Datasets:
Tasks:
Table to Text
Modalities:
Text
Languages:
English
Size:
100K - 1M
ArXiv:
Tags:
data-to-text
License:
Sebastian Gehrmann
commited on
Commit
·
cbc53cf
1
Parent(s):
46806f7
linearization
Browse files- dataset_infos.json +1 -1
- totto.py +188 -43
dataset_infos.json
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"totto": {"description": "ToTTo is an open-domain English table-to-text dataset with over 120,000 training examples that proposes a controlled generation task: given a Wikipedia table and a set of highlighted table cells, produce a one-sentence description
|
|
|
|
| 1 |
+
{"totto": {"description": "ToTTo is an open-domain English table-to-text dataset with over 120,000 training examples that proposes a controlled generation task: given a Wikipedia table and a set of highlighted table cells, produce a one-sentence description.\n", "citation": "\\@inproceedings{parikh2020totto,\ntitle={{ToTTo}: A Controlled Table-To-Text Generation Dataset},\nauthor={Parikh, Ankur P and Wang, Xuezhi and Gehrmann, Sebastian and Faruqui, Manaal and Dhingra, Bhuwan and Yang, Diyi and Das, Dipanjan},\nbooktitle={Proceedings of EMNLP},\nyear={2020}\n}\n", "homepage": "", "license": "", "features": {"gem_id": {"dtype": "string", "id": null, "_type": "Value"}, "gem_parent_id": {"dtype": "string", "id": null, "_type": "Value"}, "totto_id": {"dtype": "int32", "id": null, "_type": "Value"}, "table_page_title": {"dtype": "string", "id": null, "_type": "Value"}, "table_webpage_url": {"dtype": "string", "id": null, "_type": "Value"}, "table_section_title": {"dtype": "string", "id": null, "_type": "Value"}, "table_section_text": {"dtype": "string", "id": null, "_type": "Value"}, "table": [[{"column_span": {"dtype": "int32", "id": null, "_type": "Value"}, "is_header": {"dtype": "bool", "id": null, "_type": "Value"}, "row_span": {"dtype": "int32", "id": null, "_type": "Value"}, "value": {"dtype": "string", "id": null, "_type": "Value"}}]], "highlighted_cells": [[{"dtype": "int32", "id": null, "_type": "Value"}]], "example_id": {"dtype": "string", "id": null, "_type": "Value"}, "sentence_annotations": [{"original_sentence": {"dtype": "string", "id": null, "_type": "Value"}, "sentence_after_deletion": {"dtype": "string", "id": null, "_type": "Value"}, "sentence_after_ambiguity": {"dtype": "string", "id": null, "_type": "Value"}, "final_sentence": {"dtype": "string", "id": null, "_type": "Value"}}], "overlap_subset": {"dtype": "string", "id": null, "_type": "Value"}, "target": {"dtype": "string", "id": null, "_type": "Value"}, "references": [{"dtype": "string", "id": null, "_type": "Value"}], "linearized_input": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "totto", "config_name": "totto", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 747884464, "num_examples": 121153, "dataset_name": "totto"}, "validation": {"name": "validation", "num_bytes": 54580701, "num_examples": 7700, "dataset_name": "totto"}, "test": {"name": "test", "num_bytes": 45476943, "num_examples": 7700, "dataset_name": "totto"}, "challenge_train_sample": {"name": "challenge_train_sample", "num_bytes": 2521208, "num_examples": 500, "dataset_name": "totto"}, "challenge_validation_sample": {"name": "challenge_validation_sample", "num_bytes": 3693554, "num_examples": 500, "dataset_name": "totto"}}, "download_checksums": {"https://storage.googleapis.com/totto-public/totto_data.zip": {"num_bytes": 187724372, "checksum": "0aab72597057394514fd9659745fd2b318d1a64bf0b2ca1b2c339abe0692fdf2"}, "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/totto.zip": {"num_bytes": 1810237, "checksum": "86bcec978edc44caa7a313944cecaaeb52e4685ee05f7be073911a15665d5ac3"}}, "download_size": 189534609, "post_processing_size": null, "dataset_size": 854156870, "size_in_bytes": 1043691479}}
|
totto.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import json
|
| 2 |
import os
|
| 3 |
|
|
@@ -12,7 +13,7 @@ year={2020}
|
|
| 12 |
"""
|
| 13 |
|
| 14 |
_DESCRIPTION = """\
|
| 15 |
-
ToTTo is an open-domain English table-to-text dataset with over 120,000 training examples that proposes a controlled generation task: given a Wikipedia table and a set of highlighted table cells, produce a one-sentence description.
