license: cc-by-4.0
tags:
- chemistry
- materials
- diffusion
- synthetic
pretty_name: MofasaDB
size_categories:
- 100K<n<1M
MofasaDB
The MofasaDB is a publicly available dataset containing 200.000+ de novo generated MOF (Metal-Organic Framework) structures from Mofasa trained on QMOF (up to 170 atoms), along with their geometry-relaxed counterparts. The database is released alongside the paper Mofasa: A Step Change in Metal-Organic Framework Generation. A user-friendly web interface for search and discovery can be accessed at https://mofux.ai/.
Table of Contents
- Database Overview
- Quick Start
- Property Reference
- Structural Properties
- MOFID Properties
- Zeo++ Geometric Properties
- ORB Properties
- MOFChecker Properties
- MOF Fragment Properties
- Linker Properties
- Validation Metrics
Database Overview
The database contains unconditionally generated MOF structures from Mofasa, along with their geometry-relaxed counterparts.
Files
| File | Description |
|---|---|
samples.db |
Original generated MOF structures |
relaxed.db |
Geometry-relaxed versions of the samples |
sample_latents/ |
ORB latent embeddings for samples |
relaxed_latents/ |
ORB latent embeddings for relaxed structures |
Data Alignment
The databases are row-aligned: row i in samples.db corresponds to row i in relaxed.db.
Indexing:
- ASE databases are 1-indexed: first row is
db.get(1) - NumPy arrays are 0-indexed: first element is
array[0] - Therefore:
latent[i]corresponds todb.get(i + 1)
Quick Start
Load a Structure
from ase.db import connect
db = connect("samples.db")
row_id = 1
row = db.get(row_id) # Get first structure (1-indexed)
atoms = row.toatoms() # Convert to ASE Atoms object
print(atoms.get_chemical_formula())
Access Properties
# Get energy per atom
energy = row.data['properties']['orb_properties']['orb_energy_per_atom']
# Get pore diameter
lcd = row.data['properties']['pyzeo_geometric_properties']['lcd']
# Get topology (top-level property)
topology = row.data['topology']
Load Orb Latent Embeddings
import numpy as np
latents = np.load("sample_latents/orb_latent_4_graph.npy")
latent = latents[row_id - 1] # Convert 1-indexed row to 0-indexed array
Compare Sample and Relaxed
sample_db = connect("samples.db")
relaxed_db = connect("relaxed.db")
# Row i in both databases correspond to the same structure
row_id = 100
sample_atoms = sample_db.get(row_id).toatoms()
relaxed_atoms = relaxed_db.get(row_id).toatoms()
print(f"Sample formula: {sample_atoms.get_chemical_formula()}")
print(f"Relaxed formula: {relaxed_atoms.get_chemical_formula()}")
Handle Missing Data
Not all properties are available for every structure. Common causes include:
- MOFID failure: If MOFID cannot identify the MOF building blocks (nodes, linkers, topology), these properties are set to
"UNKNOWN","ERROR", or empty lists for missing SMILES strings. - Zeo++ non-porous: If Zeo++ determines a structure has insufficient porosity for probe access, geometric properties (
lcd,pld, accessible volume/surface area) may be missing, zero, orNone. - Component absence: Latent embeddings for
bound_solventandfree_solventare zero vectors when structures contain no solvent molecules.
Property Reference
Properties are stored in row.data with nested paths. Some examples:
PROPERTY_PATHS = {
# ORB model properties
'orb_energy_per_atom': 'properties.orb_properties.orb_energy_per_atom',
'orb_max_force': 'properties.orb_properties.orb_max_force',
# Zeo++ geometric properties
'lcd': 'properties.pyzeo_geometric_properties.lcd',
'pld': 'properties.pyzeo_geometric_properties.pld',
'dif': 'properties.pyzeo_geometric_properties.dif',
'av_volume_fraction': 'properties.pyzeo_geometric_properties.av_volume_fraction',
'av_cm3_per_g': 'properties.pyzeo_geometric_properties.av_cm3_per_g',
'nav_volume_fraction': 'properties.pyzeo_geometric_properties.nav_volume_fraction',
'asa_m2_per_g': 'properties.pyzeo_geometric_properties.asa_m2_per_g',
'number_of_channels': 'properties.pyzeo_geometric_properties.number_of_channels',
'number_of_pockets': 'properties.pyzeo_geometric_properties.number_of_pockets',
# Crystal symmetry
'spacegroup_number': 'properties.crystal_symmetry.symprec_0.01/spacegroup_number',
'pointgroup': 'properties.crystal_symmetry.symprec_0.01/pointgroup',
# MOFID properties
'mofid': 'mofid',
'mofkey': 'mofkey',
'topology': 'topology',
'smiles_nodes': 'smiles_nodes',
'smiles_linkers': 'smiles_linkers',
'cat': 'cat',
# MOFChecker
'mofchecker': 'properties.mofchecker',
'mofchecker_valid': 'properties.mofchecker.mofchecker_valid',
}
Structural Properties
Lattice Parameters
| Key | Type | Description |
|---|---|---|
lattice_a |
float | Unit cell length along the a-axis (Å) |
lattice_b |
float | Unit cell length along the b-axis (Å) |
lattice_c |
float | Unit cell length along the c-axis (Å) |
lattice_alpha |
float | Angle between b and c axes (degrees) |
lattice_beta |
float | Angle between a and c axes (degrees) |
lattice_gamma |
float | Angle between a and b axes (degrees) |
Chemical Composition
| Key | Type | Description |
|---|---|---|
reduced_formula |
str | Empirical (reduced) chemical formula of the structure |
MOFID Properties
MOFID is a standardized identifier for MOF structures that encodes topology, nodes, linkers, and catenation information.
