add pipeline src
Browse files- modeling_glide.py +228 -0
modeling_glide.py
ADDED
|
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
import numpy as np
|
| 18 |
+
import torch
|
| 19 |
+
|
| 20 |
+
import tqdm
|
| 21 |
+
from diffusers import ClassifierFreeGuidanceScheduler, GlideDDIMScheduler, CLIPTextModel, DiffusionPipeline, GLIDETextToImageUNetModel, GLIDESuperResUNetModel
|
| 22 |
+
from transformers import GPT2Tokenizer
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def _extract_into_tensor(arr, timesteps, broadcast_shape):
|
| 26 |
+
"""
|
| 27 |
+
Extract values from a 1-D numpy array for a batch of indices.
|
| 28 |
+
|
| 29 |
+
:param arr: the 1-D numpy array.
|
| 30 |
+
:param timesteps: a tensor of indices into the array to extract.
|
| 31 |
+
:param broadcast_shape: a larger shape of K dimensions with the batch
|
| 32 |
+
dimension equal to the length of timesteps.
|
| 33 |
+
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
|
| 34 |
+
"""
|
| 35 |
+
res = torch.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
|
| 36 |
+
while len(res.shape) < len(broadcast_shape):
|
| 37 |
+
res = res[..., None]
|
| 38 |
+
return res + torch.zeros(broadcast_shape, device=timesteps.device)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class GLIDE(DiffusionPipeline):
|
| 42 |
+
def __init__(
|
| 43 |
+
self,
|
| 44 |
+
text_unet: GLIDETextToImageUNetModel,
|
| 45 |
+
text_noise_scheduler: ClassifierFreeGuidanceScheduler,
|
| 46 |
+
text_encoder: CLIPTextModel,
|
| 47 |
+
tokenizer: GPT2Tokenizer,
|
| 48 |
+
upscale_unet: GLIDESuperResUNetModel,
|
| 49 |
+
upscale_noise_scheduler: GlideDDIMScheduler
|
| 50 |
+
):
|
| 51 |
+
super().__init__()
|
| 52 |
+
self.register_modules(
|
| 53 |
+
text_unet=text_unet, text_noise_scheduler=text_noise_scheduler, text_encoder=text_encoder, tokenizer=tokenizer,
|
| 54 |
+
upscale_unet=upscale_unet, upscale_noise_scheduler=upscale_noise_scheduler
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
def q_posterior_mean_variance(self, scheduler, x_start, x_t, t):
|
| 58 |
+
"""
|
| 59 |
+
Compute the mean and variance of the diffusion posterior:
|
| 60 |
+
|
| 61 |
+
q(x_{t-1} | x_t, x_0)
|
| 62 |
+
|
| 63 |
+
"""
|
| 64 |
+
assert x_start.shape == x_t.shape
|
| 65 |
+
posterior_mean = (
|
| 66 |
+
_extract_into_tensor(scheduler.posterior_mean_coef1, t, x_t.shape) * x_start
|
| 67 |
+
+ _extract_into_tensor(scheduler.posterior_mean_coef2, t, x_t.shape) * x_t
|
| 68 |
+
)
|
| 69 |
+
posterior_variance = _extract_into_tensor(scheduler.posterior_variance, t, x_t.shape)
|
| 70 |
+
posterior_log_variance_clipped = _extract_into_tensor(
|
| 71 |
+
scheduler.posterior_log_variance_clipped, t, x_t.shape
|
| 72 |
+
)
|
| 73 |
+
assert (
|
| 74 |
+
posterior_mean.shape[0]
|
| 75 |
+
== posterior_variance.shape[0]
|
| 76 |
+
== posterior_log_variance_clipped.shape[0]
|
| 77 |
+
== x_start.shape[0]
|
| 78 |
+
)
|
| 79 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
| 80 |
+
|
| 81 |
+
def p_mean_variance(self, model, scheduler, x, t, transformer_out=None, low_res=None, clip_denoised=True):
|
| 82 |
+
"""
|
| 83 |
+
Apply the model to get p(x_{t-1} | x_t), as well as a prediction of
|
| 84 |
+
the initial x, x_0.
|
| 85 |
+
|
| 86 |
+
:param model: the model, which takes a signal and a batch of timesteps
|
| 87 |
+
as input.
|
| 88 |
+
:param x: the [N x C x ...] tensor at time t.
|
| 89 |
+
:param t: a 1-D Tensor of timesteps.
|
| 90 |
+
:param clip_denoised: if True, clip the denoised signal into [-1, 1].
|
| 91 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
| 92 |
+
pass to the model. This can be used for conditioning.
|
| 93 |
+
:return: a dict with the following keys:
|
| 94 |
+
- 'mean': the model mean output.
