Eyüp İpler
commited on
Update Main Models/bai-2.1/README.md
Browse files- Main Models/bai-2.1/README.md +81 -42
Main Models/bai-2.1/README.md
CHANGED
|
@@ -1,43 +1,82 @@
|
|
| 1 |
-
# bai-2.1 (338787 parametre)
|
| 2 |
-
|
| 3 |
-
## EEG üzerinden duygu sınıflandırması yapan "bai-2.1" modeli, bir önceki model olan "bai-2.0" modeline göre overfitting ihtimali azaltılmış ve optimize edilmiş versiyonudur. Tüm işlevleri aynıdır.
|
| 4 |
-
|
| 5 |
-
#### NOT: Gerçek zamanlı EEG veri takibi uygulamasına modeli entegre ederseniz, gerçek zamanlı olarak duygu tahmini yapabilmektedir. Uygulamaya erişebilmek için: https://github.com/neurazum/Realtime-EEG-Monitoring
|
| 6 |
-
|
| 7 |
-
## -----------------------------------------------------------------------------------
|
| 8 |
-
|
| 9 |
-
# bai-2.1 (338787 parameters)
|
| 10 |
-
|
| 11 |
-
## The "bai-2.1" model, which performs emotion classification over EEG, is an optimised version of the previous model "bai-2.0" with reduced overfitting probability. All functions are the same.
|
| 12 |
-
|
| 13 |
-
#### NOTE: If you integrate the model into a real-time EEG data tracking application, it can predict emotions in real time. To access the application: https://github.com/neurazum/Realtime-EEG-Monitoring
|
| 14 |
-
|
| 15 |
-
**Doğruluk/Accuracy: %97.93621013133207**
|
| 16 |
-
|
| 17 |
-
## -----------------------------------------------------------------------------------
|
| 18 |
-
|
| 19 |
-
# Kullanım / Usage
|
| 20 |
-
|
| 21 |
-
```python
|
| 22 |
-
import numpy as np
|
| 23 |
-
import pandas as pd
|
| 24 |
-
from sklearn.preprocessing import StandardScaler
|
| 25 |
-
from tensorflow.keras.models import load_model
|
| 26 |
-
import matplotlib.pyplot as plt
|
| 27 |
-
|
| 28 |
-
model_path = 'model-path'
|
| 29 |
-
|
| 30 |
-
model = load_model(model_path)
|
| 31 |
-
|
| 32 |
-
model_name = model_path.split('/')[-1].split('.')[0]
|
| 33 |
-
|
| 34 |
-
plt.figure(figsize=(10, 6))
|
| 35 |
-
plt.title(f'Duygu Tahmini ({model_name}.1)')
|
| 36 |
-
plt.xlabel('Zaman')
|
| 37 |
-
plt.ylabel('Sınıf')
|
| 38 |
-
plt.legend(loc='upper right')
|
| 39 |
-
plt.grid(True)
|
| 40 |
-
plt.show()
|
| 41 |
-
model.summary()
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
```
|
|
|
|
| 1 |
+
# bai-2.1 (338787 parametre)
|
| 2 |
+
|
| 3 |
+
## EEG üzerinden duygu sınıflandırması yapan "bai-2.1" modeli, bir önceki model olan "bai-2.0" modeline göre overfitting ihtimali azaltılmış ve optimize edilmiş versiyonudur. Tüm işlevleri aynıdır.
|
| 4 |
+
|
| 5 |
+
#### NOT: Gerçek zamanlı EEG veri takibi uygulamasına modeli entegre ederseniz, gerçek zamanlı olarak duygu tahmini yapabilmektedir. Uygulamaya erişebilmek için: https://github.com/neurazum/Realtime-EEG-Monitoring
|
| 6 |
+
|
| 7 |
+
## -----------------------------------------------------------------------------------
|
| 8 |
+
|
| 9 |
+
# bai-2.1 (338787 parameters)
|
| 10 |
+
|
| 11 |
+
## The "bai-2.1" model, which performs emotion classification over EEG, is an optimised version of the previous model "bai-2.0" with reduced overfitting probability. All functions are the same.
