titipan / detection_config.yml
NekoFi's picture
Update detection_config.yml
08c4e6c verified
Global:
use_gpu: true
use_xpu: false
use_mlu: false
epoch_num: 100
log_smooth_window: 20
print_batch_step: 10
save_model_dir: output/detection
save_epoch_step: 1000
# evaluation is run every 2000 iterations
eval_batch_step: [0, 2000]
cal_metric_during_train: False
pretrained_model: pretrained_models/detection/MobileNetV3_large_x0_5_pretrained.pdparams
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img:
save_res_path:
Architecture:
model_type: det
algorithm: DB
Transform:
Backbone:
name: MobileNetV3
scale: 0.5
model_name: large
Neck:
name: DBFPN
out_channels: 256
Head:
name: DBHead
k: 50
Loss:
name: DBLoss
balance_loss: true
main_loss_type: DiceLoss
alpha: 5
beta: 10
ohem_ratio: 3
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
name: Cosine
learning_rate: 0.001 # learning_rate
warmup_epoch: 2
regularizer:
name: 'L2'
factor: 0
PostProcess:
name: DBPostProcess
thresh: 0.3
box_thresh: 0.6
max_candidates: 1000
unclip_ratio: 1.5
Metric:
name: DetMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: ./
label_file_list:
- dataset/detection_train.txt
ratio_list: [1.0]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- IaaAugment:
augmenter_args:
- { 'type': Fliplr, 'args': { 'p': 0.5 } }
# --- Augmentasi Ditambahkan (Menggunakan Nama Albumentations) ---
- { 'type': GaussNoise, 'args': {'var_limit': [0, 165], 'p': 0.3 } } # Noise (prob 30%) - var_limit approx (0.05*255)^2
- { 'type': GaussianBlur, 'args': { 'sigma_limit': [0.0, 1.5], 'p': 0.3 } } # Blur (prob 30%)
- { 'type': RandomBrightnessContrast, 'args': { 'brightness_limit': 0.3, 'contrast_limit': 0.3, 'p': 0.5 } } # Light/Contrast (prob 50%)
# --- Akhir Augmentasi Tambahan ---
- { 'type': Affine, 'args': { 'rotate': [-10, 10] } } # Rotasi tetap ada
- { 'type': Resize, 'args': { 'size': [0.5, 3] } } # Resize tetap ada
- EastRandomCropData:
size: [640, 640]
max_tries: 50
keep_ratio: true
- MakeBorderMap:
shrink_ratio: 0.4
thresh_min: 0.3
thresh_max: 0.7
- MakeShrinkMap:
shrink_ratio: 0.4
min_text_size: 8
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask'] # the order of the dataloader list
loader:
shuffle: True
drop_last: False
batch_size_per_card: 8
num_workers: 4
use_shared_memory: True
Eval:
dataset:
name: SimpleDataSet
data_dir: ./
label_file_list:
- dataset/detection_test.txt
transforms:
- DecodeImage:
img_mode: BGR
channel_first: False
- DetLabelEncode:
- DetResizeForTest:
image_shape: [736, 1280]
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1 # must be 1 for detection eval
num_workers: 4
use_shared_memory: True