Upload tools/fp8_to_nvfp4_streaming.py with huggingface_hub
Browse files- tools/fp8_to_nvfp4_streaming.py +1290 -0
tools/fp8_to_nvfp4_streaming.py
ADDED
|
@@ -0,0 +1,1290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Streaming FP8 to NVFP4 Conversion for DeepSeek V3.2
|
| 4 |
+
|
| 5 |
+
Converts FP8 e4m3 quantized weights (128x128 block scales) to NVFP4 e2m1 format
|
| 6 |
+
(16-element block scales) via FP32 intermediates.
|
| 7 |
+
|
| 8 |
+
Target: vLLM-compatible checkpoint with compressed-tensors format.
|
| 9 |
+
"""
|
| 10 |
+
|
| 11 |
+
import os
|
| 12 |
+
import json
|
| 13 |
+
import torch
|
| 14 |
+
import gc
|
| 15 |
+
import re
|
| 16 |
+
import shutil
|
| 17 |
+
import time
|
| 18 |
+
import logging
|
| 19 |
+
from typing import Dict, Any, Optional, Tuple, List, Set
|
| 20 |
+
from pathlib import Path
|
| 21 |
+
from dataclasses import dataclass, field
|
| 22 |
+
from safetensors.torch import save_file as st_save_file
|
| 23 |
+
from safetensors import safe_open
|
| 24 |
+
|
| 25 |
+
logger = logging.getLogger(__name__)
|
| 26 |
+
|
| 27 |
+
# ============================================================================
|
| 28 |
+
# NVFP4 E2M1 Constants (from TensorRT-Model-Optimizer nvfp4_tensor.py)
|
| 29 |
+
# ============================================================================
|
| 30 |
+
|
| 31 |
+
# E2M1 quantization boundaries for searchsorted
|
| 32 |
+
E2M1_BOUNDS = torch.tensor([0.25, 0.75, 1.25, 1.75, 2.5, 3.5, 5.0])
|
| 33 |
+
|
| 34 |
+
# E2M1 representable values (index 0-7 = positive, 8-15 = negative with sign bit)
|
| 35 |
+
E2M1_VALUES = torch.tensor([0, 0.5, 1, 1.5, 2, 3, 4, 6, 0, -0.5, -1, -1.5, -2, -3, -4, -6])
|
| 36 |
+
|
| 37 |
+
# Maximum representable FP4 value
|
| 38 |
+
FP4_MAX = 6.0
|
| 39 |
+
|
| 40 |
+
# Maximum FP8 E4M3 value (for scale normalization)
|
| 41 |
+
FP8_E4M3_MAX = 448.0
|
| 42 |
+
|
| 43 |
+
# ============================================================================
|
| 44 |
+
# Tensor Classification Patterns
|
| 45 |
+
# ============================================================================
|
| 46 |
+
|
| 47 |
+
# Patterns for tensors that should NOT be quantized (preserve in original dtype)
|
| 48 |
+
PRESERVE_PATTERNS = [
|
| 49 |
+
r"embed_tokens", # Embeddings
|
| 50 |
+
r"lm_head", # Output head
|
| 51 |
+
r"\.mlp\.gate\.", # MoE router gate (NOT gate_proj) - note: .gate. not .gate$
|
| 52 |
+
r"shared_experts\.gate\.", # Shared expert routing
|
| 53 |
+
r"shared_expert_gate", # Alternative naming
|
| 54 |
+
r"layernorm", # LayerNorm weights
|
| 55 |
+
r"_norm\.", # RMSNorm weights (input_layernorm, etc.)
|
| 56 |
+
r"\.norm\.", # Norm weights
|
| 57 |
+
r"\.bias$", # Bias terms
|
| 58 |
+
# V3.2 DSA-specific (CRITICAL):
|
| 59 |
+
r"indexer\.weights_proj", # Sparse pattern selector - MUST preserve!
|
| 60 |
+
r"indexer\.k_norm", # Indexer normalization
|
| 61 |
+
# Scale tensors (handled separately)
|
| 62 |
+
r"_scale_inv$", # FP8 scale_inv tensors
|
| 63 |
+
r"_scale$", # Scale tensors
|
| 64 |
+
r"_scale_2$", # Global scale tensors
|
| 65 |
+
]
|
| 66 |
+
|
| 67 |
+
# Compile patterns for efficiency
|
| 68 |
+
PRESERVE_PATTERNS_COMPILED = [re.compile(p) for p in PRESERVE_PATTERNS]
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
# ============================================================================
|
| 72 |
+
# ShardedSafeTensorWriter (adapted from fp8_fp4_llmcompressor_streaming.py)
|
| 73 |
+
# ============================================================================
|
| 74 |
+
|
| 75 |
+
class ShardedSafeTensorWriter:
|
| 76 |
+
"""
|
| 77 |
+
Stream tensors into numbered .safetensors shards and build a HF-style index JSON.
|
| 78 |
+
"""
|
| 79 |
+
def __init__(self, out_dir: str, max_shard_size: str = "5GB"):
|
| 80 |
+
self.out_dir = os.path.abspath(out_dir)
|
| 81 |
+
os.makedirs(self.out_dir, exist_ok=True)
|
| 82 |
+
self.max_bytes = self._parse_size_to_bytes(max_shard_size)
|
| 83 |
+
self.curr_tensors: Dict[str, torch.Tensor] = {}
|
| 84 |
+
self.curr_bytes = 0
|
| 85 |
+
self.shard_idx = 1
|
| 86 |
+
self.weight_map: Dict[str, str] = {}
|
| 87 |
+
self.total_bytes = 0
|
| 88 |
+
|
| 89 |
+
def _parse_size_to_bytes(self, size_str: str) -> int:
|
| 90 |
+
size_str = size_str.upper().strip()
|
| 91 |
+
if size_str.endswith('GB'):
|
| 92 |
+
return int(float(size_str[:-2]) * 1024 * 1024 * 1024)
|
| 93 |
+
elif size_str.endswith('MB'):
|
| 94 |
+
return int(float(size_str[:-2]) * 1024 * 1024)
|
| 95 |
+
elif size_str.endswith('KB'):
|
| 96 |
+
return int(float(size_str[:-2]) * 1024)
|
| 97 |
+
else:
|
| 98 |
+
return int(size_str)
|
| 99 |
+
|
| 100 |
+
def _next_shard_name(self) -> str:
|
| 101 |
+
return f"model-{self.shard_idx:05d}.safetensors"
|
| 102 |
+
|
| 103 |
+
def _flush(self):
|
| 104 |
+
if not self.curr_tensors:
|
| 105 |
+
return
|
| 106 |
+
fname = self._next_shard_name()
|
| 107 |
+
path = os.path.join(self.out_dir, fname)
|
| 108 |
+
st_save_file(self.curr_tensors, path, metadata={"format": "nvfp4"})
|
| 109 |
+
logger.info(f" Saved shard {fname}: {len(self.curr_tensors)} tensors, {self.curr_bytes / 1e9:.2f} GB")
|
| 110 |
+
for k in self.curr_tensors.keys():
|
| 111 |
+
self.weight_map[k] = fname
|
| 112 |
+
self.total_bytes += self.curr_bytes
|
| 113 |
+
self.curr_tensors.clear()
|
| 114 |
+
self.curr_bytes = 0
|
| 115 |
+
self.shard_idx += 1
|
| 116 |
+
|
| 117 |
+
def add_tensor(self, name: str, tensor: torch.Tensor):
|
| 118 |
+
if tensor.device.type != "cpu":
|
| 119 |
+
tensor = tensor.to("cpu")
|
| 120 |
+
if not tensor.is_contiguous():
|
| 121 |
+
tensor = tensor.contiguous()
|
| 122 |
+
tbytes = tensor.element_size() * tensor.numel()
|
| 123 |
+
if self.curr_bytes > 0 and self.curr_bytes + tbytes > self.max_bytes:
|
| 124 |
+
self._flush()
|
| 125 |
+
self.curr_tensors[name] = tensor
|
| 126 |
+
self.curr_bytes += tbytes
|
| 127 |
+
|
| 128 |
+
def finalize(self) -> int:
|
| 129 |
+
self._flush()
|
| 130 |
+
index_path = os.path.join(self.out_dir, "model.safetensors.index.json")
|
| 131 |
+
index = {"metadata": {"total_size": self.total_bytes}, "weight_map": self.weight_map}
|
| 132 |
+
with open(index_path, "w") as f:
|
| 133 |
+
json.dump(index, f, indent=2)
|
| 134 |
+
logger.info(f"Finalized: {self.shard_idx - 1} shards, {self.total_bytes / 1e9:.2f} GB total")
|
| 135 |
+
return self.shard_idx - 1
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
# ============================================================================
|
| 139 |
+
# Conversion Statistics
|
| 140 |
+
# ============================================================================
|
| 141 |
+
|
| 142 |
+
@dataclass
|
| 143 |
+
class ConversionStats:
|
| 144 |
+
"""Track conversion statistics."""
