Update modeling_cxrbert.py (#7)
Browse files- Update modeling_cxrbert.py (f1f6ae0f8ed9d6bb05486b2f6a1c32d151f40075)
Co-authored-by: Kendall Park <[email protected]>
- modeling_cxrbert.py +45 -27
modeling_cxrbert.py
CHANGED
|
@@ -3,6 +3,7 @@
|
|
| 3 |
# Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
|
| 4 |
# ------------------------------------------------------------------------------------------
|
| 5 |
|
|
|
|
| 6 |
from typing import Any, Optional, Tuple, Union
|
| 7 |
|
| 8 |
import torch
|
|
@@ -16,20 +17,24 @@ from .configuration_cxrbert import CXRBertConfig
|
|
| 16 |
|
| 17 |
BERTTupleOutput = Tuple[T, T, T, T, T]
|
| 18 |
|
|
|
|
|
|
|
| 19 |
class CXRBertOutput(ModelOutput):
|
| 20 |
last_hidden_state: torch.FloatTensor
|
| 21 |
-
logits: torch.FloatTensor
|
| 22 |
cls_projected_embedding: Optional[torch.FloatTensor] = None
|
| 23 |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 24 |
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 25 |
|
| 26 |
|
| 27 |
class BertProjectionHead(nn.Module):
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
| 33 |
def __init__(self, config: CXRBertConfig) -> None:
|
| 34 |
super().__init__()
|
| 35 |
self.dense_to_hidden = nn.Linear(config.hidden_size, config.projection_size)
|
|
@@ -50,13 +55,13 @@ class CXRBertModel(BertForMaskedLM):
|
|
| 50 |
"""
|
| 51 |
Implements the CXR-BERT model outlined in the manuscript:
|
| 52 |
Boecking et al. "Making the Most of Text Semantics to Improve Biomedical Vision-Language Processing", 2022
|
| 53 |
-
https://
|
| 54 |
|
| 55 |
-
Extends the HuggingFace BertForMaskedLM model by adding a separate projection head. The projection "[CLS]" token is
|
| 56 |
-
the latent vectors of image and text modalities.
|
| 57 |
"""
|
| 58 |
|
| 59 |
-
config_class = CXRBertConfig
|
| 60 |
|
| 61 |
def __init__(self, config: CXRBertConfig):
|
| 62 |
super().__init__(config)
|
|
@@ -78,21 +83,24 @@ class CXRBertModel(BertForMaskedLM):
|
|
| 78 |
return_dict: Optional[bool] = None,
|
| 79 |
**kwargs: Any
|
| 80 |
) -> Union[BERTTupleOutput, CXRBertOutput]:
|
| 81 |
-
|
| 82 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 83 |
|
| 84 |
-
bert_for_masked_lm_output = super().forward(
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
| 93 |
|
| 94 |
last_hidden_state = bert_for_masked_lm_output.hidden_states[-1]
|
| 95 |
-
cls_projected_embedding =
|
|
|
|
|
|
|
| 96 |
|
| 97 |
if return_dict:
|
| 98 |
return CXRBertOutput(
|
|
@@ -108,21 +116,31 @@ class CXRBertModel(BertForMaskedLM):
|
|
| 108 |
bert_for_masked_lm_output.logits,
|
| 109 |
cls_projected_embedding,
|
| 110 |
bert_for_masked_lm_output.hidden_states,
|
| 111 |
-
bert_for_masked_lm_output.attentions,
|
|
|
|
| 112 |
|
| 113 |
-
def get_projected_text_embeddings(
|
|
|
|
|
|
|
| 114 |
"""
|
| 115 |
Returns l2-normalised projected cls token embeddings for the given input token ids and attention mask.
|
| 116 |
The joint latent space is trained using a contrastive objective between image and text data modalities.
|
| 117 |
|
| 118 |
:param input_ids: (batch_size, sequence_length)
|
| 119 |
:param attention_mask: (batch_size, sequence_length)
|
|
|
|
| 120 |
:return: (batch_size, projection_size)
|
| 121 |
"""
|
| 122 |
|
| 123 |
-
outputs = self.forward(
|
| 124 |
-
|
|
|
|
| 125 |
assert isinstance(outputs, CXRBertOutput)
|
| 126 |
|
| 127 |
-
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
# Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
|
| 4 |
# ------------------------------------------------------------------------------------------
|
| 5 |
|
| 6 |
+
from dataclasses import dataclass
|
| 7 |
from typing import Any, Optional, Tuple, Union
|
| 8 |
|
| 9 |
import torch
|
|
|
|
| 17 |
|
| 18 |
BERTTupleOutput = Tuple[T, T, T, T, T]
|
| 19 |
|
| 20 |
+
|
| 21 |
+
@dataclass
|
| 22 |
class CXRBertOutput(ModelOutput):
|
| 23 |
last_hidden_state: torch.FloatTensor
|
| 24 |
+
logits: Optional[torch.FloatTensor] = None
|
| 25 |
cls_projected_embedding: Optional[torch.FloatTensor] = None
|
| 26 |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 27 |
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 28 |
|
| 29 |
|
| 30 |
class BertProjectionHead(nn.Module):
|
| 31 |
+
"""Projection head to be used with BERT CLS token.
|
| 32 |
+
|
| 33 |
+
This is similar to ``BertPredictionHeadTransform`` in HuggingFace.
|
| 34 |
+
|
| 35 |
+
:param config: Configuration for BERT.
