LongCat0830 commited on
Commit
5ab8d2d
·
verified ·
1 Parent(s): cde5bf1

Add files using upload-large-folder tool

Browse files
Files changed (50) hide show
  1. config.json +37 -0
  2. configuration_longcat.py +210 -0
  3. generation_config.json +7 -0
  4. model.safetensors.index.json +0 -0
  5. model_00001-of-00075.safetensors +3 -0
  6. model_00002-of-00075.safetensors +3 -0
  7. model_00003-of-00075.safetensors +3 -0
  8. model_00004-of-00075.safetensors +3 -0
  9. model_00005-of-00075.safetensors +3 -0
  10. model_00006-of-00075.safetensors +3 -0
  11. model_00007-of-00075.safetensors +3 -0
  12. model_00008-of-00075.safetensors +3 -0
  13. model_00009-of-00075.safetensors +3 -0
  14. model_00010-of-00075.safetensors +3 -0
  15. model_00011-of-00075.safetensors +3 -0
  16. model_00012-of-00075.safetensors +3 -0
  17. model_00013-of-00075.safetensors +3 -0
  18. model_00014-of-00075.safetensors +3 -0
  19. model_00015-of-00075.safetensors +3 -0
  20. model_00016-of-00075.safetensors +3 -0
  21. model_00017-of-00075.safetensors +3 -0
  22. model_00018-of-00075.safetensors +3 -0
  23. model_00019-of-00075.safetensors +3 -0
  24. model_00020-of-00075.safetensors +3 -0
  25. model_00021-of-00075.safetensors +3 -0
  26. model_00022-of-00075.safetensors +3 -0
  27. model_00023-of-00075.safetensors +3 -0
  28. model_00024-of-00075.safetensors +3 -0
  29. model_00025-of-00075.safetensors +3 -0
  30. model_00026-of-00075.safetensors +3 -0
  31. model_00027-of-00075.safetensors +3 -0
  32. model_00028-of-00075.safetensors +3 -0
  33. model_00029-of-00075.safetensors +3 -0
  34. model_00030-of-00075.safetensors +3 -0
  35. model_00031-of-00075.safetensors +3 -0
  36. model_00032-of-00075.safetensors +3 -0
  37. model_00033-of-00075.safetensors +3 -0
  38. model_00034-of-00075.safetensors +3 -0
  39. model_00035-of-00075.safetensors +3 -0
  40. model_00036-of-00075.safetensors +3 -0
  41. model_00037-of-00075.safetensors +3 -0
  42. model_00038-of-00075.safetensors +3 -0
  43. model_00039-of-00075.safetensors +3 -0
  44. model_00040-of-00075.safetensors +3 -0
  45. model_00041-of-00075.safetensors +3 -0
  46. model_00042-of-00075.safetensors +3 -0
  47. modeling_longcat.py +1097 -0
  48. special_tokens_map.json +30 -0
  49. tokenizer.json +0 -0
  50. tokenizer_config.json +42 -0
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LongcatCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_longcat.LongcatConfig",
9
+ "AutoModel": "modeling_longcat.LongcatModel",
10
+ "AutoModelForCausalLM": "modeling_longcat.LongcatForCausalLM"
11
+ },
12
+ "vocab_size": 131072,
13
+ "hidden_size": 6144,
14
+ "ffn_hidden_size": 12288,
15
+ "expert_ffn_hidden_size": 2048,
16
+ "num_layers": 28,
17
+ "num_attention_heads": 64,
18
+ "kv_lora_rank": 512,
19
+ "q_lora_rank": 1536,
20
+ "qk_rope_head_dim": 64,
21
+ "v_head_dim": 128,
22
+ "qk_nope_head_dim": 128,
23
+ "mla_scale_q_lora": true,
24
+ "mla_scale_kv_lora": true,
25
+ "routed_scaling_factor": 6.0,
26
+ "n_routed_experts": 512,
27
+ "max_position_embeddings": 131072,
28
+ "rms_norm_eps": 1e-5,
29
+ "use_cache": true,
30
+ "bos_token_id": 1,
31
+ "eos_token_id": 2,
32
+ "rope_theta": 10000000.0,
33
+ "attention_method": "MLA",
34
+ "zero_expert_num": 256,
35
+ "zero_expert_type": "identity",
36
+ "moe_topk": 12
37
+ }
configuration_longcat.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2025 bzantium and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+
5
+ """Longcat model configuration"""
6
+
7
+ from transformers.configuration_utils import PretrainedConfig
8
+ from transformers.modeling_rope_utils import rope_config_validation
9
+
10
+
11
+ LONGCAT_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
12
+
13
+
14
+ class LongcatConfig(PretrainedConfig):
15
+ r"""
16
+ This is the configuration class to store the configuration of a [`LongcatModel`]. It is used to instantiate an Longcat
17
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
18
+ defaults will yield a similar configuration to that of the Longcat.
19
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
20
+ documentation from [`PretrainedConfig`] for more information.
21
+
22
+
23
+ Args:
24
+ vocab_size (`int`, *optional*, defaults to 131072):
25
+ Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
26
+ `inputs_ids` passed when calling [`LongcatModel`]
27
+ hidden_size (`int`, *optional*, defaults to 7168):
28
+ Dimension of the hidden representations.
29
+ ffn_hidden_size (`int`, *optional*, defaults to 18432):
30
+ Dimension of the MLP representations.
31
+ expert_ffn_hidden_size (`int`, *optional*, defaults to 2048):
32
+ Dimension of the MoE representations.
33
+ num_layers (`int`, *optional*, defaults to 61):
34
+ Number of hidden layers in the Transformer decoder.
35
+ num_attention_heads (`int`, *optional*, defaults to 128):
36
+ Number of attention heads for each attention layer in the Transformer decoder.
37
+ num_key_value_heads (`int`, *optional*, defaults to 128):
38
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
39
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
40
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
41
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
42
+ by meanpooling all the original heads within that group. For more details checkout [this
43
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
44
+ `num_attention_heads`.
45
+ n_routed_experts (`int`, *optional*, defaults to 256):
46
+ Number of routed experts.
47
+ routed_scaling_factor (`float`, *optional*, defaults to 2.5):
48
+ Scaling factor or routed experts.
49
+ kv_lora_rank (`int`, *optional*, defaults to 512):
50
+ Rank of the LoRA matrices for key and value projections.
51
+ q_lora_rank (`int`, *optional*, defaults to 1536):
52
+ Rank of the LoRA matrices for query projections.
53
+ qk_rope_head_dim (`int`, *optional*, defaults to 64):
54
+ Dimension of the query/key heads that use rotary position embeddings.
55
+ v_head_dim (`int`, *optional*, defaults to 128):
56
+ Dimension of the value heads.
57
+ qk_nope_head_dim (`int`, *optional*, defaults to 128):
58
+ Dimension of the query/key heads that don't use rotary position embeddings.
59
+ norm_topk_prob (`bool`, *optional*, defaults to `True`):
60
+ Whether to normalize the weights of the routed experts.
61
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
62
+ The non-linear activation function (function or string) in the decoder.
63
+ max_position_embeddings (`int`, *optional*, defaults to 4096):
64
+ The maximum sequence length that this model might ever be used with.
65
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
66
+ The epsilon used by the rms normalization layers.
67
+ use_cache (`bool`, *optional*, defaults to `True`):
68
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
69
+ relevant if `config.is_decoder=True`.
70
+ pad_token_id (`int`, *optional*):
71
+ Padding token id.
72
+ bos_token_id (`int`, *optional*, defaults to 0):
73
+ Beginning of stream token id.
74
+ eos_token_id (`int`, *optional*, defaults to 1):
75
+ End of stream token id.
76
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
77
+ Whether to tie weight embeddings
78
+ rope_theta (`float`, *optional*, defaults to 10000.0):
79
+ The base period of the RoPE embeddings.
80
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
81
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
82
+ attention_dropout (`float`, *optional*, defaults to 0.0):
83
+ The dropout ratio for the attention probabilities.
