Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
multi-class-classification
Languages:
English
Size:
10K - 100K
ArXiv:
License:
Merge branch 'main' of https://huggingface.co/datasets/ought/raft into main
Browse files
raft.py
CHANGED
|
@@ -16,6 +16,7 @@
|
|
| 16 |
import csv
|
| 17 |
import json
|
| 18 |
import os
|
|
|
|
| 19 |
|
| 20 |
import datasets
|
| 21 |
|
|
@@ -44,10 +45,273 @@ _LICENSE = ""
|
|
| 44 |
# The HuggingFace dataset library don't host the datasets but only point to the original files
|
| 45 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
| 46 |
# This gets all folders within the directory named `data`
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
-
_URLs = {s: {
|
| 50 |
-
'test': f"data/{s}/test_unlabeled.csv"} for s in DATA_DIRS}
|
| 51 |
|
| 52 |
|
| 53 |
class Raft(datasets.GeneratorBasedBuilder):
|
|
@@ -66,36 +330,29 @@ class Raft(datasets.GeneratorBasedBuilder):
|
|
| 66 |
# You will be able to load one or the other configurations in the following list with
|
| 67 |
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
| 68 |
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
| 69 |
-
|
| 70 |
-
# TODO: Load task jsons
|
| 71 |
-
|
| 72 |
-
tasks = {}
|
| 73 |
-
for sd in DATA_DIRS:
|
| 74 |
-
with open(os.path.join('data', sd, 'task.json')) as f:
|
| 75 |
-
task_data = json.load(f)
|
| 76 |
-
tasks[sd] = task_data
|
| 77 |
-
|
| 78 |
BUILDER_CONFIGS = []
|
| 79 |
-
for key in tasks:
|
| 80 |
-
td = tasks[key]
|
| 81 |
-
name = td['name']
|
| 82 |
-
description = td['description']
|
| 83 |
-
BUILDER_CONFIGS.append(datasets.BuilderConfig(name=name, version=VERSION,
|
| 84 |
-
description=description))
|
| 85 |
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
def _info(self):
|
| 89 |
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
| 90 |
DEFAULT_LABEL_NAME = "Unlabeled"
|
| 91 |
|
| 92 |
-
task =
|
| 93 |
-
|
| 94 |
-
|
| 95 |
|
| 96 |
label_columns = {}
|
| 97 |
-
for label_name in task[
|
| 98 |
-
labels = [DEFAULT_LABEL_NAME] + task[
|
| 99 |
label_columns[label_name] = datasets.ClassLabel(len(labels), labels)
|
| 100 |
|
| 101 |
# Merge dicts
|
|
@@ -129,27 +386,26 @@ class Raft(datasets.GeneratorBasedBuilder):
|
|
| 129 |
data_dir = dl_manager.download_and_extract(_URLs)
|
| 130 |
dataset = self.config.name
|
| 131 |
return [
|
| 132 |
-
datasets.SplitGenerator(
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
datasets.SplitGenerator(
|
| 136 |
-
|
| 137 |
-
|
| 138 |
]
|
| 139 |
|
| 140 |
def _generate_examples(
|
| 141 |
-
|
| 142 |
):
|
| 143 |
-
"""
|
| 144 |
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
| 145 |
# The `key` is here for legacy reason (tfds) and is not important in itself.
|
| 146 |
|
| 147 |
-
task =
|
| 148 |
-
labels = list(task[
|
| 149 |
|
| 150 |
with open(filepath, encoding="utf-8") as f:
|
| 151 |
-
csv_reader = csv.reader(f, quotechar='"', delimiter=",",
|
| 152 |
-
quoting=csv.QUOTE_ALL, skipinitialspace=True)
|
| 153 |
column_names = next(csv_reader)