|
| 12 |
+
|
| 13 |
+
#### NOTE: If you integrate the model into a real-time EEG data tracking application, it can predict emotions in real time. To access the application: https://github.com/neurazum/Realtime-EEG-Monitoring
|
| 14 |
+
|
| 15 |
+
**Doğruluk/Accuracy: %97.93621013133207**
|
| 16 |
+
|
| 17 |
+
## -----------------------------------------------------------------------------------
|
| 18 |
+
|
| 19 |
+
# Kullanım / Usage
|
| 20 |
+
|
| 21 |
+
```python
|
| 22 |
+
import numpy as np
|
| 23 |
+
import pandas as pd
|
| 24 |
+
from sklearn.preprocessing import StandardScaler
|
| 25 |
+
from tensorflow.keras.models import load_model
|
| 26 |
+
import matplotlib.pyplot as plt
|
| 27 |
+
|
| 28 |
+
model_path = 'model-path'
|
| 29 |
+
|
| 30 |
+
model = load_model(model_path)
|
| 31 |
+
|
| 32 |
+
model_name = model_path.split('/')[-1].split('.')[0]
|
| 33 |
+
|
| 34 |
+
plt.figure(figsize=(10, 6))
|
| 35 |
+
plt.title(f'Duygu Tahmini ({model_name}.1)')
|
| 36 |
+
plt.xlabel('Zaman')
|
| 37 |
+
plt.ylabel('Sınıf')
|
| 38 |
+
plt.legend(loc='upper right')
|
| 39 |
+
plt.grid(True)
|
| 40 |
+
plt.show()
|
| 41 |
+
model.summary()
|
| 42 |
+
```
|
| 43 |
+
|
| 44 |
+
# Tahmin / Prediction
|
| 45 |
+
|
| 46 |
+
```python
|
| 47 |
+
import numpy as np
|
| 48 |
+
import pandas as pd
|
| 49 |
+
from sklearn.preprocessing import StandardScaler
|
| 50 |
+
from tensorflow.keras.models import load_model
|
| 51 |
+
|
| 52 |
+
model_path = 'model-path'
|
| 53 |
+
|
| 54 |
+
model = load_model(model_path)
|
| 55 |
+
|
| 56 |
+
scaler = StandardScaler()
|
| 57 |
+
|
| 58 |
+
predictions = model.predict(X_new_reshaped)
|
| 59 |
+
predicted_labels = np.argmax(predictions, axis=1)
|
| 60 |
+
|
| 61 |
+
label_mapping = {'NEGATIVE': 0, 'NEUTRAL': 1, 'POSITIVE': 2}
|
| 62 |
+
label_mapping_reverse = {v: k for k, v in label_mapping.items()}
|
| 63 |
+
|
| 64 |
+
#new_input = np.array([[23, 465, 12, 9653] * 637])
|
| 65 |
+
new_input = np.random.rand(1, 2548) # 1 örnek ve 2548 özellik
|
| 66 |
+
new_input_scaled = scaler.fit_transform(new_input)
|
| 67 |
+
new_input_reshaped = new_input_scaled.reshape((new_input_scaled.shape[0], 1, new_input_scaled.shape[1]))
|
| 68 |
+
|
| 69 |
+
new_prediction = model.predict(new_input_reshaped)
|
| 70 |
+
predicted_label = np.argmax(new_prediction, axis=1)[0]
|
| 71 |
+
predicted_emotion = label_mapping_reverse[predicted_label]
|
| 72 |
+
|
| 73 |
+
if predicted_emotion == 'NEGATIVE':
|
| 74 |
+
predicted_emotion = 'Negatif'
|
| 75 |
+
elif predicted_emotion == 'NEUTRAL':
|
| 76 |
+
predicted_emotion = 'Nötr'
|
| 77 |
+
elif predicted_emotion == 'POSITIVE':
|
| 78 |
+
predicted_emotion = 'Pozitif'
|
| 79 |
+
|
| 80 |
+
print(f'Giriş Verileri: {new_input}')
|
| 81 |
+
print(f'Tahmin Edilen Duygu: {predicted_emotion}')
|
| 82 |
```
|