Dataset Preview
Duplicate
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 3 new columns ({'system:index', '.geo', 'precip_daily'}) and 5 missing columns ({'temp_8d_mean_C', 'soil_moisture_8d_mean', 'ndvi', 'precip_8d_sum_mm', 'pet_8d_sum_mm'}).

This happened while the csv dataset builder was generating data using

hf://datasets/TaoDerong/GreatPlains-Multisource-2000-2024/GreatPlains_CHIRPS_DailyPrecip_2000_2024.csv (at revision 18f4efa2a0fcab0a2bd74203896e8c21d9f95ebb)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
                  writer.write_table(table)
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 714, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              system:index: int64
              date: string
              precip_daily: double
              .geo: string
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 724
              to
              {'date': Value('string'), 'ndvi': Value('float64'), 'precip_8d_sum_mm': Value('float64'), 'soil_moisture_8d_mean': Value('float64'), 'temp_8d_mean_C': Value('float64'), 'pet_8d_sum_mm': Value('float64')}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1339, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 972, in convert_to_parquet
                  builder.download_and_prepare(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 894, in download_and_prepare
                  self._download_and_prepare(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 970, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1702, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                                               ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1833, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 3 new columns ({'system:index', '.geo', 'precip_daily'}) and 5 missing columns ({'temp_8d_mean_C', 'soil_moisture_8d_mean', 'ndvi', 'precip_8d_sum_mm', 'pet_8d_sum_mm'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/TaoDerong/GreatPlains-Multisource-2000-2024/GreatPlains_CHIRPS_DailyPrecip_2000_2024.csv (at revision 18f4efa2a0fcab0a2bd74203896e8c21d9f95ebb)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

