lakhera2023 commited on
Commit
48c756e
·
verified ·
1 Parent(s): f209d0f

Upload working DevOps-SLM - compatible with transformers

Browse files
Files changed (3) hide show
  1. README.md +2 -24
  2. config.json +4 -7
  3. tokenizer_config.json +3 -5
README.md CHANGED
@@ -18,7 +18,7 @@ pipeline_tag: text-generation
18
  DevOps-SLM is a specialized instruction-tuned language model designed exclusively for DevOps tasks, Kubernetes operations, and infrastructure management. This model provides accurate guidance and step-by-step instructions for complex DevOps workflows.
19
 
20
  ## Model Details
21
- - **Base Architecture**: Custom transformer-based causal language model
22
  - **Parameters**: 494M (0.5B)
23
  - **Model Type**: Instruction-tuned for DevOps domain
24
  - **Max Sequence Length**: 2048 tokens
@@ -55,24 +55,6 @@ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
55
  print(response)
56
  ```
57
 
58
- ### Docker Integration
59
- ```python
60
- # Generate Dockerfile
61
- messages = [
62
- {"role": "system", "content": "You are a specialized DevOps assistant."},
63
- {"role": "user", "content": "Create a Dockerfile for a Node.js application"}
64
- ]
65
- ```
66
-
67
- ### CI/CD Pipeline Design
68
- ```python
69
- # Design CI/CD pipeline
70
- messages = [
71
- {"role": "system", "content": "You are a specialized DevOps assistant."},
72
- {"role": "user", "content": "Design a CI/CD pipeline for a microservices application"}
73
- ]
74
- ```
75
-
76
  ## Examples
77
 
78
  ### Kubernetes Deployment
@@ -83,10 +65,6 @@ messages = [
83
  **Input**: "Create a Dockerfile for a Python Flask application"
84
  **Output**: Optimized Dockerfile with proper layering and security practices
85
 
86
- ### Infrastructure Automation
87
- **Input**: "Create a Terraform configuration for AWS EKS cluster"
88
- **Output**: Complete Terraform configuration with proper networking and security
89
-
90
  ## Performance
91
  - **Instruction Following**: >90% accuracy on DevOps tasks
92
  - **YAML Generation**: >95% syntactically correct output
@@ -94,7 +72,7 @@ messages = [
94
  - **Response Coherence**: High-quality, contextually appropriate responses
95
 
96
  ## Model Architecture
97
- - **Base**: Custom transformer architecture
98
  - **Attention**: Multi-head self-attention with group query attention
99
  - **Activation**: SwiGLU activation functions
100
  - **Normalization**: RMS normalization
 
18
  DevOps-SLM is a specialized instruction-tuned language model designed exclusively for DevOps tasks, Kubernetes operations, and infrastructure management. This model provides accurate guidance and step-by-step instructions for complex DevOps workflows.
19
 
20
  ## Model Details
21
+ - **Base Architecture**: Transformer-based causal language model
22
  - **Parameters**: 494M (0.5B)
23
  - **Model Type**: Instruction-tuned for DevOps domain
24
  - **Max Sequence Length**: 2048 tokens
 
55
  print(response)
56
  ```
57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
  ## Examples
59
 
60
  ### Kubernetes Deployment
 
65
  **Input**: "Create a Dockerfile for a Python Flask application"
66
  **Output**: Optimized Dockerfile with proper layering and security practices
67
 
 
 
 
 
68
  ## Performance
69
  - **Instruction Following**: >90% accuracy on DevOps tasks
70
  - **YAML Generation**: >95% syntactically correct output
 
72
  - **Response Coherence**: High-quality, contextually appropriate responses
73
 
74
  ## Model Architecture
75
+ - **Base**: Transformer architecture
76
  - **Attention**: Multi-head self-attention with group query attention
77
  - **Activation**: SwiGLU activation functions
78
  - **Normalization**: RMS normalization
config.json CHANGED
@@ -1,6 +1,6 @@
1
  {
2
  "architectures": [
3
- "DevOpsInstructSLMForCausalLM"
4
  ],
5
  "attention_dropout": 0.0,
6
  "bos_token_id": 151643,
@@ -38,7 +38,7 @@
38
  ],
39
  "max_position_embeddings": 32768,
40
  "max_window_layers": 24,
41
- "model_type": "devops_instruct_slm",
42
  "num_attention_heads": 14,
43
  "num_hidden_layers": 24,
44
  "num_key_value_heads": 2,
@@ -51,11 +51,8 @@
51
  "use_cache": true,
52
  "use_sliding_window": false,
53
  "vocab_size": 151936,
54
- "_name_or_path": "devops-slm-base",
55
  "custom_model_name": "DevOps-SLM",
56
  "training_data": "DevOps documentation, Kubernetes examples, and infrastructure guides",
57
- "base_architecture": "Custom transformer architecture for DevOps instruction following",
58
- "model_family": "DevOps-AI",
59
- "domain_specialization": "DevOps, Kubernetes, Docker, CI/CD, Infrastructure",
60
- "instruction_tuning": "Specialized for DevOps task completion and guidance"
61
  }
 
1
  {
2
  "architectures": [
3
+ "Qwen2ForCausalLM"
4
  ],
5
  "attention_dropout": 0.0,
6
  "bos_token_id": 151643,
 
38
  ],
39
  "max_position_embeddings": 32768,
40
  "max_window_layers": 24,
41
+ "model_type": "qwen2",
42
  "num_attention_heads": 14,
43
  "num_hidden_layers": 24,
44
  "num_key_value_heads": 2,
 
51
  "use_cache": true,
52
  "use_sliding_window": false,
53
  "vocab_size": 151936,
54
+ "_name_or_path": "lakhera2023/devops-slm",
55
  "custom_model_name": "DevOps-SLM",
56
  "training_data": "DevOps documentation, Kubernetes examples, and infrastructure guides",
57
+ "domain_specialization": "DevOps, Kubernetes, Docker, CI/CD, Infrastructure"
 
 
 
58
  }
tokenizer_config.json CHANGED
@@ -38,8 +38,6 @@
38
  "model_max_length": 32768,
39
  "pad_token": "<|endoftext|>",
40
  "split_special_tokens": false,
41
- "tokenizer_class": "DevOpsInstructTokenizer",
42
- "unk_token": null,
43
- "custom_tokenizer": "DevOps Specialized Tokenizer",
44
- "domain_optimized": true
45
- }
 
38
  "model_max_length": 32768,
39
  "pad_token": "<|endoftext|>",
40
  "split_special_tokens": false,
41
+ "tokenizer_class": "Qwen2Tokenizer",
42
+ "unk_token": null
43
+ }