeexGaALlFQfbLfP8ArVo+1wf89loAnoqH7XB/z2T86T7XB/z1WgDA8euI/BmpMf8Annj86p/CqPZ8NtDyOtqppvxJu4h4E1Ha6klVwM+9S/DmeCD4e6HEZV3JaoCM9DQB19FQfa4P+eq0v2uD/nsn50ATU09aj+1wf89k/Oq15qdra2ss0k6KqKWJz0GKAPOPiTcP4g8R6T4UtjuWSQSXIHZOev6V6ZZ26WlpDbIOI0Cj8K8v+HBXXfEWq+KbpgPNcrBu6heDXqX2mAHPmrk+9AE6jFLUAuoP+eyfnS/a4P8Ansn50ATUVD9rg/57J+dH2uD/AJ7J+dAE1FQ/a4P+eyfnR9rg/wCeyfnQBNRUP2uD/nsn50fa4P8Ansn50ATUVD9rg/57J+dH2uD/AJ7J+dAE1FQ/a4P+eyfnR9rg/wCeyfnQBNRUP2uD/nsn50fa4P8Ansn50ATUVD9rg/57J+dH2uD/AJ7J+dAE1FQ/a4P+eyfnR9rg/wCeyfnQBNRUP2uD/nsn50fa4P8Ansn50ATUVD9rg/57J+dH2uD/AJ7J+dAE1FQ/a4P+eyfnR9rg/wCeyfnQBNTWPQYJzUf2uD/nsn50huYD/wAtloA5fxL8PtC8Rs01xbrHdAfLOoG5TXJG18c+BzutJm1zTk/5Zucuq+2cAV6mLi36CZRQbiA5BmX86AOP0D4j6Hr4FrO5s7s/K1tc/ez39q5fXbC5+H3iE+I9HVm0m5b/AEqBei5P3unq1dp4h8HeHPEUbfaoolnI4lT5WB9eK4O80bxV4Wt5YbO8Gv6LjH2SY/Oo9gB/WgD1bSdTtNZ02G/tJRJBMoZWHXFcd8UtbmtdEXRLE7tQ1RhBEq9QDnmvLvB/xJi8Ga3NZ3cM0WmyfMIH6wn0A69q7DwVdp4/8d3fiV+bTTyI7ZG6jo2f1oA9I8JaFFoHh61sYwAUQF8f3jyf1rb/AIqRMAAKOKdn07UALRTS6rjLYzQWIGcE/SgB1FN39yCBSggjIoAWiiigAooooAKKKKACiiigCMnHI6UhPPPT1zWP4rBXw3fukxheKFnVgccgV4P8PNY8ReKNdvba51SYWkEbsWViMcHHfpkUAfSQ55649DQTyMGvnvwB491uL4itoFzdNfWTTNEsmDxjPNfQcfIOR3oAZPH50bx5xkEfpXzB4u+FV/4c1oapcuG0yS7VmdG+ZVZuenTFfUuKzNY0i21jS7ixuIw6SoR05B7GgDgrL4VaDqFlDcQahfPBKoZSLl8cj/eqx/wprRc/8ft//wCBD/8AxVUfh/q8/h7XLnwbqjY8o+ZaOejKT0z7AV6nuOPQ9SKAPO/+FNaL/wA/t/8A+BD/APxVH/CmtF/5/b//AMCH/wDiq9FQ7hk0+gDzf/hTWi/8/t//AOBD/wDxVH/CmtF/5/b/AP8AAh//AIqvSKKAPN/+FNaL/wA/t/8A+BD/APxVH/CndGT/AJfL8g8H/SH/APiq9IpCKAPJtX+DOlSaZcql3eySiNmjWSVmXcASOprn/h54D0rxBpMqXt7fLfWsrwugncYCnHAzXvG0c8da8lf/AIon4sFhxYaum0egcZJ/nQBor8HNFHH22/8AQ/6Q/wD8VT/+FNaL/wA/t/8A+BD/APxVeiryT9afigDzf/hTWi/8/t//AOBD/wDxVH/Cm9FA/wCP2/8A/Ah//iq9IooA8O8ffDTStF8I3d3Dd3rPGV4eZmByfQnFX/C3wo0i+8NafcSXl8ryxBiFmdQPoAa6b4vNj4e3qj+KSIf+Piuh8Ips8J6YuOkAFAHI/wDCm9F/5/r/AP8AAh//AIql/wCFNaL/AM/t/wD+BD//ABVekYprcDigDzn/AIU3ov8Az+3/AP4EP/8AFVxPxB8EaboNjb2lleXj3l7KIlVpmYAZHJBNe9M2BuyAozmvJ7BT4x+LNxen95Y6SoRR/CWyQfr1FAFjTvgxo8NhCj3l2jY+YJM6jP4Grf8AwprRf+f2/wD/AAIf/wCKr0UL8/Tj3p9AHnH/AAprRf8An9v/APwIf/4qj/hTWi/8/t//AOBD/wDxVekUUAeb/wDCmtF/5/b/AP8AAh//AIqj/hTWi/8AP7f/APgQ/wD8VXpFFAHm/wDwprRf+f2//wDAh/8A4qj/AIU1ov8Az+3/AP4EP/8AFV6RRQB5v/wprRf+f2//APAh/wD4qj/hTWi/8/t//wCBD/8AxVekUUAeb/8ACmtF/wCf2/8A/Ah//iqP+FNaL/z+3/8A4EP/APFV6RRQB5v/AMKa0X/n9v8A/wACH/8AiqP+FNaL/wA/t/8A+BD/APxVekUUAeb/APCmtF/5/b//AMCH/wDiqP8AhTWi/wDP7f8A/gQ//wAVXpFFAHm//CmtF/5/b/8A8CH/APiqP+FNaL/z+3//AIEP/wDFV6RRQB5v/wAKa0X/AJ/b/wD8CH/+Ko/4U1ov/P7f/wDgQ/8A8VXpFFAHm/8AwprRf+f2/wD/AAIf/wCKo/4U1ov/AD+3/wD4EP8A/FV6RRQB5v8A8Ka0X/n9v/8AwIf/AOKo/wCFNaL/AM/t/wD+BD//ABVekUUAeb/8Ka0X/n9v/wDwIf8A+Ko/4U1ov/P7f/8AgQ//AMVXpFFAHm//AAprRf8An9v/APwIf/4qj/hTWi/8/t//AOBD/wDxVekUUAeb/wDCmtF/5/b/AP8AAh//AIqj/hTei/8AP7f/APgQ/wD8VXpFFAHmx+DmjAHF9qA+lw//AMVTT8H9GCZF1fu3f/SHyf8Ax6vSiODWVrusW+g6PNfXDBRGh2g9z6UAeA/EP4c6VYalYaXobPPqtzLgrI5bAxnnJr034WeBLnwTplwt7OJLi4cOyL0XjGP0qn8ONHn1rUZ/GOqx/vbr/j3Rh/q14x/WvUQgBJAwScmgBvt0JqK4uYrWB5Z5FjiQEszHHFTEANnvXh3x98T3NhaWujW0rIJiWlZTgkYGBxQB0D/Fr+19f/snwtpv9oSI2GklykY+rc4FJ4u+Ifinwj9mlvfD9q8MrBMxXBfB98Ck+CfhyHSvB8d/JF/pN0xbft5KYGB+pr0HVdDsdbiiiv4t6xv5ijPegC3ZyPNaRSyIqF0DEbs9RmrCHI6YpscaxoEUYCgAfyqSgAooooAKKKKACiiigAoNFIaAPNfjVrDaZ4CnjVm82Z1T5TgkHNeO+FtL8Q6d8O73WtIkgENyxSYBcSFQecH8a6/41Wuv+JdTtbHTtJupYbcHe4xgk9Km1WfVrL4cQeGtG0C9a4kQCVgBgHA3d/WgCX4Gw+GrpJZ7aOVdYjA80SnPHr09zXuEYO3kc15B8GPAN/4ZiutS1ON4bm6QJ5bDsDkV7AhyKAHGoXHIx94GpqKAPP8A4j+F5tSs4tW0sBNRsGEiMOrDjIP4Vq+CPFUPifQ1mJxdRAJOncN34rqJFDIVIBBGMHvXkXiWyuvAPihfE+mRs2mXLBbyH+5/tfnigD15c45NOqjpuoW2p6fFe20wlhlXcrA9atgnnHIoAfRSDpS0AFFFFAAa4H4p6I+peGheWv8Ax9WUgmjYdQAQT/Ku+qtdWqXNrJbyfckUqaAMbwZrq+IPDNnfg5d0HmD0bvXQ5968q8A3B8OeMtX8LznbGWM9sD3BPGPyr1MYGcduDQA/rRTVGOKdQB558YnI8GbP788Y/wDHhXYaAgj0KyQdFiArifjM4Hhi0Tu10gH/AH0K77To/KsIEPZaALdIenv2paa/SgDmPHevDw/4Uu7r+J18pB33NwP51n/DTQm0nwtDJKubq7/fSsevzAH/ABrn/GLP4r+IWn+G4mDWtri4uMe2CAfyNeqwxrFGEQYVRgDHSgByZxz1p1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVE/+yxB/wA8UAPdlVSzHCgZJNeQ6tcz/EfxpHo9mxGkae4e4lHRm9PzFa/xE8TzpInhvRgZdSuiFdVPKIcZNdH4P8NQeGNGitFQtOw3TS92bv8ArQB0Frbw2tukEChY0ACqO1TUxOeR0NPoAYeK8I+Pnhy9uo7XVbeMyRxAhwOuCBXvOOajngjuIjHIoZCMFT0IoA84+HPjjR5PBVpbzXKwyWUASRWBB4Hpius0DxHH4gnlks4HNonAmYY3H2FQ/wDCBeFw5k/sW28wnJYA5/nW/bwwwRLDAipGowFUYAoAmFLQKKACiiigAooooAKKKKACgjNFFAERiDMSQOevFAhTH3V/KpaKAGbADkdcYpyjFLRQAUUUUAIwyPT3qnf2EGpWEtncoJIpF2tkZq4TgU3B6rQB5Fo91cfDXxP/AGRfOW0O7f8A0eVv+WRzjH8/zr1lJhLCkkZDK2CCvIIrJ8TeG7LxRpEun3keAykLIOqn1zXDeEPEl54V1c+FfETYG4/Y7k9GX0J/KgD1XpQCD0pgfKBhhgfQ0o4xigB9FFFABTD1xT6Z0Y570AeW/E2yk0rVtK8V2oIkt5As5HdOg/U16TZXUd9ZQ3MRzHMgYH1ql4k0iPWvD93YSj5XjOPw5rkfhRq0r6VPoV2T9q01/KO7qQOc/rQB6MvSlpq8cU6gDy/4zknSdJj9b1P/AEJa9MT5Y1x2FeZfGPmPQY/797/Laa9OxhMDtQAu8YzVHWNRi0vSbi9lOEiQsfwGf6VcIBbOORXmvxT1SS4/s/wzbZM9/KpcL1VMgH+dADfhVp0t5/aPia6GZr2Vkjz12KTj9DXp4xWdo+mx6VpFtYRABYY1UkcZOOTWkOaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApCdozS01u2BQAbxz6AZrlfG3i638M6U/Ie/lGLeEdWbtVzxR4lsvCukyXt43A4jjB+Z29K4rwd4bvPEmsnxb4gjYsTm1gY8Ivrj8BQBpfD3wncWYbXtY/eard/O27ny1OSAPwP6V6AEIGN3fNNU7UwOSOMVLQAgGO1LRRQAnNGKWigBMUAYpaKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKMUUUAMcE7cetc14v8JWvijTJLdxsuF+aGVTgqR7/lXTN6HpTMH7pH0NAHmfgvxbeaVqh8L+JSI7uP8A1MxG1XXtye/SvS1k3EY+72PrXM+MfB1l4qsQk6iK4j+aC5X7yMP17CuW8KeMNR0PU/8AhGfFuVnQ7be6bhZR25P4fnQB6pk56UDOTUayBwGRtyt0NSCgBaMUlLQAhUGvJdXH/CH/ABVtNSX5bLV/3cxPQMT1/SvWm6VxnxL0Fta8J3H2cf6Xbr5kBHZv8mgDsYmDIGB4IBp9ct8P9dGveFLa4LZmQeXKM8hhx/SuooA8v+Lg33/heL+9eMT+AWvT88GvMPiYfN8W+FIf+niQkf8AARXpx+9igBjMEG92AQDnNeVeD428XfELUvEUozbWZNvDn1I5/UV0fxP15tH8HTrbti6u8ww46hjnB/StDwJoK6F4XtbcgiWRfMkJ6knn+tAHRqG2nJ5BxUo6Uwnk04cDk0ALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSHpS00nigBu9uwyfSsrxD4isfDmlyX1/MI1UfKnVmPoB3qHxJ4nsPDWmvdXsoXIxHHj5mbsMVwGgeHdS8fakviHxNG0VijZtbJxx9SPoRQAeHtD1Hx5rS+JfEMbxWCtutLPpxjq1esxRokSogAVRgBRgU1YVjiCIgwBgD0HpUqAhRnrQAbBuDelOoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKDzQBGW+cjp6Vz/ijwpYeJrDybuPEygmOYD5lOOD/KuhK5PIzRtOeelAHkmjeJtU8Aaiug+KmaSwJ22+odsdga9St7mO5tknjkUxyLuDryKr6vodjrmnyWd9AssTjGCMkfSvMZrfX/AIYXnmW6S6j4fY7mTJZ4h6AY/rQB68pPGefcVJWHoHiPTvEdit1p9ykqkfMnQqfTHatncFHX86AHHpULqHiZW5JBGKlJBHHP0pu1s5IGfWgDyfwpIfCfxG1Lw5IdtveEzW5PAJAHT869YPIwexrzX4r6dJapp/ia1T9/p8qlyOvl9W/lXeaRqEeqaVbXcTbkmjVx9SM0Aee+O/3vxI8MRekjn/x2vUTySfavLfFTed8YfD0AHK7j/wCOGu68TaxHoXh691CQj90hKj1P+TQBwGpN/wAJj8V7SyXBsdI+eUdQzggj9DXq8YAXGMAcAV558J9DkttCl1q6BN3qj+exbqo6AfoK9EXp70AOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiik3DFAC0Um4YzTXkVFLMcKBkmgBp3Akq2fauW8XeOLDwrb7WImvX4jtV5ZielYnir4iN9s/sbwzF9s1JztLj7ifU1P4U+Hos7kavr0hvtVkO4lzuWP2Hb9KAMvw94M1DxFqI8Q+LXZpGO6CzblYx/nFeoxRrGgRVCqBgAdKcE+Xbxx0pQuDx09KAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAGKhnijlRo5EVww+6wyDU1IRmgDy3XvAF5pOpNrnhK4a3uF+Z7UtiN/oM4z+FaPhn4lW2oSjTtagbT9RX5THMMBj+Nd/sXBHY1zfibwVpHieE/aoAlwOUuEwHU/WgDo0YOFKkcjPBqTrXj0V74s+HE3l3qPq+kBuJE+8g/HmvQfD/jDSfEUCvZ3SeYesTHDA0AaGt6dHq2kXVjKoKTRlDntXn/wp1CW2GpeGrxiLiymJjDdShJx+gr0wsep6V5T4u/4pT4kab4hQbbW6xBOccZOFU/rQBLrR8z45aPGOscO4/ipqP4l3M2u+IdJ8I2hOJ5A9wQei4PX8RUOrXkafGqG6LDyo7BZN3oNrHJ/Krfw5t28Q+JtZ8WzjMc0hitj2CZyCPzoA9Ks7aO0tIoYlCoigAAcVYUYFG3Ix2pQMUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSE0ALRTAWA5wT7Ubj3GKAHmmE46DOainuo7eNpJnWONRksx4rzzXPicJbltM8MWsmoXzfKHUYVPc560AdrrWvafoVo099cpGo7Z5P4V5nLq/iT4lT+RpkMun6ED887Ao8g9u9aGjfDq61S7XVPF1wLqcnctspxGv1BzmvS7a1gtIFht4lijUYCqMAUAYPhnwfpvhezEdrGrzfxTOMuT3OTzXQIQG2jP1NPCjr3oCjGKAFFLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUfJJHFSUYFAETLuG2Rdwbg1wWv8Awwsby4bUNEkOlal186LgMfevQqMUAeSR+LvFXg6VbfxLZSXlkDj7anP51q+IdQ0Xx/4MuY7C8iaZV82NScMGTnHPvXoFxBDcRmOeNHRhghhmvPvEvww068jnu9HL6ffAEgxkgMfegDwq68RX+peJ4YIwxu5LaGykPcFTg/1r6f8ACmjx+H/DdlpkagfZ0CMR3I718qaZpuv6R40FyNOnuriCcl0VMlhnk4xivozRfihoGpSC2nmNhdDGYbjCkH060Ad3S1BFcRXEayQyB42HDL0p/JPIFAElFM9jTh04oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAo/GmE9ck4pM4HzDjtQBJTT9axdX8UaRokbPqF/bxBR0L81xF18ULzV3Nv4W0i4u5Dx5zoRGPcEdaAPS5riG3ieSVxGijJLcVwWufFSwtJjY6LC+q3zHascPOD75xWXB4D8SeJ5VuPFWryRw5z9kiPy49+Aa7zRPC2kaBD5Wn2aR/7RGSfzoA4OLwh4p8ZuJ/FF6bS0JyLKLg49DnNd/onhzTPD1otvp1qkYHVvX61rDCAAU+gBqnk/06U4UuMUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAE4FN3rjOaG6dM1ka14g03w9ZfatTuVhhA5yMk/QUAajspHPIHPFGVbkHJx0riNN+I1trIkOmWNzPGi584xMob6cU/w38RLHxFr8mlQWssNygO8P2x+FAHXDT7YTNL5EO8j73ljP51ja14H0LXo9l5YoCOjxfI35jk10Y5GaCMigDyyX4aaxokrXHhfXZ4mH3YJ/nU/wDfRqIeLPHfh87NX0NLxB96W3YsT+AHFerY44xmmOF2kMuPcCgDhNN+LXh+6YR3n2iwm7rcRbBn6nFddZ+IdIvwv2XUrWYsOAkgJ/Sq+oeGtF1WM/a9NtpSertEuf1Fcpe/CPQZd0llNdWUh5DQSlMfQCgD0UHIyDxQDmvKP+FeeLdNO/SvFcjKv3Y7hWcn8SaeJvirpo2+RZ30Y9FVCfzNAHqtJketeX/8J94t0/i+8Iyse5jnUj9BSD4weWcXPh6/iPfajP8AyFAHqWaTPNebL8ZNFAHmWd+h75tXH9KmX4x+GMZf7av/AG7P/wDE0Aehkgd6Nw+tee/8Lj8LN0a7P/brJ/hUb/GPw6D8qXp9vsj8/pQB6Nn60Z5715lJ8Y7Jv+PfR9Qm9P3Lj+lRf8LU1K5IW08JXrk/dLybM/mKAPUiQO4o3f5NeXP4h+JN8QbHw9DbIehllRiKjOg/ErWTi91m1sEPVY4sn8waAPT5ry2tl3Tzxxj1ZgK57U/iD4Z0vPnapBIR1WFw7fkDXKRfCaS4cHV9fvrnPVY5mUflk10WmfDXwxpbh4tOWVx/FNhyfrkUAc9dfFia9lMXh3Qry83HiSWN0X88GoRpvxE8Tt/pt1BpVo/8MLK7AfTANemQ2NvaIFtoYYVHZEAqwDz1JoA4DSvhNpFrOtxqE9xqFyOS0znH/fOSK7i1061sohFbW8USjpsQCrdFADCDxxk0bT3NPooAaAfTFOoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooArahcrZWM1y+NsaFua+WJdX1L4o/EK3srhi1mJ8LGOgUetfUOswNc6PdQqu5njIA9a+avg7GNJ+JUtpffu58FAG4IbdQB9F2MWnaJp8NjC8ECwp/qywXjv+tZmmeHtNg8WXuu2rxNLcIq7UYcYBz+pryX9oO7tVv7C2jC/aHQuzgncoDYwOcc133wk8ODR/B9rcSxbby4JkLSE5Knkd/Q0Aejr0paQfnS0AJgUYpaKAExRgDpS0UAJijaM5xzS0UAJt4pNgxjpTqKAKcml2UpJktonY9SVqFvD+kuMNp8B+qVpUUAZa+G9GU5Gm24/4BUq6JpinK2MIPstX6KAIY7WCL7kSr9BUu1R0AFLRQAgAHQCk2j0p1FACY96NoxjrS0UANCDvS7aWigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBGGVNcfrXw80XWdRj1PyPIvo2z5seQa7A9qgycHnvQBw+ofCjQdXvkutRaS5kj6b8/57V2lrZxWdrFb26bIYlCqM9gMf0qfsKjkOJEoAsCloFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q=='] Multimodal Competition False Theorem proof Geometry Math Chinese 64 "如图, $D$ 为锐角 $\triangle A B C$ 内一点, 使得 $\angle A D B=\angle A C B+90^{\circ}$, 且 $A C \cdot B D=A D \cdot B C$, 延长 $A D 、 B D$ 、 $C D$, 分别与 $\triangle A B C$ 的外接圆 $\Gamma$ 交于点 $G 、 E 、 F$. 证明: $\frac{S_{\triangle E F G}}{S_{\text {圆 } \Gamma}}=\frac{1}{\pi}$." ['由\n\n$\\angle E F G=\\angle E F C+\\angle C F G=\\angle E B C+\\angle C A G=\\angle A D B-\\angle A C B=90^{\\circ} \\Rightarrow \\triangle E F G$ 为等腰直角三角形\n\n于是, $E G$ 为圆 $\\Gamma$ 的直径, 设圆 $\\Gamma$ 的半径为 $R$, 故 $\\frac{S_{\\triangle E F G}}{S_{\\text {圆 } \\Gamma}}=\\frac{\\frac{1}{4}(2 R)^{2}}{\\pi R^{2}}=\\frac{1}{\\pi}$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAioCRAMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKRjgGgBTUMk8cbojyBXYZAJ61De38Gn2slxdSiOKNSzMemK+d9Q+I154o+KWmJaOYrGO6WJF6b1LAEn1HH60AfSPXqeaeOBUeOR6CpBQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTW6jHXHFADqKydU12w0aIS38xjQnDOVOFrNtvHnh67Zltr9Zdoy2xGbA/AUAdRRXO2PjTQr+/FjBfq9yc4jKkE/ga6IUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAmRTJHVULFgBg8n6UNww9M81xnxGuNbTQ0t9Ds3nkuG2SMnVF65/SgDm/EWtDxbrY0iJHbRbVv9KuU+65/u5/GvKfB1nZXfxgijt8C3ikLR4HHykYr6E0Sxt9A8Hwi002V3WPLR+XmRmz3z9a8X8FeDvEmjfERdVuNGuhbtJIS3l9AzZGeaAPpDPyenPFSCo0wygkEZGdpqQcigBaKKKACiimnHoaAF3D1pajye2KcM+1ADs0ZpvPekoAfRTfxxSigBaKKKACiiigAooooAKZJzgZIz3FPprZ/CgDzn4zalFp/gC6jlCFrlfLTd1yOePwrgPgello+gatrmqOkcStsAfGWG3ORzSftB6s0l/p+ipISE/eEepIIra034Uwar8MdOg2fZb+SPdLJvIByT1HT0oA7DRfC+kal4ltfF1rE0ZaF1MR75IwePpXeisLw5dWBsTYWEqyCyCxSFDkbsc/yreoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBCvfvTDGNuOfwqSmv9w9RQBHtC8jOfWnZ45Ofp1rzfXvjHoHh7Wn02Qu7RnDsMnFR3Xxftbh1i0XS7u+kYcMsbKM/XFAHpgwQMfrTZbiOAZlkRB6sQK8sNz8SfEIIit7fS7duQX2uw/LmnxfCzVtQYPrfiS5mDcskDsg/Q0AdzeeMdAsc+fqlsCOoEqn+tc/c/F3wxCxWKW4uD/wBMYS/8qfZfCrwxZkM0E1w46maXf/OuhtvDGh2ajydLtFI6HyVz/KgDiZfi4JW/0DQdQm9N9u6/0NQn4g+Lro4tvCZUHoXkYfzWvS47SBBiOGJceiAVOBheT+VAHlT+IfiVcfNBoNlED03XHP8A6DTzqHxUdfl06wX/ALbA/wDstepADr/SlzQB5WL34qKObKwP/bZR/Sk/tX4pLydJsHx6XA/+Jr1XPvTWOMf4UAeWjxj4+tc/aPDMUmP7kpP8lqRfijrVtxqHhaePHXywzf0r08Zx601olccqPxGaAPPYfjDo4x9tsdQt/XdbNxW1Y/Enwvf4EepJET0E5CH9TW9NpNhcDEtnA/rlBWLqHgHw1qGRLpkKk90QKf0FAG1b6xp93j7PewS5/uODV0NkZ7e3Neb3Xwf0sfNpt9f2UnYrcNj8hiqI8KeP9Bbdpuux3qL92OZTn8yaAPVt3cjjtRu9eK8r/wCFgeJ9Bwuv+H5WA4aW3+cfXCiuh0j4neHdWCxm5a3mPGydCnP40AdmCxPbFNkLFSEOGxxUVvcwXKb4Z4pV9Y2BH6VP157UAePeKfg3feKPEB1WfWSHBGxTEOADnFdHqfhTxRfaYLCPX/Ih8vY2yFc/XPau+/DFJ06DNAHL+B/CS+EdINn9pa4mdt0kzHlj711YpvOeRTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKM0AIelNzzwTn0pWPBqreX1tYWzXF1MkMCjLO5xigCxls9RmoLm9gtITNcTpGgHJZsV5xqfxRlv7lrDwlp76lPnb5yj5F+vNRW/w81zxHKt14u1eZ0b5vscP+rX2ORn9aANLWPizpVvKbXSIJtUuc42wjGD+IrI+z/ELxdl7mVdDsm58vB8x19iDjNehaN4Z0jQIlh02wht1xyVHJqLxbrEWgeGL6+c4Mcfy+pJ4/rQB8ua54WF54/n0Owu3u5lfaZXbcXbg4r3z4Ya3Z3Omf2RLbR2uqWnyywgYLAdGFec+E9Ek07xt4WupwRcXkZuZ89d3mEDP4YrvvHvha7s72PxZ4fBTULbDTRJwJU7/oP1oA9I3ZUbTknkVKAMVzfhHxRZ+JtGS7t3Al+7LH3Rhwf1BrowexIz7UAOxRSZFLQAUUUUAJgCloooAKKKKACjFFFACYBpcUUm4ZxnmgBaTFGRmkLDucUANYK2VYZz61zWteA/D2thjd6bD5p/5aqo3CujllSJSzsoGM5Y4riNb+KWgaZO1naTm/venkW5DNn6cUAY9x8OdX0X994Y1+4iRPm8iZiVP4Vg6t8WfEfhKE2etadHJdHPlzxEbD+Gc1oXep+OvEdvLdOB4e01QWZ2ysjKPrkV41No8/iLxdb2NrcT3aTS7Vnm6vj7x/KgD3/4cfE6PxnbSx3XlQXcYztyOfwr0PzQCASQT0GK8yj+C2jWtkiWNxNaXS/8vMWN+fT0x0qt/aHjvwQ+b+N9b01TzIgzIq+/QUAesBjn5uPQVJXJ+GvHuheJVC2l3Ek/8UEjfOp/lXVhhjOeDQAtFJuFGaAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAopM01nwQAM/4UAPqGZ1RSzHAHJJ4ArI1/wAVab4csXur+YIB92MDLsfp/wDWrzoy+KviW5WIPpWhluSciRx+QIoA3fEXxNtrS4OnaFbvqWoZ2hYgSAfqKyrLwBrXiy4XUPGN4yxE5WyhY7QPQ8A+ldv4a8HaR4ZtkisoFL95n+Zifqea6HYMjk8UAZumaJYaNbpDY2kcKKMDA5H41o4APA5Pel285owc8nigBuMV5Z8SbiTXfE+ieFLflZJhLdY7Jg8H8QK9Pupkt7WSZ2wsalz9BzXmfw7iPiHxZrXiuTmKRzBbg8gKCCCPzoAZqMSJ8Y9BgjGEgsthA9Q9eouN0ZR1BBGMHv7V5jORJ8c7bj7lo3/oQr08Rhl2sc0AeTeItLvPAHiEeJNIiZtNlbF5bL91c/xD8yfwr0nSNWtNa02C/s5N8UwBUjtx0NXbqzhu7WS3mVXjkUqQwyCCMV5JFLdfCzxR9ncs/h29fMZPPlMeo/lQB68mS3TkcGpagtpkuIEmicOjAEMp4PvUu4dB1oAdRSKSRz1paACiiigAopA1Bb0oAWimlu2RmmvKsakuyr6ZIFAEhqLJLbQFNcr4g+I2haApjkuftNx0EVsPMOfwzXKHX/HPjCTZo1gumWL/APLxOAHx/ukUAehapr+maLC02oXsUKD+8wBzXC33xRudSc2vhXSrm/cnHntGQg/EVY0v4T2huRd69qFzqU5+Yq0jBAf93JFd7ZafZ6fEsVpbxQoowAiAY/IUAeZxeBfFPilxP4q1p4ISdwtrZuAPTOBmux0jwl4f8M2pa2tIwFGXmcbifc5zXRMwRtzYxjk15R4q1+98Zaz/AMIpoDlYAdt5dJ0UdxmgCtrepXXxD1h9J02R4fD1n893cJwDt5I/Q034baLDqXjC+1eKFVsLEfZrXA4YqSC31ORW14tjs/AvgP8AszTU/wBIumWFR3dn4J/M11HgXQ10Lwra2uMSMPNkyOd7AE0AdEAOPXrTWUMpVgDx36VIVJBFIUBIJ7UAcT4k+HGk6y32u232F6PmWa3yOfoDiuct9f8AFfgSf7Prtu2p6WDxdQAsyj3AHFesiNd+4daZNaw3ETRTRI6MMEMuc0AZOh+JtL8Q26y6ddRy5HzLkZH1Fa5AODz/AIV5trvw3lsbttY8LXLWl2p3GD+B/bGcD8qf4b+Isv21dI8UQfYdRA2iQ8I/5gCgD0lPu9c06ollV1DRlWUjIIPBp3mD04oAfRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh6U0k5xTJZFjRndgqKMlm4AoAcSR04HfNcF4s+IkWmONN0eE32pycKqYIQ+/+RWV4i8aaj4n1JtA8IhnQnbPfL91B3wa6jwh4F0/w0jXDKLjUpDulun5cn0z6UAc74c+Ht1f3o1rxdP8Aa7tjvSDB2Jntgkj0r0iOJYo1RY12rwFUYAFT7V9B1zRgUAMXk8du1SUUUAFIaQ9QKQ8E9xQBw3xR1ltM8MmzgJ+03riKPHHUjP6GtrwVoa+HfCthp4XDxxKHz1LVw9458XfFxLQfvbHR4xIQem9gQf5V6sVyDg8g0AeXWP7/AOO1yMf6q0bHtyteqL0ryrQMv8dNabskDL/6DXqiDC4oAcayNe0az13S5rK8jDRyDrjlT6j8q16YVycgc0AeTeFNZvPBOtHwtrzk27NtsrhjwR6E/nXqwO4Bd2c8gjuK5zxp4Sg8U6U0JIS6QboJO6N6/wCfWuf8A+Lbh7qXw5ri/Z9UtTtAc/6xR6fpQB6OhyM06o1JGQDx2pSzcgDt1oAfSHpTC+1QXI9+1c9r3jfQvD8bG7vk8wdIl5JoA6LkdKp3+qWWnQmW8uY4lXklmx+leay+N/FfilzD4a0WW3tm/wCXybGAPwOas2vwsfUpVufFOqyag2d3lZ+QeowR9KAJNS+KtrNO1n4dsp9QuugZVIXP1Ix+tUF8NeN/F0ok1zUl0y0bk28AIfHoWBr0jStE07RrYQadaxwRDsorSAoA5HQvh74f0ArJBZrNP1Ms4DsT9a6lUUDaq7R6DpUuB6UtAESEbiox+AxTi2B1AA7mlYfX8K888feMpbJ4/D2ioZ9Wujt2of8AVA9zQBT8b+KLvVLz/hFfDjFry4+WedeRCPwrqfCPhS18L6UttDhp3G6aVuS7cc/SqngXwbF4as3uLhvO1O5G6eZupOemfwrW8U6xF4e8O3epyYDQxnb7n0oA4G8/4rP4rpbD5tP0pMs3YyHBH6ivWI12riuA+FWjyWmhS6lcjNxqErSsx64ySP516AgKgg0AOooooAKKKKAGucdOtc94j8KaT4ntfJvbcGRRlJVwGU+1dEQD1oKgnpQB47DfeI/hpdCHUmk1LQt2EmUHdGPcnNeo6Tq9jrVml3YzrLGwz8pzj6irN3aQXtvJb3MayROMMp7ivKtU8Mav4CvH1jwtvnsd26WxH3QvcgetAHropa5vwr4usfFFgskEoFwP9ZD/ABJ9a6JDkdQfpQA6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAM0m4E4zSMO/pUFxcR2sLTTOsaKMs7cAUALcXEdtBJNMwSNAWZicACvJdR1fVviTqz6VocrwaPE22W7To+D0GfpSalqOo/E7WX07SpHttAhfFxcjgykdh7cGvTtD0ay0PTYbKxhWKFBwAME+5oAh8PeGbDw3p0dpYRLHtHzMOrn1NbKAgc06igAooooAKKKKAGt1z3xWT4i1aPRtBvL2RgvlRMVz3bBwK1mOD+FeXfFO8k1S+0nwtaEmW7lWWbHZFIJ/Q0AX/hRpTw6JNq9yhF1qMzTMT12nlR+tegj5vbFV9Oso9PsILSIDZFGEX6AVZPAJoA8q8Jnf8ZvEr9duV/8dWvVl6mvKPAw8z4q+LJOwm2/+OLXq4oAWmHkZHBp9MP1xQAZ3AjiuD+IHhCTVIk1fSyY9Xs/njKDlwOdprotY8U6NoETNf30UZX+EsAx+grhbj4ha3rknkeE9GlaJjxdXKsi/XkEGgDf8HeOrXWNJkF86217a/JcJIcYIzz+lUtV+LGlRXDWWio2qXo/hg+Zc+nWvOfEfwx8QW8L+ILuY3E5YNcW8DbVKDk8r14zXqfgJfDtzodvNo9tHGxXDgruKt3yTQBzr2HxA8YtuuZv7GsX5MaffI+hFdFoPwz0PRnE8kbXV31M03JzXbqOKWgCGOBYlCxIqrjtxTtuCcZB/nUlFAEeT71IOlFFAAaaWx7UrHAzXK+NPF1v4T0tpmIkvJPlgtx952PT/PvQBW8deMl8P2q2doBPqlzlIYV+8Djr+oql4C8FzaWr6zrDefq92d7s4/1YPQD9aqeBvB93cXT+JfEZ8y/uDvSNufKXqAPzH5V6T2zQAwHhVAwCOpry/wCIl2+veJNJ8KW+WWSRZrgDsoPOfwNemXlzFa2stxMdsSKWY15l8NLV9b13U/Fd183my+XB7L0P6igD020tVtbSO2iG2OJVRQPQCrI6mgDFLQAUUUUAFFFFABRRRQBGVJYn9KHVWXaygZ46cVJSHpQB5j4s8D3dhfHxH4UY216h3S26fdlHfr+Nb/gnxta+J7RonAg1CEfvrc/eX3rqiGZCMc9sntXnnjPwPcNeDxB4cf7NqsPzlF4WXHY/rQB6PuxnPbrThXE+CPG0PiayaOceRqNsdlxbN94H1Hr1FdomMcUAOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAJxTQxIzilNMYYX72MUAJM6oCzMAo6n0968k1rUr/wCI2vHRNJdo9IgbbdXA/iPoP1q34y8QXniTVV8J+HXO+UYurgHiNT1HHfkV3Phnw9aeHNJjsrVAMD537ufU0AWNG0Oz0TTobSzjVEjUDgdT61ohMNnPFOFLQAUUUUAFFFFABRRSGgBk8ixRGRzhF5Y+gryzwWD4m8fav4ldMw25+zW+eegIYiul+JetnR/CNwIj/pFz+5jHu2f8Ks+AtDGheE7SAjEki+bJnrubk0AdMCMcfrSSN+7Y+gNKRxz0rL1fXNN0e1klvbyGFVU7stz09KAOA+HeG8feLZweGuwB9Ni16g9xHChklcIgzlm4x+dfPfhPxhqcet6+PD+lyajNd3QeKYEbEG0DocV2MPgbxP4mn87xRrEkVuxybS3Yp+B5IoA39e+KmhaQ7QW5lv7kf8s7ZC4/NQcVz73fj7xkNkMaaPYS8hmAZ9v14IrtdE8E6DoAX7BYosi9ZCBvP1NdEowMZNAHA6J8KtHsZEudSlm1G6zkvPIXXP0Oa7m3s7e1QJbxJEgGNqAAfpUoABzjr3p+KAIXiRkZGAdGBGw9DXkerWF18NfER1jTkd9Du3/0mAH/AFbZ6j05NevSsFUZ6Hiqt9Y2+pWMlldxiWKQYZf60ALpup22qWEV7ayiSGVdysDnIq2CSeOleP6deXfwx8RjS7zdJoN5Ji1k/wCeJPOD7V63DIssaSo4ZGGQV6H3FAE9FFFABTS+GApTWZrOr2uiafNfXkqpFGMkk4z7CgCv4m8T2XhjR5b+9bCqvyJn5nbsAPeuC8IeHL3xVrH/AAlniRCcP/ocB6KvYkevAqroWmX/AMR9fXX9XRotKt5AbS3f+MDox/GvXIoVhUJGAqBcKo7UAOB2qAoxjjFLnOQKFx97I4pDhUJzjHJoA8++LOryW+iR6RaE/a79/LUDqAe/6V1nhjR49D8P2djDgbEBbA6k8/1rz/TB/wAJl8Vbi8ILWOkfLG3UFwc/1r1ZQMg4wRxQBJRRRQAUUUUAFFFFABRRRQAUUUUAIVBIqNl2DGeD0zUtMcZAB6dxQB5v448G3a38fibw4PJ1S2O5kU4WQehA68muh8F+MYPFOliXHl3UPyXETHlW+nvXSMBuwe/AIFeW+M/D934X1ceLfD6nahDXlqo4kHGSB64BoA9VDgtj2p9YnhvxBbeJNIi1C1b5WHKH7yHuDW0KAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKTI9aABuBXBfEPxfLo1rFpemqZdVvz5UKD7yk85P4ZrpfE2v2vh3RZ765cDYMIvcseAPzriPh/oF3qeo3Pi3XUJurg/6NE//LJM5BH6igDoPAPhGPw3pjSzN5uo3J8yeU9c+ldcEUAADgc0kY2rjrjvT6ACiiigAopMgd6XNABRSZoLAd+aAAnFRs57naeg+tV9Q1Sy0yBpry6igjUZLSMBivOPEHxisLe2nOiWsuomMHdKi5RffOaAIPEUzeKfijYaQBmy01TNMexYYIB/Ouo1/wCIXh3w8PJluxJdJgLbRnLH2FeYeEfA2u+MnuNdu9Sksbe/fdJHEASwHGORXqug/D7QNCw8NkJZ+8s2WJI78mgDkj4i8deL8x6Lph0q1c8XFyCGC+vBNXLL4U2pBvfEV7Nq92ASfNPy5x9BXpMcaoMBQPYDim3Sj7JN/uH+VAHl3wVtYYU8TCKJUjGoAIAOg2DivVlUbcHmvMPgzzpmtyD+O9z/AOO16iKAE2j0FLRRQAYooooAQqG6jNAUAAY6UtFAGJ4l0Gz8Q6PcWN2B8y/K+OUPYj9K4TwT4gvfDWr/APCIa+SrIdllOx4kX/Oa9TK85rkvHHg+PxPpmYv3V/B89vMOqt2H60AdWCSB82B60ozzlufSuA8AeLpL0S6HqpEWqWrbNr/xgd/5V3ksqwwvK7BURSzE8YHqaAI7y9i0+zkurh1SOMFmYnsK8kC3fxV8QfaJN8PhuzlyAekxH/66fqN7e/E3XhpWmO8WhW8n+kzjpKR2HtkV6npWlWuj6dFY2cSxwRqFVQP50AS2ttHawRQRIqRxrtRF7CrW1cg45FN2/NT6AGFQB8o4zzXMeOtcXw/4UvLncTK48uMdyTx/WuoY4xzxXk3jCZvFfxE0zw9GS1tZkXE+OnORg/kKAOk+GmgPovhOGSY/6XdjzpT3Lf5xXZjO8A+lNiQRxqirgAcVIoycnrQA6iiigAooooAKKKKACiiigAooooAKCAaKKAE2j0qGeFJImRo1dSMbW6EelT0xh8wJ6CgDx69in+F/ij+0LZWbw/fPiZQOIXPfH/Av0r1u2uYru1iuYJA8LruVgeCKraxpNtrelT2N7GGjlU8HsexrznwVq114U8Qy+ENXcmEtuspW7oeg/AYoA9WU578U6o04Ygj6U/NAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU0tg0bqAHUU0sRk46DP1oU5APPPNADqKKQ0ALULnqW4VeWPSpQ2a8/+JviGWw0uLSLAk6jfsIkCnlVJAY/k1AHP3Ms3xJ8d/ZIsnRdLbMjHpI/II/MCvWoIUgiWKMYRBgVgeCvDkfh3w9BagDzmG+Z+7OcZ/WulxjgUAIn3celOpv3c4HNG7A560AOpG6c0m/ioLm+t7OJpLieKNV5yzgUASn5eh496aQQcnnHPJxXBaz8VdLtpGt9Jt5tSu84CRKcfXOMVjGz8f8AjAj7TcJpFlJ/Ag+cj/eBoA7XXPHGhaErfab1DMP+WcZ3N+XWuNfxv4r8TuYvDmjtBA52/abgFTj1wwrodE+GOhaUyzzxvfXI+9Jct5mT+NdlFBHAgjhRUQDhVGBQB5rY/C6a+nW88TatPezZyYkYqg9sAgGqXxFsrKzsNP8ACmkWsUNxqMgjbYgD7D3J616xIQkbE/KFGTj2ryzw8T4s+KWo6qw3WumAwW7+/DZ/WgD0jRLCLTdItrSJdqRxgY98c1oU1AAOKdQAVXvm22M7eiN/KrFUdYfy9Hu39Im/lQB5/wDBZMeGr1/79yTXpo9a85+DSbfBm7+/IT+pr0YDAoAWiiigAooooAKKKKACkbocdaCwFIxIFAHnPj7wi7mPxFo2Y9TsgXwvAde4P5VyUnjHVfiUbbQNMBgYbft0inB4xkD8jXReN/FN3rOoHwl4fJe5l4uJ1+7Gvfp9axr/AMGX3w5a11/RC8wQAXqdS+epHp3oA9T0DQrPw/pUWn2kYSNAMuOrHufzFbA6VjaBrtn4h0yK9tHBWQZ291PfNbAPy80AOopu7pgUgYlc4oAp61qEelaTcXspwsSFs/QZrz/4V6c90mo+J7gbrm/lJQn+51GPzpfivqM14NO8M2bZmvpgZAp5CAgn9K73R9Nh0rSLSwtwFjgjVVx7CgDQFLSDpS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACHpXDfETwq2taWl7ZYTUbQiSJx1OOcfkDXcsMimEDbtPQ+tAHJfD7xV/wAJLoMbTDbewKEuEPUN3/nXXcA8mvJdehbwF45g1u3BXS799l2o4CnBJb6ZxXqkEy3FuJkYMjgMGHSgCdelOpF+6KWgAooooAKKKKACiiigAooooAKKKKAIpWKg4UsQM4GK8gu/jTJbeJpNAOjzPciQRggr1I+tetX1wtraT3DNgRxljXyf4furzW/ii2sLYy3zx3HnGNB2XigD33xB4v1vQNMXUP7DluoMBmMRA2j8TXT+HtT/ALY0e3vjG8RmUP5b4yua4/wRrd74zutVbULR49PVhEtu/QcEGvQIII7aJIYVCxooVVHYCgCamuSFJHpTqY/9MUAQXdzFZWslzMwSKJCzN6DFeX+CLeTxl4svvFt6n7iJmhslPQAEgn9BV34p6rPPDaeFrFiLvVDtYqeVj6E12+g6TBoWj29hEiqsSBSF7nAyfxNAGmnvjjqR3NO6VDNKkEZd3CAckmuK134qeH9Jka3tp/t17nAt4CC2fpQB3THAyenrWJrPirSNEgZ7y9jUj+BTlvyrg2ufH/jAgwxf2LZPxu/5aY+hyK19D+FmlWUv2nVnbU7zqZJ//rUAZVx8Rtb164Nr4V0WaYHj7TKBtX3xnNPt/htrGuP9o8Wa1JPu5+z2xKqPYhq9Nt7O3toVihhSOMDAVRipdi4xgY9qAMTRPDGi6Eqpp1lDEwGC6r8x+pra+pp2AO1GBjGKAGgKM4A5oIPGO1OwMYppxnHPHFAHMePdd/4R/wAK3d0pzNIuyNfUkgf1qr8NNB/sPwhbK/8Ax83I82Unrmua8bSv4k+IGk+GofmhtiLi4xyOQRg/lXqcMKwxpGn3EXaKAJRS01AQvPWnUAFZXiZ/L8N37ekRrVrC8Zv5fg7VHzjEB/mKAOd+ES7PAVo397J/8eNd8K4r4WRbfh1pRAxuRj/48a7UYoAWiiigAooooAKKa5Ixt60xmJzg8etAC5JOQK898eeMri2lTQdCHn6pdDYCh/1R9TV3x340TQIV0+yXz9WufkhhU8jPf8qi+H/gxtHjbVtUY3Gr3Z3zPIOYz6D8hQBd8FeDoPDVh5kh8zUJ/nuLg9ST2HtXUzwRXETRyqHRxgoRwam2L6UMDjigDx+6t7z4Z+KDeWqmTQLt/wB6AP8AVHvj0616vY3tvf2kdzayrJC6gqwOcioNU0q21eyls7qNXhddoyM4P+cV5joWpXfw58QDw/qzM2lXD7bO4c8J7fpQB67kkZHSmSSrHA8jnaigk/ShCHUFW+8OPTFcd8S9cbSPCUywEm5u2W3iUdcvxmgDmvByv4p+Imp+JZVLW1mTb2+OhwWU4/SvWQNpz26VzfgPQU0DwpZ2pUCVl86U+rtyf51020YxigAHApaKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApn8XPIp9JgUAYvifQ4Nf0K5sLldwdfl9Qe1ch8Mddm8q58N6iT9tsG2DJ5ZcA5/WvR3Ht14ryrx/bN4T8TWPi+1TbDv8u8C9Cp5LH8h+dAHq69OuaWqtndJd2kNwhysyBxj35qwTjvQA6iiigAooooAKKKKACiiigApM0GkxQBw/xX1uPSPAmojzVW4mi2xjPJORXm/7PWlLJdahqz7Q4JjUZ6gjJr2PXfCek+IZo31GJpNnRS3H5UzRvCGjaBMz6dC8RbqA5wfwoA1bPTrfTlcW0aoHbc20Yyf8mrQHzk9jTgKD0oAM1Uv9RtNNtjcXc6QxD+JzgVZ+6MEZrw79oFb/AMvTGt5WMbvtEKkku2Cfu9+lAFnwvq2m6j4r1PxfrV5FFBCxisxI4A245x+IrZvvihdam5tvCmky37fd8+RSqA+uRmvG/Ap06y23XiPTr2508tlZI95jj+qDI6+tfS3h3UNBvLNDoz22zaCEh2q2PcCgDh7fwJ4o8SsJ/EusPbRscm2tjkEfXArtND8F6JoEYSys03/xPJ87MfXmt8ZLAjB96loAiCAYXGB2A7U7bjgU+igBBwKWiigAooooAKp392tnp9xcueIkZs+mBn+lXDXnXxX1WWDRbbSbViLnUZhEB325GT+RoAqfC61k1S91XxVcL815KyQn/YzkY/OvTQMLgZrJ8MaVHomgWWnxjAgiCH6962MUAA6UtFFABXNfEBwngPV2z0g/qK6M9a5T4mNs+HmsnsIR/wChCgBPhmvl/DvRVPXyTn/vpq6xelc14BXy/AukIe0P9TXTDqaAFooooAQnApaDUecck0AOfleuM1y3jPxfaeFdMMjN5l4/yW8I6s30/GrvibxLZeF9Ikvbt+2EjH3nY9AB164rhfB/hq+8SasfFfiMZZzm1tmH+rXnGR64I7UAXfAXhC5advE3iIGXVLj5ljbkRA8jH516OoO48d6co+UcY4p1ABTW9adRQBGFI+nWsLxV4as/E+jy2dwuHAzHJ3UjniuhxUbAF1ycc/nQB5n4D8SXmlak3hLxC5W7hz9mmbpKn19eaqX4bxp8WLeyU7tO0hdzlehfhl/ka1Pixo9m/hiXWzIba/sFMkEinksM8frWD8Dr6zfTL8TSEarK+6ZZOGYc4Iz7UAexRMCp24wDjin1HGACcAjOOKkoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARhkYrH8R6RBr2g3mmzgFZ4imT2zWwRyKaeWxjigDzr4VatN9gu9Bv3zeafIVUHqUOSP0r0TqzCvKPEyN4R+Juna3GNtlqH7qbH944C/1r1aI7lV1OVIyD9aAJaKKKACiiigAooooAKKKKACiiigBCuaTbTqKAEFDdM0tIaAGAkjce4rye4X/hMPi8IWG600cfMOqs3/AOo16TrmoR6Vot3eyttWGMkfXHFcP8JNOmTRZ9auhm61ObzST1AwB/SgDH8NQw+HfiFqfhW+jVtNv8zQLIPl4A+UD6k1tax8LbYTG98N3cmk3wJYCNiIz7FRUXxY057WLT/FFqhNzpsys20clM5b+Vd3pGox6rpVpfRuCs0SvjOeozQB5zbeOPEvhFhbeLdNe5hU7ReW4AGPcZJNd9o3irSddtlnsLuOQHqucMD9DzWlLBHcxNFKiuh4ZXHFcBrXwrsXumv9AuH0fUc7g8PAb60AeiiTIBxx607dXksXjDxb4Pl8nxLp73dkvBvo+mPfvXd6D4u0XxDAJNPvY5GYZ8vOGH54oA6Ac0UinI/CloAKQnFLTW6Z9KAELgc9RivKLRj4w+Lk90w3WOlRgID0LkEH9RXceLtZTQfC97dltriNhH/vEcVh/CvRH03wz9tuVP2q/czuT6Mdw/nQB3a/fPpT6Yow2B0xTxQAUUUUANPWuM+Ksuz4b6wO7RAf+PLXaHrXBfF6TZ4Avk/vgD/x4UAb3g6Py/COmD/pkP5mt8d6yfDiCPw5Yp/dhFay0ALSFgOtLTDgdaAF3cD0NZms63aaDpcl9fSCOKMZ5PJ+lT6jfwabZS3V3IscEa5J9BXlFtBefFLxD9ruUaHw7bPiJWH+tI9fyoAm8P6Pf/ELXz4h1lCmmQP/AKLbOPv8/eP5D869bjhjjjVEUKoGAAMVHZ20NpbJBbxiOJFAVQMYqxQAgGBgUtFFABRRRQAVE/zMARk54OOlS1VvJ47a1mmlYIiKSWJ6UAeafEWc6/4l0bwpAA0czie5/wBlQSCKd4y8FzaaLbxF4dj8u/sVVXiVeJkAGeB7Co/hrbS694g1XxfcrxNKYrdT2XAz+or1FgroWOCMYoAwPB3iu08UaQtzCxFwvyzQt95GHB/WuiD8kYNeSeKdJuvAWv8A/CUaLExsZmAvLaMdMnG4fmT+FelaNq9rrmmxX9nIrwSKCMckexoA0wcilpFOVBxiloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApCKWigDj/iPon9teEblUwJ7f8A0iNsZ+ZckCn/AA81z+2/B9pMwIliHkuCcnK8H9RXUTIJEaNl3KwwR7V5b8Py3h3xzrXhmY4jdzc24/3mZj+lAHq9FIKWgAooooAKKKKACiiigAooooAKKKKACmscDmnU1sY56UAec/Fy+dfD9tpUZPmX84ix64wa7XRLFNL0aztEAAjjC4HavOda3eIfjDYWOd0OnIJ2HbJBH+FerBRgcfSgChq2nR6tplzYS/cmjKYPoRXn/wAJ7+W1TUvDN4SLixmYx7u6knGPwAr09sd88+leUeMg/hP4k6X4ijGLe7It5wOBklVBNAHq6jnk5p+BUUUiSIrowYMMgjvUtAEE0EUsbRyIGQ9VIyDXCa78MNPvpze6TI+nX3XzIv8AA8V6Cc5pCM0AeUReJfGPgthBr9i2o2K8C6g5YL2JHAzXbaB400TxLGDp99G0uOYWYBgfcVuyRJKjI6BlPUEZriNf+F+mapK11YSy6ZeZyJLckc+4BoA7dZDnGSP96lLk5GDkDj3ryhda8Z+CJRHq1p/aumqcCeIbpAPXaB/M12Gj+PtD1m0eWC7SOVRzFL8jD8DQBynxGuZNe8U6P4WgY7WkE9wB6KQf5GvUbW3jtbWKCNdqRqFA+leX/DqFvEHifVvFVwMhnMEHpgZU4/KvVARwCeaAFAApaSjIoAWiiigBo615z8ZnK+CyM/fkA+vIr0fpXmXxrb/imLVB/HcAD9KAO+0lNmj2ox0iUVeUcVXsRixtwOnlr/KrOaAFqtczJbQSSynbGgLFjwKnZwilmIAA5J7V5J4l1m+8c6//AMI1oUjDTkcC7uV/kD+FAFe/u734oeIWsbAvHoFs+J5h/wAtfb9f0r1XTNNt9Ls4rK1jCQxLgACoNA0G08PaZFYWiBY41xkdW9z+dagzyccUAEZyv40+kX9KWgAooooAKDRQaAEJPavOvizrj2mgppVtk3Wov5KKOoHXP6V6G7hELnoATXlFgv8AwmHxZub4/PY6N8kZ6qzg4/kaAPQPC+jxaFoFlp8YA8uMbsdyef6mtgKB26UwDBBHHt6VLQBBd20V3bPBMgeN1IZWGQcivIla7+FviYB9z+HL2T5SOkLHsK9ibp0zWZrWkWut6ZLZ3sQeOQEAEdD6j8qALtvPHcQJNDIHjdcqR0NS7vmyW4HUV5N4X1a98C+IP+EW1qQtZSN/odw/cZ7n869YUgjPXPIoAkopOlLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFBoooAY2d231HWvKvHzf8ACP8Aj7QPESDKyubeU/XCjP516sxwelcL8VNLOoeCbiSJf30DpMhx02tuP8qAO3DEqdp9wafu5xWD4M1L+1vCWm3xYFpYVLc9Dit0Dkn3oAXLY4oBbvUF1dQWcRlnkCIOpJ4FYf8AwnvhkOU/te23A4x5i9fzoA6PJ96XOe9c63jrw2vXVrYc45kXj9a2bO8gv7VLm2kSSJxlGQ5BFAFjJHHWjd7UA8cnBo3D1oAdRRRQAUUUUAFRzOIoWkbooyafms3xDdCz8P385/hgf/0E0Aee/D9DqfjzxJrJ+6JDAh9drZ/rXqg71578ILXZ4NF2337qVpc9+cV6Cn3cHrQA6uU8e6Cuv+E7y2I+eNfNiYddygkfrXV1E6hlYEZBGCPWgDj/AIZ64dY8KQRzEfabP9xKPdcCu1ryPSc+DPixd6cTiw1VfMRuwk5ZsfpXrQbJNADqKRW3DNLQAUjAY6ZpaRuBQBE6LKpWRVZTxtYZrx74u+GtHtNOimsbfydTuZBEgh+XJOeSAOelex4GcmvJ7lz4u+LttChzbaMh3kcgtkEfzoAo6I/i34c6Zbwz2K6jpYTzC0ChWQtyeOp613fhzx3oviFAsNx5M3eOcGNs/Q4rqwqshQrlemD6Vx3iH4b6Frkhuli+yXo5WeEbWB+tAHYDkAjLD604eleSmTxz4Hk/fBtZ0wH7yf6wD6k11vh34h6Nr2IvN+zXQ4MMxw2fyoA68UtRrICNwOQe45FOLgUAKa8v+M5B0rRYu73uP/Ha9P3cZxXl3xj+ZvDCD+PUSMf8ANAHpdqNtrCPRF/lUjnCn1xmo7YgwIBnhAP0rz/x54xnW4j8OaFmXVLnqV/5Zjvn86AKnjPxNe65qY8J+HW3zyf8fM6/djX6+vWux8KeF7TwtpUdtAN0uMSSHq57mqPgrwbB4Y0/cx8y+n+eaY9z6V1iqSvNACj72KfSBcUtABRRRQAUUUUAFNY4FOprDIoA5jx1rw0Hwrc3OcSuPLjX1J4H86z/AIY6E+i+EIJLjP2u6AllJ9cY/pXO+Lpj4r+IWn+HkbNvaMJrkjp7D8xXq8UapEqKuFUYA9KAFUU+iigApMUtFAHL+M/C1v4p0mS3kxFOgJhm7q3auc8BeK547p/DWut5epWnyxux/wBao5z79RXpBTJJPpXC+PvBzatCmraaRDrFr80cgH3vY0AdzkH5ec9achJzmuL8BeMV8Q2H2e6Uxanbkxywsfm44z9OK7ReMg0AOoozRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANbnIqlqtsL3SLy2YZMkDoPxUj+tXSuSCOKD70Aec/CCZovD93pUrfvbG7kix32jAFeiYx34ry3wWTp3xX8Sae5wsyCdB7sx/oK9SB9s5GaAK1/BHPZTRyIGRlPBr490GGOT4mxRSRK0f9oEbWHBHmYr7FuTm1lzx8pr4+8OZb4pw5G4/2ieP+2lAH054h8CaNrukzWp023hdl+V4o1U5/Cr/AIP0STw74ZsdKlfe0EQXP4VubR09hTgMDrQAg44PWlyvpQRzSYoAfRRRQAUUUUANzxXF/FK8Nn4Gutp+eR0jH/Ajj+tdmeo9M15r8YZm/sSwtAfmuLyLj1AdTQB1PgiyGn+DNLtwMFbdM/XFdGvSqmnwiCyhjAwFQAD0q2tAC0xsg5Hen0m0Zz3oA85+LWkSzaNbaxZj/StNlEnA5KkgGut8M6xHr/h+z1KJh+/jDnHYntWhqFol7YT2zqCsiMpH1BFeafDOd9G1jVfCdwxBtJC9uD/cyAB/n0oA9TTBGR1706mr35zTqACkbpS0jEAcmgDI8RatFomgXeoSsAIoyQD69K5H4T6S9t4fm1i4U/atSl85ieoA4H6AVQ+KV5NqeoaV4UtWKvez/vsf888E8/iK9LsLWOzsobaJQqRIEAH0oAnwMj6c0Z44yacFA7UYFAETAOMMuR6EVyPiT4f6F4hbzHgW1vCfluI+HB9q7PaKMD0oA8jEPjrwO2Y2fWtMXkITmRF/Suo8OfEnRNeYW7zC0vuhtZzhs12bKCCD0PWuV8Q+AtE8RBmnt/KueqzxfKw/KgDp0kDqGQgjvXlvxXIk13wlDnIN/ux/wBqhbT/G/gWQyWE39saYn/LGU4YD2wM1wPjv4nx6vrGjT29k8Vzp8m+WOZSuHKlSP1oA9d8b+MW0Oyj07TQJdXulCQInJTPr/nvS+BPBw0WFtV1NvP1W6O95G6pnnA/Os34ceFpZx/wlWsuLi/uyJIgTkRj0H5V6VtO4MRkigAwMbNx9c1IPam4564z2pw6UALRRRQAUUUUAFFFFABVDWtRi0nSbm+mcKsMbMCfUDirgY9M8npXmXxXv5b0ad4YtZD9ovZkZwOyqRnP4GgB3ws0t7mO/8SXaEz6hMdu7tHnK4/OvTQMVn6TpyaXpNvZQgKIUCYHtWgKAFooooAKKKKAE4pGxjrinYzSECgDy7xx4butG1FPFvh9Cs8JHnwJx5i8ZP5A12fhXxNaeJ9GivbdhuIw6d1YdRWw6JLEQ65XBUg+leTa5p938OPEf9u6crvpF0/8ApMC9E/2h6daAPX/XFKKoaXqdvq+mw31lIJIZVDKQavigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQ9KWg0AeT6uG07466bcL8sV5AsZx3IDH+teq42jFeX/EtfsPi7wtqXT/SXTP/AADH9a9Oj+ZQTQBT1KO6msZIrNotzKRmTPH5V41ZfBDUrPxAmrxalB5yz+dt529c9cete67Rzx160YGMY4oAqWZuFhC3Zj87v5ZJH61cpNoHaloAKKKKACiiigAooooAZnJPHSvL/ikfP17w1bAZ3XBbH02//Xr1EjJry/xqftHxO8N2v93zG/8AHRQB6evyrgdO1OXpTQMKF9KfQAUUUUAIRmvJviFFJ4b8X6T4st/9XvEVyB3Xnr+Jr1k9K57xhoia/wCGryyZMuUJT/eoA3LaVZraOVGDK6ggjvU2a4D4Wa4+o+G20+4b/TNPbyZRnnPX+RFd4DxQA7IqOeRYoXkb7qDccdsc05wSuF65rjfiXrp0LwtMYj/pF0RDEPUkgH9DQBzfglD4o8e6z4jm+a3gb7PbdwBwePzNerR/dJznJzXL+ANAHhzwjY2Tr+/8sNMfVq6pcY4oAWiiigAooooAa/bPT1zTCeeGxjqCKc43cf5FZet63Z+H9IlvbyULGgOM9WPbFAFLxV4ls/C+kSXly3JyEjPJcnoAOp59q+drvwte+I/HOmXGqItq2uT7vKVQCqlSQcceleneHdGv/HviE+JNcUrpqHNpbMDk474/KpvFC/8AF5vC6KNoUA7R24agCKPQfGfgSMNolwNV05Rk28uFZR6A8+9dB4d+J2k6pILa/SXTrz7rR3ClBn2Jxn8K7scknpXPa94M0TxHEy39inmHpMigSD6NQBvpIksYdWDKRkMDmpB0615LL4b8Y+CJDNoN+dQ01Dn7NcDc4HsxP9K2tD+KWm384sdVhl0y96bJgcMfrjFAHoBOKMjPWq8M8cyh4pFdSM/KwP8AKpRu6kgjtxigCSikX155paACiikNAEcjiNGZjgKM5ryvwep8W/EDU/EkyloLTNvB6ZBIJH5V0PxN1xtJ8Iyxwti8uiIIhnnLA1peBNBXw/4WtbXH71182Q/7Tcn9aAOjUNnJ70+iigAooooAKKKKACkPSlooAYQRjjiq1/ZxahZS21xEHikUqVIzVymscED170AePWNzdfC7xSNPuyzeHr1gLd+vlE9j+WK9eglSaBJEcOrAEMOhrJ8RaBaeItIlsLpchh8rd1NcH4N1+88L623hDXnwgbbY3DdJFz6+uSfyoA9WJxS1GvJ5781JQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeX/GSMrpej3A6wXgY/iQK9Lt2DQxkd1BrgPjGgbwZ5neOZD/48tdro0hl0i1kP8UYNAF+iiigAooooAKKKKACiiigAooooAafavLfE37z4x6GB2jf/wBBr1E9M968w8RDHxk0P/rm/wD6DQB6geBTh0prfdNOHSgAooooAKjYbkIIzx2qSm4xQB5NsHg34toQQtjrTZ44CuTgZ/AV6spzj+dcN8VdEk1Dw0b60GLuybzo2HXjmtrwfrK+IPC1pexnDbQjj0I4P8qAOgOTyO5xXlGvOfF/xUstGB32OnKJpT1G45GPzFeka1qcelaTdXsjBUiiZhn1wcVw3wm06SW1v/ENyv77UJmcEjoucj+dAHpIUgYBHvmnKMCj1paACiiigBCcDNMEqnBB4PensQBk1XuJ47W1aecqkUY3MT2FADNQ1G202zlu7pxHFGpJLeleTWdve/FXxEL28VovD9q48tD/AMtSP/1Ut7cX/wAUde+xWjPD4ftX/wBImH/LU+n869V07T7bTLKO0tIxFAgwqgdfegCeG3itbZYYI1jjQAKqjpXmGujf8ddGjJOI7YOPrlhXqhGFx7V5bqA87472hz/q7Nf/AEJqAPTZpWSIuEL4BIVcZNed6l8YtG0rU5dOvLW5iuEONu5a9GfEcW52ACjk18owMfGXxmEpHyfaQX46qhoA920/4p6Bc6ilndO1hLIMxmbjcD0rb1rwvoXim1AvraK4Djckp5YD1Brxn9oSBLa50cwII2Xd8ycZwBivS/hFqtxq3gC0luizSRMYsk8kAD/GgDDl8J+KvBgM3hrUXu7NWyLOfLHHoMcCtPQvilZT3Qsddtm0q+HBE3AY/hn9a9DK5HPI9DWPrPhrSPEFo0OoWscy/wB4g5H5UAakF1DcxiWCVXRhkEHrU24YzmvJ5vA/ibwnMbvwrqjzW45NnMRtI9B3/WtDS/ilDDdLYeJrGTSbw/LukGEb6ZPP/wBegD0jdz049aMg9e9VbWeC8tklt5BLG/IYHrWd4p1yPw/4cvdRYj9yhKg8ZIoA8/vyfGXxXtrIfNY6WpkkJ5VnGCtetRgBdo6DgV5/8KtGktdDl1a5X/StQkMhJ6gZIFegoNvFADqKKKACiiigAooooAKKKKACmsCelOooAZs69Olcr458Hw+KtKKIfK1CEb7aYdVb/DmutqNyoBJ4PTNAHn/w+8YS3Qbw/rWYtXtflw5/1qjuP0r0HzBxnv0rz/4g+D5b1o/EGijy9WtPnBTrIB2P5Y/GtTwP4xg8U6VuYeXewkxzQnqrDg/qDQB1wOaWmIDzmn0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcF8XFz4AvWPZk/8AQxXTeGG3+G9Pb1hFcz8Xmx8Pb0DqWT/0MV0vhUY8MacO/kigDYooooAKKKKACiiigAooooAKKKKAGN049a8v8Vt5Xxb8Py9AyyLn/gIr1HvXl3xGX7N4y8MXQ6mV1/8AQaAPUCfWnjpUZIPPanJnbzQA6iiigAxRRRQBDcQxzxtFKoZHG0g968t8AzP4b8Y6p4TuGAQsZ7fPdcZP869Vb74z25ry34m2L6RqeleK7cENayCObHVkJ5z+AoAl+LN/LdQaf4etSfOvpkLgddgIz+hNd/o+nx6VpdrYxKAkMYTA9q8v8HXX/Cc/EGfxGBm0tYxHFnkZIIOPyr11CcenJoAkooooAKaSRTqjJCsTzz2oAbK5UFmIVQM5JrybxHq954/11fDuiSMmmI+28uV/l+WKt+MfEd7r+pp4T8OuHkkbbdTqeIx35rs/C/hiz8M6OlnapucjMsjdXP1oAu6HotlomlxWNnEEjjA5A5Y+prT2gHNIvI9qdQAw5JFeXQ4m+OU5J4js1H0+c16iTjI9K8w0UCb426132WgH0+egDpviHqo0nwPqtxvCuIG2c8k14t8BdIN34lvdalHyQIykt0y3Of0r23xX4PsvF1oltfyyiJeGVGK7vyrC0/4TaTpFncWun3d7BDcEGTbcMC2PxoA8s+Kd8/j3xtbaRohef7O2xjt+VWxgnP4V7p4J8OL4X8L2enEfOiAyc5y3em+HfBOj+GVIsbceYcs0knzMx+p5rowvQmgBRyOaXA9Kbklvan0AIRgccVk6x4d0zXLZor+0jl3fxFfm/PrWq2RjFGM896APKLvwJrvhac3nhPUGMIOWtZ3yCPQZBNch4q8a3Wv3GmeG9ft/7N/fA3TEnDLg+30r368njtrSWdyAI1LZPbAryTwRoNv431XWfEOrQedBcSGOBH5wuB0z70Aeo6PPZvp0AsZkkgWMAMnI4GKvozbeeee1eXXnw61fw/cNe+EdTkjIO42kzFlb8zgflUunfFC40+5Wx8T6bLZz52+aqHy29ecY9O9AHp+TjuKUdKpWGpWmqQLNZ3McqNz8rA/41dBz3oAWiijIoAKKKKACiiigAooooAKaVBOcc06igBpUAHA7dK8q8Z6De+FtX/4S7w/GSVwLq2QcOvrj869XNV5oROpR0BUggg9DmgDM8O+IbbxDo8WoWsgZHXLAHJU9x+FbG47iD07GvIdQtbr4Y+Jv7StFd9BvJNssfaJj1Pt1r1SwvLa/sY7u2k8yGQblIOeKALgz3paRRgdaWgAooooAKKKKACiiigAooooAKKKQ9DQB5/8AGBseB5l/vyIP/HlrrfDqbNBs0I+7EBXD/GWYjw3aQD/lpcIPr8y16JZQiC0ijXoqAUAWKKKKACiiigAooooAKKKKACiiigBp+8DXmHxeUwjQr0dIbtQT9WUV6fgmuA+L1qZPBRmHJhuIm/8AHwf6UAd1byCWNWHQoGH41MvTNZHhq5F14b0+4XnzIFOfwrXXpQAtFFFABRRRQA1scZ49a4v4oX1va+BrwTpuaYeXGP8AbYECu0avJ/GczeJ/iFpfhyIgwW5M8+OmVII/TNAEfwIvLdfDU2lmMx3kMjM6kc4YkivXV715Hqsa+CPibY30SiPT9Qj8lgOgYAAfqa9aRgQCvQ80APpr9qN/HPFIzc5xxjrQAZwxx0xXnPjzxbcfaU8OeHz5up3PyuyHIjXjJP61d8e+Mxo0SaXpuZtXuTiOJeo7ZP51J4E8FDQoX1K/YT6rdfPLKeq57D6ZoAueC/B9v4Y0/wCY+dey8zzY5Zu/611mKYq4xg/Wn0AFFFFADT1rzDwl8/xn8UOOgg2f+RBXp5HJNeYeCPn+LHi5vRiv/jwoA9QpaKKACiiigAooooAKQ0jNtGcZpC4UEtwAM80AeffFfWZLbRItItG/0vUXES88gdc/oa6nwzo8eg+HrPT4xxFGAT3JzmvP9OT/AITL4t3N4/zWOjDbFnlWfJB/Q16uowcA8UAO61R1TR7DV7Zre/topom7OoIq+BxTSgJyQDjpmgDy6/8Ahxf6NcNeeEdTltiORaOxKH6DIxTtO+Jd9o86WHizTpbWQHb9pVdyH8B/jXpoiPOWLZ7Gq9/pdpqdq1veW8c8TDGxxxQAyw1az1WBZbO5jlQjIKtn9KtBg5IHUV5pqHwvuNJne+8I6i1hLncbf/lmfaorX4kan4enWx8X6bNCOn2xB+7/AJk0AeqJ06Yp1Zula3p+sWyXFhdx3ETDgqa0N3Gf6UAOopocHoaN4zgc0AOooooAKKKKACiiigCjq2nW2q6dLZ3UYeKUbSCP1ry3RL66+HHiX+w9SkZtEum/0Wc9Iz/dP4D9a9dcZxjr2rC8TeGrXxJo01ndpliMo46o3qKANuORXjVg3ysMqR3FOHzD0NeX+CPEd5o+pP4S19iJozttbhjxIv8Ak16fyXHPSgCSiiigAooooAKKKKACiiigAoNFIaAPLvi4TPdeGrJfvSXpyPoAa9PjGFA9ABXlfi4m++Lvh2y6rETIR6ZQjNeqJx06UAPooooAKKKKACiiigAooooAKKKKACuf8a2A1DwjqEOM4iLj6gZroKr30P2ixuIT0kiZPzGKAOR+Fl8bzwFYBvvQqIj9QBXaivM/hNN9lXWNFc4e0u3IU9lyAK9LTkZ9aAHUUUUAFFB6U3J7mgCtqV9FpthNezttihXex9q84+Fli+o3WqeJbpcyXcxEWeoUZFW/i3qcv9iQ6Fati51VvIA/2Wrr/DulJo+g2lkg2iONQR745/WgDB+JWgtrnhWbygftVoRcRMPVfmx+lW/AGuDX/CNncscTqoSYdww6iumkiWRHjflHXaR6g9a8p8JTN4V+JGp+H5jstr0+fbg9ASTkfkKAPV93APXJ4rk/G/jG28L6ZjHnahL8sFuvJZ+39Pzq54r8U2fhXRjeXRDSBf3UYPLt6YrkPBPhe+1fU28UeJFzcOd1vEeiL1HHTtQBb8BeDpo5X8Ra+fO1e4O4bukSnoB+BFejr04pgUDgcDGOOlPAwKAFooooAKKKKAGO2BXmPw++f4keMpf+nll/8eFelzHbGx9AT+leafDMmTxV4sn6lr58n8qAPURRRRQAUUUUAFFFFADXIGDXM+PddXw/4WurnI8518qMZ6luP610sjbRk/yrynxkW8V/EPTvDMZ3W9ri4uSOmcZX9VoA6D4X6G+j+EYJLgf6Zef6RKT1ywziu2UAH6DFCIiKAq4A6AdqdtHpQAtFFFABRRRQAjDjGOKp3en2t/E0d1CksTDBVlBq7SbR6UAeYat8MDaztqXha/fT7rORHn9231zmoLT4g654alWz8Yaa6Jnb9tiUsh+p4r1UxqTkqD9agurC1vYWhuYI5kYY2yKGH60AUNG8QaXr1qJ9OvI7hCMkKwyv4VqBgADjg9M9a851n4VxJdHUPDd9Npt2DuCKxMbH0xnA/KqEHjvxL4WnFr4r0tpolOPtdsN4x9AKAPWaKxtF8TaVr9uJtOvEmyM7ARvX6jPFapdiRtAI7n0oAkopgbtnP4U4HNAC0UUUAIfWm4Oc9vSn0mBQBxnjzwhH4k04SWzeTqUB3wTL1BHOKreAPGL6xC+kamvkarZnY6t/GOeR+Vd0VBPv2rzrx54VuY7uPxNoS7L+1G51XjzFGMgjp0FAHpFFcv4O8X23ijR0uVJW4T5Joscqw4P8jXTKST146igB1FFFABRRRQAUUUUAFIeQaCaiuJhBbyyt0jQsT7AE0AeX6Xt1r436ndDlLC1RAfQhmBr1ROgry/4VQm+1PxDrg+7dXciIfVQ2R/OvUF6k0AOooooAKKKKACiiigAooooAKKKKACkYZFLSHgZoA8o08nw/8a7uBuItThUjPQtkk/yr1ZDxXlvxThOm6toPiKIZNvcbXx6EYH6mvT7aVZoEkU5VgCDQBLRRRQAjdKjJwMntzUhOBXP+M9bTQPC17fOcMqYQepPH9aAOE0928X/Fqa6b5rPR/wB2h6gvwwP616xgDArh/hZoT6Z4WS6uB/pF6fPfPXPT+ld1xngUANyST2FeW/F63/s2Gw8TQOq3djJk5ON4xjHv3r0fUdQtdLspbu7lEcMalizHH4V5L/Zl/wDFfUp768LQaFAGW2jP/LRvX+VAE/hTSL3x/q8XizXY/wDQ1ANlb5+UjsSPxr1yKMIixqo2qMAelebfCe8lsl1Dwvd4+0aZKUQf9Mxjp+Nemp3Ocg9KADk9eKUdKWigAooooAKKKDQBDc4+zSn0Rv5V5t8JwXvPEkx/i1Bxn8BXo18dthcH0jb+Ved/Bz95p+ty9m1FyPptWgD02iiigAooooAKM0GmdR9KAKes6hFpWlXN/KwCwRM/J7gE4/SuA+Fmny3cWo+KLsH7RqEreXu7Rgkrj86b8V9Skuv7P8L2mWnvZkLgdkDDd+hrv9IsI9K0u1sY8YgjVPyFAGgO9LSCloAKKKKACiiigAooooAKKKKAImGTgrkVDc2sNzE0dyiSREfdK1booA841v4W2kkrXvh+6m0u++8vlMRHn3UYrLg8ZeKfB8i2/ijTmurYcC7t1BP4gZP5163gVDcwR3ERilRXRhghulAGPofirSPEFss1heI4P8DHDA/TrW4p+XJI+orz7WvhZp1xMb/Q3bSNQ6+Zb/KGPvisdPFfi7wXKIvEWntqFipx9qgHOPUknJoA9bzRXOaH4x0XxDCHsbxC5/5Zk4IPp2rfDcA8UASUU0cHGeadQA3nfntTHClGB5B4IqWkPSgDyTxVpF/4K18eKtDQm1kYLd2yjgL/AHgPXk16RoWtWevaXFf2MoeGQZGDnHsfpmrc8EdzbyRTLvSRSjD2NeTFLr4WeJ1KKT4cvZNpA6Qt1J9s0Aew560tVbe6hurdLiCRZIpFBVlOQRVhenFADqKKKACiiigCNsDrXPeOdUGkeD9Ruj/FEYx9WGB/OuhYnPAzXmPxcupLoaToERJN7coWH+yrqaANz4Xad/Z3gPTs8POgmb6kCu0B+bjpVaytY7KyhtYx8kSBRVlegoAdRRRQAUUUUAFFFFABRRRQAUUUUAFIelLSN0+tAHL+PdL/ALX8IXtuFBkC70J7EEH+lVvhnrP9reC7IuSZoU8uX/eya6uSHzY3jflGXaRXl3gd/wDhHfHuteHpTtgml+0W2eOOBj+dAHq27nGKdTAPmPvT6AEPTivKfiLcP4g8V6L4XgyVMvm3OOgXBwD+IFeoXlwlpaS3EhwsaliT7V5h8OIG13xJrPieZSyyyGKDPZcg5/nQB6fBGlrbpEuFRAFFJcXUdtbPPKwSNBlmPAAp0riONnYjC8nPYV5Lr2rX/wAQ9dGgaKzx6TG2Lu5Hc/3f50ARzy3nxU8QeTAZIfD9vJ87j/loVP6jj9a9V0/T7fTbKK0to1jgjXair0xxUGkaPaaNpsNjYoIkjGDgferSxzu6jHT0oA8o8XI/hL4k6X4hi+W0vWFvd4/Fs/oK9VgkDwJIvzBgGz9a5nx54fHiLwrd22MThS8RHUNVf4aa8db8J24lbF3bDy5l9Dk4/QUAdmD7YpaZjgk9acOgoAWiiigAooooAp6kcabeE9PJf/0E1598FBnwxfSf89Lxm/QV3+rHGkXh9IJP/QTXB/BIZ8EB/wC/KW/QUAelUUUUAFFFFACN064qJpFjQu52qOc1KwBGD0rifiZrj6R4TlSA/wClXR8iFR13NnBoA53wbF/wlXxB1PxG4LW1mTBBu9eQ2PxFeqgEEeveuc8BaCugeFbW1IzIy+bI3qW5P866fFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSFQeo6UtFADCu7qM4pssCSoUkVXUjowzUtFAHAeIPhZpWozG80tm0u9HzCW37t75rEh13xn4HzHrVkdU01Ot3Fyyj36CvWW6GoSqyDbLGGXHQ0AYPh7xxoniONWs7xDIeDGSMg10QcE4BzXD6/8ADPSNVla7tA9hfdRLASOfoDiucGpeOPBEgi1C3/tnTF4Eyn94g+gHNAHrm8ZxQWHSuW8PePNE8QgJb3flTj70MwCsD9M10wO5dygEnvQA7ac9eB2rP1nR7XXNKmsL1A8cy4wR0NadNc7Rn8KAPI/C2pXfgHxCPCusOzafI3+g3LdG56fzr1pZQVBBBBGRj0rm/F/ha38VaW9nKdkqjdFOBzG3bB/Gub8B+KbiC9fwvr2Y9TgJEDN/y2T1/lQB6UrhjinVChGNy/l6VNQAUUUUARtw2ePTmvK7U/8ACT/GSa4GWtNMiCgHs5BB/UV6D4l1OPRtBvL6VgBFEzKD64OK4/4R6XJDoU2q3Cn7RqE7yknrtLZH86APRcdqUDHFLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhAry34oWz6Lq2k+LoFz9jkC3AXunJr1OsjxNo8Ou6DdabNwJ0Kg47/5FAFywukvbGG6jO6ORAwP4VYDZyc8HpXnXwq1mWXSrvQr3i80yXy9p6sp5BxXohPynccAelAHC/FTXJNO8MC0gP+k3sghQY5wSAf0NbnhHRk8O+F7CwCkNHEFb1JFcJOx8Y/F1bcMWsdIQMw6guQR/MCtHx34uuWu18MeHD5mpXPEjjkRL/kUAVPF/iO88T6sfCHh6Q7j8t1dL0Uf3c/iDXc+GPDln4Z0pLO1T5jhnY9Wb61U8G+EbXwtpSxL+8unw08zDlmrpfXj6GgB4HcjmkI9KUdKDQBG/zqQenQ15PpBbwZ8WLjS5PlsNYbzoR6PwoH869a2gg+9ed/FnS5W0WDXrUf6TpTicEddq84oA9CBbOSc+tS1j+HdWTWdCsr2Js+bEN3Ofmxz+tbA6UAFFFFABRRRQBma+/l+H7984xA//AKCa4z4Kps+HlkcfeGa6nxfJ5fhXUW/6Yt/KsD4QR7Ph1pfvEDQB3lFFFABSClpp60ADHg+1eS6gx8YfFq109PmtNJBkkP8ACXBBH6GvQ/FGsxaF4evb+VsLFGT169v61ynwp0eS20KXVbwf6ZqUnnMxHIxkAfligD0KNQqAL0HAp1MjBGR27U+gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkwPSlooATaPSmvGkiFHUMp6qwyDT6KAOI8R/DbRtbJnhiayuxysluxj599vWuaW78ceBjsuIhq+nJzlQA6r68ZJr1oqCc0xlDjaV3A9QaAOV8OfEPRPEShI7gW9z3hn+Q/kcE11W7euQQR2PauR8RfDnRNeLTeSbS8/huIDsYH3wOa5Tb468CyYz/bOlrxjpIo9cknP5UAer5ycAZx+VcX8QPB51uwXUdP8A3Or2nzQyDjOOx9am8PfEXRNfAhMjWd0vDRTApz9SBXWiRXxsZXzyCGoA5DwF4yXxDZm0ul8rVLXKTwngnHGR+Wa7UNXmXjnwzd6dfp4r8PApeQEGdFHEiDGfxwP1rq/CvieDxPo63UBAmA/eR91Pv+tAHRZJHBoJ4pvcnpx0qOSRYYGkdsKBkn096APNfinfvqN/pXhe3yZLyQPIB/cBGR+Rr0XTLSOw062tIwAsUapx7AV5n4JibxX421TxTOuYIWMNsDzx0OPxFeqDrxnJ5oAlooooAKKKKACiiigAooooAKKKKACiiigAopCaM0ALUcnb16A+9PzzTSCx+lAHlHiuN/BvxEs/E0QIsr39xd4HAZsAE/TBrvtf1qDTPDN1qjOFiEBdG/vErlQKi8X6DF4j8NXmnS4VnQ+Wx/hbsa+dvEHxAutR8JW3hQbnvIbnynxyGCNtXH4CgDrND1yXw/4ec2kfneItbmZ1VTkojYKk/ma9F8A+C/8AhHbU3moHz9WuRumlbkj2rH+GnguLRLaPVtWkWXUpY1VQxyIlxwB7816N58BX/XKD3OepoAsqMD19adUC3UAH+uSl+1wf89k/OgCaioftcH/PZPzo+1wf89k/OgCaquoWcN/ZS2ky5jmUo30PWn/a4P8AnqtNe7t8AmUYBzmgDzT4X3Mmj6rqnhS8bEltKZbcH+JGyf8ACvUxXknj0/2D4z0jxRakbSwguCO4YgZ/CvULbUra4t4pllXbKgZeexGaALlFQfbLfP8ArVo+1wf89loAnoqH7XB/z2T86T7XB/z1WgDA8euI/BmpMf8Annj86p/CqPZ8NtDyOtqppvxJu4h4E1Ha6klVwM+9S/DmeCD4e6HEZV3JaoCM9DQB19FQfa4P+eq0v2uD/nsn50ATU09aj+1wf89k/Oq15qdra2ss0k6KqKWJz0GKAPOPiTcP4g8R6T4UtjuWSQSXIHZOev6V6ZZ26WlpDbIOI0Cj8K8v+HBXXfEWq+KbpgPNcrBu6heDXqX2mAHPmrk+9AE6jFLUAuoP+eyfnS/a4P8Ansn50ATUVD9rg/57J+dH2uD/AJ7J+dAE1FQ/a4P+eyfnR9rg/wCeyfnQBNRUP2uD/nsn50fa4P8Ansn50ATUVD9rg/57J+dH2uD/AJ7J+dAE1FQ/a4P+eyfnR9rg/wCeyfnQBNRUP2uD/nsn50fa4P8Ansn50ATUVD9rg/57J+dH2uD/AJ7J+dAE1FQ/a4P+eyfnR9rg/wCeyfnQBNRUP2uD/nsn50fa4P8Ansn50ATUVD9rg/57J+dH2uD/AJ7J+dAE1FQ/a4P+eyfnR9rg/wCeyfnQBNTWPQYJzUf2uD/nsn50huYD/wAtloA5fxL8PtC8Rs01xbrHdAfLOoG5TXJG18c+BzutJm1zTk/5Zucuq+2cAV6mLi36CZRQbiA5BmX86AOP0D4j6Hr4FrO5s7s/K1tc/ez39q5fXbC5+H3iE+I9HVm0m5b/AEqBei5P3unq1dp4h8HeHPEUbfaoolnI4lT5WB9eK4O80bxV4Wt5YbO8Gv6LjH2SY/Oo9gB/WgD1bSdTtNZ02G/tJRJBMoZWHXFcd8UtbmtdEXRLE7tQ1RhBEq9QDnmvLvB/xJi8Ga3NZ3cM0WmyfMIH6wn0A69q7DwVdp4/8d3fiV+bTTyI7ZG6jo2f1oA9I8JaFFoHh61sYwAUQF8f3jyf1rb/AIqRMAAKOKdn07UALRTS6rjLYzQWIGcE/SgB1FN39yCBSggjIoAWiiigAooooAKKKKACiiigCMnHI6UhPPPT1zWP4rBXw3fukxheKFnVgccgV4P8PNY8ReKNdvba51SYWkEbsWViMcHHfpkUAfSQ55649DQTyMGvnvwB491uL4itoFzdNfWTTNEsmDxjPNfQcfIOR3oAZPH50bx5xkEfpXzB4u+FV/4c1oapcuG0yS7VmdG+ZVZuenTFfUuKzNY0i21jS7ixuIw6SoR05B7GgDgrL4VaDqFlDcQahfPBKoZSLl8cj/eqx/wprRc/8ft//wCBD/8AxVUfh/q8/h7XLnwbqjY8o+ZaOejKT0z7AV6nuOPQ9SKAPO/+FNaL/wA/t/8A+BD/APxVH/CmtF/5/b//AMCH/wDiq9FQ7hk0+gDzf/hTWi/8/t//AOBD/wDxVH/CmtF/5/b/AP8AAh//AIqvSKKAPN/+FNaL/wA/t/8A+BD/APxVH/CndGT/AJfL8g8H/SH/APiq9IpCKAPJtX+DOlSaZcql3eySiNmjWSVmXcASOprn/h54D0rxBpMqXt7fLfWsrwugncYCnHAzXvG0c8da8lf/AIon4sFhxYaum0egcZJ/nQBor8HNFHH22/8AQ/6Q/wD8VT/+FNaL/wA/t/8A+BD/APxVeiryT9afigDzf/hTWi/8/t//AOBD/wDxVH/Cm9FA/wCP2/8A/Ah//iq9IooA8O8ffDTStF8I3d3Dd3rPGV4eZmByfQnFX/C3wo0i+8NafcSXl8ryxBiFmdQPoAa6b4vNj4e3qj+KSIf+Piuh8Ips8J6YuOkAFAHI/wDCm9F/5/r/AP8AAh//AIql/wCFNaL/AM/t/wD+BD//ABVekYprcDigDzn/AIU3ov8Az+3/AP4EP/8AFVxPxB8EaboNjb2lleXj3l7KIlVpmYAZHJBNe9M2BuyAozmvJ7BT4x+LNxen95Y6SoRR/CWyQfr1FAFjTvgxo8NhCj3l2jY+YJM6jP4Grf8AwprRf+f2/wD/AAIf/wCKr0UL8/Tj3p9AHnH/AAprRf8An9v/APwIf/4qj/hTWi/8/t//AOBD/wDxVekUUAeb/wDCmtF/5/b/AP8AAh//AIqj/hTWi/8AP7f/APgQ/wD8VXpFFAHm/wDwprRf+f2//wDAh/8A4qj/AIU1ov8Az+3/AP4EP/8AFV6RRQB5v/wprRf+f2//APAh/wD4qj/hTWi/8/t//wCBD/8AxVekUUAeb/8ACmtF/wCf2/8A/Ah//iqP+FNaL/z+3/8A4EP/APFV6RRQB5v/AMKa0X/n9v8A/wACH/8AiqP+FNaL/wA/t/8A+BD/APxVekUUAeb/APCmtF/5/b//AMCH/wDiqP8AhTWi/wDP7f8A/gQ//wAVXpFFAHm//CmtF/5/b/8A8CH/APiqP+FNaL/z+3//AIEP/wDFV6RRQB5v/wAKa0X/AJ/b/wD8CH/+Ko/4U1ov/P7f/wDgQ/8A8VXpFFAHm/8AwprRf+f2/wD/AAIf/wCKo/4U1ov/AD+3/wD4EP8A/FV6RRQB5v8A8Ka0X/n9v/8AwIf/AOKo/wCFNaL/AM/t/wD+BD//ABVekUUAeb/8Ka0X/n9v/wDwIf8A+Ko/4U1ov/P7f/8AgQ//AMVXpFFAHm//AAprRf8An9v/APwIf/4qj/hTWi/8/t//AOBD/wDxVekUUAeb/wDCmtF/5/b/AP8AAh//AIqj/hTei/8AP7f/APgQ/wD8VXpFFAHmx+DmjAHF9qA+lw//AMVTT8H9GCZF1fu3f/SHyf8Ax6vSiODWVrusW+g6PNfXDBRGh2g9z6UAeA/EP4c6VYalYaXobPPqtzLgrI5bAxnnJr034WeBLnwTplwt7OJLi4cOyL0XjGP0qn8ONHn1rUZ/GOqx/vbr/j3Rh/q14x/WvUQgBJAwScmgBvt0JqK4uYrWB5Z5FjiQEszHHFTEANnvXh3x98T3NhaWujW0rIJiWlZTgkYGBxQB0D/Fr+19f/snwtpv9oSI2GklykY+rc4FJ4u+Ifinwj9mlvfD9q8MrBMxXBfB98Ck+CfhyHSvB8d/JF/pN0xbft5KYGB+pr0HVdDsdbiiiv4t6xv5ijPegC3ZyPNaRSyIqF0DEbs9RmrCHI6YpscaxoEUYCgAfyqSgAooooAKKKKACiiigAoNFIaAPNfjVrDaZ4CnjVm82Z1T5TgkHNeO+FtL8Q6d8O73WtIkgENyxSYBcSFQecH8a6/41Wuv+JdTtbHTtJupYbcHe4xgk9Km1WfVrL4cQeGtG0C9a4kQCVgBgHA3d/WgCX4Gw+GrpJZ7aOVdYjA80SnPHr09zXuEYO3kc15B8GPAN/4ZiutS1ON4bm6QJ5bDsDkV7AhyKAHGoXHIx94GpqKAPP8A4j+F5tSs4tW0sBNRsGEiMOrDjIP4Vq+CPFUPifQ1mJxdRAJOncN34rqJFDIVIBBGMHvXkXiWyuvAPihfE+mRs2mXLBbyH+5/tfnigD15c45NOqjpuoW2p6fFe20wlhlXcrA9atgnnHIoAfRSDpS0AFFFFAAa4H4p6I+peGheWv8Ax9WUgmjYdQAQT/Ku+qtdWqXNrJbyfckUqaAMbwZrq+IPDNnfg5d0HmD0bvXQ5968q8A3B8OeMtX8LznbGWM9sD3BPGPyr1MYGcduDQA/rRTVGOKdQB558YnI8GbP788Y/wDHhXYaAgj0KyQdFiArifjM4Hhi0Tu10gH/AH0K77To/KsIEPZaALdIenv2paa/SgDmPHevDw/4Uu7r+J18pB33NwP51n/DTQm0nwtDJKubq7/fSsevzAH/ABrn/GLP4r+IWn+G4mDWtri4uMe2CAfyNeqwxrFGEQYVRgDHSgByZxz1p1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVE/+yxB/wA8UAPdlVSzHCgZJNeQ6tcz/EfxpHo9mxGkae4e4lHRm9PzFa/xE8TzpInhvRgZdSuiFdVPKIcZNdH4P8NQeGNGitFQtOw3TS92bv8ArQB0Frbw2tukEChY0ACqO1TUxOeR0NPoAYeK8I+Pnhy9uo7XVbeMyRxAhwOuCBXvOOajngjuIjHIoZCMFT0IoA84+HPjjR5PBVpbzXKwyWUASRWBB4Hpius0DxHH4gnlks4HNonAmYY3H2FQ/wDCBeFw5k/sW28wnJYA5/nW/bwwwRLDAipGowFUYAoAmFLQKKACiiigAooooAKKKKACgjNFFAERiDMSQOevFAhTH3V/KpaKAGbADkdcYpyjFLRQAUUUUAIwyPT3qnf2EGpWEtncoJIpF2tkZq4TgU3B6rQB5Fo91cfDXxP/AGRfOW0O7f8A0eVv+WRzjH8/zr1lJhLCkkZDK2CCvIIrJ8TeG7LxRpEun3keAykLIOqn1zXDeEPEl54V1c+FfETYG4/Y7k9GX0J/KgD1XpQCD0pgfKBhhgfQ0o4xigB9FFFABTD1xT6Z0Y570AeW/E2yk0rVtK8V2oIkt5As5HdOg/U16TZXUd9ZQ3MRzHMgYH1ql4k0iPWvD93YSj5XjOPw5rkfhRq0r6VPoV2T9q01/KO7qQOc/rQB6MvSlpq8cU6gDy/4zknSdJj9b1P/AEJa9MT5Y1x2FeZfGPmPQY/797/Laa9OxhMDtQAu8YzVHWNRi0vSbi9lOEiQsfwGf6VcIBbOORXmvxT1SS4/s/wzbZM9/KpcL1VMgH+dADfhVp0t5/aPia6GZr2Vkjz12KTj9DXp4xWdo+mx6VpFtYRABYY1UkcZOOTWkOaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApCdozS01u2BQAbxz6AZrlfG3i638M6U/Ie/lGLeEdWbtVzxR4lsvCukyXt43A4jjB+Z29K4rwd4bvPEmsnxb4gjYsTm1gY8Ivrj8BQBpfD3wncWYbXtY/eard/O27ny1OSAPwP6V6AEIGN3fNNU7UwOSOMVLQAgGO1LRRQAnNGKWigBMUAYpaKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKMUUUAMcE7cetc14v8JWvijTJLdxsuF+aGVTgqR7/lXTN6HpTMH7pH0NAHmfgvxbeaVqh8L+JSI7uP8A1MxG1XXtye/SvS1k3EY+72PrXM+MfB1l4qsQk6iK4j+aC5X7yMP17CuW8KeMNR0PU/8AhGfFuVnQ7be6bhZR25P4fnQB6pk56UDOTUayBwGRtyt0NSCgBaMUlLQAhUGvJdXH/CH/ABVtNSX5bLV/3cxPQMT1/SvWm6VxnxL0Fta8J3H2cf6Xbr5kBHZv8mgDsYmDIGB4IBp9ct8P9dGveFLa4LZmQeXKM8hhx/SuooA8v+Lg33/heL+9eMT+AWvT88GvMPiYfN8W+FIf+niQkf8AARXpx+9igBjMEG92AQDnNeVeD428XfELUvEUozbWZNvDn1I5/UV0fxP15tH8HTrbti6u8ww46hjnB/StDwJoK6F4XtbcgiWRfMkJ6knn+tAHRqG2nJ5BxUo6Uwnk04cDk0ALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSHpS00nigBu9uwyfSsrxD4isfDmlyX1/MI1UfKnVmPoB3qHxJ4nsPDWmvdXsoXIxHHj5mbsMVwGgeHdS8fakviHxNG0VijZtbJxx9SPoRQAeHtD1Hx5rS+JfEMbxWCtutLPpxjq1esxRokSogAVRgBRgU1YVjiCIgwBgD0HpUqAhRnrQAbBuDelOoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKDzQBGW+cjp6Vz/ijwpYeJrDybuPEygmOYD5lOOD/KuhK5PIzRtOeelAHkmjeJtU8Aaiug+KmaSwJ22+odsdga9St7mO5tknjkUxyLuDryKr6vodjrmnyWd9AssTjGCMkfSvMZrfX/AIYXnmW6S6j4fY7mTJZ4h6AY/rQB68pPGefcVJWHoHiPTvEdit1p9ykqkfMnQqfTHatncFHX86AHHpULqHiZW5JBGKlJBHHP0pu1s5IGfWgDyfwpIfCfxG1Lw5IdtveEzW5PAJAHT869YPIwexrzX4r6dJapp/ia1T9/p8qlyOvl9W/lXeaRqEeqaVbXcTbkmjVx9SM0Aee+O/3vxI8MRekjn/x2vUTySfavLfFTed8YfD0AHK7j/wCOGu68TaxHoXh691CQj90hKj1P+TQBwGpN/wAJj8V7SyXBsdI+eUdQzggj9DXq8YAXGMAcAV558J9DkttCl1q6BN3qj+exbqo6AfoK9EXp70AOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiik3DFAC0Um4YzTXkVFLMcKBkmgBp3Akq2fauW8XeOLDwrb7WImvX4jtV5ZielYnir4iN9s/sbwzF9s1JztLj7ifU1P4U+Hos7kavr0hvtVkO4lzuWP2Hb9KAMvw94M1DxFqI8Q+LXZpGO6CzblYx/nFeoxRrGgRVCqBgAdKcE+Xbxx0pQuDx09KAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAGKhnijlRo5EVww+6wyDU1IRmgDy3XvAF5pOpNrnhK4a3uF+Z7UtiN/oM4z+FaPhn4lW2oSjTtagbT9RX5THMMBj+Nd/sXBHY1zfibwVpHieE/aoAlwOUuEwHU/WgDo0YOFKkcjPBqTrXj0V74s+HE3l3qPq+kBuJE+8g/HmvQfD/jDSfEUCvZ3SeYesTHDA0AaGt6dHq2kXVjKoKTRlDntXn/wp1CW2GpeGrxiLiymJjDdShJx+gr0wsep6V5T4u/4pT4kab4hQbbW6xBOccZOFU/rQBLrR8z45aPGOscO4/ipqP4l3M2u+IdJ8I2hOJ5A9wQei4PX8RUOrXkafGqG6LDyo7BZN3oNrHJ/Krfw5t28Q+JtZ8WzjMc0hitj2CZyCPzoA9Ks7aO0tIoYlCoigAAcVYUYFG3Ix2pQMUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSE0ALRTAWA5wT7Ubj3GKAHmmE46DOainuo7eNpJnWONRksx4rzzXPicJbltM8MWsmoXzfKHUYVPc560AdrrWvafoVo099cpGo7Z5P4V5nLq/iT4lT+RpkMun6ED887Ao8g9u9aGjfDq61S7XVPF1wLqcnctspxGv1BzmvS7a1gtIFht4lijUYCqMAUAYPhnwfpvhezEdrGrzfxTOMuT3OTzXQIQG2jP1NPCjr3oCjGKAFFLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUfJJHFSUYFAETLuG2Rdwbg1wWv8Awwsby4bUNEkOlal186LgMfevQqMUAeSR+LvFXg6VbfxLZSXlkDj7anP51q+IdQ0Xx/4MuY7C8iaZV82NScMGTnHPvXoFxBDcRmOeNHRhghhmvPvEvww068jnu9HL6ffAEgxkgMfegDwq68RX+peJ4YIwxu5LaGykPcFTg/1r6f8ACmjx+H/DdlpkagfZ0CMR3I718qaZpuv6R40FyNOnuriCcl0VMlhnk4xivozRfihoGpSC2nmNhdDGYbjCkH060Ad3S1BFcRXEayQyB42HDL0p/JPIFAElFM9jTh04oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAo/GmE9ck4pM4HzDjtQBJTT9axdX8UaRokbPqF/bxBR0L81xF18ULzV3Nv4W0i4u5Dx5zoRGPcEdaAPS5riG3ieSVxGijJLcVwWufFSwtJjY6LC+q3zHascPOD75xWXB4D8SeJ5VuPFWryRw5z9kiPy49+Aa7zRPC2kaBD5Wn2aR/7RGSfzoA4OLwh4p8ZuJ/FF6bS0JyLKLg49DnNd/onhzTPD1otvp1qkYHVvX61rDCAAU+gBqnk/06U4UuMUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAE4FN3rjOaG6dM1ka14g03w9ZfatTuVhhA5yMk/QUAajspHPIHPFGVbkHJx0riNN+I1trIkOmWNzPGi584xMob6cU/w38RLHxFr8mlQWssNygO8P2x+FAHXDT7YTNL5EO8j73ljP51ja14H0LXo9l5YoCOjxfI35jk10Y5GaCMigDyyX4aaxokrXHhfXZ4mH3YJ/nU/wDfRqIeLPHfh87NX0NLxB96W3YsT+AHFerY44xmmOF2kMuPcCgDhNN+LXh+6YR3n2iwm7rcRbBn6nFddZ+IdIvwv2XUrWYsOAkgJ/Sq+oeGtF1WM/a9NtpSertEuf1Fcpe/CPQZd0llNdWUh5DQSlMfQCgD0UHIyDxQDmvKP+FeeLdNO/SvFcjKv3Y7hWcn8SaeJvirpo2+RZ30Y9FVCfzNAHqtJketeX/8J94t0/i+8Iyse5jnUj9BSD4weWcXPh6/iPfajP8AyFAHqWaTPNebL8ZNFAHmWd+h75tXH9KmX4x+GMZf7av/AG7P/wDE0Aehkgd6Nw+tee/8Lj8LN0a7P/brJ/hUb/GPw6D8qXp9vsj8/pQB6Nn60Z5715lJ8Y7Jv+PfR9Qm9P3Lj+lRf8LU1K5IW08JXrk/dLybM/mKAPUiQO4o3f5NeXP4h+JN8QbHw9DbIehllRiKjOg/ErWTi91m1sEPVY4sn8waAPT5ry2tl3Tzxxj1ZgK57U/iD4Z0vPnapBIR1WFw7fkDXKRfCaS4cHV9fvrnPVY5mUflk10WmfDXwxpbh4tOWVx/FNhyfrkUAc9dfFia9lMXh3Qry83HiSWN0X88GoRpvxE8Tt/pt1BpVo/8MLK7AfTANemQ2NvaIFtoYYVHZEAqwDz1JoA4DSvhNpFrOtxqE9xqFyOS0znH/fOSK7i1061sohFbW8USjpsQCrdFADCDxxk0bT3NPooAaAfTFOoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooArahcrZWM1y+NsaFua+WJdX1L4o/EK3srhi1mJ8LGOgUetfUOswNc6PdQqu5njIA9a+avg7GNJ+JUtpffu58FAG4IbdQB9F2MWnaJp8NjC8ECwp/qywXjv+tZmmeHtNg8WXuu2rxNLcIq7UYcYBz+pryX9oO7tVv7C2jC/aHQuzgncoDYwOcc133wk8ODR/B9rcSxbby4JkLSE5Knkd/Q0Aejr0paQfnS0AJgUYpaKAExRgDpS0UAJijaM5xzS0UAJt4pNgxjpTqKAKcml2UpJktonY9SVqFvD+kuMNp8B+qVpUUAZa+G9GU5Gm24/4BUq6JpinK2MIPstX6KAIY7WCL7kSr9BUu1R0AFLRQAgAHQCk2j0p1FACY96NoxjrS0UANCDvS7aWigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBGGVNcfrXw80XWdRj1PyPIvo2z5seQa7A9qgycHnvQBw+ofCjQdXvkutRaS5kj6b8/57V2lrZxWdrFb26bIYlCqM9gMf0qfsKjkOJEoAsCloFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q=='] Multimodal Competition False Theorem proof Geometry Math Chinese 65 " 如图,已知锐角 $\triangle A B C$ 满足 $A B>A C, O 、 H$ 分别为 $\triangle A B C$ 的外心、垂心,直线 $B H$ 与 $A C$ 交于点 $B_{1}$,直线 $C H$ 与 $A B$ 交于点 $C_{1}$. 若 $O H / / B_{1} C_{1}$, 证明: $\cos 2 B+\cos 2 C+1$ $=0$." ['联结 $A O 、 A H$.\n\n因为 $A 、 B_{1} 、 H 、 C_{1}$ 四点共圆, 且 $O H / / B_{1} C_{1}$, 所以, $\\angle O H C_{1}=\\angle H C_{1} B_{1}=\\angle H A B_{1}$ $=90^{\\circ}-\\angle A C B$.\n\n又因为 $B 、 C 、 B_{1} 、 C_{1}$ 四点共圆, 所以,\n\n$\\angle A H C_{1}=\\angle A B_{1} C_{1}=\\angle A B C$\n\n故 $\\angle A H O=\\angle O H C_{1}+\\angle A H C_{1}=90^{\\circ}-\\angle A C B+\\angle A B C$\n\n由 $\\angle O A B=\\angle C A H=90^{\\circ}-\\angle A C B$, 知\n\n$\\angle O A H=\\angle B A C-\\angle O A B-\\angle C A H=\\angle B A C-2\\left(90^{\\circ}-\\angle A C B\\right)$\n\n$=\\angle A C B-\\angle A B C$.\n\n则 $\\angle A H O+\\angle O A H=90^{\\circ}$.\n\n从而, $\\angle A O H=90^{\\circ}$.\n\n设 $\\triangle A B C$ 的外接圆半径为 $R$. 则\n\n$A H=2 R \\cos A$.\n\n由 $A O=A H \\cos \\angle O A H$, 知\n\n$R=2 R \\cos A \\cdot \\cos (C-B)$\n\n$\\Rightarrow 2 \\cos A \\cdot \\cos (C-B)=1$\n\n$\\Rightarrow \\cos (A+C-B)+\\cos (A-C+B)=1$\n\n$\\Rightarrow \\cos 2 B+\\cos 2 C+1=0$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIATYBQQMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKRgSODQAtFcxoXjjR9f8T6toGni5a40slZ5GjCxlgdrKpzk4OR0A44yOa6egAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5P4h+KT4W8MSSWu19WvHFpp8Pd5nOARwR8ud3OAcAZG4V1bHAH1ryPVvDWs/EHx9Lruk+I20i18PzGxtHWF3LTrgzNsYqu0lvLJyQwTBBFAHGfAiyuNG+LGv6RcTK0lrZzwzeWxKM8c8aZGcZ74JHevpCvnr4b21x4a+P2s6Zrl/FcapdW0oM0SELNK5jnPAACnYGOOgIwO1fQa9SP6UAOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo6UAQXsDXNlPbrPLA0sbIJoSA8eRjcpIIyOoyDWN4S8KWPg3QE0bTZbiS3SRn3TlS+WOTyoXP16/lWnq+q2OiaVcalqV1HbWduu+WV+ij6dSSeABySQBzXzRe/FvxBqPxDsNegubux0EXot4rdnKQyRKRvEg5QvtcFjyV3LjopoA9ltfhVp1v4yi8WtrWsT6usm9pJXgKuNuwqQIh8pTK8YwDxjAI71Bjj+lCdB16fnTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkbketDZxxXl3xa+JbeE7SPSdFYyeILwYj2hX+zrkfMVIOWbooxjkk9ACAcr43v9R+LPjweA9EmW203THaS/lmj/5aRuUZgM5YKGAVeMljngBh2HxK8B2lz8KZ9L0a2S1TSQL22giyFcxq24HglmKl+epbBJ61rfDDwWng7wyFmkabU78i5vZnTDbyB8nIyQvPXnJY4G7A7OaNJYmjkRXRgVZWGQQeoIoA4r4SeJX8UfD2wurmfzr62zaXTHdkunQsWyWYoUYnJGWPToO4rwr4QWo8IfFTxZ4Rk3ou0SQeayMzojZjJK4yxjmDYA9c4xivdc8470AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVS1fVbDRNLn1LU7mO2s7dd8kr9APp3JOAAOSSAMnFAGH8QvGEHgnwjcaq+GuWPk2iFCweYglQ2Oi4Uk8jgHByRXnnwd8HahqeoyfETxQ91Lql0zNZecdu5GXBlwOxU7VXgBRkDBXGF4f0rXvjB4+i8Sa3ZTf8InBI7W8MzssZUDaqIM8ksqlyMAlWGRwK+h1GDjBxigAXOc0rdKWkPSgDxL4wzyeFPHfhLxrbGUvCzW06KVIMSnO0Ajgsskwz2wMYIyfY9OvrfU7G3v7SXzba5iWeF9pXcjDKnBweR6iuR+LPhiTxR8PdQtra386+tsXdso3E705YKqglmZC6gYIyw6dRD8GdbXWvhlpeZhJPZBrKYBSNhQ/IOev7sxnI9fwAB39FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTXGVwPWgAbkcV89eKLrUfjT4+Tw/ogkj8P6TMftV2JA0T84MvHykkBhGMnIJPygtjf+LHjSTV7lfh34cKz6nfyCK7k3lBCvD7AeASR97qAAQQSTjufhx4Kh8DeFYdNPlSX0n728uIwQJJD2GecKMKOBnGcAk0AdBouk2Wg6Ra6Xp0Cw2lrGEjQDH1J9STkk9yST1q/RRQAUUUUAI3SvCPAeoQ+CPjNrfgi3Nw+lXkm+2iCOfIkEe8Dls7dhKlsEtsQ5Ar3c1458b/AA4bSwtPHWlA22raVNF5kysCDHuwpKsCGKuVA46Mc5GMAHsSnOadWL4U8Q2/irwzp+t2y7Y7uEOUyT5bgkOmSBnawIzjnGehFbVABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB0oyPWkbt69q8+8SfEltO8Y2/g/QtK/tXXZ0yRJcLDFD8hf5iQSSFG4jjjGCScUAehZzRXm9x4+17w1reg6J4q0aye41eYQw3ul3TGEsXC48t1DLtDpnkg5yD1A9HFAC0UUUAFcN8VfG7+B/CLXdoY21O5lWG1VwGAPVnIyDgKDzz8xXIwa6bxBrNp4e0G91e9cLb2cTSsNwUtgcKCeNxOAB3JA714p4J8P3fxX8bXPjrxNpxXRo8JY2kjlo3K8BQD95F+Yt0UuTwRuUAHT/AAm8CpbWq+NdYK3mvavm8EjKAsCS5bKAcBmDZJxwDtAHzZ9VUYoXI7cfSnUAFFFFABRRRQAVh+MNCHibwhqmjbYjJdW7JF5pwqyYyjEgEgBgp4B6VuU1hkfjQB41+zrqU8vhzWNHuJHL6fdhljk3bolkB+XngDcjnA6EsT1r2fNeD3Oz4fftGQTRwZsfEiCNgqlmR5nAOCWxnzkDH0VjgZxXuqZyc0APooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDjfil4muvCXgG+1Kw2i9JSGBmQOEZzgsQeDgZIzkZxkEZrivgBo0f9hal4ou3M+pahdNG08jb3CLyfmI3ZZmJbk52qe1a3x+tnn+GTyKZQILyGRtmcEHK/N7ZYfjir3wTjRPhHozKqguZ2YgYyfPkGT68AflQB1mp+HNJ1q90+81CyWe506Yz2kjMwMT5ByMEZ5A4ORwK1h161xPhn4h2fivxjrOi6akUlrpqBlvo5N63DHAOBgcA7hkE7sAg4NaukeMNJ1fxRq/h62kcX2lbPNEm1RJu6lBnJCnAY4ABI65oA6Korm4htraW4nmSGCJS8kruFVFAySSeAB3PapGzjjrXhvxS8TXHjDxBD8NfDYtria4kX7XcGYhUdCWaNuP4QoZsFjkYA3DFAGXq9zqXxo+I0WmaZvk8JaTcRm4bzBGjDJDScZJZgGVOuBz8uWNe96ZptnpFjDYafaxWtpCu2OKJQqrzk8DuSSSe5571k+CfCNl4J8Nw6PZO0u0mSadhgzSHGWI7dAAOwAGT1PRUAFFFFABRRRQAUUUUAFI3SlooA8Y/aF8NfbvC9p4giiczadMI5iGUAQycEnPJIcIBg8bjx3HpfhDWk8ReE9K1dZFdrq2R5NpyFkxh16DkMGB+lX9Y02HWdFvtLuGkWC8t5LeRoyAwV1KkjPfB9K8d/Z/154l1nwfeTBp7GVp7cbmYbN22QKTwFDbSBwSZGPrQB7fRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEVzbxXVtLbzxJNDKpSSORQyupGCCDwQR2PWvP7z4N+Hrm7me2vNY021mk8ySwsbvy7dm5ydhBxncwwCAAcDFei0UAc74b8EeHvB7XLaFpwtDdbRN+9kk3Bc4++xx949MVwvw+msV+M/j6CQRf2g7xvASnzeUCRJhscDLRZGeTg4449bYZxXDa6vhb4bWms+MU02CPULs/OfMIe6lJJCLnO3JyzbR/Dkg4oAzfi38S/+EI0xLHTGjOuXa7otwyIIzkeaR0JyCADxnnkKQT4Q/D6LwroA1K/S3n1jUAJWuFBLRRMARGGP4kkAZJxztBryq18B+L/AIraTqPi6+vHN+MLZW88PlpcIADtjYkBV5ODjBY8kHcRznhj4geO9BvRpWmXd9cy8W66fPG1wU2ZAREOWXHI2rjpyOKAPsJSc4NOrw3w98f40k+yeMtJnsblnXE1pCdgQk5Lox3AAYOV3E84AIGfWtE8TaF4hUPpGr2d7mMSlIZlLorcgsn3lPsQCO/NAGxRRmkBBAIIIPQ0ALRRketFABRRRQAUUUUAI3TrivBZ7H/hA/2jrO6EHk6XrrFYzGHYF5QFYZIxnzsMQCQFZegIA96Oe1eTfH/QYL/wGurtCzXGmTKUcOQFSRgrArnBydnTngc4zkA9YQjpTq5nwD4jXxZ4L0zWMkzyw7LgHAIlQ7X4GcAsCR7EcCumoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooprHjtQBX1G9g03Tbm+upBHbW0TzSvtLbUUEk4HJ4HQV8+2VjqHxx+Ip1WaO5j8Iae4VY7h9vG0ExLt/jcjLEHKqRluEB0PiX4hu/iVr1l4H8GTpeWxHnX1xDIfKJB/jYDHlpw2QSGZlABYAV7H4V0CDwv4a0/RLY7ktIAjOFK+Y/VnwScbmLNjPGaANbGOg715l8UPhHB43C6npjwWeuLtV5JMiO4QcfPgEhgOjYPA2njBX1CkYZFAHiPhHxpY6kB4B+JllH/AGtaOUSbUlV0kYA7csekm1jtf+IchiWG5/ib9njSb6X7R4dv30wn71tMDNFnCj5WJ3r0YnJbJPGAK6z4h/DGw8Z2rXlqwsfEEIDW16CVDEchXx2/2gNwwDyBtPH/AA/+IWseGtYm8K/Ee5ktJgivZ3d91IyQVaQcMpwSHJxkMCegABQjvfiv8MLq4n1GKfxHoEbkvI0pl+XaGLhuZIwApzuBQHPHINbui/tC+GL6WOLVbK80tnHzylRNEvGeSvzHngYU9ewzXr56ccDPauZ1P4d+ENZmmmvfD1g80xYySJH5bMzHLMWXB3ZP3utAG3pmrabq8D3Om6ha3sCtsaW2mWRVbqVJUnnBHHuKvZrxTUfgZd6TqM2qeBfEdzpVwQAtvKzBTl8lfNU7tmAPlKtnbyTnjMl1D42+DLuRZ7ZfEFssYVWWD7QhyQQw2bZNwJI59+oAIAPfcj1FLXlHhP47+GdYtlTWZDpF8AA4lBeFjz9xwOmBk7sYLADd1r0fSdZ0zXLT7Xpd/bXtuDsMkEocK2Adpx0OCODzyKANCiiigArO17TBrXh7UtLMvki9tZbfzdu7ZvQruxkZxnOMitGmvkLxxQB4x+z/AKjLZW2v+EdQVYb/AE67MhjacM3PyOoUdlZBlgSMyDpxn2mvn/xbLceA/j9pmrWcEdrZax5a3LCJvLkDvtm6cFx8rnHcqTnJz76nWgB9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjHA/wrzn4tfEGDwb4dktLO6Ua7ex4tUUZMSk4aUjI2gAHaefm7EBq6fxp4ssfBnhq41e++bb8kEO7aZpSCVQHBxnHJ7AE15R8MvDGo+OvEzfEjxPJFKplYWdqIgUZl+TOGBwiY+UZJ3DJOR8wB2/wv+GkXw/s7iSa7+2aleIguHCgJHtydqcbiMscknnAOBXoFNQEdc/4U6gAooooAD0rjfiB8PtP8faVFbXU8lpcWzF7e6RQ2wkYIKnqpwCRkfdHPWuyzjrSHBGOue1AHgWn+M/E3wk1my8L+KkW68PeYyWuosjGQQZ2gqVJyF67DllDYBxtFe8W08NzBHc28scsEqB0ljYMrqRkEEcEY5/Gs7xDoFh4n0S50nUojJbzpgsMb4z2dSQQGHUH2rwTT/wDhKPgLr4OoxHUPC99Ntd4ejEdGUH7koXnaThgCMnbuUA+kqQ1m6FrmmeItOj1HSb2G6t3ABaJwdhIDbWH8LAMMg4I71p5oA47xZ8M/DHjPdLqVj5V6cf6da4jnP3RycEPwoX5gcAnGK85vfgXrPh64bUfBHieeC5A2+XM5hdkzu2+YnDchflK7TjJIwBXu9IenrQB4BcfGLx14LuorLxj4XgYhFRZVzD5xC8sJF3Ix+ZSdgwMkYHQeh+FPi94R8WXQtbe8ksbxm2R29+qxNKSVA2kMVYksAFzu4PGOa7iSNZY2SRA6Mu1lYfeHcHtzXA+Lfg74W8UxvLHaLpeobTturFAgJ+b78f3W5bJ6McAbgKAPQ8j1pDz0r52ufhZ8TvC13u8Ma/Ne20XlmNUujCWC4wrROxQgZPBYgj64rU0f48Xmk6hLpPjvQ5ra7hbY0tshVlOFxujY9wS25TyCML3oA3fj14Zk1nwTHqlrB5lzpMvmsQXJEDDEmFHBwdjEnoqE57Ht/A/iL/hLPB+ma4YjE91F+8TGAsisUfAyfl3K2O+MZrDtfiD4Q8baVe6ZY6zaJdXURtltr39yXaQFVAD/AH8+i56jI5Arg/2fdQutL1jxD4P1APHPA5nWHClY3RhFNlx1OfLHUj5T07gHvLdK5LXviT4U8L6o+na1qclpdKqvte0mO5SOCGVCGHUZB6gjsa6xuRwa+dfiBOPEf7Q+jaNcJB9msZbWJkuZQY5lJEz8EYyyvs287iAO+AAes6V8VfBOt6lDp9hrsT3UzBY0lhkiDE8AAuoBJJAAzk5rsV59fxr52+MwstY8W+HNA8IxQTavBJN5iaeEBSQuuAWX7rKY3Jzjb1OK+iV444xjsKAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUcssccTSPIqooLMxOAAOpzTmIxXg3xf8AE9x4u8RWPw68OSLM0tyovZY2cgSgkeW+0Y2J99+GwVHQoRQBRW7v/jZ8SZNOmNyvhLTZHkMcDgLwCqMzAYLOwyB2UuFPBJ+grW3htYI7e3hSGCJAkcaLtVFAwAoHAAA6Vj+DvDFn4Q8N2mkWccS+UgM8iLjzpsDdIepyT6ngYAwABW/QAUUUUAFFFFADZGVY2ZiAoHJJwBXnF18Vkv8AWf7J8GaJceJrlM/aJYZRBbxY3ceayledpwfunIwxPFX/AIueKI/C/wAPr2QxyvNqAawgMThdjyI3zk9QAATxznA4zkZHwK8Pf2N8PIr6WLbc6pK1yS8OxxGPljXPVlwC6npiQ49SAbHhP4kWeu69c+HNT0+fRfEVvnzLG5cMHxk/u3H3/lw3QcHK7gC1dZq2l2OuaXcaZqNtHc2lwu2SJ+hHY+oIIyCOQRkYIr568YX08n7Tempb28SSW95ZQloYvmlVgjMz9cnDlc9lVfStX9pE6j5WhoElGlAyFnGdhmwMBu27aDtyO7decAGHqWleJfgb4uOqaV5t34cumG8c7JIwf9VKcHZIMna/fJI6so9+8LeJ9K8XaNDqmk3IlhdQHRiPMhfujr/CR+R6jIwa+cvhb8ULXwzaz+HvEiS3ehXTbVDASJbBs78oQdyNkEgHjBIUljma9kl8CXk3i34Z63He+Hp3QXdtgv8AZfnOxJ0b5wrEMFc7WwSM5ILAH1FmiuX8DeONK8daN9v05zHNHhLm0dh5kDnpnHUHkhh19iCB1GR60AFFGaiuZ4ba2lnuJY4oIkLySSMFVFAySSeAAB1oAkbkcDNUNS0jTtZtxb6np9pfwhg4juYVkUNgjcAwIzgkZ96878QfHfwho8rwWbXOqzKxUtaoBECDgje2MjuCoYEd+a4y81P4hfGuzktNN02DSPDrEOXmZtk+CMAybcyYdG+4oAPDZwDQA74jeBPhfo2nXMltrQ0vUosiO0t5/tJaTrtaMksM7SMkqoJGT2ryjwR4gfwt4y0vWIxCfIlw4n3hAjAoxJUFuFYkYB5HQ9D714S+AGh6UouPEUravdAnbEpMcCDIwcD5mPB6nGGxtOM1ufFzwpFq/wAMLq3tVS2GkKL23iX5IwsSEFcAHjyy4AGOQvIGaAO8jureSyW8juIXtXjEqzLINhQjIYMOCuOc183fD/wbonxI8ceLL3Vb37TAlw80Qt1aDzvNlc+aASWVQB905xvGTxz33gG61LxL8B0sfDt7BbaxCr2RmffGsTb8n5gCd3lMCGXuw6Y4zvA/w++JPgJL2LS7vwxOl4ULrdS3DBSueV2quM7uevQelAGJpGm2nw4/aBtdG0W7V7O9hEMy3xMflCQbvLD7cOcohXA5JCEg5NfQolQSiNnUSMCwXdyQMZOPQZH5ivL/AAj8K9Q0zxzJ4y8R62uoamxkZY4UYKruNudzHoFLKFxgDbzxiue+I0Vyv7QHgt7GaQ3DJArxW4fzFiEzl2OBjYUL5wTwrbgByQD3WimoAOgwKdQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUjcD/ClrA8ZeK7DwZ4bn1m/DOkbKkcKMoeV2OAqgkZ7k+gUntQByfxb8eQeG/Dk+k6dfN/wkN8oht4rbmSIMQGc4OU+XIU9dxGOhIpfBLwDceFtBn1TVrMQatfkbUcDzIYAAQp4ypJ5K56Bc4IIGD8OvBd34x8WzfErX1KQzXLXGnWjMHYkHCMxwPlQBQvAJKg8ADd7oowe+MUAC9e9OoooAKKKKACkbpS0h6UAeBftKxsY/DUgRtim5VmA4BPlYGfwbH0Ne3WNna6LottZRMI7SygSJWkbgRooAJP0H6VQ8YeFLHxl4cuNHvy0ayENHNGql4nBzuXIOM8g+oZh3rgp/h78RtU0ptG1P4gIdNki8mXZZq0rIBjBbCs2cAHLcgnOc8gHHfD3SJvGnxm1XxfbyRTaTZahJIGcOjShxIIigx1GEJBxgEdc19BXlha6lZvZ39pDdWsmN8M8YdGwQRlTweRn8qreHtDs/DWh2mj2Cstrapsj3nLN3LMehJOSSAOvQVqZHrQBz+ueDPD/iLSI9L1HSrZ7aGPy7fZGEa3UYwIiOU+6vA4IAGCOK8p8Y/s+WUlrPe+E7iWG5QF10+5feknTCI5wU4DcsWySOVHNe6MRj19hXJ+MviJ4e8DJGurXLvdypvis7dN8si7gpOMgKOv3iM7WxkigD5c0y/wDE/wALvFRuVtJLO+j3wyRXUZMcq5G5SRjcuQpyp9CDX0f4V+LnhvX/AA9/aV/qFlpNyjOstncXibxt5BXOCwK47dcjqK828QfEPxB8VoJvD3hLwr5lqx/fz3CJKQCp2klh5cLcPgkknjaQRWbefs9+J7XSpLpL/Tp7iFWka2iaT5wAThGK8scADIAyevFAHWeIf2gYGJsvCGkT312WZVmuUIjIUj5ljU72BUN1KEcEg8isi18G/E/4ms0viXVLjR9KlUKYJlMe8BmI/wBGUjJDKCTJg4KkZwK6D4IeMPC91Yx+HrPTINL1ZLdPMYkFr9l3FmDYyxGSdpPyhiF4U49mXigDzzQvgr4K0N0lOmPqM6ZKvqD+aOQRgoMIcZ7rxxjnmvRADmlooAKRulLTW7YGTn8qAPBvhhdDwh8YNf8ABS3co02ZpGtIZAxPmLhlx2B8rdk/xbV9hXvK9SP6V4X8YrCTwt478OeP4IgbdJo4LtYkVWLISwJOcszR7l6cCMDPIFe6KMHAHGPyoAU1yWs+ANO1rxppviqW+1G31DT0RIlt5VSNlVmYqwKkkHeykAjIJHeuuooAYgAJODk+tPoooAKKKKACiiigAooooAKKKKACiiigAo6UUhxigBk0iRRNI7qqKMszHAUDqSe2K+eNRvdR+NXxLgs9Oi+0eEdLuI3l3gxBov42Y/e3PtZVHBxgkLhjW58YPG99Pq6fD3RI4ftGoiGG4n81gytI/EXGMArtySSCrkYr0bwL4G0zwJoosLBRJPJhrq7Zfnncdz6KMnC9B7kkkA39PsbbTLKGys7dILaFAkcaAAKB2FWqKKACiiigAooooAKKMj1ozQAUVDdTw2ttJcXE0cMMSl5JZGCqigZLEngAAZya8a8SftD6NZFoPDtjJqUgI/0iYGGHGAeAfnbuOQvPr3APauD3rhPEHxe8FeH4N51iK/lK5SDTiJ2bkA8g7B1zhmHAOM9K82tNC+KHxWtI7rVdUXR9BuBvSJfkWWNupWJeZB8oI8wjhgVJBNdt4X+B/hbw/O1xeQtrM4/1f21Q0aDBGNnRuv8AED0GMGgDhx4o+K/xMWJtAsTpOkySuFuYGMWULbctKxy23kZjAyQx25AA7rRfgtoVtNJfeI57rxJqsmA9zfO204BAwm4k/LtHzlsFQRt6V6YAc0N0oA831/4j+HPhnPFoc3h/U7W0Vc2z2lrGLdxwzbCXXJBbnjOTnuCdHX/iLB4f8L2uv3nhzXlgnDExtboHtiDtXzvm+TcSMdffB4Pmfjq807Uf2jdEhu75NPh0lIDcXNyVWPdHuuQASwwGDKuTg5PQ451Pjl430i88Dw6Vo2u2N3LeXSieO1lSbMKAsclc7fn8vuCcHGRmgDE1fR7H4rPL4i8AaTe6Vq1jKZbi5nUW8dzJ975HVyBMDg54+/lmHBrs/hx8UFvmj8LeKvOs/E8Ev2fEsZ/0kjOCSB8rADBzweCCckDrvh3o39g/D3QdPMc8ci2qyTJOMPHJJ+8dSMDGGcjGM4GD61zfxP8AhRZeMYZ9XsFa312KFipjChbsgfIj5IG7jaHyMAjOQAAAemDHX1p1eLfC74oXr3qeD/Gaz2mrptjtZ7tGjkmyBtSXdz5hBXaT97jPzYLezqeTQA6iiigDiPi7o0Ws/DPWFkiMklpEbyIggFGj5LDP+zuB9icVn/BLxIuvfDu0gklZ7vTP9Dl3KqjavMeMdghVcnnKnr1PozdK8I+F+3wJ8W/EHgaWffDcYe0YszElV3qDhQAxicljgDKYHagD3iimqfSnUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUdKAEY4UntXnXxY+IieCNCNtYXMA166T/AEeNhuMSZwZSvTsQueCfUAiut8UeJtL8I6FNq+rT+Xbx8Kq8vK56IgyMscfzJwASPI/hd4d1bxv4lf4h+LHMxibZp9vLCVXIwVdAeBGu47cZy2WzkZYA6X4ReBJdB0Z9Z1y2EniHUZPtEk825p40YD5GLchiSxbvzg5KjHpyjnPtQoIY+n0p1ABRRRQAUUZHrTJZEijaSRwkajczE4CgdyfSgB+aaxGP6CvMfFnxw8LeHo5ItOmGtXylR5Vs/wC6wcEky4K9D/Du5GDjkjiLbVPjJ8Qy9vbRHQ7F8GSdYmtE9Rtdg0hyUx8meuGwDQB6x4o+I/hbwhN9m1TVUF33toAZJF+6fmVc7OGBG7GRnGa84vfiv4t8cXU+mfDnQZAkXL31wqFwDgjhv3aZw4wxbcDkYINbehfs/eFrC3j/ALXkutVuAxLlnMMZ64wqnI7dWOSPTivVbW3itbeO3t4UhhiQJHFGoVUUDAUAcAAdBQB4NpXwN8Ra9crdeOfEVzIicLClw08xzkH53yq4wp4DZHHBr1/QfBnh3w1Ei6RotravHkLKEDS4JJwZGyx6nqenFdBRQA1c7smnUUUAFIxxj60tUtXsW1PS57JL27sjMuz7RZsFlQd9pIIBxxnGRnIwcGgD58+E+lWvjb4meJdc1OytNRsF3sFuI96h5ZcxkI/YIrgZ6DHeq3xK8PWM/wAatD0PQ9It7dWit0lgt7ZURiZHZnKoOgTBJPQKc8CvY/BHw00vwFPeSaVfajKl4qrNDdPGykqSVYbUUgjLDrj5jkHAxmQfCgx/ET/hMJPEupSXQQbSYYRJv2eXlmCbCuzK4CA85zxQB6QOtDdOhP0pFz3p1AHBfEn4bWnj3SAVZbbWLdT9lujnaf8Apm4HJU+o5U8jOSrcd4T+JGs+FNdi8G/ESNLYxxIttqTn74JIUyNkqynpvGMFTvydxHtrZxxXKeOfAmm+O9E+w3wMVxHlra7RcvC5GO/VTgZXIzgcggGgDqlP+T2p2c18++E/Hmt/DHVk8G+NLWSWzEyx29+ZSVhi2gAqTw8Q+U4GCo3ZBPyj32F0kRZI3V0dQyuDkMD0I9aAJGGRXhXx3tr3QvEXhrxtZRqWtXEDs5+XerGSNWAYEq37zOOwIJ5Fe7ZrkviR4Ti8Y+CrzTzC8t1EpuLIJIEP2hVbYMnjByVOeMMehwQAdNaTpd28VzFnypow6ZGCQQCM1PXmfwO8UN4g8AxWtzJG11pT/Y2HmAsYwAY2KgDAwdgz18snOc49MoAKKKKACiiigAooooAKKKKACiiigAqG6nhtrWW4nmSGGFDJJI7BVRQMkkngADueKkboB714H8UfFupeMPGEHw88MSsqmUwXrhgI5pOCQcAsFjw27nk7gVO0ZAKV1Fe/HzxrBPZxT2HhrSkEcrzOokO5stsABAkZQBjJA2Ak8gH6FtoEtoY4Il2xRoEReeABgDn2FYfg3wlpngzQ4dN0+FFcIv2icKQ08gABc5Jxk84yQM4FdFmgAopCeK5rXfH3hbwzM8Gra3a29wgG+EEySrnGMomWGQQenTmgDpsj1qjqmrabo9stxqeoWtlAzhBJczLGpbBOAWIGcAnHoDXjesfGLxD4jnvdN+H3h66uRFIEGpeUZcKQefLK4TLA4Lk8A5UHgP0j4N634jvLfU/iNrMt6Yo18qyhlyQMhijvjj+IEJycgh+KAJ9T+PlvdXcmneEvD99q18+9IGZSA5AJ3rGuXZeAcfKcZztIrJu/hl8R/H7vceLNch0+Fpgy2Cv5qRAZGVjQ7AQrYB3EkHk969f0Hwd4e8M5OjaNa2cm3YZlTMjLxwZDliDtGQT1Ga3V696AOJ8HfCvw14Kna6sLeS5vixK3d4VeSMEYITAAXvyBnkgnFdsoPU9adRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhpaKAMPxV4Y07xboFxpOpQq8UgzG5ALQyY+WRfQjP48g8E14roHiDXPgnraeGfE6G60C6kDWt2jMUhUn52QbckAkFo+oPIzuy30K3SsTxN4V0nxbpb2GrWqzJhvLfHzwswK71PYgHP1AoA0NM1G11fT7fUbCdZ7O5iWSKQZG5T0OD0+h57EDFWnORweRXzwupeKPgh4kNpdR3l/4KkmZIC+HCq2WGxuNsg+bKnaHwxxyGHt3h3xToviuye90TUI7uFH2MQrKyn0KsAR+IoA8U8Bx6j4N+P2paFcRXMNvqhuDErn5ZYwWkil4IU/KrDPYlhgHOPoUda8U+PmkzWkeieMdPbytQ065SLesYY4JLxscnGFdTwRz5ntXrWg6xaeINEs9XsH3Wt3EJU5Ulc9VO0kBlOVIycEEdqANKiiigAooooAKKKKACjI9aRvu15z4o+Meh+D9cl0jVdK1pbiNQ6yJBHskUjhkJkGR1GcdQR2NAHo9IT71weg/FXRdb8Tr4cOn6vpuqsCVttQtRExIQueAx2/KM8461veLfFGneDvDtxq+otlI8KkQI3zSH7qrnqeM+wBPagDj/i/8R5/BGnW9npTWzateq2PM+YwR4x5mzpnOcZ4JU8HBFTfCPwBB4R8OQ39zBnWr+JJJ3kjKyQqQCIcHlcfxDA5652jHnfgC1g07UpfiR8R74QS3SiXTTdtmWck7WlWJfmIUFQoC4CsDgAKa6TXv2gNNBax8J6ZdanqUkqxW7zQlYnz0KqD5jEnAC4XOevHIB7Nj3xzXm3jP40eHfCZFtakazqBX/VWs6mNPmAIkkGdrfe4AJ+XkDINcFL4G+KvxEvIr3xBerpVlKuBA8mwRxMQSBCnOQGxhyGO3DEda9F8MfBvwj4b2TmybUr1fmE9+Q+3gcBMBByCQSCRk89KAPP7bx58UPiRF9j8O6XHptnKSsmoRIUCr9xv3zZAxuz8g3jbkdDW1o/7Oei2k6y6trF3f7XDCOGMW6MBj5W5Y4PPQr7Yr2WKNIlWONFSNF2qqjAAHQAdqloAo6RpVloml2+m6dax2tnbpsiiQcKOp56kkkkk8kkk1eoyKKACiiigAooyPWigAooooAKKKKACiiigAooooAKKM5ozQAUUUUAFFFFABRRRQBV1LTrTV9NuNPvoRNa3MZiljJI3KRg8jkfUcivAtc8N678Dr+PxD4ann1DRJ8xX8NyMqOfk8zbj1+VxjDZHR9p+h6jmjSWJo5EDowIZWAIIPXg0AcFcyad8YvhbcixbyWulZUSR13W9wjZUOQGwMgZ4yUf3FYn7PeurqHgefSXkHn6ZcMBGFxtikJdTnGDlvM46jHbiuW8UfD3Xvhr4gufG3g2VH063Pmy2hDF442OXRlHDxAY5yGA56rvrm/hd40t7P4u3N29q0Frr88kCwRycQNLKGToMNg/J0GAxPGMEA+qc5opo68nms7Xdf0rw3prajrF9FZ2qsF3yHqTngAcscAnABPB9KANOiuO0r4peB9VM32fxLYxiLG43bG2znPTzQu7pzjpkV2NABRRRQAjdK+edS8R2usftE2t3cXFj/Zmk/IX1C/gWFQFOXjYZGdzBguWbcOSmCI/etY1KHR9GvdTuFdoLOCS4kWMAsVRSxxkgZwD3rwH4H+H7XxbrHiLxD4hs4NRlLhdtzDE8bSSMXkfZt+VhtXBGB8xH0AE8Uah/wn3xx0N/CcYu10t4I5b7yy8IMcrSFj8wDIOccqWOQpOVNTfHPQ/Fuv8AjGwtbHS7y+02K3DW7W1qzqjudr73C8H5Fzk8DB4yao/DRz4d+PGpeH9Hlun0t5rm2kR+AoiDEFh8wO1lKhuCQ2fl3Fa+kh1oA+UNR+FfxT1i4W41PTru9nVQgkutSikYLnIALSE4yScVb8P/AA6+K3hm7a60jRIILkjAnc2UrpwV+VnJK5DEHbjPfNfU1FAHgJ/4aE7Z/wDJCk/4yG/z/Z9e/wBFAHgH/GQ3+f7Pox+0Kev/ALj69/ooA8Him/aAjRVe0hlKvu3ubPJH93hhx345461ttpHxvvIYZl8QaDp7sgZ4BGGKkgcMfKYZHQ4JHHBxXrtFAHj/APwj3xy/6HLQ/wDvyv8A8j0Hw78ce/jHRD9IV/8AkevYKKAPE5dK+O6apDarrunSQOpZrxI4PLjPPykGIPngfdUjkc9cVL22/aAtLuSGC8gvEXGLiAWYR+M8b1VuM45A6Hr1r3eigDwD/jIb/P8AZ9H/ABkN/n+z69/ooA8A/wCMhv8AP9n0f8ZDf5/s+vf6KAPAP+Mhv8/2fR/xkN/n+z69/ooA8AA/aF78f+C+tzUvC/xo1Oy+yP4q0e3jKgM9qzxO2CDnesQZTkfwkA5xjHFex0UAePHw78ce/jHRD/2xX/5HrN1Kz+PtlcLHbaja6gpTcZbZbUKDk/KfMRDngdBjkc9a9zooA8A/4yG/z/Z9H/GQ3+f7Pr3+igDwD/jIb/P9n0f8ZDf5/s+vf6KAPAP+Mhv8/wBn0f8AGQ3+f7Pr3+igDwKNv2hEkVmQOoOSrfYMN7HGD+tP8z9oD7R5nkIE3bvKzY7QM9Oucfjn37171RQB4cl78e1jVW0m0dgMFma1yffiQCuftvgL41h1uLUl1TQ4J0uRcB4GkURsG3ZVBEoGD0AwOMDAr6RooAq3lxHZWc93OWEEEbSSFULkKoJOFAJPA6AEmvAPCn2n4y/FKfVtV3TeHtHZpLezmRQoDMfKRkDdW2lmPzA+XtPBWvTvjLM8Hwn1x4xGWKwp88auMNMingg888HqDgjBArl/2coYV8EalcCKNZn1Jo2kCgMyrHGVUnqQCzYHbcfU0AavxR+G17441TQryz+yFLIuLuO4uHiM0ZZCEUqjYPDjOO469vSoUEaBBnCgLkkkkDpyeT9c1DLqdhBqEGny31tHe3Clobd5VEkgAJJVc5IAB6elWqACiiigDnPG/h2/8U+HJNJsNZfSvPbE8qw+YZYsEGP7wIBJGSD0GOhNee6L8F/EHhuKWHRviBPZxysHdYtOADEev7z3r2WigDivBnwz0LwXPLd2wuLzUpQfMvbttz84yABgAZGemeeSe3aAc0tFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBna9o1p4h0K80i/QvbXcRifABK56MuQQGBwQSOCAe1eM+H9A+Knw4jvtE8O6Jperac1006Xkzqpkyqj7pmUrwoyCOucEjBPu9FAHmPg7wZ4ql8aN4v8a3lpLdC2KWVnASwtC/3gDgAFVyvBfO4kscZPpo60tFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//2Q=='] Multimodal Competition False Theorem proof Geometry Math Chinese 66 " 如图,已知锐角 $\triangle A B C$ 的外接圆为 $\odot O$, 过点 $A$ 作 $\odot O$ 的切线 $l, l$ 与直线 $B C$ 交于点 $D, E$ 为 $D A$ 延长线上一点, $F$ 为劣弧 $\overparen{B C}$ 上一点, 直线 $E F$ 与劣弧 $\overparen{A B}$ 交于点 $G$, 直线 $F B 、 G C$ 分别与 $l$ 交于点 $P 、 Q$. 证明: $A D=A E$ 的充分必要条件为 $A P=A Q$." ['设 $E F$ 与 $B C$ 交于点 $H$.\n\n对直线 $G C Q$ 和 $\\triangle H E D$, 应用梅涅劳斯定理得\n\n$\\frac{H G}{G E} \\cdot \\frac{E Q}{Q D} \\cdot \\frac{D C}{C H}=1 \\quad \\quad (1)$.\n\n对直线 $P B F$ 和 $\\triangle H E D$, 应用梅涅劳斯定理得 $\\frac{H F}{F E} \\cdot \\frac{E P}{P D} \\cdot \\frac{D B}{B H}=1 \\quad \\quad (2)$.\n\n(1) $\\times$ (2) 得\n\n$\\frac{H G}{G E} \\cdot \\frac{E Q}{Q D} \\cdot \\frac{D C}{C H} \\cdot \\frac{H F}{F E} \\cdot \\frac{E P}{P D} \\cdot \\frac{D B}{B H}=1 \\quad \\quad (3)$.\n\n由相交弦定理和切割线定理得\n\n$H B \\cdot H C=H F \\cdot H G$,\n\n$E G \\cdot E F=E A^{2}$,\n\n$D B \\cdot D C=D A^{2}$.\n\n代人式(3)得 $\\frac{D A^{2}}{E A^{2}} \\cdot \\frac{E Q}{Q D} \\cdot \\frac{E P}{P D}=1$.\n\n故 $A D^{2}(A Q+A E)(A P-A E)=A E^{2}(A Q-A D)(A P+A D)$.\n\n整理得\n\n$(A D+A E)[A P \\cdot A Q(A D-A E)+A D \\cdot A E(A P-A Q)]=0$\n\n$\\Rightarrow A P \\cdot A Q(A D-A E)=A D \\cdot A E(A Q-A P)$.