File size: 14,736 Bytes
415d30c
f6e007b
415d30c
 
 
 
 
 
 
 
 
 
fd1eaf9
415d30c
 
46809e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6e007b
 
 
 
 
 
 
46809e5
 
f6e007b
 
 
46809e5
 
 
 
415d30c
 
 
 
 
 
 
 
 
 
 
 
 
26741b2
 
 
 
 
 
 
 
415d30c
 
 
 
 
 
 
f6e007b
415d30c
46809e5
415d30c
46809e5
 
415d30c
 
 
 
 
 
 
 
 
 
 
26741b2
 
 
415d30c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6e007b
 
415d30c
f6e007b
415d30c
f6e007b
415d30c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26741b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
415d30c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6e007b
415d30c
 
 
 
26741b2
 
 
 
 
f6e007b
 
415d30c
 
 
 
 
26741b2
415d30c
 
 
fd1eaf9
 
 
 
 
415d30c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd1eaf9
 
 
 
415d30c
fd1eaf9
 
 
415d30c
 
 
 
 
 
fd1eaf9
 
 
 
 
 
 
 
 
 
415d30c
 
fd1eaf9
 
 
415d30c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import os
import re
import json
from argparse import ArgumentParser
from typing import List

import torch
import torch.distributed as dist
from transformers import AutoTokenizer
from safetensors.torch import load_file

from model import Transformer, ModelArgs
from encoding_dsv32 import encode_messages, eos_token, thinking_end_token


def hf_to_deepseek_key(hf_key: str) -> str:
    """Convert HuggingFace checkpoint key to DeepSeek model key."""
    key = hf_key

    # Strip "model." prefix
    if key.startswith("model."):
        key = key[6:]

    # Embedding
    key = key.replace("embed_tokens.", "embed.")

    # Final norm and head
    key = key.replace("lm_head.", "head.")

    # Attention projections
    key = key.replace(".self_attn.", ".attn.")
    key = key.replace(".q_a_proj.", ".wq_a.")
    key = key.replace(".q_b_proj.", ".wq_b.")
    key = key.replace(".q_a_layernorm.", ".q_norm.")
    key = key.replace(".kv_a_proj_with_mqa.", ".wkv_a.")
    key = key.replace(".kv_b_proj.", ".wkv_b.")
    key = key.replace(".kv_a_layernorm.", ".kv_norm.")
    key = key.replace(".o_proj.", ".wo.")

    # Indexer attention
    key = key.replace(".indexer.wk.", ".indexer.wk.")
    key = key.replace(".indexer.wq_b.", ".indexer.wq_b.")
    key = key.replace(".indexer.k_norm.", ".indexer.k_norm.")
    key = key.replace(".indexer.weights_proj.", ".indexer.weights_proj.")

    # Layer norms
    key = key.replace(".input_layernorm.", ".attn_norm.")
    key = key.replace(".post_attention_layernorm.", ".ffn_norm.")

    # MLP (dense layers)
    key = key.replace(".mlp.gate_proj.", ".ffn.w1.")
    key = key.replace(".mlp.up_proj.", ".ffn.w3.")
    key = key.replace(".mlp.down_proj.", ".ffn.w2.")

    # MoE (uses "ffn" module name in model, not "moe")
    key = key.replace(".mlp.shared_experts.gate_proj.", ".ffn.shared_experts.w1.")
    key = key.replace(".mlp.shared_experts.up_proj.", ".ffn.shared_experts.w3.")
    key = key.replace(".mlp.shared_experts.down_proj.", ".ffn.shared_experts.w2.")
    key = key.replace(".mlp.experts.", ".ffn.experts.")
    key = key.replace(".mlp.gate.weight", ".ffn.gate.weight")
    key = key.replace(".mlp.gate.e_score_correction_bias", ".ffn.gate.bias")