| Key | Type | Description |
|---|---|---|
mofid |
str | Full MOFID identifier string. Format: {nodes}.{linkers} MOFid-v1.{topology}.cat{n}. |
mofkey |
str | MOFKey identifier (a hash-based representation of the MOF structure). Format: {hash}.{topology}.MOFkey-v1.{short_code}. |
smiles_nodes |
str | Concatenated SMILES strings of all distinct metal nodes (.-separated). |
smiles_linkers |
str | Concatenated SMILES strings of all distinct organic linkers (.-separated). |
topology |
str | Three-letter RCSR topology code (e.g., "pcu", "dia", "fcu"). |
topology_v2 |
str | Alternative topology assignment (may differ from primary if ambiguous) |
cat |
int | Catenation number (degree of interpenetration). 0 = non-catenated, n = n-fold catenated |
Crystal Symmetry
Computed using pymatgen's SpacegroupAnalyzer.
| Key | Type | Description |
|---|---|---|
spacegroup |
str | Crystal system from space group analysis at symprec=0.01 (e.g., "cubic", "triclinic") |
spacegroup_v2 |
str | Crystal system from space group analysis at symprec=0.1 (more tolerant symmetry detection) |
Detailed Crystal Symmetry (nested under properties.crystal_symmetry)
| Key | Type | Description |
|---|---|---|
symprec_0.01/pointgroup |
str | Point group symbol (Hermann-Mauguin notation) |
symprec_0.01/spacegroup |
str | Space group symbol (Hermann-Mauguin notation) |
symprec_0.01/spacegroup_number |
int | International Tables space group number (1-230) |
symprec_0.01/spacegroup_crystal |
str | Crystal system name |
symprec_0.1/pointgroup |
str | Point group symbol (at looser tolerance) |
symprec_0.1/spacegroup |
str | Space group symbol (at looser tolerance) |
symprec_0.1/spacegroup_number |
int | Space group number (at looser tolerance) |
symprec_0.1/spacegroup_crystal |
str | Crystal system name (at looser tolerance) |
Zeo++ Geometric Properties
Computed using Zeo++ via the pyzeo wrapper. These properties characterize the pore geometry and accessibility using a spherical probe (default: N₂ probe radius of 1.86 Å).
Pore Descriptors
| Key | Type | Unit | Description |
|---|---|---|---|
lcd |
float | Å | Largest Cavity Diameter – Diameter of the largest sphere that can fit in the pore without overlapping framework atoms |
pld |
float | Å | Pore Limiting Diameter – Diameter of the largest sphere that can percolate through the framework (i.e., the narrowest point along the largest channel) |
dif |
float | Å | Diameter of Included sphere along Free path – Diameter of the largest sphere that can diffuse along the accessible path |
number_of_channels |
int | — | Number of distinct connected channel systems in the framework |
number_of_pockets |
int | — | Number of isolated pores (inaccessible to the probe molecule) |
Volume Properties
| Key | Type | Unit | Description |
|---|---|---|---|
av_volume_fraction |
float | — | Fraction of unit cell volume that is accessible to the probe |
av_cm3_per_g |
float | cm³/g | Accessible pore volume per gram of framework |
nav_volume_fraction |
float | — | Fraction of unit cell volume that is non-accessible (pocket volume) |
nav_cm3_per_g |
float | cm³/g | Non-accessible volume per gram of framework |
channel_volume_fraction |
float | — | Fraction of total void volume that belongs to channels |
pocket_volume_fraction |
float | — | Fraction of total void volume that belongs to pockets |
Surface Area Properties
| Key | Type | Unit | Description |
|---|---|---|---|
asa_m2_per_cm3 |
float | m²/cm³ | Accessible surface area per unit volume |
asa_m2_per_g |
float | m²/g | Accessible Surface Area per gram (comparable to BET surface area) |
nasa_m2_per_cm3 |
float | m²/cm³ | Non-accessible surface area per unit volume |
nasa_m2_per_g |
float | m²/g | Non-accessible surface area per gram |
channel_surface_area_fraction |
float | — | Fraction of total surface area belonging to channels |
pocket_surface_area_fraction |
float | — | Fraction of total surface area belonging to pockets |
ORB Properties
Properties computed using the ORB machine-learned interatomic potential.
