Update README.md (#3)
Browse files- Update README.md (bf2b73f21021e34a342e78c2250e5f462369af48)
Co-authored-by: 李梓鸣 <[email protected]>
README.md
CHANGED
|
@@ -1,3 +1,343 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
datasets:
|
| 4 |
+
- Somayeh-h/Nordland
|
| 5 |
+
- OPR-Project/OxfordRobotCar_OpenPlaceRecognition
|
| 6 |
+
language:
|
| 7 |
+
- en
|
| 8 |
+
metrics:
|
| 9 |
+
- recall_at_1
|
| 10 |
+
- recall_at_5
|
| 11 |
+
pipeline_tag: image-feature-extraction
|
| 12 |
+
tags:
|
| 13 |
+
- place-recognition
|
| 14 |
+
- visual-place-recognition
|
| 15 |
+
- computer-vision
|
| 16 |
+
- transformer
|
| 17 |
+
- 3d-vision
|
| 18 |
+
library:
|
| 19 |
+
- pytorch
|
| 20 |
+
- lightning
|
| 21 |
+
---
|
| 22 |
+
|
| 23 |
+
# Model Card for UniPR-3D
|
| 24 |
+
|
| 25 |
+
UniPR-3D is a universal visual place recognition (VPR) framework that supports both **single-frame** and **sequence-to-sequence** matching. It leverages **3D visual geometry grounded tokens** within a transformer architecture to produce robust, viewpoint-invariant descriptors for long-term place recognition under challenging environmental variations (e.g., seasonal, weather, lighting, and viewpoint changes).
|
| 26 |
+
|
| 27 |
+
## Model Details
|
| 28 |
+
|
| 29 |
+
### Model Description
|
| 30 |
+
|
| 31 |
+
- **Developed by:** Tianchen Deng, Xun Chen, Ziming Li, Hongming Shen, Danwei Wang, Javier Civera, Hesheng Wang
|
| 32 |
+
- **Shared by:** Tianchen Deng
|
| 33 |
+
- **Model type:** Vision Transformer with 3D-aware token aggregation for visual place recognition
|
| 34 |
+
- **Language(s):** English (dataset metadata); model is vision-only
|
| 35 |
+
- **License:** MIT
|
| 36 |
+
|
| 37 |
+
### Model Sources
|
| 38 |
+
|
| 39 |
+
- **Repository:** [repo](https://github.com/dtc111111/UniPR-3D)
|
| 40 |
+
- **Paper:** [UniPR-3D: Towards Universal Visual Place Recognition with 3D Visual Geometry Grounded Transformer](https://arxiv.org/abs/2512.21078) (arXiv:2512.21078, 2025)
|
| 41 |
+
- **Demo:** No demo available
|
| 42 |
+
|
| 43 |
+
## Uses
|
| 44 |
+
|
| 45 |
+
### Direct Use
|
| 46 |
+
|
| 47 |
+
This model can be used **out-of-the-box** to extract compact, discriminative global descriptors from:
|
| 48 |
+
- Single RGB images (for frame-to-frame VPR)
|
| 49 |
+
- Sequences of images (for sequence-to-sequence VPR)
|
| 50 |
+
|
| 51 |
+
These descriptors are suitable for large-scale localization, robot navigation, and SLAM systems requiring robustness to appearance changes.
