Upload total_defense_meme.py with huggingface_hub
Browse files- total_defense_meme.py +277 -0
total_defense_meme.py
ADDED
|
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
import json
|
| 17 |
+
from pathlib import Path
|
| 18 |
+
from typing import Dict, List, Tuple
|
| 19 |
+
|
| 20 |
+
import datasets
|
| 21 |
+
import gdown
|
| 22 |
+
|
| 23 |
+
from seacrowd.utils import schemas
|
| 24 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
| 25 |
+
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks
|
| 26 |
+
|
| 27 |
+
_CITATION = """\
|
| 28 |
+
@inproceedings{10.1145/3587819.3592545,
|
| 29 |
+
author = {Prakash, Nirmalendu and Hee, Ming Shan and Lee, Roy Ka-Wei},
|
| 30 |
+
title = {TotalDefMeme: A Multi-Attribute Meme dataset on Total Defence in Singapore},
|
| 31 |
+
year = {2023},
|
| 32 |
+
isbn = {9798400701481},
|
| 33 |
+
publisher = {Association for Computing Machinery},
|
| 34 |
+
address = {New York, NY, USA},
|
| 35 |
+
url = {https://doi.org/10.1145/3587819.3592545},
|
| 36 |
+
doi = {10.1145/3587819.3592545},
|
| 37 |
+
booktitle = {Proceedings of the 14th Conference on ACM Multimedia Systems},
|
| 38 |
+
pages = {369–375},
|
| 39 |
+
numpages = {7},
|
| 40 |
+
keywords = {multimodal, meme, dataset, topic clustering, stance classification},
|
| 41 |
+
location = {Vancouver, BC, Canada},
|
| 42 |
+
series = {MMSys '23}
|
| 43 |
+
}
|
| 44 |
+
"""
|
| 45 |
+
|
| 46 |
+
_DATASETNAME = "total_defense_meme"
|
| 47 |
+
|
| 48 |
+
_DESCRIPTION = """\
|
| 49 |
+
This is a large-scale multimodal and multi-attribute dataset containing memes
|
| 50 |
+
about Singapore's Total Defence policy from different social media platforms.
|
| 51 |
+
The type (Singaporean or generic), pillars (military, civil, economic, social,
|
| 52 |
+
psychological, digital, others), topics and stances (against, neutral,
|
| 53 |
+
supportive) of each meme are manually identified by annotators.
|
| 54 |
+
"""
|
| 55 |
+
|
| 56 |
+
_HOMEPAGE = "https://gitlab.com/bottle_shop/meme/TotalDefMemes"
|
| 57 |
+
|
| 58 |
+
_LANGUAGES = ["eng"]
|
| 59 |
+
|
| 60 |
+
_LICENSE = Licenses.UNKNOWN.value
|
| 61 |
+
|
| 62 |
+
_LOCAL = False
|
| 63 |
+
|
| 64 |
+
_URLS = {
|
| 65 |
+
"image": "https://drive.google.com/file/d/1oJIh4QQS3Idff2g6bZORstS5uBROjUUz/view?usp=share_link",
|
| 66 |
+
"annotations": "https://gitlab.com/bottle_shop/meme/TotalDefMemes/-/raw/main/report/annotation.json?ref_type=heads",
|
| 67 |
+
}
|
| 68 |
+
|
| 69 |
+
_SUPPORTED_TASKS = [Tasks.OPTICAL_CHARACTER_RECOGNITION, Tasks.IMAGE_CLASSIFICATION_MULTILABEL]
|
| 70 |
+
_SEACROWD_SCHEMA = {
|
| 71 |
+
task.value: f"seacrowd_{TASK_TO_SCHEMA[task].lower()}" for task in _SUPPORTED_TASKS
|
| 72 |
+
} # ocr: imtext, imc_multi: image_multi
|
| 73 |
+
|
| 74 |
+
_SOURCE_VERSION = "1.0.0"
|
| 75 |
+
|
| 76 |
+
_SEACROWD_VERSION = "2024.06.20"
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
class TotalDefenseMemeDataset(datasets.GeneratorBasedBuilder):
|
| 80 |
+
"""Multimodal dataset containing memes about Singapore's Total Defence policy"""
|
| 81 |
+
|
| 82 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
| 83 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
| 84 |
+
|
| 85 |
+
BUILDER_CONFIGS = [
|
| 86 |
+
SEACrowdConfig(
|
| 87 |
+
name=f"{_DATASETNAME}_source",
|
| 88 |
+
version=SOURCE_VERSION,
|
| 89 |
+
description=f"{_DATASETNAME} source schema",
|
| 90 |
+
schema="source",
|
| 91 |
+
subset_id=_DATASETNAME,
|
| 92 |
+
),
|
| 93 |
+
SEACrowdConfig(
|
| 94 |
+
name=f"{_DATASETNAME}_{_SEACROWD_SCHEMA['OCR']}",
|
| 95 |
+
version=SEACROWD_VERSION,
|
| 96 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
| 97 |
+
schema=_SEACROWD_SCHEMA["OCR"],
|
| 98 |
+
subset_id=_DATASETNAME,
|
| 99 |
+
),
|