|
| 16 |
"""
|
| 17 |
|
| 18 |
_URLs = {
|
|
@@ -23,7 +24,132 @@ _URLs = {
|
|
| 23 |
}
|
| 24 |
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
BUILDER_CONFIGS = [
|
| 29 |
datasets.BuilderConfig(
|
|
@@ -36,7 +162,7 @@ class Mlsum(datasets.GeneratorBasedBuilder):
|
|
| 36 |
def _info(self):
|
| 37 |
return datasets.DatasetInfo(
|
| 38 |
description=_DESCRIPTION,
|
| 39 |
-
features
|
| 40 |
{
|
| 41 |
"gem_id": datasets.Value("string"),
|
| 42 |
"gem_parent_id": datasets.Value("string"),
|
|
@@ -68,6 +194,7 @@ class Mlsum(datasets.GeneratorBasedBuilder):
|
|
| 68 |
"overlap_subset": datasets.Value("string"),
|
| 69 |
"target": datasets.Value("string"), # single target for train
|
| 70 |
"references": [datasets.Value("string")],
|
|
|
|
| 71 |
},
|
| 72 |
),
|
| 73 |
supervised_keys=None,
|
|
@@ -79,43 +206,51 @@ class Mlsum(datasets.GeneratorBasedBuilder):
|
|
| 79 |
"""Returns SplitGenerators."""
|
| 80 |
dl_dir = dl_manager.download_and_extract(_URLs[self.config.name])
|
| 81 |
challenge_sets = [
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
|
| 87 |
return [
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
"
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
def _generate_examples(self, filepath, split, filepaths=None, lang=None):
|
| 121 |
"""Yields examples."""
|
|
@@ -129,6 +264,7 @@ class Mlsum(datasets.GeneratorBasedBuilder):
|
|
| 129 |
continue
|
| 130 |
exple["gem_parent_id"] = exple["gem_id"]
|
| 131 |
exple["gem_id"] = f"{self.config.name}-{split}-{id_}"
|
|
|
|
| 132 |
yield id_, exple
|
| 133 |
else:
|
| 134 |
with open(filepath, "r", encoding="utf-8") as json_file:
|
|
@@ -137,6 +273,7 @@ class Mlsum(datasets.GeneratorBasedBuilder):
|
|
| 137 |
i = -1
|
| 138 |
for json_str in json_list:
|
| 139 |
result = json.loads(json_str)
|
|
|
|
| 140 |
if split == "train":
|
| 141 |
i += 1
|
| 142 |
for sentence in result["sentence_annotations"]:
|
|
@@ -154,8 +291,9 @@ class Mlsum(datasets.GeneratorBasedBuilder):
|
|
| 154 |
"example_id": str(result["example_id"]),
|
| 155 |
"overlap_subset": "none",
|
| 156 |
"sentence_annotations": [sentence],
|
| 157 |
-
"references": [],
|
| 158 |
"target": sentence["final_sentence"],
|
|
|
|
| 159 |
}
|
| 160 |
yield id_, response
|
| 161 |
else:
|
|
@@ -172,11 +310,18 @@ class Mlsum(datasets.GeneratorBasedBuilder):
|
|
| 172 |
"highlighted_cells": result["highlighted_cells"],
|
| 173 |
"example_id": str(result["example_id"]),
|
| 174 |
"overlap_subset": str(result["overlap_subset"]),
|
|
|
|
| 175 |
}
|
| 176 |
-
response["sentence_annotations"] =
|
|
|
|
|
|
|
| 177 |
response["references"] = [
|
| 178 |
-
sentence["final_sentence"]
|
|
|
|
| 179 |
]
|
| 180 |
-
response["target"] =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
yield id_, response
|
| 182 |
-
|
|
|
|
| 1 |
+
import copy
|
| 2 |
import json
|
| 3 |
import os
|
| 4 |
|
|
|
|
| 13 |
"""
|
| 14 |
|
| 15 |
_DESCRIPTION = """\
|
| 16 |
+
ToTTo is an open-domain English table-to-text dataset with over 120,000 training examples that proposes a controlled generation task: given a Wikipedia table and a set of highlighted table cells, produce a one-sentence description.