84
+
85
+ ```python
86
+ >>> from transformers import LongcatModel, LongcatConfig
87
+
88
+ >>> # Initializing a Longcat style configuration
89
+ >>> configuration = LongcatConfig()
90
+
91
+ >>> # Accessing the model configuration
92
+ >>> configuration = model.config
93
+ ```"""
94
+
95
+ model_type = "longcat"
96
+ keys_to_ignore_at_inference = ["past_key_values"]
97
+ base_model_tp_plan = { # TODO: only replicate attention layers when > first_k_dense_replace
98
+ "layers.*.self_attn.k_proj": "colwise",
99
+ "layers.*.self_attn.v_proj": "colwise",
100
+ "layers.*.self_attn.o_proj": "rowwise",
101
+ "layers.*.mlp.experts.*.gate_proj": "local_colwise",
102
+ "layers.*.mlp.experts.*.up_proj": "local_colwise",
103
+ "layers.*.mlp.experts.*.down_proj": "local_rowwise",
104
+ "layers.*.mlps.*.gate_proj": "local_colwise",
105
+ "layers.*.mlps.*.up_proj": "local_colwise",
106
+ "layers.*.mlps.*.down_proj": "local_rowwise",
107
+ }
108
+ base_model_pp_plan = {
109
+ "embed_tokens": (["input_ids"], ["inputs_embeds"]),
110
+ "layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
111
+ "norm": (["hidden_states"], ["hidden_states"]),
112
+ }
113
+
114
+ def __init__(
115
+ self,
116
+ vocab_size=131072,
117
+ hidden_size=7168,
118
+ ffn_hidden_size=18432,
119
+ expert_ffn_hidden_size=2048,
120
+ num_layers=61,
121
+ num_attention_heads=128,
122
+ num_key_value_heads=None,
123
+ n_routed_experts=256,
124
+ routed_scaling_factor=1,
125
+ kv_lora_rank=512,
126
+ q_lora_rank=1536,
127
+ qk_rope_head_dim=64,
128
+ v_head_dim=128,
129
+ head_dim=128,
130
+ qk_nope_head_dim=128,
131
+ mla_scale_q_lora=True,
132
+ mla_scale_kv_lora=True,
133
+ moe_topk=8,
134
+ norm_topk_prob=False,
135
+ hidden_act="silu",
136
+ max_position_embeddings=4096,
137
+ rms_norm_eps=1e-6,
138
+ use_cache=True,
139
+ pad_token_id=None,
140
+ bos_token_id=0,
141
+ eos_token_id=1,
142
+ tie_word_embeddings=False,
143
+ rope_theta=10000.0,
144
+ attention_bias=False,
145
+ attention_dropout=0.0,
146
+ attention_method='GQA',
147
+ initializer_range=0.006,
148
+ router_bias=False,
149
+ zero_expert_num=None,
150
+ zero_expert_type=None,
151
+ **kwargs,
152
+ ):
153
+ self.vocab_size = vocab_size
154
+ self.max_position_embeddings = max_position_embeddings
155
+ self.hidden_size = hidden_size
156
+ self.ffn_hidden_size = ffn_hidden_size
157
+ self.expert_ffn_hidden_size = expert_ffn_hidden_size
158
+ self.num_layers = num_layers
159
+ self.num_attention_heads = num_attention_heads
160
+ self.n_routed_experts = n_routed_experts
161
+ self.routed_scaling_factor = routed_scaling_factor
162
+ self.kv_lora_rank = kv_lora_rank
163
+ self.q_lora_rank = q_lora_rank
164
+ self.qk_rope_head_dim = qk_rope_head_dim
165
+ self.v_head_dim = v_head_dim
166
+ self.qk_nope_head_dim = qk_nope_head_dim
167
+ self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
168
+ self.moe_topk = moe_topk
169
+ self.norm_topk_prob = norm_topk_prob
170
+ self.mla_scale_q_lora = mla_scale_q_lora
171
+ self.mla_scale_kv_lora = mla_scale_kv_lora
172
+ self.attention_method = attention_method
173
+ self.initializer_range = initializer_range
174
+ self.router_bias = router_bias
175
+ self.zero_expert_num = zero_expert_num
176
+ self.zero_expert_type = zero_expert_type
177
+
178
+ if self.attention_method == "GQA":
179
+ self.head_dim = head_dim
180
+ elif self.attention_method == "MLA":
181
+ self.head_dim = qk_rope_head_dim
182
+ else:
183
+ ValueError("attention_method should be one of [\"GQA\", \"MLA\"]")
184
+
185
+
186
+ # for backward compatibility
187
+ if num_key_value_heads is None:
188
+ num_key_value_heads = num_attention_heads
189
+
190
+ self.num_key_value_heads = num_key_value_heads
191
+ self.hidden_act = hidden_act
192
+ self.rms_norm_eps = rms_norm_eps
193
+ self.use_cache = use_cache
194
+ self.rope_theta = rope_theta
195
+ self.attention_bias = attention_bias
196
+ self.attention_dropout = attention_dropout
197
+ # Validate the correctness of rotary position embeddings parameters
198
+ # BC: if there is a 'type' field, copy it it to 'rope_type'.
199
+ rope_config_validation(self)
200
+
201
+ super().__init__(
202
+ pad_token_id=pad_token_id,
203
+ bos_token_id=bos_token_id,
204
+ eos_token_id=eos_token_id,
205
+ tie_word_embeddings=tie_word_embeddings,
206
+ **kwargs,
207
+ )
208
+
209
+
210
+ __all__ = ["LongcatConfig"]
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.36.0"
7
+ }
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
model_00001-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e704cb9980f02881a338bcab69fe57b26818bd5532a95160e035a48afb6bbca9
3
+ size 1610640880
model_00002-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef0b9af4225dfa0785ba45668e5dcab60ba2565090a1007204cc6894bcc14bdc
3
+ size 1950351880
model_00003-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfa915de26252706f7444ad86a0544c37ccb585e6e4c631cf07528e484db51e3
3
+ size 151021016
model_00004-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42612161461787ec89262200c56b7f6407fd5f00fda0a02b60b11e6677b49b1d
3
+ size 1797259776
model_00005-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2a9e62d9f84ccdda96192e8cf256b14f72c760ca31fe6120a340f10237fa10e
3
+ size 107766232
model_00006-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1c396815c9bc2850ddce45c8342a223d71845964b84c62e86d59ac304a58b95
3
+ size 16104910872
model_00007-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55822e0c3553b7c129b824846a46083be03834f9045d1350595e0067a1a3736b
3
+ size 16050410488
model_00008-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ee474858019b88837bdcd48ccba6aa0794a4ae616b21d319b09310047dd5ff1
3
+ size 15852491800
model_00009-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c79d62cdf400fdfbc1e45f8964f432e8703c786c72c39fc5e651a736d5d31be
3
+ size 15960208416
model_00010-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb4aa648daaab1660e03fa4eb66e4027203e90125a9f53436d019996d43421d5
3
+ size 15916158872
model_00011-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd549779f08e2678750274434c0d9eba624ed82d37bdddf4a3436f0e0adc1ffc
3
+ size 16104910872
model_00012-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01b2d609e649fff84e786b822622aa88091b18ee47a98d82297dcaccc79b233b
3
+ size 16050410488
model_00013-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1b8aa94ab6261ee6c9bdebf829aef6754cdd8ce3b4ce35edb7d6e3f60201e2e
3
+ size 15852491800
model_00014-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02fedb6e8ef2c76a3bd8f9f9cf313992cb34e46c01c4bdc647fcdd33f6d5864d
3
+ size 15960208416
model_00015-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c42623ea52be9860976ef7d3b31d265dfc111c574efab7234a7f898581a7cfe0
3
+ size 15916158872
model_00016-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5af69854e7fd28452799e48eb6374f0a13c6e6e344899cc040ee0866df1198b
3
+ size 16104910872
model_00017-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a63f4935149d8d45629ff2f1507f26d34cb2206cc8e64b18d7b2307753ffeab
3
+ size 16050410488
model_00018-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e14ae63e7004c9bc774660a72ac11a1e1dbf8fbadbdc70ba9b657852d676ef8a
3
+ size 15852491800
model_00019-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d30f98b5d6f0d3e28b047c2524ca60289f9cd1b796e83a9bda31e2e27d51204
3
+ size 15960208416
model_00020-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9f65fa8c0a27cb9c364238fe7b3f0e257ecef41fc3a340940f3831b65901406
3
+ size 15916158872
model_00021-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6f580ea5c34a6991cb2e97f27811eaaf25d6dd0b364f88aabe3ce3288a6c794
3
+ size 16104910856
model_00022-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27dc23abf3cf04f1c9e957cc7586b0b4c24b5cdeea604ac658e7ff3a54c52aac
3
+ size 16050410512
model_00023-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93acbbd722f720bf66a3682897985c31e2b41c377154d476655dec1159c4b94b
3
+ size 15852491784
model_00024-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:baa183067ac8e3324aea5e55eb90e27716bbbadb0f7200d5d40c68245bcc9b16
3
+ size 15960208416
model_00025-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0502fa16482331c5ce050566a9a782681452121388875ceb08d75057fb92735
3
+ size 15916158872
model_00026-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb74d6eee28f1df0fd596b7ccce95587baf9b2f8cb8e8ac9e5b71d06db6ec9de
3
+ size 16104910856
model_00027-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2feae66f2d3c0f195b597c54a5352e97741f789494421d9e74d54f9f801fb570
3
+ size 16050410512
model_00028-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c082c412d54be36b5aeebe6cc0fadc10381ff3efa0bce28b14149e2b112372de
3
+ size 15852491784
