oishee3003 commited on
Commit
a07bcc6
Β·
verified Β·
1 Parent(s): ad45116

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -34
README.md CHANGED
@@ -17,6 +17,10 @@ size_categories:
17
 
18
  CAFOSat is a remote sensing dataset designed for identifying and classifying Concentrated Animal Feeding Operations (CAFOs) across various U.S. states. It includes high-resolution image patches, infrastructure annotations, bounding boxes, and experimental train-test splits for multiple configurations.
19
 
 
 
 
 
20
  ---
21
 
22
  ## Dataset Structure
@@ -27,7 +31,7 @@ The dataset is organized into extracted folders originally packaged as `.tar.gz`
27
  (e.g., `IA_filtered/`, `AL_filtered/`)
28
  - `negative_samples/`: Verified non-CAFO examples
29
  - `barn/`, `manure_pond/`, `others/`: Augmented synthetic patches by infrastructure type
30
- - `cafosat.csv`: Master metadata file with labels, bounding boxes, and split flags
31
 
32
  All image paths referenced in the CSV point to these extracted folders.
33
  πŸ“„ Example data loader available [here](https://github.com/oishee-hoque/CAFOSat/tree/main/data_loader).
@@ -38,32 +42,49 @@ All image paths referenced in the CSV point to these extracted folders.
38
  ## πŸ”– Image File Reference (`patch_file`)
39
 
40
  Each row in the metadata includes a `patch_file` field that provides the relative path to the associated image file.
41
- Each `patch_file` is a pointer into a compressed archive using Hugging Face's streaming format:
42
 
43
  Example:
44
  -`IA_filtered.tar.gz::IA_filtered/crop_4517_patch_10147_Swine_Nursery_IA.tif`
45
  - `barn.tar.gz::`barn/aug_patch_00123.tif`
46
  - `negative_sample.tar.gz::`barn/neg_patch_00098.tif`
47
-
48
- This format indicates the image is located inside `IA_filtered.tar.gz` under the subpath shown. This field is automatically interpreted by Hugging Face as an image using the `datasets.Image()` feature, so image previews and loading work out of the box.
49
-
50
  ---
51
 
52
  ## Features
53
 
54
- | Column | Description |
55
- |---------------|-------------------------------------------------------|
56
- | `patch_file` | Path to the image file |
57
- | `label` | Integer label for class (0–6) |
58
- | `barn`, `manure_pond`, `grazing_area`, `others` | Binary infra flags |
59
- | `geom_bbox` | Bounding box coordinates `[x1, y1, x2, y2]` |
60
- | `category` | Class name (e.g., Swine, Dairy) |
61
- | `state` | U.S. state of the patch |
62
- | `verified_label` | Human-verified CAFO type |
63
- | `CAFO_UNIQUE_ID` | Unique identifier for facility |
64
- | `image_type` | `original`, `augmented`, `negative`, etc. |
 
 
 
 
 
 
 
 
65
  | `split columns` | Flags for different train/test/val splits |
66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
  ---
68
 
69
  ## Labels
@@ -80,26 +101,14 @@ This format indicates the image is located inside `IA_filtered.tar.gz` under the
80
 
81
  ---
82
 
83
- ## Splits
84
-
85
- Multiple experimental train-test split columns are provided in the CSV:
86
-
87
- - `cafosat_verified_training_train`, `cafosat_verified_training_test`, `cafosat_verified_training_val`
88
- - `cafosat_all_training_*`
89
- - `cafosat_training_set1_*`, `set2_*`
90
- - `cafosat_merged_training_*`
91
- - `cafosat_augmented_training_*`
92
-
93
- Each flag is a binary indicator (`1` = in split, `0` = excluded).
94
-
95
- ---
96
 
97
- ## Intended Use
98
 
99
- - CAFO detection and classification
100
- - Agricultural infrastructure mapping
101
- - Weak supervision, semi-supervised learning
102
- - Remote sensing benchmark development
 
103
 
104
  ---
105
 
 
17
 
18
  CAFOSat is a remote sensing dataset designed for identifying and classifying Concentrated Animal Feeding Operations (CAFOs) across various U.S. states. It includes high-resolution image patches, infrastructure annotations, bounding boxes, and experimental train-test splits for multiple configurations.
19
 