|
| 145 |
+
total_tensors: int = 0
|
| 146 |
+
fp8_tensors: int = 0
|
| 147 |
+
# Primary conversions: FP8 tensors where we ran the full conversion logic
|
| 148 |
+
primary_conversions: int = 0
|
| 149 |
+
# MoE partner conversions: FP8 tensors converted as partners during joint scale computation
|
| 150 |
+
# These are cached during primary conversion and written when encountered in stream
|
| 151 |
+
moe_partner_conversions: int = 0
|
| 152 |
+
preserved_sensitive: int = 0
|
| 153 |
+
copied_unchanged: int = 0
|
| 154 |
+
total_params: int = 0
|
| 155 |
+
layers_processed: Set[str] = field(default_factory=set)
|
| 156 |
+
warnings: List[Dict] = field(default_factory=list)
|
| 157 |
+
errors: List[Dict] = field(default_factory=list)
|
| 158 |
+
start_time: float = 0
|
| 159 |
+
end_time: float = 0
|
| 160 |
+
|
| 161 |
+
@property
|
| 162 |
+
def total_nvfp4_tensors(self) -> int:
|
| 163 |
+
"""Total FP8 tensors converted to NVFP4 (primary + partner)."""
|
| 164 |
+
return self.primary_conversions + self.moe_partner_conversions
|
| 165 |
+
|
| 166 |
+
def log_warning(self, key: str, reason: str):
|
| 167 |
+
self.warnings.append({"tensor": key, "reason": reason})
|
| 168 |
+
|
| 169 |
+
def log_error(self, key: str, error: str):
|
| 170 |
+
self.errors.append({"tensor": key, "error": error})
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
# ============================================================================
|
| 174 |
+
# FP8 Block Dequantization
|
| 175 |
+
# ============================================================================
|
| 176 |
+
|
| 177 |
+
def dequantize_fp8_block_to_fp32(
|
| 178 |
+
fp8_weight: torch.Tensor,
|
| 179 |
+
scale_inv: torch.Tensor,
|
| 180 |
+
block_size: int = 128,
|
| 181 |
+
device: Optional[torch.device] = None
|
| 182 |
+
) -> torch.Tensor:
|
| 183 |
+
"""
|
| 184 |
+
Dequantize FP8 e4m3 weight using block-wise scale_inv.
|
| 185 |
+
|
| 186 |
+
The DeepSeek FP8 format uses 128x128 blocks where each block
|
| 187 |
+
shares a single inverse scale factor.
|
| 188 |
+
|
| 189 |
+
Formula: fp32_weight = fp8_weight.to(float32) * scale_inv[block_i, block_j]
|
| 190 |
+
|
| 191 |
+
Reference: TensorRT-Model-Optimizer/examples/deepseek/ds_kernel.py:89-110
|
| 192 |
+
|
| 193 |
+
Args:
|
| 194 |
+
fp8_weight: FP8 e4m3 weight tensor [M, N]
|
| 195 |
+
scale_inv: Inverse scale tensor [M/block_size, N/block_size]
|
| 196 |
+
block_size: Block size (default 128)
|
| 197 |
+
device: Device to compute on (None = same as input)
|
| 198 |
+
|
| 199 |
+
Returns:
|
| 200 |
+
FP32 dequantized weight tensor [M, N]
|
| 201 |
+
"""
|
| 202 |
+
if device is not None:
|
| 203 |
+
fp8_weight = fp8_weight.to(device)
|
| 204 |
+
scale_inv = scale_inv.to(device)
|
| 205 |
+
|
| 206 |
+
M, N = fp8_weight.shape
|
| 207 |
+
|
| 208 |
+
# Handle case where dimensions aren't divisible by block_size
|
| 209 |
+
M_blocks = (M + block_size - 1) // block_size
|
| 210 |
+
N_blocks = (N + block_size - 1) // block_size
|
| 211 |
+
|
| 212 |
+
# Validate scale_inv shape
|
| 213 |
+
expected_scale_shape = (M_blocks, N_blocks)
|
| 214 |
+
if scale_inv.shape != expected_scale_shape:
|
| 215 |
+
# Some weights have different scale shapes (e.g., per-row scaling)
|
| 216 |
+
if scale_inv.numel() == 1:
|
| 217 |
+
# Scalar scale
|
| 218 |
+
return fp8_weight.to(torch.float32) * scale_inv.item()
|
| 219 |
+
elif scale_inv.shape[0] == 1 or scale_inv.shape[1] == 1:
|
| 220 |
+
# Per-row or per-column scaling
|
| 221 |
+
return fp8_weight.to(torch.float32) * scale_inv.to(torch.float32)
|
| 222 |
+
else:
|
| 223 |
+
logger.warning(f"Unexpected scale_inv shape {scale_inv.shape} for weight {fp8_weight.shape}, expected {expected_scale_shape}")
|
| 224 |
+
# Try to broadcast
|
| 225 |
+
return fp8_weight.to(torch.float32) * scale_inv.to(torch.float32)
|
| 226 |
+
|
| 227 |
+
# Convert FP8 to FP32
|
| 228 |
+
fp32_weight = fp8_weight.to(torch.float32)
|
| 229 |
+
|
| 230 |
+
# If dimensions match exactly, use efficient block multiplication
|
| 231 |
+
if M % block_size == 0 and N % block_size == 0:
|
| 232 |
+
# Reshape to blocks: [M/bs, bs, N/bs, bs]
|
| 233 |
+
weight_blocks = fp32_weight.view(M_blocks, block_size, N_blocks, block_size)
|
| 234 |
+
|
| 235 |
+
# Apply scale: scale_inv[i, j] applies to weight_blocks[i, :, j, :]
|
| 236 |
+
# scale_inv shape: [M_blocks, N_blocks] -> [M_blocks, 1, N_blocks, 1]
|
| 237 |
+
scaled = weight_blocks * scale_inv[:, None, :, None].to(torch.float32)
|
| 238 |
+
|
| 239 |
+
# Reshape back
|
| 240 |
+
return scaled.view(M, N)
|
| 241 |
+
else:
|
| 242 |
+
# Handle non-divisible dimensions with padding
|
| 243 |
+
M_pad = M_blocks * block_size
|
| 244 |
+
N_pad = N_blocks * block_size
|
| 245 |
+
|
| 246 |
+
padded_weight = torch.zeros(M_pad, N_pad, dtype=torch.float32, device=fp32_weight.device)
|
| 247 |
+
padded_weight[:M, :N] = fp32_weight
|
| 248 |
+
|
| 249 |
+
weight_blocks = padded_weight.view(M_blocks, block_size, N_blocks, block_size)
|
| 250 |
+
scaled = weight_blocks * scale_inv[:, None, :, None].to(torch.float32)
|
| 251 |
+
|
| 252 |
+
return scaled.view(M_pad, N_pad)[:M, :N]
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
# ============================================================================
|
| 256 |
+
# NVFP4 Scale Computation
|
| 257 |
+
# ============================================================================
|
| 258 |
+
|
| 259 |
+
def compute_nvfp4_scales(
|
| 260 |
+
fp32_weight: torch.Tensor,
|
| 261 |
+
block_size: int = 16
|
| 262 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 263 |
+
"""
|
| 264 |
+
Compute two-level NVFP4 scaling factors.
|
| 265 |
+
|
| 266 |
+
NVFP4 uses dual-level scaling:
|
| 267 |
+
1. Per-tensor global scale (scale_2): amax / (6.0 * 448.0)
|
| 268 |
+
2. Per-block scale: per_block_amax / (6.0 * scale_2)
|
| 269 |
+
|
| 270 |
+
Reference: TensorRT-Model-Optimizer nvfp4_tensor.py:94-97, 63-92
|
| 271 |
+
|
| 272 |
+
Args:
|
| 273 |
+
fp32_weight: FP32 weight tensor
|
| 274 |
+
block_size: Block size for per-block scaling (default 16)
|
| 275 |
+
|
| 276 |
+
Returns:
|
| 277 |
+
Tuple of:
|
| 278 |
+
- weight_scale: Per-block FP8 E4M3 scale [M, N/block_size]
|
| 279 |
+
- weight_scale_2: Per-tensor FP32 global scale (scalar tensor)
|
| 280 |
+
"""
|
| 281 |
+
# Step 1: Compute per-tensor global scale (scale_2)
|
| 282 |
+
global_amax = fp32_weight.abs().max()
|
| 283 |
+
weight_scale_2 = global_amax / (FP4_MAX * FP8_E4M3_MAX)
|
| 284 |
+
|
| 285 |
+
# Ensure non-zero scale (use abs comparison to avoid float precision issues)
|
| 286 |
+
if weight_scale_2.abs() < 1e-10:
|
| 287 |
+
weight_scale_2 = torch.tensor(1e-8, dtype=torch.float32, device=fp32_weight.device)
|
| 288 |
+
|
| 289 |
+
# Step 2: Compute per-block scale
|
| 290 |
+
original_shape = fp32_weight.shape
|
| 291 |
+
|
| 292 |
+
# Handle N dimension for block quantization
|
| 293 |
+
M = fp32_weight.shape[0] if fp32_weight.dim() > 1 else 1
|
| 294 |
+
N = fp32_weight.shape[-1]
|
| 295 |
+
|
| 296 |
+
# Pad N if not divisible by block_size
|
| 297 |
+
N_padded = ((N + block_size - 1) // block_size) * block_size
|
| 298 |
+
if N_padded != N:
|
| 299 |
+
if fp32_weight.dim() == 1:
|
| 300 |
+
padded = torch.zeros(N_padded, dtype=fp32_weight.dtype, device=fp32_weight.device)
|
| 301 |
+
padded[:N] = fp32_weight
|
| 302 |
+
fp32_weight = padded
|
| 303 |
+
else:
|
| 304 |
+
padded = torch.zeros(*original_shape[:-1], N_padded, dtype=fp32_weight.dtype, device=fp32_weight.device)
|
| 305 |
+
padded[..., :N] = fp32_weight
|
| 306 |
+
fp32_weight = padded
|
| 307 |
+
|
| 308 |
+
# Reshape to blocks along last dimension
|
| 309 |
+
if fp32_weight.dim() == 1:
|
| 310 |
+
weight_blocks = fp32_weight.view(-1, block_size)
|
| 311 |
+
else:
|
| 312 |
+
weight_blocks = fp32_weight.view(*original_shape[:-1], -1, block_size)
|
| 313 |
+
|
| 314 |
+
# Compute per-block amax
|
| 315 |
+
per_block_amax = weight_blocks.abs().amax(dim=-1) # [..., N/block_size]
|
| 316 |
+
|
| 317 |
+
# Per-block scale = per_block_amax / (6.0 * scale_2)
|
| 318 |
+
per_block_scale = per_block_amax / (FP4_MAX * weight_scale_2)
|
| 319 |
+
|
| 320 |
+
# Clamp to avoid division by zero, set zeros to 1.0
|
| 321 |
+
per_block_scale = per_block_scale.clamp(min=1e-8)
|
| 322 |
+
per_block_scale[per_block_scale < 1e-7] = 1.0
|
| 323 |
+
|
| 324 |
+
# Convert to FP8 E4M3 (if available, otherwise keep as float32)
|
| 325 |
+
try:
|
| 326 |
+
weight_scale = per_block_scale.to(torch.float8_e4m3fn)
|
| 327 |
+
except (RuntimeError, TypeError):
|
| 328 |
+
# FP8 not supported on this device/PyTorch version
|
| 329 |
+
weight_scale = per_block_scale.to(torch.float32)
|
| 330 |
+
|
| 331 |
+
return weight_scale, weight_scale_2
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
# ============================================================================
|
| 335 |
+
# NVFP4 Quantization and Packing
|
| 336 |
+
# ============================================================================
|
| 337 |
+
|
| 338 |
+
def quantize_to_nvfp4_packed(
|
| 339 |
+
fp32_weight: torch.Tensor,
|
| 340 |
+
weight_scale: torch.Tensor,
|
| 341 |
+
weight_scale_2: torch.Tensor,
|
| 342 |
+
block_size: int = 16
|
| 343 |
+
) -> torch.Tensor:
|
| 344 |
+
"""
|
| 345 |
+
Quantize FP32 weight to NVFP4 packed uint8 format.