model_00029-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23587de486896f98f64d83d1f18ee855825fa289b61d0173e639e4a8796f5e34
3
+ size 15960208416
model_00030-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9074d2392623cd21eec8296e8d251c3383ed6f298bb5fc7f5e3e6eefd1451bbd
3
+ size 15916158872
model_00031-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d6d46b7f422474594dc6f8fb536f93fcfd6e866df90930f7163f373977d76d6
3
+ size 16104910856
model_00032-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a54bb18a3661cefad82771846ca977a74547c56f3e3a429ac7ed703274fc76a
3
+ size 16050410512
model_00033-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1cd2bbf2ece638b3fd374c70acbcb4467cba6dac576d31130b8c4ef06f398e03
3
+ size 15852491784
model_00034-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56de3ae9731c699552e866ce2e4d0fa600fa735303eccee7f36a0d522affe026
3
+ size 15960208416
model_00035-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2025c8af0936b6ca12734b0da72c84728c32c6224e0070ba60e1422567e9362c
3
+ size 15916158872
model_00036-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b0aa1043c059805590b811282bd2dc0963fcad0c6fcb0f9de5753293069f96a
3
+ size 16104910856
model_00037-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c3653888967b2eb8f0084dd1c36b04fe7c016bf371969867cb0b778850bffcf
3
+ size 16050410512
model_00038-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8166f3277f580d8d114b4e67889be291974f3e1a89cd781549906da3de021469
3
+ size 15852491784
model_00039-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af253e4dce4ebe364be108c83c730b42ded3ca8cfbd18d60d11910a57f525a18
3
+ size 15960208416
model_00040-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8051f3ee7967f20e98d367e0d0923ff895c27bdd2df9525b1a4e7c9dfbc89dd0
3
+ size 15916158872
model_00041-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5477888162d0408950aea00ba96e19acfffbd2dfafd7efb6e3615d189909dad
3
+ size 16104910856
model_00042-of-00075.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64d4df3e185a159c7a130fce53ef621f88eac0c0acf99ed423a5b8f71c38603c
3
+ size 16050410512
modeling_longcat.py ADDED
@@ -0,0 +1,1097 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
2
+ # This file was automatically generated from src/transformers/models/longcat/modular_longcat.py.
3
+ # Do NOT edit this file manually as any edits will be overwritten by the generation of
4
+ # the file from the modular. If any change should be done, please apply the change to the
5
+ # modular_longcat.py file directly. One of our CI enforces this.
6
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
7
+ from functools import partial
8
+ from typing import Callable, Optional, Tuple, Union
9
+
10
+ import torch
11
+ import torch.nn.functional as F
12
+ from torch import nn
13
+
14
+ from transformers.activations import ACT2FN
15
+ from transformers.cache_utils import Cache
16
+ from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
17
+ from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS
18
+ from transformers.processing_utils import Unpack
19
+ from transformers.utils import logging
20
+
21
+ from transformers.cache_utils import DynamicCache, StaticCache
22
+ from transformers.generation import GenerationMixin
23
+ from transformers.integrations import use_kernel_forward_from_hub
24
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
25
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
26
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
27
+ from transformers.modeling_utils import PreTrainedModel
28
+ from transformers.utils import (
29
+ LossKwargs,
30
+ add_start_docstrings,
31
+ add_start_docstrings_to_model_forward,
32
+ can_return_tuple,
33
+ is_torch_flex_attn_available,
34
+ replace_return_docstrings,
35
+ )
36
+ from transformers.utils.deprecation import deprecate_kwarg
37
+ from .configuration_longcat import LongcatConfig
38
+
39
+
40
+ if is_torch_flex_attn_available():
41
+ from torch.nn.attention.flex_attention import BlockMask
42
+
43
+ from transformers.integrations.flex_attention import make_flex_block_causal_mask
44
+
45
+
46
+ logger = logging.get_logger(__name__)
47
+ _CONFIG_FOR_DOC = "LongcatConfig"
48
+
49
+
50
+ @use_kernel_forward_from_hub("RMSNorm")
51
+ class LongcatRMSNorm(nn.Module):
52
+ def __init__(self, hidden_size, eps=1e-6):
53
+ """
54
+ LongcatRMSNorm is equivalent to T5LayerNorm
55
+ """
56
+ super().__init__()
57
+ self.weight = nn.Parameter(torch.ones(hidden_size))
58
+ self.variance_epsilon = eps
59
+
60
+ def forward(self, hidden_states):
61
+ input_dtype = hidden_states.dtype
62
+ hidden_states = hidden_states.to(torch.float32)
63
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
64
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
65
+ return self.weight * hidden_states.to(input_dtype)
66
+
67
+ def extra_repr(self):
68
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
69
+
70
+
71
+ class LongcatRotaryEmbedding(nn.Module):
72
+ def __init__(self, config: LongcatConfig, device=None):
73
+ super().__init__()
74
+ # BC: "rope_type" was originally "type"
75
+ if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
76
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
77
+ else:
78
+ self.rope_type = "default"
79
+ self.max_seq_len_cached = config.max_position_embeddings
80
+ self.original_max_seq_len = config.max_position_embeddings
81
+
82
+ self.config = config
83
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
84
+
85
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
86
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
87
+ self.original_inv_freq = self.inv_freq
88
+
89
+ @torch.no_grad()
90
+ @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
91
+ def forward(self, x, position_ids):
92
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
93
+ position_ids_expanded = position_ids[:, None, :].float()
94
+
95
+ device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
96
+ with torch.autocast(device_type=device_type, enabled=False): # Force float32
97
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
98
+ emb = torch.cat((freqs, freqs), dim=-1)
99
+ cos = emb.cos() * self.attention_scaling
100
+ sin = emb.sin() * self.attention_scaling
101
+
102
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
103
+
104
+
105
+ class LongcatMLP(nn.Module):
106
+ def __init__(self, config, hidden_size=None, intermediate_size=None):
107
+ super().__init__()
108
+ self.config = config
109
+ self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
110
+ self.intermediate_size = config.ffn_hidden_size if intermediate_size is None else intermediate_size
111
+
112
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
113
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
114
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
115
+ self.act_fn = ACT2FN[config.hidden_act]
116
+
117
+ def forward(self, x):
118
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
119
+ return down_proj
120
+
121
+
122
+ class LongcatTopkRouter(nn.Module):
123
+ def __init__(self, config):
124
+ super().__init__()
125
+ self.config = config
126
+ self.top_k = config.moe_topk
127
+ self.n_routed_experts = config.n_routed_experts if config.zero_expert_num is None else config.n_routed_experts + config.zero_expert_num
128
+ self.routed_scaling_factor = config.routed_scaling_factor
129
+ self.norm_topk_prob = config.norm_topk_prob
130
+ self.router_bias = config.router_bias
131
+
132
+ self.classifier = nn.Linear(config.hidden_size, self.n_routed_experts, bias=self.router_bias)
133
+ self.register_buffer("e_score_correction_bias", torch.zeros((self.n_routed_experts)))
134
+
135
+ @torch.no_grad()
136
+ def get_topk_indices(self, scores):
137
+ scores_for_choice = scores.view(-1, self.n_routed_experts) + self.e_score_correction_bias.unsqueeze(0)
138
+ topk_indices = torch.topk(scores_for_choice, k=self.top_k, dim=-1, sorted=False)[1]
139
+ return topk_indices
140
+
141
+ def forward(self, hidden_states):
142
+ hidden_states = hidden_states.view(
143
+ -1, self.config.hidden_size
144
+ ) # hidden_states: [batchsize*seq_len, hidden_size]
145
+ router_logits = F.linear(hidden_states.type(torch.float32), self.classifier.weight.type(torch.float32))
146
+ scores = router_logits.softmax(dim=-1)
147
+ topk_indices = self.get_topk_indices(scores)
148
+ topk_weights = scores.gather(1, topk_indices)
149
+ if self.norm_topk_prob:
150
+ denominator = topk_weights.sum(dim=-1, keepdim=True) + 1e-20
151
+ topk_weights /= denominator
152
+ topk_weights = topk_weights * self.routed_scaling_factor
153
+ return topk_indices, topk_weights
154
+
155
+
156
+ class LongcatMoE(nn.Module):
157
+ """
158
+ A mixture of expert module.
