Ion-LLM-Base / inference.py
diabolic6045's picture
Create inference.py
4b0778b verified
raw
history blame
3.04 kB
import torch
from transformers import PreTrainedModel, PretrainedConfig
from utils import load_config
from tokenization import get_tokenizer
class CustomConfig(PretrainedConfig):
"""Configuration class for the custom language model."""
model_type = "custom_llm"
def __init__(
self,
vocab_size: int = 50000,
n_embd: int = 640,
n_head: int = 10,
n_layer: int = 12,
n_positions: int = 512,
tie_word_embeddings: bool = True,
**kwargs
):
self.vocab_size = vocab_size
self.n_embd = n_embd
self.n_head = n_head
self.n_layer = n_layer
self.n_positions = n_positions
self.tie_word_embeddings = tie_word_embeddings
super().__init__(**kwargs)
def generate_text(
prompt: str,
model_path: str = "outputs/hf_model",
max_length: int = 200,
temperature: float = 0.8,
top_k: int = 50,
top_p: float = 0.9,
repetition_penalty: float = 1.2,
no_repeat_ngram_size: int = 3
):
"""Generate text using the model."""
# Load config and tokenizer
config = load_config()
tokenizer = get_tokenizer(config)
# Load model
from inference import CustomModelForCausalLM # Import here to avoid circular imports
model = CustomModelForCausalLM.from_pretrained(model_path)
# Move model to GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
model.eval()
# Encode prompt
encoded = tokenizer.batch_encode(
[prompt],
return_tensors="pt"
)
input_ids = encoded["input_ids"].to(device)
# Generate
with torch.no_grad():
output_ids = model.generate(
input_ids=input_ids,
max_length=max_length,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size
)
# Decode and return
generated_text = tokenizer.decode(output_ids[0].tolist())
return generated_text
if __name__ == "__main__":
# Example prompts to test
prompts = [
"Once upon a time",
"The meaning of life is",
"In the distant future",
"The best way to learn programming is",
"Today I learned that"
]
print("\nGenerating text from multiple prompts:")
print("=" * 50)
for prompt in prompts:
generated_text = generate_text(
prompt=prompt,
max_length=200,
temperature=0.8, # Adjust for creativity (higher = more creative)
top_k=50, # Limit to top 50 tokens
top_p=0.9, # Nucleus sampling threshold
repetition_penalty=1.2, # Penalize repetition
no_repeat_ngram_size=3 # Prevent 3-gram repetition
)
print(f"\nPrompt: {prompt}")
print(f"Generated: {generated_text}")
print("-" * 50)