|
| 95 |
+
- 'variance': the model variance output.
|
| 96 |
+
- 'log_variance': the log of 'variance'.
|
| 97 |
+
- 'pred_xstart': the prediction for x_0.
|
| 98 |
+
"""
|
| 99 |
+
|
| 100 |
+
B, C = x.shape[:2]
|
| 101 |
+
assert t.shape == (B,)
|
| 102 |
+
if transformer_out is None:
|
| 103 |
+
# super-res model
|
| 104 |
+
model_output = model(x, t, low_res)
|
| 105 |
+
else:
|
| 106 |
+
# text2image model
|
| 107 |
+
model_output = model(x, t, transformer_out)
|
| 108 |
+
|
| 109 |
+
assert model_output.shape == (B, C * 2, *x.shape[2:])
|
| 110 |
+
model_output, model_var_values = torch.split(model_output, C, dim=1)
|
| 111 |
+
min_log = _extract_into_tensor(scheduler.posterior_log_variance_clipped, t, x.shape)
|
| 112 |
+
max_log = _extract_into_tensor(np.log(scheduler.betas), t, x.shape)
|
| 113 |
+
# The model_var_values is [-1, 1] for [min_var, max_var].
|
| 114 |
+
frac = (model_var_values + 1) / 2
|
| 115 |
+
model_log_variance = frac * max_log + (1 - frac) * min_log
|
| 116 |
+
model_variance = torch.exp(model_log_variance)
|
| 117 |
+
|
| 118 |
+
pred_xstart = self._predict_xstart_from_eps(scheduler, x_t=x, t=t, eps=model_output)
|
| 119 |
+
if clip_denoised:
|
| 120 |
+
pred_xstart = pred_xstart.clamp(-1, 1)
|
| 121 |
+
model_mean, _, _ = self.q_posterior_mean_variance(scheduler, x_start=pred_xstart, x_t=x, t=t)
|
| 122 |
+
|
| 123 |
+
assert model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape
|
| 124 |
+
return model_mean, model_variance, model_log_variance, pred_xstart
|
| 125 |
+
|
| 126 |
+
def _predict_xstart_from_eps(self, scheduler, x_t, t, eps):
|
| 127 |
+
assert x_t.shape == eps.shape
|
| 128 |
+
return (
|
| 129 |
+
_extract_into_tensor(scheduler.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
|
| 130 |
+
- _extract_into_tensor(scheduler.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
def _predict_eps_from_xstart(self, scheduler, x_t, t, pred_xstart):
|
| 134 |
+
return (
|
| 135 |
+
_extract_into_tensor(scheduler.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart
|
| 136 |
+
) / _extract_into_tensor(scheduler.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
| 137 |
+
|
| 138 |
+
@torch.no_grad()
|
| 139 |
+
def __call__(self, prompt, generator=None, torch_device=None):
|
| 140 |
+
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 141 |
+
|
| 142 |
+
self.text_unet.to(torch_device)
|
| 143 |
+
self.text_encoder.to(torch_device)
|
| 144 |
+
self.upscale_unet.to(torch_device)
|
| 145 |
+
|
| 146 |
+
# Create a classifier-free guidance sampling function
|
| 147 |
+
guidance_scale = 3.0
|
| 148 |
+
|
| 149 |
+
def text_model_fn(x_t, ts, transformer_out, **kwargs):
|
| 150 |
+
half = x_t[: len(x_t) // 2]
|
| 151 |
+
combined = torch.cat([half, half], dim=0)
|
| 152 |
+
model_out = self.text_unet(combined, ts, transformer_out, **kwargs)
|
| 153 |
+
eps, rest = model_out[:, :3], model_out[:, 3:]
|
| 154 |
+
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
|
| 155 |
+
half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
|
| 156 |
+
eps = torch.cat([half_eps, half_eps], dim=0)
|
| 157 |
+
return torch.cat([eps, rest], dim=1)
|
| 158 |
+
|
| 159 |
+
# 1. Sample gaussian noise
|
| 160 |
+
batch_size = 2 # second image is empty for classifier-free guidance
|
| 161 |
+
image = self.text_noise_scheduler.sample_noise(
|
| 162 |
+
(batch_size, self.text_unet.in_channels, 64, 64), device=torch_device, generator=generator
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
# 2. Encode tokens
|
| 166 |
+
# an empty input is needed to guide the model away from (
|
| 167 |
+
inputs = self.tokenizer([prompt, ""], padding="max_length", max_length=128, return_tensors="pt")
