Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,131 +1,103 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
library_name: transformers
|
| 4 |
-
base_model:
|
| 5 |
-
- deepseek-ai/DeepSeek-V3.2
|
| 6 |
-
base_model_relation: quantized
|
| 7 |
-
tags:
|
| 8 |
-
- nvfp4
|
| 9 |
-
- fp4
|
| 10 |
-
- quantized
|
| 11 |
-
- deepseek
|
| 12 |
-
- moe
|
| 13 |
-
---
|
| 14 |
-
|
| 15 |
# DeepSeek-V3.2-NVFP4
|
| 16 |
|
| 17 |
-
|
|
|
|
|
|
|
| 18 |
|
| 19 |
## Model Description
|
| 20 |
|
| 21 |
-
DeepSeek-V3.2 is a 685B parameter Mixture-of-Experts (MoE) model with 37B activated parameters per token. This quantized version converts the original FP8 weights to NVFP4 format for
|
| 22 |
|
| 23 |
### Quantization Details
|
| 24 |
|
| 25 |
| Property | Value |
|
| 26 |
|----------|-------|
|
| 27 |
-
|
|
| 28 |
-
|
|
| 29 |
-
|
|
| 30 |
-
|
|
| 31 |
-
|
|
| 32 |
-
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
### Preserved Components (Not Quantized)
|
| 35 |
|
| 36 |
The following sensitive components are preserved in their original precision to maintain model quality:
|
| 37 |
|
| 38 |
-
- Embeddings (
|
| 39 |
-
- Output head (
|
| 40 |
-
- MoE router gates (
|
| 41 |
- Layer norms and RMS norms
|
| 42 |
-
- DSA indexer weights (
|
| 43 |
-
|
| 44 |
-
## Hardware Requirements
|
| 45 |
|
| 46 |
-
|
| 47 |
-
- **Minimum VRAM**: ~200GB (with tensor parallelism across 2+ GPUs)
|
| 48 |
-
- **Tested on**: 2x NVIDIA RTX Pro 6000 Blackwell (192GB total)
|
| 49 |
|
| 50 |
-
|
| 51 |
|
| 52 |
-
|
| 53 |
|
| 54 |
-
###
|
| 55 |
|
| 56 |
```bash
|
| 57 |
-
|
| 58 |
-
vllm serve eousphoros/DeepSeek-V3.2-NVFP4 \
|
| 59 |
-
--tensor-parallel-size 2 \
|
| 60 |
-
--trust-remote-code \
|
| 61 |
-
--max-model-len 4096
|
| 62 |
-
```
|
| 63 |
|
| 64 |
-
|
|
|
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
| 74 |
```
|
| 75 |
|
| 76 |
-
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
encode_config = dict(thinking_mode="thinking", drop_thinking=True, add_default_bos_token=True)
|
| 87 |
-
prompt = encode_messages(messages, **encode_config)
|
| 88 |
-
```
|
| 89 |
|
| 90 |
-
|
| 91 |
|
| 92 |
-
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|------|-------------|
|
| 96 |
-
| `model.py` | DeepSeek V3.2 model with MLA + sparse attention |
|
| 97 |
-
| `generate.py` | Text generation with HF checkpoint loading |
|
| 98 |
-
| `kernel.py` | FP8 runtime kernels (tilelang CUDA + CPU fallbacks) |
|
| 99 |
-
| `nvfp4_kernel.py` | NVFP4 GEMM via dequantization |
|
| 100 |
-
| `encoding_dsv32.py` | DeepSeek V3.2 chat template encoding |
|
| 101 |
|
| 102 |
-
###
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
-
|
| 105 |
-
|
|
|
|
|
|
|
| 106 |
|
| 107 |
-
|
| 108 |
-
python generate.py \
|
| 109 |
-
--ckpt-path /mnt/models/deepseek-v3.2-nvfp4 \
|
| 110 |
-
--config ../config.json \
|
| 111 |
-
--interactive \
|
| 112 |
-
--max-new-tokens 200
|
| 113 |
-
```
|
| 114 |
|
| 115 |
-
|
| 116 |
|
| 117 |
-
|
| 118 |
-
-
|
| 119 |
-
-
|
|
|
|
| 120 |
|
| 121 |
-
|
| 122 |
-
|
|
|
|
|
|
|
| 123 |
|
| 124 |
-
|
| 125 |
-
y, scale = act_quant(x) # FP8 activation quantization
|
| 126 |
-
output = fp8_gemm(a, a_s, b, b_s) # Block-scaled FP8 matmul
|
| 127 |
-
scores = fp8_index(q, q_s, k, k_s) # Sparse attention indexing
|
| 128 |
-
```
|
| 129 |
|
| 130 |
## Architecture Notes
|
| 131 |
|
|
@@ -134,51 +106,64 @@ scores = fp8_index(q, q_s, k, k_s) # Sparse attention indexing
|
|
| 134 |
- FP8 KV cache for memory efficiency
|
| 135 |
|
| 136 |
### Sparse Attention (DSA)
|
| 137 |
-
-
|
| 138 |
- Top-k sparse pattern for efficient long-context
|
| 139 |
|
| 140 |
-
###
|
| 141 |
-
-
|
| 142 |
-
-
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
## Conversion Process
|
| 145 |
|
| 146 |
-
This model was converted using a custom FP8
|
| 147 |
|
| 148 |
-
1.
