Delete deepencoder.py
Browse files- deepencoder.py +0 -1058
deepencoder.py
DELETED
|
@@ -1,1058 +0,0 @@
|
|
| 1 |
-
import torch.nn as nn
|
| 2 |
-
import torch
|
| 3 |
-
import torch.nn.functional as F
|
| 4 |
-
import copy
|
| 5 |
-
|
| 6 |
-
from contextlib import nullcontext
|
| 7 |
-
import math
|
| 8 |
-
from typing import Optional, Tuple
|
| 9 |
-
# from megatron.model import LayerNorm
|
| 10 |
-
|
| 11 |
-
from einops import rearrange
|
| 12 |
-
from easydict import EasyDict as adict
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
from typing import Optional, Tuple, Type
|
| 16 |
-
from functools import partial
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
class MlpProjector(nn.Module):
|
| 21 |
-
|
| 22 |
-
def __init__(self, cfg):
|
| 23 |
-
|
| 24 |
-
super().__init__()
|
| 25 |
-
|
| 26 |
-
self.cfg = cfg
|
| 27 |
-
|
| 28 |
-
if cfg.projector_type == "identity":
|
| 29 |
-
modules = nn.Identity()
|
| 30 |
-
|
| 31 |
-
elif cfg.projector_type == "linear":
|
| 32 |
-
modules = nn.Linear(cfg.input_dim, cfg.n_embed)
|
| 33 |
-
|
| 34 |
-
elif cfg.projector_type == "mlp_gelu":
|
| 35 |
-
mlp_depth = cfg.get("depth", 1)
|
| 36 |
-
modules = [nn.Linear(cfg.input_dim, cfg.n_embed)]
|
| 37 |
-
for _ in range(1, mlp_depth):
|
| 38 |
-
modules.append(nn.GELU())
|
| 39 |
-
modules.append(nn.Linear(cfg.n_embed, cfg.n_embed))
|
| 40 |
-
modules = nn.Sequential(*modules)
|
| 41 |
-
|
| 42 |
-
elif cfg.projector_type == "normlayer_downsample_mlp_gelu":
|
| 43 |
-
mlp_depth = cfg.get("depth", 1)
|
| 44 |
-
mlp_ratio = cfg.get("mlp_ratio", 1)
|
| 45 |
-
modules = [
|
| 46 |
-
nn.LayerNorm(cfg.input_dim * cfg.downsample_ratio * cfg.downsample_ratio),
|
| 47 |
-
nn.Linear(cfg.input_dim * cfg.downsample_ratio * cfg.downsample_ratio, cfg.n_embed * mlp_ratio)
|
| 48 |
-
]
|
| 49 |
-
for _ in range(1, mlp_depth - 1):
|
| 50 |
-
modules.append(nn.GELU())
|
| 51 |
-
modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed * mlp_ratio))
|
| 52 |
-
modules.append(nn.GELU())
|
| 53 |
-
modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed))
|
| 54 |
-
modules = nn.Sequential(*modules)
|
| 55 |
-
|
| 56 |
-
elif cfg.projector_type == "downsample_mlp_gelu":
|
| 57 |
-
mlp_depth = cfg.get("depth", 1)
|
| 58 |
-
mlp_ratio = cfg.get("mlp_ratio", 1)
|
| 59 |
-
modules = [nn.Linear(cfg.input_dim * cfg.downsample_ratio * cfg.downsample_ratio, cfg.n_embed * mlp_ratio)]
|
| 60 |
-
for _ in range(1, mlp_depth - 1):
|
| 61 |
-
modules.append(nn.GELU())
|
| 62 |
-
modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed * mlp_ratio))
|
| 63 |
-
modules.append(nn.GELU())
|
| 64 |
-
modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed))
|
| 65 |
-
modules = nn.Sequential(*modules)
|
| 66 |
-
|
| 67 |
-
elif cfg.projector_type == "low_high_hybrid_split_mlp_gelu":