159
+ """
160
+
161
+ def __init__(self, config):
162
+ super().__init__()
163
+ self.config = config
164
+ self.experts = nn.ModuleList(
165
+ [
166
+ LongcatMLP(config, intermediate_size=config.expert_ffn_hidden_size)
167
+ for _ in range(config.n_routed_experts)
168
+ ]
169
+ )
170
+ self.router = LongcatTopkRouter(config)
171
+ self.zero_expert_num = config.zero_expert_num
172
+ self.zero_expert_type = config.zero_expert_type
173
+
174
+ def moe(self, hidden_states: torch.Tensor, topk_indices: torch.Tensor, topk_weights: torch.Tensor):
175
+ r"""
176
+ CALL FOR CONTRIBUTION! I don't have time to optimise this right now, but expert weights need to be fused
177
+ to not have to do a loop here (deepseek has 256 experts soooo yeah).
178
+ """
179
+ final_hidden_states = torch.zeros_like(hidden_states, dtype=topk_weights.dtype)
180
+ total_experts = len(self.experts) if self.zero_expert_num is None else len(self.experts) + self.zero_expert_num
181
+
182
+ expert_mask = torch.nn.functional.one_hot(topk_indices, num_classes=total_experts) # (T, K, E)
183
+ expert_mask = expert_mask.permute(2, 0, 1) # (E, T, K)
184
+
185
+ for expert_idx in range(total_experts):
186
+ expert = self.experts[expert_idx] if expert_idx<len(self.experts) else None
187
+ mask = expert_mask[expert_idx] # (T, K)
188
+ token_indices, weight_indices = torch.where(mask) # 哪些token选择了这些专家 shape (N, )
189
+
190
+ if token_indices.numel() > 0:
191
+ expert_weights = topk_weights[token_indices, weight_indices]
192
+ expert_input = hidden_states[token_indices] # (T, H) --> (N, H)
193
+
194
+ if self.zero_expert_num is None or expert_idx<len(self.experts):
195
+ expert_output = expert(expert_input)
196
+ elif self.zero_expert_type=='drop':
197
+ expert_output = 0*expert_input
198
+ elif self.zero_expert_type=='identity':
199
+ expert_output = expert_input
200
+ else:
201
+ raise ValueError("Unknown condition")
202
+
203
+ weighted_output = expert_output * expert_weights.unsqueeze(-1)
204
+ final_hidden_states.index_add_(0, token_indices, weighted_output)
205
+
206
+ # in original deepseek, the output of the experts are gathered once we leave this module
207
+ # thus the moe module is itelsf an IsolatedParallel module
208
+ # and all expert are "local" meaning we shard but we don't gather
209
+ return final_hidden_states.type(hidden_states.dtype)
210
+
211
+ def forward(self, hidden_states):
212
+ residuals = hidden_states
213
+ orig_shape = hidden_states.shape
214
+ topk_indices, topk_weights = self.router(hidden_states)
215
+ hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
216
+ hidden_states = self.moe(hidden_states, topk_indices, topk_weights).view(*orig_shape)
217
+ return hidden_states
218
+
219
+
220
+ def rotate_half(x):
221
+ """Rotates half the hidden dims of the input."""
222
+ x1 = x[..., : x.shape[-1] // 2]
223
+ x2 = x[..., x.shape[-1] // 2 :]
224
+ return torch.cat((-x2, x1), dim=-1)
225
+
226
+
227
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
228
+ """
229
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
230
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
231
+ """
232
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
233
+ if n_rep == 1:
234
+ return hidden_states
235
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
236
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
237
+
238
+
239
+ def eager_attention_forward(
240
+ module: nn.Module,
241
+ query: torch.Tensor,
242
+ key: torch.Tensor,
243
+ value: torch.Tensor,
244
+ attention_mask: Optional[torch.Tensor],
245
+ scaling: float,
246
+ dropout: float = 0.0,
247
+ **kwargs,
248
+ ):
249
+ key_states = repeat_kv(key, module.num_key_value_groups)
250
+ value_states = repeat_kv(value, module.num_key_value_groups)
251
+
252
+ attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
253
+ if attention_mask is not None:
254
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
255
+ attn_weights = attn_weights + causal_mask
256
+
257
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
258
+ attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
259
+ attn_output = torch.matmul(attn_weights, value_states)
260
+ attn_output = attn_output.transpose(1, 2).contiguous()
261
+
262
+ return attn_output, attn_weights
263
+
264
+
265
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1, use_mla=False):
266
+ """Applies Rotary Position Embedding to the query and key tensors.
267
+
268
+ Args:
269
+ q (`torch.Tensor`): The query tensor.
270
+ k (`torch.Tensor`): The key tensor.
271
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
272
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
273
+ position_ids (`torch.Tensor`, *optional*):
274
+ Deprecated and unused.
275
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
276
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
277
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
278
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
279
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
280
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
281
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
282
+ Returns:
283
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
284
+ """
285
+ cos = cos.unsqueeze(unsqueeze_dim)
286
+ sin = sin.unsqueeze(unsqueeze_dim)
287
+
288
+ if use_mla:
289
+ b, h, s, d = q.shape
290
+ q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
291
+
292
+ b, h, s, d = k.shape
293
+ k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
294
+
295
+ q_embed = (q * cos) + (rotate_half(q) * sin)
296
+ k_embed = (k * cos) + (rotate_half(k) * sin)
297
+ return q_embed, k_embed
298
+
299
+
300
+ class LongcatGQA(nn.Module):
301
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
302
+
303
+ def __init__(self, config: LongcatConfig, layer_idx: int):
304
+ super().__init__()
305
+ self.config = config
306
+ self.layer_idx = layer_idx
307
+ self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
308
+ self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
309
+ self.scaling = self.head_dim**-0.5
310
+ self.attention_dropout = config.attention_dropout
311
+ self.is_causal = True
312
+
313
+ self.q_proj = nn.Linear(
314
+ config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
315
+ )
316
+ self.k_proj = nn.Linear(
317
+ config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
318
+ )
319
+ self.v_proj = nn.Linear(
320
+ config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
321
+ )
322
+ self.o_proj = nn.Linear(
323
+ config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
324
+ )
325
+
326
+ def forward(
327
+ self,
328
+ hidden_states: torch.Tensor,
329
+ position_embeddings: Tuple[torch.Tensor, torch.Tensor],
330
+ attention_mask: Optional[torch.Tensor],
331
+ past_key_value: Optional[Cache] = None,
332
+ cache_position: Optional[torch.LongTensor] = None,
333
+ **kwargs: Unpack[FlashAttentionKwargs],
334
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
335
+ input_shape = hidden_states.shape[:-1]
336
+ hidden_shape = (*input_shape, -1, self.head_dim)
337
+
338
+ query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
339
+ key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
340
+ value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
341
+
342
+ cos, sin = position_embeddings
343
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
344
+
345
+ if past_key_value is not None:
346
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
347
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
348
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
349
+
350
+ attention_interface: Callable = eager_attention_forward
351
+
352
+ if self.config._attn_implementation != "eager":
353
+ if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
354
+ logger.warning_once(
355
+ "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
356
+ 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
357
+ )
358
+ else:
359
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
360
+
361
+ attn_output, attn_weights = attention_interface(
362
+ self,
363
+ query_states,
364
+ key_states,
365
+ value_states,
366
+ attention_mask,
367
+ dropout=0.0 if not self.training else self.attention_dropout,
368
+ scaling=self.scaling,
369
+ **kwargs,
370
+ )
371
+
372
+ attn_output = attn_output.reshape(*input_shape, -1).contiguous()
