Datasets:
Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code: DatasetGenerationCastError
Exception: DatasetGenerationCastError
Message: An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 3 new columns ({'system:index', '.geo', 'precip_daily'}) and 5 missing columns ({'temp_8d_mean_C', 'soil_moisture_8d_mean', 'ndvi', 'precip_8d_sum_mm', 'pet_8d_sum_mm'}).
This happened while the csv dataset builder was generating data using
hf://datasets/TaoDerong/GreatPlains-Multisource-2000-2024/GreatPlains_CHIRPS_DailyPrecip_2000_2024.csv (at revision 18f4efa2a0fcab0a2bd74203896e8c21d9f95ebb)
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback: Traceback (most recent call last):
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
writer.write_table(table)
File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 714, in write_table
pa_table = table_cast(pa_table, self._schema)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2272, in table_cast
return cast_table_to_schema(table, schema)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
raise CastError(
datasets.table.CastError: Couldn't cast
system:index: int64
date: string
precip_daily: double
.geo: string
-- schema metadata --
pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 724
to
{'date': Value('string'), 'ndvi': Value('float64'), 'precip_8d_sum_mm': Value('float64'), 'soil_moisture_8d_mean': Value('float64'), 'temp_8d_mean_C': Value('float64'), 'pet_8d_sum_mm': Value('float64')}
because column names don't match
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1339, in compute_config_parquet_and_info_response
parquet_operations = convert_to_parquet(builder)
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 972, in convert_to_parquet
builder.download_and_prepare(
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 894, in download_and_prepare
self._download_and_prepare(
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 970, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1702, in _prepare_split
for job_id, done, content in self._prepare_split_single(
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1833, in _prepare_split_single
raise DatasetGenerationCastError.from_cast_error(
datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 3 new columns ({'system:index', '.geo', 'precip_daily'}) and 5 missing columns ({'temp_8d_mean_C', 'soil_moisture_8d_mean', 'ndvi', 'precip_8d_sum_mm', 'pet_8d_sum_mm'}).
This happened while the csv dataset builder was generating data using
hf://datasets/TaoDerong/GreatPlains-Multisource-2000-2024/GreatPlains_CHIRPS_DailyPrecip_2000_2024.csv (at revision 18f4efa2a0fcab0a2bd74203896e8c21d9f95ebb)
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
date
string | ndvi
float64 | precip_8d_sum_mm
float64 | soil_moisture_8d_mean
float64 | temp_8d_mean_C
float64 | pet_8d_sum_mm
float64 |
|---|---|---|---|---|---|
2000/2/18
| 0.144289
| 3.217027
| 0.204952
| 8.873877
| 42.914101
|
2000/2/26
| 0.283586
| 16.738427
| 0.241695
| 12.76102
| 62.692244
|
2000/3/5
| 0.293746
| 21.581082
| 0.279072
| 11.287419
| 50.107986
|
2000/3/13
| 0.291768
| 10.068712
| 0.268736
| 8.476537
| 41.351705
|
2000/3/21
| 0.317378
| 34.508613
| 0.31173
| 8.73326
| 37.371035
|
2000/3/29
| 0.330968
| 15.195848