| 100 |
+
SEACrowdConfig(
|
| 101 |
+
name=f"{_DATASETNAME}_{_SEACROWD_SCHEMA['IMC_MULTI']}",
|
| 102 |
+
version=SEACROWD_VERSION,
|
| 103 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
| 104 |
+
schema=_SEACROWD_SCHEMA["IMC_MULTI"],
|
| 105 |
+
subset_id=_DATASETNAME,
|
| 106 |
+
),
|
| 107 |
+
]
|
| 108 |
+
|
| 109 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
| 110 |
+
|
| 111 |
+
def _info(self) -> datasets.DatasetInfo:
|
| 112 |
+
# define labelling
|
| 113 |
+
meme_type = ["Non_Memes", "Non_SG_Memes", "SG_Memes"]
|
| 114 |
+
pillar_type = [
|
| 115 |
+
"Social",
|
| 116 |
+
"Economic",
|
| 117 |
+
"Psychological",
|
| 118 |
+
"Military",
|
| 119 |
+
"Civil",
|
| 120 |
+
"Digital",
|
| 121 |
+
"Others",
|
| 122 |
+
]
|
| 123 |
+
stance_type = ["Against", "Neutral", "Supportive"]
|
| 124 |
+
|
| 125 |
+
if self.config.schema == "source":
|
| 126 |
+
features = datasets.Features(
|
| 127 |
+
{
|
| 128 |
+
"image_path": datasets.Value("string"),
|
| 129 |
+
"meme_type": datasets.Sequence(datasets.ClassLabel(names=meme_type)),
|
| 130 |
+
"text": datasets.Value("string"),
|
| 131 |
+
"tags": datasets.Sequence(datasets.Value("string")),
|
| 132 |
+
"pillar_stances": datasets.Sequence(
|
| 133 |
+
{
|
| 134 |
+
"category": datasets.ClassLabel(names=pillar_type),
|
| 135 |
+
"stance": datasets.Sequence(datasets.ClassLabel(names=stance_type)),
|
| 136 |
+
}
|
| 137 |
+
),
|
| 138 |
+
}
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
elif self.config.schema == _SEACROWD_SCHEMA["OCR"]: # all images
|
| 142 |
+
features = schemas.image_text_features(label_names=meme_type)
|
| 143 |
+
features["metadata"] = {
|
| 144 |
+
"tags": datasets.Sequence(datasets.Value("string")),
|
| 145 |
+
"pillar_stances": datasets.Sequence(
|
| 146 |
+
{
|
| 147 |
+
"category": datasets.ClassLabel(names=pillar_type),
|
| 148 |
+
"stance": datasets.Sequence(datasets.ClassLabel(names=stance_type)),
|
| 149 |
+
}
|
| 150 |
+
),
|
| 151 |
+
}
|
| 152 |
+
elif self.config.schema == _SEACROWD_SCHEMA["IMC_MULTI"]: # sg meme images only
|
| 153 |
+
features = schemas.image_multi_features(label_names=pillar_type)
|
| 154 |
+
features["metadata"] = {
|
| 155 |
+
"tags": datasets.Sequence(datasets.Value("string")),
|
| 156 |
+
"stances": datasets.Sequence(datasets.Sequence(datasets.ClassLabel(names=stance_type))),
|
| 157 |
+
}
|
| 158 |
+
|
| 159 |
+
return datasets.DatasetInfo(
|
| 160 |
+
description=_DESCRIPTION,
|
| 161 |
+
features=features,
|
| 162 |
+
homepage=_HOMEPAGE,
|
| 163 |
+
license=_LICENSE,
|
| 164 |
+
citation=_CITATION,
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
| 168 |
+
"""Returns SplitGenerators."""
|
| 169 |
+
# download image from gdrive
|
| 170 |
+
output_dir = Path.cwd() / "data" / _DATASETNAME
|
| 171 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
| 172 |
+
output_file = output_dir / f"{_DATASETNAME}.zip"
|
| 173 |
+
if not output_file.exists():
|
| 174 |
+
gdown.download(_URLS["image"], str(output_file), fuzzy=True)
|
| 175 |
+
else:
|
| 176 |
+
print(f"File already downloaded: {str(output_file)}")
|
| 177 |
+
# extract image data
|
| 178 |
+
image_dir = Path(dl_manager.extract(output_file)) / "TD_Memes"
|
| 179 |
+
|
| 180 |
+
# download annotations
|
| 181 |
+
annotation_path = Path(dl_manager.download(_URLS["annotations"]))
|
| 182 |
+
return [
|
| 183 |
+
datasets.SplitGenerator(
|
| 184 |
+
name=datasets.Split.TRAIN,
|
| 185 |
+
gen_kwargs={
|
| 186 |
+
"image_dir": image_dir,
|
| 187 |
+
"annotation_file": annotation_path,
|
| 188 |
+
},
|
| 189 |
+
),
|
| 190 |
+
]
|
| 191 |
+
|
| 192 |
+
def _generate_examples(self, image_dir: Path, annotation_file: Path) -> Tuple[int, Dict]:
|
| 193 |
+
"""Yields examples as (key, example) tuples."""
