--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: if it is raining, as was stated, then it is irrelevant what someone thinks abut whether or not it is raining. it is raining. therefore, the statement was nonsensical. - text: the first part of the sentence was a fact but the second half was sally's opinion - text: because on one hand it is but actually not a long term solution - text: it contradicted itself - text: cyberbully may seem cruel to everyone, but to tom, he does not feel cruel to him. metrics: - accuracy - precision - recall - f1 pipeline_tag: text-classification library_name: setfit inference: true base_model: sentence-transformers/paraphrase-mpnet-base-v2 model-index: - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.868421052631579 name: Accuracy - type: precision value: 0.5642857142857144 name: Precision - type: recall value: 0.5629370629370629 name: Recall - type: f1 value: 0.562610229276896 name: F1 --- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 3 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:-----------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Linguistic (in)felicity | | | Enrichment / reinterpretation | | | Lack of understanding / clear misunderstanding | | ## Evaluation ### Metrics | Label | Accuracy | Precision | Recall | F1 | |:--------|:---------|:----------|:-------|:-------| | **all** | 0.8684 | 0.5643 | 0.5629 | 0.5626 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("setfit_model_id") # Run inference preds = model("it contradicted itself") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 2 | 16.6447 | 92 | | Label | Training Sample Count | |:-----------------------------------------------|:----------------------| | Enrichment / reinterpretation | 31 | | Lack of understanding / clear misunderstanding | 10 | | Linguistic (in)felicity | 111 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (10, 10) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 20 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 3786 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0026 | 1 | 0.2539 | - | | 0.1316 | 50 | 0.2248 | - | | 0.2632 | 100 | 0.1681 | - | | 0.3947 | 150 | 0.0854 | - | | 0.5263 | 200 | 0.0128 | - | | 0.6579 | 250 | 0.0074 | - | | 0.7895 | 300 | 0.0017 | - | | 0.9211 | 350 | 0.0021 | - | | 1.0526 | 400 | 0.0024 | - | | 1.1842 | 450 | 0.0004 | - | | 1.3158 | 500 | 0.0011 | - | | 1.4474 | 550 | 0.0016 | - | | 1.5789 | 600 | 0.0003 | - | | 1.7105 | 650 | 0.0002 | - | | 1.8421 | 700 | 0.0002 | - | | 1.9737 | 750 | 0.0002 | - | | 2.1053 | 800 | 0.0002 | - | | 2.2368 | 850 | 0.0002 | - | | 2.3684 | 900 | 0.0002 | - | | 2.5 | 950 | 0.0001 | - | | 2.6316 | 1000 | 0.0001 | - | | 2.7632 | 1050 | 0.0001 | - | | 2.8947 | 1100 | 0.0001 | - | | 3.0263 | 1150 | 0.0001 | - | | 3.1579 | 1200 | 0.0001 | - | | 3.2895 | 1250 | 0.0001 | - | | 3.4211 | 1300 | 0.0001 | - | | 3.5526 | 1350 | 0.0001 | - | | 3.6842 | 1400 | 0.0001 | - | | 3.8158 | 1450 | 0.0001 | - | | 3.9474 | 1500 | 0.0001 | - | | 4.0789 | 1550 | 0.0001 | - | | 4.2105 | 1600 | 0.0001 | - | | 4.3421 | 1650 | 0.0001 | - | | 4.4737 | 1700 | 0.0001 | - | | 4.6053 | 1750 | 0.0001 | - | | 4.7368 | 1800 | 0.0001 | - | | 4.8684 | 1850 | 0.0001 | - | | 5.0 | 1900 | 0.0001 | - | | 5.1316 | 1950 | 0.0001 | - | | 5.2632 | 2000 | 0.0001 | - | | 5.3947 | 2050 | 0.0001 | - | | 5.5263 | 2100 | 0.0001 | - | | 5.6579 | 2150 | 0.0001 | - | | 5.7895 | 2200 | 0.0001 | - | | 5.9211 | 2250 | 0.0001 | - | | 6.0526 | 2300 | 0.0001 | - | | 6.1842 | 2350 | 0.0001 | - | | 6.3158 | 2400 | 0.0001 | - | | 6.4474 | 2450 | 0.0001 | - | | 6.5789 | 2500 | 0.0001 | - | | 6.7105 | 2550 | 0.0001 | - | | 6.8421 | 2600 | 0.0001 | - | | 6.9737 | 2650 | 0.0001 | - | | 7.1053 | 2700 | 0.0001 | - | | 7.2368 | 2750 | 0.0001 | - | | 7.3684 | 2800 | 0.0001 | - | | 7.5 | 2850 | 0.0001 | - | | 7.6316 | 2900 | 0.0001 | - | | 7.7632 | 2950 | 0.0001 | - | | 7.8947 | 3000 | 0.0001 | - | | 8.0263 | 3050 | 0.0001 | - | | 8.1579 | 3100 | 0.0001 | - | | 8.2895 | 3150 | 0.0001 | - | | 8.4211 | 3200 | 0.0001 | - | | 8.5526 | 3250 | 0.0001 | - | | 8.6842 | 3300 | 0.0001 | - | | 8.8158 | 3350 | 0.0001 | - | | 8.9474 | 3400 | 0.0012 | - | | 9.0789 | 3450 | 0.0003 | - | | 9.2105 | 3500 | 0.0001 | - | | 9.3421 | 3550 | 0.0001 | - | | 9.4737 | 3600 | 0.0001 | - | | 9.6053 | 3650 | 0.0001 | - | | 9.7368 | 3700 | 0.0001 | - | | 9.8684 | 3750 | 0.0001 | - | | 10.0 | 3800 | 0.0 | - | ### Framework Versions - Python: 3.11.9 - SetFit: 1.1.3 - Sentence Transformers: 5.1.0 - Transformers: 4.55.2 - PyTorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```