Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,79 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
tags:
|
| 4 |
+
- indonesian
|
| 5 |
+
- finance
|
| 6 |
+
- sentiment
|
| 7 |
+
- text-classification
|
| 8 |
+
- finbert
|
| 9 |
+
- transformers
|
| 10 |
+
- pytorch
|
| 11 |
+
- huggingface
|
| 12 |
+
language: id
|
| 13 |
+
datasets:
|
| 14 |
+
- custom
|
| 15 |
+
base_model: ProsusAI/finbert
|
| 16 |
+
model-index:
|
| 17 |
+
- name: FinBERT Indonesia
|
| 18 |
+
results: []
|
| 19 |
+
---
|
| 20 |
+
|
| 21 |
+
# 🇮🇩 FinBERT Indonesia — Sentiment Classification for Financial News in Bahasa Indonesia
|
| 22 |
+
|
| 23 |
+
This model is a fine-tuned version of [`ProsusAI/finbert`](https://huggingface.co/ProsusAI/finbert) on a custom dataset of ~500 financial news headlines written in Bahasa Indonesia. The task is **3-class sentiment classification**: `positive`, `neutral`, and `negative`.
|
| 24 |
+
|
| 25 |
+
---
|
| 26 |
+
|
| 27 |
+
## 🏗️ Model Architecture
|
| 28 |
+
|
| 29 |
+
The base model is [FinBERT](https://huggingface.co/ProsusAI/finbert), which itself is a BERT model pre-trained on financial texts. It has been fine-tuned using the Hugging Face `transformers` library with the following modifications:
|
| 30 |
+
|
| 31 |
+
- Multilingual financial context adaptation via custom labeled data in Bahasa Indonesia
|
| 32 |
+
- Classification head for 3 sentiment labels
|
| 33 |
+
|
| 34 |
+
---
|
| 35 |
+
|
| 36 |
+
## 🧾 Dataset
|
| 37 |
+
|
| 38 |
+
The training dataset consists of **500 manually labeled financial news titles** from Indonesian sources. Each entry is categorized as:
|
| 39 |
+
|
| 40 |
+
- `positive` – bullish or growth-related headlines
|
| 41 |
+
- `neutral` – factual or event-based reporting
|
| 42 |
+
- `negative` – bearish or risk-indicative headlines
|
| 43 |
+
|
| 44 |
+
Example:
|
| 45 |
+
|
| 46 |
+
| Title | Label |
|
| 47 |
+
|-------|-------|
|
| 48 |
+
| IHSG diperkirakan rebound minggu ini | positive |
|
| 49 |
+
| BI umumkan suku bunga tetap | neutral |
|
| 50 |
+
| Rupiah melemah terhadap dolar AS | negative |
|
| 51 |
+
|
| 52 |
+
---
|
| 53 |
+
|
| 54 |
+
## 🧪 Evaluation
|
| 55 |
+
|
| 56 |
+
Evaluation is based on accuracy using a stratified train/test split.
|
| 57 |
+
|
| 58 |
+
| Metric | Score |
|
| 59 |
+
|----------|---------|
|
| 60 |
+
| Accuracy | *TBD* |
|
| 61 |
+
|
| 62 |
+
To reproduce the benchmark or compare other models, see the sample inference code below.
|
| 63 |
+
|
| 64 |
+
---
|
| 65 |
+
|
| 66 |
+
## 🧪 Usage
|
| 67 |
+
|
| 68 |
+
```python
|
| 69 |
+
from transformers import pipeline
|
| 70 |
+
|
| 71 |
+
classifier = pipeline(
|
| 72 |
+
"text-classification",
|
| 73 |
+
model="michaelmanurung/finbert-indonesia",
|
| 74 |
+
tokenizer="michaelmanurung/finbert-indonesia"
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
result = classifier("IHSG turun tipis karena aksi ambil untung investor.")
|
| 78 |
+
print(result)
|
| 79 |
+
# Output: [{'label': 'LABEL_2', 'score': 0.89}] -> e.g. 'positive'
|