HockeyRink / data /hockey_pose.py
MehdiH7's picture
Update data/hockey_pose.py
6dd7ee8 verified
import json
import os
import datasets
from datasets import Features, Image, Value, Sequence
class HockeyPoseConfig(datasets.BuilderConfig):
"""BuilderConfig for HockeyPose dataset."""
def __init__(self, **kwargs):
super(HockeyPoseConfig, self).__init__(**kwargs)
class HockeyPose(datasets.GeneratorBasedBuilder):
"""HockeyPose dataset: Hockey player images with pose keypoints."""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
HockeyPoseConfig(
name="hockey_pose",
version=VERSION,
description="Hockey pose dataset with keypoints",
),
]
def _info(self):
return datasets.DatasetInfo(
description="HockeyRink keypoint dataset",
features=Features({
'image': Image(),
'image_id': Value('string'),
'annotations': Sequence({
'class_id': Value('int64'),
'bbox': Sequence(Value('float32'), length=4),
'keypoints': Sequence(
Sequence(Value('float32'), length=3),
length=56
),
})
}),
supervised_keys=None,
homepage="https://huggingface.co/datasets/SimulaMet-HOST/HockeyRink",
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"split": "train",
}
),
]
def _generate_examples(self, split):
"""Yields examples."""
frames_dir = os.path.join(os.path.dirname(__file__), "..", "frames")
annotations_dir = os.path.join(os.path.dirname(__file__), "..", "annotations")
# Get all image files
image_files = [f for f in os.listdir(frames_dir)
if f.lower().endswith(('.png', '.jpg', '.jpeg'))]
for idx, image_file in enumerate(sorted(image_files)):
image_id = os.path.splitext(image_file)[0]
image_path = os.path.join(frames_dir, image_file)
annotation_path = os.path.join(annotations_dir, f"{image_id}.txt")
if not os.path.exists(annotation_path):
continue
# Read YOLO format annotation
with open(annotation_path, 'r') as f:
annotations = []
for line in f:
values = [float(x) for x in line.strip().split()]
class_id = int(values[0])
bbox = values[1:5] # [x_center, y_center, width, height]
keypoints = []
# Process keypoints in groups of 3 (x, y, visibility)
for i in range(5, len(values), 3):
keypoints.append([
values[i], # x
values[i + 1], # y
values[i + 2] # visibility
])
annotations.append({
'class_id': class_id,
'bbox': bbox,
'keypoints': keypoints
})
yield idx, {
'image': image_path,
'image_id': image_id,
'annotations': annotations
}