|
| 149 |
-
2.
|
| 150 |
- Global scale: `scale_2 = amax / (6.0 * 448.0)`
|
| 151 |
- Per-block scale: `scale = block_amax / (6.0 * scale_2)`
|
| 152 |
-
3.
|
| 153 |
-
4.
|
| 154 |
-
|
| 155 |
-
### MoE Joint Scale Handling
|
| 156 |
|
| 157 |
-
For vLLM's fused MoE kernels, `gate_proj` (w1) and `up_proj` (w3) within each expert must share the same `weight_scale_2`. The converter handles this by
|
| 158 |
|
| 159 |
-
|
| 160 |
-
2. Loading both weights when either is encountered
|
| 161 |
-
3. Computing joint `amax = max(gate_amax, up_amax)`
|
| 162 |
-
4. Using the joint amax for shared `weight_scale_2`
|
| 163 |
-
5. Computing independent per-block `weight_scale` for each tensor
|
| 164 |
-
|
| 165 |
-
This ensures fused GEMM compatibility while preserving per-block precision.
|
| 166 |
|
| 167 |
### Tensor Format
|
| 168 |
|
| 169 |
For each quantized weight:
|
| 170 |
-
- `*.weight`: Packed uint8
|
| 171 |
-
- `*.weight_scale`: FP8 E4M3 per-block scale
|
| 172 |
-
- `*.weight_scale_2`: FP32 global scale
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
|
| 174 |
## Acknowledgments
|
| 175 |
|
| 176 |
- Original model by [DeepSeek AI](https://huggingface.co/deepseek-ai)
|
| 177 |
-
- NVFP4 format based on
|
|
|
|
|
|
|
| 178 |
|
| 179 |
## License
|
| 180 |
|
| 181 |
-
This model inherits the
|
|
|
|
|
|
|
| 182 |
|
| 183 |
## Citation
|
| 184 |
|
|
@@ -190,7 +175,10 @@ This model inherits the [MIT License](LICENSE) from the original DeepSeek-V3.2 m
|
|
| 190 |
}
|
| 191 |
```
|
| 192 |
|
|
|
|
|
|
|
| 193 |
## Contact
|
| 194 |
|
| 195 |
-
For issues with the quantized version, please open an issue
|
| 196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# DeepSeek-V3.2-NVFP4
|
| 2 |
|
| 3 |
+
NVFP4 (4-bit floating point) quantized version of DeepSeek-V3.2 with reference CPU inference implementation.
|
| 4 |
+
|
| 5 |
+
---
|
| 6 |
|
| 7 |
## Model Description
|
| 8 |
|
| 9 |
+
DeepSeek-V3.2 is a 685B parameter Mixture-of-Experts (MoE) model with 37B activated parameters per token. This quantized version converts the original FP8 weights to NVFP4 format for 16x compression compared to FP32.