20
+ ## πŸ”— Resources
21
+
22
+ - **GitHub Repository:** [oishee-hoque/CAFOSat](https://github.com/oishee-hoque/CAFOSat)
23
+ - **Explore the Dataset:** [CAFOSat Data Loader and Examples](https://github.com/oishee-hoque/CAFOSat/tree/main/data_loader)
24
  ---
25
 
26
  ## Dataset Structure
 
31
  (e.g., `IA_filtered/`, `AL_filtered/`)
32
  - `negative_samples/`: Verified non-CAFO examples
33
  - `barn/`, `manure_pond/`, `others/`: Augmented synthetic patches by infrastructure type
34
+ - `CAFOSat.csv`: Master metadata file with labels, bounding boxes, and split flags
35
 
36
  All image paths referenced in the CSV point to these extracted folders.
37
  πŸ“„ Example data loader available [here](https://github.com/oishee-hoque/CAFOSat/tree/main/data_loader).
 
42
  ## πŸ”– Image File Reference (`patch_file`)
43
 
44
  Each row in the metadata includes a `patch_file` field that provides the relative path to the associated image file.
 
45
 
46
  Example:
47
  -`IA_filtered.tar.gz::IA_filtered/crop_4517_patch_10147_Swine_Nursery_IA.tif`
48
  - `barn.tar.gz::`barn/aug_patch_00123.tif`
49
  - `negative_sample.tar.gz::`barn/neg_patch_00098.tif`
 
 
 
50
  ---
51
 
52
  ## Features
53
 
54
+ | Column | Description |
55
+ |---------------------------------------|-----------------------------------------------------------------------------|
56
+ | `patch_file` | Path to the image file |
57
+ | `label` | Integer label for class (0–6) |
58
+ | `barn`, `manure_pond`, `grazing_area`, `others` | Binary flags indicating infrastructure types |
59
+ | `geom_bbox` | Bounding box coordinates `[x1, y1, x2, y2]` |
60
+ | `geometry` | Geospatial polygon outlining the CAFO region |
61
+ | `poly_crs` | Coordinate reference system used for `geometry` |
62
+ | `patch_crs` | Coordinate reference system used for the image patch |
63
+ | `category` | CAFO class name (e.g., Swine, Dairy) |
64
+ | `state` | U.S. state where the patch is located |
65
+ | `verified_label` | Boolean indicating if the label is human-verified |
66
+ | `CAFO_UNIQUE_ID` | Unique identifier for each CAFO facility |
67
+ | `image_type` | Image variant type: `augmented` else real |
68
+ | `orig_patch_file` | Name/path of the original patch (applicable if the image_type is `augmented`) |
69
+ | `prompt` | Text prompt or description for generative/semantic use (if applicable) |
70
+ | `weak_x`, `weak_y` | Collected CAFO center coordinates |
71
+ | `refined_x`, `refined_y` | Refined CAFO center coordinates |
72
+ | `patch_res` | Spatial resolution of the patch in meters per pixel
73
  | `split columns` | Flags for different train/test/val splits |
74
 
75
+ ---
76
+ ## πŸ§ͺ Train/Test/Val Split Flags
77
+
78
+ These are boolean-like flags (`True`/`False`) that indicate inclusion in various dataset splits:
79
+
80
+ - `cafosat_verified_training_train`, `cafosat_verified_training_test`, `cafosat_verified_training_val`
81
+ - `cafosat_all_training_*`
82
+ - `cafosat_training_set1_*`, `set2_*`
83
+ - `cafosat_merged_training_*`
84
+ - `cafosat_augmented_training_*`
85
+
86
+ Each flag is a binary indicator (`1` = in split, `0` = excluded).
87
+
88
  ---
89
 
90
  ## Labels
 
101
 
102
  ---
103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104
 
105
+ ## πŸ“Œ Intended Use
106
 
107
+ - **CAFO detection and classification** – Identify and categorize CAFO facilities from aerial imagery.
108
+ - **CAFO area detection with bounding box** – Localize CAFOs using annotated bounding box coordinates.
109
+ - **Agricultural infrastructure mapping** – Map features like barns, manure ponds, and grazing areas.
110
+ - **Weak supervision and semi-supervised learning** – Leverage partially labeled data for model development.
111
+ - **Remote sensing benchmark development** – Support standardized evaluation for remote sensing tasks.
112
 
113
  ---
114