Commit
·
0834d5a
0
Parent(s):
first commit
Browse files- .gitattributes +55 -0
- .gitignore +21 -0
- README.md +35 -0
- download_sound_models.py +53 -0
- examples/make_calling_media_noise_wav/step_1_make_calling_noise.py +248 -0
- examples/make_calling_media_noise_wav/step_2_make_calling_speech.py +245 -0
- examples/total_duration.py +70 -0
- install.sh +73 -0
- main.py +45 -0
- nx_noise.py +83 -0
- project_settings.py +19 -0
- requirements.txt +5 -0
- toolbox/__init__.py +6 -0
- toolbox/cv2/__init__.py +6 -0
- toolbox/cv2/misc.py +137 -0
- toolbox/json/__init__.py +6 -0
- toolbox/json/misc.py +63 -0
- toolbox/os/__init__.py +6 -0
- toolbox/os/environment.py +114 -0
- toolbox/os/other.py +9 -0
- toolbox/python_speech_features/__init__.py +6 -0
- toolbox/python_speech_features/misc.py +104 -0
- toolbox/python_speech_features/silence_detect.py +81 -0
- toolbox/python_speech_features/wave_features.py +111 -0
- toolbox/torch/__init__.py +6 -0
- toolbox/torch/utils/__init__.py +6 -0
- toolbox/torch/utils/data/__init__.py +6 -0
- toolbox/torch/utils/data/vocabulary.py +211 -0
.gitattributes
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.lz4 filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
# Audio files - uncompressed
|
| 38 |
+
*.pcm filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
*.sam filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
*.raw filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
# Audio files - compressed
|
| 42 |
+
*.aac filter=lfs diff=lfs merge=lfs -text
|
| 43 |
+
*.flac filter=lfs diff=lfs merge=lfs -text
|
| 44 |
+
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
| 45 |
+
*.ogg filter=lfs diff=lfs merge=lfs -text
|
| 46 |
+
*.wav filter=lfs diff=lfs merge=lfs -text
|
| 47 |
+
# Image files - uncompressed
|
| 48 |
+
*.bmp filter=lfs diff=lfs merge=lfs -text
|
| 49 |
+
*.gif filter=lfs diff=lfs merge=lfs -text
|
| 50 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
| 51 |
+
*.tiff filter=lfs diff=lfs merge=lfs -text
|
| 52 |
+
# Image files - compressed
|
| 53 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
| 54 |
+
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
| 55 |
+
*.webp filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
.git/
|
| 3 |
+
.idea/
|
| 4 |
+
|
| 5 |
+
**/flagged/
|
| 6 |
+
**/log/
|
| 7 |
+
**/logs/
|
| 8 |
+
**/__pycache__/
|
| 9 |
+
|
| 10 |
+
/data/
|
| 11 |
+
/data/raw
|
| 12 |
+
/data/speech
|
| 13 |
+
/docs/
|
| 14 |
+
/dotenv/
|
| 15 |
+
/hub_datasets/
|
| 16 |
+
/trained_models/
|
| 17 |
+
/temp/
|
| 18 |
+
|
| 19 |
+
/data/**/*.wav
|
| 20 |
+
|
| 21 |
+
**/*.wav
|
README.md
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
size_categories:
|
| 4 |
+
- 100M<n<1B
|
| 5 |
+
---
|
| 6 |
+
## NX Noise
|
| 7 |
+
|
| 8 |
+
```text
|
| 9 |
+
(1)所有 noise 噪音音频都是大于2秒的。
|
| 10 |
+
(2)noise 噪音段通过分类模型中音频中提取,可能有会包含有语音。
|
| 11 |
+
```
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
### duration
|
| 15 |
+
|
| 16 |
+
duration;
|
| 17 |
+
|
| 18 |
+
| language | count | duration (s) | duration (h) |
|
| 19 |
+
| :---: | :---: | :---: | :---: |
|
| 20 |
+
| en-PH | 1435 | 5038.2308 | 1.3995 |
|
| 21 |
+
| id-ID | 285 | 1012.845 | 0.2813 |
|
| 22 |
+
| ms-MY | 1084 | 3512.1843 | 0.9756 |
|
| 23 |
+
| pt-BR | 5767 | 20824.6279 | 5.7846 |
|
| 24 |
+
| total | 8571 | 30387.888 | 8.4411 |
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
two second duration;
|
| 28 |
+
|
| 29 |
+
| language | count | duration (s) | duration (h) |
|
| 30 |
+
| :---: | :---: | :---: | :---: |
|
| 31 |
+
| en-PH | 1435 | 4070.0 | 1.1306 |
|
| 32 |
+
| id-ID | 285 | 784.0 | 0.2178 |
|
| 33 |
+
| ms-MY | 1084 | 2794.0 | 0.7761 |
|
| 34 |
+
| pt-BR | 5767 | 16452.0 | 4.57 |
|
| 35 |
+
| total | 8571 | 24100.0 | 6.6944 |
|
download_sound_models.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
import argparse
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
|
| 6 |
+
from huggingface_hub import snapshot_download
|
| 7 |
+
|
| 8 |
+
from project_settings import environment, project_path
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def get_args():
|
| 12 |
+
parser = argparse.ArgumentParser()
|
| 13 |
+
parser.add_argument(
|
| 14 |
+
"--trained_model_dir",
|
| 15 |
+
default=(project_path / "trained_models").as_posix(),
|
| 16 |
+
type=str,
|
| 17 |
+
)
|
| 18 |
+
parser.add_argument(
|
| 19 |
+
"--models_repo_id",
|
| 20 |
+
default="qgyd2021/vm_sound_classification",
|
| 21 |
+
type=str,
|
| 22 |
+
)
|
| 23 |
+
parser.add_argument(
|
| 24 |
+
"--model_pattern",
|
| 25 |
+
default="sound-*-ch32.zip",
|
| 26 |
+
type=str,
|
| 27 |
+
)
|
| 28 |
+
parser.add_argument(
|
| 29 |
+
"--hf_token",
|
| 30 |
+
default=environment.get("hf_token"),
|
| 31 |
+
type=str,
|
| 32 |
+
)
|
| 33 |
+
args = parser.parse_args()
|
| 34 |
+
return args
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def main():
|
| 38 |
+
args = get_args()
|
| 39 |
+
|
| 40 |
+
trained_model_dir = Path(args.trained_model_dir)
|
| 41 |
+
trained_model_dir.mkdir(parents=True, exist_ok=True)
|
| 42 |
+
|
| 43 |
+
_ = snapshot_download(
|
| 44 |
+
repo_id=args.models_repo_id,
|
| 45 |
+
allow_patterns=[args.model_pattern],
|
| 46 |
+
local_dir=trained_model_dir.as_posix(),
|
| 47 |
+
token=args.hf_token,
|
| 48 |
+
)
|
| 49 |
+
return
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
if __name__ == '__main__':
|
| 53 |
+
main()
|
examples/make_calling_media_noise_wav/step_1_make_calling_noise.py
ADDED
|
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
import argparse
|
| 4 |
+
import os
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
import random
|
| 7 |
+
import shutil
|
| 8 |
+
import tempfile
|
| 9 |
+
import zipfile
|
| 10 |
+
|
| 11 |
+
import numpy as np
|
| 12 |
+
from scipy.io import wavfile
|
| 13 |
+
import torch
|
| 14 |
+
import torch.nn as nn
|
| 15 |
+
from tqdm import tqdm
|
| 16 |
+
from typing import List
|
| 17 |
+
|
| 18 |
+
from project_settings import project_path
|
| 19 |
+
from toolbox.cv2.misc import erode, dilate
|
| 20 |
+
from toolbox.torch.utils.data.vocabulary import Vocabulary
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
# language = "en-PH"
|
| 24 |
+
language = "id-ID"
|
| 25 |
+
# language = "ms-MY"
|
| 26 |
+
# language = "pt-BR"
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def get_args():
|
| 30 |
+
parser = argparse.ArgumentParser()
|
| 31 |
+
parser.add_argument(
|
| 32 |
+
"--model_file",
|
| 33 |
+
default=(project_path / "trained_models/sound-8-ch32.zip").as_posix(),
|
| 34 |
+
type=str
|
| 35 |
+
)
|
| 36 |
+
parser.add_argument(
|
| 37 |
+
"--wav_dir",
|
| 38 |
+
default=(project_path / f"data/raw/{language}/temp-2").as_posix(),
|
| 39 |
+
type=str
|
| 40 |
+
)
|
| 41 |
+
parser.add_argument(
|
| 42 |
+
"--output_dir",
|
| 43 |
+
default=(project_path / f"data/noise/{language}/2025-01-17").as_posix(),
|
| 44 |
+
type=str
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
parser.add_argument("--min_duration", default=2.0, type=float)
|
| 48 |
+
parser.add_argument("--win_size", default=2.0, type=int)
|
| 49 |
+
parser.add_argument("--win_step", default=0.25, type=int)
|
| 50 |
+
args = parser.parse_args()
|
| 51 |
+
return args
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class Tagger(object):
|
| 55 |
+
def __init__(self,
|
| 56 |
+
model_file: str,
|
| 57 |
+
win_size: int,
|
| 58 |
+
win_step: int,
|
| 59 |
+
sample_rate: int = 8000,
|
| 60 |
+
):
|
| 61 |
+
self.model_file = Path(model_file)
|
| 62 |
+
self.win_size = win_size
|
| 63 |
+
self.win_step = win_step
|
| 64 |
+
self.sample_rate = sample_rate
|
| 65 |
+
|
| 66 |
+
self.model: nn.Module = None
|
| 67 |
+
self.vocabulary: Vocabulary = None
|
| 68 |
+
self.load_models()
|
| 69 |
+