|
| 52 |
+
|
| 53 |
+
### Downstream Use
|
| 54 |
+
|
| 55 |
+
- Integration into **visual SLAM** or **long-term autonomous navigation** pipelines
|
| 56 |
+
- Replacement for traditional VPR backbones (e.g., NetVLAD, MixVPR, EigenPlaces)
|
| 57 |
+
- Fine-tuning on domain-specific datasets (e.g., underground, aerial, or underwater environments)
|
| 58 |
+
|
| 59 |
+
### Out-of-Scope Use
|
| 60 |
+
|
| 61 |
+
- **Not intended** for real-time inference on low-power embedded devices without optimization (latency ~8.23 ms on RTX 4090)
|
| 62 |
+
- **Not designed** for non-visual modalities (e.g., LiDAR, audio, text)
|
| 63 |
+
- Performance may degrade in **extreme occlusion**, **textureless scenes**, or **indoor environments not seen during training**
|
| 64 |
+
|
| 65 |
+
## Bias, Risks, and Limitations
|
| 66 |
+
|
| 67 |
+
- Trained primarily on **urban street-level imagery** (GSV-Cities, Mapillary MSLS), so generalization to rural, indoor, or non-Western cities may be limited
|
| 68 |
+
- Inherits biases from training data (e.g., geographic overrepresentation of North America/Europe)
|
| 69 |
+
- No explicit fairness or demographic considerations (as it is a geometric vision model)
|
| 70 |
+
|
| 71 |
+
### Recommendations
|
| 72 |
+
|
| 73 |
+
- Evaluate on target domain before deployment
|
| 74 |
+
- Monitor recall performance on your specific dataset using standard VPR metrics (R@1, R@5)
|
| 75 |
+
|
| 76 |
+
## How to Get Started with the Model
|
| 77 |
+
|
| 78 |
+
The exact inference script is provided in the GitHub repo (`eval_lora.py`, `main_ft.py`). Pretrained weights are available on Hugging Face or via the repo release.
|
| 79 |
+
|
| 80 |
+
## Training Details
|
| 81 |
+
|
| 82 |
+
### Training Data
|
| 83 |
+
|
| 84 |
+
- **Single-frame model**: Trained on [GSV-Cities](https://github.com/amaralibey/gsv-cities)
|
| 85 |
+
- **Multi-frame model**: Trained on [Mapillary Street-Level Sequences (MSLS)](https://www.mapillary.com/dataset/places)
|
| 86 |
+
- Both datasets contain millions of geo-tagged urban street-view images across diverse cities, seasons, and conditions.
|
| 87 |
+
|
| 88 |
+
### Training Procedure
|
| 89 |
+
|
| 90 |
+
#### Preprocessing
|
| 91 |
+
- Images resized to 518×518
|
| 92 |
+
- Sequences sampled with spatial proximity for multi-frame training
|
| 93 |
+
|
| 94 |
+
#### Training Hyperparameters
|
| 95 |
+
- **Backbone**: DINOv2 (ViT-large)
|
| 96 |
+
- **Optimization**: AdamW, learning rate scheduling
|
| 97 |
+
- **Loss**: Multi-similarity loss with pair weighting
|
| 98 |
+
- **Training regime**: Mixed-precision (fp16) on NVIDIA GPUs
|
| 99 |
+
|
| 100 |
+
#### Speeds, Sizes, Times
|
| 101 |
+
- **Inference latency**: Single frame - 8.23 ms per image (RTX 4090)
|
| 102 |
+
- **Descriptor dimension**: 17152 (for UniPR-3D)
|
| 103 |
+
- Training time: Not disclosed (multi-day runs on multi-GPU setup)
|
| 104 |
+
|
| 105 |
+
## Evaluation
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
- Single frame evaluation:
|
| 111 |
+
- <a href="https://codalab.lisn.upsaclay.fr/competitions/865">MSLS Challenge</a>, where you upload your predictions to their server for evaluation.
|
| 112 |
+
- Single-frame <a href="https://www.mapillary.com/dataset/places">MSLS</a> Validation set
|
| 113 |
+
- Nordland dataset, <a href="https://data.ciirc.cvut.cz/public/projects/2015netVLAD/Pittsburgh250k/">Pittsburgh</a> dataset and SPED dataset, you may download them from <a href="https://surfdrive.surf.nl/index.php/s/sbZRXzYe3l0v67W">here</a>, aligned with DINOv2 SALAD.
|
| 114 |
+
- Multi-frame evaluation:
|
| 115 |
+
- Multi-frame <a href="https://www.mapillary.com/dataset/places">MSLS</a> Validation set
|
| 116 |
+
- Two sequence from <a href="https://robotcar-dataset.robots.ox.ac.uk/datasets/">Oxford RobotCar</a>, you may download them <a href="https://entuedu-my.sharepoint.com/personal/heshan001_e_ntu_edu_sg/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fheshan001%5Fe%5Fntu%5Fedu%5Fsg%2FDocuments%2Fcasevpr%5Fdatasets%2Foxford%5Frobotcar&viewid=e5dcb0e9%2Db23f%2D44cf%2Da843%2D7837d3064c2e&ga=1">here</a>.
