fyaronskiy commited on
Commit
14807ee
Β·
verified Β·
1 Parent(s): c1af54a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -13
README.md CHANGED
@@ -1,9 +1,16 @@
1
  ---
2
  tags:
3
  - sentence-transformers
 
 
 
 
 
 
 
 
4
  - sentence-similarity
5
  - feature-extraction
6
- - dense
7
  - generated_from_trainer
8
  - loss:MultipleNegativesRankingLoss
9
  widget:
@@ -822,7 +829,7 @@ Perfomance per task:
822
  |-------|---------------|----------------------------|----------------|----------------|--------------------------|------------------------|------------------|-------|------------------|-------------------|
823
  | english_code_retriever | 8.04 | 74.23 | 44.01 | 57.79 | 42.71 | 60.68 | 35.16 | 25.56 | 56.53 | 42.79 |
824
 
825
- more information you cand find [here](https://huggingface.co/spaces/mteb/leaderboard)
826
 
827
 
828
  ## Model Details
@@ -832,7 +839,7 @@ more information you cand find [here](https://huggingface.co/spaces/mteb/leaderb
832
  - **Maximum Sequence Length:** 8192 tokens
833
  - **Output Dimensionality:** 768
834
  - **Similarity Function:** Cosine Similarity
835
- - **Poling** Mean pooling
836
 
837
  ## Usage
838
 
@@ -904,23 +911,23 @@ query_embeddings = model.encode(queries, prompt_name='search_document', convert_
904
  for i, query in enumerate(queries):
905
  scores = util.cos_sim(query_embeddings[i], doc_embeddings)[0]
906
  best_idx = torch.argmax(scores).item()
907
- print(f"\nπŸ” Query {i+1}: {query}")
908
  print(f"Top-1 match (score={scores[best_idx]:.4f}):\n{corpus[best_idx]}")
909
 
910
- '''πŸ” Query 1: Write a Python function that calculates the factorial of a number recursively.
911
  Top-1 match (score=0.5983):
912
  def factorial(n):
913
  if n == 0:
914
  return 1
915
  return n * factorial(n-1)
916
 
917
- πŸ” Query 2: How to check if a given string reads the same backward and forward?
918
  Top-1 match (score=0.4925):
919
  def is_palindrome(s: str) -> bool:
920
  s = s.lower().replace(" ", "")
921
  return s == s[::-1]
922
 
923
- πŸ” Query 3: Combine two sorted lists into a single sorted list.
924
  Top-1 match (score=0.6524):
925
  def merge_sorted_lists(a, b):
926
  result = []
@@ -940,13 +947,11 @@ def merge_sorted_lists(a, b):
940
 
941
  Using with Transformers
942
  ```python
943
- # using with transformers
944
  import torch
945
  from transformers import AutoTokenizer, AutoModel
946
 
947
  device = "cuda" if torch.cuda.is_available() else "cpu"
948
 
949
- # Load model and tokenizer from Hugging Face
950
  model_name = "fyaronskiy/english_code_retriever"
951
  tokenizer = AutoTokenizer.from_pretrained(model_name)
952
  model = AutoModel.from_pretrained(model_name).to(device)
@@ -994,18 +999,18 @@ query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
994
  for i, query in enumerate(queries):
995
  scores = torch.matmul(query_embeddings[i], doc_embeddings.T)
996
  best_idx = torch.argmax(scores).item()
997
- print(f"\nπŸ” Query {i+1}: {query}")
998
  print(f"Top-1 match (score={scores[best_idx]:.4f}):\n{corpus[best_idx]}")
999
 
1000
- '''πŸ” Query 1: function of addition of two numbers
1001
  Top-1 match (score=0.6047):
1002
  def add(a, b): return a + b
1003
 
1004
- πŸ” Query 2: finding the maximum element in an array
1005
  Top-1 match (score=0.7772):
1006
  def find_max(arr): return max(arr)
1007
 
1008
- πŸ” Query 3: sorting a list in ascending order
1009
  Top-1 match (score=0.7389):
1010
  def sort_list(lst): return sorted(lst)
1011
  '''
 
1
  ---
2
  tags:
3
  - sentence-transformers
4
+ - code
5
+ - code-retrieval
6
+ - retrieval-augmented-generation
7
+ - rag
8
+ - python
9
+ - java
10
+ - go
11
+ - php
12
  - sentence-similarity
13
  - feature-extraction
 
14
  - generated_from_trainer
15
  - loss:MultipleNegativesRankingLoss
16
  widget:
 
829
  |-------|---------------|----------------------------|----------------|----------------|--------------------------|------------------------|------------------|-------|------------------|-------------------|
830
  | english_code_retriever | 8.04 | 74.23 | 44.01 | 57.79 | 42.71 | 60.68 | 35.16 | 25.56 | 56.53 | 42.79 |
831
 
832
+ more information you cand find [in MTEB leaderbord](https://huggingface.co/spaces/mteb/leaderboard)
833
 
834
 
835
  ## Model Details
 
839
  - **Maximum Sequence Length:** 8192 tokens
840
  - **Output Dimensionality:** 768
841
  - **Similarity Function:** Cosine Similarity
842
+ - Mean pooling
843
 
844
  ## Usage
845
 
 
911
  for i, query in enumerate(queries):
912
  scores = util.cos_sim(query_embeddings[i], doc_embeddings)[0]
913
  best_idx = torch.argmax(scores).item()
914
+ print(f"\n Query {i+1}: {query}")
915
  print(f"Top-1 match (score={scores[best_idx]:.4f}):\n{corpus[best_idx]}")
916
 
917
+ ''' Query 1: Write a Python function that calculates the factorial of a number recursively.
918
  Top-1 match (score=0.5983):
919
  def factorial(n):
920
  if n == 0:
921
  return 1
922
  return n * factorial(n-1)
923
 
924
+ Query 2: How to check if a given string reads the same backward and forward?
925
  Top-1 match (score=0.4925):
926
  def is_palindrome(s: str) -> bool:
927
  s = s.lower().replace(" ", "")
928
  return s == s[::-1]
929
 
930
+ Query 3: Combine two sorted lists into a single sorted list.
931
  Top-1 match (score=0.6524):
932
  def merge_sorted_lists(a, b):
933
  result = []
 
947
 
948
  Using with Transformers
949
  ```python
 
950
  import torch
951
  from transformers import AutoTokenizer, AutoModel
952
 
953
  device = "cuda" if torch.cuda.is_available() else "cpu"
954
 
 
955
  model_name = "fyaronskiy/english_code_retriever"
956
  tokenizer = AutoTokenizer.from_pretrained(model_name)
957
  model = AutoModel.from_pretrained(model_name).to(device)
 
999
  for i, query in enumerate(queries):
1000
  scores = torch.matmul(query_embeddings[i], doc_embeddings.T)
1001
  best_idx = torch.argmax(scores).item()
1002
+ print(f"\n Query {i+1}: {query}")
1003
  print(f"Top-1 match (score={scores[best_idx]:.4f}):\n{corpus[best_idx]}")
1004
 
1005
+ ''' Query 1: function of addition of two numbers
1006
  Top-1 match (score=0.6047):
1007
  def add(a, b): return a + b
1008
 
1009
+ Query 2: finding the maximum element in an array
1010
  Top-1 match (score=0.7772):
1011
  def find_max(arr): return max(arr)
1012
 
1013
+ Query 3: sorting a list in ascending order
1014
  Top-1 match (score=0.7389):
1015
  def sort_list(lst): return sorted(lst)
1016
  '''