--- dataset_info: features: - name: New-Identifiers-words-AVG dtype: float64 - name: New-Identifiers-words-MIN dtype: float64 - name: New-Abstractness-words-AVG dtype: float64 - name: New-Abstractness-words-MAX dtype: float64 - name: New-Abstractness-words-MIN dtype: float64 - name: New-Commented-words-AVG dtype: float64 - name: New-Commented-words-MAX dtype: float64 - name: New-Synonym-commented-words-AVG dtype: float64 - name: New-Synonym-commented-words-MAX dtype: float64 - name: New-Comments-readability dtype: float64 - name: New-Number-of-senses-AVG dtype: float64 - name: New-Number-of-senses-MAX dtype: float64 - name: New-Semantic-Text-Coherence-Standard-@-0.1 dtype: float64 - name: New-Semantic-Text-Coherence-Normalized-@-0.3 dtype: float64 - name: New-Text-Coherence-AVG dtype: float64 - name: New-Text-Coherence-MIN dtype: float64 - name: New-Text-Coherence-MAX dtype: float64 - name: BW-Avg-Assignment dtype: float64 - name: BW-Avg-blank-lines dtype: float64 - name: BW-Avg-commas dtype: float64 - name: BW-Avg-comments dtype: float64 - name: BW-Avg-comparisons dtype: float64 - name: BW-Avg-Identifiers-Length dtype: float64 - name: BW-Avg-conditionals dtype: float64 - name: BW-Avg-indentation-length dtype: float64 - name: BW-Avg-keywords dtype: float64 - name: BW-Avg-line-length dtype: float64 - name: BW-Avg-loops dtype: float64 - name: BW-Avg-number-of-identifiers dtype: float64 - name: BW-Avg-numbers dtype: float64 - name: BW-Avg-operators dtype: float64 - name: BW-Avg-parenthesis dtype: float64 - name: BW-Avg-periods dtype: float64 - name: BW-Avg-spaces dtype: float64 - name: BW-Max-Identifiers-Length dtype: float64 - name: BW-Max-indentation dtype: float64 - name: BW-Max-keywords dtype: float64 - name: BW-Max-line-length dtype: float64 - name: BW-Max-number-of-identifiers dtype: float64 - name: BW-Max-numbers dtype: float64 - name: BW-Max-char dtype: float64 - name: BW-Max-words dtype: float64 - name: Posnett-entropy dtype: float64 - name: Posnett-volume dtype: float64 - name: Posnett-lines dtype: float64 - name: Dorn-DFT-Assignments dtype: float64 - name: Dorn-DFT-Commas dtype: float64 - name: Dorn-DFT-Comments dtype: float64 - name: Dorn-DFT-Comparisons dtype: float64 - name: Dorn-DFT-Conditionals dtype: float64 - name: Dorn-DFT-Indentations dtype: float64 - name: Dorn-DFT-Keywords dtype: float64 - name: Dorn-DFT-LineLengths dtype: float64 - name: Dorn-DFT-Loops dtype: float64 - name: Dorn-DFT-Identifiers dtype: float64 - name: Dorn-DFT-Numbers dtype: float64 - name: Dorn-DFT-Operators dtype: float64 - name: Dorn-DFT-Parenthesis dtype: float64 - name: Dorn-DFT-Periods dtype: float64 - name: Dorn-DFT-Spaces dtype: float64 - name: Dorn-Visual-X-Comments dtype: float64 - name: Dorn-Visual-Y-Comments dtype: float64 - name: Dorn-Visual-X-Identifiers dtype: float64 - name: Dorn-Visual-Y-Identifiers dtype: float64 - name: Dorn-Visual-X-Keywords dtype: float64 - name: Dorn-Visual-Y-Keywords dtype: float64 - name: Dorn-Visual-X-Numbers dtype: float64 - name: Dorn-Visual-Y-Numbers dtype: float64 - name: Dorn-Visual-X-Strings dtype: float64 - name: Dorn-Visual-Y-Strings dtype: float64 - name: Dorn-Visual-X-Literals dtype: float64 - name: Dorn-Visual-Y-Literals dtype: float64 - name: Dorn-Visual-X-Operators dtype: float64 - name: Dorn-Visual-Y-Operators dtype: float64 - name: Dorn-Areas-Comments dtype: float64 - name: Dorn-Areas-Identifiers dtype: float64 - name: Dorn-Areas-Keywords dtype: float64 - name: Dorn-Areas-Numbers dtype: float64 - name: Dorn-Areas-Strings dtype: float64 - name: Dorn-Areas-Literals dtype: float64 - name: Dorn-Areas-Operators dtype: float64 - name: Dorn-Areas-Identifiers/Comments dtype: float64 - name: Dorn-Areas-Keywords/Comments dtype: float64 - name: Dorn-Areas-Numbers/Comments dtype: float64 - name: Dorn-Areas-Strings/Comments dtype: float64 - name: Dorn-Areas-Literals/Comments dtype: float64 - name: Dorn-Areas-Operators/Comments dtype: float64 - name: Dorn-Areas-Keywords/Identifiers dtype: float64 - name: Dorn-Areas-Numbers/Identifiers dtype: float64 - name: Dorn-Areas-Strings/Identifiers dtype: float64 - name: Dorn-Areas-Literals/Identifiers dtype: float64 - name: Dorn-Areas-Operators/Identifiers dtype: float64 - name: Dorn-Areas-Numbers/Keywords dtype: float64 - name: Dorn-Areas-Strings/Keywords dtype: float64 - name: Dorn-Areas-Literals/Keywords dtype: float64 - name: Dorn-Areas-Operators/Keywords dtype: float64 - name: Dorn-Areas-Strings/Numbers dtype: float64 - name: Dorn-Areas-Literals/Numbers dtype: float64 - name: Dorn-Areas-Operators/Numbers dtype: float64 - name: Dorn-Areas-Literals/Strings dtype: float64 - name: Dorn-Areas-Operators/Strings dtype: float64 - name: Dorn-Areas-Operators/Literals dtype: float64 - name: Dorn-align-blocks dtype: float64 - name: Dorn-align-extent dtype: float64 - name: Readable dtype: binary - name: code_snippet dtype: string - name: language dtype: string - name: score list: float64 - name: mean_score dtype: float64 splits: - name: full num_bytes: 1279277 num_examples: 360 - name: train num_bytes: 1020838 num_examples: 288 - name: test num_bytes: 258376 num_examples: 72 download_size: 788748 dataset_size: 2558491 configs: - config_name: default data_files: - split: full path: data/full-* - split: train path: data/train-* - split: test path: data/test-* --- # Software Readability Dataset This repository contains the dataset used to build and evaluate the readability model presented in: > **A General Software Readability Model** > *Jonathan Dorn & Westley Weimer, University of Virginia* The dataset consists of human-annotated code snippets sampled from real open-source projects and labeled for perceived readability. It is the largest such dataset collected for software readability research to date. --- ## 📦 Dataset Summary | Property | Value | | --------------------- | ------------------------------------------------------------------ | | Total snippets | **360** | | Programming languages | **Java, Python, CUDA** | | Snippet lengths | ~10, ~30, ~50 lines | | Human annotations | **≈ 5,468 annotators** | | Total ratings | **≈ 76,741 readability votes** | | Rating scale | 1–5 Likert (1 = very unreadable, 5 = very readable) | | Annotator background | students + industry (1,000+ with 5+ years professional experience) | | Source projects | 30 open-source repositories | The dataset was collected through an IRB-approved online survey. Each participant viewed 20 random snippets and rated their readability. Samples were drawn automatically and uniformly from repositories, without manual curation, to avoid bias. --- ## 🧠 Tasks Supported This dataset supports several research directions: ### 🎯 Core Tasks * readability prediction (regression or classification) * feature engineering for code comprehension * cross-language readability comparison ## 🌍 Languages & Projects Languages sampled: * **Java** (large, object-oriented) * **Python** (indentation-sensitive) * **CUDA** (GPU programming) Each sourced from 10 real open-source repos (30 total), including widely-used projects like: * Liferay Portal * SQuirreL SQL Client * Docutils * GPUMLib (see paper for full list) --- ## 📝 Annotation Protocol * ratings used a 1–5 Likert scale: * 1 → very unreadable * 5 → very readable * code was syntax-highlighted in survey * annotators could revise earlier answers * snippets were shown without needing to be syntactically complete * annotators provided experience metadata --- ## 🤝 Citation If you use this dataset, please cite: ``` @inproceedings{dorn2012readability, title={A general software readability model}, author={Dorn, Jonathan and Weimer, Westley}, booktitle={International Conference on Software Engineering}, year={2012} } ``` ## 🙌 Acknowledgements Special thanks to the thousands of anonymous survey respondents, Udacity participants, and reddit programmers who contributed ratings. --- ## Contact If you have questions or would like to extend the dataset, feel free to open an issue or discussion in the repo. ---