|
| 68 |
-
mlp_depth = cfg.get("depth", 1)
|
| 69 |
-
self.high_up_proj = nn.Linear(cfg.input_dim, cfg.n_embed // 2)
|
| 70 |
-
self.low_up_proj = nn.Linear(cfg.input_dim, cfg.n_embed // 2)
|
| 71 |
-
|
| 72 |
-
modules = []
|
| 73 |
-
for _ in range(1, mlp_depth):
|
| 74 |
-
modules.append(nn.GELU())
|
| 75 |
-
modules.append(nn.Linear(cfg.n_embed, cfg.n_embed))
|
| 76 |
-
modules = nn.Sequential(*modules)
|
| 77 |
-
|
| 78 |
-
elif cfg.projector_type == "hybrid_split_feature_mlp_gelu":
|
| 79 |
-
mlp_depth = cfg.get("depth", 1)
|
| 80 |
-
channel_div = cfg.get("channel_div", 0.5)
|
| 81 |
-
self.high_up_proj = nn.Linear(cfg.input_dim[0], int(cfg.n_embed * channel_div))
|
| 82 |
-
self.low_up_proj = nn.Linear(cfg.input_dim[1], cfg.n_embed - int(cfg.n_embed * channel_div))
|
| 83 |
-
|
| 84 |
-
modules = []
|
| 85 |
-
for _ in range(1, mlp_depth):
|
| 86 |
-
modules.append(nn.GELU())
|
| 87 |
-
modules.append(nn.Linear(cfg.n_embed, cfg.n_embed))
|
| 88 |
-
modules = nn.Sequential(*modules)
|
| 89 |
-
|
| 90 |
-
elif cfg.projector_type == "low_high_split_mlp_gelu":
|
| 91 |
-
mlp_depth = cfg.get("depth", 1)
|
| 92 |
-
modules = []
|
| 93 |
-
for _ in range(1, mlp_depth):
|
| 94 |
-
modules.append(nn.GELU())
|
| 95 |
-
modules.append(nn.Linear(cfg.n_embed // 2, cfg.n_embed // 2))
|
| 96 |
-
modules = nn.Sequential(*modules)
|
| 97 |
-
self.high_layers = nn.Sequential(*modules)
|
| 98 |
-
self.low_layers = copy.deepcopy(modules)
|
| 99 |
-
|
| 100 |
-
else:
|
| 101 |
-
raise ValueError(f"Unknown projector type: {cfg.projector_type}")
|
| 102 |
-
|
| 103 |
-
if cfg.get("token_pooling", False):
|
| 104 |
-
self.token_pooling_layer = nn.Linear(cfg.input_dim * 4, cfg.input_dim)
|
| 105 |
-
|
| 106 |
-
if cfg.get("conv_fusion_high_low_features", False):
|
| 107 |
-
self.fusion_layer = nn.Linear(cfg.input_dim, cfg.input_dim)
|
| 108 |
-
self.layers = modules
|
| 109 |
-
|
| 110 |
-
def forward(self, x):
|
| 111 |
-
if self.cfg.get("token_pooling", False):
|
| 112 |
-
batch_size, wxh, channels = x.shape
|
| 113 |
-
w = h = int(wxh**0.5)
|
| 114 |
-
x = x.view(batch_size, w, h, channels)
|
| 115 |
-
x = x.permute(0, 3, 1, 2)
|
| 116 |
-
# import ipdb; ipdb.set_trace()
|
| 117 |
-
patches = x.unfold(2, 2, 2).unfold(3, 2, 2)
|
| 118 |
-
batch_size, channels, h_patches, w_patches, _, _ = patches.size()
|
| 119 |
-
# 在通道维度上拼接
|
| 120 |
-
patches = patches.contiguous().view(batch_size, channels, h_patches * w_patches, -1)
|
| 121 |
-
|
| 122 |
-
# 通过线性层
|
| 123 |
-
patches = patches.permute(0, 2, 1, 3).contiguous()
|
| 124 |
-
patches = patches.view(batch_size, h_patches * w_patches, channels * 4)
|
| 125 |
-
|
| 126 |
-
x = self.token_pooling_layer(patches)
|
| 127 |
-
|
| 128 |
-
if self.cfg.get("conv_fusion_high_low_features", False):
