--- language: - he viewer: false task_categories: - text-to-speech tags: - tts --- # SASpeech This dataset contains 13+ hours of speech in Hebrew of single speaker in `44.1khz The metadata.csv contains `file_id|text|phonemes` Where the file_id is the name of the file in `./wav` folder The dataset is cleaned from numbers, it contains only Hebrew words. Additional the words have Hebrew diacritics + phonetics marks (non standard) you may remove the non standard if you have use of the text. The last column is phonemes created with [phonikud](https://phonikud.github.io) Created from https://www.openslr.org/134 ## License Non commercial use only. See license in OpenSLR: https://www.openslr.org/134 ## Contents The folder `saspeech_manual/` contains 3 hours (~7GB) with hand annotated transcripts The folder `saspeech_automatic/` contains ~12 hours (~1GB) with automatic transcripts with ivrit.ai Whisper turbo and aggressive cleans (from 30 hours) ## LJSpeech format To convert the data to LJSpeech format, use the following: ```python import pandas as pd df = pd.read_csv('metadata.csv', sep='\t', names=['file_id', 'text', 'phonemes']) df[['file_id', 'phonemes']].to_csv('subset.csv', sep='|', header=False, index=False) ``` ## Resample The dataset sample rate is 44.1khz You can resample to 22.05khz with the following: ```python from pydub import AudioSegment from pathlib import Path from tqdm import tqdm in_dir = Path("wav") out_dir = Path("wav_22050") out_dir.mkdir(exist_ok=True) for f in tqdm(list(in_dir.glob("*.wav"))): audio = AudioSegment.from_wav(f) audio = audio.set_frame_rate(22050).set_channels(1) audio.export(out_dir / f.name, format="wav") ``` ## Setup ```console uv pip install huggingface_hub sudo apt install p7zip-full uv run huggingface-cli download --repo-type dataset thewh1teagle/saspeech ./manual/saspeech_manual_v1.7z --local-dir . 7z x saspeech_v1.7z ``` ## Changelog saspeech manual - v1: prepare files from manual transcript - v2: enhance with Adobe enhance speech v2 and normalize to 22.05khz - Add saspeech_short with auto generated short segments