Commit
·
bdeaacd
1
Parent(s):
6c9a717
Update README.md
Browse files
README.md
CHANGED
|
@@ -33,25 +33,17 @@ To transcribe audio files the model can be used as a standalone acoustic model a
|
|
| 33 |
```python
|
| 34 |
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
| 35 |
from datasets import load_dataset
|
| 36 |
-
import soundfile as sf
|
| 37 |
import torch
|
| 38 |
|
| 39 |
# load model and processor
|
| 40 |
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h")
|
| 41 |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h")
|
| 42 |
-
|
| 43 |
-
# define function to read in sound file
|
| 44 |
-
def map_to_array(batch):
|
| 45 |
-
speech, _ = sf.read(batch["file"])
|
| 46 |
-
batch["speech"] = speech
|
| 47 |
-
return batch
|
| 48 |
|
| 49 |
# load dummy dataset and read soundfiles
|
| 50 |
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
|
| 51 |
-
ds = ds.map(map_to_array)
|
| 52 |
|
| 53 |
# tokenize
|
| 54 |
-
input_values = processor(ds["
|
| 55 |
|
| 56 |
# retrieve logits
|
| 57 |
logits = model(input_values).logits
|
|
@@ -78,15 +70,8 @@ librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
|
|
| 78 |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h").to("cuda")
|
| 79 |
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h")
|
| 80 |
|
| 81 |
-
def map_to_array(batch):
|
| 82 |
-
speech, _ = sf.read(batch["file"])
|
| 83 |
-
batch["speech"] = speech
|
| 84 |
-
return batch
|
| 85 |
-
|
| 86 |
-
librispeech_eval = librispeech_eval.map(map_to_array)
|
| 87 |
-
|
| 88 |
def map_to_pred(batch):
|
| 89 |
-
input_values = processor(batch["
|
| 90 |
with torch.no_grad():
|
| 91 |
logits = model(input_values.to("cuda")).logits
|
| 92 |
|
|
|
|
| 33 |
```python
|
| 34 |
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
| 35 |
from datasets import load_dataset
|
|
|
|
| 36 |
import torch
|
| 37 |
|
| 38 |
# load model and processor
|
| 39 |
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h")
|
| 40 |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
# load dummy dataset and read soundfiles
|
| 43 |
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
|
|
|
|
| 44 |
|
| 45 |
# tokenize
|
| 46 |
+
input_values = processor(ds[0]["audio"]["array"],, return_tensors="pt", padding="longest").input_values # Batch size 1
|
| 47 |
|
| 48 |
# retrieve logits
|
| 49 |
logits = model(input_values).logits
|
|
|
|
| 70 |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h").to("cuda")
|
| 71 |
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h")
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
def map_to_pred(batch):
|
| 74 |
+
input_values = processor(batch["audio"]["array"], return_tensors="pt", padding="longest").input_values
|
| 75 |
with torch.no_grad():
|
| 76 |
logits = model(input_values.to("cuda")).logits
|
| 77 |
|