|
| 10 |
|
| 11 |
### Quantization Details
|
| 12 |
|
| 13 |
| Property | Value |
|
| 14 |
|----------|-------|
|
| 15 |
+
| Source Format | FP8 E4M3 (128x128 block scales) |
|
| 16 |
+
| Target Format | NVFP4 E2M1 (16-element block scales) |
|
| 17 |
+
| Quantization Method | Custom FP8 to NVFP4 converter |
|
| 18 |
+
| Original Size | Approximately 642 GB (FP8) |
|
| 19 |
+
| Quantized Size | 391 GB (NVFP4) |
|
| 20 |
+
| Compression | 16x vs FP32 |
|
| 21 |
+
| Conversion Errors | 0 |
|
| 22 |
+
| Weights Converted | 30,769 |
|
| 23 |
|
| 24 |
### Preserved Components (Not Quantized)
|
| 25 |
|
| 26 |
The following sensitive components are preserved in their original precision to maintain model quality:
|
| 27 |
|
| 28 |
+
- Embeddings (model.embed_tokens)
|
| 29 |
+
- Output head (lm_head)
|
| 30 |
+
- MoE router gates (*.mlp.gate)
|
| 31 |
- Layer norms and RMS norms
|
| 32 |
+
- DSA indexer weights (indexer.weights_proj, indexer.k_norm)
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
---
|
|
|
|
|
|
|
| 35 |
|
| 36 |
+
## Reference Implementation
|
| 37 |
|
| 38 |
+
The `inference/` directory contains a functional reference implementation for CPU inference:
|
| 39 |
|
| 40 |
+
### Quick Start
|
| 41 |
|
| 42 |
```bash
|
| 43 |
+
cd inference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
+
# Run unit tests (under 30 seconds)
|
| 46 |
+
python test_nvfp4_kernel.py
|
| 47 |
|
| 48 |
+
# Run forward pass test (10-15 minutes)
|
| 49 |
+
python test_forward_pass.py
|
| 50 |
|
| 51 |
+
# Interactive inference (slow on CPU: 2-5 min/token)
|
| 52 |
+
python generate.py \
|
| 53 |
+
--ckpt-path /mnt/models/deepseek-v3.2-nvfp4 \
|
| 54 |
+
--config config_671B_nvfp4.json \
|
| 55 |
+
--interactive \
|
| 56 |
+
--max-new-tokens 10
|
| 57 |
```
|
| 58 |
|
| 59 |
+
### Implementation Details
|
| 60 |
|
| 61 |
+
| File | Description |
|
| 62 |
+
|------|-------------|
|
| 63 |
+
| model.py | DeepSeek V3.2 architecture with NVFP4 support |
|
| 64 |
+
| generate.py | Text generation and inference pipeline |
|
| 65 |
+
| nvfp4_kernel.py | NVFP4 CPU dequantization kernels |
|
| 66 |
+
| kernel.py | FP8 runtime kernels with CPU fallbacks |
|
| 67 |
+
| encoding_dsv32.py | DeepSeek V3.2 message encoding |
|
| 68 |
+
| test_*.py | Comprehensive test suite |
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
+
See `inference/README.md` for complete documentation.