|
| 129 |
-
x = self.fusion_layer(x[:, 0]) + x[:, 1]
|
| 130 |
-
|
| 131 |
-
if self.cfg.projector_type == 'low_high_hybrid_split_mlp_gelu':
|
| 132 |
-
high_x, low_x = x[0], x[1]
|
| 133 |
-
high_x = self.high_up_proj(high_x)
|
| 134 |
-
low_x = self.low_up_proj(low_x)
|
| 135 |
-
x = torch.concat([high_x, low_x], dim=-1)
|
| 136 |
-
|
| 137 |
-
if self.cfg.projector_type == 'hybrid_split_feature_mlp_gelu':
|
| 138 |
-
high_x = x[...,:self.cfg.input_dim[0]]
|
| 139 |
-
low_x = x[...,self.cfg.input_dim[0]:]
|
| 140 |
-
high_x = self.high_up_proj(high_x)
|
| 141 |
-
low_x = self.low_up_proj(low_x)
|
| 142 |
-
x = torch.concat([high_x, low_x], dim=-1)
|
| 143 |
-
|
| 144 |
-
if self.cfg.projector_type == 'low_high_split_mlp_gelu':
|
| 145 |
-
high_x, low_x = x[0], x[1]
|
| 146 |
-
high_x = self.high_layers(high_x)
|
| 147 |
-
low_x = self.low_layers(low_x)
|
| 148 |
-
x = torch.concat([high_x, low_x], dim=-1)
|
| 149 |
-
return x
|
| 150 |
-
|
| 151 |
-
if self.cfg.projector_type == 'downsample_mlp_gelu' or self.cfg.projector_type == 'normlayer_downsample_mlp_gelu':
|
| 152 |
-
bs, hw, input_dim = x.shape
|
| 153 |
-
h = w = int((hw) ** 0.5)
|
| 154 |
-
|
| 155 |
-
"""compute padding"""
|
| 156 |
-
if h % self.cfg.downsample_ratio:
|
| 157 |
-
pad = self.cfg.downsample_ratio - h % self.cfg.downsample_ratio
|
| 158 |
-
else:
|
| 159 |
-
pad = 0
|
| 160 |
-
x = x.reshape(bs, h, w, input_dim)
|
| 161 |
-
if pad > 0:
|
| 162 |
-
x = F.pad(x, (0, 0, 0, pad, 0, pad), "constant", 0)
|
| 163 |
-
|
| 164 |
-
"""4 to 1 concat"""
|
| 165 |
-
x = x.permute(0, 3, 1, 2) # B, C, H, W
|
| 166 |
-
x = F.unfold(x, kernel_size=self.cfg.downsample_ratio, stride=self.cfg.downsample_ratio, padding=0) # B, C*4, HW // 4
|
| 167 |
-
x = x.permute(0, 2, 1)
|
| 168 |
-
|
| 169 |
-
return self.layers(x)
|
| 170 |
-
|
| 171 |
-
@staticmethod
|
| 172 |
-
def get_flops_per_sample(cfg):
|
| 173 |
-
if cfg.projector_type == "linear":
|
| 174 |
-
fwd = 2 * cfg.input_dim * cfg.n_embed
|
| 175 |
-
|
| 176 |
-
elif "mlp_gelu" in cfg.projector_type :
|
| 177 |
-
mlp_depth = cfg.get("depth", 1)
|
| 178 |
-
downsample_ratio = cfg.get("downsample_ratio", 1)
|
| 179 |
-
input_dim = sum(cfg.input_dim) if isinstance(cfg.input_dim, list) else cfg.input_dim
|
| 180 |
-
input_dim = input_dim * downsample_ratio * downsample_ratio
|
| 181 |
-
fwd = 2 * input_dim * cfg.n_embed + (mlp_depth - 1) * 2 * cfg.n_embed * cfg.n_embed
|
| 182 |
-
else:
|
| 183 |
-
fwd = 0
|
| 184 |
-
|
| 185 |
-
return fwd * 3
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
#===================clip============================================================
|
| 189 |
-
|
| 190 |
-
class LayerNormfp32(torch.nn.LayerNorm):
|
| 191 |
-
"""Subclass torch's LayerNorm to handle fp16."""
