Upload folder using huggingface_hub
Browse files
README.md
CHANGED
|
@@ -31,4 +31,86 @@ These include:
|
|
| 31 |
|
| 32 |
So clearly, it doesn't make sense to download entire Imagenet and do VAE everytime. Just download this, `to('cuda')` the entire dataset just to flex, and call it a day.😌
|
| 33 |
|
| 34 |
-
(BTW If you think you'll need higher precision, you can always further fine-tune your model on higher precision. But I doubt that.)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
So clearly, it doesn't make sense to download entire Imagenet and do VAE everytime. Just download this, `to('cuda')` the entire dataset just to flex, and call it a day.😌
|
| 33 |
|
| 34 |
+
(BTW If you think you'll need higher precision, you can always further fine-tune your model on higher precision. But I doubt that.)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
# How to use?
|
| 38 |
+
|
| 39 |
+
First download this.
|
| 40 |
+
|
| 41 |
+
```bash
|
| 42 |
+
do huggingface-cli download --repo-type dataset cloneofsimo/imagenet.int8 --local-dir ./vae_mds
|
| 43 |
+
```
|
| 44 |
+
|
| 45 |
+
Then, you need to install [streaming dataset](https://github.com/mosaicml/streaming) to use this. The dataset is MDS format.
|
| 46 |
+
|
| 47 |
+
```bash
|
| 48 |
+
pip install mosaicml-streaming
|
| 49 |
+
```
|
| 50 |
+
|
| 51 |
+
Then, you can use this dataset like this:
|
| 52 |
+
|
| 53 |
+
```python
|
| 54 |
+
|
| 55 |
+
from streaming.base.format.mds.encodings import Encoding, _encodings
|
| 56 |
+
import numpy as np
|
| 57 |
+
from typing import Any
|
| 58 |
+
import torch
|
| 59 |
+
from streaming import StreamingDataset
|
| 60 |
+
from diffusers.models import AutoencoderKL
|
| 61 |
+
from diffusers.image_processor import VaeImageProcessor
|
| 62 |
+
|
| 63 |
+
class uint8(Encoding):
|
| 64 |
+
def encode(self, obj: Any) -> bytes:
|
| 65 |
+
return obj.tobytes()
|
| 66 |
+
|
| 67 |
+
def decode(self, data: bytes) -> Any:
|
| 68 |
+
x= np.frombuffer(data, np.uint8).astype(np.float32)
|
| 69 |
+
return (x / 255.0 - 0.5) * 24.0
|
| 70 |
+
|
| 71 |
+
_encodings["uint8"] = uint8
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
remote_train_dir = "./vae_mds" # this is the path you installed this dataset.
|
| 75 |
+
local_train_dir = "./local_train_dir"
|
| 76 |
+
|
| 77 |
+
train_dataset = StreamingDataset(
|
| 78 |
+
local=local_train_dir,
|
| 79 |
+
remote=remote_train_dir,
|
| 80 |
+
split=None,
|
| 81 |
+
shuffle=True,
|
| 82 |
+
shuffle_algo="naive",
|
| 83 |
+
num_canonical_nodes=1,
|
| 84 |
+
batch_size = 32
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
train_dataloader = torch.utils.data.DataLoader(
|
| 88 |
+
train_dataset,
|
| 89 |
+
batch_size=32,
|
| 90 |
+
num_workers=3,
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
###### Example Usage. Let's see if we can get the 5th image. BTW shuffle plz
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
model = "stabilityai/your-stable-diffusion-model"
|
| 99 |
+
vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae").to("cuda:0")
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
batch = next(iter(train_dataloader))
|
| 103 |
+
|
| 104 |
+
i = 5
|
| 105 |
+
vae_latent = batch["vae_output"].reshape(-1, 4, 32, 32)[i:i+1].cuda().float()
|
| 106 |
+
idx = batch["label"][i]
|
| 107 |
+
text_label = batch['label_as_text'][i]
|
| 108 |
+
|
| 109 |
+
print(f"idx: {idx}, text_label: {text_label}, latent: {vae_latent.shape}")
|
| 110 |
+
# idx: 402, text_label: acoustic guitar, latent: torch.Size([1, 4, 32, 32])
|
| 111 |
+
|
| 112 |
+
# example decoding
|
| 113 |
+
x = vae.decode(vae_latent.cuda()).sample
|
| 114 |
+
img = VaeImageProcessor().postprocess(image = x.detach(), do_denormalize = [True, True])[0]
|
| 115 |
+
img.save("5th_image.png")
|
| 116 |
+
```
|