--- library_name: peft license: other base_model: minpeter/HyperCLOVAX-SEED-Text-Instruct-3B-hf tags: - axolotl - generated_from_trainer datasets: - minpeter/xlam-function-calling-60k-hermes - minpeter/xlam-irrelevance-7.5k-qwen2.5-72b-distill-hermes - minpeter/hermes-function-calling-v1-jsonl - minpeter/hermes-function-calling-v1-jsonl - minpeter/apigen-mt-5k-friendli model-index: - name: LoRA-HCX-3b-sf-xlam-01 results: [] --- --- ## Model Test Score Comparison (BFCL) | Test Item | tool Model Accuracy | base Model Accuracy | Score Difference (tool - base) | | :---------------- | :-----------------: | :-----------------: | :----------------------------: | | irrelevance | 0.8708 | 0.4333 | +0.4375 | | multi_turn_base | 0.0350 | 0.0100 | +0.0250 | | parallel_multiple | 0.7950 | 0.4750 | +0.3200 | | parallel | 0.7900 | 0.5200 | +0.2700 | | simple | 0.8375 | 0.7575 | +0.0800 | | multiple | 0.8700 | 0.7650 | +0.1050 | [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.10.0.dev0` ```yaml base_model: minpeter/HyperCLOVAX-SEED-Text-Instruct-3B-hf hub_model_id: minpeter/LoRA-HCX-3b-sf-xlam-01 load_in_8bit: false load_in_4bit: false strict: false datasets: - path: minpeter/xlam-function-calling-60k-hermes data_files: - result.parquet type: chat_template roles_to_train: ["assistant"] field_messages: conversations message_property_mappings: role: from content: value shards: 120 - path: minpeter/xlam-irrelevance-7.5k-qwen2.5-72b-distill-hermes data_files: - result.parquet type: chat_template roles_to_train: ["assistant"] field_messages: conversations message_property_mappings: role: from content: value shards: 15 - path: minpeter/hermes-function-calling-v1-jsonl data_files: - func-calling-singleturn.jsonl - func-calling.jsonl type: chat_template roles_to_train: ["assistant"] field_messages: conversations message_property_mappings: role: from content: value shards: 3 - path: minpeter/hermes-function-calling-v1-jsonl data_files: - glaive-function-calling-5k.jsonl type: chat_template roles_to_train: ["assistant"] field_messages: conversations message_property_mappings: role: from content: value shards: 5 - path: minpeter/apigen-mt-5k-friendli data_files: - train.jsonl - test.jsonl type: chat_template roles_to_train: ["assistant"] field_messages: messages message_property_mappings: role: role content: content shards: 10 chat_template: chatml dataset_prepared_path: last_run_prepared output_dir: ./output adapter: lora lora_model_dir: sequence_len: 20000 pad_to_sequence_len: true sample_packing: true val_set_size: 0.05 eval_sample_packing: true evals_per_epoch: 3 lora_r: 8 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: "axolotl" wandb_entity: "kasfiekfs-e" wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 2 num_epochs: 2 optimizer: adamw_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "<|im_start|>" eos_token: "<|im_end|>" pad_token: "<|endoftext|>" ```

# LoRA-HCX-3b-sf-xlam-01 This model is a fine-tuned version of [minpeter/HyperCLOVAX-SEED-Text-Instruct-3B-hf](https://huggingface.co/minpeter/HyperCLOVAX-SEED-Text-Instruct-3B-hf) on the minpeter/xlam-function-calling-60k-hermes, the minpeter/xlam-irrelevance-7.5k-qwen2.5-72b-distill-hermes, the minpeter/hermes-function-calling-v1-jsonl, the minpeter/hermes-function-calling-v1-jsonl and the minpeter/apigen-mt-5k-friendli datasets. It achieves the following results on the evaluation set: - Loss: 0.3609 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7577 | 0.0108 | 1 | 0.8759 | | 0.3934 | 0.3333 | 31 | 0.4609 | | 0.3151 | 0.6667 | 62 | 0.4033 | | 0.4147 | 1.0 | 93 | 0.3788 | | 0.3355 | 1.3333 | 124 | 0.3674 | | 0.3675 | 1.6667 | 155 | 0.3620 | | 0.3235 | 2.0 | 186 | 0.3609 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1