|
| 192 |
-
|
| 193 |
-
def forward(self, x: torch.Tensor):
|
| 194 |
-
orig_type = x.dtype
|
| 195 |
-
ret = super().forward(x.type(torch.float32))
|
| 196 |
-
return ret.type(orig_type)
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
def get_abs_pos(abs_pos, tgt_size):
|
| 200 |
-
# abs_pos: L, C
|
| 201 |
-
# tgt_size: M
|
| 202 |
-
# return: M, C
|
| 203 |
-
|
| 204 |
-
# print(tgt_size)
|
| 205 |
-
# print(abs_pos.shape)
|
| 206 |
-
# exit()
|
| 207 |
-
dim = abs_pos.size(-1)
|
| 208 |
-
# print(dim)
|
| 209 |
-
abs_pos_new = abs_pos.squeeze(0)
|
| 210 |
-
cls_token, old_pos_embed = abs_pos_new[:1], abs_pos_new[1:]
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
src_size = int(math.sqrt(abs_pos_new.shape[0] - 1))
|
| 215 |
-
tgt_size = int(math.sqrt(tgt_size))
|
| 216 |
-
dtype = abs_pos.dtype
|
| 217 |
-
|
| 218 |
-
if src_size != tgt_size:
|
| 219 |
-
old_pos_embed = old_pos_embed.view(1, src_size, src_size, dim).permute(0, 3, 1,
|
| 220 |
-
2).contiguous()
|
| 221 |
-
old_pos_embed = old_pos_embed.to(torch.float32)
|
| 222 |
-
new_pos_embed = F.interpolate(
|
| 223 |
-
old_pos_embed,
|
| 224 |
-
size=(tgt_size, tgt_size),
|
| 225 |
-
mode='bicubic',
|
| 226 |
-
antialias=True,
|
| 227 |
-
align_corners=False,
|
| 228 |
-
).to(dtype)
|
| 229 |
-
new_pos_embed = new_pos_embed.permute(0, 2, 3, 1)
|
| 230 |
-
new_pos_embed = new_pos_embed.view(tgt_size * tgt_size, dim)
|
| 231 |
-
vision_pos_embed = torch.cat([cls_token, new_pos_embed], dim=0)
|
| 232 |
-
vision_pos_embed = vision_pos_embed.view(1, tgt_size * tgt_size + 1, dim)
|
| 233 |
-
return vision_pos_embed
|
| 234 |
-
else:
|
| 235 |
-
return abs_pos
|
| 236 |
-
|
| 237 |
-
@torch.jit.script
|
| 238 |
-
def quick_gelu(x):
|
| 239 |
-
return x * torch.sigmoid(1.702 * x)
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
class CLIPVisionEmbeddings(nn.Module):
|
| 244 |
-
def __init__(self, hidden_size=1024, image_size=224, patch_size=14, num_channels=3):
|
| 245 |
-
super().__init__()
|
| 246 |
-
self.embed_dim = hidden_size
|
| 247 |
-
self.image_size = image_size
|
| 248 |
-
self.patch_size = patch_size
|
| 249 |
-
|
| 250 |
-
self.class_embedding = torch.nn.Parameter(torch.randn(self.embed_dim))
|
| 251 |
-
|
| 252 |
-
self.patch_embedding = torch.nn.Conv2d(
|
| 253 |
-
in_channels=num_channels,
|
| 254 |
-
out_channels=self.embed_dim,
|
| 255 |
-
kernel_size=self.patch_size,
|
| 256 |
-
stride=self.patch_size,
|
| 257 |
-
bias=False,
|
| 258 |
-
)
|
| 259 |
-
|
| 260 |
-
self.num_patches = (self.image_size // self.patch_size) ** 2
|
| 261 |
-
self.num_positions = self.num_patches + 1
|
| 262 |
-
self.position_embedding = torch.nn.Embedding(self.num_positions, self.embed_dim)
|
| 263 |
-
self.register_buffer(
|
| 264 |
-
"position_ids", torch.arange(self.num_positions).expand((1, -1))
|
| 265 |
-
)
|
| 266 |
-
|
| 267 |
-
def forward(self, pixel_values, patch_embeds):
|
| 268 |
-
batch_size = pixel_values.shape[0]
|
| 269 |
-
# patch_embeds = self.patch_embedding(
|
| 270 |
-
# pixel_values
|
| 271 |
-
# ) # shape = [*, width, grid, grid]
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
if patch_embeds is not None:
|
| 275 |
-
patch_embeds = patch_embeds
|
| 276 |
-