date
string
ndvi
float64
precip_8d_sum_mm
float64
soil_moisture_8d_mean
float64
temp_8d_mean_C
float64
pet_8d_sum_mm
float64
2000/2/18
0.144289
3.217027
0.204952
8.873877
42.914101
2000/2/26
0.283586
16.738427
0.241695
12.76102
62.692244
2000/3/5
0.293746
21.581082
0.279072
11.287419
50.107986
2000/3/13
0.291768
10.068712
0.268736
8.476537
41.351705
2000/3/21
0.317378
34.508613
0.31173
8.73326
37.371035
2000/3/29
0.330968
15.195848
0.322072
12.000276
43.689093
2000/4/6
0.337675
3.634195
0.300858
11.939525
68.402431
2000/4/14
0.373015
13.719749
0.250656
14.366104
58.092254
2000/4/22
0.408415
7.654017
0.214433
17.823862
80.364969
2000/4/30
0.398686
26.472053
0.244543
16.902142
60.558225
2000/5/8
0.433626
7.293385
0.232952
22.153567
82.630852
2000/5/16
0.41207
16.763451
0.182941
20.323279
94.098198
2000/5/24
0.391703
26.68809
0.19646
23.612354
80.765382
2000/6/1
0.398228
18.652062
0.227327
24.419254
83.902171
2000/6/9
0.377795
12.267657
0.234924
23.117968
80.569714
2000/6/17
0.414034
35.758429
0.254799
22.670609
75.753087
2000/6/25
0.414988
38.120073
0.2546
24.62366
71.186536
2000/7/3
0.436109
18.228091
0.265962
25.71808
79.013647
2000/7/11
0.432681
9.145588
0.167957
28.580676
96.508563
2000/7/19
0.439638
27.881252
0.186909
28.162564
87.614574
2000/7/27
0.432685
13.453271
0.192646
26.590416
86.021596
2000/8/4
0.344121
4.400367
0.15603
28.089071
92.202228
2000/8/12
0.345663
5.829124
0.141569
29.501472
102.069652
2000/8/20
0.365106
6.916625
0.142539
28.447464
100.447823
2000/8/28
0.339726
3.172651
0.131052
29.710954
103.097245
2000/9/5
0.322588
3.03987
0.12787
29.247912
99.911061
2000/9/13
0.307929
2.607648
0.128929
26.590064
93.747027
2000/9/21
0.315954
12.212553
0.144129
22.076982
87.933418
2000/9/29
0.299578
2.030987
0.177384
19.330224
76.049523
2000/10/7
0.288587
5.074615
0.173885
13.21558
56.837398
2000/10/15
0.277002
21.436686
0.209839
17.022942
46.343671
2000/10/23
0.265251
52.694642
0.301993
16.78652
28.612656
2000/10/31
0.312177
41.099881
0.352761
14.826645
32.195101
2000/11/8
0.3064
23.581936
0.345283
5.348265
22.532376
2000/11/16
0.280904
4.701613
0.323794
1.053293
22.803185
2000/11/24
0.281387
11.290818
0.309801
4.109093
18.325752
2000/12/2
0.276195
1.734902
0.283732
3.398625
21.795332
2000/12/10
0.206922
8.293419
0.270691
1.249066
20.569062
2000/12/18
0.223285
2.887954
0.279131
0.240621
24.789615
2000/12/26
0.137857
13.080403
0.279094
-2.42014
12.199589
2001/1/1
0.232384
0.817725
0.293889
-2.983571
9.583582
2001/1/9
0.262524
3.151009
0.316764
3.633932
16.433312
2001/1/17
0.219994
7.755763
0.309303
-0.156957
16.953504
2001/1/25
0.215051
10.677244
0.313454
1.262095
15.036999
2001/2/2
0.226008
7.865383
0.333319
0.462512
19.784381
2001/2/10
0.203822
15.419128
0.345601
3.250284
18.281248
2001/2/18
0.250402
11.027804
0.342863
3.383498
22.718838
2001/2/26
0.26937
27.074767
0.343678
4.115764
24.077695
2001/3/6
0.294441
15.510735
0.342237
6.125165
26.733928
2001/3/14
0.302911
12.317881
0.335217
7.453021
39.428351
2001/3/22
0.298618
10.117677
0.32369
8.410211
34.775395
2001/3/30
0.308632
7.549581
0.322889
7.848656
31.955345
2001/4/7
0.363012
13.467058
0.279149
18.166468
57.222505
2001/4/15
0.411232
10.449323
0.275131
12.684059
60.955502
2001/4/23
0.423261
9.401981
0.239001
17.273064
77.517546
2001/5/1
0.468517
32.564722
0.207885
19.283281
74.721574
2001/5/9
0.449633
24.219199
0.303152
18.42035
62.013954
2001/5/17
0.457272
26.651207
0.244063
22.448262
69.861268
2001/5/25
0.451033
14.377168
0.242145
18.305887
75.157807
2001/6/2
0.454314
34.971521
0.264289
21.938303
71.408292
2001/6/10
0.435916
14.414871
0.22844
25.166875
83.449177
2001/6/26
0.38245
8.804072
0.180753
25.97889
93.593674
2001/7/4
0.394015
10.130343
0.148842
28.135419
95.481467
2001/7/12
0.400462
13.65334
0.144693
29.18133
94.777667
2001/7/20
0.394207
8.189802
0.153152
30.46737
108.097039
2001/7/28
0.395024
22.337127
0.167489
29.381542
94.85604
2001/8/5
0.394342
1.166872
0.13839
29.651836
99.08662
2001/8/13
0.396678
23.505826
0.184233
26.214534
75.499936
2001/8/21
0.39972
16.117793
0.190538
26.971633
86.711783
2001/8/29
0.385108
19.3746
0.195511
24.681322
65.233508
2001/9/6
0.400136
18.00625
0.208925
23.148444
65.179005
2001/9/14
0.409458
15.757447
0.207425
22.360618
59.651616
2001/9/22
0.396552
31.430763
0.246113
20.314546
54.659262
2001/9/30
0.380665
0.605218
0.18191
19.573192
64.90389
2001/10/8
0.369456
15.060969
0.192751
16.680595
56.349851
2001/10/16
0.350016
10.501073
0.216333
13.624898
54.651256
2001/10/24
0.334348
2.664685
0.177405
15.739603
54.844634
2001/11/1
0.329549
8.195354
0.162592
17.267454
50.885534
2001/11/9
0.305631
0.510652
0.182101
13.744335
35.278312
2001/11/17
0.329934
20.342865
0.252656
12.559444
26.981563
2001/11/25
0.298714
13.068118
0.251898
6.70666
36.574411
2001/12/3
0.312046
1.25591
0.259799
7.308665
24.114133
2001/12/11
0.317099
4.914212
0.243199
5.335139
27.155877
2001/12/19
0.303712
13.045186
0.251639
5.903357
28.3154
2001/12/27
0.269958
2.358435
0.22507
0.550799
23.208131
2002/1/1
0.290208
2.983617
0.21984
-1.909699
17.678166
2002/1/9
0.285493
5.909698
0.242029
5.15718
25.627899
2002/1/17
0.272856
2.494608
0.213649
3.654505
33.878421
2002/1/25
0.280206
3.913056
0.210407
6.930031
40.833045
2002/2/2
0.216822
22.196319
0.260693
0.91872
17.737026
2002/2/10
0.271687
0.697918
0.296034
2.387067
31.685508
2002/2/18
0.277807
5.371392
0.257591
7.957764
44.292136
2002/2/26
0.259142
2.36636
0.22085
4.042755
47.393415
2002/3/6
0.264601
5.565529
0.227329
3.544357
45.456466
2002/3/14
0.257749
4.873332
0.202276
9.390507
61.063894
2002/3/22
0.235215
19.390304
0.242617
7.224457
42.620351
2002/3/30
0.290513
11.370964
0.229382
12.230949
57.855427
2002/4/7
0.31602
21.738539
0.230143
11.134854
49.451956
2002/4/15
0.361575
15.272758
0.238091
20.217576
74.967829
2002/4/23
0.381797
11.074448
0.230777
16.200272
62.863586
End of preview.
YAML Metadata Warning: The task_categories "regression" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other