|
| 346 |
+
|
| 347 |
+
E2M1 values: {0, 0.5, 1, 1.5, 2, 3, 4, 6} with sign (16 total values)
|
| 348 |
+
Packing: (code[..., 1::2] << 4) | code[..., 0::2]
|
| 349 |
+
|
| 350 |
+
Reference: TensorRT-Model-Optimizer nvfp4_tensor.py:119-140, 224-227
|
| 351 |
+
|
| 352 |
+
Args:
|
| 353 |
+
fp32_weight: FP32 weight tensor
|
| 354 |
+
weight_scale: Per-block FP8 E4M3 scale
|
| 355 |
+
weight_scale_2: Per-tensor FP32 global scale
|
| 356 |
+
block_size: Block size (default 16)
|
| 357 |
+
|
| 358 |
+
Returns:
|
| 359 |
+
Packed uint8 tensor [M, N/2]
|
| 360 |
+
"""
|
| 361 |
+
device = fp32_weight.device
|
| 362 |
+
original_shape = fp32_weight.shape
|
| 363 |
+
N = original_shape[-1]
|
| 364 |
+
|
| 365 |
+
# Pad N if not divisible by block_size
|
| 366 |
+
N_padded = ((N + block_size - 1) // block_size) * block_size
|
| 367 |
+
if N_padded != N:
|
| 368 |
+
if fp32_weight.dim() == 1:
|
| 369 |
+
padded = torch.zeros(N_padded, dtype=fp32_weight.dtype, device=device)
|
| 370 |
+
padded[:N] = fp32_weight
|
| 371 |
+
fp32_weight = padded
|
| 372 |
+
else:
|
| 373 |
+
padded = torch.zeros(*original_shape[:-1], N_padded, dtype=fp32_weight.dtype, device=device)
|
| 374 |
+
padded[..., :N] = fp32_weight
|
| 375 |
+
fp32_weight = padded
|
| 376 |
+
|
| 377 |
+
# Reshape for block-wise processing
|
| 378 |
+
if fp32_weight.dim() == 1:
|
| 379 |
+
weight_blocks = fp32_weight.view(-1, block_size)
|
| 380 |
+
else:
|
| 381 |
+
weight_blocks = fp32_weight.view(*original_shape[:-1], -1, block_size)
|
| 382 |
+
|
| 383 |
+
# Compute combined scale and apply
|
| 384 |
+
# scaled_weight = weight / (scale * scale_2)
|
| 385 |
+
combined_scale = weight_scale.to(torch.float32) * weight_scale_2
|
| 386 |
+
scaled_weight = weight_blocks / combined_scale.unsqueeze(-1)
|
| 387 |
+
|
| 388 |
+
# Flatten back to original shape (with padding)
|
| 389 |
+
if fp32_weight.dim() == 1:
|
| 390 |
+
scaled_weight = scaled_weight.view(-1)
|
| 391 |
+
else:
|
| 392 |
+
scaled_weight = scaled_weight.view(*original_shape[:-1], -1)
|
| 393 |
+
|
| 394 |
+
# Get E2M1 bounds on device
|
| 395 |
+
e2m1_bounds = E2M1_BOUNDS.to(device)
|
| 396 |
+
|
| 397 |
+
# Extract sign bit and compute absolute values
|
| 398 |
+
sign_bit = (scaled_weight < 0).to(torch.uint8)
|
| 399 |
+
weight_abs = scaled_weight.abs()
|
| 400 |
+
|
| 401 |
+
# Find nearest E2M1 magnitude index (0-7) using searchsorted
|
| 402 |
+
# searchsorted returns index where value should be inserted
|
| 403 |
+
ord_idx = torch.searchsorted(e2m1_bounds, weight_abs, out_int32=True).to(torch.uint8)
|
| 404 |
+
|
| 405 |
+
# Handle rounding at boundary values (odd indices need special treatment)
|
| 406 |
+
# For values exactly at odd boundaries [0.75, 1.75, 2.5], round up
|
| 407 |
+
odd_bounds = e2m1_bounds[[1, 3, 5]] # [0.75, 1.75, 2.5]
|
| 408 |
+
equals_odd = torch.any(weight_abs.unsqueeze(-1) == odd_bounds, dim=-1).to(torch.uint8)
|
| 409 |
+
|
| 410 |
+
# Combine sign and ordinal: code = (sign << 3) | (ord + round_adjust)
|
| 411 |
+
fp4_codes = (sign_bit << 3) | (ord_idx + equals_odd)
|
| 412 |
+
|
| 413 |
+
# Ensure codes are in valid range [0, 15]
|
| 414 |
+
fp4_codes = fp4_codes.clamp(0, 15)
|
| 415 |
+
|
| 416 |
+
# Pack pairs of FP4 values into uint8
|
| 417 |
+
# Even indices in low nibble, odd indices in high nibble
|
| 418 |
+
packed = (fp4_codes[..., 1::2] << 4) | fp4_codes[..., 0::2]
|
| 419 |
+
packed = packed.to(torch.uint8)
|
| 420 |
+
|
| 421 |
+
return packed
|
| 422 |
+
|
| 423 |
+
|
| 424 |
+
# ============================================================================
|
| 425 |
+
# Tensor Classification
|
| 426 |
+
# ============================================================================
|
| 427 |
+
|
| 428 |
+
def should_preserve_tensor(key: str) -> bool:
|
| 429 |
+
"""
|
| 430 |
+
Check if a tensor should be preserved (not quantized).
|
| 431 |
+
|
| 432 |
+
Args:
|
| 433 |
+
key: Tensor name/key
|
| 434 |
+
|
| 435 |
+
Returns:
|
| 436 |
+
True if tensor should be preserved in original dtype
|
| 437 |
+
"""
|
| 438 |
+
for pattern in PRESERVE_PATTERNS_COMPILED:
|
| 439 |
+
if pattern.search(key):
|
| 440 |
+
return True
|
| 441 |
+
return False
|
| 442 |
+
|
| 443 |
+
|
| 444 |
+
def is_fp8_weight(key: str, tensor: torch.Tensor) -> bool:
|
| 445 |
+
"""
|
| 446 |
+
Check if a tensor is an FP8 quantized weight.
|
| 447 |
+
|
| 448 |
+
Args:
|
| 449 |
+
key: Tensor name
|
| 450 |
+
tensor: The tensor to check
|
| 451 |
+
|
| 452 |
+
Returns:
|
| 453 |
+
True if this is an FP8 weight that should be converted
|
| 454 |
+
"""
|
| 455 |
+
# Check dtype
|
| 456 |
+
if tensor.dtype != torch.float8_e4m3fn:
|
| 457 |
+
return False
|
| 458 |
+
|
| 459 |
+
# Check it's a weight (not a scale or bias)
|
| 460 |
+
if not key.endswith('.weight'):
|
| 461 |
+
return False
|
| 462 |
+
|
| 463 |
+
# Check it's not a preserved tensor
|
| 464 |
+
if should_preserve_tensor(key):
|
| 465 |
+
return False
|
| 466 |
+
|
| 467 |
+
return True
|
| 468 |
+
|
| 469 |
+
|
| 470 |
+
# ============================================================================
|
| 471 |
+
# MoE Expert Pair Helper Functions
|
| 472 |
+
# ============================================================================
|
| 473 |
+
|
| 474 |
+
def get_moe_expert_pair_key(weight_key: str) -> Optional[str]:
|
| 475 |
+
"""
|
| 476 |
+
Get the expert pair identifier for MoE gate_proj/up_proj weights.