# print(patch_embeds.shape)
|
| 277 |
-
else:
|
| 278 |
-
patch_embeds = self.patch_embedding(pixel_values)
|
| 279 |
-
# print(111111)
|
| 280 |
-
# shape = [*, width, grid, grid]
|
| 281 |
-
# patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
| 282 |
-
|
| 283 |
-
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
|
| 287 |
-
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
| 288 |
-
|
| 289 |
-
# x = torch.cat([cls_token, x], dim=1)
|
| 290 |
-
embeddings = embeddings + get_abs_pos(self.position_embedding(self.position_ids), embeddings.size(1))
|
| 291 |
-
# embeddings = embeddings + self.position_embedding(self.position_ids)
|
| 292 |
-
return embeddings
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
class NoTPFeedForward(nn.Module):
|
| 296 |
-
def __init__(
|
| 297 |
-
self,
|
| 298 |
-
cfg,
|
| 299 |
-
dim: int,
|
| 300 |
-
hidden_dim: int,
|
| 301 |
-
):
|
| 302 |
-
super().__init__()
|
| 303 |
-
|
| 304 |
-
self.fc1 = torch.nn.Linear(dim, hidden_dim, bias=True)
|
| 305 |
-
self.fc2 = torch.nn.Linear(hidden_dim, dim, bias=True)
|
| 306 |
-
|
| 307 |
-
def forward(self, x):
|
| 308 |
-
output = self.fc2(quick_gelu(self.fc1(x)))
|
| 309 |
-
return output
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
class NoTPAttention(torch.nn.Module):
|
| 315 |
-
def __init__(self, cfg):
|
| 316 |
-
super().__init__()
|
| 317 |
-
self.num_heads = cfg.num_attention_heads
|
| 318 |
-
self.n_local_heads = cfg.num_attention_heads
|
| 319 |
-
self.head_dim = cfg.hidden_size // cfg.num_attention_heads
|
| 320 |
-
self.max_seq_len = cfg.seq_length
|
| 321 |
-
self.use_flash_attention = cfg.use_flash_attn
|
| 322 |
-
|
| 323 |
-
self.qkv_proj = torch.nn.Linear(cfg.hidden_size, cfg.hidden_size * 3, bias=True)
|
| 324 |
-
self.out_proj = torch.nn.Linear(cfg.hidden_size, cfg.hidden_size, bias=True)
|
| 325 |
-
|
| 326 |
-
# self.core_attention = CoreAttention(cfg, AttnType.self_attn)
|
| 327 |
-
|
| 328 |
-
self.attn_drop = cfg.attention_dropout
|
| 329 |
-
|
| 330 |
-
def forward(
|
| 331 |
-
self,
|
| 332 |
-
x: torch.Tensor,
|
| 333 |
-
):
|
| 334 |
-
bsz, seqlen, _ = x.shape
|
| 335 |
-
xqkv = self.qkv_proj(x)
|
| 336 |
-
xqkv = xqkv.view(bsz, seqlen, 3, self.num_heads, self.head_dim)
|
| 337 |
-
|
| 338 |
-
if self.use_flash_attention:
|
| 339 |
-
|
| 340 |
-
xq, xk, xv = torch.split(xqkv, 1, dim=2)
|
| 341 |
-
xq = xq.squeeze(2)
|
| 342 |
-
xk = xk.squeeze(2)
|
| 343 |
-
xv = xv.squeeze(2)
|
| 344 |
-
# xq, xk, xv = xqkv[:, :, 0, ...], xqkv[:, :, 1, ...], xqkv[:, :, 2, ...]
|
| 345 |
-
|
| 346 |
-
# (B, num_head, S, head_size)
|
| 347 |
-
xq = xq.permute(0, 2, 1, 3)
|
| 348 |
-
xk = xk.permute(0, 2, 1, 3)
|
| 349 |
-
xv = xv.permute(0, 2, 1, 3)
|
| 350 |
-
# with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
|
| 351 |
-
output = torch.nn.functional.scaled_dot_product_attention(xq, xk, xv, attn_mask=None)
|
| 352 |
-
output = output.permute(0, 2, 1, 3).reshape(bsz, seqlen, -1)
|
| 353 |
-
# output = output.permute(0, 2, 1, 3).contiguous().view(bsz, seqlen, -1)
|
| 354 |
-
else:
|
| 355 |
-
# print(22222)
|
| 356 |
-
xq, xk, xv = torch.split(xqkv, 1, dim=2)
|
| 357 |
-
xq = xq.squeeze(2)
|
| 358 |
-
xk = xk.squeeze(2)
|
| 359 |
-
xv = xv.squeeze(2)