|
| 70 |
+
def load_models(self):
|
| 71 |
+
with zipfile.ZipFile(self.model_file, "r") as f_zip:
|
| 72 |
+
out_root = Path(tempfile.gettempdir()) / "vm_sound_classification"
|
| 73 |
+
if out_root.exists():
|
| 74 |
+
shutil.rmtree(out_root.as_posix())
|
| 75 |
+
out_root.mkdir(parents=True, exist_ok=True)
|
| 76 |
+
f_zip.extractall(path=out_root)
|
| 77 |
+
tgt_path = out_root / self.model_file.stem
|
| 78 |
+
jit_model_file = tgt_path / "trace_model.zip"
|
| 79 |
+
vocab_path = tgt_path / "vocabulary"
|
| 80 |
+
|
| 81 |
+
vocabulary = Vocabulary.from_files(vocab_path.as_posix())
|
| 82 |
+
|
| 83 |
+
with open(jit_model_file.as_posix(), "rb") as f:
|
| 84 |
+
model = torch.jit.load(f)
|
| 85 |
+
model.eval()
|
| 86 |
+
|
| 87 |
+
shutil.rmtree(tgt_path)
|
| 88 |
+
|
| 89 |
+
self.model = model
|
| 90 |
+
self.vocabulary = vocabulary
|
| 91 |
+
return model, vocabulary
|
| 92 |
+
|
| 93 |
+
def tag(self, signal: np.ndarray):
|
| 94 |
+
signal_length = len(signal)
|
| 95 |
+
win_size = int(self.win_size * self.sample_rate)
|
| 96 |
+
win_step = int(self.win_step * self.sample_rate)
|
| 97 |
+
|
| 98 |
+
signal = np.concatenate([
|
| 99 |
+
np.zeros(shape=(win_size // 2,), dtype=np.int16),
|
| 100 |
+
signal,
|
| 101 |
+
np.zeros(shape=(win_size // 2,), dtype=np.int16),
|
| 102 |
+
])
|
| 103 |
+
|
| 104 |
+
result = list()
|
| 105 |
+
for i in range(0, signal_length, win_step):
|
| 106 |
+
sub_signal = signal[i: i+win_size]
|
| 107 |
+
if len(sub_signal) < win_size:
|
| 108 |
+
break
|
| 109 |
+
|
| 110 |
+
inputs = torch.tensor(sub_signal, dtype=torch.float32)
|
| 111 |
+
inputs = torch.unsqueeze(inputs, dim=0)
|
| 112 |
+
|
| 113 |
+
probs = self.model(inputs)
|
| 114 |
+
|
| 115 |
+
probs = probs.tolist()[0]
|
| 116 |
+
argidx = np.argmax(probs)
|
| 117 |
+
label_str = self.vocabulary.get_token_from_index(argidx, namespace="labels")
|
| 118 |
+
prob = probs[argidx]
|
| 119 |
+
result.append(label_str)
|
| 120 |
+
|
| 121 |
+
return result
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
def correct_labels(labels: List[str]):
|
| 125 |
+
|
| 126 |
+
labels = erode(labels, erode_label="noise", n=2)
|
| 127 |
+
labels = dilate(labels, dilate_label="noise", n=2)
|
| 128 |
+
return labels
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def split_signal_by_labels(signal: np.ndarray, labels: List[str]):
|
| 132 |
+
l = len(labels)
|
| 133 |
+
|
| 134 |
+
noise_list = list()
|
| 135 |
+
begin = None
|
| 136 |
+
for idx, label in enumerate(labels):
|
| 137 |
+
if label == "noise":
|
| 138 |
+
if begin is None:
|
| 139 |
+
begin = idx
|
| 140 |
+
elif label != "noise":
|
| 141 |
+
if begin is not None:
|
| 142 |
+
noise_list.append((begin, idx))
|
| 143 |
+
begin = None
|
| 144 |
+
else:
|
| 145 |
+
pass
|
| 146 |
+
else:
|
| 147 |
+
if begin is not None:
|
| 148 |
+
noise_list.append((begin, l))
|
| 149 |
+
|
| 150 |
+
result = list()
|
| 151 |
+
|
| 152 |
+
win_size = signal.shape[0] / l
|
| 153 |
+
for begin, end in noise_list:
|
| 154 |
+
begin = int(begin * win_size)
|
| 155 |
+
end = int(end * win_size)
|
| 156 |
+
|
| 157 |
+
sub_signal = signal[begin: end + 1]
|
| 158 |
+
result.append({
|
| 159 |
+
"begin": begin,
|
| 160 |
+
"sub_signal": sub_signal,
|
| 161 |
+
})
|
| 162 |
+
|
| 163 |
+
return result
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
def main():
|
| 167 |
+
args = get_args()
|
| 168 |
+
|
| 169 |
+
max_wave_value = 32768.0
|
| 170 |
+
|
| 171 |
+
wav_dir = Path(args.wav_dir)
|
| 172 |
+
output_dir = Path(args.output_dir)
|
| 173 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
| 174 |
+
|
| 175 |
+
tagger = Tagger(
|
| 176 |
+
model_file=args.model_file,
|
| 177 |
+
win_size=args.win_size,
|
| 178 |
+
win_step=args.win_step,
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
if not wav_dir.exists():
|
| 182 |
+
wav_zip = wav_dir.parent / f"{wav_dir.name}.zip"
|
| 183 |
+
with zipfile.ZipFile(wav_zip, "r") as f_zip:
|
| 184 |
+
wav_dir.mkdir(parents=True, exist_ok=True)
|
| 185 |
+
f_zip.extractall(path=wav_dir)
|
| 186 |
+
|
| 187 |
+
wav_list = list(wav_dir.glob("**/active_media_r_*.wav"))
|
| 188 |
+
# wav_list = list(wav_dir.glob("**/*.wav"))
|
| 189 |
+
random.shuffle(wav_list)
|
| 190 |
+
|
| 191 |
+
count = 0
|
| 192 |
+
for filename in tqdm(wav_list):
|
| 193 |
+
filename = Path(filename)
|
| 194 |
+
if filename.parts[-2] in ("bell", "music"):
|
| 195 |
+
continue
|
| 196 |
+
try:
|
| 197 |
+
sample_rate, signal = wavfile.read(filename)
|
| 198 |
+
except UnboundLocalError as e:
|
| 199 |
+
continue
|
| 200 |
+
if sample_rate != 8000:
|
| 201 |
+
raise AssertionError
|
| 202 |
+
|
| 203 |
+
if signal.ndim == 2:
|
| 204 |
+
signal = signal[:, 0]
|
| 205 |
+
|
| 206 |
+
if len(signal) < 0.3 * sample_rate:
|
| 207 |
+
print("remove file: {}".format(filename.as_posix()))
|
| 208 |
+
os.remove(filename.as_posix())
|
| 209 |
+
continue
|
| 210 |
+
|
| 211 |
+
signal_ = signal / max_wave_value
|
| 212 |
+
|
| 213 |
+
labels = tagger.tag(signal_)
|
| 214 |
+
labels = correct_labels(labels)
|
| 215 |
+
|
| 216 |
+
if "noise" not in labels:
|
| 217 |
+
continue
|
| 218 |
+
|
| 219 |
+
sub_signal_list = split_signal_by_labels(signal, labels)
|
| 220 |
+
|
| 221 |
+
for i, sub_signal_group in enumerate(sub_signal_list):
|
| 222 |
+
to_filename = output_dir / "{}_{}.wav".format(filename.stem, i)
|
| 223 |
+
if to_filename.exists():
|
| 224 |
+
raise AssertionError
|
| 225 |
+
|
| 226 |
+
sub_signal = sub_signal_group["sub_signal"]
|
| 227 |
+
|
| 228 |
+
sub_signal = np.array(sub_signal, dtype=np.int16)
|
| 229 |
+
if len(sub_signal) < sample_rate * args.min_duration:
|
| 230 |
+
continue
|
| 231 |
+
|
| 232 |
+
wavfile.write(
|
| 233 |
+
filename=to_filename,
|
| 234 |
+
rate=sample_rate,
|
| 235 |
+
data=sub_signal
|
| 236 |
+
)
|
| 237 |
+
count += 1
|
| 238 |
+
|
| 239 |
+
print("remove file: {}".format(filename.as_posix()))
|
| 240 |
+
os.remove(filename.as_posix())
|
| 241 |
+
|
| 242 |
+
# if count > 200:
|
| 243 |
+
# break
|
| 244 |
+
return
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
if __name__ == '__main__':
|
| 248 |
+
main()
|
examples/make_calling_media_noise_wav/step_2_make_calling_speech.py
ADDED
|
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
因为 step 1 中已将能提取出 noise 的音频删除了,所以此步骤中提取的 speech 包含 noise 的可能性更小。
|
| 5 |
+
"""
|
| 6 |
+
import argparse
|
| 7 |
+
import os
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
import random
|
| 10 |
+
import shutil
|
| 11 |
+
import tempfile
|
| 12 |
+
import zipfile
|
| 13 |
+
|
| 14 |
+
import numpy as np
|
| 15 |
+
from scipy.io import wavfile
|
| 16 |
+
import torch
|
| 17 |
+
import torch.nn as nn
|
| 18 |
+
from tqdm import tqdm
|
| 19 |
+
from typing import List
|
| 20 |
+
|
| 21 |
+
from project_settings import project_path
|
| 22 |
+
from toolbox.cv2.misc import erode, dilate
|
| 23 |
+
from toolbox.torch.utils.data.vocabulary import Vocabulary
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
# language = "en-PH"
|
| 27 |
+
language = "id-ID"
|
| 28 |
+
# language = "ms-MY"
|
| 29 |
+
# language = "pt-BR"
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def get_args():
|
| 33 |
+
parser = argparse.ArgumentParser()
|
| 34 |
+
parser.add_argument(
|
| 35 |
+
"--model_file",
|
| 36 |
+
default=(project_path / "trained_models/sound-8-ch32.zip").as_posix(),
|
| 37 |
+
type=str
|
| 38 |
+
)
|
| 39 |
+
parser.add_argument(
|
| 40 |
+
"--wav_dir",
|
| 41 |
+
default=(project_path / f"data/raw/{language}/temp-2").as_posix(),
|
| 42 |
+
type=str
|
| 43 |
+
)
|
| 44 |
+
parser.add_argument(
|
| 45 |
+
"--output_dir",
|
| 46 |
+
default=(project_path / f"data/speech/{language}/2025-01-17").as_posix(),
|
| 47 |
+
type=str
|
| 48 |
+
)
|
| 49 |
+