|
| 17 |
"""
|
| 18 |
|
| 19 |
_URLs = {
|
|
|
|
| 24 |
}
|
| 25 |
|
| 26 |
|
| 27 |
+
def _add_adjusted_col_offsets(table):
|
| 28 |
+
"""Add adjusted column offsets to take into account multi-column cells."""
|
| 29 |
+
adjusted_table = []
|
| 30 |
+
for row in table:
|
| 31 |
+
real_col_index = 0
|
| 32 |
+
adjusted_row = []
|
| 33 |
+
for cell in row:
|
| 34 |
+
adjusted_cell = copy.deepcopy(cell)
|
| 35 |
+
adjusted_cell["adjusted_col_start"] = real_col_index
|
| 36 |
+
adjusted_cell["adjusted_col_end"] = (
|
| 37 |
+
adjusted_cell["adjusted_col_start"] + adjusted_cell["column_span"]
|
| 38 |
+
)
|
| 39 |
+
real_col_index += adjusted_cell["column_span"]
|
| 40 |
+
adjusted_row.append(adjusted_cell)
|
| 41 |
+
adjusted_table.append(adjusted_row)
|
| 42 |
+
return adjusted_table
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def _get_heuristic_row_headers(adjusted_table, row_index, col_index):
|
| 46 |
+
"""Heuristic to find row headers."""
|
| 47 |
+
row_headers = []
|
| 48 |
+
row = adjusted_table[row_index]
|
| 49 |
+
for i in range(0, col_index):
|
| 50 |
+
if row[i]["is_header"]:
|
| 51 |
+
row_headers.append(row[i])
|
| 52 |
+
return row_headers
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def _get_heuristic_col_headers(adjusted_table, row_index, col_index):
|
| 56 |
+
"""Heuristic to find column headers."""
|
| 57 |
+
adjusted_cell = adjusted_table[row_index][col_index]
|
| 58 |
+
adjusted_col_start = adjusted_cell["adjusted_col_start"]
|
| 59 |
+
adjusted_col_end = adjusted_cell["adjusted_col_end"]
|
| 60 |
+
col_headers = []
|
| 61 |
+
for r in range(0, row_index):
|
| 62 |
+
row = adjusted_table[r]
|
| 63 |
+
for cell in row:
|
| 64 |
+
if (
|
| 65 |
+
cell["adjusted_col_start"] < adjusted_col_end
|
| 66 |
+
and cell["adjusted_col_end"] > adjusted_col_start
|
| 67 |
+
):
|
| 68 |
+
if cell["is_header"]:
|
| 69 |
+
col_headers.append(cell)
|
| 70 |
+
|
| 71 |
+
return col_headers
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def get_highlighted_subtable(table, cell_indices, with_heuristic_headers=False):
|
| 75 |
+
"""Extract out the highlighted part of a table."""
|
| 76 |
+
highlighted_table = []
|
| 77 |
+
|
| 78 |
+
adjusted_table = _add_adjusted_col_offsets(table)
|
| 79 |
+
|
| 80 |
+
for (row_index, col_index) in cell_indices:
|
| 81 |
+
cell = table[row_index][col_index]
|
| 82 |
+
if with_heuristic_headers:
|
| 83 |
+
row_headers = _get_heuristic_row_headers(
|
| 84 |
+
adjusted_table, row_index, col_index
|
| 85 |
+
)
|
| 86 |
+
col_headers = _get_heuristic_col_headers(
|
| 87 |
+
adjusted_table, row_index, col_index
|
| 88 |
+
)
|
| 89 |
+
else:
|
| 90 |
+
row_headers = []
|
| 91 |
+
col_headers = []
|
| 92 |
+
|
| 93 |
+
highlighted_cell = {
|
| 94 |
+
"cell": cell,
|
| 95 |
+
"row_headers": row_headers,
|
| 96 |
+
"col_headers": col_headers,
|
| 97 |
+
}
|
| 98 |
+
highlighted_table.append(highlighted_cell)
|
| 99 |
+
|
| 100 |
+
return highlighted_table
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def linearize_subtable(subtable, table_page_title, table_section_title):
|
| 104 |
+
"""Linearize the highlighted subtable and return a string of its contents."""
