Chris Oswald
commited on
Commit
·
5a56741
1
Parent(s):
48bacc5
added mask array
Browse files
SPIDER.py
CHANGED
|
@@ -168,9 +168,9 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
| 168 |
"patient_id": datasets.Value("string"),
|
| 169 |
"scan_type": datasets.Value("string"),
|
| 170 |
# "raw_image": datasets.Image(),
|
| 171 |
-
"image_array": datasets.Array3D(shape=image_size, dtype='
|
| 172 |
# "raw_mask": datasets.Image(),
|
| 173 |
-
"mask_array": datasets.Array3D(shape=image_size, dtype='
|
| 174 |
"metadata": {
|
| 175 |
"num_vertebrae": datasets.Value(dtype="string"), #TODO: more specific types
|
| 176 |
"num_discs": datasets.Value(dtype="string"),
|
|
@@ -289,10 +289,6 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
| 289 |
resize_shape: Tuple[int, int, int],
|
| 290 |
validate_share: float = 0.3,
|
| 291 |
test_share: float = 0.2,
|
| 292 |
-
raw_image: bool = True,
|
| 293 |
-
numeric_array: bool = True,
|
| 294 |
-
metadata: bool = True,
|
| 295 |
-
rad_gradings: bool = True,
|
| 296 |
random_seed: int = 9999,
|
| 297 |
) -> Tuple[str, Dict]:
|
| 298 |
"""
|
|
@@ -312,13 +308,6 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
| 312 |
test_share: float indicating share of data to use for testing;
|
| 313 |
must be in range (0.0, 1.0); note that training share is
|
| 314 |
calculated as (1 - validate_share - test_share)
|
| 315 |
-
raw_image: indicates whether to include .mha image file in example
|
| 316 |
-
numeric_array: indicates whether to include numpy numeric array of
|
| 317 |
-
image in example
|
| 318 |
-
metadata: indicates whether to include patient and scanner metadata
|
| 319 |
-
with image example
|
| 320 |
-
rad_gradings: indicates whether to include patient's radiological
|
| 321 |
-
gradings with image example
|
| 322 |
|
| 323 |
Yields
|
| 324 |
Tuple (unique patient-scan ID, dict of
|
|
@@ -483,7 +472,7 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
| 483 |
patient_id = scan_id.split('_')[0]
|
| 484 |
scan_type = '_'.join(scan_id.split('_')[1:])
|
| 485 |
|
| 486 |
-
# Load .mha file
|
| 487 |
image_path = os.path.join(paths_dict['images'], 'images', example)
|
| 488 |
image = sitk.ReadImage(image_path)
|
| 489 |
|
|
@@ -492,8 +481,15 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
| 492 |
sitk.GetArrayFromImage(image), resize_shape
|
| 493 |
)
|
| 494 |
|
| 495 |
-
#
|
|
|
|
|
|
|
| 496 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 497 |
# Extract overview data corresponding to image
|
| 498 |
image_overview = overview_dict[scan_id]
|
| 499 |
|
|
@@ -507,7 +503,7 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
| 507 |
'raw_image':None, #TODO
|
| 508 |
'raw_mask':None, #TODO
|
| 509 |
'image_array':image_array,
|
| 510 |
-
'mask_array':
|
| 511 |
'metadata':image_overview,
|
| 512 |
'rad_gradings':patient_grades_dict,
|
| 513 |
}
|
|
|
|
| 168 |
"patient_id": datasets.Value("string"),
|
| 169 |
"scan_type": datasets.Value("string"),
|
| 170 |
# "raw_image": datasets.Image(),
|
| 171 |
+
"image_array": datasets.Array3D(shape=image_size, dtype='float64'),
|
| 172 |
# "raw_mask": datasets.Image(),
|
| 173 |
+
"mask_array": datasets.Array3D(shape=image_size, dtype='float64'),
|
| 174 |
"metadata": {
|
| 175 |
"num_vertebrae": datasets.Value(dtype="string"), #TODO: more specific types
|
| 176 |
"num_discs": datasets.Value(dtype="string"),
|
|
|
|
| 289 |
resize_shape: Tuple[int, int, int],
|
| 290 |
validate_share: float = 0.3,
|
| 291 |
test_share: float = 0.2,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 292 |
random_seed: int = 9999,
|
| 293 |
) -> Tuple[str, Dict]:
|
| 294 |
"""
|
|
|
|
| 308 |
test_share: float indicating share of data to use for testing;
|
| 309 |
must be in range (0.0, 1.0); note that training share is
|
| 310 |
calculated as (1 - validate_share - test_share)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 311 |
|
| 312 |
Yields
|
| 313 |
Tuple (unique patient-scan ID, dict of
|
|
|
|
| 472 |
patient_id = scan_id.split('_')[0]
|
| 473 |
scan_type = '_'.join(scan_id.split('_')[1:])
|
| 474 |
|
| 475 |
+
# Load .mha image file
|
| 476 |
image_path = os.path.join(paths_dict['images'], 'images', example)
|
| 477 |
image = sitk.ReadImage(image_path)
|
| 478 |
|
|
|
|
| 481 |
sitk.GetArrayFromImage(image), resize_shape
|
| 482 |
)
|
| 483 |
|
| 484 |
+
# Load .mha mask file
|
| 485 |
+
mask_path = os.path.join(paths_dict['masks'], 'masks', example)
|
| 486 |
+
mask = sitk.ReadImage(mask_path)
|
| 487 |
|
| 488 |
+
# Convert .mha mask to standardized numeric array
|
| 489 |
+
mask_array = standardize_3D_image(
|
| 490 |
+
sitk.GetArrayFromImage(mask), resize_shape
|
| 491 |
+
)
|
| 492 |
+
|
| 493 |
# Extract overview data corresponding to image
|
| 494 |
image_overview = overview_dict[scan_id]
|
| 495 |
|
|
|
|
| 503 |
'raw_image':None, #TODO
|
| 504 |
'raw_mask':None, #TODO
|
| 505 |
'image_array':image_array,
|
| 506 |
+
'mask_array':mask_array,
|
| 507 |
'metadata':image_overview,
|
| 508 |
'rad_gradings':patient_grades_dict,
|
| 509 |
}
|