minor update to readme
Browse files
README.md
CHANGED
|
@@ -6,7 +6,7 @@ language:
|
|
| 6 |
tags:
|
| 7 |
- OntoLearner
|
| 8 |
- ontology-learning
|
| 9 |
-
-
|
| 10 |
pretty_name: Materials Science And Engineering
|
| 11 |
---
|
| 12 |
<div align="center">
|
|
@@ -103,32 +103,47 @@ ontology.load()
|
|
| 103 |
data = ontology.extract()
|
| 104 |
```
|
| 105 |
|
|
|
|
| 106 |
**How use the loaded dataset for LLM4OL Paradigm task settings?**
|
| 107 |
``` python
|
|
|
|
| 108 |
from ontolearner import AMOntology, LearnerPipeline, train_test_split
|
| 109 |
|
|
|
|
| 110 |
ontology = AMOntology()
|
| 111 |
-
ontology.load()
|
| 112 |
data = ontology.extract()
|
| 113 |
|
| 114 |
# Split into train and test sets
|
| 115 |
-
train_data, test_data = train_test_split(data, test_size=0.2)
|
| 116 |
|
| 117 |
-
#
|
|
|
|
| 118 |
pipeline = LearnerPipeline(
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
|
|
|
| 123 |
)
|
| 124 |
|
| 125 |
-
#
|
| 126 |
-
|
| 127 |
train_data=train_data,
|
| 128 |
test_data=test_data,
|
| 129 |
-
|
| 130 |
-
|
|
|
|
| 131 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
```
|
| 133 |
|
| 134 |
For more detailed documentation, see the [](https://ontolearner.readthedocs.io)
|
|
|
|
| 6 |
tags:
|
| 7 |
- OntoLearner
|
| 8 |
- ontology-learning
|
| 9 |
+
- materials-science-and-engineering
|
| 10 |
pretty_name: Materials Science And Engineering
|
| 11 |
---
|
| 12 |
<div align="center">
|
|
|
|
| 103 |
data = ontology.extract()
|
| 104 |
```
|
| 105 |
|
| 106 |
+
|
| 107 |
**How use the loaded dataset for LLM4OL Paradigm task settings?**
|
| 108 |
``` python
|
| 109 |
+
# Import core modules from the OntoLearner library
|
| 110 |
from ontolearner import AMOntology, LearnerPipeline, train_test_split
|
| 111 |
|
| 112 |
+
# Load the AMOntology ontology, which contains concepts related to wines, their properties, and categories
|
| 113 |
ontology = AMOntology()
|
| 114 |
+
ontology.load() # Load entities, types, and structured term annotations from the ontology
|
| 115 |
data = ontology.extract()
|
| 116 |
|
| 117 |
# Split into train and test sets
|
| 118 |
+
train_data, test_data = train_test_split(data, test_size=0.2, random_state=42)
|
| 119 |
|
| 120 |
+
# Initialize a multi-component learning pipeline (retriever + LLM)
|
| 121 |
+
# This configuration enables a Retrieval-Augmented Generation (RAG) setup
|
| 122 |
pipeline = LearnerPipeline(
|
| 123 |
+
retriever_id='sentence-transformers/all-MiniLM-L6-v2', # Dense retriever model for nearest neighbor search
|
| 124 |
+
llm_id='Qwen/Qwen2.5-0.5B-Instruct', # Lightweight instruction-tuned LLM for reasoning
|
| 125 |
+
hf_token='...', # Hugging Face token for accessing gated models
|
| 126 |
+
batch_size=32, # Batch size for training/prediction if supported
|
| 127 |
+
top_k=5 # Number of top retrievals to include in RAG prompting
|
| 128 |
)
|
| 129 |
|
| 130 |
+
# Run the pipeline: training, prediction, and evaluation in one call
|
| 131 |
+
outputs = pipeline(
|
| 132 |
train_data=train_data,
|
| 133 |
test_data=test_data,
|
| 134 |
+
evaluate=True, # Compute metrics like precision, recall, and F1
|
| 135 |
+
task='term-typing' # Specifies the task
|
| 136 |
+
# Other options: "taxonomy-discovery" or "non-taxonomy-discovery"
|
| 137 |
)
|
| 138 |
+
|
| 139 |
+
# Print final evaluation metrics
|
| 140 |
+
print("Metrics:", outputs['metrics'])
|
| 141 |
+
|
| 142 |
+
# Print the total time taken for the full pipeline execution
|
| 143 |
+
print("Elapsed time:", outputs['elapsed_time'])
|
| 144 |
+
|
| 145 |
+
# Print all outputs (including predictions)
|
| 146 |
+
print(outputs)
|
| 147 |
```
|
| 148 |
|
| 149 |
For more detailed documentation, see the [](https://ontolearner.readthedocs.io)
|