Update README.md
Browse files
README.md
CHANGED
|
@@ -68,14 +68,18 @@ import torch
|
|
| 68 |
from llm2vec_wrapper import LLM2VecWrapper as LLM2Vec
|
| 69 |
|
| 70 |
# Load the model - latent attention weights are automatically loaded!
|
|
|
|
| 71 |
model = LLM2Vec.from_pretrained(
|
| 72 |
base_model_name_or_path='lukeingawesome/llm2vec4cxr',
|
| 73 |
-
pooling_mode="latent_attention",
|
| 74 |
max_length=512,
|
| 75 |
enable_bidirectional=True,
|
| 76 |
torch_dtype=torch.bfloat16,
|
| 77 |
use_safetensors=True,
|
| 78 |
-
)
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
# Simple text encoding
|
| 81 |
report = "There is a small increase in the left-sided effusion. There continues to be volume loss at both bases."
|
|
@@ -125,12 +129,18 @@ import torch
|
|
| 125 |
from llm2vec_wrapper import LLM2VecWrapper as LLM2Vec
|
| 126 |
|
| 127 |
# Load model
|
|
|
|
| 128 |
model = LLM2Vec.from_pretrained(
|
| 129 |
-
'lukeingawesome/llm2vec4cxr',
|
| 130 |
pooling_mode="latent_attention",
|
|
|
|
|
|
|
| 131 |
torch_dtype=torch.bfloat16,
|
| 132 |
use_safetensors=True,
|
| 133 |
-
)
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
# Medical text analysis
|
| 136 |
instruction = 'Determine the change or the status of the pleural effusion.'
|
|
|
|
| 68 |
from llm2vec_wrapper import LLM2VecWrapper as LLM2Vec
|
| 69 |
|
| 70 |
# Load the model - latent attention weights are automatically loaded!
|
| 71 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 72 |
model = LLM2Vec.from_pretrained(
|
| 73 |
base_model_name_or_path='lukeingawesome/llm2vec4cxr',
|
| 74 |
+
pooling_mode="latent_attention",
|
| 75 |
max_length=512,
|
| 76 |
enable_bidirectional=True,
|
| 77 |
torch_dtype=torch.bfloat16,
|
| 78 |
use_safetensors=True,
|
| 79 |
+
).to(device).eval()
|
| 80 |
+
|
| 81 |
+
# Configure tokenizer
|
| 82 |
+
model.tokenizer.padding_side = 'left'
|
| 83 |
|
| 84 |
# Simple text encoding
|
| 85 |
report = "There is a small increase in the left-sided effusion. There continues to be volume loss at both bases."
|
|
|
|
| 129 |
from llm2vec_wrapper import LLM2VecWrapper as LLM2Vec
|
| 130 |
|
| 131 |
# Load model
|
| 132 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 133 |
model = LLM2Vec.from_pretrained(
|
| 134 |
+
base_model_name_or_path='lukeingawesome/llm2vec4cxr',
|
| 135 |
pooling_mode="latent_attention",
|
| 136 |
+
max_length=512,
|
| 137 |
+
enable_bidirectional=True,
|
| 138 |
torch_dtype=torch.bfloat16,
|
| 139 |
use_safetensors=True,
|
| 140 |
+
).to(device).eval()
|
| 141 |
+
|
| 142 |
+
# Configure tokenizer
|
| 143 |
+
model.tokenizer.padding_side = 'left'
|
| 144 |
|
| 145 |
# Medical text analysis
|
| 146 |
instruction = 'Determine the change or the status of the pleural effusion.'
|