Gajesh Ladhar
commited on
Commit
·
a176fb5
1
Parent(s):
c71037b
utils added
Browse files- src/data.py +1 -1
- src/utils.py +77 -0
src/data.py
CHANGED
|
@@ -46,7 +46,7 @@ class DinoDataset(Dataset):
|
|
| 46 |
queue_size (int): Max queue length for shared store
|
| 47 |
"""
|
| 48 |
if imgsz < 320:
|
| 49 |
-
raise ValueError("
|
| 50 |
self.imgsz = imgsz
|
| 51 |
metadata_url = "https://huggingface.co/datasets/gajeshladhar/core-five/resolve/main/metadata.parquet"
|
| 52 |
self.df_metadata = gpd.read_parquet(fsspec.open(metadata_url).open())
|
|
|
|
| 46 |
queue_size (int): Max queue length for shared store
|
| 47 |
"""
|
| 48 |
if imgsz < 320:
|
| 49 |
+
raise ValueError("imgsz must be ≥ 320 for stable patch extraction — got {}".format(imgsz))
|
| 50 |
self.imgsz = imgsz
|
| 51 |
metadata_url = "https://huggingface.co/datasets/gajeshladhar/core-five/resolve/main/metadata.parquet"
|
| 52 |
self.df_metadata = gpd.read_parquet(fsspec.open(metadata_url).open())
|
src/utils.py
CHANGED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import io
|
| 2 |
+
import os
|
| 3 |
+
import torch
|
| 4 |
+
from torch import nn
|
| 5 |
+
from torch.amp import autocast
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
from torch.utils.data import Dataset, DataLoader
|
| 8 |
+
|
| 9 |
+
import copy
|
| 10 |
+
import queue
|
| 11 |
+
import numpy as np
|
| 12 |
+
import pandas as pd
|
| 13 |
+
import geopandas as gpd
|
| 14 |
+
|
| 15 |
+
import fsspec
|
| 16 |
+
import xarray as xr
|
| 17 |
+
from tqdm.notebook import tqdm
|
| 18 |
+
|
| 19 |
+
from ultralytics import YOLO
|
| 20 |
+
from IPython.display import clear_output
|
| 21 |
+
|
| 22 |
+
from multiprocessing import Manager
|
| 23 |
+
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
|
| 24 |
+
|
| 25 |
+
import huggingface_hub as hf
|
| 26 |
+
import albumentations as A
|
| 27 |
+
|
| 28 |
+
import h5py
|
| 29 |
+
import requests
|
| 30 |
+
from io import BytesIO
|
| 31 |
+
|
| 32 |
+
import datetime
|
| 33 |
+
from pathlib import Path
|
| 34 |
+
import tempfile
|
| 35 |
+
import shutil
|
| 36 |
+
|
| 37 |
+
# parallel processing of static datasets
|
| 38 |
+
manager = Manager()
|
| 39 |
+
shared_store = manager.list()
|
| 40 |
+
process_pool = ProcessPoolExecutor(max_workers=6)
|
| 41 |
+
|
| 42 |
+
def write_last_updated(path="store_last_updated.txt"):
|
| 43 |
+
with tempfile.NamedTemporaryFile("w", delete=False, dir=".") as tmp:
|
| 44 |
+
tmp.write(f"{datetime.datetime.now().isoformat()}")
|
| 45 |
+
tmp_path = tmp.name
|
| 46 |
+
shutil.move(tmp_path, path)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
class AddPoissonNoise(A.ImageOnlyTransform):
|
| 50 |
+
def __init__(self, p=0.5):
|
| 51 |
+
super().__init__(p)
|
| 52 |
+
|
| 53 |
+
def apply(self, image, **params):
|
| 54 |
+
image = image.astype(np.float32) / 255.0 if image.dtype == np.uint8 else image.copy()
|
| 55 |
+
noisy = np.random.poisson(image * 255.0)
|
| 56 |
+
return np.clip(noisy, 0, 255).astype('uint8')
|
| 57 |
+
|
| 58 |
+
class AddSaltPepperNoise(A.ImageOnlyTransform):
|
| 59 |
+
def __init__(self, amount=0.02, salt_vs_pepper=0.5, p=0.5):
|
| 60 |
+
super(AddSaltPepperNoise, self).__init__(p)
|
| 61 |
+
self.amount = amount
|
| 62 |
+
self.salt_vs_pepper = salt_vs_pepper
|
| 63 |
+
|
| 64 |
+
def apply(self, image, **params):
|
| 65 |
+
noisy = image.copy()
|
| 66 |
+
num_salt = np.ceil(self.amount * image.size * self.salt_vs_pepper)
|
| 67 |
+
num_pepper = np.ceil(self.amount * image.size * (1.0 - self.salt_vs_pepper))
|
| 68 |
+
|
| 69 |
+
# Salt noise
|
| 70 |
+
coords = [np.random.randint(0, i - 1, int(num_salt)) for i in image.shape]
|
| 71 |
+
noisy[tuple(coords)] = 1
|
| 72 |
+
|
| 73 |
+
# Pepper noise
|
| 74 |
+
coords = [np.random.randint(0, i - 1, int(num_pepper)) for i in image.shape]
|
| 75 |
+
noisy[tuple(coords)] = 0
|
| 76 |
+
|
| 77 |
+
return noisy
|