|
| 71 |
|
| 72 |
+
---
|
| 73 |
|
| 74 |
+
## Hardware Requirements
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
+
### CPU Inference (Reference Implementation)
|
| 77 |
+
- RAM: Minimum 400GB
|
| 78 |
+
- CPU: Multi-core recommended
|
| 79 |
+
- Performance: Approximately 2-5 minutes per token
|
| 80 |
|
| 81 |
+
### GPU Inference (Future)
|
| 82 |
+
- Requires completion of Triton NVFP4 kernels
|
| 83 |
+
- Target: NVIDIA Blackwell GPUs (SM100, SM120)
|
| 84 |
+
- Expected speedup: 100-1000x vs CPU
|
| 85 |
|
| 86 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
+
## NVFP4 Format Specification
|
| 89 |
|
| 90 |
+
### E2M1 Floating Point
|
| 91 |
+
- 4 bits per value (16 representable values)
|
| 92 |
+
- Values: {0, ±0.5, ±1, ±1.5, ±2, ±3, ±4, ±6}
|
| 93 |
+
- Storage: 2 FP4 values packed per uint8 byte
|
| 94 |
|
| 95 |
+
### Dual-Level Scaling
|
| 96 |
+
- Per-block scale: FP8 E4M3, 16 elements per block
|
| 97 |
+
- Global scale: FP32 scalar
|
| 98 |
+
- Formula: `value = packed * weight_scale * weight_scale_2`
|
| 99 |
|
| 100 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
## Architecture Notes
|
| 103 |
|
|
|
|
| 106 |
- FP8 KV cache for memory efficiency
|
| 107 |
|
| 108 |
### Sparse Attention (DSA)
|
| 109 |
+
- Indexer class computes attention pattern selection
|
| 110 |
- Top-k sparse pattern for efficient long-context
|
| 111 |
|
| 112 |
+
### Mixture of Experts (MoE)
|
| 113 |
+
- 256 routed experts per layer
|
| 114 |
+
- 1 shared expert per layer
|
| 115 |
+
- Top-8 routing with load balancing
|
| 116 |
+
|
| 117 |
+
---
|
| 118 |
|
| 119 |
## Conversion Process
|
| 120 |
|
| 121 |
+
This model was converted using a custom FP8 to NVFP4 streaming converter:
|
| 122 |
|
| 123 |
+
1. Dequantize: FP8 E4M3 weights to FP32 (using 128x128 block inverse scales)
|
| 124 |
+
2. Compute NVFP4 scales:
|
| 125 |
- Global scale: `scale_2 = amax / (6.0 * 448.0)`
|
| 126 |
- Per-block scale: `scale = block_amax / (6.0 * scale_2)`
|
| 127 |
+
3. Quantize: FP32 to NVFP4 E2M1 (16-element blocks)
|
| 128 |
+
4. Pack: Two FP4 values per uint8 byte
|
|
|
|
|
|
|
| 129 |
|
| 130 |
+
Note: For vLLM's fused MoE kernels, `gate_proj` (w1) and `up_proj` (w3) within each expert must share the same `weight_scale_2`. The converter handles this by computing a joint `amax` across both tensors to derive the shared global scale.
|
| 131 |
|
| 132 |
+
See `tools/fp8_to_nvfp4_streaming.py` for the complete conversion implementation.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
### Tensor Format
|
| 135 |
|
| 136 |
For each quantized weight:
|
| 137 |
+
- `*.weight`: Packed uint8 [M, N/2]
|
| 138 |
+
- `*.weight_scale`: FP8 E4M3 per-block scale [M, N/16]
|
| 139 |
+
- `*.weight_scale_2`: FP32 global scale [1]
|
| 140 |
+
|
| 141 |
+
---
|
| 142 |
+
|
| 143 |
+
## Validation
|
| 144 |
+
|
| 145 |
+
Comprehensive testing completed:
|
| 146 |
+
- NVFP4 kernel unit tests: PASS
|
| 147 |
+
- Model loading: PASS (73 shards, 391GB)
|
| 148 |
+
- Forward pass: PASS (valid outputs, no NaN/Inf)
|
| 149 |
+
- Output quality: Coherent, semantically correct responses
|
| 150 |
+
|
| 151 |
+
See `conversion_report.json` for detailed conversion statistics.
|
| 152 |
+
|
| 153 |
+
---
|
| 154 |
|
| 155 |
## Acknowledgments
|
| 156 |
|
| 157 |
- Original model by [DeepSeek AI](https://huggingface.co/deepseek-ai)
|
| 158 |
+
- NVFP4 format based on NVIDIA TensorRT Model Optimizer
|
| 159 |
+
|
| 160 |
+
---
|
| 161 |
|
| 162 |
## License
|
| 163 |
|
| 164 |
+
This model inherits the MIT License from the original DeepSeek-V3.2 model.
|
| 165 |
+
|
| 166 |
+
---
|
| 167 |
|
| 168 |
## Citation
|
| 169 |
|
|
|
|
| 175 |
}
|
| 176 |
```
|
| 177 |
|
| 178 |
+
---
|
| 179 |
+
|
| 180 |
## Contact
|
| 181 |
|
| 182 |
+
For issues with the quantized version or reference implementation, please open an issue.
|
| 183 |
+
|
| 184 |
+
For questions about the original model, contact DeepSeek AI.
|