\n\n因此, $A D=A E$ 的充分必要条件为 $A P=A Q$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAdICwQMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKRulAC0Vm/27pH/AEFrHPb/AElP8atW15b3ieZa3MM6BtpaKQOM+mR3oAsUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFVtQvbfTdNur+7k8q2toXmmk2ltqKCWOBycAHgc1ZPArzj436s+mfDC/SOVopLySO2Vlk2EgsGYD+8CqsCPQntQB558FPCWn+LLzxH4i1jR7N7SaQ28FsIkNujud8gRDlk2AxhSCMBiAT2h8EC08OftG3GieHLmZdIkee2kifLZ2RM7JlhnCSoQD1wvU5JN74XeCfFOofD+K50zxo+jWN7cyTLb29mJGyv7ssXLKRnZ0GRgKepwPSfAXwx0TwHuntGmudSlj8ue8mbkg7Syqo4Vdy5GcnnG40AdzRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAh4FeLfHC18V+I0ttC0nw3cXNhbk3r3ilWMjohG1QDxgOeGG524UEL83tVGKAOY8Arfx/D/QYtRsHsLuGyjhe3lbLKEAVSem0kAMVPIzg8iuI+L3jrxX4H1nRbvSTaHS5o5FeKWAv5ko6hzwQAGUqFIJO7OQAK9erC8W+FdP8X+HbrSb+GJvMQ+RM6bjBJj5ZFwQeD2BGRkHgmgDk/h/8YNI8ZslhdAadrG3PkOw8uY5PETZ+Y42nBAPJxkAkejrn1yK+UPDPg3TtQv9R8F3yvp3jSC4aXT9QSZnicomTC4H3RwWDgZ/75Ct1mjeMvFvwhvYdL8cW9xfaVdBmt51n8+VCqqNqFmHyjgFDjGcg9iAfQtFc/4W8Y6H4ytJLnRL4XAhIWaMqUeIkZG5SAfUZHBIOCcHHQUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFI3SlooA8X+MPg99OuE+IuhP5Oq6fLFNdI25vOAKorAA4G0ABhwCuTnj5u58KeJNG+JXhP7S1lHLCx8q7sLqMSCORcNtIIwwzgg45GOhBA6m5t4Lq1lt7iFJYJUKSRuoZXUjBUg8EEcYr5+sZ5PgR8QZNOurl7vw1qyBkbPzRAOBvcBSSyjcCFwGBB6gKADS8RfCPUvB9y3in4c31wlzboc2BQSuVIIcxlsh+MYRgT1IJO1au+B/jYsl3JonjlDpepI4VbiSJkRmLY2OuP3ZGRyeMA5K4GfZFBznP4Vy/jLwDoXjewMOpW6pdKAIr6JR50eCSBuxyvJyp457HBoA6eGVJkSWKRXjddyspyGB6EHv65qWvna1s/GXwILXrLFrfh65J+0RQs6rE+AFckqfLJJAzyGAweduPTPBXxX8O+NpxaW8stnqZ3YsrgYLgAElGHDcZ4yG4JxgZoA72imjOeadQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAAa4z4jeA7Xx34da1xFHqUALWNzJuIickEggfwsFweDjrgkYrs6Q8DPAPrQB5H8FfHzazp7eF9anP9s6flYt6Y82FMLjPQup4PQkYPJ3Eeu4rwj4oeG7jwP4rtPiV4fQki7H26ARjaGZdpPC4CuNysx53yAjk8es+EfE9n4v8O2msWRwsyjzY+T5UmBuTJAzgnGcc4yOKANm5ghubaS3uIo5YZVKSRyKGV1PBBB4IIPSvLPGXwU0vVtmpeFTDoWsQyCVXhLJC5AGOF/1ZBAIZB65ByCPWKMUAfP8A4d+KHijwNq6aP8RrS7aGdxsu5ApaBcsC3yA+aucd8gAkZ4B9p0LxLo3iSAz6NqdteooBcRSAtHnONy9Vzg9QM9qd4g8OaR4n0ptO1mxju7UuHCMSpVgeCrAgqevQjgkdCa8U1r4YeIPhxqUfinwJdT3ghYrNYGNnkaNmACYUfvEweehG0MDnlQD6AoryX4ffGzTPEu2y1+SDS9VdwkQ+YQTZHVWOdpyCMMecrgkkgesLnPPSgB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR1oooAgvLS2vbSW2u7eG4t5RtkimQOjj0IPBrwPRtU/4Uj8RLjwzezvc+HtU8ueGZ3w1uGJVXIyF6gq54JCqwxjafoJvunFcJ8UfAlt438OOOV1KyjkkspAGPJwWTaDyG2gZwSOoB6EA7oHnuadXlnwW8eXfijSLrSdYcnVdM2pufh5YsbQzZO5nDBgxwOq9ya9ToAKTA9KWigDivG3wz8P+NoJXurZbfU2QiO/iXDqcLgsBjzANoGG7E4KnmvI7KX4i/Bh0utVjbU/DoIgMK3m6IHDbNhILR88n5QDwDzjH0jUVzBBc20sFzDHNBKhjkjkUMrqRgqQeCCOMUAct4Q+Inh7xsJE0i8f7TFGJJbWdNkqqTjOOhweCVJAyPUV1gznmvHPGPwRtC82u+DZJbDWopluoLUMohLDnamR8hJ5GTtBGMKOVxfDfxr1/RNRi0/x/pU8UUrKv2w2rQSxDHLNHtw4yVJ24IBPDcLQB7/RVDSdXsNcsIdQ0y8jubWZdyOh6ggHBHUEZGQcEZ5FX6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkb7p4paCMjmgDwX4m6Zc/DnxvY/EPQ5WSC8uViv7RcRrISMsvAORIqMTkEhhu5JGPZvD2sQ+INAsNXtwyxXkKzBW6rkcqfoePwpfEGh2PiTQL3R9RQta3Uex9pAK9wwJBAIIBHHUCvHfhZrNx4I8dap8ONYvmlgWTOnu+QA5+baBg7d6sGwTgFTjJbkA91opB+NLQAUdaKKADA9KyvEHhzSPFGlNpus2Md5al1cIxKlWHRgykFT1GQehI6EitWigD5/k+GXjH4a39zr3g3U/7QtYW3nTnEnmXCcqqvGnEpUO3OR0yoycV2Pgj42aD4tu47C7RtJ1KaQJDDK+9JSc4CyYAzx0YDJIAzXpzAbT2968/8Y/CTwz4uikmNsum6kxZhd2iBS7nPMi8B/mIY5wxx96gDvlbLdfpT6+dtM8S/EH4T30UXiu1vNS8PAmISh1lCjcAHSTBPQHajlcg9F6j2Twx458P+MLWOXSNRikmMfmPaMwWeMcZ3JnIwWAyMjJ4J4NAHS0U0ZzzTqACikPSvPfjF4j1zwv4Kj1DQrgW9z9sjjllMaPtjIfswI+8FHT1oA9DorwzwTrPxg13QG8RWuo6PqFtIkixWd/D5TOynGVMaIMkqVGX29c46jq/hR438R+MzrX9v6bDZ/YJUgTyoJI8yfN5iNvY/MuEyOCN3PUUAekUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjdOa8j+NngptT0seLtOmnh1fR4g37knLxK4bIO4bNmXfcBnr7Y9dpksaSwvHIiujqVZWGQwPUEelAHH/DXxyvjzwyt+8At72CTyLqJT8u8KDvXnIUg8Z6HI5xk9nXzpdGb4HfFDzLWKRvC2rIP3Xmu3lpld5Hq8bdM7vkbGcsSPoeKRZY0kjcOjDIZTkEHoQc0ASUUUUAFFFFABRRRQBFc28N1bS29xEksMqmOSN1DK6nggg9QQSK8P8AFnwJe2u01nwLci1ubdxNHZTSEhWQZHlyNk7tw6Px8x5AGK9160hoA8O8K/HKeyvhpHj6xl065ijVXufszq2ducyR4yNwK/dGMtnAHT2u2niuoI7iCaOaCVA8csbhldSMhgR1BHOawfFXgjQPGdkINZsVldFIiuYztliJBGVYfXO05XIGQa8SHh3x/wDB6/l1ewnbUvDtqV+0KkoVJISwJBiYko2SRuUEryc4JyAfSLEKpJIAHUntXiH7R+pGPw9omleTn7TdPc+bu+75a7duMd/Oz14x3zXceCfihoHjZEht5vsmpbRvsZ3Actgk+Wf+WgG1jkc45IHSvHPGGtWPi/486fBcX+nDRNNuIoTJdsUgZIz5kwcv8pLNvQcANhB05oA0Pg/441i98Q+GvCem27Q6LZwXDXg2iV5Syu5dn2jYgkZQAMfeAJavoO1sLOxM5s7SC38+VppvJjCeZI3V2wOWPcnmvLvEXjrwN4Q1HUvE9lqFtquuajbLBFFaSRzbfLHGWXlFJK7skk7RgHbXpekS302k2MmpxRw3728bXMUZyscpUbwOTkZzjk9OtAF6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACg9KKKAOV8b+B9L8daH9gvl8ueLLWt2q7ngc9/dTgbl6HA6EAjzr4IeOL77ZP4F13ct3YqyWgcEsuxm3xMxJ+7xtGOApGeAK9uYcGvEfjZ4evNIvLP4haFcmz1CyKR3LxqATk7Ufgc8Eo27grtXHUEA9vorm/A/iyHxt4YttaggNv5jMkkBfcY2U4I3YGex6dD+FdJQAUUUUAFFFFABRRRQAYFIeBS0UAeSeKvgJ4c1yQXGjynRLgyF5BFGZYnByTiMsNvJGNpAAGNvevn7STpnh7xU9t4n0j+0bOCV7e6t1kkidSGwWQgr8wweG4IyCAeR9ttwp/pXzv4j03T9F/aTszqenWdzp2sGNxbC3SRS0qmLc6sAAfOUuSMnBz1JFAHYeFvAPwo8U6ZBqmjaOkqkhmiku5i8Tf3ZE3nB9jwRyMgg16wPrmvAvEPwP1TRNVl13wLqbW5t1aaG2eRhMhwxKRsAd2RhQG65IYnqdfwn8eLa6v49I8W2B0q/8AOaB5wCkCMCRh1Y7oyOFOScHkkDOAD2eioba4iuoIri3mSaCVA8csbBldSMhgRwQfUcVNQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVBeWsF7ZT2lzEstvPG0UsbdHVhgg+xBNT0HpQB86+F9Uvfg/8AE6fwnqEkz+H9QlDWx3KdokYLHMSVGSAuxwMDIJAO0Z+iFJzznNee/FzwPD4w8LmYStFqGlxy3FqwGd/y5MZBIHzFV+Y9MD1IND4MfER/F+jvpeoMo1TTo0BYvk3EWNokO4lmbI+Y9MsvPzYAB6nRRRQAUUUUAFFFFABRRRQAjZ2nHWvEf2g9PNpaaB4ntJVgv7K88hZEQbySDIh3dfkMZwCCP3h6d/bz0rzv42adJqHws1QxJI8ls0VxtRSxwrgMTjsFLMT2AJoA7mxvrfU7C3vrSXzLW6hWaJ9pG5GGVODyMg9xmuZ8W/DXwz4yDyajYiK8Ygm9tcRzcYHLYIfhQPmBwOnasX4E3yXfwvsYFA3Wk08L4fJyZC/PHBw44/GvS8UAfNRT4ifBm8V90uo+FracqCGDQSRsR25aFiT1PG/P3gTu9l8J/Enw14xijGn34hvHLL9huisc+Rk8Lk7vlBOVJx35GK6u5t4bq2lguIY5oZUMckcihldSMFSDwQR1FeNeLPgNBc6jJrHhLURpN55glS3YFYVcEHMbr80WOSBhhnAG0YwAe0DOeadXgfhH46XNhqQ0PxvapbG2zby3yq+9HQYPmINxZiwIJXHJ6Yr3W2uIrqGO4gmSaCVQ8csbBldSMgqR1BB60AT0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA1vunivnzxxoV78LviDD4+0S1in0eec+dbKzKI3dSJFbk/K3zMrDhW4I4UN9C1keJvDmm+KtAudI1SIvbTgZKHDowOQynsQfw7EEEigB/h/XLHxLottq+mTNLZ3AJRmQqcglSCDyMEEfh34NaleF/CbXL7wX4ou/hv4iW3idWaW0nVjhmIDFQcYKsuXBOCMFTyQB7mOtAC0UUUAFFFFABRRRQAVW1Cyt9S026sbuPzLa5heGZASNyMCGGRyOCas0HpQB4V8ALufSdW8TeEb6YC4tZvNSBVyAyExzMHA55EIwT7jvXutfPWoXA8KftRQzqrw2upvGhjtQFEhmjEeWGQCPOw5z3GeTX0GOvWgB1IRwfypaKAOf8AFPg7RfGGmyWWrWaybh8kq/LLEecFW9sk85HqCCRXit14P8ffCnV59S8Kz3GpaAjB5IVYOzRbgSskZH3uoLoMgZb5ckD6KxSN0oA4LwX8WfD/AI0lis7eSS01N4fMa1uPUfeCN0fHXsSOccHHeg5ry3xB8CPCGsNNPZx3GlXLhmBtXzHvOTkxtnCg/wAKlRjgY61xK/EL4g/DbV7XTPFcDahpcLiJ7wxO5nU4YtHMdu9gp7/Q4PIAPomisfw94m0fxRY/bdF1CO8g3FWK5VlOSMMpwV6dxyMH3rYoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPSlooA8e+NHgSXU7RfF+klI9T0mIyzqBgzRoQwbk4BQBz0O4cdgK7nwH4ztPHXhyPVrWJoHEjQz27EnyXGDjdgbhgqQff1BA6WWOOSJ0kRWRwQysAQR3zXz5qdld/Azx9Dq1kXfwrqcpR7OOXc+1VHDblwCrOxT5iSFILDJNAH0NRVXT7+21OyhvLK4juLWZQ8csZyGX61aoAKKKKACiiigApGOBmlooA8M+PGjS2eo6H41tUvHlsZI4Z/LA8uNVcujFgdysWYjOCORypxu9uhMjRoZVVZMDeFbcA2OcHAyPfA+grm/iRpCa38OdfsmEhY2jTII8BmeP94g5B4LIAfYnp1rmPgR4h/tj4fRWMs2+50uVrYhpt7tH96NsHlVwxQDp+749AAeoUUUUAFFFFABgelVNT06z1bTLnT7+BZrW5QxSxscblPHXqD7jmrdFAHgWtfBrxL4Z12XW/h5qbRrkMln55jmUFlJj3N8siZGcORwADuPJ6HwX8ctN1u6XTPEUMeiXyrzNLLiB2UDcCWwYyeSA2RxjcTgH1sgY6Vwvi/4VeGfFltcE2UVhqEjGQXtrEFcyZJ3Oo++CTk55PqOoAO5UknmnV8322s/Ev4RzR22qRPqvh238tWl2tNDHGSg/dy4DRkD5FDfLk8KeK9n8K/EDw54yXGj6h5lwIhJJayIUljHGcg9cFgMqSM9zQB1NFNGc806gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArnfHHhS28Z+Er3Rp9qSSLvt5ioJilXlWyQcDscc7WYd66Kkb7p4J9hQB4x8IvGT6VfyfDbW1C6jp800NpcRlmScKzMynPIwMlTgArxgEDd7ODk9a8W+MPhe40nUrT4j6EhbULCaI3kRXKSIvCyMMhj2QgZypB4Ckn0bwR4tsvGvhuDWLNWiZmMc0DMGMMg+8uRwRyCD3BHQ8UAdJRRRQAUUUUAFFFFAEVzDHc2ssEy7opUKOucZBGCOK8C+ASy6F428VeGrh4muIhiQpuIYwSMjFSQOMydwCePQivoFvunFeG6/bR+Df2iND1W3juYbLXB5Uwh2qkkz7oyMDAI3GKRs5OSW5OBQB7nRTVbOPcZ5p1ABRRRQAUUUUAFJgYxgUtFADJY0lheORFdHUqysMhgeCD7V4d4x+A8UbjVPA9xJY3kH71bWSc43KF2+VIfmRsgnLEjLDlQK90pD0oA8G8NfGi98NXC+GvHmnXUd5ZutvJeKd7qmAN0o5L/3t6k7gcgE8t7nb3MV1DFPbzJNDKgkjkRgyupGQQRwQcjkVg+KvBHh/wAX2siavp8TzGPYl0ihZ4hzja+M4BJOORnqDnFeQ6h4J8e/C68S48E311qekPK08lps3FSM/LJGD82UwC6YJx0XC0AfQdFeb+BvjDoHi2G3trudNN1l28s2kznbI2QF2OQASxIAX72cjBABPoqk7uT+tAD6KKKACkPSg9KxPFfiS08KeGb3WbsqVt4yY4iSDLIeEQYBwScDOOM5PAoA1YbmGeSRIpkkaFtkqq4JRioYBgOh2sp+hB6Gp6+f/wBnrU5NQ8TeKLi9v2a/vVjunh2qBMS7l5OBxguOBgfvDweCPoCgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCvf2VtqOnXVjeR+Za3MTQzJkjcjAhhkcjgmvA9Du5vgp8TJvDtyTL4d1eSNorucgGNeQrk7gowzbXJwcLuAAwD9Bt909fwrgfix4GPjXwm8VnBE+r2rCa0Z9ql/70e4jOGXPAIG4LkjFAHeKST1p9eW/B34gp4k0uPw/fq0Ws6ZDsdSGPmxJtQSEnOH5AYE9eR1wPUqACiiigAooooAQjIweleHftJae0uh6FqJB2wXMkGcjGZFDf+0jXuVcN8YNI/tj4XazGkMMk1ui3UZkAynlsGcqT0bYHHHXJHegDo/DOqnXfDOlasQga8tI52VDkKzKCw/Akj8K1q86+COqxal8MNNjWcSTWbyW0w242kOWUdBn5GQ5H55zXotABRRRQAUUUhOATQAtB6Vyviv4geHPBjRxazf+Xcypvjt0QvIy5xnA4UdcE4zg4yQRXmeofG3XPE19Lo3gPw7PLcSHEd1ON7qhG0v5Y+WPDsPmdiv94c4AB7pz71y+sfEbwhoJddR8Q2KtHKYXiifz5EcZyGSPcy4wQSRweD1FeOx/C34o+KX87xFr5to5Zm82G5vWkKox+ZkjjzHjBICAr0xwK7Oy/Z98GWt3HNPLql5Gud1vPcKEbggZKIrcdeCOQPpQBp3fxy8AW9pJLFq8ty6DIhhs5Q7+wLqq5+pFZcP7Qng2SSBXttXiEj7Wd7ZCIxkfOcOSV6ngE/KeOmeo0v4WeB9JeX7N4asXEuNwulNzjGcY80tt6nOMZ49K0m8C+EcHHhXQ8+v9nRf/ABNAHi3i60+FHjq8nuNH8RQaXrs5eTzpo5YbaZ8Z/el1CrnafmBGSxJDng5nhf4u614Auk8N6sbPWtKspPLFxaTiVxEcY8qQHaygHIVsEZ2krgAeoX/wL8CXtv5NvYXFi+QRNbXchcDPTEhYY/CuN1z9m5Nkkvh/XmDALst7+PIJyMkyJjHGcfIfT3AB7RoHiLSvE+nLqOjXyXdqzMm9AQQw6hlYAqe/IGQQehFa1fKjfDT4l+BLg6rpEczPEw3SaXPvLgMuAY+GdScEjaRgcjFej+HPj3pcitY+LbWfSNShZkmdYmaIFeCCoy6NnI24bGOvYAHsbZ2nHWvDPiJ46k1XxzD4Y0/w5J4ksNIlF1e2sAZzNKqkBTsDAxo0i7gy8su0+/rN/ryDwxc61osJ1tUid4YbGZW88qcbVbOOoOcZPBwGOBXK/CPT7rTfAbXV/pN3a6td3E9xefaECS3Llzh9pPyjbgAHaMgnGGyQDyr4N6rDb/GzUUk0x9PfUkuoYrJUwLVt4l8tgQuAojZenXHA7fTVfMnhWx123+N6eJJvCniCKwudSuZAz2EgaNZg6qWz8oC7wSc8DPWvpkHJ/WgB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNb7pPenUUAeBePdGf4UeNrLx74fthLY3czx3to5ARGfkhTncocbiOCFZfQha9v0rVrHW9NttS026S5s7hN8UqHhh0xjqCCCCDgggg8g1B4j8P2Pifw/eaNqKOba6QK3lttYEEMpB9QwBGcjjkEZFeNfDDXrv4f+L7r4c67GFSW5Z7K78wBSzKNo5JGxwoKgchjggknaAe9UU0HkDNOoAKKKKACkbO04paRvumgDwn4JXtx4c8a+JPAVxJvggllmgkdRGWeNhGxC8k712N944CcZyTXu9fOuro/hr9qCxuniWGK/mjaEtl9wmjMRPBz/AKwuOfT0r6IGc96AHUjcKTQ2ccVieJ/E+neE9Cn1XVZxHFHwiD70rnO1EHdjj6DBJwATQBe1DVLLSbc3OoX1tZ24IUzXMqxoCenzEgZrxHXPi/4o8TeJH0b4d2qywblSO7NvukkbBJb5/kRev3hn5c55wMW20PxT8dtcm1bUZpNJ0aFSLMtCzxKCSNsYJUSNlfnbPUDthR794c8O6Z4W0eDStKt1jt41G59o3ytgAu5AG5jgZOO3YYFAHlnhv4BWQL33jG+m1TUJpGkdIZmEZJbJLOQHdj1J46nr1r1rSdG0zQrQWmlWFvZW+7cY4IwgZsAZOOrYA5PPFaOB6UY5zQAUUUUAGKKKKACiikbpQAEcV4p8arT4fC3urrU32eKZLf8A0cWTHzXYABDKBlQvzLkthiq4UnAFX/iJ8Yk0a6n8OeF4nv8AX3cQCWNN6QSE4KqOfMlBwNuMAkZyQVrL8D/CC41DVYPF/ja4F5e3W65k02a3UDe3Tzc8cZ5QKMHAzwQQDybwz4s8W/DyGK80+Oa3sdQIkCXdtmG62cfKSAeN3JQjtntX0V8PPijpXjjTxG7RWOsJkS2byD5uM74843LgEkdVxzxtJsfFPwdL418EzWFoxF7byC6tU3BRJIqkbCTxyGYDkc4ycCvn3wr8MW8ceEbjU9C1FP7Xs3Mdxp05UGQ8srIwPyhgQoDDBZW+YDoAfXA5p2K8A8H/ABtvNAjg8P8AjqxvkuoGWN7ySMiZIyMgyoRuJAIO4clecEjLe8W9zFdQxT28yTQyoJI5EYMrqRkEEcEHI5FAE9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACHoa8e+NXgW71GG28X6FlNX0sBpREG82VFIZWXHG6M5PTJBPPygH2KmSxpLE6SIrI42srLkMPQjuKAOO+HHju28d+HoroGKPUoAFvraPdiJySARuHRguQOcdMkgmu0r54voJPgT8Qo9Rs7WS68NasrI8fG+H58lFJYksg2kFsBgSOoLD6AtriK7ghuLeVJoJUDxyxsGR1IyGB7gjBoAnooooAKQ9KGOFJqIyKJBEZF3sCQpIyQMDp9SKAPD/2grS502+8M+KNPiWO5tJmiN18pZXBWSEFT15WU9Mdc9q9n0nUYtY0mx1O3V1gvLeO4jWTG4K67gDjjODzyf61yvxethefCrXot5QCNJM7c/dlRsfjtx+NZfwL1qfV/hpbxTCQvp08lnveQuXUbXXGegCyBQOcBePSgDtPEviTTvCehXGr6pK620IxhF3PIx6Ko7k++B3JAya8T8O6Jq/xq8UHxP4j3W/huzmK21krkh+hMa+xwu98ZY8Lj+ChcapffHT4iJoountPDdjvnCRnDNGpC+Yc9XYsoGQdgbgH5t30NpOlWGiabb6bptsltZ267I4k6Af1J6knJJJJ5NAEtnaQ2FrBZ20Yit4I1iijXoqqAAB9AKs4HpRgDoKKACiiigAooooAKQ9PehvumuT8cePdJ8DaS93fyrLdsP9GsUcCSdv8A2VeOWxge5IBAN/VNWsNEsXvdSvYbS2TgyzSBRnsMnqTjp1rwbxT8QPFPxG1v+xPAMd8NKT9xcXMcJXzC5Zd7v/yzjwDjO09SRnADLDTfGHxwu1vdblfTfCkckj24iUBA4AXCg4Zz1+c5A/eAFfu17b4W8LaV4Q0WPSdKgMcAO6RpG3PK+AC7HoSQo6YHoAOKAOd8AfCrRPA6LPhb/VgzH7fLHtKg5GI1ydnBIJyScnnBAHf0UUAIQME4FfOvhBJfh18errQriZ7fTtSZkgAyIplfLQHGACQfkyBwxYDjNfRZ6V458fNCR/D9l4ptXlg1PS5lCzwja2xmGMsPmG18FTngse7UAXPit8KYPFttLrWkIIteiTLDot2qgAKfR8D5T/wE8YK+D+FfHHib4e6lLFYySRosjLcafdKxi3/dO5MghwVHIIPy4PGRX1L8PvFTeM/B1lrEsSQ3Dlo54oySqup2nGexwG743YycZrmfjF4IufEOjw65oscn9vaURJCbdcTSoCDtDAg5Xl1xk5BC8tQAvgP4z6J4qS2sNScadrT7EMbj91PISR+6bn2+VsH5sAtgmvTBkkc189+HfC/hz40aLNqU81xp/iu2wmozwp+7mYjCSlD8pyqHITYd27Ixg1STxD4x+Bd8NEvIYdT0KWVpLRpCV3IOW8sgkxnLDcrBgGyRnJYgH0pRXNeEfGuj+NNN+2aVdB3jCi5gOQ8DsMhWBA9xuHBIOCcGukByetAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQelFFAHN+MvCGm+NPD8ml6hHkgM1tNliYZdrKr4UjdjdnaTg9680+D/i6TQNQm+HPiFmjv7Wd1s5MhkI+8Y8gcd2BPUMRxhQfbmHFeMfGHwc+n3KfEXQn8jVdPlimu1O5vOAKqrAAkDaAAw4BXJzx8wB7MDzSnpXLeAPGVr438L22pxfLdLiG8i2FRHMFBYKCTlTnIOTweeciuh1C9t9N026v7uTy7a2iaaZ8E7UUEscAEnAB6CgDyb4sfEi+sdRh8F+GmZdXvDHHPdLnMAkOFRMchzkHd/CCMfMcrU8UfBbT7D4fTyaNHd3niW223RvfMYy3TqSXAUE4yGJCrySEySck8r8GrK48bfE3UfE+tRm9a0X7QZJCCEuHYCMbT2VVfbjhdi4xgV7Fq/xU8GaFqtxpmoa0sV5bsFkjFvM4BIBHzKhB4I4zx0oAr+FNDvb74Nw6HqM13DeXunzwSyXilpY2k3j5gxB43cA44AGa+ak8Rax4X8P674QRWtZLi8CXjxuN21NyPESM5UnbyCPukfMGr61XxVpU/hGXxNaTm70yO2kud8S4Z0jDbsBsc/KRg45r44/tfU9Q8Yf21aR41a51D7XCsEe7E7SbgFQ7ifmIwDnPTmgD62+HXg618FeFbWwjh2XkqLLfOX3Fpyo3AHptHQAdhnkkk9bgeleAaN8c9f0C4Sz8deH7lQeBNHbmCccEnMb4V8kp024HPPFeoeHfib4S8TbEsdYijuSisba6zDICwJ2gNgORg52Fh78igDsKKaCd3J/CnUAFFFFABSHp1x702WRIomkkdURRlmY4CjuSa8W8XfF7UtU1mPw58OopL2/81klulhV4zwADGSSCoLHLsAo2g5KnNAHUfED4r6R4KiubBJhc66IN8VqFJVGP3fMIIx/ewCDgDpkE8P4M+HniPxrr8Piv4gvK6QsFi0+9g2mcKCBlBtEaBsNt2/PzkYOT0PgD4OWmkyQa94leW/8AEDOt0RJIStvLw3JBO9w2csSRnoOMn1kD8qAGxRpGixxoqIgAVFGAoHoO1SYA7UUUAFFFFABVDWtJtdd0S+0q8B+z3kDwyFQNyhhjK5BGR1BwcECr9I33T0/GgDwf4QX994K8bap8OtaljaRz51uYiWXzQgZgp25w0eG+YgDZjGWr3U+/Xp+f9K8D+OuiX2j+JdH8daeu7ymjSUlcrHLGxaNmBOSGHGMADZycsK9v0XVLfXNHstVtCxt7yBJkDgblDDO04JG4ZwRngg0AeC+LNKuvhn8X7PxbFFs0G+u8E2y/dDLiRGAXaCSXZV7gcHIJHvzpY6zpwDx219Y3SBhkLLFKhGQe4YEc+mK5/wCJnh+PxJ8PdXsvs/nXEcDXFsFi3v5qDcoQdcnBXjsxHfFcd+z/AOJrnWfCd1pN5MZn0qRUiZiSwhcHYpJHQFXA54AAwABkAx/GfwRurW/Ot+ArmS0nBB+wrKYyhwdxjk3cZIX5T0JOCBgCx4a+M8uiz3GgfEOC5tNVtH2PdrEDuy2fmVAAAAQQyghhg+hb20gelcp4u+H3hzxoY31iyZ7mKMpHcxOUkVc5xkcNg5wGyBubHU0AdNbXEV1BFcW8qTQSqHjljYMrqRkEEcEEc5qavm6fTPH3wQuLiTRmXVtAlHmO7wM0StjBLoG3RkYHIOCNuSSMD1jwV8UfD/jO0hEd3BZ6mw/eafNLh1OW+4SFEgwpbK9BjIFAHc0U0HJH0/zxTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqK4t4bq2kt54Y5YJVKSRyKGV1IwQQeCCOMVLRQB89WE7fAr4gf2bPdTXnhzV0DBmwGgIkwHYAEsVXIO3G7dnHAA9/jnjniWSJ1kjdQysrAhgehB7g+orkfiP4DtfHXht7UCJNRgBaxuZN2ImJGVO3+FgNp646gEgCuS+B/jn+0NMPhLVZCmraaGSBWUjfAuBtzn7yHIxx8u3GcMQAYlgNV+CfinXLy80ifUPDOpurreWcSgw7XO0MFConEpG3CgnAXABFZesW0vxz8dade6Ro91a6Jaotve6hOfLkKBi7KOWXcA3ygAnL5b5cbfo/A9KRgAvf8ACgDz34u38Ph/4V39tbQQokyJYwxKqBEVsDCoSOiqQAoJGAcYUkeB654TvfDHgDwr4gDfZrm6mecPHkyIzbWiYSIuFGxAwUtuBLFerBfSPjvPda94l8MeC7FnWe4fzmDD90Wkby0Y4BPy7ZSeOAe/b03xh4et9Q+G+q6Ha2IkiTT2S0toyRho1zEFwezKmB045z0oA1Vi0zxPoVtLd2dte2V1Ek6xzxpKhDDcDggg9RzXlviL9nrQ9SmSbQL+XSF2ndC6NOjHjGCzBl75yT+GMG9+z9rY1HwHJpcjQiXTLl0EaZ3eVJ86s2TzljIOOyj6n1rAoA+crbwZ8UvhbC93oF3FqVl5waWytA024ZAyYWUH5sAExndgdQBkb+i/tBwLcRWHijRZ9Pu0l8m5lhyViOcEtG3zLg9RyRjueK9tI49K5zXfAvhfxE0smq6HZTzSkGSfywkrYGBmRcN0A79qALmgeI9J8UaYNR0W+W8tC7JvUFSrDqrKwDKehwQOCMcEUzxL4n0zwnok2q6vceVBHwqKMvK5ztRB/ExweOnBJIAJr56+JvhXTvhlqMN34V8S39jfXg5sI5GWRISWJbzFIITKooVskkE7jg45rW08a3g03XfGGm6xqOk27ByLkPHGYy67l3Afu9/C7iATkEZwKAO91XXPFPxw1IaNoVrNp3hZJCZrmZCFcrtOJWBIZhkERqepBPADL674G8B6T4F0lLSxiWW7YZub50AknPH12rxwoOBjuSSeS8B/E/4eweH7TTrORNDZF+azmVsKxxk+Ych8k9ScnqQO3pWmarp2sQNcaZf2l9ArlDLazLKqsACVyuRnkHHuKAL2BRRRQAUUUUAFFFFABRRRQBmeItHi1/w5qGkzJCy3UDRr5yb0ViPlYjjo2DwQcjgjrXj/AMAdYurK81nwXqTTi6sHeVInlV44drhJFXA4+c5PzFTnIAOS3uTHCmvA/i/FJ4I+JGgeO9OBaWdit1EP+WhjUI3zHON8TbOFG3bnqc0Ae+HpXz7r7yfDb48prX2a4vrTWVYrBartmJkO0qqJtDtvAIDA7twJy43D3q0u4L+zgvLWUS29xGssUi9GVhkH8RivIf2idF+2+EtO1eNZWk0+5KPtI2JFIAGZh1++sYH+8fWgD2Qc45yP0NPrA8E6uNd8FaLqQmEzz2cZlcEn94Fw4ye4YMPwrfoAQgAcAV5J49+B+meJ7q51bRrg6fqszGSRXy0Ez8kkj7ysxI5GRx90k5r1ykIB6gGgDwXT/if4q+HF5Jonj7Trq/iVglrfxAZkVQoO1yAJhgqck7gThuT8vsfhvxJpfivSY9U0e7FxauSp6ho3HVWB5Dcjg9iCMgg1Z1bRtM1yyNpqlhbXtvu3CO4jDgNgjIz0OCRkcjNeJeJPhLr/AIO1eLXvhrc3QY7xNamVS8a5LYXdgSR8AbGy2QD82flAPfKK8l8E/GC3kt10fxwz6Lr8BSJ2uoWiWYEZV2yMRNjkhsKcgjg4X1dT82KAH0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIRxXgHxK8Lz/DvxZafEbQJMiS9JurWQFsSSBt5BIOFcbgf7rN8vUBfoCs7XtGs/EGg3ukX0e+2u4jE4ABK56MuQQGBwQccEA0AV/CviC38U+GdP1q2G2O7i3smSfLcHDrkgZwwIzgA4yOK2G+6a+ePBXiG7+EnjS98Fa5K8+l3EytazQxKSruyqsmM5VSvLL82CowOu76Fzk+x/CgD50TZq37Vn7wMgW4IwGzkxW307lP1r6LPHtXhPw1uXu/2ifGTyAAiO6jwPRLiNB+gFe7vwhOce9AHz18Fbs+Hvin4k8LLGhgkaVNy5JV4HYLgk/dIZ+xP3fevoevn3VkTwl+0/p94yrHbaqUKx2owczIYcuOBzKC569c8nivebq9gsbOe7uZljggRpZZGPCKoyxPsMUATvnYcY/GvJPib8ZrXwu13oWiI8+tqoRpyo8m2LA8853uOPlxt55OQVrnPFfxJ1n4j30XhT4fw3cccyb7q6b905UdRnPyIMjJzliQoHOH7v4bfDOw8J6dHd6jbQ3fiGZjNPdy/vGiY5+WNiOBgnJHLEnJIwAAcp8O/g1bTW8PiLxlFcXmp3eZzZXeR5bl9waXkmRmGCQ2MbiGUnp7YepOM/wCf/r0/APYUMMigDzzxD8GPBevt5g05tNmBGZNNIiyADxswV79lByOtcTc/BTxN4WkGoeBvE8wuUG94JWMJl28hcjKPkgDa4C+pxmvV/FfjPRPBljFda1d+V577Io0G6SQgDO1fQA8noOOeQDz2qfE9vDsq3XiDw1qenaHcFVtL5mjZ5GK7sPEG3RdDgHJ45C8gAHnSfG3xr4Tvf7M8W+H4priMclw1vJIAWG/cMoy5HDKu04OPWvUPD/xa8GeILMzDWYdPkT78GpOtu45IHU7W6Z+UnGRnB4rph/ZfiPSLeZ4Yb7TruJZohPDuWRGXIO1hxlW7jvjvXEeJvgp4Q1+Kd7az/sm9fBE1lwgYKVUGL7m3oSFCk465JoA9HUnIyevOKfXzcvgD4r+BTLd6Bqpu4ooyRHbT+ZlBnH7mQYJABwACecDJrpNI+PosZG0/xpoN5p2pRFVcW8ZA+bnLRyEMmFK92zknjgUAe20Vz/hzxp4f8WxzPomqRXZhbEiYZHXpzsYBscjnGM8ZyDW8M55oAdRRRQAjfdP07Vw3xY8Kf8Jb4Eu7ZHnFzZ5vbdIY95lkRGxHt6ncGIGO5B5xg91SN0PFAHlfwG8Tx614GGlMD9r0h/Kk/wBqNyzRt0A/vLjJPyZPWup+Jumw6r8M/ENtMXCrZPcDYQDui/eL+G5Bn2zXkVsbn4f/ALRvkEG203WpsLHDhllSYkJx/DiUe2Apx8p5+h+owRn+VAHl/wAAtSe++Gcdu0aqtheTW6MDy4OJcn3zIR+FepV4J+zWZkbxTBKXHlvbfIx+6370Hj14H5V73QAUUUUAHWkPAzilooA4Xx78M9E8dQJLdA2eoRfcvIUG4rj7r/316Y7jHBGSD5e2v+Ovgpe/YNUH9taDI2yyeSXgqoXhTy0eEwuw5UEErkAk/RWBUNzbwXNu0NxDHLE33kkUMp5zyD70Ac94J8caX440Zb7T5VWeMKLu1JO+ByM7TkDI64YcHB7ggdMK8N8afBK8j1aXxB4FuzY3ZPmCxRjDsYht3kyAjbnIAQ4AyfmAwBY8O/Gt9KnuNE+IVtNYatayLG08MHykYA3OFJ+YnLZQbSCMDpkA9roqG2uIrqCK4t5UmglUPHLGwZXUjIII4II5zU1ABRRRQAUUUh6HHWgBaK4Gb4zeAbeeWF/EKF42KNst5nXIPZlQhh7gkHtXQeH/ABj4f8UKraNq9rdsUL+Sr4lVQdpLRnDKM45IGcj1FAG9RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFI33TxmlooA80+MHgO28WeFrjUYbbOtWERe3dBhpEUlmiOAd2RnaOzYxgM2Yfgx8QG8XaC2magzHVtMjVXleQMbmM5Afk7iRgBic84OctgentgKSRXzx430uX4QfEOy8YaFFEdNvpHSTT0LRoo2jeh5PDHLrxhSB8uFGQC18LP+ThfGv8A2/f+laV782dpx1r50+CupJrPxl8SarFG0SXttc3AQnJUPcRtgn2ziu3+IfxnsPCFz/ZumRQanqJRw5Wf93bOCVAfbklgQcpwfcZFAGB+0fawzaNol6buMT21w8X2fjcyyrnfweADDjpzu6jHPMWEHjr45XNuuoSx2+h2LoZXVTFEzZwxXAO+Xbk8/KuSPl3YNLVfhb4t1fwtqPjvW75ZL2WH7a1tIB5rx8EljkKgEYLBRnAULgE4Hq/wDvvtXwygg8wN9kupodu3GzJ34zjn7+e/X2oA6/wn4N0LwXZy2mi2vlee++aV23SSEdAzegB4HAHPGSSeixRRQAUjfdNLWR4r+1/8Idrn2Dz/ALZ/Z8/keRnzPM8ttu3HO7OMY5zQB4Ro8UvxM+Ptxd3bW9zpekSuyNESY3iiciIAjIO5iHPIBG/HpXe/Hu7tLf4YzRXNv5stzdQx2z7FbypAS5bn7vyJIuRk/NjoTXIfs1fKPE5x1FrjOPWb9Km+PuqJrGoaH4Q06ZbjUnuQ8lukgGx3AWJWz8oJ3MeTwDzwwNAGj4f13VNC/Zkh1bTXJv7eJxE7p5mxTdMhODkfKpJGeBj0rjvgv428VX3xCtdKvNWvtQsLtJPtCXcjTbAkbsrAsSV+bAPY5Gc8Y9/8KaL/AMI34Y0vRvN81rW3WN3/ALzYySPbOce3XPWremaDo+ieb/ZWk2Nh5uPM+y26Rb8ZxnaBnGT+ZoA0MD0rH8ReFtD8U2Qttb0yC8jT7hcEPHyCdjjDLnaM4IzjB4rYooA8X1v9n7TsRXfhfVbrS7+AeZH5rF1LjlTuGGQ5x8w3ey1zN34m+L/w8laDUom1Wxt4wwupLdriEpyMmZQGzn++Q3Tsefo6kIGc4GfWgDyvwx8ePC2tJHHqjSaNdsypsmzJESxIGJAMAAAElgoGe4BNel2d9a38QltLmK4j6b4pA4zjPUHHeuW8X/DPwx4zJl1Gx8q9b/l9tSI5v4RycYfhQo3A4BOMV5i3wQ8U+FryTVPB3ibN1Eu5EYGB5ADu8onJRwSq8NhT3AFAH0DSHp0zXgVv8XfGngac6f4+0Ga4aQ5iul2RFhjLAFFMcgG5PukFcnOTwPQvCvxa8J+LX8m3vWsbrzAiW1+VieTOMbfmKtknGAc8dPUAwvjl4aju/DS+KLUvBq2jMkkc8K4dkMgGN4II2k7wecYbpuJrp/hn4vXxn4KtL+V999F/o94OhMqgZbgADcCrYHA3YzxXR6pp0OsaPe6ZcGRILy3kt5WjPzBXUqSCR159OtfPvw215vhZ4+1Xwj4jnhhs5nVRcYG1ZMAxuWz8qMjc5zg7c7cNQBtfs63RvtR8Y3ZXaZpbeTbnpuM5r3evAf2aBg+J/pa9P+21e/UAFFFFABRRRQAUUUUAIRxXN+KvBOgeMrSOHWbFZWiIMc6NtlT2DjnB7jp07gV0tGBQB863mg+P/gzJJc+HbkaroM8wLRCAvtOBgyJ1TPK7kPO1d2DtFei+CfjB4e8XRCK4mTStTAYtZzy5UqvdJMBW4PThuG4IGa9EPAyBXnHjf4O+HvFiXFzbxJpmryuJDdxKSrnJLb4wQDuyckYbODk9CAeioSev5U+vnbTPFXjD4L3n9keKbebVtGkjX7LNHKzJGwXAWORhwoxgxnGMAgAH5vafCfjDSPGOmLfaTcq4xmWBmXzYMlgA6gnbnaceuKAOgpG+6aD0rlfiTrT6B8Otc1CJpVmW2MMTwvteN5CI1YHqCC4bjnigDwnwhoOm+MPjxqAFnpsmiWU084t4FCwSRRny4tqoNrZJjY9mG4nOcHc+LtrbfDbxVoPiLwlBFpl9cCdZliQCJwqxjHl/dAIYg4HUA8Hmr/7Ntk6aV4gvssY5poYR8vGUV2OD3/1g4/HvXJ/GHUJPGPxZs/D9hcKRbtFpyb5i0KzyP8x4zjllVuM5j9hQB9IaBqZ1rQNM1Ux+T9ttIrnyt27ZvQNjPGcZxnHPt0rSrN0HTP7F8P6ZpXnecLK1jtvM27d+xAu7GTjOM45+taVABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVW1D7Z/Zt1/Z3kfbvKb7P9oz5fmY+XfjnbnGcc4qzXLfEbWf7B+Heu34knjkW1aKKSA7XSST92jA5GMMwORyMcc0AeJeHvGPxW8U+K7rw9pPiixmmt/ML3XkweRsRtu9WERLKSVAIGTuHGORs2ut6z4p16++Fvj+3s7i8aOT7LqEEILRzhGljl+UqMbDxtCnGFYfM1cT8LvE2p+CrbWdWtPCF1rEcsYRr6NWVbUICzguI2wCGRiCR90E9sdl8GNKk8YeNNT8e6pqKG/guHC2kcmWDSIRlg2SIwrbU5/gP93kA8iuU17wH4mvrCK8udP1G3LW8slrK8e9eoweCVYbWHTjaa6b4Z+J/A/hRn1LxBpN/fask4a2eOOOSKFQAQwDOvz7snJBxtXGDmtD4/aO2n/EP+0dsrRalbxy+YyEJuQCMoD3wFQkdRvHqK9a+HMPgvxz4Ug1I+FPD0d8hMV5DHp8eEkHcZXowww6gZxklTQBj3X7Qfgm/s5rO40nWpYJ42ikja3iIdWGCD+97g4rzj4SfE6z+H51O11W3vrixu9kkS2zBvLkXIJ2MQPmBGTnPyAYPb6MPgTwhjjwpof/gui/8Aia+e/EPh3w/4W+O2mabHp0EmjyXFtutbmVmjUPhSSWJJAPzYbIPIPGRQB6L/AMNHeEP+gbrn/fiL/wCO0f8ADR3hD/oG65/34i/+O13q+BfB/H/FLaGf+4fD/wDE0/8A4QTwf/0Kmh/+C6H/AOJoA8/P7R3hDHGm65/34i/+O1PaftB+DLmYpKmq2qjHzzW6kcsB/A7dASx46KcZOAe4PgTwhj/kVND/APBfD/8AE1Rb4ZeCWe9c+GdOBvECS4hACgAjMY6RHBPKYJOD1oA+fr/x3Y+GtcuNZ+HN3LYxaqJEu9LuLMBbdgMI68spyzOygcLjGNp210nh/wAe/D3wlrU+p3cus+Jtfckvrb2yqGDADEaSSAoAvy9M/eAO3AHp0Hwb8AW88cyeHoy8bBlElzM6kgg4Ks5DD2IIrdHgbwixOfCuif8Agvi/+JoA4D/ho7wf/wBA3XP+/EP/AMdo/wCGjvCH/QN1z/vxF/8AHa9A/wCEE8H/APQqaH/4Lof/AImj/hBPB/8A0Kmh/wDguh/+JoA8/wD+GjvCH/QN1z/vxF/8do/4aO8If9A3XP8AvxF/8dr0D/hBPB//AEKmh/8Aguh/+Jo/4QTwf/0Kmh/+C6H/AOJoA8//AOGjvCH/AEDdc/78Rf8Ax2j/AIaO8If9A3XP+/EP/wAdr0D/AIQTwf8A9Cpof/guh/8AiaP+EE8H/wDQqaH/AOC6H/4mgDz/AP4aO8If9A3XP+/EX/x2j/ho3wf/ANA3XP8AvxD/APHa9A/4QTwf/wBCpof/AILof/iaP+EE8H/9Cpof/guh/wDiaAPNr/4++A9VspbK/wBD1W6tZQBJDPawOjYORkGTsQCPQ15x4l1b4Ta1bMdL0rXtHviwYTRQxuh6cNGZgMYz90ryc89D9If8IJ4Q/wChU0P/AMF0X/xNVJvhz4MmvbW5bwxpYe337FS2VUO4AHcija/tuBxyRg0AfLPh/wCJHivwz9ljsNXnNpbsCtrO3mRFehQqein0GMZyME5qDxf4z1DxtewX2rQwrewo0QlhUqDGXLqu0k/d3MAepGM5IyfqR/hV4Gk1Yak3huzE4IYIu5YQQMf6oHy8cdNvJ5ry74/6ZouhaZodlpehaZZPdzSStcW1skT/ALtVAXKgfKfMye2VFAGN8LfizpHgPw3Jpl/Y3s7zX7zu8ATCRmJVGMty25BxwMHOcjB77/ho7wh/0Ddc/wC/EX/x2syH9nfRLrQraQatqdvqDwI8rSKjRhyvzfJtBHzdt2eMZzzXFX3w38WfDfWG1GHRLDxJp4DJmSzF1GVO4gyRH5kIChtw4GQNxyQQD0j/AIaO8If9A3XP+/EX/wAdo/4aO8If9A3XP+/EX/x2uL0D4peA7m6jg134e6LZxNwbq2s4pVUlgAWQoCFAySQWPHC88euaFpnw18TWpuNF0fw3eooVnWKyh3x5zjeu3K5weoHSgDl/+GjvCH/QN1z/AL8Rf/HaP+GjvCH/AEDdc/78Rf8Ax2u/HgTwh/0Kuh/+C6L/AOJpf+EE8H/9Cpof/guh/wDiaAPP/wDho7wh/wBA3XP+/EX/AMdoP7R3hDHGm65/34i/+O16B/wgng//AKFTQ/8AwXQ//E0jeBPCGOPCmh5/7B0P/wATQBxNl+0F4Mu5mSYanZKBnfcWwIJ3AYHlsxzgk9Og654OsPjZ8Pe/iA/+Adx/8bq0nwn8CJPdzr4ctS10jrJuLlVDnJ8tSdqH0KgFegxVX/hSnw97+Hx/4GXH/wAXQAp+Nfw9I/5GD/ySuP8A43WFcftDeDobiWNLTWJ40dlWWO3jCyAHG5dzg4PuAeRx6dNp3wj8B6bdLc2/hy2dwCALh3nTn/ZkZlz+Fa//AAgnhD/oVND/APBdD/8AE0Aea6j8e/Aer6fNYahoer3VrMAskUttCytg5HHmdQQCPQgV43r+s6FZ+Joda8BSatpjguzRzqi+SxyP3TKx+UgkYPTHU5wPq7/hBPCH/QqaH/4Lof8A4mg+BfCGP+RV0P8A8F8X/wATQB5N8PvjzHMi6b4zlYTtIRHqKRAIVOeJFUDGDgBlGDkZAwWPVfF3Tde8XeE7LT/C+nRanbXcgnluUuolVUUApt3MN27Ocg9F6cgjY1/4WeDte0s2TaLa2HzBhc6dAkMqkf7QXBBGQQQRz64NeV3Gl+NfgYJb/S7qHVvDc8oEqMjYQ4A3OoP7sk/KGViDhd38IoA1/Bdp8S/A/hCXRtN8B2kl1JOZ1u5dSiKknaDuTzOTtXA2so4HBIJO98OfhTPoGvS+KvEV+l7rtwJHMcajZA8hYu27+JiDjgADcw54NbPgH4p6L45txGGjsNV3FTYSzAs4wSDGeN4wpJ4yuDkYwT3Y60ALgZzgUtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjZxx1ryj4/ahb23w8WyecLcXd0gjj3fM6r8zHHUgfLk+pX1FernpXLeIvh54W8XajHf65pf2u4SEQq/2iVMICSBhGA6sT+NAHn3gDxR4c8H/BlFvtY0w3xjlmeyNzHM5Z2IRPLQk8jZkHpk5xg4xf2brK7F5rt8I5RZGKOHzCCFaTJbA7EgHn03D1r0mH4NeALaeOePw8heNgyiS5mdSQc4Ks5BHqCCDXbW8ENtBHBbxJDBEgSOKNQqooGAABwAPT2oA80+O3h5dY+Hsl6ix+fpcq3CsyAsUPyuockbRyGPXOwDHTHhvwy8c3PgTxGl7KksmkXZ8i6TcwXGQd6joXXg9MkEjjdmvrbV9NtdZ0e8029Tfa3ULQyjodrDBIPYjqD2NfMOheE7J9a1/4d60pgvjJJJo9/NGYS86BlUcq2I5FAbrj5Bgk7aAPqSC4S5gjmibdHIodWweQRkcH2rw79oXSmtLrw/4pt4UMlvL9mldmJ3EHzIht9OJcn3+laHwQ8fXeoh/BusxOt9p0OLd3VUxFHtQxMuAdy8c8kjOcFee5+KOlf2v8MtftVkMZW2+0AhNxJiYS7cZHXZj8e/SgDo9Mv4NV0yz1G2JNvdwJPEWGCUZQwyPxFXK83+Bus/2t8MbKFpJ5JtPlktJGlOc4O9QpyflCOijpjbgcAZ9IoAKKKKADA9KKKKACiiigAooooAKKKKACiiigAoopD096AEYfKcYB7cV89+PIo/iF8c9L0Gzia8stOCJfhT8gUOXm+dDkfKVTsd/HB6+zeM/ESeFfCOpauWiEsEDfZ1lPyvKR8ikZGcnGQDnGcV5v8BNNuLm11zxbqMQe+1S6ZVneLaXAJaRl4Hyl2wccZQDGVoA6/wCIXxJ0vwBaJ5yC91OfDQ2CSbGKZwXZsHavXBxyRgdCRxl3qfxlstJ/4S2VtHFktv8AaZdHMW0xoI8ksGAcEfeIEmc8Y/hrmPCuoSfEj48Jf6pm4g04yyWixDCxpE5MWWUcgM4OSeSR24r6KurWC/s7i0uYllt542iljboysCCD9QaAOI0C10X4qeAbDV9f0Gzaa8UmbapDBo3KEo4w6g7Omeh2knnPB67+z/daeBdeDNcnjmC7XhvJdrN1J2yoB3CAKVx1O7oB7bpGlWOiaZb6ZptulvZ26bI4UGAo/mSSSSTyTknk1fwPSgD56g8W/FD4YDZ4k02XWdHRcm4kcyFAScfvwCVyzAfvAeFAXHWu30T47eDdXlihuLi50yaQhf8AS48IGJA++uQBknlsDAycV6YwGP61wGvfB3wVr089zJpZtLuY7nlspWj5xjITlB6528nk5yaAO7triK6t4riCVJYJUDxyRsGV1IyCpHUHqDU1eBal8M/HHgO9+1/D3WLu501W8xrF51LhyhDloyBHIMAY43ZK4Hy7qZo3x317RrgQeNfD84hJK+dBA0MqMM5BRzhjnaOq4GetAH0BgUYHpXKaT8R/B+tpusvEdiTvMYjmk8hyQAeEk2sRz1AI685FdSDyMmgB1FFFABRRRQAUhAwaWigDyf4h/Buz8SmPUvDrW+lazGQflTy4ZfmJJbYpIfJzu56YI5yOY0f4meL/AIeatDonxAsp5tPwY4r7y8ycKuCrjCyqARu/jy5ySRtPv+B6Vl+IPD2keJ9LbTtasY7u1Lq+xiQVYdCrAgqeoyCOCR0JoAb4d8Q6d4o0a31bSrjz7SbOCVKspBwQwPQgj6dxwRWtXgeu/DbxV8P9WfXfh3dzPp6or3FkZtzttV925DhZVxnHJYFvlHQ1ueBPjhZ63cyab4qW10a+jyBMXKQyEFiQd3+qIAA+Zjk56HAoA9goqKCaO4iSWKRJI2GVZGyD9D3qWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEPSvFPjx4R1C6Fj4u0cTm801ds7QsQ8catvWVccjYxbJGSAQeApNe2VFcwQXFrNBcQxywSoySRyKCrqRggg8EEcHNAHzf4rnkv7bSPjF4cdYrqOSGPUrQMx8udPkJYq+QjDYm35cqynq5r23w/4hs/iB4Me+sfNgju4pIGWVRuibBU5AOCO455B7dvE5tHPws8fXdtrNpLceBNXl8qaSS2EkbLgtHkAnDRvn0YhWYL0qx4T10/C34jL4eF1cXvhTV/LnspCFHEwXy5unOMbGwRnBbHAFAFz9noS6T4m8U6FeRiK9QJ5sfmAlGid0YcZyAX6g46eor6Ar5/vyfBP7TFrOhCWet7cxW/VvOBjO8HGP36bzjPHPtXvytnHuM80AOooooAKKKKACiiigAooooAKKKKACiiigApG+6aG+6ecV5b8YvHl54c0+00TQLhxr2oyKFWKIvIsRyMp/tM2FHX+LGCAaAOQ8dX9z8T/AIqWPgq0jnGl6ZO32xom6kHEjtglQFA2KSMgsR/Five7aGG1to4LeFIYIkCRxRqFVFAwFAHAA6ACuB+EngKHwf4bguLqz2a3eIXuZJFBeIEjEQI6KMKSO557AD0QjigD5s+Cli3hr4tapo2qM0F+tpLbRxOuBKQyPkE9ii7h1yuTnGM+lePfiKdH8QaJ4Y0S5gOtXuoW6XAkTesELOOG54ZsjjqFJPBKmul17wF4V8TTPPq2h2s874LzqpjlbAAGXTDHgAdelVtP+Gfg3SmtXs9AtY5bSUTQync0iuCCDvYljggYyeO1AHVqd2DT6aBzTqACjFFFACYA6Cq9/YWepWclpfWkF1bSY3wzxq6NggjKng4IB/CrNFAHl3if4G+FNe3z2Mb6PdtklrUZiJOPvRngAYPC7eua42P4afE7wCXPg3XUvIJW2tArKnX+MxS5jBwiDIYtzjpmvoOkwPSgDwzT/wBomKCQ2viHw5d2lzCRHcG2kDESDIf92+0r8w+6WJHPPHPfeGPin4T8VIi2mqJa3buqC0vmEUpZmIVVGcOTjopPUZwTXS6roej6yIjq2lWN95OfLN1bpL5ecZxuBxnAz9BXn3iD4E+D9YQtYwz6TcBGCtbSbkZsAKWRs5AxnClc5OT0IAPT1JY57U+vArrRfjL4KuFl03WZPEFo85O1nM7FQRjzFlG5AwHIRjjnkcE6+hfHiCG9/svxro9zol8gAklWJygJBbLRkb0yNuAN+d3UCgD2aisLR/F3h/xC8kekazZ3csalmjjlBdVGAWKnB2gkc9O1bgOaAFooooAQjiuP8a/DvQvHSW/9qRzRXETDbc2uxZSoDfIWZTlcsTj159a7GigD55TQPHnwUMuo6bcw6x4aWUS3kAIT5cBNxQ5KMd3DIW+4C3AxXpHgX4raL43QwR/6BqSgZtLiVMvwxJj5BcAKSeAQOcdM96eleT+N/gfoXiC2W40FINGv03NiNP3M2ckKyg/J838SjgEja3GAD1gHNLXz34e+I/jLwFrVtpvxEhvG026BjjuJowzwkHlw6/6wAn5hkkAgjsG9p8OeLND8WW0lxoepRXiRHbIFyrJnpuUgEZwcEjBwcUAbdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSHpS0UAc54z8I2HjXw9LpGoNJGrMskcseN0TjowB4PUg+xPTNfMvxF0hvCE48J3UKXotSLjTtRKGOVYZCS0TDlXTfvI9G3HI3MtfXuBjHas/W9E0/xBpNxpup20dxbToVZXUEjIxuHow7EcjtQB8g6z4vuPEfgTS9J1KcfaNGlSGzRFIEsDKwJfA27o/LjUHgkOeCcmvq7wTqra34N0jUjC0Pn2ynY0zSkY45dssx46kknv618p+OvhvrXgO7Vr1RcafLIUgvYh8kh5IDDqjY5weuDgtg17h+z7r66j4Gl0hmj87S7hlCopB8qTLqzE8ElvNHHZRkdyAeuUUUUAFFFFABRRRQAUUUUAFFFFABSHgf4Up6V5N8Qfiw2n3D+HfB8b6l4jLtE4hgMywYUlsAfekX0wQMHd0xQBrfEz4nW3gG0it44hdatdIXghyCkahgC0nzBgCN23A5KkcYNYPwu+HuqrrR8deMJ5pNdugZIYJMhoQyldzgcA7SVCdFHGAeFZ8NvhJc2Wpf8JJ42kN9q+cwW80vnCE/33Ykh3znGCQvXk42+yYoAMD0ooooATA9KUADoKKKACiiigAooooAKKKKACiiigAowPSiigAwPSsjX/DOh+JrQW+taXbXqKCEMqfNHnGdrj5kzgZII6Vr0UAeJax+zpo91cNNpWsXWnoWLeTNGJ1QEk7QcqcDIAyWOAck5rNvfFXxY+GSH+3raDW9LRERb0oXVAABzIoDAksoJlGWI4PJNe/gYGBRigDxfw5+0Pod/KsWvWFxpbHjz4iZ4uFySQAGGSMABW6jJxzXrenalZ6tYw32n3UV1aTDdHLC+5W5I6+xGCOoIINUNf8HeHfE0Dx6xo9pdlsfvGTbIMEdJFww+6BweQMdK8g8SfAO609ze+CtXnjkyFa1uJdjYySdsi44HyfKw7E7icCgD3ofWlrwCx8RfFb4boqa/pU+vaQis5mDmVo0UFmPnLkqMsP8AWA8LhcAZrsdC+Ofg7VUt47y6l0y8l2q8dwhZEkJwR5ijG0H+I7Rjk45oA9O60YHpVe0u7e+t47m0uYrm3kXcksLhlceoI4I69M1YoApatpVjrelXGm6jbR3NncJsliccEfhyCDyCMEEAgg14j4l+CuoeG70eJPh/qFwl5bSCWKxJBdAS2djn7wAIGxgdy7gS2cH3ukNAHinhH48Lc6sukeMLFNKuvNMJuF3JHG+cbZEc5TkY3ZIHfaMmvZraeO5gint5UmglUOkiNuV1IyCCOoI5rmvF3gDw/wCNbH7Pqdrsl3hlvLcKs6kYH3iDkEDBBBHTuAR5HD4f+IPwf1BtStJ5Nc8OWsbPcW8c5VPLPGTG2ShGAdy5wFOTjIoA+h6K808M/G7wj4gMUF1dNpF4wG6O9wse4LlsS/dx1ALbSeOMkCvSVJJ5oAdRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSHpQBT1bSrHW9KudN1K1jubO5XZLE/Rh/MEEAgjkEAjBFeI6p8Ite8DTXHiXwLrE8txA5caf5Z3tDnLIDnEvRfkKgnHGWABr634s+JH/C4bnwbpXiBAJbr9x/osG2KFkEvJZMnYh57nbxkmtPxPcfFnwedJuT4nsdW+2X8VmlqLOKPzJGyVQnYMKdpBO4EZ6jqACx4S+PFi8LWXjSGXStQhTJnWBzHL0wNgBZWwQehB5ORkCvXrO/tdQj86zuobmHJG+GQOvbjI+oP41ieKvBOgeNLMQaxZLLIgIhuYzsliOCMqw+udpyuQCQcV5OfgT4h8P6yupeD/ABTHFLG26E3CtGwXP3WKhg4xjOVw3ORigD32ivBE+JfxM8EpJ/wmPheTULaNNzXaKIgpZgFzLGGixzjGAckc+tlf2ktM3uW0C8CggLidTkY7jAxznpntz2oA9yorxuD9o7wsYVNxpWsJJ/EsccbgfiZAf0qT/ho7wh/0Ddc/78Rf/HaAPYKK8Zuf2jfDax5tNI1eVweRIsaAD6hm/lVB/jj4j8Q/ufBvg6a5lR082WUPOqhsjBVMbMkfeLY4PHcAHujfdPOK5LxN8SfC/hW3ne/1WGS4ibYbO3kWS43YyBsByvHdsDpzyK8zvvA/xX8fWs6eJtZttLszIxWwVxtIyrDIiyGQEcF2ZgV98npvCvwK8K6CqzakDrV6pzvuRthUgnpECRyCMhi3TIxQBxy+PPid8Sbt7Xwtp39k6bKNrXIHCKcKxM7Ac5JI2DeAOASCa9K8DfCzQPBEqXdqJbrU/I8mS6mPry21BwoJHuQOM8knuQOaUADoKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKMCiigBksSTRPHIiujqVZWGQwPUGuF1r4QeCNbmSWXRo7R0ULmx/cKwBPVVwpPJ5xnpzxXe0YHpQB4Td/CHxZ4Lv5NR+HfiGXawy9ncsFZyFwAePLk5ZyNwXbxjnms6w+N/i/wAO6jHD4z8PyC2l5GbZ7acDK5ZQ3DADPGByR8wr6HwB2qK5t4Lm1kt7iGOWCVTG8TqGV1PBUg8EHpigDk/D3xP8JeJkIsdZhjnWNXeC5/cuuecfNgMRg5KlgPXBGesikWXO1lcAkZU5GQSD+IIxXnXiD4JeC9eu1uUtZ9Lk53jTWWNH4AGUKsoxj+ELnJzk1wafCP4geB7ya+8G+IYp+FPkq/kvP1U7o3zG23cSNzcdRg4FAH0NikIGP06V4PafHjV/D9rbWHi/wteR6gsGWmbMDTckB/KZRjODkg4yDgDoPRfCvxP8LeLgqWOpC3uy237Fe4ilJJbAAzh+Fz8pOB1wTQBkeKvgr4W8SuLi2h/se4jhMafYI0SItyQXQLhsE9ipI4zwMeead4u8e/CS/stK8U2kl74fi/dRuqq+IgxAMUo7gYIRznaAMKCCPotTkjJBPSm3FvDdW8tvcRRywyoY5I5FDK6kYIIPBBBPFAGL4W8YaL4w06O90i7Em4fPA/yyxHAyGXtjI5GR6EjFb9eG+JPgfd6bqw1zwBftp1xBHuis2lYMHAwQkhJOGBIw3GScnBwJPCfx6tolj0rxra3FjqEG6K4uxESpZc/fjA3I3GCAD83YDgAHt1FQ21zFdwxT28yTQSoHjkjYMrqeQwI4II5B9KmoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACo55Y4IJJpWCxxqWdj0AAyTUh6VynxA8S6f4c8H6nJeX9vBcSWcq2sUrfNNJtwAq9W+ZlzjoDk4FAHzp4d8X6t/wAJ34g8cW2gSarcrDPMoklZxY7yArMQMsqJlMDb8ueVAr6B+Gtxe698OtJvdfZby7uGe5d5lU5Pns8bY6DGFIx93AxjFedfs/aVpV94T8R29zMs0+oSfZbq084Am3EeAcL8wDGWQbs9uMEc+3aZp9ppOn2+n2EIgtLaMRRRjPyqBgdeSeOp5PWgC5ijA9KKKADA5461T1LSdN1i3W31TT7S+gVw6x3UKyqGAIyAwIzgnn3NXKKAOf8A+EE8If8AQqaH/wCC6L/4mo5/h94OnhMbeFdGAOOUso0PBz1UA10lFAHPDwJ4P4/4pXQ//BdF/wDE10OKMUUAGB6UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAYHpSYA6ClooApanpOmavarb6pp9pewIwdY7mBZVVhkbgGBAOCefc15x4j+BHhLWYt2mpNo10qkK9u2+Nm4xuRj2x/CVzk57V6pRgelAHzvceGPjB4GdYdC1e41TT8eVD5LrMI4x9wGOUHZwB93IHTPr0GgfHeOG8bSvHOlzaNfR/fmSGTYMgsN0TfvE42AfeyWz8or2cgYrH8Q+GtI8U6cLDWrIXVqsglEZdkIYDAIKkEdT0Pc0AN0bxX4f8AEMpj0jWLO8lVN5ihlBcKCATt64yQM4xzVPxX4B8N+M4x/bOnq9wsZjjuo2KSxg5xhh1wSSAwIz2rzjV/2d9Nku5LjQdaudPbeZIo5E8xUPJCq2QwAOMEkkY7k5rOvPFfxX+Gi/8AE9toNc0pURVvAu9VCgDmRQGBJZQTKMsQdp6kgFFYPiT8Hrphbebq3hW1k3kEKY5EPXAyzw/M56cbhk7hnPrHgz4neHvGdpALa8jttTdf3lhM4EisASduceYAAWyvbqFPFc34a+PfhjWZIbfU459HuZOC0xDwZ37QBIORkHJLKqjBye5Z4o+B/hrxZOmq6HeR6V58SkfY4lkt5BwVdVBAGV/unB4PXJYA9bBzS18/6d8W/FHgHU4vDvjzTXnS3jAF1F81xImDtcMW2SDoueDwc5YGvbNC1/TfEumRanpF2LmzkZlVwjLypIOQwBHPqP50AalFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFV7mws70qbq0gnKZ2+bGG25xnGfoPyqxRQBWttOsbJi1rZW8DEYJiiVSR+AqzRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUYoooAKQjilooA5LxD8O/CniWyMF9o9sjYwtzboIpUOCAQwHOMk7WyucZBrym/wDgh4s8O3Mk/gzxNKsMhOYzcPayhS3CkplXwMZPy5xwtfQeKMD0oA+dr7x74t0i1OjfFDwguo6S5EMtyYNjM7fMCsifumYIWwF2nI+8CDXEyNZ2Wvyav8O/ELWMSgXK2V7P9nliKkZQFz5cwG4gKWLEbgQ33m+tr6ws9Ss5LS+tYLm2kxvinjDo2CCMqeDggH6gV51rPwM8G6q11Lb20+nTTZYNayHYjE5+VDkAewwMHAx2AMnwt+0HoV/bpH4it5NLuxw0sStNC/A5GMuuTn5cNjj5jXrdnd29/bx3VpcxXFvIu5JYnDow9QR1r5s1/wDZ68R6eQ2jXltq0YQMVbFvIW3AbQGJXGDnJYfdbjpnn9H13x98Krm5gS0ubS2Em+e1u7ctBIRlNwb0J43Iw3YXkgCgD68orhvh58S9M8f2koiU2epwZMti8gY7M8OjYG9egPAweCOQT195fWunWr3F7dQ20EfLSzSBFAx3J4HQ0AWqK5Cw+J3gvUtVfTbbxFaG5jJXD7o0chtuFdgFcknjaTnqMiusQknrmgB9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUYHpRRQAYqK5t4bq2lguIo5YZUKSRyKGV1IwQQeCCDipaKAMDSPB/h7QNUu9S0jR7WyurpFSR4U2jaOyjogOASFAyQCc4rxj/hIJfir8ZrHRbvcnh3S5nlWycAea0Q5MgO4NubAweiEgYJJP0DcyNDbSypC8zohZY4yAzkDoNxAyenJA9TXgf7N2jjzdd1mS3YMojtLefccc5eReDg9Ijkj0weTQB2nxrt9NtPhFeW5jtYRC9uljGVVdjCRRtjHYiMPwv8O7tmtT4P3s+ofCvQZrmTzJEheEHaBhI5HRBgeiqoz3xnrXAftE6uZl0LwvbbZJppTdyJtO8HmOIA/dIJaXI5Pyjpnn1bwP4dPhPwdpmhtL5kltF+9bduBkZi77TgHbuZsZGcYoA6KiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBG+7Xzpqk938AvEE0ekJBqWn63GJPLuYpEaIxlgFDg7T9/1LdMgcFvotulct478D6f480H+zr2V4Hibzbe4jAJifaQMg9V55HGcdQcEAHKeB/BEmvanafEHxZPb6hql3ElxZwRIBDbRsoaM4xlnUHAznHXJIDV6rgVxHgXwdrvhEra3ni6XVtLjg8uC0lswhiORghyzNgKCAvTntiu3oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACjA9KKKAEAA6ACloooAKKKKAP/9k='] Multimodal Competition False Theorem proof Geometry Math Chinese 67 "如图, 已知 $\triangle A B C$ 满足 $A B$ $" ['因为 $\\angle D A C=\\angle E B D=\\angle D F C$, 所以, $A 、 D 、 C 、 F$ 四点共圆, 设该圆为 $\\odot O_{1}$.\n\n由 $M C^{2}=M B^{2}=M A \\cdot M D$, 知 $M C$ 与 $\\odot O_{1}$切于点 $C$.\n\n因为 $B E / / C F$, 所以, $G$ 是 $\\odot O$ 与 $\\odot O_{1}$ 的一个位似中心.\n\n又 $A D$ 是 $\\odot O$ 与 $\\odot O_{1}$ 的公共弦, 于是, 点$G$ 在 $A D$ 的中垂线 $O O_{1}$ 上.\n\n故 $G A=G D$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIARUCFAMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooASloooAKKKKACiiigAooooAKKKKACiiigAooooAKKSgdaAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKTFLRQAUUUUAFFFFACZNLRRQAUZoqlqd4NO065vWhllFvG0hSL7zADJwMigC5kdc8UVwOlfFTTfEFtJcaFpGsaisTATCKBQ0eRnu3PTtV/wz4/svE+uXujxadqNpe2SB50u4dmzOBg8nk549cUAdhRSUUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFJRQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSDrS0UAFNIOadRmgAopCRjrWTrHiXRdAhMmq6raWg2lgssyqzY/ujOTQBr1x/xN1tNA+HusXWDvlga3jx/fkGwH8M5ryvxX+0NKzvb+FrEIgJxeXY3Fh/sp2/E/hTvirrOq33hHwh4dvXWXUtU8u5uWC43HOFGB05b9KAJvhj4w03w34Q0rQ9NC32v6lffvLYFlEILAbnbHQKBjHrXtFrolpaa1fatGJPtN4iJJz8uEBAwKzIvBmlwalpF5BaW8EmmqyqY4gGf5doyfzrp6AAdKKSigBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApKWigBKWkpaACiiigAooooAKKKKACiiigAooooATFLRSZFABijpTXkSNSzsFUDJJOABXCeJvix4c0GFktLlNW1EkLHZ2bb2Y5x94AgY/OgDvScVyHiz4i+HfCCH7ddGe4Bx9ltSryA+4yAv4mvO0f4sfEK8VwJPDWkOM9fLYqf/HyfyFdvoXwi8J6NI1xPZnU7x33tcX5Eh3ewPH6E+9AHHSeLviD8RHNt4V0z+xdJkH/IRuD8xXvhun4KD9a4bxR4P0zwQ7WurSS+I/E1+m6GGNmCQg8b36u7E5wOM+le0ePPG9l4T0s6XpZV9dmAhsrK3j3FWP3SV6AAHp3/ADqj8NPAl5piy+IfFSC58S3jB/MlId4ExgDPQN649vSgDyR/hpHoPiTwhpV/OX1DVpFkuEKnZEnHy57kcg/SvXfFHwpl8TeI11iTxJdWzQBBaxJboRAFwRj15Gaw0nOt/tL7UYTwaXZMMHpE+zBx77n/AM4r2bqKAI7eOSG1ijklM0ioFaQjBcgck/WpBS0lAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSUtFABRRRQAUUUUAFFFFABRRRQAlLRRQAUUUUAFFFFABRRSZ5xQAtJmlpvegB1JWRrnibR/DdqbjVb6K3TPCnl3PYKo5J/CvObv4tah4keSw8A6HcXt1nBubpNsSe+Mj/x4j6UAesT3ENtEZbiaOGIdXkYKB+JrzbxL8YtP0zWhoui2Eus6gTtVYW+TPsRnd+H51i6T8JfEGv6o+o/EHWGvIj8yWVvcMVB9+MKB6L+dep6R4e0nQ7ZLfTdPt7ZUXaDHGAx9yev60AeczeEvG3xBgP8AwlGppo2nNjGn2kQJkH+2Sev411nhH4beHPBq79OtTJdFQGup/nkP09PwrrwOOaOhxQAg44ArjPiD45Twdp8KW8P2nVLwstrbjPOByTj61F8QPiDa+FLf7BahrnXLlCbW2jTfjPAZhnpntyfas/4e+AtQ0q+vPEXieVLvXLsjYzHeYFx2OPvH2HHToaAIPA/wxNlrI8XeIriS9165BnZGQKsDt2A7kDj0H4V6cOnNOHA4rJ8S6h/ZfhrU74nBgtpHHOMHbx+tAHl3wdtpNT8Z+L/FDBvJuLl4I938Xz7jj6ACvaO1effBrTrnTvhtYG5AEly73OAOQrHjPuQAa9B7UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUlLQAUUlNklSJdzuqjOMscc0APpCcVB9vtA6obmEOxIC+YMkjqKlSRJCdrKcehoAfRSdaMmgBaKKQ0ALSUZoLAAk9BQAtJXCeJfit4c8PO8CSvqN2P+WNlhwD2BbOAfbk+1czcH4jfEm2aOKFfC2lHDq7uxlnUg8cYYdR/doA9A17xt4f8O2s8t9qVuZIhk28Tq8p+iZzXmz/EDx54wvWj8HaJ9k00Hat5cx7ic98nCj6DNdR4a+EXh/QrlL+7jfUtRVi4muSSqE+ikn8zn8K9BC4AwMD0oA8q0j4K6bPcPqni25m1bU5vmkHmFY1J54xzx9ce1el2GnWmmWiW1laxW0K/8s41AH+ferlFACds0DpQTRQAuRXFfEDx5B4O01UgWO61e5cR2tpu5Of4iBztqbxv480vwXbRfa2Ml5c5FvAoJLH3x2yRXMeBvhlc2viFvGHiS6W61i4BdYlTCRMw+8c8lgOAO38gC54G8DytfHxh4nhMviG7dpUR2LC2RhhVAPQhfy6V6SBwM0DpS0AJXm3xu1Z7D4fS2sT7Zb+ZbcAdSvU4/KvSq8c+K1u+ufETwfoVuGabe1w/cLHuGSR/wFqAPUtCtEsNA061jGEgto4wPYKB/StGminUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUlAC0UnfFGRxzQAtFJmjNAC0UlFAC1zPj1tPi8FatPqcaPbw27sN/ZyuFx75I/Oumryr4+aqbDwALRVVjfXKxHPoBu/oKAM34TeDtBuvBkGsazZQ3dxd3DeRLdAkquQihc9OQeldx4b8G23hzxVq97Y24gsbqGERRhycON288n/drgvD/gzWLCfwIZdbvJLAbZ5LKQfLCwXeBx2ycc17Vnj6UAKKWkNU9Q1Kz0uyku764jgt41LM7sAP8A65oAu1VvtQs9NtXur66gtrePl5ZnCqPxNeTXXxou9bvZNP8ABPh641KZPmMso2rt9QgIP5kfSmTfCnXPHMltqnjPXpY2YbjYWycRA/wgk4U9jgH60Aa+vfGCwivRpvhWxl8Q6iw+5a52L+IB3fgPxrA07wz8UPGT7vEusS6Tp7jJhjVAzD+7sHt3Jr1Hw74S0TwtaC30iwjgBADyYBeTH95uv5cVuDpQBymhfDjwp4dVPsOjQtIuD5tx+9fPrlsgfhiurHTGeaWkoAKWiigAoooyB1NACVyXjnxvYeDtJkZ5UbUpkb7Hajl5XHA4Hbmrvi3xXYeD9Gk1G+buRFGvWR/QVwfg/wAGXfinXrT4heJJHS6fEtpYBBtiT+Aknnocgcc896AJfh74Q1bVb1/GHjeFp9UkIFlb3A5tUyTnb2znp2Hua9XHQf1oHSloAKKSloASvO7Rhqnxvv3zvXTNORFIz8rOTwfflq9Cc4BOQMDqa8z+FEU91qfi3W7qZZZbvUBHuXoAgJwP++h+VAHp3pS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUlQXd3b2VvJcXU8cEEYy0kjBVX6k15N4k+KWtahqy6X4C046ioBEt4sRkVWzgADOAB6k0AeqalqljpFo11qF3Da269ZJXCjPp7n2rz69+O/gu2mMNvNe3sh4HkW52k+mWI/QVSs/hBda06XvjbXr3Urhhl7WOTbEh9Aepx04xXcaL4F8M+H4Eh0/RrZNp3B3TzHB/3myf1oA4W3+L2t6tBKujeA9UlmB/ds/3D9TtGKnl8b/EtYN6+AQDgcebuP8816oBxzS0AeSn4peLtLGNY+HmoZIBD2pLDHrwp/nVm2+PHhM/LfxalYyq210mtt21h1GVJ716hjuKy9V8NaJrcBi1PSrS6U9fNiBI+h6igCHQPFeh+KLfztI1KG5A6orYdfqp5rzj4naVrPi3xHpFvBoWpSaZpsxknZVQCU7gPlJbkYB9OtXNY+Bfh2RpLvRLq80a6UbkMMxMasOnB5A+hrh0+LHivwBrB0rW7uw8QwKoIkhnBI+jgf+hA0Aen694q8Srpk9toPg3VftRj2xy3DRqiEjHZySRWfoXiPS/hr4RtrfxjqmzW7lnubiLJllLMc/w5xwB6DOa4q08dfEH4nXctj4dW20uxPySzKcGMH1c5Ocf3RXaaL8DvDFoRc6u1zrN22Cz3MpC568BcZ/HNAGVc/EDxb47gnsvBGh3drCxA/tO4IjwPUZ4/LJq3oXwenvLsaj451efWboEFIfNYxAdt2cZ/lXqtvBDbQxwQRJFEgAREXCgdgMVL2oApWGlafpcXlWFlbWqYxiGMJx+FXRXll/4+luvjRpfhvT7sfYIQy3QQjEkpUkDPtgfjmvUxQAYpaKKACiiigAooJpMjGSaAFrnvFni3TPCGlNe6hJy2VhiUEvK4GcAD9as+I9fsfDmkT397KoVF+SPPzSN2AHc5rzHwn4b1X4h60vi/xem23gkH2CxUFVBU5BPqOhz3PfHFAGh4O8E6nrupf8Jb43UT3koDWlkxLRwof7yHjPTgV6oOAOMUoHAooAKWikoAWiikx70Ac34+vZNO8B63dxOEkjtX2MexIwP51U+GdnDa+BdPkiRVNypnbAwSW9fwxWf8X3WTwLLp+5vMvriGBFTG5suM8dxiu102zSw0y1tIl2xwwrGq+mBQBbooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKTNLSYoAM1heK/FemeD9FfU9UdhEDtSNBl5W7KBVnX9csPDej3OqajMsVtCpPzHG49lHqTXlvhLSdU+J2rS+JfF9sx0SM503TZOIyTwXK98DHJ65PpQBUj0PxF8ZLqHVNWm/s3woJt1vaKf3kqg4yccc9M+/FewaNomnaBp6WWmWkdtAnRUH8z1P41bt7eK1t44YI1ihjUKqIu1VA7AVNQAo6CijNJmgBaKytZ8RaP4fthPq2o21nEc7TK4Bb6Dqa871H4rXuuSSWXgTRbvU3+618YSIoz2PPB/HFAHqk08UETTTSJHGoyzucACvMte+OHh+xn+x6LBLrV6X8sRwZRCfZiDn8Bj3rItPhV4q8VfvfHnie5aIPlbK2fKkdTn+EfgD9a9J0TwT4b8Our6Xo9rBMqhfP2BpCP945NAHmF54c+I3xMVLjUb5PD2kycrZKW349SByc/wC0cVynxL+G2ieB/DGmW9iZrnU768CG5mODtA6ADgckdfzr6ZHTmvI/HsaeI/i34R0JUE0VmXu7lD2Xgg/+O/rQB5Xq3gnxR8LNQsNftpsxDaVu4xhUYjlJFzwO3Ug/Wvb/AIc/E6x8cWht5gLXVolBlhZh8/qyeo/lXb3+n2eqWUtlfQRz20q7XjcZBFfOXxB+Hep/D/WU8ReFxP8A2crbwY8k2pHZv7y89fzoA+l8j1rnfGniWLwr4cn1BnQSt+6t95AHmtwuf9kdT7CsD4a/Eqx8baUsM8iw6vDHm4g7vjq6+o+lULO90j4hfES8iluYb/TNKhXyLN1JSSYn5ptpABC/d5z3xQBzt7YaB4e+IXgiWyuba7kw1vcvEytmQ4+diD1JZuDXuK4HHpXzz8ULfw5onjbw9/YVhbW13azGS9S2gKhQCpQttA/2q+gLW6hvbWO5hbdFIAynBGc0AWKTFLRQAUUUUAJ1rC8T+K9K8J6a17qdwEyD5cS8ySkdlHU+/pUviLxHYeGtLe+vpBjOyKMH5pXPRVHc1wGg+E73xvrS+KfFtvdRpFIwstNuVG1Iz0JA5x/PvxQBH4e8J6t408TW/jTxQVFimW07TCudqEfKzZ4759zzXrQGAKI1VECqoVQMBQMACnUAFFFFABRRRQAUhpaM0AeUeM9Ua/8Ai/4S0K3PzWsv2mUY5IwW6jthe9erjpXkfh2ca98d/EEssaSDSU8uGTZgqSAhH/oVetgnA/nQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSUtFACUUtFABRRRQAUmaWuA+L2vy6J4HnhtJCl/qDi1t8HnJPzEfgD+dAHG64s/xZ+Ji6JbTf8U1ozK9y69JX7rnofT6A17XFCkMSRRKERF2KoHQe1cn8NfDEvhbwbbWl1EiX8xM90F5+c9ie+Bj9a69nVAWZgAvJJPSgBx6UcetcB4m+L/hXw9JJardNqGoLwLa0Uvluw3fd/rXF3R+KXxJZGtom8NaQemZDHI4Pc4O48ewH1oA9O8XeN9F8Hac93qVyrOpAFtEymVyfRSelecRfEnxn46uns/CWgfZLCUeX9vuASY89W3fd/IGuo8M/B/w/ockV5fR/2pqKqQ8t0odCx6naeM+9d/BbxWsKwwRJHEowqIoAH4CgDyrRfgdZR3YvfE2sXet3JIZ0kJEZIOecklh9cV6jZWFrp1pHa2dvHbwRjCRxqAq/QVaooAQUA5pCRyScAdc1xevfFXwf4fZ47nVkuJ1faYLUea4P4cD8TQB2hPOPwrxvwXqkPiT44eJdXxtisLX7OhY8DDbc/wDjpovPij4o8TafeP4P8OTQW8UbMb2+BA2gEkrjjOB61wnw9+GN14+W71i+1WS1smmKSrGPnmbqenHf3oA9Z8UfGfwt4eE9vbXP9pagmVWC2GV356F+g/DNcdB8R/iH49ie38NeGYbS2f8AdyXM2XUAjkbmAXp7Zr07Qfhz4V8PRx/YtFtTOv8Ay3mjEkmfXcen4YrM+KnjC38HeEJghK3t8rQWqx8EMRy3tgH+VAHzBpOp6x4S1/8AtixO2e1maEyKuYyeQV+h5r6o+HXjOy8aaAl7HBDa3yEpPbJ/Dz1HfB61594j8D/2X+z5DbCHN1bmO+uCgySSfm/IN+leS+CrbWJtbWTQ74Q6lAPtEcKyFfOA5ZVxwTx0NAH2X5UZbcyKT64p4BGffsBXFeAfiPpXjiGWG3jlttQt1DT20oAI5wSuOoyR9Miu2HQDigBaKKMgd6ACsLxX4lsvCfh+51a9YBYxhEzgyOeij61N4h8Rab4Y0uTUdTuFhgU4GRksfQDua4Pw34d1HxprEPirxUPMtUzJptgf9XGD0Yr34Hfk59KAKXg/QtX8e6lH4v8AFMhFoJC9hpu35EGOCc84/n1r14AAccUgUYHGB6DoKd+FABmloooAKKKKACiiigApkjiNGdvuqMmnVyXxK1OPSfAWqzSNgyx+SgzgkvxjP0yaAMP4QWiyaZrGvNhp9S1GVy3U7Qxxz+Jr0quO+F1oLP4aaHGBgvbeaeMcuS3P4EV2FAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSUALRSDrS0AFFFFABRRRQAUUUUAFFFFABSUtGaADtSUZrP1bW9N0Kze71O8itoVBJMjYJ+g70AaGa8S8R6nZeK/jpp2jXt1ENK0VGnkDuFRpVG7kn0OPwBq3qHxnu9auDY+BNBudSn/iuZ42EadecA/zIrhPh/8ADv8A4WPqOoazq9zJDbx3DefHCAPOlJydp/hXHoKAPRvE/wAabK0uX0vwrZvrepZ2holJiVvw5b8OPesyy8KfETx+Uk8XanJo2l/eFpaAJI/sQOn/AAIk16loHhnR/C1iLPR7GO1h74yWY+pYnJrYHAA4FAHG+Hfhh4S8NSwz2eko93F0uZ2Mj59eeM/QCux4A9qXtVDUtY0zSIvM1G+t7VT0M0gXP0zQBoA5pM815Pd/HXSbi8FjoGjajrF0SQFiTaCR37kj3xUyWPxH8X6RdLf3FroUF0w8uMKTLFGeoyOc/XFAHd6r4n0TRIGl1HVLS3C/wvKu48dAM5zXlmp/GnVtWka18E+Gbu9YvsS6lgZkbnqAuMD6muk0D4NeGtHIlukl1O4OC7XRypIzg7efWvQYIIraJYoIo4o0GFRAFAHsKAPJLTwb8QfF0q3Xi7xFJploV2mw0/glT644z9cmul0j4QeDdIuo7uPSjPPGOGuZGkBPqVztz74ru8iloA4/4j30ei/DTW5IysI+ymGMKMYL/KAB+NJ8MNHTRfh5pNukbK0kXnvu6kvz/LFc98b7h5PDVhpCx7vt97GrHrtAPp3ySK9OhiSCFIYxhEUKo9AOKAH57V4x4ssYfiD8aNO0GRWk0vSLczXRQ8b2OcfjtQfnXqPiTV4tB8PX2pysFEEZ2nPVjwo/76IH41598DtEvbTQdR1vUQftWq3JcF/vbFzg/Qkt+lAHpl9YwX+mz2E6Zt5ojE64/hIwf0NfGpiuvA3xAHUS6Vfqc+oDfyIH619qjp0xXzB8c7WXTfiPPN5amHVLOM5YcbgNvH02j86APTPGvgWWaSHxl4KWK31uIecVUYS8TAOCBwWx+fetb4efEOHxVZrY6mVs/EEGVuLORfLYkd1U89OSO1XPhfrh1/4faXdMAHjj8hsdyny5/Ssn4g/Dp9duofEfh+UWfiK0+aN1wPOx0BPY44z6UAejgjFZmva9YeG9Jn1LUrhIYIhn5mALHsoz1Jrg/D/xd099M1BfFCrpOp6ZiOeGRhumPPKD1yDxWfpOha/4/wDF0Wv+JLc23h+3xNY2DuG3Er8rHHHQ5PagCPQ9An+K97/wk/iCS4g0mOXFhpqjarBedzZ55OemM17EihECqMKBgAU1UWNAiIFVRhVUcAegHanjpQAtFFFABSUtFACUtFFABRSUZoACa8o+O32i78P6PpNs4WS91BQF7nAI4/76Fer8GvLfEbzaz8cfD2lR7fI061e8lym4ZJH88KPxoA9H0yzXTtKs7JeRbwpED67VA/pVwdKQUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJS0UAAooooAKQ0tFACClopKAFopMgd6B1NAC0U1mCgliAAMknsK4PxT8V/Dnhuf7Ik63uoMuUigbK57Av0B9qAO9yOueK5jX/AB/4X8OSGLU9Yt45+SIUzIx9sLnB+uK4W3u/iF8Q/wB1Ht8PaO3yTSrGRKeDkKSct9RgVveFfhD4f8OXQvrgzapfjpNd4IH/AAHpn65oA5rWPGHxB8YSiHwRo11p9hkOuoXKBTMuM4G8YHPpmtDRfg2l3cJqfjXVLnWr1hlreSQmJCevueewwK9WVAigDAA6DoBTLi4htbd7i4kSKKMZd3OABQBi3Gnab4Z8K6iNKsILWGK2kfy4E25IUnnHJNcn8C7Vbb4bW8xi8trm4lkY+vzYH8qx/ib8WfDB8M6ho2nXbX13dQmLdbH5Y89y39K5jwFrHxK8QeF7bQ9Bt7awsLddi6nJEynbnnaTkN+AoA961PW9K0WIy6nqNpZp6zzBM/TJ5rhtU+NHh6F2t9EgvNcu8YCWULMue2WP9M1mWXwMsrqQXPifWr7Vrn+I7yoPPqcnH5V6JofhXRPDULxaPpkFmHxvMa/M31PU0AeRSXXxk8ZXoFtbf8I5YnOCyiPA9ycvn6ACt/RvglYtcnUPFup3Wu3zc/vJHVF/XJ/T6V6sFAAHApaAMvS/D2kaLGqaZplrabV2AwxBTj69T+NaQ5xSnpXnHxS8ayaFb2ug6YVOr6uwt4yTnyVc7d2Px4+lAHXyeK9AhuzbSazYiYdUE6kj688VbuNUsbXS31Oa7iSxRPMaff8AIF9cjrWb4d8I6T4Z0VdMs7RGjKhZpHQF5z3Zz3rzLwUw8RWnirwNdTslrM8z2kynO1PMIOB7HHXtQB6j4c8W6H4rglm0W/S7WJtsgCspQ+4YCtwdK88+HPwyHgGa8mOpveSXIVCoj2IFByDjnnn2r0LtQB4z40tv7f8Ajp4e08SyKLGNJyoGVJDFzkf7or2UDFeY+GGt9W+M/iu5ls1MliIooZmzx8oU4/I/ma9LkkSGF5ZGCogLOzdAB1P6UAeTfFbWZNW8S6H4DsdrvfXCS3ox0jBDD9Ax/AV6ta2kNlaQ2tvGI4IkCIijhQK8i+HGjr4o8eaz8QJyQguJLe0jHIwAF3/989vc17IOBjigAGcc9a8m+PXhc6x4Sj1e3hDXOmMXY9/JI+b8iAfzr1kVn61Ypqmh39g43Jc28kRH+8pFAHl37PV9JN4T1GzZQIre7ymOcb1zj9P1r0rxF4j03wvpE2p6pcLFbxjgdWY9go7k14V8CdbtfD+n+KbvVJhDawCEnJyS2XBAHc8DpUmqWWq/FO31TxVrUs2meGrG2lexRMN5m0HJ59SBk4x2FAFafwjrXxk1LVfFCRR6dbKnlacrxgG4IzgM3f8A3uxPtXoXw5+If2uRfCviG1XS9btFWJInGxZgBgbR2PH+Fcr8JdJ1nxdo13f3niTWLOCFzbW8VnMI0I2glsY5PI7CoNd0YeJvG7eCNWvg2uWkIlsNbjj2OwA3BJgMbjjoVxg+poA9/ByAacORXmPgnx1qEGqHwl4xj8jWYG2RXRAWO6GPlGem7HPvXpgOAOc0AOoozkUUAFFFFABRRRQAUmKWigBrEAc9hmvKPA8o1r4w+K9bEsc8McItoXQnCgMBj/x0V6bqdytnpd5dMSFgheQ49lJry74B2creFNQ1Wcc312QjEYLKgxn8y34igD10dKKKKAEHWloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikoAKWiigAoopM0ALScVlax4k0bQIjJqup2toBziWQKxHsOprym9+MGteJL9tM8EaJPI24qL2SIyKQOh29FB9SfwoA9ivb+0063a5vbmK3hQFi8j7RgfzrzXUfjRp07LaeE9OvNcvpDtRY4WVAfUk8/p+NUbH4U614qKX/xC1y4nmDbhY2zqI0H1Ax+Q/GvRtB8LaJ4Xt2i0mwhtVbh2HLN9WPNAHlUngj4leOb7zvEerDSNMl5e0t52yg9Ag+Un6mvRfDPw98OeF7YR2enxSzdXuJ0EkjEd8np+FP8Q/EDwx4YgdtQ1W3EqD/j3iYPIf8AgA/rXnOo/FvxN4h1JbHwJoZmgIwbq4hZuf8AgJ2r+NAHtbOkUZkkZUQclmOAK4jXviz4Q8PXT2k+oPcXKKGKWkZlGT0G4fLn8a5dfhx408XyLJ418SyQWu3DWliwBb64AX9GrqvD/wAJfB3hyWOe10vz7mNgyz3TmRgR3A6A/QUAchL8QfHHjm1mh8FeHZLODGDeXbqrDPpk4/LNV9L+C+va1cm88b+JZ7jccvbQSs+4ehY4A/AV7cBjgClFAHEP8N/C+l+GdRs9O0KzEkls6iSWPe5badp3Nkg5ql8FbqO4+G1nCk3mtbSSRP22nOcfTmvQiAcg9O4rxj4H3/2LWvFPhl+Ht7t50XGCAGKEfotAHtVFJRQAtJS0UAJXgPi+Aan+0ZpVoJXTy3t9yNnawVfM47V7/XBeLPBl5deKtP8AF+iNEdUsF2PbzHCXEYz8oP8ACxzwenrQB03iTWrfQPDt9qVy7LHBEW4XJJ6AD8cV5/8ABHQZbfQbnxBdxqsmptut8HJWIE/zJzWzqmi6546tEs9YtpdC0sMHmgjnSWefH8JZMqq/TmuxsrS00fS4LSBUgtLaNUUE8Ko96ALlU9Vv4tL0q7v5m2pbxNKTjPQE/wBKp6h4p0DSY86hrWn2/Gf3lwoJHsM5NeX/ABC+Lvhm88LajpOj3/2i7nIhz5L+Xs3Dcc4GRjP50Aa/wQ8y98N6rrE7eZNfajKTKy4ZlUAD9Sad8cfEU2keDo9Os2Iu9Vm8hAp5KAfNj8So/GvN/BPxL1zw74Ot9H0TwnLeyQszG42OyncxOcKPcd+1ZsOpeO/it4itr+3itXl0ptyIAqRwZ5ywY5OSO57UAfQ3gTQ/+Ed8E6TphQLLFbqZcDq7fM2fxP6Vp32t6VpiM19qNrahQSRLMq4/WvKD8NviJrkmNe8byQ2srZlhtWYEewAAFXrf9n/wtkPf32q3svUs86rn8hn9aANi9+NXgWyx/wATZrg88QQO3T3IA/WuU1j9ojQTbTw6bpmoTO8bKHl2xgEg89Sa6K9+Hnw38Gaa+sXukQrDbYcvcSvLk44G1jgn2ryXWLCTx5pmpeKhbW2ieG9LikWxhiiEZmbsOOpJ6kUAcx8ONG07xB42sNO1S4MdrMxLJziVgflQkdcmvon4qXdn4c+FN/a20SwRSxLaQRx4AXcemPTGa8h1zQ7jw98KfBniW3BW8huvOLqMEK3zID6j5P1rZ+LHi2y8YWGh2Vn580ZCXNyII2KxlgvVsc4Bbp3oA9S+FWkf2P8ADjSIGiSKSSLz5AByzMc5Pv0rzbS7ifXv2lZZ7eWN4rUSAts/5ZquzB/Eiu8u/iLplto/2Xw7aX+p3iRiGGGKzlAUgYBYkdPpSfDX4f8A/CLRzaxqR8zXdQy9y4OVQMd20e+aAOg8U+ErDxNYMssMcd8gzb3QjXfGw6YPWuS8HeLtT0PUv+EV8bP5F6qqbS7lYMJ1Jx8zDjd6Zr1Cub8XeCtI8Z2UUGpwyboX3wyxPseNvUEdqAOkyKM15X4c8X6p4b8RW3g7xTEixlPJs9QOQspUfKpZuuRxn14616mCCMggg0AOpDS0UAFFFJQAtFFIetAHJ/Em9Fj8P9Zfc6l4DEDH975uDj3xmr/g7Sl0TwdpGnqio0NsgkwOC5ALH881wfxl1GWW98O+HInKLf3aiYL1Klgo/ma9Z6D0oAUdKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopDQAtIaMgDk1FcXMFrE0txNHFGBlnkYAD8TQBNRmvNvEfxk8O6Yj2+kSnWNTJ2x29spKhvd+h/AmuRS0+LvjvUM3ckvhvSZPlZFPlEDocD/AFhJ98CgD0TxX8TfDPg9St7eefcknFtbYd/xx0/GuJ/4TXxz8Qv3XhLSm0nTJCQ2oXJ5x6gjgf8AAc1oQ+A/hp4Eg8zXJrOedsEy6kwdsjuE/wD11Bf/ABo0zfJo3g7SLjUrpECW3kQHyj7BR82B9MUALoHwOtFuWv8AxVqk2sXu4MArFUH1J5P5j6V3GteJfDPgTSVN5NBZQr/q7eFQWb6KOfxrywWPxk8azq9zdHw/ZglSFJhOOucDLE/XFdXovwQ8NWb/AGjWDca1dk5L3Ujbc/QHn8c0AY7/AB8h1Kd7Pw34a1C+uT8sW/AyfUquTj8ar3ngr4mePbAQ+I9WtNLtN+428WWLg+oB7e5r17TNE0vRrdYNN062tIhzthiCgn8K0OgoA838NfBXwpoP2ee4tm1G+iHzTXBO0t1yEzgfrXokUMcMYjiRUQDACjAH4CpaKAEpaSloAKKTPpiszUfEOjaUrNqGq2VqF5Pmzqp/LNAGnuHrXid9bf8ACFftB2uo7CthriGJmBwBI2Mk/wDAgK7G9+MHgWwj3Nr0UxyflgRpCfyGP1ryv4l/EDTfHOkJb6Jo2pvcWc6zRX3k4VFwd3TkUAfR/AHXpRn3r540b4kfE/xPZx/8I3pEM0NsiwzTeWpJkAGSSxAz7Vu23hn4x63sfUfE8WmAfwxMuT/3wMUAezyTRwxvJLIsaICWZiAAPUmuY1D4j+D9NJW58Q2O/n5YpfMP5LmuYtPg3HOxk1/xJq+pSSAiVfPZEbIwe9a1p8HvA1tHGDoUczIAA8ruSceoyAaAMOf4/eGVlaGysdTvZFJA8uIKP1IP6VHb/F7XdUnePR/AeoXAONkxkO3n1+XGPxr0Kw8K6BpbKbHRdPt2Xo0duoYfjjNa4H+RQB5ZPb/FzXJSUuNM0WA/w5Bb3GRuNZkvwZ8R61D5XiLxvNdRZyYljZwp9iWGfyr2gAelH40AeYWPwK8JW6Qfalurtouu9gqtz3AGfyNc18YvC2hafo2h6NoulWttqN7fqkTRIN2wAg5PXGWX8q90JxXj+tzxa9+0Ho2nHe6aVAZiqngNtLcj67aAOv8AGOtQeCfh1cTPlTFbC2hEZxmQrtBH0PP4VifBXwlJ4b8G/bLrH2zU2E7ZU5RMYQH8yf8AgVcx8Sbifxj8WtD8HQIZ7K0dJrtFOQM8tux6Lj/vqvcURIo1jRQiKAAo6AUAOFUdU1Sy0ewlv7+4jgtohlncgD6fWo9c1uw8P6TcalqdwkNrCMkt1PoB6knpXi9rYa58avE6alqUVxp/hC0b93bkkGf6epPduw4HNAD7TTtY+NutpqOqJLY+EbV2EEIJV5/Q+59+3Sp/jA9sT4b+H2kxrbLcSxvsj4REyUUED8T+FexZsNC0n/llaWFpF67VjRf/AKwryvwLanxv8RtU8b3lm32K3P2bTWf7vy8ZA+nP1agDtvF/hmHU/h3e6JGgxFaAQFhkhkXj8eMfjWH8EtS+3fDq1tXiZJbCV7dwTnPzEjHpwcfhXox6EEZHp1zXjPhK+/4Rb43a94dlcRWepuZbaJj0fG4Y9iCw/CgD2fGee9LSjpRQAlGaWigDA8W+F7TxboNxpl2NpYboZgMtC46MP8K850LxHe/CzULbwl4rlkubK4fNjqQcFUToQ+cEAH8R9K9lrJ17w5pXibT3stWsoriFhgFh8y+6nqDQBqIysispBBAII6U6vHdP8R638Ndbi0nxWXfwy37qz1DBk8rHChmHOMY+nbivWrW8t721iubWaOa3kUMkkbBlI9iOKALFFJSigApDS01jjrxQB5FrOnya7+0LpgeNXt9MtFc5z8pAZgfQcstevYzXmnw4nk1fxV4w1rzHezkvRFBvAONo5IOPoPwr0sdBQAtFFFABRRRQAUUUUAFFFFABSUtFABSUtFABRRRQAUUmeawPE/jLQvCFolxrN8sG84RFBZ3Pso5/pQBv1VvtQs9Nt2uL66htoRnLyyBR+teR33xe1bxDdvp/gfQpJVCHfe3uIlT3HZfqT+Feb3CWF1qcz/EHxNfanPC/FlpuZcfVyAijt8ufwoA9L8RfHW1jvjpvhTTJNWuS3lrL8wRm9FUDLfmPxrLuPAnirxzG2rfEDXU0awjUNHZx4CqPcE4U/XJqCy1HxPqtoLX4deCYtEsM7Y9RuI0EzqO5ZuM/99GtnSvg1qOqgXPjjX7rUJmJJgjmZgM46MxwOc8AfSgDIj8dfDv4eReR4X059X1aIeUbnkeZ6/vDn/x0YrQi1T4rePolNlaQ+HdLlbBuPuzFfXJ5PHoBXpuh+C/Dnh1F/srRrO3kXpKIgZPxc5b9a3hgYA7fhQB5HpvwF0fzJZ9e1S+1e4lYEyMfLP4nJJ/OvS9J0LTNBs1tdLsIraJRjEajJ+pPJ/GrzzxQqGllSNScZdgOa5vUviJ4Q0m5aC91+yjmQZKB95H/AHzmgDp6d0FeY3Xx28FwOVglvrpl6mC2Jx/31iopfihrmq6fE/hjwdfTzSNhGuxhQPU45/WgD1LNGa8gvk+L+v2hS3Wz0RhzuWRcP24+8w79abb/AAu8Z3l+9xq3ja4SNxh44HkkyMdtxUD8qAPUdR1rS9KiL6hqFtaqDgmWULzXH6r8ZfBenQb01JrzqALaMsCR7nA/Wo9N+DPhi0uWurw32o3T/ekuJyP/AEHB/M10mmeCfDOjx7LHQrCLj7xhDMfqxyaAPN5vjtPfQf8AFO+Fru9lLYw7cj/gKgmrNv4l+LPiC3LWPh6x0+NgQHuVK9ejDc+en+zXrMNtDbgLBBHGAMAIgAA/CpsDGO1AHkE3wy8aeI4M+IvHFzCTgmG0XKDj0BWm2X7PHh5JBLqOqaneuevzKgP6E/rXsNLQByGmfDHwdpKoLfQbZmQcSTDzGP58V00NnbW8PkQwRRRdNiIFXH0HFWaSgDxG7a4+FPxPEsClvDeuOrTAjiB8nOPTBOfofavbQRtGCDnvWT4j0Cz8S6HdaZfQRyRTIyjcuSp7MO4IPcV574G1+88G3n/CHeM70i5J32NzLJmORf7gc/h1oA9ZpaaDwMn8aUnFABilo7UUAFFFFACZ55r578D6tbf8Lb8Z+KtUnWG3sUlUljxjzAg/HCj86941S+j03Sru+l/1dvC8rfRVJ/pXy9Yxtf8Aw9TSLJd+s+ItWVpOeTEMlcn0zzQB6l8GbN9UbW/Gl8UkvdTu3jRlHCop7fU8fhXper6vY6Fpc2oajOkFtCMszEAE+g96y9Ph07wH4It4rudYrPTbYCSX1I6++Sc15pBa3/xl8Rre3UE9t4QsWHlQzDabhu+AD19+g6UAOj0zU/jF4lTUrx5bXwpYy/6PAyEG5HfOT1OME9hx1r2e2tobS2jt7aJIoY12pGq4CgelMsbG102xhsrOFILaFAkcaDAUVyXjn4hWfhJorCGCS+1m7U/ZrSIcn3J9PbqaAOa+K2uPrt5Z/D3RpVe/1CQfanVs+TGPmwfc4zj0+td/4U8N2/hTw5aaNau0kcAOXbq5JyT+tcl8Nfh/caBJceIdclNzr9+C0hY5EIY5xn+8e5r0kdaADrXkXxXsE0bxV4Z8ZxRuz217HBcADjYTwc+vJFevVyHxO0xtX+HWtW0aAzJAZo89mQ7sj3wDQB1iOHUEHg0+uI+FGstrfw702SV3a4gTyJd/XcvTP4Yrt6ACiiigBMUo6UUUAZXiDw/p/ibR59L1OHzbabqBwVPYg9jXkkN9qHwW1VdMuZWvPC9zODFJL9+ENjccj0Ocj0xjk17hVLU9MtNYsJ7G+gSe3mUo6OoIIPegCe3uYbu3jnt5UlhkUMjochgehFS54rxW3GrfBrUStwXv/CNwdqGPAkgfru2k/XgdetevabqVrq2m29/ZS+ZbXCB429RQBdrI8T6sug+GNT1R8Ytbd5BnoWxx+uK1wc15t8cbmWL4bXNvCCXu7iGAAdcFtx/RaAF+CFs8Pw6iuZSC95dS3GdpXgtt7/7pr0gdKwvB2mLpHg7StPH/ACxtkB+pGT+prdoAKKKKACiiigAooooAKKKKACikoyAOSBigBaKimuIraJpZ5EjjXlmdsAfia8s8UfHjw3oly9rp8U2qzqOXhZRDn/f6n8B+NAHq+RjORiuP8S/Ezwt4Yjk+1alHPcKD/o9sfMfPoccD8a+b/F3xa8SeLcRvcGxtQCPItnKhs+p6muf0+x0mWy8/UtZ8hN3zQRRNJKR7DIUfiaAPQvE/x88RalI6aHDFplmwIUlQ8pHru6D8B+Ncho2k694g1J549AvdXvJ23GWdX2Ek5JLZAH4nFb+ha74E0a4U6d4O1HXroAZe+kUAH/rmqsP5138fij4v+IRFHpXhu30iBgCssse0Be33z6e1ABofwh1/VLVY/FGsSWVjkbNN09htQemeVHvjJ967fTfBPgXwUnmC2soC2N0l7MGz/wB9nH5CuLvPh18T9fgUav4xggXJbZAzgr7fIFz9M0unfs76cpWTWNevb1s7ikSBAT9SWNAHdap8S/BmiWoebXrJ1AwqWr+cfphM4/GuV1P49aKiqmhadfapcMuQgTYFOeh6n9K6HTfhB4I0xlePRUmdSDuuJGk5+mdv6V2NrY2tjH5VpbQ26dkhjCDH0FAHjH/CyfihqkqDTPBawxOODJbysR+JKj8xWjbaZ8ZNahlW91ew0dS2VCohcA9cFQ36nPvXrwx+dLkCgDyMfBKXVnD+KvFuq6pt5WNX2qp9ctu/lWrYfA3wPYlGewnu2U5H2icnP1C4Br0ikzQBi6d4S8P6ST9g0Wygz/EsIz+fWthRhQBgY6e1PzSZoABRmiigBaTJozRmgApaTIx1paACijPOKTPpQAtFJmigA71zXjHwTpPjXTRaanE2+MloJ0OHiY9wf6V0vTrRkHNAHjmleNNd8A60nh7xopl0sYjtNWVSBt7Fz34/LvXrlnfWmoWyXFncRXELfdkicMD+IqtrGj2Wu6XPpuowLPbTLtdD/PPY15ja/DLX/BGpzXvgvVBJazffsboDnHYk8HgnnigD17P60V5xB8WtLsXNr4lsLzRLtG2v5se6Mn1BHJH4V2Wl+I9F1iJX07UrS4VuixyjP5daANXNAPNHXHFBIoA4P4xauNJ+GmqlX2y3Krbpzz8xwcfhmvFPg+sdtqdx4o1mby9L0WAmMt90yOCoA9Tgmuy/aPvMafolirglpZJGXuQAAP5muW8H6Hd+KPDdhb67dWel+D7OcyecZAjTy4xjJ4PJ54xQB0Njb618bfEZv7xriz8IWzgJAGwJiOoHqSepPA6V7rZ2ltYWUVraxJDbxIESNBgKAK841P4t+CPCdkmnaUWvPJASK3sUyg9Pm6H8CaxdTtPH/wAUreOOMR+H9DcbmEm7zJh2yMAnt/doA2fG3xUhsLl9C8LxHUtekbywIl3JET/6ER6dPWl8CfDOXT79vE3imdtR8RTEuDJysGemB03foO3rXSeCfAel+CdJjtrSNZbojM10y/NI39B7V1OeM59qAHDpS0mRRQAtRTQpPC8Mi7kdSrA9weD+lSHpSA8e9AHk3wvDeG/GvirwnMSEWYXVruPVDxx+let1458Trx/C3xJ8LeJ0XMLbrSdV43AnHzH6Nx9K9gV1KKVIIPIx3oAfRSEgEZ70jOq53MB9TQA6imhgccjnp703zY8AiRcZx17+lAElFRiWMsFDqWPQZ5pTJGASXUYOOvegCvf2NpqdnLZ3sCT28o2vG65BryaeHV/hLrBubcS3Hgyef97GoDtaqR2GM4yfXpXsBkQAEsoB6ZNRXCW88UkFwsbxupEkb4IK+4oAj03UrPVbKO8sbiOe3k6Mhzz6e30rz/4k3bXni3wd4dUMyXN8LmXGSCqZ6/maztSt7n4U391rWjCK80Cdl+1WHnBZIT0BTPbnp7UnhXVrbx78Vj4isnYWGn2bRxRyjDsx4Jx2AyaAPXQNowBgeg7U6mjAAFOoAKSlooAKKKKACiiigAooooAQ+1ch4vv/ABlFILTwxpFtPvhJa8nuFXy3JIChCefXPSuwqrfXlvp1jPeXTiOCBGkkYnooGTQB8w+MvDHxH/s9J/FGpyS28j7hHLeoU3eipuwT9BXJaf4E1fVZXitHsjIpHyS3ccTAE4B2sc4r2r4c2dx4/wDFd5421iUywW8jxWFq6ZWLJ7e4XH511fjjwBJ4l8S6BrFq0Eb2Nwhu/MJBkhDBgBgcnOe9AHhY+BfjsybDp1uP9s3ceP55rYt/hF8QdOt4Ra2WkF0OdzxW7sv/AAJ1JNfTfUZ6Ucd6APArHwt8Z7VGeG9tIXAwFT7OAfyWg6J8diTH/ay8dxPD/hXvoGKMc5xzQB4Q2hfHRcBNYQjHUzQ8f+O1JHovxyymdXhBB+YtLEQR/wB817pRQB4jcaL8b5ZEWLWLaMY5YSR/qNpqSHw98aDIrT+I7bap5EbJl/zTivaqTFAHh0nhv41B3ePxHHgtkKzx9P8AvmnxeHfjXHIwPiKBlYZyzIR9Pu5r27FGKAPIP+Ed+L0k2G8R2scTfeKlWI+ny1DceE/i+cRQ+LIWhzksSFb8wua9mooA8cHg74uMoC+NIIlxyp+Y5+uyo4/CHxdMbq/jGIEnhg/b/vivZqMe1AHjzeEfizGWWLxfARjAZ3z36/dpLvwP8VncyxeOUJJ+WPLKAPwX+lexfhS0AeSR+D/irIYzN4yt41UYZUZiT+Oyon8DfFJplK+OIxGg+VSz8/XC/wBK9gpKAPIk8D/E1rd45PGaq4Hysk8mCff5ajsfh78S4/MNz48ckj5dk8hGfxWvYaWgDxweA/iopVV8eoUzySX3f+gkU+T4e/Eecjf4+kjAHOx3z+nFevjrRQB4+/w4+I4wE+IlxwerSSZIqaH4ceO1P7z4gXj56N5sny/hnBr1rGaOlAHkMvw18fgAQ/EO8HqWZ85+gOKsP8N/GjSF1+IGoKW6jfJgf+PV6t1oxQB5GPhf41aRXl+ImoMVztIZ/l/8e5ptv8LvGkFzv/4WJemHsreYT+I34r16gjNAHjOp/BTW9fkj/trxrNdxRZ2Brckp9MvVKy/Z5ezmEy+KplkQ5iaK2KkH67zXueOKKAPC7/4R/EIlDaeOZZgD92W5mjA+m3INUJ/hr8WmnZYvFEhRMYZ9TlG4+wA/nX0JSYFAHxt4u0DxTpviGGz8W3V1LPJhopWdp/MGcHZ6nPbiuij+H+npHaw+INc1jSIGcrANR05o4y5H8J3Mo/HFdZ8T57fVfjT4f026uYrW1tYUMk00gVRuYseTx0ArV+LOrW3jFtM8IeHpY7+/kulmlaBg6QqFK5YjoSG/LJoApWn7OtvBLHcJ4pn4+YNHbBT7YIetpPg1qTEi48eaxKg+5ywKn67+a9M0i0ksNFsbOaQSyQQRxM4HDFVAJ/HFXqAPIB8E9RQEL4/1sbj82Cef/H6lX4K3K/8AM864DsK5V2B/Pd+letUmaAPJl+C1xGgRfHGuYB3AFuM/nSXPwTnu7v7TJ431kyEfePJ/DnivWuvaloA8l/4UhFIHWfxbrcqsBwZMDPqeear6j8HRpukzzW2veILtkTc1tDIuZiOmAxxkV7DWJ4tvn03wlqt1ECZVt3EYAJJcjao/MigDwnQPCfhzx/rN7pb6jry3ECea0lxtYAg4Pfr07fjWz4m8CaZ8PdFOpXfiLXLi1MgiWyhZYxIxB67cADvn6U74YaS3hH4pXui3REck2no8a7idzEKz4z39qx/is174nePWTMV083n2GwtS+BMFzvk4PduB3oA6jw18P7HxV4et76LXdfhhkO9XeUgup7AnqOCO1X5PgPobuuNS1AjOW8xyxI9BggD8q7/wvpK6H4W07S1GPs9uqEe+Mn9Sa2aAPMbT4JaFbOzHUtVbOML5+APpipH+Cvhl7gzPcaozbt4U3RIHr2r0qkoA8zk+CmhefFLbajqluYxhSkwPbnqKF+Cmhh1ZtU1lgMbgbojdj145r0wUtAHm0fwa0SKPYNR1XqcA3GVwTnbtx09ql/4U94dNxLLLcarJ5gAZDdkKQBjoBg/jXodGKAPNpPgl4SZFVn1DYj7hm4Bx7cr0pnhi30fRv7QHgHSzfuspiupZZ2jjVlx8qlhg/wDAeOKsfFvxbJ4e0KDTrNZPt2qsYY2UhdqDG8kn2OPxrqvC2jw6F4csbCFFQpErPtHVjyxJ780AU9F8Wf2nrk+i3OmXNnqNtF5kwZleNQcYw4OT19O1dOOlZ0Wk28Ot3WqqCbi5hSF/91SSP/Qv0rRoAKKKKACiiigAooooAKKKKACvMvjtdXdt8NLhbbeBNcRxzMvaM5J/DgD8a9NrL17RLLxFo9zpeoRGS2uF2v6j0I9waAOZ+Gtmnh/4X6YwgeRng+1SJCu5mL88DPPGPypbH4n6PqevjRbTT9YkvwwEsf2THkjoS+TwKrWFv418L6Da6Fp+kafqa26eVDdveGMBAflLoRknnnB7Vd8F+CX8PXV/q2ozQ3Gsag+6aSFCqKvB2gH3FAHaCloHSkxQAtFFFABRRRQAUlLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRSZNLQAUUUUAFFFFACUtFFABSUtFABRRRQAUxmCAlzhQMknoBT6z9YsJtT0q5soLtrR50KeeiBioPXg0AeNeBNLs/HPxQ8Wa5qllDe2cEnkQx3GJApzgYB7bVP51NqaweFPjnpFl4cjgtUv7dY7y3jQ7WQk/eUdDgZBGMCuy8I/DuXwZYXtrpmuSH7W4kaSS2UsrAYGOcfmKuaF8PNO0fxC/iGe7vNQ1mRCr3N0y4567VUAL+HTNAHYDoKUCmj8fxp1ABSYpaKACkxzS0mTQAGsPxH5FyllpkxU/bLpAYz1ZUO8/wDoI/MVuVzN94TmvfFNrrb65qCC1bMVonliMA4Dj7mcHHOST6EUAeReMbXW5/jtJD4cAt9QkgQeeynCoYwGcf7uTz1re1zT7bUvi14W8MxRILHSI/MZCfvEKW5HfovPvXpcfhqyh8TXWvr53264gWAkvlUC91B6E1gaZ8NoNM8VN4k/trUZ9TkVleSVIsMCQSMBQB0xwKAO4A/LFOoHSigAooooATFLiiigAooooA8i+NOh299ceH9Qu7qW3tbed4pCkeR85TGT26GvVJri3srRppZUht4ky0jEBVA9ag1bSrTWtOmsL6AS28wwy5IPHIwRWFH4JLpb22o67qmo2UGMW1yY9j4ztDlUBbHB5PYdaANTw/rsOv2k95bQutsLhoonbjzFXA3gdhnIH0962M8VR0jSrTRNNh0+xjMdvEDtUnJ5OTk9+tXhQAo6UUUUAFFFFABRRRQAUUUUAFFFFADTjPSlx0pp608dKACiiigAooooASiiigBaKKKACkzS03vQA6ijtRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUlLSd6ADHNLR3ooAKKKKACiiigAooooASig0DpQAZoo7UDpQAtFHaigAooooAKKKKACiiigAooooAQdaKB1ooAMUtFFABRRRQAUUUUAFFFFAH//Z'] Multimodal Competition False Theorem proof Geometry Math Chinese 68 " 如图,已知锐角 $\triangle A B C$ 的外接圆为 $\odot O, A D$ 为 $\odot O$ 的直径,过点 $B 、 C$ 且垂直于 $B C$ 的直线与 $C A 、 B A$ 的延长线分别交于点 $E 、 F$. 证明: $\angle A D F=\angle B E D$." ['\n\n如图, 联结 $B D 、 C D$.\n\n则 $\\angle D B F=\\angle D C E=90^{\\circ}$,\n\n且 $\\frac{B F}{C E}=\\frac{\\frac{B C}{\\cos \\angle C B F}}{\\frac{B C}{\\cos \\angle B C E}}=\\frac{\\sin \\angle B C D}{\\sin \\angle C B D}=\\frac{B D}{C D} .$\n\n故 $\\triangle D B F \\backsim \\triangle D C E$\n\n$\\Rightarrow \\angle B D F=\\angle C D E$\n\n$\\Rightarrow \\angle B D E=\\angle C D F$.\n\n因为 $B E / / C F$, 所以, $A$ 是线段 $C F$ 与 $E B$的一个位似中心. 设点 $D$ 关于此位似变换的对应点为 $D^{\\prime}$. 则\n\n$\\angle B D E=\\angle F D C=\\angle B D^{\\prime} E$.\n\n于是, $B 、 D 、 D^{\\prime} 、 E$ 四点共圆.\n\n故 $\\angle A D F=\\angle A D^{\\prime} B=\\angle B D^{\\prime} D=\\angle B E D$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAd0A2gMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACik60tABWfrOoSaXpNzfpAs32dDIytIE+UcnnBq/XAfGTW20T4b6gyAGS7K2y5OMbup/IGgCHwx8Q9Y8X6XJqOj+FS0UUhjJlvlQOf8AZO3mtnwx4q1DW9Wv9O1Hw9caTNZqjkyTrKGDZxgrx0WvL/hr8QbOx0vwv4O0i0ke+uJs3U00e1FUsXcrzknaMA+1e5xWNtDe3F4kIW4uAiyv3YLnH5ZNAFkdBnrS0neloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKTJpaKAEHWlopDQAhYLgMQMnAzXiX7Qkr3q+G9CgJM1zcvJtHthQf/AB41k/FvxbeN8VNF0mzuikFjLA7Khx+9Z+cnv8uOK9L174XaL4l1j+09UvdVlnRt0OLrCw85+QY45FAGnF4NsRf+H75yy3GjW5hjCABWygXnjsM9+9dMM4561XsbUWVlBaiaaUQoE8yZ9ztgYyx7n1NWaAEpaKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopDQAtFIKWgAoopKAFrL8Q6xD4f0C/wBWuDiK1iMhz3I6D8SRWpXlXxxnuLvw7p/hzTzvvdWvEURA8so/pnH5UAfO9teS6t4ztdQmZpLm51BZpRg93B49utfbgFfHGs6bFoPxMt9Mto3ijtLi2jYM2dzDZuOfc5NfY4JA5oAMUUtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUhoAQnrn8MV4n4YM3jb48anrkiZ0/RVeCDnK7hlAR2z94/lXonxC8Tx+E/Bt9qJfbOUMVv7yMMD/H8KyPhPoH/CO/Dq3muABd3yG9nc9fmGRk/7uPzNAHz54ukN78Xr6ccCTV/LXJ54dcGvsJc7ea+QN6pZ2NxJtff4gcvNnJwChzmvsAdBQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRSGgUALQSB1OKKp6pfRaZpV3fz/6q2iaVueyjP8ASgDx74vW1x4s8e+GfB1s7GJt1xdKn8Kk/ePpgBvzr0/xPOmj+CdUliT5LawkCKO2EIArzn4KrP4g1PxH4zvctLeXHkw5/gQfMQPTqv5V2XxRuvsfw112TDEm32DAzyxC/wBaAPng25T4aeEpdg3T63MxZu+Ng/LivrgV8xa3beV8LPh2oZfmvJJCR05evp0dKAFFFIKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQ9a85+M+rm08FPpFs2b/V5VtIIxyzAkbv04/GvRu9eHzS3fjT9oiKAAHT/DpyCBkBgATn33n/AMdoA9R8GeHYfC3hax0uJArRxgynu0hHzE1zHxxd0+FuoCNiC0sK8HGf3gr0UdOeK8s+PkinwDBa79rXOoRIpJ/3j/hQBxfjy0OmfDr4eRsQCkgJH+8A39a+iB1rxP4x6Z5HhDwnbLgpazIrMOCcIBXtgOQM8HHSgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEoFLSE0AYni3xBD4Y8M3+rzDd9njJVe7N0UfnXIfBfRXtfB7a3eKDf6xM91LIfvFSfl5/X8ayPjdNPq9z4c8I2R8yXULoyTRqeQq4AJ9uWP8AwGvV9OsINM021sLZNsNvEsSAegGP6UAWiM15F8aovtOp+DrM5YTakAV7YGB0/wCBV69XlPjZzd/GjwVYiQHy/MnMZXIOATn8l/SgCr8epBDp3h4lQd1/sP0I/wDrV6+OteSfHmRo9B0N1AbGornjPGDXrYOQKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKSgBaKKKACkpaKAEPSo5XWOJ3c/KBz9Klrh/ir4mXw34IvCspS7vVNra7Ou9gcn8B/SgDjvhpO/jf4k6941ljcWsKC0sw/VM+n4D/x6vaO2a5X4e+F4vCXg6y05UxcFfMuGPVpG5Ofp0/Cuq60AA5ryW7dLz9pCyjEbq9lYM3mHocxtwP++69a6V4v4Wml1H9o/wARTPIWjtrV41B7YMa8frQBrfHW0M/hPTph0i1GIEf72a9SA5rzb43j/igEYKTsvoG+XjHJFekjoKAA9aWkPWloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikyaAFpKWigBM14f4zjn8cfG3S/DcbZsNKCXFxgn2Zvx5UV634j1u38OaBfavdNiK3jL/U9APzx+dcB8E7E3Wial4pu4yb/V7yR/McZIjBwAPbOfyoA9UxRQKWgBprw/4SK958WfG+oE5UTSRgn1MpP/ALLXuJ7j9a8g+BAMlr4munQh5dTb5iMEgc/zY0AbvxnEp+HsphjSRluYm2yDKkbu+a7nT2d9OtXkVVkaJCyr0BwMgV578dCU+Gk7Dr9piwAOvNd9pLF9FsWZdpMEZI9PlFAF6ijtRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAJS0UUAFJS00naMngetAHlXxu1Lz9G0/wxbsxutVu41ZVGT5YPPH1x+Veh6BpFvoGgWWk2gIgtohGuRyfc15R4Qlfx98YtQ8TlVXT9GDW8CsMliQVB9P7x/GvaqAFHSiiigCnqs/2bSb2bB/dQO/HXhSa89+BfmN8PFmlwfOupWBI5Izjn16V1njm9XT/AATrNw4yotXQc4wWBXP61n/C2zSx+GuiRKwbdB5hI7liT/I0AY/xyR2+GdzsbaRcRMT7ZrudBJbw9ppOcm1i6/7grjfjWf8Ai2l4pXIaWNePrXa6Ovl6JYIOi28YH/fIoAvDpRRRQAUUUUAFFFFABRRRQAUUmaWgAooooAKKKKACiiigAoopD1oAWuP+JXiaLwt4Kv7xpNs8qmCAAcl2GP5ZNdeTzXknxH0+48Y/EDQvC8ZYWkSm6uXRvuDI6j6DA+tAHT/C/wANp4a8DWERi23VzGLm5buzuAcH6DA/Ou1piKEQKv3QMCn0AJSiiigDgfjIxX4Zarh3XIQEqwGfmHBz2rpPCcSw+DtEjVAgFhCNo7fIua4P49ylvAsNosyx+fdoCCOWwDwPxxXpOkw/ZtHsoOf3VvGnPsoFAHH/ABfXPw51Bg8alWQ/ODyQeAORzXXaMd2h2B55t4zyc/wiuO+MxA+GepkorEFCN3Y7hjHvXX6ACvh7TQSSfssXJ/3BQBo0Uh60tABRRRQAUUUCgAoopKAFooooAKKKSgBaKKKACiiigAoopDwKAKGt6pDomi32pz/6q1haZh64GcfpXnXwatpr+21nxXeKTPqtz+7djlvLHYegyf0qz8X9RkuNLsPCVm0f2zXbhbfDHlUBBLfngfnXdaFo1toGh2mlWg/c20YRSepx3NAGgOOuKdSEUUAFLSUdqAPF/jq5udY8H6YmS8t4X2g8EbkHSvaBgCvIPiBEl58aPBNrKMqitIoHrvHX/vmvX+2aAPOPjjv/AOFYXxQ4xNFn6bhXaeG1CeGNKUMTizhGT3+QVx/xs/5JbqmOoaI/+Piuq8JSPL4P0Z5BhzZRZ/74FAGyetFLRQAUUUUAFFFJQAuR60V5l8SPiHrPgnV7G3tLGxuoL0BYleRhLvz6DtzVjWNf+ImkaS1+fD+kXAjXdJHDcMWQYySQcdPYmgD0Wisnw3qc2s+G9P1K5hEE11CsrxqSQpI961h05oAKKKKACiiigAoopDQAtITgE+lFch8SfFCeFPBt5epMqXkimG1BPLSEHGMe24/hQBweg2L+Nfjhf+IXulex0R/KhjJJOdpAI7ddx/Kva64j4UaCuh/D/T98QW7u0+03L8lpCxJBJPfBFdvQAtFFFABSGlpM4FAHkWqBtX/aN0tFOY9N0/cxHIUneefTqK9dHIryjwufN+Pfip4xvRbWNXI/hbjj69a9YHSgDz/4zgn4XasA5X/V88AffFdL4QVk8G6MrnLCyhyf+Aiub+M6F/hbq4xnAQ/+Piug8Esz+B9DZzkmxh5/4CKAN+iiigAooooAKSg9aQ9cE0AfPPxd1q3j+L+ix3SyPBp5glcIC5xuLsAuepGK9I8BeNv+Fhza5ILTy9JiKQQq4+aQENuLfhXJfDpIPFPxb8VeKGjDQQYggJwRnhc/kv610E81r8P5bXQfDoivdY1rUTK6XBHyISSzELggKMACgD0a2t4bO1jtrdFjhiQKiL0UDoKnrz7w18VdI17xRdeHHilttQimkjiD8rLsz0PY8d678EUAOooyKKACkxS0UAGKQ0tFACZHrXjvxPsZPHHj3QvB0DbYrYG9vHHO1ScDj6f+hV61fXUdjYXF5J/q7eJpWPsoJP8AKvI/ghp1/e3eu+L9SJd9Rk2QM5y20MWP0Gdv5UAewwxJBCkUahERQqqOgA6CpKQ9KWgApKWigApPalqC6l8i1mmyoEaM5LHAGB3oA8p+E7rqHjvx9qYPLXqxhR93GX5+vy167mvHP2fwZ9H8Qak+3ddaiSdvTgZ49vnr2KgDh/i+gf4X60C20BUOfT51rV8BFD4D0IowZfsUfI/3RWX8XOfhjrJJUBVQtk8Y8xa2fBbo/grRWRAqmzjwB/uigDfooHSkPWgBaKKKACqt7ZxX9pJbThzFIMMEcqSM+owatUUAcba/C7wjZK4ttMeLefn2XMo3/X5qsaT8PPC2iammpadpSRXiZCymWR2Gev3ia6qk9aAPjXxDbarpfjLV9csDIPsesSoJ06pIHJHH+fSvoj4WfEL/AITnR5VvVih1S2IE0aHAkUjh1HXB5+mK5Dw74aHii3+J+ku8fm3GosIiedsgZypPpyBXIaFovia501tX0ZmtfEfhtjbTWyoN9xETxgeo+YEHqMd6APqDqMk80tcn4H8b6f420Vby0IS5jAW5tifmibv+HXFdX05oAWkpaTvQAtIawfEPivTPDUthFfs++/nEEKIuTu9fpyK3uMZJoA81+MXiBrDw/baHbZe51mYWpSM/vBGepAH5V23h7Rbbw/oNnplmu2G3iCjvk9yT3ya88aKDxx8ZY7iMIbPw0CrOAcySnGBnpgHn8K9X+vNACjpSUtFACUtJS0AFY/imbyPCesS5UbLKZst0GENbFcp8SbgW3w38QS4DYs3XB/2vl/rQByf7P0AT4dvKVw0t7IcY4wAor1YfpXB/B2zW1+GOkFYjH5ytMQTn7zHn9K72gDi/iuFPwv1/chf9wDtHruX+XX8Kv+AZfP8AAGgyAY3WMXHodtP8djPgTXvlz/oM3GM/wH/61RfDvJ+HmgFiSTYxkk/SgDp6KKKAEHWloooAKKKKACmsMgg0p60HpQB5f8KkCeJ/HajODqxIJ7nLZrN8bXM/gT4o6V4kh/caRqSfZ9RIXKcN1I9cY/I1qfDN0Xxh47gEuWGqM20rgjJNdP498KReMvCtzpTFVmx5lvI3/LOQdD9OooA4PxFoKfDzxLb+OfD0bro8jBdTtICzBlYnMgGegJBx2Oe1epaJrWn+INLh1LTLhJ7aUfK47HuD6GuK+GPiCDxP4LfRdRgb7XpsYs7uKXnzABtDDPYgY/CuXimvPgnrRt5IZLvwpfyBvOXO63kJxz+GOO4oA9vHSmMwVSzEBV5JPYd6SKaOaJJI3V43AKspyCD0IrkviFqEiaGNCs2/4mmtlrO0znCkj52JHQBSTn6UAeOfETXrzWvG2hayrEaMl8ILBnOEk2Ou+TI5IJ79MCvbfHXiFfDfg2/1MS+XII9kLYzukbgD+v4V4d8YtJ1jR/Dvhe2v4tOit7MPDELSR2LNhSSdyjHT1rr/AIg3Z8Y6/wCFvBFpIMS+Xe3Z6hVC5UMB7ZP4igDpvg7pT6d4Cgubnc13fyvdSyMpDPk8Z/DBH1r0IZ71HDAlvBHDGoVI1CqAOgHFS0AFFFFABRRRQAVwHxluBB8LtYAcK8oijT1YmReB+td9XmHxyutngy1syist3fwoxbsAc/0oA7HwVaNY+CdEtmjMZjs4wUPb5c1v1DaQi3s4IVGBHGqAemBipqAOf8c8eBNeOTxYTdP9w1R+GNxFc/DbQHjbdttEQ+xAwRWh42GfAuvDGf8AiXz/APoBrm/grIsnwu0wr0UyL+IY0AehdqKKKACiiigApB1paKAEPWig9aCM8djQB5n8NRGfGPjyTIaU6oRnuAC3GfSvSyOc15n8MYvJ8XePFDIVOrOcbvmHJ616b2oA8Zv7Ob4ffGS01ZHMeg62xhm3MdkcrDPTtyBj6mvVtX0iw1zTprDUbdJ7eUfMjjPPqPQ1znxR0Btf8B38UJK3VqBdwMBkh0yePqMj8aT4XeJ5/FngW01C6wbxC0ExHRmXofxBBoA4nw3quo/DDxLL4f8AFV7MdAuDt0y5m+ZEIPTd2GDyD0wDXfReGbubxuviaXWEubTyPLt7UwAiNSByjZ4JPOe+as+MvCFj410GTSr4ugLB4pkA3RsOhGf1FcD4B8ZXXhvxJ/wrnxGB5tsfJsLwgjzh1QHPqOh9sUAbnxP8A3HjeO1aTXI7DTrFHmdDb7yWx97dkYGK4/4GaLealq1/4v1SR53CfY7WR1wGAxkr+WK6P43+Jp9I8KQ6TYuwvdWk8ldvXZ/F+ZIH4123hDQ4/DvhLTNJRcfZ4FD+79WP/fWaAN0dKKOlFABRRSGgAzS03FOFACdK8g+MUpv/ABT4L0FTxcagJXU9CAyj/GvX+teMfEJ1ufjt4HtkOWiZWYenzk/yFAHs46ClopDQBg+Nm2+BdfI6jT5//QDXP/BhET4WaRs7hyfruNdH4xiM3grXIgQN1hMMnsNhrm/gyx/4Vjpg67d4BzkH5qAPQKKKKACiiigAooooAQ9aKWkoA8x+HjQt8QvHewlZBf4ZO3U816eOleVfDjD/ABL+ILt9/wC2hc+wLV6pQAjKGUggEEcgjg14vBeL8N/jLJprN5Gga6BJGgHypMeOB2+bj8a9qrzf4xeEf+Ei8LHUrRSNU0nNxAw6lRgsv5DI9x70AejDBHeuN+Ingq38X6BMI40j1a3UyWVyTsKOOcbhzg/pXIj432Q8I6fNbxf2h4guItr2cCn5XHUnHrxgfWuc165+IniDwXqGteIb5NE0hYtyWiRbHkywVVI+/wDgSM+lAHHWXieW58a6XN42vJmt9DzEXUGUyMpJA68kkdfavYJPjKNSgb/hFvDOq6rMvGDEUUfXGeK+er/Qb3SNL0bVZYnZNSLyw70+9tIAyO+c5+hr6g+G/jbTvFOiRQJ5NrqtumLqyUBCrL8pIX0z+VAHMNq/xp1MNLaaHp2nRlsKkjIWx77m/pVWO1+Oqvu+16dj0cxED9K9rGMcUUAeOj/hecS5/wCJNKRzj93z7dqlj8b/ABP0gMNZ8DLdxoMtLZyA8fgTXruKTPOOc0AeTaf+0B4ZklEGqWeo6bMDh/MiDKp75wc/pXoOg+KdD8TQedo+pwXajqEbDL9VPI/KjWPCuha/aPb6npdtco/JLxgNn1DDBH51wGofAzR4Z1v/AAzfX+jahF80TJNvQN+OWH4E0AerqcgY/SvDtRQ3/wC1HYqDlLW3DkHtiJjx+JFNi+Ifj7wJqP2XxtpT3+mAhft1vEMgeoYfKfocGl8BXll4q+N2s+IrGRmtjbZjaRQCwKKmAD0xQB7oOlIetJnAp1AGJ4ucR+DdcfGcWE/GP+mZrlfgm4k+GNgQP45Bj05rqvF67vBeur0zp84/8htXL/BWNU+GOnbVIJaTP/fVAHodFFFABRRRQAUUUUAFIetFBoA8p+G7Y+KHxATacfbA2e3U16twa8p+Ha/8XT8ekkk/ahjjjqa9RnuIraGS4nlSOKNdzu5wFXuT6UAR399a6bYz3l5MkNtAhkkkc4Cgd68Z1XxR4l+Kt7JpPgrfY6GmY7vUZl2+YD27kDnoME05tR1P4weJ3sIIpofBVrJ++cDb9pZTkfMMHkjjHTr1xXr2laPp+iafHY6ZaR21qnRIxgfU9yaAPD/A2gJ8L/iyND1MpdDU7YJaXu3YAc5xg55JGOvpW78Xbx/EHiTw/wCBLbP+mXCT3D7uAgzwR64DN+VbHxn0GfUfCSavYDbqGjy/ao5AfmVB9/Hr0Bx7VzPwd0698Ua/eeO9cKTXQAghI/hbABOO3H8zQB03xe8HLrHw82WKhJNIXzoEGcBFGGHHoBn8K4ma0mn8PaZ8T/B2/wDtWCIJqduo4n2gCQkdyCMn1HPpXvksaTRNE6h42Uqyt0OeMfzrxr4TXUmh+MfEfge4yYI5Hnt0kTHG4AjB6ggigD0XwT4utfGfh6PVLWNoWyUlgcgtGw7fT0rpBxXi/i/RNa8AeLpPGPhmEvo8oU6lYwg4OPvMV7DbzkdDya9V0TXtM8Q6amoaXeR3Ns4zuQ42nGcEdQfY0AalJilFFACUUtFAEUsUc0bRyoHjYbWVhkMD2NfNGk+E9ZufiB4o1fwjNBaT6NfSeValSBIu4/IOwGB0r6ZkYJGznOFBJwK8t+CsCy2XiDWCys99qkrZz82AT1/76NAF3wL8VLbxJdvo2sW39la7GQht5WKiVvRc9D7V6MDk1wvj74b2HjCD7Xb/AOh65AAba9j+U5ByA2Ooz36jtWZ8PPH97dXh8K+Lo2s/EMA2oZht+0qB94HpnjPHWgDuPE5/4pLWDuA/0GY5P+41ch8EZHl+Gdk0jl/3sgB9s11viz/kT9b/AOwfP/6LauS+CCbPhfYLnP72U/8AjxoA9GooooAKKKKACiiigApKWk6UAeS/Doj/AIWv8QMNx9pHB9dxqh41vtQ+JXjA+C9DuDHpVm4bU7pM9fQduP1P0rktR8UN4d8eeP7e3eX+1tTlFpaLGvQlvvZ7EA17B8NPBK+C/DIt5QG1C5bzbqQHOW7LnuAKAOn0fSLPQ9Lt9OsYVit4FCqqjHOOT9TV8dKO3FGaAPOvjP4hOieBpLaLHn6nKLRM9gRlj+Q/WuH+GF3qfgHxyPBWqYe21KNbiCQ8YfZnA/AFT7itvV2h+IXxmstIwW03w6jXFwCeJJdwH48hfyNbHxj0GS88MJr1goXU9EkF3E44OxTlh7jjOPY0Aeldua8i8eiPwf8AE7w/4wEf+jXO6yuyOB8wwCf5/hXeeC/E9v4v8L2erQH5nXEqdCkg4YY9M5xWL8XdAk8Q/DrUIYFL3VttuogOuUOTj/gJagDtpo4rq3eKRRJFIpVlPRgR/hXidxDP8EfEcd3F5l74Z1VxHKp4e3ccj9CceoBFd18J9bbXPhxpc8kjPNAptpSxydycc/hius1HTrXVbKWzvreK4tpVKvHIuQwoAfZXttqFjBe2syS286LJHIp4ZT0NWa8Q0jUNQ+EXi/8AsLVXaTwpfzsbK6Yki2znAP4nBH417Yjo8aujBkYZDA5BHrmgB9JS0UAZuu3H2Pw/qVzkgxWsrgr1GFJ4rj/gzZ/ZPh3auWLG5nknDMPmIZu/5Vr/ABKuHtvhxr8sblHFowDfXA/rVT4TRmP4W6CGIJMBckD1cn88GgDteMDtXn/xN8DN4l0+PVNKIh1/Tj5trKDjft52Z/l716BjNIQff8O1AHmXh/xtJ4v+Gev/AG2FbfV7O0uIbq3bgkiM/Ng8jPQ+/FHwGkMnwvtgTkrczL/49n+tcb8aPDur+H9bl8YaIxis7uD7PfCI4+YqVyy9wVwM+tdf8Am/4tmgweLyb+lAHqVFAORRQAUUUUAFFFFABTGIUEk8AdfQU+uG+LXiJvDXw+v7iIkT3OLaIg4IL8E/gAaAPMfBGkWXi3476/qxlEltYXT3EQwCJG3bR+Hf8K+hegGMmvnj9nSKSDxDr0cyuJxbxkg+7Z/rX0SOlAAOgrJ8SaxFoHhzUdUldUFrA0i7zwWx8o/E4Fa1eKfGrVJdY1vQvAtnu829uI5piDxgttUY/M/hQBqfBDQ5YtAuvEmoIx1DVpCxZxg+WDx+BOT9MV6hdW0V5aTW06B4ZkKSKe6ngj8qLa2jtLWK3hULHEgRQBwABU3OKAPF/h7Mvw98fav4JvmMVjdP9p02SZsB+2AenIwPqteyvGsiMjjcrDBB6GvJ/jd4Uu9S0yy8SaY4W90cs7ZOC0ZIIOf9kgn8TXoXhbXYPEvhmw1W3bK3EKswzkq+BkH3zmgDzn4bSr4T+IXiLwO5dIGk+2WW88kEDOPwx/3zXr/UV4n8XrG40Hxx4c8b2y/6PBJHDc7PvEBs/jlSR+Fe1o4dFYHIIBoAxvE3hyy8VaBdaRqCt5M4xvUfMjDkMPp/9avOfAevXngXU28FeL7oqd2dNupMCNo+m3d+RHuSK9gNch4/8CWHjrQ2tLgrBdw5a3utuTGe49we4oA68EEA5H50V5N8NvH851M+BvEC+Xq9juhinJws4TgDnqcDOe9esZBXg0AebfHS8Fr8NLlNxU3E8cOQfXJ/pXTeAIDb/D7w/CeosIs8dcqDXCftBuo8JaTE33ZdSQMe33Wr1PSFiTRbFYRiMW8ewe20YoAu0UlLQBheMLWC88Ha1BcRq8bWcrbWHGQpIP5gGvIv2c/EUkkGpeHZnXy4QLqBT15OH/8AZfzr2XxKN3hbV19bKYf+OGvlTwbO3g9tE8YCWQwG9ktLiNehXAPX6HP4UAfX9LUcEqTwxyxkFJFDKfUEcVJQAUUUlAC0UUhNAC15B8Y7c6/4k8IeGY2Yi5ujNOg6bAVGT+G+vXh0ry+K5bV/2g5IWKmLSdMJQFf4mKj+tAGf8PYY7X40+NraBBHCkcYRAOFA28V7AK8t8IJpsXxp8WrY3E81y8KtciSPCo+V4X2r1LtQAyR1jRncgKoJLegrx7wBA/jT4l6342uIxJYW7G109mGQCvGV/DP/AH1XZfFHXpPD3gLULqAqLmYC2iz3Z+D+OMn8Kn+HXhseFfBGn6YxBm2+bMwGMu3J/oPwoA6sdB0paSigCKeCO4ikhmRZIpAVdGGQR6V4z8L3vvB3xA1jwPqG9LSUtcaeHHDgHOVPoV5/4Ca9rxXlnxisZNLg03xvYPtvtGnQFSOHjZsEH8T+tAHXePNFh8Q+CtUsZYfMcQNLEvcSKMr+o/Wsj4SeJx4l8B2bS3BlvLQfZ7gkYOR90/lium8O61b+JPD9nq1uD5V1EH2N1U8gj8815X8PIm8H/F7xD4W3N9ju0+02wJ4AByMfgxH4UAeo+KPENr4W8PXmr3jbY4Eyo7sx4UD8a4jwFYap410iXX/F0tzJHeP/AKJYiRooooex2rjJPqe1YXx2vZ7/AFfw14VB2QX06vI2ep3BFH05r2WytYbKzgtYF2wwRrGigYwAMf0oA+X/ABR4au5fi7daL4dubkXUEZlslaTLIQu7aHJzgDd+VexfDLx0dd086Rrkvk+I7JmjuIJRskkA4DAHqccH864fwOZtf/aH1rVFUmGz89WbHAx+6Ufjya6r4k+AJLvUl8baJcNBrGnIJni25WcR8jpznHHuOMUAUfjgi3+p+DtKYsftGoZZQMjaCoP8zXsMaLGgRQFVRgAdhXzzb+Orf4kfEjwQ8Vo1rPaSu9whO4BsZ+U9x8tfQ46UALSUuaQ0AZ+vAHw7qYP/AD6S/wDoJr5w0Xw++tfs8ajLFGZJrPUGuYwBk4AUN+hJ/CvpHWFD6LfoejW0g/NTXlXwQt11H4S39i4yss08Z/4EgFAHdfDe6kvPhz4fmmJaQ2UaknqcDGf0rqq8y+B10svgJ7EOxexvJoDk543ZGPbmvTaACiiigApD1paKAENeN/DrfL8bfHMzEvs+TcT0+ccfpXshrxr4XBo/i149R3DN5oJ/77agCfwQP+L9+ODwcRJ26cpXr2a8g8EBT8evG7EncEUDIx/dr1TUL630zTbm9upFjt4Imkd2OMADJoA8w8YMPGHxW0PwxGZHs9OP229TbhQRyOe/YfjXrQHFeS/BnT7jU21bxlqLMbrU55FhyT8se7Jx7Z6fSvW6ACkpaKAEJxVe9s4NQsprW5iWWCZCkiMMgg1YIzRQB5B8Lrv/AIRLxNrPgDUJFWWKb7TZAn5XRgCQPfBBx9a85+OR122+IBuLoyR2oRTYypx8vf5h3zn9K9C+MGh3Ok61pnj7S1Yy2EiLdqvOUB4OPoSPxrtPFmiad8QPAkiIVkS4hE9tKp+62Nw5/Q/jQBwc3hjV/EXgbwP4kCm71bSxHcSR53PPDuDYHPL7QO/Jrsb3xpe6lps9r4f0DWH1Ro9qfa7NoI4m6Zd3IH5Z/GmfCDVRf/D6ztHkzdacz2kynqu1iF47cY/Ku8AHX19KAOR+H3gpPBvh5LeUpLqU7ebeXC5JeQ+55IH611xAIwRweoNOpPWgD5p+I1w/hD4wR6j4c08RzW8C3FwkK5Rg2dxKj7o9Se9e9eFPE9j4u8P22r2DfJKMPG33o3H3lNed+ECms/HLxnPLGrQQ24tCrYIYbgPyIU/nWPqlhqHwa8Zrq2mh28I6hMBdW6gsIOx+hGcg/hQB7wOlLVWw1G01SyivLG4juLeVQySRsGBB+lWc+negCpqhxpN6f+mD/wDoJry/9nls/D+cAci9f+S16fq+To18AOfs8g/8dNeU/s6yM3ge/jLcLenHtlVoAf8ABo+X4k8b2sYxBHqRKr2GWfp+Vev15F8HQF8UeO8Dj+0uv/Anr16gAFFFFABSd6KWgBK8e8JRrpH7QXiiyycX1t9oGfXcrcfma9hPWvK/Frw6D8avDGqn92upQyWcr9iR939SKAKvghwnx48bx8ksiEH0+7T/AI763NF4fsfDlmjPeavPsAU87VI4/EkCq/gvd/w0B4zIOF8pQf8AxypNP8nx98abnUsC40rw7EIom6oZiTyPXkH8qAPTtA01NG8PadpqABbW3ji49VUAn860h0pBS0AJS0UUAFFFFAGdrmlxa3od/pkwHl3du8Jz23DGfw615f8ABPV761bV/B2qIUutKcFQf7ucfzx+dewV4z8VFl8GeMdD8a6YrxiWb7LqAjHEq8Ebvcjd+QoAb4Uu18K/HXX9BmysOqsbmD5uNxG8DHf+Icele0CvHPitBDE3hj4gaXgm0uImklUcNExBGf5fjXr1tcRXdrDcQvuilRXRvVSMg/rQBNTTjmnVFcP5dvI/91Sf0oA8W+DE/wBt+IPjm6PG+ZRj/tpJ/hXr+q6ZbazpV1pt7F5ltdRmKRfY8HHv3zXkf7PMBfTvEGosSXnvFU59gW6/8Cr2vtQB4Pol7N8D/Ecmg6wxutA1NvOtr1VwYm6NuH027sexHpXusbrIgZTuUjIYdxWF4s8JaV4x0htP1SDcOWilUYeJ8cMprzX4beMtU8P6+/gPxi5jniASwnlON6jhVz3BA+U/h1oA9f1Ij+y7r/ri/wD6Ca8i/Z2nUeDtTUhUVLwvu9to/lXrmon/AIld0eP9S+cf7pr55+F2t/8ACO/CDxhqOcOkgWIH++ybR+poA774J27LpniG9O1xc6tMQ46tg9/zr1SvP/gzY/YfhfpZ533PmTuT1JZj/QCu+zz1oAdRQDkZooAKKKhneSOCRoY/MkVSVTdt3H0yen1oAl715J8e7OVfDel63bk+fpd6snA6K3/2QWrulfFHVNZ8Q3WiWPg+eW8ssi6xqEeyPnH3sYJ59a0P+Em0zxnPqngrUtOubHUGt23QXO0q3HVWUkHBwaAPG9C8cSnXfGnipQIprjTAVQf89WCqMfQ5r1v4L+Hn0bwMt3cE/a9UlN1LkdB0UfkM/jXzda6WmkeOo9H1i4SC3tb7yrqQ52bVfDE4HI4r6lT4oeA4IljTxHYKiDCqpOAB2xigDtB0pMe9cV/wtzwIMH/hIrfn/Yfj9KePiv4FP/MyWn1+b/CgDs6K4d/i94EVc/8ACRW5+iSH/wBlpn/C4vAW7H/CQRf9+pP/AImgDu6K4N/jH4EjVWbXUw3TEEn/AMTSD4yeA8n/AIn0ePXyZP8A4mgDvc1g+LfDdr4t8N3mj3YKpMvyOOqODlWH4j9a58/GbwFnH9vJ/wB+ZP8A4mon+NvgJRzrTH6W0p/9loA5Lw4Zta+FviDwDflP7W0tJoIlZ8mQo25T+DYH0xXR/A/xLNr/AIGMF06tcadN9n467MApn9R+FeW6r438O2XxmtPFmjX0lxYTkG8AhdCnylG4I545q94S+IPhrwj8RtclgvpJPD+pgSq6wuDHJ97lSM9yOPWgD6RrK8Rztb+GdWnXrFZzOD9EJrjT8cfAKr/yFpj/ANukv9VrC8WfGXwbqvhHV7Cyvrh7q5tJIYk+zOuWYYHOOKALv7P9osHw6acNuae7dj+GBXq9eF/Dj4p+EPDfgbT9L1G+nhu4QxlQWzsAS2eoWus/4Xl4Cxn+1Js+n2ST/wCJoA9HrifiP4Bh8b6KFhKW+q27B7W6xyvqpPXB/Q4rNHx18Bk4Go3P1+yP/hQ3x18Brx/aNwfpaP8A4UAZngX4gXN/Y6h4V8T5g8Q2MDpmQc3ACnnHdgPzHNeF6beTz+Bo/DtoN0+o6wj7FOSQqbQMem5v0rtvin4l8EeK3j1rRNUuINcgVVx9mdRMo6c44YevpxXA+EpRpst3rpUFtOiDQg8fvnO1D+HzH8KAPodfF8ukavpnw+8KWcV7f2tvHFPcXDkQ26qo3EgckjGcZHJxTtX8eeI/C3inSND1bTrC8TU5FWK6sy8QA3YYbDuyRkd+9V/gXo8kHhKfXrwiW91adpTKxyxUHHJ7ZOT+VeiX2iafqOo2V/dWyy3Vixe2kYn92T17+w/KgDTHSkzQOlGKAFqhrOpQ6Pot7qVyyrDbQtIxPHQZ/wAKvV538btT/s74Yagq/eunjtvpk7j+in86AOC+EXibw5oll4g1zVtQEN5eXDNtZW3FAN3B6ZJY/lW38OtP1DxT8RdS8e31lLa2To0dgsibCynADe42jr610Pwz0uDSfg9aLeKpjkt5bmbdjG1sk5/4DXHfs8aheTtrtmZpX06Hy3gjc5CElunpwBQBT+Lvgyy0/wAc6d4lu4Hl0W/nSPUAh27G4Gcr6jnJ7iu1g+CXw9u7eKe3spZIZFDI6XkhDA985rt/EmiQ+I/Dt9pE5Kx3cJTfjOw/wn8DzXmnwu1y88MavP8ADzxFIq3dsd1hJjCyRnnaD39R+I7UAbQ+BfgLH/IMuD/29yf40L8DfAa5xpk/Ixg3Un+Nejg+9LQB5yvwO8BIc/2RK3+9dyf40v8Awo/wDj/kDyc/9PUv/wAVXotFAHnq/BPwCqgf2K5A6Zupf/iqVfgp4CDZ/sPjGMfaZf8A4qvQaKAPPP8AhSPw/wB3/IDf/wADJv8A4unD4J/D9f8AmAk/W7m/+Lr0GkoA8v8AEHwV8ISeH79NK0cW995DG3k+0StiQD5eCx44r50m0+IeF0uUtCl7Y3jQ3i4f5lIBQsCflIZXXjFfbRHfn14r50+MWlR+F/Fc93HlNN8RW5S4VV4SVCPn9yMqwA96APR9L+FHw8v9Itb2HQYXiuYUlVvtExyGAPd65b4q/D3wd4b8A3d9p2hpDdh0jilWaQlCT6FjnjNdD8DvEa614CisncNc6a32d1z/AAdUP5cfhVP4/XJXwZY2YUFrm/QA55GATx+dAGpoHwp8Ht4e0t7vQbee5+yxGR3LZZioyTz61pD4T+BR08N2h+pb/Guts4zDYwRM24pGqknvgVMOlAHHj4VeBsf8i1Zfk3+NH/CqvAv/AELVj+Tf412FV7y9g0+zmu7mQRwwoXkY9gBk0AePfFLw94I8H+FpHtPD1j/al0fJtEG7IJPLAZ7Z/OsHxL8NZfD3wSQQW2/VHniutQIB3Bdp+T6LuH61p+G9Ok+LPxAfxndoYtD02VYbSAnmR0+YH0HLBj65xXuTxqyFCoKkEEY6g9RQByPwxe1X4ZaA1u4EK2i7iT0bndn8c1Novi5PEHinU9P04xTafYQpvuUbdumYt8oIOMACsi8+Dvhi7vp5x9vt7edt8tlb3TJCzHr8o9a6Xw94U0XwrDPDotgtrHMwaQKSdxAxnkn/ADmgDcpaB05ooAK5Pxh4D03xssMWq3N+tvCc+TBNtRjzgkYPNdZRQBxMXwz01NMXTJdW12awVfLNs9+3llf7uBjj2rodF8PaR4ctTbaPp0NnCx3MIl+8fUnqa1aKAErzr4p+AZPFVjFqWk4h1yxOYZVbYXXupP8AKvRqSgDz34cfEOLxTbHS9SH2XXrMGKeCQ4MrLwzL+I5HY16DmvMvH/w7nvL5fFnhhvs3iG0xIY1wEuQOcHsCRxnv0NaHw++JFn4uheyvVWy1y2JSe0c8kjglc9eR07UAd/RSDoBmigBaKKKACiikoAWuQ+I3hCLxh4UurLyUa8jXzbV26q47Z9xx+NdfTcZNAHy38B9Xl0n4jvpczmNL2GSFo2OMSr8w/H5SPxrv/jnIJ9S8IaerAvNfhtnqNyD+tee/E3Q5vh78TLfW9PUiCecXsJPQPuy6/mT+BrqfHGox+I/i14DMJBgkjhnXacj5nJ/9l/SgD3+jNBqG4uIbO2kuLiVIYYlLPI5wqjqSTQA93WNGkdgqKCzM3QAda8T8V6/d/FXxKPBfhmdo9IhbfqV8o+Vgpxge2en94+wqPXfF+s/FHW5PC/g3fb6Qn/H7qLAjK+3oO2Opr1Xwt4S0vwjpYsdNgCkgGabHzzMB95j/AJxQBb0LQrDw3pMOmaXAIbWEcKByT3YnuTWpRRQAUlLRQAUUUUAFFFFACUtFFABSYpaKAEx+HvXnfj34X2niaQ6tpTDTvEEQzFcIdqyEdN2Ofx616LSYoA8W0f4oa34LvF0X4kWcsb7R5N9EgcSAcZO3731HPrXrWkazp2uafFfaZdx3NtIMrIh/n6fjVfXvDOkeJrE2WsWMd1Bkld2QUPqCOQa8zvvhRrnhOaTUfh7rlxbuTl7C5YMjD0BIwf8AgQP1oA9kpOvSvErH4teLfDcwt/G/ha4WIkgXVrCVz74+6fwNdtpPxZ8F6tFGV1yC1kb/AJZ3Z8oj654/WgDuKSs2DxDo11j7Nq1hMP8Apnco38jVwX1oRkXUBHqJBQBNS1TfVLCNDI99bKg6s0qgfnmsy+8aeGNNj33fiDTYhjOPtKkn6AHJoA5/4weGT4k8B3awW/m3toRPBj73H3gPqM14H8KpZNR+JvhyOZubMMqEgngByB+Zr2bWfjl4cgiMOiQXWs3RyojgjZR+JIzj8K8m0DwV411XxBN4h0ywbw9FLK7C5uX8tYQ33sbhuPU44FAH0B4t+IvhzwYAupXe65cErbQDfIfqOw+tearZ+Mfi9rEV1cibTPB3ncQNJ5bSx49B98n16c8Vv+GfhZ4M06eO91TU49e1LhmkubhWQsO4TPP/AAImvU4VSOFEiCiMABQgAAHsBQBR0PQNM8OaeljpNlFawL/CgwWPqx7n61qDpSUtABSUtJQAtFFFABRRRQAUUUUAFFFFABSUtFACUtFFACcg0tFFADSuc56Gua1T4feE9anaa/0GykmYcyhNrH8RiumpaAPJNV/Z98KX1w01rNfWQI4iiZWUf99DP61lr+zjpvllG8Q3xU87RAg5/Ovb6KAPE7b9nDRY50a41u9ljH3kWNUJ/Guj0/4GeCLFw72NxdsDn/SZyw/IYFekYoFAGbpWgaPocXl6XplpZqevkRBSfqR1qj40+yR+CtZkvYo5YY7OVyrjhiFJH610HSvMvjnrP9nfD+WyidluNRlWBAvcZBI/TH40Acl8FfAOi6v4LutQ1rTbe8F1OyxeYvKKowcHqOa0vBuvyeD/AIo33w9LSTaS0hawMjZaDKb9gJ6r2/CvSfBujQ6B4R0vTooREY4FLpno7DLZ/HNeMeFYW8UftFanq8OZLOynlJkTlcBTGvPvQB9DjkDIwfSikHQdKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEpaKKACiiigAooooAQ14h8U7HxN4j8aabDZeHtRuNI0t1kkkjXAmOcttz14wPzr3DrRQB5jqPiXxv4igbTNG8IXWlfaV2Pf6jKoESngkIOSev6Vv8AgDwNZ+BdC+xQOZrmVhJczkY3vjHA6hR2FddigdaADtS0UUAFFFFABRRRQAUUUUAf/9k='] Multimodal Competition False Theorem proof Geometry Math Chinese 69 "如图, 已知锐角 $\triangle A B C$ 的外接圆为 $\odot O$, 其垂心、内心分别为 $H 、 I, A H$ 的中点为 $M$, 且满足 $A O / / M I$. 