Update README.md
Browse files
README.md
CHANGED
|
@@ -1,119 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
```
|
| 2 |
-
import torch
|
| 3 |
-
import torch.nn as nn
|
| 4 |
-
from transformers import AutoTokenizer, AutoModel
|
| 5 |
-
from huggingface_hub import hf_hub_download
|
| 6 |
|
| 7 |
-
|
| 8 |
-
class MLPHead(nn.Module):
|
| 9 |
-
def __init__(self, input_dim: int, hidden_dims: list, dropout_rate: float = 0.1):
|
| 10 |
-
super().__init__()
|
| 11 |
-
layers = []
|
| 12 |
-
prev_dim = input_dim
|
| 13 |
-
|
| 14 |
-
for hidden_dim in hidden_dims:
|
| 15 |
-
layers.extend([
|
| 16 |
-
nn.Linear(prev_dim, hidden_dim),
|
| 17 |
-
nn.GELU(),
|
| 18 |
-
nn.Dropout(dropout_rate)
|
| 19 |
-
])
|
| 20 |
-
prev_dim = hidden_dim
|
| 21 |
-
|
| 22 |
-
layers.append(nn.Linear(prev_dim, 1))
|
| 23 |
-
self.mlp = nn.Sequential(*layers)
|
| 24 |
-
|
| 25 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 26 |
-
return self.mlp(x)
|
| 27 |
|
| 28 |
-
|
| 29 |
-
class CustomCrossEncoder(nn.Module):
|
| 30 |
-
def __init__(self, model_name="Alibaba-NLP/gte-Qwen2-1.5B-instruct"):
|
| 31 |
-
super().__init__()
|
| 32 |
-
|
| 33 |
-
# Load base model and tokenizer
|
| 34 |
-
self.base_model = AutoModel.from_pretrained(
|
| 35 |
-
model_name,
|
| 36 |
-
trust_remote_code=True,
|
| 37 |
-
torch_dtype=torch.bfloat16,
|
| 38 |
-
device_map="auto"
|
| 39 |
-
)
|
| 40 |
-
self.tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 41 |
-
|
| 42 |
-
if self.tokenizer.pad_token is None:
|
| 43 |
-
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 44 |
-
|
| 45 |
-
# Initialize MLP head with same architecture as training
|
| 46 |
-
self.embedding_dim = 1536 # For Qwen2-1.5B
|
| 47 |
-
self.mlp_head = MLPHead(
|
| 48 |
-
input_dim=self.embedding_dim,
|
| 49 |
-
hidden_dims=[1536, 768, 384], # Same as training
|
| 50 |
-
dropout_rate=0.1
|
| 51 |
-
).to(torch.bfloat16)
|
| 52 |
-
|
| 53 |
-
def forward(self, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
|
| 54 |
-
outputs = self.base_model(
|
| 55 |
-
input_ids=input_ids,
|
| 56 |
-
attention_mask=attention_mask,
|
| 57 |
-
output_hidden_states=True
|
| 58 |
-
)
|
| 59 |
-
|
| 60 |
-
last_hidden_state = outputs.hidden_states[-1]
|
| 61 |
-
cls_embedding = last_hidden_state[:, 0, :]
|
| 62 |
-
|
| 63 |
-
output = self.mlp_head(cls_embedding)
|
| 64 |
-
return output.squeeze(-1)
|
| 65 |
|
| 66 |
-
|
| 67 |
-
def load_cross_encoder(repo_id="hazyresearch/Weaver_Distilled_General_gte-Qwen2-1.5B-instruct"):
|
| 68 |
-
# Initialize model
|
| 69 |
-
model = CustomCrossEncoder()
|
| 70 |
-
|
| 71 |
-
# Download checkpoint from HF hub
|
| 72 |
-
checkpoint_path = hf_hub_download(
|
| 73 |
-
repo_id=repo_id,
|
| 74 |
-
filename="pytorch_model.pt",
|
| 75 |
-
use_auth_token=True # Will use your HF token
|
| 76 |
-
)
|
| 77 |
-
|
| 78 |
-
# Load state dict
|
| 79 |
-
state_dict = torch.load(checkpoint_path, map_location="cuda")
|
| 80 |
-
model.load_state_dict(state_dict)
|
| 81 |
-
model.eval()
|
| 82 |
-
|
| 83 |
-
return model
|
| 84 |
|
| 85 |
-
|
| 86 |
-
def score_text_pair(model, text1, text2, max_length=8192):
|
| 87 |
-
"""Score a pair of texts using the cross-encoder."""