parser.add_argument("--min_duration", default=4.0, type=float)
|
| 50 |
+
parser.add_argument("--win_size", default=2.0, type=int)
|
| 51 |
+
parser.add_argument("--win_step", default=0.25, type=int)
|
| 52 |
+
args = parser.parse_args()
|
| 53 |
+
return args
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class Tagger(object):
|
| 57 |
+
def __init__(self,
|
| 58 |
+
model_file: str,
|
| 59 |
+
win_size: int,
|
| 60 |
+
win_step: int,
|
| 61 |
+
sample_rate: int = 8000,
|
| 62 |
+
):
|
| 63 |
+
self.model_file = Path(model_file)
|
| 64 |
+
self.win_size = win_size
|
| 65 |
+
self.win_step = win_step
|
| 66 |
+
self.sample_rate = sample_rate
|
| 67 |
+
|
| 68 |
+
self.model: nn.Module = None
|
| 69 |
+
self.vocabulary: Vocabulary = None
|
| 70 |
+
self.load_models()
|
| 71 |
+
|
| 72 |
+
def load_models(self):
|
| 73 |
+
with zipfile.ZipFile(self.model_file, "r") as f_zip:
|
| 74 |
+
out_root = Path(tempfile.gettempdir()) / "vm_sound_classification"
|
| 75 |
+
if out_root.exists():
|
| 76 |
+
shutil.rmtree(out_root.as_posix())
|
| 77 |
+
out_root.mkdir(parents=True, exist_ok=True)
|
| 78 |
+
f_zip.extractall(path=out_root)
|
| 79 |
+
tgt_path = out_root / self.model_file.stem
|
| 80 |
+
jit_model_file = tgt_path / "trace_model.zip"
|
| 81 |
+
vocab_path = tgt_path / "vocabulary"
|
| 82 |
+
|
| 83 |
+
vocabulary = Vocabulary.from_files(vocab_path.as_posix())
|
| 84 |
+
|
| 85 |
+
with open(jit_model_file.as_posix(), "rb") as f:
|
| 86 |
+
model = torch.jit.load(f)
|
| 87 |
+
model.eval()
|
| 88 |
+
|
| 89 |
+
shutil.rmtree(tgt_path)
|
| 90 |
+
|
| 91 |
+
self.model = model
|
| 92 |
+
self.vocabulary = vocabulary
|
| 93 |
+
return model, vocabulary
|
| 94 |
+
|
| 95 |
+
def tag(self, signal: np.ndarray):
|
| 96 |
+
signal_length = len(signal)
|
| 97 |
+
win_size = int(self.win_size * self.sample_rate)
|
| 98 |
+
win_step = int(self.win_step * self.sample_rate)
|
| 99 |
+
|
| 100 |
+
signal = np.concatenate([
|
| 101 |
+
np.zeros(shape=(win_size // 2,), dtype=np.int16),
|
| 102 |
+
signal,
|
| 103 |
+
np.zeros(shape=(win_size // 2,), dtype=np.int16),
|
| 104 |
+
])
|
| 105 |
+
|
| 106 |
+
result = list()
|
| 107 |
+
for i in range(0, signal_length, win_step):
|
| 108 |
+
sub_signal = signal[i: i+win_size]
|
| 109 |
+
if len(sub_signal) < win_size:
|
| 110 |
+
break
|
| 111 |
+
|
| 112 |
+
inputs = torch.tensor(sub_signal, dtype=torch.float32)
|
| 113 |
+
inputs = torch.unsqueeze(inputs, dim=0)
|
| 114 |
+
|
| 115 |
+
probs = self.model(inputs)
|
| 116 |
+
|
| 117 |
+
probs = probs.tolist()[0]
|
| 118 |
+
argidx = np.argmax(probs)
|
| 119 |
+
label_str = self.vocabulary.get_token_from_index(argidx, namespace="labels")
|
| 120 |
+
prob = probs[argidx]
|
| 121 |
+
result.append(label_str)
|
| 122 |
+
|
| 123 |
+
return result
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def correct_labels(labels: List[str]):
|
| 127 |
+
|
| 128 |
+
labels = erode(labels, erode_label="noise", n=2)
|
| 129 |
+
# labels = dilate(labels, dilate_label="noise", n=2)
|
| 130 |
+
|
| 131 |
+
return labels
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
def split_signal_by_labels(signal: np.ndarray, labels: List[str]):
|
| 135 |
+
l = len(labels)
|
| 136 |
+
|
| 137 |
+
noise_list = list()
|
| 138 |
+
begin = None
|
| 139 |
+
for idx, label in enumerate(labels):
|
| 140 |
+
if label == "voice":
|
| 141 |
+
if begin is None:
|
| 142 |
+
begin = idx
|
| 143 |
+
elif label != "voice":
|
| 144 |
+
if begin is not None:
|
| 145 |
+
noise_list.append((begin, idx))
|
| 146 |
+
begin = None
|
| 147 |
+
else:
|
| 148 |
+
pass
|
| 149 |
+
else:
|
| 150 |
+
if begin is not None:
|
| 151 |
+
noise_list.append((begin, l))
|
| 152 |
+
|
| 153 |
+
result = list()
|
| 154 |
+
|
| 155 |
+
win_size = signal.shape[0] / l
|
| 156 |
+
for begin, end in noise_list:
|
| 157 |
+
begin = int(begin * win_size)
|
| 158 |
+
end = int(end * win_size)
|
| 159 |
+
|
| 160 |
+
sub_signal = signal[begin: end + 1]
|
| 161 |
+
result.append({
|
| 162 |
+
"begin": begin,
|
| 163 |
+
"sub_signal": sub_signal,
|
| 164 |
+
})
|
| 165 |
+
|
| 166 |
+
return result
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
def main():
|
| 170 |
+
args = get_args()
|
| 171 |
+
|
| 172 |
+
max_wave_value = 32768.0
|
| 173 |
+
|
| 174 |
+
wav_dir = Path(args.wav_dir)
|
| 175 |
+
output_dir = Path(args.output_dir)
|
| 176 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
| 177 |
+
|
| 178 |
+
tagger = Tagger(
|
| 179 |
+
model_file=args.model_file,
|
| 180 |
+
win_size=args.win_size,
|
| 181 |
+
win_step=args.win_step,
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
wav_list = list(wav_dir.glob("**/active_media_r_*.wav"))
|
| 185 |
+
# wav_list = list(wav_dir.glob("**/*.wav"))
|
| 186 |
+
random.shuffle(wav_list)
|
| 187 |
+
|
| 188 |
+
count = 0
|
| 189 |
+
for filename in tqdm(wav_list):
|
| 190 |
+
filename = Path(filename)
|
| 191 |
+
if filename.parts[-2] in ("bell", "music"):
|
| 192 |
+
continue
|
| 193 |
+
try:
|
| 194 |
+
sample_rate, signal = wavfile.read(filename)
|
| 195 |
+
except UnboundLocalError as e:
|
| 196 |
+
continue
|
| 197 |
+
if sample_rate != 8000:
|
| 198 |
+
raise AssertionError
|
| 199 |
+
|
| 200 |
+
if signal.ndim == 2:
|
| 201 |
+
signal = signal[:, 0]
|
| 202 |
+
|
| 203 |
+
if len(signal) < 0.3 * sample_rate:
|
| 204 |
+
print("remove file: {}".format(filename.as_posix()))
|
| 205 |
+
os.remove(filename.as_posix())
|
| 206 |
+
continue
|
| 207 |
+
|
| 208 |
+
signal_ = signal / max_wave_value
|
| 209 |
+
|
| 210 |
+
labels = tagger.tag(signal_)
|
| 211 |
+
labels = correct_labels(labels)
|
| 212 |
+
|
| 213 |
+
if "voice" not in labels:
|
| 214 |
+
continue
|
| 215 |
+
|
| 216 |
+
sub_signal_list = split_signal_by_labels(signal, labels)
|
| 217 |
+
|
| 218 |
+
for i, sub_signal_group in enumerate(sub_signal_list):
|
| 219 |
+
to_filename = output_dir / "{}_{}.wav".format(filename.stem, i)
|
| 220 |
+
if to_filename.exists():
|
| 221 |
+
raise AssertionError
|
| 222 |
+
|
| 223 |
+
sub_signal = sub_signal_group["sub_signal"]
|
| 224 |
+
|
| 225 |
+
sub_signal = np.array(sub_signal, dtype=np.int16)
|
| 226 |
+
if len(sub_signal) < sample_rate * args.min_duration:
|
| 227 |
+
continue
|
| 228 |
+
|
| 229 |
+
wavfile.write(
|
| 230 |
+
filename=to_filename,
|
| 231 |
+
rate=sample_rate,
|
| 232 |
+
data=sub_signal
|
| 233 |
+
)
|
| 234 |
+
count += 1
|
| 235 |
+
|
| 236 |
+
print("remove file: {}".format(filename.as_posix()))
|
| 237 |
+
os.remove(filename.as_posix())
|
| 238 |
+
|
| 239 |
+
# if count > 200:
|
| 240 |
+
# break
|
| 241 |
+
return
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
if __name__ == '__main__':
|
| 245 |
+
main()
|
examples/total_duration.py
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
import argparse
|
| 4 |
+
from collections import defaultdict
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
|
| 7 |
+
import librosa
|
| 8 |
+
from mpmath.libmp import round_down
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
|
| 11 |
+
from project_settings import project_path
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def get_args():
|
| 15 |
+
parser = argparse.ArgumentParser()
|
| 16 |
+
parser.add_argument(
|
| 17 |
+
"--noise_dir",
|
| 18 |
+
default=(project_path / "data/noise").as_posix(),
|
| 19 |
+
type=str
|
| 20 |
+
)
|
| 21 |
+
args = parser.parse_args()
|
| 22 |
+
return args
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def main():
|
| 26 |
+
args = get_args()
|
| 27 |
+
|
| 28 |
+
counter = defaultdict(int)
|
| 29 |
+
duration_counter = defaultdict(float)
|
| 30 |
+
two_second_duration_counter = defaultdict(float)
|
| 31 |
+
|
| 32 |
+
noise_dir = Path(args.noise_dir)
|
| 33 |
+
for filename in tqdm(list(noise_dir.glob("**/*.wav"))):
|