设 $A H$ 的延长线与 $\odot O$ 交于点 $D$, 直线 $A O 、 O D$ 与 $B C$ 分别交于点 $P 、 Q$. 证明: $\triangle O P Q$ 为等腰三角形;" ['显然, $\\angle O A D=\\angle O D A$.\n\n因为 $A D \\perp B C$, 所以,\n\n$\\angle O A D+\\angle A P C=90^{\\circ}$,\n\n$\\angle O D A+\\angle D Q C=90^{\\circ}$.\n\n又 $\\angle D Q C=\\angle P Q O$, 则\n\n$\\angle O D A+\\angle P Q O=90^{\\circ}$.\n\n于是, $\\angle P Q O=\\angle A P C=\\angle O P Q$, 即 $O P$ $=O Q, \\triangle O P Q$ 为等腰三角形.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAcsByAMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikJApNwoAdRSFgKyL7xb4c0y7ktL/X9KtbqPG+Ge8jR1yMjKlsjgg/Q0AbFGa85vvjl4DtLWSWHU572VcYt7e0kDvk9i4VenPJHA+grnbv9o/w4pX7Lo2qyDnd5wjjx6YwzZoA9nBzS14f/AMNJ6QP+Zfvv+/qUv/DSekY/5F++/wC/yUAe30ma8RP7SekD/mX77/v8lJ/w0npBH/Iv33/f5KAPcKK8ei/aN8JmNfM0vWlcjlVhiIB9j5grobD41eAb77Mv9t/Z5Zyo8u4t5E8tm7O+3YME8ndgdc45oA9AorK07xNoWr3DW+mazp97Mil2jtrpJGCggZIUkgZI5rU3fWgBaKTcBS0AFFFFABRRRQAUUUUAGeaTNIxx6cAnmuU8JePdN8Y6rrdlpqS7NKmWIzkqUmyWAZCCcglGx7EH6AHW0UgORS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSFgDzQAtITijPNeW+NPjh4a0CN4NJlXWNRA+UW7ZgQkDBaTowwx4TdypBK0Aeo7gf/rVia74y8O+GcDWdXtbOQrvELvmQrz8wQZYj5TzjtjrXhqeNfih8UmFn4dtf7MsA4WW6td0argoTunY5yuQdseGKseGFbelfs5W7lZ9d8RXE8kgDSpaRhcORlvnfduG49Soz6c8AGj4g/aH8O2Ehi0bT7vVXVlHmMfs8TKVySpIL5BwMFB3OeBnj5vHHxl8Sok+m6Xc2VpJApH2XTtscinkOryhicgjlWxgA+59l0D4aeE/DdvCllotpJNEyyLdXUYmm8wAfPvYfKcjOFwAeQBXWbTnqKAPnqP4U/FLxJaouv8Aicw2txIPtNpcX8spRQ/Xy1zGx4DABh25B6bWm/s26NDHINU16/unLAo1tGkAA9w2/P5ivbFGBiloA4Oz+DXgOyIZdBSV9mxmnnkk3e5BbGeOwq4PhX4HBz/wjVjnOfun/GuwooA54eA/CAGP+EV0P8dPiP8A7LTl8D+FI2LR+GNEQ4I40+IZBGCPu+mR+JrfooA5/wD4QTwiSS3hbRGJOSTp8XP/AI7R/wAIJ4Q/6FXQ/wDwXRf/ABNdBRQByD/C7wRJIzt4a08FjkhUKj8ADgViar8CvBGpREQ2Vxp8hk3mW0uWyRg/Lh9ygc9AB0GD1z6VRQB4Xrv7N9i9qG8P61cRXCq2U1ALIkh4wNyKpQdcna3bgd8a98I/G3QpmW01m81KMxh2lh1LzQuCflAmKtnvwMHI619G0mKAPniD4ofE7weqyeK/D8l5ZF9zTzW5gIyMKgkQbF5GcFSTz6jHY+G/j54T1O1J1fz9HugeUkRpo2ySPldFzwACdyrjOBnGa9UKk9+1cT4l+EnhDxRLNc3WnC2vpcFruybynLbtzMRyrMSSCzKTz14GADptJ8R6LryM+k6rZ3wUKXFvMrlNwJAYA5UnB4ODwfQ1pbhXz/qvwC1jQ9up+EPEcpv4QSqOTBIflYHZKp+8eFwcDk5YdKqRfFnx74CFppni3QPPWJTGs1yGSWfbjnzhuSTAIGQDnIySckgH0WDnpS15/wCDfi/4Y8WiK2+0HTdTfC/ZLwhdzHaMRv8AdfLNgDhjgnaK74sB1zQA6kJAoBz2IpGPOKAOI+KPiZtF8LSWFhcSJruq/wCi6bFESJJJGZVbaQDtID5zxzjBzivJf2cdQmj8U6zparGYbiwFwzMCWDRuFUdemJWyPYdKNQ8Wa9q/xZk8Saf4f1LxHoujzy21jFaRl4A23aXDojKSSd+evKc4Aqh+zzcRRfEW6SaZFebTJY4lZxl28yNiBnqcKx+gJoA+oQMD8aWkBzS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFISB1oJxXL+M/Hmg+CbIXGq3JMz7RHZwbWnkBJGQpI+UYPJIHGM5IBAOn3DGSCPwryzxh8dPDmgtPaaVnV79VGxoHX7OCcHmQHng/wg8jBK9R55car8RPjTLJp1paiw0KSRpdxRktwF+6ry7SZCDt+UDkndtAX5fUfC3wV8J+HHgupbd9T1CHB8+7PyB8YJWMfKBk5GdxGBg5GaAPL7rwj8WPiY32nVibCzkJ8u3u3NvEgDMQPJUFhgjALqWI28kYNep+D/AIOeGPC8SSz2yatqGMNdXiAhfu/cj5VcbeDywyRuwcV6Ft6d8etOFAESQrFGqRqqKq7VVRgAdgAOlSAYzS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA1lJ71HPbRXMLRTxxyxt1R13Ke/Q1NRQB5L43+BWia+Gu9C8nR78Lny0j/wBGlIXABQfcyduWX3JVic1wsU/xM+DbJdagf7R0HzEheN7rzYurHCZ+eI43cgYyVyDwK+kyKintYbqCSC4ijlhlQpJHIoZXUjBDA9R1496AOE8GfGDwx4taK085tO1J1X/RbshQ7kgbI3zhzuIAHDHrt64h+MWseI7LwzHp/hnTb+6utQLRzTWto03kwgYYZGdrNuABweA54IBFHxh8DPDuvme60rOkXzINiwIPsxIwOY8ccA8qRyc4PfhdG+I3jr4bagmn+ONPv77T2wiPMwZ1JIZmSbkS4VvulzjgZXBFAHq/gKWHSPhFo9zDp946Q6cJjbRxKZZDgs2xRgNuOSOeQQTya8V8Pxa5pXxim8X3Hg7xM2nve3VwI10x/NCyiQLkHAz84z834nv9D+HPE+leKtIg1HSrtJY3VWaPcu+JiM7HAJ2sPT+fWtjt34oAVDladSDpS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSFgOvegAJxRuHPt6c1T1TU7LR9Om1DUbmO2s4F3SSyNgKP8ScDHfOOpr5+8XeOPE3xR1q58P+Bre5bSoonWVkcRNcocZZ2YgKh6BTgkE567QAdB41+N5kvrjw/wCCbSW/1BiIor+ICRd4IJ8pNreZwCM8DIyNw61fB/wElmvW1fxxdC7km3SPZRzOWZ2GSZZQQSwJOQpOSAdxGQe98A/DHRvB+mWUr2dvPrccZ869ILHe33tm7ooB2ggAkdeprugMDmgCOOFYo1jRVREACogwFx6Y6VIBgYpaKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQnFBOKz9Z1zTfD+mSalqt0ltax4BdgTyegAGSSfQUAWL27gsLSe8uZViggiaWWRuiIoySfYAGvlD4pfE4+P7q2t7Sze10y0LGLzSDLI5/ibHAAAwFBOOSScgC18U/iRf8AjK/urfSZ7pfC8DpEAqlFnflg79+SpKq3ZAcA5w34feCRqHhDxb4i1TTS1pb6TP8AYZJVIV5QrHenrtKYz6nvzQBxfhz+24NQm1XQPPW70uI3jyQEboowQrMR/EvzgMMEbScjGa+kPAHxp0fxU9vpuprHpery7URCT5VxIc52N/Dkj7rHOWABY14X8Jr5NP8AinoE0mNrTtBycYMiMg/VhXtHxG+Cum65Yyah4YtoLDVIkGLSFVihuFGcrgABG9G6HGD13AA9e3ClBzXgXgL4r6noGsXXhn4hzSwNGcR3Vyh8yNuPkfAO5SDuDn8yCNvvFvcwXFtHcW0qTQSqHjkjYMrqRkFSOCCPSgCaigHNFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFITigAJxWP4m8R6b4W0G51jVJWS2gXoo3M7H7qKOhYn16dTgAkS67r+k+HdNfUNYvobS0U7d0p+82D8qgcscAnABOBXz5Zr4m+Ofixjey3dp4Tt52b92uEiAHCjs0pB5JzjeSBjC0ARz3ni/47a/a28dq+n+HraXLMoYwwkY3FnwPMlwwAUYwD0UFmr6B8MeGNL8JaHDpOkW/lW8fLMx+eVyOXc92P8gAMAACfRdD03w/pcWnaTaJa2cXKRqSee5JOST7kmtIDAxQAAYpaKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQnFBbBrJ8R+IdM8MaPNqmqTrFDEpKqWUPKwBYIgYjc5wcD+VAFjVtVsdG0y41HUrmO3srdd8ssnQD+pPAAHJJwMnivnK5v8AxN8evFH9nW5Ww0SyPmkEMUiUtgO/9+UjIAyBwcY+YmTULnxN8dvFIttPjksvDVpIAWl+7GMH944Bw8pGcKvQHGcZY9t8SLjTfhX8Pl0/wvHFpmoaiVt1nhQCd0QEu7PwSRuxuPIL8Y6gA8r1Pw9FqvxA0/4d6FO8mn2Vy0LTsqh2kODcytkLkqE2gdMQjGScn6J8S6XY6J8Ktd03TbaO2s7bSLpIok6KPKY/Ukkkknkkknk1y/wR8DHw34YbU9S0/wAjWL9zuMyFZooRgCMg/dyQXOMdVznaMdp46GPh54lH/UKuv/RTUAfINpZ3elaFpfiqweVZo9TkhWTygyQyRLDJGeQQWJduD12fWvszQdROt+H9M1byhD9ttI7jy9+7y96BtucDOM4zgV88+ENJXV/2b/FMflo0tvqD3MbMgYoUjhYkeh2hhn0J7E16H+z/AKw1/wDDs2MnlhtOu5IUCg7ijYky2T13O44xwBxQB0Pj74a6R47tVNx/oupRKVgvo1yygnO1lyN65zwemTgjJz474b+IGv8Awk1YeDvEFlDNp1vcEmRWYukbkHfG3Rk5L7SoJJIJHQfSx5rnfFvg3SPGOltY6rbxuwV/InC/vIGYfeUjnqASOhxyDQBu29xDcW0U9vLHNBKoeKSJgyupGQQRwQRyDUoIIyK+b/CHiLxB8HvESaF4vjuP7AnLJFKrGSKM7s+bFxyvzZZBggPnGeD9DabqVlq2nQ3+n3UV3aTjMc0LblbnB5HoQQfQg0AW6KQEEZHSloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqep6haaTp1zqN/OILS2iaSaRgSFUDJ4HJ+g69KtlgOtfOvxG8XXvxM8X23gfwpeRtp7MVlkLBI7iRNzMxcE7olVcjA5IJw2EoAq6hqmtfHfxbb6Zp9tNZeH7F/Mld2zsQn/AFj/AMPmEAhUGcZbnaGI+hdH0iy0PSLXS9NhWC0tU8uNFGPxPqScknuSSetUfCPhaw8I+HrbSrGOPMajz5lTaZ5cfNI3JOSecEnAwBwBW6OnNACjpRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSEgdaCcVzvi7xponguxiu9YujGZWKwwou6SUjrtX0HcnAGRnkjIBZ8T+JtM8KaHNq2rzGK2j4CKMvK/ZEH8TH8uCSQASPA9NtvEnx18UyXOo3FxY+FraRd0Ucv7uMhThEBGHlIYkuRwG7Aqph0fw94o+NHiebVdYmvrXw55zSoZGJRIySojgyArMAu0sBgY3NknDfRumabZ6Pplvp2n24t7O3jEcUSZwqj3OTnvk8k8nJoAp6Roeh+DdEa106CDTtOh3zyFnO3plnd2JJ4HVicAY6CvA/CNlc/GP4q3PiDVY86VYGN2hLBlCg/uodjbshtrFgBj7/QsK2vjZr+oeIPEFj4D8PG4uJy269tYQQJXIVo1YkD5VXLE52jOTgrkeu+DvC9p4S8L2WkWsUKmOMG4eMEedNgb5Dnk5I79BgDAAoA3k+7WD47/AOSe+Jf+wVdf+imrfAwKwPHf/JPfEv8A2Crr/wBFNQB5r8AbG31P4XaxYXaeZbXOoTwyx7iNyNBErDIIIyCeazvgJcSaJ4p8U+Ebtt9zA+8NDzEDE5jkIJwedyY46A5weDtfs5An4eX+D/zFZP8A0VDXNePJpPAvx/03xJJcD7HfiJpyyEiOPAhkGFOWIVd446kcHHIB9CqcjPagjNC4xxS0Acj4/wDAln480JNOubl7SWKbzoLiNAxVsEYIPVfmyQCMkDmvI/AXi/VPhn4lX4f+IrGJraS9Cx3Mbf6vzMAOCeGjJwecEAtnkbR9EmuM+I/gO08beGbi2EVsmqxrvs7uROY2BztJHO1hkHqBndgkCgDsgeOadXh3wm8c6hpWr3HgbxncywajDIIrI3fL7jnMRkzyDlSmchs4BwVFe4L93t+FAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhOKCcVz3jfxVa+DfC13rFzhmQCOGLcAZZW4VQCRn1IHO0Me1AHA/Gv4iXOg29t4e0C6kj1i75laFcvFEwKgKccOxPGPmAGeMqa2fhH8P7Pwl4Zt7+W3P9tX8KvcySqQ8IOCIQCAVxxuHUsOegA4X4JeDZfEGrXfj3X4luHe4d7XzU275y255gu0KQGJC44DBuAVBr6AAwKAADFLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSFgDjvQTg4rkPH3xB0rwHpS3N4jXN1KdsFpE6h2O1iGOTkJkAFgDgkcGgC1428Z6f4J8Py6rejzZB8lvbBgrTyHooJ7dyecAE4JwD4p4R8J6z8ZfEb+K/FbeVpEf7qNIgU87af9XHzkRgk5bJOcgHOSrfB3g/Wvi74mbxZ4rZhpAfaEGU84KT+6iHaMHq3UnOCWLMPoy3tobe2it7eJIoIkCRxKoCooGAoA6ADt7UARWFjb6bYW1lZx+XbW8KQRRlidqKAAMnJPAHXn61zvxF8WL4Q8G3upRT26320LaRykEyOWA+VSRuxnJxngV1bcdT+dfNmsNc/GT4yf2VBKBounblMkMwI8hGAeVeSCzsVAZR02ZGFJoA6P4B+E2mW98ZatDPJqE8rR2010CSwYAvKpYZJYsRvBOfmHrn3IAgc1HbQRWttFbwRRxQxKEjjjUKqKBgAAcAAdhUtABWF40gmuvA3iC2t4pJp5tNuY4441LM7GJgAAOSSeK3axvFv2z/hD9b/s/wA/7b/Z8/2cW4PmeZ5bbdmOd2cYx3oA85/Zx/5J7qH/AGFZP/RUNZH7SWjs9homtqUCxSvaSAsdzFxvTAxjA2SZ6Hkde2x+znx8PtQ6/wDIVk6/9coq7X4i6BceKPAWraPaNi5niDQrgHe6MJFTkgDcVAyTxnPagDS8Lamda8KaTqjlTJd2kUz7SDhmUFhx3ByO3ToOla9eSfs++IE1HwJLpLtGJtLuGUKqkHypCXVmJ4JLGQcdlHHc+tA5FAC0hBzkGlooA8c+Nvw2/t3TW8R6RaRHVbVd12F4a4hUdh0Z1x9SOMnCrXQ/Cf4gxeNfDiw3UxbW7JQt4rKF3+ki44IOOQMYOeACCfQGXd9K+c/H2j3nwx+Kln43tU+0abeXrzMgDEozD98jEjAL75CvPrx8tAH0cDmis7Q9ZtNf0Ky1axffbXcQlXkErnqrYJAYHIIycEEdq0Ac0ALRRRQAUUUUAFFFFABRRRQAUUUhOKAEJAb3xxXzb4z1C++LHxTj8OaLdPc6FaPGHe3kzGFBAluMHAYjeVBGcgDbndz6Z8afF03hbwOy2F2bfUr+QW8LIwEiJ1kdc88Abdw6F1PBwag+B/hEeH/AyajKhW+1gLcSfMDiHnyhwSD8rFs4B+fB6UAekWVpb2FlBZ2sax28CLFGi9FVQAB+AAqekGQOaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkJAOM0FgOv1rz/wCJvxOtfAEFrFHbJfandbituZtnlxgH943BON2ABxuw3Py0AW/iH8Q9N8E6LM7TwPrDxbrSxc5ZyTgMwHRAcknIztIBzXmXw98Bap8QNTPi7x8bu5tyq/ZIZxsFwDkhsDG2IZyFUAMTnp95vw++HN9491p/Hvixh9murk3ENkwLi4AbgMGJxEMBVU5yF7LjP0Jt9/xoAjjhSONY40VI1G1UAwFA4wB6VJnHB/OgccVmeIdZtvD3h/UNYuyohtIGlILhd5A4QE8ZY4UepIFAHmHx98ZyaPoUGgafeGG8vwTcoo5NsQykcjgMe4IPykdCa6b4U+DY/CXgy2WezFvq12vmXxJ+YnLFQeSBtVscY79zXmHwf0afxz491PxtrqNI1tP5sYZS0bTMDhRvB4jXaQM5X5PSvojovIx9aAOR1b4p+DdA1SfS9T1dre9tyBLEbSZiCQCOQhB4I5zXU2OoW2pafa31nJ5ttdRLNDJtI3Iw3A4PI4PQ818wfH/VIr74i/Y442B060jhkZkXl2zJwRyRtdRz3DcdSfW/CHjFNK+A1h4i1GOIixsmhWNNyiQxuYYlz82C21ATjALZ4FAHRa/8SfCXhfUv7O1jVvs135Yk8sW8snynODlVI7Va03xbo3iXw9fapomqwG1t98b3dxE6xQuqBiXDbMqAQTyBjuK+Pr7Up/FvjGW/vZGWTUb0M53lvLDMAFBPZRgD0AFfYHiqKzsvh9rcP2fbZQ6XOnkQMIsRrE3yJwQny8A4IHHB6UAcH+znn/hX1/kYP9qyf+ioq9cYZ4ryL9nL/knt/wAf8xWT/wBFRV66wJ70AfOXwduf+Ef+MWv+H2l2QSm4t1hRvkaSKT5Tzzwokxj1/Gvo5fu14J4+gbwf8f8Aw74nDJHa6m0aTT3LqI0OBBLjBBULGyNk8ZJ7Age9qMCgBaKKKACsjxRoMPibw1qGjXDBUu4GjDlN3lt1V8ZGdrAHGe1a9IRn39jQB8+fCHW5fAnjLVfAniGVITLOv2ZgSUNxwoC/LnEilCCxGNgGMtX0GvSvFPj/AOC7rU9LtvEljFJPLYIYrpEQFvJ5bzM9cKc5GDw5PAUmvQvh94vt/GfhG11OJnNwuILtWTbtnVV3gY4IOQQR2I6EEAA6qikByOmKWgAooooAKKKKACiiigAprDJp2ea84+MnjdPCfhCS2tbmSHV9RRorQxjBRcje+7jbhTgEc5IwOCQAebWEyfFz46F7omTRdMBkhgGx0aGJgBnIwyu5BIwThtucDI+jlxjj1rzn4NeCofDHgm3vWGdR1aOO5uH3EgJgmNACBjCtz/tE8kAV6OM45oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQsF60E4ryj4r/ABWTw5CujeHLhJ9flYB9iiQWw6YI5HmE8BME4yTjjIBo/Ev4q6b4KtprC2LXGvSQboYVHyw7shXc+3J2jJOOcA5rk/hX8K9QfU5PFXja3NxcyqHtre9cyybz1klB/iAwAGyRkkgECpPh18I7m9li8VeOpLq61SRkmhtbmVmZduNrTE8luBhM4AGGzkqvtwGKAGwxrDEsaIiIgCoiDAUDgAU+ikLAYz3oARjj09s+tfPPxT1XUPH3xKsvAejXKC2gk2SlJso0mN0jON2D5aqeOoIYck4r0n4ueNJvBvg9rjT7qKHVLmRYrTcAzDnLuFIOQBxzwCwz1AON8DfBSaH4U/tm7tJINU1HcD5ybXjiDEKACoKg43eh+U+mAD0rStJstE0y303TbZLWyt0CRRRjhR1PXqSeSTySSScmp7qeG0tpJ7iVIoYkMkkkjBVVRySSegA7niphxXEfFjXbPRvh9rEU97bw3N5aSQwQyON827CsFXqeH5x0zk4oA8D8SXQ1zwN4g8UhpXTUvFaLEZ3JkWNIZWRTyQMLIAACcYx0ArX8I3C/EDw54W+HFv8Aara3s5J7zVrhYxkoHZkEZ3dzJg7l4baQDjBt+Ko7Kf8AZt8OLo0z3cNnexteP9428rJKZFfgbQHkAGezJycgl+naZp/w3+DGoalqscf/AAkHiW0e2t7eTCyLE424GMnAVhI3TnYpwcUAYHww0XTte+NIk063zo9lcTX0MbuylYkY+TyTkkM0ZwTzg5z0r6X8Rx2MnhfVYtSmeDT2spluZYwS0cRQ7mGATkDJ6V4p+zkNIjbWZZL22/teZkjS2dAsiwqCxZWPUMTyB08tSeoro/j94rm0bwtb6LZ3Hlz6o7Cba3zeQuNw+jEgHPUBhyCcAC/s5/8AJPb/AB/0FZP/AEVFXr1eQ/s6c/D6/wD+wrJ/6Kir16gDyX9oTS0vPAEV/wCUplsbtG8zy8sqNlSN38IJKZ9SorsPhvri+Ifh7ot95ssswtlhuGmbdIZY/kcscknLKTk8kEE9an8eaEfEvgnWNJSNpZ5rVjBGrhS0q4eMZPAG9Vznj6V5/wDs66tDceCb7TPNBuLO9LlAhG2ORQVJPQ5ZZO+ePpQB7HRRRQAUUUUARzIkqNHIodGUqysMgg+1fOfgeS5+GfxouPDeoyTQ6bqDmG3XDmKTew8lwM9SQE3fNg7hngkfR5Ga8e/aA8L2974STxAkY+26fIiPIAMvC7Bdp9cMVI64y3HJNAHsK9KWuR+GvipvF3gXT9TnZWvQvkXWCP8AWpwWOAANww2AMDdjtXXUAFFFFABRRRQAUUUUANY849uK+dPG6D4o/G2z8PWBmNjp4+z3cqgjYEYmZgdpwf4ASNpbHY5PtPj7W5fDngXWdVgkEc8FsfJcgHbIxCoeQQcMw4I56V5T+zjoifY9a12SNS7yJZxPjlQAHcDB77o+38IoA92hRIoljiVVjQBVVRgAdgPapKRelLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFISBQTg4wa8Y+J3xVuk1FfCHgsvPrMkoinuIRkwtu/1Ser8fMeijI652gFz4pfGK38MI+k+H3hu9YdGDzpIrpZkEg7gM5cYPynGOCcjgx/Cb4SzeG7qPxNrs/m6tLDmK3AP+jFx8xYnkvg7T2HzfeyCJvhf8HbLw1bQ6tr1vFda2zLKkbfNHZkcgAdGcHktzggbehLesgYoAFBA5paKKACobqeG1t5J7maOGCNC8kkjBVVRySSeAAKlLAEA9T0rwr49eKbq8u7DwPpDRzTXTo11FGd0hcsPKiPYZPzY6/dPA6gHP+FrKf4xfFu88QX6H+xtPkSTyXwR5YJ8mEoxbhtpZwPlPz9Nwr6UX7tc/wCCfDVt4V8JWGlW9vFC6RK1yUHMk5A3uxyckkepwAAOAK6EDAoAWqWp6Rp2swLBqen2l9Arb1iuoVlUNgjIDAjOCefc+tXaKAKMOj6db6WdLgsLWLTijRm0jhVYirZ3DYOMHJyO+TRqOj6drEIg1OwtL2BXDrHcwrIoYAgHDA84JGfc+tXqQkCgDItNJ0Tw1BdT2Gm2Onxld85tLdYy6qCRnaBnGWx1xzXz3oOlzfG34ha5qmoStbWMNsywptZxDuVkhA+YAEHMhwcMwbjDHHefHTxwdK0aPwtprO2p6qg8wLGTttzuUgHP3nYbeh43dMqa6v4ZeCovBfhC2tpLdE1SdBLfyADcznkISCchAdowcEgtjLHIByv7OX/JPtQ/7C0n/oqKvX68g/Zy/wCSe6h/2FZP/RUVev0ANYc84xXz/wCEZE8C/tB6xokrCCx1RmW3SM+VCC5EsQweDgFoxju2B1xX0CRmvnX43W8uh/FTw74gCiG3kSJ/PyGzJDLlvlOeimPtg+/NAH0UOlLTVIIOPWnUAFFFFABVXULG31PT7mwu4/NtrmJ4Zo8kbkYEMMjkZBPIIq1SMM0AfPXwn1KX4ffEPU/AmtO3+lTKLeXzl8pZApKkKTgeapTp82Qiken0In3eK+ffjvpkug+MtA8YW6yvllV9qkKkkTB0y/IBZScDH/LMnnkV77ZXUF9ZQXdrKstvOiyRSKchlYZBH1BFAE9FFFABRRRQAUmcUtNbrQB4p+0R4nms9FsPD1rLHjUCZrtQQXEaFSnHUAtk545jwD1FeoeD/DUPhHwrYaHBcPcLaqwMzgKXZmLscDoMscDnAxyeteH6tPJ4l/aes7eQmWCwuI0hVgo2CFDKRlRzhw555PQ+lfRi9KAAUtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFITigBaQnFJuFeBfEn4k33i7WE8EeB2e4S4fybi5tzg3B/iRG7RgAln6EZ6KDuAL3xR+LzGSPw34Julury6AjlvLMeYVL42pCyk5c8gkZxkAHdnb0Pws+E1p4OtYdW1FfO1+WHDbyCtpuHzKmON2Dgtk9DjAJzP8MvhRb+BVlvru7S+1edQrSqmEgGPmVD1OWzljjIA4HOfSAMDAoAFGB+NLRRQAUE4oprdetAHM+PvFcfg/wdfawBFJcIojtopDxLKxwoxkbgOWIHOFPpXl/wB8KSXct9431RpZrmaR4LZ7hdxYnBkm3MMsSfk3A/89AevGLqdxcfF74zx6XCyz+H9NkBkjjnPlyQxuBJJw2CzFtoZedpX0Jr6NtoIba2jt7eKOGCJQkcUahVRQMAADgADoKAJAMZ5zS0UUAFFFFABVXUb2303T7m/u5PLtbWJp5nwTtRRuY4HJ4Bq0TivGPj94kT+yLPwfZLPNqmoyxytDHGxzFuYKox1ZpFGAAfunp8uQDlfCdm/wAXfi/feI7oNHpOmypMiCNcsqt+4jYEn7wVmY8jgjjK4+jx0Ncd8MPCM/g3wRbaZeeT9tZ3mufKO5d7HjnAzhQoPXkdcYrscYB+lAHkX7OP/JPdQ/7Csn/oqKvX68g/Zx/5J7qH/YVk/wDRUVev0AFeUftAaN/aHw9XUFS3Emm3SStI4+cRv+7Kqcd2aMkcZ2+oFer1na7YjU9B1GwKhxdWskG0nAO5SuP1oAwPhZqY1X4Y+H7jyfJ2Wot9u7dnyiYs599mcds45xmuwrwH9m/VpSmu6O8h8lTHdRIFGFJyrknrziPjpwele+r09PagBaKKKACiiigDkfib4fj8SfD/AFazaMNNHCbm3baCVljG4YJ+7nBUn0Y1x37Pnie41jwneaReTzzzaXKgiaTGFgdfkQHqcFH69AVAOBgetzRrKjRuqsjqVKsMggjuO4r5y+BYfw/8Udb8PXk9v5qwywHa/EssUijCZxnje3TOAT2NAH0jRSL0paACiiigAqG5nhtoZJ7iRI4YkLySSEKqKBkkk8YxU1cF8YteXQPhrqjbo/Ovk+wwrIpIYyAhunQiPewJOMgdehAPNfgLYS6/408QeLb8RvcITjMOQZZmLM6tn5SApGB2kPbg/QqjArzX4EabDZfCyzuI2cvfXE1xIGwQrBzF8vHTEa+vJNeljigBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopCcUALnmoppUijaSR1SNBudmbaFA7k9hSXNzDa28txcTRwwwoXkklYKqADJJJ4AA5zXzv408Zan8Xdfg8I+EI5/7NDlpnkJRZgG/wBZJ3WJeCAeSSPl3bQACz8RfiTq3i7WLjwP4OtzcRSyG3kubZyzXQwNyrwAqA7wzZIKjOQuc+k/DX4aWHgPSgzeVcazOgW7u1BIxnPlx55Cg4z03EZIHAXS8C+BdN8C6EtjZKJLqQBru7YfPPJ6+yjJ2r2z3JJPUgYFAAowMZpaKKACiijPNACFsHHP4V5F8ePGkuheH4dEsLmJLzUw63CfKzi2KlW4IO3cWwG4+62Oeno/iXX7Lwx4fvNZvy4t7aPcQi5ZmJCqoHqWIGTxzzxXgfwm0G5+IHj/AFHxrrwkZbS4W4jALhGuM5RQTn5IwB8u7I+TqMggHqHwh8FReE/B0M0ltLDq2oIkt75uQwxuKJsJ+XaHII4OSc9gPQlBAOfWkQYX0p1ABRRRQAUUUhYL1oAiubiG1gkuLiVIYIUMkkkjbVRQMkkngADJr5x+FGnXPjj4raj4s1CJ5rW1kedZZwGAmY4iXBJwVXJGMhdi9Plro/2hvGBs9NtvClsGWS8Vbq6fAx5Ssdi9Opdc5BGNg6hjXpXgLwtD4R8H2GlxoomVPMumwuXmblySOuD8ozk4VRk4oA6Yd6D3+lKKQ9/pQB5D+zj/AMk91D/sKyf+ioq9fryD9nH/AJJ7qH/YVk/9FRV6/QAU1hk8elOpCM0AfO/hyJPBH7SV7pUYt47LUTJGhaPykRJVEyJGM4GHVIx2OMAA4x9EKcjNeD/tB2jaZqvhnxNYbItQgdoxMeTlCJIsKcqQpL9ucjrXtei6kms6Fp+qxxtGl7bR3KoxyVDqGAP0zQBeooooAKKKKAEYE9DXzN8YE1HwZ8YbXxPZPJvuFiuoXKMibowI2iLAjcCqgsAQcSYPXJ+mq8S/aS08S+HdF1HC5gu2t85Of3iFvpj91/L1NAHta8g806ub8AahJqvw/wBBvZpJJJpLKISSSPvZ3ChWYnuSQSc8810lABRRRQAV4l+0jc7PD2iW3m4El28hjz97amM/hv8A1r22vn39paeFrnw1As0ZnjS5do9wLKrGIKSOuCVbB/2T6UAesfDS2e1+Gnh2NypJsY5Bt9GG4fjg/wD6+tdVVDRNNTRtC0/S43aSOyto7dXYYLBFCgn8qv0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSE4oACcVU1HU7LSdPmv9QuorW1hGZJpmCqvOByfUkADvkVJd3dvZ2k95cyrFbwRtJK7dFUDJJ+gFfOWqa7rfx28S2+g6XANP0W0ka4eWU7mVPuiRwDgtg/Ki92IyQNwAJ/FPjPxN8WNafw34Qtpk0MS+TNcANtlBJxJK+Mxx4UkL1ODnccAeyeBvAml+BdGFlp4824lwbu7cYedxnBx/CBkgKOgPUnJNjwj4P0rwdosVhpcEYcKBPclAJZ2BJy7AZbBY4B6A4FdCowKAADFBIHU0E4rzj4r/ABNHgWyt7SxiS41e9VjErOMQION7KOTk8KOAcNz8uCAd/dahZ2Pki7uYbczyiGHzZAnmSHOEXPVjg4A9Kn3CvE9K+C8vi3T4dc8da7q0+rXcYl8qNlT7OrEt5eHQ4wWOVAUKcgA9azfh74nv/BvxMuPh7dXr3+km4eC2knJDwMF3Lt6/K2ANvTJyMchgD38HIzSMf/rfWhSMVw3xV8bnwX4RkuLWSMandEwWisRuBxzIFIOduR1GMkA9RkA8t+LOuXvj3x/ZeB9FdZba2n2yCMEkz87y2SB8ihuB/tc+nvPh/QrPw5oVnpGnqy2tpH5abjlm5JLHtkkknAHJNeZfAfwPFpHh5fFFyko1LUoykavlRHb7hjCnruKht3PG3GOc+wKMDmgBQMUUUUAFFFFABWdreq2+haPd6reFvs9pC0rhBlmwM4UEgEnoK0CwBANeH/HTxXcX91ZfD/RwJbu+kiN0oZOSzDyosk/KSwVjnHG3nBNAGB8HNEv/ABt46u/Guvv9q+xMCJXRcS3G0BeAu3CKM8YwfLIr6PUYFc/4M8J2ngzwxa6NZt5nlZeacxhGmkJyzED8AM5IUAZOM10AoAWkPf6UtIe/0oA8h/Zx/wCSe6h/2FZP/RUVev15B+zj/wAk91D/ALCsn/oqKvX6ACiiigDzf44aAmtfDe8nSGSS601lu4vLAztB2yZyPu7GZjjuoPao/gRfC5+FtnDuQ/ZbiaH5TkjLl+ff5/yxXoWoWNtqen3NheR+ZbXULwypkjcjAqwyORwT0rxT4GXj6J4p8VeCJLiSdbOd5YXESqhMb+VIx53At+7wMkDB/EA91opqHK5FOoAKKKKACuD+Mmltqvwv1hYrWOee2RLqMsBmMI4Z3BPQiMP05IJA613lZ+t6aus6JqGlyO0cd5bSW7OoyVDqVyPpmgDkPgvqaal8LNJAkRpbXzLaVV/gKucA++0ofxrv68V/Zv1GF/C+s6UFfz7a9Fw7cbSsiBVAOeuYmzxjkde3tVABRRRQAZr51+Jd7a6n+0L4bswu8WstjbXCuowSZ/Mx7jbIv519EkZ+lfOupadDqn7WCW87OqpcQ3AKHndFarIo+hKDPtmgD6KHIzS0i5A560tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSFgOtAATg9DWV4h8RaZ4Y0WbVtVuPItIsAsFLFiTgBQOST/8AX6CptY1jTtD06XUNVu4rW0hGXklOB9B3YnnAGSemK+eLW68RfHXxelndyT2fhi1laZlhjwsaj7oJ6NKQcc5xlmC4yCAF6vi344+IruTSnnsvDMTrCq3M7LCMZIJUZDynJOADtyoJxg1734X8K6T4T0eLTtItVhjQYeQgeZM3952x8xPr0HQADAqbw/4d03wzosWk6VB5NpFnALFmYk5ZmJ6kkn+XQCtUDAxQAAEDk5NLRRQAxwSe2MYr5X1tJ/G/7Qslp5D7P7UW2eLzQcQwHEjDdxysbvj1OOe/1Q55x19q+bfh5pEGl/tB39lqc9+LmCW8aya5yZLp/mAZzt5zEZH3cAnBHXBAPpLOB7/lXyr4XvB4k/aHiv7SUTwz6rNNDIQV3RKHZTg8/cX0r3j4m+MU8F+Drq9jmVNRnBhsVJ5Mp/iGQR8oy3IwcBcjcK84+EWg23gbwbf/ABF1yV40mtSsMKqQyxbx2bALSOq7e2MHPzcAHutxPDbW0lxcTxxQRIZJJZGCqigcsSeAMc5r5y0Frj4yfGB7/UEd9B0smWOMwjyxCr5jjcHIy/VgSSQGAwAAMHxx8Zta8ZaZc6Qtha2Gl3DoxjXMkrBcHaXOARuAbhQeAM4zn6G+Hvhiw8L+DrC109cGeNbm4csT5kzIu5sEnaPlHA44/MA6mONYo1jRVVFACqowAPQCn0gGBS0AFFFFABRRSFscd6AMrxJr9j4X0G71nUWcWtqoZ/LTczEkAKB6kkDnjnkgZrx34S6Fc+LvG+qfEPV7N0geVzp6y8jeTjKnjcI1GzO3BJ7FeLPx41a61W50bwToryT317L5lxaxNjcMgRB+2CdzcnA2gnsa9U8M6Db+F/DNhosDrIlpCELhAokbqzbRnG5iTjJ696ANlPu06vK9R+PnhfStSubC50zXVmt5CjbrVI8477XdWAPBAIB5HFelaZfpqmlWmoRxSxJdQpMscy7XQMoYBhzgjPPPWgC1SHv9KWkPf6UAeQ/s4/8AJPdQ/wCwrJ/6Kir1+vIP2cf+Se6h/wBhWT/0VFXr9ABRRRQA1u/pjpXzz4yu5fCn7SGnaqDtS9+zeaZDlTG48hjgegUkZz8wB9BX0ORzXhv7Q+ix20Gi+K7eTy76CcWh+XO8YaRDycDaVbtzv5PAoA9yXpS1Q0TVbbXNEstVsyxt7uFZo92NwDDOGwSNw6EdiDV+gAooooAKawyadSGgDwn4IG00P4h+NvDEPnuY5T5Mj4OY4JnjO48fMfMXoMcHpxXu9eAfC4EftCeNcg8i+7et0le/A5oAWiiigANfP/8Azd3/AJ/58a+gDXz/AP8AN3f+f+fGgD6AooooAKKKKACiiigAooooAKKKKACiiigAoopCQDigALYOMGsfxL4k0zwvo02q6pcLFBEDtXIDyvgkIgJG5jjpn64ANReKvFujeENJbUdXuRHHgiONRukmbGdqL3J98AdyBzXg1lD4t+OXiJLi/wDPtPCkN2Q6QOpS32qWCgEgvIQQNxBxvJAA+WgAmg134/eKWmgEel6Hpsflo8h8zZu68DG6RsZOMABQM9N30PpGj2eh6Pa6Xp8SxWltGI40HHHcnHUk5JPcknvUeh+H9L8Oaetho9lFaWqkkog5ZuBuZjyxwBySTwPStQUAIAR/SloooAKKKKAEZd3HauC8c/CvTvGN9b6tDfXGl63bhRFewc/dYEFlBBJHOCrKRkZzgAd9RQB5PpPwStxrkeq+K/Ed74klgCiGO6BCbRk7X3M5ZckHbkDrkEEitb40S2qfCrWIrq5jgM3lLFu6yOJFcIB3JC9uwJ6A49Ab7w6V83+K9Tvfix8VoPDFhdPN4dtZ1Ja1ICbAB5sxblSeSqk5HK4A3HIB4tg8cf8A18V9xeEzbDwdoYtM/ZvsFv5Oc/c8tdvXnpjrzWdr/gPQ9b8Hv4Z+xQ21mik2giQgW8uGxIACMkFiTzzk5zk15l8DvFM2l6lf+AdXdVntpZBZ4HG5SfNj3Z9QWAx/fyegoA93opqHI/GnUAFFFFABVHWL9NJ0e91KUZjtLd52HqqKWI/T/wDXV6ue8ef8k+8S/wDYKuv/AEU1AHjXwC02bWvFeu+LtRTzp1JVJmhAUzSsWkZTjCsBwQuOJPQ19BDOBk8/TFeR/s5jPw/vzn/mKyf+ioq9C8ZanJongzWtSgmMNxb2UrwSbd22TadhwQQfm29RigD51Y23j79oseULY2cmojgkTRTxW6c9sESLEeOnz45619Tr06187/s36Ssup65rL+YHihjtY+RsYOSz5GM5GxMfU9e30QoIGDQAtIe/0paxPFPirSfB+jSapq87RwL8iKi7nkcgkIo9Tg9cD1IHNAHnX7ORA+HuoZ/6Csn/AKKirrPG/wATtD8BXFnBqcN9PLdKzqtpGrbQpAy25l6nPTPQ5xxnyr9nzxbpOny3Xhq6gEOoX0/nQXWB++woHlE4yMYYjPB3N0ON1r9pO9GPD1iuxnzPMwMY3AfIFw5GQD83AIzgZHAwAeieEfi14d8Z3F9b2EOpQzWlublo5rbczxg4YoIyxJBKjHU7hgHnHOf8NG+EMZ/s7XP+/EP/AMdrr/hroFv4f+H2i2sEflyS26XNwWC7mmkUM2SAM4ztHfaqjJxXgngW2t/HXx0l1E2Rm003VxqLxybU2ICTGWAOCd7R5Azk5zkZoA+predLm3jnjEgSRA6iSNkYAjPKsAVPsQCO9c38RtHGu/D3XLA7yzWrSxhGAzJH+8QHPGCyKD7Ht1rp1xjjpTJo0ljaORVZGUhgwyCDxgjv9KAPK/gB4ittS8Af2QqlLnSZWWQZJ3JIzSK/QAZJdcZJ+TPcV6wDmvnj4CpNoXj7xP4cuXBmhiYSGPlC0MmwkE4PVzjjoTX0MpyKAFooooAKQ57elLSZoA+cdGwP2q5VwP8Aj7uf/Sd6+jlGM/qfWvnHRv8Ak62Q/wDT3c/+k719HDmgBaKKKAEJwcc14Bc/6F+1nDcXf7iGfb5Ly/KJN1p5Y2k9cuCox34r38jPevAfiiMftB+DP+3H/wBKnoA9+U5GaWkU5FLQAUUUUAFFFFABRRRQAUUUUAFFFJkZx3oAM8471i+K/E2neEvD9xq+pTKkUQxHGThppMHbGo7k4/AAk8A1T8Z+ONF8D6bDfas8rGV9kNvAA0sh7lVJHAHUkjGR3IB8V03wx4h+NfiWPxRqzxWfh4TmNYRMWZI1x+7Qep6FjjkkgcBaAI9C0rWvjv4ln1TXrmaz0SwAjiS3Q7FJwTHGWyNxGCznJ+7xgrt+iNN0yz0rTbfT9PhWC0tkEcUS9FUDjryfrnJPJqSzsbexto7a0git7eMbUhhQIijPZRwPwqwBgUAKKKKKACiiigAooooAKQkDrS1T1S/g0rS7vUrksLezgeeUquTsVSxwO5wDQBwHxn8cXHhDwrHDYYW+1Pfbo5Yq0SbfndcEHcNy4PYnPtUXwU8EW3h3wfb6xNAh1XVIhK83UpCeUQHsCMMfUnBztGPOfAVjcfFz4o33iLXVE2m2JEn2WZvMVVJbyYQBjKjBYnaQxQ7h85r6UXpQAbTz0rw/4x+HZfDGuWXxJ0Wdkv4bmJLiEk7ZMKQGLbgcFVWMoPvA/Un3Ks3XtHs/EGi3mkagm61u4mifABZc9GXIIDA8g44IBoApeDfFNr4x8L2et20TQi4Vg8LMGMbqSrLkdeRkHAyCDgZxW+Dmvnz4daxefDT4hXfgDWrgvYXM4FnMIesz7RG3ByFdcAj5trY5HzGvoJfuigBaKKKACsPxnKIPBGvzNGsgj024co/RsRscGtysHxqjP4I15VjMrHTbnEXJ3/um4wvPPTigDzn9nK4T/hBdShIcOupM5JjYLhoo8YbGCflOQDkcE4yMz/HjxhY6d4Tm8NpKx1PUBE3lgspSHeSX3Y2kExlduc/Nnp1zP2b7jf4f1u2N7v8ALuo5PsnlY8rcuPM3/wAW/bjb28vP8VezXGn2d7t+1WkE4XO3zYw2PpkUAeO/s3z2T+F9ZgjbN8l6rzLg8RMgEfPTqsnTnj6V7WPf1qvb2FtZqy21vDAG+8IkCbvrgVZAxQAVwfxb8H33jTwZ9i02SMXttcLdxRycCYqrLs3fwkhzgnjIAOM5HeU1hkHpQB8n/BPwvfa747h1GDy0stJcTXEjHk7gwVAvctg+wCnnOAdD48ajJrHxKg0izhnlls7eK3ESxgmSWQ7/AJMZLZDoPqDj1Ov8BdY0vw94e8XavqFy8cVt9mMwKcBf3gTac5ZixI24GMLyc8cb4T8T6VN8Yh4p8QOltYvdT3bCVWn8ssrmMDapJKsVwccbc8cUAei+NvA+veCvAl1rFt8QfEM0lksS+V9pkRGy6x8AP8oG7IHPTFN/Zw0BTb6x4jkSMszixgIZtygYeQFemDmLB5Pynp3n+PvjLSn0RvCtvc+Zqi3cb3UXlsBHHsLj5iMEncnTPfpiui+AL2z/AAyQQSbpVvJhcDZt2vwcZ/i+Uoc++O1AHqAGBSMCcU6igDwDxqv/AAh37Q+h6/JxbagYvMmm+SGPKm3k+bp8ibXPpuBOAa9+XGMjHPpXif7SNgJPDuiajsyYbt4Mg4Pzruxjv/q69J+H+qf2z8P9BvjO88j2UaSyyPuZ5FG1yTk5O5W5oA6SiiigApDS0hPIoA8C+HRTUP2i/F01xBE724u/KJUEoVnSMEeh2kjPoSO5r30DGa+ffhNKtx8e/GFxGHCSpeuodCjYN1GeVYAqfYgEV9BCgBaKKKACvnn9oOK40fxj4b8S2l1suRCUiHlg+U8MnmK/OQcmToR/D3zgfQ1eG/tJxqdH0CbjctxKgGBnBVe+M9u3Hr0FAHt8TpJGskbh0YblZTkEHuDT65r4ezxXHw68OPE+9RpsEZI/vKgVh+BBH4V0tABRRRQAUUUUAFFFFABRRSFgCB60AGRnFct448eaT4G0Zr6+fzblwVtrNGw87/8AsqjuxHHuSAc34lfEnT/AmmBQFudYuIybW07Ac/vJO4QEexYggdCV8g+Hnw6v/iZqkvi3xVdXEljJcZfcCHvSOCFPAVBwuV6BSo24yAB/hPwb4g+LPij/AISPxhHeDSZIzsnUiINtxtjjUgkJ8x5AwcN8xbJr6K0rSrHRNMt9N0y2jtrO3XZHEg4A6n6kk5JPJJJNWYoUiRUjVUVRtCquAAOgH0qUcUAIOlLRRQAUUUUAFFFFABRRSE4oACQK+evjf4sv9a8TW3gXSpUa3d4RMIiS0lwzHCNtJyoyh24zu57CvWfiL4x/4QnwlPq8UCT3RdYLWORsKZG6Z7kAAkgdduMjqPNfgH4QkuGu/HGqlp7m4d47VpsOWycyTbjk7icrnIP385zQB6v4O8K2fg/wza6PZbXEQ3TTbNpnkP3nYep9CTgADPFb4GBihQQOaWgApCue9LRQB5N8avAS63ox8S6eZU1nSotwEbYEkKsWIGSNrLlnBHJ5GDkY3/hX47Pjjwp9pu2iGqWshhu0jAUZ6owXcSAV7nGWV8DArt5YlmRkkVWjddrqwyGHofb/ABr5ytYZfgV8Uo47iVrjw7qke37S8TFki3dyBy8ZxnGcq2cAsAAD6QBzRUVrPFc20c9vLHLDKoeOSNgyspGQQRwQRjBqWgArM8RRRzeG9UjlRXja0lDKwBBBQgjmtOs/Xv8AkX9S/wCvWX/0A0AeH/s0Hd/wk/QY+yf+1q9/AwK8A/Zm/wCZo/7dP/a1fQFABRRRQAUh7/SlpD3+lAHz5+zfbw3dv4ttriKOWCVbZJI5FDK6nzgQQeCCCRg17VY+EvDumXaXdhoGl2lzHnZNBZxo65BBwQM9CRXjP7M3XxR/26f+1q+gKAMrUfDOh6xcLcano2nXs6oEWW5tY5GCgkgAsDxkk49zVrTtMsdJtBa6dZW1nbglhFbRLGgJ6nCgCrdFABRRRQBy3xG0f+3vh7rmnhJ5JHtWkijgGXeSP94igYOcsoGAMnPFcb+z94hTUfAkukOyCfS7hlCKjA+VIS6sxPBJfzRx0CjjufWG6n6V87fDV08JfHrWPDlurrY3bzwQwxykogUmWMtnkkIrLk8/MecE5APoyikHSloAKq6hfW+mWFzf3koitbaJpppCCdqqCScDk8DoOatVx3xT1T+yfhl4guPJ87faG327iv8ArSIs59t+cd8YyM5oA8n/AGbLGCTVfEGotuM8EMMCHPG2RmZv1jWvogdK8g/Z208weA728e18qW51B9szR4MsaogGGx8yhvMHXAO7vmvXwMCgBaKKKACvKv2gdKe/+HIu4/KH9n3cc0hcfMUbMeFOP7zqe3A9QAfVayvE2nTax4X1fS7dkWa8spreNpCQoZ0KgnAPGTzgGgDlPgperd/CjRx9oWaSAywyAMCYyJW2qQOh2FDj0IPeu/ByK8K/Zv1pX0zWtDdoleGZLyMbvncOux8L6LsTkd3Gete6jpQAtFFFABRRRQAUUUhYDrmgAJArhPiX8SLHwHpQEey51m4X/RbQnoDn9446hAQfdiMDHJVPiT8S9P8AAWnoFVbrWJ0JtrTdjA/56SdwnB46sRgdCV8y8A/Cq98eyy+LvG8900d46ywx79j3S8fM3HyxkAKoXaccjACkgEHw5+Hmp+Ptfl8V+M0knsZVEsbO6g3UmQANoH+rCjGBt/hA4Br6LtreK2t44IIkhhiQJHGihQigAAADgADsKIbaK2t47e3ijigiQJHEihVRQMBQB0AHb2qUUAApaKKACiiigAooooAKKKKACmOBkcZNOJxXlfxt8e3HhbQ4tL0uSaHVNRU4njGDBEMbiG7Mc4GOnJyCBkA861K7uPjV8W4dIEpj0OxMqpLbDcTCp5l5xzIQgBxhdy8HBz9H6bp1npOnxWGn20VtawjbHFEuFUfT65J981w/wk8CQeD/AAqlwZGk1DVI4ri5YjGz5crGBkg7SzfN3zn0A9CUYGKAFooooAKKKKACuA+Lvgs+MvB8gtYg+q2JNxZnOC39+POCfmHQcZYJk4zXf01gT6UAeXfBTxemo+GV8M6i0kOt6Pvhkt5gwfyVIAJBUbdufL25JGwZ616kDmvnDx7ZN8MvjTp3ixFd9PvpmuW8tEDAnKzoBnk7X3AnGd+M5Bavou2uIbq2jubeWOWCVBJHJGwZXUjIII4II7igCWs/Xv8AkX9S/wCvWX/0A1oZzWfr3/Iv6l/16y/+gGgDw/8AZm/5mj/t0/8Aa1fQFfP/AOzN/wAzR/26f+1q+gKACiiigApD3+lLSHv9KAPAP2Zuvij/ALdP/a1fQFfP/wCzN18Uf9un/tavoCgAooooAKKKKAEIJNfOPj7Tx4O+Pmj647mOwv7iC5eaRGEcfzBJQGzyQBvPpvAxjr9H145+0RoL3/hKx1mISF9MuCsmHVVWKXCkkHknesQGPU5HcAHsKYCgDtTq5P4Z61Nr/wAOND1C53+e1v5UjSSF2doyYy5J7ts3fj1PWusBzQAV5L+0Lqctn8P4LOGcIb29jSVMAl41DP8Ahh1jPGD+Ga9ZzivB/wBoS5fVdV8MeGbALNfzu0nkH5SS7LHF8xIXBIcdeNvOB1APR/hRai0+F2gRLEYw1t5u05/jYvnn13Z/Guyqhommpo2hWGlxyNKllbR26yMMFgiBQT7nFX6ACiiigAprDmnUhGaAPnHwzLJ4R/aU1LT9kaw6hPNCQExsSUecm0A4HIQc5GM8en0cvIrwP41WTeF/H3hrxra27OgkQXCxR+WHeJwwDyDPLoSvIziPuOnu9rNDc20dxbzJPBKokjlRwyup5BBHBB60ATUUUUAFFFIWA60ABIBA9a4T4l/Eqw8CaUUUx3Gs3CE2toSenTe+OQoP0LEEDuVz/i38TW8C2cFlp0Ky6xeKWjMgykEYPLkdyTkKOnBJ6YblfhN8LtQk1eHxx4nkhlluF+12sD/O5lc7hLJ2Bx8wAycsD8pXFAEXw3+G154uvIfHfjSe4uZZ5TNDaTpjzgMbJG9EznEYABAX+Hg+9AYGKFG0YpaACiiigAooooAKKKKACiiigAoopCwBxQBna9q9poGiXmrX2821pEZXCLljjsASOT0HT614L8PdBl+K3jzU/GHiK2EulwS4gtpGBUvwY4iNoDIiHJ6biVJDZYVc+MHii/8AFniy2+HOhh1H2iNLqTedksjAMAQuT5aA7mJzyOg2ZPsvhXwvpnhDQYdJ0lGFvGSzSPgySOTyzkAZboM44AA6CgDaXpS0gGBzS0AFFFFABRRRQAUUUUAc3478Nr4t8H6jo48oTzRZt3lB2pIDlTkcjkYJHYng9K8y+BPiI6bNqfgXVpGi1G1uZXhhlcMBtOJI0O4g4YM2B6seeTXuBBPIrwL44aHe+GvEem+PNAM1tctIEubiJs7JFULGSCTwyAqRjacYOd3IB76vTrz3qhr3/Iv6l/16y/8AoBqHw3rUOv8AhrT9XhdGS7gSU7DkKxHzLwTgqcgjsQe9S66c+HtSI/59Zf8A0A0AeJfszqBH4mbepJNsNvOQB5vJ7YOf0Ne/Cvn/APZm5Higf9en/tavfx05oAWiiigApD3+lLSHv9KAPAP2Zuvij/t0/wDa1fQFfP8A+zN18Uf9un/tavoCgAooooAKKKKACud8daPNr/gjWdLtV33U9qwhTj5nHzKMkgDJUDJOBnNdFTW+8D6UAeL/ALOV6jeE9WsABvhvvOb5ucOij7vb/VnH/wBavaR0rwT4bovgz45eI/CYnjjs7tWNtBHlwSuJYl3EZBWJ5AcnGQRljjPvSHK5oAG+8B3rwGIf8Jv+0y7Nmex0MkhH/dmPyeBjGC2Lh8jOcjrxxXumqXiabpt3fyEeXbQPK25tq4UEnJ7dOvavCv2b9Fl83WtdeNRDhbOJ+CS3DyAc5GB5fbBz14oA9/X7vf8AGnU1TleetOoAKKKKACiikJxQBwXxl0aLWfhpqe+Nmls1F5EVDHaUPzEgHkbC456Zz2rN+BXiM6v8PIrKdpGuNLla2LvIXLRn5kOT0ADbAMnAQfQej3ltbX9pPZ3Uay288TRSo3RkYYIP1BrwD4eTT/Db4u6l4T1Frq303UXKWQm2kStv/cSbhj7yhl+X+IgEcfKAfQ4IPTt1paRcAcdKCcUABOOteYfFL4s2fg+3l0nTJPO16WIldoDLa5HDPnjdg5VcHsTwRmh8VPjDH4cX+yvDVzbXGr73juX2lxagAj1x5m7HB3AbSGHIFVfhb8LrlrseM/GSyz6vPJ58Ftcg7omzkSyA/wAfov8ACOeuAoBB8L/hCxLeJfGtqLu+usyRWd4N5XdndJMrA7nOfunOMkn5sbfb1GBQBiloAKKKKACiiigAooooAKKKKACiiigBCcVxnxK8dJ4D8MnUEgFxezv5FrCxwu/BJduclVAycd8DIzkdhM6RI0kjqiKCzMxwAB1J9q+cEa4+NvxYeN7gf8I1pbmSONwQGgBUELgK26UrnkgqCf7oBAOo+CHgKWKP/hOdYuPtOoX6ObZJPnZAzfNKzEE+Y2D0P3WOSSxC+1KMD/69Q2VpDYWUNnbRLFbwIsUUajAVFGAB9ABU9ABRRRQAUUUUAFFFFABRRRQAVQ1fSrHW9On03UrZLmzuE2SwuOGHXtyCDggjkEAgg1fpCM0AfO3wq1C9+H3xK1HwLq8qiC6kCxuz/Is2MxsPmwPMQgY+8T5Y4xivedc/5F7Uv+vWX/0A15h8dvCc97o9r4q0pJxqukuC0sBIdYASdwwN2UbDZBGAWP01vA3jY+NfhbeT3dxFJq1tbSw3qooU52ttfb/tLg5GASGwBjAAOJ/Zm/5mj/t0/wDa1fQFfP8A+zMMHxR/26f+1q+gKACiiigApCece1LTWz1FAHg37N1vNaXPi23uIpIZ4ntUkjkUqyMDMCCDyCDxive68E/ZunlurnxZcTyvLNK1q8kkjFmdiZiSSepNe90AFFFFABRRRQAUhGaWigD56+OUr6D8TfC3iMwtOsEcTiI/IHMM28jfzyd4HTjg85r6BhkjliWSJxJG4DKynIYHuCOoryT9ojRPt3gi01WO33zaddDfLvx5cMg2txnBy4iHQn04zXcfD/U4tX+H2gXkUxnJsY45HIIJkQbH68/fVhnocZ6UAcl8ePFCaN4EOmQuwvNWfyU2MVKxKQ0pyBggjahUkZEh6gEV0/w48LN4S8C6dpc8caXmwzXeEUEyudxDEE7ioITdnkIMYHA8Z8WxS+PP2hrbT7W1N/Z6fNBBcBeVWGNw0xY8YAZnX64A5IFfSCkKMcY68elADhS0m4ZxS0AFFFFACE4OOa8u8f8AxntvBOttpC6DeXd0gV2eWQQROjDIZGwxbnKngDINeon6nPtXzH+0H4hGo+MLXRogpj0qDLkqQ3mS7WIyTgrtEfQDkn8ADp7T9pKxe9jF34buIbUj55YrpZJFOM4CFVB+bj7w457Yrm/jTc6f4s0rQfG2jSebZTK1hcFiA8Egy6o65+9gv04wByQymuz+I8ul+EvgjB4Su7mA6obW2hW3t5vmZ1ZWaTB+by90bHOB6cZ4ofBHw2Na+GuvWWq20g03VJjHGzKPmwoBdNwI3KwBDYOGX1WgD1/wxrUfiHwvpmroYv8ATLZJXWF9yo5HzJn1VsqfcGvN/ix8WZvDl43hrQbfztVlixNOSf8ARy4+UIo5MmCG9BlfvZOPFbHxz4s8F6Xqvha0vDbxi4dHcLiSBxlHEbHlc49MjGRtOc9H8LfEvgTwuJtX8RG5udekkPlubfzFgX+8v+2TnLHkdBj5sgHc/Cj4MyaJdJr/AIohiOoROTa2WVcW7A8SMwJUt1IAyBwfvY2+2AYFeYD4++Bv+e99/wCAp/xpf+F++Bv+e99/4Cn/ABoA9PorzD/hfvgb/nvfn/t1P+NH/C/fA3/Pe+/8BT/jQB6fRXl//C/fA2f9fff+Ap/xo/4X94G/5733/gKf8aAPUKK8v/4X94G/5733/gKf8aP+F/eBv+e99/4Cn/GgD1CivL/+F/eBv+e99/4Cn/Gj/hf3gb/nvff+Ap/xoA9Qory//hf3gb/nvff+Ap/xo/4X94G/5733/gKf8aAPUKQsAcGvMP8Ahf3gb/nvff8AgKf8agvPj/4NSznktTeT3Cxs0ULQlBIwBIUtzgE8ZwcZ70AZ3x38cvY6bH4S0o+Ze6in+lGNm3xR7htUAcEucgjJ+UEEfMDXafDjwDb+A/Dv2RXE1/cMst5NgYL7QNqnAJQHON3dmPGcV88+EPFelT/EefxZ41lkkKs80MKxmUCVjhQA2cIiklRnIKpjpXtK/HzwMo/1991/59j/AI0AeoAYGKWvL/8Ahf3gb/nvff8AgKf8aP8Ahf3gb/nvff8AgKf8aAPUKK8v/wCF/eBv+e99/wCAp/xo/wCF/eBv+e99/wCAp/xoA9Qory//AIX94G/5733/AICn/Gj/AIX94G/5733/AICn/GgD1CivL/8Ahf3gb/nvff8AgKf8aR/j/wCB1jZlk1ByASEW25bHYZIGfqaAPUaK8qt/2g/BU0ZaVNUt2BxsltgSff5WIqX/AIX94G/5733/AICn/GgD1CivL/8Ahf3gb/nvff8AgKf8aguf2hfBcG3yotVuc5z5Vuo2/Xc46+1AHqNzBFdQyW9xFHLBMhjkjkUMrqRggg8EEZGD618p+IV1L4O+NtV0vR7yZ7G9sioWbB8xHRgrMMYLI+4ggdsdCRXqs37RPg6OUqtnrMowDvSCPB/OQH2/CvP/AIo/EbwX4+0VPsum6vFrNqR9lnkjjVdpI3q+HJK4yRxkEDkAtkA3v2Zzk+J/+3T/ANrV7/Xyj8IPiNpHgA6ydVtr6b7cIPL+yojY2eZu3bmX++MfjXqUf7RPg5xIWs9ZTapYboIvm9hiTr9cUAeuUV5Ov7Q3g1rZ5Db6usitgQm3Te3uMPt/XtUP/DRng/BJ0/WxgZwYIuf/ACJQB69SHv8ASvIf+GjvB/8A0Ddc/wC/EX/x2j/ho3wgc/8AEu1z/vxD/wDHaAOe/Zm6+KP+3T/2tX0BXyj8IPiNpHw//tk6rbX0wvvJ8r7KiNjZ5mc7mX++Ome9en/8NHeEB/zDdc/78Rf/AB2gD1+ivIP+GjvB/wD0Dtc/78Rf/HaP+GjvB/8A0Dtc/wC/EX/x2gD1+ivIB+0b4QP/ADDtc/78Q/8Ax2l/4aM8IjOdN10Y/wCmEX/x2gD16ivIP+GjfCH/AEDdc/78Q/8Ax2lH7RnhEjP9m67x/wBMIv8A47QB6Zr2mf21oGpaX5vk/bbSW383bu2b1K7sZGcZzjP5V8x/Df4pzeB/DOt6WtjbzuwN1aO77f3zbIyrD+JdoDcYPykfxZX05v2jPCGf+QdrmP8ArhD/APHa+fY7CbxR4ua10W0kLX925t4jyVRmJ+bA4CjkkcAAntQB7t+z5osjaXrHiq+fzrvULjylklUNJtX5nbzCSTvZhkccxgknt2Hjn4p6D4GHkTlr7Um3bbO2dS0bbQy+bk5QHcMcE4PAOKyPFWp2Xwl+E1vpFlcZvWtza2ZRtjvMwy84BLEAMxfAyASq8ZBrlv2evDUzvqfiy/gkZpv3FpNLnL5JMrDI55CjcO4cetAGhF+0FFZarLZeIvCWo6Y0afMiyeZKGOCA0brHgFTnP04r1/SNSh1nRrHU7dXWC8t47iNZAAwV1DAHBIzz6muK+LPgS98d+HbO0037El9b3Yk865yMRlWVlBCsRk7DjgHbz0Fd7bQQ2ttHb28KQwxKEjijUKqKBgAAcAAdqAJaKKKAGv0zxgdc9K+QtJhm+LfxazfyS28eoTPLKYlDNDCiEquQAOFVU3EdSCQelfTPjzV7jR/C9w9ppGo6pcXINukNhCZHUsrfO2OQox19SPWvmT4ceL4Phx4nv7vU9Mu5ZzbtaGAYjaM71Lbg3OQUA/OgDW+KXgDTvhrqmhXWlTy3kNwzu0N+iSDdEyH5sABlYOBtI7Hk54+hvAOtReJPAmj6pDbJbLLAEMEcYRI2QlGCLk4Tcp289MV4d4lTxZ8bPEOltZaBeabo8ELGKe7XEWGYb5N+0biRsGwFvu8dTXvvhTw/beFfC+n6JandHaR7GfBHmOTl3wScbmLNjJAzgcYoA8T/AGg/BcVrJb+LrNSJLiQW98C5OTtxG4GOPlUqef7mBksTp+BvhV4E8X+DdO1r7NeLLPHtnjW5ICSqdrgDJwMgkZOcEV6z4q0C38U+GdQ0S5bZHdxbRJgny3B3I+ARnawDYyM4x3rw34Y+Jbj4aeL77wJ4k8tIri6TZOkgMcUrINrZC5KyL5XJI24GQPmwAd2PgH4GP/Lvff8AgS1Tx/AnwEls8R0yeR2ORK13JuX2GCB+lekLjBx60tAHl4+AXgfjMF6cHP8Ax9HmtAfBL4fAf8gDJxjP2yfn8nr0CigDz1Pgh8PlLltCZ9zZAN5ONox0GHHH1yead/wpL4ef9C//AOTtx/8AHK9AooA8/wD+FJfDz/oX/wDyduP/AI5R/wAKS+Hn/Qv/APk7cf8AxyvQKKAPP/8AhSXw8/6F/wD8nbj/AOOUf8KS+Hn/AEL/AP5O3H/xyvQKKAPP/wDhSXw8/wChf/8AJ24/+OUf8KS+Hn/Qv/8Ak7cf/HK9AooA8v134WfDPw/ot1ql34cnkht03FILm5kkc5AAVRJ1JIHOAM5JAya8x/4SH4HD/mTdc/7+t/8AJFfRuv6l/Yvh7UtV8ozfYrWW58oNt37ELbc4OM464NfPX7OWlNP4q1bVSIjFZ2aw4YZYPIwII4x92NwTkfe75OADd8Jab8EvF9z9ks9ImtL0khLa9uZo3kAx90iUqSc8LndwTjAzXcj4J/Dwj/kX/wDyduP/AI5Xh3xtdT8WrpbHP2lI4FPlAh/M2qVxjknBXH4enH1enTrmgDgf+FJfDz/oX/8AyduP/jlH/Ckvh5/0L/8A5O3H/wAcr0CigDz/AP4Ul8PP+hf/APJ24/8AjlH/AApL4ef9C/8A+Ttx/wDHK9AooA8//wCFJfDz/oX/APyduP8A45R/wpL4ef8AQv8A/k7cf/HK9AooA8//AOFJfDz/AKF//wAnbj/45S/8KT+Ho6eH/wDyduP/AI5Xf0UAef8A/Ckvh7/0L/8A5OXH/wAco/4Ul8PP+hf/APJ24/8AjlegUUAef/8ACkvh5/0L/wD5O3H/AMcoPwU+Ho/5l/8A8nLg/wDtSvQK53xr4rtPBfhm51q7XzfLwkVuHCtNITwoJ/EnqQATg4wQDgfFHgj4P+D7JrjWNMSN9haO2S9naaXHZU8znnjPAHcjrXHaRf8AwN1bVbawPhrUrPz3EYnuriRYkY9NxWckAnAzjAzk4GSIfg7plz45+JV94s1i4jnexYXDpKN5aWTcI9oOcKgUkc/KVTHt2f7RkETeBtNuDChnTUljWQjLKrRyEqD1wSqkj/ZHpQB5z8W/AFh4D17Tb7S7bzdIu8/6NPI7BZEOWQkYYKVK4+Ytw/IwK9a0T4WfDTXdEsdVstBJgu4FmQG9nyARnBxKRkdCATggisbwXax/FD4Ftot+224snNpDcMq/I8YDRMMDgBWVCepAbnLZrM+CHia80TW7z4fa5G8NykrtbK+WKOoLSRZBIC4BcYwM7zk7hQB3n/Ck/h6Rx4fH/gZcf/HKP+FJ/D3/AKF//wAnbj/45XfL93rmnUAef/8ACkvh7/0L/wD5O3H/AMco/wCFJ/D0f8y//wCTlx/8cr0CmnrQB8x/A/wV4e8Zf28Nd0/7WbX7P5WZnTbv8zd9xgT90dc169/wpP4enr4f/wDJ24/+OVxvwA05tH13xxpjyLI9ncQW7OvRijTrkflXuVAHn/8AwpL4ef8AQv8A/k7cf/HKP+FJfDz/AKF//wAnbj/45XoFFAHAD4KfD0dPD/8A5O3H/wAcqzf/AAj8CajcGefw7bI5AGLeSSBeP9lGAz745rtqKAOfHgTwj38LaH/4L4v/AImqFv8AC/wRa6lLfx+GrAzSjDLInmRjkH5Y2yinjqAD19a6+mt1wOuKAPOvGXhb4f8AhvQdT8QX/hrTf3dm1usSR+UJS2dqqFGFctx5gXco74Feefs++DbiXVJvFd3A8dtCjQ2RdOJXOVd1J5woyuccliM/KRVT4palP8SviZY+EdDUO9hJLbCSRtimTgynkZwvl++dvAORn6G0jTY9K0Wy02EgxWlvHbocdVRQo9ew9aAPm/8AaKJ/4WBYcEf8SqP/ANGy17j8M9Ng0r4aeHbeBnZXsknJcgndKPNYZHYFzj2A61yvxj+GM/jGKHWdLeManY27o8Tbs3MY+ZVUg4Vgd+OOS/JGK5zwv8e9D0jwhp+m32kaj9rsbVLbEOx0fYgUNuLArnGcbTj3oA9um1TT7e9gsJ762jvLgEwW7yqskmBztUnJx7Crg7/WvnHwFZ6t42+Nb+KdW02aytxF/aCrJEwQxsvlwBWwAfUHGG8t/evo1Pu9c0AOooooAQjJFIFxnHGeeKdRQAzZyTgDPpTlGBg0tFACEZ//AF15B8bfADatpY8T6RDJ/bFlgzeU7AyQDPIX++hwQcjjd1IUD2Co5YknjaORVZGBVlYZDA9QR6UAcP8AC74g2/jbw0hnfbq9mix3kbFcyEAfvQFx8remBg5HQAnuwQen0r508R6ddfAvxxb65oZa50TUxIj2TucqBgmMuQehIZW68MDkZLe+aLq1trei2WqWm77PdwrNGGxuUMAcHBIyOhAJ5FAGhRSA5GaWgAooooAKKKKACiiigAoopCQOtAHl/wAfdSNj8MpbYQmT+0LqG2zuxswTLnpz/qsY465zxg8N8Ovhb41fQxfWviaPQbHU4BODbDzLhwfubtu3AKksCHJXd0BJxmfH7xVba34otdHghnQ6P5iStNEY97yBCdueSuFGDgZzkZGDXvfgPULDU/AeiXOmFvsgtI4kDAgqUGxlOeeGUjPOcZyetAHJ+Fvgnoei3jalrNxLr2qtN532m53KobJO7ZuO4knJLFskDpXpqjAxS0UAFFFFABRRRQAUUUUAFFFFABRRRQAV4T+0re3Edh4eslk/0WaWeaRMDl0CBTnrwJH9ufpXu1eWfHDwTfeK/Dlne6XFJcX2lu7/AGdGwZYmA37Rj5nGxSB6bsAnAoA1vhBoC6B8NNLUhPPvV+3TMjMQxkwUJz0Ij8sEAAZU/U+c/tJ6orXGg6RHcyb40lup7cFgpDFVjc9ifllA6kc9M89f4I+Kng23+H+mx3msR2k+mWUFvcQTRt5gcL5fyKAS4JXPy5wCCwXpXIaD4cuvjB4+m8Z3UX2HQbWdUt1Zf3l0I2BCn5uOPvMDjPAyckAHqHwt8OXHhj4eaZYXkEUN8wea4Ea4JZ2JG7gZYLtU+m3A4Arzb4z+DNQ0TXIPiB4dIilidGuxEnzJICcTYOVKkAKwwBwM7tzY96Xp0xnmqOt6Vb65o97pV0G+z3kDQuUxuUMCMjIIyOoOODigCl4Q8U2Pi/w1aaxYuhEqjzolfcYJMDdGcgHKnjOBkYI4IrcByOK+e/CF/cfB34kXPhTWpbcaLqREsN6742D5ljkOBxkrsYEcHnOAS30IuMZHegBaawz/AEp1IaAPGvgrAbXxt8RrYzSzmHUUjMszAvJiS4G5iAMk9ScV7NXj/wAIf+Sh/E3/ALCo/wDR1xXsFABRRRQAUUUUAIWA61wPxc8YReFfBV2sV6bfVb2Mw2QQkOTlQ7AgHBVWznjtg5xXY6tqljoumXGo6lcx21nbpvllk6AfTuScAAckkAcmvnvwhp178YPiZceKtYtGj0W0KlYZcywkpjZbgsRkYy7YBGc5A3igDt/gd4CuPDmi3GsaraC31O+yiRurLLBCCPlYHoWIBxjoFzzwPWlXbmkQbRinUAIRmmhMY4Ap9FADApyCTzTgMClooAKKKKACiiigAooooAKKKKAMTxT4a0zxZo0ulatAZLeTlWXAeJx0dD2YZP15ByCQfE/BXiTVfhV44k8D+JJs6G8rfZrm4yixBiSsqdQI3I+YZwrEnIw+foYgmuG+JvgK18a+HJR5TtqtpHLJYGOTblyAdhyQuGKKCT06560AdyOBQDkV4x8IviPqd5fz+E/FryR6pbIv2eS7AjlkxgGJw2C0nII4JIDE9Mn2ccUALRQDmigAooooAKKKKACkIzS0UAN2n2pQMDmlooAKKKKACiiigAooooAKKKKACiiigAooooAKay7qdRQB81/FPw9eeHPi1beLrzTWm8Py3dtcO9ugcAJsEiODgBmKkjJw27rndj2vwv4+8M+MZZYdF1Jbi4jjEkkDxNG6g8dGA3YPBIyASPUZ6dlJqnp2j6do9u1vpdhaWUDOXaK2hWNSxABJCgZOAPyFAF0UEZ9KAMCloA8q+NvgK68WaBb6hpkfm6jpvmMYh1miK5ZVAUln3KuBkDlupIrc+FXjS38YeC7Zy4/tCxRbe8jLgtuAwJCBjAfGemM7gM7c125BJ68V87aip+D3xsGoCJv7C1ZTukfcfLikdTKNwXqjgNgZO0qCctmgD6KB3Dig02GRJYUkjdXjcBkZTkEHoR7U40AeQfCH/kofxN/7Co/9HXFewV4/8If+Sh/E3/sKj/0dcV7BQAUUUUAFISBQWA6+ma8V+LvxE1JdWg8GeEpPNv7lTHeNEgZ1LcLGhz8rY3FuMjK4IOcAHPeN9cvfjR4ptfDXhBlfTLKM3Mk1zmFWfO3zDnLFQGUABd2WbjFe76BoVl4c0G00fTgy2lrH5aZPzNzksSB94kknAHJNcz8M/hxaeAtHYF0uNWuQPtdwudox0RP9kc8nljyccKO6AxQAKMCloooAKKKKACiiigAooooAKKKKACiiigAooooAKQjJzS0UAeVfGD4YXHjWG01HSXt01OyiePypBt+0p1VA+cKQd2AeCXOSAKg+FfxZ/wCEkmg8N61A8OtRRFRMx+W5Kdcg4Ik25JGMfKx4yFr1ogk9a8i+Kvwtj1GA+IvCtqbfxFBMJ3Fq/lm45yWHIxID8wYYJ5zkkYAPXl6UteQ/Dz4prDF/wjPjm4lsfEcE4hVrqEr54blckDCsOmTgEFTkkmvXdwoAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArkPiT4Qbxt4Qn0iCWKK7DpPbyTDKK6nvgEjKlhkevcZFdfTSuWBoA8k+A3iVJvDc/hO7ga11PRpH3QyfK7I7sSSpO7KuSrccZTua9czkV89fFzSrvwJ8QtK8d6PbRRwSyAzeX8oM/zFw2B0kQnJ5Jw544z7vpOq2Gs6Xb6jpt1Hc2dwoeOZOjA9ueQQeCDyCMHmgDy74Q/8lD+Jv8A2FR/6OuK9grx/wCEH/JQvib/ANhUf+jrivYKACkJAOKMjOK8h+JHxf8A7K1CTwx4Wg+3a1KPIM8bZW2mZtoQKAd8nXg4AO3OeVoAg+L3xQutNun8H+GFuP7bm2RzTxId0e8ZWOLuZGDLyM4DcfMfl3fhF8OW8EaHJc6jDb/23eHMrp8xhjwMRbunBBJ28EnqQoNVvhf8LH8MsfEOvym68SXYZ5DIRILffyfmOSZDkhmBwdxAyPmPqIGBQAAEDmloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApGBPSlooA83+JXwmsfHONQt5vsesxQmNZSMxzAcqsg68HPzDnB6HAA5HwP8WtT0TW4/CPj+M2s9ufs/wBunPzh+NnmnOCpH/LQZBypPBLV7owJPauU8c/D/R/HOltb3yeVeRo32W8jHzwk89ONynup69sHkAHT29zBdW0dxBNHNDKoeOWNgyupGQwI4II5BqUHNfOWna34v+CmvppetrdX/hESMscqRAqwbJUxsT8j/ISYy2OW45DV7p4b8UaN4p0ldQ0a8S4gPDqDh4254deqnjv16jIOaANqigHNFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGbr2k2uvaJeaVexJLBdQmNldNwB7HHqDgjpggHtXi3wRvbzwz4u13wFq0iRyRs00KkBQ8i4D7NwDMHQKw/2Uzjk170RnvXiHx98LTJBY+MtLQw3Vg4W6uIpNjqNw8pxz1VzjIGfmHQLwAaHwh4+IXxN/7Cg/8ARtxXr+4Y6183fBzxzpuif8JjrfiTUoo57qW3mYHHmTuzyliiDG7lwTtGBnsKfrGteMPjXqD2vhm2nsNCtswTmW72JJvY4aUDrwq/KA+05OfmoA1vHHxd1LxDqy+Fvh6ss0twfKN9Fw0hwdwizjaAOTJkYwSMAbj2Hw4+EWm+CSmpXMovdbMe0zY/d25IO4RDHcHBY8kDgKCRSaZD4I+C+kWVpf3iw3d4G3Xz2zySXLLt3corbVG5cLnA9zkm5F8aPh/JIqDxAAXbALWs6jk+pQAD3PAoA70DAxS1WstQs9StEu7C6guraTOyaCQOjYODhgcHBBH4VZoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkIzS0UAZ+saLYa9pU+manbi4s7gBZY2JG7BBHIwRggEV4l4i+FGv8AgO/j8Q/Di7vHdY5FuLZmR5FXBY7QRiReANpBbcFI3H7vvtIRmgDyjwN8btM1y5j0fxBAdI1YAoZJWAgkdQMjJwUYndhW44A3EkCvVUlSSNZEYOjAFWU5BB5BBrj/AB18N9G8dWyteK1vqEMRSC9h++ncAj+Nc84PPJwVya8jSX4gfBBhD9nj1bw1v8x2EZMSklA3z/eiYnAG7KksSATnAB9Hg5orgfBnxb8MeLkEIuV07UDII1tLtwrSEnC7DnDkk4wOcg8YwT3m8e4oAdRSA5paACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQkDrQAtISBSbhnFcR45+KOgeCVWKeT7bqDNtNjbupkQbd26QE/IMEYzycjAwCQAduzqilnIVRySTwK8d+KXxb0q2sLnw3oSwavf3ivazhS5SIMACAVxvYhiAFbgjnkYPK3WoePfjdO1tp9odJ8Mb0WXc/7vcoJyz4DSnd/Co2j5MgEbq9P8A/CnRfBES3I23+r5bN/JHtKA8YRcnaMdeSTk84wAAeUfDr4HXevQxat4laSxsGIMdooxLcIVPzE/wDO3AIJODwowT9CaNoOmeHtOSw0ixgs7VQPkiXG4gBdzHqzEAZYnJxyTWkKQnFAHj/AO0VeRQeBbG1MkPnT6grLG5Bcqsb7mXvwSoJH97HepPhL4F0S5+Gmn3Os6DZXF1eGSXfc2SeaELELhiN2CoDA56MCOxrhvjbf3Hir4p6Z4VtJNn2fybVBMoCCecqd24AsV2tFn02nA9foTTrG20DQbSwSVvsmn2qwrJMwzsRQMseB0HPQfSgD5/8IXUPw6+PF54atb1X0e9mW2bKE4Zk3QrwT8yu3lljxyxIGePpBOn15r5M8CQL4x+OkV8ILmO2k1KbU2CDJiCs0qbjggDeEU+ueMEivrNMbRjH4UAOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBCOaZJCksbRyKrIwIZWGQQeoIqSigDzHxZ8EPC/iCBm06JdGvc8S2yboyM8hosgYxnGNuOOoGK86hvfiv8LJohexXGpaDZbVdVPnQtCARw+N0YAzgnAGFyCMA/SRznik2ntx7UAeYeGfjt4U1izX+1ZG0a83EGKYNJGeuCsgXGMD+ILzxz1r0yC5gureK4t5UmglQPHJGwZXUjIII4II71xPir4R+FPFkgnuLM2V35jSPc2G2J5Sck78qQxJOckZyOvXPnc3wj8a+A5hqHgXxA91I7kS22FhJXkKSrsUkxub7wGDggZ6AHv2aAQRkV84R/HjxjoMqWPiPw9AbiNEDLLE9tM47sQcjLY7KAPTtXd6L8fvB1/EP7R+2aVNsDP50JkQt3CmPcSB6lVyOw6UAeq0VS07V9N1i3a40vULW+gV/LaS1mWVQ2AcEqSM4I49xVzcKAFopNwo3DOKAFopAQaMjOO9AC0UhYDrRux60ALRRmkLAUALRSbhVPUdX03R7dbjU9QtbKBn2LJczLGpbBO0FiBnAPHsaALhOKNwry7X/AI8+DtKVhYSXOrXG1wEt4iiBh90M74+Uk9VDcZOOmeKX44eM/FV62neFPDcKXEqEDAa4eLOFDlvlVQCerDbyM8DkA+gZ7qC2t5bieVIoYlLySSMFVFAySSeAAAefavOPE/xv8IaHBMLC6/te+RtiwWuQhODz5pG3b2yu45PTrji7L4N+M/GMy3vjnxDLEmXdLXzvPeMs3IAB8uNThThCRgAYGOPQ/CXwg8LeE5Vuo7Zr+/Vt63V7hyjcEFFwFUgrkHG4ZPzYoA8yudX+LvxHuopNKtLvRNKmx5TRObZBGxBEhkOGcYK8pwQOF5Oe48H/AAQ8P6RBHd69GNY1VwHmackwo+STtTjcDkZ35zgHC5Ir1HZ7DjoPSlAwMUAVrLTrTTbNLOwtYLS1jzshgjCIuSScKBgZJJ6d6sqMDFLRQAVT1LU7LR7GW+1G6itbWJd0k0rBVUZAH6kD6nFXKay5x7UAfJ+heINK1H48P4i1q+jTTRfTzxzXGfuqGEHTPIxH7fL1r1Lx/wDFvSJtAk0fwldxaprWoEWcccSSfu1kBUspwAzZwAAerA4IGD3/APwgnhHv4V0P/wAF8X/xNX9M0DSNF8z+ydLsbDzceZ9lt0i8zGcbtoGcZOPqaAPNfgp8Ob7wnZXesaxFHDqN8ixxQYy8EQJJ3EHGWO0le20ZOSQPWwMUAYpaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRhmlooAr3Nlb3kQiuoIp4wc7JUDAn6Ee9cvqfws8EaqIvtHhuxTy84+yg22c4+95RXd075xk4xk12FFAHhOsfs4xI/2jw54hmhkRMxxXqBiZMnnzE27R0/gOOfXjFPwq+LOlsY7DxC7IwDMbXVpkBPoc7efwr6QpG4BNAHg2n3fx70yaLz7CK/jxsWK6a1KnjqzI6t26k9fc1D/AMLq8c6GftXijwSI7Jv3UbfZ57TMh5xvk3A8Kflxn8q99XlcnqaaT1HbBP8AL/GgDwX/AIaXK8Hwln/uJf8A2qrWnftJ6dLdMNU8OXVtBs4a2uVnYtkYG1ggAxnnJ7cV7oAB0paAPDtT/aS0iIxHStAvrrOfM+1TJBt6Yxt3579cdqof8NLjOP8AhEvz1L/7VX0BTCTuYZ6AEfrQB4GPjN8QdZzeeHfBHmWB4BNpcXRLd/nTaD27VPrM3x71fesemwadE8RiaOxmtlznOWDPIzq2D1DDGARg817kTyg4+bOeKkAAIA6Y6UAfNy/DD4t6okUV/rk6xt8xW61aR1RvcLu55PTPWtzRv2bbVQj634gnlJiG+GyhEe2TjOHfduUcj7qk8HjpXujcMMd+tPHSgDkNK+F/gvRXd7Lw7ZF2IO65DXBUjOCvmFtp57Y7egrqILWK2iSGCKOKJM7UjXaBn0A6d/19anooAQcUtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//2Q=='] Multimodal Competition False Theorem proof Geometry Math Chinese 70 "如图, 已知锐角 $\triangle A B C$ 的外接圆为 $\odot O$, 其垂心、内心分别为 $H 、 I, A H$ 的中点为 $M$, 且满足 $A O / / M I$. 设 $A H$ 的延长线与 $\odot O$ 交于点 $D$, 直线 $A O 、 O D$ 与 $B C$ 分别交于点 $P 、 Q$. 证明: 若$I Q \perp B C$,则$\cos B + \cos C = 1$." ['如下图, 由 $I Q \\perp B C$, 知 $Q$ 为 $\\triangle A B C$的内切圆 $\\odot I$ 与 $B C$ 的切点.\n\n\n\n则 $B Q=\\frac{B A+B C-A C}{2}, N$ 为 $P Q$ 的中点.故 $B P=2 B N-B Q=\\frac{B A+B C+A C}{2}-B A$.\n\n因此, $P$ 为 $\\triangle A B C$ 中 $\\angle A$ 内的旁切圆 $\\odot I_{a}$ 与 $B C$ 的切点.\n\n设 $P_{1} Q$ 为 $\\odot I$ 的直径, 过点 $P_{1}$ 作 $B C$ 的平行线, 与 $A B 、 A C$ 分别交于点 $B_{1} 、 C_{1}$. 则 $A$ 为 $\\triangle A B_{1} C_{1}$ 与 $\\triangle A B C$ 的位似中心.\n\n因为 $P_{1} 、 P$ 为对应点 $\\left(P_{1}\\right.$ 为 $\\triangle A B_{1} C_{1}$ 中 $\\angle A$ 内的旁切圆 $\\odot I$ 与 $B_{1} C_{1}$ 的切点, $P$ 为 $\\triangle A B C$ 中 $\\angle A$ 内的旁切圆 $\\odot I_{a}$ 与 $B C$ 的切点), 所以, $A 、 P_{1} 、 P$ 三点共线.\n\n又 $O N$ 为 $Rt \\triangle P P_{1} Q$ 的中位线, 则\n\n$O N=\\frac{1}{2} P_{1} Q=I Q$.\n\n设 $\\odot O, \\odot I$ 的半径分别为 $R$、$r$. 则在 $\\triangle C O N$中,有\n\n$R \\cos A=r \\Rightarrow \\frac{r}{R}=\\cos A$.\n\n由 $\\cos A+\\cos B+\\cos C=1+\\frac{r}{R}$\n\n$\\Rightarrow \\cos A+\\cos B+\\cos C=1+\\cos A$\n\n$\\Rightarrow \\cos B+\\cos C=1$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAcsByAMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikJApNwoAdRSFgKyL7xb4c0y7ktL/X9KtbqPG+Ge8jR1yMjKlsjgg/Q0AbFGa85vvjl4DtLWSWHU572VcYt7e0kDvk9i4VenPJHA+grnbv9o/w4pX7Lo2qyDnd5wjjx6YwzZoA9nBzS14f/AMNJ6QP+Zfvv+/qUv/DSekY/5F++/wC/yUAe30ma8RP7SekD/mX77/v8lJ/w0npBH/Iv33/f5KAPcKK8ei/aN8JmNfM0vWlcjlVhiIB9j5grobD41eAb77Mv9t/Z5Zyo8u4t5E8tm7O+3YME8ndgdc45oA9AorK07xNoWr3DW+mazp97Mil2jtrpJGCggZIUkgZI5rU3fWgBaKTcBS0AFFFFABRRRQAUUUUAGeaTNIxx6cAnmuU8JePdN8Y6rrdlpqS7NKmWIzkqUmyWAZCCcglGx7EH6AHW0UgORS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSFgDzQAtITijPNeW+NPjh4a0CN4NJlXWNRA+UW7ZgQkDBaTowwx4TdypBK0Aeo7gf/rVia74y8O+GcDWdXtbOQrvELvmQrz8wQZYj5TzjtjrXhqeNfih8UmFn4dtf7MsA4WW6td0argoTunY5yuQdseGKseGFbelfs5W7lZ9d8RXE8kgDSpaRhcORlvnfduG49Soz6c8AGj4g/aH8O2Ehi0bT7vVXVlHmMfs8TKVySpIL5BwMFB3OeBnj5vHHxl8Sok+m6Xc2VpJApH2XTtscinkOryhicgjlWxgA+59l0D4aeE/DdvCllotpJNEyyLdXUYmm8wAfPvYfKcjOFwAeQBXWbTnqKAPnqP4U/FLxJaouv8Aicw2txIPtNpcX8spRQ/Xy1zGx4DABh25B6bWm/s26NDHINU16/unLAo1tGkAA9w2/P5ivbFGBiloA4Oz+DXgOyIZdBSV9mxmnnkk3e5BbGeOwq4PhX4HBz/wjVjnOfun/GuwooA54eA/CAGP+EV0P8dPiP8A7LTl8D+FI2LR+GNEQ4I40+IZBGCPu+mR+JrfooA5/wD4QTwiSS3hbRGJOSTp8XP/AI7R/wAIJ4Q/6FXQ/wDwXRf/ABNdBRQByD/C7wRJIzt4a08FjkhUKj8ADgViar8CvBGpREQ2Vxp8hk3mW0uWyRg/Lh9ygc9AB0GD1z6VRQB4Xrv7N9i9qG8P61cRXCq2U1ALIkh4wNyKpQdcna3bgd8a98I/G3QpmW01m81KMxh2lh1LzQuCflAmKtnvwMHI619G0mKAPniD4ofE7weqyeK/D8l5ZF9zTzW5gIyMKgkQbF5GcFSTz6jHY+G/j54T1O1J1fz9HugeUkRpo2ySPldFzwACdyrjOBnGa9UKk9+1cT4l+EnhDxRLNc3WnC2vpcFruybynLbtzMRyrMSSCzKTz14GADptJ8R6LryM+k6rZ3wUKXFvMrlNwJAYA5UnB4ODwfQ1pbhXz/qvwC1jQ9up+EPEcpv4QSqOTBIflYHZKp+8eFwcDk5YdKqRfFnx74CFppni3QPPWJTGs1yGSWfbjnzhuSTAIGQDnIySckgH0WDnpS15/wCDfi/4Y8WiK2+0HTdTfC/ZLwhdzHaMRv8AdfLNgDhjgnaK74sB1zQA6kJAoBz2IpGPOKAOI+KPiZtF8LSWFhcSJruq/wCi6bFESJJJGZVbaQDtID5zxzjBzivJf2cdQmj8U6zparGYbiwFwzMCWDRuFUdemJWyPYdKNQ8Wa9q/xZk8Saf4f1LxHoujzy21jFaRl4A23aXDojKSSd+evKc4Aqh+zzcRRfEW6SaZFebTJY4lZxl28yNiBnqcKx+gJoA+oQMD8aWkBzS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFISB1oJxXL+M/Hmg+CbIXGq3JMz7RHZwbWnkBJGQpI+UYPJIHGM5IBAOn3DGSCPwryzxh8dPDmgtPaaVnV79VGxoHX7OCcHmQHng/wg8jBK9R55car8RPjTLJp1paiw0KSRpdxRktwF+6ry7SZCDt+UDkndtAX5fUfC3wV8J+HHgupbd9T1CHB8+7PyB8YJWMfKBk5GdxGBg5GaAPL7rwj8WPiY32nVibCzkJ8u3u3NvEgDMQPJUFhgjALqWI28kYNep+D/AIOeGPC8SSz2yatqGMNdXiAhfu/cj5VcbeDywyRuwcV6Ft6d8etOFAESQrFGqRqqKq7VVRgAdgAOlSAYzS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA1lJ71HPbRXMLRTxxyxt1R13Ke/Q1NRQB5L43+BWia+Gu9C8nR78Lny0j/wBGlIXABQfcyduWX3JVic1wsU/xM+DbJdagf7R0HzEheN7rzYurHCZ+eI43cgYyVyDwK+kyKintYbqCSC4ijlhlQpJHIoZXUjBDA9R1496AOE8GfGDwx4taK085tO1J1X/RbshQ7kgbI3zhzuIAHDHrt64h+MWseI7LwzHp/hnTb+6utQLRzTWto03kwgYYZGdrNuABweA54IBFHxh8DPDuvme60rOkXzINiwIPsxIwOY8ccA8qRyc4PfhdG+I3jr4bagmn+ONPv77T2wiPMwZ1JIZmSbkS4VvulzjgZXBFAHq/gKWHSPhFo9zDp946Q6cJjbRxKZZDgs2xRgNuOSOeQQTya8V8Pxa5pXxim8X3Hg7xM2nve3VwI10x/NCyiQLkHAz84z834nv9D+HPE+leKtIg1HSrtJY3VWaPcu+JiM7HAJ2sPT+fWtjt34oAVDladSDpS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSFgOvegAJxRuHPt6c1T1TU7LR9Om1DUbmO2s4F3SSyNgKP8ScDHfOOpr5+8XeOPE3xR1q58P+Bre5bSoonWVkcRNcocZZ2YgKh6BTgkE567QAdB41+N5kvrjw/wCCbSW/1BiIor+ICRd4IJ8pNreZwCM8DIyNw61fB/wElmvW1fxxdC7km3SPZRzOWZ2GSZZQQSwJOQpOSAdxGQe98A/DHRvB+mWUr2dvPrccZ869ILHe33tm7ooB2ggAkdeprugMDmgCOOFYo1jRVREACogwFx6Y6VIBgYpaKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQnFBOKz9Z1zTfD+mSalqt0ltax4BdgTyegAGSSfQUAWL27gsLSe8uZViggiaWWRuiIoySfYAGvlD4pfE4+P7q2t7Sze10y0LGLzSDLI5/ibHAAAwFBOOSScgC18U/iRf8AjK/urfSZ7pfC8DpEAqlFnflg79+SpKq3ZAcA5w34feCRqHhDxb4i1TTS1pb6TP8AYZJVIV5QrHenrtKYz6nvzQBxfhz+24NQm1XQPPW70uI3jyQEboowQrMR/EvzgMMEbScjGa+kPAHxp0fxU9vpuprHpery7URCT5VxIc52N/Dkj7rHOWABY14X8Jr5NP8AinoE0mNrTtBycYMiMg/VhXtHxG+Cum65Yyah4YtoLDVIkGLSFVihuFGcrgABG9G6HGD13AA9e3ClBzXgXgL4r6noGsXXhn4hzSwNGcR3Vyh8yNuPkfAO5SDuDn8yCNvvFvcwXFtHcW0qTQSqHjkjYMrqRkFSOCCPSgCaigHNFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFITigAJxWP4m8R6b4W0G51jVJWS2gXoo3M7H7qKOhYn16dTgAkS67r+k+HdNfUNYvobS0U7d0p+82D8qgcscAnABOBXz5Zr4m+Ofixjey3dp4Tt52b92uEiAHCjs0pB5JzjeSBjC0ARz3ni/47a/a28dq+n+HraXLMoYwwkY3FnwPMlwwAUYwD0UFmr6B8MeGNL8JaHDpOkW/lW8fLMx+eVyOXc92P8gAMAACfRdD03w/pcWnaTaJa2cXKRqSee5JOST7kmtIDAxQAAYpaKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQnFBbBrJ8R+IdM8MaPNqmqTrFDEpKqWUPKwBYIgYjc5wcD+VAFjVtVsdG0y41HUrmO3srdd8ssnQD+pPAAHJJwMnivnK5v8AxN8evFH9nW5Ww0SyPmkEMUiUtgO/9+UjIAyBwcY+YmTULnxN8dvFIttPjksvDVpIAWl+7GMH944Bw8pGcKvQHGcZY9t8SLjTfhX8Pl0/wvHFpmoaiVt1nhQCd0QEu7PwSRuxuPIL8Y6gA8r1Pw9FqvxA0/4d6FO8mn2Vy0LTsqh2kODcytkLkqE2gdMQjGScn6J8S6XY6J8Ktd03TbaO2s7bSLpIok6KPKY/Ukkkknkkknk1y/wR8DHw34YbU9S0/wAjWL9zuMyFZooRgCMg/dyQXOMdVznaMdp46GPh54lH/UKuv/RTUAfINpZ3elaFpfiqweVZo9TkhWTygyQyRLDJGeQQWJduD12fWvszQdROt+H9M1byhD9ttI7jy9+7y96BtucDOM4zgV88+ENJXV/2b/FMflo0tvqD3MbMgYoUjhYkeh2hhn0J7E16H+z/AKw1/wDDs2MnlhtOu5IUCg7ijYky2T13O44xwBxQB0Pj74a6R47tVNx/oupRKVgvo1yygnO1lyN65zwemTgjJz474b+IGv8Awk1YeDvEFlDNp1vcEmRWYukbkHfG3Rk5L7SoJJIJHQfSx5rnfFvg3SPGOltY6rbxuwV/InC/vIGYfeUjnqASOhxyDQBu29xDcW0U9vLHNBKoeKSJgyupGQQRwQRyDUoIIyK+b/CHiLxB8HvESaF4vjuP7AnLJFKrGSKM7s+bFxyvzZZBggPnGeD9DabqVlq2nQ3+n3UV3aTjMc0LblbnB5HoQQfQg0AW6KQEEZHSloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqep6haaTp1zqN/OILS2iaSaRgSFUDJ4HJ+g69KtlgOtfOvxG8XXvxM8X23gfwpeRtp7MVlkLBI7iRNzMxcE7olVcjA5IJw2EoAq6hqmtfHfxbb6Zp9tNZeH7F/Mld2zsQn/AFj/AMPmEAhUGcZbnaGI+hdH0iy0PSLXS9NhWC0tU8uNFGPxPqScknuSSetUfCPhaw8I+HrbSrGOPMajz5lTaZ5cfNI3JOSecEnAwBwBW6OnNACjpRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSEgdaCcVzvi7xponguxiu9YujGZWKwwou6SUjrtX0HcnAGRnkjIBZ8T+JtM8KaHNq2rzGK2j4CKMvK/ZEH8TH8uCSQASPA9NtvEnx18UyXOo3FxY+FraRd0Ucv7uMhThEBGHlIYkuRwG7Aqph0fw94o+NHiebVdYmvrXw55zSoZGJRIySojgyArMAu0sBgY3NknDfRumabZ6Pplvp2n24t7O3jEcUSZwqj3OTnvk8k8nJoAp6Roeh+DdEa106CDTtOh3zyFnO3plnd2JJ4HVicAY6CvA/CNlc/GP4q3PiDVY86VYGN2hLBlCg/uodjbshtrFgBj7/QsK2vjZr+oeIPEFj4D8PG4uJy269tYQQJXIVo1YkD5VXLE52jOTgrkeu+DvC9p4S8L2WkWsUKmOMG4eMEedNgb5Dnk5I79BgDAAoA3k+7WD47/AOSe+Jf+wVdf+imrfAwKwPHf/JPfEv8A2Crr/wBFNQB5r8AbG31P4XaxYXaeZbXOoTwyx7iNyNBErDIIIyCeazvgJcSaJ4p8U+Ebtt9zA+8NDzEDE5jkIJwedyY46A5weDtfs5An4eX+D/zFZP8A0VDXNePJpPAvx/03xJJcD7HfiJpyyEiOPAhkGFOWIVd446kcHHIB9CqcjPagjNC4xxS0Acj4/wDAln480JNOubl7SWKbzoLiNAxVsEYIPVfmyQCMkDmvI/AXi/VPhn4lX4f+IrGJraS9Cx3Mbf6vzMAOCeGjJwecEAtnkbR9EmuM+I/gO08beGbi2EVsmqxrvs7uROY2BztJHO1hkHqBndgkCgDsgeOadXh3wm8c6hpWr3HgbxncywajDIIrI3fL7jnMRkzyDlSmchs4BwVFe4L93t+FAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhOKCcVz3jfxVa+DfC13rFzhmQCOGLcAZZW4VQCRn1IHO0Me1AHA/Gv4iXOg29t4e0C6kj1i75laFcvFEwKgKccOxPGPmAGeMqa2fhH8P7Pwl4Zt7+W3P9tX8KvcySqQ8IOCIQCAVxxuHUsOegA4X4JeDZfEGrXfj3X4luHe4d7XzU275y255gu0KQGJC44DBuAVBr6AAwKAADFLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSFgDjvQTg4rkPH3xB0rwHpS3N4jXN1KdsFpE6h2O1iGOTkJkAFgDgkcGgC1428Z6f4J8Py6rejzZB8lvbBgrTyHooJ7dyecAE4JwD4p4R8J6z8ZfEb+K/FbeVpEf7qNIgU87af9XHzkRgk5bJOcgHOSrfB3g/Wvi74mbxZ4rZhpAfaEGU84KT+6iHaMHq3UnOCWLMPoy3tobe2it7eJIoIkCRxKoCooGAoA6ADt7UARWFjb6bYW1lZx+XbW8KQRRlidqKAAMnJPAHXn61zvxF8WL4Q8G3upRT26320LaRykEyOWA+VSRuxnJxngV1bcdT+dfNmsNc/GT4yf2VBKBounblMkMwI8hGAeVeSCzsVAZR02ZGFJoA6P4B+E2mW98ZatDPJqE8rR2010CSwYAvKpYZJYsRvBOfmHrn3IAgc1HbQRWttFbwRRxQxKEjjjUKqKBgAAcAAdhUtABWF40gmuvA3iC2t4pJp5tNuY4441LM7GJgAAOSSeK3axvFv2z/hD9b/s/wA/7b/Z8/2cW4PmeZ5bbdmOd2cYx3oA85/Zx/5J7qH/AGFZP/RUNZH7SWjs9homtqUCxSvaSAsdzFxvTAxjA2SZ6Hkde2x+znx8PtQ6/wDIVk6/9coq7X4i6BceKPAWraPaNi5niDQrgHe6MJFTkgDcVAyTxnPagDS8Lamda8KaTqjlTJd2kUz7SDhmUFhx3ByO3ToOla9eSfs++IE1HwJLpLtGJtLuGUKqkHypCXVmJ4JLGQcdlHHc+tA5FAC0hBzkGlooA8c+Nvw2/t3TW8R6RaRHVbVd12F4a4hUdh0Z1x9SOMnCrXQ/Cf4gxeNfDiw3UxbW7JQt4rKF3+ki44IOOQMYOeACCfQGXd9K+c/H2j3nwx+Kln43tU+0abeXrzMgDEozD98jEjAL75CvPrx8tAH0cDmis7Q9ZtNf0Ky1axffbXcQlXkErnqrYJAYHIIycEEdq0Ac0ALRRRQAUUUUAFFFFABRRRQAUUUhOKAEJAb3xxXzb4z1C++LHxTj8OaLdPc6FaPGHe3kzGFBAluMHAYjeVBGcgDbndz6Z8afF03hbwOy2F2bfUr+QW8LIwEiJ1kdc88Abdw6F1PBwag+B/hEeH/AyajKhW+1gLcSfMDiHnyhwSD8rFs4B+fB6UAekWVpb2FlBZ2sax28CLFGi9FVQAB+AAqekGQOaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkJAOM0FgOv1rz/wCJvxOtfAEFrFHbJfandbituZtnlxgH943BON2ABxuw3Py0AW/iH8Q9N8E6LM7TwPrDxbrSxc5ZyTgMwHRAcknIztIBzXmXw98Bap8QNTPi7x8bu5tyq/ZIZxsFwDkhsDG2IZyFUAMTnp95vw++HN9491p/Hvixh9murk3ENkwLi4AbgMGJxEMBVU5yF7LjP0Jt9/xoAjjhSONY40VI1G1UAwFA4wB6VJnHB/OgccVmeIdZtvD3h/UNYuyohtIGlILhd5A4QE8ZY4UepIFAHmHx98ZyaPoUGgafeGG8vwTcoo5NsQykcjgMe4IPykdCa6b4U+DY/CXgy2WezFvq12vmXxJ+YnLFQeSBtVscY79zXmHwf0afxz491PxtrqNI1tP5sYZS0bTMDhRvB4jXaQM5X5PSvojovIx9aAOR1b4p+DdA1SfS9T1dre9tyBLEbSZiCQCOQhB4I5zXU2OoW2pafa31nJ5ttdRLNDJtI3Iw3A4PI4PQ818wfH/VIr74i/Y442B060jhkZkXl2zJwRyRtdRz3DcdSfW/CHjFNK+A1h4i1GOIixsmhWNNyiQxuYYlz82C21ATjALZ4FAHRa/8SfCXhfUv7O1jVvs135Yk8sW8snynODlVI7Va03xbo3iXw9fapomqwG1t98b3dxE6xQuqBiXDbMqAQTyBjuK+Pr7Up/FvjGW/vZGWTUb0M53lvLDMAFBPZRgD0AFfYHiqKzsvh9rcP2fbZQ6XOnkQMIsRrE3yJwQny8A4IHHB6UAcH+znn/hX1/kYP9qyf+ioq9cYZ4ryL9nL/knt/wAf8xWT/wBFRV66wJ70AfOXwduf+Ef+MWv+H2l2QSm4t1hRvkaSKT5Tzzwokxj1/Gvo5fu14J4+gbwf8f8Aw74nDJHa6m0aTT3LqI0OBBLjBBULGyNk8ZJ7Age9qMCgBaKKKACsjxRoMPibw1qGjXDBUu4GjDlN3lt1V8ZGdrAHGe1a9IRn39jQB8+fCHW5fAnjLVfAniGVITLOv2ZgSUNxwoC/LnEilCCxGNgGMtX0GvSvFPj/AOC7rU9LtvEljFJPLYIYrpEQFvJ5bzM9cKc5GDw5PAUmvQvh94vt/GfhG11OJnNwuILtWTbtnVV3gY4IOQQR2I6EEAA6qikByOmKWgAooooAKKKKACiiigAprDJp2ea84+MnjdPCfhCS2tbmSHV9RRorQxjBRcje+7jbhTgEc5IwOCQAebWEyfFz46F7omTRdMBkhgGx0aGJgBnIwyu5BIwThtucDI+jlxjj1rzn4NeCofDHgm3vWGdR1aOO5uH3EgJgmNACBjCtz/tE8kAV6OM45oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQsF60E4ryj4r/ABWTw5CujeHLhJ9flYB9iiQWw6YI5HmE8BME4yTjjIBo/Ev4q6b4KtprC2LXGvSQboYVHyw7shXc+3J2jJOOcA5rk/hX8K9QfU5PFXja3NxcyqHtre9cyybz1klB/iAwAGyRkkgECpPh18I7m9li8VeOpLq61SRkmhtbmVmZduNrTE8luBhM4AGGzkqvtwGKAGwxrDEsaIiIgCoiDAUDgAU+ikLAYz3oARjj09s+tfPPxT1XUPH3xKsvAejXKC2gk2SlJso0mN0jON2D5aqeOoIYck4r0n4ueNJvBvg9rjT7qKHVLmRYrTcAzDnLuFIOQBxzwCwz1AON8DfBSaH4U/tm7tJINU1HcD5ybXjiDEKACoKg43eh+U+mAD0rStJstE0y303TbZLWyt0CRRRjhR1PXqSeSTySSScmp7qeG0tpJ7iVIoYkMkkkjBVVRySSegA7niphxXEfFjXbPRvh9rEU97bw3N5aSQwQyON827CsFXqeH5x0zk4oA8D8SXQ1zwN4g8UhpXTUvFaLEZ3JkWNIZWRTyQMLIAACcYx0ArX8I3C/EDw54W+HFv8Aara3s5J7zVrhYxkoHZkEZ3dzJg7l4baQDjBt+Ko7Kf8AZt8OLo0z3cNnexteP9428rJKZFfgbQHkAGezJycgl+naZp/w3+DGoalqscf/AAkHiW0e2t7eTCyLE424GMnAVhI3TnYpwcUAYHww0XTte+NIk063zo9lcTX0MbuylYkY+TyTkkM0ZwTzg5z0r6X8Rx2MnhfVYtSmeDT2spluZYwS0cRQ7mGATkDJ6V4p+zkNIjbWZZL22/teZkjS2dAsiwqCxZWPUMTyB08tSeoro/j94rm0bwtb6LZ3Hlz6o7Cba3zeQuNw+jEgHPUBhyCcAC/s5/8AJPb/AB/0FZP/AEVFXr1eQ/s6c/D6/wD+wrJ/6Kir16gDyX9oTS0vPAEV/wCUplsbtG8zy8sqNlSN38IJKZ9SorsPhvri+Ifh7ot95ssswtlhuGmbdIZY/kcscknLKTk8kEE9an8eaEfEvgnWNJSNpZ5rVjBGrhS0q4eMZPAG9Vznj6V5/wDs66tDceCb7TPNBuLO9LlAhG2ORQVJPQ5ZZO+ePpQB7HRRRQAUUUUARzIkqNHIodGUqysMgg+1fOfgeS5+GfxouPDeoyTQ6bqDmG3XDmKTew8lwM9SQE3fNg7hngkfR5Ga8e/aA8L2974STxAkY+26fIiPIAMvC7Bdp9cMVI64y3HJNAHsK9KWuR+GvipvF3gXT9TnZWvQvkXWCP8AWpwWOAANww2AMDdjtXXUAFFFFABRRRQAUUUUANY849uK+dPG6D4o/G2z8PWBmNjp4+z3cqgjYEYmZgdpwf4ASNpbHY5PtPj7W5fDngXWdVgkEc8FsfJcgHbIxCoeQQcMw4I56V5T+zjoifY9a12SNS7yJZxPjlQAHcDB77o+38IoA92hRIoljiVVjQBVVRgAdgPapKRelLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFISBQTg4wa8Y+J3xVuk1FfCHgsvPrMkoinuIRkwtu/1Ser8fMeijI652gFz4pfGK38MI+k+H3hu9YdGDzpIrpZkEg7gM5cYPynGOCcjgx/Cb4SzeG7qPxNrs/m6tLDmK3AP+jFx8xYnkvg7T2HzfeyCJvhf8HbLw1bQ6tr1vFda2zLKkbfNHZkcgAdGcHktzggbehLesgYoAFBA5paKKACobqeG1t5J7maOGCNC8kkjBVVRySSeAAKlLAEA9T0rwr49eKbq8u7DwPpDRzTXTo11FGd0hcsPKiPYZPzY6/dPA6gHP+FrKf4xfFu88QX6H+xtPkSTyXwR5YJ8mEoxbhtpZwPlPz9Nwr6UX7tc/wCCfDVt4V8JWGlW9vFC6RK1yUHMk5A3uxyckkepwAAOAK6EDAoAWqWp6Rp2swLBqen2l9Arb1iuoVlUNgjIDAjOCefc+tXaKAKMOj6db6WdLgsLWLTijRm0jhVYirZ3DYOMHJyO+TRqOj6drEIg1OwtL2BXDrHcwrIoYAgHDA84JGfc+tXqQkCgDItNJ0Tw1BdT2Gm2Onxld85tLdYy6qCRnaBnGWx1xzXz3oOlzfG34ha5qmoStbWMNsywptZxDuVkhA+YAEHMhwcMwbjDHHefHTxwdK0aPwtprO2p6qg8wLGTttzuUgHP3nYbeh43dMqa6v4ZeCovBfhC2tpLdE1SdBLfyADcznkISCchAdowcEgtjLHIByv7OX/JPtQ/7C0n/oqKvX68g/Zy/wCSe6h/2FZP/RUVev0ANYc84xXz/wCEZE8C/tB6xokrCCx1RmW3SM+VCC5EsQweDgFoxju2B1xX0CRmvnX43W8uh/FTw74gCiG3kSJ/PyGzJDLlvlOeimPtg+/NAH0UOlLTVIIOPWnUAFFFFABVXULG31PT7mwu4/NtrmJ4Zo8kbkYEMMjkZBPIIq1SMM0AfPXwn1KX4ffEPU/AmtO3+lTKLeXzl8pZApKkKTgeapTp82Qiken0In3eK+ffjvpkug+MtA8YW6yvllV9qkKkkTB0y/IBZScDH/LMnnkV77ZXUF9ZQXdrKstvOiyRSKchlYZBH1BFAE9FFFABRRRQAUmcUtNbrQB4p+0R4nms9FsPD1rLHjUCZrtQQXEaFSnHUAtk545jwD1FeoeD/DUPhHwrYaHBcPcLaqwMzgKXZmLscDoMscDnAxyeteH6tPJ4l/aes7eQmWCwuI0hVgo2CFDKRlRzhw555PQ+lfRi9KAAUtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFITigBaQnFJuFeBfEn4k33i7WE8EeB2e4S4fybi5tzg3B/iRG7RgAln6EZ6KDuAL3xR+LzGSPw34Julury6AjlvLMeYVL42pCyk5c8gkZxkAHdnb0Pws+E1p4OtYdW1FfO1+WHDbyCtpuHzKmON2Dgtk9DjAJzP8MvhRb+BVlvru7S+1edQrSqmEgGPmVD1OWzljjIA4HOfSAMDAoAFGB+NLRRQAUE4oprdetAHM+PvFcfg/wdfawBFJcIojtopDxLKxwoxkbgOWIHOFPpXl/wB8KSXct9431RpZrmaR4LZ7hdxYnBkm3MMsSfk3A/89AevGLqdxcfF74zx6XCyz+H9NkBkjjnPlyQxuBJJw2CzFtoZedpX0Jr6NtoIba2jt7eKOGCJQkcUahVRQMAADgADoKAJAMZ5zS0UUAFFFFABVXUb2303T7m/u5PLtbWJp5nwTtRRuY4HJ4Bq0TivGPj94kT+yLPwfZLPNqmoyxytDHGxzFuYKox1ZpFGAAfunp8uQDlfCdm/wAXfi/feI7oNHpOmypMiCNcsqt+4jYEn7wVmY8jgjjK4+jx0Ncd8MPCM/g3wRbaZeeT9tZ3mufKO5d7HjnAzhQoPXkdcYrscYB+lAHkX7OP/JPdQ/7Csn/oqKvX68g/Zx/5J7qH/YVk/wDRUVev0AFeUftAaN/aHw9XUFS3Emm3SStI4+cRv+7Kqcd2aMkcZ2+oFer1na7YjU9B1GwKhxdWskG0nAO5SuP1oAwPhZqY1X4Y+H7jyfJ2Wot9u7dnyiYs599mcds45xmuwrwH9m/VpSmu6O8h8lTHdRIFGFJyrknrziPjpwele+r09PagBaKKKACiiigDkfib4fj8SfD/AFazaMNNHCbm3baCVljG4YJ+7nBUn0Y1x37Pnie41jwneaReTzzzaXKgiaTGFgdfkQHqcFH69AVAOBgetzRrKjRuqsjqVKsMggjuO4r5y+BYfw/8Udb8PXk9v5qwywHa/EssUijCZxnje3TOAT2NAH0jRSL0paACiiigAqG5nhtoZJ7iRI4YkLySSEKqKBkkk8YxU1cF8YteXQPhrqjbo/Ovk+wwrIpIYyAhunQiPewJOMgdehAPNfgLYS6/408QeLb8RvcITjMOQZZmLM6tn5SApGB2kPbg/QqjArzX4EabDZfCyzuI2cvfXE1xIGwQrBzF8vHTEa+vJNeljigBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopCcUALnmoppUijaSR1SNBudmbaFA7k9hSXNzDa28txcTRwwwoXkklYKqADJJJ4AA5zXzv408Zan8Xdfg8I+EI5/7NDlpnkJRZgG/wBZJ3WJeCAeSSPl3bQACz8RfiTq3i7WLjwP4OtzcRSyG3kubZyzXQwNyrwAqA7wzZIKjOQuc+k/DX4aWHgPSgzeVcazOgW7u1BIxnPlx55Cg4z03EZIHAXS8C+BdN8C6EtjZKJLqQBru7YfPPJ6+yjJ2r2z3JJPUgYFAAowMZpaKKACiijPNACFsHHP4V5F8ePGkuheH4dEsLmJLzUw63CfKzi2KlW4IO3cWwG4+62Oeno/iXX7Lwx4fvNZvy4t7aPcQi5ZmJCqoHqWIGTxzzxXgfwm0G5+IHj/AFHxrrwkZbS4W4jALhGuM5RQTn5IwB8u7I+TqMggHqHwh8FReE/B0M0ltLDq2oIkt75uQwxuKJsJ+XaHII4OSc9gPQlBAOfWkQYX0p1ABRRRQAUUUhYL1oAiubiG1gkuLiVIYIUMkkkjbVRQMkkngADJr5x+FGnXPjj4raj4s1CJ5rW1kedZZwGAmY4iXBJwVXJGMhdi9Plro/2hvGBs9NtvClsGWS8Vbq6fAx5Ssdi9Opdc5BGNg6hjXpXgLwtD4R8H2GlxoomVPMumwuXmblySOuD8ozk4VRk4oA6Yd6D3+lKKQ9/pQB5D+zj/AMk91D/sKyf+ioq9fryD9nH/AJJ7qH/YVk/9FRV6/QAU1hk8elOpCM0AfO/hyJPBH7SV7pUYt47LUTJGhaPykRJVEyJGM4GHVIx2OMAA4x9EKcjNeD/tB2jaZqvhnxNYbItQgdoxMeTlCJIsKcqQpL9ucjrXtei6kms6Fp+qxxtGl7bR3KoxyVDqGAP0zQBeooooAKKKKAEYE9DXzN8YE1HwZ8YbXxPZPJvuFiuoXKMibowI2iLAjcCqgsAQcSYPXJ+mq8S/aS08S+HdF1HC5gu2t85Of3iFvpj91/L1NAHta8g806ub8AahJqvw/wBBvZpJJJpLKISSSPvZ3ChWYnuSQSc8810lABRRRQAV4l+0jc7PD2iW3m4El28hjz97amM/hv8A1r22vn39paeFrnw1As0ZnjS5do9wLKrGIKSOuCVbB/2T6UAesfDS2e1+Gnh2NypJsY5Bt9GG4fjg/wD6+tdVVDRNNTRtC0/S43aSOyto7dXYYLBFCgn8qv0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSE4oACcVU1HU7LSdPmv9QuorW1hGZJpmCqvOByfUkADvkVJd3dvZ2k95cyrFbwRtJK7dFUDJJ+gFfOWqa7rfx28S2+g6XANP0W0ka4eWU7mVPuiRwDgtg/Ki92IyQNwAJ/FPjPxN8WNafw34Qtpk0MS+TNcANtlBJxJK+Mxx4UkL1ODnccAeyeBvAml+BdGFlp4824lwbu7cYedxnBx/CBkgKOgPUnJNjwj4P0rwdosVhpcEYcKBPclAJZ2BJy7AZbBY4B6A4FdCowKAADFBIHU0E4rzj4r/ABNHgWyt7SxiS41e9VjErOMQION7KOTk8KOAcNz8uCAd/dahZ2Pki7uYbczyiGHzZAnmSHOEXPVjg4A9Kn3CvE9K+C8vi3T4dc8da7q0+rXcYl8qNlT7OrEt5eHQ4wWOVAUKcgA9azfh74nv/BvxMuPh7dXr3+km4eC2knJDwMF3Lt6/K2ANvTJyMchgD38HIzSMf/rfWhSMVw3xV8bnwX4RkuLWSMandEwWisRuBxzIFIOduR1GMkA9RkA8t+LOuXvj3x/ZeB9FdZba2n2yCMEkz87y2SB8ihuB/tc+nvPh/QrPw5oVnpGnqy2tpH5abjlm5JLHtkkknAHJNeZfAfwPFpHh5fFFyko1LUoykavlRHb7hjCnruKht3PG3GOc+wKMDmgBQMUUUUAFFFFABWdreq2+haPd6reFvs9pC0rhBlmwM4UEgEnoK0CwBANeH/HTxXcX91ZfD/RwJbu+kiN0oZOSzDyosk/KSwVjnHG3nBNAGB8HNEv/ABt46u/Guvv9q+xMCJXRcS3G0BeAu3CKM8YwfLIr6PUYFc/4M8J2ngzwxa6NZt5nlZeacxhGmkJyzED8AM5IUAZOM10AoAWkPf6UtIe/0oA8h/Zx/wCSe6h/2FZP/RUVev15B+zj/wAk91D/ALCsn/oqKvX6ACiiigDzf44aAmtfDe8nSGSS601lu4vLAztB2yZyPu7GZjjuoPao/gRfC5+FtnDuQ/ZbiaH5TkjLl+ff5/yxXoWoWNtqen3NheR+ZbXULwypkjcjAqwyORwT0rxT4GXj6J4p8VeCJLiSdbOd5YXESqhMb+VIx53At+7wMkDB/EA91opqHK5FOoAKKKKACuD+Mmltqvwv1hYrWOee2RLqMsBmMI4Z3BPQiMP05IJA613lZ+t6aus6JqGlyO0cd5bSW7OoyVDqVyPpmgDkPgvqaal8LNJAkRpbXzLaVV/gKucA++0ofxrv68V/Zv1GF/C+s6UFfz7a9Fw7cbSsiBVAOeuYmzxjkde3tVABRRRQAZr51+Jd7a6n+0L4bswu8WstjbXCuowSZ/Mx7jbIv519EkZ+lfOupadDqn7WCW87OqpcQ3AKHndFarIo+hKDPtmgD6KHIzS0i5A560tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSFgOtAATg9DWV4h8RaZ4Y0WbVtVuPItIsAsFLFiTgBQOST/8AX6CptY1jTtD06XUNVu4rW0hGXklOB9B3YnnAGSemK+eLW68RfHXxelndyT2fhi1laZlhjwsaj7oJ6NKQcc5xlmC4yCAF6vi344+IruTSnnsvDMTrCq3M7LCMZIJUZDynJOADtyoJxg1734X8K6T4T0eLTtItVhjQYeQgeZM3952x8xPr0HQADAqbw/4d03wzosWk6VB5NpFnALFmYk5ZmJ6kkn+XQCtUDAxQAAEDk5NLRRQAxwSe2MYr5X1tJ/G/7Qslp5D7P7UW2eLzQcQwHEjDdxysbvj1OOe/1Q55x19q+bfh5pEGl/tB39lqc9+LmCW8aya5yZLp/mAZzt5zEZH3cAnBHXBAPpLOB7/lXyr4XvB4k/aHiv7SUTwz6rNNDIQV3RKHZTg8/cX0r3j4m+MU8F+Drq9jmVNRnBhsVJ5Mp/iGQR8oy3IwcBcjcK84+EWg23gbwbf/ABF1yV40mtSsMKqQyxbx2bALSOq7e2MHPzcAHutxPDbW0lxcTxxQRIZJJZGCqigcsSeAMc5r5y0Frj4yfGB7/UEd9B0smWOMwjyxCr5jjcHIy/VgSSQGAwAAMHxx8Zta8ZaZc6Qtha2Gl3DoxjXMkrBcHaXOARuAbhQeAM4zn6G+Hvhiw8L+DrC109cGeNbm4csT5kzIu5sEnaPlHA44/MA6mONYo1jRVVFACqowAPQCn0gGBS0AFFFFABRRSFscd6AMrxJr9j4X0G71nUWcWtqoZ/LTczEkAKB6kkDnjnkgZrx34S6Fc+LvG+qfEPV7N0geVzp6y8jeTjKnjcI1GzO3BJ7FeLPx41a61W50bwToryT317L5lxaxNjcMgRB+2CdzcnA2gnsa9U8M6Db+F/DNhosDrIlpCELhAokbqzbRnG5iTjJ696ANlPu06vK9R+PnhfStSubC50zXVmt5CjbrVI8477XdWAPBAIB5HFelaZfpqmlWmoRxSxJdQpMscy7XQMoYBhzgjPPPWgC1SHv9KWkPf6UAeQ/s4/8AJPdQ/wCwrJ/6Kir1+vIP2cf+Se6h/wBhWT/0VFXr9ABRRRQA1u/pjpXzz4yu5fCn7SGnaqDtS9+zeaZDlTG48hjgegUkZz8wB9BX0ORzXhv7Q+ix20Gi+K7eTy76CcWh+XO8YaRDycDaVbtzv5PAoA9yXpS1Q0TVbbXNEstVsyxt7uFZo92NwDDOGwSNw6EdiDV+gAooooAKawyadSGgDwn4IG00P4h+NvDEPnuY5T5Mj4OY4JnjO48fMfMXoMcHpxXu9eAfC4EftCeNcg8i+7et0le/A5oAWiiigANfP/8Azd3/AJ/58a+gDXz/AP8AN3f+f+fGgD6AooooAKKKKACiiigAooooAKKKKACiiigAoopCQDigALYOMGsfxL4k0zwvo02q6pcLFBEDtXIDyvgkIgJG5jjpn64ANReKvFujeENJbUdXuRHHgiONRukmbGdqL3J98AdyBzXg1lD4t+OXiJLi/wDPtPCkN2Q6QOpS32qWCgEgvIQQNxBxvJAA+WgAmg134/eKWmgEel6Hpsflo8h8zZu68DG6RsZOMABQM9N30PpGj2eh6Pa6Xp8SxWltGI40HHHcnHUk5JPcknvUeh+H9L8Oaetho9lFaWqkkog5ZuBuZjyxwBySTwPStQUAIAR/SloooAKKKKAEZd3HauC8c/CvTvGN9b6tDfXGl63bhRFewc/dYEFlBBJHOCrKRkZzgAd9RQB5PpPwStxrkeq+K/Ed74klgCiGO6BCbRk7X3M5ZckHbkDrkEEitb40S2qfCrWIrq5jgM3lLFu6yOJFcIB3JC9uwJ6A49Ab7w6V83+K9Tvfix8VoPDFhdPN4dtZ1Ja1ICbAB5sxblSeSqk5HK4A3HIB4tg8cf8A18V9xeEzbDwdoYtM/ZvsFv5Oc/c8tdvXnpjrzWdr/gPQ9b8Hv4Z+xQ21mik2giQgW8uGxIACMkFiTzzk5zk15l8DvFM2l6lf+AdXdVntpZBZ4HG5SfNj3Z9QWAx/fyegoA93opqHI/GnUAFFFFABVHWL9NJ0e91KUZjtLd52HqqKWI/T/wDXV6ue8ef8k+8S/wDYKuv/AEU1AHjXwC02bWvFeu+LtRTzp1JVJmhAUzSsWkZTjCsBwQuOJPQ19BDOBk8/TFeR/s5jPw/vzn/mKyf+ioq9C8ZanJongzWtSgmMNxb2UrwSbd22TadhwQQfm29RigD51Y23j79oseULY2cmojgkTRTxW6c9sESLEeOnz45619Tr06187/s36Ssup65rL+YHihjtY+RsYOSz5GM5GxMfU9e30QoIGDQAtIe/0paxPFPirSfB+jSapq87RwL8iKi7nkcgkIo9Tg9cD1IHNAHnX7ORA+HuoZ/6Csn/AKKirrPG/wATtD8BXFnBqcN9PLdKzqtpGrbQpAy25l6nPTPQ5xxnyr9nzxbpOny3Xhq6gEOoX0/nQXWB++woHlE4yMYYjPB3N0ON1r9pO9GPD1iuxnzPMwMY3AfIFw5GQD83AIzgZHAwAeieEfi14d8Z3F9b2EOpQzWlublo5rbczxg4YoIyxJBKjHU7hgHnHOf8NG+EMZ/s7XP+/EP/AMdrr/hroFv4f+H2i2sEflyS26XNwWC7mmkUM2SAM4ztHfaqjJxXgngW2t/HXx0l1E2Rm003VxqLxybU2ICTGWAOCd7R5Azk5zkZoA+predLm3jnjEgSRA6iSNkYAjPKsAVPsQCO9c38RtHGu/D3XLA7yzWrSxhGAzJH+8QHPGCyKD7Ht1rp1xjjpTJo0ljaORVZGUhgwyCDxgjv9KAPK/gB4ittS8Af2QqlLnSZWWQZJ3JIzSK/QAZJdcZJ+TPcV6wDmvnj4CpNoXj7xP4cuXBmhiYSGPlC0MmwkE4PVzjjoTX0MpyKAFooooAKQ57elLSZoA+cdGwP2q5VwP8Aj7uf/Sd6+jlGM/qfWvnHRv8Ak62Q/wDT3c/+k719HDmgBaKKKAEJwcc14Bc/6F+1nDcXf7iGfb5Ly/KJN1p5Y2k9cuCox34r38jPevAfiiMftB+DP+3H/wBKnoA9+U5GaWkU5FLQAUUUUAFFFFABRRRQAUUUUAFFFJkZx3oAM8471i+K/E2neEvD9xq+pTKkUQxHGThppMHbGo7k4/AAk8A1T8Z+ONF8D6bDfas8rGV9kNvAA0sh7lVJHAHUkjGR3IB8V03wx4h+NfiWPxRqzxWfh4TmNYRMWZI1x+7Qep6FjjkkgcBaAI9C0rWvjv4ln1TXrmaz0SwAjiS3Q7FJwTHGWyNxGCznJ+7xgrt+iNN0yz0rTbfT9PhWC0tkEcUS9FUDjryfrnJPJqSzsbexto7a0git7eMbUhhQIijPZRwPwqwBgUAKKKKKACiiigAooooAKQkDrS1T1S/g0rS7vUrksLezgeeUquTsVSxwO5wDQBwHxn8cXHhDwrHDYYW+1Pfbo5Yq0SbfndcEHcNy4PYnPtUXwU8EW3h3wfb6xNAh1XVIhK83UpCeUQHsCMMfUnBztGPOfAVjcfFz4o33iLXVE2m2JEn2WZvMVVJbyYQBjKjBYnaQxQ7h85r6UXpQAbTz0rw/4x+HZfDGuWXxJ0Wdkv4bmJLiEk7ZMKQGLbgcFVWMoPvA/Un3Ks3XtHs/EGi3mkagm61u4mifABZc9GXIIDA8g44IBoApeDfFNr4x8L2et20TQi4Vg8LMGMbqSrLkdeRkHAyCDgZxW+Dmvnz4daxefDT4hXfgDWrgvYXM4FnMIesz7RG3ByFdcAj5trY5HzGvoJfuigBaKKKACsPxnKIPBGvzNGsgj024co/RsRscGtysHxqjP4I15VjMrHTbnEXJ3/um4wvPPTigDzn9nK4T/hBdShIcOupM5JjYLhoo8YbGCflOQDkcE4yMz/HjxhY6d4Tm8NpKx1PUBE3lgspSHeSX3Y2kExlduc/Nnp1zP2b7jf4f1u2N7v8ALuo5PsnlY8rcuPM3/wAW/bjb28vP8VezXGn2d7t+1WkE4XO3zYw2PpkUAeO/s3z2T+F9ZgjbN8l6rzLg8RMgEfPTqsnTnj6V7WPf1qvb2FtZqy21vDAG+8IkCbvrgVZAxQAVwfxb8H33jTwZ9i02SMXttcLdxRycCYqrLs3fwkhzgnjIAOM5HeU1hkHpQB8n/BPwvfa747h1GDy0stJcTXEjHk7gwVAvctg+wCnnOAdD48ajJrHxKg0izhnlls7eK3ESxgmSWQ7/AJMZLZDoPqDj1Ov8BdY0vw94e8XavqFy8cVt9mMwKcBf3gTac5ZixI24GMLyc8cb4T8T6VN8Yh4p8QOltYvdT3bCVWn8ssrmMDapJKsVwccbc8cUAei+NvA+veCvAl1rFt8QfEM0lksS+V9pkRGy6x8AP8oG7IHPTFN/Zw0BTb6x4jkSMszixgIZtygYeQFemDmLB5Pynp3n+PvjLSn0RvCtvc+Zqi3cb3UXlsBHHsLj5iMEncnTPfpiui+AL2z/AAyQQSbpVvJhcDZt2vwcZ/i+Uoc++O1AHqAGBSMCcU6igDwDxqv/AAh37Q+h6/JxbagYvMmm+SGPKm3k+bp8ibXPpuBOAa9+XGMjHPpXif7SNgJPDuiajsyYbt4Mg4Pzruxjv/q69J+H+qf2z8P9BvjO88j2UaSyyPuZ5FG1yTk5O5W5oA6SiiigApDS0hPIoA8C+HRTUP2i/F01xBE724u/KJUEoVnSMEeh2kjPoSO5r30DGa+ffhNKtx8e/GFxGHCSpeuodCjYN1GeVYAqfYgEV9BCgBaKKKACvnn9oOK40fxj4b8S2l1suRCUiHlg+U8MnmK/OQcmToR/D3zgfQ1eG/tJxqdH0CbjctxKgGBnBVe+M9u3Hr0FAHt8TpJGskbh0YblZTkEHuDT65r4ezxXHw68OPE+9RpsEZI/vKgVh+BBH4V0tABRRRQAUUUUAFFFFABRRSFgCB60AGRnFct448eaT4G0Zr6+fzblwVtrNGw87/8AsqjuxHHuSAc34lfEnT/AmmBQFudYuIybW07Ac/vJO4QEexYggdCV8g+Hnw6v/iZqkvi3xVdXEljJcZfcCHvSOCFPAVBwuV6BSo24yAB/hPwb4g+LPij