    # Expert weights
    key = re.sub(r"\.ffn\.experts\.(\d+)\.gate_proj\.", r".ffn.experts.\1.w1.", key)
    key = re.sub(r"\.ffn\.experts\.(\d+)\.up_proj\.", r".ffn.experts.\1.w3.", key)
    key = re.sub(r"\.ffn\.experts\.(\d+)\.down_proj\.", r".ffn.experts.\1.w2.", key)

    return key


def load_sharded_model(model, ckpt_path):
    """Load model weights from sharded safetensors files using index."""
    index_path = os.path.join(ckpt_path, "model.safetensors.index.json")

    if os.path.exists(index_path):
        # Load from sharded format using index
        with open(index_path) as f:
            index = json.load(f)

        weight_map = index["weight_map"]
        # Get unique shard files
        shard_files = sorted(set(weight_map.values()))

        # Check memory before loading
        try:
            import psutil
            mem = psutil.virtual_memory()
            print(f"Memory: {mem.available / 1e9:.1f}GB available / {mem.total / 1e9:.1f}GB total ({mem.percent:.1f}% used)")
        except ImportError:
            pass  # psutil not required

        print(f"Loading {len(shard_files)} shards (streaming to GPU)...")
        model_state = model.state_dict()
        loaded_keys = set()

        for i, shard_file in enumerate(shard_files):
            shard_path = os.path.join(ckpt_path, shard_file)
            print(f"  [{i+1}/{len(shard_files)}] {shard_file}", end="", flush=True)
            shard_dict = load_file(shard_path, device="cpu")

            # Copy matching tensors to model (with key mapping)
            matched = 0
            for hf_key, tensor in shard_dict.items():
                key = hf_to_deepseek_key(hf_key)
                if key in model_state:
                    model_state[key].copy_(tensor)
                    loaded_keys.add(key)
                    matched += 1
            print(f" ({matched} tensors)")

        missing = set(model_state.keys()) - loaded_keys
        if missing:
            print(f"Warning: {len(missing)} missing keys in checkpoint")
            for k in list(missing)[:5]:
                print(f"  - {k}")

        # Reattach FP8 scales after loading
        link_fp8_scales(model)
    else:
        # Fall back to single file
        single_file = os.path.join(ckpt_path, "model0-mp1.safetensors")
        print(f"Loading single file: {single_file}")
        state_dict = load_file(single_file, device="cuda")
        model.load_state_dict(state_dict, strict=False)


def sample(logits, temperature: float = 1.0):
    """
    Samples a token from the logits using temperature scaling.

    Args:
        logits (torch.Tensor): The logits tensor for token predictions.
        temperature (float, optional): Temperature for scaling logits. Defaults to 1.0.

    Returns:
        torch.Tensor: The sampled token.
    """
    logits = logits / max(temperature, 1e-5)
    probs = torch.softmax(logits, dim=-1, dtype=torch.float32)
    return probs.div_(torch.empty_like(probs).exponential_(1)).argmax(dim=-1)


@torch.inference_mode()
def generate(
    model: Transformer,
    prompt_tokens: List[List[int]],
    max_new_tokens: int,
    eos_id: int,
    temperature: float = 1.0
) -> List[List[int]]:
    """
    Generates new tokens based on the given prompt tokens using the specified model.

    Args:
        model (Transformer): The transformer model used for token generation.
        prompt_tokens (List[List[int]]): A list of lists containing the prompt tokens for each sequence.
        max_new_tokens (int): The maximum number of new tokens to generate.
        eos_id (int): The end-of-sequence token ID.
        temperature (float, optional): The temperature value for sampling. Defaults to 1.0.

