import os import re import json from argparse import ArgumentParser from typing import List import torch import torch.distributed as dist from transformers import AutoTokenizer from safetensors.torch import load_file from model import Transformer, ModelArgs from encoding_dsv32 import encode_messages, eos_token, thinking_end_token def hf_to_deepseek_key(hf_key: str) -> str: """Convert HuggingFace checkpoint key to DeepSeek model key.""" key = hf_key # Strip "model." prefix if key.startswith("model."): key = key[6:] # Embedding key = key.replace("embed_tokens.", "embed.") # Final norm and head key = key.replace("lm_head.", "head.") # Attention projections key = key.replace(".self_attn.", ".attn.") key = key.replace(".q_a_proj.", ".wq_a.") key = key.replace(".q_b_proj.", ".wq_b.") key = key.replace(".q_a_layernorm.", ".q_norm.") key = key.replace(".kv_a_proj_with_mqa.", ".wkv_a.") key = key.replace(".kv_b_proj.", ".wkv_b.") key = key.replace(".kv_a_layernorm.", ".kv_norm.") key = key.replace(".o_proj.", ".wo.") # Indexer attention key = key.replace(".indexer.wk.", ".indexer.wk.") key = key.replace(".indexer.wq_b.", ".indexer.wq_b.") key = key.replace(".indexer.k_norm.", ".indexer.k_norm.") key = key.replace(".indexer.weights_proj.", ".indexer.weights_proj.") # Layer norms key = key.replace(".input_layernorm.", ".attn_norm.") key = key.replace(".post_attention_layernorm.", ".ffn_norm.") # MLP (dense layers) key = key.replace(".mlp.gate_proj.", ".ffn.w1.") key = key.replace(".mlp.up_proj.", ".ffn.w3.") key = key.replace(".mlp.down_proj.", ".ffn.w2.") # MoE (uses "ffn" module name in model, not "moe") key = key.replace(".mlp.shared_experts.gate_proj.", ".ffn.shared_experts.w1.") key = key.replace(".mlp.shared_experts.up_proj.", ".ffn.shared_experts.w3.") key = key.replace(".mlp.shared_experts.down_proj.", ".ffn.shared_experts.w2.") key = key.replace(".mlp.experts.", ".ffn.experts.") key = key.replace(".mlp.gate.weight", ".ffn.gate.weight") key = key.replace(".mlp.gate.e_score_correction_bias", ".ffn.gate.bias") # Expert weights key = re.sub(r"\.ffn\.experts\.(\d+)\.gate_proj\.", r".ffn.experts.\1.w1.", key) key = re.sub(r"\.ffn\.experts\.(\d+)\.up_proj\.", r".ffn.experts.\1.w3.", key) key = re.sub(r"\.ffn\.experts\.(\d+)\.down_proj\.", r".ffn.experts.\1.w2.", key) return key def load_sharded_model(model, ckpt_path): """Load model weights from sharded safetensors files using index.""" index_path = os.path.join(ckpt_path, "model.safetensors.index.json") if os.path.exists(index_path): # Load from sharded format using index with open(index_path) as f: index = json.load(f) weight_map = index["weight_map"] # Get unique shard files shard_files = sorted(set(weight_map.values())) # Check memory before loading try: import psutil mem = psutil.virtual_memory() print(f"Memory: {mem.available / 1e9:.1f}GB available / {mem.total / 1e9:.1f}GB total ({mem.percent:.1f}% used)") except ImportError: pass # psutil not required print(f"Loading {len(shard_files)} shards (streaming to GPU)...") model_state = model.state_dict() loaded_keys = set() for i, shard_file in enumerate(shard_files): shard_path = os.path.join(ckpt_path, shard_file) print(f" [{i+1}/{len(shard_files)}] {shard_file}", end="", flush=True) shard_dict = load_file(shard_path, device="cpu") # Copy matching tensors to model (with key mapping) matched = 0 for hf_key, tensor in shard_dict.items(): key = hf_to_deepseek_key(hf_key) if key in model_state: model_state[key].copy_(tensor) loaded_keys.add(key) matched += 1 print(f" ({matched} tensors)") missing = set(model_state.keys()) - loaded_keys if missing: print(f"Warning: {len(missing)} missing keys in checkpoint") for k in list(missing)[:5]: print(f" - {k}") # Reattach FP8 scales after loading link_fp8_scales(model) else: # Fall back to single file single_file = os.path.join(ckpt_path, "model0-mp1.safetensors") print(f"Loading single file: {single_file}") state_dict = load_file(single_file, device="cuda") model.load_state_dict(state_dict, strict=False) def sample(logits, temperature: float = 1.0): """ Samples a token from the logits using temperature scaling. Args: logits (torch.Tensor): The