--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer - nlp - language-model - sentiment-analysis metrics: - accuracy - f1 - precision - recall model-index: - name: kritika_distilbert_model results: [] --- # kritika_distilbert_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5545 - Accuracy: 0.8424 - F1: 0.8424 - Precision: 0.8426 - Recall: 0.8424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.4212 | 1.0 | 534 | 0.4236 | 0.8189 | 0.8172 | 0.8313 | 0.8189 | | 0.253 | 2.0 | 1068 | 0.4338 | 0.8443 | 0.8442 | 0.8446 | 0.8443 | | 0.1618 | 3.0 | 1602 | 0.5545 | 0.8424 | 0.8424 | 0.8426 | 0.8424 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0