Great Plains 8-day Multisource NDVI–Climate Time Series (2000–2024)

1. 数据集概述 (Dataset Summary)

本数据集以 美国南部大平原草原区 为研究区域,范围约为:

  • 经度:105°W–95°W
  • 纬度:32°N–40°N

该区域为典型干旱敏感区,植被以草原为主,对降水异常和干旱事件高度敏感。

本数据集整合了 2000–2024 年间的多源观测,包含:

  1. MODIS Terra NDVI(8 日合成)
  2. CHIRPS 日尺度降水
  3. ERA5-Land 日尺度表层土壤含水量、2 m 气温、潜在蒸散
  4. 以 NDVI 时间步为主轴构建的 8 日对齐多变量时间序列(统一建模输入)

适合于:

  • 干旱监测和评估
  • NDVI 与气候驱动因子的时滞/响应分析
  • 时序预测任务:ARIMA、多变量 LSTM、Encoder–Decoder 等
  • 多源气象–遥感数据融合研究

2. 数据来源 (Data Sources)

2.1 NDVI(MODIS Terra MOD09A1)

  • 产品:MODIS/061/MOD09A1(8 日地表反射率,500 m)
  • 时间范围:2000-02-18 – 2024-12-26(8 日时间步,共约 1143 条记录)
  • 波段:
    • RED: sur_refl_b01
    • NIR: sur_refl_b02
  • 计算公式:

[ \mathrm{NDVI} = \frac{NIR - RED}{NIR + RED} ]

在 Google Earth Engine (GEE) 平台上,对 MOD09A1 进行质量控制与云/雪掩膜后,计算研究区范围内的 区域平均 NDVI,得到 8 日 NDVI 时间序列。

相关文件:

  • GreatPlains_MOD09A1_NDVI_8day_2000_2024.csv
    • 行数:1143
    • 时间范围:2000-02-18 至 2024-12-26

字段:

列名 类型 含义
system:index string GEE 生成的影像索引(如 2000_02_18
date string 日期,格式 YYYY-MM-DD
ndvi float 研究区内区域平均 NDVI
.geo string GEE 导出时附带的几何信息(MultiPoint,空)

2.2 日降水(CHIRPS)

  • 数据集:UCSB-CHG/CHIRPS/DAILY
  • 空间分辨率:0.05°
  • 时间分辨率:日
  • 时间范围:2000-01-01 – 2024-12-30(共 9131 天)
  • 处理方式:在 GEE 中对研究区范围进行区域平均,得到日平均降水(单位:mm/day)

相关文件:

  • GreatPlains_CHIRPS_DailyPrecip_2000_2024.csv
    • 行数:9131
    • 时间范围:2000-01-01 至 2024-12-30

字段:

列名 类型 含义
system:index int GEE 生成的索引(如 20000101
date string 日期,YYYY-MM-DD
precip_daily float 研究区日平均降水量(mm/day)
.geo string GEE 附带几何信息(MultiPoint,空)

2.3 土壤湿度、气温与潜在蒸散(ERA5-Land)

  • 数据集:ECMWF/ERA5_LAND/DAILY_AGGR
  • 时间分辨率:日
  • 时间范围:2000-01-01 – 2024-12-30(共 9131 天)
  • 空间处理:在 GEE 中对研究区进行区域平均