| 34 |
+
if filename.parts[-4] == "noise":
|
| 35 |
+
language = filename.parts[-3]
|
| 36 |
+
elif filename.parts[-3] == "noise":
|
| 37 |
+
language = filename.parts[-2]
|
| 38 |
+
else:
|
| 39 |
+
raise AssertionError
|
| 40 |
+
|
| 41 |
+
y, sr = librosa.load(filename, sr=None)
|
| 42 |
+
duration = librosa.get_duration(y=y, sr=sr)
|
| 43 |
+
two_second_duration = duration // 2 * 2
|
| 44 |
+
|
| 45 |
+
counter[language] += 1
|
| 46 |
+
duration_counter[language] += round(duration, 4)
|
| 47 |
+
two_second_duration_counter[language] += round(two_second_duration, 4)
|
| 48 |
+
|
| 49 |
+
total_count = sum(counter.values())
|
| 50 |
+
total_duration = sum(duration_counter.values())
|
| 51 |
+
row = "\nduration; \n\n"
|
| 52 |
+
row += "| language | count | duration (s) | duration (h) |\n| :---: | :---: | :---: | :---: |\n"
|
| 53 |
+
for k, v in duration_counter.items():
|
| 54 |
+
row += f"| {k} | {counter[k]} | {round(v, 4)} | {round(v / 3600, 4)} |\n"
|
| 55 |
+
row += f"| total | {total_count} | {round(total_duration, 4)} | {round(total_duration / 3600, 4)} |\n"
|
| 56 |
+
print(row)
|
| 57 |
+
|
| 58 |
+
total_duration = sum(two_second_duration_counter.values())
|
| 59 |
+
row = "\ntwo second duration; \n\n"
|
| 60 |
+
row += "| language | count | duration (s) | duration (h) |\n| :---: | :---: | :---: | :---: |\n"
|
| 61 |
+
for k, v in two_second_duration_counter.items():
|
| 62 |
+
row += f"| {k} | {counter[k]} | {round(v, 4)} | {round(v / 3600, 4)} |\n"
|
| 63 |
+
row += f"| total | {total_count} | {round(total_duration, 4)} | {round(total_duration / 3600, 4)} |\n"
|
| 64 |
+
print(row)
|
| 65 |
+
|
| 66 |
+
return
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
if __name__ == '__main__':
|
| 70 |
+
main()
|
install.sh
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env bash
|
| 2 |
+
|
| 3 |
+
# bash install.sh --stage 2 --stop_stage 2 --system_version centos
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
python_version=3.12
|
| 7 |
+
system_version="centos";
|
| 8 |
+
|
| 9 |
+
verbose=true;
|
| 10 |
+
stage=-1
|
| 11 |
+
stop_stage=0
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
# parse options
|
| 15 |
+
while true; do
|
| 16 |
+
[ -z "${1:-}" ] && break; # break if there are no arguments
|
| 17 |
+
case "$1" in
|
| 18 |
+
--*) name=$(echo "$1" | sed s/^--// | sed s/-/_/g);
|
| 19 |
+
eval '[ -z "${'"$name"'+xxx}" ]' && echo "$0: invalid option $1" 1>&2 && exit 1;
|
| 20 |
+
old_value="(eval echo \\$$name)";
|
| 21 |
+
if [ "${old_value}" == "true" ] || [ "${old_value}" == "false" ]; then
|
| 22 |
+
was_bool=true;
|
| 23 |
+
else
|
| 24 |
+
was_bool=false;
|
| 25 |
+
fi
|
| 26 |
+
|
| 27 |
+
# Set the variable to the right value-- the escaped quotes make it work if
|
| 28 |
+
# the option had spaces, like --cmd "queue.pl -sync y"
|
| 29 |
+
eval "${name}=\"$2\"";
|
| 30 |
+
|
| 31 |
+
# Check that Boolean-valued arguments are really Boolean.
|
| 32 |
+
if $was_bool && [[ "$2" != "true" && "$2" != "false" ]]; then
|
| 33 |
+
echo "$0: expected \"true\" or \"false\": $1 $2" 1>&2
|
| 34 |
+
exit 1;
|
| 35 |
+
fi
|
| 36 |
+
shift 2;
|
| 37 |
+
;;
|
| 38 |
+
|
| 39 |
+
*) break;
|
| 40 |
+
esac
|
| 41 |
+
done
|
| 42 |
+
|
| 43 |
+
work_dir="$(pwd)"
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
| 47 |
+
$verbose && echo "stage 1: download sound models"
|
| 48 |
+
cd "${work_dir}" || exit 1;
|
| 49 |
+
|
| 50 |
+
python download_sound_models.py
|
| 51 |
+
|
| 52 |
+
fi
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
| 56 |
+
$verbose && echo "stage 3: install python"
|
| 57 |
+
cd "${work_dir}" || exit 1;
|
| 58 |
+
|
| 59 |
+
sh ./script/install_python.sh --python_version "${python_version}" --system_version "${system_version}"
|
| 60 |
+
fi
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
| 64 |
+
$verbose && echo "stage 4: create virtualenv"
|
| 65 |
+
|
| 66 |
+
# /usr/local/python-3.6.5/bin/virtualenv vm_sound_classification
|
| 67 |
+
# source /data/local/bin/vm_sound_classification/bin/activate
|
| 68 |
+
/usr/local/python-${python_version}/bin/pip3 install virtualenv
|
| 69 |
+
mkdir -p /data/local/bin
|
| 70 |
+
cd /data/local/bin || exit 1;
|
| 71 |
+
/usr/local/python-${python_version}/bin/virtualenv vm_sound_classification
|
| 72 |
+
|
| 73 |
+
fi
|
main.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
|
| 5 |
+
from project_settings import project_path
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def get_args():
|
| 9 |
+
parser = argparse.ArgumentParser()
|
| 10 |
+
parser.add_argument(
|
| 11 |
+
"--dataset_path",
|
| 12 |
+
default="nx_noise.py",
|
| 13 |
+
# default="E:/Users/tianx/HuggingDatasets/nx_noise/nx_noise.py",
|
| 14 |
+
type=str
|
| 15 |
+
)
|
| 16 |
+
parser.add_argument("--dataset_name", default="en-PH", type=str)
|
| 17 |
+
parser.add_argument(
|
| 18 |
+
"--dataset_cache_dir",
|
| 19 |
+
default=(project_path / "hub_datasets").as_posix(),
|
| 20 |
+
type=str
|
| 21 |
+
)
|
| 22 |
+
args = parser.parse_args()
|
| 23 |
+
return args
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def main():
|
| 27 |
+
args = get_args()
|
| 28 |
+
|
| 29 |
+
dataset = load_dataset(
|
| 30 |
+
path=args.dataset_path,
|
| 31 |
+
name=args.dataset_name,
|
| 32 |
+
cache_dir=args.dataset_cache_dir,
|
| 33 |
+
# streaming=True,
|
| 34 |
+
trust_remote_code=True,
|
| 35 |
+
)
|
| 36 |
+
# print(dataset.builder_configs)
|
| 37 |
+
for sample in dataset["train"]:
|
| 38 |
+
print(sample)
|
| 39 |
+
print("-" * 150)
|
| 40 |
+
|
| 41 |
+
return
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
if __name__ == '__main__':
|
| 45 |
+
main()
|
nx_noise.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
|
| 5 |
+
import datasets
|
| 6 |
+
import librosa
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
_DATA_URL_MAP = {
|
| 10 |
+
"en-PH": "data/noise/en-PH.zip",
|
| 11 |
+
|
| 12 |
+
}
|
| 13 |
+
|
| 14 |
+
_CITATION = """\
|
| 15 |
+
@dataset{nx_noise,
|
| 16 |
+
author = {Xing Tian},
|
| 17 |
+
title = {nx noise},
|
| 18 |
+
month = jan,
|
| 19 |
+
year = 2025,
|
| 20 |
+
publisher = {Xing Tian},
|
| 21 |
+
version = {1.0},
|
| 22 |
+
}
|
| 23 |
+
"""
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
_DESCRIPTION = """noise from user side in calling."""
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class NXNoise(datasets.GeneratorBasedBuilder):
|
| 30 |
+
VERSION = datasets.Version("1.0.0")
|
| 31 |
+
|
| 32 |
+
BUILDER_CONFIGS = [
|
| 33 |
+
datasets.BuilderConfig(name="en-PH", version=VERSION, description="noise from en-PH"),
|
| 34 |
+
]
|
| 35 |
+
|
| 36 |
+
def _info(self):
|
| 37 |
+
features = datasets.Features(
|
| 38 |
+
{
|
| 39 |
+
"audio": datasets.Audio(),
|
| 40 |
+
"duration": datasets.Value("float16"),
|
| 41 |
+
}
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
return datasets.DatasetInfo(
|
| 45 |
+
description=_DESCRIPTION,
|
| 46 |
+
features=features,
|
| 47 |
+
supervised_keys=None,
|
| 48 |
+
homepage="",
|
| 49 |
+
license="",
|
| 50 |
+
citation=_CITATION,
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
def _split_generators(self, dl_manager):
|
| 54 |
+
"""Returns SplitGenerators."""
|
| 55 |
+
data_url = _DATA_URL_MAP.get(self.config.name)
|
| 56 |
+
if data_url is None:
|
| 57 |
+
raise AssertionError(f"subset {self.config.name} is not available.")
|
| 58 |
+
|
| 59 |
+
archive_path = dl_manager.download_and_extract(data_url)
|
| 60 |
+
|
| 61 |
+
return [
|
| 62 |
+
datasets.SplitGenerator(
|
| 63 |
+
name=datasets.Split.TRAIN,
|
| 64 |
+
gen_kwargs={"archive_path": archive_path, "dl_manager": dl_manager},
|
| 65 |
+
),
|
| 66 |
+
]
|
| 67 |
+
|
| 68 |
+
def _generate_examples(self, archive_path, dl_manager):
|
| 69 |
+
"""Yields examples."""
