--- configs: - config_name: all data_files: - split: train path: "*-train.tar" default: true language: ins license: cc-by-sa-4.0 datasets: - bridgeconn/sign-dictionary-isl tags: - video - parallel-corpus - low-resource-languages --- # Dataset Card for Sign Dictionary Dataset This dataset contains Indian sign language videos with one gloss per video. There are 3077 seperate lex items or glosses included. The dataset is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0). ## Dataset Details There is a total of 2.5 hours of sign videos. ## Dataset Description - Segmented sign videos - Pose estimation data in the following formats - skeletal video - Frames wise body landmarks detected by dwpose as a numpy array - Frames wise body landmarks detected by mediapose as .pose format ## How to use ```python import webdataset as wds import numpy as np import json import tempfile import os import cv2 def main(): buffer_size = 1024 dataset = ( wds.WebDataset( "https://huggingface.co/datasets/bridgeconn/sign-dictionary-isl/resolve/main/shard_{00001..00002}-train.tar", shardshuffle=False) .shuffle(buffer_size) .decode() ) for sample in dataset: ''' Each sample contains: 'mp4', 'pose-dwpose.npz', 'pose-mediapipe.pose' and 'json' ''' # print(sample.keys()) # JSON metadata json_data = sample['json'] print(json_data['filename']) print(json_data['transcripts']) print(json_data['glosses']) # main video mp4_data = sample['mp4'] process_video(mp4_data) # dwpose results dwpose_coords = sample["pose-dwpose.npz"] frame_poses = dwpose_coords['frames'].tolist() print(f"Frames in dwpose coords: {len(frame_poses)} poses") print(f"Pose coords shape: {len(frame_poses[0][0])}") print(f"One point looks like [x,y]: {frame_poses[0][0][0]}") # mediapipe results in .pose format pose_format_data = sample["pose-mediapipe.pose"] process_poseformat(pose_format_data) break def process_poseformat(pose_format_data): from pose_format import Pose temp_file = None try: with tempfile.NamedTemporaryFile(suffix=".pose", delete=False) as tmp: tmp.write(pose_format_data) temp_file = tmp.name data_buffer = open(temp_file, "rb").read() pose = Pose.read(data_buffer) print(f"Mediapipe results from pose-format: {pose.body.data.shape}") except Exception as e: print(f"Error processing pose-format: {e}") finally: if temp_file and os.path.exists(temp_file): os.remove(temp_file) # Clean up the temporary file def process_video(mp4_data): print(f"Video bytes length: {len(mp4_data)} bytes") temp_file = None try: # Processing video from temporary file with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp: tmp.write(mp4_data) temp_file = tmp.name cap = cv2.VideoCapture(temp_file) if not cap.isOpened(): raise IOError(f"Could not open video file: {temp_file}") # Example: Get video metadata frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) fps = cap.get(cv2.CAP_PROP_FPS) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) print(f"Video Info: {frame_count} frames, {fps:.2f} FPS, {width}x{height}") # Example: Read and display the first frame (or process as needed) ret, frame = cap.read() if ret: print(f"First frame shape: {frame.shape}, dtype: {frame.dtype}") # You can then use this frame for further processing, e.g., frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) import matplotlib.pyplot as plt plt.imshow(frame_rgb) plt.title(f"Sample First Frame") plt.show() else: print("Could not read first frame.") cap.release() except Exception as e: print(f"Error processing external MP4: {e}") finally: if temp_file and os.path.exists(temp_file): os.remove(temp_file) # Clean up the temporary file if __name__ == '__main__': main() ``` --- license: cc-by-sa-4.0 ---