    Returns:
        List[List[int]]: A list of lists containing the generated tokens for each sequence.
    """
    prompt_lens = [len(t) for t in prompt_tokens]
    assert max(prompt_lens) <= model.max_seq_len, f"Prompt length exceeds model maximum sequence length (max_seq_len={model.max_seq_len})"
    total_len = min(model.max_seq_len, max_new_tokens + max(prompt_lens))
    device = next(model.parameters()).device
    tokens = torch.full((len(prompt_tokens), total_len), -1, dtype=torch.long, device=device)
    for i, t in enumerate(prompt_tokens):
        tokens[i, :len(t)] = torch.tensor(t, dtype=torch.long, device=device)
    prev_pos = 0
    finished = torch.tensor([False] * len(prompt_tokens), device=device)
    prompt_mask = tokens != -1
    for cur_pos in range(min(prompt_lens), total_len):
        logits = model.forward(tokens[:, prev_pos:cur_pos], prev_pos)
        if temperature > 0:
            next_token = sample(logits, temperature)
        else:
            next_token = logits.argmax(dim=-1)
        next_token = torch.where(prompt_mask[:, cur_pos], tokens[:, cur_pos], next_token)
        tokens[:, cur_pos] = next_token
        finished |= torch.logical_and(~prompt_mask[:, cur_pos], next_token == eos_id)
        prev_pos = cur_pos
        if finished.all():
            break
    completion_tokens = []
    for i, toks in enumerate(tokens.tolist()):
        toks = toks[prompt_lens[i]:prompt_lens[i]+max_new_tokens]
        if eos_id in toks:
            toks = toks[:toks.index(eos_id)]
        completion_tokens.append(toks)
    return completion_tokens


def clear_system_cache():
    """
    Clear system cache to free memory (optional optimization).

    This can help with large models by freeing cached memory.
    Silently attempts cache clearing; failures are ignored.
    """
    try:
        import subprocess
        subprocess.run(
            ['sudo', 'sh', '-c', 'echo 3 > /proc/sys/vm/drop_caches'],
            check=False, capture_output=True, text=True, timeout=5
        )
    except Exception:
        # Silently ignore if cache clearing fails
        pass


def link_fp8_scales(model):
    """
    Link FP8 scales to weight tensors after loading.

    After load_state_dict(), FP8 weights lose their .scale attribute.
    This function reattaches them.
    """
    from model import Linear, ColumnParallelLinear, RowParallelLinear

    linked = 0
    for name, module in model.named_modules():
        if isinstance(module, (Linear, ColumnParallelLinear, RowParallelLinear)):
            # Check if this is an FP8 layer
            if hasattr(module, 'weight') and hasattr(module, 'scale'):
                if module.weight is not None and module.scale is not None:
                    if module.weight.dtype == torch.float8_e4m3fn:
                        # Reattach scale as attribute
                        module.weight.scale = module.scale
                        linked += 1

    if linked > 0:
        print(f"✓ Linked scales for {linked} FP8 layers")


def main(
    ckpt_path: str,
    config: str,
    input_file: str = "",
    interactive: bool = True,
    max_new_tokens: int = 100,
    temperature: float = 1.0,
) -> None:
    """
    Main function to load the model and perform interactive or batch text generation.

    Args:
        ckpt_path (str): Path to the model checkpoint directory.
        config (str): Path to the model configuration file.
        input_file (str, optional): Path to a file containing input prompts. Defaults to "".
        interactive (bool, optional): Whether to run in interactive mode. Defaults to True.
        max_new_tokens (int, optional): Maximum number of new tokens to generate. Defaults to 100.
        temperature (float, optional): Temperature for sampling. Defaults to 1.0.
    """
    world_size = int(os.getenv("WORLD_SIZE", "1"))
    rank = int(os.getenv("RANK", "0"))
    local_rank = int(os.getenv("LOCAL_RANK", "0"))
    if world_size > 1:
        dist.init_process_group("nccl")
    global print
    if rank != 0:
        print = lambda *_, **__: None
    torch.set_default_dtype(torch.bfloat16)
    torch.set_num_threads(96)  # Use all CPU threads
    torch.manual_seed(33377335)
    with open(config) as f:
        args = ModelArgs(**json.load(f))
    print(args)