|
| 70 |
+
archive_path = Path(archive_path)
|
| 71 |
+
|
| 72 |
+
sample_idx = 0
|
| 73 |
+
for filename in archive_path.glob("**/*.wav"):
|
| 74 |
+
y, sr = librosa.load(filename, sr=None)
|
| 75 |
+
yield sample_idx, {
|
| 76 |
+
"audio": filename.as_posix(),
|
| 77 |
+
"duration": round(librosa.get_duration(y=y, sr=sr), 4),
|
| 78 |
+
}
|
| 79 |
+
sample_idx += 1
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
if __name__ == '__main__':
|
| 83 |
+
pass
|
project_settings.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
import os
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
|
| 6 |
+
from toolbox.os.environment import EnvironmentManager
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
project_path = os.path.abspath(os.path.dirname(__file__))
|
| 10 |
+
project_path = Path(project_path)
|
| 11 |
+
|
| 12 |
+
environment = EnvironmentManager(
|
| 13 |
+
path=os.path.join(project_path, "dotenv"),
|
| 14 |
+
env=os.environ.get("environment", "dev"),
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
if __name__ == "__main__":
|
| 19 |
+
pass
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
librosa==0.10.2.post1
|
| 2 |
+
datasets==3.2.0
|
| 3 |
+
python-dotenv==1.0.1
|
| 4 |
+
torch==2.5.1
|
| 5 |
+
python_speech_features==0.6
|
toolbox/__init__.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
if __name__ == '__main__':
|
| 6 |
+
pass
|
toolbox/cv2/__init__.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
if __name__ == '__main__':
|
| 6 |
+
pass
|
toolbox/cv2/misc.py
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
from typing import List, Union
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def erode(labels: List[Union[str, int]], erode_label: Union[str, int], n: int = 1):
|
| 7 |
+
"""
|
| 8 |
+
遍历 labels 列表, 将连续的 erode_label 标签侵蚀 n 个.
|
| 9 |
+
"""
|
| 10 |
+
result = list()
|
| 11 |
+
in_span = False
|
| 12 |
+
count = 0
|
| 13 |
+
for idx, label in enumerate(labels):
|
| 14 |
+
if label == erode_label:
|
| 15 |
+
if not in_span:
|
| 16 |
+
in_span = True
|
| 17 |
+
count = 0
|
| 18 |
+
if count < n:
|
| 19 |
+
if len(result) == 0:
|
| 20 |
+
result.append(label)
|
| 21 |
+
else:
|
| 22 |
+
result.append(result[-1])
|
| 23 |
+
count += 1
|
| 24 |
+
continue
|
| 25 |
+
else:
|
| 26 |
+
result.append(label)
|
| 27 |
+
continue
|
| 28 |
+
elif label != erode_label:
|
| 29 |
+
if in_span:
|
| 30 |
+
in_span = False
|
| 31 |
+
|
| 32 |
+
for i in range(min(len(result), n)):
|
| 33 |
+
result[-i-1] = label
|
| 34 |
+
result.append(label)
|
| 35 |
+
continue
|
| 36 |
+
else:
|
| 37 |
+
result.append(label)
|
| 38 |
+
continue
|
| 39 |
+
|
| 40 |
+
result.append(label)
|
| 41 |
+
return result
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def dilate(labels: List[Union[str, int]], dilate_label: Union[str, int], n: int = 1):
|
| 45 |
+
"""
|
| 46 |
+
遍历 labels 列表, 将连续的 dilate_label 标签扩张 n 个.
|
| 47 |
+
"""
|
| 48 |
+
result = list()
|
| 49 |
+
in_span = False
|
| 50 |
+
count = float('inf')
|
| 51 |
+
for idx, label in enumerate(labels):
|
| 52 |
+
if count < n:
|
| 53 |
+
result.append(dilate_label)
|
| 54 |
+
count += 1
|
| 55 |
+
continue
|
| 56 |
+
if label == dilate_label:
|
| 57 |
+
if not in_span:
|
| 58 |
+
in_span = True
|
| 59 |
+
|
| 60 |
+
for i in range(min(len(result), n)):
|
| 61 |
+
result[-i-1] = label
|
| 62 |
+
result.append(label)
|
| 63 |
+
continue
|
| 64 |
+
else:
|
| 65 |
+
result.append(label)
|
| 66 |
+
continue
|
| 67 |
+
else:
|
| 68 |
+
if in_span:
|
| 69 |
+
in_span = False
|
| 70 |
+
result.append(dilate_label)
|
| 71 |
+
count = 1
|
| 72 |
+
continue
|
| 73 |
+
else:
|
| 74 |
+
result.append(label)
|
| 75 |
+
continue
|
| 76 |
+
|
| 77 |
+
return result
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def demo1():
|
| 81 |
+
labels = [
|
| 82 |
+
'voice', 'mute', 'mute', 'voice', 'voice', 'voice', 'voice', 'bell', 'bell', 'bell', 'mute', 'mute', 'mute', 'voice',
|
| 83 |
+
]
|
| 84 |
+
|
| 85 |
+
result = erode(
|
| 86 |
+
labels=labels,
|
| 87 |
+
erode_label='voice',
|
| 88 |
+
n=1,
|
| 89 |
+
|
| 90 |
+
)
|
| 91 |
+
print(len(labels))
|
| 92 |
+
print(len(result))
|
| 93 |
+
print(result)
|
| 94 |
+
return
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def demo2():
|
| 98 |
+
labels = [
|
| 99 |
+
'voice', 'mute', 'mute', 'voice', 'voice', 'voice', 'voice', 'bell', 'bell', 'bell', 'mute', 'mute', 'mute', 'voice',
|
| 100 |
+
]
|
| 101 |
+
|
| 102 |
+
result = dilate(
|
| 103 |
+
labels=labels,
|
| 104 |
+
dilate_label='voice',
|
| 105 |
+
n=2,
|
| 106 |
+
|
| 107 |
+
)
|
| 108 |
+
print(len(labels))
|
| 109 |
+
print(len(result))
|
| 110 |
+
print(result)
|
| 111 |
+
|
| 112 |
+
return
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def demo3():
|
| 116 |
+
import time
|
| 117 |
+
labels = ['mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'voice', 'bell', 'bell', 'bell', 'bell', 'bell', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'bell', 'bell', 'bell', 'bell', 'bell', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'bell', 'bell', 'bell', 'bell', 'bell', 'bell', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute']
|
| 118 |
+
|
| 119 |
+
begin = time.time()
|
| 120 |
+
labels = erode(labels, erode_label='music', n=1)
|
| 121 |
+
labels = dilate(labels, dilate_label='music', n=1)
|
| 122 |
+
|
| 123 |
+
labels = dilate(labels, dilate_label='voice', n=2)
|
| 124 |
+
labels = erode(labels, erode_label='voice', n=2)
|
| 125 |
+
labels = erode(labels, erode_label='voice', n=1)
|
| 126 |
+
labels = dilate(labels, dilate_label='voice', n=3)
|
| 127 |
+
|
| 128 |
+
cost = time.time() - begin
|
| 129 |
+
print(cost)
|
| 130 |
+
print(labels)
|
| 131 |
+
return
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
if __name__ == '__main__':
|
| 135 |
+
# demo1()
|
| 136 |
+
# demo2()
|
| 137 |
+
demo3()
|
toolbox/json/__init__.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
if __name__ == '__main__':
|
| 6 |
+
pass
|
toolbox/json/misc.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
from typing import Callable
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def traverse(js, callback: Callable, *args, **kwargs):
|
| 7 |
+
if isinstance(js, list):
|
| 8 |
+
result = list()
|
| 9 |
+
for l in js:
|
| 10 |
+
l = traverse(l, callback, *args, **kwargs)
|
| 11 |
+
result.append(l)
|
| 12 |
+
return result
|
| 13 |
+
elif isinstance(js, tuple):
|
| 14 |
+
result = list()
|
| 15 |
+
for l in js:
|
| 16 |
+
l = traverse(l, callback, *args, **kwargs)
|
| 17 |
+
result.append(l)
|
| 18 |
+
return tuple(result)
|
| 19 |
+
elif isinstance(js, dict):
|
| 20 |
+
result = dict()
|
| 21 |
+
for k, v in js.items():
|
| 22 |
+
k = traverse(k, callback, *args, **kwargs)
|
| 23 |
+
v = traverse(v, callback, *args, **kwargs)
|
| 24 |
+
result[k] = v
|
| 25 |
+
return result
|
| 26 |
+
elif isinstance(js, int):
|
| 27 |
+
return callback(js, *args, **kwargs)
|
| 28 |
+
elif isinstance(js, str):
|
| 29 |
+
return callback(js, *args, **kwargs)
|
| 30 |
+
else:
|
| 31 |
+
return js
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def demo1():
|
| 35 |
+
d = {
|
| 36 |
+
"env": "ppe",
|
| 37 |
+
"mysql_connect": {
|
| 38 |
+
"host": "$mysql_connect_host",
|
| 39 |
+
"port": 3306,
|
| 40 |
+
"user": "callbot",
|
| 41 |
+
"password": "NxcloudAI2021!",
|
| 42 |
+
"database": "callbot_ppe",
|
| 43 |
+
"charset": "utf8"
|
| 44 |
+
},
|
| 45 |
+
"es_connect": {
|
| 46 |
+
"hosts": ["10.20.251.8"],
|
| 47 |
+
"http_auth": ["elastic", "ElasticAI2021!"],
|
| 48 |
+
"port": 9200
|
| 49 |
+
}
|
| 50 |
+
}
|
| 51 |
+
|
| 52 |
+
def callback(s):
|
| 53 |
+
if isinstance(s, str) and s.startswith('$'):
|
| 54 |
+
return s[1:]
|
| 55 |
+
return s
|
| 56 |
+
|
| 57 |
+
result = traverse(d, callback=callback)
|
| 58 |
+
print(result)
|
| 59 |
+
return
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
if __name__ == '__main__':
|
| 63 |
+
demo1()
|
toolbox/os/__init__.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
if __name__ == '__main__':
|
| 6 |
+
pass
|
toolbox/os/environment.py
ADDED
|
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
import json
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
from dotenv import load_dotenv
|
| 7 |
+
from dotenv.main import DotEnv
|
| 8 |
+
|
| 9 |
+
from toolbox.json.misc import traverse
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class EnvironmentManager(object):
|
| 13 |
+
def __init__(self, path, env, override=False):
|
| 14 |
+
filename = os.path.join(path, '{}.env'.format(env))
|
| 15 |
+
self.filename = filename
|
| 16 |
+
|
| 17 |
+
load_dotenv(
|
| 18 |
+
dotenv_path=filename,
|
| 19 |
+
override=override
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
self._environ = dict()
|
| 23 |
+
|
| 24 |
+
def open_dotenv(self, filename: str = None):
|
| 25 |
+
filename = filename or self.filename
|
| 26 |
+
dotenv = DotEnv(
|
| 27 |
+
dotenv_path=filename,
|
| 28 |
+
stream=None,
|
| 29 |
+
verbose=False,
|
| 30 |
+
interpolate=False,
|
| 31 |
+
override=False,
|
| 32 |
+
encoding="utf-8",
|
| 33 |
+
)
|
| 34 |
+
result = dotenv.dict()
|
| 35 |
+
return result
|
| 36 |
+
|
| 37 |
+
def get(self, key, default=None, dtype=str):
|
| 38 |
+
result = os.environ.get(key)
|
| 39 |
+
if result is None:
|
| 40 |
+
if default is None:
|
| 41 |
+
result = None
|
| 42 |
+
else:
|
| 43 |
+
result = default
|
| 44 |
+
else:
|
| 45 |
+
result = dtype(result)
|
| 46 |
+
self._environ[key] = result
|
| 47 |
+
return result
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
_DEFAULT_DTYPE_MAP = {
|
| 51 |
+
'int': int,
|
| 52 |
+
'float': float,
|
| 53 |
+
'str': str,
|
| 54 |
+
'json.loads': json.loads
|
| 55 |
+
}
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class JsonConfig(object):
|
| 59 |
+
"""
|
| 60 |
+
将 json 中, 形如 `$float:threshold` 的值, 处理为:
|
| 61 |
+
从环境变量中查到 threshold, 再将其转换为 float 类型.
