File size: 15,354 Bytes
7f802aa ae2925e 56c261e 7f802aa ae2925e 7f802aa ae2925e 7f802aa ae2925e 7f802aa ae2925e 7f802aa ae2925e 7f802aa ae2925e 7f802aa ae2925e 7f802aa ae2925e 7f802aa ae2925e 7f802aa ae2925e 7f802aa 45ea74f 7f802aa ae2925e 7f802aa ae2925e 7f802aa ae2925e 7f802aa ae2925e 7f802aa ae2925e 7f802aa ae2925e 7f802aa ae2925e 7f802aa ae2925e 7f802aa ae2925e 7f802aa ae2925e 7f802aa ae2925e 7f802aa ae2925e 7f802aa ae2925e 7f802aa ae2925e 7f802aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
---
license: mit
base_model:
- inclusionAI/Ling-mini-base-2.0
pipeline_tag: text-generation
library_name: transformers
---
<p align="center">
<img src="https://mdn.alipayobjects.com/huamei_qa8qxu/afts/img/A*4QxcQrBlTiAAAAAAQXAAAAgAemJ7AQ/original" width="100"/>
<p>
<p align="center">π€ <a href="https://huggingface.co/inclusionAI">Hugging Face</a>   |   π€ <a href="https://modelscope.cn/organization/inclusionAI">ModelScope</a>   |   π <a href="https://zenmux.ai/inclusionai/ling-mini-2.0?utm_source=hf_inclusionAI">Experience Now</a></p>
## Introduction
Today, we are excited to announce the open-sourcing of **Ling 2.0** β a family of MoE-based large language models that combine **SOTA performance** with **high efficiency**.
The first released version, Ling-mini-2.0, is compact yet powerful. It has **16B total parameters**, but only **1.4B** are activated per input token (non-embedding 789M). Trained on more than **20T tokens** of high-quality data and enhanced through multi-stage supervised fine-tuning and reinforcement learning, Ling-mini-2.0 achieves remarkable improvements in complex reasoning and instruction following. With just 1.4B activated parameters, it still reaches the top-tier level of sub-10B dense LLMs and even matches or surpasses much larger MoE models.
<p align="center"><img src="https://mdn.alipayobjects.com/huamei_fi95qp/afts/img/2NKZS5LVXzcAAAAASBAAAAgADkZ7AQFr/fmt.webp" /></p>
### Strong General and Professional Reasoning
We evaluated Ling-mini-2.0 on challenging general reasoning tasks in coding (LiveCodeBench, CodeForces) and mathematics (AIME 2025, HMMT 2025), as well as knowledge-intensive reasoning tasks across multiple domains (MMLU-Pro, Humanity's Last Exam). Compared with sub-10B dense models (e.g., Qwen3-4B-instruct-2507, Qwen3-8B-nothinking) and larger-scale MoE models (Ernie-4.5-21B-A3B-PT, GPT-OSS-20B/low), Ling-mini-2.0 demonstrated outstanding overall reasoning capabilities.
### 7Γ Equivalent Dense Performance Leverage
Guided by [Ling Scaling Laws](https://arxiv.org/abs/2507.17702), Ling 2.0 adopts a **1/32 activation ratio** MoE architecture, with empirically optimized design choices in expert granularity, shared expert ratio, attention ratio, aux-loss free + sigmoid routing strategy, MTP loss, QK-Norm, half RoPE, and more. This enables small-activation MoE models to achieve over **7Γ equivalent dense performance**. In other words, **Ling-mini-2.0 with only 1.4B activated parameters (non-embedding 789M) can deliver performance equivalent to a 7β8B dense model**.
