Update valse_vlms.py
Browse files- valse_vlms.py +97 -96
valse_vlms.py
CHANGED
|
@@ -1,96 +1,97 @@
|
|
| 1 |
-
import os
|
| 2 |
-
from datasets import DatasetInfo, GeneratorBasedBuilder, SplitGenerator, Version, Features, Value, Sequence, Image, Split
|
| 3 |
-
|
| 4 |
-
_CITATION = """\
|
| 5 |
-
@inproceedings{parcalabescu-etal-2022-valse,
|
| 6 |
-
title = "{VALSE}: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena",
|
| 7 |
-
author = "Parcalabescu, Letitia and
|
| 8 |
-
Cafagna, Michele and
|
| 9 |
-
Muradjan, Lilitta and
|
| 10 |
-
Frank, Anette and
|
| 11 |
-
Calixto, Iacer and
|
| 12 |
-
Gatt, Albert",
|
| 13 |
-
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
|
| 14 |
-
month = may,
|
| 15 |
-
year = "2022",
|
| 16 |
-
address = "Dublin, Ireland",
|
| 17 |
-
publisher = "Association for Computational Linguistics",
|
| 18 |
-
url = "https://aclanthology.org/2022.acl-long.567",
|
| 19 |
-
pages = "8253--8280",
|
| 20 |
-
abstract = "We propose VALSE (Vision And Language Structured Evaluation), a novel benchmark designed for testing general-purpose pretrained vision and language (V{\&}L) models for their visio-linguistic grounding capabilities on specific linguistic phenomena. VALSE offers a suite of six tests covering various linguistic constructs. Solving these requires models to ground linguistic phenomena in the visual modality, allowing more fine-grained evaluations than hitherto possible. We build VALSE using methods that support the construction of valid foils, and report results from evaluating five widely-used V{\&}L models. Our experiments suggest that current models have considerable difficulty addressing most phenomena. Hence, we expect VALSE to serve as an important benchmark to measure future progress of pretrained V{\&}L models from a linguistic perspective, complementing the canonical task-centred V{\&}L evaluations.",
|
| 21 |
-
}
|
| 22 |
-
"""
|
| 23 |
-
|
| 24 |
-
_DESCRIPTION = """\
|
| 25 |
-
Code and datasets for "VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena".
|
| 26 |
-
"""
|
| 27 |
-
|
| 28 |
-
_HOMEPAGE = "https://huggingface.co/datasets/Mayfull/valse_vlms"
|
| 29 |
-
_LICENSE = "MIT License"
|
| 30 |
-
|
| 31 |
-
class VALSEVLMsDataset(GeneratorBasedBuilder):
|
| 32 |
-
VERSION = Version("1.0.0")
|
| 33 |
-
|
| 34 |
-
def _info(self):
|
| 35 |
-
return DatasetInfo(
|
| 36 |
-
description=_DESCRIPTION,
|
| 37 |
-
homepage=_HOMEPAGE,
|
| 38 |
-
license=_LICENSE,
|
| 39 |
-
citation=_CITATION,
|
| 40 |
-
features=Features(
|
| 41 |
-
{
|
| 42 |
-
"images": Image(), #
|
| 43 |
-
"positive_caption": Sequence(Value("string")),
|
| 44 |
-
"negative_caption": Sequence(Value("string")),
|
| 45 |
-
"original_file_name": Value("string"),
|
| 46 |
-
"dataset": Value("string"),
|
| 47 |
-
"key": Value("string"),
|
| 48 |
-
"linguistic_phenomena": Value("string"),
|
| 49 |
-
"original_split": Value("string"),
|
| 50 |
-
}
|
| 51 |
-
),
|
| 52 |
-
)
|
| 53 |
-
|
| 54 |
-
def _split_generators(self, dl_manager):
|
| 55 |
-
# URLs for images.zip and examples.jsonl
|
| 56 |
-
urls_to_download = {
|
| 57 |
-
"images": "https://huggingface.co/datasets/Mayfull/valse_vlms/resolve/main/images.zip",
|
| 58 |
-
"examples": "https://huggingface.co/datasets/Mayfull/valse_vlms/resolve/main/examples.jsonl",
|
| 59 |
-
}
|
| 60 |
-
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
| 61 |
-
|
| 62 |
-
return [
|
| 63 |
-
SplitGenerator(
|
| 64 |
-
name=Split.TEST,
|
| 65 |
-
gen_kwargs={
|
| 66 |
-
"examples_file": downloaded_files["examples"],
|
| 67 |
-
"images_dir": downloaded_files["images"],
|
| 68 |
-
},
|
| 69 |
-
),
|
| 70 |
-
]
|
| 71 |
-
|
| 72 |
-
def _generate_examples(self, examples_file, images_dir):
|
| 73 |
-
# Read the examples.jsonl file
|
| 74 |
-
with open(examples_file, "r", encoding="utf-8") as f:
|
| 75 |
-
for idx, line in enumerate(f):
|
| 76 |
-
data = eval(line.strip())
|
| 77 |
-
|
| 78 |
-
# Get image path
|
| 79 |
-
image_file_name = data.get("image_file_name")
|
| 80 |
-
image_path = os.path.join(images_dir, image_file_name)
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
"
|
| 90 |
-
"
|
| 91 |
-
"
|
| 92 |
-
"
|
| 93 |
-
"
|
| 94 |
-
"
|
| 95 |
-
"
|
| 96 |
-
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from datasets import DatasetInfo, GeneratorBasedBuilder, SplitGenerator, Version, Features, Value, Sequence, Image, Split
|
| 3 |
+
|
| 4 |
+
_CITATION = """\
|
| 5 |
+
@inproceedings{parcalabescu-etal-2022-valse,
|
| 6 |
+