|
| 360 |
-
# xq, xk, xv = xqkv[:, :, 0, ...], xqkv[:, :, 1, ...], xqkv[:, :, 2, ...]
|
| 361 |
-
|
| 362 |
-
# (B, num_head, S, head_size)
|
| 363 |
-
xq = xq.permute(0, 2, 1, 3)
|
| 364 |
-
xk = xk.permute(0, 2, 1, 3)
|
| 365 |
-
xv = xv.permute(0, 2, 1, 3)
|
| 366 |
-
# with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
|
| 367 |
-
output = torch.nn.functional.scaled_dot_product_attention(xq, xk, xv, attn_mask=None)
|
| 368 |
-
output = output.permute(0, 2, 1, 3).reshape(bsz, seqlen, -1)
|
| 369 |
-
# output = output.permute(0, 2, 1, 3).contiguous().view(bsz, seqlen, -1)
|
| 370 |
-
output = self.out_proj(output)
|
| 371 |
-
return output
|
| 372 |
-
|
| 373 |
-
class NoTPTransformerBlock(nn.Module):
|
| 374 |
-
def __init__(self, cfg, layer_id: int, multiple_of=256):
|
| 375 |
-
super().__init__()
|
| 376 |
-
|
| 377 |
-
self.n_heads = cfg.num_attention_heads
|
| 378 |
-
self.dim = cfg.hidden_size
|
| 379 |
-
self.head_dim = cfg.hidden_size // cfg.num_attention_heads
|
| 380 |
-
self.self_attn = NoTPAttention(cfg)
|
| 381 |
-
self.mlp = NoTPFeedForward(
|
| 382 |
-
cfg, dim=cfg.hidden_size, hidden_dim=cfg.ffn_hidden_size
|
| 383 |
-
)
|
| 384 |
-
self.layer_id = layer_id
|
| 385 |
-
self.layer_norm1 = torch.nn.LayerNorm(
|
| 386 |
-
cfg.hidden_size, eps=cfg.layernorm_epsilon
|
| 387 |
-
)
|
| 388 |
-
self.layer_norm2 = torch.nn.LayerNorm(
|
| 389 |
-
cfg.hidden_size, eps=cfg.layernorm_epsilon
|
| 390 |
-
)
|
| 391 |
-
|
| 392 |
-
def forward(self, x: torch.Tensor):
|
| 393 |
-
residual = self.self_attn.forward(self.layer_norm1(x))
|
| 394 |
-
h = x + residual
|
| 395 |
-
out = h + self.mlp.forward(self.layer_norm2(h))
|
| 396 |
-
return out
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
class NoTPTransformer(nn.Module):
|
| 400 |
-
def __init__(self, cfg):
|
| 401 |
-
super().__init__()
|
| 402 |
-
|
| 403 |
-
self.cfg = cfg
|
| 404 |
-
# self.recompute_list = self.cfg.get("recompute_list", [])
|
| 405 |
-
self.num_layers = cfg.num_layers # _get_num_layers(cfg)
|
| 406 |
-
|
| 407 |
-
self.layers = torch.nn.ModuleList()
|
| 408 |
-
for layer_id in range(self.num_layers):
|
| 409 |
-
self.layers.append(
|
| 410 |
-
NoTPTransformerBlock(
|
| 411 |
-
cfg,
|
| 412 |
-
layer_id + 1,
|
| 413 |
-
)
|
| 414 |
-
)
|
| 415 |
-
|
| 416 |
-
def forward(
|
| 417 |
-
self,
|
| 418 |
-
hidden_states,
|
| 419 |
-
):
|
| 420 |
-
|
| 421 |
-
for lid, layer in enumerate(self.layers):
|
| 422 |
-
# if lid in self.recompute_list:
|
| 423 |
-
# def custom(layer_id):
|
| 424 |
-
# def custom_forward(*args, **kwargs):
|
| 425 |
-
# x_ = self.layers[layer_id](*args, **kwargs)
|
| 426 |
-
# return x_
|
| 427 |
-
|
| 428 |
-
# return custom_forward
|
| 429 |
-
|
| 430 |
-
# assert hidden_states.requires_grad == True, logger.warning(
|
| 431 |
-
# "When using recalculation, the input must have grad fn"
|
| 432 |
-
# )
|
| 433 |
-
# hidden_states = tensor_parallel.checkpoint(
|
| 434 |
-
# custom(lid),
|
| 435 |
-
# False,
|
| 436 |
-
# hidden_states.contiguous()
|
| 437 |
-
# )
|
| 438 |
-
# else:
|
| 439 |
-
hidden_states = layer(hidden_states)
|
| 440 |
-
|
| 441 |
-
return hidden_states
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
# from megatron.core.tensor_parallel.layers import non_tensor_paralleled, local_dp_reduce, local_dp_scatter
|
| 445 |
-
|
| 446 |
-
class VitModel(nn.Module):
|
| 447 |
-
def __init__(
|
| 448 |
-
self,
|
| 449 |
-
cfg,
|
| 450 |
-
freeze_embed=False,
|
| 451 |
-
freeze_pre_norm=False
|
| 452 |
-
) -> None:
|
| 453 |
-
super().__init__()
|
| 454 |
-
|
| 455 |
-
self.embeddings = CLIPVisionEmbeddings(hidden_size=cfg.hidden_size, image_size=cfg.image_size, patch_size=cfg.patch_size)
|
| 456 |
-
|
| 457 |
-
if freeze_embed:
|
| 458 |
-
for name, param in self.embeddings.named_parameters():
|
| 459 |
-
param.requires_grad = False
|
| 460 |
-
|
| 461 |
-
self.transformer = NoTPTransformer(cfg=cfg)
|
| 462 |
-
|
| 463 |
-
if cfg.get("fp32norm", False):
|
| 464 |
-
logger.info("Load fp32 layernorm for ViT.")