### High-speed Generation at 300+ token/s
<p align="center"><img src="https://mdn.alipayobjects.com/huamei_fi95qp/afts/img/bnxIRaK9tzcAAAAAgSAAAAgADkZ7AQFr/original" /></p>
The highly sparse small-activation MoE architecture also delivers significant training and inference efficiency. In simple QA scenarios (within 2000 tokens), **Ling-mini-2.0 generates at 300+ token/s (on H20 deployment)** β more than **2Γ faster** than an 8B dense model. Ling-mini-2.0 is able to handle **128K context length** with YaRN, as sequence length increases, the relative speedup can reach **over 7Γ**.
<p align="center"><img src="https://raw.githubusercontent.com/inclusionAI/Ling-V2/refs/heads/main/figures/needle_in_a_haystack.webp" /></p>
### Open-sourced FP8 Efficient Training Solution
Ling 2.0 employs **FP8 mixed-precision training** throughout. Compared with BF16, experiments with over 1T training tokens show nearly identical loss curves and downstream benchmark performance. To support the community in efficient continued pretraining and fine-tuning under limited compute, we are also open-sourcing our **FP8 training solution**. Based on tile/blockwise FP8 scaling, it further introduces FP8 optimizer, FP8 on-demand transpose weight, and FP8 padding routing map for extreme memory optimization. On 8/16/32 80G GPUs, compared with LLaMA 3.1 8B and Qwen3 8B, **Ling-mini-2.0 achieved 30β60% throughput gains with MTP enabled, and 90β120% throughput gains with MTP disabled**.
### A More Open Opensource Strategy
We believe Ling-mini-2.0 is an ideal starting point for MoE research. For the first time at this scale, it integrates 1/32 sparsity, MTP layers, and FP8 training β achieving both strong effectiveness and efficient training/inference performance, making it a prime candidate for the small-size LLM segment.
To further foster community research, in addition to releasing the post-trained version, we are also open-sourcing **five pretraining checkpoints**: the pre-finetuning Ling-mini-2.0-base, along with four base models trained on 5T, 10T, 15T, and 20T tokens, enabling deeper research and broader applications.
## Model Downloads
You can download the following table to see the various stage of Ling-mini-2.0 models(1.43B activated of 16.26B total params). If you are located in mainland China, we also provide the model on ModelScope.cn to speed up the download process.
<center>
| **Model** | **Context Length** | **Download** |
| :--------------------: | :----------------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| Ling-mini-base-2.0 | 32K -> 128K (YaRN) | [π€ HuggingFace](https://huggingface.co/inclusionAI/Ling-mini-base-2.0) <br>[π€ ModelScope](https://www.modelscope.cn/models/inclusionAI/Ling-mini-base-2.0) |
| Ling-mini-base-2.0-5T | 4K | [π€ HuggingFace](https://huggingface.co/inclusionAI/Ling-mini-base-2.0-5T) <br>[π€ ModelScope](https://www.modelscope.cn/models/inclusionAI/Ling-mini-base-2.0-5T) |
| Ling-mini-base-2.0-10T | 4K | [π€ HuggingFace](https://huggingface.co/inclusionAI/Ling-mini-base-2.0-10T) <br>[π€ ModelScope](https://www.modelscope.cn/models/inclusionAI/Ling-mini-base-2.0-10T) |
| Ling-mini-base-2.0-15T | 4K | [π€ HuggingFace](https://huggingface.co/inclusionAI/Ling-mini-base-2.0-15T) <br>[π€ ModelScope](https://www.modelscope.cn/models/inclusionAI/Ling-mini-base-2.0-15T) |
| Ling-mini-base-2.0-20T | 4K | [π€ HuggingFace](https://huggingface.co/inclusionAI/Ling-mini-base-2.0-20T) <br>[π€ ModelScope](https://www.modelscope.cn/models/inclusionAI/Ling-mini-base-2.0-20T) |
| Ling-mini-2.0 | 32K -> 128K (YaRN) | [π€ HuggingFace](https://huggingface.co/inclusionAI/Ling-mini-2.0) <br>[π€ ModelScope](https://www.modelscope.cn/models/inclusionAI/Ling-mini-2.0) |
</center>
Note: If you are interested in previous version, please visit the past model collections in [Huggingface](https://huggingface.co/inclusionAI) or [ModelScope](https://modelscope.cn/organization/inclusionAI).
