Update README.md
Browse files
README.md
CHANGED
|
@@ -1,13 +1,23 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
| 2 |
library_name: sentence-transformers
|
| 3 |
pipeline_tag: sentence-similarity
|
| 4 |
tags:
|
| 5 |
- sentence-transformers
|
| 6 |
- sentence-similarity
|
| 7 |
- feature-extraction
|
|
|
|
|
|
|
| 8 |
---
|
|
|
|
| 9 |
|
| 10 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 13 |
|
|
@@ -16,7 +26,7 @@ This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps
|
|
| 16 |
### Model Description
|
| 17 |
- **Model Type:** Sentence Transformer
|
| 18 |
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
|
| 19 |
-
- **Maximum Sequence Length:**
|
| 20 |
- **Output Dimensionality:** 1024 tokens
|
| 21 |
- **Similarity Function:** Cosine Similarity
|
| 22 |
<!-- - **Training Dataset:** Unknown -->
|
|
|
|
| 1 |
---
|
| 2 |
+
license: mit
|
| 3 |
+
base_model:
|
| 4 |
+
- BAAI/bge-m3
|
| 5 |
library_name: sentence-transformers
|
| 6 |
pipeline_tag: sentence-similarity
|
| 7 |
tags:
|
| 8 |
- sentence-transformers
|
| 9 |
- sentence-similarity
|
| 10 |
- feature-extraction
|
| 11 |
+
- model2vec
|
| 12 |
+
- multilingual
|
| 13 |
---
|
| 14 |
+
For more details please refer to the original github repo: https://github.com/FlagOpen/FlagEmbedding
|
| 15 |
|
| 16 |
+
# BGE-M3 ([paper](https://arxiv.org/pdf/2402.03216.pdf), [code](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3))
|
| 17 |
+
|
| 18 |
+
This repo contains the original `BAAI/bge-m3` distilled to a Static Embedding module using [Model2Vec](https://github.com/MinishLab/model2vec/) and exported with SentenceTransformer.
|
| 19 |
+
|
| 20 |
+
## SentenceTransformer
|
| 21 |
|
| 22 |
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 23 |
|
|
|
|
| 26 |
### Model Description
|
| 27 |
- **Model Type:** Sentence Transformer
|
| 28 |
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
|
| 29 |
+
- **Maximum Sequence Length:** 8194 tokens
|
| 30 |
- **Output Dimensionality:** 1024 tokens
|
| 31 |
- **Similarity Function:** Cosine Similarity
|
| 32 |
<!-- - **Training Dataset:** Unknown -->
|