|
| 62 |
+
"""
|
| 63 |
+
def __init__(self, dtype_map: dict = None, environment: EnvironmentManager = None):
|
| 64 |
+
self.dtype_map = dtype_map or _DEFAULT_DTYPE_MAP
|
| 65 |
+
self.environment = environment or os.environ
|
| 66 |
+
|
| 67 |
+
def sanitize_by_filename(self, filename: str):
|
| 68 |
+
with open(filename, 'r', encoding='utf-8') as f:
|
| 69 |
+
js = json.load(f)
|
| 70 |
+
|
| 71 |
+
return self.sanitize_by_json(js)
|
| 72 |
+
|
| 73 |
+
def sanitize_by_json(self, js):
|
| 74 |
+
js = traverse(
|
| 75 |
+
js,
|
| 76 |
+
callback=self.sanitize,
|
| 77 |
+
environment=self.environment
|
| 78 |
+
)
|
| 79 |
+
return js
|
| 80 |
+
|
| 81 |
+
def sanitize(self, string, environment):
|
| 82 |
+
"""支持 $ 符开始的, 环境变量配置"""
|
| 83 |
+
if isinstance(string, str) and string.startswith('$'):
|
| 84 |
+
dtype, key = string[1:].split(':')
|
| 85 |
+
dtype = self.dtype_map[dtype]
|
| 86 |
+
|
| 87 |
+
value = environment.get(key)
|
| 88 |
+
if value is None:
|
| 89 |
+
raise AssertionError('environment not exist. key: {}'.format(key))
|
| 90 |
+
|
| 91 |
+
value = dtype(value)
|
| 92 |
+
result = value
|
| 93 |
+
else:
|
| 94 |
+
result = string
|
| 95 |
+
return result
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def demo1():
|
| 99 |
+
import json
|
| 100 |
+
|
| 101 |
+
from settings import project_path
|
| 102 |
+
|
| 103 |
+
environment = EnvironmentManager(
|
| 104 |
+
path=os.path.join(project_path, 'server/callbot_server/dotenv'),
|
| 105 |
+
env='dev',
|
| 106 |
+
)
|
| 107 |
+
init_scenes = environment.get(key='init_scenes', dtype=json.loads)
|
| 108 |
+
print(init_scenes)
|
| 109 |
+
print(environment._environ)
|
| 110 |
+
return
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
if __name__ == '__main__':
|
| 114 |
+
demo1()
|
toolbox/os/other.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import inspect
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def pwd():
|
| 6 |
+
"""你在哪个文件调用此函数, 它就会返回那个文件所在的 dir 目标"""
|
| 7 |
+
frame = inspect.stack()[1]
|
| 8 |
+
module = inspect.getmodule(frame[0])
|
| 9 |
+
return os.path.dirname(os.path.abspath(module.__file__))
|
toolbox/python_speech_features/__init__.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
if __name__ == '__main__':
|
| 6 |
+
pass
|
toolbox/python_speech_features/misc.py
ADDED
|
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
import cv2 as cv
|
| 6 |
+
import numpy as np
|
| 7 |
+
from python_speech_features import sigproc
|
| 8 |
+
from python_speech_features import mfcc
|
| 9 |
+
from sklearn import preprocessing
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def wave2spectrum(sample_rate, wave, winlen=0.025, winstep=0.01, nfft=512):
|
| 13 |
+
"""计算功率谱图像"""
|
| 14 |
+
frames = sigproc.framesig(
|
| 15 |
+
sig=wave,
|
| 16 |
+
frame_len=winlen * sample_rate,
|
| 17 |
+
frame_step=winstep * sample_rate,
|
| 18 |
+
winfunc=np.hamming
|
| 19 |
+
)
|
| 20 |
+
spectrum = sigproc.powspec(
|
| 21 |
+
frames=frames,
|
| 22 |
+
NFFT=nfft
|
| 23 |
+
)
|
| 24 |
+
spectrum = spectrum.T
|
| 25 |
+
return spectrum
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def wave2spectrum_image(
|
| 29 |
+
wave, sample_rate,
|
| 30 |
+
xmax=10, xmin=-50,
|
| 31 |
+
winlen=0.025, winstep=0.01, nfft=512,
|
| 32 |
+
n_low_freq=None
|
| 33 |
+
):
|
| 34 |
+
"""
|
| 35 |
+
:return: numpy.ndarray, shape=(time_step, n_dim)
|
| 36 |
+
"""
|
| 37 |
+
spectrum = wave2spectrum(
|
| 38 |
+
sample_rate, wave,
|
| 39 |
+
winlen=winlen,
|
| 40 |
+
winstep=winstep,
|
| 41 |
+
nfft=nfft,
|
| 42 |
+
)
|
| 43 |
+
spectrum = np.log(spectrum, out=np.zeros_like(spectrum), where=(spectrum != 0))
|
| 44 |
+
spectrum = spectrum.T
|
| 45 |
+
gray = 255 * (spectrum - xmin) / (xmax - xmin)
|
| 46 |
+
gray = np.array(gray, dtype=np.uint8)
|
| 47 |
+
if n_low_freq is not None:
|
| 48 |
+
gray = gray[:, :n_low_freq]
|
| 49 |
+
|
| 50 |
+
return gray
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def compute_delta(specgram: np.ndarray, win_length: int = 5):
|
| 54 |
+
"""
|
| 55 |
+
:param specgram: shape=[time_steps, n_mels]
|
| 56 |
+
:param win_length:
|
| 57 |
+
:return:
|
| 58 |
+
"""
|
| 59 |
+
n = (win_length - 1) // 2
|
| 60 |
+
|
| 61 |
+
specgram = np.array(specgram, dtype=np.float32)
|
| 62 |
+
|
| 63 |
+
kernel = np.arange(-n, n + 1, 1)
|
| 64 |
+
kernel = np.reshape(kernel, newshape=(2 * n + 1, 1))
|
| 65 |
+
kernel = np.array(kernel, dtype=np.float32) / 10
|
| 66 |
+
|
| 67 |
+
delta = cv.filter2D(
|
| 68 |
+
src=specgram,
|
| 69 |
+
ddepth=cv.CV_32F,
|
| 70 |
+
kernel=kernel,
|
| 71 |
+
)
|
| 72 |
+
return delta
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def delta_mfcc_feature(signal, sample_rate):
|
| 76 |
+
"""
|
| 77 |
+
为 GMM UBM 声纹识别模型, 编写此代码.
|
| 78 |
+
|
| 79 |
+
https://github.com/pventrella20/Speaker_identification_-GMM-UBM-
|
| 80 |
+
https://github.com/MChamith/Speaker_verification_gmm_ubm
|
| 81 |
+
|
| 82 |
+
:param signal: np.ndarray
|
| 83 |
+
:param sample_rate: frequenza del file audio
|
| 84 |
+
:return:
|
| 85 |
+
"""
|
| 86 |
+
|
| 87 |
+
# shape=[time_steps, n_mels]
|
| 88 |
+
mfcc_feat = mfcc(
|
| 89 |
+
signal=signal,
|
| 90 |
+
samplerate=sample_rate,
|
| 91 |
+
winlen=0.025,
|
| 92 |
+
winstep=0.01,
|
| 93 |
+
numcep=20,
|
| 94 |
+
appendEnergy=True
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
mfcc_feat = preprocessing.scale(mfcc_feat)
|
| 98 |
+
delta = compute_delta(mfcc_feat)
|
| 99 |
+
combined = np.hstack(tup=(mfcc_feat, delta))
|
| 100 |
+
return combined
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
if __name__ == '__main__':
|
| 104 |
+
pass
|
toolbox/python_speech_features/silence_detect.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
import numpy as np
|
| 4 |
+
from python_speech_features import sigproc
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def calc_energy(signal, samplerate=16000, winlen=0.025, winstep=0.01):
|
| 8 |
+
"""
|
| 9 |
+
任意信号都可以看作是在电阻R=1 的电路上的电流 I. 则能量为 I^2
|
| 10 |
+
"""
|
| 11 |
+
signal = np.array(signal, dtype=np.float32)
|
| 12 |
+
power = np.square(signal)
|
| 13 |
+
|
| 14 |
+
# 分帧
|
| 15 |
+
frames = sigproc.framesig(power, winlen*samplerate, winstep*samplerate)