|
| 154 |
# Test csvs don't have any label columns.
|
| 155 |
if split == "test":
|
|
|
|
| 16 |
import csv
|
| 17 |
import json
|
| 18 |
import os
|
| 19 |
+
from pathlib import Path
|
| 20 |
|
| 21 |
import datasets
|
| 22 |
|
|
|
|
| 45 |
# The HuggingFace dataset library don't host the datasets but only point to the original files
|
| 46 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
| 47 |
# This gets all folders within the directory named `data`
|
| 48 |
+
DATA_DIR_URL = "data/" # "https://huggingface.co/datasets/ought/raft/resolve/main/data/"
|
| 49 |
+
# print([p for p in DATA_DIR_PATH.iterdir() if p.is_dir()])
|
| 50 |
+
TASKS = {
|
| 51 |
+
"ade_corpus_v2": {
|
| 52 |
+
"name": "ade_corpus_v2",
|
| 53 |
+
"description": "",
|
| 54 |
+
"data_columns": [
|
| 55 |
+
"Sentence",
|
| 56 |
+
"ID"
|
| 57 |
+
],
|
| 58 |
+
"label_columns": {
|
| 59 |
+
"Label": [
|
| 60 |
+
"ADE-related",
|
| 61 |
+
"not ADE-related"
|
| 62 |
+
]
|
| 63 |
+
}
|
| 64 |
+
},
|
| 65 |
+
"banking_77": {
|
| 66 |
+
"name": "banking_77",
|
| 67 |
+
"description": "",
|
| 68 |
+
"data_columns": [
|
| 69 |
+
"Query",
|
| 70 |
+
"ID"
|
| 71 |
+
],
|
| 72 |
+
"label_columns": {
|
| 73 |
+
"Label": [
|
| 74 |
+
"Refund_not_showing_up",
|
| 75 |
+
"activate_my_card",
|
| 76 |
+
"age_limit",
|
| 77 |
+
"apple_pay_or_google_pay",
|
| 78 |
+
"atm_support",
|
| 79 |
+
"automatic_top_up",
|
| 80 |
+
"balance_not_updated_after_bank_transfer",
|
| 81 |
+
"balance_not_updated_after_cheque_or_cash_deposit",
|
| 82 |
+
"beneficiary_not_allowed",
|
| 83 |
+
"cancel_transfer",
|
| 84 |
+
"card_about_to_expire",
|
| 85 |
+
"card_acceptance",
|
| 86 |
+
"card_arrival",
|
| 87 |
+
"card_delivery_estimate",
|
| 88 |
+
"card_linking",
|
| 89 |
+
"card_not_working",
|
| 90 |
+
"card_payment_fee_charged",
|
| 91 |
+
"card_payment_not_recognised",
|
| 92 |
+
"card_payment_wrong_exchange_rate",
|
| 93 |
+
"card_swallowed",
|
| 94 |
+
"cash_withdrawal_charge",
|
| 95 |
+
"cash_withdrawal_not_recognised",
|
| 96 |
+
"change_pin",
|
| 97 |
+
"compromised_card",
|
| 98 |
+
"contactless_not_working",
|
| 99 |
+
"country_support",
|
| 100 |
+
"declined_card_payment",
|
| 101 |
+
"declined_cash_withdrawal",
|
| 102 |
+
"declined_transfer",
|
| 103 |
+
"direct_debit_payment_not_recognised",
|
| 104 |
+
"disposable_card_limits",
|
| 105 |
+
"edit_personal_details",
|
| 106 |
+
"exchange_charge",
|
| 107 |
+
"exchange_rate",
|
| 108 |
+
"exchange_via_app",
|
| 109 |
+
"extra_charge_on_statement",
|
| 110 |
+
"failed_transfer",
|
| 111 |
+
"fiat_currency_support",
|
| 112 |
+
"get_disposable_virtual_card",
|
| 113 |
+
"get_physical_card",
|
| 114 |
+
"getting_spare_card",
|
| 115 |
+
"getting_virtual_card",
|
| 116 |
+