| 0.322072
| 12.000276
| 43.689093
|
2000/4/6
| 0.337675
| 3.634195
| 0.300858
| 11.939525
| 68.402431
|
2000/4/14
| 0.373015
| 13.719749
| 0.250656
| 14.366104
| 58.092254
|
2000/4/22
| 0.408415
| 7.654017
| 0.214433
| 17.823862
| 80.364969
|
2000/4/30
| 0.398686
| 26.472053
| 0.244543
| 16.902142
| 60.558225
|
2000/5/8
| 0.433626
| 7.293385
| 0.232952
| 22.153567
| 82.630852
|
2000/5/16
| 0.41207
| 16.763451
| 0.182941
| 20.323279
| 94.098198
|
2000/5/24
| 0.391703
| 26.68809
| 0.19646
| 23.612354
| 80.765382
|
2000/6/1
| 0.398228
| 18.652062
| 0.227327
| 24.419254
| 83.902171
|
2000/6/9
| 0.377795
| 12.267657
| 0.234924
| 23.117968
| 80.569714
|
2000/6/17
| 0.414034
| 35.758429
| 0.254799
| 22.670609
| 75.753087
|
2000/6/25
| 0.414988
| 38.120073
| 0.2546
| 24.62366
| 71.186536
|
2000/7/3
| 0.436109
| 18.228091
| 0.265962
| 25.71808
| 79.013647
|
2000/7/11
| 0.432681
| 9.145588
| 0.167957
| 28.580676
| 96.508563
|
2000/7/19
| 0.439638
| 27.881252
| 0.186909
| 28.162564
| 87.614574
|
2000/7/27
| 0.432685
| 13.453271
| 0.192646
| 26.590416
| 86.021596
|
2000/8/4
| 0.344121
| 4.400367
| 0.15603
| 28.089071
| 92.202228
|
2000/8/12
| 0.345663
| 5.829124
| 0.141569
| 29.501472
| 102.069652
|
2000/8/20
| 0.365106
| 6.916625
| 0.142539
| 28.447464
| 100.447823
|
2000/8/28
| 0.339726
| 3.172651
| 0.131052
| 29.710954
| 103.097245
|
2000/9/5
| 0.322588
| 3.03987
| 0.12787
| 29.247912
| 99.911061
|
2000/9/13
| 0.307929
| 2.607648
| 0.128929
| 26.590064
| 93.747027
|
2000/9/21
| 0.315954
| 12.212553
| 0.144129
| 22.076982
| 87.933418
|
2000/9/29
| 0.299578
| 2.030987
| 0.177384
| 19.330224
| 76.049523
|
2000/10/7
| 0.288587
| 5.074615
| 0.173885
| 13.21558
| 56.837398
|
2000/10/15
| 0.277002
| 21.436686
| 0.209839
| 17.022942
| 46.343671
|
2000/10/23
| 0.265251
| 52.694642
| 0.301993
| 16.78652
| 28.612656
|
2000/10/31
| 0.312177
| 41.099881
| 0.352761
| 14.826645
| 32.195101
|
2000/11/8
| 0.3064
| 23.581936
| 0.345283
| 5.348265
| 22.532376
|
2000/11/16
| 0.280904
| 4.701613
| 0.323794
| 1.053293
| 22.803185
|
2000/11/24
| 0.281387
| 11.290818
| 0.309801
| 4.109093
| 18.325752
|
2000/12/2
| 0.276195
| 1.734902
| 0.283732
| 3.398625
| 21.795332
|
2000/12/10
| 0.206922
| 8.293419
| 0.270691
| 1.249066
| 20.569062
|
2000/12/18
| 0.223285
| 2.887954
| 0.279131
| 0.240621
| 24.789615
|
2000/12/26
| 0.137857
| 13.080403
| 0.279094
| -2.42014
| 12.199589
|
2001/1/1
| 0.232384
| 0.817725
| 0.293889
| -2.983571
| 9.583582
|
2001/1/9
| 0.262524
| 3.151009
| 0.316764
| 3.633932
| 16.433312
|
2001/1/17
| 0.219994
| 7.755763
| 0.309303
| -0.156957
| 16.953504
|
2001/1/25
| 0.215051
| 10.677244
| 0.313454
| 1.262095
| 15.036999
|
2001/2/2
| 0.226008
| 7.865383
| 0.333319
| 0.462512
| 19.784381
|
2001/2/10
| 0.203822
| 15.419128
| 0.345601
| 3.250284
| 18.281248
|
2001/2/18
| 0.250402
| 11.027804
| 0.342863
| 3.383498
| 22.718838
|
2001/2/26
| 0.26937
| 27.074767
| 0.343678
| 4.115764
| 24.077695
|
2001/3/6
| 0.294441
| 15.510735
| 0.342237
| 6.125165
| 26.733928
|
2001/3/14
| 0.302911
| 12.317881
| 0.335217
| 7.453021
| 39.428351
|
2001/3/22
| 0.298618
| 10.117677
| 0.32369
| 8.410211
| 34.775395
|
2001/3/30
| 0.308632
| 7.549581
| 0.322889
| 7.848656
| 31.955345
|
2001/4/7
| 0.363012
| 13.467058
| 0.279149
| 18.166468