|
| 465 |
-
self.pre_layrnorm = LayerNormfp32(
|
| 466 |
-
cfg.hidden_size,
|
| 467 |
-
eps=cfg.get("pre_layernorm_epsilon", 1e-5),
|
| 468 |
-
)
|
| 469 |
-
else:
|
| 470 |
-
self.pre_layrnorm = torch.nn.LayerNorm(
|
| 471 |
-
cfg.hidden_size,
|
| 472 |
-
eps=cfg.get("pre_layernorm_epsilon", 1e-5),
|
| 473 |
-
)
|
| 474 |
-
|
| 475 |
-
# self.pre_layrnorm = RMSNorm(
|
| 476 |
-
# cfg.hidden_size,
|
| 477 |
-
# eps=cfg.get("pre_layernorm_epsilon", 1e-5),
|
| 478 |
-
# sequence_parallel=False,
|
| 479 |
-
# use_fp32=True,
|
| 480 |
-
# use_optimus=True,
|
| 481 |
-
# )
|
| 482 |
-
|
| 483 |
-
if freeze_pre_norm:
|
| 484 |
-
for name, param in self.pre_layrnorm.named_parameters():
|
| 485 |
-
param.requires_grad = False
|
| 486 |
-
|
| 487 |
-
for p in self.parameters():
|
| 488 |
-
p.micro_dp = True
|
| 489 |
-
|
| 490 |
-
def set_input_tensor(self, input_tensor):
|
| 491 |
-
if not isinstance(input_tensor, list):
|
| 492 |
-
input_tensor = [input_tensor]
|
| 493 |
-
self.transformer.set_input_tensor(input_tensor[0])
|
| 494 |
-
|
| 495 |
-
def __str__(self) -> str:
|
| 496 |
-
return "open_clip"
|
| 497 |
-
|
| 498 |
-
def forward(
|
| 499 |
-
self,
|
| 500 |
-
x,
|
| 501 |
-
patch_embeds
|
| 502 |
-
):
|
| 503 |
-
x = self.embeddings(x, patch_embeds)
|
| 504 |
-
hidden_states = self.pre_layrnorm(x)
|
| 505 |
-
|
| 506 |
-
# hidden_states, dis = local_dp_scatter(hidden_states)
|
| 507 |
-
output = self.transformer(hidden_states)
|
| 508 |
-
|
| 509 |
-
# output = local_dp_reduce(output, dis)
|
| 510 |
-
|
| 511 |
-
return output
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
vit_model_cfg = adict(
|
| 515 |
-
num_layers=24,
|
| 516 |
-
hidden_size=1024,
|
| 517 |
-
num_heads = 16,
|
| 518 |
-
num_attention_heads=16,
|
| 519 |
-
ffn_hidden_size=4096,
|
| 520 |
-
seq_length=256,
|
| 521 |
-
max_position_embeddings=256,
|
| 522 |
-
use_flash_attn=False,
|
| 523 |
-
understand_projector_stride=2,
|
| 524 |
-
hidden_dropout = 0.0,
|
| 525 |
-
attention_dropout = 0.0,
|
| 526 |
-
no_persist_layer_norm = False,
|
| 527 |
-
layernorm_epsilon = 1e-5,
|
| 528 |
-
pre_layernorm_epsilon = 1e-5,
|
| 529 |
-
image_size = 224,
|
| 530 |
-
patch_size = 14,
|
| 531 |
-
recompute_list = []
|
| 532 |
-
)
|
| 533 |
-
|
| 534 |
-
def build_clip_l():
|
| 535 |
-
return VitModel(
|
| 536 |
-
cfg=vit_model_cfg,
|
| 537 |
-
freeze_embed=False,
|
| 538 |
-
freeze_pre_norm=False,
|
| 539 |
-
)
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
#=========================Sam-Vary=================================
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
def get_abs_pos_sam(abs_pos, tgt_size):
|
| 549 |
-
|
| 550 |
-
dtype = abs_pos.dtype
|
| 551 |
-
|
| 552 |
-
src_size = abs_pos.size(1)
|
| 553 |
-
|
| 554 |
-
if src_size != tgt_size:
|
| 555 |
-
old_pos_embed = abs_pos.permute(0, 3, 1, 2)
|
| 556 |
-
old_pos_embed = old_pos_embed.to(torch.float32)
|
| 557 |
-
new_pos_embed = F.interpolate(
|
| 558 |
-
old_pos_embed,
|
| 559 |
-
size=(tgt_size, tgt_size),
|
| 560 |
-
mode='bicubic',
|
| 561 |
-
antialias=True,
|
| 562 |
-
align_corners=False,
|
| 563 |
-
).to(dtype)