|
| 16 |
+
# 各帧能量总和.
|
| 17 |
+
energy = np.mean(frames, axis=-1)
|
| 18 |
+
return energy
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def calc_zero_crossing_rate(signal, samplerate=16000, winlen=0.025, winstep=0.01):
|
| 22 |
+
"""过零率. """
|
| 23 |
+
signal = np.where(signal >= 0, 1, -1)
|
| 24 |
+
cross_zero = np.where(signal[1:] != signal[:-1], 1, 0)
|
| 25 |
+
|
| 26 |
+
frames = sigproc.framesig(cross_zero, winlen*samplerate, winstep*samplerate)
|
| 27 |
+
_, n = frames.shape
|
| 28 |
+
cross_zero_rate = np.mean(frames, axis=-1)
|
| 29 |
+
|
| 30 |
+
return cross_zero_rate
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def detect_silence(signal, samplerate=16000, winlen=0.025, winstep=0.01, min_energy=0.01, min_cross_zero_rate=0.05):
|
| 34 |
+
"""静音段检测"""
|
| 35 |
+
energy = calc_energy(
|
| 36 |
+
signal=signal,
|
| 37 |
+
samplerate=samplerate,
|
| 38 |
+
winlen=winlen,
|
| 39 |
+
winstep=winstep,
|
| 40 |
+
)
|
| 41 |
+
cross_zero_rate = calc_zero_crossing_rate(
|
| 42 |
+
signal=signal,
|
| 43 |
+
samplerate=samplerate,
|
| 44 |
+
winlen=winlen,
|
| 45 |
+
winstep=winstep,
|
| 46 |
+
)
|
| 47 |
+
energy = energy < min_energy
|
| 48 |
+
cross_zero_rate = cross_zero_rate < min_cross_zero_rate
|
| 49 |
+
silence_signal = np.array(energy + cross_zero_rate, dtype=np.bool)
|
| 50 |
+
silence_signal = silence_signal.tolist()
|
| 51 |
+
|
| 52 |
+
frame_len = int(sigproc.round_half_up(winlen*samplerate))
|
| 53 |
+
frame_step = int(sigproc.round_half_up(winstep*samplerate))
|
| 54 |
+
|
| 55 |
+
silence_list = list()
|
| 56 |
+
last_s = False
|
| 57 |
+
for idx, s in enumerate(silence_signal):
|
| 58 |
+
if s is True:
|
| 59 |
+
if last_s is True:
|
| 60 |
+
silence = silence_list.pop(-1)
|
| 61 |
+
begin = silence[0]
|
| 62 |
+
count = silence[1]
|
| 63 |
+
silence_list.append([begin, count + 1])
|
| 64 |
+
else:
|
| 65 |
+
begin = frame_step * idx
|
| 66 |
+
silence_list.append([begin, 1])
|
| 67 |
+
|
| 68 |
+
last_s = s
|
| 69 |
+
|
| 70 |
+
result = list()
|
| 71 |
+
for silence in silence_list:
|
| 72 |
+
begin = silence[0]
|
| 73 |
+
count = silence[1]
|
| 74 |
+
end = begin + frame_step * (count - 1) + frame_len
|
| 75 |
+
result.append([begin, end])
|
| 76 |
+
|
| 77 |
+
return result
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
if __name__ == '__main__':
|
| 81 |
+
pass
|
toolbox/python_speech_features/wave_features.py
ADDED
|
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
from smart.python_speech_features.silence_detect import detect_silence
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def calc_wave_features(signal, sample_rate):
|
| 9 |
+
assert signal.dtype == np.int16
|
| 10 |
+
assert sample_rate == 8000
|
| 11 |
+
|
| 12 |
+
signal = np.array(signal, dtype=np.float32)
|
| 13 |
+
# plt.plot(signal)
|
| 14 |
+
# plt.show()
|
| 15 |
+
|
| 16 |
+
l = len(signal)
|
| 17 |
+
|
| 18 |
+
# 均值
|
| 19 |
+
mean = np.mean(signal)
|
| 20 |
+
|
| 21 |
+
# 方差
|
| 22 |
+
var = np.var(signal)
|
| 23 |
+
|
| 24 |
+
# 百分位数
|
| 25 |
+
per = np.percentile(signal, q=[1, 25, 50, 75, 99])
|
| 26 |
+
per1, per25, per50, per75, per99 = per
|
| 27 |
+
|
| 28 |
+
# 静音段占比
|
| 29 |
+
silences = detect_silence(
|
| 30 |
+
signal=signal,
|
| 31 |
+
samplerate=sample_rate,
|
| 32 |
+
min_energy=120,
|
| 33 |
+
min_cross_zero_rate=0.01
|
| 34 |
+
)
|
| 35 |
+
silence_total = 0
|
| 36 |
+
for silence in silences:
|
| 37 |
+
li = silence[1] - silence[0]
|
| 38 |
+
silence_total += li
|
| 39 |
+
silence_rate = silence_total / l
|
| 40 |
+
|
| 41 |
+
# 非静音段方差
|
| 42 |
+
last_e = 0
|
| 43 |
+
non_silences = list()
|
| 44 |
+
for silence in silences:
|
| 45 |
+
b, e = silence
|
| 46 |
+
if b > last_e:
|
| 47 |
+
non_silences.append([last_e, b])
|
| 48 |
+
last_e = e
|
| 49 |
+
else:
|
| 50 |
+
if l > last_e:
|
| 51 |
+
non_silences.append([last_e, l])
|
| 52 |
+
|
| 53 |
+
# 静音段的数量
|
| 54 |
+
silence_count = len(non_silences)
|
| 55 |
+
|
| 56 |
+
if silence_count == 0:
|
| 57 |
+
mean_non_silence = 0
|
| 58 |
+
var_non_silence = 0
|
| 59 |
+
var_var_non_silence = 0
|
| 60 |
+
var_non_silence_rate = 1
|
| 61 |
+
else:
|
| 62 |
+
signal_non_silences = list()
|
| 63 |
+
for non_silence in non_silences:
|
| 64 |
+
b, e = non_silence
|
| 65 |
+
signal_non_silences.append(signal[b: e])
|
| 66 |
+
|
| 67 |
+
# 非静音段, 各段方差的方差.
|
| 68 |
+
v = list()
|
| 69 |
+
for signal_non_silence in signal_non_silences:
|
| 70 |
+
v.append(np.var(signal_non_silence))
|
| 71 |
+
var_var_non_silence = np.var(v)
|
| 72 |
+
|
| 73 |
+
signal_non_silences = np.concatenate(signal_non_silences)
|
| 74 |
+
# 非静音段整体均值
|
| 75 |
+
mean_non_silence = np.mean(signal_non_silences)
|
| 76 |
+
# 非静音段整体方差
|
| 77 |
+
var_non_silence = np.var(signal_non_silences)
|
| 78 |
+
# 非静音段整体方差 除以 整体方差
|
| 79 |
+
var_non_silence_rate = var_non_silence / var
|
| 80 |
+
|
| 81 |
+
# 全段, 分段方差的方差
|
| 82 |
+
sub_signal_list = np.split(signal, 20)
|
| 83 |
+
|
| 84 |
+
whole_var = list()
|
| 85 |
+
for sub_signal in sub_signal_list:
|
| 86 |
+
sub_var = np.var(sub_signal)
|
| 87 |
+
whole_var.append(sub_var)
|
| 88 |
+
var_var_whole = np.var(whole_var)
|
| 89 |
+
|
| 90 |
+
result = {
|
| 91 |
+
'mean': mean,
|
| 92 |
+
'var': var,
|
| 93 |
+
'per1': per1,
|
| 94 |
+
'per25': per25,
|
| 95 |
+
'per50': per50,
|
| 96 |
+
'per75': per75,
|
| 97 |
+
'per99': per99,
|
| 98 |
+
'silence_rate': silence_rate,
|
| 99 |
+
'mean_non_silence': mean_non_silence,
|
| 100 |
+
'silence_count': silence_count,
|
| 101 |
+
'var_var_non_silence': var_var_non_silence,
|
| 102 |
+
'var_non_silence': var_non_silence,
|
| 103 |
+
'var_non_silence_rate': var_non_silence_rate,
|
| 104 |
+
'var_var_whole': var_var_whole,
|
| 105 |
+
|
| 106 |
+
}
|
| 107 |
+
return result
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
if __name__ == '__main__':
|
| 111 |
+
pass
|
toolbox/torch/__init__.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
if __name__ == '__main__':
|
| 6 |
+
pass
|
toolbox/torch/utils/__init__.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
if __name__ == '__main__':
|
| 6 |
+
pass
|
toolbox/torch/utils/data/__init__.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
if __name__ == '__main__':
|
| 6 |
+
pass
|
toolbox/torch/utils/data/vocabulary.py
ADDED
|
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
from collections import defaultdict, OrderedDict
|
| 4 |
+
import os
|
| 5 |
+
from typing import Any, Callable, Dict, Iterable, List, Set
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def namespace_match(pattern: str, namespace: str):
|
| 9 |
+
"""
|
| 10 |
+
Matches a namespace pattern against a namespace string. For example, ``*tags`` matches
|
| 11 |
+
``passage_tags`` and ``question_tags`` and ``tokens`` matches ``tokens`` but not
|
| 12 |
+
``stemmed_tokens``.