|
| 477 |
+
|
| 478 |
+
For vLLM's fused MoE kernels, gate_proj (w1) and up_proj (w3) must share
|
| 479 |
+
the same weight_scale_2 because they're fused together.
|
| 480 |
+
|
| 481 |
+
Args:
|
| 482 |
+
weight_key: Tensor name (e.g., "model.layers.0.mlp.experts.5.gate_proj.weight")
|
| 483 |
+
|
| 484 |
+
Returns:
|
| 485 |
+
Expert pair key (e.g., "model.layers.0.mlp.experts.5") or None if not MoE weight
|
| 486 |
+
"""
|
| 487 |
+
# Match MoE expert gate_proj or up_proj patterns
|
| 488 |
+
# Pattern: model.layers.{L}.mlp.experts.{E}.gate_proj.weight
|
| 489 |
+
# Pattern: model.layers.{L}.mlp.experts.{E}.up_proj.weight
|
| 490 |
+
moe_pattern = re.match(r'(model\.layers\.\d+\.mlp\.experts\.\d+)\.(gate_proj|up_proj)\.weight$', weight_key)
|
| 491 |
+
if moe_pattern:
|
| 492 |
+
return moe_pattern.group(1)
|
| 493 |
+
|
| 494 |
+
# Also match shared_experts pattern if present
|
| 495 |
+
shared_pattern = re.match(r'(model\.layers\.\d+\.mlp\.shared_experts)\.(gate_proj|up_proj)\.weight$', weight_key)
|
| 496 |
+
if shared_pattern:
|
| 497 |
+
return shared_pattern.group(1)
|
| 498 |
+
|
| 499 |
+
return None
|
| 500 |
+
|
| 501 |
+
|
| 502 |
+
# ============================================================================
|
| 503 |
+
# Main Converter Class
|
| 504 |
+
# ============================================================================
|
| 505 |
+
|
| 506 |
+
class FP8ToNVFP4StreamingConverter:
|
| 507 |
+
"""
|
| 508 |
+
Streaming FP8 to NVFP4 converter for DeepSeek V3.2.
|
| 509 |
+
|
| 510 |
+
Processes safetensor shards sequentially with GPU acceleration,
|
| 511 |
+
converting FP8 e4m3 weights to NVFP4 e2m1 format.
|
| 512 |
+
"""
|
| 513 |
+
|
| 514 |
+
def __init__(
|
| 515 |
+
self,
|
| 516 |
+
model_path: str,
|
| 517 |
+
output_dir: str,
|
| 518 |
+
device: str = "cuda",
|
| 519 |
+
max_shard_size: str = "5GB",
|
| 520 |
+
fp8_block_size: int = 128,
|
| 521 |
+
nvfp4_block_size: int = 16
|
| 522 |
+
):
|
| 523 |
+
"""
|
| 524 |
+
Initialize the converter.
|
| 525 |
+
|
| 526 |
+
Args:
|
| 527 |
+
model_path: Path to source FP8 model
|
| 528 |
+
output_dir: Output directory for NVFP4 model
|
| 529 |
+
device: Device for computation (cuda or cpu)
|
| 530 |
+
max_shard_size: Maximum output shard size
|
| 531 |
+
fp8_block_size: FP8 quantization block size (default 128)
|
| 532 |
+
nvfp4_block_size: NVFP4 quantization block size (default 16)
|
| 533 |
+
"""
|
| 534 |
+
self.model_path = Path(model_path)
|
| 535 |
+
self.output_dir = Path(output_dir)
|
| 536 |
+
self.device = torch.device(device if torch.cuda.is_available() else "cpu")
|
| 537 |
+
self.max_shard_size = max_shard_size
|
| 538 |
+
self.fp8_block_size = fp8_block_size
|
| 539 |
+
self.nvfp4_block_size = nvfp4_block_size
|
| 540 |
+
|
| 541 |
+
# Load model index
|
| 542 |
+
self.weight_map, self.shard_to_keys = self._load_index()
|
| 543 |
+
|
| 544 |
+
# Initialize statistics
|
| 545 |
+
self.stats = ConversionStats()
|
| 546 |
+
|
| 547 |
+
# Cache for cross-shard scale_inv tensors
|
| 548 |
+
self.scale_cache: Dict[str, torch.Tensor] = {}
|
| 549 |
+
|
| 550 |
+
# Cache for processed MoE weights (for streaming partner handling)
|
| 551 |
+
# When we process gate_proj, we also load up_proj, process both with joint scale,
|
| 552 |
+
# and cache up_proj's result here so we can skip it when we encounter it later
|
| 553 |
+
# Key: weight_key (e.g., "model.layers.0.mlp.experts.5.up_proj.weight")
|
| 554 |
+
# Value: Dict of converted tensors
|
| 555 |
+
self.moe_processed_cache: Dict[str, Dict[str, torch.Tensor]] = {}
|
| 556 |
+
|
| 557 |
+
# Build MoE pair mapping from index for efficient lookup
|
| 558 |
+
self.moe_pairs: Dict[str, Dict[str, str]] = self._build_moe_pair_map()
|
| 559 |
+
|
| 560 |
+
# Initialize writer
|
| 561 |
+
self.writer = ShardedSafeTensorWriter(str(self.output_dir), max_shard_size)
|
| 562 |
+
|
| 563 |
+
logger.info(f"Initialized FP8→NVFP4 converter")
|
| 564 |
+
logger.info(f" Source: {self.model_path}")
|
| 565 |
+
logger.info(f" Output: {self.output_dir}")
|
| 566 |
+
logger.info(f" Device: {self.device}")
|
| 567 |
+
logger.info(f" FP8 block size: {self.fp8_block_size}")
|
| 568 |
+
logger.info(f" NVFP4 block size: {self.nvfp4_block_size}")
|
| 569 |
+
|
| 570 |
+
def _load_index(self) -> Tuple[Dict[str, str], Dict[str, List[str]]]:
|
| 571 |
+
"""Load model index and build shard-to-keys mapping."""
|
| 572 |
+
index_path = self.model_path / "model.safetensors.index.json"
|
| 573 |
+
|
| 574 |
+
if not index_path.exists():
|
| 575 |
+
raise FileNotFoundError(f"Model index not found: {index_path}")
|
| 576 |
+
|
| 577 |
+
with open(index_path) as f:
|
| 578 |
+
index = json.load(f)
|
| 579 |
+
|
| 580 |
+
weight_map = index.get("weight_map", {})
|
| 581 |
+
|
| 582 |
+
# Build reverse mapping: shard -> list of keys
|
| 583 |
+
shard_to_keys: Dict[str, List[str]] = {}
|
| 584 |
+
for key, shard in weight_map.items():
|
| 585 |
+
if shard not in shard_to_keys:
|
| 586 |
+
shard_to_keys[shard] = []
|
| 587 |
+
shard_to_keys[shard].append(key)
|
| 588 |
+
|
| 589 |
+
logger.info(f"Loaded index: {len(weight_map)} tensors across {len(shard_to_keys)} shards")
|
| 590 |
+
|
| 591 |
+
return weight_map, shard_to_keys
|
| 592 |
+
|
| 593 |
+
def _build_moe_pair_map(self) -> Dict[str, Dict[str, str]]:
|
| 594 |
+
"""
|
| 595 |
+
Build mapping of MoE gate_proj/up_proj pairs from the index file.
|
| 596 |
+
|
| 597 |
+
This is a lightweight operation that just scans tensor names without
|
| 598 |
+
loading any weights, enabling efficient streaming processing.
|
| 599 |
+
|
| 600 |
+
Returns:
|
| 601 |
+
Dict mapping pair_key -> {"gate_proj": full_key, "up_proj": full_key}
|
| 602 |
+
"""
|
| 603 |
+
moe_pairs: Dict[str, Dict[str, str]] = {}
|
| 604 |
+
|
| 605 |
+
for weight_key in self.weight_map.keys():
|
| 606 |
+
pair_key = get_moe_expert_pair_key(weight_key)
|
| 607 |
+
if pair_key:
|
| 608 |
+
if pair_key not in moe_pairs:
|
| 609 |
+
moe_pairs[pair_key] = {}
|
| 610 |
+
if "gate_proj" in weight_key:
|
| 611 |
+
moe_pairs[pair_key]["gate_proj"] = weight_key
|
| 612 |
+
elif "up_proj" in weight_key:
|
| 613 |
+
moe_pairs[pair_key]["up_proj"] = weight_key
|
| 614 |
+
|
| 615 |
+
# Filter to complete pairs only
|
| 616 |
+
complete_pairs = {k: v for k, v in moe_pairs.items()
|
| 617 |
+
if "gate_proj" in v and "up_proj" in v}
|
| 618 |
+
|
| 619 |
+
logger.info(f"Found {len(complete_pairs)} MoE expert pairs (gate_proj + up_proj)")
|
| 620 |
+
return complete_pairs
|
| 621 |
+
|
| 622 |
+
def _load_weight_from_shard(
|
| 623 |
+
self,
|
| 624 |
+
weight_key: str
|
| 625 |
+
) -> Optional[Tuple[torch.Tensor, torch.Tensor]]:
|
| 626 |
+
"""
|
| 627 |
+
Load an FP8 weight and its scale_inv from the appropriate shard.