373
+ attn_output = self.o_proj(attn_output)
374
+ return attn_output, attn_weights
375
+
376
+
377
+ class LongcatMLA(nn.Module):
378
+ """Modified from Deepseek MLA"""
379
+
380
+ def __init__(self, config: LongcatConfig, layer_idx: int):
381
+ super().__init__()
382
+ self.config = config
383
+ self.layer_idx = layer_idx
384
+ self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
385
+ self.attention_dropout = config.attention_dropout
386
+ self.num_heads = config.num_attention_heads
387
+ self.rope_theta = config.rope_theta
388
+ self.q_lora_rank = config.q_lora_rank
389
+ self.qk_rope_head_dim = config.qk_rope_head_dim
390
+ self.kv_lora_rank = config.kv_lora_rank
391
+ self.v_head_dim = config.v_head_dim
392
+ self.qk_nope_head_dim = config.qk_nope_head_dim
393
+ self.qk_head_dim = config.qk_head_dim
394
+
395
+ self.is_causal = True
396
+ self.q_a_proj = nn.Linear(config.hidden_size, config.q_lora_rank, bias=config.attention_bias)
397
+ self.q_a_layernorm = LongcatRMSNorm(config.q_lora_rank)
398
+ self.q_b_proj = nn.Linear(config.q_lora_rank, self.num_heads * self.qk_head_dim, bias=False)
399
+
400
+ self.kv_a_proj_with_mqa = nn.Linear(
401
+ config.hidden_size,
402
+ self.kv_lora_rank + self.qk_rope_head_dim,
403
+ bias=config.attention_bias,
404
+ )
405
+ self.kv_a_layernorm = LongcatRMSNorm(self.kv_lora_rank)
406
+ self.kv_b_proj = nn.Linear(
407
+ self.kv_lora_rank,
408
+ self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
409
+ bias=False,
410
+ )
411
+
412
+ self.o_proj = nn.Linear(
413
+ self.num_heads * self.v_head_dim,
414
+ config.hidden_size,
415
+ bias=config.attention_bias,
416
+ )
417
+
418
+ if config.mla_scale_q_lora:
419
+ self.mla_scale_q_lora = (config.hidden_size / self.q_lora_rank) ** 0.5
420
+ if config.mla_scale_kv_lora:
421
+ self.mla_scale_kv_lora = (config.hidden_size / self.kv_lora_rank) ** 0.5
422
+ self.scaling = self.qk_head_dim ** (-0.5)
423
+
424
+ def forward(
425
+ self,
426
+ hidden_states: torch.Tensor,
427
+ position_embeddings: Tuple[torch.Tensor, torch.Tensor],
428
+ attention_mask: Optional[torch.Tensor],
429
+ past_key_value: Optional[Cache] = None,
430
+ cache_position: Optional[torch.LongTensor] = None,
431
+ **kwargs: Unpack[FlashAttentionKwargs],
432
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
433
+ batch_size, seq_length = hidden_states.shape[:-1]
434
+ query_shape = (batch_size, seq_length, -1, self.qk_head_dim)
435
+ key_shape = (batch_size, seq_length, -1, self.qk_nope_head_dim + self.v_head_dim)
436
+
437
+ q_states = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))).view(query_shape).transpose(1, 2)
438
+ q_pass, q_rot = torch.split(q_states, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
439
+
440
+ # apply q_lora scaling
441
+ if self.mla_scale_q_lora is not None:
442
+ q_pass = q_pass * self.mla_scale_q_lora
443
+ q_rot = q_rot * self.mla_scale_q_lora
444
+
445
+ compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
446
+ k_pass, k_rot = torch.split(compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
447
+ k_pass = self.kv_a_layernorm(k_pass)
448
+
449
+ # apply kv_lora scaling
450
+ if self.mla_scale_kv_lora is not None:
451
+ k_pass = k_pass * self.mla_scale_kv_lora
452
+
453
+ k_pass = self.kv_b_proj(k_pass).view(key_shape).transpose(1, 2)
454
+ k_pass, value_states = torch.split(k_pass, [self.qk_nope_head_dim, self.v_head_dim], dim=-1)
455
+
456
+ k_rot = k_rot.view(batch_size, 1, seq_length, self.qk_rope_head_dim)
457
+
458
+ cos, sin = position_embeddings
459
+ q_rot, k_rot = apply_rotary_pos_emb(q_rot, k_rot, cos, sin, use_mla=True)
460
+ k_rot = k_rot.expand(*k_pass.shape[:-1], -1)
461
+
462
+ query_states = torch.cat((q_pass, q_rot), dim=-1)
463
+ key_states = torch.cat((k_pass, k_rot), dim=-1)
464
+
465
+ if past_key_value is not None:
466
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
467
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
468
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
469
+
470
+ if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim:
471
+ value_states = F.pad(value_states, [0, self.qk_head_dim - self.v_head_dim])
472
+
473
+ attention_interface: Callable = eager_attention_forward
474
+ if self.config._attn_implementation != "eager":
475
+ if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
476
+ logger.warning_once(
477
+ "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
478
+ 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
479
+ )
480
+ else:
481
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
482
+
483
+ attn_output, attn_weights = attention_interface(
484
+ self,
485
+ query_states,
486
+ key_states,
487
+ value_states,
488
+ attention_mask,
489
+ dropout=0.0 if not self.training else self.attention_dropout,
490
+ scaling=self.scaling,
491
+ **kwargs,
492
+ )
493
+
494
+ if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim:
495
+ attn_output = attn_output[:, :, :, : self.v_head_dim]
496
+
497
+ attn_output = attn_output.reshape(batch_size, seq_length, -1).contiguous()
498
+ attn_output = self.o_proj(attn_output)
499
+ return attn_output, attn_weights
500
+
501
+
502
+ def create_attention_block(class_name, *args, **kwargs):
503
+ # 字典将输入参数映射到类及其参数列表
504
+ attention_mapping = {"MLA": LongcatMLA, "GQA": LongcatGQA}
505
+
506
+ chosen_class = attention_mapping.get(class_name)
507
+ if not chosen_class:
508
+ raise ValueError(f"No class found for name: {class_name}")
509
+
510
+ # 实例化并传递参数
511
+ return chosen_class(*args, **kwargs)
512
+
513
+
514
+ class LongcatDecoderLayer(nn.Module):
515
+ def __init__(self, config: LongcatConfig, layer_idx: int):
516
+ super().__init__()
517
+ self.layer_idx = layer_idx
518
+ self.hidden_size = config.hidden_size
519
+ self.mlp = LongcatMoE(config)
520
+
521
+ self_attn = []
522
+ mlps = []
523
+ input_layernorm = []
524
+ post_attention_layernorm = []
525
+ for i in range(2):
526
+ self_attn.append(
527
+ create_attention_block(config.attention_method, config=config, layer_idx=layer_idx * 2 + i)
528
+ )
529
+ mlps.append(LongcatMLP(config))
530
+ input_layernorm.append(LongcatRMSNorm(config.hidden_size, eps=config.rms_norm_eps))
531
+ post_attention_layernorm.append(LongcatRMSNorm(config.hidden_size, eps=config.rms_norm_eps))
532
+
533
+ self.self_attn = nn.ModuleList(self_attn)
534
+ self.mlps = nn.ModuleList(mlps)
535
+ self.input_layernorm = nn.ModuleList(input_layernorm)
536
+ self.post_attention_layernorm = nn.ModuleList(post_attention_layernorm)
537
+
538
+ def forward(
539
+ self,
540
+ hidden_states: torch.Tensor,
541
+ attention_mask: Optional[torch.Tensor] = None,
542
+ position_ids: Optional[torch.LongTensor] = None,
543
+ past_key_value: Optional[Cache] = None,
544
+ output_attentions: Optional[bool] = False,
545
+ use_cache: Optional[bool] = False,
546
+ cache_position: Optional[torch.LongTensor] = None,
547
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
548
+ **kwargs: Unpack[FlashAttentionKwargs],
549
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
550
+ for i in range(2):
551
+ residual = hidden_states
552
+
553
+ hidden_states = self.input_layernorm[i](hidden_states)
554
+
555
+ # Self Attention
556
+ hidden_states, self_attn_weights = self.self_attn[i](
557
+ hidden_states=hidden_states,
558
+ attention_mask=attention_mask,
559
+ position_ids=position_ids,
560
+ past_key_value=past_key_value,
561
+ output_attentions=output_attentions,
562
+ use_cache=use_cache,
563
+ cache_position=cache_position,
564
+ position_embeddings=position_embeddings,
565
+ **kwargs,
566
+ )
567
+ hidden_states = residual + hidden_states
568
+
569
+ # Fully Connected
570
+ residual = hidden_states
571
+ hidden_states = self.post_attention_layernorm[i](hidden_states)
572
+
573
+ if i == 0:
574
+ shortcut_mlp_output = self.mlp(hidden_states) # shortcut output (MoE output)
575
+
576
+ hidden_states = self.mlps[i](hidden_states)
577
+ hidden_states = residual + hidden_states
578
+ if i == 1:
579
+ hidden_states = hidden_states + shortcut_mlp_output
580
+
581
+ outputs = (hidden_states,)
582
+ if output_attentions:
583
+ outputs += (self_attn_weights,)
584
+
585
+ return outputs
586
+
587
+
588
+ LONGCAT_START_DOCSTRING = r"""
589
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
590
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
591
+ etc.)