|
| 13 |
+
"""
|
| 14 |
+
if pattern[0] == '*' and namespace.endswith(pattern[1:]):
|
| 15 |
+
return True
|
| 16 |
+
elif pattern == namespace:
|
| 17 |
+
return True
|
| 18 |
+
return False
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class _NamespaceDependentDefaultDict(defaultdict):
|
| 22 |
+
def __init__(self,
|
| 23 |
+
non_padded_namespaces: Set[str],
|
| 24 |
+
padded_function: Callable[[], Any],
|
| 25 |
+
non_padded_function: Callable[[], Any]) -> None:
|
| 26 |
+
self._non_padded_namespaces = set(non_padded_namespaces)
|
| 27 |
+
self._padded_function = padded_function
|
| 28 |
+
self._non_padded_function = non_padded_function
|
| 29 |
+
super(_NamespaceDependentDefaultDict, self).__init__()
|
| 30 |
+
|
| 31 |
+
def __missing__(self, key: str):
|
| 32 |
+
if any(namespace_match(pattern, key) for pattern in self._non_padded_namespaces):
|
| 33 |
+
value = self._non_padded_function()
|
| 34 |
+
else:
|
| 35 |
+
value = self._padded_function()
|
| 36 |
+
dict.__setitem__(self, key, value)
|
| 37 |
+
return value
|
| 38 |
+
|
| 39 |
+
def add_non_padded_namespaces(self, non_padded_namespaces: Set[str]):
|
| 40 |
+
# add non_padded_namespaces which weren't already present
|
| 41 |
+
self._non_padded_namespaces.update(non_padded_namespaces)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class _TokenToIndexDefaultDict(_NamespaceDependentDefaultDict):
|
| 45 |
+
def __init__(self, non_padded_namespaces: Set[str], padding_token: str, oov_token: str) -> None:
|
| 46 |
+
super(_TokenToIndexDefaultDict, self).__init__(non_padded_namespaces,
|
| 47 |
+
lambda: {padding_token: 0, oov_token: 1},
|
| 48 |
+
lambda: {})
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class _IndexToTokenDefaultDict(_NamespaceDependentDefaultDict):
|
| 52 |
+
def __init__(self, non_padded_namespaces: Set[str], padding_token: str, oov_token: str) -> None:
|
| 53 |
+
super(_IndexToTokenDefaultDict, self).__init__(non_padded_namespaces,
|
| 54 |
+
lambda: {0: padding_token, 1: oov_token},
|
| 55 |
+
lambda: {})
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
DEFAULT_NON_PADDED_NAMESPACES = ("*tags", "*labels")
|
| 59 |
+
DEFAULT_PADDING_TOKEN = '[PAD]'
|
| 60 |
+
DEFAULT_OOV_TOKEN = '[UNK]'
|
| 61 |
+
NAMESPACE_PADDING_FILE = 'non_padded_namespaces.txt'
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class Vocabulary(object):
|
| 65 |
+
def __init__(self, non_padded_namespaces: Iterable[str] = DEFAULT_NON_PADDED_NAMESPACES):
|
| 66 |
+
self._non_padded_namespaces = set(non_padded_namespaces)
|
| 67 |
+
self._padding_token = DEFAULT_PADDING_TOKEN
|
| 68 |
+
self._oov_token = DEFAULT_OOV_TOKEN
|
| 69 |
+
self._token_to_index = _TokenToIndexDefaultDict(self._non_padded_namespaces,
|
| 70 |
+
self._padding_token,
|
| 71 |
+
self._oov_token)
|
| 72 |
+
self._index_to_token = _IndexToTokenDefaultDict(self._non_padded_namespaces,
|
| 73 |
+
self._padding_token,
|
| 74 |
+
self._oov_token)
|
| 75 |
+
|
| 76 |
+
def add_token_to_namespace(self, token: str, namespace: str = 'tokens') -> int:
|
| 77 |
+
if token not in self._token_to_index[namespace]:
|
| 78 |
+
index = len(self._token_to_index[namespace])
|
| 79 |
+
self._token_to_index[namespace][token] = index
|
| 80 |
+
self._index_to_token[namespace][index] = token
|
| 81 |
+
return index
|
| 82 |
+
else:
|
| 83 |
+
return self._token_to_index[namespace][token]
|
| 84 |
+
|
| 85 |
+
def get_index_to_token_vocabulary(self, namespace: str = 'tokens') -> Dict[int, str]:
|
| 86 |
+
return self._index_to_token[namespace]
|
| 87 |
+
|
| 88 |
+
def get_token_to_index_vocabulary(self, namespace: str = 'tokens') -> Dict[str, int]:
|
| 89 |
+
return self._token_to_index[namespace]
|
| 90 |
+
|
| 91 |
+
def get_token_index(self, token: str, namespace: str = 'tokens') -> int:
|
| 92 |
+
if token in self._token_to_index[namespace]:
|
| 93 |
+
return self._token_to_index[namespace][token]
|
| 94 |
+
else:
|
| 95 |
+
return self._token_to_index[namespace][self._oov_token]
|
| 96 |
+
|
| 97 |
+
def get_token_from_index(self, index: int, namespace: str = 'tokens'):
|
| 98 |
+
return self._index_to_token[namespace][index]
|
| 99 |
+
|
| 100 |
+
def get_vocab_size(self, namespace: str = 'tokens') -> int:
|
| 101 |
+
return len(self._token_to_index[namespace])
|
| 102 |
+
|
| 103 |
+
def save_to_files(self, directory: str):
|
| 104 |
+
os.makedirs(directory, exist_ok=True)
|
| 105 |
+
with open(os.path.join(directory, NAMESPACE_PADDING_FILE), 'w', encoding='utf-8') as f:
|
| 106 |
+
for namespace_str in self._non_padded_namespaces:
|
| 107 |
+
f.write('{}\n'.format(namespace_str))
|
| 108 |
+
|
| 109 |
+
for namespace, token_to_index in self._token_to_index.items():
|
| 110 |
+
filename = os.path.join(directory, '{}.txt'.format(namespace))
|
| 111 |
+
with open(filename, 'w', encoding='utf-8') as f:
|
| 112 |
+
for token, _ in token_to_index.items():
|
| 113 |
+
f.write('{}\n'.format(token))
|
| 114 |
+
|
| 115 |
+
@classmethod
|
| 116 |
+
def from_files(cls, directory: str) -> 'Vocabulary':
|
| 117 |
+
with open(os.path.join(directory, NAMESPACE_PADDING_FILE), 'r', encoding='utf-8') as f:
|
| 118 |
+
non_padded_namespaces = [namespace_str.strip() for namespace_str in f]
|
| 119 |
+
|
| 120 |
+
vocab = cls(non_padded_namespaces=non_padded_namespaces)
|
| 121 |
+
|
| 122 |
+
for namespace_filename in os.listdir(directory):
|
| 123 |
+
if namespace_filename == NAMESPACE_PADDING_FILE:
|
| 124 |
+
continue
|
| 125 |
+
if namespace_filename.startswith("."):
|
| 126 |
+
continue
|
| 127 |
+
namespace = namespace_filename.replace('.txt', '')
|
| 128 |
+
if any(namespace_match(pattern, namespace) for pattern in non_padded_namespaces):
|
| 129 |
+
is_padded = False
|
| 130 |
+
else:
|
| 131 |
+
is_padded = True
|
| 132 |
+
filename = os.path.join(directory, namespace_filename)
|
| 133 |
+
vocab.set_from_file(filename, is_padded, namespace=namespace)
|
| 134 |
+
|
| 135 |
+
return vocab
|
| 136 |
+
|
| 137 |
+
def set_from_file(self,
|
| 138 |
+
filename: str,
|
| 139 |
+
is_padded: bool = True,
|
| 140 |
+
oov_token: str = DEFAULT_OOV_TOKEN,
|
| 141 |
+
namespace: str = "tokens"
|
| 142 |
+
):
|
| 143 |
+
if is_padded:
|
| 144 |
+
self._token_to_index[namespace] = {self._padding_token: 0}
|
| 145 |
+
self._index_to_token[namespace] = {0: self._padding_token}
|
| 146 |
+
else:
|
| 147 |
+
self._token_to_index[namespace] = {}
|
| 148 |
+
self._index_to_token[namespace] = {}
|
| 149 |
+
|
| 150 |
+
with open(filename, 'r', encoding='utf-8') as f:
|
| 151 |
+
index = 1 if is_padded else 0
|
| 152 |
+
for row in f:
|
| 153 |
+
token = str(row).strip()
|
| 154 |
+
if token == oov_token:
|
| 155 |
+
token = self._oov_token
|
| 156 |
+
self._token_to_index[namespace][token] = index
|
| 157 |
+
self._index_to_token[namespace][index] = token
|
| 158 |
+
index += 1
|
| 159 |
+
|
| 160 |
+
def convert_tokens_to_ids(self, tokens: List[str], namespace: str = "tokens"):
|
| 161 |
+
result = list()
|
| 162 |
+
for token in tokens:
|
| 163 |
+
idx = self._token_to_index[namespace].get(token)
|
| 164 |
+
if idx is None:
|
| 165 |
+
idx = self._token_to_index[namespace][self._oov_token]
|
| 166 |
+
result.append(idx)
|
| 167 |
+
return result
|
| 168 |
+
|
| 169 |
+
def convert_ids_to_tokens(self, ids: List[int], namespace: str = "tokens"):
|
| 170 |
+
result = list()
|
| 171 |
+
for idx in ids:
|
| 172 |
+
idx = self._index_to_token[namespace][idx]
|
| 173 |
+
result.append(idx)
|
| 174 |
+
return result
|
| 175 |
+
|
| 176 |
+
def pad_or_truncate_ids_by_max_length(self, ids: List[int], max_length: int, namespace: str = "tokens"):
|
| 177 |
+
pad_idx = self._token_to_index[namespace][self._padding_token]
|
| 178 |
+
|
| 179 |
+
length = len(ids)
|
| 180 |
+
if length > max_length:
|
| 181 |
+
result = ids[:max_length]
|
| 182 |
+
else:
|
| 183 |
+
result = ids + [pad_idx] * (max_length - length)
|
| 184 |
+
return result
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
def demo1():
|
| 188 |
+
import jieba
|
| 189 |
+
|
| 190 |
+
vocabulary = Vocabulary()
|
| 191 |
+
vocabulary.add_token_to_namespace('白天', 'tokens')
|
| 192 |
+
vocabulary.add_token_to_namespace('晚上', 'tokens')
|
| 193 |
+
|
| 194 |
+
text = '不是在白天, 就是在晚上'
|
| 195 |
+
tokens = jieba.lcut(text)
|
| 196 |
+
|
| 197 |
+
print(tokens)
|
| 198 |
+
|
| 199 |
+
ids = vocabulary.convert_tokens_to_ids(tokens)
|
| 200 |
+
print(ids)
|
| 201 |
+
|
| 202 |
+
padded_idx = vocabulary.pad_or_truncate_ids_by_max_length(ids, 10)
|
| 203 |
+
print(padded_idx)
|
| 204 |
+
|
| 205 |
+
tokens = vocabulary.convert_ids_to_tokens(padded_idx)
|
| 206 |
+
print(tokens)
|
| 207 |
+
return
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
if __name__ == '__main__':
|
| 211 |
+
demo1()
|