|
| 168 |
+
input_ids = inputs["input_ids"].to(torch_device)
|
| 169 |
+
attention_mask = inputs["attention_mask"].to(torch_device)
|
| 170 |
+
transformer_out = self.text_encoder(input_ids, attention_mask).last_hidden_state
|
| 171 |
+
|
| 172 |
+
# 3. Run the text2image generation step
|
| 173 |
+
num_timesteps = len(self.text_noise_scheduler)
|
| 174 |
+
for i in tqdm.tqdm(reversed(range(num_timesteps)), total=num_timesteps):
|
| 175 |
+
t = torch.tensor([i] * image.shape[0], device=torch_device)
|
| 176 |
+
mean, variance, log_variance, pred_xstart = self.p_mean_variance(
|
| 177 |
+
text_model_fn, self.text_noise_scheduler, image, t, transformer_out=transformer_out
|
| 178 |
+
)
|
| 179 |
+
noise = self.text_noise_scheduler.sample_noise(image.shape, device=torch_device, generator=generator)
|
| 180 |
+
nonzero_mask = (t != 0).float().view(-1, *([1] * (len(image.shape) - 1))) # no noise when t == 0
|
| 181 |
+
image = mean + nonzero_mask * torch.exp(0.5 * log_variance) * noise
|
| 182 |
+
|
| 183 |
+
# 4. Run the upscaling step
|
| 184 |
+
batch_size = 1
|
| 185 |
+
image = image[:1]
|
| 186 |
+
low_res = ((image + 1) * 127.5).round() / 127.5 - 1
|
| 187 |
+
eta = 0.0
|
| 188 |
+
|
| 189 |
+
# Tune this parameter to control the sharpness of 256x256 images.
|
| 190 |
+
# A value of 1.0 is sharper, but sometimes results in grainy artifacts.
|
| 191 |
+
upsample_temp = 0.997
|
| 192 |
+
|
| 193 |
+
image = self.upscale_noise_scheduler.sample_noise(
|
| 194 |
+
(batch_size, 3, 256, 256), device=torch_device, generator=generator
|
| 195 |
+
) * upsample_temp
|
| 196 |
+
|
| 197 |
+
num_timesteps = len(self.upscale_noise_scheduler)
|
| 198 |
+
for t in tqdm.tqdm(reversed(range(len(self.upscale_noise_scheduler))), total=len(self.upscale_noise_scheduler)):
|
| 199 |
+
# i) define coefficients for time step t
|
| 200 |
+
clipped_image_coeff = 1 / torch.sqrt(self.upscale_noise_scheduler.get_alpha_prod(t))
|
| 201 |
+
clipped_noise_coeff = torch.sqrt(1 / self.upscale_noise_scheduler.get_alpha_prod(t) - 1)
|
| 202 |
+
image_coeff = (1 - self.upscale_noise_scheduler.get_alpha_prod(t - 1)) * torch.sqrt(
|
| 203 |
+
self.upscale_noise_scheduler.get_alpha(t)) / (1 - self.upscale_noise_scheduler.get_alpha_prod(t))
|
| 204 |
+
clipped_coeff = torch.sqrt(self.upscale_noise_scheduler.get_alpha_prod(t - 1)) * self.upscale_noise_scheduler.get_beta(
|
| 205 |
+
t) / (1 - self.upscale_noise_scheduler.get_alpha_prod(t))
|
| 206 |
+
|
| 207 |
+
# ii) predict noise residual
|
| 208 |
+
time_input = torch.tensor([t] * image.shape[0], device=torch_device)
|
| 209 |
+
model_output = self.upscale_unet(image, time_input, low_res)
|
| 210 |
+
noise_residual, pred_variance = torch.split(model_output, 3, dim=1)
|
| 211 |
+
|
| 212 |
+
# iii) compute predicted image from residual
|
| 213 |
+
# See 2nd formula at https://github.com/hojonathanho/diffusion/issues/5#issue-896554416 for comparison
|
| 214 |
+
pred_mean = clipped_image_coeff * image - clipped_noise_coeff * noise_residual
|
| 215 |
+
pred_mean = torch.clamp(pred_mean, -1, 1)
|
| 216 |
+
prev_image = clipped_coeff * pred_mean + image_coeff * image
|
| 217 |
+
|
| 218 |
+
# iv) sample variance
|
| 219 |
+
prev_variance = self.upscale_noise_scheduler.sample_variance(t, prev_image.shape, device=torch_device,
|
| 220 |
+
generator=generator)
|
| 221 |
+
|
| 222 |
+
# v) sample x_{t-1} ~ N(prev_image, prev_variance)
|
| 223 |
+
sampled_prev_image = prev_image + prev_variance
|
| 224 |
+
image = sampled_prev_image
|
| 225 |
+
|
| 226 |
+
image = image[0].permute(1, 2, 0)
|
| 227 |
+
|
| 228 |
+
return image
|