metadata
extra_gated_fields:
First Name: text
Last Name: text
Date of birth: date_picker
Country: country
Affiliation: text
Job title:
type: select
options:
- Student
- Research Graduate
- AI researcher
- AI developer/engineer
- Reporter
- Other
geo: ip_location
By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy: checkbox
extra_gated_description: >-
The information you provide will be collected, stored, processed and shared in
accordance with the [Meta Privacy
Policy](https://www.facebook.com/privacy/policy/).
extra_gated_button_content: Submit
language:
- en
license: other
pretty_name: SACo-VEval
configs:
- config_name: SACo-VEval SA-V
data_files:
- split: test
path: annotation/saco_veval_sav_test.json
- split: val
path: annotation/saco_veval_sav_val.json
- config_name: SACo-VEval YT-Temporal-1B
data_files:
- split: test
path: annotation/saco_veval_yt1b_test.json
- split: val
path: annotation/saco_veval_yt1b_val.json
- config_name: SACo-VEval SmartGlasses
data_files:
- split: test
path: annotation/saco_veval_smartglasses_test.json
- split: val
path: annotation/saco_veval_smartglasses_val.json
SA-Co/VEval Dataset
License each domain has its own License
- SA-Co/VEval - SA-V: CC-BY-NC 4.0
- SA-Co/VEval - YT-Temporal-1B: CC-BY-NC 4.0
- SA-Co/VEval - SmartGlasses: CC-by-4.0
SA-Co/VEval is an evaluation dataset comprising of 3 domains, each domain has a val and test split.
- SA-Co/VEval - SA-V: videos are from the SA-V dataset
- SA-Co/VEval - YT-Temporal-1B: videos are from the YT-Temporal-1B
- SA-Co/VEval - SmartGlasses: egocentric videos from Smart Glasses
This Hugging Face dataset repo contains the following contents:
datasets/facebook/SACo-VEval/tree/main/
βββ annotation/
β βββ saco_veval_sav_test.json
β βββ saco_veval_sav_val.json
β βββ saco_veval_smartglasses_test.json
β βββ saco_veval_smartglasses_val.json
β βββ saco_veval_yt1b_test.json
β βββ saco_veval_yt1b_val.json
βββ media/
βββ saco_sg.tar.gz
βββ yt1b_start_end_time.json
- annotation
- all the GT json files
- media
saco_sg.tar.gz: the preprocessed JPEGImages for SA-Co/VEval - SmartGlassesyt1b_start_end_time.json: the Youtube video ids and the start and end time used in SA-Co/VEval - YT-Temporal-1B
More detail to prepare the complete SA-Co/VEval Dataset can be found in the SAM 3 Github.
Annotation Format
The format is similar to the YTVIS format.
In the annotation json, e.g. saco_veval_sav_test.json there are 5 fields:
- info:
- A dict containing the dataset info
- E.g. {'version': 'v1', 'date': '2025-09-24', 'description': 'SA-Co/VEval SA-V Test'}
- videos
- A list of videos that are used in the current annotation json
- It contains {id, video_name, file_names, height, width, length}
- annotations
- A list of positive masklets and their related info
- It contains {id, segmentations, bboxes, areas, iscrowd, video_id, height, width, category_id, noun_phrase}
- video_id should match to the
videos - idfield above - category_id should match to the
categories - idfield below - segmentations is a list of RLE
- video_id should match to the
- categories
- A globally used noun phrase id map, which is true across all 3 domains.
- It contains {id, name}
- name is the noun phrase
- video_np_pairs
- A list of video-np pairs, including both positive and negative used in the current annotation json
- It contains {id, video_id, category_id, noun_phrase, num_masklets}
- video_id should match the
videos - idabove - category_id should match the
categories - idabove - when
num_masklets > 0it is a positive video-np pair, and the presenting masklets can be found in the annotations field - when
num_masklets = 0it is a negative video-np pair, meaning no masklet presenting at all
- video_id should match the
data {
"info": info
"videos": [video]
"annotations": [annotation]
"categories": [category]
"video_np_pairs": [video_np_pair]
}
video {
"id": int
"video_name": str # e.g. sav_000000
"file_names": List[str]
"height": int
"width": width
"length": length
}
annotation {
"id": int
"segmentations": List[RLE]
"bboxes": List[List[int, int, int, int]]
"areas": List[int]
"iscrowd": int
"video_id": str
"height": int
"width": int
"category_id": int
"noun_phrase": str
}
category {
"id": int
"name": str
}
video_np_pair {
"id": int
"video_id": str
"category_id": int
"noun_phrase": str
"num_masklets" int
}
SAM 3 Github sam3/examples/saco_veval_vis_example.ipynb shows some examples of the data format and data visualization.