"lost_or_stolen_card",
|
| 117 |
+
"lost_or_stolen_phone",
|
| 118 |
+
"order_physical_card",
|
| 119 |
+
"passcode_forgotten",
|
| 120 |
+
"pending_card_payment",
|
| 121 |
+
"pending_cash_withdrawal",
|
| 122 |
+
"pending_top_up",
|
| 123 |
+
"pending_transfer",
|
| 124 |
+
"pin_blocked",
|
| 125 |
+
"receiving_money",
|
| 126 |
+
"request_refund",
|
| 127 |
+
"reverted_card_payment?",
|
| 128 |
+
"supported_cards_and_currencies",
|
| 129 |
+
"terminate_account",
|
| 130 |
+
"top_up_by_bank_transfer_charge",
|
| 131 |
+
"top_up_by_card_charge",
|
| 132 |
+
"top_up_by_cash_or_cheque",
|
| 133 |
+
"top_up_failed",
|
| 134 |
+
"top_up_limits",
|
| 135 |
+
"top_up_reverted",
|
| 136 |
+
"topping_up_by_card",
|
| 137 |
+
"transaction_charged_twice",
|
| 138 |
+
"transfer_fee_charged",
|
| 139 |
+
"transfer_into_account",
|
| 140 |
+
"transfer_not_received_by_recipient",
|
| 141 |
+
"transfer_timing",
|
| 142 |
+
"unable_to_verify_identity",
|
| 143 |
+
"verify_my_identity",
|
| 144 |
+
"verify_source_of_funds",
|
| 145 |
+
"verify_top_up",
|
| 146 |
+
"virtual_card_not_working",
|
| 147 |
+
"visa_or_mastercard",
|
| 148 |
+
"why_verify_identity",
|
| 149 |
+
"wrong_amount_of_cash_received",
|
| 150 |
+
"wrong_exchange_rate_for_cash_withdrawal"
|
| 151 |
+
]
|
| 152 |
+
}
|
| 153 |
+
},
|
| 154 |
+
"terms_of_service": {
|
| 155 |
+
"name": "terms_of_service",
|
| 156 |
+
"description": "",
|
| 157 |
+
"data_columns": [
|
| 158 |
+
"Sentence",
|
| 159 |
+
"ID"
|
| 160 |
+
],
|
| 161 |
+
"label_columns": {
|
| 162 |
+
"Label": [
|
| 163 |
+
"not potentially unfair",
|
| 164 |
+
"potentially unfair"
|
| 165 |
+
]
|
| 166 |
+
}
|
| 167 |
+
},
|
| 168 |
+
"tai_safety_research": {
|
| 169 |
+
"name": "tai_safety_research",
|
| 170 |
+
"description": "",
|
| 171 |
+
"data_columns": [
|
| 172 |
+
"Title",
|
| 173 |
+
"Abstract Note",
|
| 174 |
+
"Url",
|
| 175 |
+
"Publication Year",
|
| 176 |
+
"Item Type",
|
| 177 |
+
"Author",
|
| 178 |
+
"Publication Title",
|
| 179 |
+
"ID"
|
| 180 |
+
],
|
| 181 |
+
"label_columns": {
|
| 182 |
+
"Label": [
|
| 183 |
+
"TAI safety research",
|
| 184 |
+
"not TAI safety research"
|
| 185 |
+
]
|
| 186 |
+
}
|
| 187 |
+
},
|
| 188 |
+
"neurips_impact_statement_risks": {
|
| 189 |
+
"name": "neurips_impact_statement_risks",
|
| 190 |
+
"description": "",
|
| 191 |
+
"data_columns": [
|
| 192 |
+
"Paper title",
|
| 193 |
+
"Paper link",
|
| 194 |
+
"Impact statement",
|
| 195 |
+
"ID"
|
| 196 |
+
],
|
| 197 |
+
"label_columns": {
|
| 198 |
+
"Label": [
|
| 199 |
+
"doesn't mention a harmful application",
|
| 200 |
+
"mentions a harmful application"
|
| 201 |
+
]
|
| 202 |
+
}
|
| 203 |
+
},
|
| 204 |
+
"medical_subdomain_of_clinical_notes": {
|