| 57.222505
|
2001/4/15
| 0.411232
| 10.449323
| 0.275131
| 12.684059
| 60.955502
|
2001/4/23
| 0.423261
| 9.401981
| 0.239001
| 17.273064
| 77.517546
|
2001/5/1
| 0.468517
| 32.564722
| 0.207885
| 19.283281
| 74.721574
|
2001/5/9
| 0.449633
| 24.219199
| 0.303152
| 18.42035
| 62.013954
|
2001/5/17
| 0.457272
| 26.651207
| 0.244063
| 22.448262
| 69.861268
|
2001/5/25
| 0.451033
| 14.377168
| 0.242145
| 18.305887
| 75.157807
|
2001/6/2
| 0.454314
| 34.971521
| 0.264289
| 21.938303
| 71.408292
|
2001/6/10
| 0.435916
| 14.414871
| 0.22844
| 25.166875
| 83.449177
|
2001/6/26
| 0.38245
| 8.804072
| 0.180753
| 25.97889
| 93.593674
|
2001/7/4
| 0.394015
| 10.130343
| 0.148842
| 28.135419
| 95.481467
|
2001/7/12
| 0.400462
| 13.65334
| 0.144693
| 29.18133
| 94.777667
|
2001/7/20
| 0.394207
| 8.189802
| 0.153152
| 30.46737
| 108.097039
|
2001/7/28
| 0.395024
| 22.337127
| 0.167489
| 29.381542
| 94.85604
|
2001/8/5
| 0.394342
| 1.166872
| 0.13839
| 29.651836
| 99.08662
|
2001/8/13
| 0.396678
| 23.505826
| 0.184233
| 26.214534
| 75.499936
|
2001/8/21
| 0.39972
| 16.117793
| 0.190538
| 26.971633
| 86.711783
|
2001/8/29
| 0.385108
| 19.3746
| 0.195511
| 24.681322
| 65.233508
|
2001/9/6
| 0.400136
| 18.00625
| 0.208925
| 23.148444
| 65.179005
|
2001/9/14
| 0.409458
| 15.757447
| 0.207425
| 22.360618
| 59.651616
|
2001/9/22
| 0.396552
| 31.430763
| 0.246113
| 20.314546
| 54.659262
|
2001/9/30
| 0.380665
| 0.605218
| 0.18191
| 19.573192
| 64.90389
|
2001/10/8
| 0.369456
| 15.060969
| 0.192751
| 16.680595
| 56.349851
|
2001/10/16
| 0.350016
| 10.501073
| 0.216333
| 13.624898
| 54.651256
|
2001/10/24
| 0.334348
| 2.664685
| 0.177405
| 15.739603
| 54.844634
|
2001/11/1
| 0.329549
| 8.195354
| 0.162592
| 17.267454
| 50.885534
|
2001/11/9
| 0.305631
| 0.510652
| 0.182101
| 13.744335
| 35.278312
|
2001/11/17
| 0.329934
| 20.342865
| 0.252656
| 12.559444
| 26.981563
|
2001/11/25
| 0.298714
| 13.068118
| 0.251898
| 6.70666
| 36.574411
|
2001/12/3
| 0.312046
| 1.25591
| 0.259799
| 7.308665
| 24.114133
|
2001/12/11
| 0.317099
| 4.914212
| 0.243199
| 5.335139
| 27.155877
|
2001/12/19
| 0.303712
| 13.045186
| 0.251639
| 5.903357
| 28.3154
|
2001/12/27
| 0.269958
| 2.358435
| 0.22507
| 0.550799
| 23.208131
|
2002/1/1
| 0.290208
| 2.983617
| 0.21984
| -1.909699
| 17.678166
|
2002/1/9
| 0.285493
| 5.909698
| 0.242029
| 5.15718
| 25.627899
|
2002/1/17
| 0.272856
| 2.494608
| 0.213649
| 3.654505
| 33.878421
|
2002/1/25
| 0.280206
| 3.913056
| 0.210407
| 6.930031
| 40.833045
|
2002/2/2
| 0.216822
| 22.196319
| 0.260693
| 0.91872
| 17.737026
|
2002/2/10
| 0.271687
| 0.697918
| 0.296034
| 2.387067
| 31.685508
|
2002/2/18
| 0.277807
| 5.371392
| 0.257591
| 7.957764
| 44.292136
|
2002/2/26
| 0.259142
| 2.36636
| 0.22085
| 4.042755
| 47.393415
|
2002/3/6
| 0.264601
| 5.565529
| 0.227329
| 3.544357
| 45.456466
|
2002/3/14
| 0.257749
| 4.873332
| 0.202276
| 9.390507
| 61.063894
|
2002/3/22
| 0.235215
| 19.390304
| 0.242617
| 7.224457
| 42.620351
|
2002/3/30
| 0.290513
| 11.370964
| 0.229382
| 12.230949
| 57.855427
|
2002/4/7
| 0.31602
| 21.738539
| 0.230143
| 11.134854
| 49.451956
|
2002/4/15
| 0.361575
| 15.272758
| 0.238091
| 20.217576
| 74.967829
|
2002/4/23
| 0.381797
| 11.074448
| 0.230777
| 16.200272
| 62.863586
|
End of preview.