|
| 117 |
+
- 2014-12-16-18-44-24 (winter night) query to 2014-11-18-13-20-12 (fall day) db
|
| 118 |
+
- 2014-11-14-16-34-33 (fall night) query to 2015-11-13-10-28-08 (fall day) db
|
| 119 |
+
- <a href="https://github.com/gmberton/VPR-datasets-downloader/blob/main/download_nordland.py">Nordland (filtered) dataset</a>
|
| 120 |
+
|
| 121 |
+
#### Factors
|
| 122 |
+
- Seasonal variation (summer ↔ winter)
|
| 123 |
+
- Day vs. night
|
| 124 |
+
- Weather (sunny, rainy, snowy)
|
| 125 |
+
- Viewpoint change (lateral shift, orientation)
|
| 126 |
+
|
| 127 |
+
#### Metrics
|
| 128 |
+
- **Recall@K (R@1, R@5, R@10)**: Standard metric for VPR – fraction of queries with correct match in top-K retrieved database images
|
| 129 |
+
|
| 130 |
+
### Results
|
| 131 |
+
|
| 132 |
+
#### Summary
|
| 133 |
+
|
| 134 |
+
Our method achieves significantly higher recall than competing approaches, achieving new state-of-the-art performance on both single and multiple frame benchmarks.
|
| 135 |
+
##### Single-frame matching results
|
| 136 |
+
|
| 137 |
+
<style>
|
| 138 |
+
table, th, td {
|
| 139 |
+
border-collapse: collapse;
|
| 140 |
+
text-align: center;
|
| 141 |
+
}
|
| 142 |
+
</style>
|
| 143 |
+
<table>
|
| 144 |
+
<tr>
|
| 145 |
+
<th colspan="2"></th>
|
| 146 |
+
<th colspan="2">MSLS Challenge</th>
|
| 147 |
+
<th colspan="2">MSLS Val</th>
|
| 148 |
+
<th colspan="2">NordLand</th>
|
| 149 |
+
<th colspan="2">Pitts250k-test</th>
|
| 150 |
+
<th colspan="2">SPED</th>
|
| 151 |
+
</tr>
|
| 152 |
+
<tr>
|
| 153 |
+
<th>Method</th>
|
| 154 |
+
<th>Latency (ms)</th>
|
| 155 |
+
<th>R@1</th>
|
| 156 |
+
<th>R@5</th>
|
| 157 |
+
<th>R@1</th>
|
| 158 |
+
<th>R@5</th>
|
| 159 |
+
<th>R@1</th>
|
| 160 |
+
<th>R@5</th>
|
| 161 |
+
<th>R@1</th>
|
| 162 |
+
<th>R@5</th>
|
| 163 |
+
<th>R@1</th>
|
| 164 |
+
<th>R@5</th>
|
| 165 |
+
</tr>
|
| 166 |
+
<tr>
|
| 167 |
+
<td>MixVPR</td>
|
| 168 |
+
<td>1.37</td>
|
| 169 |
+
<td>64.0</td>
|
| 170 |
+
<td>75.9</td>
|
| 171 |
+
<td>88.0</td>
|
| 172 |
+
<td>92.7</td>
|
| 173 |
+
<td>58.4</td>
|
| 174 |
+
<td>74.6</td>
|
| 175 |
+
<td>94.6</td>
|
| 176 |
+
<td><u>98.3</u></td>
|
| 177 |
+
<td>85.2</td>
|
| 178 |
+
<td>92.1</td>
|
| 179 |
+
</tr>
|
| 180 |
+
<tr>
|
| 181 |
+
<td>EigenPlaces</td>
|
| 182 |
+
<td>2.65</td>
|
| 183 |
+
<td>67.4</td>
|
| 184 |
+
<td>77.1</td>
|
| 185 |
+
<td>89.3</td>
|
| 186 |
+
<td>93.7</td>
|
| 187 |
+
<td>54.4</td>
|
| 188 |
+
<td>68.8</td>
|
| 189 |
+