|
| 628 |
+
|
| 629 |
+
Uses the index to locate which shard contains the weight.
|
| 630 |
+
|
| 631 |
+
Args:
|
| 632 |
+
weight_key: Full tensor key (e.g., "model.layers.0.mlp.experts.5.up_proj.weight")
|
| 633 |
+
|
| 634 |
+
Returns:
|
| 635 |
+
Tuple of (fp8_weight, scale_inv) or None if not found
|
| 636 |
+
"""
|
| 637 |
+
if weight_key not in self.weight_map:
|
| 638 |
+
return None
|
| 639 |
+
|
| 640 |
+
shard_name = self.weight_map[weight_key]
|
| 641 |
+
shard_path = self.model_path / shard_name
|
| 642 |
+
|
| 643 |
+
if not shard_path.exists():
|
| 644 |
+
logger.warning(f"Shard not found: {shard_path}")
|
| 645 |
+
return None
|
| 646 |
+
|
| 647 |
+
try:
|
| 648 |
+
with safe_open(shard_path, framework="pt", device="cpu") as f:
|
| 649 |
+
shard_keys = list(f.keys())
|
| 650 |
+
|
| 651 |
+
if weight_key not in shard_keys:
|
| 652 |
+
return None
|
| 653 |
+
|
| 654 |
+
fp8_weight = f.get_tensor(weight_key)
|
| 655 |
+
|
| 656 |
+
# Get scale_inv (may be in this shard or another)
|
| 657 |
+
scale_inv = self._get_scale_inv(weight_key, shard_keys, f)
|
| 658 |
+
if scale_inv is None:
|
| 659 |
+
logger.warning(f"Missing scale_inv for {weight_key}")
|
| 660 |
+
return None
|
| 661 |
+
|
| 662 |
+
return fp8_weight, scale_inv
|
| 663 |
+
except Exception as e:
|
| 664 |
+
logger.warning(f"Failed to load {weight_key}: {e}")
|
| 665 |
+
return None
|
| 666 |
+
|
| 667 |
+
def _get_partner_key(self, weight_key: str) -> Optional[str]:
|
| 668 |
+
"""
|
| 669 |
+
Get the partner key for an MoE gate_proj/up_proj weight.
|
| 670 |
+
|
| 671 |
+
Args:
|
| 672 |
+
weight_key: Full tensor key
|
| 673 |
+
|
| 674 |
+
Returns:
|
| 675 |
+
Partner weight key or None if not an MoE pair weight
|
| 676 |
+
"""
|
| 677 |
+
pair_key = get_moe_expert_pair_key(weight_key)
|
| 678 |
+
if not pair_key or pair_key not in self.moe_pairs:
|
| 679 |
+
return None
|
| 680 |
+
|
| 681 |
+
pair = self.moe_pairs[pair_key]
|
| 682 |
+
if "gate_proj" in weight_key:
|
| 683 |
+
return pair.get("up_proj")
|
| 684 |
+
elif "up_proj" in weight_key:
|
| 685 |
+
return pair.get("gate_proj")
|
| 686 |
+
return None
|
| 687 |
+
|
| 688 |
+
def _get_scale_inv(
|
| 689 |
+
self,
|
| 690 |
+
weight_key: str,
|
| 691 |
+
current_shard_keys: List[str],
|
| 692 |
+
current_shard_file: Any # safetensors file handle from safe_open()
|
| 693 |
+
) -> Optional[torch.Tensor]:
|
| 694 |
+
"""
|
| 695 |
+
Get scale_inv tensor, loading from other shard if needed.
|
| 696 |
+
|
| 697 |
+
Uses the model index to find which shard contains the scale_inv
|
| 698 |
+
and loads it on demand. Caches loaded scales for efficiency.
|
| 699 |
+
|
| 700 |
+
Args:
|
| 701 |
+
weight_key: The weight tensor key (e.g., "model.layers.X.mlp.gate_proj.weight")
|
| 702 |
+
current_shard_keys: List of keys in the current shard
|
| 703 |
+
current_shard_file: Open safetensors file handle for current shard
|
| 704 |
+
|
| 705 |
+
Returns:
|
| 706 |
+
scale_inv tensor or None if not found
|
| 707 |
+
"""
|
| 708 |
+
scale_key = weight_key.replace('.weight', '.weight_scale_inv')
|
| 709 |
+
|
| 710 |
+
# Fast path: check current shard first
|
| 711 |
+
if scale_key in current_shard_keys:
|
| 712 |
+
return current_shard_file.get_tensor(scale_key)
|
| 713 |
+
|
| 714 |
+
# Check cache
|
| 715 |
+
if scale_key in self.scale_cache:
|
| 716 |
+
return self.scale_cache[scale_key]
|
| 717 |
+
|
| 718 |
+
# Look up in index and load from correct shard
|
| 719 |
+
if scale_key in self.weight_map:
|
| 720 |
+
scale_shard = self.weight_map[scale_key]
|
| 721 |
+
scale_path = self.model_path / scale_shard
|
| 722 |
+
|
| 723 |
+
try:
|
| 724 |
+
with safe_open(scale_path, framework="pt", device="cpu") as f:
|
| 725 |
+
scale_inv = f.get_tensor(scale_key)
|
| 726 |
+
# Cache for future use (scales are small ~32KB each)
|
| 727 |
+
self.scale_cache[scale_key] = scale_inv
|
| 728 |
+
logger.debug(f"Loaded cross-shard scale_inv from {scale_shard}: {scale_key}")
|
| 729 |
+
return scale_inv
|
| 730 |
+
except Exception as e:
|
| 731 |
+
logger.warning(f"Failed to load scale_inv from {scale_shard}: {e}")
|
| 732 |
+
return None
|
| 733 |
+
|
| 734 |
+
return None
|
| 735 |
+
|
| 736 |
+
def _convert_fp8_to_nvfp4(
|
| 737 |
+
self,
|
| 738 |
+
key: str,
|
| 739 |
+
fp8_weight: torch.Tensor,
|
| 740 |
+
scale_inv: torch.Tensor
|
| 741 |
+
) -> Dict[str, torch.Tensor]:
|
| 742 |
+
"""
|
| 743 |
+
Convert a single FP8 weight to NVFP4 format.
|
| 744 |
+
|
| 745 |
+
For MoE gate_proj/up_proj weights, loads the partner weight on-demand
|
| 746 |
+
to compute a joint scale_2, ensuring vLLM's fused MoE kernels work correctly.
|
| 747 |
+
The partner's result is cached to avoid reprocessing.
|
| 748 |
+
|
| 749 |
+
Args:
|
| 750 |
+
key: Tensor name
|
| 751 |
+
fp8_weight: FP8 e4m3 weight tensor
|
| 752 |
+
scale_inv: FP8 inverse scale tensor
|
| 753 |
+
|
| 754 |
+
Returns:
|
| 755 |
+
Dict with converted tensors:
|
| 756 |
+
- key: packed NVFP4 weight
|
| 757 |
+
- key.replace('.weight', '.weight_scale'): per-block scale
|
| 758 |
+
- key.replace('.weight', '.weight_scale_2'): global scale
|
| 759 |
+
"""
|
| 760 |
+
# Move to processing device
|
| 761 |
+
fp8_weight = fp8_weight.to(self.device)
|
| 762 |
+
scale_inv = scale_inv.to(self.device)
|
| 763 |
+
|
| 764 |
+
# Step 1: Dequantize FP8 to FP32
|
| 765 |
+
fp32_weight = dequantize_fp8_block_to_fp32(
|
| 766 |
+
fp8_weight, scale_inv, block_size=self.fp8_block_size
|
| 767 |
+
)
|
| 768 |
+
|
| 769 |
+
# Step 2: Compute NVFP4 scales
|
| 770 |
+
# Check if this is an MoE weight that needs shared scale_2 with partner
|
| 771 |
+
partner_key = self._get_partner_key(key)
|
| 772 |
+
|
| 773 |
+
if partner_key:
|
| 774 |
+
# MoE gate_proj/up_proj - need joint scale with partner
|
| 775 |
+
# Load partner weight on-demand
|
| 776 |
+
partner_data = self._load_weight_from_shard(partner_key)
|
| 777 |
+
|
| 778 |
+
if partner_data:
|
| 779 |
+
partner_fp8, partner_scale_inv = partner_data
|
| 780 |
+
partner_fp8 = partner_fp8.to(self.device)
|
| 781 |
+
partner_scale_inv = partner_scale_inv.to(self.device)
|
| 782 |
+
|
| 783 |
+
# Dequantize partner
|
| 784 |
+
partner_fp32 = dequantize_fp8_block_to_fp32(
|
| 785 |
+