## Quickstart
### π Try Online
You can experience Ling-mini-2.0 online at: [ZenMux](https://zenmux.ai/inclusionai/ling-mini-2.0?utm_source=hf_inclusionAI)
### π API Usage
You can also use Ling-mini-2.0 through API calls:
```python
from openai import OpenAI
# 1. Initialize the OpenAI client
client = OpenAI(
# 2. Point the base URL to the ZenMux endpoint
base_url="https://zenmux.ai/api/v1",
# 3. Replace with the API Key from your ZenMux user console
api_key="<your ZENMUX_API_KEY>",
)
# 4. Make a request
completion = client.chat.completions.create(
# 5. Specify the model to use in the format "provider/model-name"
model="inclusionai/ling-mini-2.0",
messages=[
{
"role": "user",
"content": "What is the meaning of life?"
}
]
)
print(completion.choices[0].message.content)
```
### Convert to safetensors
Models with safetensors format can be downloaded from [HuggingFace](https://huggingface.co/inclusionAI) or [ModelScope](https://modelscope.cn/organization/inclusionAI).
If you want to train your model and eval it, you can convert from dcp produced by training.
```shell
python tools/convert_dcp_to_safe_tensors.py --checkpoint-path ${DCP_PATH} --target-path ${SAFETENSORS_PATH}
```
Currently, BF16 and FP8 formats are supported, you can use convert parameter to handle it:
- `--force-bf16` for BF16 format.
- `--force-fp8` for FP8 format.
### π€ Hugging Face Transformers
Here is a code snippet to show you how to use the chat model with `transformers`:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "inclusionAI/Ling-mini-2.0"
model = AutoModelForCausalLM.from_pretrained(
model_name,
dtype="auto",
device_map="auto",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Give me a short introduction to large language models."
messages = [
{"role": "system", "content": "You are Ling, an assistant created by inclusionAI"},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt", return_token_type_ids=False).to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
### π€ ModelScope
If you're in mainland China, we strongly recommend you to use our model from π€ <a href="https://modelscope.cn/organization/inclusionAI">ModelScope</a>.
## Deployment
### vLLM
vLLM supports offline batched inference or launching an OpenAI-Compatible API Service for online inference.
#### Environment Preparation
Since the Pull Request (PR) has not been submitted to the vLLM community at this stage, please prepare the environment by following the steps below:
```bash
git clone -b v0.10.0 https://github.com/vllm-project/vllm.git
cd vllm
wget https://raw.githubusercontent.com/inclusionAI/Ling-V2/refs/heads/main/inference/vllm/bailing_moe_v2.patch
git apply bailing_moe_v2.patch
pip install -e .
```
#### Offline Inference:
```bash
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
tokenizer = AutoTokenizer.from_pretrained("inclusionAI/Ling-mini-2.0")
sampling_params = SamplingParams(temperature=0.7, top_p=0.8, repetition_penalty=1.05, max_tokens=16384)
llm = LLM(model="inclusionAI/Ling-mini-2.0", dtype='bfloat16')
prompt = "Give me a short introduction to large language models."
messages = [
{"role": "system", "content": "You are Ling, an assistant created by inclusionAI"},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
outputs = llm.generate([text], sampling_params)
```
#### Online Inference:
```bash
vllm serve inclusionAI/Ling-mini-2.0 \
--tensor-parallel-size 2 \
--pipeline-parallel-size 1 \
--use-v2-block-manager \
--gpu-memory-utilization 0.90
```
To handle long context in vLLM using YaRN, we need to follow these two steps:
1. Add a `rope_scaling` field to the model's `config.json` file, for example:
```json
{
...,
"rope_scaling": {
"factor": 4.0,
"original_max_position_embeddings": 32768,
"type": "yarn"
}
}
```
2. Use an additional parameter `--max-model-len` to specify the desired maximum context length when starting the vLLM service.