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
def __init__(self, config: CXRBertConfig) -> None:
|
| 39 |
super().__init__()
|
| 40 |
self.dense_to_hidden = nn.Linear(config.hidden_size, config.projection_size)
|
|
|
|
| 55 |
"""
|
| 56 |
Implements the CXR-BERT model outlined in the manuscript:
|
| 57 |
Boecking et al. "Making the Most of Text Semantics to Improve Biomedical Vision-Language Processing", 2022
|
| 58 |
+
https://link.springer.com/chapter/10.1007/978-3-031-20059-5_1
|
| 59 |
|
| 60 |
+
Extends the HuggingFace BertForMaskedLM model by adding a separate projection head. The projection "[CLS]" token is
|
| 61 |
+
used to align the latent vectors of image and text modalities.
|
| 62 |
"""
|
| 63 |
|
| 64 |
+
config_class = CXRBertConfig # type: ignore
|
| 65 |
|
| 66 |
def __init__(self, config: CXRBertConfig):
|
| 67 |
super().__init__(config)
|
|
|
|
| 83 |
return_dict: Optional[bool] = None,
|
| 84 |
**kwargs: Any
|
| 85 |
) -> Union[BERTTupleOutput, CXRBertOutput]:
|
|
|
|
| 86 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 87 |
|
| 88 |
+
bert_for_masked_lm_output = super().forward(
|
| 89 |
+
input_ids=input_ids,
|
| 90 |
+
attention_mask=attention_mask,
|
| 91 |
+
token_type_ids=token_type_ids,
|
| 92 |
+
position_ids=position_ids,
|
| 93 |
+
head_mask=head_mask,
|
| 94 |
+
inputs_embeds=inputs_embeds,
|
| 95 |
+
output_attentions=output_attentions,
|
| 96 |
+
output_hidden_states=True,
|
| 97 |
+
return_dict=True,
|
| 98 |
+
)
|
| 99 |
|
| 100 |
last_hidden_state = bert_for_masked_lm_output.hidden_states[-1]
|
| 101 |
+
cls_projected_embedding = (
|
| 102 |
+
self.cls_projection_head(last_hidden_state[:, 0, :]) if output_cls_projected_embedding else None
|
| 103 |
+
)
|
| 104 |
|
| 105 |
if return_dict:
|
| 106 |
return CXRBertOutput(
|
|
|
|
| 116 |
bert_for_masked_lm_output.logits,
|
| 117 |
cls_projected_embedding,
|
| 118 |
bert_for_masked_lm_output.hidden_states,
|
| 119 |
+
bert_for_masked_lm_output.attentions,
|
| 120 |
+
)
|
| 121 |
|
| 122 |
+
def get_projected_text_embeddings(
|
| 123 |
+
self, input_ids: torch.Tensor, attention_mask: torch.Tensor, normalize_embeddings: bool = True
|
| 124 |
+
) -> torch.Tensor:
|
| 125 |
"""
|
| 126 |
Returns l2-normalised projected cls token embeddings for the given input token ids and attention mask.
|
| 127 |
The joint latent space is trained using a contrastive objective between image and text data modalities.
|
| 128 |
|
| 129 |
:param input_ids: (batch_size, sequence_length)
|
| 130 |
:param attention_mask: (batch_size, sequence_length)
|
| 131 |
+
:param normalize_embeddings: Whether to l2-normalise the embeddings.
|
| 132 |
:return: (batch_size, projection_size)
|
| 133 |
"""
|
| 134 |
|
| 135 |
+
outputs = self.forward(
|
| 136 |
+
input_ids=input_ids, attention_mask=attention_mask, output_cls_projected_embedding=True, return_dict=True
|
| 137 |
+
)
|
| 138 |
assert isinstance(outputs, CXRBertOutput)
|
| 139 |
|
| 140 |
+
cls_projected_embedding = outputs.cls_projected_embedding
|
| 141 |
+
assert cls_projected_embedding is not None
|
| 142 |
+
|
| 143 |
+
if normalize_embeddings:
|
| 144 |
+
return F.normalize(cls_projected_embedding, dim=1)
|
| 145 |
+
|
| 146 |
+
return cls_projected_embedding
|