partner_fp8, partner_scale_inv, block_size=self.fp8_block_size
|
| 786 |
+
)
|
| 787 |
+
|
| 788 |
+
# Compute joint amax and scale_2
|
| 789 |
+
my_amax = fp32_weight.abs().max()
|
| 790 |
+
partner_amax = partner_fp32.abs().max()
|
| 791 |
+
joint_amax = torch.max(my_amax, partner_amax)
|
| 792 |
+
joint_scale_2 = joint_amax / (FP4_MAX * FP8_E4M3_MAX)
|
| 793 |
+
|
| 794 |
+
# Ensure non-zero (use abs comparison to avoid float precision issues)
|
| 795 |
+
if joint_scale_2.abs() < 1e-10:
|
| 796 |
+
joint_scale_2 = torch.tensor(1e-8, dtype=torch.float32, device=self.device)
|
| 797 |
+
|
| 798 |
+
# Compute per-block scale for this weight using joint scale_2
|
| 799 |
+
weight_scale = self._compute_per_block_scale(fp32_weight, joint_scale_2)
|
| 800 |
+
weight_scale_2 = joint_scale_2
|
| 801 |
+
|
| 802 |
+
# Also convert partner and cache its result
|
| 803 |
+
partner_scale = self._compute_per_block_scale(partner_fp32, joint_scale_2)
|
| 804 |
+
partner_packed = quantize_to_nvfp4_packed(
|
| 805 |
+
partner_fp32, partner_scale, joint_scale_2, block_size=self.nvfp4_block_size
|
| 806 |
+
)
|
| 807 |
+
|
| 808 |
+
partner_base = partner_key.replace('.weight', '')
|
| 809 |
+
self.moe_processed_cache[partner_key] = {
|
| 810 |
+
f"{partner_base}.weight": partner_packed.cpu(),
|
| 811 |
+
f"{partner_base}.weight_scale": partner_scale.cpu(),
|
| 812 |
+
f"{partner_base}.weight_scale_2": joint_scale_2.cpu().view(1),
|
| 813 |
+
}
|
| 814 |
+
|
| 815 |
+
logger.debug(f"Computed joint scale_2 for {key} + {partner_key}: {joint_scale_2.item():.6e}")
|
| 816 |
+
|
| 817 |
+
# Cleanup partner tensors
|
| 818 |
+
del partner_fp32, partner_fp8, partner_scale_inv
|
| 819 |
+
else:
|
| 820 |
+
# Partner not found - use standard per-tensor scale
|
| 821 |
+
logger.warning(f"Partner {partner_key} not found for {key}, using independent scale")
|
| 822 |
+
weight_scale, weight_scale_2 = compute_nvfp4_scales(
|
| 823 |
+
fp32_weight, block_size=self.nvfp4_block_size
|
| 824 |
+
)
|
| 825 |
+
else:
|
| 826 |
+
# Non-MoE weight - standard per-tensor scale computation
|
| 827 |
+
weight_scale, weight_scale_2 = compute_nvfp4_scales(
|
| 828 |
+
fp32_weight, block_size=self.nvfp4_block_size
|
| 829 |
+
)
|
| 830 |
+
|
| 831 |
+
# Step 3: Quantize to NVFP4 packed format
|
| 832 |
+
packed_weight = quantize_to_nvfp4_packed(
|
| 833 |
+
fp32_weight, weight_scale, weight_scale_2, block_size=self.nvfp4_block_size
|
| 834 |
+
)
|
| 835 |
+
|
| 836 |
+
# Build output tensor names
|
| 837 |
+
base_name = key.replace('.weight', '')
|
| 838 |
+
result = {
|
| 839 |
+
f"{base_name}.weight": packed_weight.cpu(),
|
| 840 |
+
f"{base_name}.weight_scale": weight_scale.cpu(),
|
| 841 |
+
f"{base_name}.weight_scale_2": weight_scale_2.cpu().view(1),
|
| 842 |
+
}
|
| 843 |
+
|
| 844 |
+
# Update statistics - this is a "primary" conversion (not from MoE partner cache)
|
| 845 |
+
self.stats.primary_conversions += 1
|
| 846 |
+
|
| 847 |
+
# Free GPU memory
|
| 848 |
+
del fp32_weight
|
| 849 |
+
if torch.cuda.is_available():
|
| 850 |
+
torch.cuda.empty_cache()
|
| 851 |
+
|
| 852 |
+
return result
|
| 853 |
+
|
| 854 |
+
def _compute_per_block_scale(
|
| 855 |
+
self,
|
| 856 |
+
fp32_weight: torch.Tensor,
|
| 857 |
+
weight_scale_2: torch.Tensor
|
| 858 |
+
) -> torch.Tensor:
|
| 859 |
+
"""
|
| 860 |
+
Compute per-block scale given a fixed weight_scale_2.
|
| 861 |
+
|
| 862 |
+
Args:
|
| 863 |
+
fp32_weight: FP32 weight tensor
|
| 864 |
+
weight_scale_2: Global scale (FP32 scalar)
|
| 865 |
+
|
| 866 |
+
Returns:
|
| 867 |
+
Per-block FP8 E4M3 scale tensor
|
| 868 |
+
"""
|
| 869 |
+
original_shape = fp32_weight.shape
|
| 870 |
+
N = fp32_weight.shape[-1]
|
| 871 |
+
block_size = self.nvfp4_block_size
|
| 872 |
+
|
| 873 |
+
# Pad N if not divisible by block_size
|
| 874 |
+
N_padded = ((N + block_size - 1) // block_size) * block_size
|
| 875 |
+
if N_padded != N:
|
| 876 |
+
if fp32_weight.dim() == 1:
|
| 877 |
+
padded = torch.zeros(N_padded, dtype=fp32_weight.dtype, device=fp32_weight.device)
|
| 878 |
+
padded[:N] = fp32_weight
|
| 879 |
+
fp32_padded = padded
|
| 880 |
+
else:
|
| 881 |
+
padded = torch.zeros(*original_shape[:-1], N_padded, dtype=fp32_weight.dtype, device=fp32_weight.device)
|
| 882 |
+
padded[..., :N] = fp32_weight
|
| 883 |
+
fp32_padded = padded
|
| 884 |
+
else:
|
| 885 |
+
fp32_padded = fp32_weight
|
| 886 |
+
|
| 887 |
+
# Reshape to blocks
|
| 888 |
+
if fp32_padded.dim() == 1:
|
| 889 |
+
weight_blocks = fp32_padded.view(-1, block_size)
|
| 890 |
+
else:
|
| 891 |
+
weight_blocks = fp32_padded.view(*original_shape[:-1], -1, block_size)
|
| 892 |
+
|
| 893 |
+
# Per-block amax
|
| 894 |
+
per_block_amax = weight_blocks.abs().amax(dim=-1)
|
| 895 |
+
|
| 896 |
+
# Per-block scale with the given scale_2
|
| 897 |
+
per_block_scale = per_block_amax / (FP4_MAX * weight_scale_2)
|
| 898 |
+
per_block_scale = per_block_scale.clamp(min=1e-8)
|
| 899 |
+
per_block_scale[per_block_scale < 1e-7] = 1.0
|
| 900 |
+
|
| 901 |
+
# Convert to FP8 E4M3
|
| 902 |
+
try:
|
| 903 |
+
return per_block_scale.to(torch.float8_e4m3fn)
|
| 904 |
+
except (RuntimeError, TypeError):
|
| 905 |
+
return per_block_scale.to(torch.float32)
|
| 906 |
+
|
| 907 |
+
def process_shard(self, shard_name: str) -> int:
|
| 908 |
+
"""
|
| 909 |
+
Process a single shard, converting FP8 weights to NVFP4.
|
| 910 |
+
|
| 911 |
+
Args:
|
| 912 |
+
shard_name: Name of the shard file
|
| 913 |
+
|
| 914 |
+
Returns:
|
| 915 |
+
Number of tensors processed
|
| 916 |
+
"""
|
| 917 |
+
shard_path = self.model_path / shard_name
|
| 918 |
+
|
| 919 |
+
if not shard_path.exists():
|
| 920 |
+
logger.error(f"Shard not found: {shard_path}")
|
| 921 |
+
return 0
|
| 922 |
+
|
| 923 |
+
tensors_processed = 0
|
| 924 |
+
|
| 925 |
+
with safe_open(shard_path, framework="pt", device="cpu") as f:
|
| 926 |
+
keys = list(f.keys())
|
| 927 |
+
|
| 928 |
+
# Process each tensor
|
| 929 |
+
for key in keys:
|
| 930 |
+
tensor = f.get_tensor(key)
|
| 931 |
+
self.stats.total_tensors += 1
|
| 932 |
+
self.stats.total_params += tensor.numel()
|
| 933 |
+
|
| 934 |
+
# Track layer (safely handle edge cases)
|
| 935 |
+
if '.layers.' in key:
|
| 936 |
+
parts = key.split('.layers.')