logits tensor for token predictions. temperature (float, optional): Temperature for scaling logits. Defaults to 1.0. Returns: torch.Tensor: The sampled token. """ logits = logits / max(temperature, 1e-5) probs = torch.softmax(logits, dim=-1, dtype=torch.float32) return probs.div_(torch.empty_like(probs).exponential_(1)).argmax(dim=-1) @torch.inference_mode() def generate( model: Transformer, prompt_tokens: List[List[int]], max_new_tokens: int, eos_id: int, temperature: float = 1.0 ) -> List[List[int]]: """ Generates new tokens based on the given prompt tokens using the specified model. Args: model (Transformer): The transformer model used for token generation. prompt_tokens (List[List[int]]): A list of lists containing the prompt tokens for each sequence. max_new_tokens (int): The maximum number of new tokens to generate. eos_id (int): The end-of-sequence token ID. temperature (float, optional): The temperature value for sampling. Defaults to 1.0. Returns: List[List[int]]: A list of lists containing the generated tokens for each sequence. """ prompt_lens = [len(t) for t in prompt_tokens] assert max(prompt_lens) <= model.max_seq_len, f"Prompt length exceeds model maximum sequence length (max_seq_len={model.max_seq_len})" total_len = min(model.max_seq_len, max_new_tokens + max(prompt_lens)) device = next(model.parameters()).device tokens = torch.full((len(prompt_tokens), total_len), -1, dtype=torch.long, device=device) for i, t in enumerate(prompt_tokens): tokens[i, :len(t)] = torch.tensor(t, dtype=torch.long, device=device) prev_pos = 0 finished = torch.tensor([False] * len(prompt_tokens), device=device) prompt_mask = tokens != -1 for cur_pos in range(min(prompt_lens), total_len): logits = model.forward(tokens[:, prev_pos:cur_pos], prev_pos) if temperature > 0: next_token = sample(logits, temperature) else: next_token = logits.argmax(dim=-1) next_token = torch.where(prompt_mask[:, cur_pos], tokens[:, cur_pos], next_token) tokens[:, cur_pos] = next_token finished |= torch.logical_and(~prompt_mask[:, cur_pos], next_token == eos_id) prev_pos = cur_pos if finished.all(): break completion_tokens = [] for i, toks in enumerate(tokens.tolist()): toks = toks[prompt_lens[i]:prompt_lens[i]+max_new_tokens] if eos_id in toks: toks = toks[:toks.index(eos_id)] completion_tokens.append(toks) return completion_tokens def clear_system_cache(): """ Clear system cache to free memory (optional optimization). This can help with large models by freeing cached memory. Silently attempts cache clearing; failures are ignored. """ try: import subprocess subprocess.run( ['sudo', 'sh', '-c', 'echo 3 > /proc/sys/vm/drop_caches'], check=False, capture_output=True, text=True, timeout=5 ) except Exception: # Silently ignore if cache clearing fails pass def link_fp8_scales(model): """ Link FP8 scales to weight tensors after loading. After load_state_dict(), FP8 weights lose their .scale attribute. This function reattaches them. """ from model import Linear, ColumnParallelLinear, RowParallelLinear linked = 0 for name, module in model.named_modules(): if isinstance(module, (Linear, ColumnParallelLinear, RowParallelLinear)): # Check if this is an FP8 layer if hasattr(module, 'weight') and hasattr(module, 'scale'): if module.weight is not None and module.scale is not None: if module.weight.dtype == torch.float8_e4m3fn: # Reattach scale as attribute module.weight.scale = module.scale linked += 1 if linked > 0: print(f"✓ Linked scales for {linked} FP8 layers") def main( ckpt_path: str, config: str, input_file: str = "", interactive: bool = True, max_new_tokens: int = 100, temperature: float = 1.0, ) -> None: """ Main function to load the model and perform interactive or batch text generation. Args: ckpt_path (str): Path to the model checkpoint directory. config (str): Path to the model configuration file. input_file (str, optional): Path to a file containing input prompts. Defaults to "". interactive (bool, optional): Whether to run in interactive mode. Defaults to True. max_new_tokens (int, optional): Maximum number of new tokens to generate. Defaults to 100. temperature (float, optional): Temperature for