| 205 |
+
"name": "medical_subdomain_of_clinical_notes",
|
| 206 |
+
"description": "",
|
| 207 |
+
"data_columns": [
|
| 208 |
+
"Note",
|
| 209 |
+
"ID"
|
| 210 |
+
],
|
| 211 |
+
"label_columns": {
|
| 212 |
+
"Label": [
|
| 213 |
+
"cardiology",
|
| 214 |
+
"gastroenterology",
|
| 215 |
+
"nephrology",
|
| 216 |
+
"neurology",
|
| 217 |
+
"psychiatry",
|
| 218 |
+
"pulmonary disease"
|
| 219 |
+
]
|
| 220 |
+
}
|
| 221 |
+
},
|
| 222 |
+
"overruling": {
|
| 223 |
+
"name": "overruling",
|
| 224 |
+
"description": "",
|
| 225 |
+
"data_columns": [
|
| 226 |
+
"Sentence",
|
| 227 |
+
"ID"
|
| 228 |
+
],
|
| 229 |
+
"label_columns": {
|
| 230 |
+
"Label": [
|
| 231 |
+
"not overruling",
|
| 232 |
+
"overruling"
|
| 233 |
+
]
|
| 234 |
+
}
|
| 235 |
+
},
|
| 236 |
+
"systematic_review_inclusion": {
|
| 237 |
+
"name": "systematic_review_inclusion",
|
| 238 |
+
"description": "",
|
| 239 |
+
"data_columns": [
|
| 240 |
+
"Title",
|
| 241 |
+
"Abstract",
|
| 242 |
+
"Authors",
|
| 243 |
+
"Journal",
|
| 244 |
+
"ID"
|
| 245 |
+
],
|
| 246 |
+
"label_columns": {
|
| 247 |
+
"Label": [
|
| 248 |
+
"included",
|
| 249 |
+
"not included"
|
| 250 |
+
]
|
| 251 |
+
}
|
| 252 |
+
},
|
| 253 |
+
"one_stop_english": {
|
| 254 |
+
"name": "one_stop_english",
|
| 255 |
+
"description": "",
|
| 256 |
+
"data_columns": [
|
| 257 |
+
"Article",
|
| 258 |
+
"ID"
|
| 259 |
+
],
|
| 260 |
+
"label_columns": {
|
| 261 |
+
"Label": [
|
| 262 |
+
"advanced",
|
| 263 |
+
"elementary",
|
| 264 |
+
"intermediate"
|
| 265 |
+
]
|
| 266 |
+
}
|
| 267 |
+
},
|
| 268 |
+
"tweet_eval_hate": {
|
| 269 |
+
"name": "tweet_eval_hate",
|
| 270 |
+
"description": "",
|
| 271 |
+
"data_columns": [
|
| 272 |
+
"Tweet",
|
| 273 |
+
"ID"
|
| 274 |
+
],
|
| 275 |
+
"label_columns": {
|
| 276 |
+
"Label": [
|
| 277 |
+
"hate speech",
|
| 278 |
+
"not hate speech"
|
| 279 |
+
]
|
| 280 |
+
}
|
| 281 |
+
},
|
| 282 |
+
"twitter_complaints": {
|
| 283 |
+
"name": "twitter_complaints",
|
| 284 |
+
"description": "",
|
| 285 |
+
"data_columns": [
|
| 286 |
+
"Tweet text",
|
| 287 |
+
"ID"
|
| 288 |
+
],
|
| 289 |
+
"label_columns": {
|
| 290 |
+
"Label": [
|
| 291 |
+
"complaint",
|
| 292 |
+
"no complaint"
|
| 293 |
+
]
|
| 294 |
+
}
|
| 295 |
+
},
|
| 296 |
+
"semiconductor_org_types": {
|
| 297 |
+
"name": "semiconductor_org_types",
|
| 298 |
+
"description": "",
|
| 299 |
+
"data_columns": [
|
| 300 |
+
"Paper title",
|
| 301 |
+
"Organization name",
|
| 302 |
+
"ID"
|
| 303 |
+
],
|
| 304 |
+
"label_columns": {
|
| 305 |
+
"Label": [
|
| 306 |
+
"company",
|
| 307 |
+
"research institute",
|
| 308 |
+
"university"
|
| 309 |
+
]
|
| 310 |
+
}
|
| 311 |
+
},
|
| 312 |
+
}
|
| 313 |
|
| 314 |
+