For detailed guidance, please refer to the vLLM [`instructions`](https://docs.vllm.ai/en/latest/).
### SGLang
#### Environment Preparation
We will later submit our model to SGLang official release, now we can prepare the environment following steps:
```shell
pip3 install sglang==0.5.2rc0 sgl-kernel==0.3.7.post1
```
You can use docker image as well:
```shell
docker pull lmsysorg/sglang:v0.5.2rc0-cu126
```
Then you should apply patch to sglang installation:
```shell
# patch command is needed, run `yum install -y patch` if needed
patch -d `python -c 'import sglang;import os; print(os.path.dirname(sglang.__file__))'` -p3 < inference/sglang/bailing_moe_v2.patch
```
#### Run Inference
BF16 and FP8 models are supported by SGLang now, it depends on the dtype of the model in ${MODEL_PATH}. They both share the same command in the following:
- Start server:
```shell
python -m sglang.launch_server \
--model-path $MODLE_PATH \
--host 0.0.0.0 --port $PORT \
--trust-remote-code \
--attention-backend fa3
```
MTP is supported for base model, and not yet for chat model. You can add parameter `--speculative-algorithm NEXTN`
to start command.
- Client:
```shell
curl -s http://localhost:${PORT}/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{"model": "auto", "messages": [{"role": "user", "content": "What is the capital of France?"}]}'
"""
```
More usage can be found [here](https://docs.sglang.ai/basic_usage/send_request.html)
## Training
We also provide a complete and efficient training framework that covers both pre-training and finetune. Based on this framework, continue training can be performed on the Ling-mini-2.0 checkpoint. With our training framework, the training throughput of the Ling-mini-2.0 model is significantly better than that of the existing Dense 8B model (Qwen3-8B, Llama3-8B).
### Pre-training
[Pretraining demo](https://github.com/inclusionAI/Ling-V2/blob/main/docs/gpu_based_training.md) to Continue pretraining Ling models.
#### Performance Benchmark
The table below shows the pre-training performance of several models, measured in **tokens per second** on 8, 16, and 32 80G GPUs. Ling-mini-2.0 achieves significantly higher training efficiency compared to the baseline, making it easier and more cost-effective to continue pre-training with our [demo scripts](https://github.com/inclusionAI/Ling-V2/blob/main/docs/gpu_based_training.md).
<center>
| **Model** | **8 x 80G GPUs (GBS=128)** | **16 x 80G GPUs (GBS=256)** | **32 x 80G GPUs (GBS=512)** |
| :---------------------: | :------------------------: | :-------------------------: | :-------------------------: |
| LLaMA 3.1 8B (baseline) | 81222 | 161319 | 321403 |
| Qwen3 8B | 55775 (-31.33%) | 109799 (-31.94%) | 219943 (-31.57%) |
| Ling-mini-2.0 | 109532 (+34.86%) | 221585 (+37.36%) | 448726 (+39.61%) |
| Ling-mini-2.0 w/o MTP | 128298 (+57.96%) | 307264 (+90.47%) | 611466 (+90.25%) |
</center>
### Finetuning
We recommend you to use [Llama-Factory](https://github.com/hiyouga/LLaMA-Factory) to [finetune Ling](https://github.com/inclusionAI/Ling-V2/blob/main/docs/llamafactory_finetuning.md). In addition to that, you can also use [Megatron for finetuning](https://github.com/inclusionAI/Ling-V2/blob/main/docs/megatron_sft_training.md).
## License
This code repository is licensed under [the MIT License](https://github.com/inclusionAI/Ling-V2/blob/master/LICENCE).
## Citation
If you find our work helpful, feel free to give us a cite.
```
```
|