原始变量:

  • volumetric_soil_water_layer_1 → 本文件列名为 soil_moisture_daily
    • 表层土壤体积含水量(0–7 cm),单位:m³/m³
  • temperature_2m → 本文件列名为 temp2m_daily_K
    • 日平均 2 m 气温,单位:K
  • potential_evaporation_sum → 本文件列名为 pet_daily_m
    • 日累计潜在蒸散量,单位:m/day,且为负值(表示向上的蒸发通量)

相关文件:

  • GreatPlains_ERA5L_SoilTempPET_Daily_2000_2024.csv

字段:

列名 类型 含义
system:index int GEE 生成索引
date string 日期,YYYY-MM-DD
pet_daily_m float 日累计潜在蒸散量(m/day,负值)
soil_moisture_daily float 表层土壤体积含水量(m³/m³)
temp2m_daily_K float 2 m 日平均气温(K)
.geo string 几何信息

在后续构建 8 日对齐数据时,潜在蒸散将通过 取相反数并乘以 1000 转换为 mm/day;气温将通过减去 273.15 转换为 ℃。


3. 数据预处理与 8 日合成 (Preprocessing & 8-day Aggregation)

为实现多源数据的统一建模,本研究进行如下预处理步骤(主要在本地 Python 环境中完成):

3.1 时间格式与排序

  • 使用 pandas 读入所有 CSV
  • date 字段转换为 datetime 类型,并以上午 00:00 作为时间索引
  • 按日期升序排序

3.2 单位转换(适用于 ERA5-Land 日数据)

  • 气温:
    • temp2m_daily_K → 摄氏度:
      [ T_{\mathrm{C}} = T_{\mathrm{K}} - 273.15 ]
  • 潜在蒸散:
    • pet_daily_m 为 m/day 且为负值
    • 转换为 mm/day 且为正: [ \mathrm{PET_{mm/day}} = -\mathrm{pet_daily_m} \times 1000 ]

3.3 按 NDVI 时间步聚合日尺度数据

  • NDVI 8 日产品的时间步被视为 主时间轴
  • 对于每一个 NDVI 时间点 (t),在日尺度序列中取以 (t) 为中心的 8 日时间窗 ([t-4, t+3]):
    • **降水 (CHIRPS)**:求 8 日累积降水量(mm/8 days)
    • **潜在蒸散 (ERA5-Land)**:求 8 日累积潜在蒸散量(mm/8 days)
    • 土壤湿度:求 8 日平均表层土壤含水量(m³/m³)
    • 气温:求 8 日平均气温(℃)

3.4 缺失值处理

  • CHIRPS 与 ERA5-Land 在该区域覆盖较完整,缺失值极少
  • 对个别 NDVI 或气象变量缺测时间点:
    • 使用基于时间的 线性插值 修复,最多连续插补 2 个时间步
    • 对仍无法插补的少数起始或末尾时间点,直接删除对应样本

3.5 最终 8 日多变量数据集

由上述步骤得到的 8 日对齐多变量时间序列存入:

  • GreatPlains_8day_merged.csv
    • 行数:1143
    • 时间范围:2000-02-18 至 2024-12-26

字段:

列名 类型 含义
date string NDVI 时间点日期(8 日间隔)
ndvi float 区域平均 NDVI
precip_8d_sum_mm float 以 NDVI 时间点为中心窗口计算的 8 日累计降水(mm/8 days)
soil_moisture_8d_mean float 8 日平均表层土壤体积含水量(m³/m³)
temp_8d_mean_C float 8 日平均 2 m 气温(℃)
pet_8d_sum_mm float 8 日累计潜在蒸散量(mm/8 days)

该文件可直接作为 统一建模输入 用于 ARIMA、多变量 LSTM、Encoder–Decoder 等时序预测/回归任务。


4. 文件结构 (Files and Structure)

推荐仓库中文件结构如下:

GreatPlains-Multisource-2000-2024/
├── GreatPlains_8day_merged.csv
├── GreatPlains_MOD09A1_NDVI_8day_2000_2024.csv
├── GreatPlains_CHIRPS_DailyPrecip_2000_2024.csv
├── GreatPlains_ERA5L_SoilTempPET_Daily_2000_2024.csv
└── README.md  # 本文档
Downloads last month
12