YAML Metadata
Warning:
The task_categories "regression" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other
Great Plains 8-day Multisource NDVI–Climate Time Series (2000–2024)
1. 数据集概述 (Dataset Summary)
本数据集以 美国南部大平原草原区 为研究区域,范围约为:
- 经度:105°W–95°W
- 纬度:32°N–40°N
该区域为典型干旱敏感区,植被以草原为主,对降水异常和干旱事件高度敏感。
本数据集整合了 2000–2024 年间的多源观测,包含:
- MODIS Terra NDVI(8 日合成)
- CHIRPS 日尺度降水
- ERA5-Land 日尺度表层土壤含水量、2 m 气温、潜在蒸散
- 以 NDVI 时间步为主轴构建的 8 日对齐多变量时间序列(统一建模输入)
适合于:
- 干旱监测和评估
- NDVI 与气候驱动因子的时滞/响应分析
- 时序预测任务:ARIMA、多变量 LSTM、Encoder–Decoder 等
- 多源气象–遥感数据融合研究
2. 数据来源 (Data Sources)
2.1 NDVI(MODIS Terra MOD09A1)
- 产品:MODIS/061/MOD09A1(8 日地表反射率,500 m)
- 时间范围:2000-02-18 – 2024-12-26(8 日时间步,共约 1143 条记录)
- 波段:
- RED:
sur_refl_b01 - NIR:
sur_refl_b02
- RED:
- 计算公式:
[ \mathrm{NDVI} = \frac{NIR - RED}{NIR + RED} ]
在 Google Earth Engine (GEE) 平台上,对 MOD09A1 进行质量控制与云/雪掩膜后,计算研究区范围内的 区域平均 NDVI,得到 8 日 NDVI 时间序列。
相关文件:
GreatPlains_MOD09A1_NDVI_8day_2000_2024.csv- 行数:1143
- 时间范围:2000-02-18 至 2024-12-26
字段:
| 列名 | 类型 | 含义 |
|---|---|---|
system:index |
string | GEE 生成的影像索引(如 2000_02_18) |
date |
string | 日期,格式 YYYY-MM-DD |
ndvi |
float | 研究区内区域平均 NDVI |
.geo |
string | GEE 导出时附带的几何信息(MultiPoint,空) |
2.2 日降水(CHIRPS)
- 数据集:UCSB-CHG/CHIRPS/DAILY
- 空间分辨率:0.05°
- 时间分辨率:日
- 时间范围:2000-01-01 – 2024-12-30(共 9131 天)
- 处理方式:在 GEE 中对研究区范围进行区域平均,得到日平均降水(单位:mm/day)
相关文件:
GreatPlains_CHIRPS_DailyPrecip_2000_2024.csv- 行数:9131
- 时间范围:2000-01-01 至 2024-12-30
字段:
| 列名 | 类型 | 含义 |
|---|---|---|
system:index |
int | GEE 生成的索引(如 20000101) |
date |
string | 日期,YYYY-MM-DD |
precip_daily |
float | 研究区日平均降水量(mm/day) |
.geo |
string | GEE 附带几何信息(MultiPoint,空) |
2.3 土壤湿度、气温与潜在蒸散(ERA5-Land)
- 数据集:ECMWF/ERA5_LAND/DAILY_AGGR
- 时间分辨率:日
- 时间范围:2000-01-01 – 2024-12-30(共 9131 天)
- 空间处理:在 GEE 中对研究区进行区域平均
原始变量:
volumetric_soil_water_layer_1→ 本文件列名为soil_moisture_daily- 表层土壤体积含水量(0–7 cm),单位:m³/m³
temperature_2m→ 本文件列名为temp2m_daily_K- 日平均 2 m 气温,单位:K
potential_evaporation_sum→ 本文件列名为pet_daily_m- 日累计潜在蒸散量,单位:m/day,且为负值(表示向上的蒸发通量)