/AISPxhHeDSZIzsnUiINtxtjjUgkJ8x5AwcN8xbJr6K0rSrHRNMt9N0y2jtrO3XZHEg4A6n6kk5JPJJJNWYoUiRUjVUVRtCquAAOgH0qUcUAIOlLRRQAUUUUAFFFFABRRSE4oACQK+evjf4sv9a8TW3gXSpUa3d4RMIiS0lwzHCNtJyoyh24zu57CvWfiL4x/4QnwlPq8UCT3RdYLWORsKZG6Z7kAAkgdduMjqPNfgH4QkuGu/HGqlp7m4d47VpsOWycyTbjk7icrnIP385zQB6v4O8K2fg/wza6PZbXEQ3TTbNpnkP3nYep9CTgADPFb4GBihQQOaWgApCue9LRQB5N8avAS63ox8S6eZU1nSotwEbYEkKsWIGSNrLlnBHJ5GDkY3/hX47Pjjwp9pu2iGqWshhu0jAUZ6owXcSAV7nGWV8DArt5YlmRkkVWjddrqwyGHofb/ABr5ytYZfgV8Uo47iVrjw7qke37S8TFki3dyBy8ZxnGcq2cAsAAD6QBzRUVrPFc20c9vLHLDKoeOSNgyspGQQRwQRjBqWgArM8RRRzeG9UjlRXja0lDKwBBBQgjmtOs/Xv8AkX9S/wCvWX/0A0AeH/s0Hd/wk/QY+yf+1q9/AwK8A/Zm/wCZo/7dP/a1fQFABRRRQAUh7/SlpD3+lAHz5+zfbw3dv4ttriKOWCVbZJI5FDK6nzgQQeCCCRg17VY+EvDumXaXdhoGl2lzHnZNBZxo65BBwQM9CRXjP7M3XxR/26f+1q+gKAMrUfDOh6xcLcano2nXs6oEWW5tY5GCgkgAsDxkk49zVrTtMsdJtBa6dZW1nbglhFbRLGgJ6nCgCrdFABRRRQBy3xG0f+3vh7rmnhJ5JHtWkijgGXeSP94igYOcsoGAMnPFcb+z94hTUfAkukOyCfS7hlCKjA+VIS6sxPBJfzRx0CjjufWG6n6V87fDV08JfHrWPDlurrY3bzwQwxykogUmWMtnkkIrLk8/MecE5APoyikHSloAKq6hfW+mWFzf3koitbaJpppCCdqqCScDk8DoOatVx3xT1T+yfhl4guPJ87faG327iv8ArSIs59t+cd8YyM5oA8n/AGbLGCTVfEGotuM8EMMCHPG2RmZv1jWvogdK8g/Z208weA728e18qW51B9szR4MsaogGGx8yhvMHXAO7vmvXwMCgBaKKKACvKv2gdKe/+HIu4/KH9n3cc0hcfMUbMeFOP7zqe3A9QAfVayvE2nTax4X1fS7dkWa8spreNpCQoZ0KgnAPGTzgGgDlPgperd/CjRx9oWaSAywyAMCYyJW2qQOh2FDj0IPeu/ByK8K/Zv1pX0zWtDdoleGZLyMbvncOux8L6LsTkd3Gete6jpQAtFFFABRRRQAUUUhYDrmgAJArhPiX8SLHwHpQEey51m4X/RbQnoDn9446hAQfdiMDHJVPiT8S9P8AAWnoFVbrWJ0JtrTdjA/56SdwnB46sRgdCV8y8A/Cq98eyy+LvG8900d46ywx79j3S8fM3HyxkAKoXaccjACkgEHw5+Hmp+Ptfl8V+M0knsZVEsbO6g3UmQANoH+rCjGBt/hA4Br6LtreK2t44IIkhhiQJHGihQigAAADgADsKIbaK2t47e3ijigiQJHEihVRQMBQB0AHb2qUUAApaKKACiiigAooooAKKKKACmOBkcZNOJxXlfxt8e3HhbQ4tL0uSaHVNRU4njGDBEMbiG7Mc4GOnJyCBkA861K7uPjV8W4dIEpj0OxMqpLbDcTCp5l5xzIQgBxhdy8HBz9H6bp1npOnxWGn20VtawjbHFEuFUfT65J981w/wk8CQeD/AAqlwZGk1DVI4ri5YjGz5crGBkg7SzfN3zn0A9CUYGKAFooooAKKKKACuA+Lvgs+MvB8gtYg+q2JNxZnOC39+POCfmHQcZYJk4zXf01gT6UAeXfBTxemo+GV8M6i0kOt6Pvhkt5gwfyVIAJBUbdufL25JGwZ616kDmvnDx7ZN8MvjTp3ixFd9PvpmuW8tEDAnKzoBnk7X3AnGd+M5Bavou2uIbq2jubeWOWCVBJHJGwZXUjIII4II7igCWs/Xv8AkX9S/wCvWX/0A1oZzWfr3/Iv6l/16y/+gGgDw/8AZm/5mj/t0/8Aa1fQFfP/AOzN/wAzR/26f+1q+gKACiiigApD3+lLSHv9KAPAP2Zuvij/ALdP/a1fQFfP/wCzN18Uf9un/tavoCgAooooAKKKKAEIJNfOPj7Tx4O+Pmj647mOwv7iC5eaRGEcfzBJQGzyQBvPpvAxjr9H145+0RoL3/hKx1mISF9MuCsmHVVWKXCkkHknesQGPU5HcAHsKYCgDtTq5P4Z61Nr/wAOND1C53+e1v5UjSSF2doyYy5J7ts3fj1PWusBzQAV5L+0Lqctn8P4LOGcIb29jSVMAl41DP8Ahh1jPGD+Ga9ZzivB/wBoS5fVdV8MeGbALNfzu0nkH5SS7LHF8xIXBIcdeNvOB1APR/hRai0+F2gRLEYw1t5u05/jYvnn13Z/Guyqhommpo2hWGlxyNKllbR26yMMFgiBQT7nFX6ACiiigAprDmnUhGaAPnHwzLJ4R/aU1LT9kaw6hPNCQExsSUecm0A4HIQc5GM8en0cvIrwP41WTeF/H3hrxra27OgkQXCxR+WHeJwwDyDPLoSvIziPuOnu9rNDc20dxbzJPBKokjlRwyup5BBHBB60ATUUUUAFFFIWA60ABIBA9a4T4l/Eqw8CaUUUx3Gs3CE2toSenTe+OQoP0LEEDuVz/i38TW8C2cFlp0Ky6xeKWjMgykEYPLkdyTkKOnBJ6YblfhN8LtQk1eHxx4nkhlluF+12sD/O5lc7hLJ2Bx8wAycsD8pXFAEXw3+G154uvIfHfjSe4uZZ5TNDaTpjzgMbJG9EznEYABAX+Hg+9AYGKFG0YpaACiiigAooooAKKKKACiiigAoopCwBxQBna9q9poGiXmrX2821pEZXCLljjsASOT0HT614L8PdBl+K3jzU/GHiK2EulwS4gtpGBUvwY4iNoDIiHJ6biVJDZYVc+MHii/8AFniy2+HOhh1H2iNLqTedksjAMAQuT5aA7mJzyOg2ZPsvhXwvpnhDQYdJ0lGFvGSzSPgySOTyzkAZboM44AA6CgDaXpS0gGBzS0AFFFFABRRRQAUUUUAc3478Nr4t8H6jo48oTzRZt3lB2pIDlTkcjkYJHYng9K8y+BPiI6bNqfgXVpGi1G1uZXhhlcMBtOJI0O4g4YM2B6seeTXuBBPIrwL44aHe+GvEem+PNAM1tctIEubiJs7JFULGSCTwyAqRjacYOd3IB76vTrz3qhr3/Iv6l/16y/8AoBqHw3rUOv8AhrT9XhdGS7gSU7DkKxHzLwTgqcgjsQe9S66c+HtSI/59Zf8A0A0AeJfszqBH4mbepJNsNvOQB5vJ7YOf0Ne/Cvn/APZm5Higf9en/tavfx05oAWiiigApD3+lLSHv9KAPAP2Zuvij/t0/wDa1fQFfP8A+zN18Uf9un/tavoCgAooooAKKKKACud8daPNr/gjWdLtV33U9qwhTj5nHzKMkgDJUDJOBnNdFTW+8D6UAeL/ALOV6jeE9WsABvhvvOb5ucOij7vb/VnH/wBavaR0rwT4bovgz45eI/CYnjjs7tWNtBHlwSuJYl3EZBWJ5AcnGQRljjPvSHK5oAG+8B3rwGIf8Jv+0y7Nmex0MkhH/dmPyeBjGC2Lh8jOcjrxxXumqXiabpt3fyEeXbQPK25tq4UEnJ7dOvavCv2b9Fl83WtdeNRDhbOJ+CS3DyAc5GB5fbBz14oA9/X7vf8AGnU1TleetOoAKKKKACiikJxQBwXxl0aLWfhpqe+Nmls1F5EVDHaUPzEgHkbC456Zz2rN+BXiM6v8PIrKdpGuNLla2LvIXLRn5kOT0ADbAMnAQfQej3ltbX9pPZ3Uay288TRSo3RkYYIP1BrwD4eTT/Db4u6l4T1Frq303UXKWQm2kStv/cSbhj7yhl+X+IgEcfKAfQ4IPTt1paRcAcdKCcUABOOteYfFL4s2fg+3l0nTJPO16WIldoDLa5HDPnjdg5VcHsTwRmh8VPjDH4cX+yvDVzbXGr73juX2lxagAj1x5m7HB3AbSGHIFVfhb8LrlrseM/GSyz6vPJ58Ftcg7omzkSyA/wAfov8ACOeuAoBB8L/hCxLeJfGtqLu+usyRWd4N5XdndJMrA7nOfunOMkn5sbfb1GBQBiloAKKKKACiiigAooooAKKKKACiiigBCcVxnxK8dJ4D8MnUEgFxezv5FrCxwu/BJduclVAycd8DIzkdhM6RI0kjqiKCzMxwAB1J9q+cEa4+NvxYeN7gf8I1pbmSONwQGgBUELgK26UrnkgqCf7oBAOo+CHgKWKP/hOdYuPtOoX6ObZJPnZAzfNKzEE+Y2D0P3WOSSxC+1KMD/69Q2VpDYWUNnbRLFbwIsUUajAVFGAB9ABU9ABRRRQAUUUUAFFFFABRRRQAVQ1fSrHW9On03UrZLmzuE2SwuOGHXtyCDggjkEAgg1fpCM0AfO3wq1C9+H3xK1HwLq8qiC6kCxuz/Is2MxsPmwPMQgY+8T5Y4xivedc/5F7Uv+vWX/0A15h8dvCc97o9r4q0pJxqukuC0sBIdYASdwwN2UbDZBGAWP01vA3jY+NfhbeT3dxFJq1tbSw3qooU52ttfb/tLg5GASGwBjAAOJ/Zm/5mj/t0/wDa1fQFfP8A+zMMHxR/26f+1q+gKACiiigApCece1LTWz1FAHg37N1vNaXPi23uIpIZ4ntUkjkUqyMDMCCDyCDxive68E/ZunlurnxZcTyvLNK1q8kkjFmdiZiSSepNe90AFFFFABRRRQAUhGaWigD56+OUr6D8TfC3iMwtOsEcTiI/IHMM28jfzyd4HTjg85r6BhkjliWSJxJG4DKynIYHuCOoryT9ojRPt3gi01WO33zaddDfLvx5cMg2txnBy4iHQn04zXcfD/U4tX+H2gXkUxnJsY45HIIJkQbH68/fVhnocZ6UAcl8ePFCaN4EOmQuwvNWfyU2MVKxKQ0pyBggjahUkZEh6gEV0/w48LN4S8C6dpc8caXmwzXeEUEyudxDEE7ioITdnkIMYHA8Z8WxS+PP2hrbT7W1N/Z6fNBBcBeVWGNw0xY8YAZnX64A5IFfSCkKMcY68elADhS0m4ZxS0AFFFFACE4OOa8u8f8AxntvBOttpC6DeXd0gV2eWQQROjDIZGwxbnKngDINeon6nPtXzH+0H4hGo+MLXRogpj0qDLkqQ3mS7WIyTgrtEfQDkn8ADp7T9pKxe9jF34buIbUj55YrpZJFOM4CFVB+bj7w457Yrm/jTc6f4s0rQfG2jSebZTK1hcFiA8Egy6o65+9gv04wByQymuz+I8ul+EvgjB4Su7mA6obW2hW3t5vmZ1ZWaTB+by90bHOB6cZ4ofBHw2Na+GuvWWq20g03VJjHGzKPmwoBdNwI3KwBDYOGX1WgD1/wxrUfiHwvpmroYv8ATLZJXWF9yo5HzJn1VsqfcGvN/ix8WZvDl43hrQbfztVlixNOSf8ARy4+UIo5MmCG9BlfvZOPFbHxz4s8F6Xqvha0vDbxi4dHcLiSBxlHEbHlc49MjGRtOc9H8LfEvgTwuJtX8RG5udekkPlubfzFgX+8v+2TnLHkdBj5sgHc/Cj4MyaJdJr/AIohiOoROTa2WVcW7A8SMwJUt1IAyBwfvY2+2AYFeYD4++Bv+e99/wCAp/xpf+F++Bv+e99/4Cn/ABoA9PorzD/hfvgb/nvfn/t1P+NH/C/fA3/Pe+/8BT/jQB6fRXl//C/fA2f9fff+Ap/xo/4X94G/5733/gKf8aAPUKK8v/4X94G/5733/gKf8aP+F/eBv+e99/4Cn/GgD1CivL/+F/eBv+e99/4Cn/Gj/hf3gb/nvff+Ap/xoA9Qory//hf3gb/nvff+Ap/xo/4X94G/5733/gKf8aAPUKQsAcGvMP8Ahf3gb/nvff8AgKf8agvPj/4NSznktTeT3Cxs0ULQlBIwBIUtzgE8ZwcZ70AZ3x38cvY6bH4S0o+Ze6in+lGNm3xR7htUAcEucgjJ+UEEfMDXafDjwDb+A/Dv2RXE1/cMst5NgYL7QNqnAJQHON3dmPGcV88+EPFelT/EefxZ41lkkKs80MKxmUCVjhQA2cIiklRnIKpjpXtK/HzwMo/1991/59j/AI0AeoAYGKWvL/8Ahf3gb/nvff8AgKf8aP8Ahf3gb/nvff8AgKf8aAPUKK8v/wCF/eBv+e99/wCAp/xo/wCF/eBv+e99/wCAp/xoA9Qory//AIX94G/5733/AICn/Gj/AIX94G/5733/AICn/GgD1CivL/8Ahf3gb/nvff8AgKf8aR/j/wCB1jZlk1ByASEW25bHYZIGfqaAPUaK8qt/2g/BU0ZaVNUt2BxsltgSff5WIqX/AIX94G/5733/AICn/GgD1CivL/8Ahf3gb/nvff8AgKf8aguf2hfBcG3yotVuc5z5Vuo2/Xc46+1AHqNzBFdQyW9xFHLBMhjkjkUMrqRggg8EEZGD618p+IV1L4O+NtV0vR7yZ7G9sioWbB8xHRgrMMYLI+4ggdsdCRXqs37RPg6OUqtnrMowDvSCPB/OQH2/CvP/AIo/EbwX4+0VPsum6vFrNqR9lnkjjVdpI3q+HJK4yRxkEDkAtkA3v2Zzk+J/+3T/ANrV7/Xyj8IPiNpHgA6ydVtr6b7cIPL+yojY2eZu3bmX++MfjXqUf7RPg5xIWs9ZTapYboIvm9hiTr9cUAeuUV5Ov7Q3g1rZ5Db6usitgQm3Te3uMPt/XtUP/DRng/BJ0/WxgZwYIuf/ACJQB69SHv8ASvIf+GjvB/8A0Ddc/wC/EX/x2j/ho3wgc/8AEu1z/vxD/wDHaAOe/Zm6+KP+3T/2tX0BXyj8IPiNpHw//tk6rbX0wvvJ8r7KiNjZ5mc7mX++Ome9en/8NHeEB/zDdc/78Rf/AB2gD1+ivIP+GjvB/wD0Dtc/78Rf/HaP+GjvB/8A0Dtc/wC/EX/x2gD1+ivIB+0b4QP/ADDtc/78Q/8Ax2l/4aM8IjOdN10Y/wCmEX/x2gD16ivIP+GjfCH/AEDdc/78Q/8Ax2lH7RnhEjP9m67x/wBMIv8A47QB6Zr2mf21oGpaX5vk/bbSW383bu2b1K7sZGcZzjP5V8x/Df4pzeB/DOt6WtjbzuwN1aO77f3zbIyrD+JdoDcYPykfxZX05v2jPCGf+QdrmP8ArhD/APHa+fY7CbxR4ua10W0kLX925t4jyVRmJ+bA4CjkkcAAntQB7t+z5osjaXrHiq+fzrvULjylklUNJtX5nbzCSTvZhkccxgknt2Hjn4p6D4GHkTlr7Um3bbO2dS0bbQy+bk5QHcMcE4PAOKyPFWp2Xwl+E1vpFlcZvWtza2ZRtjvMwy84BLEAMxfAyASq8ZBrlv2evDUzvqfiy/gkZpv3FpNLnL5JMrDI55CjcO4cetAGhF+0FFZarLZeIvCWo6Y0afMiyeZKGOCA0brHgFTnP04r1/SNSh1nRrHU7dXWC8t47iNZAAwV1DAHBIzz6muK+LPgS98d+HbO0037El9b3Yk865yMRlWVlBCsRk7DjgHbz0Fd7bQQ2ttHb28KQwxKEjijUKqKBgAAcAAdqAJaKKKAGv0zxgdc9K+QtJhm+LfxazfyS28eoTPLKYlDNDCiEquQAOFVU3EdSCQelfTPjzV7jR/C9w9ppGo6pcXINukNhCZHUsrfO2OQox19SPWvmT4ceL4Phx4nv7vU9Mu5ZzbtaGAYjaM71Lbg3OQUA/OgDW+KXgDTvhrqmhXWlTy3kNwzu0N+iSDdEyH5sABlYOBtI7Hk54+hvAOtReJPAmj6pDbJbLLAEMEcYRI2QlGCLk4Tcp289MV4d4lTxZ8bPEOltZaBeabo8ELGKe7XEWGYb5N+0biRsGwFvu8dTXvvhTw/beFfC+n6JandHaR7GfBHmOTl3wScbmLNjJAzgcYoA8T/AGg/BcVrJb+LrNSJLiQW98C5OTtxG4GOPlUqef7mBksTp+BvhV4E8X+DdO1r7NeLLPHtnjW5ICSqdrgDJwMgkZOcEV6z4q0C38U+GdQ0S5bZHdxbRJgny3B3I+ARnawDYyM4x3rw34Y+Jbj4aeL77wJ4k8tIri6TZOkgMcUrINrZC5KyL5XJI24GQPmwAd2PgH4GP/Lvff8AgS1Tx/AnwEls8R0yeR2ORK13JuX2GCB+lekLjBx60tAHl4+AXgfjMF6cHP8Ax9HmtAfBL4fAf8gDJxjP2yfn8nr0CigDz1Pgh8PlLltCZ9zZAN5ONox0GHHH1yead/wpL4ef9C//AOTtx/8AHK9AooA8/wD+FJfDz/oX/wDyduP/AI5R/wAKS+Hn/Qv/APk7cf8AxyvQKKAPP/8AhSXw8/6F/wD8nbj/AOOUf8KS+Hn/AEL/AP5O3H/xyvQKKAPP/wDhSXw8/wChf/8AJ24/+OUf8KS+Hn/Qv/8Ak7cf/HK9AooA8v134WfDPw/ot1ql34cnkht03FILm5kkc5AAVRJ1JIHOAM5JAya8x/4SH4HD/mTdc/7+t/8AJFfRuv6l/Yvh7UtV8ozfYrWW58oNt37ELbc4OM464NfPX7OWlNP4q1bVSIjFZ2aw4YZYPIwII4x92NwTkfe75OADd8Jab8EvF9z9ks9ImtL0khLa9uZo3kAx90iUqSc8LndwTjAzXcj4J/Dwj/kX/wDyduP/AI5Xh3xtdT8WrpbHP2lI4FPlAh/M2qVxjknBXH4enH1enTrmgDgf+FJfDz/oX/8AyduP/jlH/Ckvh5/0L/8A5O3H/wAcr0CigDz/AP4Ul8PP+hf/APJ24/8AjlH/AApL4ef9C/8A+Ttx/wDHK9AooA8//wCFJfDz/oX/APyduP8A45R/wpL4ef8AQv8A/k7cf/HK9AooA8//AOFJfDz/AKF//wAnbj/45S/8KT+Ho6eH/wDyduP/AI5Xf0UAef8A/Ckvh7/0L/8A5OXH/wAco/4Ul8PP+hf/APJ24/8AjlegUUAef/8ACkvh5/0L/wD5O3H/AMcoPwU+Ho/5l/8A8nLg/wDtSvQK53xr4rtPBfhm51q7XzfLwkVuHCtNITwoJ/EnqQATg4wQDgfFHgj4P+D7JrjWNMSN9haO2S9naaXHZU8znnjPAHcjrXHaRf8AwN1bVbawPhrUrPz3EYnuriRYkY9NxWckAnAzjAzk4GSIfg7plz45+JV94s1i4jnexYXDpKN5aWTcI9oOcKgUkc/KVTHt2f7RkETeBtNuDChnTUljWQjLKrRyEqD1wSqkj/ZHpQB5z8W/AFh4D17Tb7S7bzdIu8/6NPI7BZEOWQkYYKVK4+Ytw/IwK9a0T4WfDTXdEsdVstBJgu4FmQG9nyARnBxKRkdCATggisbwXax/FD4Ftot+224snNpDcMq/I8YDRMMDgBWVCepAbnLZrM+CHia80TW7z4fa5G8NykrtbK+WKOoLSRZBIC4BcYwM7zk7hQB3n/Ck/h6Rx4fH/gZcf/HKP+FJ/D3/AKF//wAnbj/45XfL93rmnUAef/8ACkvh7/0L/wD5O3H/AMco/wCFJ/D0f8y//wCTlx/8cr0CmnrQB8x/A/wV4e8Zf28Nd0/7WbX7P5WZnTbv8zd9xgT90dc169/wpP4enr4f/wDJ24/+OVxvwA05tH13xxpjyLI9ncQW7OvRijTrkflXuVAHn/8AwpL4ef8AQv8A/k7cf/HKP+FJfDz/AKF//wAnbj/45XoFFAHAD4KfD0dPD/8A5O3H/wAcqzf/AAj8CajcGefw7bI5AGLeSSBeP9lGAz745rtqKAOfHgTwj38LaH/4L4v/AImqFv8AC/wRa6lLfx+GrAzSjDLInmRjkH5Y2yinjqAD19a6+mt1wOuKAPOvGXhb4f8AhvQdT8QX/hrTf3dm1usSR+UJS2dqqFGFctx5gXco74Feefs++DbiXVJvFd3A8dtCjQ2RdOJXOVd1J5woyuccliM/KRVT4palP8SviZY+EdDUO9hJLbCSRtimTgynkZwvl++dvAORn6G0jTY9K0Wy02EgxWlvHbocdVRQo9ew9aAPm/8AaKJ/4WBYcEf8SqP/ANGy17j8M9Ng0r4aeHbeBnZXsknJcgndKPNYZHYFzj2A61yvxj+GM/jGKHWdLeManY27o8Tbs3MY+ZVUg4Vgd+OOS/JGK5zwv8e9D0jwhp+m32kaj9rsbVLbEOx0fYgUNuLArnGcbTj3oA9um1TT7e9gsJ762jvLgEwW7yqskmBztUnJx7Crg7/WvnHwFZ6t42+Nb+KdW02aytxF/aCrJEwQxsvlwBWwAfUHGG8t/evo1Pu9c0AOooooAQjJFIFxnHGeeKdRQAzZyTgDPpTlGBg0tFACEZ//AF15B8bfADatpY8T6RDJ/bFlgzeU7AyQDPIX++hwQcjjd1IUD2Co5YknjaORVZGBVlYZDA9QR6UAcP8AC74g2/jbw0hnfbq9mix3kbFcyEAfvQFx8remBg5HQAnuwQen0r508R6ddfAvxxb65oZa50TUxIj2TucqBgmMuQehIZW68MDkZLe+aLq1trei2WqWm77PdwrNGGxuUMAcHBIyOhAJ5FAGhRSA5GaWgAooooAKKKKACiiigAoopCQOtAHl/wAfdSNj8MpbYQmT+0LqG2zuxswTLnpz/qsY465zxg8N8Ovhb41fQxfWviaPQbHU4BODbDzLhwfubtu3AKksCHJXd0BJxmfH7xVba34otdHghnQ6P5iStNEY97yBCdueSuFGDgZzkZGDXvfgPULDU/AeiXOmFvsgtI4kDAgqUGxlOeeGUjPOcZyetAHJ+Fvgnoei3jalrNxLr2qtN532m53KobJO7ZuO4knJLFskDpXpqjAxS0UAFFFFABRRRQAUUUUAFFFFABRRRQAV4T+0re3Edh4eslk/0WaWeaRMDl0CBTnrwJH9ufpXu1eWfHDwTfeK/Dlne6XFJcX2lu7/AGdGwZYmA37Rj5nGxSB6bsAnAoA1vhBoC6B8NNLUhPPvV+3TMjMQxkwUJz0Ij8sEAAZU/U+c/tJ6orXGg6RHcyb40lup7cFgpDFVjc9ifllA6kc9M89f4I+Kng23+H+mx3msR2k+mWUFvcQTRt5gcL5fyKAS4JXPy5wCCwXpXIaD4cuvjB4+m8Z3UX2HQbWdUt1Zf3l0I2BCn5uOPvMDjPAyckAHqHwt8OXHhj4eaZYXkEUN8wea4Ea4JZ2JG7gZYLtU+m3A4Arzb4z+DNQ0TXIPiB4dIilidGuxEnzJICcTYOVKkAKwwBwM7tzY96Xp0xnmqOt6Vb65o97pV0G+z3kDQuUxuUMCMjIIyOoOODigCl4Q8U2Pi/w1aaxYuhEqjzolfcYJMDdGcgHKnjOBkYI4IrcByOK+e/CF/cfB34kXPhTWpbcaLqREsN6742D5ljkOBxkrsYEcHnOAS30IuMZHegBaawz/AEp1IaAPGvgrAbXxt8RrYzSzmHUUjMszAvJiS4G5iAMk9ScV7NXj/wAIf+Sh/E3/ALCo/wDR1xXsFABRRRQAUUUUAIWA61wPxc8YReFfBV2sV6bfVb2Mw2QQkOTlQ7AgHBVWznjtg5xXY6tqljoumXGo6lcx21nbpvllk6AfTuScAAckkAcmvnvwhp178YPiZceKtYtGj0W0KlYZcywkpjZbgsRkYy7YBGc5A3igDt/gd4CuPDmi3GsaraC31O+yiRurLLBCCPlYHoWIBxjoFzzwPWlXbmkQbRinUAIRmmhMY4Ap9FADApyCTzTgMClooAKKKKACiiigAooooAKKKKAMTxT4a0zxZo0ulatAZLeTlWXAeJx0dD2YZP15ByCQfE/BXiTVfhV44k8D+JJs6G8rfZrm4yixBiSsqdQI3I+YZwrEnIw+foYgmuG+JvgK18a+HJR5TtqtpHLJYGOTblyAdhyQuGKKCT06560AdyOBQDkV4x8IviPqd5fz+E/FryR6pbIv2eS7AjlkxgGJw2C0nII4JIDE9Mn2ccUALRQDmigAooooAKKKKACkIzS0UAN2n2pQMDmlooAKKKKACiiigAooooAKKKKACiiigAooooAKay7qdRQB81/FPw9eeHPi1beLrzTWm8Py3dtcO9ugcAJsEiODgBmKkjJw27rndj2vwv4+8M+MZZYdF1Jbi4jjEkkDxNG6g8dGA3YPBIyASPUZ6dlJqnp2j6do9u1vpdhaWUDOXaK2hWNSxABJCgZOAPyFAF0UEZ9KAMCloA8q+NvgK68WaBb6hpkfm6jpvmMYh1miK5ZVAUln3KuBkDlupIrc+FXjS38YeC7Zy4/tCxRbe8jLgtuAwJCBjAfGemM7gM7c125BJ68V87aip+D3xsGoCJv7C1ZTukfcfLikdTKNwXqjgNgZO0qCctmgD6KB3Dig02GRJYUkjdXjcBkZTkEHoR7U40AeQfCH/kofxN/7Co/9HXFewV4/8If+Sh/E3/sKj/0dcV7BQAUUUUAFISBQWA6+ma8V+LvxE1JdWg8GeEpPNv7lTHeNEgZ1LcLGhz8rY3FuMjK4IOcAHPeN9cvfjR4ptfDXhBlfTLKM3Mk1zmFWfO3zDnLFQGUABd2WbjFe76BoVl4c0G00fTgy2lrH5aZPzNzksSB94kknAHJNcz8M/hxaeAtHYF0uNWuQPtdwudox0RP9kc8nljyccKO6AxQAKMCloooAKKKKACiiigAooooAKKKKACiiigAooooAKQjJzS0UAeVfGD4YXHjWG01HSXt01OyiePypBt+0p1VA+cKQd2AeCXOSAKg+FfxZ/wCEkmg8N61A8OtRRFRMx+W5Kdcg4Ik25JGMfKx4yFr1ogk9a8i+Kvwtj1GA+IvCtqbfxFBMJ3Fq/lm45yWHIxID8wYYJ5zkkYAPXl6UteQ/Dz4prDF/wjPjm4lsfEcE4hVrqEr54blckDCsOmTgEFTkkmvXdwoAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArkPiT4Qbxt4Qn0iCWKK7DpPbyTDKK6nvgEjKlhkevcZFdfTSuWBoA8k+A3iVJvDc/hO7ga11PRpH3QyfK7I7sSSpO7KuSrccZTua9czkV89fFzSrvwJ8QtK8d6PbRRwSyAzeX8oM/zFw2B0kQnJ5Jw544z7vpOq2Gs6Xb6jpt1Hc2dwoeOZOjA9ueQQeCDyCMHmgDy74Q/8lD+Jv8A2FR/6OuK9grx/wCEH/JQvib/ANhUf+jrivYKACkJAOKMjOK8h+JHxf8A7K1CTwx4Wg+3a1KPIM8bZW2mZtoQKAd8nXg4AO3OeVoAg+L3xQutNun8H+GFuP7bm2RzTxId0e8ZWOLuZGDLyM4DcfMfl3fhF8OW8EaHJc6jDb/23eHMrp8xhjwMRbunBBJ28EnqQoNVvhf8LH8MsfEOvym68SXYZ5DIRILffyfmOSZDkhmBwdxAyPmPqIGBQAAEDmloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApGBPSlooA83+JXwmsfHONQt5vsesxQmNZSMxzAcqsg68HPzDnB6HAA5HwP8WtT0TW4/CPj+M2s9ufs/wBunPzh+NnmnOCpH/LQZBypPBLV7owJPauU8c/D/R/HOltb3yeVeRo32W8jHzwk89ONynup69sHkAHT29zBdW0dxBNHNDKoeOWNgyupGQwI4II5BqUHNfOWna34v+CmvppetrdX/hESMscqRAqwbJUxsT8j/ISYy2OW45DV7p4b8UaN4p0ldQ0a8S4gPDqDh4254deqnjv16jIOaANqigHNFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGbr2k2uvaJeaVexJLBdQmNldNwB7HHqDgjpggHtXi3wRvbzwz4u13wFq0iRyRs00KkBQ8i4D7NwDMHQKw/2Uzjk170RnvXiHx98LTJBY+MtLQw3Vg4W6uIpNjqNw8pxz1VzjIGfmHQLwAaHwh4+IXxN/7Cg/8ARtxXr+4Y6183fBzxzpuif8JjrfiTUoo57qW3mYHHmTuzyliiDG7lwTtGBnsKfrGteMPjXqD2vhm2nsNCtswTmW72JJvY4aUDrwq/KA+05OfmoA1vHHxd1LxDqy+Fvh6ss0twfKN9Fw0hwdwizjaAOTJkYwSMAbj2Hw4+EWm+CSmpXMovdbMe0zY/d25IO4RDHcHBY8kDgKCRSaZD4I+C+kWVpf3iw3d4G3Xz2zySXLLt3corbVG5cLnA9zkm5F8aPh/JIqDxAAXbALWs6jk+pQAD3PAoA70DAxS1WstQs9StEu7C6guraTOyaCQOjYODhgcHBBH4VZoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkIzS0UAZ+saLYa9pU+manbi4s7gBZY2JG7BBHIwRggEV4l4i+FGv8AgO/j8Q/Di7vHdY5FuLZmR5FXBY7QRiReANpBbcFI3H7vvtIRmgDyjwN8btM1y5j0fxBAdI1YAoZJWAgkdQMjJwUYndhW44A3EkCvVUlSSNZEYOjAFWU5BB5BBrj/AB18N9G8dWyteK1vqEMRSC9h++ncAj+Nc84PPJwVya8jSX4gfBBhD9nj1bw1v8x2EZMSklA3z/eiYnAG7KksSATnAB9Hg5orgfBnxb8MeLkEIuV07UDII1tLtwrSEnC7DnDkk4wOcg8YwT3m8e4oAdRSA5paACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQkDrQAtISBSbhnFcR45+KOgeCVWKeT7bqDNtNjbupkQbd26QE/IMEYzycjAwCQAduzqilnIVRySTwK8d+KXxb0q2sLnw3oSwavf3ivazhS5SIMACAVxvYhiAFbgjnkYPK3WoePfjdO1tp9odJ8Mb0WXc/7vcoJyz4DSnd/Co2j5MgEbq9P8A/CnRfBES3I23+r5bN/JHtKA8YRcnaMdeSTk84wAAeUfDr4HXevQxat4laSxsGIMdooxLcIVPzE/wDO3AIJODwowT9CaNoOmeHtOSw0ixgs7VQPkiXG4gBdzHqzEAZYnJxyTWkKQnFAHj/AO0VeRQeBbG1MkPnT6grLG5Bcqsb7mXvwSoJH97HepPhL4F0S5+Gmn3Os6DZXF1eGSXfc2SeaELELhiN2CoDA56MCOxrhvjbf3Hir4p6Z4VtJNn2fybVBMoCCecqd24AsV2tFn02nA9foTTrG20DQbSwSVvsmn2qwrJMwzsRQMseB0HPQfSgD5/8IXUPw6+PF54atb1X0e9mW2bKE4Zk3QrwT8yu3lljxyxIGePpBOn15r5M8CQL4x+OkV8ILmO2k1KbU2CDJiCs0qbjggDeEU+ueMEivrNMbRjH4UAOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBCOaZJCksbRyKrIwIZWGQQeoIqSigDzHxZ8EPC/iCBm06JdGvc8S2yboyM8hosgYxnGNuOOoGK86hvfiv8LJohexXGpaDZbVdVPnQtCARw+N0YAzgnAGFyCMA/SRznik2ntx7UAeYeGfjt4U1izX+1ZG0a83EGKYNJGeuCsgXGMD+ILzxz1r0yC5gureK4t5UmglQPHJGwZXUjIII4II71xPir4R+FPFkgnuLM2V35jSPc2G2J5Sck78qQxJOckZyOvXPnc3wj8a+A5hqHgXxA91I7kS22FhJXkKSrsUkxub7wGDggZ6AHv2aAQRkV84R/HjxjoMqWPiPw9AbiNEDLLE9tM47sQcjLY7KAPTtXd6L8fvB1/EP7R+2aVNsDP50JkQt3CmPcSB6lVyOw6UAeq0VS07V9N1i3a40vULW+gV/LaS1mWVQ2AcEqSM4I49xVzcKAFopNwo3DOKAFopAQaMjOO9AC0UhYDrRux60ALRRmkLAUALRSbhVPUdX03R7dbjU9QtbKBn2LJczLGpbBO0FiBnAPHsaALhOKNwry7X/AI8+DtKVhYSXOrXG1wEt4iiBh90M74+Uk9VDcZOOmeKX44eM/FV62neFPDcKXEqEDAa4eLOFDlvlVQCerDbyM8DkA+gZ7qC2t5bieVIoYlLySSMFVFAySSeAAAefavOPE/xv8IaHBMLC6/te+RtiwWuQhODz5pG3b2yu45PTrji7L4N+M/GMy3vjnxDLEmXdLXzvPeMs3IAB8uNThThCRgAYGOPQ/CXwg8LeE5Vuo7Zr+/Vt63V7hyjcEFFwFUgrkHG4ZPzYoA8yudX+LvxHuopNKtLvRNKmx5TRObZBGxBEhkOGcYK8pwQOF5Oe48H/AAQ8P6RBHd69GNY1VwHmackwo+STtTjcDkZ35zgHC5Ir1HZ7DjoPSlAwMUAVrLTrTTbNLOwtYLS1jzshgjCIuSScKBgZJJ6d6sqMDFLRQAVT1LU7LR7GW+1G6itbWJd0k0rBVUZAH6kD6nFXKay5x7UAfJ+heINK1H48P4i1q+jTTRfTzxzXGfuqGEHTPIxH7fL1r1Lx/wDFvSJtAk0fwldxaprWoEWcccSSfu1kBUspwAzZwAAerA4IGD3/APwgnhHv4V0P/wAF8X/xNX9M0DSNF8z+ydLsbDzceZ9lt0i8zGcbtoGcZOPqaAPNfgp8Ob7wnZXesaxFHDqN8ixxQYy8EQJJ3EHGWO0le20ZOSQPWwMUAYpaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRhmlooAr3Nlb3kQiuoIp4wc7JUDAn6Ee9cvqfws8EaqIvtHhuxTy84+yg22c4+95RXd075xk4xk12FFAHhOsfs4xI/2jw54hmhkRMxxXqBiZMnnzE27R0/gOOfXjFPwq+LOlsY7DxC7IwDMbXVpkBPoc7efwr6QpG4BNAHg2n3fx70yaLz7CK/jxsWK6a1KnjqzI6t26k9fc1D/AMLq8c6GftXijwSI7Jv3UbfZ57TMh5xvk3A8Kflxn8q99XlcnqaaT1HbBP8AL/GgDwX/AIaXK8Hwln/uJf8A2qrWnftJ6dLdMNU8OXVtBs4a2uVnYtkYG1ggAxnnJ7cV7oAB0paAPDtT/aS0iIxHStAvrrOfM+1TJBt6Yxt3579cdqof8NLjOP8AhEvz1L/7VX0BTCTuYZ6AEfrQB4GPjN8QdZzeeHfBHmWB4BNpcXRLd/nTaD27VPrM3x71fesemwadE8RiaOxmtlznOWDPIzq2D1DDGARg817kTyg4+bOeKkAAIA6Y6UAfNy/DD4t6okUV/rk6xt8xW61aR1RvcLu55PTPWtzRv2bbVQj634gnlJiG+GyhEe2TjOHfduUcj7qk8HjpXujcMMd+tPHSgDkNK+F/gvRXd7Lw7ZF2IO65DXBUjOCvmFtp57Y7egrqILWK2iSGCKOKJM7UjXaBn0A6d/19anooAQcUtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//2Q=='] Multimodal Competition False Theorem proof Geometry Math Chinese 71 "如下图, 设 $\triangle A B C$ 的外接圆为 $\Gamma$, 在点 $B 、 C$ 处分别作圆 $\Gamma$ 的切线, 两条切线交于点 D. 由 $\triangle A B C$ 的边 $A B 、 C A$ 分别向形外作正方形 $B A G H$ 、正方形 $A C E F$, 设 $E F$ 与 $H G$ 交于点 $X$. 证明: $X 、 A 、 D$ 三点共线. " ['如图, 设点 $A$ 在 $G F$ 上的投影为 $R$, $A R$ 与 $B C$ 交于点 $M$.\n\n\n\n由面积法知\n\n$$\n\\begin{aligned}\n& \\frac{B M}{C M}=\\frac{S_{\\triangle A B M}}{S_{\\triangle A C M}}=\\frac{\\frac{1}{2} A B \\cdot A M \\sin \\angle B A M}{\\frac{1}{2} A C \\cdot A M \\sin \\angle C A M} \\\\\n& =\\frac{A B \\cos \\angle R A G}{A C \\cos \\angle R A F}=\\frac{A G \\cos \\angle R A G}{A F \\cos \\angle R A F}=1 .\n\\end{aligned}\n$$\n\n故 $M$ 为边 $B C$ 的中点.\n\n设 $X A$ 与 $B C$ 交于点 $K$. 则由 $G 、 A 、 F 、 X$ 四点共圆得\n\n$$\n\\begin{aligned}\n& \\angle C A K=90^{\\circ}-\\angle F A X=90^{\\circ}-\\angle F G X \\\\\n& =\\angle A G F=90^{\\circ}-\\angle G A R=\\angle B A M,\n\\end{aligned}\n$$\n\n即 $A X$ 在 $A M$ 的共轭中线上.\n\n另一方面, 在边 $B C$ 上作一点 $M^{\\prime}$, 使得\n\n$\\angle C A D=\\angle B A M^{\\prime}$.\n\n由面积法知\n\n$$\n\\begin{aligned}\n& \\frac{B M^{\\prime}}{M^{\\prime} C}=\\frac{S_{\\triangle A B M^{\\prime}}}{S_{\\triangle A C M^{\\prime}}}=\\frac{\\frac{1}{2} A B \\cdot A M^{\\prime} \\sin \\angle B A M^{\\prime}}{\\frac{1}{2} A C \\cdot A M^{\\prime} \\sin \\angle C A M^{\\prime}} \\\\\n& =\\frac{A B \\sin \\angle C A D}{A C \\sin \\angle B A D}=\\frac{A B \\cdot \\frac{C D \\sin \\angle A C D}{A D}}{A C \\cdot \\frac{B D \\sin \\angle A B D}{A D}}\n\\end{aligned}\n$$\n\n$$\n=\\frac{A B \\sin \\angle A C D}{A C \\sin \\angle A B D}=\\frac{A B \\sin \\angle A B C}{A C \\sin \\angle A C B}=1 .\n$$\n\n故点 $M^{\\prime}$ 与 $M$ 重合.\n\n因此, $A D$ 也在 $A M$ 的共轭中线上.\n\n综上, $X 、 A 、 D$ 三点共线.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAm0BnAMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKADpSbhQ33TXmnxB+Jup+Ar5fN8JTXWmyEJDqH20Ikj7QSCArFe4G7GdpxkCgD0zNJuGcZ5rzfR/iRrOq+ANS8WL4Q8q1tovOto/7SQ/aUVmExzsBTYFJ5GW6CtHwL4x1vxfHDfXPhVtN0ueIvDdG/SUuckf6varAcHk+2Bg5AB3FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIelcF8YPD6a98NtUAEfn2KC+heRioUxAlunU+WZAAeMt26jvTjGCcV5p8S/F2xk8C6NEl1rutxm2O4MUtYZAVaRyuT93J4+6AWPAAYA8x+Gl34g8caHD4AgumsNGtfNnv7yJT5klu7AiAHGFLMznJPKk8EKVb6O03TbXSNPttPsLcQWlvGI4owT8qgYHJ5J9zyep5r50/Z01SK18Xajp0kwQ3lpvjVn2iRo26AZ+Y7Wc9MgBvevpbIzigBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApD04paQ9KAOY8Z61reiaUkmgaBLq99KxRVV9qxfKcO2OSM4+UEZ9RXMfC2w1eKz1bWvFGh3EXiOWQ+beypH5lzHtGFQA5XGwDbgKcL1/h9MyBzRwW9+1AHzPPofjK0+KkvjHRPBmo2sH2xrgWzspaRWBEmWOQpcFzxnbv46CvozR7y41DSbS8u7KSxuZolaW1kbcYmxyue/PfjNXcGlA5oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoJwKOlNJB4zQApYDqaztc13S/D2lyX+rXsNrbqDgysFLkAttUH7zEKcKOTXnfxD+MNl4ZjhsPDjWur6xM+AEbzYoRuwQ5Q/Mx6BAcjqcfKG47w98OfEvxO1eHxR46uXgsmUrHbhfKmkRT8oC4wkeS3J+Y46fMGoAta38RfE3xMvZdA+HtncWsEREk1+bgQyumVAOePLG4nIBLMB2G5S74Ga1c6b4t8QeE9bv53vQ2IUluN6B4WZZFXJ+8QVPA5CEnGBXsmg+HdK8L6UNO0aySztA5kKqxJLHqWYklj2yT0AHQV4X4rnuPDv7TWn6gpTF5LbDMyHasciC3c5yM4+Y56Z9cUAfReaKavXjoKdQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRQeBmgApMigketea+PvjBovhS2uLTT5ItS1pWaFbeNtyQyDAJlI54z90ckgrxyQAdp4j8S6X4W0SfVdUuVigjB2ruAeVsEhEBIyxwcD+QBNeI6v4p8V/Ge+/sbwhbXOlaPEH+1XM0xjSYFcBZSgOAQSNgLZ3ZPAypofgPxh8TPEa6z48+02ml28m+OymDJv3MC0UaZBjXAALH5uAOSCV900bQtN8P2X2LSbGCztt5cpCmNzHA3E9zgAZPoB2oA4v4ffCHSPA0w1F5W1DV9hT7RIgVIs5z5a/wAJIOCSSeuMAkH0MAg89PWnUUAIwyK+fv2itDmivNE8TW/mDg2Ujh1ARlJeLA+9k5kz1Hyj8foI9K8++M+if2z8MdTK2/nT2Oy8i+fbs2H526gHEZk4OfbnFAHfg5Ip1cN8ItY/tr4ZaLMz25mtojZyJCfueUSihhk4YoEY/wC9nABFdzQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUhYDqawPEfjjw14S8sa5q8FpJJgrFhnkIOcNsUFtvykbsYyMZoA6Ciuf0Xxz4W8Q+QNL16xuJp93l2/mhJm25z+6bD9ienTnpXQZ5xQAUUUUAFFFFABRRTSQV45oAUsAOTVDWNa03QtLl1HU7yG2tIhuaSRsA45wPVjjgDknpXnvjz406J4Ve80zTs6jrMIaPYufJhl44kbPOMnKrnlSpKnJHJ6J8M/F3jzX4dc+INzKmnsqzfYPMKu2Pux7BxEuCc9G5I4YlgAN1T4keK/iZfv4f8AAunTWmny4invZohuWN0IPmMNyxL98gjLHaNpzlT3ngP4RaP4IuzqHnSajqRTYlxMgUQgjDbE5wW5ySSccdC2e40/S7HSbYWunWVtZ2wJYQ28SxqCepwABVygBoByMj9adRRQAUUUUAFVdTsk1LSryxkICXMDwtldwwykHI79elWqRuVPT8aAPBP2cNbmaHV9CMUfkRsLxZATu3MAjA84I+VSPx68V73kV4POtt4B/aKieR768j8QIGUeaVMEs8pQbgDiRAy8A/dDA8sgJ92U88dO1AD6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApG+6eM+1LSMMjFAHnXxZ+IreBNEhXT/Ik1i7crDHKCRGg+9IQOuPlABI5OeQCKo/CbwJa2Wk23i3VraWXxHqSyXEk07gmNZGJBQDhWZSpJPzDcRkcivLvi6tz4m+NsehMYoiptNPgkweBJtfc3XPzSt07Afj9JXN9pXh3Toft17a2FopWCN7mdY1zjhQWIycKTj2NAHkOr/DuCP4+6BNpujXNto3lx3k81nb7LeOePzCoyF2qCY48jjO49Cc17eoxisKLxr4Ummjjj8T6K8jnairfxEsT2ADc9q3sg0ALRRRQAUmRSMRj19q8u8afGrSfDWp3GkaZZy6rq0TCNhGwESSEkbCw5LD+6B14yCDgA7vxF4m0Twxppvdb1CG0tyQo3gsXJI4VRlm684BwOTxXh8ni3xp8YdWu9D8PwvpvhuVxHcXHl/MsORuLuTyzA58tSMjjkbibmhfCfxJ431iz8SfELUGKPGjGy+7OUGdsbAALEOhIXn5jnaxJHulnZwWFtHbWlvFb28Y2pDEgVUHoAOlAHC+Dvg94a8ItFdeS2o6koU/arzDeWw2nMaDhOVyDyw6bq9AGd3TinUUAFFFFABRRRQAUUUUAFIelLSEZFAHiH7RMU0GneHdXt5JopbS7kVJoiR5bMFYEMOjAx8c9vy9d8P6oNc8P6bqwjEQvbWO48sPv2b1DFc8ZwTjOB06Vxvxq8PSa98NL5oldp9PZb6NUZQCEyH3E9QI2kPGCSB16VZ+Deow6j8LdGMTxl4FeCRFfcUZXPDehK7WwezD1oA7yiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQ9DS0h5FAHzn8T9Hl8PfGfRvFt35g0W5vLOaS5WIlImjKhk+XJJ2x7hxyCcZ211vxe8X+ENS+Hd5bRanpOp3shRrSFJ/MKPuALjYcqyqzEZ4PQg8g+sXFrHdW0tvcRRzQyoySRuoZXUjBBB4Ixxg1lQeDPC9rcxXFv4b0eGaJw8ckdjErIwIIIO3III6j0oA8x+C/wygstL/t7xFpDpq7XBNrFeIQYEXADeWQMMWBOTnACkYyc+0AY5INCrjHHT0pxI6DrQAZGM54rD8ReMfD3hWBJNa1WG03/AHEOWkbnGQigsR7gV5l41+NZjvZNB8F2jalqLbolvIgJUyVGDCq58wgk9RjK/wAQNM0f4Lah4iul1r4i6xc3t8zBhawz5VUyG8tmxhRkuCseAP4WoAx9R134gfF2WTT/AA7ZSaT4am3qt1MGjWePBGJJADuyVYbUGBuKtnGa9K8IfCjw14Ttrciziv8AUYiJDfXUSs/mDB3IOiYK5HUj1OSa7eKJYY1jjUJGo2qqjAUdgPapKAGKm0jHTFPoooAKKKKACiiigAooooAKKKKACiiigCC9tYL6xns7qJZbeeNopY26OrDBB9iDXh/7Pt9cabqXiTwnqEnl3NrKJltcA7XUmOY7xwcERDrjuB1Ne7N92vnbTrqbw3+1Fe26FUjv53jmWJR86yxiReo4O/YSRzweSDyAfRWaKaOtOoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAPApNw9ahu7u1srSW5u7mK3t4xukllcIqD1JPArxPxH8Z9T1zVD4f8Ah5pk1xeNJsF6yq27BZdyJyAv3TvcgAZyo60Aej+LviP4Z8GKY9Vv83hQslpApklYcdhwuc8bioODjoa+cvHvjPxh420xNXvbSWw8OLP5NvHFuWKRyXK5Y/61gEIJAwu3opbn1jw38GIb+Ya/48uJtT125czT25kAhTONqnb94jHQEIPugEDJ9R1jR7PXdIutK1CBZrS6jMcisAeOxHoQeQexAIxQBxXwj8OeH7LwFpOo6ZaxSXN1EJp7p1DSGUja6hsfKqkMoAxjHckk+hhcEcDjivCvAOvXfw/+JF18O9SkkbSHnf8As6SUb3UvhowW4AVlznC/fPbk17sCD3oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigBD0NfP/AMaVHh34o+FPFMyj7IDHvEI/esYJdznBwM7XUDJ7EHAFfQJrzX446Wl/8ML6do3eWxliuIdnY7wjE47bXY/hk9KAPSF4xj/61OrivhRrMWt/DbRJYwiPa262csayByjRfJ83oSqq+D0DDr1rtaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkJAGTRkDvUV1dQWdpNc3MqxQQxtJJI5wFRRkknsABQBLuHrXLeNfH+heCdOaXULgSXZC+TYxMDNJknB2k8LwfmPHHc4B4Dxj8XbvVJY9E+Gsc+pai3zT3kFsXEKhguFVlwcnGXI2gEYyTlZvBfwcM10fEPj2V9V1ecBntLgh0icHjewYiT5QoC/dUZGDwQAc1Jofib49X0GtTpFoXh+2DQ23mbpmZiDvZB8u/wCYKCflAxgZKtn2/wAOeGdL8K6Qml6RaLb2qksRnLOx6szdST0yewA6AAayqQf50+gBoBB5pT0paKAPMfjZ4NXxL4KfUY2CXmjLJcoTn5otuZE+9j+FWzz9zA61b+Enj2Xxx4bdr8INUsCI7t1AUSZztfAPGQOeMZBxjoPQm+6cda+evFTTfBn4o22r6SRF4f1ghriwiQ7dqkCRVUtjI3bkIIALFeFyCAfQ2ecUVXtLqG9tobq2lWW3nQSRSIch1IyCPbB/WrFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWP4r0dtf8JatpKeX5l3ayRRmViFDkHaSRzgNg/41sUjdDQB4n+zdfiXw3rWnZXNveJPjBz+8Tb16Y/dfzr22vAvhpIfCfx08S+Gpdtna3hla2tgAwba3mQ4YA4xCznkj0POK98BBoAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopMj1oAWkJGDiqWratYaLpVzqWpXSW1nbpullc9B0+pJPAA5JwBzXjWt/E7xB47un0D4badcGKWPZdanJGUMRbJ+Vs7YxhWG5uSSdoBAJAO7+IPxL0nwDZKJgt3qUqh4LASFS6ZALM21to64yOSCB0OPL7fSvGPx0eC+1G4TSfDEEuYolB/eMAQzRr/GQfl3MQF3ELkhhXZeBvgtYaDdrrHiC4/tjVpAXdZ0Voo3baxOGyWcMG+fIzn7oPNeqBSGz2oAwPCngvQ/BenPZ6LaeV5m0zTOxaWYgYyzfmcDCgk4Aya6AZ9KWigAooooAKKKKAEPSuf8YeE7Lxl4cuNH1DMcb4dJkCloXU5DLkHHcHocMwzzXQ0h5FAHjPwV8aXjXFx4E1lT9r0pZFt5mJyyo5VozuOcrkBQAPlUjA28+zZGcZrxn42eHbjShZ/EHQXFnqmnSKt1PFw0inCIzZOGwcIRg7lfB4XFekeDvFFp4w8NWus2iNGJAVlibOY5B95c4+bB7jr+lAG/RSZFLQAUUUUAFFFFABRRRQAUUUUAFFFFABSN900tIelAHz18cpm0L4meFvEZiaYQJG4iztDmGbfjdg8ndjoccGvoNeSCDx7V5D+0LoZvvA9rqkdt5kunXY3yCTHlwyfK3y55y/lDoT9BmvRPBuoxat4M0W+hdHSWyiJ2PvCsFAZc9yCCD6EEUAbtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFBOBk0mR61T1XVtP0XS7jUtSuo7azt03ySv0UZx9Sc4AA5JIAGTQBcyCOorzfx78XdH8LwtY6YyaprkqAQW8J3xozHCmRh+ewfMeOgINclq/wAWtf8AGmtt4b+HNi25w2+/lXDBQRmRQeI17ZYEneAArYB6n4bfCCz8DzjVL25W/wBYMe1XWMCODIG4Jnkn7w38cHG0ZOQDi9J8CeLvitf2niDxrdGy0tC5t7FEMchTcOEQj5FPI3sSxCr1G1q9s0Dw7pPhfTV07RrJLS0Ds+xSWLMerMzElj2ySeAB0ArTAIPPT1p1ABRRRQAUUUUAFFFFABRRRQAUUUUARXMEN1bS29xEksEqFJI5FDK6kYIIPBBHFeAafrF18GPiM/hu4lB8J38/npJJb/NFvXAYOSM7SFDckYUkAE4r6EPSuW8eeDbbxt4UuNKuGKTKfOtJd5AjmAIUng5X5iCMdCe+CADpxw2KdXjvwQ8dXuqQS+ENYtzFf6RDtiLIVbykIQo69mQlV9weRkEn2HIzjNAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQBh+MtBXxP4O1XRiqM91bsIvMZlVZR80bErzgOFPfp0PSvPf2e9cXUPBNxpTyIZtMuWCoEIKwyfOpz0OX8334GccZ9ePSvn/4c3knhz48+IfD/ANut5LfUJZjtt1Dq0i5lVdwC7WVWkBwMZBXHQgA+gKKQEGloAKKKKACiiigAooooAKKKKACiikyDQAtFJuHrRkE4zzQAtFFJkUALTSwx1rK8Q+JtF8Maab7WtQitLfO0FssznOMKqglvfAOBknjNeJ3HxB8UfFrU5PDPhuwfTtGuJTFeXvlmV1t2Df6w/dTcoY7c5JAUN1yAd541+MPh3wlHLDBIuqarFII2soJMBCD82+TBC7eRjk54wOSOK0HwR43+Imqw3fxBuLqDQ4mFxHp7MIjM3QL5a8xgDqWw2G45YsO48B/CLRfBEv24O1/quCqXcqbfLBABCLkgZ5564JGcE59CAIb2oAzNA8PaX4Z08afo9jHZ2gYuUTnc2ANxJ5JwAMnnpWrRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh6cUtB6UAeC/Gjw3L4Z1Gw8e+Gkls7uObF1JboAquSdsrAD+LJVs5DbgD1+b1/wn4gg8VeF9P1uCMxJdR7jGWzsYEhlz3wwIzx9B0rUubaK6tpbe5iSWCVGjkjkXcrq3BUg9QQcYrwDwtqF58KPivP4LIkm0XU7mIQPcFsjeMJImAFJJIRiF5KdRtoA+hqKaPvU6gApmz5w3PAx1p9FABRRRQAUUUUAFFFFABRRRQAjfdNeB/F938I/Ffwx4wjAit3VVuPs6jzpfLbEmc4BLRSKgJPbHAAr3w9K8q+P1l9p+Gxlw5+y3sUvyjgZ3J83t8/54oA9TGd/tz3p9cb8KtSbVfhloNw6BClv9nCg9omaME/UID+NdlQAUUUUAFFFFABRRRQAUUUUAIenXFfK/ivw7pOv/AB2j8OaJZiGCS5RLx7e5B3NkyTuu7KoygsNgyAY+Bztr6kuZktrWWeVtscal2OCcAcngda+SvAt14s1bx/f+JfDmi2OoasHluXSaTy4oWmJBKgyLn7zKAS3B6ZwQAe8+O/D+iaP8HtX0u301P7Ps7Vmt4BI37uTduV9xJOQ53HJ55B4NcD+zx4WsLqK88S3NsXu7W58i0l8wgR/uzvwoPOVkH3gfbvWJ8T/GHxFHh9NF8WaLpmnWupHKm3Id38tlY9JX24O3sOv1r2L4TeGY/DPw/wBOiDu096i39xvXaRJIi/LjnGAFX3Kk8ZxQB256c9K8r8Y/G/QtE86w0M/2xqpQCI2/z26ucY3OD82Ac4XOSMEqeR2vjfQrvxN4M1TRrG9+x3N1EESYkgfeBKtjnawBU9eGPB6V5N+z/a6Eh1S2uNLSHxTYzEtJcqPNVOUIQH5kKksr4A+8uScgAAn8N/CHXPEWstrHxLvJb0KpMVj9qLfM3JyUICKM8Khxn0UYb2qzs7awto7a0t4re3jG1IYkCIg9ABwKlXsO3bPWn0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIRkYrhPir4HPjXwi8NtEG1OzbzrNhsDM3Rk3HorD3HKqT0xXeUh6UAeYfBDxnJ4m8InT7wyNf6Pthklf+ONs+WTgDkBSpzk/KCTk16hXz58SLGb4X/EPTvGmhRSi11B5BfQh3CSSE7nVm5ADglgOcFCQPlAHvVldwX9pBeWsiyW9xGJYpF/jRhkEexBoAs0UUUAFFFJketAC0U2ORJVLRurgErlTkZBwR+BBH4U6gAooooAKKKKAA9KwPGmhf8JJ4L1fSfKEstxbMIVZyg80fNGSR6OFP4c5Fb9I/3D06d6APIv2d9QS58B3VkZIfNtL5wYlb5gjKpDMPc7wD0O0+levV4b8OlPhb46+LvDjyWcFtdBrmGGPCgncJIkQHGCI5XyoGOD2Ga9xyM470ALRRRQAUUUUAFFFFABQTgZopCMjjH40Acr8SdWi0f4beILxzLzZvAjQ43B5P3anOR0ZwT3wD16V51+zhpoj8Pa3qxlBFzdJbeWVxtES7s7s8587pj+Hvnj0jxF8P/DPiy8ivNc0kXVzDGI45PPkjYLknHyMM8k9fWpvD3gfw94UhuotE082a3QxMUnkLNgYHzMxIxk4weMnHWgDwn4tTN4x+Mmn+GreaVIoGgssr+8RGkO6SQIDjgMobkf6vnpx9Kpncc+vHJ/z/AJ9q4EfBP4fg/wDIv8Z/5/J//jld5FF5UcaAsQihRuYsce5PJoAkbpXhPxe0K/8ADfjDTviRpjExQzQLdJGGDgjIyxUD5GULGcnuByG493PSs/V9Js9b0m603UYVltLmMpIrAHg9xnoQcEHsQDQA3QtYs/EGiWWrWD7rW7iEqZIJXI5VsEgMDkEZOCCO1aVeAeAtQ1r4U+MV8LeML3ytFuoWNnclibVZeGJWR8bV5YMMfeYEjBzXv2c0ALRRRQAUUUUAFFFFABRRRQAUE4GTRWfrsGpXOhXsOj3cdpqTxEW08ihlR+2QQeO3Q9eh6UAX8gdaMjOM18wx+KfiLrfxJPhGHxTcNLHqElmbiKCKEbEZt8hVcA4VGbbnJxgGvQdW8A/Em102abS/iHc390gJW3kgEG/rwG3sAT2zgepFAHruRS15r8EdY1nXfBE1/rd5LdzNfSLDLKQW8sIgxx23B69KoAKKKTIPegBaKTIoyKAFpD04oyPWlyKAMjxF4esvE/h+80bUlc2t0u1zG21gQdysD6hgDzwccgjIPj3wY8Qaj4c8S3nw61mF1aKWV7ZpHIKMBkqFPBRgC4K46sfm3ZHu7Z28da8g+NPhieCwt/Gfh6Oa11zT5Mz3Fn8rtDs2szFRltoAGTxs3ZyBwAewZFFcb8OPHNv458Mx3uYItRhPl3trEx/dNyAcHkKwGR1HUZJBrscigAPSuG+KPjhPBHhN54jnVLzdBZIGTKPtP7zBzlU47HJKg43ZruSRivBfGOt+GfG+p+JZrvUdOa00LTJrfSY5LkBrq7dCzSICwLbSqoAAwYkMCeBQBt/s5j/igL4nr/asnP8A2yir2CvDP2bNSll0fXtMZIxDbzxXCsAdxaRWVs84xiJccdz1r3OgAooooAKKKKACkb7ppaQ9KAPnb4oSyaH8ffD+oxzygutrKwiYodnmMjLnPRlVgfZsV9EKea8d/aE0d5/C2m65b+d5umXWCyNhUjk6ue+d6RgEH+I/h6loGpjWtA03VREYft1rHdeWW3bN6BsZ74zjPFAGlXMeI/iH4W8J6hHYa3qn2W5kiEyp9nlkyhLAHKKR1VvyrpmIAyTgV85ftITW7a/oUKQxfaltpHklGN5RnAVW4zgFXxz1ZsAc5APT/wDhdfw9x/yMH/kncf8Axuuj8N+MNA8X288+hail4kDhJQEZGQkZGVYA4PODjBwfQ1zWl+B/BNro+jaNfaHppvri0UqJrZfPlKBTIxYAHILDPTr6cVH8LfA7eD7rxRI9rJapd6kyWkRlDr9lTJiI6nJ8xgdxzwMgHOQD0WiiigAooooAKKKKACiiigApGzjilooA89+LXgKbxv4ZQWWz+1LEmS1VyAJM43JuI4yBx0GQuSBzTfg/45i8X+EIoJpJG1TTI0hvDJk7+CEk3EnduCnJzncDwARn0NuFPOPevA/HOmXfwz+KFt4+tCx0W/udl3DbNtcFl/eKVJw4baZAem4YO3CsQD3zIzS1T029g1LT7W/tZfMt7qJZopMEb0YZU4IBHBzg9KuUAFFFFABRRRQAUUUUAFZfiTVv7C8MapqqhGeztJJ0VzgMyqSFP1IA/GtM9DXm/wAcdTj0/wCF1/CzyJJfSxW0RXudwcg+21H/AJUAeZ/s56P9s8W6nrDpA6WNqIl8wZdZJW4ZeOPlSQE5z82OQTX0oRkYryL9nnS5bLwJc38yMovrx2iO4ENGgC5wOQdwkGD6Zx0J9dLDHXvigDN0TRdO8OaTDpelW/2axg3GOLez7dxLHliSeST+NaWR615p4o+NvhPw87w2051a6Ee5FsXV4txBwDJnA5AzjJG7oelcJdaZ8ZviDEJLnOjWMjgpbFzaKMHBJUZlwCu7589QVGMUAe2a74u8PeG0b+2NZsrN1jEvlSSjzWXONyxjLNyD0B6GuB1n9oDwfYb009b7U2MRZGhhMcZfnClpCrL2yQpwGHXGKo6B+z3pMCx3XiPUrvUb0uJZY4X8qFjjlScF2+bd82VJ44Fd7ZfDjwbp9pHbweGdLZI87TPbLM/Unl3yx5PcnHHoKAPJ3/aVYjEfhVVOQcnUM8ZGf+WXpn+ftSL+0rJvOfCi+XtGAL/kHv8A8s+R04479c8e7W+lafaTebbWFtDJjG+OJVP5gU+50+zvdv2q0guNv3fOjD4+maAPGdM/aQ0eQy/2roF9bEY8r7LMk+7rnO7Zjt65z2xXbaH8X/BGuhQmtxWUuzzGjv8A9xt6DBdvkJ56Bievoa6K68K+H7xAt1oOlzhfuiW0jbH5g1x3iX4JeEPEEUz21l/ZN8/Kz2fyoCFwAYvubc4JC7Scfe5OQD0gsPWoriCG7tpba4ijmhlQxyRSKGV1IwQQeCCOxr57u/gh418PTRv4X8S+bHnLMkz2kiuQQTgEgjAAzuzzjb3Ojpnxr13w3qv9j/ELQ5IXVFQTwQlJGwSpkKk7ZFYg/MhA4OAeMAGfq9xJ8GPi0bqzif8A4R/WlEksW0iONTJlxGFAUtH/AAjB2rIB3zX0KvX/AD+NefapP4d+MfgHVLHRruO5mRQ0YddklvcAbo871yoPKlgCCC4B61zfwI8X3t1BeeDdXFx9u0xS8Pn/AHo4gQjREYyNjEYBJPzY4CigDtfiN4gfSdBh02ymWPWNcmXTrEmXYYnk+Uy5HzAJu+8oOCV9axLX4EeCIdGFpPaXE91sKtetcOsm45+YKDsyM8DaRwM7uc9DrHw28Ka/rTaxqWmyTag23EwvJkI2jCkBXABGO2O565rY13w5pvibTvsGrQPLah9/lpO8e44I5KEEjDHg8c+1AHif7NM8IufEtuZUWd0tnSMsAzKpkDEDuAWXJ7bh619BVx2ifDDwl4b1eDVdI017O6gDAOt1KwKspBVgzEEc5+oFdhkUALR0ozVLUtX03R7dZ9T1C1sYWcRiS5mWJSxBOMsQM4BOPagC7mk3D196881H41+BLCaSEas906OY3+zW7sBjgkNgBh7qSK4/Uv2hftk62fhXw3d3d1KoETXRw3mc8CKPcWGPRgefbkA9z3L6iq99f2WnWb3d/dwWtrHgvNcSCNEyQBktgDkgc96+f7q0+NnjeSK+IudFt9rGKGK4+xBeQpBXd5pyVyN/rxgEZvaF8AdUutZS88Za3Hd28TKTBbyySNOOSVZ2ClBnHQEkFuVODQBZ+LPxT8Lah4f1fwrbfatQnmji2XNo6G337lkH7zJzjAyApzyuVPI3PgDrKaj8PRp5MQl0y5ki2K+WKOfMDsOoyXcA99h9DXT2Hww8FaZaSW1v4a08o7Fi88fnOCQBw75ZenQHjrwSa8r+AiTaH468U+HbmZDNAhDrHkqzQyFCykjOMvx0znp6AH0E3Tt+NfLXxI+1/ET40tomkeRJJBjT4mbMY/dhnlLk/wB1jJ90chRgE4z9F+LPEtl4U8OXmq3skQ8qNjFFJJs8+TaSsYPq2MdD3OOK+fvgLfaf/wAJzqOo6xq8SajNB5cC3TfPcSSSDcwdjy+QBjq3mH0NAG98LIfEet/GPW9R8QXv2250aGSymuFKhA4fYqqoC4U7ZGGFHIOeTXvo61VtLCzs5p5ba1ghkuH3zNFGFMjdMsQOT9at0AFFFFABRRRQAUUUUAFFFFABRRRQAHpWV4i0Cz8TaDeaPqAY2t0mxymNy85BGQRkEAjitWkIJHFAHiHwa1m88L65qvgDxDMYZbeVpLEykqj/ADbXEZcgkMcOoVefnNe4Zrx/43eCL/VbODxbpFx5V9o0ReUBtjmJTvDo4xhkOWx35xyAG7f4f+LrXxr4UttUt94mT9xdK6bSs6qCw44IOQQR2I6EEAA6miiigAooooAKKKKAEb7px1r5l+LR8beMddgtn8G6jDBpnmRIbaGS5jlZiMyLII1ypCpgY4x74H02elU9S1Kz0nTrnUb+dYLW2jMksjZO1R7Dkn0A5PQUAch8PW1TQPA0Vl4n0m00JNMjWPzRcx+XIveRtpwpz97J5JJ715xrXxI8S/EzWLjwt4IsFi025jMM91cRfP5bKQ7O3IjjIPHBY4GOSFqLUJtX+P2uC10kPpXhvTBmSS5IYs7Zw2xeC+0HAzhQD8w3AV7d4Z8M6b4S0WHSdJg8u3j+ZnY5eVyBl3OOWPr2wAAAAAAcr4I+D/h3whHDcTQR6nq0bFvts8eNvzBl2RklVI2j5vvZzzzivQFXGOBT6KACiiigAooooAKKKKAA1k6/4c0rxPpbabrNil5aFg+xmIIYdCrAgg8kcEcEjoTWtQTgZoA8J8T/AAYv/Dt+niX4f3Msd3ayLItgzbmHXdsdj8wxgFGzuG7k5Cny7U/iDqMvi2y8UwWa2HiS2BS7mB3RzsF8sHymB2HZ8rYJzjICmvsU4IwK8B/aF0zwxEbW/MvkeJJgB5UKhjPCON8oyNuMYVupxtwQMoAey+Fdeh8T+GdO1uCPy1u4t5j3h9hyQy5HXDAjoOnQdK1Li8tbNA9zcwwKSFDSuFBJ7c9+D+VfGXhXxF4vs8+HvDOoXcTanMq+REQCZDwCrH7h6ZYFeBycAV6Jp3wG8UeI2bUPFGui0vJfvCUm8nyvA3tvA6DIwx4x7gAHquq/GLwJpb3EL62l1PEm4RWkTy+YcZCq6jYSen3sA8EjmuA1L9oa5vZLi28L+GZZ5AFMM1yxY443Foox7kcP6H2rs/D3wU8HaEI5JrBtUulJPnX7B1GV248sfIR1I3AkE9eBjvLLTrTTbNLOxtILS1jzsggjVEXJJOFGAMkk/jQB4LBrPxv8XvLaQWEmkwOwSSWS1FqI1fIypl+cgDJymWHHcir1l8BNY1m8jvPG3iue8kTMe2CR5nMeCVxLL935iTjYfrzx7qAQadQB5pZ/AnwNbLtm0+5u8KBme6deccn5CvJrudN0HSdF83+ytKsbDzceb9lt0i34zjO0DOMnHpk1pUUANAOcmnUUUAI2McjNeEarIngn9pWzmhbba6/CiTwwQKADKTGAee8sayMwweT15z7u2Spx17V4d+0VDcQWvhrV7eWWJ7O5lVJIsgo7BGVg3Yjy+P6YoA9j1DSdO1i3W31PTrS9iR96x3UKyqGGRkBgQDyeR6mqll4S8O6ZdR3dhoGlWl1Hny5oLONHTIIOGAB5BIP1qzoepR6zoenarFGY0vbWOdUY5KB1DAE/jitGgBqqQeadRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAh6GvnjQrU/B74zGyvJ5Lbw1qqskNzOSIiuAU3HJG5HwhY4wG3Harc/Q7ZI4rkPiR4Ofxt4On0qGSKG7WRJreSbOxZAe+ASMgsMjnnv0IB2GaK8k+Cnip5bCfwVqolj1rQ2kQqzeYGiV9pG4Ej5GIXGcY24zg49ayDQAtFFFABRRSHpQAjEbe3PTPevBvFPiDUPil49XwPpiTp4ctrtVv7q1BLS7MlizfdVMghc5BYBueAN/4+eJ5tF8Hw6TayGO41d2ikdSwIhTaX5BGMkovOcqzDvXUfDLwZb+DPCVtbNapFqlwgkv3yGdpOu0kZGFzgYOOp53EkA3fDnhrS/CmkR6ZpFqLe2QliMks7HqzE8seB16AADgAVr0UUAFFFFABRRRQAUUUUAFFFJketAC1DcXEFvC0lxMkUa/ed2Cgc46n3x+dc34z+IOgeBreJtWmmNxOCYbW3j3ySAEAkZwoxnPzEZwcZIxXj80fjH466khjjk0PwtEoZDJuaKQ7sEjhfOfKnjhVAxkEncAbXjP4y6jca+mg+AYYNQbBSS8ERlzJuAxGOF2ju53A7uOBk2/B/wAFVa4i17x1dS6tqsgSVraeUyLGw7SOSfNwAgx90YI+Yc16L4W8HaN4O0/7Ho9oIgwXzpm+aWcjOGdu/UnHAG44A6VvEcYI470AfG3j3S5NC+KWq2WlQPbSRXnnWqWow0e7Ei+WF+7jcCAOnHTFfRXwl8eyeO/Ds01+sKapZy+VOIcgOpGVk2/w5+YYyeUJ4zgcj8XbU+GvHPhbxnBp1mkUdysN3dtKy+a38IdVUnhFfDqGPYj5VBq+NxcfDzx7Y/EPQfIn0bWQsN6kOxlkLgMSmMffVA4YE5YNk4bBAPeMg0tVdPvYdR0+2vrdg0FxEssbccqwyORkHjHQ1aoAKKKKACiiigAooooAQ9K86+OGkDVfhdqEiwSyzWMkd1EsYJwQ21mIHYI7k+mM9q9GqtqFlb6npt1YXcfm21zE0Mybiu5GBDDI5GQTyOaAOO+D95Nf/CzQZpm3OkLwjk8KkjIo5J7KP/1cV3VeI/Ay4Gla34l8KPYXNtJbXL3H+k3is6KCEVPLHBOOTIgwcqCcbM+3UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSMMqRjPtS0UAeK/FnwjqOj67H8SPD5lN1abPtsECfNsAYNMWJPGzahAXgZbsa9M8IeKLHxf4ctNYsZExKoE0SvuMEuMtGSQDkE9cDIwRwQa2bmGO5tZYJV3RSoUdc4ypGD+leGfD03Pwu+Jt14J1W4DafqwE1hN5o2FvmCNgkBWcKUIwSXVAMjBIB7xRSZGcZ5paACmSyJDC8sjqiIpZmY4AA6knsKf0ri/itrw0D4bazcpIgnmi+yxK0m0s0h2nb3LBSzcf3c9qAPOPA7R/Er4ya14hvo47vT9JQJpx+dBGRJ+5YKe+1ZGIbuc49PeQDntXCfCDwrN4T8A2ttdB1vLxzeXEb5Hls4AC4IBBCqoIOfm3c13tABRRRQAUUUUAFFFHSgAo6UmR61h+KfFui+EdKkvdYvEiXYxigDDzZyMDbGuQWOWX2Gckgc0Aa9xcwW1tLcTyxxwxKZJJJGCqijksSeAAAefavHvHPxijlnPhvwOG1HVbr90t7A3yQvux8gI+c43fMCFGQQTzjmZvEXiv463Q0HTLOLSdDikjlvpRKZCo5xvPy7+RlUCjkDJAG4eweB/h9o3gfTI4bOBJb/aRPfugEsxOCRn+FPlGEzgYHU5JAOC8FfByW/ln174iLLfatcOcW0lzuCqMAM7IeT8uAuSoXAxnhfZoolhRI0RURAFVUGAABwAOw9qeBjtS0AFIelLRQB578a9NXUPhZqrGBZZbZop4iTjYRIoZh/wBnFU/AkNj8QvgnZaZqjI8bW/2KdbWTa0RibEZPJw21Y3weDkHGDiu68SaNH4h8Nalo8riNby3eLzCM7CRw2MjODg4z2ryP9m++Mnh/W7EyZ8m6SbYVxt3ptznvny8Y7Y96AD4IeLb+DVNS8Da5O8lxp+77KzktsEZ2PFknOBhSoxwA3sK9wzzivAviLDB8NPivonjSz3GHUZJPttqkYAwAiyMuCMllfcAf41ySc4HvSn5sf1zQA+iiigAooooAKKKKACkYAqQaWkPSgD571CA+HP2pLK4lhEcF9IjwFpR84lhaIt1Jz5m8YPpwORX0GOteH/He3fRtd8J+MrazEr2dyI5XaThijCWKPGehxLyB9f4a9o0+9ttT0+1v7STzba5hWaF9pG5GAKnBwRwe4zQBaooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEYEqQOtee/FzwHceN/C0Y0/yRqli5mtxJx5ilcPHuzhScKcnjKgHAJI9DpG5U0AeefCjxtH4g0JdI1CedPEOlp5N7BecTNtO3zOeT2DZ5DdeoLehggnivn/xvp1/8M/ira+OLESyaPfzFr6O3ib5AdolV+Qp3Z3rkj5h0+XJ910zUbTV9OttQsJ1uLW4jEsUq5AZSOuDyD7HkdDQBbPSvBvjxctq3ivwp4Tha6DzSCV0VgqOZXEcZGTjeNsnJHG73OPej0rwPXIbfW/2pNJtJnkkS0SNiMkbHjhaZR+e0/iaAPeVGG5+gp9IBg9KWgAooooAKKKTI9aAFppIIIB5/lWF4o8Y6D4S06W51e+ijZYy6WocGafnGETOWyTjPQdyACa8Sh1j4ifGe4FpZgaP4cMpW4lhJVfLbcMMxO6U7cqVXCk43BQQQAdd4p+NdnDM+l+CrR9c1kylFCQu8G1eWZdp3PwDjbgdWyQBnN8L/BvUtY1c+IviJeNe3jsxNhvDDPBG51OAAS37tflGBzjK16H4T+HHhvwaPM0qx/0spta7nYvKevQ9F68hQAe+cV1gFAEFnZW9hbRW1pbxW1vEMJFCgRFHoFHAqxRRQAUUUUAFFFFACN0rwvwSkfhb9onxLopvGWC/jkkhhVSqO7bZ1XaMj5EaQBjjocYzivc3O1CSQABnJOMV4f8AFS/Hhf4weD/Eju0UIj8meVoyyLEHYSEADOdszccnkfiAb3x805rv4ZyTgMfsd3FOcEDgkx856/6wdPbtmui+Fus/298ONDvDxJHbi2kBl8w7ov3ZJP8AtbQ2P9odepl+JenQ6r8NfENvM0iqlm9wDGQGLxfvFHIPBKAH+lct+z7cJP8ADcxoGBgvpY2z0Jwrce2GHpzQB6tRRRQAUUUUAFFFFABQelFFAHD/ABd07+0vhbribNzxRLcAhNxXy3DEj0+UMCewJqh8ENW/tT4Y6ejTyyzWMklrKZMnBDFlUH0COg9BgDtXdaxp0OsaJf6ZcO6QXlvJbyMhAYK6lSQSCAcH0NeM/s53M1vB4h0S6R4J7adJDDJ8rBjuR/kPIIKAH3wD0oA9zoooyKACiijrQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUjDKketLRQBjeJ9Ag8TeGtR0e5Kql3A0Ydl3eW/VHxkZ2thsZ7e9eRfBvUZ/BnizVfh3raql60zXELxtvSRvLDHBAzzGAw3EcDBAbg+6sMgivIvjb4Ovb20tPGGjuI9R0QeZKVzvaJW3KynoDGdze4J5+UAgHrhIx1rx7QYIpv2ofEzyxRu0OnI8TMoJRvLt1JU9jhmHGOCa7rwF4rt/GXhG01SAnzseTdI4G5JlA3A44xzkdMhhwOleeeFIbHSv2mvFFtEUgFzZM6Iz8ySv5ErgZOSSd7YHQA9hQB7ZRRQTgZPSgAopCQOp9qwfFXjHQ/B+mG81i8WIMrGKBOZZiOoRe55AzwBkZIoA3SwIOP0rxrxv8AG+0tt+i+DFOpatM3kR3MUZeONyxXEa4/et6YG07l5bkHmdR13x98XdWmg8O215p/hhz9nLcRqYi2HeRiRvbHVFJwOOeS3rvhP4aeGvByRPp1iJbyMsRe3WJJueDhsALwcYUDj6nIB5/4T+Cd3fawnibxzefab6WU3EtgERkZ9wI8xgSrLjPyKMdBnAxXtVtbRWsEcEESQwxKEjjRQFRQMAADoAO1PVSD7elPoAKKKKACiiigAooooAKKKKAEb7pJ7c14n+0dpsMvhbR9SLv51vem3RRjbskQsxPHXMS457mvbT0rivizpk2q/C/X7eBow6QC4JfIBWJlkYcA8kIQPc0Aa0CQ+KvAscdzO5g1XTAss0fysVli5YZHHDZGRXn37Of/ACIF/wCo1ST/ANFRVP8ACzxXs+CMuoFZ7mXQ4blHWZ8eZ5YMqqrZOBsZFHHGCMYAqD9nP/kn99g/8xST/wBFRUAewUUUUAFFFFABRRSZFAC0UhYDv2zijIoAGzjjrXhtiYfBv7TV3FLAkFpr1uTDJJcADdIA5fknlponQLxy3HGAfUNS8e+EtLeSO78R6ak0chieJbhXdHGcgqpJBBBByOvFfPfxb8b6RrfjfRdb8LXrSz2MSYufJZQrpIzIArqM4PPQjnvQB9RXM6W9tLM4crGhc+XGzsQBnhVBLH2AJNeUTftB+F7WeWC40jX4Z4WKSxSW0StGwOCpBkyMHjmvWAOOOc/rXyz4PJ8ffHR9alecWMN1JqTSyOiNDBEcxbs5GAfKUgZ4J57gA9K/4aM8If8AQN1z/vxF/wDHa9L0HXLbxFoVnq9pFMlvdR+YiyrhgM45wSO3rXCa/Fp3xm8B6pBoKRG4tL77NbXV4NqeYhQs6Fdx2MjEDjnPIHWu48LaRJoHhTSdJfyvMs7SOGQx5Ks4UBiM4OCcnkd6ANiiiigAooooAKKKKACiiigAooooAKKKKACiiigApD0POPelpGyRxQB8+WkLfBv4yJDLIw8Oa4u1ZGykceW4LfdTMbdeuI3z1bFaM14NE/akjdbtYINTtViuTIVCtmHCpz0JeKPHcnjvivQ/iR4R/wCE08F3WmROqXUZFxbM6gqZFBwOemQSue2e/IPyml/qekeL7A6rO63ejXccJMjeZ5PkyfdyM5CkEDk8AAcAUAfbeRSM2AfWsnxH4k0rwppEmqaxdLb2ysFBxlnY9FVRyxPp6Ak8A14vq/jnxZ8VtSuvD/gO2ktNKQJ9ov3YxSYyc7nBwqE/wqC5CntlQAdV8RfjLY+DydN0hIdS1bnd+8Bht8Fgwk2nO8EY2ce57HC8LfBi48QXg8TeP72S9u73EzWXzocMgwJD8rKy5xsXAXYByOB1/wAOvhVpvgjT1luVivtZlCtNOyArEwOQsWRlR0yepKg8cAegqBuz+NADLe2itYIoLeJIoYkCRxxqFVFAwFAHAAGAPapqKKACiiigAooooAKKKKACiiigAoozRQAUh6UtIelAHx74e8UHwfpPjfRP3TyahbfZY3kVjvZZPLYYHTMckjAk4BUdc4PuXwDt/I+GUD+V5ZmupXztxvwduenP3cfh7V4P8VtGm0T4la1BJ5jLc3Bu43eMoHWX5/l65CklcjqVP0r6o8E6EPDXgzSNJMSxyW9somVWLDzSN0hB93Lfn+FAHQ0mRXNeIPiF4T8MTfZ9X1u2guAwVoF3SyJkZG5EBZcgggkDOa4zUf2gvB9puFrHqV8fmCtFAFUkdMl2U4P049KAPWMjOO9G4etfPX/C6vG3iu6ex8JeGI1Z0EbHa1y8LsSA5f5UUcjG5cDBJ44ENx4F+M3iKYyanrMtuZ8eZG2o+XGmOBlIsqB8oPyjrz1zQB7/AKlq+m6PbC41PULSxgZ9gkupljUtgnALEDOATj2rzjXvjx4P0tCunyXOrXGHAW2iKorjGAzuBwx7qG6ZweM4Gjfs36eluG1zW7qadkT5LFVjWNsHcNzht4yeDhenI549B0b4W+DdCJNpoFpJIQuZbpTO25c/MN5O08/w4/QYAPLX+NnjXxQZYPCPhUDC+XJIkcl00LPkK24BVXocbgQcc8ZFLJ8KfiT42eKbxd4jjt7eRt8ls8plMLKpVSIUxECRjlWHDEnkkV9ABW75/PrThn0oA8Vs/wBm/RFAF9reozDbg+SkcXzcc8huOvHuOeOfQvD/AMOvCfhe8a70nRLeC5PSZ3aZ04I+QuSVyGYHbjPfNdTSHpQBxnxV1OTSvhhr9zHGrs1t9n2t0AlYRE/gHJr578KfDJPEXw31vxXLqEts9gJmhg8kMsgijDnLE9Dkrx0Izz0r0n9oDXyfDC6NFaX8bLfRGS4a1YW8i+WzbUkI2k528D+6fQ1T+HnxG8P+AvAOnaZrUOqQX0qvd7GtDh0dyUaMnAKlQMHpnPNAHffCDw5D4b+HmniO4knfUUTUJSwACtLGmFAHYKFGT1OTxnA7zI9a8F8MeJdQ+K/xfstQWxSPw/oSyzwxTx7sFgVRmOCPNLbWAzhRGdpJBLe8bcdFIHscUAPooooAKKKKACiiigAooooAKKKKACiiigAooooAx/FWs3Hh7wvqOsWun/b5LKIzG384RbkU5c7iDjC7m6HOMDk15n4c+M+v+L7me30LwBJdvbqHlP8AaioqAnAyzRgZPOBnJwcdDXZfFXUTpvwv1+dS2XtvI+UAn96wj7/7/X8a8w+AGqaDoWh6xc6nrOm2Nxc3KxiO5u0jcoi5B2sR8uXbn2PpQB3Pg74r2/iXxJL4b1PR7nRtZjL4t5ZBIrbACRuwp3Y3H7uMLnNedftAeCbiDVY/F1lDJJb3KrFfMBkROoCoxOcgMML0wCoycsBVPQbab4n/AB4m8QafHJBp1pdw3ckrqWwkO1UB6YZyg+XsCx5219A+JtFHiHwzqekuIiby2kiQypuVXI+VsezbWHcY45oA+P5p/GPjthI66xrrWaIgCJJOIQQByFBwWCDJ6sVycnmu60XxR8WfD+i2uk6b4Wv4rW2TZGp0aUnqSSSR1JJJPqao/AvxZD4d8bf2fdMy2urhbYEZOJs/u8gZ6klfbcOQM19VEAgjANAHhdvqvx4uYIriPR7URyorqsgt0YA8jKs4ZT7EAilhu/j/ABBg+nWsxLbgZGtPlHoMOOPrz717mAQadQB4h/aHx8/6A1j/AN923/xyk/tH4+f9Aax/77tv/jle4UHpQB4RPrnx3tzCJNFtj5ziNPLSF+SCedrnaOOpwOgzkikvde+O9haPczaJA8aYyII4Zn5IHCI5Y8nsOOvQV7ttP+TS4NAHz1e+NPjbp8scc2gSu0kYlH2fTvPAU5xkxkgHg8HB9qrf8LC+NP8A0Ll9/wCCST/Cvo0A55FOxQB84f8ACwvjT/0Ll9/4JJP8KP8AhYXxp/6Fy+/8Ekn+FfR+KMUAfOH/AAsL40/9C5ff+CST/Cj/AIWF8aDx/wAI5ff+CST/AAr6PxSEZBGAaAPAje/H7UI4bq3tFtkkjDKgW0Q4IyMrISyn2OCO4pv/ABkN/n7BXvwBBp1AHz//AMZDf5+wUo/4aFz83Tv/AMeFe/1zPj/xXH4N8G32sYie4RQltFI2BJKxwoxkE45YgHOFPpQB8keIdb8R+LtdiOsNNd6qgFmka2wR87jiPYijLbmbjGcmvXv+FffF3xV+813xP9gguP3Nxb/a2H7roT5UI8tsgnjcM9DiuT+BFg2p/FFLyWVjLZWs10SxyXY4jOc9f9aT9R1r6nHynjv0AoA8h0n9njwxawJ/aV9qF9Pg7mRlhjPPBCgEjAwOWIPXAzx1WlfCXwPo8nmw6BbXEnlbGN3m4DdOdrkqCcdQBjtgE1nXHxf0m418aN4a0y+8R3gOJGsVHlp8+0ku3G0Er833MMDuqq/xs06w1oaLrXh3WtP1EzCLy2WN1GW2ht24ZX0IyCOQTQB6ftye3FOAIPNCkNTqACiiigAooooAKQ9DjrS0UAM2f4fhQVPPTP5U+igBgUhs9PWn0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFI2Npz0paD0oA8P/AGivEP2bRNM8PxS/vLuU3E6rNg+WnCh06lWY5BJxmLuRkdF4Z+EPhQ+DNMttY0JZb97ZHunldklEjYZlyhBAUnaPYYyea4n4meB/HXi3x4NTg8LQT2Nmq28IN9GFuY1dmy3zqy7txyBgjse9dZe6p8W9V0+bTYvCFlpr3amE339pIfs4YbTINj7gVBJBGT7HGKAOW/Z58S3r6rqHhmed7iyitjcWrbyEiCyYYKpGcMZc9sbenPH0A3SvOPhj8KIPAMkuoXF4bzVbi3WKR1BVIhnc6rz8wJC8kZ+XoMkV6O2SOOtAHyP8atCTQPiXfGJY1g1BFvo1V2YgvkPuz0JkWQ4GQAw+g90+Efj238XeGIba5uy+t2iFLmOVl8yRQeJQB1U5AJwOc57E4/7QegPqPgWLVkaMNpc4Z9w5MchCELwedxQ44GAT2Argf7KvvBumaF8TvCUTpaXMYS+01Y5dkQ24flmYmIsjHLHg7CM5GAD6ayM4zzS1i+GPE2l+LNEg1bSZvMt5PlZSMPE4GSjjswyPbkEEgg1sgg9DmgBaKKKACiiigAooooAKKKKACiiigAoJwKOlNJBGM4oAUkY618x/HXx3aeI9RstG0e+iutNtAZZpISSjTklQM9DtUcFePnNejfFn4jroNu3hjQzLceIr5REBbEl7YPwOnJkbI2qOed3HyhvLPFfg+L4efDS3t9TSxl8Qa3cgurw+ZJaQxgMRHIDgMCVDH+LfgZC7qAPSP2eNIWz8FX2qPbGOa/uyFkJP7yKNQBgdMB2lHT65wKZ8c/H83h/TofDmmyBLzUIS9xMu4NDBnaAvbLkOM54CnjkEel+GNIOheFdL0os7Na2scbGWQudwHqSeM9AOBwBgACvnP41wm8+LsdsEH72K3jG1ihbPHJO7nnqBwMcE5JAPY/hJ4DTwd4VikvIFXWL4ebdE8mMH7sY4GNo6j+8W5IxTPF3wzk8RfEXw54otrmK3FjIj3gfkuI3Dx7AByScqSW4GMA4wfQlGD17cgVCupWD6k+mre25v0j81rYSr5oTj5iuc45HPuKALABB9vrTqKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooApavp0Or6LfaZcM6wXlvJbyGMjcFdSpxkEZweMg14z8FJns7zxL8O9bihuDaSPII3RnjkUERyj5uChPllRtGdzHvx7kwypr588Q2Fz4U/aT0jVDCRaarcR+Q6qWBMieTICW4zubcQCcB1PtQAuvaHrfwV8SHxH4aWW58L3DgXdnI5KxZONjHkj/AGJMEgnac5+f1/wf410Txrpr3uj3DMYmCz28q7ZYSRkBlyeuDgjIOCAeDjoMFhjp7V4n4t+Gt/4GuP8AhLvh218t6spW406JBMrROR8qIFyVBxlTuxwQRtoA9vDAnrS15D4E+NdlqJTSfFqrpOrIG3TyjyreQAZGSxyjEZ4PB28H5gtesQXVvcxLLBNHLG3R42DKeccEe9AE1FJkce/SlyKACiiigAoopMigBaCcDNJuBAOeD3rO1nX9I0Cxe71bUbezgVWbdK+C2OoUdWPsMnJHrQBoMRtOCM+5ryb4i/F630Zp/D3hgtfeJGlFsDHGXWBzxgAcPIDgBRkZPOSCp5vX/iF4w+Ier3GieALOddIbdbSX3kY8zIbczOwxEpX7o4fjPU7R3vgH4TaP4GIuwRqGqnP+mSxhfLByMRrzs+U4JySeeQOKAMD4YfCa90XVj4o8VXBudafLQxecZPKLLhnkf+N+SOpA5OSSNuR4nSXx38f9K07SjFPb6AIpL0yMvljZKHlAwSW+9Gm3qGBBAAJr2LxBqqaB4d1LVnRXWztpJxEziMOVUkLnBxkgDv1ryL9n6yOpXXiHxZerJLqNzOYmuSNincRJJhR8uS20n0wMYBOQD3EKRwOK8k+L/wAM9R8SXNt4l0GUHVLKII1sw/1iqSylOPvgnoeCMdCMN67SEZGKAPMV+MdrJC9rB4X8QS+II4fMl0mO0JkibAPzHqEJZfm25wwO3PFVPhloPiuTx34i8UeMbOW11GSNLWFQyeUUOHKoFJyqhYwCD1LAlmzj1fac/jQqkNk0APooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBDnBx1ryv49aCdT+HjX8cUZn0y4Sbds3P5TfIyg9QPmVj2+T2Feq1Q1zSLbXtDvdJvN32e7haFyhAYAjqMgjI6jg8igDG+H/ipPGfg+x1jESXDgx3MMRyI5VOGGMkrnhgDztYdetdOc4OK8T/Z+u306PxF4Yv3WG+sbvzGt2dMg/wCrkIwedpRQSMgZX159tzQBy3iv4e+HPGe2TWbDfdRxNFFcxSMkkYPoQcNg8gMCAc8cnPlkXwk8eeAVuL3wT4jju5JUCTW7QJEZPm7LIWjJA5ySDjcB1wffKRhkEUAeE2f7QN1plwLDxX4WntbyL/XmFijDOCv7qQZHykdW549eOu0T44eB9XaNZb+fTpnlESR3sBXOcYYsm5FGT1LDGCTgV3Oq6Lp2uWn2TVdPt722DbhHcRq4VsEZAI4OCeRyM+9crc/B3wFdFWfw5CCgwPLnlTI99rDJ+tAHSWHinw9qt0LXTtd0y8uCCRFb3ccjkDqcAk1rZryOf9nfwfNcSSJd6xAjsSIo549qDsozGTge5J9TVef9nDwsYx5Gq6yj71JLyRMCu4bhjYOSuQDngkHBxggHpFx408LWtxLb3HiXR4Z4nKSRyX0SsjA4IILZBB4wa4nVPj34HsTF9mnvtR3ht32W2I8vGMbvN2dc9s/d5qrb/s7+EIbiOSS71edEYMY5J0CvjsdqBsH2IPoa6ez+Evgaxx5Xhy1fDb/37PNz772PHHTp7UAecTfF7xl44mbTvAHh2SGQf627k2ysn8QyWxHHna4+fduzxg1Po3wHvtU1ddY8cay17PIyyTQQszNIR/C8h5AwAMKOmQCMA17XYadZ6ZbJa2FpDa26Z2QwRhEXJycKMAZJJNWqAKOk6TZaHpttpum2sdtZ26bI4k6KOp68kk8knkkknmrrfdP0paRulAHlPx68Rx6T4DOlqW+1atII02MykRoys7ZAwf4VwSM7+4Brrfh14euPC/gTSNIuzm5giZphgfI7sZGTgnO0sVznnGe9eV6xc3njH9pHTtOVTNYaK6sqjfsj2KJHdh0B8zC54BwgPv74FIP9aAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSEZFLSEZBFAHz5431Bvhh8bIPEdrDmw1W3DXkUSJ8wJxIF/wBrKJJnjLE5PJr6CXnkYP0ry/46eFrjX/AxvbO2t3udMk+1SyPgSfZ1Rt4Vj9QxXPOz1wD1vw+1ga94B0PUPNeWR7VEldxgtIg2OT/wJWoA6WiiigAooooAKKKKACiiigAooooAKztd1mz8P6He6tfvstrSIyvyAWx0UbiAWY4AGRkkCtBuleMftFas9r4V0zS43kT7ddGRgjEB0jXlSOhG50OCf4enGaAJfgTp01+viDxpfwJHd6vesE/cFQqgl3MbEklWd8Y9YuST09jrm/AeiS+HfBGjaVcIsdxb2y+dGuPlkb5nHynBwxIyM5610lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFbULG31PTbqwu4/MtrmJoZo9xXcjAhhkcjIJGRzXh3wB1STS9e8ReDrl5CYZWuIQ0YUBkby5M/wAW4jy8Dn7rdO/vLfdNeFeKobfwD8fdF8QBBBpmsgx3Llo0QSn93Ix6bQN0UjE9SWOeoAB7rkZxS00Ebh606gAooooAKKKKACiiigAooooAQ9K8E1mF/iF+0TDpE5jutH0RA7xxyK0YCqGferEgkzMsbgDJUAHG0mvcNUvo9O0m8vpdvl20LzNubaMKCTz26V45+z7ZXGoN4h8WXtyJLm+ujC4ChcvxI7EAAcmQdMYweORgA9tC4xxTqKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEIyMV5T8ftIS9+HJvzCGm0+5jkEoxlVY7CMnnBLLkA9QD2r1eqer6dDrGjX2l3DOsN5bvbyNGQGCupUkZ74NAHO/DTxC/ijwFpOpTtuuhGYbgl9xaRCULE4HLbQ2O278a66vE/gPqT6XeeIvA99LG13p108sZQswcBvLk2kgAKGCkdCfMJx1r2sEHoaAFooooAKKKKACiiigApDyKWkPSgDyj48eIp9L8Gw6RZSMt7rM3keWivveEYLhSpA5JRSDnIcjHXHXfDzwwnhPwVpmmeT5NyIhLdjKkmdhl8svDYPyg5PyqoycZryfxfpzeNv2jLHSAJY4tNhi86WKHdtRFM/POBlpAmTwCw4Pf6AUYxkc/nQA6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApG+6aWkPQ0AfP3ju4uvB3x/wBI1+KFvs2oLEsjgNtlUjypQOQNwXacA4B2E9a9/Xk8nkdq8w+N/g8eIvB/9qJIy3ekb5kVY2fzUbaHTCgkH5VIOCBt5wCSOk+G3iUeLPBGn6k8081yE8q6eaERkzqBvIwApXPQjtwecgAHXUUUUAFFFFABRRRQAVleJdag8PeGdS1ecIyWlu8oSSQIJGA+VNxBwWbCjg8kcGtQ9DXlnx8uzb/DZo1lCfabyKIgqxL4y+3ggD7meQRx0zggAyP2etFkbTNX8U3j+fd6hceSssq7pcL8ztvJJO5m5BxkxgnPFe11yfw10P8A4R34f6Pp5uxdYhM3mrGyKfMJkwAwDYG/HzAH1A6DrKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAgvLdLuxntpCwSaNo2K4yARg4z3rwb4DhtB8f8AivwzKVlkiUhplXgmCUxnGeefMz+HtXv56V4T8XlHhP4leF/GkBdImcR3gt4lDsIz82WyAzNE7Jz0CDnngA92BBpagtp4rqGK4t5Umt5VDxyxuGV1IyCCOCCDwanoAKKKKACiiigBDwK+fvGzr8RfjnpHhYOs2maYStwFOVYgeZMNyfMMhVi6/KynoSa96vbu3srGe7uplht4I2kllY8IqjJJ+grwn4F6XLrPjTxF4xmEnlNJJFEZEwXklfexzngqoAI5/wBZ14oA98AO7J5p1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIenTNecfGvw3/AG98ObyeOJnutNIvIirKuFXiTJPbYWbAIyVHXofSKZLGssTxuiujDaysMgg+oNAHE/CLVhrHwz0STzEeS2hNpIqsCUMZKqGx0OwIcHsR689zXhXww1BPB/xZ8R+Bniljtbu5eSwjEjlIdoZwNrc/NEVy2cnYOuQR7pkHoaAFooooAKQ9KWkPQ0AebfGvxKmgfD26tUm2X2qf6JEg2MxQ/wCtODzt2blyAcF16ZBro/h7oqeH/AOiacrs5S1WRyxB+eTMj44HAZyBx0x9a8n+KcEfjj4y+HvB8UrsluoF1tfaYw37yTbuGN3lKpyMgkgdq98RAgAUAKBjgY/lQA+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPSlpD04oA8E+KNlF4V+L/hnxe6xx2NzLEt5Lh32shCuzADj90VwB12Hg9/elOef5jmuG+L2jHWPhlrSrDFJLbRC6jMigmPy2DOVJ6HYGHGOCR3qH4M+Iv+Ei+HNgGj2S6b/xL5MDCt5artI5J+4Uz05zwBigD0GiiigAqtf31vp2m3V9dSeXbW0TzSvtLbVUZJwOTwOg5qwelec/GzWl0f4Z3iGNmk1B0s0wAQpbLEnkcbUcDryR2oA5X4FJdeIfEPibxtqRLXV1J9nRgzFV3He6DOeABEFGTgDHSvca4j4UeGT4X8AafbSxGK8uR9rugdwPmOOAVboQoRSOOVNdvQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAR3EEN1bS29xEk0MqFJI5FDK6kYIIPUEdq8N+ErjwX8UPEvga4DpHI5ks2mlUswTJUfKMEvEwc9MbMY9PdTyDXgnxiuW8F/Erwz4ysI0891ZZkQKpmEZCuGO04LRybN3JAA6YFAHveQTilqvazxXMUU8LbopUDo2CMqQCPpx2qxQAh6HNeAeP7qLxp8dtA8LkGex091E8RRSjOf3suCDkgoqKcngqcDufd9QvrbTdPub68k8u2tommlfaTtRQSTgcngHgc14t8E4brxH4x8T+O7iNoYrqRreKMMrDLMJGUkYJ2KIxkgbtxPUGgD3ADBp1IKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARhlSK4f4s+GJPFHw81C2gg869tiLu1XLZ3p1AC/eYoXUDHVh9R3NIeRQBwfwe8Rf8ACSfDvT5JP+Pix/0GbAIGUA2nkkklChJ9Sa7xvunjPHSvn/4OiTwt8XPE3hRw0Vuwk8tJImDOYpP3ZGegMbs3PUEc9M+/kgjrigDy74866NK+Hclim7ztTnS3DK5Uqqnex4HP3QuOPvV0Pwq086Z8MvD9uf4rbz+SCcSkyf8As/8A+vrXn/xCtE+IHxm0Lwfkmy06Bp7144m3JvAdlY8AAqsIBHQydz8te4Acg0AOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkYZHFLSEZGKAPDvi7b3HhDx74d+IFlGpt1kW1vFjjQMxG7IJOSS8Rdc4+XYOfu49iudVtYNFm1VZo5bOO2a5EqOCrRhdwYN0wRznpWL8Q/DCeLPBGpab5HnXXlGWzxtDCdRlNrNwuSNpPHDHnmvFNL+IltH+z/qWkXN6h1ZGNhbQSzO0kkL45HOQqoXUDO35FB+8AQDc/Z9s77U9X8R+LL4rI9zIYTOVUNJIzeZJwPujlDjGDkY+7XvNcb8MPDf8Awi3gTTrKS1+zXciefdIX3sZW6knAwQNowBxjGWxuPZUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIehr5S8ceEGf46SaNbK9yuqXsdwRyxAlO6TO0cKPnPso5Jxmvq0nI4pnBHB46fWgBR97GP8AP+RT6YDzyadkZoAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKDRQelAHJfEj5Ph/rFz/alzpslvbtNDcW1z5LGQD5E3ejNhcDk5wK8n+EWka9460zVb3WPFfieK2ikSC2lttWdSXxukyCWOQpjHIx857jI7P4+35tPhlLBvI+13cMBAHXBMn4f6v8ASn/AfTxZ/C62nUL/AKbcyzkjJPDeXz6f6vt2xQBh+JfEuu/CHxHpMd3q11r/AIavVcCK82vdxbSpc+bgbzlwRuOCMrhcBq9nTr1Gfbp0r53/AGktQhl1rQNNVZPOgt5bh2IG0rIyqoB65/dNnj0969v8GwS23gnQLe4ikimi023SSOVSrIwjUEEHkEenagDdooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPSlpGGRjOKAPnX9onWprzXtI8OW/mOsMf2h0jkLb5JDtVSg/iUKcHqRIemefdLeOw8K+GreGW5MWn6bapF507DIRFCgscDJwOw6ngV55qHwA8M6lqM19LqmteZcTtNNmaM5LEk4Pl5HJzk57+uahHwE0i51q2n1HXtWv9OtreOOG0uJAXVVIxH5naPG4bVVSM8EUAed+E9EufjH8T73XNUtDHpPmebdBXI+VVCxQhwOTgLk/KSAxyDivqIAg+38qrafY2mnWiWthawWltESEgt4wiLyScKOBkkn8at0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9k='] Multimodal Competition False Theorem proof Geometry Math Chinese 72 "如图, 在锐角 $\triangle A B C$ 中, $D 、 E 、 F$ 分别为边 $B C 、 C A 、 A B$ 上的点, $L 、 M 、 N$ 分别为线段 $E F 、 F D 、 D E$ 的中点. 证明: $A L 、 B M 、 C N$ 三线共点的充分必要条件是 $A D 、 B E 、 C F$ 三线共点;" ['设 $\\angle C A L=\\alpha_{1}, \\angle B A L=\\alpha_{2}$,\n\n$\\angle A B M=\\beta_{1}, \\angle C B M=\\beta_{2}$,\n\n$\\angle B C N=\\gamma_{1}, \\angle A C N=\\gamma_{2}$.\n\n由分角线定理知\n\n$1=\\frac{E L}{L F}=\\frac{A E \\sin \\alpha_{1}}{A F \\sin \\alpha_{2}}$,\n\n$1=\\frac{F M}{M D}=\\frac{B F \\sin \\beta_{1}}{B D \\sin \\beta_{2}}$,\n\n$1=\\frac{D N}{N E}=\\frac{C D \\sin \\gamma_{1}}{C E \\sin \\gamma_{2}}$.\n\n三式相乘得\n\n$\\frac{\\sin \\alpha_{1}}{\\sin \\alpha_{2}} \\cdot \\frac{\\sin \\beta_{1}}{\\sin \\beta_{2}} \\cdot \\frac{\\sin \\gamma_{1}}{\\sin \\gamma_{2}}=\\frac{A F}{A E} \\cdot \\frac{B D}{B F} \\cdot \\frac{C E}{C D}$\n\n$=\\frac{A F}{F B} \\cdot \\frac{B D}{D C} \\cdot \\frac{C E}{E A} \\quad \\quad (1)$.\n\n由塞瓦定理,知 $A D 、 B E 、 C F$ 三线共点的充分必要条件是\n\n$\\frac{A F}{F B} \\cdot \\frac{B D}{D C} \\cdot \\frac{C E}{E A}=1$.\n\n又由角元塞瓦定理,知 $A L 、 B M 、 C N$ 三线共点的充分必要条件是\n\n$\\frac{\\sin \\alpha_{1}}{\\sin \\alpha_{2}} \\cdot \\frac{\\sin \\beta_{1}}{\\sin \\beta_{2}} \\cdot \\frac{\\sin \\gamma_{1}}{\\sin \\gamma_{2}}=1$.\n\n因此, 由式(1)知\n\n$A L 、 B M 、 C N$ 三线共点\n\n$\\Leftrightarrow A D 、 B E 、 C F$ 三线共点.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAhsCeQMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKD0oAKK8d+L/wAUrrwjqOm6ZoF3bm/WTz76Nk8zbHwVjYdBvyScEMAAcjcCfX1BAHQn1xigB9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAHoazNd1e10HQ73VbyVI7e1iaRmd9oJHQZ9SflAHJJ4rTPSvH/iXba/458VWvgnRJpbawtoo7vVLkZ2jc4CKRgZKhS4XdhueMoDQB5N8TPDeo6bBpHiPXZ3fWvELz3VzAVYLbKBGUiAb5gVD4IJ4wFH3cn6j8N6jPrHhnSNTuFjWa8soZ5FjBCqzoGO3JPGTxz+Jr5w+MXg7XNAisNR1jxXc679qllCrNG0YgYgMdi7mUA9wu0DAwPT6E8Cf8k+8Nf9gq1/8ARS0AdDRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAR3Ama2lFu6RzlCI3kQuqtjglQQSM9sjPqK4vwl4Q1rQ/E+uaxqut2+oPqZQN5doYmfYqhCcMQoX512gHIIJYk4HcUUAebfEH4aal4+uEjn8SR2unwyb4LcafvZDtAbL+YM5OT07+1dR4O0bUfD/hy30rUdTj1A2oEVvLHb+SFhUBUUjJycDOffHOMnoT0r5J1b4iX+mfGO+8SWV3Jd29vdSW6Ri5LRzWocjYrcjY33hgEAkHnFAH1tRXN+C/GGneN9CXVtOSRFEjQzRSrho5BgleOCMMDkHHI75A6SgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKD0oooA5nx9r7+GPAusavE0gnhtysLxqrbZXIRGw3BAdlJ68dj0r5L8CRWN1470O21G3W4tLi8jgkiKght52DI+rD6dq9u/aPvGXwvo9lt+WW9MpOw9URh16D754PJ7dDXhurRP4W8Wxf2eXhudPNvIrupys6xozNhwCBvyQrAEDAI6igD1vXtN134J+IzrPhqOe78KXLq9zaSElIiTjYzcleo2ydc4U7sHd7XoHiHTPE+mRalpN3Hc2z8EoeY2wCVYfwsAenv9M6M9vDdW8lvcRJLDKpSSORQyupGCpB4II7V85zWes/Afxu2pR273nhnUHaMLFKQGXJKI5IwJFHIJHzDcAeWwAfSdFZmg6zaeINFs9WsH32t5EsqZIJXPVWwThgcgjJwQR2rToAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKD0oqO4njtbaW4lbbHEhd2weABknigDxPxxdjxF8ffC2gQLBKNNxLKJHmTY5BlbBVh8wREZSMckBiQMDyz4xwLbfFfXY0yQWiclgActCjHoB3P/wCuvQvgRv13x94r8TyKsbyA7olJwDPKZMdMnHl46965T4m6VLrnx21XTYI2knuBEsKKQC7/AGVCq5PAywAyaAPcvhJqkWp/DTR9tzDPLaRC2l8nfiNkxhTv53BSucfLn7vy4rqNa0PTfEWly6bqtol1aS43RvkcjuCCCD7g5ryn9nC5L+EdWtNoxFf+ZuB6lo1GPw2frXtFAHz+yeKPgfqkzW8N3q/gpny28KDEWOAcrkoQdoJICuTjAJBHt+jaxYa9pcGp6ZdLc2c+THKqkZAJB4IBGCCMHmrd3aQX9lPZ3USy29xG0UsbdHRhgg/UE188wDUvgB4pfzY/7T8OatsBnQBJRs7Y6B1DnjowxyDnaAfRlFUtM1G01bT7fUbGZZrS5QSROuRuU9Mg8j6HBHTFXaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAD0rivij4itfDnw/wBUmupJY5LuGSztfKHJmkRgvPYDBYkkfd4ycA9rXgHx51W71XxJoHgyAkRSslw5VQ7PI7tGg24z8oDHAPO/pwKAO4+Cnh3+wfhzZTSRMl1qbG9lyVPytxHgjoCgRsEnBZunQeba3/ydYn/X1bf+kyV9E28ENrBFb28aRQRKEjjjXCqoGAAB0A7dq+dtZ/5Otj/6+7b/ANJ0oA3Pgk1vovjvxp4XimndYLgm2Ehz+7hleNieg3Henbn8MV7pXhenvcaH+1Pd28NnHBb6tAQSYiodTAsrOmMAkyREFucnf35r3SgAPSs/WNH03XtNm0/VLOK7tJQQ8ci5/EdwR2I5HatCg9DQB89QT+I/gl4rht7uW4vfBF3P5ETyuXWFCS2RtHySAMxICgSYbAyMr71p19b6np1tf2knmW1zEk0T7Su5GGQcEAjIxUWraTZa5pVzpeo26z2dypSSNh1HqPQg8gjkEDFeEeH9W1r4J+LDofiaS5uvDV3xbXaF2jiGSd6J25Y70HPcbsDcAfQ9FV7W6gvIIp7a4jnglQPHLG4dHU9wRwQasUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAAeRXgug258Z/tH6tqcsBNnobMgEkIdfMj/dIN3RWL75Fzk/Jx0yPW/GPiBfDPg/VNaLoHtbctF5iMytIeIwQvOC5Uf4V53+zvpUdr4LvNT2KLi9vCrOrHmOMAKpB4BDGQ8Do30wAex1836z/AMnWx/8AX3bf+k6V9IV883Nul1+1osblgokjkBHqtmGH4ZWgB3xruIdF+LXhPXpy7Q26wSSRxqN22KcucZIBJDY6jpX0CpJxnr6GvBf2lNPkNv4e1FIG8tTNBLN2BIRkU/XDn8DXuen3X23TrW62FPOiWTYTnbuGcfhmgC1RRRQAh6GsTxN4Z0zxdok+lavB5sEnzIykB4n7Oh7MOfbBIOQSK3KD0oA8A8IeJLn4SeMbjwL4iuZJ9KlljayvW/dxwq+cuAw+4WI3fNtVlc8/MT74DyOnIrlfHvg208a+G7ixkgtmvljZrKeZT+5k/wB4cgHAB65wODivMfhn401XwXq0vg7x7LJYRrErWM17JxHg7QgfkFCM4bO1dhHfAAPe6KYDyOnIp9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIeh4zS0HpQB5D+0JqEVr4AgsmaPz7u9QKhcBtqgszAdSAdoP+8PpXceAdAfwx4G0bSJVkSaCANMjsrFJXJd1yvBAZiBjPAHJ615j4yU+Nvj9onhtubDR0We4imhR0ZsCZwASCyuoiTnpyQMdfcQOR04FADz0r521C4e1/axSRApZp4Y+emGtFU/jhq+ia+dr5S/7WKj/ptETiLzOlovbt9e33u1AHb/HrTft/wyuLkzbP7Pu4bnbtz5mSYsdeP9bnPPTGO9dT8PNQi1X4e+HrqGYzD7DFE7tnJkjXY455OGVue+Mj1qfxzYf2l4D1+zW0+1SSWE/lQiPeWkCEphectuwRjnIGK5D4C6mdQ+GUNv5Oz7Bdy2+7fnzMkS7unH+txjnp15wAD1GiiigAooooAK4j4gfDjS/H9hCLqR7S+tgfIu4xkqD1VlyAy55xkEY4Iyc9vQelAHhfwy+Ktza6vH4K8V+Ws9s4sbW7CvvklDiNYnUKeefvHbwvzZJzXulcL8Rfh1YeN9DnSKC1ttYG14L0xDcWXOEdgNxQgkd8cHBxiuH+HPxIl8N3beB/Gr3EWoW1z9nt7qUtIGDH5UYnnHIKv0KsOgAJAPcqKaCDinUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSH7p+lLXCfFjxDb+HvhvqzTgtJfRNp8EYyNzyqVPIB+6u9uwO3GcmgDzf4K2ba/wDE3xL4s2obUPKUOGX95NIWBUdMBVbIJyNy9etfQdeffBzw5/wjvw608PJvm1H/AImEm1tyr5irtA4GMIqZ6/NuwcYr0GgAr5/H/J3f+f8Anwr6Ar5/H/J3f+f+fCgD389DgZPvXhH7Od9PAfEeg3NwimCWOeO2JXfuO5JWGOSPliB6gcdM8+8V88/DOL+xv2g/Edg1tJCJBdxxI4KlVMqyKeeSCqjB7gg0AfQ1FFFABRRRQAUUUUAB6V5v8SvhXp3je2mv7cNBrsUGIJlOFmxyEkB45yRuGCMjOQAK9IpD0NAHj/wl+JV5qc7eFfFQ+y6xaKqwPcExyXAGAVcPyZBwfUgnjgk+w15p8XPhufG2jpdaasS63ZAmLcMfaI+8RbtzyueASem4kZXwq+KbatPa+D9fhuotet1eETTZY3BjySHz8yuFU5znO05OSBQB7BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV4D+0NfXd/qvh3w3ZhpHnJm+zo3zSSM3lx/L2P3wD33Edq9+PSvCdBEvjn9onU7++tmNn4dDwQKYw8aNG5RAW2jksZJRnJBXgkLmgD260t0s7O3tYySkUaxqW6kAY5/AVYoooAK+fx/yd3/n/AJ8K+gK+fx/yd3/n/nwoA+gD0NeFXsT6L+1RY3NzdQxwapAGT58ZBgaJVOeMmSPgDOcrjnge614P8dpYNB8YeC/Ei2vnXMErPIpkI81IZI5FTOCBy784798CgD3iimL2z1p9ABRRRQAUUUUAFFFFAAehryr4l/DY6iT4p8LpJZ+J7V/OBt22/acdjzgOOx78g5yMeq0HocUAeZfC/wCJn/CTwHRdeKWniW0YwyQyDy2uNo5YIQMOMNuUdME8Dgem1458V/hxqN3dnxj4SkuYddhBNylvK4lmUIEDRkHhggxtH3h6nhuk+GXxIsfHmliNyINatkH2q2Y8uOnmp0yp4z/dJweCpYA7+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ9DQBjeKtU/sbwpq2ohmVra0llUqyK24KcYZ1ZQc9MqfoeleZfs76dLH4a1bV5pvMkvrwKfnRj8gOSxB3BiXPyt2wQPmydz4463HpPw1u7fc32jUZEtYQqqf4tzkg9tqkZGeSPrW78NdAi8N+AdHsktpIZpIEuLkSoFk851DNv4ByM7RkZAUA9KAOuooooAD0rw7xOg0v9pvw3cw7We7t0L7kUAbhLEfugEnavVix7dAFHuJ6V85ayyn9qi3XYoIubYbhnLf6OpzyT64/Ae+QD6NrzL48W7y/C+6dUDCC4hdicfKN23P5sB+NemnpXJ/EnT4NS+GviKC4DFEsZJwFODvjHmLz6bkFADfhrrM/iD4daFqNxvM7QeVI8khkaRo2MZcsepYpu/E8nqeuryv8AZ/vftPw0WHc5+y3ssPzHgZ2v8vt8/wCea9UoAKKKKACiiigAooooAKKKKAA9DXjPxI+Gt/Z6ivjTwKJbXWoG8y4trUYE2OS6L3Y/xJgh/TOQ3s1B6UAcN8PfiPpfjnT41imEerwwo15aMmwhjgM6DJym7IHJIyucZ57mvGPiZ8O7rT9Qfx/4PkNpq1mxuruFMKsgA+aRRx82M7lOQ4J75DdZ8NPiPZ+PtIYsi22rWoAu7YfdOejoe6nnjqDwc8EgHd0UUUAFFFFABRVWW+tYZlhluYUlYgLGzgM2SQAAevIP5VC+s6VG7RyalZq6nDKZ1BB6YxnOaANCiqOn6tpuqeadO1C0uxC+yX7PMsmxvRtp4P1q9QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUHpRQelAHgXxIu4/Efx28L+HTIk9nYvCZ7aWH5Q7P5kinI+YNGsXcj8c170ByOnArwT4fWv8Awlfx98Q+JUcy2mnSSCKeKZWR2OYY/dlaMSEY4GF56A+/UAFFFFAAelfOmuStJ+1NaxsEAiuLZEKxqpI8hW+Y4yxyx5JJxgdAAPos9K+ctZcn9qmBcKAtzbLwgH/Luh7devX6egoA+jaQ9DjrS0UAeKfAFL7S7rxh4dupo3TTb2NdsYyolzIjkMQGIPlLjPp0GTXtdeEeGPsXhz9p3XNPQzudRik8snB2ySLHctk8fLw4GAf4c55Ne70AFFFFABRRRQAUUUUAFFFFABRRRQAh+6a8N8d+CtQ8AatH468BwpbxW6n7fYxKxQoWLO5Xd/qz8oKKAEChhjGV9zpD0NAHK+BfHWm+O9GF/YkRXEZ2XVozgtA56A8DcDjIbGDz3BA6uvAvHngzVvh/4mj8aeBreSK22vJfWsSjyoVXDMCoIJibBJAGFK5BHy49S8DeOdL8daOL2wby7iLat1aMcvbuc8Z/iU4OGHUDoCCAAdXSHoaWg9KAPCf2kINPTStGuGtohqjzNGlxuw/kqMsuP4l3MpyfuknH3jWz8PPh/wCFJfhppCazo9jPd6qpkMs6bZpC2XAjYncP3ag4UjgFsDmuD+Peoz658RdN8P2DtcNawpGtsqYK3EzZwDgZ3L5Pcj6HNHgiDxXf/F7QNA8SGc/8I3EdsKiPFtEIhs5TggnygTkk5HPegDu/hf8ADg+DfiB4mm/0x7SCOO2sLiZAqzJJiR+3zFdqLuGB97jsPXqKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuM+KHiI+Gvh7qt9HL5dzJEbe3KzeU/mSfKCh67lBL4AzhD0612Z6GvFf2g2ub2z8M+H7RDJcajfsYY8jDOuEUZOMZMv0oA6D4GaP/AGT8M7SVmO/UJ5LsqcYUHCLjHYqinn1xXpVZXh/SV0Hw/pmko6yLZ20cBkEewOVUKWxk4yRnGT1/GtWgAooooAK+b9Z/5Ouj/wCvu2/9J0r6Qr5v1n/k66P/AK+7b/0nSgD6QoPSikPQ0AeA+LbiXQv2mtBvVt4s3n2dOeNyyhoCxx3HOM/3R2xXv9fP/wAe7eDTPGPhPXi8wlJKSYI2qkMiupXjOf3jZ57D6n34DAHf39aAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBFcwRXVrNb3EUc0MqFJI5FDK6kYIIPBBHGK8C8S6Dq/wW1oeJvCPnXGgXJ8u9s58ukOT8gYg5x82Fc8g8EndhvoKmyxpLE8ciK6MpVlYZBB6gjvQBieFfE9h4u0G21fTZVeKQYkjBy0MmBujb3GfxGCOCM7h6GvnHxVp158FPHlv4i0R0l0a/c5sZJlTd1LxBQclVyCr4wpKg5/i9n0TXND+I3hSW4tleewuA1vPDKNjo2BlTg/K2CCCD6EHNAHhvw1WHxv8eL/XJXkkhhe41GGO7QSMV3BIlPJClN6EYzjYAOgI9G8YeMvBXgm71nXNPlsLnxZdxmAokhmcvHtQK+CRGF4JXK7tncjje034T+BdNuWuIPDlo7spQi5Z7hcZB4WQsoPHUDPX1rVPgTwhg/8AFKaH/wCC6H/4mgDF+Eravc+BLfVNbvby6vdSnlu2+1ZHlqzbVCA/dQhQ4AwPn4GMV3dRxIkUaRxqqIoCqqjAAHYCpKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEPQ14Oka+OP2lmcmOew8PIMcOhDQ9uByyzuT2BCnqOvtur6hHpOi3+pSjMVpbyTuMkZCKWPTPpXiX7N+iulprOusy7JJFso1VucqA7kjHT5kxg/3vagD3miiigAooooAK+b9Z/wCTro/+vu2/9J0r6Qr5v1n/AJOuj/6+7b/0nSgD6QoPAooPSgDyL9oPSmvPAEF9HbJI1jeo8kp27oomUocHrguYwQPQHHGR6P4b1GfWPDOkancLGs15ZQzyLGCFVnQMduSeMnjn8TWH8UtM/tb4Y+ILbzvK2WpuSxXdnyiJcdR12bc9s9KzPglqg1P4X6Yv2mSaazeS1m37iUIYsqZPYRtHjHAHHbgA9FooooAKKKKACiiigAooooAKKKKACg9KbJIkUTySOqIilmZjgADqSTXkHjH4+aLozSWmgRDVrwbl8/JW2jbkdesmCAcLgEHhqAPVr/ULLTLY3OoXsFpbqeZbiUIo/FuK8P8AG/7QMUJ+x+D0WYgqWv7iIhSMZwiHBz2ywHQ4B4auA8dafrd5IPEXjTV7e01K+gaS10kRyG4jQPhE8sgCJPvHLNkjd95siuRttBvbrQL3XAqRafaMkRllbb5srEYij/vOFJcgdFUk4yMgGrp0Ou/EvxvaWV5fT3d7eSbGnkO7yYsl3IUkAKo3MEGB2HXFegxf8JH8CvFUFp9rnvfC93LE1zO9oRCSSQ20BjtkCq3AYZwMggCui+A3w/l0y3XxdqB2y3tvss4CpBSMty7ZXq21SpBxtYnndx7NqdhBquk3mnXIY293A8EoU4JVlKnB7HBoASxvrTUrSO8sLuC7tpM7J4JBIjYODhgcHkEfUVbr5zXTNZ+AOsx6mJU1nQdS/wBHuAqmFg6jKnBLAMPmxycgOCBkEe7+HtbsvEmhWWsaczNaXUQdN33l5wVPuCCD7g8mgDVooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoPSig9DQB5b8c/E/9heAZLCGXbd6s32dQHwViHMjdDuGMIR/00zmus8A6A/hjwNo2kSrIk0EAaZHZWKSuS7rleCAzEDGeAOT1ryD4qtc+JfjT4b8NNE8tpC0I8pI9+fMcGVzxnGxVzkkAITxk19BqOnGMdqAHUUUUAFFFFAAelfOeqKrftWpukVP9JgIJzyRbJxwDyfwFfRh6V86alBJcftXxpGu5hcQORnstqrE8+wNAH0XRRRQBn67a/b/D2p2fleb59pLF5f8Ae3IRj8c145+zbqM0uj67phSMQW9xFcKcHcWkUq2een7pcfU/h7meleA/A21XRPiN4v0OO5Z0ti0ShjgyCKUoG2+2fw3e9AHvpzg461474v8AjXf+DvEVzpN/4QYbCzQSf2kB58O4qsnEZxnHTORyDyK9jPSvmHTceOv2kjeQndbQX5n861/eIY7YYRyRxtcxpz0+cY6igD6J0C+1DUtFtbzU9LbTLyUEvZmYS+V8xx8wwDkYPTjOD0NatFFABRRRQAUUHpXG+OPiNofgW0P26bztRkiMltYx53y84BJ5CLn+JuwbAYgigDsTypHtXmPi343eGNAtSdMni1q+EgX7PbyFUC85YybSvboMk5BHHNcOZfiD8brdYdkOjeGS4LyBWCzlWAOP4pSDuIHypleSCAa9J8D/AAp8P+CJUvIke+1RQwF9P1QMACEUfKvA68tyRnBxQB51D4X+JPxUunl8S3U2g6GxVXs9rxhwOflhJyfmQHMh43ZXOMVsa/c+A/g3p+7RNPs7vxOgEcQml82aNygzJLzmNSpzhQu7dgAAkjU+JnxhtvBtxNoum27XOs+WpLvjyrfcCRnuWA2nbgDDA57V438O/h3qXxH1me9u7iZNNjn3Xt45LSSufmKox4Zz3JPG4E54BANHwN4G174neK18Q+IUmk0mSXzbq7mOz7Tt+Xy48YyONuVwFAIBBAB2vG1snjHxrpXw48IwyQaPpB8u4ES5iibdiSUjI3bAcFmIJYsOrZb1Xxxrln8NvhtIdNH2Vo4lstNRE3YkKnaecg4CsxLddvcnB534BeFZ9E8JT6zdBkl1h0dImBG2FN2xsEA5bcx6kFSp7mgD1SytYLGzt7S2iWG3gjWKKNeiKowB+AGKsnpRRQBn6xo9h4g0mfS9UtluLO4AWWIsQGwcjkYIIIByK8Lsr3xF8FfF8en6jJdz+Bp7jy4Z5R5ixq+WDLtGVdedy4+bDkKcgj6EPSsvX9DsvEug3mj6ihNrdR7H2kZU5yGUkEbgQCMjqKAJ9O1Gz1azivtPuorq1lyY5YmDK2Dg8+oIIx6g1dr51t9Y1D4CeKZNDuB/avh+/wBl0HUGOWMZKsVz8u8Y5GfmAQ5XJr6BsrqG+soLu2lWWCeNZY5F6OrDII9sGgCzRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIehx1pa4T4w6s+kfC7WZYnVZbiNbZdy5BEjBXH12F6AOL+FFq/iz4keJfH05Wa1897SweSFd2PlwRjlGSEIucfN5h5yGz7fXmnwL0waf8MbOba4a9mluXDAg53bBwf9mNT+P5+l0AFFFFABRRRQAV86ai4T9q6M/L/wAfEC/MT3tV/u9/09eK+izyDXzxdiQ/tZKIoY5W82MlZBwB9kXJ57gfMPcUAfQ9FFFAAeleF6JZN4S/aZvrU28jw67bzTRSSSqSA/75mwB03xSIAcHGDz39zPQ14B8aydC+KHhDxPdjdZRmPdHFzJ+4n3vgHA5Ei45656dSAey+KtUh0bwnq2oz3HkJBbSMJAwVt20hQuSPmLYAGeSRXh/7N1lv1nX77bGfJt4oc/xDezHj2/d+vYV23xubxLdeFf7I0fQJNQs75kFxPbhpZYijb9vlKvAJVfnyRwQQMgngvhz4j8a/D/R7vTG+H2sX8E1x9oVvs80TIxUK2T5bAj5Vx079c8AHv97rem6Xd2Fpe3aRXOoTeTaxEEvK2MnAGcADqTgDIzjIrTrwLwfZ+O/HHxPsNf8AFOnXFjY6UGdIpoHt40JUhViRsliWwWJ7Lgn7or3HUNSsNJtjdaje21nbhgpluJRGoJ6DLcUAXK5bxX488PeC7bdq98qTNgx2sWHmcHOCE6hflPzHAyMZzxXl+v8Axp1nxDrMeh/DnT5Z5XLIbqWDc7HdgMik4RAMHc4/i5C4OdnSPgfb6hcTav461GfV9ZuZTJMIJSkOMjAyFDdBjjaADgD5QaAOX1D4geOfijeT6V4Gsp9PsIcGa4SYJLt3/KWkyBHkAHYpLcNywzXWeCvgjp+jXUWreJLg6tqwbft3HyI24wefmdhg8nA5+7kZr1GxsbTTLaOzsbSC0tY87IYIxGi5JJwo4GTk9Opq2ehoAZjA6V4d8Xvi8+nST+GvDVw8V+jGO8vY2GIhjBjQjJ35PLDBQrgc5Kw/F34v3Fjc/wBgeFNQh3eWRe3sJ3MrNwEjboCBklhyCRggg15h8O/BFz8QvFH2eWSdLKI+df3QUsQCegJ43ucgZ9CcHGKANP4c/C/VPHl6mqXh8vRRcf6TcO+ZJyOWVBnJJyBuPAyepBFfVtpaW9jax21pbw29vGNscMKBVUegA4H4VBpWl2OiaXbaZptrHbWlumyKJBwv9SSSSSSSSSScmuF+M3jObwj4OMVjMItS1JjbwurlXjTGXkXAzkfKOCMFge2KAPPr26f4q/Ha1tLcxXehaO2SpcGKSKNh5j4JZXDyEL8v3l2ZxgkfQ8SJFGkcaqiKAqqowAB2Arz74O+D4fC/gu1ujbvHqOpxJNdl2OcZJjXbnC4V/ryc88D0WgAooooAKD0oooAyta8P6R4is2tdX063vIcMAJkBKbhglW6qcd1II7V4j4b8S678G9bbw94xaafQZ1ZrK4QeYFK8ZjOeF6AoehIPAPzfQdYHizwppfjLRH0nVkcwFw6PG214nGcMpIIzgkcjoTQBsWtxDdW0NxbypLBKivHIjBldSMgg9wR3qevnLwZ421n4U+Ix4L8WRL/ZaykJMv8Ayx3tkSKx+9ESSSDgjJ7gqfov0NADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAA9DXjX7RGpW9v4L0/T38s3V3eiSNWQkhEU7mBHAILoPox9zXsp6V4VrN4PGf7R2j6SJGaw0Ft+YZlYGVF81j04O8RxsvJ+Q8jnAB7B4e0qPQ9AsNMhgt4EtoVjMdspWPfj5iASTy2Tkkk5ySTzWrRRQAUUUUAFFFFAAehrxHxVLNZftMeFphK0hls0ULIBiNW85CFwAfVvmyck9sAe3V4T4ytYLf9pbwvLFGqyXMMMszD+Ng0qA/wDfKKPwFAHu1FFFAB2rxv8AaNgjfwNpk5X96upKgOegaKQkf+Oj8q9kPSuB+MOlPqvwu1hY7aOea3RblNwX92EYM7gnoQgfpyQSB1xQBv8Ag3WpfEXhDStYuY4457uBZJEjztDdDjPbPbnHTJ61t3E8NrbS3FxKkMMSF5JJGCqigZJJPQAd68P8D/Fvw34Y+FWmw6jeyXGq2qSR/YoYm3t+8O0ZxtA2lTnPOD1IIrCi034mfGCctqE7aToUqxuylHit3T5SCkZ5lJHzjJI/2l4FAHYeJPjxpdnf3Gk+GrCfWNQDeRBKvMEkpwF2bSWkG444A3YwDgg1y1n8KPG/xD/4nPjTWpLGZlAgjmhEjhdo/wCWSlVj9xwcg5APNeteFfhr4X8ISQzabpwa8iBAvLhvMl5GCc8BcjI+UDqfU12FAGH4a8KaL4SsFs9G0+K2UqBJIBmSXBJBdzy2CxxnpngAcVuUHoapalqVnpGnzX+oXUVtawjLzSttVecd++eAO+aALp6GvnD4o/FVvE1zP4T0GVIdMMuy71DJcTKp+YrsBIiGCxZQSwHHGQ0Xinxz4j+KWsT6L4YJsdDtvN+03X2kxRyQ5KmWdiF2x7OdmD3zuIAHPaR4UuvGHiOXw54WKRaLbbLa81RIv9eoJYyycksHZCUTO0bUBwQWoAy/AHw51Px/fTJbTR2tjb48+7lBIUnoqqDljwe4GByQSAfrjRtJs9B0e00vT4RFa2yCONAAPqTjGSTyT3JJ71FoPh7SfDNh9h0axS0tmbeUQk5bABJJ6nCjvWqckHHWgBT0NfN16Yvil8fYBYAXOmaYyCZpmjkikghkyxUD7yOzYGSxO/PA+VfVvit4ttPC3ga/LzqL++he2s4d+HdmGC4wDwgbcT04AyCwrL+C3gd/CnhUXuoWrRavqLeZKsq4eGIcJGRk4P8AEeh+bBHy0AemAcjpwKfRRQAUUUUAFFFFABQelFFAHJ+OvA+meO9BaxvEWO5jy9pdKMvA5HUeqnAyOhA7EAjyzwr8Q9S+GF8/g3x5FcNBb7VsryFfMCRE4BycF4sZIwCy4K4/hX389KwPFPhLR/GOkvp2sWvmR5JikVtskLEY3IexH4g9waANe3niu4Iri3lSWCVQ8ciMGV1PRgRwQR0PpVivAPh94v1P4deI5fBHjaZ4bQ4+w3MhAhh5bkMQCY36A5wpXGB82PfAeR05FAD6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooPSgArwb4GaY+s+K/EfjWZSY5Z5IYWYJlnkYSSHA5UqNg9DvOOldt8aNcOifDPUfLlaKe/K2URCAg7/vqc8DMauM9eeK0fhj4eXw18P9IsiqefJF9puGVApLyfNhsE7ioIXdnkIOnGADsqD0NFFAGN4gsNX1LTlh0bW20e7Egb7SLZJwVAIK7H468/hXh/wu8b+PPHPiz7BceKRDDbw/bJFbToXEyq6KYztCkZDH5gcj9a+ie1fKPxFsr/wR8X76fTdTfTzqW65juy5JjSfcshO1SQA3mYwCwAUjJwaAPRdF1fxn4r+JWv6ZpPjDHh7TZTm4hsLfKls7YlDLlsEMu7kEJnuK9gs4poLOCKe4a5mRFSSdlCmRgACxA4GTk4AxzVXRNFsPD2lW+maZbJBawoqhVUDcQMbjjqxxkk8k1p0AFeH+Ov8Ak5Lwd/16Rf8AoyavcK8P8df8nJeDv+vSL/0ZNQB7hSHoa5zxP418P+D7eOXWtQSBpDmOAAtLJwTwoGccdTgZwCRXkmt/EbxT8S530P4fWF7a2ySK1xqAlEUhXAxlhxEMhjwxZgB05UgHrHirxz4e8HW+/WNRjjnZd8dpGN80owcYQdASpAY4XPBIrxi78deOvi+0+g+GtNj0/TnRVvWE2dqMcHzJSB8pwTtQbiobhhkV03gj4HQWlx/avjSWPVb47DHah2McZGCCxOPMOABtPygAjDZGPYbe3htoVhgijiiX7qRrtUZOeB06nNAHl3gj4H6J4bntdR1WQ6nqUaZMbgG3jcgcqpALEHOC3HfaDjHqwAGKdRQAUHoaK57xb4t0rwZow1XV2mEJlESJEm55HKkhRyAOFJ5IHHrQBparqtjommXGpaldJbWdupaWVzwB06dSSeAByScDmvANR1nxT8Z7y4ismbSfA9vKv2ued0RVVMuXkbqzYwdgJVTsJx9+qt1b638Urq48VeJL99F8DWrnazttAiU9I053yE4UuQcscDO0IK16uofFHW4fC/gi1ksfCWmIilCPLiGTzLKM5Zic4BJY7SeCXNAD0s7f4h3ll4B8EWf2Pw7pspubjUrgkvMcbDO68ZY5IVevT7ighffvCPhew8H+HrbR9OU+XHl5JWUBpnPV2469B7AAdhT/AAv4X0nwjpEWm6RarFEoG+Q4Mkzc/O7D7x6/ToAAABu0AFB6Gg9DXl/xu8WL4d8CS6dFKVv9YVreMBcjyuPNJyCOVYL1z8+R0JoA4S9sl+MXxqlNqUXRNGRYpLkJvWaONycAglSXYvtJI+QbsEgg/RI7dhXE/CvwjL4O8FWtlewxx6lMTNdeWQ3zE8KWA5KrgHrznBIxXcUAFFFFABRRRQAUUUUAFFFFABQehoooA4v4ieAbLx3oTwSKq6lbxv8AYLh3ZVidtpIYDgqdgByDgcjmuC+Efji60W/fwB4vea11K2lEVk1yRjGBiHd+RQ5IYEAHAUH3A9DXD/EP4cab4900NKDDqttG4tLhG2/MVOEk4OU3YPTPXBGTkA7mivGvht8SLy01YeBPGiPbaxayC3trmU487A+VHPdiMbWHDgjvy/stABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUHpRRQB4B8eIbjxD438LeGbPZ9qkRjHuDYUyyBNzEA/KPLJOBkYJPGK93tbeO1to7eFQsUShEUHOFHAHrXiHw08rxv8a/EvjH9zJbWX7u1ZN6E7h5UThT6xRvuDd2GB/d93oAKD0opD0NAHJ+PfFq+FPDztBmbWbvMGm2sal5Jpj0IQDkKSCfwHUgV4B8XPBN74aXSdU1XU5tT1fVDK2oXBX92JV24VOBhQpwowPunoMKPU9P+HHi3/hZVn4y1XxFY3U0Tn90IH2pCVZTHGMjaMOcc9fmO45zo/E/wHrvj6KzsLXVrO00yA+c0UkJZ3m5AJYfwhScYxyTnPGADtfD1+dV8N6VqJzm7tIrj5sD76Bu31rTPSvP/APhzXfAeitp2saxpk+iWkcksbiMxPBlt7bmJA2D5ycjPzdcDA57xl8dbDRtSl0vw9ZJrF1tAjuY5w0PmMOMbcmTBIBAI7jIxQB6rqGpWGk2xutRvbaztwwUy3MqxoCegy3FfL3j/wAcTeJ/ilZ6t4PWeSeyiS3spI4S7zsCzFhGVyOXIwQeFz3wOwg+EPjTxveQaj4919olVtwtYysjoMgMqhcRRllUHcu7nBIzmueTRdO8O/tJ2elaVbm3soLqDy4y7Pt3Qqx5Yk8kmgDrtB+CF1rlzc638QdRnudUu3Ehht5gAuV5DtjqOAFTCgIACwOB7Hp2mWekWMFjp9rFbWsIxHFEm1VBJJ49ckkn3PrV2igAooooAKD0pD0Ncj458f6V4AsLe51GOaaW5ZkgggwXbaMknJGFBIyefvDg0Aa3iLxHpvhfR7jU9TuFSGGNpAgI3yYx8qAkBmJIA9yK8P0vS9V+OesS654klbS/DWnh0gjgODz12uwKkjALuR2AAGflk0TwHrHxY8Qx+NfEjLbaNPN+4sWkZna3Q/KikY2qTxngsSzADIJd401TUPidrUPgfwOVTQ7L5J7mJWW0YquUDMikBAUKqMbSwBGeCADNvL3xB8W9Yi8J6HCLDwlYzCNZUi3RpHGuFZ3HBYjlUBAyQD03V7t4T8KaZ4O0SPSdKjkEAcyO8jZeRzjLMQAM4AHQcCovBnhOx8F+HbfSrFAD8slzIGY+dNsVWkwxO3O0cDgV0lABRRQehoAZK6RRPJI6oiqWZ2OAoHUk+leBeDBP8VPjDd+KL+EyaPo5AsWClApWTdAp5DFuWc9Rng4BUVvfHXxddWGmWvhHSVaS/wBZGJREWMqx7gFVVXkmQ5XqeAwwd2R3vgbwrB4N8J2Ojw7GkjXfcSqB+9lbljkAEjsMjO0KO1AHS0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUHpRRQB518TfhtYeNtLnvoYWHiC3tttpIrnDhSzCIgkLhiSNxwQSCcgYOZ8J/iOdStx4Y8TSPaeIrPEardgo9woAAyWOTIO4PJ4Iz82PWO1eXfFb4ZR+K7c65pbvBr9lCWQxD/j5C5ZU9nz91h9DxggA9Roryv4R/FKTxsjaRqcO3WLW38150GEuEBClsDhW5XI6ckjHQeqUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAB6VyvxH1WXRPh3rl9bzGGdLUpFKGKsjPhAQRyGy3B9cV1XavGv2gNZvo9A0rw3YwPI+s3JDBPmaQRlCsYXBOS7ocgg/LjkGgCx+z3pctn4BnvpINhvr52icsDviQKmcA8YcSDnH48V67Wdoumro2h6dpaSNJHZ20dusjDBcIoUE+/FaNABRQelcx4y8b6N4G0pL3VZmJlbZDbwAGWU99oJAwAQSSQBxzkgEA6c9K4Pxb8V/C/hS3uI21GK+1KIMq2Vs+5i4O3a7AEJg9c84BwD0rzKfxl4++L9vPo2gaTHpekzkpc3e98bRjdG02MYO5cqq7iPVSRXnvxH8EJ4A1610oX7XrS2a3DymIRgEu64C7jxhB37mgDs7a5+IHxsuZrf7Stj4cabbKEQCCILsJXj5pH5VgCcZ6bR09t8H/D/AMPeCIdmlWrNcsCr3k+GndSd2CwAAXpwAB8ozk8183+BNX8S+ALU+L7SzW60K4k+x3KC5XazjJAYKSyMOzMvRv8AaGfqLw34i