--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: TTC4900Model results: [] --- # TTC4900Model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0667 - Accuracy: 0.9859 - F1: 0.9418 - Precision: 0.9562 - Recall: 0.9309 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.5192 | 0.3289 | 50 | 0.9342 | 0.7575 | 0.1077 | 0.0947 | 0.125 | | 0.6007 | 0.6579 | 100 | 0.4256 | 0.8767 | 0.3189 | 0.2983 | 0.3445 | | 0.2704 | 0.9868 | 150 | 0.2471 | 0.9561 | 0.6877 | 0.6916 | 0.6917 | | 0.1382 | 1.3158 | 200 | 0.1346 | 0.9727 | 0.8789 | 0.9054 | 0.8698 | | 0.1132 | 1.6447 | 250 | 0.0824 | 0.9876 | 0.9350 | 0.9701 | 0.9103 | | 0.0981 | 1.9737 | 300 | 0.0431 | 0.9942 | 0.9749 | 0.9892 | 0.9635 | | 0.0369 | 2.3026 | 350 | 0.0466 | 0.9892 | 0.9376 | 0.9576 | 0.9275 | | 0.0373 | 2.6316 | 400 | 0.0413 | 0.9909 | 0.9602 | 0.9580 | 0.9630 | | 0.0235 | 2.9605 | 450 | 0.0407 | 0.9909 | 0.9613 | 0.9600 | 0.9630 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Tokenizers 0.19.1