michaelmanurung commited on
Commit
042e170
·
verified ·
1 Parent(s): 8cf6b0a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -3
README.md CHANGED
@@ -1,3 +1,79 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - indonesian
5
+ - finance
6
+ - sentiment
7
+ - text-classification
8
+ - finbert
9
+ - transformers
10
+ - pytorch
11
+ - huggingface
12
+ language: id
13
+ datasets:
14
+ - custom
15
+ base_model: ProsusAI/finbert
16
+ model-index:
17
+ - name: FinBERT Indonesia
18
+ results: []
19
+ ---
20
+
21
+ # 🇮🇩 FinBERT Indonesia — Sentiment Classification for Financial News in Bahasa Indonesia
22
+
23
+ This model is a fine-tuned version of [`ProsusAI/finbert`](https://huggingface.co/ProsusAI/finbert) on a custom dataset of ~500 financial news headlines written in Bahasa Indonesia. The task is **3-class sentiment classification**: `positive`, `neutral`, and `negative`.
24
+
25
+ ---
26
+
27
+ ## 🏗️ Model Architecture
28
+
29
+ The base model is [FinBERT](https://huggingface.co/ProsusAI/finbert), which itself is a BERT model pre-trained on financial texts. It has been fine-tuned using the Hugging Face `transformers` library with the following modifications:
30
+
31
+ - Multilingual financial context adaptation via custom labeled data in Bahasa Indonesia
32
+ - Classification head for 3 sentiment labels
33
+
34
+ ---
35
+
36
+ ## 🧾 Dataset
37
+
38
+ The training dataset consists of **500 manually labeled financial news titles** from Indonesian sources. Each entry is categorized as:
39
+
40
+ - `positive` – bullish or growth-related headlines
41
+ - `neutral` – factual or event-based reporting
42
+ - `negative` – bearish or risk-indicative headlines
43
+
44
+ Example:
45
+
46
+ | Title | Label |
47
+ |-------|-------|
48
+ | IHSG diperkirakan rebound minggu ini | positive |
49
+ | BI umumkan suku bunga tetap | neutral |
50
+ | Rupiah melemah terhadap dolar AS | negative |
51
+
52
+ ---
53
+
54
+ ## 🧪 Evaluation
55
+
56
+ Evaluation is based on accuracy using a stratified train/test split.
57
+
58
+ | Metric | Score |
59
+ |----------|---------|
60
+ | Accuracy | *TBD* |
61
+
62
+ To reproduce the benchmark or compare other models, see the sample inference code below.
63
+
64
+ ---
65
+
66
+ ## 🧪 Usage
67
+
68
+ ```python
69
+ from transformers import pipeline
70
+
71
+ classifier = pipeline(
72
+ "text-classification",
73
+ model="michaelmanurung/finbert-indonesia",
74
+ tokenizer="michaelmanurung/finbert-indonesia"
75
+ )
76
+
77
+ result = classifier("IHSG turun tipis karena aksi ambil untung investor.")
78
+ print(result)
79
+ # Output: [{'label': 'LABEL_2', 'score': 0.89}] -> e.g. 'positive'