|
| 105 |
+
table_str = ""
|
| 106 |
+
if table_page_title:
|
| 107 |
+
table_str += "<page_title> " + table_page_title + " </page_title> "
|
| 108 |
+
if table_section_title:
|
| 109 |
+
table_str += "<section_title> " + table_section_title + " </section_title> "
|
| 110 |
+
table_str += "<table> "
|
| 111 |
+
|
| 112 |
+
for item in subtable:
|
| 113 |
+
cell = item["cell"]
|
| 114 |
+
row_headers = item["row_headers"]
|
| 115 |
+
col_headers = item["col_headers"]
|
| 116 |
+
|
| 117 |
+
# The value of the cell.
|
| 118 |
+
item_str = "<cell> " + cell["value"] + " "
|
| 119 |
+
|
| 120 |
+
# All the column headers associated with this cell.
|
| 121 |
+
for col_header in col_headers:
|
| 122 |
+
item_str += "<col_header> " + col_header["value"] + " </col_header> "
|
| 123 |
+
|
| 124 |
+
# All the row headers associated with this cell.
|
| 125 |
+
for row_header in row_headers:
|
| 126 |
+
item_str += "<row_header> " + row_header["value"] + " </row_header> "
|
| 127 |
+
|
| 128 |
+
item_str += "</cell> "
|
| 129 |
+
table_str += item_str
|
| 130 |
+
|
| 131 |
+
table_str += "</table>"
|
| 132 |
+
return table_str
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def linearize(example):
|
| 136 |
+
table = example["table"]
|
| 137 |
+
table_page_title = example["table_page_title"]
|
| 138 |
+
table_section_title = example["table_section_title"]
|
| 139 |
+
cell_indices = example["highlighted_cells"]
|
| 140 |
+
subtable = get_highlighted_subtable(
|
| 141 |
+
table=table, cell_indices=cell_indices, with_heuristic_headers=True
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
subtable_metadata_str = linearize_subtable(
|
| 145 |
+
subtable=subtable,
|
| 146 |
+
table_page_title=table_page_title,
|
| 147 |
+
table_section_title=table_section_title,
|
| 148 |
+
)
|
| 149 |
+
return subtable_metadata_str
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
class Totto(datasets.GeneratorBasedBuilder):
|
| 153 |
|
| 154 |
BUILDER_CONFIGS = [
|
| 155 |
datasets.BuilderConfig(
|
|
|
|
| 162 |
def _info(self):
|
| 163 |
return datasets.DatasetInfo(
|
| 164 |
description=_DESCRIPTION,
|
| 165 |
+
features=datasets.Features(
|
| 166 |
{
|
| 167 |
"gem_id": datasets.Value("string"),
|
| 168 |
"gem_parent_id": datasets.Value("string"),
|
|
|
|
| 194 |
"overlap_subset": datasets.Value("string"),
|
| 195 |
"target": datasets.Value("string"), # single target for train
|
| 196 |
"references": [datasets.Value("string")],
|
| 197 |
+
"linearized_input": datasets.Value("string"),
|
| 198 |
},
|
| 199 |
),
|
| 200 |
supervised_keys=None,
|
|
|
|
| 206 |
"""Returns SplitGenerators."""