592
+
593
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
594
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
595
+ and behavior.
596
+
597
+ Parameters:
598
+ config ([`LongcatConfig`]):
599
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
600
+ load the weights associated with the model, only the configuration. Check out the
601
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
602
+ """
603
+
604
+
605
+ @add_start_docstrings(
606
+ "The bare Longcat Model outputting raw hidden-states without any specific head on top.",
607
+ LONGCAT_START_DOCSTRING,
608
+ )
609
+ class LongcatPreTrainedModel(PreTrainedModel):
610
+ config_class = LongcatConfig
611
+ base_model_prefix = "model"
612
+ supports_gradient_checkpointing = True
613
+ _no_split_modules = ["LongcatDecoderLayer"]
614
+ _skip_keys_device_placement = ["past_key_values"]
615
+ _supports_flash_attn_2 = True
616
+ _supports_sdpa = True
617
+ _supports_flex_attn = True
618
+ _supports_cache_class = True
619
+ _supports_quantized_cache = True
620
+ _supports_static_cache = True
621
+ _supports_attention_backend = True
622
+
623
+ def _init_weights(self, module):
624
+ std = self.config.initializer_range
625
+ if isinstance(module, nn.Linear):
626
+ module.weight.data.normal_(mean=0.0, std=std)
627
+ if module.bias is not None:
628
+ module.bias.data.zero_()
629
+ elif isinstance(module, nn.Embedding):
630
+ module.weight.data.normal_(mean=0.0, std=std)
631
+ if module.padding_idx is not None:
632
+ module.weight.data[module.padding_idx].zero_()
633
+
634
+
635
+ LONGCAT_INPUTS_DOCSTRING = r"""
636
+ Args:
637
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
638
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
639
+ it.
640
+
641
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
642
+ [`PreTrainedTokenizer.__call__`] for details.
643
+
644
+ [What are input IDs?](../glossary#input-ids)
645
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
646
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
647
+
648
+ - 1 for tokens that are **not masked**,
649
+ - 0 for tokens that are **masked**.
650
+
651
+ [What are attention masks?](../glossary#attention-mask)
652
+
653
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
654
+ [`PreTrainedTokenizer.__call__`] for details.
655
+
656
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
657
+ `past_key_values`).
658
+
659
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
660
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
661
+ information on the default strategy.
662
+
663
+ - 1 indicates the head is **not masked**,
664
+ - 0 indicates the head is **masked**.
665
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
666
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
667
+ config.n_positions - 1]`.
668
+
669
+ [What are position IDs?](../glossary#position-ids)
670
+ past_key_values (`Cache`, *optional*):
671
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
672
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
673
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
674
+
675
+ It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
676
+
677
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
678
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
679
+ of shape `(batch_size, sequence_length)`.
680
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
681
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
682
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
683
+ model's internal embedding lookup matrix.
684
+ use_cache (`bool`, *optional*):
685
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
686
+ `past_key_values`).
687
+ output_attentions (`bool`, *optional*):
688
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
689
+ tensors for more detail.
690
+ output_hidden_states (`bool`, *optional*):
691
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
692
+ more detail.
693
+ return_dict (`bool`, *optional*):
694
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
695
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
696
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
697
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
698
+ the complete sequence length.
699
+ """
700
+
701
+
702
+ @add_start_docstrings(
703
+ "The bare Longcat Model outputting raw hidden-states without any specific head on top.",
704
+ LONGCAT_START_DOCSTRING,
705
+ )
706
+ class LongcatModel(LongcatPreTrainedModel):
707
+ """
708
+ Transformer decoder consisting of *config.num_layers* layers. Each layer is a [`LongcatDecoderLayer`]
709
+
710
+ Args:
711
+ config: LongcatConfig
712
+ """
713
+
714
+ # _keys_to_ignore_on_load_unexpected = [r"model\.layers\.61.*"]
715
+ _keys_to_ignore_on_load_unexpected = None
716
+
717
+ def __init__(self, config: LongcatConfig):
718
+ super().__init__(config)
719
+ self.padding_idx = config.pad_token_id
720
+ self.vocab_size = config.vocab_size
721
+
722
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
723
+ self.layers = nn.ModuleList([LongcatDecoderLayer(config, layer_idx) for layer_idx in range(config.num_layers)])
724
+ self.norm = LongcatRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
725
+ self.rotary_emb = LongcatRotaryEmbedding(config=config)
726
+ self.gradient_checkpointing = False
727
+
728
+ # Initialize weights and apply final processing
729
+ self.post_init()
730
+
731
+ def get_input_embeddings(self):
732
+ return self.embed_tokens
733
+
734
+ def set_input_embeddings(self, value):
735
+ self.embed_tokens = value
736
+
737
+ @can_return_tuple
738
+ @add_start_docstrings_to_model_forward(LONGCAT_INPUTS_DOCSTRING)
739
+ def forward(
740
+ self,
741
+ input_ids: Optional[torch.LongTensor] = None,
742
+ attention_mask: Optional[torch.Tensor] = None,
743
+ position_ids: Optional[torch.LongTensor] = None,
744
+ past_key_values: Optional[Cache] = None,
745
+ inputs_embeds: Optional[torch.FloatTensor] = None,
746
+ use_cache: Optional[bool] = None,
747
+ output_attentions: Optional[bool] = None,
748
+ output_hidden_states: Optional[bool] = None,
749
+ cache_position: Optional[torch.LongTensor] = None,
750
+ **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
751
+ ) -> BaseModelOutputWithPast:
752
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
753
+ output_hidden_states = (
754
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
755
+ )
756
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
757
+
758
+ if (input_ids is None) ^ (inputs_embeds is not None):
759
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
760
+
761
+ if self.gradient_checkpointing and self.training and use_cache:
762
+ logger.warning_once(
763
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
764
+ )
765
+ use_cache = False
766
+
767
+ # TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
768
+ if not isinstance(past_key_values, (type(None), Cache)):
769
+ raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
770
+
771
+ if inputs_embeds is None:
772
+ inputs_embeds = self.embed_tokens(input_ids)
773
+
774
+ if use_cache and past_key_values is None:
775
+ past_key_values = DynamicCache()
776
+
777
+ if cache_position is None:
778
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
779
+ cache_position = torch.arange(
780
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
781
+ )
782
+
783
+ if position_ids is None:
784
+ position_ids = cache_position.unsqueeze(0)
785
+
786
+ causal_mask = self._update_causal_mask(
787
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
788
+ )
789
+
790
+ hidden_states = inputs_embeds
791
+
792
+ # create position embeddings to be shared across the decoder layers
793
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
794
+
795
+ # decoder layers
796
+ all_hidden_states = () if output_hidden_states else None
797
+ all_self_attns = () if output_attentions else None
798
+
799
+ for decoder_layer in self.layers[: self.config.num_layers]:
800
+ if output_hidden_states:
801
+ all_hidden_states += (hidden_states,)
802
+
803
+ if self.gradient_checkpointing and self.training:
804
+ layer_outputs = self._gradient_checkpointing_func(
805
+ partial(decoder_layer.__call__, **flash_attn_kwargs),
806
+ hidden_states,
807
+ causal_mask,
808
+ position_ids,
809
+ past_key_values,
810
+ output_attentions,
811
+ use_cache,
812
+ cache_position,
813
+ position_embeddings,
814
+ )
815
+ else:
816
+ layer_outputs = decoder_layer(
817
+ hidden_states,
818
+ attention_mask=causal_mask,
819
+ position_ids=position_ids,
820
+ past_key_value=past_key_values,
821
+ output_attentions=output_attentions,
822
+ use_cache=use_cache,
823
+ cache_position=cache_position,
824
+ position_embeddings=position_embeddings,
825
+ **flash_attn_kwargs,
826
+ )
827
+
828
+ hidden_states = layer_outputs[0]
829
+
830
+ if output_attentions:
831
+ all_self_attns += (layer_outputs[1],)
832
+
833
+ hidden_states = self.norm(hidden_states)
834
+
835
+ # add hidden states from the last decoder layer
836
+ if output_hidden_states:
837
+ all_hidden_states += (hidden_states,)
838
+
839
+ return BaseModelOutputWithPast(
840
+ last_hidden_state=hidden_states,
841
+ past_key_values=past_key_values if use_cache else None,
842
+ hidden_states=all_hidden_states,
843
+ attentions=all_self_attns,
844
+ )
845
+
846
+ def _update_causal_mask(
847
+ self,
848
+ attention_mask: torch.Tensor,
849
+ input_tensor: torch.Tensor,
850
+ cache_position: torch.Tensor,
851
+ past_key_values: Cache,
852
+ output_attentions: bool = False,
853
+ ):
854
+ if self.config._attn_implementation == "flash_attention_2":
855
+ if attention_mask is not None and (attention_mask == 0.0).any():
856
+ return attention_mask
857
+ return None
858
+ if self.config._attn_implementation == "flex_attention":
859
+ if isinstance(attention_mask, torch.Tensor):
860
+ attention_mask = make_flex_block_causal_mask(attention_mask)
861
+ if isinstance(attention_mask, BlockMask):
862
+ return attention_mask
863
+
864
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
865
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
866
+ # to infer the attention mask.