title = "{VALSE}: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena",
|
| 7 |
+
author = "Parcalabescu, Letitia and
|
| 8 |
+
Cafagna, Michele and
|
| 9 |
+
Muradjan, Lilitta and
|
| 10 |
+
Frank, Anette and
|
| 11 |
+
Calixto, Iacer and
|
| 12 |
+
Gatt, Albert",
|
| 13 |
+
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
|
| 14 |
+
month = may,
|
| 15 |
+
year = "2022",
|
| 16 |
+
address = "Dublin, Ireland",
|
| 17 |
+
publisher = "Association for Computational Linguistics",
|
| 18 |
+
url = "https://aclanthology.org/2022.acl-long.567",
|
| 19 |
+
pages = "8253--8280",
|
| 20 |
+
abstract = "We propose VALSE (Vision And Language Structured Evaluation), a novel benchmark designed for testing general-purpose pretrained vision and language (V{\&}L) models for their visio-linguistic grounding capabilities on specific linguistic phenomena. VALSE offers a suite of six tests covering various linguistic constructs. Solving these requires models to ground linguistic phenomena in the visual modality, allowing more fine-grained evaluations than hitherto possible. We build VALSE using methods that support the construction of valid foils, and report results from evaluating five widely-used V{\&}L models. Our experiments suggest that current models have considerable difficulty addressing most phenomena. Hence, we expect VALSE to serve as an important benchmark to measure future progress of pretrained V{\&}L models from a linguistic perspective, complementing the canonical task-centred V{\&}L evaluations.",
|
| 21 |
+
}
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
_DESCRIPTION = """\
|
| 25 |
+
Code and datasets for "VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena".
|
| 26 |
+
"""
|
| 27 |
+
|
| 28 |
+
_HOMEPAGE = "https://huggingface.co/datasets/Mayfull/valse_vlms"
|
| 29 |
+
_LICENSE = "MIT License"
|
| 30 |
+
|
| 31 |
+
class VALSEVLMsDataset(GeneratorBasedBuilder):
|
| 32 |
+
VERSION = Version("1.0.0")
|
| 33 |
+
|
| 34 |
+
def _info(self):
|
| 35 |
+
return DatasetInfo(
|
| 36 |
+
description=_DESCRIPTION,
|
| 37 |
+
homepage=_HOMEPAGE,
|
| 38 |
+
license=_LICENSE,
|
| 39 |
+
citation=_CITATION,
|
| 40 |
+
features=Features(
|
| 41 |
+
{
|
| 42 |
+
"images": Sequence(Image()), # List of images
|
| 43 |
+
"positive_caption": Sequence(Value("string")),
|
| 44 |
+
"negative_caption": Sequence(Value("string")),
|
| 45 |
+
"original_file_name": Value("string"),
|
| 46 |
+
"dataset": Value("string"),
|
| 47 |
+
"key": Value("string"),
|
| 48 |
+
"linguistic_phenomena": Value("string"),
|
| 49 |
+
"original_split": Value("string"),
|
| 50 |
+
}
|
| 51 |
+
),
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
def _split_generators(self, dl_manager):
|
| 55 |
+
# URLs for images.zip and examples.jsonl
|
| 56 |
+
urls_to_download = {
|
| 57 |
+
"images": "https://huggingface.co/datasets/Mayfull/valse_vlms/resolve/main/images.zip",
|
| 58 |
+
"examples": "https://huggingface.co/datasets/Mayfull/valse_vlms/resolve/main/examples.jsonl",
|
| 59 |
+
}
|
| 60 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
| 61 |
+
|
| 62 |
+
return [
|
| 63 |
+
SplitGenerator(
|
| 64 |
+
name=Split.TEST,
|
| 65 |
+
gen_kwargs={
|
| 66 |
+
"examples_file": downloaded_files["examples"],
|
| 67 |
+
"images_dir": downloaded_files["images"],
|
| 68 |
+
},
|
| 69 |
+
),
|
| 70 |
+
]
|
| 71 |
+
|
| 72 |
+
def _generate_examples(self, examples_file, images_dir):
|
| 73 |
+
# Read the examples.jsonl file
|
| 74 |
+
with open(examples_file, "r", encoding="utf-8") as f:
|
| 75 |
+
for idx, line in enumerate(f):
|
| 76 |
+
data = eval(line.strip())
|
| 77 |
+
|
| 78 |
+
# Get image path and wrap it in a list
|
| 79 |
+
image_file_name = data.get("image_file_name")
|
| 80 |
+
image_path = os.path.join(images_dir, image_file_name)
|
| 81 |
+
images = [image_path] # Wrap single image path in a list
|
| 82 |
+
|
| 83 |
+
# Ensure the image file exists
|
| 84 |
+
if not os.path.exists(image_path):
|
| 85 |
+
continue # Skip if image not found
|
| 86 |
+
|
| 87 |
+
# Prepare the example
|
| 88 |
+
yield idx, {
|
| 89 |
+
"images": images, # List of images
|
| 90 |
+
"positive_caption": data.get("positive_caption", []),
|
| 91 |
+
"negative_caption": data.get("negative_caption", []),
|
| 92 |
+
"original_file_name": data.get("original_file_name", ""),
|
| 93 |
+
"dataset": data.get("dataset", ""),
|
| 94 |
+
"key": data.get("key", ""),
|
| 95 |
+
"linguistic_phenomena": data.get("linguistic_phenomena", ""),
|
| 96 |
+
"original_split": data.get("original_split", ""),
|
| 97 |
+
}
|