03xVodrq+lys9tOMgONrowOCrDsQePTuMggkA2T0POK+dddaJv2pbLy2YkT24cGJU2nyRgZBy3GDk4PJXGACfoo9K+ePEFjPa/tR6fPNHtjupbeaFtwO9PK2E4H+0jD8PcUAfQ9FFFABSHkGg9DXlvxQ+LkPgiVNM0qK2vdZYB5FkYlLZSQRvAxksM4AII4Y8EAgGj8Qviro3gi3e2Ro77WuNtkrf6vcM7pCM7Rg5x1OR2Oa43wN8N9W8WahceJfiXBcXUroqWlpdOyMADu3FFxsXqAh4OWJUcE6vw6+F7Lew+NPFry3fiC5Juvs80YVbd2OQzLj74GCBgBCemVBGF4z8da38Q/ENx4D8FeVJaOwS41CKQ7ZYwB5hZsfLFk7SRndgAEhgpAF8Z+NL/xnqkfw9+HqRfYRGILq7txiHygApVSowsKggFgMn7q8fe9R8DeB9O8C6GmnWBeWV8Pc3L5Bmk7nGSFHYAdB3JyaTwL4F03wJowsLECW4kO+6u2QBp3HQnk7QM4C5wOe5JPV0AFFFFABVLUtStNI0241C+mWG1tozLLIQflUDPQck+wq4wypHtXjPxh8VXOoajafDnRBE97qrRx3UzMT5AZ1Kr8pJGQNzZH3CODngAzfhXaz/ETx7qvjrXImmhtJBHp8Mw3pA2dyhTwP3a4/h5aQPw3Ne81heFfDOneEdAttI02ILHFgySY+aaQj5pGPOScfgMAYAFbtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeRfEz4cXUssXirwTAbPxDBK0s32V/Le4DDDMB90vySem4M2cnArY+G3xHtvE1lBpGrT/ZvFFsWhurSdfKeV0zuZRwCcAkqBlSG4AANeiHoa8a+Kfw4vF1SPxz4QEset20iSz28KFzMwIxIi4Pzf3l6MPfO4A9morzj4X/FC28c2osrsLDrsMbSzwxxMsTIHwGQkt2ZAdxByTgYr0egAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApD0NLRQB59ffF/wzp+uPos8eqDUFlEIgFi+92J+Xap+Y7sgjjkEYo1P4u+H9FEX9q2WuWHm7vL+1adJFuxjO3cBnGR+YryDRUPjT9o97mZ2eKDUHmEkYCEpbg+VkEd/LjBAGSCenWvd9ZSz8a+GPEmi2UlvcSoJbFjLho0uPLVl5AP3GZecZDD1FAGn4d1+w8T6FbaxprObS43+WXXaTtYqePqDXh91JceK/2noEi/0q20qVFH7sFYEiXc24gHpKWwT/ABEDjjHtljDb+EvB9tDdXWbXSNPVZrjyyMpFGMttGT0UnHPpzXj3wQNsZPEvjzXbuyt3vLprcTyzeUFZj5soIYhQCWjx1PynoOoB73WB4k8XaJ4QsRd61fpbq4PlR4y8pGOFUcnGRzjAyMmvJfEPxt1jV9R+wfD/AEi4vFj3CW4e0eV3OTgpGp4UqpOWGTnopXJm8N/A+81S/fW/H+ote3Vxh3tUkZjnC48yXI6Dcu1OOBhsDFAFfXPid4o8f3Z0T4c6feRQAlbi/KgNtZTj5jkQjhiDneSBjaRg6HgX4HR2t1JqvjZotTvMoYbfzWeNMYO6QnG9uNu05XGfvZG31nR9H07QdOg0/S7OO0tYgNsUQx2xlj1ZvUnJPc5rSoArWlpbWFrHa2cEVvbxLtjiiQKij0AGBXzr4f0WL4tfFLxfq0hQ6esEsVvcJGCisyeTA7RudxOxWfjBDIOV6V7P8SdXl0P4d65fwzNBMtsUjmXcCjuRGCpXkEFhg9jiuM/Z60maz8C3OoTRsn2+7ZovmUho0ATOByDvEg59B7EgGX+z3NY6p4O1zQrq2W4Ed2Jpo5o1aJ0kQKowc55ibjHp17Z2s6Pr3wW8VN4g0BJ5/B88q/abUyF1jDcFWGeCCMLJz1UEnJDO+Ct3dWHxY8WaLLsRH855EOCfMin2gA/R3+vWvfLy1gvrKe0uollt542iljbo6sMEH6g0AZnhzxJpXirR49U0e6W4tnJVsDDRuOqsvUHp+BBGQQa8Y8TX63f7T2jwCBYms2ggZwcmYlDJuPAxxIF6n7o+gr67Yan8CPEcWr6DILzQNTZY5rW5b5gy87CwA5wWKvjuQwOMtj2+t2fiP9ozTdX092a1up7Z03Y3L/o6AqQCcEEEHk9DQB9QUHoaZLIkUTySOqIilmZjgADqSTXg/if4max4+12Hwf8AD8zW/myMJtRMhiYhWJ3IyklYsDcT95shQB0YA1viT8XJrHVP+ET8JIl1q8j/AGaafkiKRhtCR4IzIGYdeFIxgnO3V+GPwqi8KwvquurBfa9O/mb2AkFsck/IxGS5zlm/AcDLaXw5+HOn+ANI82Typ9YmT/TLwdAOTsTP3UHGTxuwCQOAvC+OPG2q/EPWz4H8CFpLV8x39+h/duv8XzjpEOQSPv52gEEbgA8b+PdX8f60fBHgLdJG24Xl/G+1XUHDYYH5YvVur5AHBG/03wN4F0rwLo62VigluXwbq8dAJJ2/oo7KOB7kklvgnwBovgjTYoLG3jkvym24v2jHmyk43c9VTKjCg4GM8nJPWHO04IBx1NAC0V5/8TfFHibwjo7axo8eitYwKon+3NIZpHZwoVEXA4Byct68DHNP4SfETUfH9nqjalBZxXFm8YVbWN1GxwcE7mPdT37UAemUV5p4z8T+NdJ8a6ToXh6LQ7uPVVYwrdJL5sGwDe0hEgGzByCBk4IwSBu9BsPtn9m239oeR9u8pftHkZ8rzMfNtzztznGecUAU9f16w8N6HcaxqczR2duql2VCx5IAwBzySB6V5N8KPDV14m8W3vxM1aONIruWU6dB5m9kO4puJGBhVBjAI55OBgEx/HrUJNZuNB8F6YoutSnuBcPCpwykgpGCTwM7nJ5GAATgEGvXfDmjR+HfDmm6PE/mLZ26QmTBXewHLYycZOTjPGaANaiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPQ0tFAHkXxR+F99rV9beJPCTJaa3BnzVifyGn6kOHBGJBkjJIyCPmG0Z2Pht8ULHxjHHpd4r2viGCLNxBImFkK4DMhx+JU4IyeoGa9EP3T9K8a+KvgR9LYeOfB9vcW2vW9yJrj7JyHUghn8vByckbuxUuWByaAPZqK4T4XeO08b+GI5rqe3GrwsyXUEXy4wflYKSTtKkc9M7hxiu7oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqjrWpJo2hahqkiGRLK2kuGQHBYIpbH6VePQ15d8bpdYuvBn9h6Po19qD30qCdoLZ5RFGh3jlejFlUcgjAOcZBIB4N4Q8CX3jfTfEV/bXRNxpcImEPlNJJdOwdggwc5Ow+uSR9a97+A9itl8L7acbf8ATbmackE5OG8vn0P7vtx07mo/ghE+meEv7HudB1bTb+KRri5lvbV447h3YgFC3oixgjjkdDya9TPSgDyn4+6ymnfDiTTyheTU544V5xsCMJC3Tn7gGOPvZ5xXy5aG2F7AbxZWtRIvnLCwDlM/MFJBAOM4yCK99+OlyniDxX4a8KWkxa4EpM6RyREhpCgQYZ1+fAJAYqDvXnnjB+I/gnTvh/430nW106OfwvcSxpJaLGz+WEUK6EscFmXc6ksCSG/u5IB2fw/+KHw30+yGmWNqfDpaQALcKWWVmY8tMNx44yZMBQcA4FewW1xDd20NxbzJNBKgkjlQ5V1IyGB6EEHP415B4j+B3hvxJpceo+FJxp008YniOWkgnVl3LwTlASVwRwBn5T28pk+HXxF8H6q93p+m34mgJ2XWmMZN67iMjZ82D12kdOoxQB9eUHpXyTo/xv8AG+ksxk1CLUoypAivYQwBODu3LtbPXgnHJ4r07w/+0PomoXbQ65ps+kxnGy4SQ3CDgk7sKGXoAMBs57YoAn/aD8RnTPBtvoaJuk1eX5mZflWOIq5wc8MWMeODxu6cV6R4Y0dfDvhjTNIjEX+h2yRMY02K7gDc2P8AabLfie9eDXfiCx8eftFaHcWs9vLp1s0K2sxDx7xGpm53YO7zCygYAOF+p+kj0oA+fNDtodE/anvrODzWW7eWTc+Mq8kPnt26ZLAe2Oe9fQZ6GvDfidLe6H8bPBviAzRWliwitWuZHjAx5ribIbkARyjLYwN3BzXt2R3xgjpmgCpqulWOtaXcabqVqlzZ3ClZYXHDDr16gg8gjkEZHNfJt9b2/wALvi+Y08y9ttLuklUNhXZGRWAJHG4B8ehI6DPH1pqOpWek2E1/qF1Fa2sPLzSuFVecdT78Ad818n+IpLb4l/GWYabOIbbUrqOGKd0J+RUVN4XgnIQkA464OOTQB13i/wAaal8ZNS0/wt4OgvYbNh5t4tyFQNgjDyFS37teD15YjgkLXsfgXwPp3gXQlsLNPMuZMNd3RA3TuB+ijJ2r2z3JYnxC5tPFfwG8QRXFtOdR0G6ZPMJjKRznByjfe8uQYJBBOQAeQCtdJ8QPiN/wnVvD4Q8AfatQub7Jup4g0I8sAgx/OF4PVicLjjnccACeNfHGqfEPXj4D8Dt5lrIxW+1CJvlkj4D4btECSCed5wBwQH9O8DeB9L8C6KLGwHmXEuGurtl2vcOO59FGTtUcAHuSSV8EeCNM8C6Kmn2AElw+GursoA9w3qfRRkhV5wO5OSepoAKQ9DS0HpQB5Z4/vINc+JHg7wVNaRTQNN/alyJ0yrKiyBE68/dkyCMH5ecZrzvwmY/h3+0LdaN+4isrqV7KPbvk2Ry7ZIFB67s+UpJyOW7fMPRfBgXWfjJ421l7iRzYJDplvGJw6InVxjqPniz2GWfqea4P9oTT207xPouu2ca2tzNGQ1zC4SRpYyCrcHOVBX5u3yjPAoA6/wAN3sviz4+63qSQFLLQLQ6arcKfM8wj5hkk5PnkEY4C5wevo3ibxBaeGPDd7rd6WMFrHuKqDlySAqj03MQMngZrjPgppk8PgybWb8O2pa1dyXtxLJbeU5B+7z/Ep5cEYH7w4Hc8L8afE02q+OdP8FDUBZ6WrQLft5nlqXkZTlySRsVdjDIwCSTnjABo/A7QtR1vWNQ+IGuytdXNwzQW8k8fzM3G+RcjAAA8sbeMb14Ar3Wqmn2Nvplha2Fonl2ttEkMKbi21FACjJ5OAO5NW6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo7UUUAeH/E34falpGuN8QvCMnl3luyTz2cETb3fO1nUJ94MG+cYGRuJJya7r4ffEfTPH9nK9rFJaX1tjz7SRt20HoysMbl4IzjI7gAjPbHgGvB/ib4Ov/Bd7b+MfAFtNp7IjjUY7IZjRRhg3lYxs4O4Y2japwOTQB7xRXLeBPGNl4z8OW17BcwNepFGL2CM4MMpHI2kkhSQ20nOQOvWupoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoPSis3xDfnSvDWq6ipIa0s5pwVAJyiFuM8du9AHjfgC+fxP8AH3xDq5mW8s7KCaC1mmdZtiCRUUxEABQRvIIB4YglixY+teLPDkPi3wtf6HcStCl1GFEgGSjghlbGRkBgDjIz04rzL9nfw7PYeG7/AF2f7upyqkCkDOyIsC2c92ZlwQD8meQRXtJ6GgDw34LeKbzRNSm+HPiGGS1vreRzZRtGMg/NJIhYcEYJdW5BBPzfcFe5dq8N+OXh/UrDUdO8eaKFhl08KtzOpUMh8wCJsE4YEsV6HjGcjp634a1+08T+HrLWrJiYLpMgEEbWBIZeQM4YEZ744oAyPFPw68NeMVMmp6ehvBE0aXcbMkiZGASQfmIxkB9wHPqa8c8S/s8anY2zXHh/UF1JwR/okyLE+OBw+dpPU4OOB3PFfSJ6VynxF1k6D8PNc1BXnSRbVoo5IDhkkk/dowORjDMpyDkelAHxcRyfbvmvQ/BHj34gaa8VtoL3WrwRKcae8T3YRFUKPlHzog3LjaQMjvjFevfBvwbp/wDwrKCTVbGyvf7Rme62XNsj7EyFUEnO7PlhugxuxjiqHi74BWF20N54PuBpNzEM+RNJI0btuGGDkl0YDPZgcLwvJIB5Z48+Kd94+0i1sr3TorY283mh4Jn2t8pBBQnB65BPIGQDyc+xeG/jX4Li8K2Ed5eS2d3b2yRvbG0P3lUA7fLXywpIOB8v0XpXi/jjSfGnhezg0rxPN5tpcSmS3l81JjIUVVwJDmQKoZflOB6DvXKaPa6fearBb6pqLadZuSJboW5mMXHB2AgkZwODx6UAetQXXiH4/eJvsc8i6VoGnDzZIosuFJJAz03yHkAnAChiBkkMa94XsPBXxt8Gab4dhlSNltHlZmMjSkzOjuc8AlBzgADnAFVrb4VeKrE3N94C8WWmo2h/dmbTNQMLuQoYo207c5PALehOM1554q8Q614k1j7Rr98l3e26fZvNjEW3arMcKYxtYZLHcMg564xQB658VPH1x411CDwP4NaLUobtlFw8CEmWRXJ2KzDbsXYrlxwR3ADZwNKk1j4EeOj/AGvYx3lhfRhDcQqMyxZBLROwyGX+JCQDxnjaw1fhB478C+DtFaDUHubbVrl2NzdPb+YmATsVCmW24CnGM7ie2Me0x3fhX4g6LNapPp+sWUkamWFXDtGHB2lgPmjbrjowIPQigC54b8Raf4s0K11jSpWe2nGcOMOjDhlYdiDx3HoSCDWzXzRfWXiL4E+MEvbOW4u/DF1Ntw/KzKeSjgcLKAPlbjOCem5a9/8ADfiTSvFWjxapo90txbOxVuzRuOqsvVT0/AgjIINAGxVS/wDtosZvsH2c3YQmITg+Wzdg2OQPcZx6HpVuigDz7wBpHjTSr7V5PEX9jrb6hey3jC2Z2lEhwgAH3QhVFYEksB15J26nxC8If8Jr4RudJWcQzbvNgdkUgSKDtDEqSq88lcNjI5BIPW0h6GgDidQv4Phf8LY5JS9y2mWkcMavIW86U4VQCxzt3HOB91QcDAAryTwb8LZ/idpF34s8Q63dreX8ziJ1jBztIXc2eq5BUKu0AKOew0fiFq158TviBbeANEuAmn2cxN5M8WMSoSsjcnLqgOAOMtu6jaw9003TrXSdOttOsYFgtbaNYoo1JIVQOBk8n6nJPegDwr/hFfib8LJFl8O3jeINGjBAtNrOFzjP+j7iw+dyf3ZP3ctgcVs+EP2gdM1W+jsfEFkNLklcIl0ku+DJz9/OCg+6M/MOcnaBmvaT0rn/ABD4O0HxRaXEOpaZbySzRsguvJTzo8jGUYgkEcY7cCgDVsb601O0ju7G6gurZ8hJYJBIhwSDhgSDggj8DVuvC9X+BeqaOBdeBfE17bSgfNDcTmJ2OGyVkjA7bQFKjqTuHSm2XxJ8e+A71YviJo81zpsuSt7bxR71Yg7VVkIjb7jHYcPgk5wACAe7UVw/hv4r+D/E1zDa2mqCC8lxstrsGJixIAUH7rNlsAAkk5xnrXcUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFB6GiigDwXxf4K1D4Za+fH3hFg1ksjG+08DascbnkADAaPP8OPkIUgEDK+oeBvHGl+OtFW/sD5dzHhLu1Zsvbuf5qcHDDg47EEDqJI0lieORFdHUqysMhgeoI7ivAPiX8P9S8IaunjDwHA1jb20Zku0s2OY237i+wkjy8EZUDaApyMZoA+gaK5XwL440vx1oovrB/LniIW6tGbLwOc9em5TjKtgZx2IIHVUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAAehrxz9oPW5rTwrp+hW4lM2rXPzKqBhJHGVJX1B3tGRgc4PPY+xnpXgHiq0n8W/tKabp0cOY9LW3adjEWURp+/O7HY7wmTjlgPqAe0eG9Gi8OeHdO0aHYUs4EhLpGEEjAfM+0dCxyx9yeT1rXPQ00ADFOoAoarpVjrel3Gm6lapc2dwpWWFxww69eoIPII5BGRzXh/we1K+8KfETWPAF2dtp500kKyph/NTGGBO0lXiXPQ8BSMDdXv9eM/HXw7PFbad4502VYb/R5Iw7Ebjt8wGNgGJHyyMeMc7+ThaAPZu1eIftH3rnRNB0mNGdrq7eYKq5JKKFAH/f3pXo3gLxX/AMJl4OsdZMYjuJAY7iNAdqyqcNjPY9RyeCMnINeYjyvHP7S3/LvLY+Hocj76MxhP6ss8nspC9+4B654V0dtA8KaVpMmzzbS2jilMbEqXCjcQTjgtnHHpwOlYPxD+JOm/D+xhM8ZvNRuDmGzR9hKAjLu2DtHbocngDgkR/Ej4k2HgLTAq7bnWLhCbW16gdg8mCCEyPq2CB0JHAfDX4bSeL5m8beOBdXdxdTie2gnwFuF28O690PG1flGEHBUgUAZemfDbxb8UTdeKvFF39mNxbOLGJzsbcB+6+TaQkOST/ePJwd241/g54I8KeONA1e21awnbUrSdD9pjmZNsTr8oAyQSCj9V6Ecnt9KAfTpxXx5FLqg8W6/4S8F3DCw1i+e1WO2O9ZYEkcIfM5bYFJyQcFSc5FAEmq6PJaeOL7w38PtQ1e/gmH2WUISpkPSRWZSFePJOWYKOT2+Y4Fkb7wf4r0681HTbmK4sbmG6NrcKYWcKwYDkcA464PrzX1R8N/hzZeANMkQS/atTucfabojAIGcIg7KPzJ56YC+a/FuCG6+Png+3uIkmglSySSORQyupunBBB4II7UAbdlbfB34iWkcsVrY6XdDKCDctlMuDnO1W2PkDqN2AeoNQ6p8A10947/wZ4hvLDUodxX7TIRw3HyyRqGT5S46NnOOOTWp4q+AnhzW5BPo8p0W5aQvIIkMsLg5JxGWG3kjG0hQBjb0xxyaZ8UvhDbzS2Ri1bQooyzJlpoIhliW8vIePGSzFfl5ySccAGd4guvitoOiXXhrXNPm1fTHVg1zLbm7V0LkA+aOR83K7sOvynjgDjfBHjvV/h7rMstrGskUpWO7tJcjzApPf+FhlgDg4JOQele1aD+0P4ev5ki1ixu9LLZzMp+0RJ1PJUBv7o4U8nsOa77UfD3hHx1YC6u7HTdVt5ECJeRFWbarE7UmQ7gA2QQGHOQepoAn0HxjoPiLT7S9sdStT9oACwNMglRjg7GUMcMMgY59uMZ6Cvj34kfDa+8BaiHG+40a4ci1uiOR6RyYAw+BnoAwBI7gdR4b/AOFqaH4U07xB4d1GTWtHnRP9DjLXBhWNtgi8uRd4GSynyv7uc4CmgD6aPSuS8f8AjO18EeGJ9RmdTdyKYrKEru8yYgldwyPlHUnIwM4OSAfNrD9oU2chsvE/hm5tLyHCz+Q2CG7/ALpwCvbgsa5vxR4k0j4xfEXw1pUEt3p+mjMUkl2yIxZjuZUALLuYKqj1YgY4GQDvvgp4Hm0jT5fFWrKRq+rAunz8JbuVcZUYAZm+Y9cAKPlO4V65UUUaxRpHGqoigKqqMAAdh6CpaACiiigAqO4ghuraW3uIo5oZUKSRyKGV1IwQQeCCOMVJRQB5dr/wJ8H6x9olsoZ9KuZdzq1s2Y1c5IPltkbckfKu3gYGK4y5t/i18LYvIsZjruixtmI+WbgIgyArL/rIwFQZAOxc8HNfQlFAHk3hX44aHqktvp3iCOXRdV24nedQttvHGAxO5c/e+YADGNx4z6dZX9nqMC3FldQXUDdJIZA6noeCCfUH8RWB4s8BeHvGtqY9Wsg0wAWO8iws8YGcAPjlfmPynK5OcZ5ry2b4L+LvClzcXvgjxS4Xf5otndoXk2liiNjKSHoPmCqdxyAKAPfKK8Hs/jdrnhi5XSPHnhudbyLANxCPLeRR8u/YflfJDnerBT0AA5r1Pwv428P+L4I5dI1KKScx+Y9o7BZohxncnXgkDcMrk8E8UAdLRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFB6GiigDwTxj4Ov/hVqo8beCD/AKJzHeWUiF1jVjnPHPlkgZ5ypAwSD8vqngjxnYeOPD0OqWQ8t87Li2LAtA/cHHUeh7gjgcgdOelfO3jzw1qvwu8Yx+NvCsAi0d3UXMEJOyMsRujdccRucY7KxGNpCUAfRNFc14L8Zaf430BNW05ZY18wwzQyjBikABK56HhlII45HQ5A6WgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCvf3tvpunXN/dyeVbW0TzSvgnaigljgcnAB6V4j8ArC61TWPEXjK/iImu5TEkqkBWZ2Mkw2/XyjnpzgHg11Px2v0svhddwSDLXtxDAn1DCT09Iz3/ABrR+EGjSaL8NNIjkcNJdR/bCVOQBJ8yjoOdpXPvnnpQB3lFB6GvIPi9q3j3wxC2u6NrEcGkCSOA28Vksjx5BJkkZ1bjdhew5UYzkkA9fqvf2VvqWnXVhdx+bbXMTwzR5I3IwIYZHPIJ6VwPwe13X/EfhNtU1zV7XUDLMwjEcSpJAVJDJJtAXkBGHAOG6kEYzdL8aeMvE/jXXtI8Pt4ek0zS5CpvZoZsHJIVMCQFj8rgsBtOwkdVyAcZ4c8TN8HPGHiDwlqM3/EnO+4spDCZCJSgMZcqFJDKFVsAjcvGBuNcH4O8fz+DjrepxQm716/VI4bm4O9UUszSu2fmZiQmBwDyTnAB9f8Aj34Hk1jSE8U2S7rnTYilzGFZmkg3ZBGMgbCzMePuliW+UCvIvAfhfx1dzp4k8G2e6S0leFbjzIBscp8w2yED7r+mOaAPU/h98LZPEMv/AAmXjppr6/vZBPFaT5UYHRpV4znAwgwoUAHOdo9vAHHTgda8C/4yG/z/AGfXFX3xR+Jv9o3OgzaxOb7zWs3ht7WHzPMyUKoUTO7PAKnOelAHb/Ez4ian4o1ibwD4Ot5pmdzbXUsQIaZgcNGp42xjkMx4Iz0XJbmvCmgH4dfHbQtN1S9ikYgAyxKxHmTQsgXGM/6xtoPcYJxk4qaH8Lfifout2V1p9g+nXHmqq3S3kRVO5L7WJKYByMEHpg5ANb4ieHPG2i+LtPv9f1GK61S/Km1vLKUR4eMqoA4TYVyhzgD5s5JzQB9bnpXgXxO8v/hoXwZ5jMBiyxtXPP2p8DqOM9/0qrdfDb4xW4g8rxfcXRklVG8vWLgeUp6u24D5R3xlvQGuD8Q+HfGVj8QtL0bW9Ulk1uaSFbK9lvHk2hpCqMr8uqh8noCCCcc0AfYdIeQRXgH/AAq34vf9D5/5WLv/AOIqtf8Aw4+MllbebB4rub9wQPJttZnDH3/ebV/WgD1rxL8N/C3i6X7TqumIbs9bqAmKRuFHzMMb+FAG4HA6Yryy++C/izwhcNqngTxBNM/mbjbF/s8pUMCikk7JcAktu2g46HOKWH4a/GC5toJJPGjQN5YJifVbjehPJDFFIYgnGcnpgEgCqlp8PPjLc3txBL4mvbVIiQtxNrMpSbBxldhZvcblHHXB4oAqzfFvX1s28P8AxC8Nm40+5i8m4LW7W1xyVPmAN8pZQcgBV52ncK5XwJ8S774ealdx2SvqGjzOS1tOfKLEZCuuCwjcjbuHzZAxk4BHX3Hw0+LevadLY6prTNawwpiC61JmWcnMhUhc7mVjjc/oNpKgEc3N8DfHkdrbyppkEsku7fBHdRb4dpwN2SFOeo2lvfB4oA9l+Jt94WvPhneeJvsul38l1afZ7C7mgRpCZCQAhYBgV3O2ByCrHHBrgPAXwPs/E3gdNX1e8vbK9u972YjxsSPACM6MoJyQW4YAqVwRmuE8E+C7jW/iTa+HL+1YC2uWGoIMsESI/vFZkPGSNm4HGWGOtfWWpeJdC0e5S31PWtOsJmUSCO6u44mK8jOGOSMgjPTg+lAHjKeEfjH4LkWHw/rK6tY52JG0yERxJ9wFJ8eWCD92MkDGM8Amk/xo8eeE9UFp4q0CBkDuCkkTQPIB8vyOCVKg4OQGyO/INe1/8J34Q/6GvQ//AAYw/wDxValhqdhqtr9p029t7y3JIEttKJFJHXlSaAPN/D3x38I6xJDBevc6TcSBMm6QGHzG4KiRScAE/eYKMdcdB6LYaxpeqBTp+o2l2Cu4GCZZPl9eCeK53xD8M/CPiWOcXui20dxKXkN1aqIZt7dWLKBvOTu+bIz1BrzDUv2dry0vhd+G/EflvG/mQC5Uo8RBypEid89woxQB9AUV8+T638Yfhvby299bJrtgiGQXrxvdLGqjc7F1KuB82P3v935eAa2NJ/aL0O6mij1XSLywVztaWN1nRDnqeFO0Dk4BPYA0Ae10Vg+H/GHh7xOqtousWt2xVn8lX2yqobaS0bYdRn1A6j1Fb1ABR2oooAzNb0LTPEOntYatYwXls2TsmXIUkEbgeqtgkBhyM8V5fr/wD0iYrfeFb250fUISJIVZ2eIMoJXk/OjFtp3ZOMfdr2OigD56bxl8WvAN1HZa5pR1izjZVWdoTL5sYJXCzR/xEKTlwX5ywPSu08O/HXwfrAiivpZ9JuW8tdt0u6Pc3XEi5AUHqzhOCD649Qb7p+lcn4p+HvhnxfFKNT02JbqVgxvbdVjuMhdoO8D5sDAw2RwOOBQB0Vlf2eowLcWV1BdQN0khkDqeh4IJ9QfxFW68Bm+DPjDwpfTXngfxOwiz53kPI0DyFCSkbYykp7fNtXk5ABq5a/HXUNAni03xt4WvLS6WMl5ofkMnzEBlifHynGNwcjIOPQAHuVFc/wCHvGfh3xUP+JLq9vduAXaEHbKACASUbDAZI5xjkc10FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUN5awX1lPZ3UQlt542iljbo6sMEH6g1NRQB89a1per/AvXxrfh4NfeG78qlxbT5yhU52s4HHBbY3bJBBx83t3h3X7HxNottq2my+ZbTqCMkbkPdWAJwwPB5P5Vfv7G31PTrqwu4/MtrqJ4ZkyRuRgQwyCCOCenNfOFzp2u/AfxpHqNt5154avXMZwwxKvJCScYWVRkggDODjguAAfS9FZmg6zaeINFs9WsH32t5EsqZIJXPVWwThgcgjJwQR2rToAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACg9KKD0POKAPBfizeDxl8TfDngSA3DQwzq9+IJCv+s2sflIxlIgWDc/fI4wRXudvbw20EUFvEkMESBI40XaqKBgAAcAAY47V4D8ORN4q+P+va/cJM6WRmaKQphU58mNGK8Z8rdjPXYTzya+haACuO+KNmb34Y+IIREH22hm2k4x5ZD5H025rsT0rn/GurS6F4J1rU7Z2juLezkaFwoO2TBCHB4IDEHmgD5w+H/j3VdE8Kaj4X0Cwnu9b1O6JtDEoIhBTDuMclgFBH8I+8TgYP0n4V8PWnhfQLbTrWMBwA9xLks08xHzyMx5Zie57ADgAAeLfs36IjXus66zv5kaLaRqDgEMdzEjHP3Exg/3vavoWgBk0STwSQyoHjkUqynoQRgivnnwbPB8IPitqnh/WLgwaVqMa/ZbqQgqRuPku7YAAwXViBgN/sgmvok9K+c/2i9c0+51TSdGjTff2SvNNIHBWMSYwhAOd3yhuQOCpH3qAOk+JnxMup9RHgjwUXl1qeT7PPcxPs8ls/6uNsgB+OWzhRkfezt6L4cfCnS/BFvDeXAS81xlzJckArCSCCsWRlRgkFurc9AdtYfwD8N6NbeFI/EcBWbV7lpYJ3EpPkpvXERUHA4RH5GfmHbFexUAIRlSPUV4n+0fp0MvhjRtTdnE9vemBACNhWRCzZ75BiXHOOT+Htp6VwPxh0p9W+F2sLHbRzzW6Lcpu25jCMGdwT0IQP05wSB1xQB12k6hFrGjWOp2yyLb3lvHcRrIAGCuoYbsE84ODz+Jrxzx/DHcftHeDo5F3KLe3cc91mmYH8CBXdfCTWf7a+GWiSl4WltojaSLEfueUdqhhnhigRiP9rIGCK4jx1/ycl4O/wCvSL/0ZNQB7hRRRQAUUUUAB6GvOfi/45n8F+Eh9hMY1PUHaC3LOQYl2nfIoHUrlQOmCwPOMH0Y9DXzqJ5fjh8UEgk8tfDGil3UDIaaPcBnOA26QqvHG1R/eHzAHf8AwV8KxeHvANteeW323VlF1O5Ofk58oDgcbTn6s3PSoLXwAnin4h+INf8AF+lyvbxyLa6Zazz74jEqj94MHv8Ae2nABd85PI9PA4Ht714V8efH9zZD/hENMm8ozRCS/likG7Y2cQkdVyACehIKjoxyAeZ+KLWw8Z+Pv7O8BaGRbqnkxpDwJypJaU54QHIAJ7AE4JwPqTwd4YtvB3hmz0S1laYQAl5mQKZHY5ZsDpyeASSAACT1rivhD8Lo/CFkms6mPM1y5jxs7WiH+Aern+I9ug6Et6rQAUUUUAB6Vzmt+B/DHiJ5pNV0KxuJ5SN85iCytxtGZFw3THfjA9K6OigDxPxN8AbV7ldR8G6jJpV5E6yRwTyMyKwK4KSDLoRhmyd2SRjaKycfG7wZfbvn1y0iULyRdRy4T/gMvGf9kkgfe7/QVB6UAeKaH8fbWO4/s7xjo1xpN7EwSSSNGKq3OS6H50xxx85Oa9F0Hx74W8SzpBpGt2txO5wsLMY5WxknCOAx4BJ44AzV3XvDGieJrYW+taXbXiBSEMq/NGDjO1h8y5wPukdK8v1T9nXw/czSSafql/ZbyxWJwsqoTkgDocD3JPHWgD2mivBptM+MHw7jD6dfr4k0uORgICrTybeETKHEo4IO2NmA2nPHVumftEzWt2LPxJ4beGSNmS4e1fDxsBgr5Tgc7hggsMe+OQD3uiuR8L/Ejwr4ulSDS9UT7Y6qxtJwY5ckEkBW++QFOdhYDGc8jPXUAHas7V9G0zXLP7Jqthb3tvu3COeMOAcEbhnocEjI5Ga0aKAPG/E3wF0+6vl1PwrqD6LeR5kSHDNH5o5Qq2Q0fzdxuxxgDGDzFp4z+Knw+eS68U6VdajpS/60zlSEJACkToGA5K9dw6gYPNfRdB6UAee+GvjD4P1+xgebVINMvXX97a3j7PKbnIEhAVuhIIPORkAnFd+DyOnIrzXxJ8D/AAh4hn+020EukzlTn7BhI2OFAzGQQMY/h25JJOTXFjw38UPhW5/4Ry4bX9EQA/ZvLLgZJyBBnevzOT+7Y5wC3HAAPoGivF/DX7QOlXNzLaeJ7GTSJY+POjDSoWGchlC7lI4HGcnOcV67Y31pqdtHeWN3Bd2smdk0EgkRsEg4YcHByOvUUAW6KKKACiiigAooooAKKKKACiiigArP1bSbDXtLuNN1O2W4sp12yROSAec9uQQQCCORWhR2oA+bLXUtd+BHjGSwuopbrwrfTvJCu9WaROB5inAxKo2hgQAen91h9C6ZqdlrOnwajp9zHc2c67opY2yCM4P45BBB5GCDjBqLWtC0zxDp7WGrWMF5bMSdkq52kgjcp6q2CQGHIzxXhGm+Ite+CHiE+H9dWW+8LzO8tpLHGGbbg/6vLKFO4rvQ9DyPvZYA+iqKqaffQalp9rfWkhktbmFJoZMEb0YBlODyMg9wKt0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYnirxDb+F/C9/rdyN8drFuVDkeY5wEXIBxuYqM4wM1tHoa8O/aM1y5tdI0jRIZVWK9eSa5RWO4iPbsU8jKksx5HJQEdKANX9n7RPsXgq41iWP8A0jU7pmEu8ktFHlVBHQEP5vbJz9K9drK8NWf9neF9IscSD7NZQw4kGG+VAOffitWgBD0OK81+JPhbx34rEmm6Pq+k22iTRgTRSq6SyHjKswV8jK5BXbwxBBHJ9LooA8j+FXw88X+BdUmW+1TSn0idS0sEAeR3k42kMVXbjnnJHbbk7h64elIehryv4m/E6TRNnh/wo32zxJcPt2QRecbcDPG3nLnHC4OBkkDjIAfEz4n/ANhzN4W0CKS48S3eyFNvS3MnC98mTDDaOmSCTxg+TxXi/Dhp9O01rfWPG9/Iba6cQm5jswwIMUef9ZOWZd3BXI24POYYL2bwzeQWeir/AGp49vJHF1qCyi5EBlXmOIgkNL83zyfwkMoLAk17T8OvhHpngh4tSuJDe62YdjynHlQsfveUMZBwdu48kZ+6GK0AeT/DeTWfhn8VrTQ9age2TU1jgmiyXVi/+qZdp2sQ52buQMuK+oq82+M3g9PFPgqW8hhkk1PS0ae1CtjKnaZVI6NlVyB1yoweoLPgl4rPiTwLBaTBFutJK2ZCk/PEFHlt044yvU52E9+AD0ysXxhbPeeCdetY2VXm064jUt0BMbAZ9ua2qQ9DQB4p+zjqMU3hfWNMUSCe3vFuGbA2lZECqAeucxN+BH4RePHSP9o/wezuqr9mhGScDJlmAH1JNUvgHbXOi+MfFmiXDxtJblY5jHyrPFIyZXIHHJ7dx0q946/5OS8Hf9ekX/oyagD3CiiigAoPQ84opskiRRPJIyoiAszMcAAdST2oA85+MfjOLwp4MntI2I1HVY3t7YbWIC8CRywIxhW45J3FeCM4tfCjwO3gjwgkN5Ei6rdt594VZWKnose4AZCr2yQGZiCQa8z8N6ZJ8V/jJf8AiKeadtD0ydWgfGVkEbDyowGwVDYMjDbxkg4LA19D8KOlAHDfFDx1b+CfDTslw8erXkbpYKIt/wA4xl+RtG3cOG6+h5FeP/B608NX+qX3ibxprOnSXccoW2i1K9TczkZaV1c5bGVCkk87u4Uj3bxH4C8M+LriCfXNKS6mhQoknmPGwUnO0lCCRnJAPQk46msX/hSfw8H/ADL3/k5cf/HKAOdl8ex+Nvip4f0Dw5qd0uk2kkl1fXFtJ5YuWQEqhyMtHkAEdGDnj5Qa9irk/Dvw68KeFdT/ALQ0bSFtrsxmLzDPLIQpwSMMxA6dfw711lABRRRQAUUUUAFFFFABRRRQAVUvNOsb9Ql5Z29yqggLNGrgA9Rg+tW6KAPO9Z+C/gnWbk3H9mNZSMCGFi/lIcptBCcqpHDDAGSPmyCQfP7/AOB3i3Q76SXwj4m22o3SIGuJLaZSSRj5PlPy4G7K554HFfQlFAHgcnj74qeA/n8W6Cmp6erlpLpUC4U/Ko82IFEG7BAZMnOO4x1Gl/HvwVfqPtcl7p0hHzCeAuucDvHuyO3I7dBXqh6Vw2t/CfwXr0zXFzocMFwygeZasYO5JJVCFLHJyxBP5CgDrNO1Kx1a2Fzp17bXluWIEtvKHXI6jIJ5q7Xid58CrzRr19S8DeJ7vTboKFEU7EBvnBIMic7MAHaVbJXnrxj3HjD41eErdZtY0ZL6KTOGe1SUJjb1Nuw28njd1ycZxwAfQlB6V5R4d+O/hrVLqKy1iC50W9YlW+0YeFX37Qu8YIPQksqgYOT6+i6brukawW/szVLG92fe+y3CyYxjrtJ9R+YoApa74P8AD3iWF4tY0e1uiwA8xk2yjBB4kXDD7ozg8gYPFeQav8F/E/h7UBc+BdcmW1jUOsU14Y5jL0bG1QhBAHUjPIPQV79R2oA8Q0z4ya34Zmj0/wCIvh29tpMtFHfQwbRKU2qTtOFYZyxdGxyuFxg16F4Z+I3hTxbOttpOrRtdkA/ZZlMUh4LYVW+9gKSducD0re1PSdO1i3S31PT7W+hV/MWO5hWVQ2CM4bjOCRn3rzbxD8BPCuryXFxYyXGlXEpZ1FvhoVY/9Mz0Xr8qkDnjAAAAPWKK+eZtX+Mnw/m+xzQPrtnGhdZ/Ie7THJbMi4k4z/HjG3jjr1Phv4+aDqt+tjrdlPoly0pjDSOJIV6Ab3wpU5yDlcADJI7AHrtFV7O8tb+3S5s7mG5gf7skMgdT9CCRVigAooooAKKKKACiiigAPSsDxX4V03xjoEuj6oJBBI6uskW3zI2U5yhYEKcZGcdGI71v0h6GgDwDStf1L4JeKpPDutpNP4UvJXlsZ1+dogW+8DhQf4d6ADBO5evz+8208V1bxXFvKk0Eqh45Y2DK6kcMCOCCO44NZfiTw1pfi3RpdK1i3863kIZSDho27Op7MOfwJByCRXhnhfxTrPwg8TzeGPEy3T+HfOcW9y0RxGGORMmM7kbqyBjgkn7wIIB9HUVFFKsqI8bh0YZVgcgj1qWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAA9DXgfiW1j+IX7QtjpkBSaw0SJDeZKyxsI23uu3IHLOkRHJBzkYFe5anfxaXpV5qEwZorWB53CkAlVUscbiB27kD3FeLfs9wT6jP4m8S36CW7vLlUN0YlGXJaSUAjpkshIAA4XrjgA9wA5HTgU+iigAoPQ0h6GvM/it8SrDwrol7pllqH/FQyqEijgwzW+QDvc9FO3kA88jAxyACn8V/i2PB+/RNHVJdaliBMpIZbTPQlecvjkKfUE5GAfnzwxpmseJdcXSdITfqV6zbrtpnVkjKsJdzA42MGO7IJOAB1IZugeH9b8deIzZ2Cm6vpyZp555OFBb55JGOT1bJPJOeASa+sfBvgHQvBFlHFp8Ae8MZjlvZY186QE7sZA4GSOPQDOcZoApfDv4baZ4CsAy7LrV5l23N9tIJGSQqgk7QOM4xuIBPYDuq+fPjx4jvNE8RafbaNq2r2N1Lbm4uTBfzLEykhECqH2gjy3JwozkHnJrrfgT4kvtf8G3Sapqcl9eWl6ygzyb5ViZVK7iTuOWMgBPoQOFwAD1U/dNfOetXEnwW+LhvrMSt4e1VTNLZwFVGwlsqFxjKMdy9PlO3Iy1c78SPiXrmoeNtRXRvEN5BpdvJ5VsLG6ZEIAAZspjeCwJBOeDwcYr1bU/hq+v8Awkhtbxr+68SraLdxz6jcNNKlwVDPEN7BUU/cxwB8rHJXNAHqkUiyxpJGyujAMrKcgg9x6ipT0ry74L+NP+Eg8NLouoz/APE70rMMkcpxK8IICuRgdMhD1OVBPLCvUT0oA8F8NGDw7+09rWnxrJINSSTa7EZVpES5Ynj7uVYD8Oepq146/wCTkvB3/XpF/wCjJqT4nNfaF8afB3iPelrp58m0e7dk2qDK4lBz0Hly9SOM8HIqbx1byp+0R4MuGicQvbpGkhU7WZZJSyg9yAykj3HrQB7XRRRQAHocda8f+Oviu5sdFtfC2lq0moa0djpCxMoi3AbQqndmRvkHBBAcc9vWb66jsbC5vJQxjgiaVwgy2FBJwO54rwn4WwXfxD+ImpeN9dtWmtLVjHYLMwdLeTcGRF6DKKeu37zbuG5oA9U8A+FF8G+ELHR90T3CAyXMsSgCSVjljnAJA+6CecKPpXU0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFB6UUUAYGveD/AA94oRhrWj2t25QJ5rJiUKG3BRIuGAzngHHJ9a8o1n9nCwcK2ia5cwkDDJfRiXec9dy7cD8DXu1FAHhFuvxv8HvcRRxw+IbC2jYo87rMWB+csPmWZ2HKgHPoAeKtQftE2ENy9trHhrULKaJ2jljSRZGjIyMEME5yMEHGOa9tPQ1lav4f0fX0RNX0uzvggZU+0Qq5QNjO0kZXOByPQUAUfDfjbw34r3roerQXckZO+H5kkAGMtscBiuWHzYxk9c8V0deUeI/gJ4U1eAnSll0a7yTviZpY2yQTujZugAIG1lxnvgCuOuPCnxj8Gy/ZtC1W41LTrdf3DxzI4VB8qr5UvIIUA7VBAzgE4oA+hz0Ncz4q8C+HvGVuY9Y06OScLsS7j+SaIYOMOOoBYkKcrnkg15bpvxt8Q+G54LHx54auYuNv2mKIwyuFGC2x8K5LAZKlVAPA6Cu00T40eCdZdom1NtPkWQqq3yeUHHGGDZKhSTwCQRgkgDmgDhJ/gh4o8LajLqvgnxGRLHlo4pCYZHQEsIyeUkztUYYKpPUAVYs/jdrnhi5XSPHfhudLyLANxABG8ij5d+w/K+SHO5WCnoABzXttjfWmp2cd3Y3UF1bPkJLBIJEbBIOGBIOCCPwNQ6voum67Z/Y9VsLe9t924Rzxh1DYI3DPQ4JGRyM0AZPhLx54f8aW3maReqZwC0lpKQs8YGMkpnkfMPmGVyetdPXkHib4G6dLJ/aXg+7m0PVYzviCTOYicnJB+8jcjkEgAYC965WPX/i98PL521ayuta0yJSZHdTPH5SHmQSp8yfKDgv2OSvHAB9E0V5t4f8AjZ4M1pUWe/fS7kttMN8u0dBzvGUAySOSDwcgDFd9Y31pqdpHd2N1BdWz5CSwSCRDgkHDAkHBBH4GgC3RRRQAUUUUAB6Vy3jfwVp/jrQH0y+JikQ+ZbXCDLQydAcZG4dipPI9CAR1NB6UAeC+EPGupfDPxAvgLxeFNksgFlqOdixo+cEkj5oyf4j90hgSQML7uDyOnIrlfHvgy08a+G7iwkhtzfLGxsriZSTDJ/vDkA4APXOBwcV5X8O/HOq+AtYHg3x4Lm0hYKtncXLZW3A+UDd0MRxgMCQuMHjJUA+gaKYDyOnIp9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQelFIfumgDivivcJa/C/X5ZNgQ2wjG8EjLMFHQjnLDB6eoI4qh8FtFt9J+G+nzxQSRzX2biZpYTG7E8DILNlcAbSMAqQcAk1znx6vpNQh8PeD7Ixteapeq+3zgpUfcQMv91mc89P3Z69vXdPs4NO061sbSLyra2hSKKPcTsRQABk8nAHfmgC3QeRig9K83+JXxT03wTbTafbs0+uywZghUZSHPAeQ9OOTtGScDOAQaAHfFH4nJ4BsLeK0hhutXusmOCRiFijH/LRlHJBPAHy5w3PykV846Fo2sfEjxstu0zy3d9KZbq6KbhEmcu5AwABnAGQMlRxkVa8HeDNc+JfiGbZds2wq97f3TmQqCe+TlmIDYGecckDmvq7wx4W0nwjpMOm6RarDEoG+QgGSZu7O2ASf/1AAAAAGb4D8BWHgPSprKxuJ7h55vOlmmwCTjAUADAAA9+p9sddRSHoaAPE/GOmW+seOPHF1Np1pcw6X4WZBKwRjFOytIhIOTv2hiGGMBQO4rzzwD43vfD3gLxLpFp9plvb6eGDTYbZfnWaZZEdwy/NnaiYAJO4Lgck16vZXSa58OfiJ4kSKDZqgvfs88UTIZraKDyoidwz/Axx2LN05A4b9njw6t5rmo65c2QlhtI1ht5JIwUWVjklSR95Qo5HID89aAOOs/C8uk/F3TfDttqDfara7tlN1EgYRzAK7lQ+3IV92MjkDODnB+v+3Q+vWvmn4bn/AIS/4/3WtwvHJaxS3V8POXaxiOY48DB+YeZGefQnOev00ehoA+d/iDYXPwt+Jtl460q3+0WN/LI08LM4XzWB8xS3QbwxdeT8wb5cLivfLG+t9Ssba/s5fNtrmJZ4X2kbkYZU4PI4I4xn1rF8c+F4/GPg+/0Z9izSpvtpG/5ZyryhzgkAng4GdpYDrXA/ArXjDY6j4H1HzItX0m4lfyvvKI94DgMCRlZGOfXcCM84AIP2j7Lf4U0e/wDMwIb0w+Vz829GOeCBxs9D14I5zi61e3M2ufB3U42iEc6W8OY8oA++JZQIcBEHzYBUc/RUr0r4v6dJqfwt1uOCFZJYo0uBkgbVjdXdufRA3uelfP8ApGu/2t4p+GlqLhnGnyW0DwjcEjk+1scgHjcY/KJI9h2wAD67pD0NLVe/vbfTNOur+8k8u1tonmmfaW2ooJY4HJwAeBQB5d8b/Gj6J4eXw5p5D6nrCNGyoA5SA/K3y9cvnaOP75ByBXaeBfDknhPwdpuiSzLNLbRsZXXpvZy7Y4BIyxAOOQOgrynwRpb/ABU+JN9461SH/iTWE3lafHv2MXQhowygknapDN82CzADK5A96AA4/pQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAh6GvOfEPwU8G675ksNg2l3TEN5tgRGvC4A8s5QDoTgAnHXk59HooA8Dn+BXiDw7KdR8G+K3jvBhdjhoCydSN6k7ssq/KVAPc8cwXvxT+JfgRLa38WaDazB0JS4cYMh3HA3xMY8gD7oAOME9efoOg9KAPIvCnx88Pa3ci11mB9FnZtsckknmwtyAMuANp5OcgKAM7hnFenadq2naxbtcaXqFrewIxQyWsyyqGwDtypIzgg49xWNqngHwlrMEqXvh3TX80KXljgEcpxjGHTDDoBwenHSvLdZ/Z8ubSRJ/B/iCaByAkiXzlSRySRJGvsvy7fU7ugoA7fxH8G/B3iE3M62B0+9nIJuLJyvIGP9XynPfCgnnnJNec3Xw5+Ivw6vBdeDNSuNR0xC9w1vG+3ooBDwM2JCV4G0Enb0U7aW2Pxv8FDzWjudYs1k3NHIy3u8soHZvNAHB4wAR6E529D/aL0eayiTXNKvLa9+VXazCyQngZb5mDLzn5cNgdzQBS0f9oaS2vZ7TxVoE0DxLsf7GDvWVThlaORhjnPfIxjB7ey6Fr+leJdOTUNHvory1ZiN8Z+6euGBwVPIOCAeRXHx638N/imv9nPJY6jcELthuI2hnGMtiNiFY42nOwnA68HnjvEPwIvdNvG1PwHrM9lPu/49pZmRlBLE7JV5wPlAVh2yWJ4oA92or56X4l+P/ho8Wl+M9JGpRPGfss7TBXcLhRiVQwfAGSGG/Lgk8gH0nw38XfB/ia7t7O21Fra8mYLHb3cZjZmOOA3KEknAG7JI4zxQB3lFFFABXEeP/hvpfxAsYVupHtL+3z5F3GuSAeqsuQGXODjIIxweTnt6D0oA8U+HHxH1PT/ABFH4A8XxxxXtsTa29252M7LjYjZGG3Lja/Bb5epbJ9rriviN4Eg8c+GpbJPKg1BCsttcsucMuflYgZ2ncw74Jzg4xXnPgLx7q/gfxEfA/jgTu7SotrdmXzPLL4CgsTzERgg9VOQR/dAPe6KaCDinUAFFFFABRRRQAUUUUAFFFFABRRRQAUh6HNLVPVtRh0fRr7VLhXaGzt5LiRYwCxVFLEDPfAoA8HaSfxX+1BDHPG01tpTlVCIGEKxIzAsQOnnHOT0LgA8CvoQ9K8R/Z+tJb+PxF4rvXimvb688lpPLAcMB5khyBwrGROBgfIOOBjqPiZ8UrbwBDFaQ232vVrmJnhiJwkYHAd+c4JzgDrtPI60AN+KfxKh8E6ObfT57aXXpyFigb5zCvUu6jpx0zjJPQgGvE/BXgjXPit4on1bV7i4+wmbffX7jmQ/884+2cYHA2oAOPuqZvAXwu1f4jXcuu6rcvbaZLcM8tyVzJdMWy/lj65BY8AnocED6f0nS7HRNMttM061jtrS3QJHFGOF/qSSSSTkkkknJoAg0Dw9pPhjTU03RbKOztAxfYpLFmPUlmyWPQZJPAA6AVrUUUAHasrX9Dt/EWkTabdzXUdvMMSfZpjGzL0KkjqpHBFatFAHKaD4B0bw7o9/pVkbt7C8Qxy29xOZEAIYMFB4XIY5x6D0qKP4daFB4SHhm1+22uneY0kv2a4MUk+4EMJGXG8EHGD2VR2FdhRQBwXh74TeG/C+sRanpLajBcR8HF0wV1/usP4lyAceoBrvaKKAA9K+fPi9baj4I+Jek+PdMTcs2FlLAlfNVdjIcjCh4iAMHPyuRjGa+g6w/Ffh6HxR4V1DRJ8Kt1CVVjkhHHKNgcnawU46HFADpDp3jDwrKtvcNLp2q2bIJouCY5FxkZHBwehHBHIyCK+PfAxB+InhvqB/a1rxnP8Ay1WvavgtrN94d8Qar8OtaIWa0kkltC7MMkEbkQNjKsP3i4UcF2PXjzRbBdN+P0NokEcEUfiSPyoowAqIbgFQoHAG3GAOnSgD69rxj44eIZ72Oy8BaNGt1qWquhmjX7yKGBjXkYBLDOcjAXkYYGvX7++t9M066v7uTyra1ieaZ9pbaigljgcnAB6V4R8GtNvfFnj3WPH9/nyRLJHBvbcRI4HygnJASMhR7MADwRQB6z4F8Kx+DfCNho6tvmjXfcuGLK0zcuV4Hyg8DgHAGecmumoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBD0Nc54l8EeHPFqp/bWkQXUqYCzAlJVAzgb1w23LE7ScZOcZrpKKAPFtX/Z00C7TdpOrX1hKXGfPVZ49uMEBflIOcHJb145GOX/sr4yfDyG5a0nnvtKtUjHySrdRhAMARxv86qM4O1VHy5+6Aa+kaO1AHzvafHOWUvpvjzwlBNaT4Z1ihP3R93MUpIf5gOdwxjuRio5fCnwj8aXTQ+HfED6PqUiecscqsIhyNw2yABjjPyq4xknkDA991PSdO1i3S31PT7W+hV/MWO5hWVQ2CN2G4zgkZ968n8Rfs9aBfeZJoN9c6ZMSCsUv7+EAL90Z+cEnByWbvgegBykQ+J3wvVbTQ2Ot+Hg8kkEkFubmHaGBbdt+aL3XIGS+MnJrovC37QVpNciy8W6eNNmXcHu7ZXaMMCTgx4LrxgdW56gDpiwfDH4o+CHEvhXWluYvN3C2t7nYCWTBd45QI26AZOT9044yOY1nxVq01sI/iV4Qmvp5UZLO9mibTriMADhXCYkVS24KVOC2TQB9Radq2narH5um39peRA4L20yyKO3VSR2P5Vfr4bI0tL97nStSvbOSJ2mtTPEFaMrlkHmRn7/AAYKBnH3Rkj0jwh8fda0Sz+ya9atrKAoIrgyiOWNAACCdp8w8A5ODnOWOeAD6bPQ1wXxC+GGk+OIZbuVXj1mK1aC0nEzKmQSyBxgjbuY5wM4J9sWPCPxS8LeMp4LSxvHh1KRGf7FcIUcbeoB+6xxzgEnHOBg47U9DQB4d8KPihqUms/8ACJ+MpTHeKFitJrpDHK0g48uQnqxGMEgEkHJJIr3KvNPi58Nz430dLrTFiXW7IExF8D7RH3iLHpzyueASc43EjE+E3xRF21t4O8Ri8j12FpIhcXbFjO4YnY5OCrgcYbOdnXJAoA9mooooAKKKKACiiigAooooAKKKKAA9K8v+OmvvpHw7ltIXZZ9TmS2DLIUKp95zx94ELtI4yH/A+oHpXzZ+0XrqXPiDS9CiZWFlC08xSXOHkwArIOhVUz64kHTqQDrovEkPw9+AWjtHOlrql1ZZsI+JHeSQ794XJGAH3HPAyB1IU8n8PvhbfePLm48T+NJL9oZikkKyOVe76HJY8iPaABtAyD8pUAZXwR4L1r4l+J4fFfiKCO10a1MQtrUQYilRMbYYo2OFhAHPYkkcksR9GgcjpwKAIrS1hs7aG2t41ighRY440XCooGAoHYAAcVYoooAKKKKACiiigAooooAKKKKACg9DRRQB4R8e/Dr2Uml+M9KtWgvbaYLdXUKcggr5LvzwQQQGI5yqk8KK8v0vWH8RfGLR9WlRY5rvVrOSUIMAPvQNtyTxuzjk8V9f39lb6np11YXcfm21zC8MybiNyMCGGQQRkE9DXxhq1nceAfiJLDFslm0m+WaAzKdsgVg8ZYccEbScY9j0oA9f+OOs6lrmuaV4G0CSS4uJ/wB5dWlu4Jdjgxq/90KFL8kDBDEcKa9h8N6FbeGvD1jo9ljybSIRhsY3nqzEZ6k5J9ya8i+BuiXmt6pqPj7Xmnub64cw2s1wi4bpvdMjPGNg24AG5eei+6UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIehpe1VLu/tLA2/2u6gt/PmWCHzZAnmSNnCLnqxwcAcnFAHJat8JvBOsW8scugW9s7g7ZLIeQ0ZxgEBfl464IIz1BrzDxB+zjeLeB/DesW72x6x6llWTgfxIpD5O4/dXHA+brX0PUQkQzNGHXeoDFQeQCSAfxIP5GgD441L4XeN9Lx9o8NXz7uhtlFxjPr5ZbHQ/wCSMz+Gviv4v8KrDDa6mbq0iGxbO9HmxhQMBQc7lA7BWA4HUcV9iH7pxXNeJPAnhrxYhOsaTBNMelwg8uXgED51IJAz0Jx7UAcV4V+PXhzW2eHWIm0ScH5DI/mROMf3wAVPXggDAHPOKi+Ivw90/wAWad/wlvg2dDrUTeck1hMCl2VYZwynAkUrkMvOQQcnBGZffs36bK4OneIbu3XuLi3WYngd1Kd/avPr/wAKfET4UedqltNNb2SyRiS7sZw8Mhwdu9DyQCxGXXGTx1BIB7D8JPiGdfsP7A8QXLR+JbOV4nS5OyS4AJOQuB8ygFWXk4TJ6nHqdfFfizxvd+K9bttcksrbTtUhUBriw3xmRlOUfkkhlGADnPA9AB9D/Cr4pJ46ik069h8nWbaISSbB+7nQYUuP7pyRlT6gjPIUA9NooooAKKKKACiig9DQAUVkah4m0DSbj7PqWuabZzYz5dzdxxtj6MR61Fb+L/DN3J5dr4i0meQDOyK9jdsD2DUAbnavnLxx8FfF2s+NNT1Szube+tryYzJJNMVeNSeIyGzwowowcYA6dB9Fgg4p1AHzbB8OPjDbQRQQa7dQQRIEjij1iRVRQAAoAOAAB0HpVm5+DvxQvWVrrxfbzsowpm1K5cr7cof0r6JooA+cP+FH/Ecf8zPY/wDgfcf/ABunxfBj4mQgCLxXaR4dXGzUblcMucH/AFfUZPPvX0ZRQB8//wDCrPi9/wBD7/5WLv8A+Io/4Vb8Xv8AofP/ACsXf/xFfQFFAHzxc/DX4xQbdni+e43f88tYuPl+u4Cpx8Lvi6R/yPRH11i74/8AHa+gKKAPn5vhd8X1RmHjssQM7RrF1k+3K4qj/wAK8+M//QyXxx/1Gpf8a+j6KAPnD/hXnxo/6GO+/wDB3J/jR/wrz40f9DHff+DuT/Gvo+igD5wHw9+NGefEd9/4O5P8akn+DXxOvJPNufFltLKQBul1G5Zvpkoa+i6D0oA+cP8AhR3xG/6Gax/8D7j/AON1Um/Z78a3MpluNX0aWVvvPJczMT+Jj9q+itS1rStFRJNU1KzsUkbaj3U6xBiPTcRWf/wnfhD/AKGvQ/8AwYw//FUAeGQ/An4gW8Qht/EOmwxr0SO9nAH4CP3qT/hR3xH/AOhmsf8AwPuP/jdfQllqNlqMQmsbu3uojj54JA6nPI5BPardAHzh/wAKO+I//QzWP/gfcf8Axuj/AIUd8R/+hmsf/A+4/wDjdfR9FAHzh/wo74j/APQzWP8A4H3H/wAbo/4Ud8R/+hmsf/A+4/8AjdfR9FAHzh/wo74j/wDQzWP/AIH3H/xuj/hR/wARxz/wk9j/AOB9x/8AG6+j6KAPniw+DHxItr2Jx4xhtULBXmt765MioTyQNq5OO2Rn1Fa2o/APVtXx/aXxBvb0jB/0m1aToMD70x7V7jRQB4W3wH137RGi+PrrySjF38hwwbI2gL5uCCC2TkYwODniT/hQesD/AJqHff8AgK//AMer3CigDwi6+BPiJRCLTx1PLulUTeckibI+dzLiQ7mHGAcZ/vCktvgR4jfzzd+Op4sSsIfKjkk3R/ws2ZF2se6jdj1Ne8UUAfOJ+CPxE7eJrH8b+4/+N0+X4H+PxIBb+KbV02LkyXdwh3bfmGNh4DZAOeQAcDOB9F0UAfOH/CjviP8A9DNY/wDgfcf/ABuj/hR3xH/6Gax/8D7j/wCN19H0UAfOH/CjviP/ANDNY/8Agfcf/G6P+FHfEf8A6Gax/wDA+4/+N19H0UAfOkHwN+ILXEQuPFVokBcCR47yd2Vc8kKUAJx2yM+orRP7Ody8k0jeNZS8wIkc2BJcE85Pnc9BXvVFAHz/AP8ADM2Of+Eu/wDKb/8AbatSfs9X08ckcvjq4eOUhnVrJiHIAAJHnc8AD8BXu1FAHhcH7Puo20Qit/H13DGvRI7NgB+Am96k/wCFB6x/0US+/wDAV/8A49XuFFAHh/8AwoPWP+iiX3/gK/8A8eo/4UHrH/RQ77/wFf8A+PV7hRQB4VJ8B9eWSERePrtkZj5paBwUXaeRiU7ju2jGRwSc8YLb74EeI0tJWsPHM89yMbI7hJIkbnnLK7EcZ/hOenHWvd6KAPnb/hR3jwWYYeK7c3XmEGM3U/lhMDB37c7s5GNvYc84EP8Awo74jf8AQzWP/gfcf/G6+j6KAPnmx+B/jqS7jW+8WwQW/O6SC5nldeOMKQoPP+0Me/SrD/s1vK7PJ4wZnc5Zm04kk9eSZa9+ooA+f/8AhmX/AKm7/wApv/22j/hmX/qbv/Kb/wDba+gKKAPn/wD4Zl/6m7/ym/8A22j/AIZl/wCpu/8AKb/9tr6AooA+f/8AhmX/AKm7/wApv/22j/hmX/qbv/Kb/wDba+gKKAPn/wD4Zl/6m7/ym/8A22nR/s0vDIssfjAq6EMrLp2CCOhH72vfqKAPny4/ZqmWCRrfxUkk4QmNJbAorN1AZhIcAnvg49DVq2/Z0ubSUva+NZYHI2lo7AqSOuOJQcdK95ooA8N0P4CX9pMseoeML1LKOSQLBp+5CyZO1tzNhGPBI2sOoyetab/s7+E5HMkmqa6zucsxuIiSevJMdev0UAeHXP7N+kNqED2mv30NkNvnQzQpJI/J3bXG0LxgDKnBBPPQQX37NlnJeSGw8Szw2xxsjntBK68DOWDKDznsOo64594ooA8En/ZqheTMHimRE2qCHsA53bRuORIOC2SBjgEDJxkxf8My/wDU3f8AlN/+219AUUAfP/8AwzL/ANTd/wCU3/7bR/wzL/1N3/lN/wDttfQFFAHz/wD8My/9Td/5Tf8A7bXS+A/glB4M8VQa3Lrbag8COsMYtfJCsw27s72z8pYYx3z2r1umySJFE8kjqiIpZmY4AA6kmgB1FfPWp+N9b+K3jlvCXhq9mtPDk6lLmZYcNJAuPMkY4LKp+6B8oO4BvvEDZ8e/C7RPCfg2517wpBqVjrGmqrpPaXUpdlJVZGbkkAIXJ27cc54yKAPbKK5T4bi+/wCFfaM2pT3k95JCZJXvHLSksxYZJ5xg4HsBXV0AFFFFAHzb+0hcQt4l0a2WOIXEdo0kkgTDlWchQW7gFWIHYlj3rd8feB/Dvh/4GIw0q0h1W2itSt0Y9k7zM6+Zkn5jkNIdhJA9BtGOF+Isd547+Nl1o+lz/aX85LGDepVYti/vAeM7VfzCTg9CRkEVreNovHNvqGnab8StYmPhia6VZL3T4Y3Q8BuiqpB6j5hnhiqtjBAO/wD2ebqe4+HU8UsrPHbajLFCp/gUpG5H/fTsfxNetVz/AISsfD+n+HbWLwuIf7Ics8TQytKpJY5+ZiSecjk8Yx2roKACiiigAooooAKKKKACiiigAooooAKKKKACg9KKKAPLvj3c2lv8MZo7mDzZbi7ijtmKA+VJkuW9R8iOuRz82OhNY/wU8B6HdeBE1jVNLsL+fUJ3ZGuYFl8uNCYwuHyAdyucjqGGegxV/aTvimiaDYAuBNcyz8fd+RQv5/vOPxr0b4ZQvb/DPw6kg2k2SPjPZhuH6EfnQB5D4r1GL4QfGCGfQle30nULeK41CwQAxlTI6sEUkAEbSy8jaSRwpK19EKScZ6+hr5Q+LeozeL/i1Jp9gsc727RaXbBQULuG+ZW3dxK7rngYA69T9XgjIoAfRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5p8ctWk0z4Z3SQzNDJfTJagqWBYHLMuR0yqEHPBBI716XXmnxv0O+174f+Xp9nc3lzbXkU6RWyF3PDITtHJHz9vr0BoAyf2eNJgtPBd5qYUfaL67Ks+TykYAVcdOCznI/vewr2GvMPgTf6fcfDSztbSeJ7y3kl+2QqfmjZpHKEjrgqBg9OMdQar+K/iKdR8V+HPDPg3WIZ5ry8Bv7mx8uYxwDGcFlZPul2PUjyxnrQB6vRTByc5Pr9KfQAHoayPEetQ+HfDeo6zNsZLOB5QjyBBIwHypuIOCzYUcHk961z0qlqWkabrNusGqafa30Kv5ixXMSyKGwRnDAjOCfzoA+bfgbdaRF4r1XxB4h1uxt7qOLbE+oSoryySsS8iu7feAUgnkkSnn10Pjf45t/E93p/hXQDBqMKSpcNNbMZTJOQypEm3g8Pk4zksBwVOfbW8C+EApI8K6H0/wCgdD/8TV/TdA0bSTu03SbGyJYk/ZrdI/b+EDsBQBkfDvw/ceF/AWkaPdsTcwRFpRgDY7s0jLwSDtL7cg84zxmuqoooAKKKKACiiigAooooAKKKKACiiigAooooAKD0NFNcBkYEAgggg96APlP4sa3pnif4swq9/ANIt0t7R762bzh5RO93+XOSPMcYH92vbvFfxb8K+HdHluLXV7PUb5o2+zW1pKJt7jAG8rwgyRnJBIBxkjFb7+CvCkkrSP4Y0VnbLFm0+Ikn1J21aXwt4eS6a5TQtMW4ddrSraIHI44zjPYflQB4z8CvBV1Pqlz4z123vPtJObGW4LqZTIpMkxzy+VYYbJB3N1IyPfaaAAeB3/pTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoPSiigDzXxL8FPCvifXJ9Wn+3WVxPhplsnREkfJy5DI3zHvg89cZJJ1PCfwt8K+DbmG806yeXUI1ZBeXMhkkwx544RTj5cqoOOM8nPbUUAFFFFAH/9k='] Multimodal Competition False Theorem proof Geometry Math Chinese 73 "如图, 在锐角 $\triangle A B C$ 中, $D 、 E 、 F$ 分别为边 $B C 、 C A 、 A B$ 上的点, $L 、 M 、 N$ 分别为线段 $E F 、 F D 、 D E$ 的中点. 证明:若 $A D 、 B E 、 C F$ 为 $\triangle A B C$ 的三条高线, $X 、 Y 、 Z$ 分别为线段 $E F 、 F D 、 D E$ 上的点,且满足 $D X / / A L, E Y / / B M, F Z / / C N$, 设 $\triangle A B C$ 、 $\triangle X Y Z$ 的外接圆半径分别为 $R 、 r$, 则 $$ r=2 R \cos A \cdot \cos B \cdot \cos C, $$ 其中, $A 、 B 、 C$ 表示 $\triangle A B C$ 的内角." ['先证明一个引理.\n\n引理 设 $\\triangle A B C$ 的内切圆 $\\odot I$ 与边 $B C$切于点 $D, \\angle A$ 内的旁切圆为 $\\odot I_{1}, M$ 为边 $B C$的中点, 则 $A D / / M I_{1}$.\n\n证明 如下图, 设 $\\odot I_{1}$ 与边 $B C$ 切于点 $E, E E_{1}$ 为 $\\odot I_{1}$ 的直径, 过点 $E_{1}$ 作 $B C$ 的平行线, 与直线 $A B 、 A C$ 分别交于点 $B_{1} 、 C_{1}$. 则 $B_{1} C_{1}$与 $\\odot I_{1}$ 切于点 $E_{1}$.\n\n\n\n因为 $A$ 是 $\\triangle A B C$ 与 $\\triangle A B_{1} C_{1}$ 的位似中心, $D 、 E_{1}$ 为对应点, 所以, $A 、 D 、 E_{1}$ 三点共线.\n\n由 $B D=C E$, 知 $M$ 为线段 $D E$ 的中点.\n\n于是, $D E_{1} / / M I_{1}$, 即 $A D / / M I_{1}$.\n\n引理得证.\n\n因为 $B 、 C 、 E 、 F$ 四点共圆, 所以,\n\n$\\angle A E F=\\angle B$.\n\n类似地, $\\angle C E D=\\angle B$.\n\n因此, $E A$ 为 $\\angle D E F$ 的外角平分线,且\n\n$\\angle D E F=180^{\\circ}-2 \\angle B$.\n\n类似地, $F A$ 为 $\\angle E F D$ 的外角平分线.\n\n从而, $A$ 为 $\\triangle D E F$ 中 $\\angle D$ 内的旁心.\n\n又 $D X / / A L, E Y / / B M, F Z / / C N$, 由引理知 $X$ 为 $\\triangle D E F$ 的内切圆 (圆心为 $\\triangle A B C$ 的垂心 $H)$ 与边 $E F$ 的切点.\n\n类似地, $Y 、 Z$ 为 $\\triangle D E F$ 的内切圆分别与边 $F D 、 D E$ 的切点.\n\n从而, $\\triangle X Y Z$ 的外接圆就是 $\\triangle D E F$ 的内切圆.\n\n设 $\\triangle D E F$ 的外接圆半径为 $R_{1}$.\n\n因为 $\\triangle D E F$ 的外接圆是 $\\triangle A B C$ 的九点圆, 所以, $R=2 R_{1}$.\n\n由于 $\\angle D E F=180^{\\circ}-2 \\angle B$, 类似得\n\n$\\angle F D E=180^{\\circ}-2 \\angle A$,\n\n$\\angle E F D=180^{\\circ}-2 \\angle C$.\n\n故 $r=4 R_{1} \\sin \\frac{\\angle F D E}{2} \\cdot \\sin \\frac{\\angle D E F}{2} \\cdot \\sin \\frac{\\angle E F D}{2}$\n\n$=2 R \\cos A \\cdot \\cos B \\cdot \\cos C$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAhsCeQMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKD0oAKK8d+L/wAUrrwjqOm6ZoF3bm/WTz76Nk8zbHwVjYdBvyScEMAAcjcCfX1BAHQn1xigB9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAHoazNd1e10HQ73VbyVI7e1iaRmd9oJHQZ9SflAHJJ4rTPSvH/iXba/458VWvgnRJpbawtoo7vVLkZ2jc4CKRgZKhS4XdhueMoDQB5N8TPDeo6bBpHiPXZ3fWvELz3VzAVYLbKBGUiAb5gVD4IJ4wFH3cn6j8N6jPrHhnSNTuFjWa8soZ5FjBCqzoGO3JPGTxz+Jr5w+MXg7XNAisNR1jxXc679qllCrNG0YgYgMdi7mUA9wu0DAwPT6E8Cf8k+8Nf9gq1/8ARS0AdDRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAR3Ama2lFu6RzlCI3kQuqtjglQQSM9sjPqK4vwl4Q1rQ/E+uaxqut2+oPqZQN5doYmfYqhCcMQoX512gHIIJYk4HcUUAebfEH4aal4+uEjn8SR2unwyb4LcafvZDtAbL+YM5OT07+1dR4O0bUfD/hy30rUdTj1A2oEVvLHb+SFhUBUUjJycDOffHOMnoT0r5J1b4iX+mfGO+8SWV3Jd29vdSW6Ri5LRzWocjYrcjY33hgEAkHnFAH1tRXN+C/GGneN9CXVtOSRFEjQzRSrho5BgleOCMMDkHHI75A6SgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKD0oooA5nx9r7+GPAusavE0gnhtysLxqrbZXIRGw3BAdlJ68dj0r5L8CRWN1470O21G3W4tLi8jgkiKght52DI+rD6dq9u/aPvGXwvo9lt+WW9MpOw9URh16D754PJ7dDXhurRP4W8Wxf2eXhudPNvIrupys6xozNhwCBvyQrAEDAI6igD1vXtN134J+IzrPhqOe78KXLq9zaSElIiTjYzcleo2ydc4U7sHd7XoHiHTPE+mRalpN3Hc2z8EoeY2wCVYfwsAenv9M6M9vDdW8lvcRJLDKpSSORQyupGCpB4II7V85zWes/Afxu2pR273nhnUHaMLFKQGXJKI5IwJFHIJHzDcAeWwAfSdFZmg6zaeINFs9WsH32t5EsqZIJXPVWwThgcgjJwQR2rToAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKD0oqO4njtbaW4lbbHEhd2weABknigDxPxxdjxF8ffC2gQLBKNNxLKJHmTY5BlbBVh8wREZSMckBiQMDyz4xwLbfFfXY0yQWiclgActCjHoB3P/wCuvQvgRv13x94r8TyKsbyA7olJwDPKZMdMnHl46965T4m6VLrnx21XTYI2knuBEsKKQC7/AGVCq5PAywAyaAPcvhJqkWp/DTR9tzDPLaRC2l8nfiNkxhTv53BSucfLn7vy4rqNa0PTfEWly6bqtol1aS43RvkcjuCCCD7g5ryn9nC5L+EdWtNoxFf+ZuB6lo1GPw2frXtFAHz+yeKPgfqkzW8N3q/gpny28KDEWOAcrkoQdoJICuTjAJBHt+jaxYa9pcGp6ZdLc2c+THKqkZAJB4IBGCCMHmrd3aQX9lPZ3USy29xG0UsbdHRhgg/UE188wDUvgB4pfzY/7T8OatsBnQBJRs7Y6B1DnjowxyDnaAfRlFUtM1G01bT7fUbGZZrS5QSROuRuU9Mg8j6HBHTFXaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAD0rivij4itfDnw/wBUmupJY5LuGSztfKHJmkRgvPYDBYkkfd4ycA9rXgHx51W71XxJoHgyAkRSslw5VQ7PI7tGg24z8oDHAPO/pwKAO4+Cnh3+wfhzZTSRMl1qbG9lyVPytxHgjoCgRsEnBZunQeba3/ydYn/X1bf+kyV9E28ENrBFb28aRQRKEjjjXCqoGAAB0A7dq+dtZ/5Otj/6+7b/ANJ0oA3Pgk1vovjvxp4XimndYLgm2Ehz+7hleNieg3Henbn8MV7pXhenvcaH+1Pd28NnHBb6tAQSYiodTAsrOmMAkyREFucnf35r3SgAPSs/WNH03XtNm0/VLOK7tJQQ8ci5/EdwR2I5HatCg9DQB89QT+I/gl4rht7uW4vfBF3P5ETyuXWFCS2RtHySAMxICgSYbAyMr71p19b6np1tf2knmW1zEk0T7Su5GGQcEAjIxUWraTZa5pVzpeo26z2dypSSNh1HqPQg8gjkEDFeEeH9W1r4J+LDofiaS5uvDV3xbXaF2jiGSd6J25Y70HPcbsDcAfQ9FV7W6gvIIp7a4jnglQPHLG4dHU9wRwQasUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAAeRXgug258Z/tH6tqcsBNnobMgEkIdfMj/dIN3RWL75Fzk/Jx0yPW/GPiBfDPg/VNaLoHtbctF5iMytIeIwQvOC5Uf4V53+zvpUdr4LvNT2KLi9vCrOrHmOMAKpB4BDGQ8Do30wAex1836z/AMnWx/8AX3bf+k6V9IV883Nul1+1osblgokjkBHqtmGH4ZWgB3xruIdF+LXhPXpy7Q26wSSRxqN22KcucZIBJDY6jpX0CpJxnr6GvBf2lNPkNv4e1FIG8tTNBLN2BIRkU/XDn8DXuen3X23TrW62FPOiWTYTnbuGcfhmgC1RRRQAh6GsTxN4Z0zxdok+lavB5sEnzIykB4n7Oh7MOfbBIOQSK3KD0oA8A8IeJLn4SeMbjwL4iuZJ9KlljayvW/dxwq+cuAw+4WI3fNtVlc8/MT74DyOnIrlfHvg208a+G7ixkgtmvljZrKeZT+5k/wB4cgHAB65wODivMfhn401XwXq0vg7x7LJYRrErWM17JxHg7QgfkFCM4bO1dhHfAAPe6KYDyOnIp9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIeh4zS0HpQB5D+0JqEVr4AgsmaPz7u9QKhcBtqgszAdSAdoP+8PpXceAdAfwx4G0bSJVkSaCANMjsrFJXJd1yvBAZiBjPAHJ615j4yU+Nvj9onhtubDR0We4imhR0ZsCZwASCyuoiTnpyQMdfcQOR04FADz0r521C4e1/axSRApZp4Y+emGtFU/jhq+ia+dr5S/7WKj/ptETiLzOlovbt9e33u1AHb/HrTft/wyuLkzbP7Pu4bnbtz5mSYsdeP9bnPPTGO9dT8PNQi1X4e+HrqGYzD7DFE7tnJkjXY455OGVue+Mj1qfxzYf2l4D1+zW0+1SSWE/lQiPeWkCEphectuwRjnIGK5D4C6mdQ+GUNv5Oz7Bdy2+7fnzMkS7unH+txjnp15wAD1GiiigAooooAK4j4gfDjS/H9hCLqR7S+tgfIu4xkqD1VlyAy55xkEY4Iyc9vQelAHhfwy+Ktza6vH4K8V+Ws9s4sbW7CvvklDiNYnUKeefvHbwvzZJzXulcL8Rfh1YeN9DnSKC1ttYG14L0xDcWXOEdgNxQgkd8cHBxiuH+HPxIl8N3beB/Gr3EWoW1z9nt7qUtIGDH5UYnnHIKv0KsOgAJAPcqKaCDinUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSH7p+lLXCfFjxDb+HvhvqzTgtJfRNp8EYyNzyqVPIB+6u9uwO3GcmgDzf4K2ba/wDE3xL4s2obUPKUOGX95NIWBUdMBVbIJyNy9etfQdeffBzw5/wjvw608PJvm1H/AImEm1tyr5irtA4GMIqZ6/NuwcYr0GgAr5/H/J3f+f8Anwr6Ar5/H/J3f+f+fCgD389DgZPvXhH7Od9PAfEeg3NwimCWOeO2JXfuO5JWGOSPliB6gcdM8+8V88/DOL+xv2g/Edg1tJCJBdxxI4KlVMqyKeeSCqjB7gg0AfQ1FFFABRRRQAUUUUAB6V5v8SvhXp3je2mv7cNBrsUGIJlOFmxyEkB45yRuGCMjOQAK9IpD0NAHj/wl+JV5qc7eFfFQ+y6xaKqwPcExyXAGAVcPyZBwfUgnjgk+w15p8XPhufG2jpdaasS63ZAmLcMfaI+8RbtzyueASem4kZXwq+KbatPa+D9fhuotet1eETTZY3BjySHz8yuFU5znO05OSBQB7BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV4D+0NfXd/qvh3w3ZhpHnJm+zo3zSSM3lx/L2P3wD33Edq9+PSvCdBEvjn9onU7++tmNn4dDwQKYw8aNG5RAW2jksZJRnJBXgkLmgD260t0s7O3tYySkUaxqW6kAY5/AVYoooAK+fx/yd3/n/AJ8K+gK+fx/yd3/n/nwoA+gD0NeFXsT6L+1RY3NzdQxwapAGT58ZBgaJVOeMmSPgDOcrjnge614P8dpYNB8YeC/Ei2vnXMErPIpkI81IZI5FTOCBy784798CgD3iimL2z1p9ABRRRQAUUUUAFFFFAAehryr4l/DY6iT4p8LpJZ+J7V/OBt22/acdjzgOOx78g5yMeq0HocUAeZfC/wCJn/CTwHRdeKWniW0YwyQyDy2uNo5YIQMOMNuUdME8Dgem1458V/hxqN3dnxj4SkuYddhBNylvK4lmUIEDRkHhggxtH3h6nhuk+GXxIsfHmliNyINatkH2q2Y8uOnmp0yp4z/dJweCpYA7+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ9DQBjeKtU/sbwpq2ohmVra0llUqyK24KcYZ1ZQc9MqfoeleZfs76dLH4a1bV5pvMkvrwKfnRj8gOSxB3BiXPyt2wQPmydz4463HpPw1u7fc32jUZEtYQqqf4tzkg9tqkZGeSPrW78NdAi8N+AdHsktpIZpIEuLkSoFk851DNv4ByM7RkZAUA9KAOuooooAD0rw7xOg0v9pvw3cw7We7t0L7kUAbhLEfugEnavVix7dAFHuJ6V85ayyn9qi3XYoIubYbhnLf6OpzyT64/Ae+QD6NrzL48W7y/C+6dUDCC4hdicfKN23P5sB+NemnpXJ/EnT4NS+GviKC4DFEsZJwFODvjHmLz6bkFADfhrrM/iD4daFqNxvM7QeVI8khkaRo2MZcsepYpu/E8nqeuryv8AZ/vftPw0WHc5+y3ssPzHgZ2v8vt8/wCea9UoAKKKKACiiigAooooAKKKKAA9DXjPxI+Gt/Z6ivjTwKJbXWoG8y4trUYE2OS6L3Y/xJgh/TOQ3s1B6UAcN8PfiPpfjnT41imEerwwo15aMmwhjgM6DJym7IHJIyucZ57mvGPiZ8O7rT9Qfx/4PkNpq1mxuruFMKsgA+aRRx82M7lOQ4J75DdZ8NPiPZ+PtIYsi22rWoAu7YfdOejoe6nnjqDwc8EgHd0UUUAFFFFABRVWW+tYZlhluYUlYgLGzgM2SQAAevIP5VC+s6VG7RyalZq6nDKZ1BB6YxnOaANCiqOn6tpuqeadO1C0uxC+yX7PMsmxvRtp4P1q9QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUHpRQelAHgXxIu4/Efx28L+HTIk9nYvCZ7aWH5Q7P5kinI+YNGsXcj8c170ByOnArwT4fWv8Awlfx98Q+JUcy2mnSSCKeKZWR2OYY/dlaMSEY4GF56A+/UAFFFFAAelfOmuStJ+1NaxsEAiuLZEKxqpI8hW+Y4yxyx5JJxgdAAPos9K+ctZcn9qmBcKAtzbLwgH/Luh7devX6egoA+jaQ9DjrS0UAeKfAFL7S7rxh4dupo3TTb2NdsYyolzIjkMQGIPlLjPp0GTXtdeEeGPsXhz9p3XNPQzudRik8snB2ySLHctk8fLw4GAf4c55Ne70AFFFFABRRRQAUUUUAFFFFABRRRQAh+6a8N8d+CtQ8AatH468BwpbxW6n7fYxKxQoWLO5Xd/qz8oKKAEChhjGV9zpD0NAHK+BfHWm+O9GF/YkRXEZ2XVozgtA56A8DcDjIbGDz3BA6uvAvHngzVvh/4mj8aeBreSK22vJfWsSjyoVXDMCoIJibBJAGFK5BHy49S8DeOdL8daOL2wby7iLat1aMcvbuc8Z/iU4OGHUDoCCAAdXSHoaWg9KAPCf2kINPTStGuGtohqjzNGlxuw/kqMsuP4l3MpyfuknH3jWz8PPh/wCFJfhppCazo9jPd6qpkMs6bZpC2XAjYncP3ag4UjgFsDmuD+Peoz658RdN8P2DtcNawpGtsqYK3EzZwDgZ3L5Pcj6HNHgiDxXf/F7QNA8SGc/8I3EdsKiPFtEIhs5TggnygTkk5HPegDu/hf8ADg+DfiB4mm/0x7SCOO2sLiZAqzJJiR+3zFdqLuGB97jsPXqKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuM+KHiI+Gvh7qt9HL5dzJEbe3KzeU/mSfKCh67lBL4AzhD0612Z6GvFf2g2ub2z8M+H7RDJcajfsYY8jDOuEUZOMZMv0oA6D4GaP/AGT8M7SVmO/UJ5LsqcYUHCLjHYqinn1xXpVZXh/SV0Hw/pmko6yLZ20cBkEewOVUKWxk4yRnGT1/GtWgAooooAK+b9Z/5Ouj/wCvu2/9J0r6Qr5v1n/k66P/AK+7b/0nSgD6QoPSikPQ0AeA+LbiXQv2mtBvVt4s3n2dOeNyyhoCxx3HOM/3R2xXv9fP/wAe7eDTPGPhPXi8wlJKSYI2qkMiupXjOf3jZ57D6n34DAHf39aAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBFcwRXVrNb3EUc0MqFJI5FDK6kYIIPBBHGK8C8S6Dq/wW1oeJvCPnXGgXJ8u9s58ukOT8gYg5x82Fc8g8EndhvoKmyxpLE8ciK6MpVlYZBB6gjvQBieFfE9h4u0G21fTZVeKQYkjBy0MmBujb3GfxGCOCM7h6GvnHxVp158FPHlv4i0R0l0a/c5sZJlTd1LxBQclVyCr4wpKg5/i9n0TXND+I3hSW4tleewuA1vPDKNjo2BlTg/K2CCCD6EHNAHhvw1WHxv8eL/XJXkkhhe41GGO7QSMV3BIlPJClN6EYzjYAOgI9G8YeMvBXgm71nXNPlsLnxZdxmAokhmcvHtQK+CRGF4JXK7tncjje034T+BdNuWuIPDlo7spQi5Z7hcZB4WQsoPHUDPX1rVPgTwhg/8AFKaH/wCC6H/4mgDF+Eravc+BLfVNbvby6vdSnlu2+1ZHlqzbVCA/dQhQ4AwPn4GMV3dRxIkUaRxqqIoCqqjAAHYCpKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEPQ14Oka+OP2lmcmOew8PIMcOhDQ9uByyzuT2BCnqOvtur6hHpOi3+pSjMVpbyTuMkZCKWPTPpXiX7N+iulprOusy7JJFso1VucqA7kjHT5kxg/3vagD3miiigAooooAK+b9Z/wCTro/+vu2/9J0r6Qr5v1n/AJOuj/6+7b/0nSgD6QoPAooPSgDyL9oPSmvPAEF9HbJI1jeo8kp27oomUocHrguYwQPQHHGR6P4b1GfWPDOkancLGs15ZQzyLGCFVnQMduSeMnjn8TWH8UtM/tb4Y+ILbzvK2WpuSxXdnyiJcdR12bc9s9KzPglqg1P4X6Yv2mSaazeS1m37iUIYsqZPYRtHjHAHHbgA9FooooAKKKKACiiigAooooAKKKKACg9KbJIkUTySOqIilmZjgADqSTXkHjH4+aLozSWmgRDVrwbl8/JW2jbkdesmCAcLgEHhqAPVr/ULLTLY3OoXsFpbqeZbiUIo/FuK8P8AG/7QMUJ+x+D0WYgqWv7iIhSMZwiHBz2ywHQ4B4auA8dafrd5IPEXjTV7e01K+gaS10kRyG4jQPhE8sgCJPvHLNkjd95siuRttBvbrQL3XAqRafaMkRllbb5srEYij/vOFJcgdFUk4yMgGrp0Ou/EvxvaWV5fT3d7eSbGnkO7yYsl3IUkAKo3MEGB2HXFegxf8JH8CvFUFp9rnvfC93LE1zO9oRCSSQ20BjtkCq3AYZwMggCui+A3w/l0y3XxdqB2y3tvss4CpBSMty7ZXq21SpBxtYnndx7NqdhBquk3mnXIY293A8EoU4JVlKnB7HBoASxvrTUrSO8sLuC7tpM7J4JBIjYODhgcHkEfUVbr5zXTNZ+AOsx6mJU1nQdS/wBHuAqmFg6jKnBLAMPmxycgOCBkEe7+HtbsvEmhWWsaczNaXUQdN33l5wVPuCCD7g8mgDVooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoPSig9DQB5b8c/E/9heAZLCGXbd6s32dQHwViHMjdDuGMIR/00zmus8A6A/hjwNo2kSrIk0EAaZHZWKSuS7rleCAzEDGeAOT1ryD4qtc+JfjT4b8NNE8tpC0I8pI9+fMcGVzxnGxVzkkAITxk19BqOnGMdqAHUUUUAFFFFAAelfOeqKrftWpukVP9JgIJzyRbJxwDyfwFfRh6V86alBJcftXxpGu5hcQORnstqrE8+wNAH0XRRRQBn67a/b/D2p2fleb59pLF5f8Ae3IRj8c145+zbqM0uj67phSMQW9xFcKcHcWkUq2een7pcfU/h7meleA/A21XRPiN4v0OO5Z0ti0ShjgyCKUoG2+2fw3e9AHvpzg461474v8AjXf+DvEVzpN/4QYbCzQSf2kB58O4qsnEZxnHTORyDyK9jPSvmHTceOv2kjeQndbQX5n861/eIY7YYRyRxtcxpz0+cY6igD6J0C+1DUtFtbzU9LbTLyUEvZmYS+V8xx8wwDkYPTjOD0NatFFABRRRQAUUHpXG+OPiNofgW0P26bztRkiMltYx53y84BJ5CLn+JuwbAYgigDsTypHtXmPi343eGNAtSdMni1q+EgX7PbyFUC85YybSvboMk5BHHNcOZfiD8brdYdkOjeGS4LyBWCzlWAOP4pSDuIHypleSCAa9J8D/AAp8P+CJUvIke+1RQwF9P1QMACEUfKvA68tyRnBxQB51D4X+JPxUunl8S3U2g6GxVXs9rxhwOflhJyfmQHMh43ZXOMVsa/c+A/g3p+7RNPs7vxOgEcQml82aNygzJLzmNSpzhQu7dgAAkjU+JnxhtvBtxNoum27XOs+WpLvjyrfcCRnuWA2nbgDDA57V438O/h3qXxH1me9u7iZNNjn3Xt45LSSufmKox4Zz3JPG4E54BANHwN4G174neK18Q+IUmk0mSXzbq7mOz7Tt+Xy48YyONuVwFAIBBAB2vG1snjHxrpXw48IwyQaPpB8u4ES5iibdiSUjI3bAcFmIJYsOrZb1Xxxrln8NvhtIdNH2Vo4lstNRE3YkKnaecg4CsxLddvcnB534BeFZ9E8JT6zdBkl1h0dImBG2FN2xsEA5bcx6kFSp7mgD1SytYLGzt7S2iWG3gjWKKNeiKowB+AGKsnpRRQBn6xo9h4g0mfS9UtluLO4AWWIsQGwcjkYIIIByK8Lsr3xF8FfF8en6jJdz+Bp7jy4Z5R5ixq+WDLtGVdedy4+bDkKcgj6EPSsvX9DsvEug3mj6ihNrdR7H2kZU5yGUkEbgQCMjqKAJ9O1Gz1azivtPuorq1lyY5YmDK2Dg8+oIIx6g1dr51t9Y1D4CeKZNDuB/avh+/wBl0HUGOWMZKsVz8u8Y5GfmAQ5XJr6BsrqG+soLu2lWWCeNZY5F6OrDII9sGgCzRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIehx1pa4T4w6s+kfC7WZYnVZbiNbZdy5BEjBXH12F6AOL+FFq/iz4keJfH05Wa1897SweSFd2PlwRjlGSEIucfN5h5yGz7fXmnwL0waf8MbOba4a9mluXDAg53bBwf9mNT+P5+l0AFFFFABRRRQAV86ai4T9q6M/L/wAfEC/MT3tV/u9/09eK+izyDXzxdiQ/tZKIoY5W82MlZBwB9kXJ57gfMPcUAfQ9FFFAAeleF6JZN4S/aZvrU28jw67bzTRSSSqSA/75mwB03xSIAcHGDz39zPQ14B8aydC+KHhDxPdjdZRmPdHFzJ+4n3vgHA5Ei45656dSAey+KtUh0bwnq2oz3HkJBbSMJAwVt20hQuSPmLYAGeSRXh/7N1lv1nX77bGfJt4oc/xDezHj2/d+vYV23xubxLdeFf7I0fQJNQs75kFxPbhpZYijb9vlKvAJVfnyRwQQMgngvhz4j8a/D/R7vTG+H2sX8E1x9oVvs80TIxUK2T5bAj5Vx079c8AHv97rem6Xd2Fpe3aRXOoTeTaxEEvK2MnAGcADqTgDIzjIrTrwLwfZ+O/HHxPsNf8AFOnXFjY6UGdIpoHt40JUhViRsliWwWJ7Lgn7or3HUNSsNJtjdaje21nbhgpluJRGoJ6DLcUAXK5bxX488PeC7bdq98qTNgx2sWHmcHOCE6hflPzHAyMZzxXl+v8Axp1nxDrMeh/DnT5Z5XLIbqWDc7HdgMik4RAMHc4/i5C4OdnSPgfb6hcTav461GfV9ZuZTJMIJSkOMjAyFDdBjjaADgD5QaAOX1D4geOfijeT6V4Gsp9PsIcGa4SYJLt3/KWkyBHkAHYpLcNywzXWeCvgjp+jXUWreJLg6tqwbft3HyI24wefmdhg8nA5+7kZr1GxsbTTLaOzsbSC0tY87IYIxGi5JJwo4GTk9Opq2ehoAZjA6V4d8Xvi8+nST+GvDVw8V+jGO8vY2GIhjBjQjJ35PLDBQrgc5Kw/F34v3Fjc/wBgeFNQh3eWRe3sJ3MrNwEjboCBklhyCRggg15h8O/BFz8QvFH2eWSdLKI+df3QUsQCegJ43ucgZ9CcHGKANP4c/C/VPHl6mqXh8vRRcf6TcO+ZJyOWVBnJJyBuPAyepBFfVtpaW9jax21pbw29vGNscMKBVUegA4H4VBpWl2OiaXbaZptrHbWlumyKJBwv9SSSSSSSSSScmuF+M3jObwj4OMVjMItS1JjbwurlXjTGXkXAzkfKOCMFge2KAPPr26f4q/Ha1tLcxXehaO2SpcGKSKNh5j4JZXDyEL8v3l2ZxgkfQ8SJFGkcaqiKAqqowAB2Arz74O+D4fC/gu1ujbvHqOpxJNdl2OcZJjXbnC4V/ryc88D0WgAooooAKD0oooAyta8P6R4is2tdX063vIcMAJkBKbhglW6qcd1II7V4j4b8S678G9bbw94xaafQZ1ZrK4QeYFK8ZjOeF6AoehIPAPzfQdYHizwppfjLRH0nVkcwFw6PG214nGcMpIIzgkcjoTQBsWtxDdW0NxbypLBKivHIjBldSMgg9wR3qevnLwZ421n4U+Ix4L8WRL/ZaykJMv8Ayx3tkSKx+9ESSSDgjJ7gqfov0NADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAA9DXjX7RGpW9v4L0/T38s3V3eiSNWQkhEU7mBHAILoPox9zXsp6V4VrN4PGf7R2j6SJGaw0Ft+YZlYGVF81j04O8RxsvJ+Q8jnAB7B4e0qPQ9AsNMhgt4EtoVjMdspWPfj5iASTy2Tkkk5ySTzWrRRQAUUUUAFFFFAAehrxHxVLNZftMeFphK0hls0ULIBiNW85CFwAfVvmyck9sAe3V4T4ytYLf9pbwvLFGqyXMMMszD+Ng0qA/wDfKKPwFAHu1FFFAB2rxv8AaNgjfwNpk5X96upKgOegaKQkf+Oj8q9kPSuB+MOlPqvwu1hY7aOea3RblNwX92EYM7gnoQgfpyQSB1xQBv8Ag3WpfEXhDStYuY4457uBZJEjztDdDjPbPbnHTJ61t3E8NrbS3FxKkMMSF5JJGCqigZJJPQAd68P8D/Fvw34Y+FWmw6jeyXGq2qSR/YoYm3t+8O0ZxtA2lTnPOD1IIrCi034mfGCctqE7aToUqxuylHit3T5SCkZ5lJHzjJI/2l4FAHYeJPjxpdnf3Gk+GrCfWNQDeRBKvMEkpwF2bSWkG444A3YwDgg1y1n8KPG/xD/4nPjTWpLGZlAgjmhEjhdo/wCWSlVj9xwcg5APNeteFfhr4X8ISQzabpwa8iBAvLhvMl5GCc8BcjI+UDqfU12FAGH4a8KaL4SsFs9G0+K2UqBJIBmSXBJBdzy2CxxnpngAcVuUHoapalqVnpGnzX+oXUVtawjLzSttVecd++eAO+aALp6GvnD4o/FVvE1zP4T0GVIdMMuy71DJcTKp+YrsBIiGCxZQSwHHGQ0Xinxz4j+KWsT6L4YJsdDtvN+03X2kxRyQ5KmWdiF2x7OdmD3zuIAHPaR4UuvGHiOXw54WKRaLbbLa81RIv9eoJYyycksHZCUTO0bUBwQWoAy/AHw51Px/fTJbTR2tjb48+7lBIUnoqqDljwe4GByQSAfrjRtJs9B0e00vT4RFa2yCONAAPqTjGSTyT3JJ71FoPh7SfDNh9h0axS0tmbeUQk5bABJJ6nCjvWqckHHWgBT0NfN16Yvil8fYBYAXOmaYyCZpmjkikghkyxUD7yOzYGSxO/PA+VfVvit4ttPC3ga/LzqL++he2s4d+HdmGC4wDwgbcT04AyCwrL+C3gd/CnhUXuoWrRavqLeZKsq4eGIcJGRk4P8AEeh+bBHy0AemAcjpwKfRRQAUUUUAFFFFABQelFFAHJ+OvA+meO9BaxvEWO5jy9pdKMvA5HUeqnAyOhA7EAjyzwr8Q9S+GF8/g3x5FcNBb7VsryFfMCRE4BycF4sZIwCy4K4/hX389KwPFPhLR/GOkvp2sWvmR5JikVtskLEY3IexH4g9waANe3niu4Iri3lSWCVQ8ciMGV1PRgRwQR0PpVivAPh94v1P4deI5fBHjaZ4bQ4+w3MhAhh5bkMQCY36A5wpXGB82PfAeR05FAD6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooPSgArwb4GaY+s+K/EfjWZSY5Z5IYWYJlnkYSSHA5UqNg9DvOOldt8aNcOifDPUfLlaKe/K2URCAg7/vqc8DMauM9eeK0fhj4eXw18P9IsiqefJF9puGVApLyfNhsE7ioIXdnkIOnGADsqD0NFFAGN4gsNX1LTlh0bW20e7Egb7SLZJwVAIK7H468/hXh/wu8b+PPHPiz7BceKRDDbw/bJFbToXEyq6KYztCkZDH5gcj9a+ie1fKPxFsr/wR8X76fTdTfTzqW65juy5JjSfcshO1SQA3mYwCwAUjJwaAPRdF1fxn4r+JWv6ZpPjDHh7TZTm4hsLfKls7YlDLlsEMu7kEJnuK9gs4poLOCKe4a5mRFSSdlCmRgACxA4GTk4AxzVXRNFsPD2lW+maZbJBawoqhVUDcQMbjjqxxkk8k1p0AFeH+Ov8Ak5Lwd/16Rf8AoyavcK8P8df8nJeDv+vSL/0ZNQB7hSHoa5zxP418P+D7eOXWtQSBpDmOAAtLJwTwoGccdTgZwCRXkmt/EbxT8S530P4fWF7a2ySK1xqAlEUhXAxlhxEMhjwxZgB05UgHrHirxz4e8HW+/WNRjjnZd8dpGN80owcYQdASpAY4XPBIrxi78deOvi+0+g+GtNj0/TnRVvWE2dqMcHzJSB8pwTtQbiobhhkV03gj4HQWlx/avjSWPVb47DHah2McZGCCxOPMOABtPygAjDZGPYbe3htoVhgijiiX7qRrtUZOeB06nNAHl3gj4H6J4bntdR1WQ6nqUaZMbgG3jcgcqpALEHOC3HfaDjHqwAGKdRQAUHoaK57xb4t0rwZow1XV2mEJlESJEm55HKkhRyAOFJ5IHHrQBparqtjommXGpaldJbWdupaWVzwB06dSSeAByScDmvANR1nxT8Z7y4ismbSfA9vKv2ued0RVVMuXkbqzYwdgJVTsJx9+qt1b638Urq48VeJL99F8DWrnazttAiU9I053yE4UuQcscDO0IK16uofFHW4fC/gi1ksfCWmIilCPLiGTzLKM5Zic4BJY7SeCXNAD0s7f4h3ll4B8EWf2Pw7pspubjUrgkvMcbDO68ZY5IVevT7ighffvCPhew8H+HrbR9OU+XHl5JWUBpnPV2469B7AAdhT/AAv4X0nwjpEWm6RarFEoG+Q4Mkzc/O7D7x6/ToAAABu0AFB6Gg9DXl/xu8WL4d8CS6dFKVv9YVreMBcjyuPNJyCOVYL1z8+R0JoA4S9sl+MXxqlNqUXRNGRYpLkJvWaONycAglSXYvtJI+QbsEgg/RI7dhXE/CvwjL4O8FWtlewxx6lMTNdeWQ3zE8KWA5KrgHrznBIxXcUAFFFFABRRRQAUUUUAFFFFABQehoooA4v4ieAbLx3oTwSKq6lbxv8AYLh3ZVidtpIYDgqdgByDgcjmuC+Efji60W/fwB4vea11K2lEVk1yRjGBiHd+RQ5IYEAHAUH3A9DXD/EP4cab4900NKDDqttG4tLhG2/MVOEk4OU3YPTPXBGTkA7mivGvht8SLy01YeBPGiPbaxayC3trmU487A+VHPdiMbWHDgjvy/stABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUHpRRQB4B8eIbjxD438LeGbPZ9qkRjHuDYUyyBNzEA/KPLJOBkYJPGK93tbeO1to7eFQsUShEUHOFHAHrXiHw08rxv8a/EvjH9zJbWX7u1ZN6E7h5UThT6xRvuDd2GB/d93oAKD0opD0NAHJ+PfFq+FPDztBmbWbvMGm2sal5Jpj0IQDkKSCfwHUgV4B8XPBN74aXSdU1XU5tT1fVDK2oXBX92JV24VOBhQpwowPunoMKPU9P+HHi3/hZVn4y1XxFY3U0Tn90IH2pCVZTHGMjaMOcc9fmO45zo/E/wHrvj6KzsLXVrO00yA+c0UkJZ3m5AJYfwhScYxyTnPGADtfD1+dV8N6VqJzm7tIrj5sD76Bu31rTPSvP/APhzXfAeitp2saxpk+iWkcksbiMxPBlt7bmJA2D5ycjPzdcDA57xl8dbDRtSl0vw9ZJrF1tAjuY5w0PmMOMbcmTBIBAI7jIxQB6rqGpWGk2xutRvbaztwwUy3MqxoCegy3FfL3j/wAcTeJ/ilZ6t4PWeSeyiS3spI4S7zsCzFhGVyOXIwQeFz3wOwg+EPjTxveQaj4919olVtwtYysjoMgMqhcRRllUHcu7nBIzmueTRdO8O/tJ2elaVbm3soLqDy4y7Pt3Qqx5Yk8kmgDrtB+CF1rlzc638QdRnudUu3Ehht5gAuV5DtjqOAFTCgIACwOB7Hp2mWekWMFjp9rFbWsIxHFEm1VBJJ49ckkn3PrV2igAooooAKD0pD0Ncj458f6V4AsLe51GOaaW5ZkgggwXbaMknJGFBIyefvDg0Aa3iLxHpvhfR7jU9TuFSGGNpAgI3yYx8qAkBmJIA9yK8P0vS9V+OesS654klbS/DWnh0gjgODz12uwKkjALuR2AAGflk0TwHrHxY8Qx+NfEjLbaNPN+4sWkZna3Q/KikY2qTxngsSzADIJd401TUPidrUPgfwOVTQ7L5J7mJWW0YquUDMikBAUKqMbSwBGeCADNvL3xB8W9Yi8J6HCLDwlYzCNZUi3RpHGuFZ3HBYjlUBAyQD03V7t4T8KaZ4O0SPSdKjkEAcyO8jZeRzjLMQAM4AHQcCovBnhOx8F+HbfSrFAD8slzIGY+dNsVWkwxO3O0cDgV0lABRRQehoAZK6RRPJI6oiqWZ2OAoHUk+leBeDBP8VPjDd+KL+EyaPo5AsWClApWTdAp5DFuWc9Rng4BUVvfHXxddWGmWvhHSVaS/wBZGJREWMqx7gFVVXkmQ5XqeAwwd2R3vgbwrB4N8J2Ojw7GkjXfcSqB+9lbljkAEjsMjO0KO1AHS0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUHpRRQB518TfhtYeNtLnvoYWHiC3tttpIrnDhSzCIgkLhiSNxwQSCcgYOZ8J/iOdStx4Y8TSPaeIrPEardgo9woAAyWOTIO4PJ4Iz82PWO1eXfFb4ZR+K7c65pbvBr9lCWQxD/j5C5ZU9nz91h9DxggA9Roryv4R/FKTxsjaRqcO3WLW38150GEuEBClsDhW5XI6ckjHQeqUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAB6VyvxH1WXRPh3rl9bzGGdLUpFKGKsjPhAQRyGy3B9cV1XavGv2gNZvo9A0rw3YwPI+s3JDBPmaQRlCsYXBOS7ocgg/LjkGgCx+z3pctn4BnvpINhvr52icsDviQKmcA8YcSDnH48V67Wdoumro2h6dpaSNJHZ20dusjDBcIoUE+/FaNABRQelcx4y8b6N4G0pL3VZmJlbZDbwAGWU99oJAwAQSSQBxzkgEA6c9K4Pxb8V/C/hS3uI21GK+1KIMq2Vs+5i4O3a7AEJg9c84BwD0rzKfxl4++L9vPo2gaTHpekzkpc3e98bRjdG02MYO5cqq7iPVSRXnvxH8EJ4A1610oX7XrS2a3DymIRgEu64C7jxhB37mgDs7a5+IHxsuZrf7Stj4cabbKEQCCILsJXj5pH5VgCcZ6bR09t8H/D/AMPeCIdmlWrNcsCr3k+GndSd2CwAAXpwAB8ozk8183+BNX8S+ALU+L7SzW60K4k+x3KC5XazjJAYKSyMOzMvRv8AaGfqLw34i03xVodrq+lys9tOMgONrowOCrDsQePTuMggkA2T0POK+dddaJv2pbLy2YkT24cGJU2nyRgZBy3GDk4PJXGACfoo9K+ePEFjPa/tR6fPNHtjupbeaFtwO9PK2E4H+0jD8PcUAfQ9FFFABSHkGg9DXlvxQ+LkPgiVNM0qK2vdZYB5FkYlLZSQRvAxksM4AII4Y8EAgGj8Qviro3gi3e2Ro77WuNtkrf6vcM7pCM7Rg5x1OR2Oa43wN8N9W8WahceJfiXBcXUroqWlpdOyMADu3FFxsXqAh4OWJUcE6vw6+F7Lew+NPFry3fiC5Juvs80YVbd2OQzLj74GCBgBCemVBGF4z8da38Q/ENx4D8FeVJaOwS41CKQ7ZYwB5hZsfLFk7SRndgAEhgpAF8Z+NL/xnqkfw9+HqRfYRGILq7txiHygApVSowsKggFgMn7q8fe9R8DeB9O8C6GmnWBeWV8Pc3L5Bmk7nGSFHYAdB3JyaTwL4F03wJowsLECW4kO+6u2QBp3HQnk7QM4C5wOe5JPV0AFFFFABVLUtStNI0241C+mWG1tozLLIQflUDPQck+wq4wypHtXjPxh8VXOoajafDnRBE97qrRx3UzMT5AZ1Kr8pJGQNzZH3CODngAzfhXaz/ETx7qvjrXImmhtJBHp8Mw3pA2dyhTwP3a4/h5aQPw3Ne81heFfDOneEdAttI02ILHFgySY+aaQj5pGPOScfgMAYAFbtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeRfEz4cXUssXirwTAbPxDBK0s32V/Le4DDDMB90vySem4M2cnArY+G3xHtvE1lBpGrT/ZvFFsWhurSdfKeV0zuZRwCcAkqBlSG4AANeiHoa8a+Kfw4vF1SPxz4QEset20iSz28KFzMwIxIi4Pzf3l6MPfO4A9morzj4X/FC28c2osrsLDrsMbSzwxxMsTIHwGQkt2ZAdxByTgYr0egAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApD0NLRQB59ffF/wzp+uPos8eqDUFlEIgFi+92J+Xap+Y7sgjjkEYo1P4u+H9FEX9q2WuWHm7vL+1adJFuxjO3cBnGR+YryDRUPjT9o97mZ2eKDUHmEkYCEpbg+VkEd/LjBAGSCenWvd9ZSz8a+GPEmi2UlvcSoJbFjLho0uPLVl5AP3GZecZDD1FAGn4d1+w8T6FbaxprObS43+WXXaTtYqePqDXh91JceK/2noEi/0q20qVFH7sFYEiXc24gHpKWwT/ABEDjjHtljDb+EvB9tDdXWbXSNPVZrjyyMpFGMttGT0UnHPpzXj3wQNsZPEvjzXbuyt3vLprcTyzeUFZj5soIYhQCWjx1PynoOoB73WB4k8XaJ4QsRd61fpbq4PlR4y8pGOFUcnGRzjAyMmvJfEPxt1jV9R+wfD/AEi4vFj3CW4e0eV3OTgpGp4UqpOWGTnopXJm8N/A+81S/fW/H+ote3Vxh3tUkZjnC48yXI6Dcu1OOBhsDFAFfXPid4o8f3Z0T4c6feRQAlbi/KgNtZTj5jkQjhiDneSBjaRg6HgX4HR2t1JqvjZotTvMoYbfzWeNMYO6QnG9uNu05XGfvZG31nR9H07QdOg0/S7OO0tYgNsUQx2xlj1ZvUnJPc5rSoArWlpbWFrHa2cEVvbxLtjiiQKij0AGBXzr4f0WL4tfFLxfq0hQ6esEsVvcJGCisyeTA7RudxOxWfjBDIOV6V7P8SdXl0P4d65fwzNBMtsUjmXcCjuRGCpXkEFhg9jiuM/Z60maz8C3OoTRsn2+7ZovmUho0ATOByDvEg59B7EgGX+z3NY6p4O1zQrq2W4Ed2Jpo5o1aJ0kQKowc55ibjHp17Z2s6Pr3wW8VN4g0BJ5/B88q/abUyF1jDcFWGeCCMLJz1UEnJDO+Ct3dWHxY8WaLLsRH855EOCfMin2gA/R3+vWvfLy1gvrKe0uollt542iljbo6sMEH6g0AZnhzxJpXirR49U0e6W4tnJVsDDRuOqsvUHp+BBGQQa8Y8TX63f7T2jwCBYms2ggZwcmYlDJuPAxxIF6n7o+gr67Yan8CPEcWr6DILzQNTZY5rW5b5gy87CwA5wWKvjuQwOMtj2+t2fiP9ozTdX092a1up7Z03Y3L/o6AqQCcEEEHk9DQB9QUHoaZLIkUTySOqIilmZjgADqSTXg/if4max4+12Hwf8AD8zW/myMJtRMhiYhWJ3IyklYsDcT95shQB0YA1viT8XJrHVP+ET8JIl1q8j/AGaafkiKRhtCR4IzIGYdeFIxgnO3V+GPwqi8KwvquurBfa9O/mb2AkFsck/IxGS5zlm/AcDLaXw5+HOn+ANI82Typ9YmT/TLwdAOTsTP3UHGTxuwCQOAvC+OPG2q/EPWz4H8CFpLV8x39+h/duv8XzjpEOQSPv52gEEbgA8b+PdX8f60fBHgLdJG24Xl/G+1XUHDYYH5YvVur5AHBG/03wN4F0rwLo62VigluXwbq8dAJJ2/oo7KOB7kklvgnwBovgjTYoLG3jkvym24v2jHmyk43c9VTKjCg4GM8nJPWHO04IBx1NAC0V5/8TfFHibwjo7axo8eitYwKon+3NIZpHZwoVEXA4Byct68DHNP4SfETUfH9nqjalBZxXFm8YVbWN1GxwcE7mPdT37UAemUV5p4z8T+NdJ8a6ToXh6LQ7uPVVYwrdJL5sGwDe0hEgGzByCBk4IwSBu9BsPtn9m239oeR9u8pftHkZ8rzMfNtzztznGecUAU9f16w8N6HcaxqczR2duql2VCx5IAwBzySB6V5N8KPDV14m8W3vxM1aONIruWU6dB5m9kO4puJGBhVBjAI55OBgEx/HrUJNZuNB8F6YoutSnuBcPCpwykgpGCTwM7nJ5GAATgEGvXfDmjR+HfDmm6PE/mLZ26QmTBXewHLYycZOTjPGaANaiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPQ0tFAHkXxR+F99rV9beJPCTJaa3BnzVifyGn6kOHBGJBkjJIyCPmG0Z2Pht8ULHxjHHpd4r2viGCLNxBImFkK4DMhx+JU4IyeoGa9EP3T9K8a+KvgR9LYeOfB9vcW2vW9yJrj7JyHUghn8vByckbuxUuWByaAPZqK4T4XeO08b+GI5rqe3GrwsyXUEXy4wflYKSTtKkc9M7hxiu7oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqjrWpJo2hahqkiGRLK2kuGQHBYIpbH6VePQ15d8bpdYuvBn9h6Po19qD30qCdoLZ5RFGh3jlejFlUcgjAOcZBIB4N4Q8CX3jfTfEV/bXRNxpcImEPlNJJdOwdggwc5Ow+uSR9a97+A9itl8L7acbf8ATbmackE5OG8vn0P7vtx07mo/ghE+meEv7HudB1bTb+KRri5lvbV447h3YgFC3oixgjjkdDya9TPSgDyn4+6ymnfDiTTyheTU544V5xsCMJC3Tn7gGOPvZ5xXy5aG2F7AbxZWtRIvnLCwDlM/MFJBAOM4yCK99+OlyniDxX4a8KWkxa4EpM6RyREhpCgQYZ1+fAJAYqDvXnnjB+I/gnTvh/430nW106OfwvcSxpJaLGz+WEUK6EscFmXc6ksCSG/u5IB2fw/+KHw30+yGmWNqfDpaQALcKWWVmY8tMNx44yZMBQcA4FewW1xDd20NxbzJNBKgkjlQ5V1IyGB6EEHP415B4j+B3hvxJpceo+FJxp008YniOWkgnVl3LwTlASVwRwBn5T28pk+HXxF8H6q93p+m34mgJ2XWmMZN67iMjZ82D12kdOoxQB9eUHpXyTo/xv8AG+ksxk1CLUoypAivYQwBODu3LtbPXgnHJ4r07w/+0PomoXbQ65ps+kxnGy4SQ3CDgk7sKGXoAMBs57YoAn/aD8RnTPBtvoaJuk1eX5mZflWOIq5wc8MWMeODxu6cV6R4Y0dfDvhjTNIjEX+h2yRMY02K7gDc2P8AabLfie9eDXfiCx8eftFaHcWs9vLp1s0K2sxDx7xGpm53YO7zCygYAOF+p+kj0oA+fNDtodE/anvrODzWW7eWTc+Mq8kPnt26ZLAe2Oe9fQZ6GvDfidLe6H8bPBviAzRWliwitWuZHjAx5ribIbkARyjLYwN3BzXt2R3xgjpmgCpqulWOtaXcabqVqlzZ3ClZYXHDDr16gg8gjkEZHNfJt9b2/wALvi+Y08y9ttLuklUNhXZGRWAJHG4B8ehI6DPH1pqOpWek2E1/qF1Fa2sPLzSuFVecdT78Ad818n+IpLb4l/GWYabOIbbUrqOGKd0J+RUVN4XgnIQkA464OOTQB13i/wAaal8ZNS0/wt4OgvYbNh5t4tyFQNgjDyFS37teD15YjgkLXsfgXwPp3gXQlsLNPMuZMNd3RA3TuB+ijJ2r2z3JYnxC5tPFfwG8QRXFtOdR0G6ZPMJjKRznByjfe8uQYJBBOQAeQCtdJ8QPiN/wnVvD4Q8AfatQub7Jup4g0I8sAgx/OF4PVicLjjnccACeNfHGqfEPXj4D8Dt5lrIxW+1CJvlkj4D4btECSCed5wBwQH9O8DeB9L8C6KLGwHmXEuGurtl2vcOO59FGTtUcAHuSSV8EeCNM8C6Kmn2AElw+GursoA9w3qfRRkhV5wO5OSepoAKQ9DS0HpQB5Z4/vINc+JHg7wVNaRTQNN/alyJ0yrKiyBE68/dkyCMH5ecZrzvwmY/h3+0LdaN+4isrqV7KPbvk2Ry7ZIFB67s+UpJyOW7fMPRfBgXWfjJ421l7iRzYJDplvGJw6InVxjqPniz2GWfqea4P9oTT207xPouu2ca2tzNGQ1zC4SRpYyCrcHOVBX5u3yjPAoA6/wAN3sviz4+63qSQFLLQLQ6arcKfM8wj5hkk5PnkEY4C5wevo3ibxBaeGPDd7rd6WMFrHuKqDlySAqj03MQMngZrjPgppk8PgybWb8O2pa1dyXtxLJbeU5B+7z/Ep5cEYH7w4Hc8L8afE02q+OdP8FDUBZ6WrQLft5nlqXkZTlySRsVdjDIwCSTnjABo/A7QtR1vWNQ+IGuytdXNwzQW8k8fzM3G+RcjAAA8sbeMb14Ar3Wqmn2Nvplha2Fonl2ttEkMKbi21FACjJ5OAO5NW6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo7UUUAeH/E34falpGuN8QvCMnl3luyTz2cETb3fO1nUJ94MG+cYGRuJJya7r4ffEfTPH9nK9rFJaX1tjz7SRt20HoysMbl4IzjI7gAjPbHgGvB/ib4Ov/Bd7b+MfAFtNp7IjjUY7IZjRRhg3lYxs4O4Y2japwOTQB7xRXLeBPGNl4z8OW17BcwNepFGL2CM4MMpHI2kkhSQ20nOQOvWupoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoPSis3xDfnSvDWq6ipIa0s5pwVAJyiFuM8du9AHjfgC+fxP8AH3xDq5mW8s7KCaC1mmdZtiCRUUxEABQRvIIB4YglixY+teLPDkPi3wtf6HcStCl1GFEgGSjghlbGRkBgDjIz04rzL9nfw7PYeG7/AF2f7upyqkCkDOyIsC2c92ZlwQD8meQRXtJ6GgDw34LeKbzRNSm+HPiGGS1vreRzZRtGMg/NJIhYcEYJdW5BBPzfcFe5dq8N+OXh/UrDUdO8eaKFhl08KtzOpUMh8wCJsE4YEsV6HjGcjp634a1+08T+HrLWrJiYLpMgEEbWBIZeQM4YEZ744oAyPFPw68NeMVMmp6ehvBE0aXcbMkiZGASQfmIxkB9wHPqa8c8S/s8anY2zXHh/UF1JwR/okyLE+OBw+dpPU4OOB3PFfSJ6VynxF1k6D8PNc1BXnSRbVoo5IDhkkk/dowORjDMpyDkelAHxcRyfbvmvQ/BHj34gaa8VtoL3WrwRKcae8T3YRFUKPlHzog3LjaQMjvjFevfBvwbp/wDwrKCTVbGyvf7Rme62XNsj7EyFUEnO7PlhugxuxjiqHi74BWF20N54PuBpNzEM+RNJI0btuGGDkl0YDPZgcLwvJIB5Z48+Kd94+0i1sr3TorY283mh4Jn2t8pBBQnB65BPIGQDyc+xeG/jX4Li8K2Ed5eS2d3b2yRvbG0P3lUA7fLXywpIOB8v0XpXi/jjSfGnhezg0rxPN5tpcSmS3l81JjIUVVwJDmQKoZflOB6DvXKaPa6fearBb6pqLadZuSJboW5mMXHB2AgkZwODx6UAetQXXiH4/eJvsc8i6VoGnDzZIosuFJJAz03yHkAnAChiBkkMa94XsPBXxt8Gab4dhlSNltHlZmMjSkzOjuc8AlBzgADnAFVrb4VeKrE3N94C8WWmo2h/dmbTNQMLuQoYo207c5PALehOM1554q8Q614k1j7Rr98l3e26fZvNjEW3arMcKYxtYZLHcMg564xQB658VPH1x411CDwP4NaLUobtlFw8CEmWRXJ2KzDbsXYrlxwR3ADZwNKk1j4EeOj/AGvYx3lhfRhDcQqMyxZBLROwyGX+JCQDxnjaw1fhB478C+DtFaDUHubbVrl2NzdPb+YmATsVCmW24CnGM7ie2Me0x3fhX4g6LNapPp+sWUkamWFXDtGHB2lgPmjbrjowIPQigC54b8Raf4s0K11jSpWe2nGcOMOjDhlYdiDx3HoSCDWzXzRfWXiL4E+MEvbOW4u/DF1Ntw/KzKeSjgcLKAPlbjOCem5a9/8ADfiTSvFWjxapo90txbOxVuzRuOqsvVT0/AgjIINAGxVS/wDtosZvsH2c3YQmITg+Wzdg2OQPcZx6HpVuigDz7wBpHjTSr7V5PEX9jrb6hey3jC2Z2lEhwgAH3QhVFYEksB15J26nxC8If8Jr4RudJWcQzbvNgdkUgSKDtDEqSq88lcNjI5BIPW0h6GgDidQv4Phf8LY5JS9y2mWkcMavIW86U4VQCxzt3HOB91QcDAAryTwb8LZ/idpF34s8Q63dreX8ziJ1jBztIXc2eq5BUKu0AKOew0fiFq158TviBbeANEuAmn2cxN5M8WMSoSsjcnLqgOAOMtu6jaw9003TrXSdOttOsYFgtbaNYoo1JIVQOBk8n6nJPegDwr/hFfib8LJFl8O3jeINGjBAtNrOFzjP+j7iw+dyf3ZP3ctgcVs+EP2gdM1W+jsfEFkNLklcIl0ku+DJz9/OCg+6M/MOcnaBmvaT0rn/ABD4O0HxRaXEOpaZbySzRsguvJTzo8jGUYgkEcY7cCgDVsb601O0ju7G6gurZ8hJYJBIhwSDhgSDggj8DVuvC9X+BeqaOBdeBfE17bSgfNDcTmJ2OGyVkjA7bQFKjqTuHSm2XxJ8e+A71YviJo81zpsuSt7bxR71Yg7VVkIjb7jHYcPgk5wACAe7UVw/hv4r+D/E1zDa2mqCC8lxstrsGJixIAUH7rNlsAAkk5xnrXcUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFB6GiigDwXxf4K1D4Za+fH3hFg1ksjG+08DascbnkADAaPP8OPkIUgEDK+oeBvHGl+OtFW/sD5dzHhLu1Zsvbuf5qcHDDg47EEDqJI0lieORFdHUqysMhgeoI7ivAPiX8P9S8IaunjDwHA1jb20Zku0s2OY237i+wkjy8EZUDaApyMZoA+gaK5XwL440vx1oovrB/LniIW6tGbLwOc9em5TjKtgZx2IIHVUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAAehrxz9oPW5rTwrp+hW4lM2rXPzKqBhJHGVJX1B3tGRgc4PPY+xnpXgHiq0n8W/tKabp0cOY9LW3adjEWURp+/O7HY7wmTjlgPqAe0eG9Gi8OeHdO0aHYUs4EhLpGEEjAfM+0dCxyx9yeT1rXPQ00ADFOoAoarpVjrel3Gm6lapc2dwpWWFxww69eoIPII5BGRzXh/we1K+8KfETWPAF2dtp500kKyph/NTGGBO0lXiXPQ8BSMDdXv9eM/HXw7PFbad4502VYb/R5Iw7Ebjt8wGNgGJHyyMeMc7+ThaAPZu1eIftH3rnRNB0mNGdrq7eYKq5JKKFAH/f3pXo3gLxX/AMJl4OsdZMYjuJAY7iNAdqyqcNjPY9RyeCMnINeYjyvHP7S3/LvLY+Hocj76MxhP6ss8nspC9+4B654V0dtA8KaVpMmzzbS2jilMbEqXCjcQTjgtnHHpwOlYPxD+JOm/D+xhM8ZvNRuDmGzR9hKAjLu2DtHbocngDgkR/Ej4k2HgLTAq7bnWLhCbW16gdg8mCCEyPq2CB0JHAfDX4bSeL5m8beOBdXdxdTie2gnwFuF28O690PG1flGEHBUgUAZemfDbxb8UTdeKvFF39mNxbOLGJzsbcB+6+TaQkOST/ePJwd241/g54I8KeONA1e21awnbUrSdD9pjmZNsTr8oAyQSCj9V6Ecnt9KAfTpxXx5FLqg8W6/4S8F3DCw1i+e1WO2O9ZYEkcIfM5bYFJyQcFSc5FAEmq6PJaeOL7w38PtQ1e/gmH2WUISpkPSRWZSFePJOWYKOT2+Y4Fkb7wf4r0681HTbmK4sbmG6NrcKYWcKwYDkcA464PrzX1R8N/hzZeANMkQS/atTucfabojAIGcIg7KPzJ56YC+a/FuCG6+Png+3uIkmglSySSORQyupunBBB4II7UAbdlbfB34iWkcsVrY6XdDKCDctlMuDnO1W2PkDqN2AeoNQ6p8A10947/wZ4hvLDUodxX7TIRw3HyyRqGT5S46NnOOOTWp4q+AnhzW5BPo8p0W5aQvIIkMsLg5JxGWG3kjG0hQBjb0xxyaZ8UvhDbzS2Ri1bQooyzJlpoIhliW8vIePGSzFfl5ySccAGd4guvitoOiXXhrXNPm1fTHVg1zLbm7V0LkA+aOR83K7sOvynjgDjfBHjvV/h7rMstrGskUpWO7tJcjzApPf+FhlgDg4JOQele1aD+0P4ev5ki1ixu9LLZzMp+0RJ1PJUBv7o4U8nsOa77UfD3hHx1YC6u7HTdVt5ECJeRFWbarE7UmQ7gA2QQGHOQepoAn0HxjoPiLT7S9sdStT9oACwNMglRjg7GUMcMMgY59uMZ6Cvj34kfDa+8BaiHG+40a4ci1uiOR6RyYAw+BnoAwBI7gdR4b/AOFqaH4U07xB4d1GTWtHnRP9DjLXBhWNtgi8uRd4GSynyv7uc4CmgD6aPSuS8f8AjO18EeGJ9RmdTdyKYrKEru8yYgldwyPlHUnIwM4OSAfNrD9oU2chsvE/hm5tLyHCz+Q2CG7/ALpwCvbgsa5vxR4k0j4xfEXw1pUEt3p+mjMUkl2yIxZjuZUALLuYKqj1YgY4GQDvvgp4Hm0jT5fFWrKRq+rAunz8JbuVcZUYAZm+Y9cAKPlO4V65UUUaxRpHGqoigKqqMAAdh6CpaACiiigAqO4ghuraW3uIo5oZUKSRyKGV1IwQQeCCOMVJRQB5dr/wJ8H6x9olsoZ9KuZdzq1s2Y1c5IPltkbckfKu3gYGK4y5t/i18LYvIsZjruixtmI+WbgIgyArL/rIwFQZAOxc8HNfQlFAHk3hX44aHqktvp3iCOXRdV24nedQttvHGAxO5c/e+YADGNx4z6dZX9nqMC3FldQXUDdJIZA6noeCCfUH8RWB4s8BeHvGtqY9Wsg0wAWO8iws8YGcAPjlfmPynK5OcZ5ry2b4L+LvClzcXvgjxS4Xf5otndoXk2liiNjKSHoPmCqdxyAKAPfKK8Hs/jdrnhi5XSPHnhudbyLANxCPLeRR8u/YflfJDnerBT0AA5r1Pwv428P+L4I5dI1KKScx+Y9o7BZohxncnXgkDcMrk8E8UAdLRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFB6GiigDwTxj4Ov/hVqo8beCD/AKJzHeWUiF1jVjnPHPlkgZ5ypAwSD8vqngjxnYeOPD0OqWQ8t87Li2LAtA/cHHUeh7gjgcgdOelfO3jzw1qvwu8Yx+NvCsAi0d3UXMEJOyMsRujdccRucY7KxGNpCUAfRNFc14L8Zaf430BNW05ZY18wwzQyjBikABK56HhlII45HQ5A6WgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCvf3tvpunXN/dyeVbW0TzSvgnaigljgcnAB6V4j8ArC61TWPEXjK/iImu5TEkqkBWZ2Mkw2/XyjnpzgHg11Px2v0svhddwSDLXtxDAn1DCT09Iz3/ABrR+EGjSaL8NNIjkcNJdR/bCVOQBJ8yjoOdpXPvnnpQB3lFB6GvIPi9q3j3wxC2u6NrEcGkCSOA28Vksjx5BJkkZ1bjdhew5UYzkkA9fqvf2VvqWnXVhdx+bbXMTwzR5I3IwIYZHPIJ6VwPwe13X/EfhNtU1zV7XUDLMwjEcSpJAVJDJJtAXkBGHAOG6kEYzdL8aeMvE/jXXtI8Pt4ek0zS5CpvZoZsHJIVMCQFj8rgsBtOwkdVyAcZ4c8TN8HPGHiDwlqM3/EnO+4spDCZCJSgMZcqFJDKFVsAjcvGBuNcH4O8fz+DjrepxQm716/VI4bm4O9UUszSu2fmZiQmBwDyTnAB9f8Aj34Hk1jSE8U2S7rnTYilzGFZmkg3ZBGMgbCzMePuliW+UCvIvAfhfx1dzp4k8G2e6S0leFbjzIBscp8w2yED7r+mOaAPU/h98LZPEMv/AAmXjppr6/vZBPFaT5UYHRpV4znAwgwoUAHOdo9vAHHTgda8C/4yG/z/AGfXFX3xR+Jv9o3OgzaxOb7zWs3ht7WHzPMyUKoUTO7PAKnOelAHb/Ez4ian4o1ibwD4Ot5pmdzbXUsQIaZgcNGp42xjkMx4Iz0XJbmvCmgH4dfHbQtN1S9ikYgAyxKxHmTQsgXGM/6xtoPcYJxk4qaH8Lfifout2V1p9g+nXHmqq3S3kRVO5L7WJKYByMEHpg5ANb4ieHPG2i+LtPv9f1GK61S/Km1vLKUR4eMqoA4TYVyhzgD5s5JzQB9bnpXgXxO8v/hoXwZ5jMBiyxtXPP2p8DqOM9/0qrdfDb4xW4g8rxfcXRklVG8vWLgeUp6u24D5R3xlvQGuD8Q+HfGVj8QtL0bW9Ulk1uaSFbK9lvHk2hpCqMr8uqh8noCCCcc0AfYdIeQRXgH/AAq34vf9D5/5WLv/AOIqtf8Aw4+MllbebB4rub9wQPJttZnDH3/ebV/WgD1rxL8N/C3i6X7TqumIbs9bqAmKRuFHzMMb+FAG4HA6Yryy++C/izwhcNqngTxBNM/mbjbF/s8pUMCikk7JcAktu2g46HOKWH4a/GC5toJJPGjQN5YJifVbjehPJDFFIYgnGcnpgEgCqlp8PPjLc3txBL4mvbVIiQtxNrMpSbBxldhZvcblHHXB4oAqzfFvX1s28P8AxC8Nm40+5i8m4LW7W1xyVPmAN8pZQcgBV52ncK5XwJ8S774ealdx2SvqGjzOS1tOfKLEZCuuCwjcjbuHzZAxk4BHX3Hw0+LevadLY6prTNawwpiC61JmWcnMhUhc7mVjjc/oNpKgEc3N8DfHkdrbyppkEsku7fBHdRb4dpwN2SFOeo2lvfB4oA9l+Jt94WvPhneeJvsul38l1afZ7C7mgRpCZCQAhYBgV3O2ByCrHHBrgPAXwPs/E3gdNX1e8vbK9u972YjxsSPACM6MoJyQW4YAqVwRmuE8E+C7jW/iTa+HL+1YC2uWGoIMsESI/vFZkPGSNm4HGWGOtfWWpeJdC0e5S31PWtOsJmUSCO6u44mK8jOGOSMgjPTg+lAHjKeEfjH4LkWHw/rK6tY52JG0yERxJ9wFJ8eWCD92MkDGM8Amk/xo8eeE9UFp4q0CBkDuCkkTQPIB8vyOCVKg4OQGyO/INe1/8J34Q/6GvQ//AAYw/wDxValhqdhqtr9p029t7y3JIEttKJFJHXlSaAPN/D3x38I6xJDBevc6TcSBMm6QGHzG4KiRScAE/eYKMdcdB6LYaxpeqBTp+o2l2Cu4GCZZPl9eCeK53xD8M/CPiWOcXui20dxKXkN1aqIZt7dWLKBvOTu+bIz1BrzDUv2dry0vhd+G/EflvG/mQC5Uo8RBypEid89woxQB9AUV8+T638Yfhvby299bJrtgiGQXrxvdLGqjc7F1KuB82P3v935eAa2NJ/aL0O6mij1XSLywVztaWN1nRDnqeFO0Dk4BPYA0Ae10Vg+H/GHh7xOqtousWt2xVn8lX2yqobaS0bYdRn1A6j1Fb1ABR2oooAzNb0LTPEOntYatYwXls2TsmXIUkEbgeqtgkBhyM8V5fr/wD0iYrfeFb250fUISJIVZ2eIMoJXk/OjFtp3ZOMfdr2OigD56bxl8WvAN1HZa5pR1izjZVWdoTL5sYJXCzR/xEKTlwX5ywPSu08O/HXwfrAiivpZ9JuW8tdt0u6Pc3XEi5AUHqzhOCD649Qb7p+lcn4p+HvhnxfFKNT02JbqVgxvbdVjuMhdoO8D5sDAw2RwOOBQB0Vlf2eowLcWV1BdQN0khkDqeh4IJ9QfxFW68Bm+DPjDwpfTXngfxOwiz53kPI0DyFCSkbYykp7fNtXk5ABq5a/HXUNAni03xt4WvLS6WMl5ofkMnzEBlifHynGNwcjIOPQAHuVFc/wCHvGfh3xUP+JLq9vduAXaEHbKACASUbDAZI5xjkc10FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUN5awX1lPZ3UQlt542iljbo6sMEH6g1NRQB89a1per/AvXxrfh4NfeG78qlxbT5yhU52s4HHBbY3bJBBx83t3h3X7HxNottq2my+ZbTqCMkbkPdWAJwwPB5P5Vfv7G31PTrqwu4/MtrqJ4ZkyRuRgQwyCCOCenNfOFzp2u/AfxpHqNt5154avXMZwwxKvJCScYWVRkggDODjguAAfS9FZmg6zaeINFs9WsH32t5EsqZIJXPVWwThgcgjJwQR2rToAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACg9KKD0POKAPBfizeDxl8TfDngSA3DQwzq9+IJCv+s2sflIxlIgWDc/fI4wRXudvbw20EUFvEkMESBI40XaqKBgAAcAAY47V4D8ORN4q+P+va/cJM6WRmaKQphU58mNGK8Z8rdjPXYTzya+haACuO+KNmb34Y+IIREH22hm2k4x5ZD5H025rsT0rn/GurS6F4J1rU7Z2juLezkaFwoO2TBCHB4IDEHmgD5w+H/j3VdE8Kaj4X0Cwnu9b1O6JtDEoIhBTDuMclgFBH8I+8TgYP0n4V8PWnhfQLbTrWMBwA9xLks08xHzyMx5Zie57ADgAAeLfs36IjXus66zv5kaLaRqDgEMdzEjHP3Exg/3vavoWgBk0STwSQyoHjkUqynoQRgivnnwbPB8IPitqnh/WLgwaVqMa/ZbqQgqRuPku7YAAwXViBgN/sgmvok9K+c/2i9c0+51TSdGjTff2SvNNIHBWMSYwhAOd3yhuQOCpH3qAOk+JnxMup9RHgjwUXl1qeT7PPcxPs8ls/6uNsgB+OWzhRkfezt6L4cfCnS/BFvDeXAS81xlzJckArCSCCsWRlRgkFurc9AdtYfwD8N6NbeFI/EcBWbV7lpYJ3EpPkpvXERUHA4RH5GfmHbFexUAIRlSPUV4n+0fp0MvhjRtTdnE9vemBACNhWRCzZ75BiXHOOT+Htp6VwPxh0p9W+F2sLHbRzzW6Lcpu25jCMGdwT0IQP05wSB1xQB12k6hFrGjWOp2yyLb3lvHcRrIAGCuoYbsE84ODz+Jrxzx/DHcftHeDo5F3KLe3cc91mmYH8CBXdfCTWf7a+GWiSl4WltojaSLEfueUdqhhnhigRiP9rIGCK4jx1/ycl4O/wCvSL/0ZNQB7hRRRQAUUUUAB6GvOfi/45n8F+Eh9hMY1PUHaC3LOQYl2nfIoHUrlQOmCwPOMH0Y9DXzqJ5fjh8UEgk8tfDGil3UDIaaPcBnOA26QqvHG1R/eHzAHf8AwV8KxeHvANteeW323VlF1O5Ofk58oDgcbTn6s3PSoLXwAnin4h+INf8AF+lyvbxyLa6Zazz74jEqj94MHv8Ae2nABd85PI9PA4Ht714V8efH9zZD/hENMm8ozRCS/likG7Y2cQkdVyACehIKjoxyAeZ+KLWw8Z+Pv7O8BaGRbqnkxpDwJypJaU54QHIAJ7AE4JwPqTwd4YtvB3hmz0S1laYQAl5mQKZHY5ZsDpyeASSAACT1rivhD8Lo/CFkms6mPM1y5jxs7WiH+Aern+I9ug6Et6rQAUUUUAB6Vzmt+B/DHiJ5pNV0KxuJ5SN85iCytxtGZFw3THfjA9K6OigDxPxN8AbV7ldR8G6jJpV5E6yRwTyMyKwK4KSDLoRhmyd2SRjaKycfG7wZfbvn1y0iULyRdRy4T/gMvGf9kkgfe7/QVB6UAeKaH8fbWO4/s7xjo1xpN7EwSSSNGKq3OS6H50xxx85Oa9F0Hx74W8SzpBpGt2txO5wsLMY5WxknCOAx4BJ44AzV3XvDGieJrYW+taXbXiBSEMq/NGDjO1h8y5wPukdK8v1T9nXw/czSSafql/ZbyxWJwsqoTkgDocD3JPHWgD2mivBptM+MHw7jD6dfr4k0uORgICrTybeETKHEo4IO2NmA2nPHVumftEzWt2LPxJ4beGSNmS4e1fDxsBgr5Tgc7hggsMe+OQD3uiuR8L/Ejwr4ulSDS9UT7Y6qxtJwY5ckEkBW++QFOdhYDGc8jPXUAHas7V9G0zXLP7Jqthb3tvu3COeMOAcEbhnocEjI5Ga0aKAPG/E3wF0+6vl1PwrqD6LeR5kSHDNH5o5Qq2Q0fzdxuxxgDGDzFp4z+Knw+eS68U6VdajpS/60zlSEJACkToGA5K9dw6gYPNfRdB6UAee+GvjD4P1+xgebVINMvXX97a3j7PKbnIEhAVuhIIPORkAnFd+DyOnIrzXxJ8D/AAh4hn+020EukzlTn7BhI2OFAzGQQMY/h25JJOTXFjw38UPhW5/4Ry4bX9EQA/ZvLLgZJyBBnevzOT+7Y5wC3HAAPoGivF/DX7QOlXNzLaeJ7GTSJY+POjDSoWGchlC7lI4HGcnOcV67Y31pqdtHeWN3Bd2smdk0EgkRsEg4YcHByOvUUAW6KKKACiiigAooooAKKKKACiiigArP1bSbDXtLuNN1O2W4sp12yROSAec9uQQQCCORWhR2oA+bLXUtd+BHjGSwuopbrwrfTvJCu9WaROB5inAxKo2hgQAen91h9C6ZqdlrOnwajp9zHc2c67opY2yCM4P45BBB5GCDjBqLWtC0zxDp7WGrWMF5bMSdkq52kgjcp6q2CQGHIzxXhGm+Ite+CHiE+H9dWW+8LzO8tpLHGGbbg/6vLKFO4rvQ9DyPvZYA+iqKqaffQalp9rfWkhktbmFJoZMEb0YBlODyMg9wKt0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYnirxDb+F/C9/rdyN8drFuVDkeY5wEXIBxuYqM4wM1tHoa8O/aM1y5tdI0jRIZVWK9eSa5RWO4iPbsU8jKksx5HJQEdKANX9n7RPsXgq41iWP8A0jU7pmEu8ktFHlVBHQEP5vbJz9K9drK8NWf9neF9IscSD7NZQw4kGG+VAOffitWgBD0OK81+JPhbx34rEmm6Pq+k22iTRgTRSq6SyHjKswV8jK5BXbwxBBHJ9LooA8j+FXw88X+BdUmW+1TSn0idS0sEAeR3k42kMVXbjnnJHbbk7h64elIehryv4m/E6TRNnh/wo32zxJcPt2QRecbcDPG3nLnHC4OBkkDjIAfEz4n/ANhzN4W0CKS48S3eyFNvS3MnC98mTDDaOmSCTxg+TxXi/Dhp9O01rfWPG9/Iba6cQm5jswwIMUef9ZOWZd3BXI24POYYL2bwzeQWeir/AGp49vJHF1qCyi5EBlXmOIgkNL83zyfwkMoLAk17T8OvhHpngh4tSuJDe62YdjynHlQsfveUMZBwdu48kZ+6GK0AeT/DeTWfhn8VrTQ9age2TU1jgmiyXVi/+qZdp2sQ52buQMuK+oq82+M3g9PFPgqW8hhkk1PS0ae1CtjKnaZVI6NlVyB1yoweoLPgl4rPiTwLBaTBFutJK2ZCk/PEFHlt044yvU52E9+AD0ysXxhbPeeCdetY2VXm064jUt0BMbAZ9ua2qQ9DQB4p+zjqMU3hfWNMUSCe3vFuGbA2lZECqAeucxN+BH4RePHSP9o/wezuqr9mhGScDJlmAH1JNUvgHbXOi+MfFmiXDxtJblY5jHyrPFIyZXIHHJ7dx0q946/5OS8Hf9ekX/oyagD3CiiigAoPQ84opskiRRPJIyoiAszMcAAdST2oA85+MfjOLwp4MntI2I1HVY3t7YbWIC8CRywIxhW45J3FeCM4tfCjwO3gjwgkN5Ei6rdt594VZWKnose4AZCr2yQGZiCQa8z8N6ZJ8V/jJf8AiKeadtD0ydWgfGVkEbDyowGwVDYMjDbxkg4LA19D8KOlAHDfFDx1b+CfDTslw8erXkbpYKIt/wA4xl+RtG3cOG6+h5FeP/B608NX+qX3ibxprOnSXccoW2i1K9TczkZaV1c5bGVCkk87u4Uj3bxH4C8M+LriCfXNKS6mhQoknmPGwUnO0lCCRnJAPQk46msX/hSfw8H/ADL3/k5cf/HKAOdl8ex+Nvip4f0Dw5qd0uk2kkl1fXFtJ5YuWQEqhyMtHkAEdGDnj5Qa9irk/Dvw68KeFdT/ALQ0bSFtrsxmLzDPLIQpwSMMxA6dfw711lABRRRQAUUUUAFFFFABRRRQAVUvNOsb9Ql5Z29yqggLNGrgA9Rg+tW6KAPO9Z+C/gnWbk3H9mNZSMCGFi/lIcptBCcqpHDDAGSPmyCQfP7/AOB3i3Q76SXwj4m22o3SIGuJLaZSSRj5PlPy4G7K554HFfQlFAHgcnj74qeA/n8W6Cmp6erlpLpUC4U/Ko82IFEG7BAZMnOO4x1Gl/HvwVfqPtcl7p0hHzCeAuucDvHuyO3I7dBXqh6Vw2t/CfwXr0zXFzocMFwygeZasYO5JJVCFLHJyxBP5CgDrNO1Kx1a2Fzp17bXluWIEtvKHXI6jIJ5q7Xid58CrzRr19S8DeJ7vTboKFEU7EBvnBIMic7MAHaVbJXnrxj3HjD41eErdZtY0ZL6KTOGe1SUJjb1Nuw28njd1ycZxwAfQlB6V5R4d+O/hrVLqKy1iC50W9YlW+0YeFX37Qu8YIPQksqgYOT6+i6brukawW/szVLG92fe+y3CyYxjrtJ9R+YoApa74P8AD3iWF4tY0e1uiwA8xk2yjBB4kXDD7ozg8gYPFeQav8F/E/h7UBc+BdcmW1jUOsU14Y5jL0bG1QhBAHUjPIPQV79R2oA8Q0z4ya34Zmj0/wCIvh29tpMtFHfQwbRKU2qTtOFYZyxdGxyuFxg16F4Z+I3hTxbOttpOrRtdkA/ZZlMUh4LYVW+9gKSducD0re1PSdO1i3S31PT7W+hV/MWO5hWVQ2CM4bjOCRn3rzbxD8BPCuryXFxYyXGlXEpZ1FvhoVY/9Mz0Xr8qkDnjAAAAPWKK+eZtX+Mnw/m+xzQPrtnGhdZ/Ie7THJbMi4k4z/HjG3jjr1Phv4+aDqt+tjrdlPoly0pjDSOJIV6Ab3wpU5yDlcADJI7AHrtFV7O8tb+3S5s7mG5gf7skMgdT9CCRVigAooooAKKKKACiiigAPSsDxX4V03xjoEuj6oJBBI6uskW3zI2U5yhYEKcZGcdGI71v0h6GgDwDStf1L4JeKpPDutpNP4UvJXlsZ1+dogW+8DhQf4d6ADBO5evz+8208V1bxXFvKk0Eqh45Y2DK6kcMCOCCO44NZfiTw1pfi3RpdK1i3863kIZSDho27Op7MOfwJByCRXhnhfxTrPwg8TzeGPEy3T+HfOcW9y0RxGGORMmM7kbqyBjgkn7wIIB9HUVFFKsqI8bh0YZVgcgj1qWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAA9DXgfiW1j+IX7QtjpkBSaw0SJDeZKyxsI23uu3IHLOkRHJBzkYFe5anfxaXpV5qEwZorWB53CkAlVUscbiB27kD3FeLfs9wT6jP4m8S36CW7vLlUN0YlGXJaSUAjpkshIAA4XrjgA9wA5HTgU+iigAoPQ0h6GvM/it8SrDwrol7pllqH/FQyqEijgwzW+QDvc9FO3kA88jAxyACn8V/i2PB+/RNHVJdaliBMpIZbTPQlecvjkKfUE5GAfnzwxpmseJdcXSdITfqV6zbrtpnVkjKsJdzA42MGO7IJOAB1IZugeH9b8deIzZ2Cm6vpyZp555OFBb55JGOT1bJPJOeASa+sfBvgHQvBFlHFp8Ae8MZjlvZY186QE7sZA4GSOPQDOcZoApfDv4baZ4CsAy7LrV5l23N9tIJGSQqgk7QOM4xuIBPYDuq+fPjx4jvNE8RafbaNq2r2N1Lbm4uTBfzLEykhECqH2gjy3JwozkHnJrrfgT4kvtf8G3Sapqcl9eWl6ygzyb5ViZVK7iTuOWMgBPoQOFwAD1U/dNfOetXEnwW+LhvrMSt4e1VTNLZwFVGwlsqFxjKMdy9PlO3Iy1c78SPiXrmoeNtRXRvEN5BpdvJ5VsLG6ZEIAAZspjeCwJBOeDwcYr1bU/hq+v8Awkhtbxr+68SraLdxz6jcNNKlwVDPEN7BUU/cxwB8rHJXNAHqkUiyxpJGyujAMrKcgg9x6ipT0ry74L+NP+Eg8NLouoz/APE70rMMkcpxK8IICuRgdMhD1OVBPLCvUT0oA8F8NGDw7+09rWnxrJINSSTa7EZVpES5Ynj7uVYD8Oepq146/wCTkvB3/XpF/wCjJqT4nNfaF8afB3iPelrp58m0e7dk2qDK4lBz0Hly9SOM8HIqbx1byp+0R4MuGicQvbpGkhU7WZZJSyg9yAykj3HrQB7XRRRQAHocda8f+Oviu5sdFtfC2lq0moa0djpCxMoi3AbQqndmRvkHBBAcc9vWb66jsbC5vJQxjgiaVwgy2FBJwO54rwn4WwXfxD+ImpeN9dtWmtLVjHYLMwdLeTcGRF6DKKeu37zbuG5oA9U8A+FF8G+ELHR90T3CAyXMsSgCSVjljnAJA+6CecKPpXU0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFB6UUUAYGveD/AA94oRhrWj2t25QJ5rJiUKG3BRIuGAzngHHJ9a8o1n9nCwcK2ia5cwkDDJfRiXec9dy7cD8DXu1FAHhFuvxv8HvcRRxw+IbC2jYo87rMWB+csPmWZ2HKgHPoAeKtQftE2ENy9trHhrULKaJ2jljSRZGjIyMEME5yMEHGOa9tPQ1lav4f0fX0RNX0uzvggZU+0Qq5QNjO0kZXOByPQUAUfDfjbw34r3roerQXckZO+H5kkAGMtscBiuWHzYxk9c8V0deUeI/gJ4U1eAnSll0a7yTviZpY2yQTujZugAIG1lxnvgCuOuPCnxj8Gy/ZtC1W41LTrdf3DxzI4VB8qr5UvIIUA7VBAzgE4oA+hz0Ncz4q8C+HvGVuY9Y06OScLsS7j+SaIYOMOOoBYkKcrnkg15bpvxt8Q+G54LHx54auYuNv2mKIwyuFGC2x8K5LAZKlVAPA6Cu00T40eCdZdom1NtPkWQqq3yeUHHGGDZKhSTwCQRgkgDmgDhJ/gh4o8LajLqvgnxGRLHlo4pCYZHQEsIyeUkztUYYKpPUAVYs/jdrnhi5XSPHfhudLyLANxABG8ij5d+w/K+SHO5WCnoABzXttjfWmp2cd3Y3UF1bPkJLBIJEbBIOGBIOCCPwNQ6voum67Z/Y9VsLe9t924Rzxh1DYI3DPQ4JGRyM0AZPhLx54f8aW3maReqZwC0lpKQs8YGMkpnkfMPmGVyetdPXkHib4G6dLJ/aXg+7m0PVYzviCTOYicnJB+8jcjkEgAYC965WPX/i98PL521ayuta0yJSZHdTPH5SHmQSp8yfKDgv2OSvHAB9E0V5t4f8AjZ4M1pUWe/fS7kttMN8u0dBzvGUAySOSDwcgDFd9Y31pqdpHd2N1BdWz5CSwSCRDgkHDAkHBBH4GgC3RRRQAUUUUAB6Vy3jfwVp/jrQH0y+JikQ+ZbXCDLQydAcZG4dipPI9CAR1NB6UAeC+EPGupfDPxAvgLxeFNksgFlqOdixo+cEkj5oyf4j90hgSQML7uDyOnIrlfHvgy08a+G7iwkhtzfLGxsriZSTDJ/vDkA4APXOBwcV5X8O/HOq+AtYHg3x4Lm0hYKtncXLZW3A+UDd0MRxgMCQuMHjJUA+gaKYDyOnIp9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQelFIfumgDivivcJa/C/X5ZNgQ2wjG8EjLMFHQjnLDB6eoI4qh8FtFt9J+G+nzxQSRzX2biZpYTG7E8DILNlcAbSMAqQcAk1znx6vpNQh8PeD7Ixteapeq+3zgpUfcQMv91mc89P3Z69vXdPs4NO061sbSLyra2hSKKPcTsRQABk8nAHfmgC3QeRig9K83+JXxT03wTbTafbs0+uywZghUZSHPAeQ9OOTtGScDOAQaAHfFH4nJ4BsLeK0hhutXusmOCRiFijH/LRlHJBPAHy5w3PykV846Fo2sfEjxstu0zy3d9KZbq6KbhEmcu5AwABnAGQMlRxkVa8HeDNc+JfiGbZds2wq97f3TmQqCe+TlmIDYGecckDmvq7wx4W0nwjpMOm6RarDEoG+QgGSZu7O2ASf/1AAAAAGb4D8BWHgPSprKxuJ7h55vOlmmwCTjAUADAAA9+p9sddRSHoaAPE/GOmW+seOPHF1Np1pcw6X4WZBKwRjFOytIhIOTv2hiGGMBQO4rzzwD43vfD3gLxLpFp9plvb6eGDTYbZfnWaZZEdwy/NnaiYAJO4Lgck16vZXSa58OfiJ4kSKDZqgvfs88UTIZraKDyoidwz/Axx2LN05A4b9njw6t5rmo65c2QlhtI1ht5JIwUWVjklSR95Qo5HID89aAOOs/C8uk/F3TfDttqDfara7tlN1EgYRzAK7lQ+3IV92MjkDODnB+v+3Q+vWvmn4bn/AIS/4/3WtwvHJaxS3V8POXaxiOY48DB+YeZGefQnOev00ehoA+d/iDYXPwt+Jtl460q3+0WN/LI08LM4XzWB8xS3QbwxdeT8wb5cLivfLG+t9Ssba/s5fNtrmJZ4X2kbkYZU4PI4I4xn1rF8c+F4/GPg+/0Z9izSpvtpG/5ZyryhzgkAng4GdpYDrXA/ArXjDY6j4H1HzItX0m4lfyvvKI94DgMCRlZGOfXcCM84AIP2j7Lf4U0e/wDMwIb0w+Vz829GOeCBxs9D14I5zi61e3M2ufB3U42iEc6W8OY8oA++JZQIcBEHzYBUc/RUr0r4v6dJqfwt1uOCFZJYo0uBkgbVjdXdufRA3uelfP8ApGu/2t4p+GlqLhnGnyW0DwjcEjk+1scgHjcY/KJI9h2wAD67pD0NLVe/vbfTNOur+8k8u1tonmmfaW2ooJY4HJwAeBQB5d8b/Gj6J4eXw5p5D6nrCNGyoA5SA/K3y9cvnaOP75ByBXaeBfDknhPwdpuiSzLNLbRsZXXpvZy7Y4BIyxAOOQOgrynwRpb/ABU+JN9461SH/iTWE3lafHv2MXQhowygknapDN82CzADK5A96AA4/pQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAh6GvOfEPwU8G675ksNg2l3TEN5tgRGvC4A8s5QDoTgAnHXk59HooA8Dn+BXiDw7KdR8G+K3jvBhdjhoCydSN6k7ssq/KVAPc8cwXvxT+JfgRLa38WaDazB0JS4cYMh3HA3xMY8gD7oAOME9efoOg9KAPIvCnx88Pa3ci11mB9FnZtsckknmwtyAMuANp5OcgKAM7hnFenadq2naxbtcaXqFrewIxQyWsyyqGwDtypIzgg49xWNqngHwlrMEqXvh3TX80KXljgEcpxjGHTDDoBwenHSvLdZ/Z8ubSRJ/B/iCaByAkiXzlSRySRJGvsvy7fU7ugoA7fxH8G/B3iE3M62B0+9nIJuLJyvIGP9XynPfCgnnnJNec3Xw5+Ivw6vBdeDNSuNR0xC9w1vG+3ooBDwM2JCV4G0Enb0U7aW2Pxv8FDzWjudYs1k3NHIy3u8soHZvNAHB4wAR6E529D/aL0eayiTXNKvLa9+VXazCyQngZb5mDLzn5cNgdzQBS0f9oaS2vZ7TxVoE0DxLsf7GDvWVThlaORhjnPfIxjB7ey6Fr+leJdOTUNHvory1ZiN8Z+6euGBwVPIOCAeRXHx638N/imv9nPJY6jcELthuI2hnGMtiNiFY42nOwnA68HnjvEPwIvdNvG1PwHrM9lPu/49pZmRlBLE7JV5wPlAVh2yWJ4oA92or56X4l+P/ho8Wl+M9JGpRPGfss7TBXcLhRiVQwfAGSGG/Lgk8gH0nw38XfB/ia7t7O21Fra8mYLHb3cZjZmOOA3KEknAG7JI4zxQB3lFFFABXEeP/hvpfxAsYVupHtL+3z5F3GuSAeqsuQGXODjIIxweTnt6D0oA8U+HHxH1PT/ABFH4A8XxxxXtsTa29252M7LjYjZGG3Lja/Bb5epbJ9rriviN4Eg8c+GpbJPKg1BCsttcsucMuflYgZ2ncw74Jzg4xXnPgLx7q/gfxEfA/jgTu7SotrdmXzPLL4CgsTzERgg9VOQR/dAPe6KaCDinUAFFFFABRRRQAUUUUAFFFFABRRRQAUh6HNLVPVtRh0fRr7VLhXaGzt5LiRYwCxVFLEDPfAoA8HaSfxX+1BDHPG01tpTlVCIGEKxIzAsQOnnHOT0LgA8CvoQ9K8R/Z+tJb+PxF4rvXimvb688lpPLAcMB5khyBwrGROBgfIOOBjqPiZ8UrbwBDFaQ232vVrmJnhiJwkYHAd+c4JzgDrtPI60AN+KfxKh8E6ObfT57aXXpyFigb5zCvUu6jpx0zjJPQgGvE/BXgjXPit4on1bV7i4+wmbffX7jmQ/884+2cYHA2oAOPuqZvAXwu1f4jXcuu6rcvbaZLcM8tyVzJdMWy/lj65BY8AnocED6f0nS7HRNMttM061jtrS3QJHFGOF/qSSSSTkkkknJoAg0Dw9pPhjTU03RbKOztAxfYpLFmPUlmyWPQZJPAA6AVrUUUAHasrX9Dt/EWkTabdzXUdvMMSfZpjGzL0KkjqpHBFatFAHKaD4B0bw7o9/pVkbt7C8Qxy29xOZEAIYMFB4XIY5x6D0qKP4daFB4SHhm1+22uneY0kv2a4MUk+4EMJGXG8EHGD2VR2FdhRQBwXh74TeG/C+sRanpLajBcR8HF0wV1/usP4lyAceoBrvaKKAA9K+fPi9baj4I+Jek+PdMTcs2FlLAlfNVdjIcjCh4iAMHPyuRjGa+g6w/Ffh6HxR4V1DRJ8Kt1CVVjkhHHKNgcnawU46HFADpDp3jDwrKtvcNLp2q2bIJouCY5FxkZHBwehHBHIyCK+PfAxB+InhvqB/a1rxnP8Ay1WvavgtrN94d8Qar8OtaIWa0kkltC7MMkEbkQNjKsP3i4UcF2PXjzRbBdN+P0NokEcEUfiSPyoowAqIbgFQoHAG3GAOnSgD69rxj44eIZ72Oy8BaNGt1qWquhmjX7yKGBjXkYBLDOcjAXkYYGvX7++t9M066v7uTyra1ieaZ9pbaigljgcnAB6V4R8GtNvfFnj3WPH9/nyRLJHBvbcRI4HygnJASMhR7MADwRQB6z4F8Kx+DfCNho6tvmjXfcuGLK0zcuV4Hyg8DgHAGecmumoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBD0Nc54l8EeHPFqp/bWkQXUqYCzAlJVAzgb1w23LE7ScZOcZrpKKAPFtX/Z00C7TdpOrX1hKXGfPVZ49uMEBflIOcHJb145GOX/sr4yfDyG5a0nnvtKtUjHySrdRhAMARxv86qM4O1VHy5+6Aa+kaO1AHzvafHOWUvpvjzwlBNaT4Z1ihP3R93MUpIf5gOdwxjuRio5fCnwj8aXTQ+HfED6PqUiecscqsIhyNw2yABjjPyq4xknkDA991PSdO1i3S31PT7W+hV/MWO5hWVQ2CN2G4zgkZ968n8Rfs9aBfeZJoN9c6ZMSCsUv7+EAL90Z+cEnByWbvgegBykQ+J3wvVbTQ2Ot+Hg8kkEkFubmHaGBbdt+aL3XIGS+MnJrovC37QVpNciy8W6eNNmXcHu7ZXaMMCTgx4LrxgdW56gDpiwfDH4o+CHEvhXWluYvN3C2t7nYCWTBd45QI26AZOT9044yOY1nxVq01sI/iV4Qmvp5UZLO9mibTriMADhXCYkVS24KVOC2TQB9Radq2narH5um39peRA4L20yyKO3VSR2P5Vfr4bI0tL97nStSvbOSJ2mtTPEFaMrlkHmRn7/AAYKBnH3Rkj0jwh8fda0Sz+ya9atrKAoIrgyiOWNAACCdp8w8A5ODnOWOeAD6bPQ1wXxC+GGk+OIZbuVXj1mK1aC0nEzKmQSyBxgjbuY5wM4J9sWPCPxS8LeMp4LSxvHh1KRGf7FcIUcbeoB+6xxzgEnHOBg47U9DQB4d8KPihqUms/8ACJ+MpTHeKFitJrpDHK0g48uQnqxGMEgEkHJJIr3KvNPi58Nz430dLrTFiXW7IExF8D7RH3iLHpzyueASc43EjE+E3xRF21t4O8Ri8j12FpIhcXbFjO4YnY5OCrgcYbOdnXJAoA9mooooAKKKKACiiigAooooAKKKKAA9K8v+OmvvpHw7ltIXZZ9TmS2DLIUKp95zx94ELtI4yH/A+oHpXzZ+0XrqXPiDS9CiZWFlC08xSXOHkwArIOhVUz64kHTqQDrovEkPw9+AWjtHOlrql1ZZsI+JHeSQ794XJGAH3HPAyB1IU8n8PvhbfePLm48T+NJL9oZikkKyOVe76HJY8iPaABtAyD8pUAZXwR4L1r4l+J4fFfiKCO10a1MQtrUQYilRMbYYo2OFhAHPYkkcksR9GgcjpwKAIrS1hs7aG2t41ighRY440XCooGAoHYAAcVYoooAKKKKACiiigAooooAKKKKACg9DRRQB4R8e/Dr2Uml+M9KtWgvbaYLdXUKcggr5LvzwQQQGI5yqk8KK8v0vWH8RfGLR9WlRY5rvVrOSUIMAPvQNtyTxuzjk8V9f39lb6np11YXcfm21zC8MybiNyMCGGQQRkE9DXxhq1nceAfiJLDFslm0m+WaAzKdsgVg8ZYccEbScY9j0oA9f+OOs6lrmuaV4G0CSS4uJ/wB5dWlu4Jdjgxq/90KFL8kDBDEcKa9h8N6FbeGvD1jo9ljybSIRhsY3nqzEZ6k5J9ya8i+BuiXmt6pqPj7Xmnub64cw2s1wi4bpvdMjPGNg24AG5eei+6UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIehpe1VLu/tLA2/2u6gt/PmWCHzZAnmSNnCLnqxwcAcnFAHJat8JvBOsW8scugW9s7g7ZLIeQ0ZxgEBfl464IIz1BrzDxB+zjeLeB/DesW72x6x6llWTgfxIpD5O4/dXHA+brX0PUQkQzNGHXeoDFQeQCSAfxIP5GgD441L4XeN9Lx9o8NXz7uhtlFxjPr5ZbHQ/wCSMz+Gviv4v8KrDDa6mbq0iGxbO9HmxhQMBQc7lA7BWA4HUcV9iH7pxXNeJPAnhrxYhOsaTBNMelwg8uXgED51IJAz0Jx7UAcV4V+PXhzW2eHWIm0ScH5DI/mROMf3wAVPXggDAHPOKi+Ivw90/wAWad/wlvg2dDrUTeck1hMCl2VYZwynAkUrkMvOQQcnBGZffs36bK4OneIbu3XuLi3WYngd1Kd/avPr/wAKfET4UedqltNNb2SyRiS7sZw8Mhwdu9DyQCxGXXGTx1BIB7D8JPiGdfsP7A8QXLR+JbOV4nS5OyS4AJOQuB8ygFWXk4TJ6nHqdfFfizxvd+K9bttcksrbTtUhUBriw3xmRlOUfkkhlGADnPA9AB9D/Cr4pJ46ik069h8nWbaISSbB+7nQYUuP7pyRlT6gjPIUA9NooooAKKKKACiig9DQAUVkah4m0DSbj7PqWuabZzYz5dzdxxtj6MR61Fb+L/DN3J5dr4i0meQDOyK9jdsD2DUAbnavnLxx8FfF2s+NNT1Szube+tryYzJJNMVeNSeIyGzwowowcYA6dB9Fgg4p1AHzbB8OPjDbQRQQa7dQQRIEjij1iRVRQAAoAOAAB0HpVm5+DvxQvWVrrxfbzsowpm1K5cr7cof0r6JooA+cP+FH/Ecf8zPY/wDgfcf/ABunxfBj4mQgCLxXaR4dXGzUblcMucH/AFfUZPPvX0ZRQB8//wDCrPi9/wBD7/5WLv8A+Io/4Vb8Xv8AofP/ACsXf/xFfQFFAHzxc/DX4xQbdni+e43f88tYuPl+u4Cpx8Lvi6R/yPRH11i74/8AHa+gKKAPn5vhd8X1RmHjssQM7RrF1k+3K4qj/wAK8+M//QyXxx/1Gpf8a+j6KAPnD/hXnxo/6GO+/wDB3J/jR/wrz40f9DHff+DuT/Gvo+igD5wHw9+NGefEd9/4O5P8akn+DXxOvJPNufFltLKQBul1G5Zvpkoa+i6D0oA+cP8AhR3xG/6Gax/8D7j/AON1Um/Z78a3MpluNX0aWVvvPJczMT+Jj9q+itS1rStFRJNU1KzsUkbaj3U6xBiPTcRWf/wnfhD/AKGvQ/8AwYw//FUAeGQ/An4gW8Qht/EOmwxr0SO9nAH4CP3qT/hR3xH/AOhmsf8AwPuP/jdfQllqNlqMQmsbu3uojj54JA6nPI5BPardAHzh/wAKO+I//QzWP/gfcf8Axuj/AIUd8R/+hmsf/A+4/wDjdfR9FAHzh/wo74j/APQzWP8A4H3H/wAbo/4Ud8R/+hmsf/A+4/8AjdfR9FAHzh/wo74j/wDQzWP/AIH3H/xuj/hR/wARxz/wk9j/AOB9x/8AG6+j6KAPniw+DHxItr2Jx4xhtULBXmt765MioTyQNq5OO2Rn1Fa2o/APVtXx/aXxBvb0jB/0m1aToMD70x7V7jRQB4W3wH137RGi+PrrySjF38hwwbI2gL5uCCC2TkYwODniT/hQesD/AJqHff8AgK//AMer3CigDwi6+BPiJRCLTx1PLulUTeckibI+dzLiQ7mHGAcZ/vCktvgR4jfzzd+Op4sSsIfKjkk3R/ws2ZF2se6jdj1Ne8UUAfOJ+CPxE7eJrH8b+4/+N0+X4H+PxIBb+KbV02LkyXdwh3bfmGNh4DZAOeQAcDOB9F0UAfOH/CjviP8A9DNY/wDgfcf/ABuj/hR3xH/6Gax/8D7j/wCN19H0UAfOH/CjviP/ANDNY/8Agfcf/G6P+FHfEf8A6Gax/wDA+4/+N19H0UAfOkHwN+ILXEQuPFVokBcCR47yd2Vc8kKUAJx2yM+orRP7Ody8k0jeNZS8wIkc2BJcE85Pnc9BXvVFAHz/AP8ADM2Of+Eu/wDKb/8AbatSfs9X08ckcvjq4eOUhnVrJiHIAAJHnc8AD8BXu1FAHhcH7Puo20Qit/H13DGvRI7NgB+Am96k/wCFB6x/0US+/wDAV/8A49XuFFAHh/8AwoPWP+iiX3/gK/8A8eo/4UHrH/RQ77/wFf8A+PV7hRQB4VJ8B9eWSERePrtkZj5paBwUXaeRiU7ju2jGRwSc8YLb74EeI0tJWsPHM89yMbI7hJIkbnnLK7EcZ/hOenHWvd6KAPnb/hR3jwWYYeK7c3XmEGM3U/lhMDB37c7s5GNvYc84EP8Awo74jf8AQzWP/gfcf/G6+j6KAPnmx+B/jqS7jW+8WwQW/O6SC5nldeOMKQoPP+0Me/SrD/s1vK7PJ4wZnc5Zm04kk9eSZa9+ooA+f/8AhmX/AKm7/wApv/22j/hmX/qbv/Kb/wDba+gKKAPn/wD4Zl/6m7/ym/8A22j/AIZl/wCpu/8AKb/9tr6AooA+f/8AhmX/AKm7/wApv/22j/hmX/qbv/Kb/wDba+gKKAPn/wD4Zl/6m7/ym/8A22nR/s0vDIssfjAq6EMrLp2CCOhH72vfqKAPny4/ZqmWCRrfxUkk4QmNJbAorN1AZhIcAnvg49DVq2/Z0ubSUva+NZYHI2lo7AqSOuOJQcdK95ooA8N0P4CX9pMseoeML1LKOSQLBp+5CyZO1tzNhGPBI2sOoyetab/s7+E5HMkmqa6zucsxuIiSevJMdev0UAeHXP7N+kNqED2mv30NkNvnQzQpJI/J3bXG0LxgDKnBBPPQQX37NlnJeSGw8Szw2xxsjntBK68DOWDKDznsOo64594ooA8En/ZqheTMHimRE2qCHsA53bRuORIOC2SBjgEDJxkxf8My/wDU3f8AlN/+219AUUAfP/8AwzL/ANTd/wCU3/7bR/wzL/1N3/lN/wDttfQFFAHz/wD8My/9Td/5Tf8A7bXS+A/glB4M8VQa3Lrbag8COsMYtfJCsw27s72z8pYYx3z2r1umySJFE8kjqiIpZmY4AA6kmgB1FfPWp+N9b+K3jlvCXhq9mtPDk6lLmZYcNJAuPMkY4LKp+6B8oO4BvvEDZ8e/C7RPCfg2517wpBqVjrGmqrpPaXUpdlJVZGbkkAIXJ27cc54yKAPbKK5T4bi+/wCFfaM2pT3k95JCZJXvHLSksxYZJ5xg4HsBXV0AFFFFAHzb+0hcQt4l0a2WOIXEdo0kkgTDlWchQW7gFWIHYlj3rd8feB/Dvh/4GIw0q0h1W2itSt0Y9k7zM6+Zkn5jkNIdhJA9BtGOF+Isd547+Nl1o+lz/aX85LGDepVYti/vAeM7VfzCTg9CRkEVreNovHNvqGnab8StYmPhia6VZL3T4Y3Q8BuiqpB6j5hnhiqtjBAO/wD2ebqe4+HU8UsrPHbajLFCp/gUpG5H/fTsfxNetVz/AISsfD+n+HbWLwuIf7Ics8TQytKpJY5+ZiSecjk8Yx2roKACiiigAooooAKKKKACiiigAooooAKKKKACg9KKKAPLvj3c2lv8MZo7mDzZbi7ijtmKA+VJkuW9R8iOuRz82OhNY/wU8B6HdeBE1jVNLsL+fUJ3ZGuYFl8uNCYwuHyAdyucjqGGegxV/aTvimiaDYAuBNcyz8fd+RQv5/vOPxr0b4ZQvb/DPw6kg2k2SPjPZhuH6EfnQB5D4r1GL4QfGCGfQle30nULeK41CwQAxlTI6sEUkAEbSy8jaSRwpK19EKScZ6+hr5Q+LeozeL/i1Jp9gsc727RaXbBQULuG+ZW3dxK7rngYA69T9XgjIoAfRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5p8ctWk0z4Z3SQzNDJfTJagqWBYHLMuR0yqEHPBBI716XXmnxv0O+174f+Xp9nc3lzbXkU6RWyF3PDITtHJHz9vr0BoAyf2eNJgtPBd5qYUfaL67Ks+TykYAVcdOCznI/vewr2GvMPgTf6fcfDSztbSeJ7y3kl+2QqfmjZpHKEjrgqBg9OMdQar+K/iKdR8V+HPDPg3WIZ5ry8Bv7mx8uYxwDGcFlZPul2PUjyxnrQB6vRTByc5Pr9KfQAHoayPEetQ+HfDeo6zNsZLOB5QjyBBIwHypuIOCzYUcHk961z0qlqWkabrNusGqafa30Kv5ixXMSyKGwRnDAjOCfzoA+bfgbdaRF4r1XxB4h1uxt7qOLbE+oSoryySsS8iu7feAUgnkkSnn10Pjf45t/E93p/hXQDBqMKSpcNNbMZTJOQypEm3g8Pk4zksBwVOfbW8C+EApI8K6H0/wCgdD/8TV/TdA0bSTu03SbGyJYk/ZrdI/b+EDsBQBkfDvw/ceF/AWkaPdsTcwRFpRgDY7s0jLwSDtL7cg84zxmuqoooAKKKKACiiigAooooAKKKKACiiigAooooAKD0NFNcBkYEAgggg96APlP4sa3pnif4swq9/ANIt0t7R762bzh5RO93+XOSPMcYH92vbvFfxb8K+HdHluLXV7PUb5o2+zW1pKJt7jAG8rwgyRnJBIBxkjFb7+CvCkkrSP4Y0VnbLFm0+Ikn1J21aXwt4eS6a5TQtMW4ddrSraIHI44zjPYflQB4z8CvBV1Pqlz4z123vPtJObGW4LqZTIpMkxzy+VYYbJB3N1IyPfaaAAeB3/pTqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoPSiigDzXxL8FPCvifXJ9Wn+3WVxPhplsnREkfJy5DI3zHvg89cZJJ1PCfwt8K+DbmG806yeXUI1ZBeXMhkkwx544RTj5cqoOOM8nPbUUAFFFFAH/9k='] Multimodal Competition False Theorem proof Geometry Math Chinese 74 "设椭圆 $C$ 的两焦点为 $F_{1}, F_{2}$, 两准线为 $l_{1}, l_{2}$, 过椭圆上的一点 $P$, 作平行于 $F_{1} F_{2}$ 的直线, 分别交 $l_{1}, l_{2}$ 于 $M_{1}, M_{2}$, 直线 $M_{1} F_{1}$ 与 $M_{2} F_{2}$ 交于点 $Q$.证明: $P, F_{1}, Q, F_{2}$ 四点共圆. " ['设陏圆方程为 $\\frac{x^{2}}{a^{2}}+\\frac{y^{2}}{b^{2}}=1,(a>b>0)$, 据对称性知, 点 $Q$ 在 $Y$ 轴上 (如图); 记 $Q F_{1}=Q F_{2}=m$,\n\n$P F_{1}=r_{1}, P F_{2}=r_{2}, P Q=t, M_{1} F_{1}=M_{2} F_{2}=k$, 则有:\n\n$\\frac{P F_{1}}{P M_{1}}=e, r_{1}+r_{2}=2 a$, 为证 $P, F_{1}, Q, F_{2}$ 四点共圆, 据托勒密定理, 只要证, $m r_{1}+m r_{2}=t \\cdot F_{1} F_{2}$, 即 $m \\cdot 2 a=t \\cdot 2 c$, 也即 $\\frac{m}{t}=\\frac{c}{a}=e \\cdots(1)$\n\n由 $\\frac{Q F_{1}}{Q M_{1}}=\\frac{O F_{1}}{H M_{1}}$, 即 $\\frac{m}{m+k}=\\frac{g^{2}}{\\frac{a^{2}}{c}}=\\left(\\frac{c}{a}\\right)=e^{2}$, 所以 $\\frac{k}{m+k}=1-e^{2}$,\n\n在 $\\Delta P M_{1} Q$ 中, 由斯特瓦特定理,\n\n$P F_{1}^{2}=P M_{1}^{2} \\cdot \\frac{m}{m+k}+P Q^{2} \\cdot \\frac{k}{m+k}-m k \\cdots (2)$\n即 $r_{1}^{2}=\\left(\\frac{r_{1}}{e}\\right)^{2} \\cdot e^{2}+t^{2}\\left(1-e^{2}\\right)-m \\cdot \\frac{m\\left(1-e^{2}\\right)}{e^{2}} \\cdots (3)$\n\n因为 $1-e^{2} \\neq 0$, 由(3)得, $\\frac{m^{2}}{t^{2}}=e^{2}$, 即 $\\frac{m}{t}=e$, 故(1)成立, 因此 $P, F_{1}, Q, F_{2}$ 四点共圆.\n\n(也可不用托勒密定理证: 由(2)得 $P Q^{2}=m(m+k)$, 则 $\\triangle P Q F_{1} \\backsim \\Delta M_{1} Q P$, 于是\n\n$\\angle Q P F_{1}=\\angle M_{1}=\\angle M_{2}=\\angle Q F_{2} F_{1}$ , 因此 $P, F_{1}, Q, F_{2}$ 四点共圆.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAb0CFAMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ0ALRVW1v7S6nuYLe5illtXCTIjAmNiAQCB04Iq1QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAQXlxFaWstzOxWGFTI7AE4UDk4HJ4rL0DxXoXimKeTRdSivFhYLJsBBUnpkEA+v5VtHkgV8965BN8GvinFrlpE3/AAjerZEsUY4TJyyegKkhl9sj1oA9m1rxl4e8O30Fnqupx211cDdFCQzMwzgcAHqa3MgLuzgAZJPFeF/DTSLr4geOb74ia1Efs0U2zToXGVDDgfgg7jqxz1Br074iat/Ynw912/DlHW1aONh1Dv8AIp/76YUAeV/BXxUdU+JPilWJ26ruvY9x/uythR/wGX/x2vfB065r42+Fmq/2P8S9AuCSElm+zt7iTKZ/Ngfwr7JFaVN16L8kJbC0UUVmMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8x+PiI3wvnZlDFLqEqSPunOM/kSPxr06qmo6dY6ram11Gyt7y3J3GG4iWRCR0O1gaAOd+GKJH8NPDyoqqPsSHCjuRk/jnk/WqXxY8Maz4u8HrpOivAsr3KPMJ3Kho1BOM4PO7afwrs7S0t7G1jtrSCOC3iUJHFEgVVA6AAcCpz0oA+UdP+CnjKW+uBaPYJcadcLE7faD8smxJQV+X0kX8c19VxlygLgBiBkDoDWJ4f/wCQ14q/7Cif+kdtW9WlTdei/JCWwUUUVmMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACg9KKD0oAwfD/wDyGvFX/YUT/wBI7at6sHw//wAhrxV/2FE/9I7at6tKm69F+SEtgooorMYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFB6UUHpQBg+H/wDkNeKv+won/pHbVvVg+H/+Q14q/wCwon/pHbVvVpU3XovyQlsFFFFZjCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoPSig9KAMHw//AMhrxV/2FE/9I7at6sHw/wD8hrxV/wBhRP8A0jtq3q0qbr0X5IS2CiiisxhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU1uoqhoupf2rYyXHlCLZdXFvtDbs+VM8Weg67M47ZxzjJdna4GjRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACg9KKD0oAwfD//ACGvFX/YUT/0jtq3qwfD/wDyGvFX/YUT/wBI7at6tKm69F+SEtgooorMYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFI3Ss+31Iy6/eaWYsfZ7WC483d97zGlXbjHGPKznJzu7Y5aTYGjRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsHwh/yBbj/sKaj/AOlk1b1YPhD/AJAtx/2FNR/9LJq0X8N+q/JiN6iiisxhRRRQAUUUUAFFFFABRRRQAUUhrzL4ofEjVvBGq6TZaXp9rePfq2BNuzuDKABgjrmgD06ivDtR+Lfj3w7HHd+IPA6QWJcKZFLqMnoN3zAH0yK9e8Pa1Z+ItCtNXsGZrW7jEibuo7EH3BBB9xQBp0UUUAFFFFABRRRQAUUUUAFB6UUHpQBg+H/+Q14q/wCwon/pHbVvVg+H/wDkNeKv+won/pHbVvVpU3XovyQlsFFFFZjCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArBtP+R/1j/sF2P/AKNu63qwbT/kf9Y/7Bdj/wCjbutIbS9P1Qmb1FFFZjCiiigAooooAKKKKACiiigAooooAKKx/FdzPZeEdaurWUxXENhPJFIOqsIyQfwNePfBbx94g1jxPLpviHUZbqO7szcWhkxwUcqcYHfDdf7tAHvNFfN8vxG8T33xgtre11WePQ59cSyjhXbsZEkRWHTuCD/wKvo9e9AC1g+EP+QLcf8AYU1H/wBLJq3qwfCH/IFuP+wpqP8A6WTVov4b9V+TEb1FFFZjCiiigAooooAKKKKACiiigANeAftATS23i3wnPDEZpYt7pEM5dhIhC8evSvficV5L8V/Bev8AiXxZ4YvdJsPtNvZPm4fzkTYN6nOGYZ4B6ZoA5jxX4l+Ifj7RJPDsPgO9sIrl08yWWNxnawYAM4VV5A59u1eweBfDr+FPBemaLLIskttGfMZful2Yu2PbLHHtXQL6nqadQAUUVVu9QsrEoLu8t7fd93zpQmfpk80PTcdm9FqWqK4w/E/wpuby7+eQKSu6KzmdSQccELg9KqW/jbxTqURu9K8CyXNizuIJ5NTjhaRQxGdjDK5x0qOePQ2WGq7tW9Wl+Ltf8TvqK4exi+Il9C1xcXek6YzuxW0e3MzRrk4BdXwTjHSifwr4m1e8tm1rxOyWcG4mLS1e2aQkADc27oKfM+w/YxXxTj8r/wCSO4qvd31pYor3d1DboxwGlkCgn05rlR8PLTHPiDxJjj/mKPUtt8PdDiuvtF8LrV3ClUGqzm5VAeu1W4BOBz7Ci8uxPJRX22/l/wAE2v8AhINFH/MX0/8A8CU/xoPiHRf+gxp//gSn+NVR4N8Lkn/im9H/APAGL/4mhvB3hcD/AJFvR/8AwBiH/stHvWD915/gZug65pMer+JmfVLFQ+pIyE3CAMPsluMjn1BH4Vu/8JDov/QY0/8A8CU/xrmdB8J+HJdX8SpL4f0p1h1JEjVrKMhF+y27YXK8DLE49Sa3P+EN8L/9C3o//gDF/wDE1pV5rr0X5IS9jbr+BZPiHRT/AMxjT/8AwJT/ABrRjdZFDKQVIyCDkEViN4N8L4x/wjekfhZRj/2WsmP4cabCnlWur6/awLwkEGpOqIPRR2FZ3l2Hak+r+7/gnZ0Vxc3w7gaF1i8R+JEkKkK51JztPY470lvpPjq3tYYP+Ej0uTy0VN8lk5ZsDqTv6+p96OZ9h+zg9pr53O1orhHvviFpF4yNpFl4ggeMFZLadbPy2ycghyS3amxfEOewvWtfFPh650UmISQvG/2xZOSCMxrgHpx1/quddQ+rzfw2fo1+W/4He0Vy+n+P/DWp3L20GpiKZE8wrdRvB8ucZBkArpIJo7iFZYZFkjblXQ5BHsapNNaGc4ThpJWJKKKKZAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVg2n/I/wCsf9gux/8ARt3W9WBaf8j/AKx/2C7H/wBG3daQ2l6fqhM36Krz3lrakC4uYYSegdwufz60954o4TM8iLEF3Fy2Fx9azGS0VDb3VvdKzW88coU4JjcMAfwqagAooooAKKKKACiiigAooooAwvGmf+EF8QY/6Btz/wCimr5tt57nwt4O8C+NLFMzQPeWjn1BeTaPyaT8q+p7+zg1GwuLK6j8y3uImilTJG5GGCMjnkHtXOy/DzwtL4ag8NyaUG0iCXzo7czy/LJ83O7du/ibv3oA8E0/RzpI+E8kgImv9Ve8kJ77poAp/FFU175448a2ngzTFlkhlub64V/slrFGzGVlGTnA4ABBJPap7rwV4fvH0R59O3NogX+z/wB86+Rt27eAcH7i9c9KteJkU+F9XcgblsZwGxkgFDn+X6UAUPAXiG68U+CtO1m8jijuLlXLpCCFBDsoxkk9B69c1y+l/FHwb4cS/wBK1XWPs17Bql/5kf2aZ8brqVhyqEchgevetT4O8fCbQv8ArnL/AOjXrnFsb3wz9r8b6LG8qf2lfJrNivJuIFu5gJVH99B09V/I6L+G/VfkxG9/wu34e/8AQw/+SVx/8bo/4Xb8Pf8AoYf/ACSuP/jddrpeo2mr6bb6hYTpPa3CB4pE6FT/AJ6djVusxnn/APwu34e/9DD/AOSVx/8AG6P+F2/D3/oYf/JK4/8AjdegUUAef/8AC7fh7/0MP/klcf8Axuj/AIXb8Pf+hh/8krj/AON16BRQB5//AMLt+Hv/AEMP/klcf/G6P+F2/D3/AKGH/wAkrj/43XoFFAHn/wDwu34e/wDQw/8Aklcf/G6P+F2/D3/oYf8AySuP/jdegUhoD0OA/wCF2/D3/oYf/JK4/wDjdH/C7fh7/wBDD/5JXH/xutTxD4/0Tw7dLYyyyXOpSBPJsrdCzybm2jB+7198/Ws+6HjzxEs8UMdt4esWZEDO4kuiuQWZSjFF9ADk9fY1LnZ2WpuqErc0tF3en3dX8kyI/Gv4en/mYf8AySuP/jdYWufH7w1YSiPSY5dTzGWMgV4lVuQFwy5PY9Mc1DrfgjSL/wASW3hW0WW+u7iT+0NX1O7YPPFBkARhwBtZyMAdhk969U0y3isTLYQRrHBFhoURcKqNnj/voNx6YrWVNqCb0f6E3hGfuty9f+A/zseM3XxM0/XIbaDVPiDbadCHEk/9j6feRTHAPyrIwI25PXb2qxYeJfhBbzSz6j4gudcuXAUTaxbT3LKo5CjMWMZ5r26isVFblfWKlrR0PN7P4v8Awy061S1stYitrdM7IorCdVGfQCP1qx/wu34e/wDQw/8Aklcf/G69AoqzC9zz/wD4Xb8Pf+hh/wDJK4/+N0f8Lt+Hv/Qw/wDklcf/ABuvQKKAPP8A/hdvw9/6GH/ySuP/AI3R/wALt+Hv/Qw/+SVx/wDG69AooA8//wCF2/D3/oYf/JK4/wDjdIfjV8PW4HiHn/rzn/8AiK9BoPSgDyjSPi94Fs9T1+afXNkd3frNAfsk53oLaCMnhOPmRhz6emK1/wDhdvw9/wChh/8AJK4/+N10Xh//AJDXir/sKJ/6R21b1aVN16L8kJbHn/8Awu34e/8AQw/+SVx/8bo/4Xb8Pf8AoYf/ACSuP/jdegUVmM8//wCF2/D3/oYf/JK4/wDjdH/C7fh7/wBDD/5JXH/xuvQKKAPP/wDhdvw9/wChh/8AJK4/+N0f8Lr+Hp/5mD/yTuP/AI3XoFFAHlmo/En4S6vMkmpXlleSIu1WuNMlkIGc4BMfrXMXXiD4brHONC+IGuaPu3PFb232kW0bk5z5fl9MnkZFe9UVLimaQrVIaRf+X3Hh8nxxt9MeCQ6tpmtwnKyw21lcW0q8cMGcFW9CPeuk0z46eB7qxjnvdTksZ2zut3t5ZCnJ/iVCDmvTKpappdjq9obTUbSG6tyQxjlUMMg8HFCVthyqKWlkvNf5XscZ/wALt+Hv/Qw/+SVx/wDG6P8Ahdvw9/6GH/ySuP8A43Utz8PRp1zNf+EtQm0i8keJmtlI+yS7D/GgGcEE9DST+Ltd8M20svinRg9rFKqtqWnMDEEYgbjGxLggnB60c/dWL9ipfwpX+5P+vQj/AOF2/D3/AKGH/wAkrj/43R/wu34e/wDQw/8Aklcf/G663RNf0vxFYC90q7W4tyxUMFK8jqCGAIrTppp6owcXF2asef8A/C7fh7/0MP8A5JXH/wAbo/4Xb8Pf+hh/8krj/wCN16BRTEef/wDC7fh7/wBDD/5JXH/xuj/hdvw9/wChh/8AJK4/+N16BRQB5/8A8Lt+Hv8A0MP/AJJXH/xuj/hdvw9/6GH/AMkrj/43XoFFAHn/APwu34e/9DD/AOSVx/8AG6P+F2/D3/oYf/JK4/8AjdegUh7e9AHAf8Lr+Hp/5mD/AMk7j/4irHhDxTo3izxfrd7ol8Lq3SxsoWfynjw4kuSRhwD0ZaueM/E82jW9vpukRC58Q6kxjsbfsp7yv6Io5Pr09xn+BfDcfhfxFq9p9okurubT7K4vbqQ/NPO0l1vcjt2AHYAfU3HaXp+qA88/aA0+TVfFnhmxhyZZoJkQerZGB+JwKg1jxTNq37PegaZA2/UNQuI9LKDr+7b+oWP/AL6rpPiZ/wAlj+H3/Xc/+hrXCeFfDtwnxzTwy+7+zdI1K41COP8AujClG/ELDUAdr+zvB9m0fxFb7g3lX4TI74XGa9orxv4CH/RPFAznOqH+R5pniLxL8R/D2lzeKtTn06xtkvVii0Ro0cyxkgA+apJ3EZ6H1PHSgD2eio4HMkKSFGQuoba3UZ7VJQAUUUUAFFFFABRRRQAUUUUAFFFFABXPeEwTotxg4/4mmo/+lk1dDWD4Q/5Atx/2FNR/9LJq0X8N+q/JiOTlz8MddaVfl8HapP8AOAPl0y4Y9faJj16BT6d/R48HJBBz6VBqFha6nYT2N7Ck1rOhjlifoyngiuG8MXl14P1pPBOszPJZyAnQ76Q/62Mf8sHP99e3qPTgVmM9DopqY5x606gAooooAKKQ1x3iHxnJDq1voHh2GDUNamY+YjP+7tlGNzSkHI6/oe+AU2o7l06cpu0Pn/w/Q3PEPiHTvDOlvqGpTiONQdi5G6RsZ2qO7HBwP1FcoZ/FHjaUpBFN4f8AD8iIzTSRqbu4VlJIXkhRgr1Gf1FaWheCY7LVH1zWrr+1tbkVQbiSMBIsdolA+Uc9fbtXXL0qbN7m3PTp6QXM+7/RbP5mN4d8MaT4atBBptnHExRElmAG+YqMBnI6nkn8af4l1218N6Bdapd7ikK/Kifekc8Ki+5JA/XtWseorgFx438feZjfoXhuYhQeVuL7HJx6Rg/99Gt6NOPXZa/169Pm+hzynKTvJ3ZreBdButK0yfUNVIfXNVk+1X79drH7sQ6/Kg4AzjrjrW9eZjuLWcHADGJ8ns+AMDudwX8M1bFRXUC3NtJCzMokUpuXgrkYyPQ0pzcpcz6/1b5EpWJRS1Xsp2uLVJHCiT7rqpyFccMB64INWKljCiiikAUUUUAFFFFABQelFB6UAYGg/wDIa8U/9hRP/SO2rzXxBrp0v9o7SFvNUNnpi2RMomuPLgB8uXG7JC9cY98V6XoH/Ia8Vf8AYUT/ANI7avJPGGjWHiD9pPSNL1S2FxZz2P7yIsQGxFMw5HPUCtKm69F+SEtib41eLbK6s9BXw/4ht5pBeHzVsLwMduBjdsPT617ipzz27V87fGPwR4c8KWuhTaJpi2jz3hSRlld9wABA+Yn/ACa+igc1mMWiiigAooooAKKKKACiiigAprU6igPQ47WvANld3y6to0v9j6zE0jrdWyLiR3HPmAg7h/jVOHxzd6FLDYeM7E2Uks7xR6jEoFrIBypzvLKSP8jt3tQXdtBeW7211Ck0MqlXjkXKsD1BFS463R0RrJrkqK6+5/J/0vzJInSRA8bB0YAqwOQR9afXnlx4f1nwNHdX3hILeaezmWbRZhjbnaC0LDkEAfdPGOnOK6rw34l0zxPpwvdNuFkBCmSIkb4SR91wOh6+3FCl0ZNSlyrni7o2aKKKoxCiiigArF8U+I7Lwtokup3pZgpCQwRjLzyn7saDuxP9T2rSvry306ymvLuZIbaBDJLI5wFUck1wfhuzufGetx+MtXgeKwhyNDsZByqH/l4cf327DsPXOaANHwX4cvree58SeImWTxFqKjzAudtpDnKwR+gHf1Oc56nUshjx9rH/AGC7H/0bd1vCsK0/5H/WP+wXY/8Ao27rSG0vT9UJm9RRRWYxrkBSTnA5OBk18/vretaz44Ou+JvBPim6srJ86Xp8Gnv5cXP+sfPBbgfjX0FRQBHBIZYI5CjRllBKMOVyOh96koooAKKKKACiiigAooooAKKKKACiiigArB8If8gW4/7Cmo/+lk1b1YPhD/kC3H/YU1H/ANLJq0X8N+q/JiN6sTxT4ctPFOivp10XjYkSQXMfElvKvKyIeoYH6Z5HetukPtWYzjvBniW8u5bnw7r4WLxHpoAn2jC3UXRZ4/UHjI7HPAziuxXvXKeMfDE+rJbato0i2/iHTT5llOfuv/eif1Rhke2c1d8I+J7fxTo5ukia3u4XMF5Zyfftpl4ZD9PXv7dKAN+mscY60prgvFF9qfiTXD4Q0S5NvGqCTVL6M5MKHIEQ4+8wweoP5Gk3ZaGlKnzu39Jd/wCupX1nWb/xtqc3hrw3N5NhC2zVNSABXacBoojggsQW59R9a7LQdA0zw5pqWOl2qwQJzgcsx7lj1J96k0XRrHQNMi07ToBDbRfdGSSSeSSTySTWhSUerLq1b+5DZfj5hRRUN3cQWltJcXMgjhiQyO5OAqqMkn8BVJXdjB6HM+OtdutPsLbSdIOdc1eQ2tljkx8fPL9EXnP0rX8OaHaeG9CtdIskxDbIF3E8yN1Zz7k5J9zXM+CoJ/EGqXXjfUI2T7WvkaXC/Hk2gOQ2PVz8x9sV3Q6mt6r5UqS26+vT8CVrqLSGlorBaFFGA+RqFxET8koEyAnvgBgB2H3T9WNXRVPUP3QhuwQPIfLnp8h4bJ9Bw3/ARVxelOSvqAtFFFIAooooAKKKKACg9KKD0oA5/Qf+Q14p/wCwomP/AADtqvyaNpkmrRaq+nWjahGu1LswqZVGCMB+oGCR+NUvD/8AyGvFX/YUT/0jtq3q0qbr0X5IS2M/UdH0vV1iXU9OtL1Ym3Ri5gWQIfUbgcGr6jHalorMYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjDNcb4p8EJqV0Nc0R1sPEVvlobpQAJOCNrgggggnnr+Ga7OkNJpS3LhUlTfNF27+fk/I5bwl4wj8QJNZ3lu1hrdoNt5YyY3IePmXBOV5HP/ANbPUr3rkvF/hOTV2i1bR7g2PiCz5trlej8H9246FT7g/qaveDvEZ8S6H9pmt/st7DI0F3bZJMMinGOQOowfxx2qU2tGa1YRa9pDbqu39dDoKa3GD2pW6VwPivU7zxJrR8EaFO8TlQ+sX0Z/49ID/Ap/56OOB6Dn3FnOVLgH4m6+bRCT4Q0yfE7g/LqVwp4QHvEhAyehPT1HpEahUCgAAcAAYA/CqulaZZ6NplvpunwLBaWyCOKNewH8yepPUk5NXKACsG0/5H/WP+wXY/8Ao27rerBtP+R/1j/sF2P/AKNu60htL0/VCZvUUUVmMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsHwh/yBbj/sKaj/6WTVvVg+EP+QLcf9hTUf8A0smrRfw36r8mI3qKKKzGNbpXBeK9LvfD2snxtoELSyqgTV7GMf8AH3AP41HQyoOQT1Ax7Hv6a5CjJIAHOTQPskcT4i8aRyeGrGTwzdR3Op6ztTTlUqWG7JLsrdAuDnIODwR1rb8KeGbfwvpRtY5pLm5lbzLq6lYlppMYLHJOBxwM/rknyHQJLPw542uPG8NgyeEb24eyjkaIotmX2ETAN92NnLqccDJ9dte8oVZQynIIyD61C1dzepLkj7L7/wCvx9R1FFFWc4hrgfFsr+KvEFt4ItGYWoC3WsyRnGyAHKQ57M5HTqF56Zrp/FGvweGdAuNTnUyNGNsMC/emlPCIo7kn29+1Z/gbQLjRdIluNSYSa1qMhutQlH/PQ9EH+yowoGexPet6a5I+069PXv8AJfjYTOkhjSKNY40VEQBQqjAAHA4qSiisN9RhRRRQAyaNJomjdQyOpVlIyCD1zUFg7tbBZCTLGfLcnqSO5+owfoRVkiqKjyNUYfw3CbuF43rwc+5BX/vimgL9FIKWkAUUUUAFFFFABQelFB6UAYPh/wD5DXir/sKJ/wCkdtW9WD4f/wCQ14q/7Cif+kdtW9WlTdei/JCWwUUUVmMKKKKACiiigAooooAKKKKACiiigAooooAKKKKAENcB4qsLnwxrB8a6ZNN5AKjV7NfmWaIADzFDHAZQB0xx34IPoFYXi7xBY+G9AlvL6L7R5hEEFoBlrqVuFiUc5J+h4ye1JxujSnU9m7vbr6f1+Jj+J/Gax2djY+GZIb7WtXytgFbdGi9GmfHRFAJ9yMeuNfwl4Zt/C2jC0jle4uZXM93dyffuJm+85+p6DnA9eteefCfSZPDXiTU9P1y1Eet3MSTQSbCV8kgM8aN90BWfnHUg5zgV7AvpQndBVg4PyFooopmYVg2n/I/6x/2C7H/0bd1vVg2n/I/6x/2C7H/0bd1pDaXp+qEzeooorMYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYPhD/kC3H/YU1H/ANLJq3qwfCH/ACBbj/sKaj/6WTVov4b9V+TEb1FFFZjCuZ8faxLong6+ubWVY751EVqCMlpGOAFHc4J456V01cf4u2S+LPBttkGVr+WUKe6pCxY/hkVMnobUY3mr+v3av77L7jX0/wAOafYeF4vD3lG4sEg8hkn+bzFI53fXJ9K5Pw7fXHgnXovBur3Dy6bcZOhXs3OVHW2c/wB5f4T3HHXC16IKx/FHh2z8UaHLpt5uUMQ8MyffgkH3ZFPZgf8ADvVWsZylzNt9TXUYz70PkYwOa47wb4jvZbm48MeIiqeINOUFnAwt5B0WdPr/ABDsfToH+O9ZvbW0tdD0VwNb1hzb2x/54pj95Mf91cn644NXTg5yUV/w3n92/wAiWZ9rnxt47a9YbtC8PSmO2zyLi9/if6Rj5R7kmu+X0rO8P6LZ+HdDtNIsE2W1rGEX1Pqx9yck/WtOqqTUpK2y2EgooorL1GFFFFABVPUlxbrchdz2zecvGTwCGx7lSw/GrlNbp/jQtABDkcHI7EelOqlpuI4Htef9GfyhwfugAryevylcn1zV2mwCiiikAUUUUAFB6UUHpQBg+H/+Q14q/wCwon/pHbVvVg+H/wDkNeKv+won/pHbVvVpU3XovyQlsFFFFZjCiiigAooooAKKKKACiiigAooooAKKKKACiimvwM+lAFfUr+10vT57++uFgtYIy8sjdFA5zXEeF7C68Xa2njXWreSG3QFdEsJusMR6zMP+ej9vQY68VXO74m6/tHzeDtLn5/u6ncqf/HoUP4M397HHo6YxgdqAOH8eSHSNT8O+I4pTCbe+SzupGwY1tpTh2f0wVXBrt0IIyOn1zWJ42jM3gbXUCbybCbC4zk7CaseGJUn8K6RKh3I9lCyn1BQVK0kby1pRfa6+81qKKKowWyCsG0/5H/WP+wXY/wDo27rerBtP+R/1j/sF2P8A6Nu60htL0/VCZvUUUVmMKKKbIyohZ2CqBkknGKAHUU2N1kQOjBlIyCDkGnUAFFFFABRRRQAUUUUANbtziuLvPEnji3v7mG0+H32q2SVlhn/tmFPMQHAbaRlcgZx2zXbUVcJqLu4p/wBeVhWOD/4Srx//ANE1/wDK7B/hR/wlXj//AKJr/wCV2D/Cu8orT20P+fa/8m/+SC3mcEfFXj8f802/8rsH+FZPhzxL43h02dbX4f8A2mM394xf+2YU2ubmUsmCP4WLLnvjI4Ir1OsHwh/yBbj/ALCmo/8ApZNVqrDkfuLdfzdn5it5mD/wlXj/AP6Jr/5XYP8ACj/hKvH/AP0TX/yuwf4V3lFR7aH/AD7X/k3/AMkO3mcE3irx/j/kmp/8HsH+Fc3deIvGU/xBsHl8Bn7XbafM0NmdWh5DuqtJvxt7BdvvmvYD2rkPEgNr458JXyNgPJcWkij+IPHkfkUH51Mq0P8An2v/ACb/AOSNaMXzPXo/yZSHirx//wBE1/8AK7B/hQfFXj//AKJr/wCV23/wrvBXL/ELxTL4N8IXGtQWyXMkTogjkYqDuYDOR9ar20P+fa/8m/8AkjJLTc4jxSPHmvyWN9aeAjp2r2Evm2l8usQOUB4ZGUY3Kw4IyP6HP8LeIvFup+Kda8Qp4LGoXyMLDyzqcUBsUTkx7WG7luSTwe3etCz+I3xFvrG3vLX4eiW3uI1lhkW64ZGGQefUGtnWbDWNPNl490uwZNWFrH/bOkxnP2mLaCyj1kj52nqQMc9DUcRGPwwX/k3+YW8y1/wlPj/t8NeP+w7B/hS/8JV4/wD+ia/+V2D/AArrNE1ay13SLbVNOnWa0uUDxuBj6jHYg5BHYg1oVPtof8+1/wCTf/JBbzOD/wCEq8f/APRNf/K7B/hR/wAJV4//AOia/wDldg/wrvKKPbQ/59r/AMm/+SC3mcH/AMJV4/8A+ia/+V2D/Cj/AISrx/8A9E1/8rsH+Fd5RR7aH/Ptf+Tf/JBbzOD/AOEq8f8A/RNf/K7B/hSHxV4//wCia/8Aldg/wrvaKPbQ/wCfa/8AJv8A5ILeZ5w3inx3DerIfhztaceSFOuQHcQGYY44431a/wCEp8f/APRNf/K7B/hXaX0TS2rCP/WKQ6DOMspyAfbIwfYmpLeZLiBJojujdQyn1B5FP2sLfw1/5N/mFvM4j/hKvH//AETX/wArsH+FH/CVeP8A/omv/ldg/wAK7yil7aH/AD7X/k3/AMkFvM4P/hKvH/8A0TX/AMrsH+FH/CVeP/8Aomv/AJXYP8K7yij20P8An2v/ACb/AOSC3mcH/wAJV4//AOia/wDldg/wpG8U+PiMH4bYz3/t2D/Cu9oPSh1YfyLb+9/mDXmeWaP4l8bx6nr7w/D/AM6SS/Rp0/tmFfJf7NAAmSPm+UK2Rx8+OoNa/wDwlXj/AP6Jr/5XYP8ACt3Qf+Q14p/7Cif+kdtWD49+JNv4OubTTLTT5dU1q8A8mziOCATgFiATyc4AHOD0q6laHN/DXT+bt/iEl5i/8JV4/wD+ia/+V2D/AAo/4Srx/wD9E1/8rsH+FcxN8WPFPhuW3m8Z+DHstNuGCi5t5N2wn1GSCcDoSDxXrlndQ31nDd20qzW86LJHIvRlIyCPY1Htof8APtf+Tf8AyQ7eZxX/AAlXj/8A6Jr/AOV2D/Cj/hKvH/8A0TX/AMrsH+Fd5RR7aH/Ptf8Ak3/yQW8zg/8AhKvH/wD0TX/yuwf4Uf8ACVeP/wDomv8A5XYP8K7yij20P+fa/wDJv/kgt5nB/wDCVeP/APomv/ldg/wo/wCEq8f/APRNf/K7B/hXeUUe2h/z7X/k3/yQW8zg/wDhKvH/AP0TX/yuwf4Uf8JV4/8A+ia/+V2D/Cu8oo9tD/n2v/Jv/kgt5nB/8JV4/wD+ia/+V2D/AAo/4Srx/wD9E1/8rsH+Fd5RR7aH/Ptf+Tf/ACQW8zg/+Eq8f/8ARNf/ACuwf4Uf8JV4/wD+ia/+V2D/AArvKQ0e2h/z7X/k3/yQW8zgz4q8fd/hsfw12Dn9K5LXvF/jbxedQ8Kad4Se0uYdn9pGDVYnZYW6xiTaFR2HHVjgHjqR3XjPxNd6f9m0LQY1n8RallbZGHy26fxTyeir+p4wa57U/EGk/BnSdK0z7BealPqLSyS3EZBluJhtLu+eSWLjHoBij20P+fa/8m/+SC3mW9O1rxrpWnwWFj8L0gtYECRRprkACgdvu/qeck1a/wCEq8f/APRNf/K7B/hWXp/xiGoana2X/CHa/D58yRea8HypuYDcfYZzXp4o9tD/AJ9r/wAm/wDkgt5nAT+JfHk0LwyfDTMcilWB12DoeD2rB8C+J/G8fgrTIrTwN/aNvHGY47oatDCHVWIHykZGAMe+M969I8UXr6d4U1e8i/1kFnNIn1CEj+VReD7RbHwbo1smMJZRZPqxUEn8SSfxqfbQ5v4a/wDJv/kjVJqk3fqvyZz3/CVeP/8Aomv/AJXYP8KP+Eq8f/8ARNf/ACuwf4V3lFV7aH/Ptf8Ak3/yRlbzOCPirx93+G2P+47B/hWRa+JfGw8X6lMnw/3XLWNqj2/9swjy0ElwVbdjB3FnGB02e9eqVg2n/I/6x/2C7H/0bd1casLS9xbf3u68xW8zB/4Srx//ANE1/wDK7B/hR/wlXj//AKJr/wCV2D/Cu8oqPbQ/59r/AMm/+SHbzOD/AOEq8f8A/RNf/K7B/hWJ4x8SeNrjwZrcN54A+x2sljMs1x/bMMnlKUILbQMtgZOB1xXq9UdY0yDWtGvNLuS4t7yF4JTGcMFZSDj35o9tD/n2v/Jv/kgt5nxLpuuaporZ0vWb2xJOT9nlePd9cHn8a7zQ/jZ46t547dbuLVXbCpDcWgZj9DGVJP417Vo3wV8DaSsbNpRvpk/5a3srSbvqowh/75rttP0rT9Kg8jTrG2s4h/BbxLGv5KBR7aH/AD7X/k3/AMkFvM4/wR4x8T+I5wmseDrnSoBGWN1I5QM46KI2UNzzzk9K7te49KWispyUndK39ebYwooorMAoooqgCiiigAooooAKwfCH/IFuP+wpqP8A6WTVvVg+EP8AkC3H/YU1H/0smrRfw36r8mI3qKKKzGFcb8SYp7fQINes3Au9FuFu40ZdyyDBVlPoCGPPt+NdlUNzClzbyQSKrJIpVlYZBBHcUmtC6U+Saf8AXn9+wtvKk8KzROrxSAMjqchgeQR7EV558df+SVah/wBdof8A0YKvfDm9aysbnwrfTWx1DR5DEFickvDhWWTBHTL49sVp+OvCf/Ca+FZ9E+2/Y/NkR/O8rzNu1s9Nw9PWhO6HVhyTaX9Loed+FtL+Lj+GNFl0/XtCj002cBt4pE+dYti7Qf3R5xjv2r1nWdYsdA0qfUtSuFgtbdcuzEDPoB6k9AO5pdB0z+xfD2m6V5vnfYrSK28zbt37EC5x2zisXx54b0rXNDnvNRtFuZNPtLiS3Dk7Vcp94r0JG0Yz0pmZxml69beGxb+MNKiuE8Fa7IWu4JFGdPnLlfOABICMR8wGcHGOoWvW4nWSMOjBkYBlYHIIPeuB+E9tBe/B3R7W5iSa3nhmjkjdcq6mVwQR6HpUfh+5uPAWuweEdUmMmj3bH+w7yQ8p/wBOrn+8P4T3HHXgAHotFNTPOc/jTqACiiigAooooAa3pVSxYJLc2hIBifeozzsfkHHYZ3KP92rpqncHyLy3nJOxiYpOcDn7pP4jb/wOmgLlFIO9LSAKKKKACg9KKD0oAwNA/wCQ14p/7Ckf/pHbV5cWSP8Aapc3xUA2g+yFvXyB098769Q0L/kNeKf+won/AKR21ZHjv4b6d43a2umuZtO1W14gvYB8yjOQCMjIB5GCCOeea0qbr0X5IS2IvjG9rH8KtaF0VwyRiMN3fzF2/rU/wjE4+FegC4DCTyGwG67d7bf/AB3H4Vyn/CmtT1i5tj4t8Z32sWVuQy2oQqG/4EWOMjuBnBPIr1u2gitbaO3gjWKGJQkcaDARQMAAdgBWYyWiiigAooooAKKKKACiiigAooooAKwfFvia28KaM19MjzzuwhtbSP8A1lzM3Cxr3yT6ZwM1papqVno2m3GpahOkFpbIZJJHPCgfzPYAcknAri/Cum3nifWk8ba7C8Q2ldGsJR/x6wn/AJaMP+ejjn2B+gABo+C/DFzpoudb1x1n8R6kQ93KDlYV/hhj9FUccdTzk8V598eXuo/EXgeSyhWe7S5laGJjgO4eHaueOCcDqOte3Kc5rz/4ieBdT8W+IPC2oWE9pHFpNy004ndlZgXjI24U8/IeuO1ADfDmu/Ey71+1g1/wpYWOluW8+4huUZk+UlcASEnLADp3rtL3WdM0yWKLUNStLV5eI1uJ1jL9uASM/hV3POD09+/FeQ/EnQ/CejHV9V1OGfVtf1yIW1hZyYkdHxtBhUDIAJU55PGB1wQPNnW/Ea+lGi2Gk20qIdcvotOeTG4pFJkO6jvxgZ/2q6yxto7KygtYt3lQxrGm7rgDAz+VeSfDCzv77U7Bb2W2mj8N2Zsw6uZGMsgDFQ3QBBlMj0xXsS1EdXc6Kv7uMYPpq/mLRRRVnPawVg2n/I/6x/2C7H/0bd1vVg2n/I/6x/2C7H/0bd1pDaXp+qEzeooorMYVV1GK5m0+eKyuBb3TRsIZiobY2OCQeozjNWqRqAPIPh/8TdSOu6x4c8dTQ2+o2O+RZiqxqVQZcccHAG8HuM+lP+H3jPxP488Z6jexSLa+FbVyEjMK7pDjCruPIP8AGcdM471558dbmw1rx4lpo9o02o2dswv5YRndtG7GB/cXOT74/hr134Lajo978OLGHSoxE9tmO7jJy3ndWY+u7qPbjtQB6CoxTqKKACiiigAooooAKKKKACiiigArB8If8gW4/wCwpqP/AKWTVvVg+EP+QLcf9hTUf/SyatF/DfqvyYjeooorMYU1u1OooD0OB8bW0+gavbeObMyP9ljW1v7dduJLUuSSCR94MVPbp1rtrK8t7+1jurWZJ7eVQySRtlWHqKlkVXRkYBlYEFSMgj6V5zayW/w28SNYTF4fDOqMGt5nzss7jjMbOSQFIBbJ9Mdqh+67nSv30OX7S6d1/mj0moLu2ivLWW2uE3wzI0ci5xuUjBGevQ9qkjO5cg5UgEEHPH9afVnMZ+iaNYeH9Kh0vTIPIsoARHFvZ9uSSeWJPUnvUPiXw/Y+J9Dn0vUEJilGVdeGicfddT2IPNa1IaAOK8FeIL5bu48J+IzjXtPQMs3Rb63zhZl9+zD1+uB2q1zHjPwu+vWcF3p04tNe09/O0+7H8D45VvVGHysOnselSeDfFMfifS5GkhNpqdo/kX9k/wB6CUdR/unGQfT6GgDpKKKKACiiigAqG7h+0W0kWdpYfK2M7T2I9wcH8KmpG6UbAQ2k/wBptY5tuwsMsmc7T3H1ByPwqeqVtmG8ubfnaSJY+MD5vvAe+4En/eq6Kb3AKKKKQBQelFB6UAYPh/8A5DXir/sKJ/6R21b1YPh//kNeKv8AsKJ/6R21b1aVN16L8kJbBRRRWYwooooAKKKKACiiigAooooAKa/GCeg680rdv61574mvLrxjrcngvSJXisogDrl7Gf8AVxnpAh/vuOvoPXJFAEEQPxN8Qidxu8HaXOfKB+7qdwpxuPrEh6ddx9eg9HTOOah0+yttNsYbGzhSG2gQRxRoOFUDAAqzQAUUUUAIa8P8feFNVs/G0XiDT/Fqrr2ozLa6dZ/ZEzEh44ZnO1QM5cLklv8Aar17Xtd0/wAO6VJqOpTiKBOgz80jYyFUZGWODx7VzXgzRpr25n8X61aNFq98SIoJMj7LAMBUAPchdxPH3ugqJSeyN6UFbnnstl3f/A6/I2vBvh+Twx4XtNJmvDeywl2e4MewuWdn6ZP97H4VvU1adVpJbGLbbuwooooEFYNp/wAj/rH/AGC7H/0bd1vVg2n/ACP+sf8AYLsf/Rt3WkNpen6oTN6iiisxhWdrq6o+jXSaK1uupNGVt2uSQisf4jgE8dcY5xj3rRooA8z+GPwyl8Hf2hqOtzQX2s3rFXkiYuojJyRlgCSx5JPt75o+HPhprvgv4h3WqaFd2H/CO3bbZrOSV1cIeflGwjKk/Lz0yO9etUUAIowTS0UUAFFFFABRRRQAUUUUAFFFFABWD4Q/5Atx/wBhTUf/AEsmrerB8If8gW4/7Cmo/wDpZNWi/hv1X5MRvUUUVmMKKKKACqWq6bZavp81jqECz2sylXRs8/THIPoRzV2ijRgm4u6PNbHVL34dX8ejeILp59BuJCunanIT+4JxiKYnoOWwxbovpnb6QhyM54qpqum2mr6dNYX8CzW06lHU+hHXPY+45FcPcjWvh7cRyW8t3q3hln2PAwLz2O4jBDYJdB83B6D86i/L6HVaNd32l59fR9H/AFuei0VnaNrWm67ZLd6XdxXMDAHKHlc9iOqn2IFaNWmnsczTi7S3Gt2/rXDeLdG1DS9UTxn4eiaTULaPZf2K/wDL/bDqv/XReqn8Oeh7ukYZFAjP0LWrDxDo9vqmmzia1uE3K2MEeoI7EHIIrRrzfVEk+HXiCTXbWMnwvqUoOpwIP+POY8C4Uf3TwGHbrXokMqTRLLGyvG4DKynIYHuD3FAElFFFABRRRQBTvv3UtvdAZKOI2wMnY5A/9C2E+wNWlGM02eJZ4HhcZR1KsM44IqKwlea0RpP9auUk4x8ynDY9sg49sU90BZooopAFB6UUHpQBg+H/APkNeKv+won/AKR21b1YPh//AJDXir/sKJ/6R21b1aVN16L8kJbBRRRWYwooooAKKKKACiiigApDS1geLvE9t4W0j7U8TXF5K3k2VnH9+5mbhUAHvjJ7UAZnjLxJe2s9t4d8PBJPEOpAiLcMraRdGnf0A5wO5x16HY8LeG7Pwtosem2e9yCZJriU5knlblpHPdif8O1ZngzwvPpMVxqusyi68Q6kRJfT9k/uxJ6Io49+T6AdYO9AC0UUhoDcWsvX9e0/w5pUmo6lcCKBOAP4pGxwqjqWOOgrK8T+NrLQENvbo+paqwPlafagvIxyPvbQdo579e1UNI8G3d9dW2s+MLw3+pR4aG1Ubbe1O3oFBw7ZJyx9AO1S5O9onRCkkueo9Oi6v0/z/UqaHoWpeK9Wj8S+KoWigT5tP0h+RbcD534G5uD1HGT7V6CvU8fWlXpS0JW1IqVPaPVWQUUUVRkFFFFABWDaf8j/AKx/2C7H/wBG3db1YNp/yP8ArH/YLsf/AEbd1pDaXp+qEzeooorMYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYPhD/AJAtx/2FNR/9LJq3qwfCH/IFuP8AsKaj/wClk1aL+G/VfkxG9RRRWYwooooAKKKKACkNLRRuHXU4rVvBb2t9PrfhW7Omaq67ngCg290QGwrp6nPDdueDTNI8dXEV8umeLtM/sK+ZUEUjzB4J2IJOJB8qnj7pYnn2ruKparpdlrFhJZahbR3EEgwUkUEZ7EZ6Edj2qHG2qOhVk1aqr/g/l0fzLUZDKGU5UgEEdKfXnj+GvE3hKMyeFtRk1CzRIUXTNRkLkBTghHLBUG09B6D0FaEXxCsbOZrXxFZ3eiXasoEc8bTI4bABEkYK9eOTQp9xOg3rTfN+f3b/AHHW3NvFdW8kFxGksEqFJI5BlWUjBBB4Irz7Q5pvh/4hi8L6g8j6BfvjRbt2LeQ3U2rsf/HOufXsPQ4ZY5o98UiOp7q2R+dZ3iLQbHxNos+lajEXgmHVTho2H3XU9mB5H9elWYa9TTUYzTq4fwbr9/b383hDxG+7WrJd1vcnpqFv0WUf7XGGHr39O3FAC0UUUAI3SqcZ8nU5o+As6+cPUsuFb8MbKu1T1E+VAlyD/wAe7iQ5OBt6N9flLED1ApoC2KWkUYzS0gCg9KKD0oAwfD//ACGvFX/YUT/0jtq3qwfD/wDyGvFX/YUT/wBI7at6tKm69F+SEtgooorMYUUUUAFFFFABRRTJGCLuYgKBkknAA9aAKur6pZ6LpdxqWoTrBaWyF5JGPQf1J6AdSTXGeEtLvfEGsf8ACb6/EYpnQppFi4/487c/xn/po45J7A49hVtVf4m6+t/Mh/4RDS5v9FjccajcKceYR3jU9B3PPsPR16UAOFLWXrPiDS9AtTc6ldrBGCq8AuxLHAAVQSefQVy8/i3X9djkTwnokrQGZY11S+xHGBxucRsQ7KPXH4VLkloawozmrpWXfZfjv8jrtU1Ww0i1N1qF3DbQKCS8rYzgZwB3PsK4ka/4s8XzCHQtPOk6PJJIv9sXBDO6AYVkhO1hk4wTx9OlXLD4fJNexan4m1CXWr+OSSSNJiTbQ7+yxMSAAMfkPSu2UUvel6F3p017vvP+tl1/LyMPw54V03w1FMLRZZbmZ9893ct5k8zf7T9/p05PrW6KWiqSsrIxlJyd2FFFFMkKKKKACiiigArBtP8Akf8AWP8AsF2P/o27rerBtP8Akf8AWP8AsF2P/o27rSG0vT9UJm9RRRWYwooooAKKKKACiiigAooooAKKKKACiiigAooooAa3asXwpBNb6ROk8TxudRvnCupBKtdSsp57EEEHuCD3rcoqlK0XHuAUUUVIBRRRQAUUUUAFFFFABRRRQAVV1CxtdSs3s723juLeUYeKVcq2DnkfUA1aooeu4JtO60ODuPh39it7w+GNc1HR5JpPOjtopF+zLJgA5TbkAhf73HYdi/8Atbxxol27ato9tq1j5BfzNJG10YHoVkfnjPQeldzRUcltmb/WJPSdmv66q343PKdd8R+FPHAsbfSdaNj4nt5PN02aS3kRoZsfcY7dpVh8rLnB9zxXY+DPFC+JdNmW4iFrq9lJ5GoWRPMMg7j1RsZVskEd+DWtqukadrVsltqVlDdwq4cJMgYBh3579fzrzrxf8OG0xW8Q+CTcaffwoBcWdi+wXUIOWVeDh8Dg4PI6U1zLcUvZS2TXrb9D1SivN/Ct14y1Lw3a3ela1omoWUgJinvYZjPjJ+WTawG4fdP079a0bTxR4ot7cw6p4Pu57pHdWlsmQQuAx2lQz56Y60c4/YN/C0/nr+J29NYAjaQCD1BrirL4peGJYXGoXh0y7jkaOW1uVO9GU4OdoIrU03xz4Y1m+SysNYt5rhwSsYyCccnGfanzp9RPD1Vq4v7rmvprN9mMMjEyQMYmJbJIH3SfcrtJ+tXKz2mji1Jcyp5c6bfvjAdefzKk/ggq8jK4yrA+uDmqe5iOoPSig9KQGD4f/wCQ14q/7Cif+kdtW9WD4f8A+Q14q/7Cif8ApHbVvVpU3XovyQlsFFFMMsYODIoPpmsxj6Kgmu7eCF5pZ0WONSzMWGAB1Ncv/wALM8G5x/b9tj2Vv/iaTaW7LjSnP4U/uOvoriB8RrO/vntvD2m3uuCKNXlltSqrHknCneQc/KaRdY8batqBTTtEtNLtEjBZ9WBdncseF8t+mMH/AApc66Gn1ea+Oy9Xb/g/gduwBxmvMfGWtL4kv7zw1b3xtdEsU8zxDqCEjan/AD7R4ySzfxY6Djk5ByvFT+N7vxFY6JD4ghi1W7izHb6Tvjjgi3fPcTFsnGPlAGMnGMYwet0T4WeFdI01LabTo9Qn3F5bq8UPJI55LE9vYfzOTReT2FyQi1zSv6Xf4uxBp/j/AMPSxW2k+E7O41V4k2La2duYlhjUd2k2qB2HPXFItl4+1+CH+0L2y0S2efdJHaBjdJGGOF35ZMkY59+/Q96oAGAMD09KdS5W9yvbQj/DX/gWrOS0v4faLY6nJqd0bjVdRkkSQXWosskiFB8u0hQBjA/KurWnUVSVlYynUnUd5BRRRTICiiigAooooAKKKKACiiigBrVi2kEq+N9WuDE4hfTrNFkKnazLJclgD0JAZcgdMj1rcoqoysAUUUVIBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSN0paKAPONZhl+H2vS+JLCJj4d1CUHV7aNf+PaQ8C5VR27P+eD29Ct5oriFJoZFkikUOjqcqwPIIPfii4hiuIHhmjSSKRSjo4yGU8EEdxivPtImk+HevR+Hr2R28N6hLjSbiTLfZZTybZj6d0z7jJxwAejVk654a0bxHHCmr2EN2ISTH5mcrnGcEeuB+Vao/Wloeu44ylF3V0cTe/DPwkts7waBA0ifOFVmy+OdvXHIBGfenx/DzQ7eaG90Ca60eUoVMlhKMTIcdQ24HpkV2TVU0/8AdJLak/6hyF4x8h5XA9ADt/4CaXJFrY1+s1usm/X/AC2MFfCeof8AQ4699cwc/wDkKlPhPUO/jHXvzg/+NV1NB6UuVW+8Xtp/0kee6J4ZvpdV8RKvirWozFqKIzIYcyH7LAdzfu+uCB24ArZ/4RPUP+hx1784P/jdW/D/APyGvFX/AGFE/wDSO2rerSrFXXovyQlWnbp9y/yOVbwlqDKV/wCEx17kYyGg/wDjdV7f4X+EI4FSXSFuZB96aeRmeQ9yxz1PWuyorPkj2K+sVOjt6KxyP/CsvBn/AEALb8Wb/GuotLaGztYra3jEcEKLHGi9FUDAH4ACpqKFGK2InUqT+KTfruFc94w8Tw+GNJWYQtdahcv5FjZofmnmPAA9vU9hn6Vo65q9loOj3OqajMIbW2Qu7n9AB3JOAB3JrkvCej32s6wfG3iKFobyZCmm2EnIsLc+vpIw5Y9QDjjoKINPwX4Yl0S1uNQ1SYXev6k4mv7nGRux8saeiKOB+J74HUj0oFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZmv6HY+I9FudJ1GPfa3C7WxwynsynswOCPpWnRQBwng/XNQsNQk8HeJJS+rWabrS8bIF/b9A4/wBsdGH6nmu6Heuc8ZeGB4k0yL7PObPVrOTz9PvUHzQSj+anow5BH0pngvxS/iKxnt7+3FnrenyeRqNnn/VydmX1RgMqenXk4zQB0xqnKDDqMEqj5JR5L4HcZZCT2H3h9WFXarX0LT2rJHjzBho89N6nK59sgU1oBYFKelRW0y3FvHMgIWRAwyMHBHf3qU9KO4GD4f8A+Q14q/7Cif8ApHbVvVg+H/8AkNeKv+won/pHbVvVdTdei/JCWwUUUVmMKZKyxxl3YKqjcWJwAB3pXzxjP4V514gup/HviCXwlpk7R6NZsDrl5Ecbz2tlPqf4/QceoIAyxjf4meIY9XnV/wDhE9LmJ0+FxgX9wvBmYd41OQo7nOe616Qveo7S2gs7WK1tolhghQRxxoMBFAwABU1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACGuJ8ZeH72G9h8W+HEzrliu2W3BwL+36tCf9rjKn1H4jt6a3SgDM8Oa/Y+JtEg1XT3LQzDlWGGjcfeRh2IPFajYxz0rzrXbafwDr03irTo3fQr1wdatI1LeS3QXKL/6H69cdx6Ba3EN3bx3FtKssEqiSORDlXU8gg96NgILL91cXVscfK/mr67XJPP8AwIP+GKunpVK9Pk3NrclsKG8lsnjDkAcdzuCj6E1bX7tOWuvkBh+H/wDkNeKv+won/pHbVvVg+H/+Q14q/wCwon/pHbVvVdX4vu/IS2CkPalrnfGPiZPDemRGGD7Xql5J5Gn2Sn5riU9B7KOrMcAD6isxmZ4z8QXzXkHhPw4w/t2/Qs8/UWNvnDTN79Qo9fpg7/hvw9YeF9Dg0rTkIhiGWduWlc/edj3JPNZvgzws/h6zuLvUJxea7qLibULw/wAb44RfRFHAH16ZxXTigBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCOaJJozHIodGBVlYZDA9QR6V53pjv8N9fj0S5kJ8L6lKRpk0jf8AHlM3Jt2P908lT2PHvXpFZ2uaNZeIdGudJ1GES2lymyRT19QQexBwQfUUAWbiEXNrJCWZPMUruXhlJHUe4pbSYz2qSOFEmMOqnIVgcMPwOa4rwjrN/pWrt4M8RTebf28Zk0+9Y4+3246H/rouMMPx56nroCIL+eAt8smJky3thwB7EAn3enumDM/w/wD8hrxV/wBhRP8A0jtq3qwPD/8AyGvFPtqiZ/8AAO2rbnkjhhaaZ1jijBd3Y4CgdST2FXV+L5L8hIpa7rVj4e0a51XUphFa267mbqSewA7knAArlfCOi3+papJ4z8RQmPUrlCljZtz9gtj0X2kbqx68445Ao6Sr/EbXo9evEI8MabMTpdu64+2TA4M7D+6DkIPx9j6Ooxn61mME706iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDnPGXhaLxPpSIkxtdTtH8+wvU+9BKOhz/dOMEdx7gVm+GvFD61bSJqVv8AY9e0iURalbHA+VhguCf+WRGHH+56YJ7Q9q4nxv4au5povE2goDrllGUeHkLfW5+/A/1HKnswH1DWj+QGv4fOdZ8U4I/5Cif+kdtXMa3LP8QNfm8L2EjJoFjIBrN0jkGZhyLZGH/j/THTPGDzOk+NbzxP/aWieGTcR6tqt4rTXMqFW0+Bba3jklYf39yuqgHqDz0z6z4d0Gw8M6HbaVpsPl28C4yeWdu7Me5J5P8ATpV1fi+78hLYvW1vDa28dvbxpFBEgSOONQFRQMAADgDFTUUVmMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmtwQfSnUHpQBy3hqxtbbxB4smgtoo5ZNTQO6IAzf6LA3JHX5nc/Vie9eaeIPGHivxz4/uvCHg29/s6zst63N4OG+U7WYt1ADfKNvXrn09V0H/kNeKj/1FE/9I7avHfg1LHpXxS8WaTetsvZGfZu4L7JTuA9Tgg49q0qbr0X5IS2F1/TfiX8NLRdfi8Vza1YxSL9piuSz7ckDlXLcE8ZUg5Ney+EfEMHivwxY63bLsjuk3GMnJRwSGXPsQR+veuF+Ivj3wxfeA/E+m2+qW8t9ADavanh/M3hflBA3AHnIzjFXvgZaTWvwtsGmBAmllljB67S5A/AkE/jWYz0eiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoPSig9KAOf0H/kNeKf+won/AKR21cx43+Een+LNWTWrLUJ9I1lcZuoFyHI4BIyDuAwMgiup8P8A/Ia8Vf8AYUT/ANI7at6tKm69F+SEtjwW+/Z81TU/tN5qPjBrzUGXEck0DHJHTc5cnGPb869R+H9l4h03wpBZeJPsYu7cmGJbVQFEK8JnHGfoBxjjOa6misxhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1/u06igCta2lvbT3c0MWyS6lE05yTvcIqA/wDfKKOPT1zVmiii99QCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//2Q=='] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 75 "如图所示, $A D 、 A H$ 分别是 $\triangle A B C$ (其中 $A B>A C )$ 的角平分线、高线, 点 $M$ 是 $A D$ 的中点, $\triangle M D H$ 的外接圆交 $C M$ 于点 $E$. 求证: $\angle A E B=90^{\circ}$. " ['连结 $H E$.\n\n由 $M$ 是 Rt $\\triangle A H D$ 斜边 $A D$ 的中点可知 $M A=M H=M D, \\angle M D H=\\angle M H D$.\n\n由 $M, D, H, E$ 四点共圆可得 $\\angle H E C=\\angle M D H=\\angle M H D$\n\n从而 $\\angle M H C=180^{\\circ}-\\angle M H D=180^{\\circ}-\\angle H E C=\\angle M E H$.\n\n又由 $\\angle C M H=\\angle H M E$ 可知 $\\triangle C M H \\sim \\triangle H M E$. 故 $\\frac{M H}{M C}=\\frac{M E}{M H}$, 从而 $\\frac{M A}{M C}=\\frac{M E}{M A}$\n\n又因为 $\\angle C M A=\\angle A M E$, 所以 $\\triangle C M A \\sim \\triangle A M E$. 故 $\\angle M C A=\\angle M A E$.\n\n由 $A D$ 是角平分线, 可得 $\\angle B A E=\\angle B A M+\\angle M A E=\\angle M A C+\\angle M C A=\\angle D M E$\n\n则有 $\\angle B H E+\\angle B A E=\\angle D H E+\\angle D M E=180^{\\circ}$, 从而 $A, B, H, E$ 四点共圆.\n\n所以 $\\angle A E B=\\angle A H B=90^{\\circ}$. 命题得证.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAVECKgMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKbIypGXZgqqMkk4AFcJ4M+J1h4x8Taho1rYz2/2WLz4pZW/18eQAwXHAIZSPZhQB3tFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFI3THrS1Dd3MFlZzXVzIscEKNJI7dFUDJJ/AUAcf45uZtTlsfBtjIyXGr5N1InWGzU/vW/4Fwg/3jXHahBD4X/aJ0A2yLDZalpotdq9BtVlVR7DZHWz4d8MP4we48Y6nfatYXGpH/RI7O7a3MdmP9UrFeSTguf96uR+LGhJ4Ov/AAr4ki1DU7v7NqK7zfXbz7cEOAu48D5GoA97FLTUIYBlIKkZBFOoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqhrWkWWvaRcaZqUJms7gBZYxIybgCDjKkHGQO/PSr9V768tdPspbu9uIra3iG55pXCqg9STwKAK+l6XbaRYx2Vp54touEWaeSUgem5yTj0GcegrM8Q+CNA8VlDrVrPdqmCsZvJkjBwRnYrhc8nnGa8t0r4uazrnxgtdLsnhPh+6mMcCSReWXQAnzAxAbJIJA6c46817oOpoAp6Xp1tpNjHZWgmEEY+QSzvMQPTc5Jx7Zq7RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFICD0IoAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQ02VlSMu7BUUZYnoBXnd74z1TxVeS6R4BSOVI3KXWuzrm2tz3Ef/PV/TGV6dQcgA3/FfjbTfC6Jbus15qtxxa6daLvnmPsOw9Sf16Vz9p4L1bxbdxat48dHiRxJbaDA+beH0Mp/5av/AOO9eoOBv+FPBGm+GDLdAyX2r3HN1qV2d00p+vZenyj0Gc4rR8Vat/YPhPVtVBAe0tJJUz0LhTtH4nA/GgD5X8RTXWs/FuS6s2+zSXN4V0t4sAExsYYCPQbolHsPpX1D4N8Sw+LPDFnqsYCSSJtuIh/yymXh1Ppg9M9Rg18/avoUmif2Z9nhIvNL8I22pBT1WUXyySZ+m969VsJo/CXxJ8uNiNC8WL9otz/DFegDcPbeuDnqWwO1AHpdFNX29KdQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB4P8I/FmvwfEDU/Bmq6hNqVtbGdI5pmLOjRPtyCedpGeD04rqfiN8TZvDuoW/hzw9arfeI7sqoTqsW77uR3J7A4GDms/4O6F4esbDUPEttraaxqk4P2uZUKGEE7yu1vmBJGSx64GMYNcp8EIH8VfEfXfFl+N88AMi552STMRwfZVYD2NAHfaT8Ln1KAXfjvV77W7+X5ntvtDpbQnuFVcZ/Qe1X7v4PeB7iMrFo32STostrPIjL79SD+INd4DzS0AcF8LNG1HQ9M1q0v59QlSPVZ4rQ3zOWNumFRhu7N8xyOD2rvaKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKa+QvGc0AK3Tv17VieJPFWkeFNPF3q1yIwx2xQoN0kzf3UUck1z+tePJZdUfw94OtF1jWkOJpGb/AEazHrM46nIPyg5OCOuKn8M+AYtM1Aa7r12+t+I3HzXs4G2H/ZiTogGTz164xkigDIXRPEXxEkFx4nWXSPDmd0WixMRNcjqDcMOQOnyD9CM16FYWNrptpFZ2VvFb2sS7Y4olCqo9gKsiloAQ1wHxWzqGjaT4bQFjreqQWsgU4IhB3u34bRXfnpXA3qnWPjbpkBBMOhaXJdFgekszeWFP/AFJoAy/EGmrq/xe1PTM7RdeC5YAQOm64K8fnS6Zpf8AwsD4F6RHDIVv4LVGs584aO5gygOe2SpGfRia0h/ycHnr/wAUr/7d074aE2aeJtDkwP7O1q4ESDtDIRIn57moA2/A/iQeKfC1rqLr5d2Mw3cOMGKdOHXHbnkA84Iro683wPBXxUDA7NG8Unn+7DfL+g8wZ+rfSvR1oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPmj4L2v234jeJINOJXSpbS4jyv3ApkAj/HHT2BrV/Z/m/sPxR4l8OX48m/YR4jY45iZwwH/fYr2Lwp4O0bwZprWWj25jVyGlmkO6SYjoWPtzgDAGeBWP4t+GemeJdTi1m3ubnStbhOY7+zOGyOm4d8fUfXtQB2w61j+LPEMHhXwxfa1cR+atqm5Yt2DIxOFXPuSB0Nc9FoXxFgQQjxjpk4Ax582lYc++A+Kpy/DC91u+t7rxX4u1HVRbyLLHbQxJbQbgcjKDIP16+9AHoUDSPEjSxiOQqCyhshT3GcDP1qWmqMGnUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRSHp1xXH+JvHlto14mj6XbPrHiCYfutPtiPkz/ABSt0jXkZLevpkgA6LWNZ07QdNl1DVLuK1tYhlpJGwD7D1PoBya4DzfEvxM4t/tPh3wpIBmYjbeXyH+72jQ+vUjHUHAvaT4Cu9R1OHxB43uo9U1OM7reyQH7JZ/7in7zf7Te3oDXfKOevagDO0LQtM8OaZHp2k2cdrbRjG1Byx9WPUk+prToooAKKKKAENcB8Ox/aev+MvEjA/6Zqf2SI9mit12Kw+pLflXVeJ9WGheFtV1XjNpayTKD3YKSo/E4H41lfDfSDonw80SzcMJTbCaUMed8hMjZ/FiKAMn/AJuEH/Yqf+3dO0grpnxs8Q2eT/xNtMt9QAPYxsYSP5U3/m4Qf9ir/wC3dP8AFW7Tvif4L1RQFiuftOnTuep3JujH/fSmgDc8beG18V+FrrTQ/lXXEtpN0MU68owPbng47E1F4D8SN4n8MQXdyhi1GBmtr+E8GO4ThwR27HHYH610p6GvOrvd4K+KEV6oC6L4nK203ZYr1Qdh9t4yOOpyT0oA9Hopq06gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQ0ALUF5d29jaSXV3cRW9vEN0ksrhVQDuSeAKwfFXjXSvCkUSXLS3OoXB22un2y7552PQKo6D3P88CuctvCGseNbmPUvHREVmj77bQLeQ+VH6GZh/rG/T8yKAI5fEevePpHsvB4fTtDBKT6/OhDSDoVt0PX/AHjjHOMEA11vhXwjpPhKyeDToWMsp3XF1Md81w/dnbqTnJx0GT61tQQxQRJFDGscaKFREUBVA4AAFS0AFFFFABRRRQAUGikNAHBfFc/bfD+m+HlyTreqW9m+37wjD73b8An613aAKAAMADAA7VwWpf8AE4+NmjWgBMOiabNesR08yU+WFPvtGa7+gDgP+bhP+5U/9uqd8XFW38JWmtlSW0XU7W/AHfbIFI/JzTR/ycIP+xU/9u66Pxpph1jwTrenqm957KVY1/29pK/qBQBtoQwDDoRmsTxj4ci8VeFr7SJGCPKm6CXvFKvKNn2YDPqMjvUXgPUf7W8BaFel97yWMQkb1dV2t/48DXQP92gDlvh/4kl8S+GkkvVMeq2btZ6jEwwUnTAbI7Z6/jjtXV15xqpHgv4mWuscppHiTbZXnpHdqP3Tn/eGV/MmvRU9+tADqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKQ1jeI/E+keFdMa+1e7WGMcRp1eVuyqo5J/ycDmgDYkO1CScAc5zjFeeX/jjUPEl7No3gCGO6ljJS41mUZtLX/dPSRscgDjvyM1XGk+IviO4m14XGh+GCQyaUjbbm7X1nYfcU/3Bz+IBr0HTNOstJsYrHT7WK1tYRtjiiXCgf4+vvQBgeFvAun+HJZL+WWTUtbuP+PnU7r5pJD6KP4F9FHYDJOBXVClooAKKKKACiiigAooooAKQ9KWszxFqi6H4b1LVXAIs7aSYA9yqkgfiQBQBynw/X+0vE3jPxEQ3+k6l9hi3dDHbqEBX2JLflXfVyPwx0ttH+HWiW8hYzSW4uZS3XfKTIc+43YrrqAPPx/ycIP+xU/9u6789Oma4Af8nCD/ALFT/wBu69ANAHAfCTFn4c1LQ1BC6Nq11ZLnqVD7wf8Ax+u/rgfDP/Et+LPjDTWJCXsNrqECe20xyH8WArvqAMbxX4et/FPhi+0a5wBcR4RyM+XIOVYfQgGsr4d+Ip9f8NCPUfl1jTpGstQjJyRMhwWP+8MH05OOlda3SvONcA8GfEiy8RoRHpWuldP1LkhUnH+plP15Uk8AEnvQB6RRTV6/h0p1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUjHAqnq2q2GiabLqGp3cVraRDLyytgD29yemOprz/AO3eJfiUxTTDc+H/AAs2N16w23l8Oc+UP+Wa/wC0eenXJUAGpr3j5l1RvD3hWyGsa8P9YobFvae8zjpj+6DntwSMr4d8ALaamNe8SXja14hYcXEq4ith/dhTooHr16njJFdF4d8O6T4Y0tNP0eyjtbdeSFGWc/3mbqx9z9O1a1ACCloooAKKKKACiiigAopD0ryn402D3enadHpzTRaxdTOqSRysp8uKGSRhgNjkgUAer0VxPwn1d9a+GejXMkjPNHEYJGYktlGKjOfYA/jXCfHLxRfSWVxpWk3TwW+ntE19PGxUvLJny4QR3ChnP0WgD3A9K4H4su134ZsvD8ZbzNc1K3sSU+8qbt7N9MJ+ta3gXQoNG8L6cxWT7dNZwtdSySM5d9oLfePqT0rI1c/2v8Z9AsBny9G0+fUZP7peU+UoPuOTQB3saqihEACqMADsKfSKMUtAHn4/5OEH/Yqf+3degEZrz8f8nCD/ALFT/wBu6780AcBrmNM+Mvhi+A/5CdhdadI/YbMSr+ua78da4L4pEWenaDrm/wAtdK1m2nlfGcRMxRx/48K70etAC1k+JtAtPFHhy90a9H7m6j2Fh1RuqsPcEA/hWtSN0oA4/wCHGu3Wq+HmsdVJGtaRKbG/U8kunAfPcMMHPQ84rsa838Tg+DfiBp/i2MlNL1Mrp2rj+FG/5YzH6fdJ7DjvXo469KAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiormeG1tpLi4mSGCJS8kkjBVRR1JJ4AHXNAEhOBzXJeKPHdnoN1Hpdlby6tr04/caba8ufdz0RfUntz0rCn8U6745nksPBANnpaEpca/cRZU4OCsCH7x9zwOehwT1PhXwdpPhKCRLGN5LqY7rm9nbfPcN1y79e+cdP6gHP6V4Fvdbv4dc8eXMeoXsZ32+mR/8eln9FP339Sc/jgGu/QBflVcAdKfRQAUUUUAFFFFABRRRQAUUUUAIelcRqYXUvi9o1owymm6Vc3bZ6ZldYh+OA9dpcO0cDukTysqkiNCAzEDoMkDJ6ckCuE0NddPxC1bV9Q8M31va3sFvbW8r3Fs3kom4vvCyk4LN2z0oA4n4deIf+EM8MeLdGCNcX2m6u1vZW/eaWQlI0HsWjYn2zVX4k6C2n6L4P8ACckvn6hrGrfab6cdZp2wrN9P3uB7KBXc6T8O/svxX1vxZcqDA5R7GLcD+8KAPIRnqDuAzjhjWL4j0vxTrnxN8P8AiD/hEr/+ytKXJia6tPNZ8scgedjrs79j7UAeuhQF2gDA4ArgvAP/ABNfF3jTxCdxWW/XT4d3TZbrtJX2LNn8K6zWdVXSPDl9q0yMgtbV52RiMjapOOCRnjHU1ifC/TG0r4c6LFIS000H2qVm+8WlJkOfcbsUAdfRRRQB5+P+ThB/2Kn/ALd16BXn4/5OEH/Yqf8At3XoFAHLfEjTRq3w41+02lm+xvKigclo/nX9VFafhjUjrPhbSdSJy11ZxSt/vMgJ/XNaU0aSwvG4yjAgj2riPhE7ReBV0qWXzJ9IvLnT5T6FJCQP++WX8KAO7ooooAzPEOi2viPw/e6PejMF3EYycZKnsw9wcEe4Fc98NtavL7RZ9H1ds63okv2K8yeXA/1cnqQy9z1IJrszXnPi8N4O8bad4ziXGnXYXT9Z7BVJAimP+6eCfTA70Aej0U1Rzn2p1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSHpSSHCEnoOTXn+qeOr7WtQm0LwJbx395H8lzqkn/AB6WZ/3v429AP1wQADf8VeMtI8J20bXsry3c5CW1jbrvnuGPACL19s9O3UiuYt/CuueOZ0v/ABw32XSwd1v4ft5Dtznhp2GC5zg7RwMDpyK3PC3gWy0C4k1O7nl1XXp/+PjU7oZc/wCyg6IvoB2x2Ax1i0AR20EdtAkEMSRQxqFSONQqoB0AA7CpqKKACiiigAooooAKKKKACiiigAoopG7fWgBaQ1yniTx5pXh26TTwJ9R1iUfudNsl8yZvr2Ve+T2yecVirovjvxcPM1vVh4a09zxp+lMGuSv+3OeAw/2Rgg9BQB1+r+JdE0BQ2ratZ2RIyFnmVWb6A8muYb4ueG7hWOkwavrG3IP9n6dK/PpkgCtLRfhx4T0N/Og0W3lud29rm6/fylv72584P0xXUqAAAFwBwBigD5/+LfxQvr3w6ujQeHdW0mDUQVlm1S2MLsqspIjAY/Q57H347bRvi5YXWlW1wnhPxNFaNGB50Fh50C4GCFdW5A6dO1c/8XNPm8X+MYNBgBYaVol1qhCnl3b5UX65RP8AvqtHSdF1PTtE0/xh4FEf+n28dxqGhs22Cdyo3GP/AJ5yA5HpwOOMEA6iw+Kngq/nMA12G2nXAaO9Rrcg+n7wAZrr4Jo541lhkSSJxlXRgwYeoPeuV0bWfDfxD02RZrKCea3Oy60+/gUy2z91dGBxyOvqD3rPn+FthYzNd+FNTv8Aw5dli5+yyF7d27F4XJUj24oAQf8AJwg/7FT/ANu69Arww+I9U8I/GEXXjVY7jboXkG80qB2RYTPkSyr1XBBBx0JGK9n03ULTVbKO9sLqK5tpV3JLE4ZT9CKALbYA5rgvBX/Eu+IHjnRggSI3UOoxf7fnR/Of++l/Ou9NcDe40v436XOWCprGkTWoXs0kLiTP12tQB39FIOtLQAVQ1rSrXXNFvNLvU3211E0Ug9AR1HuOo+lX6a4ytAHEfDTWLubS7rw7qzk6zoEgs7gnrLH/AMspPcMuOepwSetdzXnHjgnwl4p0vx1ECLI407WAASPIdhskOP7r/icgV6JGQQCpypHBznNAD6KKKACiiigAooooAKKKKACiiigAooooA4L4Q6zruu+CBea/N51yLqWOOUhcui4GcrwcNvGfau9qrp9lbabZQ2VnCkNtAgSKJBgIo7CrVABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTW4H40AOrI8QeItJ8M6Y1/q94lvAOFycs57KqjlifQZ71z/AIi8fC21I6B4bszrPiE8Nbxt+6tv9qZ+igenU9OMik0DwGU1Rdf8U3n9ta8R+7ZhiC0HHywoeBj+8eT17nIBkiy8R/Epg+qLc+H/AAsTlLFTtu71fWUj/Vof7vU+/Br0DSdKsdFsIrDTbWK1tIRtSKJcAe/uT1JPJOc5q6OtLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSMMigANedat4o1fxVq1x4f8ABLrEkDeXqGtuu6KA90j/AL7/AMv1B4p1W/8AFWvv4H8O3D24jVX1rUUPNtE3SJD/AM9GH5D8dva6LpFhoGmQaVplstvaW67URR+ZJ7k9cnknNAGf4W8H6P4UhlWwheS7mO65vbhjJPcN3LufU84GB7V0NFFABSN0pazfEOqLofhzUtVYBhZ20k+0nG4qpOPxxigDiPAH/E58eeOfETIpjN6mmQNnOFhXD49m+Q1Z+FBNjoOp+HX3A6Hqc9om7q0RbejfiGP5VP8ACPSm0n4Z6T5oHn3aNeSuOrmQllY++woPwqCwH9jfGzVrbaRFrumRXYJ6ebCxjKj/AICQaALnizwNFrF0utaPdNpPiOAfub6EcSf7Eo/iX9R7jgs8N+OZLnU/+Ec8T2i6V4iUfLHn9xeAfxwseoP93qOeuDjtf5ZrF8TeFdJ8WaW1jqtuXVTviljO2WF+zI3Yj/63I4oA5hwG/aAKsMg+FMYI6j7V0pmpeCr/AMMXs2u+AtkDsTJdaK7Ytrv/AHB/yzf0I46DgZzx9rq114D+McEXjPVxdxHRBaW+orGQfKM+5Gn9DlWUsM/wk9Sa9wjkSWNZY3V0cAqynIYHoRQBi+FPFdh4s057i1EkFzbuYbuzmG2W3kB5V17dDg/4EDA+I4+w6j4P1xEy1nrMcDuD9yKYFHP57ad4v8LX0N+vi/wsoi1+2T9/APuajCOsTj+9gYU9egzwpFHxbqln47+Cuq6lpjsm2D7SUP34JIWDsjDsw2kfQg9CDQB6UPbp2papaPfpqui2Oox42XdvHOv0ZQw/nV2gAooooAp6pp1trGl3Wm3kYktrqNopF9VIxXH/AAy1G4hsLzwnqkgbVPD8gtiT1lt8ZhkHsVwPwGetd23SvOvHaHwv4g0rx5bqfKtyLHVlXPz2sh4c+uxiD759qAPRqKjiZXAZWDKwyGByCPWpKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKRjjH1rk/FHjqw8NzRafDDLqet3AxbaZa8yOfVv7i99x7ZPOKAOi1PUbLSdPmvtRuYra0hG6SWU4UD/PGO/SvPW1TxH8RsxaG0+h+GCdr6o67bq8X0gX+BT/eIzyMcgrVjTvA+o+Ib+HWvHtwl3NGd9to8PNra+mR/y0f1J9+SAK9CjVVUBQAAMADsKAMnw34Z0jwrpo0/R7RIIert1eVu7Ox5Y/X6DArZoooAKKKKACiiigAooooAKKKKACiiigAooooADXLeO/E0nhvw/usoxPqt7Ktpp8HXfM/C59hyfwx3rqD0rzzTVPi34rX+qP8ANpvhpTYWg6q104/fMPdRhSKAOh8FeFovCmgpabzPfTMZ766blp5mOWYnr1OB7e+a6OkBz0paACiiigArzv4y3Ej+CI9Gtx/pOtX9vp8XsWfdn/xzH416GRkV5t4kH9ufGvwtpJQPBpNrNqkwzwSTsj/FWCn8aAPRLW3is7WG1gQJDCixxqOygYA/KuG+IONL8ReDPEQBItNT+xSnssdwhQsfYECu9WuW+JektrXw61u1Td5q25ni29d8ZEi4+pXH40AdUBS1leGtWGu+GtL1UYBu7SOZgP4WZQSPwOR+FatAHnF5aW9/8eJbW7gjnt5fCWySKRQysDddCDwarS6Zrnwyka50OK41fwoW3TaXuLT2IPVoSeXUddvX35LDQH/Jwg/7FT/27rvnGQPrQBmaHrum+JNKj1LSLtLm1k4DIcFT/dYHlTz061wHiOyj8HeK5NRPyeGvEubTVoyBst7hwQs/oA2cNnvySSRjU1zwXfabqk3iXwTNHZaqx3XNi5P2a/Hoy/wv6MPxxkmpLTW9J+JPh7VfDd9BJp+peS0V5p1wP3tu3Z1H8ShsEMPbpmgCb4S3ctz8N9KiuAVubMSWcqHqhidkAP8AwELXat0ryL4Dz3NvaeJtCv2Zr6w1IvOSc5ZxtJB75aJj+PvXrpoA5D4j6vqXh7whea3pt9HbPZpko8AkEpZlVRnIxyayvDC+O/EHhnTtYl8U2No17Cs/kHSA+0Hkc+YO3t3rN+P980Hw+hsYjmS+vo4tg7hdz/zVanvdc8V6J4Qs9Mh8LvpwVbbTobz7dFL5RZkiVtg5J5498UAdF4Tn8RjXtcsNcvob2G0EAt54rQQBi6lmGNzZwNveuk1Kwt9U0250+7j8y2uY2hkT1Vhg/wA6sL+FKelAHB/DW9uLGLUfBupSl77QZfKidus1q3ML/kcEDphfWu9rzr4hW8vh/VtL8e2atjTj9m1NEHMtm5GeO5VjuA989q9AgmS4hjmidXjkUMjqchge4PpQBLRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSN0H1oAWo7iaO3t5JppEjiRSzu7bVUAZJJ7D3rD8UeL9J8J2aTajM7TynZb2kC75p2zjaid+eM8D3rlI/DOvePZ473xgX07RQQ0GgQPgvzw1w4wSf9gcDjoc5AH3Pi7WvGlzLpvgUCKyR/LufEFxGTEnqIFP+sbnrwBj0Iauk8KeDNL8JxStaiS4v5+bq/uW3zzt33N1x7f15rcs7S3sbeO2tYY4YIlCRxRrtVFHQAdqsUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBna9qaaL4f1DVJAWWztpJyo6ttUnH44rB+GGlvpnw/0xpzuvL1DfXMh+9JJKd5Le+CB+FVPi+0j/Du7sYX2TX88Foh46vKuRz7A120UawxpEgwqKFUegHGKAJKKKKACiiigBDwK838Ar/bHxE8ceI3T5Eu00q3YnkCFQJMexOxq7rXNSTRtB1DU5QSlnbyTsB1IVSf6Vyfwf0x9O+G2myTqRdX+++nYnlzIxKsfqmygDu6bIodCrAFTwQe4p1NkIVcsQoHc9BQBwfwmJs/DuoeH2LbtE1O4sl39WTfvRvxD/pXfV5JD4t8PeFPi14ha71e1jsdUsYLppFlDrHNGTGY8Ln5iPmxW2fixo94oOh6Rr+tgnAksNOcoD7s+0D60AA/5OEH/AGKn/t3XoFeI/wBseMNR+Mj3Om+G7fT9RbQPLSDVLrK+T9oz5p8vODu429e9df8A2F8R9T2m+8X6dpQ/ji0vT/MB+jynI/KgDvXzt4/SvP8Ax5YeEr14ry98QWeia5aqTZ36XKRzR+2M5dOoKnsSB1p//CqrC93/ANu6/wCIdYWT78N1qDLF+CoFwK07PwD4L0C386DQNNiWBd5nmiEjIAM53vkjGPWgDxbwT8Q2sfi3cvfNb3K6uYrK4uLLIikmBCJMAQDg9x/tE+1fSWfyr51m0Gz8Saro/jLWbTNlr+tnT4LY5QJamNo4uFHDZXOR6KR1rvYtU1z4YyCz12S51fwpkLBqgXdPZL/dmAGWUcfOP8FABy3xX8TaJq/jrwfYJqtpJY2V4Zr6SOUOsY3pwxHQgK3516PL8TvApQ+Z4j09sEHBbOCDkEDFdVZ3VvfW0V1azxz28q7kkiYMjA9CCOo+lWKAOc8E61P4j0A6zLjyLu4ma0XbtKwByqZ9yF3fjXR0UUAV760t7+yns7qMSW9wjRSoejKwIIP1Brh/hvd3Okzal4H1OQvd6KwNpI3WezY/u2/4D9044HArvz0rz34jW8+i3emeOdPhLz6SfLvo0zmazb74PrtPzD05PagD0OioLS5gvLaK5tpFkgmRZI3U5DKRkEexGD+NT0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRQazNd1/S/DemvqGrXkdrbpxuc8seyqByx9hmgDSbIXjrXAar47u9U1GTQfA1tHqepLgXF85/0Syz/fccM3+yvv1wRVFYfE3xLUvdfafD3hRx8sHAu75f8Abx/q0PoOo45BzXfaNo+n6Bp0Wm6XZx2tpCMLGg4+pPUn1J5NAHP+GPAdrol5Jq+o3UmseIJ+ZtRuQCy/7Ma9I19h9OmK64dfwp1FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFUr7VdP0yLzb++trSPqWuJljH5mgDjvimzCHwhGGwsviexRuM8Zc/zArvQK8c+JnxA8J3lpo0VprFte3Vnq9teiO23SZVGO7DKNucE8Z710o+IerX6kaF4D166I4D3oSzjYeoZicj8KAO/orgfO+KOpOpjtfDuiwN95ZpZLmZfptAQ0n/CCeJdRDDWviFq8iE8LpkMdlt9sruJoA7q4uIbWFpriZIol5Z5GCqPqTXK6l8T/BWljNx4ksHbpttn885+ke6qcHwj8Hi4W5vbGfVLodZ9Qu5Jmb6gttP5V1Om6Bo+jjbpmlWNl/1726pn8gKAPJPiV8RI/EHhOXQdE0fW2k1WaK2gu5bMwwyEuDtUtgkttxjHIJrp7O6+I8un29npnhnRdDhgjWKNdRvmuGCKAB/qhjp6mmeKB/bfxl8I6QELxabBNqs/PH92M/UOo/76r0gUAcEPCnjfUXB1Tx49vCR80GmWCREfSRsn9KQfCPw7cBTrFxrGtupyG1LUJHx+ClR+ld/RQB5T4q8M6J4Q8Q+Ddb0rSbW0gi1P7DcLDEFDLOhQO5HXaR1PrXqgrk/ifpr6r8ONahiLCaKH7TGV+8GiIkGPc7cfjW5oGpprXh7TtUj4W8to58em5Qcf0/CgDkR/ycIP+xU/9u69Arz8f8nCD/sVP/buvQKAEPSqk95ZLdxafNcwC5uFYx27uoaVR97CnkjnmrbdK868GH/hKvGmt+MZDvsoCdM0o8lWjQ5llHYhn6H2I7UAS/Ee1t7fSPCsUESRR2uv2AgSMbVjAYqAB2ABIx/hXeyRpNG8UiK6MCrKwyCPQjuK4X4mb5ZfB9nGfml8R2jMv95EDM38hXejFAHmt34c1nwDdzap4Mia80eQmW78Pkk49Wtj2PfZ35xn5QOw8MeKNK8WaZ9v0qcuoO2WGT5ZYX7q6/wkfl6ZrZfIHFcT4k8DST6mfEXhe6GleIkHzSBf3N4P7kyj72fXqPfAwAdxRXG+FfHMWsXb6Nq9q2k+IoBiWwmb7+P44mPDqev+PWuwWgB1RXMEV1bS288ayQyqUkRhkMpGCD7YqWkPTv8AhQB578ObmbQ9Q1PwFfu7TaUfP0+RzzNZufl+pQnae3IA6V6HXn/xJtZ9MOm+NdPiZ7vQ5M3MadZ7RuJV/AHcCenJ7V21heW+o2cF9aSiW2uI1likXoykZB/WgC1RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTW6d/wqDUL6002xlvL65itraIbpJZWCqo9ya88bW/EXxEcweGTNo3hzJWXWZY8T3I7iBDgqO28/hgjBANfxJ48j0/UToeg2ja14iccWcDDZB/tTP0QDjg89Omc1X0TwFJNqcev+L7xdY1pTmJCpFrZj+7FGf/AEI88A9c56Hwx4W0fwnp32HSLURKfmllY7pJm/vOx5J5/DtgVuUANXg4p1FFABRRRQAUUUUAFFFFABRRRQAUUhOBk1g6l418MaOzrf8AiDTYHQcxtcKX/wC+QS36UAb9Fefn4t6DdDGiWGt66Scf8S7TpGA+pfbSjxR481Fwum+BltImHy3GqX6J+caAtQB39Brz8aP8TNTRft3inSNI5+ZdMsDMcf70p4/L86X/AIVfDfMX1zxP4i1Xd96GS9MUJ+iIBj86AOq1PxHomj/8hLWLCy9p7hEP5E1zMvxd8JGZ4NOnvNWuE/5YadZySsfocBT+dXtN+GngvSVUWvhqwJByGnj85gf959xrqYYYoIxHDGkaAcKigAfgKAOEPjfxVqIB0X4e6kUb/lpqdzHaFfqhyTSfZfijqe4S6n4e0WNvum2gkuZV+u/Cn8K9AooA4H/hXWpX5V9c8d+Ibth95LSRbON/qqD+tWrH4U+CbGUzDQYLmVuWkvGa4LH33kiu0ooA4rx94bsrn4Za5pljYw26i0aWOK3iVBujIkUADjqgroPDOqrrnhnTNVXH+l2scpwehKgkfgcj8K03AZSrAEHsa8/+GDnR31zwXKSH0S8Y2wPU2spMkZz3PLZ/CgD0KiiigApDS1T1fUYtI0a+1KYExWdvJcOB1IRSx/QUAcF4HX+2fid438QsjeXBNHpNuxPTyh+9A/4EFP416TXB/B7TZNP+G+nz3AP2vUGkvp3PV2kYkMfqgSu8oAKKKKAGSossTxuAUYEMD6Vwnwldrbwvd6DIzNLoeo3FgWbqyq5ZT9MMMfSu9PSuA0YjSPjN4g0/J2avp8GpRgj5VaMmJgPc8E0AA/5OEH/Yqf8At3XoFefj/k4T/uVf/bqu/PSgCKSWIMkTumZM7VZuW454qLT9Ps9Ks47KwtorW1iyEhhQKi5JJwB05JP41wunj/hLfixeaoTv03wyhsrbHIa7cfvW+qjCmvQmICkk4A5zQBwWuH+1fjH4Y05WyulWVzqM6Y4O/ESfiCSa79a8++HRbXda8SeMnyYNQuRaWBJyDbw5UMvszZP1FehUAFIelLRQBznivwdpni20jS7V4byBt9rfQNtmtnznKMOeo6dP0rnNN8Xap4V1GHQvHWwCQ7LLXYxtgufRZB/yzk9ex/AE+jVS1bS7LWtNm0/UbaO5tJhiSJxkN3/A5wQe1AFtCGAI6EZFOry7brnwtb5Tda14NHUffutNGeo/vxj9AO2OfQ9K1Ox1mwh1DTbqO5tJlzHLGcgj+hHTB5ByOOaALNxDHcQPDKivE6lXRhkMpHII7gjiuB8ASN4c1rVvAd0522LG70tn5MlnI2QM9yjEqT3z7V6EwyK4H4k6bcWtvY+MdLiLaloEhnZR1ltjxMh/4DyD2wfWgDvhS1U02+ttUsLfULOQS21zEssTj+JWGRx+NW6ACiiigAooooAKKKKACiiigAooooAKKKKACiimTOscLSOwVVG4ljgAD1PpQA5uma5bxT4507ww0dmUkv8AV7gYttNtfmmlb3H8K+5/AHpWDd+M9Y8XXU2leAo0aGN/LudenT/R4j3EQP8ArG9+R0PIINdF4U8E6Z4WWWaNpbzVLjm61G6bfPMc5OW7LnGFHoM5PNAGBY+C9V8UXser+PZo5lRg9tocB/0a39DJ/wA9H+vAyeowB6FGiRoqIoVVGAqjAA7Ae1PooAKKKKACiqt5f2enRGa9u4LaIdXmkCKPxPFcrqHxX8EafII38QW9xIeFSzDTlj6AoCP1oA7SiuA/4WNf325ND8D+Ibxx917mFbSJ/cO56fhQbz4o6mVaDSvD+ixEfMt5cvcyr9PLAUmgDv6ZLJHEm+V1RB1ZmwK4Q+CvFeobhrPxB1Hyn6xaXax2hX6P8x/GnR/CPwo8sc+pQ3usXCdJtSvZJj+I3AH8qANHUfiT4M0kH7X4k08leqwyiZh7FUyazP8AhaVteMq6H4a8RasH+7PFYmOE/V3xj8q6jTfDOh6MR/ZujWFmf70FuqH8SBk1qigDgf7a+JepBhZeFNJ0n+6+p3/nZHriIcUp8MePNSYHUvHEdlGfvwaZp6j8pHJb9K76igDgR8JNCugf7b1HXNdzzjUdRkYD6BCtb2m+CPC2jlWsPD+mwuowJBbqXx/vEZ/WugooAQAAYGMdsUtFFABRRRQAUUUUAFFFFABRRRQAh6V514/STwxr+l+PbZHMNriy1WNBkvaueGx32MQce/pXo1Q3dtDeWktrcxrLBMhjkjYZDqRgg+xFAC28sc8STQyLLFIoZJEOQynkEHuMVLXmnhS9m8Da8PA+rzO1hMS+hXsrf6yPPMDN/eUnj1HoCBXpC/e/CgB9ef8AxlvJofh9Lp1qGN3q91Dp8AXuztkj8VVh+Nd+eRivNvFg/tv4veDtE2OYdPjl1a4UdOPliP4Ov/j1AHoGnWUOm6da2FupWC1hSGMHsqjaP0FWqQDFLQAUUUUAB6V5/wCOj/ZXjHwX4hBKot8+mzAd1uEwpPsrLn8a9Arj/ilpzal8ONZWIlZ7aL7XE6/eVoiJMj3wpH40AZ4/5OD/AO5V/wDbuu+fGOf0NeY6Lqaax8ZrDVEG1LvwbHOB/d3XIOPwzVzUGbxV8WLLTEYnTfDSi9usfde6cfulPuq5b86AO00rSNP0W0e2021S3haV5mVCTl2O4sc88/pwBxXLfEnWLqPTrbwzpBP9s685tYSP+WMX/LWU+yrn6Zz2rpde1yw8N6Jc6rqc3lWtuuWI5JPZQO5JwAK5XwJot/f6hd+NvEMLRarqKCO0tXOfsVoDlEx2Y9T/ACBJoA6/RdKttD0ez0qzXbbWkKxIMdQB1Puep9zV+kFLQAUUUUAFFFFADX+7gjIPb1rzvUvCOp+F9Tl1/wAChFMrb77RHO2C69TGekcn6dOOzejUjdvrQBzvhLxjpviy1ka13wX1ufLu7Gddk1u46hl9M9D/AFyK6CVEkjZHUMjDDKRkEHqCK5HxV4Ii1q6TWNJum0nxFbj9zfwj7+P4JV/jX6/qMg1vDXjmWXVT4c8V2q6T4hUfIuf3F4v9+Fuhz/d6/kQACn4DZvCniPVfAlwzfZ4s3+kF2zm2dsNHn/Yfjnk5J6V6KK4X4laXdjTrPxTpK7tV0CRrpE/56w4/ex/iv48cc11ukapa61pVrqdk/mWt1Es0bd9rDIz7+o7EYoAvUUUUAFFFFABRRRQAUjHAyegpaRgCMHkHrQBnnXNIB/5Cllx/08J/jVq2vLa7Ba2uYplHUxuGA/KvFPD+h6T4j+Pfih59Lsp9N0+3WJYGt0aPzPkXJUgjPElR/E/RrHwz4r8KT+D7SHT9cubkp5NkvliRAVA3IvGOoPqM9cUAe7Uh7U3nHvXifjH4+/2Nquq6PpeiGS4tZWt1ubmXC71JDExgZIyOPmGfagD1HxN4t0jwlp/2vVLnaXO2GCMbpZ2/uoo5P9K5BfD/AIg+IbLdeLBNpPh/IeLQoXIlmA5BuGHI/wB0foRk+S6J8UNP07Vjqs+nvquvyj5tX1ebasQ/uxxRo2xevQ55PrgdR/wte81JGFz8QdC0bPC/2fot1cNj0PmoBn6UAe7WVnb6faR2lpbx29vEoWOKJQqoPQAVW1LXdI0dd2p6pZWQ/wCnidI/5mvFP7f+H962/XPif4j1HcMPCBPBA3/bNIxj86vadrfwG0vJt47GQk5JubC5uD9cyIxFAHaz/Fvwelw1taX82pXQ6QafbSTMfoQu39ai/wCE88R6iqHQ/h9q8gPBfU5UsgPfBLE1Db/GP4a2kKxW2tRwxLwqR2E6qPoBHUv/AAu34e/9DD/5JXH/AMboAXZ8UdSbDT+HdFgbp5aSXUyfXOENH/CvdY1BR/bvj7Xrk5yVsdlkh9iEB4/Gk/4Xb8Pf+hh/8krj/wCN0f8AC7fh7/0MP/klcf8AxugC1afCfwXbXBuJNGW8uG+9JfTPcFvqHYj9K6rT9K0/SovK06wtbOM/wW8Kxr+SgVxf/C7fh7/0MP8A5JXH/wAbo/4Xb8Pf+hh/8krj/wCN0AegUV5//wALt+Hv/Qw/+SVx/wDG6P8Ahdvw9/6GH/ySuP8A43QB6BRXn/8Awu34e/8AQw/+SVx/8bo/4Xb8Pf8AoYf/ACSuP/jdAHoFFef/APC7fh7/ANDD/wCSVx/8bo/4Xb8Pf+hh/wDJK4/+N0AegUV5/wD8Lt+Hv/Qw/wDklcf/ABuj/hdvw9/6GH/ySuP/AI3QB6BRXn//AAu34e/9DD/5JXH/AMbo/wCF2/D3/oYf/JK4/wDjdAHoFFef/wDC7fh7/wBDD/5JXH/xuj/hdvw9/wChh/8AJK4/+N0AegUV5/8A8Lt+Hv8A0MP/AJJXH/xuj/hdvw9/6GH/AMkrj/43QB6BRXn/APwu34e/9DD/AOSVx/8AG6P+F2/D3/oYf/JK4/8AjdAHoFFef/8AC7fh7/0MP/klcf8Axuj/AIXb8Pf+hh/8krj/AON0AegUV5//AMLt+Hv/AEMP/klcf/G6P+F2/D3/AKGH/wAkrj/43QB6BRXn/wDwu34e/wDQw/8Aklcf/G6P+F2/D3/oYf8AySuP/jdAHTeJ/DOn+K9GfTtQVwu4SRTRttkgkGdroezDJ/OuW8P+LNQ0PVYvCnjN1S+ORYaqRth1BBjGT/DKO6nv9Rl//C7Ph5/0MH/klcf/ABuszXviZ8KfE2lS6bq2rJc20nJVrO4BU9mU+XkEeooA9QGcV514M/4nPxW8aa8QxhtGi0m2Y9BsGZVH/AwD+NcHafGC38FyGxs9ZPizR9p+zGZZILu3wOFd2jAcds9RnpgAVd+FnxN8H+H/AAi0Wtau8Gq3N3Nc3ga2lffIzfeyqkcqF/EfmAe70V5//wALt+Hv/Qw/+SVx/wDG6P8Ahdvw9/6GH/ySuP8A43QB6BRXn/8Awu34e/8AQw/+SVx/8bo/4Xb8Pf8AoYf/ACSuP/jdAHoFMljSaF4pAGRwVYHuDXBf8Lt+Hv8A0MP/AJJXH/xukPxs+HuOPEH/AJJ3H/xugDhPhNLJH8UJdGnZnn0TRLjTXdh97Ze5U/Ta6j8K9VuG8O+AdN1PV7iVbOG7uGuriSSQu8srAcLkkngcKOB2r5s8UeMLBPi5d+I9BuJ5LGSWKRvLZrfz9oQlScbgpdMnvXf6P4v8EXeqQ+IfGniuPVNWjJNvbR2NwLSy6cRoY+W/2m9vTNAHYaPo2qeO9bt/Evie2a10i2O/SdHk657TzD+9jkDtn8/SQecV5+vxr+Hw6+IP/JO4/wDjdO/4Xb8Pf+hh/wDJK4/+N0AegUV5/wD8Lt+Hv/Qw/wDklcf/ABuj/hdvw9/6GH/ySuP/AI3QB6BRXn//AAu34e/9DD/5JXH/AMbo/wCF2/D3/oYf/JK4/wDjdAHoFFef/wDC7fh7/wBDD/5JXH/xuj/hdvw9/wChh/8AJK4/+N0AegUV5/8A8Lt+Hv8A0MP/AJJXH/xuj/hdvw9/6GH/AMkrj/43QB37dKxfEvhfSfFmmNY6rB5iZ3RyLxJC3ZkbsRXNf8Lt+Hv/AEMP/klcf/G6P+F2/D3/AKGH/wAkrj/43QBTtfEWs+AbiPS/GMjX+iyER2mvBM7ewS4HY9t/fqc8kO8DTr4W8U3/AIMMgfTZ1Op6HKGyrQucvGD0O1jkdcgk9xUl18YvhrfWsltda1FPbyqUkilsJ2V1PBBBjwa8b8Q+ItC8P6jpd94K8Rte2lhdm4t9PuIpg9ruz5iI7qP3TjgrnOcdeaAPqkdSaWuW8A+M4PHXhtdWgtZLYiVoZYnO7a4AJw2BuGGHOB+ldNNIkUTSSOqIo3MzHAUDqSfSgB9FcVB8QY9YuZYfC2jX2tpC217tCsNsD3Akcjcf90Gmah441bRTC+s+D72G0llSEXFvdRTKrOwVQwBBGSQM+9AHcUU1TmnUAFNcgKSeg5NOrI8Sw6vc6Hc2ujJaNdTo0Qa6maNYwykbvlRiSDjjA+vHIB458JfDsHi9vE3iO5vNSgN3qThTZ3klvuz85zsIz/rB9Km8RWjfCfxtomp2Mz6ha6rMYLgXyrLcJgqDsmI3jIbpnHFdD4I8MeOfBHhxdGt7Xw7cqJWkaZ72dSxbHUeV6YFXG8B6z4l8U6drnjC/smTTW32mnaejeUGyDuZ25PKr27UAei461mx+H9Hh1h9Wj0y0TUZBh7pYVEjcY5brWmOtLQA1adRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSGgBaK4r4jeLNU8FaC2tWkFlcW8bLG0U7MrszHA2449/wqC01f4g3elW2oxaN4fkS4hSdYPtsqyAMoYKcx4B5x1xnvQB2d/Y2upWUlnfW0VzbSjEkUyBlYe4NcpqPwv8ACl+kTW2mDSbqEHyrvSm+zSxk98rgH/gQNR+GPiLBrOuy+HdW0240bX4gWNnOwcSDGSUcABuOegyOmcGu2XrQBwA0X4i6IR/ZfiTT9bthwsOsWxjkVf8ArpHyx92FPXxl4ws2I1T4e3hVekmn30VwG/4D8pH4131FAHn5+KLKSreA/G25Tg7dJ3D89/NOX4j310pFj4B8Vs/QC6tVtx+ZY4rvqKAOAOrfEzVAws/Dej6IueH1K9Nw2PULEOv1NM/4Vvd60wfxl4nv9Yjyc2UH+iW30KIctj1Jr0E1Wub+zsyouruCDcMr5sgTP50AZWn+D/DWk3UV1p2g6da3MKbUnhtkV1GMcNjOSD1rdX7xqvb6hZ3hZba7gnZeWEUgbH5GoX1nS4pGjk1KzR1JVg06ggjqCCaANCio4Zop41khkSSNhlWRgQfyqSgAooooAKKKKACiiigAooooAKKKKACq99ZWuo2clpe20VzbSYDwzIGRucjIPHUCrFFAFLTdMstIso7PTrSC2tYwdsUKBFHOeg4yc9a8w+NOqXl1LoHguwmaJ9buQtw68ER7gMfQk5P+7XrZ5rx74sxNo/j3wZ4smVjptrcCC5cDIi+YEMfwLf8AfNAHqej6VZ6JpdtpunwiG1toxHGg7Adz6k9Seuc+tTX9jbahbrDdRCSNZY5gCSMMjB1PHoyg/hUkciTRq8TK8bgMrKchge+e9ZEviGIeL7fw9AElna1kurgh/wDUorIq5Hqxc/lQBtjrS0gpaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACg0Uh6UAeQfH2Rr3S/Dnh+I4k1LU1Ax3wNv85BXrkcaQxLGi7VQBVHt0FeN+Orq31L49eENOmniWDT4zdSM7gKj/M3JP8A1zSvS9T8XeHdItXuL/WrGCNRnmZSx+ig5P4CgDzD4rKIPi74AubXi7kuUibHdPNQAH2+Z69qUfMT615L4e0rUPHfxHXxzqNnNZ6PYR+VpMU67Xm6/vCvYZLN+IGTjNetjqeKAFooooAKKKKAENea/HOW2t/hlevLBE9xLJFDA7oCUJcMcHt8qtXpRrx747Z1NvCXhtSwOpamM7e2Nqf+1aAO88DaHbaF4N0i3itYYp/sUXnuiBWd9gLEkDJ5JrzjxLp1jrP7RWhad9itmgt7Q3N0PLHzviRgWHf+DrXer4BQAY8UeKAB0A1I4H6VwHw10/zvjX4tuhdXV4mmxfY1mu5TLIW3KvLd/wDVtQB7XBFFBEsUMaRxoMKiKAAPYCpKQUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVe9s7bULSS0vLeO4tpRtkilUMrD0INWKKAOQT4ceH7dDFaHVLS2JJNta6pcRxfgofAHsMVqaF4S0Hw28r6RpkNtLL/rJcl5G74LsSx/OtuigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRhkfjS0UAc7/AMIL4QPXwtoh/wC4fF/8TVi08I+G9PmWaz8PaVbSqcq8NnGrD6ECtqigBBS0UUAFFFFABRRRQAjdK8t8Q+EPGGu+PdF8SNb6EsGknMVo1/MfMOSd27yMA529v4etep0UAZ15Lqq6ej2NpZyXpxuinuXjjBxz84jYnHQfKM+1cJ8OvBniTwlqusT6mulXC6tc/aJ57e6k3ofmIAQxANy553DrXplFADVBB5p1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/2Q=='] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 76 "如图, 在凸五边形 $A B C D E$ 中, 已知 $\angle A B C=\angle C D E=\angle D E A=90^{\circ}, F$ 是边 $C D$ 的中点,线段 $A D, E F$ 相交于点 $G$, 线段 $A C, B G$ 相交于点 $M$. 若 $A C=A D, A B=D E$,求证: $B M=M G$. " ['连接 $A F$, $B F$ 如下图.\n\n\n\n因为 $A C=A D, F$ 是边 $C D$ 的中点,\n\n则 $A F \\perp C D$.\n\n又 $\\angle C D E=\\angle D E A=90^{\\circ}$,\n\n故四边形 $A E D F$ 是矩形.\n\n所以 $\\triangle A C F \\cong \\triangle A D F \\cong \\triangle E F D$.\n\n因此 $\\angle E F D=\\angle A C F$,\n\n从而 $E F / / A C$.\n\n又因为 $A B=D E$,\n\n所以 $\\triangle A C B \\cong \\triangle E F D$, 因此 $\\triangle A C B \\cong \\triangle A C F$,\n\n故 $A B=A F, C B=C F$.\n\n连 $B F, B F$ 交 $A C$ 于 $N$,\n\n$A C$ 垂直平分线段 $B F, B N=N F$.\n\n线段 $A C, B G$ 相交于点 $M$, 因为 $E F / / A C$,\n\n由平行截割定理, $B M=M G$.