<td>94.1</td>
|
| 190 |
+
<td>98.0</td>
|
| 191 |
+
<td>69.9</td>
|
| 192 |
+
<td>82.9</td>
|
| 193 |
+
</tr>
|
| 194 |
+
<tr>
|
| 195 |
+
<td>DINOv2 SALAD</td>
|
| 196 |
+
<td>2.41</td>
|
| 197 |
+
<td><u>73.0</u></td>
|
| 198 |
+
<td><u>86.8</u></td>
|
| 199 |
+
<td><u>91.2</u></td>
|
| 200 |
+
<td><u>95.3</u></td>
|
| 201 |
+
<td><u>69.6</u></td>
|
| 202 |
+
<td><u>84.4</u></td>
|
| 203 |
+
<td><u>94.5</u></td>
|
| 204 |
+
<td><b>98.7</b></td>
|
| 205 |
+
<td><u>89.5</u></td>
|
| 206 |
+
<td><u>94.4</u></td>
|
| 207 |
+
</tr>
|
| 208 |
+
<tr>
|
| 209 |
+
<td>UniPR-3D (ours)</td>
|
| 210 |
+
<td>8.23</td>
|
| 211 |
+
<td><b>74.3</b></td>
|
| 212 |
+
<td><b>87.5</b></td>
|
| 213 |
+
<td><b>91.4</b></td>
|
| 214 |
+
<td><b>96.0</b></td>
|
| 215 |
+
<td><b>76.2</b></td>
|
| 216 |
+
<td><b>87.3</b></td>
|
| 217 |
+
<td><b>94.9</b></td>
|
| 218 |
+
<td>98.1</td>
|
| 219 |
+
<td><b>89.6</b></td>
|
| 220 |
+
<td><b>94.5</b></td>
|
| 221 |
+
</tr>
|
| 222 |
+
</table>
|
| 223 |
+
|
| 224 |
+
##### Sequence matching results
|
| 225 |
+
|
| 226 |
+
<table>
|
| 227 |
+
<tr>
|
| 228 |
+
<th></th>
|
| 229 |
+
<th colspan="3">MSLS Val</th>
|
| 230 |
+
<th colspan="3">NordLand</th>
|
| 231 |
+
<th colspan="3">Oxford1</th>
|
| 232 |
+
<th colspan="3">Oxford2</th>
|
| 233 |
+
</tr>
|
| 234 |
+
<tr>
|
| 235 |
+
<th>Method</th>
|
| 236 |
+
<th>R@1</th>
|
| 237 |
+
<th>R@5</th>
|
| 238 |
+
<th>R@10</th>
|
| 239 |
+
<th>R@1</th>
|
| 240 |
+
<th>R@5</th>
|
| 241 |
+
<th>R@10</th>
|
| 242 |
+
<th>R@1</th>
|
| 243 |
+
<th>R@5</th>
|
| 244 |
+
<th>R@10</th>
|
| 245 |
+
<th>R@1</th>
|
| 246 |
+
<th>R@5</th>
|
| 247 |
+
<th>R@10</th>
|
| 248 |
+
</tr>
|
| 249 |
+
<tr>
|
| 250 |
+
<td>SeqMatchNet</td>
|
| 251 |
+
<td>65.5</td>
|
| 252 |
+
<td>77.5</td>
|
| 253 |
+
<td>80.3</td>
|
| 254 |
+
<td>56.1</td>
|
| 255 |
+
<td>71.4</td>
|
| 256 |
+
<td>76.9</td>
|
| 257 |
+
<td>36.8</td>
|
| 258 |
+
<td>43.3</td>
|
| 259 |
+
<td>48.3</td>
|
| 260 |
+
<td>27.9</td>
|
| 261 |
+
<td>38.5</td>
|
| 262 |
+
<td>45.3</td>
|
| 263 |
+
</tr>
|
| 264 |
+
<tr>
|
| 265 |
+
<td>SeqVLAD</td>
|
| 266 |
+
<td>89.9</td>
|
| 267 |
+
<td>92.4</td>
|
| 268 |
+
<td>94.1</td>
|
| 269 |
+
<td>65.5</td>
|
| 270 |
+
<td>75.2</td>
|
| 271 |
+
<td>80.0</td>
|
| 272 |
+
<td>58.4</td>
|
| 273 |
+
<td>72.8</td>
|
| 274 |
+
<td>80.8</td>
|
| 275 |
+
<td>19.1</td>
|
| 276 |
+
<td>29.9</td>
|
| 277 |
+
<td>37.3</td>
|
| 278 |
+
</tr>
|
| 279 |
+
<tr>
|
| 280 |
+
<td>CaseVPR</td>
|
| 281 |