|
| 88 |
-
# Tokenize
|
| 89 |
-
encoded = model.tokenizer(
|
| 90 |
-
text=text1,
|
| 91 |
-
text_pair=text2,
|
| 92 |
-
truncation=True,
|
| 93 |
-
max_length=max_length,
|
| 94 |
-
padding="max_length",
|
| 95 |
-
return_tensors="pt"
|
| 96 |
-
)
|
| 97 |
-
|
| 98 |
-
# Move to device
|
| 99 |
-
input_ids = encoded["input_ids"].cuda()
|
| 100 |
-
attention_mask = encoded["attention_mask"].cuda()
|
| 101 |
-
|
| 102 |
-
# Get score
|
| 103 |
-
with torch.no_grad():
|
| 104 |
-
score = model(input_ids, attention_mask)
|
| 105 |
-
|
| 106 |
-
return score.item()
|
| 107 |
|
| 108 |
-
|
| 109 |
-
if __name__ == "__main__":
|
| 110 |
-
# Load model
|
| 111 |
-
model = load_cross_encoder()
|
| 112 |
-
|
| 113 |
-
# Example: Score an instruction-response pair
|
| 114 |
-
instruction = "What is the capital of France?"
|
| 115 |
-
response = "The capital of France is Paris."
|
| 116 |
-
|
| 117 |
-
score = score_text_pair(model, instruction, response)
|
| 118 |
-
print(f"Score: {score:.4f}")
|
| 119 |
-
```
|
|
|
|
| 1 |
+
# Weaver Distilled - All Datasets (gte-Qwen2-1.5B-instruct)
|
| 2 |
+
|
| 3 |
+
This is a distilled cross-encoder model based on gte-Qwen2-1.5B-instruct, trained to predict the correctness of answers across multiple domains. This general-purpose verifier was trained on a combined dataset of 35 different verifiers and reward models aggregated using Weaver.
|
| 4 |
+
|
| 5 |
+
## Model Details
|
| 6 |
+
|
| 7 |
+
- **Base Model**: [Alibaba-NLP/gte-Qwen2-1.5B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct)
|
| 8 |
+
- **Architecture**: Cross-encoder with MLP head (1536 → 768 → 384 → 1)
|
| 9 |
+
- **Max Sequence Length**: 4096
|
| 10 |
+
- **Training Data**: Combined dataset from 35 different LM Judges and reward models aggregated with Weaver
|
| 11 |
+
- **Training Objective**: Binary classification (correct/incorrect answer prediction)
|
| 12 |
+
|
| 13 |
+
## Usage
|
| 14 |
+
|
| 15 |
+
```python
|
| 16 |
+
from custom_crossencoder import CustomCrossEncoder, TrainingConfig
|
| 17 |
+
|
| 18 |
+
# Initialize model
|
| 19 |
+
config = TrainingConfig(
|
| 20 |
+
model_name="Alibaba-NLP/gte-Qwen2-1.5B-instruct",
|
| 21 |
+
max_length=4096,
|
| 22 |
+
mlp_hidden_dims=[1536, 768, 384]
|
| 23 |
+
)
|
| 24 |
+
model = CustomCrossEncoder(config)
|
| 25 |
+
|
| 26 |
+
# Load checkpoint
|
| 27 |
+
model.load_state_dict(torch.load("path_to_checkpoint.pt"))
|
| 28 |
+
model.eval()
|
| 29 |
+
|
| 30 |
+
# Get prediction
|
| 31 |
+
instruction = "Your instruction here"
|
| 32 |
+
answer = "Your answer here"
|
| 33 |
+
encoded = model.tokenizer(
|
| 34 |
+
text=instruction,
|
| 35 |
+
text_pair=answer,
|
| 36 |
+
truncation=True,
|
| 37 |
+
max_length=4096,
|
| 38 |
+
padding="max_length",
|
| 39 |
+
return_tensors="pt"
|
| 40 |
+
)
|
| 41 |
+
with torch.no_grad():
|
| 42 |
+
prediction = model(encoded["input_ids"], encoded["attention_mask"])
|
| 43 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
+
## License
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
+
[Your chosen license]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
+
## Citation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
+
If you use this model in your research, please cite:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
+
TODO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|