|
| 194 |
+
# load annotation
|
| 195 |
+
with open(annotation_file, "r", encoding="utf-8") as file:
|
| 196 |
+
annotation = json.load(file)
|
| 197 |
+
|
| 198 |
+
# get unique image names
|
| 199 |
+
image_names = sorted(
|
| 200 |
+
list(
|
| 201 |
+
set(annotation["Non_Memes"])
|
| 202 |
+
| set(annotation["Non_SG_Memes"])
|
| 203 |
+
| set(annotation["SG_Memes"])
|
| 204 |
+
)
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
# annotation data is a list of dict, instead of dict of image names
|
| 208 |
+
def get_value(image_name, list_of_dicts):
|
| 209 |
+
for dictionary in list_of_dicts:
|
| 210 |
+
if image_name in dictionary:
|
| 211 |
+
return dictionary[image_name]
|
| 212 |
+
return None
|
| 213 |
+
|
| 214 |
+
key = 0
|
| 215 |
+
for image_name in image_names:
|
| 216 |
+
# assert image exist in directory
|
| 217 |
+
assert (image_dir / image_name).exists(), f"Image {image_name} not found"
|
| 218 |
+
image_path = str(image_dir / image_name)
|
| 219 |
+
|
| 220 |
+
# get categories, can be multiple
|
| 221 |
+
categories = []
|
| 222 |
+
if image_name in annotation["Non_Memes"]:
|
| 223 |
+
categories.append("Non_Memes")
|
| 224 |
+
if image_name in annotation["Non_SG_Memes"]:
|
| 225 |
+
categories.append("Non_SG_Memes")
|
| 226 |
+
if image_name in annotation["SG_Memes"]:
|
| 227 |
+
categories.append("SG_Memes")
|
| 228 |
+
|
| 229 |
+
# get attributes
|
| 230 |
+
text = get_value(image_name, annotation["Text"])
|
| 231 |
+
tags = get_value(image_name, annotation["Tags"])
|
| 232 |
+
raw_pillar_stances = get_value(image_name, annotation["Pillar_Stances"])
|
| 233 |
+
|
| 234 |
+
# process pillar stances
|
| 235 |
+
pillar_stances = []
|
| 236 |
+
if raw_pillar_stances:
|
| 237 |
+
for pillar, stances in raw_pillar_stances:
|
| 238 |
+
category = pillar.split(" ")[0]
|
| 239 |
+
pillar_stances.append({"category": category, "stance": stances})
|
| 240 |
+
|
| 241 |
+
# source schema
|
| 242 |
+
if self.config.schema == "source":
|
| 243 |
+
yield key, {
|
| 244 |
+
"image_path": image_path,
|
| 245 |
+
"meme_type": categories,
|
| 246 |
+
"text": text,
|
| 247 |
+
"tags": tags,
|
| 248 |
+
"pillar_stances": pillar_stances,
|
| 249 |
+
}
|
| 250 |
+
key += 1
|
| 251 |
+
|
| 252 |
+
# ocr seacrowd schema
|
| 253 |
+
elif self.config.schema == _SEACROWD_SCHEMA["OCR"]:
|
| 254 |
+
yield key, {
|
| 255 |
+
"id": str(key),
|
| 256 |
+
"image_paths": [image_path],
|
| 257 |
+
"texts": text,
|
| 258 |
+
"metadata": {
|
| 259 |
+
"tags": tags,
|
| 260 |
+
"pillar_stances": pillar_stances,
|
| 261 |
+
},
|
| 262 |
+
}
|
| 263 |
+
key += 1
|
| 264 |
+
|
| 265 |
+
# pillar/topic classification seacrowd schema
|
| 266 |
+
elif self.config.schema == _SEACROWD_SCHEMA["IMC_MULTI"]:
|
| 267 |
+
if pillar_stances: # only those with pillar stances
|
| 268 |
+
yield key, {
|
| 269 |
+
"id": str(key),
|
| 270 |
+
"labels": [pillar["category"] for pillar in pillar_stances],
|
| 271 |
+
"image_path": image_path,
|
| 272 |
+
"metadata": {
|
| 273 |
+
"tags": tags,
|
| 274 |
+
"stances": [pillar["stance"] for pillar in pillar_stances],
|
| 275 |
+
},
|
| 276 |
+
}
|
| 277 |
+
key += 1
|