Energy and Forces
| Key | Type | Unit | Description |
|---|---|---|---|
orb_energy_per_atom |
float | eV/atom | Total predicted potential energy divided by number of atoms |
orb_max_force |
float | eV/Å | Maximum force magnitude on any atom in the structure |
ORB Latent Embeddings
ORB latent embeddings are stored as NumPy files in the sample_latents/ and relaxed_latents/ directories.
File naming: orb_latent_{layer}_{component}.npy
| File Pattern | Shape | Description |
|---|---|---|
orb_latent_{0-4}_graph |
(N, 256) | Graph-level pooled latent |
orb_latent_{0-4}_nodes_and_bridges |
(N, 256) | Mean-pooled over metal nodes |
orb_latent_{0-4}_linkers |
(N, 256) | Mean-pooled over organic linkers |
orb_latent_{0-4}_bound_solvent |
(N, 256) | Mean-pooled over bound solvents |
orb_latent_{0-4}_free_solvent |
(N, 256) | Mean-pooled over free solvents |
- Layers 0-4 correspond to different depths in the ORB GNN (layer 4 = final layer)
- Zero vectors indicate missing data (e.g., structures without solvents)
MOFChecker Properties
Computed using MOFChecker, a tool for validating MOF structures. All keys are prefixed with mofchecker_.
Validity Checks (Binary)
These descriptors are used to determine overall MOF validity. True indicates a problem (except where noted).
| Key | Type | Description |
|---|---|---|
mofchecker_valid |
bool | Overall validity flag. True if structure passes all validity checks. |
mofchecker_no_carbon |
bool | True if structure contains no carbon atoms (invalid for organic-based MOFs) |
mofchecker_no_hydrogen |
bool | True if structure contains no hydrogen atoms |
mofchecker_no_metal |
bool | True if structure contains no metal atoms |
mofchecker_has_atomic_overlaps |
bool | True if any atoms are too close together |
mofchecker_has_lone_molecule |
bool | True if structure contains disconnected molecular fragments |
mofchecker_has_overcoordinated_c |
bool | True if any carbon has too many bonds |
mofchecker_has_overcoordinated_n |
bool | True if any nitrogen has too many bonds |
mofchecker_has_overcoordinated_h |
bool | True if any hydrogen has too many bonds |
mofchecker_has_undercoordinated_c |
bool | True if any carbon has too few bonds |
mofchecker_has_undercoordinated_n |
bool | True if any nitrogen has too few bonds |
mofchecker_has_undercoordinated_rare_earth |
bool | True if any rare earth metal is undercoordinated |
mofchecker_has_undercoordinated_alkali_alkaline |
bool | True if any alkali/alkaline earth metal is undercoordinated |
mofchecker_has_suspicious_terminal_oxo |
bool | True if structure has potentially incorrect terminal oxo groups on metals |
mofchecker_has_geometrically_exposed_metal |
bool | True if any metal has unusual coordination geometry |
mofchecker_has_high_charges |
bool | True if computed partial charges are unusually high |
Informative Checks (Binary, not used for validity)
| Key | Type | Description |
|---|---|---|
mofchecker_has_oms |
bool | True if structure has Open Metal Sites (coordinatively unsaturated metals) |
mofchecker_has_3d_connected_graph |
bool | True if the framework is 3D-connected (expected for MOFs) |
Structure Hashes
| Key | Type | Description |
|---|---|---|
mofchecker_graph_hash |
str | Hash of the full structure graph (atoms + bonds) |
mofchecker_undecorated_graph_hash |
str | Hash of graph with hydrogen atoms removed |
mofchecker_decorated_scaffold_hash |
str | Hash of framework scaffold with decorations |
mofchecker_undecorated_scaffold_hash |
str | Hash of bare framework scaffold |
mofchecker_symmetry_hash |
str | Hash encoding symmetry information |
MOF Fragment Properties
Properties of the decomposed MOF components (nodes, linkers, solvents). Stored under properties.mof_fragments.
