Chris Oswald
commited on
Commit
·
a803284
1
Parent(s):
9c6a8c8
modified patient id generation
Browse files
SPIDER.py
CHANGED
|
@@ -328,9 +328,7 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
| 328 |
]
|
| 329 |
|
| 330 |
# Generate train/validate/test partitions of patient IDs
|
| 331 |
-
patient_ids = np.unique([file.split('_')[0] for file in image_files])
|
| 332 |
-
print(f'Number of patients: {len(patient_ids)}')
|
| 333 |
-
|
| 334 |
partition = np.random.choice(
|
| 335 |
['train', 'dev', 'test'],
|
| 336 |
p=[train_share, validate_share, test_share],
|
|
@@ -341,13 +339,6 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
| 341 |
test_ids = set(patient_ids[partition == 'test'])
|
| 342 |
assert len(train_ids.union(validate_ids, test_ids)) == len(patient_ids)
|
| 343 |
|
| 344 |
-
|
| 345 |
-
print(f'# of training ids: {len(train_ids)}')
|
| 346 |
-
print(f'# of validation ids: {len(validate_ids)}')
|
| 347 |
-
print(f'# of testing ids: {len(test_ids)}')
|
| 348 |
-
|
| 349 |
-
print(f'Length of image file list: {len(image_files)}')
|
| 350 |
-
|
| 351 |
# Subset train/validation/test partition images and mask files
|
| 352 |
train_image_files = subset_file_list(image_files, train_ids)
|
| 353 |
validate_image_files = subset_file_list(image_files, validate_ids)
|
|
@@ -361,12 +352,6 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
| 361 |
assert len(validate_image_files) == len(validate_mask_files)
|
| 362 |
assert len(test_image_files) == len(test_mask_files)
|
| 363 |
|
| 364 |
-
print(f'# of training images: {len(train_image_files)}')
|
| 365 |
-
print(f'# of validation images: {len(validate_image_files)}')
|
| 366 |
-
print(f'# of testing images: {len(test_image_files)}')
|
| 367 |
-
|
| 368 |
-
print([x for x in image_files if x not in train_image_files + validate_image_files + test_image_files])
|
| 369 |
-
|
| 370 |
# Import patient/scanner data and radiological gradings data
|
| 371 |
overview_data = import_csv_data(paths_dict['overview'])
|
| 372 |
grades_data = import_csv_data(paths_dict['gradings'])
|
|
|
|
| 328 |
]
|
| 329 |
|
| 330 |
# Generate train/validate/test partitions of patient IDs
|
| 331 |
+
patient_ids = np.unique([file.split('_')[0] for file in image_files])
|
|
|
|
|
|
|
| 332 |
partition = np.random.choice(
|
| 333 |
['train', 'dev', 'test'],
|
| 334 |
p=[train_share, validate_share, test_share],
|
|
|
|
| 339 |
test_ids = set(patient_ids[partition == 'test'])
|
| 340 |
assert len(train_ids.union(validate_ids, test_ids)) == len(patient_ids)
|
| 341 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 342 |
# Subset train/validation/test partition images and mask files
|
| 343 |
train_image_files = subset_file_list(image_files, train_ids)
|
| 344 |
validate_image_files = subset_file_list(image_files, validate_ids)
|
|
|
|
| 352 |
assert len(validate_image_files) == len(validate_mask_files)
|
| 353 |
assert len(test_image_files) == len(test_mask_files)
|
| 354 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 355 |
# Import patient/scanner data and radiological gradings data
|
| 356 |
overview_data = import_csv_data(paths_dict['overview'])
|
| 357 |
grades_data = import_csv_data(paths_dict['gradings'])
|