sampling. Defaults to 1.0. """ world_size = int(os.getenv("WORLD_SIZE", "1")) rank = int(os.getenv("RANK", "0")) local_rank = int(os.getenv("LOCAL_RANK", "0")) if world_size > 1: dist.init_process_group("nccl") global print if rank != 0: print = lambda *_, **__: None torch.set_default_dtype(torch.bfloat16) torch.set_num_threads(96) # Use all CPU threads torch.manual_seed(33377335) with open(config) as f: args = ModelArgs(**json.load(f)) print(args) # Optionally clear cache to free memory before loading large model if rank == 0: clear_system_cache() print("Creating model on CPU (this may take a while)...") with torch.device("cpu"): model = Transformer(args) tokenizer = AutoTokenizer.from_pretrained(ckpt_path) print("Loading model weights...") load_sharded_model(model, ckpt_path) model.eval() print("DeepSeek V3.2 NVFP4 - Ready") if interactive: messages = [] # Get eos token id eos_id = tokenizer.convert_tokens_to_ids(eos_token) thinking_end_id = tokenizer.convert_tokens_to_ids(thinking_end_token) print(f"EOS token: {eos_token!r} -> {eos_id}") while True: if world_size == 1: prompt = input(">>> ") elif rank == 0: prompt = input(">>> ") objects = [prompt] dist.broadcast_object_list(objects, 0) else: objects = [None] dist.broadcast_object_list(objects, 0) prompt = objects[0] if prompt == "/exit": break elif prompt == "/clear": messages.clear() continue messages.append({"role": "user", "content": prompt}) # Use DeepSeek V3.2 custom encoding (thinking_mode="chat" for no reasoning) prompt_str = encode_messages(messages, thinking_mode="chat") prompt_tokens = tokenizer.encode(prompt_str, add_special_tokens=False) completion_tokens = generate(model, [prompt_tokens], max_new_tokens, eos_id, temperature) completion = tokenizer.decode(completion_tokens[0], skip_special_tokens=True) # Strip thinking end token if present if completion.startswith(thinking_end_token): completion = completion[len(thinking_end_token):] print(completion) messages.append({"role": "assistant", "content": completion}) else: with open(input_file) as f: prompts = f.read().split("\n\n") assert len(prompts) <= args.max_batch_size, f"Number of prompts exceeds maximum batch size ({args.max_batch_size})" eos_id = tokenizer.convert_tokens_to_ids(eos_token) # Use DeepSeek V3.2 custom encoding prompt_tokens = [ tokenizer.encode( encode_messages([{"role": "user", "content": prompt}], thinking_mode="chat"), add_special_tokens=False ) for prompt in prompts ] completion_tokens = generate(model, prompt_tokens, max_new_tokens, eos_id, temperature) completions = tokenizer.batch_decode(completion_tokens, skip_special_tokens=True) for prompt, completion in zip(prompts, completions): # Strip thinking end token if present if completion.startswith(thinking_end_token): completion = completion[len(thinking_end_token):] print("Prompt:", prompt) print("Completion:", completion) print() if world_size > 1: dist.destroy_process_group() if __name__ == "__main__": """ Command-line interface for distributed text generation. Arguments: --ckpt-path (str): Path to the model checkpoint directory. --config (str): Path to the model configuration file. --input-file (str, optional): File containing prompts for batch processing. --interactive (bool, optional): Enable interactive mode for generating text. --max-new-tokens (int, optional): Maximum number of new tokens to generate. Defaults to 200. --temperature (float, optional): Temperature for sampling. Defaults to 0.2. Raises: AssertionError: If neither input-file nor interactive mode is specified. """ parser = ArgumentParser() parser.add_argument("--ckpt-path", type=str, required=True) parser.add_argument("--config", type=str, required=True) parser.add_argument("--input-file", type=str, default="") parser.add_argument("--interactive", action="store_true") parser.add_argument("--max-new-tokens", type=int, default=200) parser.add_argument("--temperature", type=float, default=0.6) args = parser.parse_args() assert args.input_file or args.interactive, "Either input-file or interactive mode must be specified" main(args.ckpt_path, args.config, args.input_file, args.interactive, args.max_new_tokens, args.temperature)