Component Types
MOF structures are decomposed into four component types:
- nodes_and_bridges: Metal nodes and bridging groups
- linkers: Organic linker molecules
- bound_solvent: Solvent molecules coordinated to metal centers
- free_solvent: Unbound solvent molecules in pores
Fragment Formulas
| Key | Type | Description |
|---|---|---|
{component}_formulas |
List[str] | Chemical formulas of each fragment of this component type |
Example: nodes_and_bridges_formulas = ["Zn4O", "Zn4O"] for a structure with two identical zinc nodes
Linker SMILES
| Key | Type | Description |
|---|---|---|
linkers_smiles |
List[str] | Full SMILES strings for each linker fragment, including stereochemistry and charges where applicable |
linkers_simple_smiles |
List[str] | Simplified SMILES (scaffold only, no stereochemistry). More robust for parsing but less chemically accurate |
Linker Properties
Molecular descriptors and fingerprints for organic linker molecules. Stored under properties.linker_properties.
Morgan Fingerprints
Morgan (circular) fingerprints are stored as NumPy files. For similarity search, use the standardized versions.
| File | Description |
|---|---|
linkers_morgan_ecfp4.npy |
ECFP4 (radius=2), 2048-bit |
linkers_morgan_ecfp6.npy |
ECFP6 (radius=3), 2048-bit |
linkers_morgan_ecfp4_standardized.npy |
ECFP4 from standardized molecules |
linkers_morgan_ecfp6_standardized.npy |
ECFP6 from standardized molecules |
Scalar metadata:
| Key | Type | Description |
|---|---|---|
linkers_smiles_used |
List[str] | Which SMILES string was successfully parsed for each linker (original, fixed, or simple) |
linkers_smiles_standardized |
List[str] | Chemically standardized SMILES (neutralized, canonical tautomer) |
linkers_morgan_count_sum |
List[int] | Sum of Morgan fingerprint bit counts (molecular complexity proxy) |
linkers_morgan_count_sum_max |
List[int] | Maximum count in Morgan fingerprint (indicates highly represented substructures) |
linkers_morgan_count_sum_standardized |
List[int] | Sum of counts for standardized fingerprints |
linkers_morgan_count_sum_max_standardized |
List[int] | Maximum count for standardized fingerprints |
Molecular Descriptors
Computed on standardized molecules using RDKit.
| Key | Type | Description |
|---|---|---|
linkers_rotatable_bonds |
List[int] | Number of rotatable bonds per linker (flexibility metric) |
linkers_ring_count |
List[int] | Number of rings per linker |
Coordination Site Descriptors
Counts of metal-coordinating functional groups (computed on as-parsed molecules).
| Key | Type | Description |
|---|---|---|
linkers_coordination_site_count |
List[int] | Total number of potential metal coordination sites per linker |
linkers_coordination_site_breakdown |
List[Dict] | Breakdown by coordination site type |
linkers_carboxylate_count |
List[int] | Number of carboxylate groups (-COO⁻/-COOH) |
linkers_pyridine_count |
List[int] | Number of aromatic nitrogen sites |
linkers_imidazole_n_count |
List[int] | Number of imidazole/triazole NH groups |
linkers_primary_amine_count |
List[int] | Number of primary amine groups (-NH₂) |
linkers_secondary_amine_count |
List[int] | Number of secondary amine groups (-NH-) |
linkers_tertiary_amine_count |
List[int] | Number of tertiary amine groups (-N<) |
linkers_phosphonate_count |
List[int] | Number of phosphonate groups |
linkers_sulfonate_count |
List[int] | Number of sulfonate groups |
linkers_phenolic_oh_count |
List[int] | Number of phenolic hydroxyl groups |
linkers_alcoholic_oh_count |
List[int] | Number of alcoholic hydroxyl groups |
linkers_thiol_count |
List[int] | Number of thiol groups (-SH) |
linkers_nitrile_count |
List[int] | Number of nitrile groups (-C≡N) |
Validation Metrics
Binary metrics used to assess structure quality.
| Key | Type | Description |
|---|---|---|
no_atom_too_close |
bool | True if all interatomic distances are physically reasonable |
smact_valid |
bool | True if composition passes SMACT electronegativity/charge balance checks |
reconstruction_failed |
bool | True if structure reconstruction from latent space failed |
License
References
- MOFID: Bucior, B. J., et al. (2019). Identification Schemes for Metal-Organic Frameworks...
- Zeo++: Willems, T. F., et al. (2012). Algorithms and tools for high-throughput geometry-based analysis...
- MOFChecker: Ongari, D., et al. (2019). Building a Consistent and Reproducible Database for Adsorption Evaluation...
- QMOF Andrew S. R., et al. (2021). Paper can be found at Machine learning the quantum-chemical properties of metal–organic frameworks for accelerated materials discovery and corresponding dataset release on GitHub
- ORB: Orbital ORB v3 Force Field
- RDKit Morgan Fingerprints: RDKit Documentation