    # Optionally clear cache to free memory before loading large model
    if rank == 0:
        clear_system_cache()

    print("Creating model on CPU (this may take a while)...")
    with torch.device("cpu"):
        model = Transformer(args)
    tokenizer = AutoTokenizer.from_pretrained(ckpt_path)
    print("Loading model weights...")
    load_sharded_model(model, ckpt_path)
    model.eval()
    print("DeepSeek V3.2 NVFP4 - Ready")

    if interactive:
        messages = []
        # Get eos token id
        eos_id = tokenizer.convert_tokens_to_ids(eos_token)
        thinking_end_id = tokenizer.convert_tokens_to_ids(thinking_end_token)
        print(f"EOS token: {eos_token!r} -> {eos_id}")

        while True:
            if world_size == 1:
                prompt = input(">>> ")
            elif rank == 0:
                prompt = input(">>> ")
                objects = [prompt]
                dist.broadcast_object_list(objects, 0)
            else:
                objects = [None]
                dist.broadcast_object_list(objects, 0)
                prompt = objects[0]
            if prompt == "/exit":
                break
            elif prompt == "/clear":
                messages.clear()
                continue
            messages.append({"role": "user", "content": prompt})
            # Use DeepSeek V3.2 custom encoding (thinking_mode="chat" for no reasoning)
            prompt_str = encode_messages(messages, thinking_mode="chat")
            prompt_tokens = tokenizer.encode(prompt_str, add_special_tokens=False)
            completion_tokens = generate(model, [prompt_tokens], max_new_tokens, eos_id, temperature)
            completion = tokenizer.decode(completion_tokens[0], skip_special_tokens=True)
            # Strip thinking end token if present
            if completion.startswith(thinking_end_token):
                completion = completion[len(thinking_end_token):]
            print(completion)
            messages.append({"role": "assistant", "content": completion})
    else:
        with open(input_file) as f:
            prompts = f.read().split("\n\n")
        assert len(prompts) <= args.max_batch_size, f"Number of prompts exceeds maximum batch size ({args.max_batch_size})"
        eos_id = tokenizer.convert_tokens_to_ids(eos_token)
        # Use DeepSeek V3.2 custom encoding
        prompt_tokens = [
            tokenizer.encode(
                encode_messages([{"role": "user", "content": prompt}], thinking_mode="chat"),
                add_special_tokens=False
            )
            for prompt in prompts
        ]
        completion_tokens = generate(model, prompt_tokens, max_new_tokens, eos_id, temperature)
        completions = tokenizer.batch_decode(completion_tokens, skip_special_tokens=True)
        for prompt, completion in zip(prompts, completions):
            # Strip thinking end token if present
            if completion.startswith(thinking_end_token):
                completion = completion[len(thinking_end_token):]
            print("Prompt:", prompt)
            print("Completion:", completion)
            print()

    if world_size > 1:
        dist.destroy_process_group()


if __name__ == "__main__":
    """
    Command-line interface for distributed text generation.

    Arguments:
        --ckpt-path (str): Path to the model checkpoint directory.
        --config (str): Path to the model configuration file.
        --input-file (str, optional): File containing prompts for batch processing.
        --interactive (bool, optional): Enable interactive mode for generating text.
        --max-new-tokens (int, optional): Maximum number of new tokens to generate. Defaults to 200.
        --temperature (float, optional): Temperature for sampling. Defaults to 0.2.

    Raises:
        AssertionError: If neither input-file nor interactive mode is specified.
    """
    parser = ArgumentParser()
    parser.add_argument("--ckpt-path", type=str, required=True)
    parser.add_argument("--config", type=str, required=True)
    parser.add_argument("--input-file", type=str, default="")
    parser.add_argument("--interactive", action="store_true")
    parser.add_argument("--max-new-tokens", type=int, default=200)
    parser.add_argument("--temperature", type=float, default=0.6)
    args = parser.parse_args()
    assert args.input_file or args.interactive, "Either input-file or interactive mode must be specified"
    main(args.ckpt_path, args.config, args.input_file, args.interactive, args.max_new_tokens, args.temperature)