_URLs = {s: {"train": f"{DATA_DIR_URL}{s}/train.csv", "test": f"{DATA_DIR_URL}{s}/test_unlabeled.csv"} for s in TASKS}
|
|
|
|
| 315 |
|
| 316 |
|
| 317 |
class Raft(datasets.GeneratorBasedBuilder):
|
|
|
|
| 330 |
# You will be able to load one or the other configurations in the following list with
|
| 331 |
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
| 332 |
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
BUILDER_CONFIGS = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 334 |
|
| 335 |
+
for key in TASKS:
|
| 336 |
+
td = TASKS[key]
|
| 337 |
+
name = td["name"]
|
| 338 |
+
description = td["description"]
|
| 339 |
+
BUILDER_CONFIGS.append(datasets.BuilderConfig(name=name, version=VERSION, description=description))
|
| 340 |
+
|
| 341 |
+
DEFAULT_CONFIG_NAME = (
|
| 342 |
+
"tai_safety_research" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
| 343 |
+
)
|
| 344 |
|
| 345 |
def _info(self):
|
| 346 |
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
| 347 |
DEFAULT_LABEL_NAME = "Unlabeled"
|
| 348 |
|
| 349 |
+
task = TASKS[self.config.name]
|
| 350 |
+
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
| 351 |
+
data_columns = {col_name: datasets.Value("string") for col_name in task["data_columns"]}
|
| 352 |
|
| 353 |
label_columns = {}
|
| 354 |
+
for label_name in task["label_columns"]:
|
| 355 |
+
labels = [DEFAULT_LABEL_NAME] + task["label_columns"][label_name]
|
| 356 |
label_columns[label_name] = datasets.ClassLabel(len(labels), labels)
|
| 357 |
|
| 358 |
# Merge dicts
|
|
|
|
| 386 |
data_dir = dl_manager.download_and_extract(_URLs)
|
| 387 |
dataset = self.config.name
|
| 388 |
return [
|
| 389 |
+
datasets.SplitGenerator(
|
| 390 |
+
name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir[dataset]["train"], "split": "train"}
|
| 391 |
+
),
|
| 392 |
+
datasets.SplitGenerator(
|
| 393 |
+
name=datasets.Split.TEST, gen_kwargs={"filepath": data_dir[dataset]["test"], "split": "test"}
|
| 394 |
+
),
|
| 395 |
]
|
| 396 |
|
| 397 |
def _generate_examples(
|
| 398 |
+
self, filepath, split # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
| 399 |
):
|
| 400 |
+
"""Yields examples as (key, example) tuples."""
|
| 401 |
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
| 402 |
# The `key` is here for legacy reason (tfds) and is not important in itself.
|
| 403 |
|
| 404 |
+
task = TASKS[self.config.name]
|
| 405 |
+
labels = list(task["label_columns"])
|
| 406 |
|
| 407 |
with open(filepath, encoding="utf-8") as f:
|
| 408 |
+
csv_reader = csv.reader(f, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True)
|
|
|
|
| 409 |
column_names = next(csv_reader)
|
| 410 |
# Test csvs don't have any label columns.
|
| 411 |
if split == "test":
|