|
| 937 |
+
if len(parts) > 1 and '.' in parts[1]:
|
| 938 |
+
layer_num = parts[1].split('.')[0]
|
| 939 |
+
self.stats.layers_processed.add(layer_num)
|
| 940 |
+
|
| 941 |
+
# Skip scale_inv tensors (handled with weights)
|
| 942 |
+
if key.endswith('_scale_inv'):
|
| 943 |
+
continue
|
| 944 |
+
|
| 945 |
+
# Check if this is an FP8 weight to convert
|
| 946 |
+
if is_fp8_weight(key, tensor):
|
| 947 |
+
self.stats.fp8_tensors += 1
|
| 948 |
+
|
| 949 |
+
# Check if this weight was already processed as a partner
|
| 950 |
+
if key in self.moe_processed_cache:
|
| 951 |
+
# Use cached result from partner processing
|
| 952 |
+
# This tensor was converted when its MoE partner was processed
|
| 953 |
+
# (gate_proj and up_proj share weight_scale_2 for vLLM fused kernels)
|
| 954 |
+
cached = self.moe_processed_cache.pop(key) # Pop to free memory
|
| 955 |
+
for name, t in cached.items():
|
| 956 |
+
self.writer.add_tensor(name, t)
|
| 957 |
+
self.stats.moe_partner_conversions += 1
|
| 958 |
+
tensors_processed += 1
|
| 959 |
+
logger.debug(f"Using cached result for MoE partner: {key}")
|
| 960 |
+
continue
|
| 961 |
+
|
| 962 |
+
# Find corresponding scale_inv (with cross-shard lookup)
|
| 963 |
+
scale_inv = self._get_scale_inv(key, keys, f)
|
| 964 |
+
|
| 965 |
+
if scale_inv is not None:
|
| 966 |
+
try:
|
| 967 |
+
# Convert FP8 → NVFP4
|
| 968 |
+
converted = self._convert_fp8_to_nvfp4(key, tensor, scale_inv)
|
| 969 |
+
|
| 970 |
+
# Add to writer
|
| 971 |
+
for name, t in converted.items():
|
| 972 |
+
self.writer.add_tensor(name, t)
|
| 973 |
+
|
| 974 |
+
tensors_processed += 1
|
| 975 |
+
|
| 976 |
+
except Exception as e:
|
| 977 |
+
logger.error(f"Error converting {key}: {e}")
|
| 978 |
+
self.stats.log_error(key, str(e))
|
| 979 |
+
# Skip this tensor - preserving FP8 would create corrupt checkpoint
|
| 980 |
+
# vLLM expects NVFP4 format for all quantized weights
|
| 981 |
+
logger.warning(f"Skipping {key} due to conversion error - checkpoint may be incomplete")
|
| 982 |
+
else:
|
| 983 |
+
# Missing scale_inv - skip this tensor
|
| 984 |
+
# Preserving FP8 would create corrupt checkpoint
|
| 985 |
+
logger.warning(f"Missing scale_inv for {key} (not found in any shard) - skipping")
|
| 986 |
+
self.stats.log_warning(key, "missing_scale_inv")
|
| 987 |
+
|
| 988 |
+
elif should_preserve_tensor(key):
|
| 989 |
+
# Preserve sensitive tensors
|
| 990 |
+
self.writer.add_tensor(key, tensor)
|
| 991 |
+
self.stats.preserved_sensitive += 1
|
| 992 |
+
tensors_processed += 1
|
| 993 |
+
|
| 994 |
+
else:
|
| 995 |
+
# Copy other tensors unchanged (norms, biases, etc.)
|
| 996 |
+
self.writer.add_tensor(key, tensor)
|
| 997 |
+
self.stats.copied_unchanged += 1
|
| 998 |
+
tensors_processed += 1
|
| 999 |
+
|
| 1000 |
+
# Free memory
|
| 1001 |
+
del tensor
|
| 1002 |
+
|
| 1003 |
+
# Clear scale cache - scales from this shard won't be needed again
|
| 1004 |
+
# This prevents unbounded memory growth for large models
|
| 1005 |
+
self.scale_cache.clear()
|
| 1006 |
+
|
| 1007 |
+
# Garbage collection
|
| 1008 |
+
gc.collect()
|
| 1009 |
+
if torch.cuda.is_available():
|
| 1010 |
+
torch.cuda.empty_cache()
|
| 1011 |
+
|
| 1012 |
+
return tensors_processed
|
| 1013 |
+
|
| 1014 |
+
def generate_config(self) -> Dict[str, Any]:
|
| 1015 |
+
"""Generate vLLM-compatible config.json with modelopt NVFP4 format."""
|
| 1016 |
+
# Load original config
|
| 1017 |
+
config_path = self.model_path / "config.json"
|
| 1018 |
+
with open(config_path) as f:
|
| 1019 |
+
config = json.load(f)
|
| 1020 |
+
|
| 1021 |
+
# Update quantization config for NVFP4 using modelopt format
|
| 1022 |
+
# This format is compatible with vLLM's modelopt_fp4 quantization handler
|
| 1023 |
+
# Reference: https://huggingface.co/nvidia/Llama-3.1-8B-Instruct-NVFP4/blob/main/config.json
|
| 1024 |
+
config["quantization_config"] = {
|
| 1025 |
+
"quant_method": "modelopt",
|
| 1026 |
+
"quant_algo": "NVFP4",
|
| 1027 |
+
"config_groups": {
|
| 1028 |
+
"group_0": {
|
| 1029 |
+
"targets": ["Linear"],
|
| 1030 |
+
"weights": {
|
| 1031 |
+
"num_bits": 4,
|
| 1032 |
+
"type": "float",
|
| 1033 |
+
"group_size": self.nvfp4_block_size,
|
| 1034 |
+
"dynamic": False
|
| 1035 |
+
},
|
| 1036 |
+
"input_activations": None
|
| 1037 |
+
}
|
| 1038 |
+
},
|
| 1039 |
+
"ignore": [
|
| 1040 |
+
"lm_head",
|
| 1041 |
+
"model.embed_tokens",
|
| 1042 |
+
"re:.*\\.mlp\\.gate$",
|
| 1043 |
+
"re:.*layernorm.*",
|
| 1044 |
+
"re:.*_norm.*",
|
| 1045 |
+
"re:.*indexer\\.weights_proj.*",
|
| 1046 |
+
"re:.*indexer\\.k_norm.*"
|
| 1047 |
+
],
|
| 1048 |
+
"kv_cache_scheme": None,
|
| 1049 |
+
"original_format": {
|
| 1050 |
+
"quant_method": "fp8",
|
| 1051 |
+
"fmt": "e4m3",
|
| 1052 |
+
"scale_fmt": "ue8m0",
|
| 1053 |
+
"weight_block_size": [self.fp8_block_size, self.fp8_block_size]
|
| 1054 |
+
},
|
| 1055 |
+
"conversion_info": {
|
| 1056 |
+
"source": "fp8_e4m3",
|
| 1057 |
+
"target": "nvfp4_e2m1",
|
| 1058 |
+
"intermediate": "fp32",
|
| 1059 |
+
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S")
|
| 1060 |
+
}
|
| 1061 |
+
}
|
| 1062 |
+
|
| 1063 |
+
return config
|
| 1064 |
+
|
| 1065 |
+
def copy_auxiliary_files(self):
|
| 1066 |
+
"""Copy tokenizer and other auxiliary files."""
|
| 1067 |
+
aux_files = [
|
| 1068 |
+
"tokenizer.json",
|
| 1069 |
+
"tokenizer_config.json",
|
| 1070 |
+
"special_tokens_map.json",
|
| 1071 |
+
"vocab.json",
|
| 1072 |
+
"merges.txt",
|
| 1073 |
+
"tokenizer.model",
|
| 1074 |
+
"generation_config.json"
|
| 1075 |
+
]
|
| 1076 |
+
|
| 1077 |
+
for filename in aux_files:
|
| 1078 |
+
src = self.model_path / filename
|
| 1079 |
+
if src.exists():
|
| 1080 |
+
dst = self.output_dir / filename
|
| 1081 |
+
shutil.copy2(src, dst)
|
| 1082 |
+
logger.info(f"Copied {filename}")
|
| 1083 |
+
|
| 1084 |
+
# Copy encoding folder if exists (V3.2 specific)
|
| 1085 |
+
encoding_src = self.model_path / "encoding"
|
| 1086 |
+
if encoding_src.exists() and encoding_src.is_dir():
|
| 1087 |
+
encoding_dst = self.output_dir / "encoding"
|
| 1088 |
+
shutil.copytree(encoding_src, encoding_dst, dirs_exist_ok=True)
|
| 1089 |
+
logger.info("Copied encoding folder")
|
| 1090 |
+
|
| 1091 |
+
def generate_report(self) -> Dict[str, Any]:
|
| 1092 |
+
"""Generate conversion report."""
|
| 1093 |
+
elapsed = self.stats.end_time - self.stats.start_time
|
| 1094 |
+
|
| 1095 |
+
report = {
|
| 1096 |
+
"conversion_summary": {
|
| 1097 |
+
"source_format": "FP8 E4M3 (DeepSeek block-quantized)",
|
| 1098 |
+
"target_format": "NVFP4 E2M1 (16-element blocks)",
|
| 1099 |
+
"intermediate_format": "FP32",
|
| 1100 |
+
"model": str(self.model_path),
|
| 1101 |
+
"output": str(self.output_dir),
|
| 1102 |
+
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S"),
|
| 1103 |
+
"elapsed_seconds": round(elapsed, 2),
|
| 1104 |
+
"elapsed_minutes": round(elapsed / 60, 2)
|
| 1105 |
+
},
|
| 1106 |
+
"tensor_statistics": {
|
| 1107 |
+
"total_tensors": self.stats.total_tensors,
|
| 1108 |
+
"fp8_tensors_found": self.stats.fp8_tensors,
|
| 1109 |
+
"primary_conversions": self.stats.primary_conversions,
|
| 1110 |
+
"moe_partner_conversions": self.stats.moe_partner_conversions,
|
| 1111 |
+
"total_nvfp4_tensors": self.stats.total_nvfp4_tensors,
|
| 1112 |
+
"preserved_sensitive": self.stats.preserved_sensitive,
|
| 1113 |
+
"copied_unchanged": self.stats.copied_unchanged,
|
| 1114 |
+
"total_parameters": self.stats.total_params
|
| 1115 |
+
},
|
| 1116 |
+
"layer_statistics": {
|
| 1117 |
+
"layers_processed": len(self.stats.layers_processed),
|
| 1118 |
+
"layer_ids": sorted(self.stats.layers_processed, key=lambda x: int(x) if x.isdigit() else 0)
|
| 1119 |
+
},
|
| 1120 |
+
"output_statistics": {
|
| 1121 |
+
"output_shards": self.writer.shard_idx - 1,
|
| 1122 |
+
"output_size_gb": round(self.writer.total_bytes / 1e9, 2)
|
| 1123 |
+
},
|
| 1124 |
+
"issues": {
|
| 1125 |
+
"warnings": self.stats.warnings[:20],
|
| 1126 |
+
"errors": self.stats.errors[:20],
|
| 1127 |
+
"total_warnings": len(self.stats.warnings),
|
| 1128 |
+
"total_errors": len(self.stats.errors)
|
| 1129 |
+
}
|
| 1130 |
+
}
|
| 1131 |
+
|
| 1132 |
+
# Log truncation if applicable
|
| 1133 |
+
if len(self.stats.warnings) > 20:
|
| 1134 |
+
logger.info(f"Report truncated: showing 20 of {len(self.stats.warnings)} warnings")
|
| 1135 |
+
if len(self.stats.errors) > 20:
|
| 1136 |
+
logger.info(f"Report truncated: showing 20 of {len(self.stats.errors)} errors")
|
| 1137 |
+
|
| 1138 |
+
return report
|
| 1139 |
+
|
| 1140 |
+
def run(self) -> Dict[str, Any]:
|
| 1141 |
+
"""
|
| 1142 |
+
Run the full conversion process.