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAcwCGAMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQsAcE0AGQDjNLWTJr1iviWHQBIXvpLZrpo152Rghct6ZLcfStUdKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEyKy9c1caPZCZImuLqZxDaWykAzyt91c9hwST2UMT0q9dXMNnbTXNzKkUEKGSSR2wqqOSSa4630jUvE99F4lOr3mlgxtHY28UMTGOFsHe3mI2HfAPAGBtBGc5AOU8CWNxF8cvFL3d0bu7gsIknm7GRxG7BR2UEFQOwA717Ev3RXk3wojlfx58QLie7e7lS9jt/tEiqrPsMgJIUAdh0A6V60OlNgFFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACik3AdxRkCgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMrX/D2neJdOOn6rDJNaFg7RJO8W4jpkowJHPQ8ZweoFTxaVbQ6Ummxm4W2RPLUi5k8wKP+mm7f+tXqKAOb0PwJ4f8ADd7Nd6Ta3FvNO26Y/bZ3Ep55YM5DHk8kV0Y4GD1pc1zfjHxppPgrSTf6nNy+VggQ5kmYdlH8yeBkeoFAHR5pa+R9W+LnjHxBrIaLWDpFtJLtjSE7EhVtoy7AZYcZJOe+ABgV6H/wr/4yHkeObXB5H+mzf/GqAPdaK8L/AOFe/Gb/AKHm1/8AA2b/AONUf8K9+M3/AEPNr/4Gzf8AxqgD3SivC/8AhXvxm/6Hm1/8DZv/AI1R/wAK9+M3/Q82v/gbN/8AGqAPdKK8L/4V78Zv+h5tf/A2b/41R/wr34zf9Dza/wDgbN/8aoA90orwv/hXvxm/6Hm1/wDA2b/41R/wr34zf9Dza/8AgbN/8aoA90orwv8A4V78Zv8AoebX/wADZv8A41R/wr34zf8AQ82v/gbN/wDGqAPdKK8L/wCFe/Gb/oebX/wNm/8AjVH/AAr34zf9Dza/+Bs3/wAaoA90orwv/hXvxm/6Hm1/8DZv/jVH/CvfjN/0PNr/AOBs3/xqgD3SivC/+Fe/Gb/oebX/AMDZv/jVH/CvfjN/0PNr/wCBs3/xqgD3SivC/wDhXvxm/wCh5tf/AANm/wDjVH/CvfjN/wBDza/+Bs3/AMaoA90pMjOK8Tj8E/GmFAo8baeQO7Tux/Mw1y/je9+KPgK1tbjVvGNrMblykUVud7naMk4aIDAyufdh+AB9K9aK53wLrl14l8E6XrF7HDHc3UZd1hBCDDEDGST0A710JP8AhQB5Z8S7i/PjPwpo2j6rqFndanct9pFvcsoEC7cnbnAON3Qc4Nbus+DbiTTLoaZ4l8QQ36RM0H+ns2XAJGQ3UE8VydvDfeLvjlrWoaffJap4ftUs4pmg80B2zuGCQM5Mg7123hDTtatL/XLvXb831y9wsEEgh8tfIRQRtXt8zsD6kZpgdBpFtPZ6LY2tzO89xDAiSzOcmRgoBYn3PNXaQDAwKWkAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUm4DvQSB1NeVfEj4tReH5joPhtVv/EEzCL5BvW3Y8AED7z84C9j19CAbfxE+JumeBLMowW61SVMwWat26bn/ALq+nrzjoSPCPFej6zNoM/jTxxcyf2hqDCDTbB/lbHXeV/hRVyQvHzEE9fm9T+HnwmktL5fFHjFvt2uysJlilO8QN6t2Zx27LjjoDXP6sT8UvjnBpYzJoegg+d3VihHmf99PtT3VcigCe1+FG/4ENA0A/tyUf2ovy5feF+WPpn/V5G0/xMa6/wCC/i0eJfAsFvcSK19pmLWYZ+YoB+7b8VGM9ypr0fB6dvbivA4Q3wt+O7Q8xaHr/wBznCLvbj2+STI9lbPegD30dKWkB4paACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAaTg4r5X+IV/N8QvF3iHUraTdpGgWhSNwcq2G2ggjjLOxOe6r7CvcPi14tPhHwLd3EEmy+uv9GtSDgq7A5b/gKgke4HrXAWfhP/hGP2b9YluIit9qUC3U2RgqCy7F+gXBwehY0Aei/CX/AJJZoHp5Df8AobV0+qXN3Z2Mk1np8t/OB8kETxqScdy7KAPxzXMfCT/klegf9cG/9Dau0oA8n+G2n+J/CWl6kNX8JahPqV/fNdSzW91aMrAgdd0wPXd+ddBbTeLdd8WWa3+gvpGg2gadjLdRSSXMoGEVhGx2gE7/AKqK7iigBB0paKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopMigBc84pCwAySAKgvLu3sLSW7u544LeJSzyyNhVA7k14L4g8aa/8W9Xk8L+DI5LfRhhbq9cFN656uf4UPZerfmAAanjr4p3+vai3hL4fLJd3k2Y5b6A8AY5EbdB7vkY7etdT8OfhXYeC4l1C7ZL3XZVzJddViJ6iPP1xuPJ9gcVs+B/AGkeBdKFtYRiW7kUC4vXUCSY/wBF9F5A9zk11QPHPBoA5L4k+KV8HeBr7UEYLduv2e0GeTK2QuPoMt/wE1zfwL8KNongv+1rpP8ATtYYXBZuvk/wA/XJb/gQrl/iBK/xH+L+meDLZnbTdNO69ZOxxukOfZdqAnozEd694ijSKFI41VEQBVVRgADsB2oAeOnNeZ/G/wAKf8JD4GkvoIwb7SibmMgfMY8fvF/L5vqgr0ymSIHVlZQysMEGgDjvhd4s/wCEu8DWd5LIGvbf/Rrsd/MXjP4ja34+1doK8D8HMfhj8ab/AMKzEppOsEGzyeATkxdffdH7nFe+DpQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFISAe1LXL/EHxSvg/wbqGq7gLhU8q1U/wAUrZC/XH3j7KaAPKvEhPxP+ONroKYk0bQyTcAHg7SDLn6tsj/DI716P8WgB8KdfAGALdQP++1rnvgV4Wk0nwi+u3asb/WH87c/3vKGduSfUln9wy+ldF8W/wDklWv/APXBf/Q1oAX4Sf8AJKvD/wD17n/0Nq7SuL+En/JKvD//AF7n/wBDau0oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooyPWgBMjOO9ZXiDxBpvhrSZtT1a6SC1j7tyXP91R3JxwPrWZ418c6P4H0s3moy7pnyLe1QjzJm9h2Hqx4H1ryTQ/C/iH4ya1H4i8WSPZ6BGT9ls0yvmD+6nopxy55OOPYAieXxP8ddbMUQl0rwjbSYJP8AGeOvZ5Pb7q/z9w8N+GtM8K6NHpmlW4it0HJ/ikbu7nux7/kBgVdsNNs9NsYrKxtore1iXakUShVA+lWxnHPWgAGcc9awfGXiOHwl4V1DWptrG3j/AHUbH78hwEX8SRn2z6Vv5FeE/GC+n8Y+O9E+H+myHAlWW7I52sVyD/wCPc/vu9qANT4DeG5odGvfFuoZkv8AV5G8uRuW8oMdx9tz5P8AwFTXsQ4FV7Cxt9M062sLSMR29tEsUSDsqjAH5CrFABRRRQB5F8evDEl/4bt/EdiCt9o8gdnT73lEjJ45+Vtrew3Gu68DeJ4/F3g7T9YUqJZI9twi/wAEq8MPpnkexFbl3aw3trNa3EYkhnjaORD0ZSMEH8DXhnwsuZvAnxJ1nwDfSN9nuJTLZM/8TAZU/wDAowM+6gUAe9UUgGBiloAKKKKACiiigAooooAKKKKACiiigAooooAK8F+Jc0nxC+K2j+B7NybKybzL1kPRiNzn0yqAAf7TEV6/4t8QQeFvDGoazcDKWsW5V/vOflRfxYgfia81+BGgTyWWp+MtS/eX2rzOI5GAyU3Euw/3nz/3wKAPYbeCK2tooIUVIokCIijAVQMACuO+Lf8AySvxB/1wH/oa12o6VxXxbH/FrPEH/XBf/Q1oAPhGQfhV4fwQf3DdP99q7WuA+Cf/ACSLQv8At4/9HyV39ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUmQKAAkCuA+I/xQ03wNbG3jC3msyLmG1DcJ/tSHsPQdT2x1GN8Rvi0NJuz4c8KKL/xBMwhLRrvWBjxtA/if26A9fSj4c/CU6TdDxL4qb7f4hlbzQJH3i3Y87if4n9+g7dM0AY3gv4X6r4p1ZfF3xDaSWZzug0+Xjj+EOv8KjnEf59wfb0jEaKigBVGAB0A9PpTxwKKAAdKKKM0AZmv6zbeHtCvtXvDiC0iMrAEAtgcKM9ycAfWvJPgbo91q1/rPj3Vfmu7+Z4oGPoTmQj0Gdqj02kdKX45azdatqGjeAtJbdc6hMklwo9CcRqfbIZj6BQa9a0DRLbw/oFjpFoP3NpCsStjBb1Y+5OSfc0AaQ6UtAooAKKKKACvFfjvoVxaHSfHGljZe6ZMiSuvXbuBjY/RuPff7V7VVDWNMtta0i80u7Xdb3cLQyY6gMMZHuM5B7UAV/DOvW3iTwzp+s2xHl3cKybQc7G6Mv1DAj8K168N+CeqXXh7xDrfw/1V8T20zS23oSOHAz2YbXH/AAI969xHSgBaKKKACiiigAooooAKKKKACiiigAozRVDWtVttD0e81S8bbBaQtK5HUgDoPc9B70AeNfGbUbjxV4u0T4faU/zySpNdMP4WIOM/7qbnI9CuK9p03T7fStMtdPtI9ltaxLFEvoqjArxn4I6Vda/ret/EDVlDXF1K0VtkcDPLkZ7AbUGOwYV7gvSgBa4r4uf8kq8Qf9cF/wDQ1rta4r4uf8kq8Qf9cF/9DWgCr8E/+SRaH/28f+lEld/XAfBP/kkWh/8Abx/6USV39ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRmkyOlVtQv7TTLCa+vriK3tYF3ySyNhVFAFhnVQxZgAvJJ6CvD/GfxP1PxVqx8I/D1ZJ5pcrPqERwNvRtjfwqM8yce3YnN1vxT4i+MmuSeHPCSPZ+H48C7u5AV8xcnBf0U4O2McnBJ77fXPBngbSfA2k/Y9Mh3yyYM9y/+smYdyew9FHA/M0AY/w6+F+n+BrT7RJtvNZlH766b+AHqkeeg9T1P5Ad+OlC/dGRiloAKKKKACqt/fW+m2Nze3Ugjt7eNpZGP8KqMk/oaskgdTXj3x68SSw6RZeE9PLSX2ryLvjj5bywwAUD1Z8Af7rCgDL+ENjceMfHet/EHUYzgStFZhjnazDGB/ux4X/gRr3YdKwfBvhyLwn4T0/RodrG3iHmSL0eQ8u30JJx7YreoAKKKKACiiigAppBzTqKAPC/jRptx4W8VaJ8QtKTEkUyQ3QBwHZQSu7HZkDIfYKO9e0aVqVtrGlWuo2cm+3uolljP+ywyM+/r71R8V6Bb+KPDGoaNcYC3URVWI+4/VW/BgDXmXwG1+4itdT8F6mSl9pUrvHGxyRHuw4/4C//AKGKAPZ6KB0ooAKKKKACiiigAooooAKKKKADNeK/HfXLi+fSPA2lMXvNTmR5kU/w7tsan2LfMfTYPWvYry6gsbSe7uZBFbwRtLLI3RUUZJ/ACvDvhRbTeOPiPrfj/UIz5UMhis1f+FiMDHb5Y8D/AIHmgD2Pw7odv4b8OWGj2gzDaRCPPQuerN9S2T+Nao4FKOlFABXFfFz/AJJV4g/64L/6GtdrXFfFz/klXiD/AK4L/wChrQBV+Cf/ACSLQ/8At4/9KJK7+uA+Cf8AySLQ/wDt4/8ASiSu/oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApCwHU4oJA6nFcn458faR4F0xrm+fzLt1P2ezQ/PKf/AGVc9WPH1PBANXxJ4k0vwro8up6tcrDbpwB1aRuyqO7HnivEI4vE3x21oSTebpXhK1fKqP48ccf3pDyM/dX8903h3wbr/wAW9Yj8UeNHkt9GHNrZISnmKeyj+FDjlvvHt2I95s7O3sLOG0s7eOC3hUJHFGoVUA7ACgCjoPh3TfDWkQ6ZpVstvbR9h9527sx7k4GT9O3Fao6dMUtFABRRRQAUUUZ5xQBHLJHCjyyuqRoCzO5wFA6knsK8G+H8cnxH+Lup+MrpHOnaadtmr54PKxjHqFy5/wBog966v46eKjongv8Asq1fF9q7GABfvCIf6w/jkL/wI10nw38KDwf4JsNNZALph592R3lbkj/gPC/RaAOtHSloHSigAooooAKKKKACiiigBCMmvBfibbyfD/4paR47s42+yXbhL1F/iYLtYenzIcj/AGlJ7V73XL/EDwsnjDwbqGk4X7QyeZbMR92VeV57Z5B9mNAHR21xDdW0VxBIssMqB0dOQykZBH4VLXkvwI8USar4Um0K7Yi/0iTytj5DGE528f7J3L7ALXrIwRx0oAWiiigAooooAKKKKACjNFRyOqKzsQFUZJJxgetAHk3x38TS2Xh618M6fue/1mQIUj5bygRxgc5Ziqj1AYV3XgjwxH4S8H6bo6BTJDHmdgfvyty59+TgewFeTeCkf4m/GbUPFc436VpBCWeQcZGRFjP/AAKQ+jEV72v3RQALnaM9e9LRRQAVxXxc/wCSVeIP+uC/+hrXa1xXxc/5JV4g/wCuC/8Aoa0AVfgn/wAki0P/ALeP/SiSu/rgPgn/AMki0P8A7eP/AEokrv6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApM9fajIFeQ/EX4sva3p8MeDU+367M/ktNEu9YWPG1P7z/ouOeQQADa+I/xT0/wVG9laKt7rsiDyrdeVjz0aQjn3Cjk+wOa5bwP8LNR13VB4v8AiC73d5MRJDYzD7o6qZF6ADtGOB39K2vhz8JY9AlGv+JGGoeIpW80tI29bdjzkE/efPVvXp0yfUwMACgBAuAAAMU6iigAooooAKKKKACmkj606vPvjF4sHhbwJdeTKFvr/Nrb4OGG4fOw9MLnnsSvrQBwOkH/AIWj8dLjVCfN0PQseT3VthOz67n3P7gYr34dK8/+D3hI+FvAls00QS+1DF1ccYI3D5FPcYXHHYlq9BHSgAooooAKKKKACiiigAooooAKQjNLRQB4D4nX/hV/xws/EEeY9H1vIuQOFBYgSfk2yT8cV76CNoIOQemK4b4seFP+Es8C3tvDHuvrUfabXA5LqCSv/AlyuPUj0qh8F/Fo8S+BILe4lVr7TMWswz8xUD9234qMZ7lTQB6TRSDpS0AFFFFABRRRQAE4rzL44eKj4e8DSWNu5W91Um2j2nkR8eYfy+X/AIFXpZODivArQj4p/HlrrKy6FoAGwg5V9jfLyODukyfdVoA9N+GHhP8A4RDwNZWMke28mH2i7z18xsfL/wABGF/CuypBwBS0AFFFFABXFfFz/klXiD/rgv8A6GtdrXFfFz/klXiD/rgv/oa0AVfgn/ySLQ/+3j/0okrv64D4J/8AJItD/wC3j/0okrv6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQsAcd6AFpkkqRRtJI6oiDczMcBR3JNVdT1Sx0jTp9Q1C6jt7SBN8krnAA/wAT2HfNeD6t4i8S/GvV30Lw4j2HhyJsXFy5IEgznL9z2wg78n1UAveMfiTq3jbWD4Q+H6SyB8i5v0O0Fe5Vv4EGeX4J6Dtu734efDLTPAlhvULdatKuJ7xl/wDHUH8K/qe/YDW8IeC9J8FaQLDSoPmJDTXD8vMw7sfzwBwM+5rowMDFACgYFFFFABRRRQAUUUUAFFFFACGvAdXJ+Kfx0g0wZk0PQQTL3VipG/2+Z9qH1VcivUfiV4qXwh4Iv9RVwLt18i0GeTK+QCPoMt/wE1zXwL8KNongv+1rpP8ATtYYXBZuvk/wA/XJb/gQoA9SHApaB05ooAKKKKACiiigAooooAKKKKACiiigBpBJrwOEN8Lfju0PMWh6/wDc5wi7249vkkyPZWz3r36vM/jf4U/4SHwNJfQRg32lE3MZA+Yx4/eL+XzfVBQB6WDxS1xfwu8Wf8Jd4Gs7yWQNe2/+jXY7+YvGfxG1vx9q7QUAFFFFABRRSEgHtQBw3xa8Wnwj4Fu7iCTZfXX+jWpBwVdgct/wFQSPcD1qp8GPCZ8M+A7eWeMrfakRdTbhgqCPkX6BecHoWNcP4kJ+J/xxtdBTEmjaGSbgA8HaQZc/Vtkf4ZHevfFACgAYA4FACjpRRRQAUUUUAFcV8XP+SVeIP+uC/wDoa12tcV8XP+SVeIP+uC/+hrQBV+Cf/JItD/7eP/SiSu/rgPgn/wAki0P/ALeP/SiSu/oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiik3DOKAAkAZJ6VieKPFOk+EdJk1PVrkRRjiOMfflb+6g7n9B3wM1l+PPiFpHgXTjLeN599IubeyjYB5PQk/wrn+I/gCeK8x8M+BNd+KGrp4s8cySR6afmtbFCY969sDqkfv8Aebr6EgFW0svE/wAdNZW71BptM8JW8hMUa9HwcfLn7z9RvPC88HkH3bRdD07w9pkOnaVaR21rCMKidz6sepPueauW1rDZ20VtawxwwRKEjijQKqKOgAHAFTCgAAwMUUUUAFFFFABRRRQAUUUUAFJkUtYHjLxHD4S8K6hrU21jbx/uo2P35DgIv4kjPtn0oA8j+IEr/Ef4v6Z4MtmdtN007r1k7HG6Q59l2oCejMR3r3iKNIoUjjVURAFVVGAAOwHavIPgN4bmh0a98W6hmS/1eRvLkblvKDHcfbc+T/wFTXsQ4FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTJEDqysoZWGCDT6KAPA/BzH4Y/Gm/wDCsxKaTrBBs8ngE5MXX33R+5xXvg6V5F8evDEl/wCG7fxHYgrfaPIHZ0+95RIyeOflba3sNxruvA3iePxd4O0/WFKiWSPbcIv8Eq8MPpnkexFAHR0UUUAFcv8AEHxSvg/wbqGq7gLhU8q1U/xStkL9cfePsprqK8F+Jc0nxC+K2j+B7NybKybzL1kPRiNzn0yqAAf7TEUAdH8CvC0mk+EX127Vjf6w/nbn+95QztyT6ks/uGX0r1YdKZbwRW1tFBCipFEgREUYCqBgAVJQAUUUUAFFFFABXFfFz/klXiD/AK4L/wChrXa1xXxc/wCSVeIP+uC/+hrQBV+Cf/JItD/7eP8A0okrv64D4J/8ki0P/t4/9KJK7+gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoozSZGQM9aADIFebfEn4q2ng/wD4lelqt94glAEcCjcsJOMF8c5OeFHJ46Dri/EH4rzvqP8AwivgdDfaxO3lSXMI3CI4+6nYsOcseFwe/wB3V+G/wmt/C7DW9bcah4hmy7Su29YGPJ2k/ec5OWP4e4BjeA/hTe6hqI8W+PXe91OY+ZHZz/ME9DIOmR2ToP0Hs4HHNA4ApaACiiigAooooAKKKKACiiigAooooAMivCfjBfT+MfHeifD/AE2Q4Eqy3ZHO1iuQf+AR7n993tXsev6zbeHtCvtXvDiC0iMrAEAtgcKM9ycAfWvJPgbo91q1/rPj3Vfmu7+Z4oGPoTmQj0Gdqj02kdKAPZrCxt9M062sLSMR29tEsUSDsqjAH5CrFIOlLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAQXdrDe2s1rcRiSGeNo5EPRlIwQfwNeGfCy5m8CfEnWfAN9I32e4lMtkz/wATAZU/8CjAz7qBXvVeK/HfQri0Ok+ONLGy90yZEldeu3cDGx+jce+/2oA9pAwMUtZHhnXrbxJ4Z0/WbYjy7uFZNoOdjdGX6hgR+Fa2RQBi+LfEEHhbwxqGs3AylrFuVf7zn5UX8WIH4mvNfgRoE8llqfjLUv3l9q8ziORgMlNxLsP958/98CqHxm1G48VeLtE+H2lP88kqTXTD+FiDjP8Aupucj0K4r2nTdPt9K0y10+0j2W1rEsUS+iqMCgC2OlFFFABRRRQAUUUUAFcV8XP+SVeIP+uC/wDoa12tcV8XP+SVeIP+uC/+hrQBV+Cf/JItD/7eP/SiSu/rgPgn/wAki0P/ALeP/SiSu/oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApMjOKCwHU1Q1jWNP0LTJ9T1K5jtrWBcvI7Yx6ADuT2HegC3PPFbxPNNIkccal3d2CqqjqST2ArwjxZ8Qda+I2rN4R8BRyG2fIur/ldyd/m/gj9+pPA9DU1DV/E3xw1h9J0ZZNN8LW8oM875+cA5Bf+83GVQcA4J6Aj2jwn4Q0nwbpCadpFuETgyzNzJK/95j3+nQdqAMn4f8Aw30rwHYH7OBc6jKuJ711wzf7Kj+FenH4knjHaDpQoIUA9qWgAooooAKKKKACiiigAorP1fW7DQbNrvUpXhtl5aUQu6oPVioOB7mpNL1Wy1rTYNR064W4tJwTHKoIDAEjv7g0AXKKgvb2206ymvLyZIbeFC8kjnAVR1NUdF8SaV4it/tGlXD3MBGRMIJFRuccMygHn0oA1aM0daq399b6bY3N7dSCO3t42lkY/wAKqMk/oaAPHPjlrN1q2oaN4C0lt1zqEySXCj0JxGp9shmPoFBr1rQNEtvD+gWOkWg/c2kKxK2MFvVj7k5J9zXjnwhsbjxj471v4g6jGcCVorMMc7WYYwP92PC/8CNe7DpQACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKoaxpltrWkXml3a7re7haGTHUBhjI9xnIPar9NI5oA8P+CeqXXh7xDrfw/1V8T20zS23oSOHAz2YbXH/AAI969i1nVbbQ9GvNUu2229rC0rkdSAOg9z0+teN/GjTbjwt4r0T4g6UmJYpUhugDjcR93djnDKGQn0CjvSfGLxb/wAJNpnh7wx4fl82TXDFdMAcfu2IEat6Zbk+mwUASfBHSrrX9b1r4gasoa4u5nits9BnlyM9gNqAjsGFe4DgAGsrw9odt4a8OWGj2gzDaRCMHHLnqzfUnJP1rkLrxVqfizxZdeGvC1wtra2GP7T1fYHKH/nnCp4LcH5j0weOBkA9ELAdelGRmuZ/4Qyx8jnU9dFyR/x8nVp9+eOdu7Z+G3b7U3wPZaxZ6TdjW7+e+uWvpwss3yny0by0+UAAAhN3vuz3oA6mikHSloAKKKKACuK+Ln/JKvEH/XBf/Q1rta4r4uf8kq8Qf9cF/wDQ1oAq/BP/AJJFof8A28f+lEld/XAfBP8A5JFof/bx/wClEld/QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJkDOT0pc1xPxA+JGleBLEGYi51KVc29ijYZu25j/AArnPPfBAB5wAa3i3xdpPg7SzqOrXBRSdscKDMkzYztUd/0HqRXi+naR4m+OOsLq2svJpvheCT9xAnR+eVTgbm45cjAPQcYF3wp8PNa+Iurr4v8AHrP9lkG61sOVDpnKjGcpH7dW655yfdoYI7eFIYY0jijUKiIoUKo6AAdBQBU0jR7DQtMg07S7WK2tIBiONBwPfPUk9yeSTmr4GBilHSigAooooAKKKKACiiigAooooA5P4gRvf6BHoULMs2sTrZZXqEwXk/8AHEcfiKwfgXd/aPhZYxZybaeeH8d5f/2aujcjUfiIo6xaRY5Pp51w2B+ISI/9/K8z+G17eQweIvBmls8V9/bVxuuAMi0txtVn9N3ykKO5bPRTTAl+NWtXWsaI2m6c7/Ymvo7FfLPN3c5JKD1RNuD6uw/uV67oekxaJoVhpcAXy7SBIgQPvFQBn6nr+NeYapp9tqPxk8K+GbGJV03w5aNevGv8LHG36nIjOTydxr2AdKAEyB1rx749eJJYdIsvCenlpL7V5F3xx8t5YYAKB6s+AP8AdYV69LJHCjyyuqRoCzO5wFA6knsK8G+H8cnxH+Lup+MrpHOnaadtmr54PKxjHqFy5/2iD3pAev8Ag3w5F4T8J6fo0O1jbxDzJF6PIeXb6Ek49sVvUg6UtABRRRQAUUUUAFFGaKACiikyKAFooyMZrIv/ABX4d0skX+u6bbMP4ZbpFP5E5oA16K4G++M3gOxcoddWdxztt4JJM/iBj9a5i9/aM8MxblstM1S4cHgskcat+O4n9KAPZc0Zrwv/AIXT4w1WPOg/D65fP3ZCss6/+Oov86VtU+O2tFfI0q00tG6uqxLt+okZm/TvQB7nkGo5Z4oELzSJGg6s5wB+JrxE/Dn4taxKG1bxytqncWtxID/3yiov61JD+ztDcTmbWvFV9eyf3o4gjfm7P70AelXvxB8H6eG+0eJtLBXqqXKuw/BSTXMX3x38CWisYb+5vCP4YLVx/wCh7RUdj8BPA9oB59te3xHe4uiD/wCOba6ay+HHgvTlAt/DWmnb0aaATEfi+TQB5F41+OGheJ/Dd/olv4fv50uYiA07pGY2HIcBd33SM/h7msf9n3TLLUPG9xeXcqvc6fa77WFs5+Y7S49lBxj/AGwe1d78b9dTR/Ddn4V0aBEu9Yk2eTbKAfKBHyhVx99iF9wGFcTrfhmX4M+IfCniK13y25jWLUAGyHlx+8A7YZWO0eqHPSgD3/xTfTaZ4S1m/t8+dbWM8yY7MqEj9RXC/Aezjt/hxHecGa9uZpZnPUkNs5P/AAHP4mvSAbXU9PyGjuLS5i6jlZEYfqCD+teceFdI1/4aNeaSNMuNY8PyTNNZz2joZoM8FHRiufXK55z68MDZ+IvjHUPBOjJqtva2d3C0yQCGR2VyzZ6YyCODXT6M+pz6dFLq0NvDcuoYxQMWCZH3SSBkiuC8Q6TrPj/xB4eRtHudP0LTbsXV19vZFacrjaqorMem4c4+9Xpw6UgCiiigAooooAK4r4uf8kq8Qf8AXBf/AENa7WuK+Ln/ACSrxB/1wX/0NaAKvwT/AOSRaH/28f8ApRJXf1wHwT/5JFof/bx/6USV39ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFJkZxnmgBaQsAQCeTRuGcZ5614v49+K13qOpDwn4ARr3U5yY5Ly35CeojPTI5y/Rex7gA2fiR8WLfwvIdF0RFv8AxBLhFjVd6wE8DcB1fnhRz0zwRnM+H/wouXv/APhK/HDtfaxM3mpbT4YREj7z9i3TC9Fx3OMbPw2+FFp4QVdV1J0v9ekGWuD8yw5zkR57nOCx5PIGATn0lRgY9KAAcCloooAKKKKACiiigAooooAKKKKACopo2kjdVkeNmUgOuMqSMZGcj8wRUtGaAOd0bwqdF1S/v11nU7yS+cSTrdGEqzBQoxtjUgAAAAGptN8L2GjnVZNPDw3Op3D3NxcDaXLt6ZBGB2BBHX1rcozQBxek/Dm20jxXd+JItc1iXUbwbbhpmgZZVyDgjyhgfKPu4wBxXZjgAUuQe9RTTwwIXmkSNB1Z2AH60AeZfHTxUdE8F/2Vavi+1djAAv3hEP8AWH8chf8AgRrpPhx4VHg/wTYaayAXTDz7sjvK3JH/AAHhfoteMyeJtF8XfG59Z1rU7e30HR+LXzm4lMZ+XA6nL5fp0AB7V6Re/HfwJaITDf3N4w/hgtXB/NwtAHpYPbvS5rxK6/aM055Fi0jw1qF5Kx4SeRYj+Sh81Efid8UNWk26N4CaBW6Nc28rf+PHYtAHuORS5rw1bT476y58y6tNJjP8JMAH/jodhSL8HfHurIRrvxBnAb70cUs0y/gCyD9KAPZ73VtN01C99qFraqOrTzKgH5mua1D4q+BtNGZvEtk//XsTP/6AGriLP9nDw+gzf61qdw/UmLZGD+YY/rXTWXwS8B2ZRjozXDr/ABT3MjZ+oDAfpQBk3/7QXgy0YrbpqV6exhgCr/4+yn9KxR8f73U5THoHgm8vSOh8wuR/wFEP869WsfBvhrTGD2Xh/S7dx0eO1QN+eM1tKgUYAAHoKAPDV8ZfGjW0P9n+EoLNScq0sBjcfXznx+lL/wAIr8btaj/03xPbWAbqqzCNh/35T+te5YNLQB4a3wF1nVSh8QeOru7APzIUeX8meT+la9j+zx4Qt3DXNzql2R/DJMqqf++VB/WvW6KAOJsfhJ4G05t0Phy1kP8A08M836OSK6aw0PSdLTZp2l2Vmn923t0jH/joFaFFADdv4UuKWigAooooAKjkdUVnYgKoySTjA9akJxXmXxw8VHw94Gksbdyt7qpNtHtPIj48w/l8v/AqAOQ8FI/xN+M2oeK5xv0rSCEs8g4yMiLGf+BSH0YivU/H3hZPGHgu/wBJ2r9oZPMtmI+7KvK/TPIPsxqt8MPCf/CIeBrKxkj23kw+0XeevmNj5f8AgIwv4V2JBIoA8m+BHiiTVfCk2hXbEX+kSeVsfIYwnO3j/ZO5fYBa9ZHI46eteBeJ1/4Vf8cLPxBHmPR9byLkDhQWIEn5Nsk/HFe+gjaCDkHpigAx/k0tFFABRRRQAUUUUAFcV8XP+SVeIP8Argv/AKGtdrXFfFz/AJJV4g/64L/6GtAFX4J/8ki0P/t4/wDSiSu/rgPgn/ySLQ/+3j/0okrv6ACiiigAooooAKTI9elLXnHxk1G60nwrBPpd5eW2rXN3Fa2ht7hk3MTkgqDg8Ajkd6APRsilBz0ry3xxa6r4H8ENr2neJdSa+sRF5sd3N58VzllVgVbkfeJ4I6fiPQfD+pSax4c0zU5YfJku7WOdo/7hZQxH60AaNFFGaADIqC5uoLS3kuLiaOKCNSzySMFVAOpJPQDBqnrmuad4e0ufUtUuEgtIRlnc9f8AZA6knsB1NeEXV/4n+OWtNZaesumeEreQCR26Pg5G7H337hAdq8Z9aALfiXx3rvxR1aTwp4FR49NIxdXzZQumeSx6pH7febp0yD6d4E+Hek+BdMMNov2i9lUfaL2RcPIfQf3VyBxn6knmtXwv4V0vwjo8em6Tb+VEvLsTl5W/vMe5P5DoABW2OABxn2oAB0paMijNABRSZFLmgAoqne6tpumoXvtQtbVR1aeZUA/M1zWofFXwNpozN4lsn/69iZ//AEANQB2OaK8nv/2gvBloxW3TUr09jDAFX/x9lP6Vij4/3upymPQPBN5ekdD5hcj/AICiH+dAHuVJkV4YvjL40a2h/s/wlBZqTlWlgMbj6+c+P0pf+EV+N2tR/wCm+J7awDdVWYRsP+/Kf1oA9zyMZrIv/Ffh3SyRf67ptsw/hlukU/kTmvJG+Aus6qUPiDx1d3YB+ZCjy/kzyf0rXsf2ePCFu4a5udUuyP4ZJlVT/wB8qD+tAG7ffGbwHYuUOurO45228EkmfxAx+tcxe/tG+GYg62Wl6pcuD8u9UjVvx3E/pXX2Pwk8Dac26Hw5ayH/AKeGeb9HJFdNYaHpOlps07S7KzT+7b26Rj/x0CgDxv8A4XV4x1aPOhfD65fP3ZCss6/+Oov86VtT+O2t7Ps+mWmlIx5cLCuB7iRmb9K9x2/hS4oA8OPw5+LOsSb9W8ci1Q9VtriQf+OoqL+tcd8Rvhjb+CvD39qap4nuNS1OeVYraNotu49WJJZjgDPTHJHrX1EfxrwHVyfin8dINMGZND0EEy91YqRv9vmfah9VXIoA1fAfwP8ADs3hPT73xHYzXGo3MQmeMzvGIw3KrhSDkDGc9816DY/DfwZpyqLfwzphK9GmgEpH4vk11A4FLQBBBaW9rGI7aCKCMfwxoFH6VNilooAB0ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGk4OK8CtCPin8eWusrLoWgAbCDlX2N8vI4O6TJ91WvRfi14tPhHwLd3EEmy+uv9GtSDgq7A5b/gKgke4HrVT4MeEz4Z8B28s8ZW+1Ii6m3DBUEfIv0C84PQsaAPRBwBS0DpRQBwvxY8Kf8JZ4FvbeGPdfWo+02uByXUElf+BLlcepHpVD4L+LR4l8CQW9xKrX2mYtZhn5ioH7tvxUYz3KmvRyCTXgcIb4W/HdoeYtD1/7nOEXe3Ht8kmR7K2e9AHvo6UtIDxS0AFFFFABRRRQAVxXxc/5JV4g/wCuC/8Aoa12tcV8XP8AklXiD/rgv/oa0AVfgn/ySLQ/+3j/ANKJK7+uA+Cf/JItD/7eP/SiSu/oAKKKKACiiigBMgV5N40iuPFXxh8P6DZ3IgGj27anNLsDhHyNmVPBwVT/AL6r1S5kkhgeSO3knYdI4ioZvpuIH5mvLPDFn4r0zxl4l8R6n4PvpbjU3VbYRXlqTFCoICnMo5wE6Z6UAZXi2O70/wAe+H9O8cXja5oWozAWccai3SKYELmSNfvgb15J6MeO1e2RqqRqqABQMAAYA/CvM28IeIPGXjfTNf8AFFtb6bpuktvs9NjlE8jyZB3SMPlHKqcDP3QPevTVBCgHrQAEgdTXOeMfGukeCtKN/qc3LZEMCHMkzeij+ZPAroJdwRin3wDjjPOP1/MV8erb+LPiX46nVmFxqsbMzR3bLEIkQ/c8tzjAPVQD3JzyaAPQNJ8P+JfjVq6a54kkksPDULf6NboSA47hPy+aQ9TwB2HutlY6boGmRWdnFb2VlAuERcIqjv8AifXvzXjafDf4raltXUPGyWUIXaI7S4kXaMdNiKi4xU8P7O8FzcfaNY8VX16553JEFb/vpmf3oA9Ju/iD4P09D9o8TaWCvVY7lXYf8BUk1zN98ePAlorGG/ubwj+GC1cfq+0VHYfATwPaACe2vb3He4uiD/44FrprH4b+DNOUC38M6YSOjTQCUj8XyaAPO7r9ozTnkWLSPDWoXkrHhJ5FiP5KHzUR+J3xQ1aTbo3gJoFbo1zbyt/48di17XBaW9rGI7aCKCMfwxoFH6VNigDw5bT476y58y6tNJjP8JMAH/jodhSL8HfHurIRrvxBnAb70cUs0y/gCyD9K9zHSigDxez/AGcPD6DN/rWp3D9SYtkYP5hj+tdNZfBLwHZlGOjNcOv8U9zI2fqAwH6V6FRQBh2Pg3w1pjB7Lw/pdu46PHaoG/PGa2lQKMAAD0FOooATBpaKKACiiigAooooAKKKTIoA5L4leKl8IeCL/UVcC7dfItBnkyvkAj6DLf8AATXNfAvwo2ieC/7Wuk/07WGFwWbr5P8AAD9clv8AgQrl/iBK/wAR/i/pngy2Z203TTuvWTscbpDn2XagJ6MxHeveIo0ihSONVREAVVUYAA7AdqAHjpzRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSEgHtS1y/xB8Ur4P8G6hqu4C4VPKtVP8AFK2Qv1x94+ymgDyrxIT8T/jja6CmJNG0Mk3AB4O0gy5+rbI/wyO9e+KAFAAwBwK8p+BXhaTSfCL67dqxv9Yfztz/AHvKGduSfUln9wy+lerDpQAtFFFABXmfxv8ACn/CQ+BpL6CMG+0om5jIHzGPH7xfy+b6oK9MpkiB1ZWUMrDBBoA474XeLP8AhLvA1neSyBr23/0a7HfzF4z+I2t+PtXaCvA/BzH4Y/Gm/wDCsxKaTrBBs8ngE5MXX33R+5xXvg6UAFFFFABRRRQAVxXxc/5JV4g/64L/AOhrXa1xXxc/5JV4g/64L/6GtAFX4J/8ki0P/t4/9KJK7+uA+Cf/ACSLQ/8At4/9KJK7+gAooooAKKKKACiiigAooooAawyCPWvHfix8P7sXK+N/Cm+31qyxNcRwjmUD/loo7sB1H8Q9+D7JTWB7DNAHFfDf4gWnjvQRNlItStwFu7cHG09mUf3Tz9Onau2HSvBviF4T1D4d+JE8feEhst9+b60VfkXJ5+Uf8s26Efwkgjtj1vwf4t07xl4dg1bT2wrfLLCTloZB1Rv5+4IPegDfooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsDxl4jh8JeFdQ1qbaxt4/3UbH78hwEX8SRn2z6Vv5FeE/GC+n8Y+O9E+H+myHAlWW7I52sVyD/wAAj3P77vagDU+A3huaHRr3xbqGZL/V5G8uRuW8oMdx9tz5P/AVNexDgVXsLG30zTrawtIxHb20SxRIOyqMAfkKsUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeC/EuaT4hfFbR/A9m5NlZN5l6yHoxG5z6ZVAAP8AaYivX/FviCDwt4Y1DWbgZS1i3Kv95z8qL+LED8TXmvwI0CeSy1PxlqX7y+1eZxHIwGSm4l2H+8+f++BQB7DbwRW1tFBCipFEgREUYCqBgAVJQOlFABRRRQAUUUUAeRfHrwxJf+G7fxHYgrfaPIHZ0+95RIyeOflba3sNxruvA3iePxd4O0/WFKiWSPbcIv8ABKvDD6Z5HsRW5d2sN7azWtxGJIZ42jkQ9GUjBB/A14Z8LLmbwJ8SdZ8A30jfZ7iUy2TP/EwGVP8AwKMDPuoFAHvVFIBgYpaACiiigArivi5/ySrxB/1wX/0Na7WuK+Ln/JKvEH/XBf8A0NaAKvwT/wCSRaH/ANvH/pRJXf1wHwT/AOSRaH/28f8ApRJXf0AFFFFABRRRQAUUUUAFFFFABRRRQBFNBHcwyQTxrJDIpR43AKup4IIPUY7V8/axp2pfA7xomt6Sktx4Xv3CTQZJ2DrsJP8AEOqsevIPfP0NVDV9Istc0u603UbdZ7S5QpJG3GffPUEcEEcgigBdH1ex1zSbbU9OuFntLhA0br+oI7EdCOoIq8CCMjpXzxpOoaj8DvGzaJqjy3HhbUH3w3GM7B03gD+IcBxjkAEDpn6CguIbi3jnhkSSKRA6OhyrKRkEHuOlAEtFAORmigAooooAKKKKACiiigAooooAKKKKACiijNAGZr+s23h7Qr7V7w4gtIjKwBALYHCjPcnAH1ryT4G6Pdatf6z491X5ru/meKBj6E5kI9Bnao9NpHSl+OWs3Wraho3gLSW3XOoTJJcKPQnEan2yGY+gUGvWtA0S28P6BY6RaD9zaQrErYwW9WPuTkn3NAGkOlLQKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKM0VQ1rVbbQ9HvNUvG2wWkLSuR1IA6D3PQe9AHjXxm1G48VeLtE+H2lP8APJKk10w/hYg4z/upucj0K4r2nTdPt9K0y10+0j2W1rEsUS+iqMCvGfgjpV1r+t638QNWUNcXUrRW2RwM8uRnsBtQY7BhXuC9KAFooooAKKKKACiiigArxX476FcWh0nxxpY2XumTIkrr127gY2P0bj33+1e1VQ1jTLbWtIvNLu13W93C0MmOoDDGR7jOQe1AFfwzr1t4k8M6frNsR5d3Csm0HOxujL9QwI/CtevDfgnql14e8Q638P8AVXxPbTNLbehI4cDPZhtcf8CPevcR0oAWiiigArivi5/ySrxB/wBcF/8AQ1rta4r4uf8AJKvEH/XBf/Q1oAq/BP8A5JFof/bx/wClEld/XAfBP/kkWh/9vH/pRJXf0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAYPi7wnp/jLQJ9J1KMFH+aKUD5oXA4dff8AmCRXkXw+8Vaj8OvEr+AfF0m213j7DdE/Iu4nHP8AcY9P7pyDjnHvdcV8SPh/aePdCNudkOo24LWVy38LH+Fsc7TgZ9OCM0AdmpAGM9KcDkZFeM/Cf4gXq3b+B/FfmW+sWZ8u3knPzSAf8s2/2hxg5+Ye4G72UYAGOlAC0UUUAFFFFABRRRQAUUUUAFFFFABVW/vrfTbG5vbqQR29vG0sjH+FVGSf0NWSQOprx749eJJYdIsvCenlpL7V5F3xx8t5YYAKB6s+AP8AdYUAZfwhsbjxj471v4g6jGcCVorMMc7WYYwP92PC/wDAjXuw6Vg+DfDkXhPwnp+jQ7WNvEPMkXo8h5dvoSTj2xW9QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAZrxX4765cXz6R4G0pi95qcyPMin+HdtjU+xb5j6bB617FeXUFjaT3dzIIreCNpZZG6KijJP4AV4d8KLabxx8R9b8f6hGfKhkMVmr/wsRgY7fLHgf8AA80Aex+HdDt/Dfhyw0e0GYbSIR56Fz1ZvqWyfxrVHApR0ooAKKKKACiiigAooooAKaQc06igDwv40abceFvFWifELSkxJFMkN0AcB2UErux2ZAyH2CjvXtGlalbaxpVrqNnJvt7qJZYz/ssMjPv6+9UfFegW/ijwxqGjXGAt1EVViPuP1VvwYA15l8BtfuIrXU/BepkpfaVK7xxsckR7sOP+Av8A+higD2eigdKKACuK+Ln/ACSrxB/1wX/0Na7WuK+Ln/JKvEH/AFwX/wBDWgCr8E/+SRaH/wBvH/pRJXf1wHwT/wCSRaH/ANvH/pRJXf0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIRz04paKAPMPix8N28T2i65ouYfEViA8TRna04XkLnIww6q34ehEvwn+I3/AAl2ntpeqERa/YrtmjYFTMoON+D36BvfsM16Rgkn0+teM/FbwHeafqCePvCRa31SzbzruOIffwOZAO5xncOjL+OQD2cdBS1x3w78e2Xjvw+t3FtivoAqXlsP+Wb+oHXacEj8uoNdiOlABRRRQAUUUUAFFFFABRRRnnFAEcskcKPLK6pGgLM7nAUDqSewrwb4fxyfEf4u6n4yukc6dpp22avng8rGMeoXLn/aIPeur+Onio6J4L/sq1fF9q7GABfvCIf6w/jkL/wI10nw38KDwf4JsNNZALph592R3lbkj/gPC/RaAOtHSloHSigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACjNFRyOqKzsQFUZJJxgetAHk3x38TS2Xh618M6fue/1mQIUj5bygRxgc5Ziqj1AYV3XgjwxH4S8H6bo6BTJDHmdgfvyty59+TgewFeTeCkf4m/GbUPFc436VpBCWeQcZGRFjP/AAKQ+jEV72v3RQALnaM9e9LRRQAUUUUAFFFFABRRRQAUUUUAIRk14L8TbeT4f/FLSPHdnG32S7cJeov8TBdrD0+ZDkf7Sk9q97rl/iB4WTxh4N1DScL9oZPMtmI+7KvK89s8g+zGgDo7a4huraK4gkWWGVA6OnIZSMgj8KlryX4EeKJNV8KTaFdsRf6RJ5Wx8hjCc7eP9k7l9gFr1kYI46UALXFfFz/klXiD/rgv/oa12tcV8XP+SVeIP+uC/wDoa0AVfgn/AMki0P8A7eP/AEokrv64D4J/8ki0P/t4/wDSiSu/oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmlcmnUUAeA+OvDGo/C/xRH468Jps053xe2aj5I9x5BA6Rscf7rYx2x7H4V8T6d4t8P2+rabJuikGHjbG6J+6MB0I/lg1q3NtFeW8tvcRRzQSoUkjkXKsp4II7ggmvn6+tdS+BfjldQskmuPCepPtkiBLbP8AZ5/jXqpP3hkZ64APoeiqelanZ6xpdtqOnzpPaXEYkjkToQf5Htg8g8VcoAKKKKACiiigAppI+tOrz74xeLB4W8CXXkyhb6/za2+DhhuHzsPTC557Er60AcDpB/4Wj8dLjVCfN0PQseT3VthOz67n3P7gYr34dK8/+D3hI+FvAls00QS+1DF1ccYI3D5FPcYXHHYlq9BHSgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAJxXmXxw8VHw94Gksbdyt7qpNtHtPIj48w/l8v/Aq9LJwcV4FaEfFP48tdZWXQtAA2EHKvsb5eRwd0mT7qtAHpvww8J/8ACIeBrKxkj23kw+0XeevmNj5f+AjC/hXZUg4ApaACiiigAooooAKKKKACiiigAooooAKQjNLRQB4D4nX/AIVf8cLPxBHmPR9byLkDhQWIEn5Nsk/HFe+gjaCDkHpiuG+LHhT/AISzwLe28Me6+tR9ptcDkuoJK/8AAlyuPUj0qh8F/Fo8S+BILe4lVr7TMWswz8xUD9234qMZ7lTQB6TXFfFz/klXiD/rgv8A6GtdoOlcX8XP+SVeIP8Argv/AKGtAFX4J/8AJItD/wC3j/0okrv64D4J/wDJItD/AO3j/wBKJK7+gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACs3XNEsfEWkXOl6lAs1rcKVZT1HoQexB5BrSooA+efD+q6j8FPGknhvXpJJvDd8++3ucfKmT/rB+gdfofTd9BxSxyxq8bqyMMqynIIPOQa5/xp4P0/xroE2l342k/NBMBloZB0YfyI7ivK/hv4v1HwR4hf4e+Ln8tUfZYXLN8oz0XceqN/Cexyp/2QD3eimg8DPWnUAFFFFACGvAdXJ+Kfx0g0wZk0PQQTL3VipG/wBvmfah9VXIr1H4leKl8IeCL/UVcC7dfItBnkyvkAj6DLf8BNc18C/CjaJ4L/ta6T/TtYYXBZuvk/wA/XJb/gQoA9SHApaB05ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopCQD2oA4b4teLT4R8C3dxBJsvrr/RrUg4KuwOW/wCAqCR7getVPgx4TPhnwHbyzxlb7UiLqbcMFQR8i/QLzg9Cxrh/EhPxP+ONroKYk0bQyTcAHg7SDLn6tsj/AAyO9e+KAFAAwBwKAFHSiiigAooooAKKKKACiiigAooooAKKKKACiiigBpBJrwOEN8Lfju0PMWh6/wDc5wi7249vkkyPZWz3r36vM/jf4U/4SHwNJfQRg32lE3MZA+Yx4/eL+XzfVBQB6WDxXF/Fz/klXiD/AK4L/wChrS/C7xZ/wl3gazvJZA17b/6Ndjv5i8Z/EbW/H2pPi3/ySrxB/wBcB/6GtAFX4J/8ki0P/t4/9KJK7+uA+Cf/ACSLQ/8At4/9KJK7+gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBMVw/xM+Hlt480Tam2HVbUFrSc8ZPeNv8AZb9Dg88g9zSEZoA8h+E3xCubuVvB3ibfDrdlmOJ5T806r/CT3cDv3HPPJr14HjnrXlXxb+HMmvRL4k0AND4hsQJAYTtadV5GCORIOqn2x6Y0vhZ8R4/G2lPZXxWHXbNcXEIG3zFHHmKOwzwR2P1FAHolJkUDpWD4y8Rw+EvCuoa1NtY28f7qNj9+Q4CL+JIz7Z9KAPI/iBK/xH+L+meDLZnbTdNO69ZOxxukOfZdqAnozEd694ijSKFI41VEQBVVRgADsB2ryD4DeG5odGvfFuoZkv8AV5G8uRuW8oMdx9tz5P8AwFTXsQ4FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXL/EHxSvg/wbqGq7gLhU8q1U/xStkL9cfePsprqK8F+Jc0nxC+K2j+B7NybKybzL1kPRiNzn0yqAAf7TEUAdH8CvC0mk+EX127Vjf6w/nbn+95QztyT6ks/uGX0r1YdKZbwRW1tFBCipFEgREUYCqBgAVJQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFMkQOrKyhlYYINPooA8D8HMfhj8ab/wAKzEppOsEGzyeATkxdffdH7nFej/Fv/klOv/8AXBf/AENa5f49eGJL/wAN2/iOxBW+0eQOzp97yiRk8c/K21vYbjU3iLxNH4v/AGetQ1dSomltFW4Rf4JVdQw+meR7EUAbHwT/AOSRaH/28f8ApRJXf1wHwT/5JFof/bx/6USV39ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFGRRVHV9XsNC02bUdTuo7a0hGZJH6D+pPYAcmgC9Sbh61ytj4h1/WoFu9I8OxxWT/NFJql2bd5V9QiRuQD/tYPtSaP4su9Q8WXPh680SayubW1+0TymYSRkFgE2EfeB+bqARtPFAHVEEnI714n8U/A9/oOrJ8QfCWYby2bzb2GMdQBzIB3GM7h3HPrXto6UhXJORmgDlvAPjiw8c+HkvrYiO7jwl3bZ5ikx29VPUHuPcEDzP4v30/jHx5onw+02Q4Eqy3hXnazDIJ/3Iyze+6qvjLw9qXwk8WL4y8LQbtFnbZd2a52R7jyhA6ITjaf4W49AcD4Z+OvD2k+J9b8UeKb2YarfMREEhZ9qsdzngYHRQPQAjoaAPpfT7K30zTrawtIxHb20SxRIOyqMAfkKs15qnx28BMwB1K4QH+I2knH5A1N/wALw+H3/Qaf/wAA5v8A4igD0SivO/8AhePw+/6DT/8AgHN/8RR/wvD4ff8AQak/8A5v/iKAPRKK87/4Xh8Pv+g1J/4Bzf8AxFH/AAvD4ff9BqT/AMA5v/iKAPRKK87/AOF4fD7/AKDUn/gHN/8AEUf8Lw+H3/Qak/8AAOb/AOIoA9Eorzv/AIXh8Pv+g1J/4Bzf/EUf8Lw+H3/Qak/8A5v/AIigD0SivO/+F4fD7/oNSf8AgHN/8RR/wvD4ff8AQak/8A5v/iKAPRKK87/4Xh8Pv+g1J/4Bzf8AxFH/AAvD4ff9BqT/AMA5v/iKAPRKK87/AOF4fD7/AKDUn/gHN/8AEUf8Lw+H3/Qak/8AAOb/AOIoA9Eorzv/AIXh8Pv+g1J/4Bzf/EUf8Lw+H3/Qak/8A5v/AIigD0SivO/+F4fD7/oNSf8AgHN/8RR/wvD4ff8AQak/8A5v/iKAOp8W+IIPC3hjUNauOUtoiyr/AHnPCr+LED8TXmvwI0C4ey1PxlqY8y+1aZvLkYDJTcS7D/efP/fArjvi/wDErR/GR0rRdHv3/ssSia8uTC64bO0DaQCdoyTx3GORXoGm/Gj4daVplpp1peXUdvaxJFEptXOFUADtzQB6qOlLXnKfHL4fsgJ1iVCf4Ws5cj8lNO/4Xj8Pv+g0/wD4Bzf/ABFAHolFed/8Lx+H3/Qaf/wDm/8AiKP+F4fD7/oNP/4Bzf8AxFAHolFed/8AC8Ph9/0GpP8AwDm/+Io/4Xh8Pv8AoNSf+Ac3/wARQB6JRXnf/C8Ph9/0GpP/AADm/wDiKP8AheHw+/6DUn/gHN/8RQB6JRXnf/C8Ph9/0GpP/AOb/wCIo/4Xh8Pv+g1J/wCAc3/xFAHolFed/wDC8Ph9/wBBqT/wDm/+Io/4Xh8Pv+g1J/4Bzf8AxFAHolFed/8AC8Ph9/0GpP8AwDm/+Io/4Xh8Pv8AoNSf+Ac3/wARQB6JRXnf/C8Ph9/0GpP/AADm/wDiKP8AheHw+/6DUn/gHN/8RQB6JRXnf/C8Ph9/0GpP/AOb/wCIo/4Xh8Pv+g1J/wCAc3/xFAHe3drDe2k1rcRiSGeNo5EPRlIwQfwNfLUlxP4FtvHHgG9dzbzp51kzj7zKysrf8CjAJ90Ar2j/AIXh8Pv+g0//AIBzf/EV5D8aPEvhHxfLp+q6DqJm1CIG3uENvIheI5KnLKBwdw9fm9qAPY/gn/ySLQ/+3j/0fJXf1wnwat57X4UaJDcwyQyr5+5JFKsMzyEZB9jXd0AGaM1xPjPxzc+EtW0qzGirfHVJ/ItfLutjl/lHIKYAy3XJqXUfGOqaDate6z4XuksY+ZZ7KdLjyl/vMvytj1wDigDsaKqaZqdnrGmW+o6fcJcWlwgeOVOjD/H1HY1ayKAFooooAKKKKACiiigAooooAKKKKACiiigArxvVJP8AhPvjnFoM536N4djF1JCfuSzDbyQeDhnAweyt617H3rxe2kTwF8dtVudYcW2meIISba8kOEEmVJUseBghhz6rTQHtA6e9VVsIE1ObUFQi5mhjhZ/9lC5UfnI1JealZWFm11d3UUMAx+8dsA+w9Sew706wuXvLRLh7d4PMyVSThtueCR2JGDg8jODzSAsjpS0UUARyxJKpV0VweCGGQa5//hX3g7/oVtG/8Ao/8K6SigDm/wDhX3g7/oVtG/8AAKP/AAo/4V94O/6FbRv/AACj/wAK6SigDm/+FfeDv+hW0b/wCj/wpP8AhX3g7/oVtH/8Ao/8K6WigDlG+Gngp2LHwvpmT6W4H8qT/hWXgn/oWNN/78iusooA5P8A4Vl4J/6FjTf+/Io/4Vl4J/6FjTf+/IrrKKAOT/4Vl4J/6FjTf+/Io/4Vl4J/6FjTf+/IrrKKAOT/AOFZeCf+hY03/vyKP+FZeCf+hY03/vyK6yigDk/+FZeCf+hY03/vyKP+FZeCf+hY03/vyK6yigDk/wDhWXgn/oWNN/78ij/hWXgn/oWNN/78iusooA5P/hWXgn/oWNN/78ij/hWXgn/oWNN/78iusooA5P8A4Vl4J/6FjTf+/Io/4Vl4J/6FjTf+/IrrKjmnit4nlmkSONBlnc4Cj1JPQUAc3F8OPBkOdnhfSuf71srfzBp4+H3g7v4W0b/wCj/wq8PFXh0nA17TM/8AX3H/AI0+HxJoVxOkEGtadLM5CrGl0hZieAAAeaAM/wD4V94O/wChW0b/AMAo/wDCj/hX3g7/AKFbRv8AwCj/AMK6TrRQBzf/AAr7wd/0K2jf+AUf+FMk+HXg2RdreF9IA/2bRB/IV09FAHJ/8Ky8E/8AQsab/wB+RR/wrLwT/wBCxpv/AH5FdZRQByf/AArLwT/0LGm/9+RR/wAKy8E/9Cxpv/fkV1lFAHJ/8Ky8E/8AQsab/wB+RR/wrLwT/wBCxpv/AH5FdZRQByf/AArLwT/0LGm/9+RR/wAKy8E/9Cxpv/fkV1lFAHJ/8Ky8E/8AQsab/wB+RR/wrLwT/wBCxpv/AH5FdZRQByf/AArLwT/0LGm/9+RR/wAKy8E/9Cxpv/fkV1lFAHJ/8Ky8E/8AQsab/wB+RR/wrLwT/wBCxpv/AH5FdZRQByf/AArLwT/0LGm/9+RQfhl4K7eGdNH/AGxFdZRQAijAxS0VDcXEVrBLPPIqRRIXdicBVA5J/I0AeXX/APxU/wC0HYWv3rTw5Ym4cHp5zgY/Roz/AMBNepSxJPE8UqK8bqVdTyCD1B9uteVfBp11KPxR4vuGVZNV1JsbiMpGvKj/AMfI/AVu+MPF/wBps7jw/wCE2TU9eukMIFs+5LVTwZJHHCYycAnOcUwOb/Z7uJn8K6tbB2ezt9RYW5J6AqCQPbv/AMCr2DJ/u1zPgPwjF4L8J2ujxOssikyTzAYEkh+8R7dAPYCumx7UMBaKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFU9R0yy1a2a21C0gurduTFNGHXPrg55q5RQBz+meCPDOjXS3Wn6FYQTp9yRYAXX6E8j8K6AdKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKguZo7W3luJmCxRIXdiegAyT+QqeuB+MetHRvhtqIiJFxfFbKIDuZM7h/3wHoAwPg3pFpe6LrXinULO3B1jUJZ0EyAhY1Y9M9PmL/lXYjw1oOu32heIrG0tlFpI08U0cQUyoUZV7dMlXB/2RWEPhNpL/D9NHWOSPUPsIQTC6lCCfb97aG243c4xyK9Cs7WGxsoLS3QJDBGscaDoqgYA/IUATDOORiloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKp6hpllqtv9n1Cyt7yAtu8u4jWRcjvhgR6/nVyigDnh4F8Ig8eFtEH00+H/4mti0sLXT4BBZ2sFvCDxHDGEUfgOKs0UAIOnNLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcL428Can4w1XTbga7BaWmnTrcQ2xsTJvkGPvnzVyOMYAHBNd1RQBHbrKkCLO6PKB8zRoVUn2BJwPxNSUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/2Q=='] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 77 "如图, $P_{k}(k=1,2,3, \ldots, 100)$ 是边长为 1 的正方形 $A B C D$ 内部的点. $E, F, G, H$ 分别是 $A B, B C, C D, D A$ 的中点, 记 $d_{1}=\sum_{k=1}^{100} E P_{k}$, $d_{2}=\sum_{k=1}^{100} F P_{k}, d_{3}=\sum_{k=1}^{100} G P_{k}, d_{4}=\sum_{k=1}^{100} H P_{k}$. 证明:$d_{1}, d_{2}, d_{3}, d_{4}$ 中至少有两个小于 81. " ['\n\n如上图建立坐标系, 以点 $F, H$ 为焦点作经过点 $A$ 的椭圆.\n\n由对称性, 正方形 $A B C D$ 为椭圆的内接正方形. $P_{k}(k=1,2,3, \\ldots, 100)$ 在正方形 $A B C D$内部,则也在椭圆内部\n\n椭圆长轴长 $2 a=A H+A F=\\frac{1+\\sqrt{5}}{2}<1.62$,\n\n延长 $H P_{k}$ 交椭圆于点 $Q_{k}$, 连 $F Q_{k}$,\n\n则 $H P_{k}+F P_{k} 求证: $A 、 F 、 B$ 三点共线;" ['$F(1,0)$, 设 $P(4, t), A\\left(x_{1}, y_{1}\\right), B\\left(x_{2}, y_{2}\\right)$ .\n\n则切线 $P A, P B$ 的方程分别为 $\\frac{x_{1} x}{4}+\\frac{y_{1} y}{3}=1, \\frac{x_{2} x}{4}+\\frac{y_{2} y}{3}=1$ .\n\n由切线 $P A, P B$ 过点 $P(4, t)$, 得 $x_{1}+\\frac{y_{1} t}{3}=1, x_{2}+\\frac{y_{2} t}{3}=1$, 即 $x_{1}+\\frac{t}{3} y_{1}=1, x_{2}+\\frac{t}{3} y_{2}=1$ .\n\n由此可得直线 $A B$ 方程为 $x+\\frac{t}{3} y=1$ .\n\n易知直线 $A B$ 过点 $F(1,0)$ .\n\n$\\therefore A 、 F 、 B$ 三点共线.'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAeMCVwMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKM0hOBWL4n8S2fhbQ59Vvj+6iwAo6sxPAFAG3RVWyvYdQs4Lq2cSQzIHRh0KnoatUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANb0r5r+PnjD+0dZh8PWsv7mz+a4wesh7fgMV9JyLvUrnGR1FfOfxn+H2j+G9LXWrR7qS8urk+YZpdwOT6fjigDpvgH4uGo6JL4euJM3FkN8IJ5MecYz7ZxXtNeMfBzwBpMejaV4pie5S/ZCWxL8jZGMEY6d/wAK9lMihSSQAO5oAdRXPXfjrwxY39rYz6zai5umCwxo2/eScAfLkA5I4NdBuFAC0Vlx+ItJl12fREvYzqUCCSS35DBSMgjsePTNaeRQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFGaSkyKAHZopuQelOoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBDXj37RH/ImWX/AF8/4V7EeleO/tEf8iZZf9fP+FAHT/B//kmWk/8AXOu1Zdw2kAg5yCM1xXwf/wCSZaT/ANc67ugDwX4+aHpmk6NpGo6fZQ2d39r8oS26+Wduwt0XA6gHOM8V7TpTltGsmJLMYEJPXJKjmvMP2hLC5u/BVncwxF4rS8Ek7Aj5FKlQevckD8a1/D3jNp/BXhy1aSOXXtUt/LjjTICAEr5jYB2qBjn1/GgBg0O3v/jj/a9nE0badZlL6QocSSumEUHpkKwJx6V6Qv3hjNZXhvQo/D+jxafFPNOVZpJJpmy0kjEszH6sSfatmgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBKo6tejTtKu74oXFtC8xUHBYKMkZq9isjxT/yKOs/9eM//AKAaaSbV+4PY4vwP8W7Txr4g/smHSZrVvKaXe8oYcYzxj3r0yvl74C/8lIH/AF5y/wA1r6hrrx1GNGtyx7ImLuFFFFcZQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAB6V47+0R/yJll/18/4V7EeleO/tEf8iZZf9fP+FAHT/B7/AJJlpH/XOu6zXC/B8/8AFstI/wCudL4r8b6rofifTtG0vw3dan56h5ZkXCICSAA3TPHOSO1ADPivZzax4JudFsgJNQvZokt4s8uRIrMfYKoLH2FT/D34fWngvSI1dvtGpum2a4fkgddif3VBJP1JNW/CumasPtGr+ITGdUuwAIEwVtI+oiB79iexPNdQgwuOPwoAdgDoKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArH8U/8ijrP/XjP/wCgGtisfxT/AMijrP8A14z/APoBpx+JeqA+dvgL/wAlIH/XlL/Na+oa+XvgL/yUgf8AXlL/ADWvqGvQzT+P8kRDYKKKK84sKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAA9K8d/aI/5Eyy/6+f8ACvYj0rx39oj/AJEyy/6+f8KAOm+D4/4tlpP/AFzrufL5PNcP8Hv+SZaR/wBc67ugBmw+ufrTgMClooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKM0ZoAKx/FP/ACKOs/8AXjP/AOgGtjNY3in/AJFLWf8Arxn/APQDVQ1kvVCufO/wF/5KQP8Aryl/mtfUNfL3wG4+JH/blL/Na+oMg96780/j/JChsLRSFgKNw9a84oWikDA9KXNABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAAeleO/tEf8iZZf8AXz/hXsR6V47+0R/yJll/18/4UAdP8Hv+SZaR/wBc67uuE+D3/JMtI/6513dABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRmikAlHajNR+Zjk9KGn0GOPWsbxW2PCOsk8D7FOOf+ubAVmeIviJ4b8MxsL3UY3nH/ACwiO5h9QOn414z4v+MMvitRpVpbtZ2DyAyOX+dxzwT2HSt40KnJzqO2pVGKqVFC++hS+BZC/EZC4C5s5VGTjJyvAr6dByM9a+VtO8+LVbE6Wu2881RD5Y569P519UJ905P/ANas54x4uXtXGx25jlywNX2XNfqfPPx5+zWevaZDpMskOpXHmPdJFKys24qEJHQZw35V1upfD/TtP+E9xNOL6PV7fTjcvcNcMJFlCbyvXGN3FebeJTd+NPjfLDbJJqEdvOqRC02jEUfPU8AAk8k969U8Z6d468bQJo1nZpoOmSo32qaW4R2kx/DhCTt/n39Kk88h+B3i/UfE+gahb6pK9xPYSIPPd8l1cHAx2xt/HNesIMVzngvwbpvgvRE0+wTLHDTzMPmlb1PsOcDtXS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAB6V47+0R/wAiZZf9fP8AhXsR6V47+0R/yJll/wBfP+FAHT/B7/kmWkf9c67uuE+D3/JMtI/6513dABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUmaXNMzQ9AHUE4pu8YzXM+IvHvh3w0jf2jqEQmHSFDuk/75HNVGE5u0FcG7HTb/T0zzVa91Oz06Bpry5igjUZLO2K8F8R/H28nDweH7JLdOgmm+Z/qB0/MVxVvpPjj4iXXnsl5exN/wAtZiVhH0HCj8K76eXySvVfKRzHsniT46aDpavFpUUmo3CnG77kef8Ae5/lXkusfEnxj4vl+zwSyxQyEqLe0Ugfif8A9Vd94a+AEMRjn1+/MhHP2eD5Rj0J6/livRzZeGvAGhz30Nnb2cECfM4A3ufTceTWyqYWg7UlzSFZnhvh74K+I9bdLjVXTT7duS0h3Sfl/ia5bxzpulaBrz6RpMjyrajZNMzZ3ydwB2HbvXWz/HDXv7Y1CaMJ9jnXZBCR/qvRga5/wZ4Yl8VS63qV5ue3srOad3P8cmwkD8+a9BOpG869uXt6ktJs2PgWBJ8RUEmX22krDdzjlele/eLvEdr4a8OahfyXcEM8Vs7QCQ53SYOwbe+WwK8C+BCj/hY4H/TlLz+K19I3uh6ZqUiyX+n2l26jCtPAshUegJGcZrx8yhGFe0VbRGsZOSvJ3PAv2foLO58Q6zq1zMEvlURxLvChhIWL4HU8qvfvX0WF49PpWZbeGdDs7lLi20fT4Z05WSO2RWB+oGa1a4BgBiiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAPSvHf2iP+RMsv+vn/AAr2I9K8d/aI/wCRMsv+vn/CgDp/g9/yTLSP+udd3XCfB7/kmWkf9c67ugAooooAKKKKACiiigAooooAKKKKACiiigAooooAM0ZpKKSYC5ozSZpuR15pgOyKMiuc8QeN/D/hmN21PUYo5B/yyU5f8q8k8R/H6aQNDoNgqD7ouLjk/UDt+tdNHC1auy0Jckj3a8vrSxgaW7uIoIx1aRworzXxJ8bvD2j74tP36jcDj5BhM/XqfwBrxeK38b/EW6Lf6bfqTgtysS59eNo/KvQvDnwA5jm1+/I9YLcY49C3eu1YTD0da0r+RPM3scXrnxS8YeK5WtrRpLeJ8jyLMEtj0J6n9KteHfgz4o8QOlxqOLG3fq0zbnP0Xn9TX0LovhLQvD0KppmmQQlf49u5/wDvpsn9a3F5GemaiePUVahFJDUX1PO/Dnwb8NaEEkngOoXKnO+flQfUL2/M138NvFbxhI40jQdAoxU2aZI6rGzMQFUZJPauCVWdR+8ytERXV3b2NrLcXMixQxqWd24AA618u/ETxxeePPEEen6cshsUk2W8a/8ALVv7xH51sfFv4knXrttA0iYiwjcCaRDzM47cdh+tGm+H0+HXgibxJqqD+27xPJsYnH+rLDrjsQM16uEw6oJVJ7y0SIlK+x5tqWnizv10xD5s6ELLt53P6D8eK+lNB8KJ4S+El/asmLuWwmluTjneUJI/DJFeUfBrws/iLxW+rXaF7ayYOxbkPIeRn88/iK+hfFAB8I616Gxn/wDRZp5hXbqRo+eoQjofPHwFz/wsgf8AXnL/ADWvqGvl74C/8lIH/XlL/Na+oa5sz/j/ACQ4bBRRRXnFhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhrx79oj/kTLL/r5/wr2E149+0N83g2xABObnp+VAHT/B7/AJJlpH/XOu7rgvg+3/FtdIH/AEzrvaACiiigAooooAKKKKACiiigAoozTaAHUUlJk0AOophbaMnpWFrvjLQ/DkPmanqEUR7Rg5Zj6Ad6cYuT91XE3Y3icjIyfpVe6ura0iMlzPHCg5LyuFA/E14f4k/aAyXh8P2A4/5eLnn8lrzzzPHHxDvCA19eqTyFBWJPqBjA+td9PLpyXNUdkLnPcPEvxo8N6GGis5G1G5HAWEfKD7k4/TNeSa38W/FviaQ2tizWsb/dhtFLOfbIGTXVeGvgBLJsn8QX5jHe3txg/i3f8q9d0LwV4f8ADsQXTtNhjcdZGG5yfUk5rX2mFw+kY8zJs2fPGg/CDxX4jlW5vo/sML8mW5b5mHsBz+eK9c8N/Bbw1ohSa6j/ALQuh1eYfL+VelAUu0Vz1cfWqaJ2RSiiCG2ht4hFBGkcajAVVxipsU6kribdyg7UUYopAI2cV5f8aNX17TvDaxaRaym2mO25uUPzRj0+h9a9R7VHNBFPC0UsaOjDBVhkEemK1oy5Kil2EzwL4P8Aw0a5ePxJrVuRCpzawuPv+jEen865n4q+JJPFvjb+z7JzJa2ziCADkO+cZ9+ensa9o+KfiZPCfgyVbVliurhTDbhOCvqw+leVfBHwj/bXiCXXbyMyW9kcpu6NKf8ADJP1Ar16FVyi8VU2W3qRZHtfgPwxF4U8K2tiiDz2USTvjkuf8j8q0fFAx4R1n/rxn/8AQDWuBxWT4p/5FLWf+vGf/wBFmvIc5TqqcurNFsfO3wF/5KQP+vKX+a19Q18vfAX/AJKQP+vKX+a19Q125p/H+SIhsFFFFecWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACEZrxP4+a3BaR6Zpl5py3kEuZP9aYyDn1Ar23vXzz+0d/yFdF/65n+ZoA9Z+HdvDb+ELaG2QxwI7LGhbO1fTNdbXLfD/wD5FSD/AK6P/OupoAKKKKACiiigAoozRmgAopNwpNwxnnFFwFNNzWPrnivRfD1uZdS1CGAYyFJ5NeS+I/j9EgeHw9YeY/ae5HH/AHz1/Wt6eEq1X7qFzJHt01xFbxtJNKkaKMszkAAe5Nef+JfjJ4Z0INHbzHUbkceXbfMAfdumPoa8Ll1Dxx8Qrwx77y73H/VxgrGv+fxrt/DnwAu7jZN4hvhEhHMFufmP/Aj0/Ku1YKhS1rSv5E8zZz+ufGTxT4glNvppNhHIcKLYEyH8RzVfQ/hR4t8Uzfa7yM2sUhy096x3N+HJ/SvoXQPAfh7w3GBp2nQrIB/rXG5z7k10mzj8O1J5hGGlGNg5WzzHw58EvDmkbJdQDajOvP777gP+70/SvSLWyt7KBYLaFIYlGFRFAA/KpwpB9aXFcFWtOq7zbK5UhAPp+VKOlGKMVkhgKWiimAUlLmm7gMe9ACFsdj2FMWdHYqpBYDJGeR6cdawvF3izT/CWiS3962TyscYODI3pXgPg7X/GPij4kLe6fOweRszK4LRJFnoRXTRwsqkHUeiQmz6eD5zx0pHcKjMxCqBkk+lNXptPYc+9ef8Axf8AFo8NeEpYYZAt9ffuY+eQuPmP+fWsaVKVWagt2F9Dxf4keIrjxt45NpZ7pIYJBa20an7xzyfxYkfQCvorwX4bh8K+GbTTIgN6JmVsfefua8V+BfhT+0dal1+7QtDanbCXGQ0n978P519F7f8A9VehmFRJLDw2RMVfUcOlZHin/kUdZ/68Z/8A0A1rjpWR4p/5FHWf+vGf/wBANebHdeqLPnb4C/8AJSB/15S/zWvqGvl74C/8lIH/AF5S/wA1r6hr0M0/j/JEQ2CiiivOLCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA7188/tHf8hXRf+uZ/ma+he9fPX7R3/IV0X/rmf5mgD134f/8AIqQf9dH/AJ11Nct8P/8AkVIf+uj/AM66mgAozRSd6GAuaQ9KQsKydY8SaToEBm1K/it0HZzz+VOMZS+EDVB5x3pJJo4Y2kkdURerMwAFeK+JPj9aQBofD9k87fdFxN8qg+y87vzrzO613xv8QLvyVe6uQxwsUAKIP8/jXfSy+pJc03ZEuXY928TfF7wz4eZ4Y7n7dcKMeVbfMAf97p+teR6/8a/E2tk22mqLCKQ7QIlLSN9G6j8DWt4b+Aeo3RS4168S1iPJhh+Zz/wLjH5GvXtA+H3hvw1GBY6dGZQOZpvnc+5JrXnwmH+FczJs2fPmifDLxh4vmF5cwSwxuctc3rHJ/A/NXrHh34G+H9LCS6mz6hOOdrcID9OhH4V6moAxx04FPrCrmFWatHRFKJTstPttOtlt7O1it4V4CRLtAH0q5jiilrhbk3dlBRRRQAUUUUAFFFFABRmikPTmgAJBBrL1rWLPQdLn1C+mWKCFckt6+g96tXd3BZW0lzcyLHFGu9nY4AFfMXxF8c3vjrX00zTQ505G2wRr1kY9GPr7en4104bDus7v4VuKTsjP8Qa7rPxQ8Xxw20TsrvstbcdEXpk/hX0T4G8FWfgzQktYMPdSfNPNjlz/AIVj/C/4ew+D9L+1XiB9VuVDSsRnywf4R/WvQxgd+1b43ELm9lS+FCiurGmRY0d3KqqjJJPAFfKPjvWp/HvxAMVoS8Pmi3tlHPGeTj6c/hXsvxn8Wf2F4VNhbybby/8AkAB5CdzXFfAfwj9pvJvEd3GTHEDHb7h/Fnk5+nH41rg0qFN4iXyJk7ux7N4U0CHw14cs9LgQARRjeR/Ex5Y/mf5Vu03j27U7FeXJtybZaVkFZHin/kUdZ/68Z/8A0A1r1keKf+RR1n/rxn/9ANEfiXqhnzt8Bf8AkpA/68pf5rX1DXy98Bf+SkD/AK8pf5rX1DXoZp/H+SIhsFFFFecWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFML4PagB3evnr9o7/kK6L/ANcz/M19APMI0Z2Bwqljjnp1r5s+OOuWviC80yezWUJAWibzFwSwOeME9iKAPcPAH/IqQ/8AXR/510+a878I+LtF0jQGtr+8S3aAs7s5GCDzxjk/lXOeJfj7p9qHh0Gzku5QMebKdqD3GM5/HFbU8NUq6RQuZI9keTYCzEKB13HArh/EnxY8M+HQ0bXi3dyOkNt8/wCo4H414Jf+KPG3jy5MCyXM6OT+4tlKx/T/ACa6nw18CNWvmE+v3cdlEfmMcfzyH6ngD6812xwVKir1pfInmbKniL44eINU3waSi6dA2VBUZkI9cnofpWPo/wAOvGXja4+2XEU4Rut1esePoDyfwr6D8OfDjw14bVGtNPV51/5bzfM38gK6sRqoAGAB046U5Y6nTVqELBytnknh34E6JpxSfWJHv5x1XJEefp3/ABr1LT9LstLtlgsLWG2iAxshQKPyHFW9v40o6VwVK9So7yZSikGKMClorIYmKMUtFABRRRQAUUUUAFFFFABRRRQAUxuF4p9NwKGB5v8AF7RPEOt+GfL0WUmKM77i3XhpV9vX6VjfCL4af2LGuuazD/xMHXMELj/Ujufqa9gK569RRt5roji5xo+zQmrgF46D/CoriaK3geWUhUjUsxPYVMeleVfG3xcujeG/7ItpQt5fcNg8rGDyfzx+tZUKTrTVNbg9EeP+KtUvPiN8RmjswWEswt7YdQqA43ew7n619QeHNEt/D2g2mmWy7Y4Ywv1Pcn61438BfCW57jxHdRnC/urYMPzPv6V7zj/Gu/MKy5lQhshRQuPYUtFFeaUJisjxT/yKOs/9eM//AKAa2Kx/FP8AyKOs/wDXjP8A+gGnH4l6oD52+Av/ACUgf9eUv81r6hr5e+Av/JSB/wBeUv8ANa+oa9DNP4/yRENgooorziwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEJxTd4H0zilPSuP8X+PdN8J3FjYsRcajezpFFbKeQrOAXbuAATjuTigDsqKKTNAC5ozSUhOTigBc0ZppNUdS1nTNHgabUb2G2jUZJkbn8utOMXLRAXt/t+fFUdUtri6sXjtdQlsJSQfPRVYgfRwR+leW+Jfj1pNjvh0S2kv5V/5aN8kY+h5J/KvJNe+IfirxXI0U946Qt/ywgyq/j6130ctrT3Vl5k3u7I90vfH+i+D4LiLU/EsutXBPyxLHHlSOo+RR19814h8Q/FVv4vWyvrXTorCKOd4gqAfNwDk+/OPwpmgeEtMvHE2u+IraxTIJRVaSVvboAPzNS/EKz8OWFnpUHhq4kmtQ7ecz5yX79R6YqsVQo0KemrLdKoleSsat18PvEPi7XTLYWrC0CKDPKdqocc8d67/AMN/AXSLFo59buXvZs58lfljz6+v61reFvG+gaHpEVhqN8kE6sWKlWOAfoDXTW/j7wvcH9zq8Df99D+YqXicRyKC0RXsJ25rGxp2kWGk2wt9PtILaID7sSBc/XHWru3nNZ8GuaXdAGDULZ/YSDNXkdZF3IwYeorhlz7yJcWug6lpCcDJ4HrSZz3FTYQ6lzTciloC4tFGaKACiiigAooooAKKKKACiiigBM0m8UmRXFfEPx5beDNHaRWWTUJlxBDn8yaqnTlUkoR3YPRHTf25p39rNpf2uL7cqbzDuG7b64rQzXyp4B0TXfG/jX+1TdTx+XJ51xeAnd1zge/b+lfU8K7URck7Vxk963xVBUJKKeok7kuaKKTIrlitSiC7uobK1lubhwkMSl3Y9AAMk18na1eXnxH+I+IAzG4m8uJR/DGD/wDXr1r45eLRpuiJoVrLtub3/WbTysef69PxrO+A/g/ybWfxJdR/PKfLttw6L3I/TFethUsPQeIlu9jKTvoev6JpVvomj2um2yhYbeMRjHfAwT9T1rRpAMUuK8ttvV7lpWQtFFFIYVj+Kf8AkUdZ/wCvGf8A9ANbFY/in/kUdZ/68Z//AEA04/EvVAfO3wF/5KQP+vKX+a19Q18vfAX/AJKQP+vKX+a19Q16Gafx/kiIbBRRRXnFhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVBdXEdtbyzytsjiQu7EdFAyT+VAFLXdWXRtJmvDE08oGIYFPzTyHoi+pPYV82fEOK9g+NGn/ANoXQnuXltHcqu1Uyw+VR1wO2cn3r2j/AIqbVtdj8QWFlpr2P2fbZxXtw6uuST5uFRgNy7e+cAfSvF/iGdRf406e2pw20V15lrlbZ2dcbhzllBz+FD0A+p6b34qKSRI0Lu4VQMlm4AH415z40+KmmaNY3Frpspub/aUV4/uxn1JPX8M1cYSeqRrTpTqO0UegyajaJcfZ2uYxN/cLAGuU8Q/FDwv4dLRzags1yvBhh+cg++OlfPkxF2jXM8haaQFmkLHdk+4NTeBPhxP44LypqVtbwRuQ4bJlHvjv+JqsvdLESftdkd2ZZdLBKN5X5jpPEnx61a+DQaLax2MR4Ej8uf6fpXnTnXfE97vllu72dznLEn8AO1fRmhfBjwto4V54Hv5wOXuD8p/4DXd2emWVhAILW1ihjHRUXA/KvRWNoUlajHQ8uNNbyVz5b034VeJr0q39lXC5/wCeqlB+tdVZfBbxCygSC2t/o2a+h9owBgUYGOgrCeYVZHVDEun8CseHR/A7UTgyavAoPUCM/wCNcF8UvCbeDk0uxN0Lgys0u4LjGflx+lfV2B7V89/tG4GraIcf8sz/AOhGuaeIqVFyy2CpiqtVWky/b/C+bxVaLqkOoJBv+QxvGT0pk/wR1hR+51C2mP8Au4r0n4e3EUnh3yFcGWGT519Mniuvx61cMXUirdB08ZVgrRPnG4+Ffi2wJkhgWQf3opef0qgw8ceHSZWOqWyL/E+5kP8A31mvp3aPQZqNkVuGAI9xWixj+0jZY9v41c+ftL+MHiKykVbxYbwdDvXD4/4Dj+Vd1pXxm0O82pfQy2ch6bvnX8xXV6t4O0PWQ32vToHdv4woDD9K4TV/gpZzBn0q9eBu0co3Kfx/+tT5qFTVqxftMNU1krHpWm6vp+q24nsbuKeNujIwNaGeK+Zr/wAKeLPB12bmKOdAv3bm0YsD+XP6V0Xh/wCMepWRSHWYRcxDrKnyuPr2P51MsI3rB3Ilgm1zUnc94HFGRWFofinSPEEAexu0Zj1jbhh9RWypBHeuWSlF2kcMouLs9yXNFIOtLUkhRRRQAUUUUAFFNPSs3XNYs9B0ubUb+YRW8SlmJ/kKai5OyAo+LfFNj4S0ObUbx1yMiKI9XfsBXzNbW+ufFTxqSXcvLIGZv4YI/btxT/EWv6x8T/F8UNukjK77La3HIjX+8e3419E+A/BFn4N0SO3jUPdyDM82PvN3/CvXShgqfM1eT6EK7Zo+GPDVj4W0aHTbCIKiKA7n70h/vE+tbi0ClryJtt3bKSCqWo3sWnadcXc8gSGGPczHtV0nivFfjr4vWz0yPw7ayfv7k75yD0QdB/n0rXD0nVqKCFJ2R5dcvf8AxN+IxEYYm7nCrj/lnCD/AEABr6u0nToNJ0u3sLZQkMCBFAHpXkfwJ8ItZabN4hu4sS3AKW+4YxHnr+P8q9oXpXVmFVSqezj8KFBdRc0tFFef5lhRRRQAVj+Kf+RR1n/rxn/9ANbFY/in/kUdZ/68Z/8A0A04/EvVAfO3wF/5KQP+vKX+a19Q18vfAX/kpA/68pf5rX1DXoZp/H+SIhsFFFFecWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXH+MrfxHd3elw6TZwXemCQvqELXHlNIB91QccDPJ+g9664timM2BycYoY15EMAb7LEGgWFti5jU5Cn0/DtXzX8StM8Q/8JoviXUItOtXSSMwWy3AZtqEFdw79Oelen+PPihDo2/TtEZZr3lXkAysZ9Pc15v4d8J67471M3lw8i25P7y5k5/Bfeuunh9L1Njto4RNc9TYNY8ceJPGk0VqAYw4Ci2tQfnb2PU/nXUeGfg3cXGy616UwxkZMEf3j9W/pXpnhnwZpPheDZZQqZiMPOw+dz6k/wBK6HYMdqdTEcq5Ka0KqYvlTp0VZHnOqfBzwxfWksVtDPasy/K0chIDeuDmvDdW0TxL8L/ECzJK8JDZiuY+EmA7H/Cvrgx5GMms3WtC0/XdOlstRt0ngkGCGHI9wex96nCYhUJNNXT3OGrUnUs5O5xvw++KWneLYBaXTLa6qo+aIniQ+q/4V6FnFfL3jz4aar4JvRqWmGSbTlfMc0ed0R9D/jXb/Df4yRXrRaR4kmWOcYSO7Y8MfRvSuivg4Sj7Wjt2M1Loe30VGkqyIGRgynoV5Bp+cjNeaUHevnr9o/8A5Cui/wDXM/zNfQvevnr9o7/kK6L/ANcz/M0Aer/Dy1hj8OCdEAlmkPmN/exwK6+uW+H/APyKkH/XR/511NABSHrS0mKAA009OOKdijFJhoRNGjqVZVIPUEda4zxL8M9C17fKkAs7s9JYeP06V3GKNtXGcobMuNScHeLPmnXPBXiLwVdfa4GkaFfuXMGRj611/hD4v7dln4g256fal/8AZh/hXsckEcqFJFDIRyrDIP1ry3xp8J7a+D32hBLe6PJgxhH9h6GuyNeFVctRHoQxNOsuSste56bZ3kN7bpPBKskT8qynINWNx/Ovmjw74r1zwHqT2k0cnkK3760l4/Een4V774d8Tad4l05buwlDcfNGeGjPoRWNWg4arY5q+FlS1WqNyim5NLXOcotFN3UZ5oAMYBri/iP4Lk8aaEtpBdPBPCfMRQflY9gRXanpTdvH+NVTlyvmQHnfwx+HMPg/Tzc3ipJqsww7gcIv90V6KBx0pPL5BzjHp3pwHHWnVqyqS5pbhawAAUjHilprH5c4NQBT1TU4NJ0u51C5cLDBGXYn27fU18p20V98SviQW+bN1KWYjokQP+fzr0j48+LvLgi8NWso3SYlucHkDqB/KtL4HeEP7L0KTXLqPbd3uFiyOVjH+P8ASvVw6+r4d1Xu9iHq7Hq1jZQafYQWdsgSCFFRF9ABgfyq12pB0FKK8tty95l2sLRRRSAKKKKACsfxT/yKOs/9eM//AKAa2Kx/FP8AyKOs/wDXjP8A+gGnH4l6oD52+Av/ACUgf9eUv81r6hr5e+Av/JSB/wBeUv8ANa+oa9DNP4/yRENgooorziwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooyKTNADGIHXvXjvxG+JRTzdG0OXB+7NcKe3ovpVz4o/ED7Akmi6VL/pLLiaZD/qx6fWue+G3w8bV5U1nVYj9iVt0cbD/AFp9T7V3UqMYLnqHoYehCnT9tUI/AHw1uNdlTVNZVlsj8yo2d0vv7V7ra2MFlbxwW0SRRRjCqq4A+lSRRrGFVECqowABgAfSpcVzVa0qju9jnr4idaV3ohOlKOlIaUdKyslsc9l0FpGGRS0hoAgntIrmF4Zo1kicYZGGQR6V4J8SPg49q0ureG4y0X35LQfwnvt+vpX0FTcZ7VvRxE6E046olxufNXw7+LV54bmTSNd3zWGdqyOfnh/+t7V9F6dqFpqNnFc2dwk0MihldDkGvM/iJ8IrXxCJtU0dFttR6tGBhZv8DXkPhvxt4j+G+oz2bwkxqxWS0uCQobsR6fyrvq0aWKXtIaS7Cu0fWu4da+e/2jv+Qpov/XM/zNeseBPFUXibwlZ3s13FLeiEfbFTjY3fK14v8edYstZvtKmsZzIsQaNyVIwwJ9a8uUHB8skXe57b8P8A/kVIP+uj/wA66muW+H//ACKkH/XR/wCddTUgFFFFABRRRQAUUUUAJTSM+n407NJigDlvF/gnTvFNiwljEd4o/dXAHI+vqPavDM698OPEYBLoyHO0n5Jlr6cbOOBzXP8AirwrZeKdMa1ukAkXmKXHKH6+ldVDEuPuz1TOzD4rkfLNXixnhPxbY+KdMFzbuBOvEsWeVP0ro84ODXzEkmsfDnxaVKsskZ5B+7NH2+tfQnh3xDZ+JNIivrV/lYfOmeUYdQaivh40lzR1iGJw3J70NYs1ye9chP8AEjw9beLB4fmuwtzgKZP4FkPRSawvit8R4vC+nnTdPkRtVuFwMH/VL3P1ry34X/D6fxlqf9raoHOnRSBmZs/vmzk10UsJF03Vq6LocLlrY+n1dXUMpyp5Bp1RRRLGiIi4RRgD+VS5rz/yKFoozRTAQmszXdXt9D0W61K6bbFAhYknv6VpHmvBvjx4v3PF4atJMhQJrkqfyU1vhaDr1VHoJuxwGjWF98S/iLvmBIuJzNPnkJGDnH07CvrC1tUs7SK2hQLHEgVR7CvMfgn4RbRPDx1e6i23eoDcuRysfUfnxXq+a3x9bnnyQ2QorqIBwOaUCjFLXD0sUFFFFABRRRQAVj+Kf+RR1n/rxn/9ANbFY/in/kUdZ/68Z/8A0A04/EvVAfO3wF/5KQP+vKX+a19Q18vfAX/kpA/68pf5rX1DXoZp/H+SIhsFFFFecWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh6UtI3SjyAb3rjfiD4tj8MaI/lspvpxtiQnn/erq7q5itLWS4mcJHGpdyewAya+a9Yvr3x9422whm81/LhQH7iDqf8fpXThqSk+aWyOzB0PaS5nsi74C8J3HjHXWvL4u9nG+6Zz1kbuPx6H0r6KtYI7eFYolCoowABgAfSs3w7oNr4e0WDT7ZRtjX5mxy57k1rdKmvWc5WWxGKxDqy93Yd1paQUtYHO9wooooEFFFFABRRRQA3H5d/euL8cfDzTPGVm3mqLe+CkR3SLlgff1FdrRjv3qoVJ05c0XqDR8iSxeJvhf4i2OXhJODj/Vzp/n8aXx/4g0vxHp+k3unWQs5A7Jcxg5HmcEke2MV9QeJfDWm+J9Lew1K2SVDyrEfMh9VPY18w/EfwbL4Ka1055hNFJcNLC/fYQBg/lXdWxFKrSu17xKTTPo/wB/yKkP8A10f+ddVXlPgbx9pVpdL4avJPs8+d8Mj8JIW5xn/GvUQ4IzngDtzXDOEo77FbslopKWpAKKKKACiiigAooooAQ0nWlNJjvQNHI+OvB8PinRmRVVbuLLQSY5B7jPof6V4Vo3jHUvh7fXsPlEuVZGgc4AkxgH8P1HFfQfizxRZeE9Dm1K9YYUEJH3kb0r5U1S+1Pxpr95qkkLSSN88nlr8sajgfkK9fLoOcP3nwm8cTL2fse5teD/DGq/EnxXLcXju9uJPMupz/ACB9favqTStOtdKsIbGyiWKCFQqKoxgV5V8E9etY9Pl0Eokc6N5sZxgyA9c+4/rXsCdOTXNjq0pVOVaRRjOlKnLlkSUUUVwkiUuaSm5Gcd6TYGV4l1u38PaDeapcMAsMZKg92/hH518weFNJu/iN8RDJclmSSXz7lsdFzkD9Mfga7D47+L/tV7D4bt5P3UDCW4IPVv7v4ZJ/Cu5+DXg//hHvDAvrlMXt/iRsjkIPuj8Rz+NetSSw2Gc/tMh6s9HiijghSKJVWNAFVQOABU9IAMcClryr9ywooooAKKKKACiiigArH8U/8ijrP/XjP/6Aa2Kx/FP/ACKOs/8AXjP/AOgGnH4l6oD52+Av/JSB/wBeUv8ANa+oa+XvgL/yUgf9eUv81r6hr0M0/j/JEQ2CiiivOLCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRulLmmSSLHGztwFGTQB5b8YvEjWGlRaPbyYluuZcdQmf69Kr/BzwusFnNr1xGDLMdkBI+6vc/jgflXAa7cz+NviC8cRLCacQR47Rg4z+XNfRumadFpun29nCAscKBFA6V31f3NFU+rPSrv2GHjSju9S6o4pSooAwKWuA857iY5paKKBBRRRQAUUUUAFFFFACYpaKKAGkc189ftGL/xNNEGf+WZ/nX0MetfPX7RvGq6J/1zP8zSAwvFfgTVrrTl8UWAM8QASVEB3xbeAff+lbfw3+MU2nSR6R4kcva/diuz96P2b1FeyeDbE2/hW1V2VxKnmDIzgNzg+tec/Ef4ORamZdX8OxiK8PzS2y8LIfUehr1MPiIVoKjWVn0ZLVtUew293DdQpNbypLC4yrIcgip1PFfK3gb4jax4EvW0zUI5pLBW2yW8oIeEjrt9K+lNB17Ttf0uO+065WeF/wC71U+hHY1z4nCToO+8e41K5r5ozTQwNLXIMWiiigAozRSE4oADR2pNwyPQ96M54o2AwPFfhTT/ABbpLWGooccmORfvRt6is3wl8P8AS/C/h+XTgBcvcKVuZnXBlz7dq7DaeOaTHPtWkas4w5IuyBbnzJqEF14F8dloyw8iXejf3oyT/n8K+kdLvotT06C9t2BjmQOCPevNvjN4fW50qDWok/e2zFJMd0b1+n9ad8Ftea70W40mZ9zWjZjB/uE/4muutatRVRLVHp10q2HVRbo9U5pc03dS1wXueYGKwfFviCHwx4cvNVmIxCh2qT95v4RW5u+tfOvx08X/ANo6zF4ftH3QWmGm2nrIecH6AD866MJQ9tVS6IUtEcx4F0K78f8Aj77ReZeMSfarpiODg/d/E4H419WwRrFGsaABFAAA7D0/LFcB8IvCH/CN+E0mnQi9vQJJd3VR2H9Pwr0QDHetMdX9rUtHZBFaXFFLSUtcYwooooAKKKKACiiigArH8U/8ijrP/XjP/wCgGtisfxT/AMijrP8A14z/APoBpx+JeqA+dvgL/wAlIH/XlL/Na+oa+XvgL/yUgf8AXlL/ADWvqGvQzT+P8kRDYKKKK84sKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACjNFJQAE1zXjvVTpXg+/uUOJPL2qfeukavNvjNdeT4PjgBw0twvHsM5/mK1oR5qqib4aPNVimcZ8GdJF54km1CTn7LH8h9yMfyJr32vKPgha+XouoXLDmS4AH0x/jXq9aYuXNVZpjpXrNdhaKQdKWuY5AooooAKKKKACiiigAooooAKKKKAE7189ftHD/iaaJ/1zP8AM19C96+e/wBo441bQ/8Armf/AEI0Ae2eF3VvDGmgMDi3QHHYgVqbT6DH0rmfh+M+FIepO9xnPvXV0PsB574++GGneMLZ7iFRbaoo+WZRwx9GHcV4Pp+p+Jfhd4kaFlkiwf3sLk+XKo7/AP1+tfXGOe1c34s8H6X4v057PUIBvxmOdRh4z2we9d+GxiguSprElrsV/BfjzSfGOnrLayiO6VQZrZzhkPf8K6zcK+Stf8MeI/hhr8dzDNKqK26C7i+6wHZv/r17T8PPivY+KY49P1ErbaqF6dFk9x6H2p4nBcsfa03eIoyPTs0ZpuaXNedqaWAsBUcjgDcTgDqTQ+Pmz6V4v8XviWbBJfDujyr9qcYuJlP+rX0B9TW1CjKtNRiS3ZGhqfxr07T/ABp/ZccDT6ehCS3Kn/lp7DuK9WgmSeGOaM5RxlTivn34Q/DV9RuI/EesQt9nU7reJx/rD1LH2zX0KuFAUYHAHFbYuFKnJQpgiTNNpaSuTyGZfiDT01PQryykXKyxlT/n8q8D+G1/Lonj6G3c4EjG2kHr2H64r6OYcEeua+Zb5Do3xRdmOBHqXnccfL5m7+Vd2FfNGUH2PRwXvQlTPptadUULh40Yd1yKkBzXC9Gedsc7408RReGPC97qcjAOibYQe7ngf1P0FfO3w28Oy+OPHRu78NLbRyfaLlj0Y5yB/nsK2Pjb4rfWPEiaFaSbrexOGRT9+U8Y/Dp+Ner/AAr8Ip4W8JQ+YuL27HnTsRzyOB+AA/M16sf9lwzl1kRuzuo1CrgDA/lT8Ui9KdXlssTFLRRSAKKKKACiiigAooooAKx/FP8AyKOs/wDXjP8A+gGtisfxT/yKOs/9eM//AKAaqPxL1QHzt8Bf+SkD/ryl/mtfUNfL3wF/5KQP+vKX+a19Q16Gaf7x8kTDYKKKK80oKKKKACiiigAooooAKKKKACiiigAoozRQAUUUUAFFFFABRVO+1aw0zZ9uu4bfzM7fNcLuxjOM/UVU/wCEo0L/AKC1p/38FAGvRWR/wlGhf9Ba0/7+Cj/hKNC/6C1p/wB/BQBr0hrJ/wCEo0L/AKC1p/38FB8UaF/0FrT/AL+CgDV68V438c7vjSrRT/fdv/HcV6PdeMNDtLZpf7Rhk24+WJtzdfSvEfiXqbeJvEUVxp8c0lrHAqjem3DZOf0xXThHFVbs68C4qsnI9P8AhLam28CWzMMPI7sc/wC8cf0rvR0rzjwx420LSfDdhZStcCWOBfNVYs4bHP8AWtf/AIWT4f8A79z/AN+TWVV802zCtPmqSZ2NFcxZ+PdBvHdftf2faM5uB5YP0zV9fFOhZOdWtP8Av6KzMzYorI/4SjQv+gtaf9/BR/wlGhf9Ba0/7+CgDXorI/4SjQv+gtaf9/BR/wAJRoX/AEFrT/v4KANeisj/AISjQv8AoLWn/fwUf8JRoX/QWtP+/goA16TNZH/CUaF/0FrT/v4Kgn8RaNKoEevQQ46lHXn8xQBv0VjjxRoQAB1a0J9fMFH/AAlGh/8AQWtP+/goA188189ftHf8hbRPaM/+hGvXZvH2gwytH9pZ9vVkXcDXh/xz1u31290qe1DeTHuQM3Geh/rQB7h8P+PCkH/XR/511NeceFPF2k6PoUdndyuJldmIVMjB5HNbn/CwtA/57S/9+6AOrpCK5X/hYWgf89pf+/dL/wALC0D/AJ7Tf9+6ANrVdJsdZsJbK/t0nt5BhkYcfX6184eP/hZqPhG5OqaP5k+nBtymPO+A+/8AjXuh+IPh/wD57Tf9+6jl8d+HJomjkeR0YEEGLOa6cNip0JXWxLjc82+G3xjDPFo3iWTB4SK9PQ+gf0z617jHNHMiyRMHRhkMpyDXzV478IaHfXhvvC0pR5DmW1kXauT1we30qbw14g8ceHNKbT4bi0eAnMbTvvMYweB+f6VtiqdCcfaU3a/QI3uekfFT4jx+FNONhYSA6tOvygc+UP759/avKfhn8P7jxlrB1XVN/wDZ0UgeRm6zP2XPcVmw+GtR1rxELvxDeHyZpN086PvYjPQCvfdK8W+FNH02CwsS8VvCgVEEXb39629vSw1Plo7vcGrs7K3git4UghQJGg2qg4AHapsVyn/CwPD+7PnTf9+6X/hYWgf89pf+/deU+73KudVik71y3/CwtA/57S/9+6P+FhaB/wA9pv8Av3SA6hv1r5y+K1sbXx7dSqMCRUZT+ABNexn4gaAf+W8v/fuvKPipe2Gu6lbahZXKLBHD5cjS/IM7q6sLPlm7nbgaip1Pe2PctFuRd6JZzjo8IOfwrF+IHihPCvhO71AEeftKQqe7ngVyfhT4peFtM8L2FhqGqxLdQxBXCnPNedfFbxZF4y1SCLTtStP7NtlG3dOAWfqWI9f8KdGEZVveehx1N3YqfCnwvL4w8ZtqF8rSW1q3nzO3R3JyAf8APavqVRhVA4wOK8V+HfjDwR4P8LRWUmrQm8kw9w3q3+HX8668fGPwQMA6uuf92njq3tp6bIlLQ76iuB/4XH4I/wCguv8A3zS/8Lk8Ef8AQYX/AL5rkYzvaK4L/hcngj/oML/3zR/wuTwR/wBBhf8AvmgDvaK4L/hcngj/AKDC/wDfNH/C5PBH/QYX/vmgDvaK4L/hcngj/oML/wB80f8AC5PBH/QYX/vmgDvaK4L/AIXJ4I/6C6/lR/wuTwR/0GF/75oA73NY/in/AJFLWf8Arxn/APQDXM/8Lj8EZ/5DCflWL4s+K/hrUfC+o2Wk6rC15PC0SCT5RhuDz9CapNJpvuG+h5t8Bf8AkpH0spf5rX1DXyl8NNT07wf4vi1O91GyeAwvC/lzD5NxGD79K9vHxj8FYy2roP8AgNdWNrRrVeaPYOVxO+orgv8Ahcngj/oML/3zR/wuTwR/0GF/75rjA72iuC/4XJ4I/wCgwv8A3zR/wuTwR/0GF/75oA72iuC/4XJ4I/6DC/8AfNH/AAuTwR/0GF/75oA72iuC/wCFyeCP+gwv/fNH/C5PBH/QYX/vmgDvaK4L/hcngj/oML/3zR/wuTwR/wBBhf8AvmgDvaK4L/hcngj/AKDC/wDfNH/C5PBH/QYX/vmgDu8g/wD1qUV8+eNPjXNYeLLO68M3sd3p4t8TQSJ8rNuPfr0x3rtvCHxr8O+ItlveONOvG42SnCE+zUAenUUxHVwCpyCMgjuKdn2NAC0UUUAeefE/4bzfEH+yvKv0tPsPnZ3Andv2Y/8AQP1rzz/hm67/AOg9D/3wf8K+hqTFAHz1/wAM3Xf/AEHof++D/hR/wzdd/wDQeh/74P8AhX0LijFAHz1/wzdd/wDQeh/74P8AhR/wzfd/9B2H/vg/4V9C4pCOaFuHU+fB+zjdqc/29F3/AIDn27Vxfif4fQeFNXGn3eozzSNGsm6KMY5z6n2r61J79q8K+NdsF1yyuB0ki2gDvg10YaMalTlZ1YSmqlXlZlaf8A5tT0y2vYddQR3EayruQ5G5Qe31qx/wzjd4/wCQ9F/3y1er/Di9XUPAumSxlsRxmHkY+78v9K6zH5VhNcrcUc9SKjJxR8+j9nC8A/5D8X/fDUf8M4XmP+Q/F/3w1fQY6UuKRJ89f8M3Xf8A0Hof++D/AIUf8M3Xf/Qeh/74P+FfQuKMUAfPX/DN13/0Hof++D/hR/wzdd/9B6H/AL4P+FfQuKMUAfPX/DN13/0Hof8Avg/4Uf8ADN13/wBB6H/vg/4V9C4oxQB89f8ADN13/wBB6H/vg/4Uv/DN10OmvQ/98H/CvoQ8Um4UAfPf/DN13/0Hof8Avg/4Uh/ZwugQDrsX/fB/wr3LW/EWleHbL7Xqt5HbQk7VLnlmwTgD14rBs/FeuaqJLjTPCszWXymKa8uhbNIpUHdtKnjn1oA8sX9nK6Oca9COOmw/4VxnxD8DyeA7fTbCS7W5M0jTb1GMdBjt/dr6V8LeLLXxLaSYja1vrZzFd2czfPA44wfUZrxv9ow/8TTRR/0yb+ZoAefg5ceNMaxHqiW6SDZ5bKSfl4pP+Gbrv/oPRf8AfB/wr1zwAP8AilYTn/lo/wDOupxQB89f8M3Xf/Qei/74P+FH/DN13/0Hov8Avg/4V9C4oxQB89f8M3Xf/Qei/wC+D/hS/wDDN92Omvxf98H/AAr6ExRQB89/8M4Xf/QeiPr8h/wrG174Gapo8cbQPc6kGPP2ZV+T67mWvph7iGIAySogJxlmA59PrUf2u2H/AC8xdem8U79HsB8YahotrpN49tfDVLa4Q/MjxICP/Huldr4Y+ENp4vsEu9O8SxEn78LoQ6exX/Ir23xr4P0Hxpp5juZbeO7Rf3N0jLuU+/qK+er2w8TfC/xDHLFI0ZyDFMnMU6+lejRoUcRC0NJoluzO1/4Zwuzn/ifR8f7B/wAKX/hm67/6D0X/AHwf8K9H8AfEzTfGMC28pW21RB+8hJ4b/drvdwrgqUpUpOM9yk09j57/AOGbrv8A6D0X/fB/wo/4ZvvP+g/F/wB8H/CvoXNGagD56/4Zxuhwdeix/uH/AArlvFPw2g8F3dvFfXZvmmTdsj+UEdMk9etfVjYxXgXxpuDJ4pt4s/6q3C9fUk1vhaanUszqwdOM6nLLY57UfAnhnSvh5D4kuWnFzcYWK2EmAzfXr2NVvhx4D0/x3e3KS2clraW6jMyzM3zY6c96xfE2vy+IW0nSrMN9ms4hBHH/AHpCev14H619LfD7wxF4T8KWlkEAuHUSTsRyXIzz9OldmIo06FHX4mc1R/vGo7HG/wDDPPhnn/TLzn3/APr1WvP2etEWDNndStNkcTOQuO/IzXtGKQrn868wR45b/s8+HjCnn3dwJcfOEYlc+2al/wCGd/DP/P5d/n/9evXwMUtAHj//AAzv4Z/5/Lv8/wD69H/DO/hn/n8u/wA//r17BRQB4/8A8M7+Gf8An8u/z/8Ar0f8M7+Gf+fy7/P/AOvXsFFAHj//AAzv4Z/5/Lv8/wD69U9T/Z/0O206aWxa7urpVzHDv27j9Sa9spCuRjjn1oA8T0z4A6Lc6fDJfvdWt2wJkhV923njnPpV3/hnfwz/AM/l3+f/ANevXdnH8qfQB49/wzx4Y/5+7v8AP/69ZHij4IaJoXhy91OyN1dS2yeZ5RfAYA/Nz9M17tjmua8c6pb6d4T1JZt5kuLaaKGNFyztsbOB7Llj7A04rmkkwvbU+bfBHhnR/GfiaHSktJbcGNpJXaYnaoxnGOp5r1f/AIZ78NH/AJfLvn3/APr1wHwH5+I2Mf8ALnLn35Wvp7aciunGUFRqcqDm5tTyL/hnfwz/AM/l3+f/ANej/hnfwz/z+Xf5/wD169gorlA8f/4Z38M/8/l3+f8A9ej/AIZ38M/8/l3+f/169gooA8f/AOGd/DP/AD+Xf5//AF6P+Gd/DP8Az+Xf5/8A169gooA8f/4Z38M/8/l3+f8A9ej/AIZ38M/8/l3+f/169gooA8f/AOGd/DP/AD+Xf5//AF6P+Gd/DP8Az+Xf5/8A169fLAHBqnf6vp+lW0lxf3cNvDEu93kcAKPWgDyz/hnfwz/z+Xf5/wD16P8Ahnfwz/z+Xf5//Xr1i1vba+tYrm1lWaCZA8cicqwPcGqE/inQrbWo9Gn1S2j1KXGy2Z/nbPTj8KAPnHxn8H7yy8VWuk+Gba4uo5IBJJK/Cod2OSeO2a7rwj8ANOsDHdeIZxeTg58mPIjB/Hk/jXs/l5JIxk98cingEDFAFe0s7eytY7a1iSGCMYSNBgKPYVPt96XFLQAUUUUAFFFFABRRRQAUhpaQmgClqNimo2T20k1xEHx+8t5jE4wc8MORXjHxb8OjSbTTrqC41G5jLusj3d2823O3GNxOO9e51xnxO0o6p4IvAikyQYmGO5Gf8a2w8uWomdGFnyVkyh8HbuOfwNDbqfmglkDDPqxI/SvQh0rw/wCCOq+VqN7pbEBZVEqDuWHH8q9vzTxUeWq0Vi6fLWaHAUtFFYHKFFFFABRRRQAUUUUAIeBxVO/vrbTdPur+7fy7a2jaWVyM7VUZJ/Krh6GvPPjHe3Nj8MNTktJWidykRK85RmCkfiDigDy7wtJdfF74nm71gzf2Xp6NLDFED5aEMNq54wW6noTt9q+j9uMAcDGBjjA/pXkP7PWmwQeC7y/jMhnu7kpKMgqBGPlwMdfmP5fn3vjbX18MeEtS1QzQx3EULfZ/OGQ0mPlXHfJoA8M8P6g4/aSnayuj9nub+ZHaGT5ZE2MQCRwRlQfTitL9owf8TTRf+uZ4/E0/4AeGbp9QvvE1zGUhKGGDdGMOzHLMp9tuP+BUn7Rn/IU0XPUxnn8TQB678P8A/kVIP+uj/wA66muO+H15A+graCUGeN2LxjqoJrsaACiiigApGztOOtLSHoaAOD+LC6QPh9qlxq0EEjR27rbSSx7jHMwKrtyODnHIrzX4FeBtM1fTb7WdZ0qG8jLiG288K68ZL/Ic8528n1Na37RGs+Romm6RFd7XnkMs1v3aMfdOPTcDTNM0Lxr4P+EDvp+pQwOyLOLZbItcI7so2h9+OP8AdoA6Lxr8LPD3iLwzM2gadZ29/CGa3ezVUEjA4KHHHJBHXiuoi8E6ZJ4Ls/Dd9F9qgggWESOoD8D7wx0NXfCWmNpHhXT7NzK0vleZN5rAt5jku+f+BMa26ak07rcD5W8bfDnVvAGorqNhJJJYB90NxFkNF7EjofevRfhx8YoNVWHSvEUiQ3h+WO5PCS/X0NevXVpBd20kFxEkkUgIZGGQfrXz98Rvg/Npjy6t4cjeS2PzSWy/ej9x6r7dq9anXpYqKo19+5nZrY+hgysoYEEHkEUor5w+HPxfudEdNK8QO81lnbHM334j6H1r6GtLy3v7WO6tZkmikXcrocgiuDEYaVF6lp3LBxivmL4uamk/jW+8tgwQLGvPcKoP65r6S1C7Sy064unYBYoyxJ9q+N9VuZ/EPiSZ4lLy3Vw2xR3LEnj88V2ZXBOo5PZI3p1PZxbW53nwV8If274ifWLqItaWPK56NIScflzX0tiue8D+G4fC/ha006MDeFDytjBZz1rpOK5MXiHWq36IwXdi0UUVzDCiiigAooooAKKKKACiiigAooooATFcV4+8P3Ooafc6nFqbW4s7C4HkmFZFYlCCw3fdbaSuRzgkd67asfxV/wAijrP/AF4z/wDoBqofEvVAfO/wGOfiOP8Aryl/mtfUFfL3wF/5KQP+vKX+a19Q135n/H+SIhsFFFFecWFFFFABRRRQAUUUUAMcZIOK5vxN4O0TxNZ3RvtJt7m7eDYkxjAlHcAP1HPpXT1Bc3EdtbSTynEcalm9sUAeAfCfXdW0uyvvCFtFPPqy6gY8A7o7KMHEshP3eCGIGfmPFdde/A7Sr6/tdQfVr5r5JfNuJ5CHNy2QQSD0x0wPWuK0PUrrw58bYb+7tzaWHiE74Ugjz5yS8xkgkkHcylv9rOK+gJ722tpYY5pkSSZ9kSHqzeg/I0AXB0paQdBS0AFFFFABRRRQAUUUUAFFFFABRRRQAVDdQJc2ssDgFHUqRU1IehovbVDTad0fMcLy+BPiFkgqtrckc/8APInGf++a+lIJkuoI5ozlXUMMV5B8Z/DpDQa7AmRxHOQPyJ/QVu/CTxMNV8PnTZ5M3VmcLk8shruxH7ykqq3PRxK9tRVaO56UvSlpF6UtcTWp5rCiiikAUUUUAFFFFACHoax/EGiW3iLQbzSrwK0NzEU3MoYqezDPcHkHtWzSFQe1AHl/gnRfE3w+0qbQxo66xaeb50N1bXEcZy3UMsjA8YHT3qtqfg3xH8RdVs5PF0FtpukWMztHYwyh5ZgejF1JxkAA4P0r1coD1pdvHNAFeztILK1itbaKOGCJQqRxrhVA6ADtXgf7R3/IV0T/AK5n+Zr6FAx0r56/aP8A+Qpov/XM/wAzQB6l8PtPt4tHN+qETTMUdt3BAPpXaVy3gDnwrCep8x/511NABRRRQAVBd3dvZWslzdzxQQRjLyyuEVR6kngVPTHiSRCkih0bgqwyCKAPljxtr2meM/jHZxT3kUugxXENp5mRGgjyPMO7jjcWOfTFfTtnNaz2kMlpPFPAyjynjcOGUdMEdaQ6RYHrZW2P+uQq0kKRqERQqqMBRwAPp2oAdinUgGBS0AJ2pCoweByPSnGkPSgDx74jfB+31sy6roCpBqGN0kIICy/4GvMvBvjzWvh5qb6feRSm0D4ms5chkx1256V9WbBjHp0rz/4leAdM8TaLd3pTytQt4WljlRfvlRnafr09q9GhjY8vJiFeP4kOLeiOZ+JXxK0q++HqJpF4sk+oEIY1OHRep3DtziuX+BfhManrcuvXMatDY/LFu5zJ/wDW/nXH21jbJZBWRSBnJPP1r6D+EVqbb4d2SmHyyXlIOOSu9sH3yMYrlo5gvZTowVnffyPXzDK5YWEJuV+ZXO7A6D6U7FLiiudnl+YUUUUwCiiigAooooAKKKKACiiigAooooAKx/FP/Io6z/14z/8AoBrYrH8U/wDIo6z/ANeM/wD6AacfiXqgPnb4C/8AJSB/15S/zWvqGvl74C/8lIH/AF5S/wA1r6hr0M0/j/JEQ2CiiivOLCiiigAooooAKKKKAGsSOgrgPDngvX7aW6i8Ra+NT043BngtiC3JJwGZuSo4+XOK9AIzjmgKKAPN/iV8OLjxpLp19pl7HY6jZNxO5cYXrxjod3OevvW/4V8MXOkRm71jUH1PWHBD3DklYwcZWJT9xTgZxjOBnoK6naMYpNooAdRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSN0paQ9KAM7WNMh1nSrnT7hcxTxlT7Z6H8K+crG5vPAHjf94pUwyGJx2ZSev6V9O8Z/CvM/in4K/tnTjqtkn+m264YKP8AWJ6fUf1rrwlVQThLZnbgq6g/Zy2Z6Fp2oW+pafBeW7h4ZVDKw71bByM4rwb4WeNjpd2uhajKVtpGAgdz9xz2PoK92BymQeMZrKvSdKXKY4ig6MrMkzRTRTqxMAooooAKKKKACiiigAooooAO9fPP7R3/ACFdF/65n+Zr6G7188/tHf8AIV0T3jP8zQB678P/APkVIP8Aro/866muT+H8qf8ACMQx71MgdyUDDIGfSusoAKKKKACiiigAooooAKKKKAENFBph65zxSSuwHbhjNeb/ABX8WjR9HOl2koF7eDaxB5Rcdfqa63xJ4gtfDmkTahcN9wfu0zy7egr5/sbXVPiL4w3ynmVw8r9REnp/h9K7MNR3qPZHbhKPM/aS2R0Pww+H9vrhl1fVoZGtFIWGLcwEjZ5J55AwOPc17rFBHbxLHEipGqhVVeAB7CvFta+J+pfDrU4PDDeGLN2WJDF5F62GDEgZzGOSRW/4m8feLvCmgxaxqPhOyNsxUSCLUCzQk4wHBjA744JrnquMpuUVYyxNeVWbbeh6fu5A9adWF4V8Taf4s0KDVdOYmF+GRhgo/dT71u1BzhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWP4p/5FHWf+vGf/wBANbFY/in/AJFHWf8Arxn/APQDTj8S9UB87fAX/kpA/wCvKX+a19Q18vfAX/kpA/68pf5rX1DXoZp/H+SIhsFFFFecWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh6UtFADccio3QMpBAIPGMVNSHpQHoeEfFDwK+mSvremIfssjZnjX/lme7fQ9a3vhp8RVvYotF1WYC6UAQSOf9Z7H3r1G6torqCSCaNJI3XaysOG+teBeP8A4f3Phu7Op6WrvYlt3y9YW/wrvpTVaHJPc9OjUhiKfs6m59BL1HpUma8h+H/xPS7EWla5KEmxtiuWP+s+voa9YDBl3K2RjOR6VyVKTpOzOGrRlSdpE1FNzSjpWZktRaKKKACiiigAooooAO9fPP7R3GraIfSM/wDoRr6G7188/tHf8hXRf+uZ/maAPTPh1piQ6a2orI/mTlkKH7owe1d1XLfD/wD5FSD/AK6P/OupoAKKKKACiiigAooooAKKb3pGzmgBWIxWdq+r2mi6fNfXsqpFEM/Nxn2FQ67r9j4e097y+nWNAOB3b2Ar5+8S+KNV8eaxFbQQyGIvtt7ZTnB9T71vRoOo/e0idWHwrrP3tEg8S+IdT8f+JIoLVHMRbZbwJ0Hua9s8FeELfwnpKw4V72TDTSnruqh4C8A2/he0F1chZdSlGXk7IPQf55rd8Xa5H4c8K6lqkkyQtBA3lMylh5mCEGB/tECtMRXT9yn8JpicSmvZ0tIo+cdT13TvEnxvhvNUukbR0uxEsk/7pViXPBPGAGzXe/ErxS3jqE+DvCNsuq+a0T3N3D88cQ3Ar8w4AzgEngd6zvgBoH2291fxNeW5JJ8iCTI2sT80g29cj5KZ8eYtO0bVtJ1PTZDZ687b3eElCY1+6+PUMMDnPFcm2hw21PU/hp4Vm8H+C7XTbon7UzNNONwIVzjIBHUcV2Vc94Lv73VPBuk32pDF7Nbq0o27efp2roaACiiigAooooAKKKKACiiigAooooAKKKKACsfxT/yKOs/9eM//AKAa2Kx/FP8AyKOs/wDXjP8A+gGnH4l6oD52+Av/ACUgf9eUv81r6hr5e+Av/JSB/wBeUv8ANa+oa9DNP4/yRENgooorziwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAaaint4rmF4Zo1eNxhlYZBHpUxHvSFTjrR5oL21W54d49+FstkZdU0JGaA/NJbjqnuKp+Cfihc6GF0/Wd89op2iVuXi+o7ive3TI5wR6V5740+GFjr/mXthttL/7xYD5ZPqB3967qddTXLUPRpYmFRclZfM7fTtVs9Ws0urKdJonGQVOfz9KvD7tfMMU/if4e6qUCy253YKNzHKB+leqeFfi7pmrCO31QCxuTxub/AFZP17fjis6mGa1hqjOrgnH3oao9LoqGG5juIlkhdXRhkFSCD9Kk3e1ctn1OOzHUUmaTNAh1FNooAd3r55/aP/5Cuif9cz/M19CZ5r57/aO51XRP+uZ/9CNAXPXfh/8A8ipB/wBdH/nXU1yPw/njPhmKISIZFdiUB5AJ9K6ygB1FJk0mTQA6ikyaM0ALRTd4zjv6Vlax4l0rQoWl1C7jhAHC5yx+ijmmk3okOMXLSKNNmI74Fch4w+IOl+F4TGXFxenhIEOeffHSvOPFfxevtSL2uixtaQMdvmkZkP0x0rO8LfDXWPEswvNSElpaucl3++9dkMNGCU6jO6nhIwXPVZlyz+IfiPr20F5mJ4VeEiWva/BngSw8KWqkKs98ygSTsOc+3pW5oXh3TvD9itrYQJGo+82OWPqT3rV8vnOaitief3Y7EV8U5rkp6IMDPSuC+IPg/wAQeNLB9Jt9YsrHS2ZGaM27NI5XBwx3YxkZGAPxrv8AHNIUBNctzj3dzzTwj4H8U+DPD8mkadrGkyRvK8olmtZDIrMAOPnxxgdqzl+C76xqg1Lxl4gudWu1kQhYlEcTRjGVK44zg/dI61635Y7nJpdg9aAGRRrHGsaAKqjaAOwqWk280tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWP4p/wCRR1n/AK8Z/wD0A1sVj+Kf+RR1n/rxn/8AQDTj8S9UB87fAX/kpA/68pf5rX1DXy98Bf8AkpA/68pf5rX1DXoZp/H+SIhsFFFFecWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhpm3p0p5FFAGfqGj2Oq27QX1tHNGwIwwzivJvE/wAGHXfcaBMGGc/Z5ecfQ+ntXtNNranWlB6G9LETpbM+ZLbV/Fvge88pnuYAp5ilUlG9uf8A61ehaH8abOZFi1mza3k6GSE5Vvw7fnXp19ptpqduYL62juIj/BIoIrz/AFn4N6Pes8mnSNZSE52rypP9BXT7ajU/iLU6/rFCr/FjZnZ6X4q0XWVBsdQglPddwyPwrWDAgHcMGvnjVPhL4m0t/NtYo7sDkPbvgj86z4PEfjbw2SrT38ap/DcK5VfwPFJ4WEtYSE8HCWtOR9NdqTIrwSy+NWuQKBdWttdY6tnaa3LX45W3ButJm56+Ww/qRWcsJURjLA1Vsev5APJxXz5+0ZzquiHp+7P/AKEa7ZPjXoTbSba7TPXKjj9a8u+Mniaw8Vy6Ve6dvMcYaJt6454P9axlSnH4kZSoVIK8ke1/D7SFtdMOoMsiy3I6E/LtzxgV2e4eteW2XxV0PSNLtbCVJ3lt41ikCL0IH+NE/wAb9HQHytPu5D/wH/Gqjh6jV0ilhKr2R6nTTjPU14tdfHGfpZaQoHYytj+Wa5+9+K/inUWMUEqQ7uiQx5atFg6nU1WAq9dD6GmuYLZC8sqIoGfmauR1r4m+G9JRl+1/aJR0SEZ/OvF49G8aeLHBki1G5BPBuHIC+3zYrqtH+CV9Ntl1W9S3UnmOEZb8atUKcPjka/VqMNakipr3xi1jUd0GkwrZo3G770mPbt+lZGk+CvFXi+5W4nEwRutxdZ4+gr2fQ/h34f0Iq8Nkk0w/5aTfMfw9K6kJtXaBhcdPSnLExhpTWopYyFPSitTifC/wv0bQAs8y/bbwdZJfuqf9kdq7hY1UYUAD2pVHFLiuSdSU3eTOKdWc3eTEXinUnelqDMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKx/FP/ACKOs/8AXjP/AOgGtisfxT/yKOs/9eM//oBpx+JeqA+dvgL/AMlIH/XlL/Na+oa+XvgL/wAlIH/XlL/Na+oa9DNP4/yRENgooorziwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGlfX86rzWcNwuJoo5P8AfXcPyNWTSYoTa6lKUlsznL3wP4bv2LXGkwM3qAR/I1h3Pwg8L3BJSO5gz/zykH9RXfUuRWqrVFtIuNerHaR5fJ8E9Dydl5ej+7l14/SvKfi14Th8IHS7KC4aZZWaUl/wH/stfUxNfPf7RoB1XRDn/lmf/QjRKtOe7HOvUmrNnTaf8I9N1e1h1Ke9nzdIJSqgDaT+FacXwW8OK2ZLi/f/ALar/wDE12vhoA+GdM/69k/lWtimsRNK1yvrVW1k7HGWvwu8J2oGdN84jvKxNb9n4e0mwTZbWECKOg2Dj+tamKWpdWb3Zm603vJjFUAbQAF9O1OA+lKKMVF2RdvcWiiikIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArH8U/8AIo6z/wBeM/8A6Aa2Kx/FP/Io6z/14z/+gGnH4l6oD52+Av8AyUgf9eUv81r6hr5e+Av/ACUgf9eUv81r6hr0M0/j/JEQ2CiiivOLCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooATFGKWigBMUYpaKAExzXzz+0cMapon/XM/+hGvofvXzz+0d/yFdF/65n+ZoA9u8Mj/AIpjTP8Ar2T+Va+KyvDH/IsaZ/17J/KtagBMUYpaKAExS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFY/in/kUdZ/68Z//QDWxWP4p/5FHWf+vGf/ANANVHdeqA+dvgL/AMlIH/XlL/Na+oa+XvgL/wAlIH/XlL/Na+oa9DNP4/yRENgooorzSwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAO9fPP7Rx/4mmif9cz/M19DVxnjX4aaP47ntptTub6FrZSqfZZEXIz33I2aANzwwR/wjGmd/8ARk6fSteq1jZJp9jBaRMzRwoEUucnA6ZNWaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKxvFJ/4pLWen/HjPyT/sGtmqt/YpqOnXVjKzLHcxNE7IcMAwwSD64qo2Uk33A+aPgL/wAlIH/XlL/Na+oa4Lwj8JdC8Ga0NV0671KWfymi2XEqMmGPPAQc13tdWOrRrVeaPYmKsgooorjKCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP//Z'] Multimodal Competition False Theorem proof Conic Sections Math Chinese 79 "如图, $O 、 H$ 分别为锐角 $\triangle A B C$ 的外心、垂心, $A D \perp B C$ 于 $D, G$ 为 $A H$ 的中点.点 $K$ 在线段 $G H$ 上, 且满足 $G K=H D$, 连 $K O$ 并延长交 $A B$ 于点 $E$ . 证明: $E K / / B C$;" ['\n\n如上图, 连 $B O$ 并延长交圆 $O$ 于点 $F$, 由 $O$ 为 $\\triangle A B C$外心, 知 $B F$ 为圆 $O$ 的直径.\n\n$\\therefore A F \\perp A B, F C \\perp B C$ .\n\n结合 $H$ 为 $\\triangle A B C$ 的垂心, 得 $H C \\perp A B$ .\n\n$\\therefore A F / / H C$ .\n\n同理, $F C / / A H$ .\n\n$\\therefore$ 四边形 $A H C F$ 为平行四边形, $F C=A H$ .\n\n作 $O M \\perp B C$ 交 $B C$ 于点 $M$, 则 $O M=\\frac{1}{2} F C$ .\n\n因此, 由 $G$ 为 $A H$ 的中点, $G K=H D$, 可得\n\n$K D=K H+H D=K H+G K=G H=\\frac{1}{2} A H=\\frac{1}{2} F C=O M$ .\n\n结合 $K D / / O M$ ,得四边形 $O M D K$ 为平行四边形.\n\n$\\therefore O K / / M D$, 即 $E K / / B C$ .'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAgcB7gMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKzdZ1iz0DSbzVdQmENpapvkc9/QD1JJAA7kgdaANKiqek6jDrGjWOp26usN5bx3EYcAMFdQwzgnnB9auUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRUcskcSF5XVFHJZjgD8TQFmSUVzt/438N6aD9o1i3Zv7kB80/kmcfjiucvPjDoUKn7La3ly/b5VRT+JOf0rKVanHdmE8TRh8Ul956LRXi978ZdTkJ+xabaQL0HnFpW/QqP0rIm+KfiqT7t3DDn/nnbr/UGsXjaS8/Q55ZlQXW/oe/0V83t4z8WXhbGrXrHv5Xyf+g1Xa58VX3LTazOD3LSvUfXov4Ysj+0ov4Ytn0xRXzOdK8Uyg/6BrDg8cwSn+lB0PxQhBGl6wp9reUf0pfXZfyMX9oy/wCfbPpiivmf7H4ot23G31mMjvslXFSpr/i2z4GoasmP4XkfA/On9eS3ix/2kl8UGj6Tor52t/iN4steBqzOPSWJHP5kZrTt/i74khx5iWU4HUPEQfzBH8qax9J73KjmVB73R7tRXlFj8aIiFGoaQ6+r28ufyBH9a6Gy+Kfhe7cLJcz2pJ48+E4/Ncit44ilLaX36HRHF0ZbSR21FULPWdN1AD7FqFrcEjpFMrH8s5q/2rbdaHQrS2CiikJ/LvmmGoyWRIY3kkYKiAszHgADkmvmL40eMdR8Qz2ccJaHw7LukswRg3O07TKRn7uchfbnvXo/jXxZp+u62PDTrqMugwlv7UnsLeSTzpFxi3DIpwAcb+R/d4Oa8y+OGvWGvaro50+3uoIre1aPZcWrQYG4YCqwHH0pAfQ/gX/knvhr/sFWv/opa6CsDwL/AMk98Nf9gq1/9FLW/QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFALXYKKxdb8VaN4fU/wBoX0ccmM+Up3SH6KPX3xXmWvfF69uQ0Oi2wtIzx50wDSfgPuj8d1Y1MRTp7s56uKpUtJvU9fury2soTNdTxQRDq8rhR+Zri9Y+K2g6cTFZibUJR3hGEH1Y/wBAa8nhsvE/jK680Jeai6nHmSE7U9snhfXiuy0n4NXblH1bUY416tHbgsx9sngfka5vrNap/Cjp5nIsVXq/wY6d2Zup/FzXrt2FitvYxfw7U8xvxY5B/ACucMXiXxXcLJs1DUX6BipdV/PgfpXuOl+AvDelBTFpcUsi/wDLS4/eMT688D8BXSqAqhQMADAFP6rUnrUkH1GrU1qzZ4Zp/wAI/EN0oa7e1s1PVXfc3/joI/Wulsfgzp8YU6hqdxMe6wqqD8zk/wAq9PorWODox6XN4YChHpc46z+GPha1IZrB529ZpmP6AgfpW3aeGtDsQPs+kWUZH8QgXP54rWorZU4LZHRGlCPwpIRQFUKAAAMADtS0UVdjQKKKKAuFFFFC0ArXNjaXgxdWsE6+ksYb+YrFu/Afhe8B83RbZS3eIGP/ANBIro6KTjF7omUIS+JXPP7r4ReHZ1PkPeW5PTbKGA/76BP61zt98GLtWJsNXhkHZZ4yhH4gn+VexUVjLC0ZdDnngqE94nznqfgHxPpJMj6bJMi8iS1PmD68fMPxAqKH4g+J/DVtJi+mdYVJ8m6Xf06DnkD6Yr6Rrx746eK9MsdEOgrDb3OqXa8l1DNbR5+9zyCeQPQZPpmaWXSlUSot3MVgFCSlCTOOf4k+OZ5hef21HAThhapbR+UB/d+YFj9Sa6q8+Ly63o+i6bbSnTdR1OU299dKM/YgrBXKZ7t/CewPPIrw6PxBPHaCEwB3C7RIzdR9PWu28P8Ag/V9R8KWur6db/boJWbzRCQZFfdggr1zn0zwRVTo4zDRcqsbq57+c18BClT+oq8vtH0lo2nWOj6LaWOmqq2UMSrFtbcCOuc985yT36187fHnUIvEHijT49LV7uO2tdrzQLvTczE4BHUgAfnWhpPjvxL4emWI3ck0cfytb3aswHbHOGX8x9K9K0L4r6NqO2LUUfTp+BlzujJ/3gOPxAqaeLpz0ejPDo46lP3ZaPzNT4dX0F/8PtDETc21lDbzIRho5EjVWUjt0z9CK6ztUUM8NzEk0EqSROMq6MGBHsRUvaunY7QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoqC5uoLS3knuJUiiQZZ3baFHua8s8V/Fna0tl4fVWGMG8ccH/AHR/U/lWdStGkryZjVxFOkryZ6FrniTSfD0Pm6ldpESCUiHLv9F6n+VeS+IPivq2pFodKT+z4M4EgIMrD6/w/h+dYGkeHNe8Y3vmxpPOGbEt3OxK++WbqfYZ/CvXPDfw10bQ8T3C/b7v/npOoKqf9lOg+pya4+etiPg0Rxc+IxWkNInlWieCfEPiiYXRikjhlO9ry5J+b3B5Zs+2frXp2h/CrQtLUPfBtRnGDulG1AfZQf5k13ajCge1LW9PCQhrLVm9HA0qerV35kcMMcESxQxpHGowEUYA+gqSiiuk7AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKr3dzBZ2s1zcyrHBCjSSO54VRySfYCmt9AMTxp4tsvBvh+41S7ZTIAUt4S2DLIRwv04yT2Ga+YND0rV/id46Imkd7i7kMt5cBeIo+MnHYAYAH0FTePfGF78QPFgMAka0WTybC2HXBOAdv8AeY4/Qdq+hvht4Gg8EeHEhdFOpXAEl5L1+bHCA/3V/UknvXtRtgaHN9tmfxM+YvGWmW+jeMdV0yzRlt7W4MUYJycDAyffivWf2d9dXOraDI+C228hGevRH/8AZK81+IUYl+J2uRkn5r9wfzx/hT/BGrP4K+JFpLd/IkFy1rd5PCqco2f93734V3V4e2wvK97XJWj0PqrV/DWj66v/ABMrCKZ8YWTGHX6MOa8y8QfCCeBJJ9CuDOASRbT4DAezdD9CB9TXslFfIVaFOp8SFVw1KqveR822WseI/BV6YEkuLNwQz20y5Vh/unjn1A/GvTfDvxW03UiLfVlGn3B4EgJMTH69VP1/Ou21PR9P1m2NvqFpFcR848xclfcHt+FeUeJ/hLc2ga60GRrqPOTbSH5wPYn736H61y+yq4f+G7o4fZYjDa03ddj2RHWSNXRgyMAVYHII9adXzjoPi7XPCF28AaQxI2JbO4zgHoeOqH6Y9817P4X8a6X4ngUQyiG925e1kb5h64/vD6fjXRSxMKmj0kddDFwraPRnT0UDpRXQdXWwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSEgcnp1oAWub8UeMdM8LQf6UxluZM+VbRn5mHqf7o9z+Gelc141+JsOl+Zp+iOs16DiSfGUi+n94/oPfpXnWgeFta8aajJMrMU3ZnvJySM/j94/T8fWuOtiXf2dPVnBXxlpezpay/ITWvEeueNtTjhId9zYgs4ASg98Dkn1J/lXdeFPhOkBjvdfYSSKdy2SnKj03sOv0HH16V23hvwjpfhi322UW6dhiS4kwXf8ew9q3x0opYWz5qmrFRwWvPX1kRQwxW8SxwxLHGowqIoAH5VL2oorsPQCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKADpXzz8cPiB9tun8LaZMfs9u+b50biSQf8s/ovUj1wO1d78W/iAnhLRGsLC4VdavFxEOphToZD6eg9/oa8e+E/gB/GWum+1COT+yLNw8xb/ltJ1EeT78n244yDXq4KhGnH6zV2WxEnfQ734I/Dz7Fbp4r1WNTPMn+gxsM+Wh6yexI6egz617bSIqoiooCqowABgAUtcOIryrTc57/oXFWPj34hcfFLW8f8/wCf51u/HHw+NH8eveRKBBqcYuPQLJ91vxyAf+BVg/ET/kqGu/8AX81e2fHvQhqHgqLVUjzNptwGLD/nm+Fb/wAe2flXu+19nOins1YyS3Os+HWvr4l8C6Xf7szLEIJwevmJ8pz9cA/jXVjpXgf7PGuqk2raBI+0uFu4VPTj5X/9k/I174OgrxMXS9lWcTSLugooorm1Hc5/xJ4Q0rxNbFLyALOPuXEYAdfx7j2NeLeJfBWs+E7g3S7pbRWzHdxZG09twHKn9K+iajljSaNo5FDIwwVYZBFc9bDQqa7M5a+DhW97aXc8k8I/FUxLHY+IiWjACreAZYem8d/qPx9a9bhmiuIEmhkWSJ1DK6nIYHoQa8r8Y/CpZN974djwxJMlmXwD3yh7fQ/ga43wv4y1Xwfem3ZXktN+JrSUEYPcjPKEfkfSsIVp0XyVNu5zU8RUoS5K23c+iqKydD1/T/EOnrd6fMHU8Mh4ZD6MO38q1h0Fd6d1dHpRakroKKKKBhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFQzzRW0Mk8zqkcalnZjwBQA+SRYo2kdgqKCWYnAAHevGvHfxJfUFn0nRWK2hJSW5HWUdwvoPfvVHx58QJdfkfT9Md4tMUkM4bBn9zj+H271s+A/hsXMWra9CNhG6Gzcd+zP/Ra4KtaVWXs6e3VnmVcRKvL2VH5sx/BPw6m15Y9R1Mvb6eW+VMEPMPb0X3r220tILC1itbaJIoYlCoijAAFTgBVAAwAMAUtdNGhGkrLc7KGHjQjaO4DpRRRWxuFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYfivxLZeEvD9zq9+SY4gAkanDSOeij3P6DJ7VrXE0dtBJPLIkccal3dzgKAMkk9gK+U/iZ44n8eeJEgsVk/s63byrOEDmRicFyPVuMDtx3NdeDwzrz/u9WTJ2M23i1n4oePvmYNd3sm5352QRL1PHQKvA6fiTX1d4d0Cw8MaFbaTp0ZW3gXgt95iTksfcnmuV+FvgKLwb4eV7qJW1a7Ae5k7oOojB9B/PPoK9ArXHYlVZezh8KCK6gOgooorz2X1Pj34j/L8T9dI7Xpr6z1fTYNY0i8025XMN1C8T57BhjP9a+TPiV/yU3Xv+vxv5CvsKvWzCXLClJdEZR6nx74N1STwP8SLWW6yqWt01rdA/wB05R/y6/8AAa+whyK+Xfjp4fXSPHZvol2QanF55wMYkHD49zgH/gVe7fDjXR4i8B6XesczJCIJhnP7xPlJ/HAP408wiqlOFddUOO9jrKKKK8gsKKKKACuQ8Y+BbHxVEZgRb6igws4XIYDoGHf+ddfRUziprlkTOnGouWSuj5shm1zwF4jb5TBdxfKQwykqE/kVPqOeOueK9u8JeL7HxXZmSH9zdR/663ZuV9x6j3qz4l8Naf4m09ra8jG8AmKZV+eNvUH09u9eFappWteBNeQ+Y8UqndBdREhZV9j+hH4Ywa4Pewz0+E8tqpg33gfSPaiuS8GeNbTxVaCM7YdRjX97B2P+0vqP5V1td8JKa5o7HqQmpxUo7BRRRVFBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSEgck4HWgBssqQxPLIwWNFLMxPAArwz4heOjr8zadpkrDTEPzNyBcHPU4/hz0HetD4l+OWvZpdB0yUfZUOLmZScyMP4R7A9fU8fWx8N/AKziPXNXgJX71rBIOvo7DuPQfjXDWqyqS9lT+Z5lepKvP2NP5sn+H/AMOTF5Wsa5ADIQGt7RxyvOdzj1/2T+PNer9qO1FdVKlGlHlgd1GjGjDlggooorQ1CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiuB+KPj2PwVoDJbSqdXvAVtUIzs7GQj0Xt6nHvV0qcqs1CG7C9jgvjh8QVcP4T0ucEBs38kbdMf8ss/q34D1pPgf8AD1zKvizVIAqgEafFIn3iesuPTsPxPYGuI+Gvgibx74mkkvjMdNgbzbyfPMjE5CBv7zc5PYZ9q+r4IY7a3jghjWOKNAiIowFUDAAHYV6uKqRw1P6vT3e5CV3dkg6CiiivHLCiiigEfHnxM+X4m6+euLpv6V9h18efE/8A5KX4g/6+m/kK+w69XMdadP0Ihuzyn49aGuo+CI9TSPdNptwHJx/yzfCsPz2H8K5r9nrxDzqfhuZs5/0uDP4K4/8AQT+de3arp0Gs6VeabdKGguoWhcezDH+fpXyZ4M1GXwX8TrMz/L9nvGs7oN/dY7HJ+nX/AICKvCfvsLOl1WoNWdz7AooorxywooooAKKKKACsnX9AsPEWnNZX8KuOTG3dG7EGtaik1fR7CceZW6HzZq2kav4H1+MeY8ckbFre6QYEo9R+fI/oa9q8HeMbTxVp+fliv4k/fwHt/tD1U/p0rS8Q6BY+I9NeyvY8jrHIPvRtjhga8DuINV8B+KRgmO4t3zG/RZk9x/dIz9Oa85p4eV4/CeVKM8HO6+Bn0nRWF4W8S23ifR47yAqsqgLPCD/q39Pp6Vu16MZKSutj1IyjNc0dgoooplBRRRQAUUUUAFFFFABRRRQAUUUUAFebfE7xmdLt20XT5mW+nXM0qHmFD6e5/Qc+ldJ408UxeFtEe4G1ryX5LaNu7ep9h1P/ANevFvDGgXnjbxG4nklMbMZbu4b7wUnkZ9W6D8fSuPE1X/ChuzgxdeV/Y092bXw48EnXLpNWvkA06CT5U6ec6kHGP7o/Xp617mAAAAMAVXs7O3sLOK1tY1igiQKiqOABVmtqFFUoWR0YahGhC0QooorY3CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiimMwRWZiAoGSTwKa3AzPEWu2XhrQ7rV79tsFsuSB95j0Cj3JOPxr5QvLrWfif49BVN13fSbIot2UhjH8OewABP5nqa3fix4/k8Za8NP0992kWkm2AL/y3foZPzyF9snvXr3wh8ADwloQv7+HbrF8gMu4cwp1EY9D3b347V7NKKweHdSXxMh+9odZ4V8M2PhLQbfSrFQVjGXlxhpX/AImb3J/IYFb1A6CivHlJyld9S7WQUUUVIBRRRQCPjz4oDHxL8QZ/5+WP6CvsMHIzXx78Uf8Akpmv/wDXyf8A0EV9gr90fSvWzD+FT9CI7sWvlr446J/ZXxDlu0jCwajEtwCOBuHyv+ORn8a+pa8r+POhLqXgVdSSPdPpswfco58t/lYfnsP/AAGufLqvs6689ByWh1Pw58QnxP4F0zUJDm4Efkz+8iHaT+OAf+BV1deD/s8a4x/tbQJHBUYu4VHTsr/+yfrXvFZYul7KtKI4u6CiiiuYYUUUUAFFFFABXOeMPC1t4p0lrZ8JcxnfBNtzsb0PqD3H49q6OiplFSXK9iZwjOPLLY+b9G1bU/AvilvMRleGTyrq3DfK6/Xv6g+tfQmnala6tp8F9ZyCS3mTcre3oR2IrjPiT4MGuWR1SxjP9pW6/dUZ85P7v19PXp3FcL8N/F50DVP7PvZSunXJwS3Iik6Bs+h7/wD1q4acnQn7OWzPNpSeFqezn8L2Z7zRSA5AIpa9A9QKKKKACiiigAooooAKKKKACoLu5hs7Wa5uJVihiUs7seFA6mp68j+LPipt/wDwj1m4C4D3bKeSeqp+GMn8KyrVFTjdmNeqqMHNnF+INY1Dxv4oBijdy7+TaQKOVTPH49yf6CvcPCXhq38MaJHaRgGdgHuH/vvj+Q6CuN+FHhU28DeILxCJpVKWob+FDwXx6noPbPrXqVc+FpP+JLdnLgqL1rT+JhRRRXaegFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFHqAV4p8bPiILG2k8LaTcf6TMMX8if8ALOMj/V57MQcn0HHeu3+JHjmDwP4fNwB5moXO6O0jzxvx99v9lcjP1A78fO3gbwlf/EXxbJ9pmcwB/P1C4cnOGPI/3m5x+PpXqYDDpfv6uy2Im+iO1+CXw+e+v4/FOqQFbW3P+gq3HmSA/fx6Kc49/pX0QOlV7O0t9PsoLO0iWK3gQRxxr0VQMAflVgdK48TiJYio5z+RUVZBRRRXOMKKKKACiiigEfHvxR/5KZ4gz/z8k/8Ajor7BTlF+lfH/wAU/wDkp2v/APXz/wCyCvr+P/VJ/uivWzD+FT9CI7sdVHV9Pj1bR73TpuI7qB4WPoGGM/hmr1FeVF8r5uxTPj3wVqdz4L+I9lJcjyTb3RtbtG7KTscH6df+AivsKvlv456GdK+IUl5Gm2HUYVnUgcbwNrD65AP/AAKvfPh7rZ8ReBNI1Jm3TNCI5j6umUYn6kE/jXq5hH2lOFddtSY72OoooorySwooooAKKKKACiiigBDg8YzXiHxP8If2VqH9r2MZFndMfNUdI5Sc/gDyfr9RXuFUtU0621fTriwu03wTKVZf5EfQ/qKxr0lUhbqYYmiq8OV7nD/C7xadW046ReSqby0UeUc8yRYwPrt6H6ivRR0r5suodS8CeLiY2Kz2sm6Jz0kQ/wAwRn6c19BaJq9vrmj22o25/dzJkj+4e6n6HissLVbXs5bowwNZyj7Op8SNGijtRXWdwUUUUAFFFFABRRRQG+hjeJ9di8O6Dc6jIVLoNsSH+Jz90f1+ma8J8M6PdeM/Fii48yRZJPPvJc4wucnn1P3R9fat74reJP7T1waRASbexb59vO6Ujn8un1JrvPhp4eGieGY7iRcXd9iWQnqF/hH5HP4159R+3rcq2R5lT/asQoL4UdlFEkMKRRoERFCqqjgAcACn0DpRXoWsen5LZBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVnazq1noOk3WqahMIrW3Qu7E/kB6kngDuSPWr5NfMnxi+IT+JdXfRNNmzpFm/zFcgXEo/iJ/ujkADqcn0x1YTDSxE+VbCk7HM67q+r/E3xwrQwNJPdOIbW2UlhFGDkDPbAyxP1NfT/gzwnZ+DPDdvpdsqvKF33EwXBmkPVv6AdgK434OfD5vDOknWtSt2TVrxMLHKBugiz09i3U+nA9a9WHSujH4mM/3VL4V+JMY9WFFFFeaWFFFFABRRRQAUUUUAj4/+KfHxO17/AK+B/wCgivr2L/Up/uivkP4q/wDJT9e/6+B/6AK+jPHvjm28B+Fkv5EE93NiK1tt+3e2OSe+0Dk8eg7162YfwqfoRHdnWXN1BZQPcXU8cEKcvJK4VVHuTgVzx+IvgwT+UfFOk7s4/wCPpcfnnFeK+DdJ1r4067cap4qv7h9Es5Mi3hbYhkPIjQYwAF6t97BHOTke523gvwxaaebCHw/pq2pGGja2Vg/1yOT7mvJtfQs84+N8WneIvCFrfadfWl3PYsbkCCVZC1u21HcY7bmj5rM/Z415i+raBK/AAu4Vz06K/wDNK6Xw/wDDKz0rxZ4yghtGh0nULKOCAFSVAkD+Yqk/3SoOO2R0rxDwdqdz4J+I9nJcDy2trs2t4rH+AnY+fp1/AV7GE/fYWdLtqQ1Z3PsOiiivHLCiiigAooooAKKKKACiiigDgvih4aOs6GL+2jLXlj83y9WiP3h9R1+gPrXHfCrxR/Z2pnRbqXFteHMJY8JL6fj0+uPWvbCMmvnnxzoT+GPFri13x28hE9swGNvPQf7p/pXDiY+zmqsfmeZjIeymq8fmfRA6UVg+EdfXxL4et9QwqynKTIOiuOuPbofxreHSuyMlJJnoxkpJSXUKKKKooKKKKACsTxVrcfh/w7eagx/eRoViX+9IeFH58/TNbdeL/F7Xxc6rBo0B+W0/eStnrIRwPwX+dY4ip7Om5dTDFVfY03IwPAmhv4l8XRfaMSW8RNxclzneM9D9TjPsTX0PXCfC3w+uk+GVvnH+kX+JTkdIxnYP1J/4FXdjpUYWmoQv1ZlgqXs6d3u9QooorpOwKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK5Xx74ztfA/h2TUJVE1zIfLtbcnHmSYzz/ALIxkn8O4qoQlOXLHcG7anFfGz4gHQ9Obw7psxXULtMzyo3MEXp9W6ewz6iuK+C/w9bXNTTxHqUS/wBm2kn7mN/+W8o9R6L19yAPWuS8L+HtU+JfjSSOW4fdMxuL26ILbFzyR75wAPp719Z6ZplppGm2+n2UQitreMRxovYD+Z9TXr4iawdL2MPie7IXval4dOetFFFeMWFFFFABRRRQAUUUUAFFFV7y5hs7Se6uZFjggjaWSRuiqBkk+wANOwHyR8Vv+Sna9/18D/0AVt/H/UpbnxrZ2J3CKzsI9q5yCzEktj6bR+FYPi8yeK/FWp65YxbLW6l3xLKcOy4ABwOBnFdP8V7JPF2haZ490WFntkhFpqCEYaB0bgsO/wB7Gf8AdrsxWMo14RhTldx3NamEr0EpVItKW3me2/DXRIdA+Hmi2ka7We3S4mPGTI4Dtn6Zx9AKwfGnxbTwPqy2GqaBdMJVLwyxzoRIm4jOOxrW+GPiqw8T+CtP+yyj7TZW8UF1EfvRuq4zj0O0kV4T8Wbg+LPjN/Zds4OySDTI2OcBi3P/AI+7D8K4jI+jPCviC58S6NDqsulS6dBcxrLbiWUMzqc4bA6AjBH1r55+N/h9tH8fS3qDFvqSC4QjjDjhx9cgH/gVfUFrbQ2dnBa28YjghjWONB0VQMAfgBXl/wAedBfVPBUepQpul0ybe3HPlv8AK2Px2fka78urezrrs9CZbHV/DrXD4i8A6RfyPum8kRTEnkyJ8jE/XGfxrq68E/Z311vN1fQZZMrgXkK56Ywr/wA0/Kvex0rHGUvZVpRHF3QUUUVzDCiiigAooooAKKKKACuP+I+gf254WnaNAbmzzcRnuQB8y/iM/kK7CmsAQQwBB4INRUgpxcWROmqkXB9Tw/4Ta+NO1+TTJ5CIb9RsB6eaOn5jI/Kvcq+cvF+kP4U8Yyx27bIldbm1Yjoucj8iCM+1e9aBqqa5oNlqSLtFxEGZc52t0Yfgc1y4STV6b3Rw4GbSdKW6NOiiiu09EKKKKAWuhXvbqOxsri7mOIoI2kc+gAz/AEr5wsLe68Y+MVRwTJfXBeXvtUnLfgFr1f4tas9h4YWxjba9/KEJ9EXlv/ZfzNYXwb0kmXUNYdeABbRHHfhm/kv51wV37SqodjzMT+9xEaT26nrcaJFEkcahUUBVA6ADpTqKK77W0R6draBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSEgc/8A1qAKuo39rpWn3GoXkqxW0CGSRz2A618l+LvEmqfEnxiht4XlEjmCwtUHKoTx+J6k/wAgMV1/xr+IL6vqb+GdNlIsLR8XLqc+dKO2R2X+f0Fdb8Ffh4dGsV8S6nFtv7pMWsbf8sYj/ER/eb+X1NezhorC0fby+LoZyd3Y7T4feCrbwR4dWzj+e8mAku5yPvvjoP8AZHQD6nvXX0DpRXk1JucnJ7s0WiCiiioAKKKKACiiihppXYBRWD4k8XaJ4Ts3udWvo4jjKQg7pJP91ep+teD+L/jrrWr+ZbaDGdLs2G0yEhp2B77uij6c9811YfB1a/wrTuJySPa/FPxD8O+EEYalfK11/DawfPIfqP4fqcV8/wDjP4va/wCLo7jTrbGn6XNlPIhy0kinjDv36nIXHpg9areE/hb4l8ZyG7aM2lmx3Nd3asDJk5JQHlz9ePU5r3zwd8LvDvhBo7iGE3eoqP8Aj7uPmKnvsXoo/X3rulDCYRWkuaRKcm7rQ+bk1VbCFba/t54LuJQrRPGQc4yD9MV7f8Brizu/BOoQo2bk38kt1C4yF3qAuB6EL+YNeN/FYY+KGujn/XKOmTzGtS/DLxY3gvxrHJeFo7O4/wBFvFPRQTwx/wB0jP8A3161nTyelCk6tN6vWx6GLzfEYynClVtaOx9DXXwr8E3d4bttBjhnbOWtppLfr14jZRWjo3gfwx4flSbTNDs4J04Wfy98o4/vtlvqc810KsGUMpyCMg0teX5HEIOgqpqlhDqulXen3ABhuoXhcHurDBq5RTi+V8y6Az4/8FX8/gv4m2JvW8g2t21rdegUnY+fpyf+A19gDpXy38cfD7aP49kv0X/R9TjE6egkHDr9cgH/AIFXvHw41w+IfAGk3ryb5vJ8mY55Lp8pJ+uAfxr1cwj7SnCsu2pEd7HWUUUV5JYUUUUAFFFFABRRRQAUUUUBtqeb/F7RGvdDg1SFN0lm+2TA52MQP0OPzNZ/wd1tnjvdElfIT/SIQfTowH47T+Jr0+/s49QsLmzmAMc8bRt9CMf1r518P3s/hTxrA0x2ta3JguAem3O1v0PH0FcFa9Osqnc8zEr2OIjUWzPpOigdKK7/ADPTCiiobmaO2tpZ5PuRoXb6Ac0XtqJuyueGfFfUjfeMTahw0VnEsYA7MfmJ+vIH4V6z4L0s6R4Q061dNkvlCSQd9zfMQfxNeE6dHL4r8bQiTLve3e+Tv8hOW/Jc/lX0tXDhVzVJTZ52DXtKk6r7hRRRXcekFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeWfGP4gr4b0g6Nps+NXvVILI2Gt4z1Y+hPQenXsK7Lxh4r0/wAHaBPql82SMpBCGw00hHCj8uT2GTXy5pGl6z8T/HDLJK0lzduZbq42/LFH3OOwAwAPoK9HA4eMn7ap8KJk+iOj+EHw9bxTq39sahEG0izkGVdcieTGdv0HBPrnHc4+oR0rN0TRrPw/o1rpVhGEtrZAqD17lj7k5NaQ6Vhi8Q69S726BFWQUUUVylBRRRRcAoqnqOpWWk2Ul7qF3Fa20f35ZXCqPzrxrxj8e7eETWXheDzpcY+3TjCDt8iH73/AsfQit6GGq13amvn0E5JHret+I9I8OWn2vV76K0hyQpkPLn0UdWPsM14f4y+PV3do9n4Wge0Q5DXk6gyEf7KnIX6nJ+lcDZaV4w+JerNMgvNTlB2STzNiOIHnGTgKP9kYPtXs3g74G6To2LzxBImrXfBWEKRAh+h5f8fyr0lh8LhPequ8uxDbex5BoHgnxb8Qr83qJNJHMxMupXjnZx1O7qxHoM/hXung34N+H/DMaT38SarqCkN5s6Dy0PbanTI9Tk/SvRYYYreFIYY1jiRQqIowFA6ADsKkrlr5jWq6LSPZFKNtw7UUUVwXtsWfIXxY/wCSo67/ANdl/wDQFrpvjV4O/sq/svEVnDstL+NRcFRws4HXH+0OfcqTXNfFkY+KWuY/57If/Ia19MeIPDlv4t8FvpFyQvnwKY5MZ8uQDKt+Bxn1GR3r3513Q9lJ7dTFK9zk/gt4x/4SPwsNNu3Bv9LCxHc3zPD/AAN745X8Ae9eoDoK+P8Awhrl38O/Hyy3kbKIJGtb2EdWTOG+uCAw/wB0V9eQTR3NvFPC6vFIgdHXoykZBFcGYUFSqc0dpalxfQkooorz12KPK/jxoR1PwOmoxoGl0ycSt6mNvlYD8Sp/4Ca5v9nfXFC6roEsmXJW7hBP3v4X/kle061pkOs6LfaZPjyruFomPpkYz+FfJ3g6/l8E/E2zN4xh+yXjWt16BSdj5+nX/gNevhP32FnT6rUhqzufYFFHaivILCiiigAooooAKKKKACiiigArwT4q6MdN8XPdKMQ36iYHsHA2sPrwD+Ne915z8YdNa68N218q5+xz/P8A7j8fz2/nXNi481JvscmOp89F+Wp0vgnUzq3hDTbl33SCIRyHvuX5c/jiuhryn4NaoXttR0p2JKMtxHn3+Vv5L+derVpQlzU0y8LPnpKQVzHxA1A6b4K1OVTh5I/JX6udp/Qn8q6evNPjLe+Voen2QOGnuDIR7IMfzYUV5ctNseJnyUpM5r4PWIn8T3N2y5+y252n0ZiB/INXuFebfBuxWHw9e3v8c9xs/wCAqM/zY16TWeEjakjLAw5aK8wooorpOwKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqC6uIbO3luriRY4IULyO5wFUckk+gGanr57+OPxB+1XT+FdMmbybd83zo3DuP8Aln9F6keuB2rowuHlXqKKE3ZHFeP/ABnffEDxSFtxK1lHJ5NhbAcncQAcd2Y44+g7V9A/DXwHb+CfD6K8aHVLlVe7l64PZFP91f1OTXEfBL4d/ZYU8V6rGjSTJ/oETD7qngyH3PQe2T3r28dK7MdiIpewpfCt/MmK6sB0oooryywoppOM9MV5n4w+Neg+HTNa6b/xNNQQ7dsZxEp/2n7kegB/CtKdGdWXLBXYNpbnpM80VvC808ixxICzu5AVR6kmvJPGPx20rSma18Oxpqd10a4YkQJ9O7n6YHvXj2u+LPFXxG1WO2laa4MjYhsLVW8tffaM5+pya9B8JfAG4mKXXim7MC5B+x2rAv8ARn5A/wCA5+or1I4Kjh1zYh3fYzcm9jzq51Dxh8S9YWJjd6nOG3pbxjEcI9QvCqO2TjpySa9X8HfAO1t1gvPFE5uJuG+xQNiNfZn6t9Bge5r17SNF03QbJLPS7KG1gUfdiXGfcnqT7nmtCsq+YykuSl7sfIpQ7lSwsLPTLRLSxtoba3j+7FCgVR+Aq2OlFFea23qyttgooopAFFFFAI+RPi1/yVLXP+uqf+i1r6zsP+Qfbf8AXJf5Cvkz4uDHxR13/roh/wDIa19Z2Bzp1qf+mKfyFermCvRpryIhuzwf4/eERDd2/iizhG2bEF5tH8f8Dn6jKn/dHrXR/Azxiur+Hm8P3c26804ZhDHJeDoPrtJx9Ctel67o9p4g0S80q+j329zGUb1HoR7g8j6V8m6bd6j8NPiKGmB8/T7gxzqOBLEfvfgykEe+PStMO1i8M6UviWwpKzufYg6UVWsry31Gwt7y1lWS3uI1kjdf4lIyD+RqzXj2tvuaLYK+WvjjoP8AZHxAkvIlxDqUQuAccBxlWH1yAfxr6lryr47+HRqngxNWRczaXJvI9YnIVh+e0/ga7cuq+zrrz0JktDrfh/r6+JPBGmagHDTeUIp8/wDPRPlbP1xn8a6gdK8F/Z31xQ2raBIx3HbeRD8kf/2T9a96HSssXS9lWlEcXdBRRRXMMKKKKACiiigAooooAKyfEtiupeGdTtGXd5lu4Uf7QBI/XFa1NOOc0mrqxMldNM8B+F2omw8b28bcJdxvA35bh+qj86+gK+bJ8eG/H7lP9XY6hlf91Xz/AOg19JjpXHgnaMovozgy92jKHZhXiHxhvDN4otrUH5ILUE/7zMT/ACAr2+vnn4lXIuPH2o7eRH5cf5Iuf1Jp41/urdx5k/3Nu7PXPh1ZGx8DaarDDSo0x99zEj9CK6qqumW32LSrO0xjyIEjx/uqB/SrVdUFaKR2042gkFFFFUWFFFFABRRRQAUUUUAFFFFABRRXgPxs8Uax4T8Q2dtoniHUIJLmJp54fMDKgLYXbkcdG49qAPfqK8y8J+Fdd1bwjpuo6r4y8RRX93AJnSCaNUTcMqADGSPlK5565qlpejeNtJ+KdhYXnie91LQ2t5bos2FLBMLsb3DPGfcH64APWqKKKACiisTxT4ksfCWg3Or35JjiGEjU/NI56KPc/oMnsacU5PlW4HJ/Fn4gJ4Q0NrKxnX+2rtcQjvCnRpD6eg9/oa8b+FPgF/Gmute36yHSbRw07E/69+ojyfzPtxxkGsaGPWvij49+Y77u+kyzc7II1/kFX6fiTX1Z4b8P2PhfQ7fSdOUrBCOrfedj1Y+pJ5r2aslgqPs18b/AzXvO5rIixoqIoVVAAAGABTqB0rkvF/xE8P8Ag2Bjf3QmvP4LOAhpT9eyj3OPxryIwnN2irtmjaR1hP5d81wfi74r+G/CfmQG4+36gAf9FtmB2n/bbov06+1eJ+MPjF4i8UtJZ2bf2Zp0h2+TAT5kg9Gfrz6Lj6GpvBvwV17xGiXep7tJsSQR5sZM0g/2UOMD3J/A16cMvhTjz4mVl2IcuxleJviT4q8cT/YvNkitpGxHY2aEbvQHHLf54rp/BvwK1bU5IrzxGx06yOG+zow89x6HAwg+uT7CvaPCngLQPB0bDSrLFw4w91Kd8rfj2HsMCup7UqmZcseTDK0fxBRvuYfh3wnonhWzFvo9hHbg/fk6ySf7zHk/TOPStscgGlory5ScneTuy9tgooopAFFFFABRRRQAUUUUAj5F+Ln/ACVPXf8ArpH/AOi1r6x07/kGWn/XFP8A0EV8n/F0Y+Keu5/56Rn/AMhrX1hpxzpdof8Apin/AKCK9bH/AMGn6ER3ZZrw74+eDRLbReK7RP3kW2C8A7rn5XP0J2n6j0r3GqmpWEGqaZdWF1GHt7mNopFIzlWGP61wYas6NRTRTV0eO/APxd9p0+48MXUn7y2zPaknrGT8y/gSD/wI+le218dXdrqfwy+IQVXzc6dOHjcHAmjPf6MpIPpkivrXR9Wtdd0az1SzYtbXUSyoT1wexHYjpXZmNBRn7WHwyJg+hoVQ1jTYNa0i90y4/wBTdwtC5HUBgRkfT+dX6K82MuV8y6FM+QPA+rP4J+JNpLd5jWC5a1u17BT8jfkfm/Cvr8dBjpXy38cPD66N4+e8hAEOpRi56cLJna345AP/AAKvePh14gXxJ4F0u+LZmWIQTgnkSJ8pz9cA/wDAq9bMI+0pwrrtqTHex1lFFFeQWFFFFABRRRQAUUUUAFFFFAHz78T7M2fjq8YDC3CJMufcBSf++lNe1+F7w3/hfS7pjlpLWMsf9oKAf1FeZfGi126rpd3j/WQvFn/dYN/7PXbfDS4Fx4D08BstHvjb8Hb+hFcNBcuIlHuedhvdxU49zrTxzXzdrBN/8QrwMc+bqTJn/Z8zaBX0ievvXzbpK/bfiBZgj/Wampb/AL+ZP6Zoxu8F5izH7C8z6ToooruR6QUUUUAFFFFABRRRQAUUUUAFFFFACE/l3zXyR8SdQHin4w3qRQ3F3FFcJZrDbRF5GWPAcKO5LByP519S69q8Og6DqGrTjdFZwPMUBALbRkAe5PA9zXzl8BdNuNY+I9zrVwHkFnBJK83rLKdoB+oMh/A0Ad9rfxLvtZ1PTPCeleHdY0mbVJlgll1KDyHSA8SGMZ6hc854xwM4I9iHSsnUtOsX1Kz1q9dU/suOZ0Z8BU3qAzE9sKCPxNGha3aeIdOOo2JZ7NpXjhmI4lCnaWX/AGcg49cZoA1qKKKAGSyJDE0kjBUQFmYnoB1r5T+KPjybxz4hS3sw39l2jlLWNefObODJjuT0Ht7mu2+OHxBBV/CelTBjnN/Ij46dIs/+hfgPWsj4VeHtM0CJfG/iueGztUJGnpOOZG7yKvU+gAyTyccCvZwdFUKft5r3uiM5Svoem/CvwFH4M0Hz7uNTrF4ga5f/AJ5r1EY+nf1PsBXS+JPF2ieE7I3GrX0cLEZjhX5pJD/sp1NeMeMfj1dXaSWfhaB7WM5X7bNgyEf7K9F+pJPsK4fQPBHi34g3zXyJNLHI373Ub2Q7OOp3HlyPRc/hUrBTqN1sTLlT6dR3tojpvF3x11rV/MttBi/su0YbTISGnfP+10T8Oe+awfCXwv8AEnjWY3To9pZsdzX10rfPnklAeXJ9yB75r2vwd8G/D3hpI576JdV1AYYy3CDy0I/up049Tk/SvSh0olj6dCPJhY28w5W9zh/B/wALfDvg7y7iGD7ZqKjm7uOWB/2BztH059Sa7gdBRRXlzqTqS5pu7KSSCiiioGFFFFABRRRQAUUUUAFFFFABRRRR0A+Rvi//AMlU1z/rpF/6KWvq/TP+QTZ/9cE/9BFfKHxf/wCSqa5n/npEf/IS19X6ZzpNn/1wT/0EV6uP/g0/QmKsy1RVDVYIbiwmFzcT28KqXM0MzRMgAJzlT264PHHSvmz4c634w8aeNbfS5PE+rrZRhp7gichvKXHHXjJKjPbOea8oo7/48eDzqWjxeI7OHdc2P7u52jloCcg++0nP4n0rH+AXjJhJP4TvZhswbiy3HoeroP8A0IfRq6Lx7b6n4i1a08L+ENRvoriFSmqzG5kaCGFgcLKSTuc5PH3sdcDp4dr+ian8OPGv2cTs1xZSJPbXJXaJFzkMFyeDggjJ6Edq9fCS+sUXh3v0Ias7n2VRWP4Z1+28TeHbLWLXiO5jDFCclGHDKT7HIrYrypRcZcrLvc8n+PmhLqHguHVUXM2mzj5vSOTCt/48E/Kuc/Z310LJq2gSHBbbeQj6YR//AGT8jXtmsabBrOj3mm3K5huoWhbPYMMZ/rXyd4L1V/A/xJtZbwlEtbl7W7HYKSUY/h978K9XCP22FnS6rUhqzufYFFA5FFeQWFFFFABRRRQAUUUUAFFFFAHl/wAaIs6XpUv92d1/Nc/0q78HZzJ4SuYmOfKvGx9Cqn+eaT4xw7/CdrIBkx3q5PsUcfzxVP4LyE6VqkZ6LMh/MH/CuJaYux5q0x9/I9P6c184eDyJPH+mk9Dd5/nX0ef6184eA8f8J3pW7/nv/Q0sX8cQxyvOHqfSFFFFdx6bCiiigQUUUUAFFFFABRRRQAUUUUAcj478H3PjXSv7K/tl7CxZg0yR24cykEFckt90EA4x2rlfDXwf1Hwg1w2heM7uzNyFEw+wxSBgM44ckdz+desUUAeV698JtX8TReTrHj3U7qDduMP2dEjJ6/dUgH244r0DQNGg8PeH7DR7YlorSFYgx4LkDlj7k5P41qUUAMJA+leZ+PPi9omiaNeQ6NqEN5rHMKJEC6xMeCxbG35fTPJx71vfFC9k0/4ba9PHOIXNsY1bdjliFwD64P5mvnSD7L9gXy8fZtnfpjH86yqYj2EotxurnrZZlkcc5Jz5bK+3/BRyE00k88k87tJJIxZ3c53EnJJ7Hmuj0zRfFnxBvlS2iub/AMlVi8yQ4igTsufuqAP4Qc+1ZCaDq8y+bDpN88L/ADRuts5DKehBxyMVfhtfGFtAsEEGuRQqcrEiTKv5V9lGtGpSjODSfn0PEnBwk0z3bwj8DNF0jyrvXH/tW8ADeURiBD7Dq31P5V6tDDHBCkUMaxxoAqooACgdAAOgr418nxl/zz17/vmalW38aMcLFr5PoFmNedWwUq0uadVP+vUakl0Ps2ivjb7B45/59PEX/fuf/CkNh45IwbTxFj0Mc/8AhWP9lx/5+IfOfZVFfGf9l+Nf+fDX/wDvzN/hR/ZfjX/nx8QewEM3+FH9mL/n4v6+Yc59mUV8cjw94+IGNI8Skeot5/8ACl/4R7x//wBAfxL/AOA0/wDhR/Zkf+fqDn8j631TVbHRbCW/1K7itbWL70krbQPb6+wrC0X4jeFNf1BbDT9XR7l/uRzRSQl/93eo3fhXy++leIdPuLefxBp2rQWfm4D3sEqx78HbneMZ61b1NWlt1ghWSS8kkVbZIwTIZMjG0DnPSvIxT9hiFQ3v1PbwWWRxOEniHUS5en9M+wB0or48Hhr4gsARpHiP8YZv8KX/AIRj4g/9AjxF/wB+Zq9ZZZFq/tEeJzvsfYVFfHZ8KePmOW0fxAfrBL/hR/wifj3/AKAviD/vxL/hT/syP/Pxf18w5vI+xKK+PF8IeP36aNr34wyCnf8ACHfED/oDa5/37ko/syP/AD8X9fMObyPsGkPFfHx8G+Pm66LrZ+sclIfBXj3HGia1+MbmiWWQinL2i0/ruNSbdiz8WJVvPidr09tmeFZUQvGNyhljQMCe2CCD9K+p9Cu7e90CwuLWZJoXt0KyRtkMMDoa+VLDbBYLDIDFJBlJkcYZHHDbh65zXt3wOt7uLwXczShltLi/klsw3ePCgkexYNgfU968n6/PEfupKyiezjspp4ShTrRqKTl0Ro/GXWm0X4ZaoUcLLeBbNMjg+Zw3/jgevnXw54h1DwX4XutR063EV9rDNZ29/wAboI49rShB6sZI+T028dsei/tI6wxutF0NW+VY3u5F9ydiH9HH41a8T+Cvsv7OmmxKqm709Y9QYnAbLklxn0Ak6f7A68UHkHpnw4/sxvAel3WlxhY7uIT3DeYXZ5zxKWc8s24EE+2K5z42eDT4h8Lf2raR7r7TA0hAHzSRfxge4xkfQ+tY/wCzt4gF54Yv9EkP7yxn82PnrHJ2/Blb/voV7Myq6lWAIIwQe9a0asqVRTj0E1dHzr8B/F50/W5vDd3MRa33z2wY8JMOoH+8ufxUetfRo6V8jfEHw3c+AfHjmzZ4YDILuwmXqi5yAMd1Ix7YBr6U8D+J4vF3hOz1ZAqzONlxGv8ABKvDD+o9iK78xpJpYiOz/MmL6HS18u/HLw+mj+PTewJtg1OIXBwMASA4fHucAn/er6i7V5V8etDGoeB01NEzNp06sTj/AJZuQrD/AL62H8Kxy+r7Our9dxyWh1Xw513/AISPwHpV8xzMIRDMM/xp8rH8cZ/GurrwX9nrxDzqnhuVs5/0yDP4I4/RT+de9VljKXsq0oji7oKKKK5hhRRRQAUUUUAFFFFAHC/FoZ8EPx/y8R/1rC+Cp3W+tIezQn8w/wDhXQ/FYf8AFC3B9Jo//QhXNfBVSTrmCQB5H/s9cNTTFJnmz/31eh60fSvnHwau3x/pi56XWP519HcZ96+bdJY2XxAs+ceXqag/TzMH9M0Yx2lF+YY/ScH5n0nRRRXcekFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFMZgoLEgKOSScU+vFvjX8Rf7Ot38MaPc4vJQRfSJ/yyQjhM/3jnken1rahRlXmoRE3Y4L4ufEE+MNZ/s2wf/iUWUhETKT+/fGC59s5A9snnOK9E+Hfwd0q10O21DxJYC51GZhOLeVm8uAdkZM7WPc7geuO2a5b4J/D19Sv08UapbH7DbtmzR/+WsoP3sd1Xt6nHoa+i67sfUhBLD00tBQclqnYaiqiKqABVAAA6AU6iivMuygoooouAUUUUgCiiigAooop3ArXlla6hayWt5bxXEEgw8cqBlYe4NYujeBvDPh67a60rRbW3uTx5oBZlH+yTnb+GK6OikGoDpXlnjD4t/2f4lTwt4XsE1XXHk8ljI+IYpDwFP8AeI5J5UDpnqBf+Mfi6bwn4JkNk7Jf37/ZoHU4KAgl3H0UED0LA9q87/Z18Ox3V9qniS4jDvblbe2c87WYEyHHrjaPoxoDc7+/8I+OpdJe8TxzcnW0QPHBFbxpa7hzswRkjOQGbnpkdqyvhN8WLjxlcSaLrMca6nHH5kM0S7VnUfeyOgYZB44xn059K8QaomieHtR1WRlVbS3km+boSqkgde5wP0r5c+BltLN8V9Nkizsginkl/wB0xsv/AKEy0AfW/aiiigAooooQaHyN8YY0HxX1zCgZaI/nEmfrmvqjSlI0GxWIqhFtGF44HyDHHevln4xf8lW1z/ei/wDRMdfVekf8gWw/694//QRXqY6EY0KdkRFtvVnlXiD4GN4m1m41bVfFdzLczHLf6KoVV7Ko3cADGK7XUPDWqan4Pfw/PriKZYjbTXS2YDvEVAIxvwCRwSOOeg611lFeWWeUeEvg5L4L1tdT0rxPMJNvlyRSWiskqEglSNwPYcjB4r1cdKKKAPPPjD4S/wCEn8GSzQKWvtNzcwhRy6gfOn4gZHuoryf4H+MDoXib+w7k5s9UYKhzwkw4U/Rvu/Xb6V9MkCvlL4teFH8I+N5J7QGKyvT9ptWjJGxs5ZR/unkD0Ir18BNVacsNPrsRJWdz6v7VQ1bTYNY0m8025GYLqJ4n9QGGMj+f1rn/AId+LovGXhG2viR9siAgvE9JQOT9DwR9cV146V5koypVHfdFbo+QPBOozeDPidZG44+z3jWdyM/wsfLb8iSf+Aivr+vln44aH/ZPxDmu40KQajGtwCo43gbX/HIyf96vfPh14hPifwNpmoytuufL8qf3kT5SfxwD/wACr0swXtKcK0e2pMd7HVUUUV5JYUUUUAFFFFABRRRTA4b4sZ/4QeTH/PeP+dYPwUH7nWm9TD/7PWr8YZvL8I28YOPNvFBHsEc/zAqh8FoyNL1WQ9GmQfkp/wAa4J64pI86WuNS8j1A88V83ayp0/4g3hIwI9SMgz6eZuFfSVfPXxMtxB4+v9owJAkgx7oMn8waeN+GL7MMxXuRl2Z9C0VU0q6+3aPZXec+fbxy5/3lB/rVuuxaq53xd1cKKKKZQUUUUAFFFFABRRRQAUUUUAFFFZ2s6tZ6FpN1qeoTCG1t0MkjnqPQD1J6AdyQKaTbstwOe+I3jiDwR4ea5x5l/cExWkXq+PvH/ZHBPrwO9fOngjwpqHxG8XOLiZzFv+0ahdNknDHJGf7zHOPx9DUXiDWNX+JvjhWigZ5rlxBaWoJYRR54H4csx+p6V9O+CvCVp4M8N2+m24V5sb7mdRzNIep/oPYV7LtgaPL9uRmveZuWNlb6dZQWdpEsVvAgjjjUcKoGAKsjpQOlFeLvqaBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHg37SsUzWnhyVd3kLJcK+Om4hNv6K36113wJsYrT4VWE8f3ryeeeT/AHg5jH6Itdb4t8Lad4w0KbSdTRjE5DJImN8Tjoy8HnqPoSO5rhPC/gHx14IsZ9L0XxDo89hI5ZDeWsm6IkcsoVsZ6dSRQBW/aA8Ux6d4Vi8PQuDdam4aRR/DEjA89+WwPfDU/wCCHgKXw3o0uuarB5eo6igEcbD54YM5APoWIBx6Be+RWp4f+E0Fr4ik8SeJ9RfX9Yd96NLHsijPGCEyckYwOgAxxwDXpY5FAAOBRRRQAUUUUAj5K+MfHxY1zHrB/wCiY6+p9F/5AWn/APXtH/6CK+WPjJ/yVjXPrB/6Jjr6n0X/AJAWn/8AXtH/AOgivWx/8CmRDd6F6iiivJLCiiigAri/ib4RTxf4PubaOPdf2+Z7QjqXA5XP+0OPy9K7SkIB4IyOlXTqOnNTjugeqsfK3wd8Xnwt4wFneOY7DUcQTBuAkmfkY/Qnb9G9q+qq+XvjV4OHh3xV/adrGVsNTJk6fKkv8Y/HO78T6V7F8JvGP/CW+EI1uHJ1Gw229zk5LcfK/wCIzn3DV6eYU1VpxxENnuRHTQyvjzoa6l4GTUkj3T6bOr5A58tyFYfnsP8AwGuc/Z31xiuraBIwKri7h/HCv/7JXtOr6fHq+jXunTYEd1C8TE9twIz+FfJfgrVLnwV8R7J7kNC1vdG1u0J4Ck7HB+nJ/wCAinhP32FnS7aiejufYVFFFeQaBRRRQAUUUUAFFFFAHl/xol26VpcX96d2/Jf/ALKrnwcgMfhW6mIx5t22PoFUfzzWB8aLrdqel2uf9XC8uP8AeYD/ANlrtPhpbC28BaeQMNKZJG/F2H8gK4YO+Kb7HnQ97Gt9kdfXiPxisvJ8T2t2B8txbAZ/2lY/0Ir26vNfjLZCXQLG9ABaC4MZ+jKT/NRW2KjzUmbY6PNRZvfDi9N54F05mOWhVoW9trED9MV1lea/By/EugX1iSN9vcCQf7rjH81NelVeHlzUkzTDS5qUWFFFFam4UUUUAFFFFABRRRQAUUUUbasBpOCfTvXzL8Y/iG/iPVX0PTZwdJtH+dlJxcSjuT/dU8ADqcn0x6D8aPiC3h7ThoOlzldTvF3TSRt80EX/AMU3QegyeODXA/Bn4et4h1Qa9qkJOl2b/u1b/lvMOnHdV6+5wPUV62CpKjD6zU+RDd9D0D4N/D7/AIR3S21vUrdk1W8XCJIBugi7D2Y9T6DA9a9ZHSgdKK86tVlVm5yKStoFFFFZDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmkgZp1U9ThnudKvYLWXyriSB0ik/uuVIB/AmjYNT5U+Kciat8TNbu9PVrq2Lxp5sQ3AlYkVh/30COPSvp3wpqVpqvhbTbqyuI7iI26LvQ5G4KAwPoQc8V8tQFdNhNje4tbq1/dTwy/KyMOufx9Ote3/BCwvLTwnfXNxDJDb3l609sjjG5CqjeB2BI/HGaX12rX/dzWkdj2MfltDDUIVadTmct12PUB0ooopnjhRRRQAUUUUAcx4+8KR+MvCd1pbbRP/rbZ2H3ZV+7+ByVPsxr5u+G/imbwP44U3pkitZXNrfRsfuc43H3U8/TPrX1xXzd8dvBy6TrsfiGyhK2uoEi4KjhJxznH+0Mn3Kk16uXVVK+Hl8LImup9IIyuispBVhkEdCK+XPjnof8AZXxAkvI4ysGowrOCowDIPlfHvwCf96vWPgx4vHiLwithdTBtR03ETBj8zRdEb37r/wAB96p/HrQm1LwXDqkSbpdMn3tgciJ/lb9dn5Gowl8NiuSXoNu8bnYfD/XD4j8C6TqMku+doQk7Z5Lp8rE/Ugn8a6ivB/2eNdc/2t4flcFQBdwrn6K//sle8VzYul7KtKA4u6CiiiuYYUUUUAFFFIcdzRtqB8+/E+9N546vUB+W3RIV/BQx/wDHmNe2eGLP+zvC+l2rcNHbIGH+0Rk/qTXgcxXxL4/YqQY77UML/uM+P/Qa+kgAAAOlcOF1qTmebgfeqTqeYtc14807+1PBWqQKMukXnL9UO79QCPxrpainhSeCSGQZSRSjA9wa7Jq8Wj0Jx5otHifwfv1t/FVxaM/F1bnaM9WUg/yLV7jXzTambwp41i3tsexvNrn1UHBP0K/zr6VBBUEdD6Vy4KXuOHY4cvk+Rwe6YtFFFdh6AUUUUAFFFFABRRRQAVy3jzxla+CPDsupTKJbhz5dtATjzJCO/sMZJ/DuK39QvrbTLC4vryZYbaBC8kh/hA718l+MfE+qfEnxgpgheRWfyLC0QEkKTxx3J6n/AAFd2Bw3tpc0vhW5MpWI/DOgar8SvGjpLO5eZmuLy6fLeWueSB68gAfT0NfWml6ZaaNpdtp1jEIrW3jEaIOwHf3Pqa534e+CbbwR4dW0T572YCS7nPO98dB/sjoPxPeuwHSjHYn2suSPwoIrqFFFFcJQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUV4v8avF2v8Agu601tF8QzxPe+a0lrJBbyIirtwQSm4ZJPXOcHkYwen+GEvifVvC9nrviPWrieW6LOlsIYEj8o8KTtjDZ6t97uPegD0GivAPi3488U+DPFken6N4luGjkthPJFLbWz+UzMwChvLz0AODk98nPHqvgi18QDQLO98R6xPe31xCJJIDDCkcW7kAbEBJA4PJHWgD52+M4A+LGtEgEnyO3/TCOvqPQTnw7ph/6dIv/QBXy78Z/wDkqus/7sH/AKIjr6i0H/kXdM/69Iv/AEAV6uOSVCm0iIt3ZoUUUV5RYUUUUAFFFFABWH4s8O2vizw3eaPdnasy/JJjmNxyrD6H8+R3rcoqoycXzR3QHx/4Q1u7+HnxBSS7Qr9nma0vo8/wZ2tjvkH5gOh2ivrDUrODW9EurNmV7e9t2j3qcjay4yPzzXhvx88GtDexeKrOMeVPtguxjo4+4/0I4PuB6103wK8Xf2v4dk0C6lL3encxlzktATx9dp4x2BFevi/31KOKhutzOO/Kzxjwbqdx4J+JNm9z+7a2uza3i+ik7Hz9OT/wEV9h18s/G7w++jePpb5F22+poLhGHZxw4+uQD/wKvfPh5rZ8Q+A9Jv5JN8xhEUxJ58xPkYn64z+NRmEfaU4Vo9rMcN7HVUUUV5JYUUUUAFZHia9XTfDOp3jHHl277T/tEED9SK1684+MOpG28PWtgrbTdTbn90QZP6lfyrOrLlg2ZV5qFKUmcP8AC3Tvt3ja3kYfLaRvO31xtH6sPyr3+vK/g1pZSz1HVHTBlYQR59vmb+aj8K9UrHBxtSV+pz4CDjRTfUKKKK6jtW54V8W9MNp4tW92/u72FWz2LL8pH5BT+Neo+BdU/tfwdp1wz75Uj8mT13J8vP1AB/Gsb4saQ2oeFftkQzJYyCXH+wflb8sg/ga5v4N6t5d1f6TI42OouIgeuRw36FfyrgX7vENdzzI/usW10kew0UUV6DR6bCiiikAUUUUAFIT+XfNLXmHxg8fjwro39madMBq98pAZTzBH0L/U9B/9atKVKVWahDdg7JHn/wAbPiC+qam/hnTJSLG1cfa3X/ltKO2R2U/r9BXV/BP4eto9kPE2qQ7b66TFrGw5iiP8R92/l9a8++EXw8Pi7V/7U1BAdJspAXVhkXD9Qn0HBP19+PqQDAAr08bWjQh9Wpb9TOKu7sWiiivINAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqve3UNjZz3dw2yCCNpJH/uqAST+QoA+WfjXqSa58WJrUSDyrNIrPeozj+JuBySGcjHtXuNj8TPA2nWFvZW+oXKW9tEsUa/2bcgKqjA/5Z+grxH4SWreLPjIdWuU3eW82oyAj+Mk4/JnB/Cvo7xhrK+HvB+raszBTbWzun++RhB+LECgD5gv5E+I3xwY2oM1rf6iiKdhG6BAFLYOCP3aFsGvrwdBXzR+zpoq3XirUtXkQMtjbCNCezyHr/wB8qw/4FX0vQCPk740jHxW1fPcQf+iUr6g0A58OaWf+nSL/ANAFfMHxq/5Ktqv+7D/6JSvp7w7/AMizpX/XnD/6AK9bHf7vTIjuzSooorySwooooAKKKKACiiigDM1/RrbxDoV7pN4pMF1GY2PdT1DD3BwR7ivk7TLzVPhp8QA0qlbiwnMdxGBgSxE/Nj2ZcEH1wa+xK8L+P3hEyR23im0jYsmLe8AGflz8j4+vy591r08urJSdGW0iJrS6Nf426bH4k+Hdpr1iwmS0dZ1ded0MgAJH47D+BrB/Z411vN1bQJH+UqLyEeh4R/8A2T8qm+DXiJPEfhfUvA2pNnbbyC3YnJMT8Mv1Utkeze1ea+Cb+bwb8TrH7YfK+z3bWlyD0CsfLfP0zn/gNdcaT9jUw73Wq9BPdM+v6KKK8E0CiiigArwL4p6x/aXi+W3GTBYr5Ix3PVj+Zx+Fe46lex6bpt1ezECOCNpGyeoAz/8AWr558NWU/inxrbJP8zT3BnuGx2B3t+fI/EVxYx3tTXU87MJcyVJdWe5+DdMbRvCOnWki7ZVh3yD/AGmyxH4E1v0UV2RVkkd8Y8q5ewUUUUyiC6t47u1mtpl3RTRtG6+oIwR+tfN8DXPg7xmuWJmsLraxH8a9D+DLn86+l68a+MGgi3v7fXIVIFz+6nwON4Hyn8QD/wB81x4yPuqa3RwZhBuKqR3R7FDNHcQRzwuHikUOjDoQRkGn1wHwr18an4eOmyt/pFgQg/2oj938uR+Arvx0rppz54KR10qiqQU0FFFFWaBRRUF1PFaW8tzcSLHDCheR3OFVQMkk+gFNJt6AY3jDxVYeD9Bm1S/fO35YYVOGlcjhB9cHnsMmvlvStM1n4n+OWV5C9zduZbm4C/LDH3OOwAwAPoKt/ELxrfeP/FAS3EjWMUnk2Fso5OSBkjuzccfQdq9/+GfgOHwV4fTzUVtWulVruTOdp7Ip9B+pya9qCWBw/M/iZn8TOo0PRbPw9otrpWnxhLa3QKvHU9Sx9yea0h0oHSivFlKUneRogooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcl488Paz4p0KXR9N1SDT7e4G24d4md3XP3VwwAB7+o47mutooA8n+Hfwr1f4f6tNdw6vZXkVyixzI1u6ttDA/Kd2PXqK1/iJ4L1/xzZjTIdXtLDTRIshQQu8kpHTcdwGAeenp6V6DRQB5x8Nfh9qvw/FzbtqVleWdy4kkAgZJAQpA2ncRjp2r0YdBS0UAj5P+NX/JVtV/3Yf/AESlfT3h3/kWdK/684f/AEAV8x/Gz/kqmp/9c4f/AEUtfTfhz/kV9I/68of/AEAV6uO/3emRHdmnRRRXlFhRRRQAUUUUAFFFFABVTUbG31TTrrT7tA9vcRtFIp5yrDB/nVuimnZ3W4HxvPFqXw3+IO1XP2rTbkFXHAmjPT8GU8+xrV+K9pby+JYPEdhk6drtut3C2MYbAWRT/tA8n3avUfjv4POpaNH4jsoA11YDbclRy0HXJ9dp5/E+leJR6o+oeDX0a5kDNpspurMN12txLGPr8r+21jX02Hqe2Uaq3WjMXpofUnw51z/hIfAWlX0knmTCEQzk9fMT5Tn3OM/jXV14R+zvri7NW0CSTLZW7hH97+F/5JXu9eDi6XsqziaxegUUU1mCqzMcBRkn2rmGebfGHWTa6PbaTE+Hun3yqOpReg/Fsf8AfNVfg9ojxW17rco4m/cQNjqoOWI/EAfga4TxVq8vi3xhLNbqXWSRbe2Qc5XOB+ZJP417/omlxaLotpp0R3LbxhS3949z+J5rgpfva7n0R5lBe2xMqnRGjRQOlFd56YUUUUAFZPiPR49e0G80+QAmWM+Wf7rjlT+eP1rWopNcysxSipJxex86eDtXk8KeMYjdDy495trpT/CpOD+TAH8K+ilIZQQcgjORXifxZ8OLp+sJrMC/ub1tso7LIB/7MP1Brs/hf4h/tjw2tnK5a6sMRtu6tGc7D+hH4Vw4Z+zm6TPNwknSqOhL5HdUUDpRXeemFfPvxx+IH2m5bwppczCKFs38iNwzjpH+HBI9cDtXe/Fjx8ng/QWtLOVRrF6NsC9TGnRpD6eg9/XBFeLfCvwG/jbxA11fhjpVm4e4Y/8ALZzyEB9+p9uO4r1MDQjGLxNXZbESd9Dvfgl8OzbRp4s1SFTJKn/Evib+AHgyH3I4Htk+le4DoKSONIokjRQqKAqqBgADtTq4sRXdeo5yKSsgooorAYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUdAR8o/Gz/kqmp/9c4f/RS19N+HP+RX0j/ryh/9AFfMvxtGPinqWO8cH/opa+mfDJz4V0c/9OMP/oAr1cd/u9MiO7NSiiivKLCiiigAooooAKKKKACiiigCG4giuYJYJ0V4ZVKOrdCpGCD7YzXxx438Mz+D/F17pTbzEpLW8j/xxP8AdP8AMH3Br7Nry344eExrnhM6tboPtulZkJA5aE/fH4Y3fgfWvQy3Eeyq8r2ZMldHhHw91xfD3jzSNQdykAmEcxJ4Ebgq2foGz+FfZI6V8H/rnjP+fwr7H+H2vL4k8D6VqJfdKYVin9fMX5Wz9SCfxrszik9KiJgzqa4r4meIf7F8MyW8UgF1fZhjHcLj5j+Rx/wIV2ZIAyeB1zXzr4x1qTxZ4ud7bLwlhb2qnkEZwD+JJP4181iqvJCy3Zz42t7OnZbs3vhJ4f8AtusS6xPHmGyG2MnoZCP5gfzFe3DoKxfDGhReHdAt9Nj5dBmVz/G55J+meK2quhT9nBIvC0fZUkgooorY6QooooAKKKKAMnxDokPiDRLvTpwB5y4V8Z2sPukfQ/19a8F0XUrzwV4vDXCspglMN1GvJdO+P5j6CvpCvKviz4UM8Y8Q2i/NGAl2oHVf4X/Dofw9K48VTdvaR3RwY6lJpVYbo9Rt54rm3jnhcPFIoZGXowIyCKyvE3iGw8K6Dc6vqLlYIRwq/ekY9FX1JP8A9fgGvPfhV4t2pJoV/LsCBpLZ3OAoHLL/AFH0NeV/FLx7L4419bayDDSrNylsg585icFyO+eg9B7mvUy6j9cs1t1N6WIjUpKSZlf8Tz4o+PD/AMtLy9fHGdlvEP5BR9M+5NfVXhrw5YeFtEg0nToysEIOWbq7Hksfc/pXK/CnwAng7QRdXaA6veoGnY9Yl6iMfTv6n2Ar0SujH4pVZKnD4UbRjbcB0ooorzygooooAKKKKACiiigAooooAKKKKP66gFFFFH9dQCiiigAoooos+wBRRRTswCiiiizAKKKKLAFFFFIAooooAKKKKTaDY+U/jd/yVLUf+uUP/ota+mPDX/Iq6P8A9eMP/oAr5n+N+B8Ur/nrFB/6AtfS/hnnwpo//XjD/wCgCvWxtnh6diI7s1aKKK8osKKKKACiiigAooopXAKKKKd0AUx0WRGR1DKwwVPQin0UXXcD4/8AiV4TPhDxldWkSbbGc+faEdPLPb/gOCK9H/Z311QNW0CV8N8t5Cp/74f+SfrXa/GDwcvinwjLcwRltR00NPb7RkuuPnT8QPzA9a+ePAXidfCPjGx1aRWaBC0cyjjKMMH8s5+or31WjicG7vVGT913Pon4qeJTpeijSraUrd3oO7Z1WIdfz6fTNcz8J/DDXeotrt1GDb2522+R96X1HsB+p9q5PdqHjzxaShVp7yThgflijH/soH513PxL8WRfDXwXZ6Fokgj1G4Qxwt3iQffkIPck8e5JH3cV8jTi69TneyOCivrNZ1JbI63xP8R/DPhKdbbUL0vetjFpbL5kvtkDpntkiqY8dastoNRfwLryacVL+ZuhM4XB5MO/cD7VwPwE8HLcR3HjTVQ091NKyWjS/M2c/vJcnqxOVz7N617tjIxx/Su89Q4/wh8RNI8cXl5Bo0N2yWkSvNLNGEUFsgKBknPDdcdO/bsq5rwx4Tt/DV7r11EyFtVv2uvlGNikD5f++i5/4FXS0AFFFFABRUbqsisjqGRgQykZBHTFfInxF06xu/i1eaPodjBaxG4htY4rePaDIQqthR/tEjAoA+v6huIY7iGWCdFkikUo6MOCpGDn2xxXz38ZfBHh/wAG6BpOoaDC9jqAuRBujlYNMuxiWPPUEAZGPvc9q7r4HeIdY8Q+Cpn1ieS5e3umhhuZiWd12hvmJ5bBOM/h2oE+x4neafBc6zqayq7RQ3k0EMT5+RVcgZHrgVmW19J4R8TQahp8MEssQ8yJLlPMWNs9QM846g+v0r6B8WfCK01nU7nVdJ1GTS7u43PNEIvMilkP8eCcqx7469cZ6+R2OnReHvELDWtOjv5YXK3EN3GCCOnA6D1B71z0Kzwdfnn8L3sejjcyy6nl8KEaXLNPexY/4Xz40/vaf/4D/wD16P8AhfPjT+9Yf+A3/wBevbtO8FeA9W0+C+s/D+mywTruVvKH0I+o7irv/CvPB3/QtaZ/4DrXurGYNq6pXPLSk1ds8E/4Xz40/vWH/gN/9emH47eNiT+/sh7fZhXv3/CvPB3/AELOmf8AgOtH/CvPB3/Qs6Z/4DrT+t4P/nz+AWfc8B/4Xr42/wCfiy/8BhR/wvXxt/z8WX/gMK9+/wCFeeDv+hZ0z/wHWnL8PvB4HHhnSvxtUP8ASj63hP8AnyOz7nz/AP8AC9fG3/PxZf8AgMKQ/HPxuRxc2i/S1WvoP/hX/g//AKFjSf8AwET/AAo/4V/4P/6FjSf/AAET/ChYzCL/AJdByvufPX/C8vHH/P5a/wDgKlH/AAvLxx/z+2v/AICpX0L/AMK/8H/9CxpP/gIn+FA8A+EF6eGNI/GzQ/0qvr2F/wCfX4L/ACFyvufPX/C8vHH/AD+2v/gKlIfjj435H222B9Rap/hX0P8A8IH4R/6FjR//AACj/wAKX/hBPCP/AELGj/8AgFH/AIUfXsL/AM+vwX+Qcr7nzp/wu7x3/wBBOD/wEj/wo/4Xd47/AOgnB/4CR/4V9F/8IH4R/wChY0f/AMAo/wDCj/hBPCX/AELGj/8AgFH/AIUvr2F/59f19wcr7nzp/wALu8d/9BOD/wABI/8ACj/hd3jv/oJwf+Akf+FfRv8AwhHhIDH/AAi+i/8AgBF/8TS/8IR4S/6FfRP/AAXxf/E0fXsL/wA+v6+4OV9z5tb41+PSeNXjH/bpD/8AE0f8Lq8e/wDQZT/wEh/+Jr6S/wCEI8Jf9Cvon/gvi/8AiaP+EI8Jf9Cvon/gvi/+Jo+vYX/nyvu/4Acr7nzb/wALq8e/9BlP/ASH/wCJo/4XV49/6DKf+AkP/wATX0mvgzwsv3fDWjL9LGL/AOJp3/CHeGP+hc0j/wAAYv8A4mj69hf+fK+4OV9z5ob40ePmHGtqv0s4P6pSf8Lm8f8A/Qf/APJOD/4ivpj/AIQ7wx/0Lmkf+AMX/wATR/wh3hj/AKFzSP8AwBi/+Jo+vYX/AJ8r7h8r7nzN/wALm8f/APQf/wDJOD/4il/4XN4//wCg/wD+ScH/AMRX0wPCHhpTlfDukg+osox/7LUn/CK+Hv8AoA6X/wCAcf8AhR9ewn/PlC5X3PmI/GXx+R/yH/ytIP8A4im/8Li8ff8AQwN/4DQ//EV9P/8ACK+Hv+gDpf8A4Bx/4Uf8Ir4e/wCgDpf/AIBx/wCFH17C/wDPpfh/kHK+58wf8Li8ff8AQwN/4Cw//EUf8Li8ff8AQfb/AMBYf/iK+n/+EV8Pf9AHS/8AwDj/AMKkHhzQwABo2nADsLVP8KPr+G/59L8P8g5X3Plz/hcXj7/oPt/4Cw//ABFNPxe8esc/8JBJ/wCA8X/xFfUv/CO6H/0BtP8A/AVP8KP+Ed0P/oDaf/4Cp/hR9fw3/Ppfh/kHK+58tf8AC3vHn/QwS/8AfiL/AOIpD8XvHn/QwS9P+eEX/wARX1N/wjuh/wDQG0//AMBU/wAKVdA0Zc40iwGf+nZP8KTx+Gs0qS/D/IfK+58pRt/bSnU9SZby9uvnmmlALMT/ACAAwAPSlh+IfizQFbStN16eOyt2CxRlVfYOu0Myk4HTFe8ax8G/D2qanLe29xf6aJmLSwWciqjN3IDKdue+OPaun0rwd4f0jTo7K00m1ESAjMkYdmPclmGSTXkYROjWdSfvR7P+me1j8ww+Jw0KVOnyyW77nzH/AMLZ8d/9DDN/36j/APiaP+FteO/+hhn/AO/Uf/xNfVf9haR/0CrH/wAB0/wpRomkqcrpdkCO4gUf0r1/r+H/AOfK/D/5E8Xlfc+U/wDhbXjr/oYZ/wDv1H/8TSH4teOsY/4SGf8A79R//E19Yf2Vp3/Pha/9+V/wo/srTv8Anwtf+/K/4UfX6H/Plfh/8iHK+58m/wDC1vHP/QxXP/fKf/E0f8LW8c/9DFc/98p/8TX1l/ZWnf8APha/9+V/wo/srTv+fC1/78r/AIUf2hR/58r8P/kQ5X3Pk3/ha3jn/oYrn/vlP/iaP+FreOf+hiuf++U/+Jr61FhZgAC1gAHbyxR9htP+fWD/AL9ij+0KP/Plfh/8iHK+58kH4p+OCc/8JHd/kv8AhR/wtLxv/wBDHd/+O/4V9b/YbT/n1g/79ij7Daf8+sH/AH7FH9o0V/y5X4f5C5H3Pkj/AIWl43/6GO7/APHf8KP+FpeN/wDoY7v/AMd/wr65S0t0+5bxL9EAp/kQ/wDPJP8AvkU/7Rpf8+V9/wDwB8kujPkI/FDxs3B8R3ZHcfL+R4qvo0EE1k1wypLPKzGRmAPzZr3/AOJfi+LSLc6Np/lC9nX99IODAn4fxH9OvpXCeBfhlb+KZbjULyS8srJcKDav5Zmf6kdvb25ryMxxsMU1RpR5bb2OvKc2o4LGe/DnVu2xs/Aq0hTUvEbxwrsj8lUkA+4WDF1Hp91T+Vee/HueWX4nzrKflitYUjHouNxHvyxr6W0Hw3pXhnTfsGk2i28G7c2MsXYjBZieWOPWvOvjF8L5/FkSa5oy79Yt0ET25YATxgk8Z43DJ69Rx1xUwhypJk4ipGrVlOCsm72O/wDBmmxaT4K0WxiC7IrOIEqMBmKgs2PUsSfxreHSvGfBXxLv9F0iDQ/F/h7W4L60jEcc6WbuJkHyqSOu7jGeQcZyK7S21rXfEtz5VjpV5oumg/vr7UYvLnkUHlY4icqTz87dOoBqjE7KikUbVAGeBjk5paACiiigCtf3kWn6fc3sxxFbxNK59FUEn9BXyd8OLDW/FvxHl1eyi0+a+t3fUpBfs6xGQvwfkBO4MwYf7v4V7h8cdeOi/Di5hjbE2oyLaKfRSCzn/vlSv/Aq539nXQWtPDeo65KOb6ZYogcfcjzyPqzEf8AoA43xHqMuqeOo9P8Ai1LeWUMI32yaci/Z0ViMnoWKHafmBZsjHGK+ifD+n6TpehWdvocUMemCMPAIW3KysN27dyWznOSTnNfNfxs8Rw+KPHkFhpX+kpZR/ZVaIbzJMW5Vcfe/hAHXIPtX0J4B0i70HwJo2mXwxdQWwEgz91iSdv4Zx+FGnUDpa8++JPgr+3bT+09PhLajAMMiDmZPTHcj9enpXoNIf85qKkFOPKzOpTjUi4S2PBfh/wCNZPDt8LC+kP8AZkzfNu58h+m4e3qPy56+8oyuiujBlYAgg5BFeSfEzwJsabxDpi4T711Aq/d9ZB7eo9efWqnw58fJpypourSlbYnFvO2T5ZJ+6fRfft06dOOlUdKXs57dDz8PVlQmqFXboz2iigdKK7z1AooooAKKKKPmAUUUUfMAoooo+YBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcB8RPH2o+AbeK+fQYL7TppRAsy35jkDlS2CnlnjCtyGPTtxXf14F+0lrKiPRdDRwXZnu5Uz0A+RDj3y/5UAb+h/F/xB4h0+fU9N+H1xc2FvJsnlh1FGZcAEhVKAuQDnA9R610/gz4n+HPGxS3srh7bUSm42dwNr+5Uj5WH0OeOQKb8ItGXRfhlo0e0CS6i+1yMD94yfMp/75Kj8K+ffiPI/hX416nd6WRFLbXcV3H2G9kSQ5HcEscjv+NO4H12OgoqCyuReWFvdKpVZolkCnqAQDj9anpAFFFFABRRRQAUUUUAFFFFABRRRSDYK5bxr4th8LaSzqUe/mBFvEeee5PsP/rVc8TeJbLwxpxvLslmY7YYl+9I2On09/8AJ8KVdW8feKz/AB3Ny3OeUhjz+igfn9TXNiKzh7sdzixeIdP93D4mSeHdC1Hxv4iZppZWVn8y7uupQE/zOMD/AOsa+hLOxttOsorO1jWKCFNiKOgFUPD3h+08NaRHYWgztG6SUr80jnqx/kB2FbNVh6Cpxu92XhcP7GPM92FFFFdB1BRRRQAUUUUAFFFFAHI+J/h1oPi+8W41kXs5UYSMXTrHHxjKqDgE9z3rPT4Q+Fo7P7FGNSW0xj7OuozCMDOfuhsck5rvqKAOU8PfDjwn4XnFxpWjQx3IAAnkZpXHuC5O3/gOK6sdKKKACiiigBrKGBVgCp6g+leKfEPwC+kyvqukQE2LnMsSA/uT6/7v8unSvbaY6q6MrAFWGCD0I9KyrUo1FbqY16Ea8HGW55D8P/iKtqsWj61N+4AC21y38PONrn09D278dPYAcgH+VeJ+Pfh0+kmTVNIjMliTmWADJhHqPVf5VJ4D+I8mn+RpGsOXsxiOG4P3ovZvUfr+FctKtKlL2dU4qOIlRl7Gt8me00UyKVJolkjdXRgCrKcgg9wafXeemFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAh4r5U+Isx8bfG06bbM8kX2mLTkIGSoU4c/QMX/LNfSXibVb3SNIluNP0u61K7bKQw26qxDkHDNkjCggZxk8187eAvDPjDwr44h8Qaj4S1O8KCQ4QgNvcFS3J5+8fzoA+nMxWluANkUUS9vlVVA/QYFfId3BN8T/i3cpp+8w394SspB+S3XjzCO2EGcH2Fe2eIh8Q/HdkdL07SR4a0ycYnub25UzTIeCgVMle+Rxkd8Eg9B4A+HGl+AbJxbO9zqMyBbi7YY3AHOFX+Ffbqe/agDs7eCO1toreJdscSBEXOcADAFSUUUAFFFFABRRRQAUUUUAFFFFABWJ4j8Taf4Z09rm9k+ZjiKFfvSNjoPb1PQVX8WeLrDwrYGWc+bdPxFbK3zOfX2HvXh8suteO/Ea/KZ7mXCBUXEcSfTso6571zV8Rye7DVnHiMX7P3IfEwu7vWfHfiNTsaaeY7Y4U+5Cnp7Ljqe9e3+EfCdp4V0wRRqsl3IoNxPjlzjoPYelJ4R8IWXhXT/LixJdygefORgsfQegrpe1LD4fl9+pq2LC4V0vfn8TEHQUtFFdR2+YUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADSAwII4PXNeS+PPhsEWXVtBhwqjfNaIOeO6f/E/l6V65RWVWlGqrSMq1CNWPK0eA+DPiBeeGHFldh7nTc48vOXhPfZnt3wfzFe5afqNpqlpHdWNwk8DjIdGBH0PofauL8bfDi214yX+mbLbUeWZcYSc9efRv9ofj6jy7StY17wNq7oEkhkBHnWs6kLIPcfToR+HFckak8O+Wfwnnxq1MI+WrrHufSNFcv4W8baV4oi2QOYL0Ll7WQ/MB6r2YfSuoHIruhOM1eJ6cJxmuaLugoooqigooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiobm5htYJJ7iVIooxl3dtoUe5o9RXRNXEeNPiBaeG43tLTZdak2RszlYvdvf2/MiuV8YfFNrhX0/w8WjQna12eCw9EHYf7R/TrXO+EvAepeKpvtc5e3sSctcSLlpeeQuev1PHrzxXFVxLb9nS3POrYxyfs6Gr7mfp2naz468QEtI000h3TXMhO2NR3OOmOgFe6+GfC2n+GNPFvaJulcAzTsPnkPv6D2q/pOkWOiWCWWnwLFCnYdWPck9zV+tKGHVP3nqzfDYVUtZ6ye4UUUV0+Z1hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVheI/CumeJrbyr6HEqj93OnDx/Q9x7Vu0UpJSVpClFSVmfOviPwhrPg29FyjSG2Q5hvYMqB7HH3D+hrq/CnxXkjMdl4hG+PGBeIPmH+8vf6jn1HevXJI0ljaORFdGGCrDIP4V5l4q+FEN28t5oLrbzk5+yucRk99p/h+nI+lcMqE6T5qT+R5ssLUoPmoPTsej2d7bX9stzZ3EU8L/dkjcMp/EVZ7V812uoeIPA2rNEpmtJ15kt5BlHHuOh9iK9S8PfFbStTCQaopsLokDcctEx9m7fj+daU8ZGT5Z6M2o46E3yz0kehUU2N1kjV0YMjAFWByCPXNOrr0O0KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooBahRWPrniTSfD1v5up3aRZ+5GPmd/ovU15P4m+Kuo6oklrpCGytW48wn96w+vRf881jUxNOlu9TnrYqnS+J6npHijxxpXhmJ1klWe9A+W1jOW+rf3R9a8a1vxTr3jLUEtmMhR2AisoMlfqQOWPuc/gKs+G/h/rPid0upP9GspDuNzNkl/91erZ9ePrXs3hvwnpfhm1EdlDulI/eTyYMj/j6e1ctquI30Rxfv8AFav3YnEeD/hXHCsd94hTzJcZWyyML6byO/sP16V6nHGkUSRxoqIihVVRgADoAKcOlFdlOlGmuWKPQpUIUY8sUFFFFaGoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZuraLp2t25t9QtIrhOxccqfVT1H4V5X4k+Ed3bMZ9BlNxFyTBK2HX6N0P6H617NRWNWhCorNGFbD06ytJHzbpfiXxF4TuWtoriaDY217W4UlQf90jj6jFel6B8W9LvY0j1iNrK4JALqC8RP15K/j+ddnq+g6ZrkBh1GyiuF7Mw+Zfow5H4V5vr/AMHnDNLoN0Cv/PvcHBH0b/EfjXN7OtQ/hu6OP2GJw/8ADd0eq2t1Bd26T20yTRNyrxtuBH1qevmuW18T+DrveyXmnuD99CdjfiPlP0JrqNH+L+q2rhNVt4ryLu6DypB/Q/lVRxkf+XisyoZhC9qisz2yiuP0v4leGdTKob1rWVv4LlNvP15H611NvdQXcYlt5o5oz0aNgwP4iuuM4y1izuhUhPWLJ6KKKotprcKKKKACiiigAooooAKKKKACiiigAooooD0CiisnUvEui6QrG+1O2hZc5QyAv/3yMmk3y6sJNR1k7GtRXmmr/GHTYFZNJtJruTtJKPLQe+CMn6cVwOqePfE2vn7Obpo43P8AqbRSm724O49PU1zTxlJfDqziqZhRh8N2/I9p1zxjofh4lb69Hn4yIIxvf8h0/HFeY+IPi1qd87xaRGLG3PAkIDyn+YX/ADzWXo/w18RawVlkgFnC5z5lyxVseu3qT9RXpmg/DPQdHKSzwm/ulwS84BXPsnT881k3ia+2iMG8Vidlyo8n0bwr4h8YXDXMaySRlsPd3Lnb+fU/QZ/CvVfDvwy0fRRHPdqNQvFGS8yjywf9lf6nNduiqiKqgKoGAAMACnVrSwsIay1Z0UcDTp6y1kIAAoAGABS0UV1eh2BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU0wsiOWNJUZJUV0YYZWAII9wa5DVvhl4a1RmdbZ7KRuS1s20Z/wB05X8hXZ0VEoRn8SInThPSaueLal8HdUg3vp1/BdIOVSUeW59vT9RXJS6V4m8MXXmG2vrGQf8ALWLIU4/2hwa+lqK5JYGne8G0cU8upN3g2j5/svil4ptAivcxXKr2nhGSPqMGuns/jQNoF9o+G7tBN1/Aj+tehah4Z0PVWLXulWsznOZDGA3/AH0MGuavvhN4buwxtxdWZPQRybhn6OD/ADpeyxMfglcn2GLpfBK4WPxZ8NXOBObq0J7yxZA/FSa3rXxl4bvCPJ1uzz2EkoQ/k2DXn118FplbNnrMbj0mhKn8wTWVdfCHxHCMwS2U/ssrA/8AjwFHtcVH4o3BVsZHeF/Q9oj1XT5f9Vf2sn+7Mp/rVpGV1BVgQe4r54m+HHiyHO7SXYDukqNn8mP8qrf8Id4rtn+TSL9D6ohP6ij65UW9Nh9fqr4qb/r5H0lRXzf/AGH4yjYf8S/Ws+qpKaDpHjRhg2Wukf7UctH1x/yMf1+X/Ptn0hUM13Bb/wCunij/AN9wK+dD4b8XzJtbTNVZT2eN/wCtOj8A+KZT8ujXA/38L/M0fXJ9KbF9fqdKb/r5Hvk3iHRbcEzavYR47NcID/Osa7+I3hazBzqqysP4YEZ8/iBj9a8rtvhb4rnPz2cNuD3lnQ/+g5rWg+DOrvjz9Tso/XZuc/qBS+sYh/DCwfWcVP4YW9TfuvjLpMRItdNu5sdGkKxg/qxrn9R+MerznFhZW1qnq+ZW/oP0rdsfgzp8ZBv9UuJ8c7YUEY/M5P8AKuksvh54WscFdLSZgfvTs0n6E4/SnyYue7sHs8bU3dvQ8ZvfFninxAzQyX93KrceTbrtB9sIOfxFXNJ+GviXVCHezFnCf+Wl0dp/755b9BXvtta21nEIrW3igjHRIkCgfgKn7ULBJ/xJNgsuUnerJtnl+kfByyhAfVr+W4YH/VwDYv5nJ/lXdaR4d0jQ49unafFASMFwMufqx5rWorqhRpw+FHZTw9Kn8CCiiitPU2eu4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRTAKKKKW5XIrXCiiinbzBRv1CiiiqastxtBRRRU2J5Qoooo17jsFFFFDbEtdwooopJX3DluFFFFK/QQUUUUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9k='] Multimodal Competition False Theorem proof Plane Geometry Math Chinese 80 "如图, $O 、 H$ 分别为锐角 $\triangle A B C$ 的外心、垂心, $A D \perp B C$ 于 $D, G$ 为 $A H$ 的中点.点 $K$ 在线段 $G H$ 上, 且满足 $G K=H D$, 连 $K O$ 并延长交 $A B$ 于点 $E$ . 证明:$G E \perp G C$ ." ['连 $B O$ 并延长交圆 $O$ 于点 $F$, 作 $G N \\perp A B$ 于 $N$, 如下图.\n\n\n\n\n由 $O$ 为 $\\triangle A B C$外心, 知 $B F$ 为圆 $O$ 的直径.\n\n$\\therefore A F \\perp A B, F C \\perp B C$ .\n\n结合 $H$ 为 $\\triangle A B C$ 的垂心, 得 $H C \\perp A B$ .\n\n$\\therefore A F / / H C$ .\n\n同理, $F C / / A H$ .\n\n$\\therefore$ 四边形 $A H C F$ 为平行四边形, $F C=A H$ .\n\n作 $O M \\perp B C$ 交 $B C$ 于点 $M$, 则 $O M=\\frac{1}{2} F C$ .\n\n因此, 由 $G$ 为 $A H$ 的中点, $G K=H D$, 可得\n\n$K D=K H+H D=K H+G K=G H=\\frac{1}{2} A H=\\frac{1}{2} F C=O M$ .\n\n结合 $K D / / O M$ ,得四边形 $O M D K$ 为平行四边形.\n\n$\\therefore O K / / M D$, 即 $E K / / B C$ .\n\n由 $H$ 为 $\\triangle A B C$ 的垂心, 知 $\\angle N A G=90^{\\circ}-\\angle A B C=\\angle D C H$, 结合\n\n$H D \\perp B C$, 得 $\\triangle A N G \\backsim \\triangle C D H$ .\n\n$\\therefore \\quad \\frac{N G}{D H}=\\frac{A G}{C H}, \\angle N G A=\\angle D H C$ .\n\n又 $G K=H D, A G=G H$, 因此, $\\frac{N G}{G K}=\\frac{G H}{H C}$ .\n\n又 $\\angle N G K=180^{\\circ}-\\angle N G A=180^{\\circ}-\\angle D H C=\\angle G H C$ .\n\n$\\therefore \\triangle N G K \\sim \\triangle G H C$ .\n\n$\\therefore \\angle K N G=\\angle C G H$ .\n\n由前知, $G K \\perp K E$ .因此, $E 、 K 、 G 、 N$ 四点共圆.\n\n$\\therefore \\angle C G H=\\angle K N G=\\angle G E K$ .\n\n$\\therefore \\angle E G C=\\angle E G K+\\angle C G H=\\angle E G K+\\angle G E K=90^{\\circ}$ .\n\n$\\therefore G E \\perp G C$ .'] ['/9j/2wCEAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDIBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAgcB7gMBIgACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APf6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKzdZ1iz0DSbzVdQmENpapvkc9/QD1JJAA7kgdaANKiqek6jDrGjWOp26usN5bx3EYcAMFdQwzgnnB9auUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRUcskcSF5XVFHJZjgD8TQFmSUVzt/438N6aD9o1i3Zv7kB80/kmcfjiucvPjDoUKn7La3ly/b5VRT+JOf0rKVanHdmE8TRh8Ul956LRXi978ZdTkJ+xabaQL0HnFpW/QqP0rIm+KfiqT7t3DDn/nnbr/UGsXjaS8/Q55ZlQXW/oe/0V83t4z8WXhbGrXrHv5Xyf+g1Xa58VX3LTazOD3LSvUfXov4Ysj+0ov4Ytn0xRXzOdK8Uyg/6BrDg8cwSn+lB0PxQhBGl6wp9reUf0pfXZfyMX9oy/wCfbPpiivmf7H4ot23G31mMjvslXFSpr/i2z4GoasmP4XkfA/On9eS3ix/2kl8UGj6Tor52t/iN4steBqzOPSWJHP5kZrTt/i74khx5iWU4HUPEQfzBH8qax9J73KjmVB73R7tRXlFj8aIiFGoaQ6+r28ufyBH9a6Gy+Kfhe7cLJcz2pJ48+E4/Ncit44ilLaX36HRHF0ZbSR21FULPWdN1AD7FqFrcEjpFMrH8s5q/2rbdaHQrS2CiikJ/LvmmGoyWRIY3kkYKiAszHgADkmvmL40eMdR8Qz2ccJaHw7LukswRg3O07TKRn7uchfbnvXo/jXxZp+u62PDTrqMugwlv7UnsLeSTzpFxi3DIpwAcb+R/d4Oa8y+OGvWGvaro50+3uoIre1aPZcWrQYG4YCqwHH0pAfQ/gX/knvhr/sFWv/opa6CsDwL/AMk98Nf9gq1/9FLW/QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFALXYKKxdb8VaN4fU/wBoX0ccmM+Up3SH6KPX3xXmWvfF69uQ0Oi2wtIzx50wDSfgPuj8d1Y1MRTp7s56uKpUtJvU9fury2soTNdTxQRDq8rhR+Zri9Y+K2g6cTFZibUJR3hGEH1Y/wBAa8nhsvE/jK680Jeai6nHmSE7U9snhfXiuy0n4NXblH1bUY416tHbgsx9sngfka5vrNap/Cjp5nIsVXq/wY6d2Zup/FzXrt2FitvYxfw7U8xvxY5B/ACucMXiXxXcLJs1DUX6BipdV/PgfpXuOl+AvDelBTFpcUsi/wDLS4/eMT688D8BXSqAqhQMADAFP6rUnrUkH1GrU1qzZ4Zp/wAI/EN0oa7e1s1PVXfc3/joI/Wulsfgzp8YU6hqdxMe6wqqD8zk/wAq9PorWODox6XN4YChHpc46z+GPha1IZrB529ZpmP6AgfpW3aeGtDsQPs+kWUZH8QgXP54rWorZU4LZHRGlCPwpIRQFUKAAAMADtS0UVdjQKKKKAuFFFFC0ArXNjaXgxdWsE6+ksYb+YrFu/Afhe8B83RbZS3eIGP/ANBIro6KTjF7omUIS+JXPP7r4ReHZ1PkPeW5PTbKGA/76BP61zt98GLtWJsNXhkHZZ4yhH4gn+VexUVjLC0ZdDnngqE94nznqfgHxPpJMj6bJMi8iS1PmD68fMPxAqKH4g+J/DVtJi+mdYVJ8m6Xf06DnkD6Yr6Rrx746eK9MsdEOgrDb3OqXa8l1DNbR5+9zyCeQPQZPpmaWXSlUSot3MVgFCSlCTOOf4k+OZ5hef21HAThhapbR+UB/d+YFj9Sa6q8+Ly63o+i6bbSnTdR1OU299dKM/YgrBXKZ7t/CewPPIrw6PxBPHaCEwB3C7RIzdR9PWu28P8Ag/V9R8KWur6db/boJWbzRCQZFfdggr1zn0zwRVTo4zDRcqsbq57+c18BClT+oq8vtH0lo2nWOj6LaWOmqq2UMSrFtbcCOuc985yT36187fHnUIvEHijT49LV7uO2tdrzQLvTczE4BHUgAfnWhpPjvxL4emWI3ck0cfytb3aswHbHOGX8x9K9K0L4r6NqO2LUUfTp+BlzujJ/3gOPxAqaeLpz0ejPDo46lP3ZaPzNT4dX0F/8PtDETc21lDbzIRho5EjVWUjt0z9CK6ztUUM8NzEk0EqSROMq6MGBHsRUvaunY7QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoqC5uoLS3knuJUiiQZZ3baFHua8s8V/Fna0tl4fVWGMG8ccH/AHR/U/lWdStGkryZjVxFOkryZ6FrniTSfD0Pm6ldpESCUiHLv9F6n+VeS+IPivq2pFodKT+z4M4EgIMrD6/w/h+dYGkeHNe8Y3vmxpPOGbEt3OxK++WbqfYZ/CvXPDfw10bQ8T3C/b7v/npOoKqf9lOg+pya4+etiPg0Rxc+IxWkNInlWieCfEPiiYXRikjhlO9ry5J+b3B5Zs+2frXp2h/CrQtLUPfBtRnGDulG1AfZQf5k13ajCge1LW9PCQhrLVm9HA0qerV35kcMMcESxQxpHGowEUYA+gqSiiuk7AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKr3dzBZ2s1zcyrHBCjSSO54VRySfYCmt9AMTxp4tsvBvh+41S7ZTIAUt4S2DLIRwv04yT2Ga+YND0rV/id46Imkd7i7kMt5cBeIo+MnHYAYAH0FTePfGF78QPFgMAka0WTybC2HXBOAdv8AeY4/Qdq+hvht4Gg8EeHEhdFOpXAEl5L1+bHCA/3V/UknvXtRtgaHN9tmfxM+YvGWmW+jeMdV0yzRlt7W4MUYJycDAyffivWf2d9dXOraDI+C228hGevRH/8AZK81+IUYl+J2uRkn5r9wfzx/hT/BGrP4K+JFpLd/IkFy1rd5PCqco2f93734V3V4e2wvK97XJWj0PqrV/DWj66v/ABMrCKZ8YWTGHX6MOa8y8QfCCeBJJ9CuDOASRbT4DAezdD9CB9TXslFfIVaFOp8SFVw1KqveR822WseI/BV6YEkuLNwQz20y5Vh/unjn1A/GvTfDvxW03UiLfVlGn3B4EgJMTH69VP1/Ou21PR9P1m2NvqFpFcR848xclfcHt+FeUeJ/hLc2ga60GRrqPOTbSH5wPYn736H61y+yq4f+G7o4fZYjDa03ddj2RHWSNXRgyMAVYHII9adXzjoPi7XPCF28AaQxI2JbO4zgHoeOqH6Y9817P4X8a6X4ngUQyiG925e1kb5h64/vD6fjXRSxMKmj0kddDFwraPRnT0UDpRXQdXWwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSEgcnp1oAWub8UeMdM8LQf6UxluZM+VbRn5mHqf7o9z+Gelc141+JsOl+Zp+iOs16DiSfGUi+n94/oPfpXnWgeFta8aajJMrMU3ZnvJySM/j94/T8fWuOtiXf2dPVnBXxlpezpay/ITWvEeueNtTjhId9zYgs4ASg98Dkn1J/lXdeFPhOkBjvdfYSSKdy2SnKj03sOv0HH16V23hvwjpfhi322UW6dhiS4kwXf8ew9q3x0opYWz5qmrFRwWvPX1kRQwxW8SxwxLHGowqIoAH5VL2oorsPQCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKADpXzz8cPiB9tun8LaZMfs9u+b50biSQf8s/ovUj1wO1d78W/iAnhLRGsLC4VdavFxEOphToZD6eg9/oa8e+E/gB/GWum+1COT+yLNw8xb/ltJ1EeT78n244yDXq4KhGnH6zV2WxEnfQ734I/Dz7Fbp4r1WNTPMn+gxsM+Wh6yexI6egz617bSIqoiooCqowABgAUtcOIryrTc57/oXFWPj34hcfFLW8f8/wCf51u/HHw+NH8eveRKBBqcYuPQLJ91vxyAf+BVg/ET/kqGu/8AX81e2fHvQhqHgqLVUjzNptwGLD/nm+Fb/wAe2flXu+19nOins1YyS3Os+HWvr4l8C6Xf7szLEIJwevmJ8pz9cA/jXVjpXgf7PGuqk2raBI+0uFu4VPTj5X/9k/I174OgrxMXS9lWcTSLugooorm1Hc5/xJ4Q0rxNbFLyALOPuXEYAdfx7j2NeLeJfBWs+E7g3S7pbRWzHdxZG09twHKn9K+iajljSaNo5FDIwwVYZBFc9bDQqa7M5a+DhW97aXc8k8I/FUxLHY+IiWjACreAZYem8d/qPx9a9bhmiuIEmhkWSJ1DK6nIYHoQa8r8Y/CpZN974djwxJMlmXwD3yh7fQ/ga43wv4y1Xwfem3ZXktN+JrSUEYPcjPKEfkfSsIVp0XyVNu5zU8RUoS5K23c+iqKydD1/T/EOnrd6fMHU8Mh4ZD6MO38q1h0Fd6d1dHpRakroKKKKBhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFQzzRW0Mk8zqkcalnZjwBQA+SRYo2kdgqKCWYnAAHevGvHfxJfUFn0nRWK2hJSW5HWUdwvoPfvVHx58QJdfkfT9Md4tMUkM4bBn9zj+H271s+A/hsXMWra9CNhG6Gzcd+zP/Ra4KtaVWXs6e3VnmVcRKvL2VH5sx/BPw6m15Y9R1Mvb6eW+VMEPMPb0X3r220tILC1itbaJIoYlCoijAAFTgBVAAwAMAUtdNGhGkrLc7KGHjQjaO4DpRRRWxuFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYfivxLZeEvD9zq9+SY4gAkanDSOeij3P6DJ7VrXE0dtBJPLIkccal3dzgKAMkk9gK+U/iZ44n8eeJEgsVk/s63byrOEDmRicFyPVuMDtx3NdeDwzrz/u9WTJ2M23i1n4oePvmYNd3sm5352QRL1PHQKvA6fiTX1d4d0Cw8MaFbaTp0ZW3gXgt95iTksfcnmuV+FvgKLwb4eV7qJW1a7Ae5k7oOojB9B/PPoK9ArXHYlVZezh8KCK6gOgooorz2X1Pj34j/L8T9dI7Xpr6z1fTYNY0i8025XMN1C8T57BhjP9a+TPiV/yU3Xv+vxv5CvsKvWzCXLClJdEZR6nx74N1STwP8SLWW6yqWt01rdA/wB05R/y6/8AAa+whyK+Xfjp4fXSPHZvol2QanF55wMYkHD49zgH/gVe7fDjXR4i8B6XesczJCIJhnP7xPlJ/HAP408wiqlOFddUOO9jrKKKK8gsKKKKACuQ8Y+BbHxVEZgRb6igws4XIYDoGHf+ddfRUziprlkTOnGouWSuj5shm1zwF4jb5TBdxfKQwykqE/kVPqOeOueK9u8JeL7HxXZmSH9zdR/663ZuV9x6j3qz4l8Naf4m09ra8jG8AmKZV+eNvUH09u9eFappWteBNeQ+Y8UqndBdREhZV9j+hH4Ywa4Pewz0+E8tqpg33gfSPaiuS8GeNbTxVaCM7YdRjX97B2P+0vqP5V1td8JKa5o7HqQmpxUo7BRRRVFBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSEgck4HWgBssqQxPLIwWNFLMxPAArwz4heOjr8zadpkrDTEPzNyBcHPU4/hz0HetD4l+OWvZpdB0yUfZUOLmZScyMP4R7A9fU8fWx8N/AKziPXNXgJX71rBIOvo7DuPQfjXDWqyqS9lT+Z5lepKvP2NP5sn+H/AMOTF5Wsa5ADIQGt7RxyvOdzj1/2T+PNer9qO1FdVKlGlHlgd1GjGjDlggooorQ1CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiuB+KPj2PwVoDJbSqdXvAVtUIzs7GQj0Xt6nHvV0qcqs1CG7C9jgvjh8QVcP4T0ucEBs38kbdMf8ss/q34D1pPgf8AD1zKvizVIAqgEafFIn3iesuPTsPxPYGuI+Gvgibx74mkkvjMdNgbzbyfPMjE5CBv7zc5PYZ9q+r4IY7a3jghjWOKNAiIowFUDAAHYV6uKqRw1P6vT3e5CV3dkg6CiiivHLCiiigEfHnxM+X4m6+euLpv6V9h18efE/8A5KX4g/6+m/kK+w69XMdadP0Ihuzyn49aGuo+CI9TSPdNptwHJx/yzfCsPz2H8K5r9nrxDzqfhuZs5/0uDP4K4/8AQT+de3arp0Gs6VeabdKGguoWhcezDH+fpXyZ4M1GXwX8TrMz/L9nvGs7oN/dY7HJ+nX/AICKvCfvsLOl1WoNWdz7AooorxywooooAKKKKACsnX9AsPEWnNZX8KuOTG3dG7EGtaik1fR7CceZW6HzZq2kav4H1+MeY8ckbFre6QYEo9R+fI/oa9q8HeMbTxVp+fliv4k/fwHt/tD1U/p0rS8Q6BY+I9NeyvY8jrHIPvRtjhga8DuINV8B+KRgmO4t3zG/RZk9x/dIz9Oa85p4eV4/CeVKM8HO6+Bn0nRWF4W8S23ifR47yAqsqgLPCD/q39Pp6Vu16MZKSutj1IyjNc0dgoooplBRRRQAUUUUAFFFFABRRRQAUUUUAFebfE7xmdLt20XT5mW+nXM0qHmFD6e5/Qc+ldJ408UxeFtEe4G1ryX5LaNu7ep9h1P/ANevFvDGgXnjbxG4nklMbMZbu4b7wUnkZ9W6D8fSuPE1X/ChuzgxdeV/Y092bXw48EnXLpNWvkA06CT5U6ec6kHGP7o/Xp617mAAAAMAVXs7O3sLOK1tY1igiQKiqOABVmtqFFUoWR0YahGhC0QooorY3CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiimMwRWZiAoGSTwKa3AzPEWu2XhrQ7rV79tsFsuSB95j0Cj3JOPxr5QvLrWfif49BVN13fSbIot2UhjH8OewABP5nqa3fix4/k8Za8NP0992kWkm2AL/y3foZPzyF9snvXr3wh8ADwloQv7+HbrF8gMu4cwp1EY9D3b347V7NKKweHdSXxMh+9odZ4V8M2PhLQbfSrFQVjGXlxhpX/AImb3J/IYFb1A6CivHlJyld9S7WQUUUVIBRRRQCPjz4oDHxL8QZ/5+WP6CvsMHIzXx78Uf8Akpmv/wDXyf8A0EV9gr90fSvWzD+FT9CI7sWvlr446J/ZXxDlu0jCwajEtwCOBuHyv+ORn8a+pa8r+POhLqXgVdSSPdPpswfco58t/lYfnsP/AAGufLqvs6689ByWh1Pw58QnxP4F0zUJDm4Efkz+8iHaT+OAf+BV1deD/s8a4x/tbQJHBUYu4VHTsr/+yfrXvFZYul7KtKI4u6CiiiuYYUUUUAFFFFABXOeMPC1t4p0lrZ8JcxnfBNtzsb0PqD3H49q6OiplFSXK9iZwjOPLLY+b9G1bU/AvilvMRleGTyrq3DfK6/Xv6g+tfQmnala6tp8F9ZyCS3mTcre3oR2IrjPiT4MGuWR1SxjP9pW6/dUZ85P7v19PXp3FcL8N/F50DVP7PvZSunXJwS3Iik6Bs+h7/wD1q4acnQn7OWzPNpSeFqezn8L2Z7zRSA5AIpa9A9QKKKKACiiigAooooAKKKKACoLu5hs7Wa5uJVihiUs7seFA6mp68j+LPipt/wDwj1m4C4D3bKeSeqp+GMn8KyrVFTjdmNeqqMHNnF+INY1Dxv4oBijdy7+TaQKOVTPH49yf6CvcPCXhq38MaJHaRgGdgHuH/vvj+Q6CuN+FHhU28DeILxCJpVKWob+FDwXx6noPbPrXqVc+FpP+JLdnLgqL1rT+JhRRRXaegFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFHqAV4p8bPiILG2k8LaTcf6TMMX8if8ALOMj/V57MQcn0HHeu3+JHjmDwP4fNwB5moXO6O0jzxvx99v9lcjP1A78fO3gbwlf/EXxbJ9pmcwB/P1C4cnOGPI/3m5x+PpXqYDDpfv6uy2Im+iO1+CXw+e+v4/FOqQFbW3P+gq3HmSA/fx6Kc49/pX0QOlV7O0t9PsoLO0iWK3gQRxxr0VQMAflVgdK48TiJYio5z+RUVZBRRRXOMKKKKACiiigEfHvxR/5KZ4gz/z8k/8Ajor7BTlF+lfH/wAU/wDkp2v/APXz/wCyCvr+P/VJ/uivWzD+FT9CI7sdVHV9Pj1bR73TpuI7qB4WPoGGM/hmr1FeVF8r5uxTPj3wVqdz4L+I9lJcjyTb3RtbtG7KTscH6df+AivsKvlv456GdK+IUl5Gm2HUYVnUgcbwNrD65AP/AAKvfPh7rZ8ReBNI1Jm3TNCI5j6umUYn6kE/jXq5hH2lOFddtSY72OoooorySwooooAKKKKACiiigBDg8YzXiHxP8If2VqH9r2MZFndMfNUdI5Sc/gDyfr9RXuFUtU0621fTriwu03wTKVZf5EfQ/qKxr0lUhbqYYmiq8OV7nD/C7xadW046ReSqby0UeUc8yRYwPrt6H6ivRR0r5suodS8CeLiY2Kz2sm6Jz0kQ/wAwRn6c19BaJq9vrmj22o25/dzJkj+4e6n6HissLVbXs5bowwNZyj7Op8SNGijtRXWdwUUUUAFFFFABRRRQG+hjeJ9di8O6Dc6jIVLoNsSH+Jz90f1+ma8J8M6PdeM/Fii48yRZJPPvJc4wucnn1P3R9fat74reJP7T1waRASbexb59vO6Ujn8un1JrvPhp4eGieGY7iRcXd9iWQnqF/hH5HP4159R+3rcq2R5lT/asQoL4UdlFEkMKRRoERFCqqjgAcACn0DpRXoWsen5LZBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVnazq1noOk3WqahMIrW3Qu7E/kB6kngDuSPWr5NfMnxi+IT+JdXfRNNmzpFm/zFcgXEo/iJ/ujkADqcn0x1YTDSxE+VbCk7HM67q+r/E3xwrQwNJPdOIbW2UlhFGDkDPbAyxP1NfT/gzwnZ+DPDdvpdsqvKF33EwXBmkPVv6AdgK434OfD5vDOknWtSt2TVrxMLHKBugiz09i3U+nA9a9WHSujH4mM/3VL4V+JMY9WFFFFeaWFFFFABRRRQAUUUUAj4/+KfHxO17/AK+B/wCgivr2L/Up/uivkP4q/wDJT9e/6+B/6AK+jPHvjm28B+Fkv5EE93NiK1tt+3e2OSe+0Dk8eg7162YfwqfoRHdnWXN1BZQPcXU8cEKcvJK4VVHuTgVzx+IvgwT+UfFOk7s4/wCPpcfnnFeK+DdJ1r4067cap4qv7h9Es5Mi3hbYhkPIjQYwAF6t97BHOTke523gvwxaaebCHw/pq2pGGja2Vg/1yOT7mvJtfQs84+N8WneIvCFrfadfWl3PYsbkCCVZC1u21HcY7bmj5rM/Z415i+raBK/AAu4Vz06K/wDNK6Xw/wDDKz0rxZ4yghtGh0nULKOCAFSVAkD+Yqk/3SoOO2R0rxDwdqdz4J+I9nJcDy2trs2t4rH+AnY+fp1/AV7GE/fYWdLtqQ1Z3PsOiiivHLCiiigAooooAKKKKACiiigDgvih4aOs6GL+2jLXlj83y9WiP3h9R1+gPrXHfCrxR/Z2pnRbqXFteHMJY8JL6fj0+uPWvbCMmvnnxzoT+GPFri13x28hE9swGNvPQf7p/pXDiY+zmqsfmeZjIeymq8fmfRA6UVg+EdfXxL4et9QwqynKTIOiuOuPbofxreHSuyMlJJnoxkpJSXUKKKKooKKKKACsTxVrcfh/w7eagx/eRoViX+9IeFH58/TNbdeL/F7Xxc6rBo0B+W0/eStnrIRwPwX+dY4ip7Om5dTDFVfY03IwPAmhv4l8XRfaMSW8RNxclzneM9D9TjPsTX0PXCfC3w+uk+GVvnH+kX+JTkdIxnYP1J/4FXdjpUYWmoQv1ZlgqXs6d3u9QooorpOwKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK5Xx74ztfA/h2TUJVE1zIfLtbcnHmSYzz/ALIxkn8O4qoQlOXLHcG7anFfGz4gHQ9Obw7psxXULtMzyo3MEXp9W6ewz6iuK+C/w9bXNTTxHqUS/wBm2kn7mN/+W8o9R6L19yAPWuS8L+HtU+JfjSSOW4fdMxuL26ILbFzyR75wAPp719Z6ZplppGm2+n2UQitreMRxovYD+Z9TXr4iawdL2MPie7IXval4dOetFFFeMWFFFFABRRRQAUUUUAFFFV7y5hs7Se6uZFjggjaWSRuiqBkk+wANOwHyR8Vv+Sna9/18D/0AVt/H/UpbnxrZ2J3CKzsI9q5yCzEktj6bR+FYPi8yeK/FWp65YxbLW6l3xLKcOy4ABwOBnFdP8V7JPF2haZ490WFntkhFpqCEYaB0bgsO/wB7Gf8AdrsxWMo14RhTldx3NamEr0EpVItKW3me2/DXRIdA+Hmi2ka7We3S4mPGTI4Dtn6Zx9AKwfGnxbTwPqy2GqaBdMJVLwyxzoRIm4jOOxrW+GPiqw8T+CtP+yyj7TZW8UF1EfvRuq4zj0O0kV4T8Wbg+LPjN/Zds4OySDTI2OcBi3P/AI+7D8K4jI+jPCviC58S6NDqsulS6dBcxrLbiWUMzqc4bA6AjBH1r55+N/h9tH8fS3qDFvqSC4QjjDjhx9cgH/gVfUFrbQ2dnBa28YjghjWONB0VQMAfgBXl/wAedBfVPBUepQpul0ybe3HPlv8AK2Px2fka78urezrrs9CZbHV/DrXD4i8A6RfyPum8kRTEnkyJ8jE/XGfxrq68E/Z311vN1fQZZMrgXkK56Ywr/wA0/Kvex0rHGUvZVpRHF3QUUUVzDCiiigAooooAKKKKACuP+I+gf254WnaNAbmzzcRnuQB8y/iM/kK7CmsAQQwBB4INRUgpxcWROmqkXB9Tw/4Ta+NO1+TTJ5CIb9RsB6eaOn5jI/Kvcq+cvF+kP4U8Yyx27bIldbm1Yjoucj8iCM+1e9aBqqa5oNlqSLtFxEGZc52t0Yfgc1y4STV6b3Rw4GbSdKW6NOiiiu09EKKKKAWuhXvbqOxsri7mOIoI2kc+gAz/AEr5wsLe68Y+MVRwTJfXBeXvtUnLfgFr1f4tas9h4YWxjba9/KEJ9EXlv/ZfzNYXwb0kmXUNYdeABbRHHfhm/kv51wV37SqodjzMT+9xEaT26nrcaJFEkcahUUBVA6ADpTqKK77W0R6draBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSEgc/8A1qAKuo39rpWn3GoXkqxW0CGSRz2A618l+LvEmqfEnxiht4XlEjmCwtUHKoTx+J6k/wAgMV1/xr+IL6vqb+GdNlIsLR8XLqc+dKO2R2X+f0Fdb8Ffh4dGsV8S6nFtv7pMWsbf8sYj/ER/eb+X1NezhorC0fby+LoZyd3Y7T4feCrbwR4dWzj+e8mAku5yPvvjoP8AZHQD6nvXX0DpRXk1JucnJ7s0WiCiiioAKKKKACiiihppXYBRWD4k8XaJ4Ts3udWvo4jjKQg7pJP91ep+teD+L/jrrWr+ZbaDGdLs2G0yEhp2B77uij6c9811YfB1a/wrTuJySPa/FPxD8O+EEYalfK11/DawfPIfqP4fqcV8/wDjP4va/wCLo7jTrbGn6XNlPIhy0kinjDv36nIXHpg9areE/hb4l8ZyG7aM2lmx3Nd3asDJk5JQHlz9ePU5r3zwd8LvDvhBo7iGE3eoqP8Aj7uPmKnvsXoo/X3rulDCYRWkuaRKcm7rQ+bk1VbCFba/t54LuJQrRPGQc4yD9MV7f8Brizu/BOoQo2bk38kt1C4yF3qAuB6EL+YNeN/FYY+KGujn/XKOmTzGtS/DLxY3gvxrHJeFo7O4/wBFvFPRQTwx/wB0jP8A3161nTyelCk6tN6vWx6GLzfEYynClVtaOx9DXXwr8E3d4bttBjhnbOWtppLfr14jZRWjo3gfwx4flSbTNDs4J04Wfy98o4/vtlvqc810KsGUMpyCMg0teX5HEIOgqpqlhDqulXen3ABhuoXhcHurDBq5RTi+V8y6Az4/8FX8/gv4m2JvW8g2t21rdegUnY+fpyf+A19gDpXy38cfD7aP49kv0X/R9TjE6egkHDr9cgH/AIFXvHw41w+IfAGk3ryb5vJ8mY55Lp8pJ+uAfxr1cwj7SnCsu2pEd7HWUUUV5JYUUUUAFFFFABRRRQAUUUUBtqeb/F7RGvdDg1SFN0lm+2TA52MQP0OPzNZ/wd1tnjvdElfIT/SIQfTowH47T+Jr0+/s49QsLmzmAMc8bRt9CMf1r518P3s/hTxrA0x2ta3JguAem3O1v0PH0FcFa9Osqnc8zEr2OIjUWzPpOigdKK7/ADPTCiiobmaO2tpZ5PuRoXb6Ac0XtqJuyueGfFfUjfeMTahw0VnEsYA7MfmJ+vIH4V6z4L0s6R4Q061dNkvlCSQd9zfMQfxNeE6dHL4r8bQiTLve3e+Tv8hOW/Jc/lX0tXDhVzVJTZ52DXtKk6r7hRRRXcekFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeWfGP4gr4b0g6Nps+NXvVILI2Gt4z1Y+hPQenXsK7Lxh4r0/wAHaBPql82SMpBCGw00hHCj8uT2GTXy5pGl6z8T/HDLJK0lzduZbq42/LFH3OOwAwAPoK9HA4eMn7ap8KJk+iOj+EHw9bxTq39sahEG0izkGVdcieTGdv0HBPrnHc4+oR0rN0TRrPw/o1rpVhGEtrZAqD17lj7k5NaQ6Vhi8Q69S726BFWQUUUVylBRRRRcAoqnqOpWWk2Ul7qF3Fa20f35ZXCqPzrxrxj8e7eETWXheDzpcY+3TjCDt8iH73/AsfQit6GGq13amvn0E5JHret+I9I8OWn2vV76K0hyQpkPLn0UdWPsM14f4y+PV3do9n4Wge0Q5DXk6gyEf7KnIX6nJ+lcDZaV4w+JerNMgvNTlB2STzNiOIHnGTgKP9kYPtXs3g74G6To2LzxBImrXfBWEKRAh+h5f8fyr0lh8LhPequ8uxDbex5BoHgnxb8Qr83qJNJHMxMupXjnZx1O7qxHoM/hXung34N+H/DMaT38SarqCkN5s6Dy0PbanTI9Tk/SvRYYYreFIYY1jiRQqIowFA6ADsKkrlr5jWq6LSPZFKNtw7UUUVwXtsWfIXxY/wCSo67/ANdl/wDQFrpvjV4O/sq/svEVnDstL+NRcFRws4HXH+0OfcqTXNfFkY+KWuY/57If/Ia19MeIPDlv4t8FvpFyQvnwKY5MZ8uQDKt+Bxn1GR3r3513Q9lJ7dTFK9zk/gt4x/4SPwsNNu3Bv9LCxHc3zPD/AAN745X8Ae9eoDoK+P8Awhrl38O/Hyy3kbKIJGtb2EdWTOG+uCAw/wB0V9eQTR3NvFPC6vFIgdHXoykZBFcGYUFSqc0dpalxfQkooorz12KPK/jxoR1PwOmoxoGl0ycSt6mNvlYD8Sp/4Ca5v9nfXFC6roEsmXJW7hBP3v4X/kle061pkOs6LfaZPjyruFomPpkYz+FfJ3g6/l8E/E2zN4xh+yXjWt16BSdj5+nX/gNevhP32FnT6rUhqzufYFFHaivILCiiigAooooAKKKKACiiigArwT4q6MdN8XPdKMQ36iYHsHA2sPrwD+Ne915z8YdNa68N218q5+xz/P8A7j8fz2/nXNi481JvscmOp89F+Wp0vgnUzq3hDTbl33SCIRyHvuX5c/jiuhryn4NaoXttR0p2JKMtxHn3+Vv5L+derVpQlzU0y8LPnpKQVzHxA1A6b4K1OVTh5I/JX6udp/Qn8q6evNPjLe+Voen2QOGnuDIR7IMfzYUV5ctNseJnyUpM5r4PWIn8T3N2y5+y252n0ZiB/INXuFebfBuxWHw9e3v8c9xs/wCAqM/zY16TWeEjakjLAw5aK8wooorpOwKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqC6uIbO3luriRY4IULyO5wFUckk+gGanr57+OPxB+1XT+FdMmbybd83zo3DuP8Aln9F6keuB2rowuHlXqKKE3ZHFeP/ABnffEDxSFtxK1lHJ5NhbAcncQAcd2Y44+g7V9A/DXwHb+CfD6K8aHVLlVe7l64PZFP91f1OTXEfBL4d/ZYU8V6rGjSTJ/oETD7qngyH3PQe2T3r28dK7MdiIpewpfCt/MmK6sB0oooryywoppOM9MV5n4w+Neg+HTNa6b/xNNQQ7dsZxEp/2n7kegB/CtKdGdWXLBXYNpbnpM80VvC808ixxICzu5AVR6kmvJPGPx20rSma18Oxpqd10a4YkQJ9O7n6YHvXj2u+LPFXxG1WO2laa4MjYhsLVW8tffaM5+pya9B8JfAG4mKXXim7MC5B+x2rAv8ARn5A/wCA5+or1I4Kjh1zYh3fYzcm9jzq51Dxh8S9YWJjd6nOG3pbxjEcI9QvCqO2TjpySa9X8HfAO1t1gvPFE5uJuG+xQNiNfZn6t9Bge5r17SNF03QbJLPS7KG1gUfdiXGfcnqT7nmtCsq+YykuSl7sfIpQ7lSwsLPTLRLSxtoba3j+7FCgVR+Aq2OlFFea23qyttgooopAFFFFAI+RPi1/yVLXP+uqf+i1r6zsP+Qfbf8AXJf5Cvkz4uDHxR13/roh/wDIa19Z2Bzp1qf+mKfyFermCvRpryIhuzwf4/eERDd2/iizhG2bEF5tH8f8Dn6jKn/dHrXR/Azxiur+Hm8P3c26804ZhDHJeDoPrtJx9Ctel67o9p4g0S80q+j329zGUb1HoR7g8j6V8m6bd6j8NPiKGmB8/T7gxzqOBLEfvfgykEe+PStMO1i8M6UviWwpKzufYg6UVWsry31Gwt7y1lWS3uI1kjdf4lIyD+RqzXj2tvuaLYK+WvjjoP8AZHxAkvIlxDqUQuAccBxlWH1yAfxr6lryr47+HRqngxNWRczaXJvI9YnIVh+e0/ga7cuq+zrrz0JktDrfh/r6+JPBGmagHDTeUIp8/wDPRPlbP1xn8a6gdK8F/Z31xQ2raBIx3HbeRD8kf/2T9a96HSssXS9lWlEcXdBRRRXMMKKKKACiiigAooooAKyfEtiupeGdTtGXd5lu4Uf7QBI/XFa1NOOc0mrqxMldNM8B+F2omw8b28bcJdxvA35bh+qj86+gK+bJ8eG/H7lP9XY6hlf91Xz/AOg19JjpXHgnaMovozgy92jKHZhXiHxhvDN4otrUH5ILUE/7zMT/ACAr2+vnn4lXIuPH2o7eRH5cf5Iuf1Jp41/urdx5k/3Nu7PXPh1ZGx8DaarDDSo0x99zEj9CK6qqumW32LSrO0xjyIEjx/uqB/SrVdUFaKR2042gkFFFFUWFFFFABRRRQAUUUUAFFFFABRRXgPxs8Uax4T8Q2dtoniHUIJLmJp54fMDKgLYXbkcdG49qAPfqK8y8J+Fdd1bwjpuo6r4y8RRX93AJnSCaNUTcMqADGSPlK5565qlpejeNtJ+KdhYXnie91LQ2t5bos2FLBMLsb3DPGfcH64APWqKKKACiisTxT4ksfCWg3Or35JjiGEjU/NI56KPc/oMnsacU5PlW4HJ/Fn4gJ4Q0NrKxnX+2rtcQjvCnRpD6eg9/oa8b+FPgF/Gmute36yHSbRw07E/69+ojyfzPtxxkGsaGPWvij49+Y77u+kyzc7II1/kFX6fiTX1Z4b8P2PhfQ7fSdOUrBCOrfedj1Y+pJ5r2aslgqPs18b/AzXvO5rIixoqIoVVAAAGABTqB0rkvF/xE8P8Ag2Bjf3QmvP4LOAhpT9eyj3OPxryIwnN2irtmjaR1hP5d81wfi74r+G/CfmQG4+36gAf9FtmB2n/bbov06+1eJ+MPjF4i8UtJZ2bf2Zp0h2+TAT5kg9Gfrz6Lj6GpvBvwV17xGiXep7tJsSQR5sZM0g/2UOMD3J/A16cMvhTjz4mVl2IcuxleJviT4q8cT/YvNkitpGxHY2aEbvQHHLf54rp/BvwK1bU5IrzxGx06yOG+zow89x6HAwg+uT7CvaPCngLQPB0bDSrLFw4w91Kd8rfj2HsMCup7UqmZcseTDK0fxBRvuYfh3wnonhWzFvo9hHbg/fk6ySf7zHk/TOPStscgGlory5ScneTuy9tgooopAFFFFABRRRQAUUUUAj5F+Ln/ACVPXf8ArpH/AOi1r6x07/kGWn/XFP8A0EV8n/F0Y+Keu5/56Rn/AMhrX1hpxzpdof8Apin/AKCK9bH/AMGn6ER3ZZrw74+eDRLbReK7RP3kW2C8A7rn5XP0J2n6j0r3GqmpWEGqaZdWF1GHt7mNopFIzlWGP61wYas6NRTRTV0eO/APxd9p0+48MXUn7y2zPaknrGT8y/gSD/wI+le218dXdrqfwy+IQVXzc6dOHjcHAmjPf6MpIPpkivrXR9Wtdd0az1SzYtbXUSyoT1wexHYjpXZmNBRn7WHwyJg+hoVQ1jTYNa0i90y4/wBTdwtC5HUBgRkfT+dX6K82MuV8y6FM+QPA+rP4J+JNpLd5jWC5a1u17BT8jfkfm/Cvr8dBjpXy38cPD66N4+e8hAEOpRi56cLJna345AP/AAKvePh14gXxJ4F0u+LZmWIQTgnkSJ8pz9cA/wDAq9bMI+0pwrrtqTHex1lFFFeQWFFFFABRRRQAUUUUAFFFFAHz78T7M2fjq8YDC3CJMufcBSf++lNe1+F7w3/hfS7pjlpLWMsf9oKAf1FeZfGi126rpd3j/WQvFn/dYN/7PXbfDS4Fx4D08BstHvjb8Hb+hFcNBcuIlHuedhvdxU49zrTxzXzdrBN/8QrwMc+bqTJn/Z8zaBX0ievvXzbpK/bfiBZgj/Wampb/AL+ZP6Zoxu8F5izH7C8z6ToooruR6QUUUUAFFFFABRRRQAUUUUAFFFFACE/l3zXyR8SdQHin4w3qRQ3F3FFcJZrDbRF5GWPAcKO5LByP519S69q8Og6DqGrTjdFZwPMUBALbRkAe5PA9zXzl8BdNuNY+I9zrVwHkFnBJK83rLKdoB+oMh/A0Ad9rfxLvtZ1PTPCeleHdY0mbVJlgll1KDyHSA8SGMZ6hc854xwM4I9iHSsnUtOsX1Kz1q9dU/suOZ0Z8BU3qAzE9sKCPxNGha3aeIdOOo2JZ7NpXjhmI4lCnaWX/AGcg49cZoA1qKKKAGSyJDE0kjBUQFmYnoB1r5T+KPjybxz4hS3sw39l2jlLWNefObODJjuT0Ht7mu2+OHxBBV/CelTBjnN/Ij46dIs/+hfgPWsj4VeHtM0CJfG/iueGztUJGnpOOZG7yKvU+gAyTyccCvZwdFUKft5r3uiM5Svoem/CvwFH4M0Hz7uNTrF4ga5f/AJ5r1EY+nf1PsBXS+JPF2ieE7I3GrX0cLEZjhX5pJD/sp1NeMeMfj1dXaSWfhaB7WM5X7bNgyEf7K9F+pJPsK4fQPBHi34g3zXyJNLHI373Ub2Q7OOp3HlyPRc/hUrBTqN1sTLlT6dR3tojpvF3x11rV/MttBi/su0YbTISGnfP+10T8Oe+awfCXwv8AEnjWY3To9pZsdzX10rfPnklAeXJ9yB75r2vwd8G/D3hpI576JdV1AYYy3CDy0I/up049Tk/SvSh0olj6dCPJhY28w5W9zh/B/wALfDvg7y7iGD7ZqKjm7uOWB/2BztH059Sa7gdBRRXlzqTqS5pu7KSSCiiioGFFFFABRRRQAUUUUAFFFFABRRRR0A+Rvi//AMlU1z/rpF/6KWvq/TP+QTZ/9cE/9BFfKHxf/wCSqa5n/npEf/IS19X6ZzpNn/1wT/0EV6uP/g0/QmKsy1RVDVYIbiwmFzcT28KqXM0MzRMgAJzlT264PHHSvmz4c634w8aeNbfS5PE+rrZRhp7gichvKXHHXjJKjPbOea8oo7/48eDzqWjxeI7OHdc2P7u52jloCcg++0nP4n0rH+AXjJhJP4TvZhswbiy3HoeroP8A0IfRq6Lx7b6n4i1a08L+ENRvoriFSmqzG5kaCGFgcLKSTuc5PH3sdcDp4dr+ian8OPGv2cTs1xZSJPbXJXaJFzkMFyeDggjJ6Edq9fCS+sUXh3v0Ias7n2VRWP4Z1+28TeHbLWLXiO5jDFCclGHDKT7HIrYrypRcZcrLvc8n+PmhLqHguHVUXM2mzj5vSOTCt/48E/Kuc/Z310LJq2gSHBbbeQj6YR//AGT8jXtmsabBrOj3mm3K5huoWhbPYMMZ/rXyd4L1V/A/xJtZbwlEtbl7W7HYKSUY/h978K9XCP22FnS6rUhqzufYFFA5FFeQWFFFFABRRRQAUUUUAFFFFAHl/wAaIs6XpUv92d1/Nc/0q78HZzJ4SuYmOfKvGx9Cqn+eaT4xw7/CdrIBkx3q5PsUcfzxVP4LyE6VqkZ6LMh/MH/CuJaYux5q0x9/I9P6c184eDyJPH+mk9Dd5/nX0ef6184eA8f8J3pW7/nv/Q0sX8cQxyvOHqfSFFFFdx6bCiiigQUUUUAFFFFABRRRQAUUUUAcj478H3PjXSv7K/tl7CxZg0yR24cykEFckt90EA4x2rlfDXwf1Hwg1w2heM7uzNyFEw+wxSBgM44ckdz+desUUAeV698JtX8TReTrHj3U7qDduMP2dEjJ6/dUgH244r0DQNGg8PeH7DR7YlorSFYgx4LkDlj7k5P41qUUAMJA+leZ+PPi9omiaNeQ6NqEN5rHMKJEC6xMeCxbG35fTPJx71vfFC9k0/4ba9PHOIXNsY1bdjliFwD64P5mvnSD7L9gXy8fZtnfpjH86yqYj2EotxurnrZZlkcc5Jz5bK+3/BRyE00k88k87tJJIxZ3c53EnJJ7Hmuj0zRfFnxBvlS2iub/AMlVi8yQ4igTsufuqAP4Qc+1ZCaDq8y+bDpN88L/ADRuts5DKehBxyMVfhtfGFtAsEEGuRQqcrEiTKv5V9lGtGpSjODSfn0PEnBwk0z3bwj8DNF0jyrvXH/tW8ADeURiBD7Dq31P5V6tDDHBCkUMaxxoAqooACgdAAOgr418nxl/zz17/vmalW38aMcLFr5PoFmNedWwUq0uadVP+vUakl0Ps2ivjb7B45/59PEX/fuf/CkNh45IwbTxFj0Mc/8AhWP9lx/5+IfOfZVFfGf9l+Nf+fDX/wDvzN/hR/ZfjX/nx8QewEM3+FH9mL/n4v6+Yc59mUV8cjw94+IGNI8Skeot5/8ACl/4R7x//wBAfxL/AOA0/wDhR/Zkf+fqDn8j631TVbHRbCW/1K7itbWL70krbQPb6+wrC0X4jeFNf1BbDT9XR7l/uRzRSQl/93eo3fhXy++leIdPuLefxBp2rQWfm4D3sEqx78HbneMZ61b1NWlt1ghWSS8kkVbZIwTIZMjG0DnPSvIxT9hiFQ3v1PbwWWRxOEniHUS5en9M+wB0or48Hhr4gsARpHiP8YZv8KX/AIRj4g/9AjxF/wB+Zq9ZZZFq/tEeJzvsfYVFfHZ8KePmOW0fxAfrBL/hR/wifj3/AKAviD/vxL/hT/syP/Pxf18w5vI+xKK+PF8IeP36aNr34wyCnf8ACHfED/oDa5/37ko/syP/AD8X9fMObyPsGkPFfHx8G+Pm66LrZ+sclIfBXj3HGia1+MbmiWWQinL2i0/ruNSbdiz8WJVvPidr09tmeFZUQvGNyhljQMCe2CCD9K+p9Cu7e90CwuLWZJoXt0KyRtkMMDoa+VLDbBYLDIDFJBlJkcYZHHDbh65zXt3wOt7uLwXczShltLi/klsw3ePCgkexYNgfU968n6/PEfupKyiezjspp4ShTrRqKTl0Ro/GXWm0X4ZaoUcLLeBbNMjg+Zw3/jgevnXw54h1DwX4XutR063EV9rDNZ29/wAboI49rShB6sZI+T028dsei/tI6wxutF0NW+VY3u5F9ydiH9HH41a8T+Cvsv7OmmxKqm709Y9QYnAbLklxn0Ak6f7A68UHkHpnw4/sxvAel3WlxhY7uIT3DeYXZ5zxKWc8s24EE+2K5z42eDT4h8Lf2raR7r7TA0hAHzSRfxge4xkfQ+tY/wCzt4gF54Yv9EkP7yxn82PnrHJ2/Blb/voV7Myq6lWAIIwQe9a0asqVRTj0E1dHzr8B/F50/W5vDd3MRa33z2wY8JMOoH+8ufxUetfRo6V8jfEHw3c+AfHjmzZ4YDILuwmXqi5yAMd1Ix7YBr6U8D+J4vF3hOz1ZAqzONlxGv8ABKvDD+o9iK78xpJpYiOz/MmL6HS18u/HLw+mj+PTewJtg1OIXBwMASA4fHucAn/er6i7V5V8etDGoeB01NEzNp06sTj/AJZuQrD/AL62H8Kxy+r7Our9dxyWh1Xw513/AISPwHpV8xzMIRDMM/xp8rH8cZ/GurrwX9nrxDzqnhuVs5/0yDP4I4/RT+de9VljKXsq0oji7oKKKK5hhRRRQAUUUUAFFFFAHC/FoZ8EPx/y8R/1rC+Cp3W+tIezQn8w/wDhXQ/FYf8AFC3B9Jo//QhXNfBVSTrmCQB5H/s9cNTTFJnmz/31eh60fSvnHwau3x/pi56XWP519HcZ96+bdJY2XxAs+ceXqag/TzMH9M0Yx2lF+YY/ScH5n0nRRRXcekFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFMZgoLEgKOSScU+vFvjX8Rf7Ot38MaPc4vJQRfSJ/yyQjhM/3jnken1rahRlXmoRE3Y4L4ufEE+MNZ/s2wf/iUWUhETKT+/fGC59s5A9snnOK9E+Hfwd0q10O21DxJYC51GZhOLeVm8uAdkZM7WPc7geuO2a5b4J/D19Sv08UapbH7DbtmzR/+WsoP3sd1Xt6nHoa+i67sfUhBLD00tBQclqnYaiqiKqABVAAA6AU6iivMuygoooouAUUUUgCiiigAooop3ArXlla6hayWt5bxXEEgw8cqBlYe4NYujeBvDPh67a60rRbW3uTx5oBZlH+yTnb+GK6OikGoDpXlnjD4t/2f4lTwt4XsE1XXHk8ljI+IYpDwFP8AeI5J5UDpnqBf+Mfi6bwn4JkNk7Jf37/ZoHU4KAgl3H0UED0LA9q87/Z18Ox3V9qniS4jDvblbe2c87WYEyHHrjaPoxoDc7+/8I+OpdJe8TxzcnW0QPHBFbxpa7hzswRkjOQGbnpkdqyvhN8WLjxlcSaLrMca6nHH5kM0S7VnUfeyOgYZB44xn059K8QaomieHtR1WRlVbS3km+boSqkgde5wP0r5c+BltLN8V9Nkizsginkl/wB0xsv/AKEy0AfW/aiiigAooooQaHyN8YY0HxX1zCgZaI/nEmfrmvqjSlI0GxWIqhFtGF44HyDHHevln4xf8lW1z/ei/wDRMdfVekf8gWw/694//QRXqY6EY0KdkRFtvVnlXiD4GN4m1m41bVfFdzLczHLf6KoVV7Ko3cADGK7XUPDWqan4Pfw/PriKZYjbTXS2YDvEVAIxvwCRwSOOeg611lFeWWeUeEvg5L4L1tdT0rxPMJNvlyRSWiskqEglSNwPYcjB4r1cdKKKAPPPjD4S/wCEn8GSzQKWvtNzcwhRy6gfOn4gZHuoryf4H+MDoXib+w7k5s9UYKhzwkw4U/Rvu/Xb6V9MkCvlL4teFH8I+N5J7QGKyvT9ptWjJGxs5ZR/unkD0Ir18BNVacsNPrsRJWdz6v7VQ1bTYNY0m8025GYLqJ4n9QGGMj+f1rn/AId+LovGXhG2viR9siAgvE9JQOT9DwR9cV146V5koypVHfdFbo+QPBOozeDPidZG44+z3jWdyM/wsfLb8iSf+Aivr+vln44aH/ZPxDmu40KQajGtwCo43gbX/HIyf96vfPh14hPifwNpmoytuufL8qf3kT5SfxwD/wACr0swXtKcK0e2pMd7HVUUUV5JYUUUUAFFFFABRRRTA4b4sZ/4QeTH/PeP+dYPwUH7nWm9TD/7PWr8YZvL8I28YOPNvFBHsEc/zAqh8FoyNL1WQ9GmQfkp/wAa4J64pI86WuNS8j1A88V83ayp0/4g3hIwI9SMgz6eZuFfSVfPXxMtxB4+v9owJAkgx7oMn8waeN+GL7MMxXuRl2Z9C0VU0q6+3aPZXec+fbxy5/3lB/rVuuxaq53xd1cKKKKZQUUUUAFFFFABRRRQAUUUUAFFFZ2s6tZ6FpN1qeoTCG1t0MkjnqPQD1J6AdyQKaTbstwOe+I3jiDwR4ea5x5l/cExWkXq+PvH/ZHBPrwO9fOngjwpqHxG8XOLiZzFv+0ahdNknDHJGf7zHOPx9DUXiDWNX+JvjhWigZ5rlxBaWoJYRR54H4csx+p6V9O+CvCVp4M8N2+m24V5sb7mdRzNIep/oPYV7LtgaPL9uRmveZuWNlb6dZQWdpEsVvAgjjjUcKoGAKsjpQOlFeLvqaBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHg37SsUzWnhyVd3kLJcK+Om4hNv6K36113wJsYrT4VWE8f3ryeeeT/AHg5jH6Itdb4t8Lad4w0KbSdTRjE5DJImN8Tjoy8HnqPoSO5rhPC/gHx14IsZ9L0XxDo89hI5ZDeWsm6IkcsoVsZ6dSRQBW/aA8Ux6d4Vi8PQuDdam4aRR/DEjA89+WwPfDU/wCCHgKXw3o0uuarB5eo6igEcbD54YM5APoWIBx6Be+RWp4f+E0Fr4ik8SeJ9RfX9Yd96NLHsijPGCEyckYwOgAxxwDXpY5FAAOBRRRQAUUUUAj5K+MfHxY1zHrB/wCiY6+p9F/5AWn/APXtH/6CK+WPjJ/yVjXPrB/6Jjr6n0X/AJAWn/8AXtH/AOgivWx/8CmRDd6F6iiivJLCiiigAri/ib4RTxf4PubaOPdf2+Z7QjqXA5XP+0OPy9K7SkIB4IyOlXTqOnNTjugeqsfK3wd8Xnwt4wFneOY7DUcQTBuAkmfkY/Qnb9G9q+qq+XvjV4OHh3xV/adrGVsNTJk6fKkv8Y/HO78T6V7F8JvGP/CW+EI1uHJ1Gw229zk5LcfK/wCIzn3DV6eYU1VpxxENnuRHTQyvjzoa6l4GTUkj3T6bOr5A58tyFYfnsP8AwGuc/Z31xiuraBIwKri7h/HCv/7JXtOr6fHq+jXunTYEd1C8TE9twIz+FfJfgrVLnwV8R7J7kNC1vdG1u0J4Ck7HB+nJ/wCAinhP32FnS7aiejufYVFFFeQaBRRRQAUUUUAFFFFAHl/xol26VpcX96d2/Jf/ALKrnwcgMfhW6mIx5t22PoFUfzzWB8aLrdqel2uf9XC8uP8AeYD/ANlrtPhpbC28BaeQMNKZJG/F2H8gK4YO+Kb7HnQ97Gt9kdfXiPxisvJ8T2t2B8txbAZ/2lY/0Ir26vNfjLZCXQLG9ABaC4MZ+jKT/NRW2KjzUmbY6PNRZvfDi9N54F05mOWhVoW9trED9MV1lea/By/EugX1iSN9vcCQf7rjH81NelVeHlzUkzTDS5qUWFFFFam4UUUUAFFFFABRRRQAUUUUbasBpOCfTvXzL8Y/iG/iPVX0PTZwdJtH+dlJxcSjuT/dU8ADqcn0x6D8aPiC3h7ThoOlzldTvF3TSRt80EX/AMU3QegyeODXA/Bn4et4h1Qa9qkJOl2b/u1b/lvMOnHdV6+5wPUV62CpKjD6zU+RDd9D0D4N/D7/AIR3S21vUrdk1W8XCJIBugi7D2Y9T6DA9a9ZHSgdKK86tVlVm5yKStoFFFFZDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmkgZp1U9ThnudKvYLWXyriSB0ik/uuVIB/AmjYNT5U+Kciat8TNbu9PVrq2Lxp5sQ3AlYkVh/30COPSvp3wpqVpqvhbTbqyuI7iI26LvQ5G4KAwPoQc8V8tQFdNhNje4tbq1/dTwy/KyMOufx9Ote3/BCwvLTwnfXNxDJDb3l609sjjG5CqjeB2BI/HGaX12rX/dzWkdj2MfltDDUIVadTmct12PUB0ooopnjhRRRQAUUUUAcx4+8KR+MvCd1pbbRP/rbZ2H3ZV+7+ByVPsxr5u+G/imbwP44U3pkitZXNrfRsfuc43H3U8/TPrX1xXzd8dvBy6TrsfiGyhK2uoEi4KjhJxznH+0Mn3Kk16uXVVK+Hl8LImup9IIyuispBVhkEdCK+XPjnof8AZXxAkvI4ysGowrOCowDIPlfHvwCf96vWPgx4vHiLwithdTBtR03ETBj8zRdEb37r/wAB96p/HrQm1LwXDqkSbpdMn3tgciJ/lb9dn5Gowl8NiuSXoNu8bnYfD/XD4j8C6TqMku+doQk7Z5Lp8rE/Ugn8a6ivB/2eNdc/2t4flcFQBdwrn6K//sle8VzYul7KtKA4u6CiiiuYYUUUUAFFFIcdzRtqB8+/E+9N546vUB+W3RIV/BQx/wDHmNe2eGLP+zvC+l2rcNHbIGH+0Rk/qTXgcxXxL4/YqQY77UML/uM+P/Qa+kgAAAOlcOF1qTmebgfeqTqeYtc14807+1PBWqQKMukXnL9UO79QCPxrpainhSeCSGQZSRSjA9wa7Jq8Wj0Jx5otHifwfv1t/FVxaM/F1bnaM9WUg/yLV7jXzTambwp41i3tsexvNrn1UHBP0K/zr6VBBUEdD6Vy4KXuOHY4cvk+Rwe6YtFFFdh6AUUUUAFFFFABRRRQAVy3jzxla+CPDsupTKJbhz5dtATjzJCO/sMZJ/DuK39QvrbTLC4vryZYbaBC8kh/hA718l+MfE+qfEnxgpgheRWfyLC0QEkKTxx3J6n/AAFd2Bw3tpc0vhW5MpWI/DOgar8SvGjpLO5eZmuLy6fLeWueSB68gAfT0NfWml6ZaaNpdtp1jEIrW3jEaIOwHf3Pqa534e+CbbwR4dW0T572YCS7nPO98dB/sjoPxPeuwHSjHYn2suSPwoIrqFFFFcJQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUV4v8avF2v8Agu601tF8QzxPe+a0lrJBbyIirtwQSm4ZJPXOcHkYwen+GEvifVvC9nrviPWrieW6LOlsIYEj8o8KTtjDZ6t97uPegD0GivAPi3488U+DPFken6N4luGjkthPJFLbWz+UzMwChvLz0AODk98nPHqvgi18QDQLO98R6xPe31xCJJIDDCkcW7kAbEBJA4PJHWgD52+M4A+LGtEgEnyO3/TCOvqPQTnw7ph/6dIv/QBXy78Z/wDkqus/7sH/AKIjr6i0H/kXdM/69Iv/AEAV6uOSVCm0iIt3ZoUUUV5RYUUUUAFFFFABWH4s8O2vizw3eaPdnasy/JJjmNxyrD6H8+R3rcoqoycXzR3QHx/4Q1u7+HnxBSS7Qr9nma0vo8/wZ2tjvkH5gOh2ivrDUrODW9EurNmV7e9t2j3qcjay4yPzzXhvx88GtDexeKrOMeVPtguxjo4+4/0I4PuB6103wK8Xf2v4dk0C6lL3encxlzktATx9dp4x2BFevi/31KOKhutzOO/Kzxjwbqdx4J+JNm9z+7a2uza3i+ik7Hz9OT/wEV9h18s/G7w++jePpb5F22+poLhGHZxw4+uQD/wKvfPh5rZ8Q+A9Jv5JN8xhEUxJ58xPkYn64z+NRmEfaU4Vo9rMcN7HVUUUV5JYUUUUAFZHia9XTfDOp3jHHl277T/tEED9SK1684+MOpG28PWtgrbTdTbn90QZP6lfyrOrLlg2ZV5qFKUmcP8AC3Tvt3ja3kYfLaRvO31xtH6sPyr3+vK/g1pZSz1HVHTBlYQR59vmb+aj8K9UrHBxtSV+pz4CDjRTfUKKKK6jtW54V8W9MNp4tW92/u72FWz2LL8pH5BT+Neo+BdU/tfwdp1wz75Uj8mT13J8vP1AB/Gsb4saQ2oeFftkQzJYyCXH+wflb8sg/ga5v4N6t5d1f6TI42OouIgeuRw36FfyrgX7vENdzzI/usW10kew0UUV6DR6bCiiikAUUUUAFIT+XfNLXmHxg8fjwro39madMBq98pAZTzBH0L/U9B/9atKVKVWahDdg7JHn/wAbPiC+qam/hnTJSLG1cfa3X/ltKO2R2U/r9BXV/BP4eto9kPE2qQ7b66TFrGw5iiP8R92/l9a8++EXw8Pi7V/7U1BAdJspAXVhkXD9Qn0HBP19+PqQDAAr08bWjQh9Wpb9TOKu7sWiiivINAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqve3UNjZz3dw2yCCNpJH/uqAST+QoA+WfjXqSa58WJrUSDyrNIrPeozj+JuBySGcjHtXuNj8TPA2nWFvZW+oXKW9tEsUa/2bcgKqjA/5Z+grxH4SWreLPjIdWuU3eW82oyAj+Mk4/JnB/Cvo7xhrK+HvB+raszBTbWzun++RhB+LECgD5gv5E+I3xwY2oM1rf6iiKdhG6BAFLYOCP3aFsGvrwdBXzR+zpoq3XirUtXkQMtjbCNCezyHr/wB8qw/4FX0vQCPk740jHxW1fPcQf+iUr6g0A58OaWf+nSL/ANAFfMHxq/5Ktqv+7D/6JSvp7w7/AMizpX/XnD/6AK9bHf7vTIjuzSooorySwooooAKKKKACiiigDM1/RrbxDoV7pN4pMF1GY2PdT1DD3BwR7ivk7TLzVPhp8QA0qlbiwnMdxGBgSxE/Nj2ZcEH1wa+xK8L+P3hEyR23im0jYsmLe8AGflz8j4+vy591r08urJSdGW0iJrS6Nf426bH4k+Hdpr1iwmS0dZ1ded0MgAJH47D+BrB/Z411vN1bQJH+UqLyEeh4R/8A2T8qm+DXiJPEfhfUvA2pNnbbyC3YnJMT8Mv1Utkeze1ea+Cb+bwb8TrH7YfK+z3bWlyD0CsfLfP0zn/gNdcaT9jUw73Wq9BPdM+v6KKK8E0CiiigArwL4p6x/aXi+W3GTBYr5Ix3PVj+Zx+Fe46lex6bpt1ezECOCNpGyeoAz/8AWr558NWU/inxrbJP8zT3BnuGx2B3t+fI/EVxYx3tTXU87MJcyVJdWe5+DdMbRvCOnWki7ZVh3yD/AGmyxH4E1v0UV2RVkkd8Y8q5ewUUUUyiC6t47u1mtpl3RTRtG6+oIwR+tfN8DXPg7xmuWJmsLraxH8a9D+DLn86+l68a+MGgi3v7fXIVIFz+6nwON4Hyn8QD/wB81x4yPuqa3RwZhBuKqR3R7FDNHcQRzwuHikUOjDoQRkGn1wHwr18an4eOmyt/pFgQg/2oj938uR+Arvx0rppz54KR10qiqQU0FFFFWaBRRUF1PFaW8tzcSLHDCheR3OFVQMkk+gFNJt6AY3jDxVYeD9Bm1S/fO35YYVOGlcjhB9cHnsMmvlvStM1n4n+OWV5C9zduZbm4C/LDH3OOwAwAPoKt/ELxrfeP/FAS3EjWMUnk2Fso5OSBkjuzccfQdq9/+GfgOHwV4fTzUVtWulVruTOdp7Ip9B+pya9qCWBw/M/iZn8TOo0PRbPw9otrpWnxhLa3QKvHU9Sx9yea0h0oHSivFlKUneRogooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcl488Paz4p0KXR9N1SDT7e4G24d4md3XP3VwwAB7+o47mutooA8n+Hfwr1f4f6tNdw6vZXkVyixzI1u6ttDA/Kd2PXqK1/iJ4L1/xzZjTIdXtLDTRIshQQu8kpHTcdwGAeenp6V6DRQB5x8Nfh9qvw/FzbtqVleWdy4kkAgZJAQpA2ncRjp2r0YdBS0UAj5P+NX/JVtV/3Yf/AESlfT3h3/kWdK/684f/AEAV8x/Gz/kqmp/9c4f/AEUtfTfhz/kV9I/68of/AEAV6uO/3emRHdmnRRRXlFhRRRQAUUUUAFFFFABVTUbG31TTrrT7tA9vcRtFIp5yrDB/nVuimnZ3W4HxvPFqXw3+IO1XP2rTbkFXHAmjPT8GU8+xrV+K9pby+JYPEdhk6drtut3C2MYbAWRT/tA8n3avUfjv4POpaNH4jsoA11YDbclRy0HXJ9dp5/E+leJR6o+oeDX0a5kDNpspurMN12txLGPr8r+21jX02Hqe2Uaq3WjMXpofUnw51z/hIfAWlX0knmTCEQzk9fMT5Tn3OM/jXV14R+zvri7NW0CSTLZW7hH97+F/5JXu9eDi6XsqziaxegUUU1mCqzMcBRkn2rmGebfGHWTa6PbaTE+Hun3yqOpReg/Fsf8AfNVfg9ojxW17rco4m/cQNjqoOWI/EAfga4TxVq8vi3xhLNbqXWSRbe2Qc5XOB+ZJP417/omlxaLotpp0R3LbxhS3949z+J5rgpfva7n0R5lBe2xMqnRGjRQOlFd56YUUUUAFZPiPR49e0G80+QAmWM+Wf7rjlT+eP1rWopNcysxSipJxex86eDtXk8KeMYjdDy495trpT/CpOD+TAH8K+ilIZQQcgjORXifxZ8OLp+sJrMC/ub1tso7LIB/7MP1Brs/hf4h/tjw2tnK5a6sMRtu6tGc7D+hH4Vw4Z+zm6TPNwknSqOhL5HdUUDpRXeemFfPvxx+IH2m5bwppczCKFs38iNwzjpH+HBI9cDtXe/Fjx8ng/QWtLOVRrF6NsC9TGnRpD6eg9/XBFeLfCvwG/jbxA11fhjpVm4e4Y/8ALZzyEB9+p9uO4r1MDQjGLxNXZbESd9Dvfgl8OzbRp4s1SFTJKn/Evib+AHgyH3I4Htk+le4DoKSONIokjRQqKAqqBgADtTq4sRXdeo5yKSsgooorAYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUdAR8o/Gz/kqmp/9c4f/RS19N+HP+RX0j/ryh/9AFfMvxtGPinqWO8cH/opa+mfDJz4V0c/9OMP/oAr1cd/u9MiO7NSiiivKLCiiigAooooAKKKKACiiigCG4giuYJYJ0V4ZVKOrdCpGCD7YzXxx438Mz+D/F17pTbzEpLW8j/xxP8AdP8AMH3Br7Nry344eExrnhM6tboPtulZkJA5aE/fH4Y3fgfWvQy3Eeyq8r2ZMldHhHw91xfD3jzSNQdykAmEcxJ4Ebgq2foGz+FfZI6V8H/rnjP+fwr7H+H2vL4k8D6VqJfdKYVin9fMX5Wz9SCfxrszik9KiJgzqa4r4meIf7F8MyW8UgF1fZhjHcLj5j+Rx/wIV2ZIAyeB1zXzr4x1qTxZ4ud7bLwlhb2qnkEZwD+JJP4181iqvJCy3Zz42t7OnZbs3vhJ4f8AtusS6xPHmGyG2MnoZCP5gfzFe3DoKxfDGhReHdAt9Nj5dBmVz/G55J+meK2quhT9nBIvC0fZUkgooorY6QooooAKKKKAMnxDokPiDRLvTpwB5y4V8Z2sPukfQ/19a8F0XUrzwV4vDXCspglMN1GvJdO+P5j6CvpCvKviz4UM8Y8Q2i/NGAl2oHVf4X/Dofw9K48VTdvaR3RwY6lJpVYbo9Rt54rm3jnhcPFIoZGXowIyCKyvE3iGw8K6Dc6vqLlYIRwq/ekY9FX1JP8A9fgGvPfhV4t2pJoV/LsCBpLZ3OAoHLL/AFH0NeV/FLx7L4419bayDDSrNylsg585icFyO+eg9B7mvUy6j9cs1t1N6WIjUpKSZlf8Tz4o+PD/AMtLy9fHGdlvEP5BR9M+5NfVXhrw5YeFtEg0nToysEIOWbq7Hksfc/pXK/CnwAng7QRdXaA6veoGnY9Yl6iMfTv6n2Ar0SujH4pVZKnD4UbRjbcB0ooorzygooooAKKKKACiiigAooooAKKKKP66gFFFFH9dQCiiigAoooos+wBRRRTswCiiiizAKKKKLAFFFFIAooooAKKKKTaDY+U/jd/yVLUf+uUP/ota+mPDX/Iq6P8A9eMP/oAr5n+N+B8Ur/nrFB/6AtfS/hnnwpo//XjD/wCgCvWxtnh6diI7s1aKKK8osKKKKACiiigAooopXAKKKKd0AUx0WRGR1DKwwVPQin0UXXcD4/8AiV4TPhDxldWkSbbGc+faEdPLPb/gOCK9H/Z311QNW0CV8N8t5Cp/74f+SfrXa/GDwcvinwjLcwRltR00NPb7RkuuPnT8QPzA9a+ePAXidfCPjGx1aRWaBC0cyjjKMMH8s5+or31WjicG7vVGT913Pon4qeJTpeijSraUrd3oO7Z1WIdfz6fTNcz8J/DDXeotrt1GDb2522+R96X1HsB+p9q5PdqHjzxaShVp7yThgflijH/soH513PxL8WRfDXwXZ6Fokgj1G4Qxwt3iQffkIPck8e5JH3cV8jTi69TneyOCivrNZ1JbI63xP8R/DPhKdbbUL0vetjFpbL5kvtkDpntkiqY8dastoNRfwLryacVL+ZuhM4XB5MO/cD7VwPwE8HLcR3HjTVQ091NKyWjS/M2c/vJcnqxOVz7N617tjIxx/Su89Q4/wh8RNI8cXl5Bo0N2yWkSvNLNGEUFsgKBknPDdcdO/bsq5rwx4Tt/DV7r11EyFtVv2uvlGNikD5f++i5/4FXS0AFFFFABRUbqsisjqGRgQykZBHTFfInxF06xu/i1eaPodjBaxG4htY4rePaDIQqthR/tEjAoA+v6huIY7iGWCdFkikUo6MOCpGDn2xxXz38ZfBHh/wAG6BpOoaDC9jqAuRBujlYNMuxiWPPUEAZGPvc9q7r4HeIdY8Q+Cpn1ieS5e3umhhuZiWd12hvmJ5bBOM/h2oE+x4neafBc6zqayq7RQ3k0EMT5+RVcgZHrgVmW19J4R8TQahp8MEssQ8yJLlPMWNs9QM846g+v0r6B8WfCK01nU7nVdJ1GTS7u43PNEIvMilkP8eCcqx7469cZ6+R2OnReHvELDWtOjv5YXK3EN3GCCOnA6D1B71z0Kzwdfnn8L3sejjcyy6nl8KEaXLNPexY/4Xz40/vaf/4D/wD16P8AhfPjT+9Yf+A3/wBevbtO8FeA9W0+C+s/D+mywTruVvKH0I+o7irv/CvPB3/QtaZ/4DrXurGYNq6pXPLSk1ds8E/4Xz40/vWH/gN/9emH47eNiT+/sh7fZhXv3/CvPB3/AELOmf8AgOtH/CvPB3/Qs6Z/4DrT+t4P/nz+AWfc8B/4Xr42/wCfiy/8BhR/wvXxt/z8WX/gMK9+/wCFeeDv+hZ0z/wHWnL8PvB4HHhnSvxtUP8ASj63hP8AnyOz7nz/AP8AC9fG3/PxZf8AgMKQ/HPxuRxc2i/S1WvoP/hX/g//AKFjSf8AwET/AAo/4V/4P/6FjSf/AAET/ChYzCL/AJdByvufPX/C8vHH/P5a/wDgKlH/AAvLxx/z+2v/AICpX0L/AMK/8H/9CxpP/gIn+FA8A+EF6eGNI/GzQ/0qvr2F/wCfX4L/ACFyvufPX/C8vHH/AD+2v/gKlIfjj435H222B9Rap/hX0P8A8IH4R/6FjR//AACj/wAKX/hBPCP/AELGj/8AgFH/AIUfXsL/AM+vwX+Qcr7nzp/wu7x3/wBBOD/wEj/wo/4Xd47/AOgnB/4CR/4V9F/8IH4R/wChY0f/AMAo/wDCj/hBPCX/AELGj/8AgFH/AIUvr2F/59f19wcr7nzp/wALu8d/9BOD/wABI/8ACj/hd3jv/oJwf+Akf+FfRv8AwhHhIDH/AAi+i/8AgBF/8TS/8IR4S/6FfRP/AAXxf/E0fXsL/wA+v6+4OV9z5tb41+PSeNXjH/bpD/8AE0f8Lq8e/wDQZT/wEh/+Jr6S/wCEI8Jf9Cvon/gvi/8AiaP+EI8Jf9Cvon/gvi/+Jo+vYX/nyvu/4Acr7nzb/wALq8e/9BlP/ASH/wCJo/4XV49/6DKf+AkP/wATX0mvgzwsv3fDWjL9LGL/AOJp3/CHeGP+hc0j/wAAYv8A4mj69hf+fK+4OV9z5ob40ePmHGtqv0s4P6pSf8Lm8f8A/Qf/APJOD/4ivpj/AIQ7wx/0Lmkf+AMX/wATR/wh3hj/AKFzSP8AwBi/+Jo+vYX/AJ8r7h8r7nzN/wALm8f/APQf/wDJOD/4il/4XN4//wCg/wD+ScH/AMRX0wPCHhpTlfDukg+osox/7LUn/CK+Hv8AoA6X/wCAcf8AhR9ewn/PlC5X3PmI/GXx+R/yH/ytIP8A4im/8Li8ff8AQwN/4DQ//EV9P/8ACK+Hv+gDpf8A4Bx/4Uf8Ir4e/wCgDpf/AIBx/wCFH17C/wDPpfh/kHK+58wf8Li8ff8AQwN/4Cw//EUf8Li8ff8AQfb/AMBYf/iK+n/+EV8Pf9AHS/8AwDj/AMKkHhzQwABo2nADsLVP8KPr+G/59L8P8g5X3Plz/hcXj7/oPt/4Cw//ABFNPxe8esc/8JBJ/wCA8X/xFfUv/CO6H/0BtP8A/AVP8KP+Ed0P/oDaf/4Cp/hR9fw3/Ppfh/kHK+58tf8AC3vHn/QwS/8AfiL/AOIpD8XvHn/QwS9P+eEX/wARX1N/wjuh/wDQG0//AMBU/wAKVdA0Zc40iwGf+nZP8KTx+Gs0qS/D/IfK+58pRt/bSnU9SZby9uvnmmlALMT/ACAAwAPSlh+IfizQFbStN16eOyt2CxRlVfYOu0Myk4HTFe8ax8G/D2qanLe29xf6aJmLSwWciqjN3IDKdue+OPaun0rwd4f0jTo7K00m1ESAjMkYdmPclmGSTXkYROjWdSfvR7P+me1j8ww+Jw0KVOnyyW77nzH/AMLZ8d/9DDN/36j/APiaP+FteO/+hhn/AO/Uf/xNfVf9haR/0CrH/wAB0/wpRomkqcrpdkCO4gUf0r1/r+H/AOfK/D/5E8Xlfc+U/wDhbXjr/oYZ/wDv1H/8TSH4teOsY/4SGf8A79R//E19Yf2Vp3/Pha/9+V/wo/srTv8Anwtf+/K/4UfX6H/Plfh/8iHK+58m/wDC1vHP/QxXP/fKf/E0f8LW8c/9DFc/98p/8TX1l/ZWnf8APha/9+V/wo/srTv+fC1/78r/AIUf2hR/58r8P/kQ5X3Pk3/ha3jn/oYrn/vlP/iaP+FreOf+hiuf++U/+Jr61FhZgAC1gAHbyxR9htP+fWD/AL9ij+0KP/Plfh/8iHK+58kH4p+OCc/8JHd/kv8AhR/wtLxv/wBDHd/+O/4V9b/YbT/n1g/79ij7Daf8+sH/AH7FH9o0V/y5X4f5C5H3Pkj/AIWl43/6GO7/APHf8KP+FpeN/wDoY7v/AMd/wr65S0t0+5bxL9EAp/kQ/wDPJP8AvkU/7Rpf8+V9/wDwB8kujPkI/FDxs3B8R3ZHcfL+R4qvo0EE1k1wypLPKzGRmAPzZr3/AOJfi+LSLc6Np/lC9nX99IODAn4fxH9OvpXCeBfhlb+KZbjULyS8srJcKDav5Zmf6kdvb25ryMxxsMU1RpR5bb2OvKc2o4LGe/DnVu2xs/Aq0hTUvEbxwrsj8lUkA+4WDF1Hp91T+Vee/HueWX4nzrKflitYUjHouNxHvyxr6W0Hw3pXhnTfsGk2i28G7c2MsXYjBZieWOPWvOvjF8L5/FkSa5oy79Yt0ET25YATxgk8Z43DJ69Rx1xUwhypJk4ipGrVlOCsm72O/wDBmmxaT4K0WxiC7IrOIEqMBmKgs2PUsSfxreHSvGfBXxLv9F0iDQ/F/h7W4L60jEcc6WbuJkHyqSOu7jGeQcZyK7S21rXfEtz5VjpV5oumg/vr7UYvLnkUHlY4icqTz87dOoBqjE7KikUbVAGeBjk5paACiiigCtf3kWn6fc3sxxFbxNK59FUEn9BXyd8OLDW/FvxHl1eyi0+a+t3fUpBfs6xGQvwfkBO4MwYf7v4V7h8cdeOi/Di5hjbE2oyLaKfRSCzn/vlSv/Aq539nXQWtPDeo65KOb6ZYogcfcjzyPqzEf8AoA43xHqMuqeOo9P8Ai1LeWUMI32yaci/Z0ViMnoWKHafmBZsjHGK+ifD+n6TpehWdvocUMemCMPAIW3KysN27dyWznOSTnNfNfxs8Rw+KPHkFhpX+kpZR/ZVaIbzJMW5Vcfe/hAHXIPtX0J4B0i70HwJo2mXwxdQWwEgz91iSdv4Zx+FGnUDpa8++JPgr+3bT+09PhLajAMMiDmZPTHcj9enpXoNIf85qKkFOPKzOpTjUi4S2PBfh/wCNZPDt8LC+kP8AZkzfNu58h+m4e3qPy56+8oyuiujBlYAgg5BFeSfEzwJsabxDpi4T711Aq/d9ZB7eo9efWqnw58fJpypourSlbYnFvO2T5ZJ+6fRfft06dOOlUdKXs57dDz8PVlQmqFXboz2iigdKK7z1AooooAKKKKPmAUUUUfMAoooo+YBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcB8RPH2o+AbeK+fQYL7TppRAsy35jkDlS2CnlnjCtyGPTtxXf14F+0lrKiPRdDRwXZnu5Uz0A+RDj3y/5UAb+h/F/xB4h0+fU9N+H1xc2FvJsnlh1FGZcAEhVKAuQDnA9R610/gz4n+HPGxS3srh7bUSm42dwNr+5Uj5WH0OeOQKb8ItGXRfhlo0e0CS6i+1yMD94yfMp/75Kj8K+ffiPI/hX416nd6WRFLbXcV3H2G9kSQ5HcEscjv+NO4H12OgoqCyuReWFvdKpVZolkCnqAQDj9anpAFFFFABRRRQAUUUUAFFFFABRRRSDYK5bxr4th8LaSzqUe/mBFvEeee5PsP/rVc8TeJbLwxpxvLslmY7YYl+9I2On09/8AJ8KVdW8feKz/AB3Ny3OeUhjz+igfn9TXNiKzh7sdzixeIdP93D4mSeHdC1Hxv4iZppZWVn8y7uupQE/zOMD/AOsa+hLOxttOsorO1jWKCFNiKOgFUPD3h+08NaRHYWgztG6SUr80jnqx/kB2FbNVh6Cpxu92XhcP7GPM92FFFFdB1BRRRQAUUUUAFFFFAHI+J/h1oPi+8W41kXs5UYSMXTrHHxjKqDgE9z3rPT4Q+Fo7P7FGNSW0xj7OuozCMDOfuhsck5rvqKAOU8PfDjwn4XnFxpWjQx3IAAnkZpXHuC5O3/gOK6sdKKKACiiigBrKGBVgCp6g+leKfEPwC+kyvqukQE2LnMsSA/uT6/7v8unSvbaY6q6MrAFWGCD0I9KyrUo1FbqY16Ea8HGW55D8P/iKtqsWj61N+4AC21y38PONrn09D278dPYAcgH+VeJ+Pfh0+kmTVNIjMliTmWADJhHqPVf5VJ4D+I8mn+RpGsOXsxiOG4P3ovZvUfr+FctKtKlL2dU4qOIlRl7Gt8me00UyKVJolkjdXRgCrKcgg9wafXeemFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAh4r5U+Isx8bfG06bbM8kX2mLTkIGSoU4c/QMX/LNfSXibVb3SNIluNP0u61K7bKQw26qxDkHDNkjCggZxk8187eAvDPjDwr44h8Qaj4S1O8KCQ4QgNvcFS3J5+8fzoA+nMxWluANkUUS9vlVVA/QYFfId3BN8T/i3cpp+8w394SspB+S3XjzCO2EGcH2Fe2eIh8Q/HdkdL07SR4a0ycYnub25UzTIeCgVMle+Rxkd8Eg9B4A+HGl+AbJxbO9zqMyBbi7YY3AHOFX+Ffbqe/agDs7eCO1toreJdscSBEXOcADAFSUUUAFFFFABRRRQAUUUUAFFFFABWJ4j8Taf4Z09rm9k+ZjiKFfvSNjoPb1PQVX8WeLrDwrYGWc+bdPxFbK3zOfX2HvXh8suteO/Ea/KZ7mXCBUXEcSfTso6571zV8Rye7DVnHiMX7P3IfEwu7vWfHfiNTsaaeY7Y4U+5Cnp7Ljqe9e3+EfCdp4V0wRRqsl3IoNxPjlzjoPYelJ4R8IWXhXT/LixJdygefORgsfQegrpe1LD4fl9+pq2LC4V0vfn8TEHQUtFFdR2+YUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADSAwII4PXNeS+PPhsEWXVtBhwqjfNaIOeO6f/E/l6V65RWVWlGqrSMq1CNWPK0eA+DPiBeeGHFldh7nTc48vOXhPfZnt3wfzFe5afqNpqlpHdWNwk8DjIdGBH0PofauL8bfDi214yX+mbLbUeWZcYSc9efRv9ofj6jy7StY17wNq7oEkhkBHnWs6kLIPcfToR+HFckak8O+Wfwnnxq1MI+WrrHufSNFcv4W8baV4oi2QOYL0Ll7WQ/MB6r2YfSuoHIruhOM1eJ6cJxmuaLugoooqigooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiobm5htYJJ7iVIooxl3dtoUe5o9RXRNXEeNPiBaeG43tLTZdak2RszlYvdvf2/MiuV8YfFNrhX0/w8WjQna12eCw9EHYf7R/TrXO+EvAepeKpvtc5e3sSctcSLlpeeQuev1PHrzxXFVxLb9nS3POrYxyfs6Gr7mfp2naz468QEtI000h3TXMhO2NR3OOmOgFe6+GfC2n+GNPFvaJulcAzTsPnkPv6D2q/pOkWOiWCWWnwLFCnYdWPck9zV+tKGHVP3nqzfDYVUtZ6ye4UUUV0+Z1hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVheI/CumeJrbyr6HEqj93OnDx/Q9x7Vu0UpJSVpClFSVmfOviPwhrPg29FyjSG2Q5hvYMqB7HH3D+hrq/CnxXkjMdl4hG+PGBeIPmH+8vf6jn1HevXJI0ljaORFdGGCrDIP4V5l4q+FEN28t5oLrbzk5+yucRk99p/h+nI+lcMqE6T5qT+R5ssLUoPmoPTsej2d7bX9stzZ3EU8L/dkjcMp/EVZ7V812uoeIPA2rNEpmtJ15kt5BlHHuOh9iK9S8PfFbStTCQaopsLokDcctEx9m7fj+daU8ZGT5Z6M2o46E3yz0kehUU2N1kjV0YMjAFWByCPXNOrr0O0KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooBahRWPrniTSfD1v5up3aRZ+5GPmd/ovU15P4m+Kuo6oklrpCGytW48wn96w+vRf881jUxNOlu9TnrYqnS+J6npHijxxpXhmJ1klWe9A+W1jOW+rf3R9a8a1vxTr3jLUEtmMhR2AisoMlfqQOWPuc/gKs+G/h/rPid0upP9GspDuNzNkl/91erZ9ePrXs3hvwnpfhm1EdlDulI/eTyYMj/j6e1ctquI30Rxfv8AFav3YnEeD/hXHCsd94hTzJcZWyyML6byO/sP16V6nHGkUSRxoqIihVVRgADoAKcOlFdlOlGmuWKPQpUIUY8sUFFFFaGoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZuraLp2t25t9QtIrhOxccqfVT1H4V5X4k+Ed3bMZ9BlNxFyTBK2HX6N0P6H617NRWNWhCorNGFbD06ytJHzbpfiXxF4TuWtoriaDY217W4UlQf90jj6jFel6B8W9LvY0j1iNrK4JALqC8RP15K/j+ddnq+g6ZrkBh1GyiuF7Mw+Zfow5H4V5vr/AMHnDNLoN0Cv/PvcHBH0b/EfjXN7OtQ/hu6OP2GJw/8ADd0eq2t1Bd26T20yTRNyrxtuBH1qevmuW18T+DrveyXmnuD99CdjfiPlP0JrqNH+L+q2rhNVt4ryLu6DypB/Q/lVRxkf+XisyoZhC9qisz2yiuP0v4leGdTKob1rWVv4LlNvP15H611NvdQXcYlt5o5oz0aNgwP4iuuM4y1izuhUhPWLJ6KKKotprcKKKKACiiigAooooAKKKKACiiigAooooD0CiisnUvEui6QrG+1O2hZc5QyAv/3yMmk3y6sJNR1k7GtRXmmr/GHTYFZNJtJruTtJKPLQe+CMn6cVwOqePfE2vn7Obpo43P8AqbRSm724O49PU1zTxlJfDqziqZhRh8N2/I9p1zxjofh4lb69Hn4yIIxvf8h0/HFeY+IPi1qd87xaRGLG3PAkIDyn+YX/ADzWXo/w18RawVlkgFnC5z5lyxVseu3qT9RXpmg/DPQdHKSzwm/ulwS84BXPsnT881k3ia+2iMG8Vidlyo8n0bwr4h8YXDXMaySRlsPd3Lnb+fU/QZ/CvVfDvwy0fRRHPdqNQvFGS8yjywf9lf6nNduiqiKqgKoGAAMACnVrSwsIay1Z0UcDTp6y1kIAAoAGABS0UV1eh2BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU0wsiOWNJUZJUV0YYZWAII9wa5DVvhl4a1RmdbZ7KRuS1s20Z/wB05X8hXZ0VEoRn8SInThPSaueLal8HdUg3vp1/BdIOVSUeW59vT9RXJS6V4m8MXXmG2vrGQf8ALWLIU4/2hwa+lqK5JYGne8G0cU8upN3g2j5/svil4ptAivcxXKr2nhGSPqMGuns/jQNoF9o+G7tBN1/Aj+tehah4Z0PVWLXulWsznOZDGA3/AH0MGuavvhN4buwxtxdWZPQRybhn6OD/ADpeyxMfglcn2GLpfBK4WPxZ8NXOBObq0J7yxZA/FSa3rXxl4bvCPJ1uzz2EkoQ/k2DXn118FplbNnrMbj0mhKn8wTWVdfCHxHCMwS2U/ssrA/8AjwFHtcVH4o3BVsZHeF/Q9oj1XT5f9Vf2sn+7Mp/rVpGV1BVgQe4r54m+HHiyHO7SXYDukqNn8mP8qrf8Id4rtn+TSL9D6ohP6ij65UW9Nh9fqr4qb/r5H0lRXzf/AGH4yjYf8S/Ws+qpKaDpHjRhg2Wukf7UctH1x/yMf1+X/Ptn0hUM13Bb/wCunij/AN9wK+dD4b8XzJtbTNVZT2eN/wCtOj8A+KZT8ujXA/38L/M0fXJ9KbF9fqdKb/r5Hvk3iHRbcEzavYR47NcID/Osa7+I3hazBzqqysP4YEZ8/iBj9a8rtvhb4rnPz2cNuD3lnQ/+g5rWg+DOrvjz9Tso/XZuc/qBS+sYh/DCwfWcVP4YW9TfuvjLpMRItdNu5sdGkKxg/qxrn9R+MerznFhZW1qnq+ZW/oP0rdsfgzp8ZBv9UuJ8c7YUEY/M5P8AKuksvh54WscFdLSZgfvTs0n6E4/SnyYue7sHs8bU3dvQ8ZvfFninxAzQyX93KrceTbrtB9sIOfxFXNJ+GviXVCHezFnCf+Wl0dp/755b9BXvtta21nEIrW3igjHRIkCgfgKn7ULBJ/xJNgsuUnerJtnl+kfByyhAfVr+W4YH/VwDYv5nJ/lXdaR4d0jQ49unafFASMFwMufqx5rWorqhRpw+FHZTw9Kn8CCiiitPU2eu4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRTAKKKKW5XIrXCiiinbzBRv1CiiiqastxtBRRRU2J5Qoooo17jsFFFFDbEtdwooopJX3DluFFFFK/QQUUUUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9k='] Multimodal Competition False Theorem proof Plane Geometry Math Chinese