867
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
868
+ using_static_cache = isinstance(past_key_values, StaticCache)
869
+
870
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
871
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
872
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
873
+ attention_mask,
874
+ inputs_embeds=input_tensor,
875
+ past_key_values_length=past_seen_tokens,
876
+ is_training=self.training,
877
+ ):
878
+ return None
879
+
880
+ dtype, device = input_tensor.dtype, input_tensor.device
881
+ sequence_length = input_tensor.shape[1]
882
+ if using_static_cache:
883
+ target_length = past_key_values.get_max_cache_shape()
884
+ else:
885
+ target_length = (
886
+ attention_mask.shape[-1]
887
+ if isinstance(attention_mask, torch.Tensor)
888
+ else past_seen_tokens + sequence_length + 1
889
+ )
890
+
891
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
892
+ causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
893
+ attention_mask,
894
+ sequence_length=sequence_length,
895
+ target_length=target_length,
896
+ dtype=dtype,
897
+ device=device,
898
+ cache_position=cache_position,
899
+ batch_size=input_tensor.shape[0],
900
+ )
901
+
902
+ if (
903
+ self.config._attn_implementation == "sdpa"
904
+ and attention_mask is not None
905
+ and attention_mask.device.type in ["cuda", "xpu", "npu"]
906
+ and not output_attentions
907
+ ):
908
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
909
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
910
+ # Details: https://github.com/pytorch/pytorch/issues/110213
911
+ min_dtype = torch.finfo(dtype).min
912
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
913
+
914
+ return causal_mask
915
+
916
+ @staticmethod
917
+ def _prepare_4d_causal_attention_mask_with_cache_position(
918
+ attention_mask: torch.Tensor,
919
+ sequence_length: int,
920
+ target_length: int,
921
+ dtype: torch.dtype,
922
+ device: torch.device,
923
+ cache_position: torch.Tensor,
924
+ batch_size: int,
925
+ **kwargs,
926
+ ):
927
+ """
928
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
929
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
930
+
931
+ Args:
932
+ attention_mask (`torch.Tensor`):
933
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
934
+ `(batch_size, 1, query_length, key_value_length)`.
935
+ sequence_length (`int`):
936
+ The sequence length being processed.
937
+ target_length (`int`):
938
+ The target length: when generating with static cache, the mask should be as long as the static cache,
939
+ to account for the 0 padding, the part of the cache that is not filled yet.
940
+ dtype (`torch.dtype`):
941
+ The dtype to use for the 4D attention mask.
942
+ device (`torch.device`):
943
+ The device to place the 4D attention mask on.
944
+ cache_position (`torch.Tensor`):
945
+ Indices depicting the position of the input sequence tokens in the sequence.
946
+ batch_size (`torch.Tensor`):
947
+ Batch size.
948
+ """
949
+ if attention_mask is not None and attention_mask.dim() == 4:
950
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
951
+ causal_mask = attention_mask
952
+ else:
953
+ min_dtype = torch.finfo(dtype).min
954
+ causal_mask = torch.full(
955
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
956
+ )
957
+ if sequence_length != 1:
958
+ causal_mask = torch.triu(causal_mask, diagonal=1)
959
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
960
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
961
+ if attention_mask is not None:
962
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
963
+ mask_length = attention_mask.shape[-1]
964
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
965
+ causal_mask.device
966
+ )
967
+ padding_mask = padding_mask == 0
968
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
969
+ padding_mask, min_dtype
970
+ )
971
+
972
+ return causal_mask
973
+
974
+
975
+ class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
976
+
977
+
978
+ class LongcatForCausalLM(LongcatPreTrainedModel, GenerationMixin):
979
+ _tied_weights_keys = ["lm_head.weight"]
980
+ _tp_plan = {"lm_head": "colwise_rep"}
981
+ _pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
982
+
983
+ def __init__(self, config):
984
+ super().__init__(config)
985
+ self.model = LongcatModel(config)
986
+ self.vocab_size = config.vocab_size
987
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
988
+
989
+ # Initialize weights and apply final processing
990
+ self.post_init()
991
+
992
+ def get_input_embeddings(self):
993
+ return self.model.embed_tokens
994
+
995
+ def set_input_embeddings(self, value):
996
+ self.model.embed_tokens = value
997
+
998
+ def get_output_embeddings(self):
999
+ return self.lm_head
1000
+
1001
+ def set_output_embeddings(self, new_embeddings):
1002
+ self.lm_head = new_embeddings
1003
+
1004
+ def set_decoder(self, decoder):
1005
+ self.model = decoder
1006
+
1007
+ def get_decoder(self):
1008
+ return self.model
1009
+
1010
+ @can_return_tuple
1011
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
1012
+ @add_start_docstrings_to_model_forward(LONGCAT_INPUTS_DOCSTRING)
1013
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1014
+ def forward(
1015
+ self,
1016
+ input_ids: Optional[torch.LongTensor] = None,
1017
+ attention_mask: Optional[torch.Tensor] = None,
1018
+ position_ids: Optional[torch.LongTensor] = None,
1019
+ past_key_values: Optional[Cache] = None,
1020
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1021
+ labels: Optional[torch.LongTensor] = None,
1022
+ use_cache: Optional[bool] = None,
1023
+ output_attentions: Optional[bool] = None,
1024
+ output_hidden_states: Optional[bool] = None,
1025
+ cache_position: Optional[torch.LongTensor] = None,
1026
+ logits_to_keep: Union[int, torch.Tensor] = 0,
1027
+ **kwargs: Unpack[KwargsForCausalLM],
1028
+ ) -> CausalLMOutputWithPast:
1029
+ r"""
1030
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1031
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1032
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1033
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1034
+
1035
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
1036
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
1037
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
1038
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
1039
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
1040
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
1041
+
1042
+ Returns:
1043
+
1044
+ Example:
1045
+
1046
+ ```python
1047
+ >>> from transformers import AutoTokenizer, LongcatForCausalLM
1048
+
1049
+ >>> model = LongcatForCausalLM.from_pretrained("meta-longcat/Longcat-2-7b-hf")
1050
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-longcat/Longcat-2-7b-hf")
1051
+
1052
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1053
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1054
+
1055
+ >>> # Generate
1056
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1057
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1058
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1059
+ ```"""
1060
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1061