|
| 1143 |
+
|
| 1144 |
+
Returns:
|
| 1145 |
+
Conversion report dictionary
|
| 1146 |
+
"""
|
| 1147 |
+
logger.info("=" * 70)
|
| 1148 |
+
logger.info("Starting FP8 to NVFP4 Streaming Conversion")
|
| 1149 |
+
logger.info("=" * 70)
|
| 1150 |
+
|
| 1151 |
+
self.stats.start_time = time.time()
|
| 1152 |
+
|
| 1153 |
+
# Get sorted list of shards
|
| 1154 |
+
shard_names = sorted(self.shard_to_keys.keys())
|
| 1155 |
+
total_shards = len(shard_names)
|
| 1156 |
+
|
| 1157 |
+
logger.info(f"Processing {total_shards} shards...")
|
| 1158 |
+
|
| 1159 |
+
# Process each shard
|
| 1160 |
+
for idx, shard_name in enumerate(shard_names, 1):
|
| 1161 |
+
logger.info(f"\n[{idx}/{total_shards}] Processing {shard_name}")
|
| 1162 |
+
tensors = self.process_shard(shard_name)
|
| 1163 |
+
logger.info(f" Processed {tensors} tensors")
|
| 1164 |
+
|
| 1165 |
+
# Check for orphaned MoE cache entries (partner never encountered)
|
| 1166 |
+
if self.moe_processed_cache:
|
| 1167 |
+
orphan_count = len(self.moe_processed_cache)
|
| 1168 |
+
logger.warning(f"Found {orphan_count} orphaned MoE cache entries (partner weight never processed):")
|
| 1169 |
+
for key in list(self.moe_processed_cache.keys())[:5]:
|
| 1170 |
+
logger.warning(f" - {key}")
|
| 1171 |
+
if orphan_count > 5:
|
| 1172 |
+
logger.warning(f" ... and {orphan_count - 5} more")
|
| 1173 |
+
self.moe_processed_cache.clear()
|
| 1174 |
+
|
| 1175 |
+
# Finalize output
|
| 1176 |
+
logger.info("\nFinalizing output...")
|
| 1177 |
+
self.writer.finalize()
|
| 1178 |
+
|
| 1179 |
+
# Generate and save config
|
| 1180 |
+
logger.info("Generating config.json...")
|
| 1181 |
+
config = self.generate_config()
|
| 1182 |
+
config_path = self.output_dir / "config.json"
|
| 1183 |
+
with open(config_path, 'w') as f:
|
| 1184 |
+
json.dump(config, f, indent=2)
|
| 1185 |
+
|
| 1186 |
+
# Copy auxiliary files
|
| 1187 |
+
logger.info("Copying auxiliary files...")
|
| 1188 |
+
self.copy_auxiliary_files()
|
| 1189 |
+
|
| 1190 |
+
self.stats.end_time = time.time()
|
| 1191 |
+
|
| 1192 |
+
# Generate report
|
| 1193 |
+
report = self.generate_report()
|
| 1194 |
+
|
| 1195 |
+
# Save report
|
| 1196 |
+
report_path = self.output_dir / "conversion_report.json"
|
| 1197 |
+
with open(report_path, 'w') as f:
|
| 1198 |
+
json.dump(report, f, indent=2)
|
| 1199 |
+
logger.info(f"Saved conversion report: {report_path}")
|
| 1200 |
+
|
| 1201 |
+
# Print summary
|
| 1202 |
+
elapsed = self.stats.end_time - self.stats.start_time
|
| 1203 |
+
logger.info("\n" + "=" * 70)
|
| 1204 |
+
logger.info("Conversion Complete!")
|
| 1205 |
+
logger.info(f" Time: {elapsed / 60:.1f} minutes")
|
| 1206 |
+
logger.info(f" FP8 tensors found: {self.stats.fp8_tensors}")
|
| 1207 |
+
logger.info(f" Primary conversions: {self.stats.primary_conversions}")
|
| 1208 |
+
logger.info(f" MoE partner conversions: {self.stats.moe_partner_conversions}")
|
| 1209 |
+
logger.info(f" Total NVFP4 tensors: {self.stats.total_nvfp4_tensors}")
|
| 1210 |
+
logger.info(f" Tensors preserved: {self.stats.preserved_sensitive}")
|
| 1211 |
+
logger.info(f" Output shards: {self.writer.shard_idx - 1}")
|
| 1212 |
+
logger.info(f" Output size: {self.writer.total_bytes / 1e9:.2f} GB")
|
| 1213 |
+
logger.info(f" Output: {self.output_dir}")
|
| 1214 |
+
logger.info("=" * 70)
|
| 1215 |
+
|
| 1216 |
+
return report
|
| 1217 |
+
|
| 1218 |
+
|
| 1219 |
+
# ============================================================================
|
| 1220 |
+
# Main Entry Point
|
| 1221 |
+
# ============================================================================
|
| 1222 |
+
|
| 1223 |
+
def main():
|
| 1224 |
+
import argparse
|
| 1225 |
+
|
| 1226 |
+
parser = argparse.ArgumentParser(
|
| 1227 |
+
description="Streaming FP8 to NVFP4 converter for DeepSeek V3.2"
|
| 1228 |
+
)
|
| 1229 |
+
parser.add_argument(
|
| 1230 |
+
"model_path",
|
| 1231 |
+
help="Path to FP8 model (e.g., /mnt/models/deepseek-v3.2)"
|
| 1232 |
+
)
|
| 1233 |
+
parser.add_argument(
|
| 1234 |
+
"--output_dir",
|
| 1235 |
+
default=None,
|
| 1236 |
+
help="Output directory (default: {model_path}-nvfp4)"
|
| 1237 |
+
)
|
| 1238 |
+
parser.add_argument(
|
| 1239 |
+
"--device",
|
| 1240 |
+
default="cuda",
|
| 1241 |
+
choices=["cuda", "cpu"],
|
| 1242 |
+
help="Device for computation (default: cuda)"
|
| 1243 |
+
)
|
| 1244 |
+
parser.add_argument(
|
| 1245 |
+
"--max_shard_size",
|
| 1246 |
+
default="5GB",
|
| 1247 |
+
help="Maximum output shard size (default: 5GB)"
|
| 1248 |
+
)
|
| 1249 |
+
parser.add_argument(
|
| 1250 |
+
"--fp8_block_size",
|
| 1251 |
+
type=int,
|
| 1252 |
+
default=128,
|
| 1253 |
+
help="FP8 quantization block size (default: 128)"
|
| 1254 |
+
)
|
| 1255 |
+
parser.add_argument(
|
| 1256 |
+
"--nvfp4_block_size",
|
| 1257 |
+
type=int,
|
| 1258 |
+
default=16,
|
| 1259 |
+
help="NVFP4 quantization block size (default: 16)"
|
| 1260 |
+
)
|
| 1261 |
+
|
| 1262 |
+
args = parser.parse_args()
|
| 1263 |
+
|
| 1264 |
+
# Default output directory
|
| 1265 |
+
if args.output_dir is None:
|
| 1266 |
+
args.output_dir = f"{args.model_path.rstrip('/')}-nvfp4"
|
| 1267 |
+
|
| 1268 |
+
# Set up logging
|
| 1269 |
+
logging.basicConfig(
|
| 1270 |
+
level=logging.INFO,
|
| 1271 |
+
format="%(asctime)s - %(levelname)s - %(message)s"
|
| 1272 |
+
)
|
| 1273 |
+
|
| 1274 |
+
# Create and run converter
|
| 1275 |
+
converter = FP8ToNVFP4StreamingConverter(
|
| 1276 |
+
model_path=args.model_path,
|
| 1277 |
+
output_dir=args.output_dir,
|
| 1278 |
+
device=args.device,
|
| 1279 |
+
max_shard_size=args.max_shard_size,
|
| 1280 |
+
fp8_block_size=args.fp8_block_size,
|
| 1281 |
+
nvfp4_block_size=args.nvfp4_block_size
|
| 1282 |
+
)
|
| 1283 |
+
|
| 1284 |
+
report = converter.run()
|
| 1285 |
+
|
| 1286 |
+
return report
|
| 1287 |
+
|
| 1288 |
+
|
| 1289 |
+
if __name__ == "__main__":
|
| 1290 |
+
main()
|