--- dataset_info: features: - name: channel_id dtype: string - name: video_id dtype: string - name: segment_id dtype: int64 - name: duration dtype: string - name: fps dtype: int64 - name: conversation list: - name: end_time dtype: float64 - name: speaker dtype: int64 - name: start_time dtype: float64 - name: text dtype: string - name: utterance_id dtype: int64 - name: words list: - name: end_time dtype: float64 - name: start_time dtype: float64 - name: word dtype: string - name: facial_expression list: - name: features sequence: float32 - name: frame dtype: int64 - name: utt_id dtype: int64 - name: body_language list: - name: features sequence: float32 - name: frame dtype: int64 - name: utt_id dtype: int64 - name: harmful_utterance_id sequence: int64 - name: speaker_bbox list: - name: bbox sequence: int64 - name: frame_id dtype: int64 splits: - name: train num_bytes: 144100517656 num_examples: 7985 - name: test num_bytes: 31918682474 num_examples: 1993 download_size: 166967732474 dataset_size: 176019200130 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* --- ## Dataset Card for VENUS ### Dataset Summary Data from: Speaking Beyond Language: A Large-Scale Multimodal Dataset for Learning Nonverbal Cues from Video-Grounded Dialogues ``` @article{kim2025speaking, title={Speaking Beyond Language: A Large-Scale Multimodal Dataset for Learning Nonverbal Cues from Video-Grounded Dialogues}, author={Kim, Youngmin and Chung, Jiwan and Kim, Jisoo and Lee, Sunghyun and Lee, Sangkyu and Kim, Junhyeok and Yang, Cheoljong and Yu, Youngjae}, journal={arXiv preprint arXiv:2506.00958}, year={2025} } ``` We provide a multimodal large-scale video dataset based on nonverbal communication. Please cite our work if you find our data helpful. Our dataset collection pipeline and the model implementation that uses it are available at https://github.com/winston1214/nonverbal-conversation ### Dataset Statistic | Split | Channels | Videos | Segments (10 min) | Frames (Nonverbal annotations) | Utterances | Words | |:---------------:|:--------:|:---------:|:-------:|:-------:|:----------:|:----------:| | Train |~ | ~ | ~ | ~ | ~ | | | Test | ~ | ~ | ~ | ~ | ~ | | ### Language English ### Other Version - **VENUS-1K**: This link - **VENUS-5K**: This link - **VENUS-25K**: This link - **VENUS-50K**: This link ***(Comming Soon!)*** - **VENUS-100K** (Full): This link ***(Comming Soon!)*** ### Data Structure Here's an overview of our dataset structure: ``` { 'channel_id': str, # YouTube channel ID 'video_id': str, # Video ID 'segment_id': int, # Segment ID within the video 'duration': str, # Total segment duration (e.g., '00:11:00 ~ 00:21:00') 'fps': int, # Frames per second 'conversation': [ # Conversation information (consisting of multiple utterances) { 'utterance_id': int, # Utterance ID 'speaker': int, # Speaker ID (represented as an integer) 'text': str, # Full utterance text 'start_time': float, # Start time of the utterance (in seconds) 'end_time': float, # End time of the utterance (in seconds) 'words': [ # Word-level information { 'word': str, # The word itself 'start_time': float, # Word-level start time 'end_time': float, # Word-level end time } ] } ], 'facial_expression': [ # Facial expression features { 'utt_id': int, # ID of the utterance this expression is aligned to 'frame': int, # Frame identifier 'features': [float], # Facial feature vector (153-dimensional) } ], 'body_language': [ # Body language features { 'utt_id': int, # ID of the utterance this body language is aligned to 'frame': int, # Frame identifier 'features': [float], # Body movement feature vector (179-dimensional) } ], 'speaker_bbox': [ # speaker bounding boxes { 'frame_id': int, # Frame identifier 'bbox': [int], # [x_top, y_top, x_bottom, y_bottom] } ], 'harmful_utterance_id': [int], # List of utterance IDs identified as harmful } ``` ### Data Instances See above ### Data Fields See above ### Data Splits Data splits can be accessed as: ```python from datasets import load_dataset train_dataset = load_dataset("winston1214/VENUS-10K", split = "train") test_dataset = load_dataset("winston1214/VENUS-10K", split = "test") ``` ### Curation Rationale Full details are in the paper. ### Source Data We retrieve natural videos from YouTube and annotate the FLAME and SMPL-X parameters from EMOCAv2 and OSX. ### Initial Data Collection Full details are in the paper. ### Annotations Full details are in the paper. ### Annotation Process Full details are in the paper. ### Who are the annotators? We used an automatic annotation method, and the primary annotator was Youngmin Kim, the first author of the paper. For any questions regarding the dataset, please contact e-mail ### Considerations for Using the Data This dataset (VENUS) consists of 3D annotations of human subjects and text extracted from conversations in the videos. Please note that the dialogues are sourced from online videos and may include informal or culturally nuanced expressions. Use of this dataset should be done with care, especially in applications involving human-facing interactions. ### Licensing Information The annotations we provide are licensed under CC-BY-4.0.