+ output_hidden_states = (
1062
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1063
+ )
1064
+
1065
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1066
+ outputs: BaseModelOutputWithPast = self.model(
1067
+ input_ids=input_ids,
1068
+ attention_mask=attention_mask,
1069
+ position_ids=position_ids,
1070
+ past_key_values=past_key_values,
1071
+ inputs_embeds=inputs_embeds,
1072
+ use_cache=use_cache,
1073
+ output_attentions=output_attentions,
1074
+ output_hidden_states=output_hidden_states,
1075
+ cache_position=cache_position,
1076
+ **kwargs,
1077
+ )
1078
+
1079
+ hidden_states = outputs.last_hidden_state
1080
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
1081
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
1082
+ logits = self.lm_head(hidden_states[:, slice_indices, :])
1083
+
1084
+ loss = None
1085
+ if labels is not None:
1086
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
1087
+
1088
+ return CausalLMOutputWithPast(
1089
+ loss=loss,
1090
+ logits=logits,
1091
+ past_key_values=outputs.past_key_values,
1092
+ hidden_states=outputs.hidden_states,
1093
+ attentions=outputs.attentions,
1094
+ )
1095
+
1096
+
1097
+ __all__ = ["LongcatPreTrainedModel", "LongcatModel", "LongcatForCausalLM"]
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<longcat_s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</longcat_s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<longcat_pad>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<longcat_unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": true,
4
+ "add_prefix_space": false,
5
+ "bos_token": {
6
+ "__type": "AddedToken",
7
+ "content": "<longcat_s>",
8
+ "lstrip": false,
9
+ "normalized": true,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "clean_up_tokenization_spaces": false,
14
+ "eos_token": {
15
+ "__type": "AddedToken",
16
+ "content": "</longcat_s>",
17
+ "lstrip": false,
18
+ "normalized": true,
19
+ "rstrip": false,
20
+ "single_word": false
21
+ },
22
+ "model_max_length": 131072,
23
+ "pad_token": {
24
+ "__type": "AddedToken",
25
+ "content": "<longcat_pad>",
26
+ "lstrip": false,
27
+ "normalized": true,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ },
31
+ "sp_model_kwargs": {},
32
+ "tokenizer_class": "BloomTokenizer",
33
+ "unk_token": {
34
+ "__type": "AddedToken",
35
+ "content": "<longcat_unk>",
36
+ "lstrip": false,
37
+ "normalized": true,
38
+ "rstrip": false,
39
+ "single_word": false
40
+ },
41
+ "chat_template": "{%- set tool_choice = tool_choice | default('auto') %}\n{%- set ns = namespace(rounds = 0, tool_types = [], last_query_index = -1) %}\n\n{%- if tools and tool_choice != 'none' %}\n {{- \"# Tools\n\" }}\n {{- \"You have access to the following tools: \n\n\" }}\n {%- for tool in tools %}\n {%- if tool.type in ['code_interpreter', 'function'] %}\n {%- if tool.type not in ns.tool_types %}\n {%- set ns.tool_types = ns.tool_types + [tool.type] %}\n {{- \"## Tool namespace: \" ~ tool.type ~ \"\n\n\" }}\n {%- endif %}\n {%- if tool.type == 'code_interpreter' %}\n {%- set tool = {\"type\":\"code_interpreter\",\"function\":{\"name\":\"code_interpreter_preview\",\"description\":\"The code will be executed in a stateful Jupyter notebook sandbox environment, only supports local computation, data processing, and file operations. \nCode sandbox environment (network isolated) Any external network requests or online API calls are prohibited. \nIf online functionality is needed, please use other permitted tools. \nCode will respond with the output of the execution or time out after 60.0 seconds. \",\"parameters\":{\"type\":\"object\",\"properties\":{\"language\":{\"type\":\"string\",\"description\":\"The programming language of the code to be executed. Available values: python (Default), java, go, js, ts, c, c++.\"},\"code\":{\"type\":\"string\",\"description\":\"Python code to be executed must not include the following:\n- Importing network libraries such as requests, httplib, etc.\n- Any form of HTTP requests.\n- External API calls.\n- Network port operations. Example: ```python\nimport pandas as pd\npd.DataFrame({'A':[1,2]})\n```\"},\"timeout\":{\"type\":\"number\",\"description\":\"The maximum execution time of the code, in seconds. Default is 60.0.\"}}},\"required\":[\"code\"]}} %}\n {%- endif %}\n {{- \"### Tool name: \" + tool.function.name + \"\n\n\" }}\n {{- \"Description: \" + tool.function.description + \"\n\n\" }}\n {{- \"InputSchema: \n\" + tool.function.parameters | tojson(indent=2) + \"\n\n\" }}\n {%- endif %}\n {%- endfor %}\n {{- '**Note**: For each function call, return a json object with function name and arguments within <longcat_tool_call></longcat_tool_call> XML tags as follows:\n<longcat_tool_call>\n{\"name\": <function-name>, \"arguments\": <args-dict>}\n</longcat_tool_call>\n' }}\n {{- 'When multiple functions need to be called simultaneously, each function call should be wrapped in its own <longcat_tool_call> tag and placed consecutively. For example:\n<longcat_tool_call>\n{\"name\": <function-name>, \"arguments\": <args-dict>}\n</longcat_tool_call><longcat_tool_call>\n{\"name\": <function-name>, \"arguments\": <args-dict>}\n</longcat_tool_call>\n\n' }}\n {{- \"# Messages\n\" }}\n\n {%- for idx in range(messages|length - 1) %}\n {%- set msg = messages[idx] %}\n {%- if msg.role == 'assistant' and not msg.tool_calls %}\n {%- set ns.last_query_index = idx %}\n {%- endif %}\n {%- endfor%}\n{%- endif %}\n\n{%- for msg in messages %}\n {%- if msg.role == \"system\" %}\n {{- \"SYSTEM:\" + msg.content }} \n {%- elif msg.role == \"user\" %}\n {%- if loop.first %}\n {{- \"[Round \" ~ (ns.rounds) ~ \"] USER:\" }}\n {%- else %}\n {{- \" [Round \" ~ (ns.rounds) ~ \"] USER:\"}}\n {%- endif %}\n {%- set ns.rounds = ns.rounds + 1 %}\n {%- if msg[\"files\"] %}\n {{- '<longcat_files>\n' ~ msg.files | tojson(indent=2) ~ '\n</longcat_files>' }}\n {%- endif %}\n {{- msg.content }}\n {%- elif msg.role == \"assistant\" %}\n {{- \" ASSISTANT:\" }}\n {%- if enable_thinking == true and msg.reasoning_content and ns.tool_types != [] and loop.index0 > ns.last_query_index %}\n {{- \"\n<longcat_think>\n\" ~ msg.reasoning_content ~ \"\n</longcat_think>\n\" }}\n {%- endif %}\n {%- if msg.content%}\n {{- msg.content }}\n {%- endif %}\n {%- if msg.tool_calls %}\n {%- for tool_call in msg.tool_calls -%}\n {{- \"<longcat_tool_call>\n\" -}}\n {\"name\": \"{{ tool_call.function.name }}\", \"arguments\": {{ tool_call.function.arguments }}}\n {{- \"\n</longcat_tool_call>\" }}\n {%- endfor %}\n {%- endif %}\n {%- elif msg.role == \"tool\" %}\n {{- \" TOOL:\" -}}\n {\"name\": {{msg.name | tojson}}, \"content\": {{msg.content | tojson}}}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %} \n {%- if enable_thinking == true %}\n {{- \" /think_on\" }}\n {%- if thinking_budget %}\n {%- if thinking_budget < 1024 %}\n {%- set thinking_budget = 1024 %}\n {%- endif%}\n {{- \"\nthinking_budget: < \" ~ thinking_budget ~ \".\"}}\n {%- endif %}\n {{- \" ASSISTANT:<longcat_think>\n\"}}\n {%- elif enable_thinking == false %}\n {{- \" /think_off ASSISTANT:<longcat_think>\n\n</longcat_think>\n\" }}\n {%- else %}\n {{- \" ASSISTANT:\" }}\n {%- endif %}\n{%- endif %}"
42
+ }