相关文件:
GreatPlains_ERA5L_SoilTempPET_Daily_2000_2024.csv
字段:
| 列名 | 类型 | 含义 |
|---|---|---|
system:index |
int | GEE 生成索引 |
date |
string | 日期,YYYY-MM-DD |
pet_daily_m |
float | 日累计潜在蒸散量(m/day,负值) |
soil_moisture_daily |
float | 表层土壤体积含水量(m³/m³) |
temp2m_daily_K |
float | 2 m 日平均气温(K) |
.geo |
string | 几何信息 |
在后续构建 8 日对齐数据时,潜在蒸散将通过 取相反数并乘以 1000 转换为 mm/day;气温将通过减去 273.15 转换为 ℃。
3. 数据预处理与 8 日合成 (Preprocessing & 8-day Aggregation)
为实现多源数据的统一建模,本研究进行如下预处理步骤(主要在本地 Python 环境中完成):
3.1 时间格式与排序
- 使用 pandas 读入所有 CSV
- 将
date字段转换为datetime类型,并以上午 00:00 作为时间索引 - 按日期升序排序
3.2 单位转换(适用于 ERA5-Land 日数据)
- 气温:
temp2m_daily_K→ 摄氏度:
[ T_{\mathrm{C}} = T_{\mathrm{K}} - 273.15 ]
- 潜在蒸散:
pet_daily_m为 m/day 且为负值- 转换为 mm/day 且为正: [ \mathrm{PET_{mm/day}} = -\mathrm{pet_daily_m} \times 1000 ]
3.3 按 NDVI 时间步聚合日尺度数据
- NDVI 8 日产品的时间步被视为 主时间轴
- 对于每一个 NDVI 时间点 (t),在日尺度序列中取以 (t) 为中心的 8 日时间窗 ([t-4, t+3]):
- **降水 (CHIRPS)**:求 8 日累积降水量(mm/8 days)
- **潜在蒸散 (ERA5-Land)**:求 8 日累积潜在蒸散量(mm/8 days)
- 土壤湿度:求 8 日平均表层土壤含水量(m³/m³)
- 气温:求 8 日平均气温(℃)
3.4 缺失值处理
- CHIRPS 与 ERA5-Land 在该区域覆盖较完整,缺失值极少
- 对个别 NDVI 或气象变量缺测时间点:
- 使用基于时间的 线性插值 修复,最多连续插补 2 个时间步
- 对仍无法插补的少数起始或末尾时间点,直接删除对应样本
3.5 最终 8 日多变量数据集
由上述步骤得到的 8 日对齐多变量时间序列存入:
GreatPlains_8day_merged.csv- 行数:1143
- 时间范围:2000-02-18 至 2024-12-26
字段:
| 列名 | 类型 | 含义 |
|---|---|---|
date |
string | NDVI 时间点日期(8 日间隔) |
ndvi |
float | 区域平均 NDVI |
precip_8d_sum_mm |
float | 以 NDVI 时间点为中心窗口计算的 8 日累计降水(mm/8 days) |
soil_moisture_8d_mean |
float | 8 日平均表层土壤体积含水量(m³/m³) |
temp_8d_mean_C |
float | 8 日平均 2 m 气温(℃) |
pet_8d_sum_mm |
float | 8 日累计潜在蒸散量(mm/8 days) |
该文件可直接作为 统一建模输入 用于 ARIMA、多变量 LSTM、Encoder–Decoder 等时序预测/回归任务。
4. 文件结构 (Files and Structure)
推荐仓库中文件结构如下:
GreatPlains-Multisource-2000-2024/
├── GreatPlains_8day_merged.csv
├── GreatPlains_MOD09A1_NDVI_8day_2000_2024.csv
├── GreatPlains_CHIRPS_DailyPrecip_2000_2024.csv
├── GreatPlains_ERA5L_SoilTempPET_Daily_2000_2024.csv
└── README.md # 本文档
- Downloads last month
- 12