|
| 207 |
dl_dir = dl_manager.download_and_extract(_URLs[self.config.name])
|
| 208 |
challenge_sets = [
|
| 209 |
+
("challenge_train_sample", "train_totto_RandomSample500.json"),
|
| 210 |
+
("challenge_validation_sample", "validation_totto_RandomSample500.json"),
|
| 211 |
+
# ("challenge_test_scramble", "test_totto_ScrambleInputStructure500.json"),
|
| 212 |
+
]
|
| 213 |
|
| 214 |
return [
|
| 215 |
+
datasets.SplitGenerator(
|
| 216 |
+
name=datasets.Split.TRAIN,
|
| 217 |
+
gen_kwargs={
|
| 218 |
+
"filepath": os.path.join(
|
| 219 |
+
dl_dir["data"], "totto_data/totto_train_data.jsonl"
|
| 220 |
+
),
|
| 221 |
+
"split": "train",
|
| 222 |
+
},
|
| 223 |
+
),
|
| 224 |
+
datasets.SplitGenerator(
|
| 225 |
+
name=datasets.Split.VALIDATION,
|
| 226 |
+
gen_kwargs={
|
| 227 |
+
"filepath": os.path.join(
|
| 228 |
+
dl_dir["data"], "totto_data/totto_dev_data.jsonl"
|
| 229 |
+
),
|
| 230 |
+
"split": "validation",
|
| 231 |
+
},
|
| 232 |
+
),
|
| 233 |
+
datasets.SplitGenerator(
|
| 234 |
+
name=datasets.Split.TEST,
|
| 235 |
+
gen_kwargs={
|
| 236 |
+
"filepath": os.path.join(
|
| 237 |
+
dl_dir["data"], "totto_data/unlabeled_totto_test_data.jsonl"
|
| 238 |
+
),
|
| 239 |
+
"split": "test",
|
| 240 |
+
},
|
| 241 |
+
),
|
| 242 |
+
] + [
|
| 243 |
+
datasets.SplitGenerator(
|
| 244 |
+
name=challenge_split,
|
| 245 |
+
gen_kwargs={
|
| 246 |
+
"filepath": os.path.join(
|
| 247 |
+
dl_dir["challenge_set"], self.config.name, filename
|
| 248 |
+
),
|
| 249 |
+
"split": challenge_split,
|
| 250 |
+
},
|
| 251 |
+
)
|
| 252 |
+
for challenge_split, filename in challenge_sets
|
| 253 |
+
]
|
| 254 |
|
| 255 |
def _generate_examples(self, filepath, split, filepaths=None, lang=None):
|
| 256 |
"""Yields examples."""
|
|
|
|
| 264 |
continue
|
| 265 |
exple["gem_parent_id"] = exple["gem_id"]
|
| 266 |
exple["gem_id"] = f"{self.config.name}-{split}-{id_}"
|
| 267 |
+
exple["linearized_input"] = linearize(exple)
|
| 268 |
yield id_, exple
|
| 269 |
else:
|
| 270 |
with open(filepath, "r", encoding="utf-8") as json_file:
|
|
|
|
| 273 |
i = -1
|
| 274 |
for json_str in json_list:
|
| 275 |
result = json.loads(json_str)
|
| 276 |
+
linearized_input = linearize(result)
|
| 277 |
if split == "train":
|
| 278 |
i += 1
|
| 279 |
for sentence in result["sentence_annotations"]:
|
|
|
|
| 291 |
"example_id": str(result["example_id"]),
|
| 292 |
"overlap_subset": "none",
|
| 293 |
"sentence_annotations": [sentence],
|
| 294 |
+
"references": [sentence["final_sentence"]],
|
| 295 |
"target": sentence["final_sentence"],
|
| 296 |
+
"linearized_input": linearized_input,
|
| 297 |
}
|
| 298 |
yield id_, response
|
| 299 |
else:
|
|
|
|
| 310 |
"highlighted_cells": result["highlighted_cells"],
|
| 311 |
"example_id": str(result["example_id"]),
|
| 312 |
"overlap_subset": str(result["overlap_subset"]),
|
| 313 |
+
"linearized_input": linearized_input,
|
| 314 |
}
|
| 315 |
+
response["sentence_annotations"] = (
|
| 316 |
+
[] if split == "test" else result["sentence_annotations"]
|
| 317 |
+
)
|
| 318 |
response["references"] = [
|
| 319 |
+
sentence["final_sentence"]
|
| 320 |
+
for sentence in response["sentence_annotations"]
|
| 321 |
]
|
| 322 |
+
response["target"] = (
|
| 323 |
+
response["references"][0]
|
| 324 |
+
if len(response["references"]) > 0
|
| 325 |
+
else ""
|
| 326 |
+
)
|
| 327 |
yield id_, response
|
|
|