+
<td><u>91.2</u></td>
|
| 282 |
+
<td><u>94.1</u></td>
|
| 283 |
+
<td><u>95.0</u></td>
|
| 284 |
+
<td><u>84.1</u></td>
|
| 285 |
+
<td><u>89.9</u></td>
|
| 286 |
+
<td><u>92.2</u></td>
|
| 287 |
+
<td><u>90.5</u></td>
|
| 288 |
+
<td><u>95.2</u></td>
|
| 289 |
+
<td><u>96.5</u></td>
|
| 290 |
+
<td><u>72.8</u></td>
|
| 291 |
+
<td><u>85.8</u></td>
|
| 292 |
+
<td><u>89.9</u></td>
|
| 293 |
+
</tr>
|
| 294 |
+
<tr>
|
| 295 |
+
<td>UniPR-3D (ours)</td>
|
| 296 |
+
<td><b>93.7</b></td>
|
| 297 |
+
<td><b>95.7</b></td>
|
| 298 |
+
<td><b>96.9</b></td>
|
| 299 |
+
<td><b>86.8</b></td>
|
| 300 |
+
<td><b>91.7</b></td>
|
| 301 |
+
<td><b>93.8</b></td>
|
| 302 |
+
<td><b>95.4</b></td>
|
| 303 |
+
<td><b>98.1</b></td>
|
| 304 |
+
<td><b>98.7</b></td>
|
| 305 |
+
<td><b>80.6</b></td>
|
| 306 |
+
<td><b>90.3</b></td>
|
| 307 |
+
<td><b>93.9</b></td>
|
| 308 |
+
</tr>
|
| 309 |
+
</table>
|
| 310 |
+
|
| 311 |
+
|
| 312 |
+
## Compute Infrastructure
|
| 313 |
+
|
| 314 |
+
### Hardware
|
| 315 |
+
- NVIDIA RTX 4090
|
| 316 |
+
|
| 317 |
+
### Software
|
| 318 |
+
- Python 3.11.10 + CUDA 12.1
|
| 319 |
+
- Based on [SALAD](https://github.com/serizba/salad) and [VGGT](https://github.com/facebookresearch/vggt)
|
| 320 |
+
|
| 321 |
+
## Citation
|
| 322 |
+
|
| 323 |
+
**BibTeX:**
|
| 324 |
+
```bibtex
|
| 325 |
+
@article{deng2025unipr3d,
|
| 326 |
+
title={UniPR-3D: Towards Universal Visual Place Recognition with 3D Visual Geometry Grounded Transformer},
|
| 327 |
+
author={Deng, Tianchen and Chen, Xun and Li, Ziming and Shen, Hongming and Wang, Danwei and Civera, Javier and Wang, Hesheng},
|
| 328 |
+
journal={arXiv preprint arXiv:2512.21078},
|
| 329 |
+
year={2025}
|
| 330 |
+
}
|
| 331 |
+
```
|
| 332 |
+
|
| 333 |
+
**APA:**
|
| 334 |
+
Deng, T., Chen, X., Li, Z., Shen, H., Wang, D., Civera, J., & Wang, H. (2025). UniPR-3D: Towards Universal Visual Place Recognition with 3D Visual Geometry Grounded Transformer. *arXiv preprint arXiv:2512.21078*.
|
| 335 |
+
|
| 336 |
+
## Contact
|
| 337 |
+
|
| 338 |
+
For questions, pretrained model access, or qualitative comparisons, please contact:
|
| 339 |
+
📧 **Tianchen Deng** – [[email protected]](mailto:[email protected])
|
| 340 |
+
|
| 341 |
+
---
|
| 342 |
+
|
| 343 |
+
> 📌 **Acknowledgement**: This implementation builds upon [SALAD](https://github.com/serizba/salad) and [VGGT](https://github.com/facebookresearch/vggt). Please cite those works if you use their components.
|