|
| 564 |
-
new_pos_embed = new_pos_embed.permute(0, 2, 3, 1)
|
| 565 |
-
return new_pos_embed
|
| 566 |
-
else:
|
| 567 |
-
return abs_pos
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
class MLPBlock(nn.Module):
|
| 573 |
-
def __init__(
|
| 574 |
-
self,
|
| 575 |
-
embedding_dim: int,
|
| 576 |
-
mlp_dim: int,
|
| 577 |
-
act: Type[nn.Module] = nn.GELU,
|
| 578 |
-
) -> None:
|
| 579 |
-
super().__init__()
|
| 580 |
-
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
|
| 581 |
-
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
|
| 582 |
-
self.act = act()
|
| 583 |
-
|
| 584 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 585 |
-
return self.lin2(self.act(self.lin1(x)))
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
|
| 589 |
-
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
|
| 590 |
-
class LayerNorm2d(nn.Module):
|
| 591 |
-
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
|
| 592 |
-
super().__init__()
|
| 593 |
-
self.weight = nn.Parameter(torch.ones(num_channels))
|
| 594 |
-
self.bias = nn.Parameter(torch.zeros(num_channels))
|
| 595 |
-
self.eps = eps
|
| 596 |
-
|
| 597 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 598 |
-
u = x.mean(1, keepdim=True)
|
| 599 |
-
s = (x - u).pow(2).mean(1, keepdim=True)
|
| 600 |
-
x = (x - u) / torch.sqrt(s + self.eps)
|
| 601 |
-
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
| 602 |
-
return x
|
| 603 |
-
|
| 604 |
-
|
| 605 |
-
# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
|
| 606 |
-
class ImageEncoderViT(nn.Module):
|
| 607 |
-
def __init__(
|
| 608 |
-
self,
|
| 609 |
-
img_size: int = 1024,
|
| 610 |
-
patch_size: int = 16,
|
| 611 |
-
in_chans: int = 3,
|
| 612 |
-
embed_dim: int = 768,
|
| 613 |
-
depth: int = 12,
|
| 614 |
-
num_heads: int = 12,
|
| 615 |
-
mlp_ratio: float = 4.0,
|
| 616 |
-
out_chans: int = 256,
|
| 617 |
-
qkv_bias: bool = True,
|
| 618 |
-
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
| 619 |
-
act_layer: Type[nn.Module] = nn.GELU,
|
| 620 |
-
use_abs_pos: bool = True,
|
| 621 |
-
use_rel_pos: bool = False,
|
| 622 |
-
rel_pos_zero_init: bool = True,
|
| 623 |
-
window_size: int = 0,
|
| 624 |
-
global_attn_indexes: Tuple[int, ...] = (),
|
| 625 |
-
) -> None:
|
| 626 |
-
"""
|
| 627 |
-
Args:
|
| 628 |
-
img_size (int): Input image size.
|
| 629 |
-
patch_size (int): Patch size.
|
| 630 |
-
in_chans (int): Number of input image channels.
|
| 631 |
-
embed_dim (int): Patch embedding dimension.
|
| 632 |
-
depth (int): Depth of ViT.
|
| 633 |
-
num_heads (int): Number of attention heads in each ViT block.
|
| 634 |
-
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
| 635 |
-
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
| 636 |
-
norm_layer (nn.Module): Normalization layer.
|
| 637 |
-
act_layer (nn.Module): Activation layer.
|
| 638 |
-
use_abs_pos (bool): If True, use absolute positional embeddings.
|
| 639 |
-
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
| 640 |
-
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
| 641 |
-
window_size (int): Window size for window attention blocks.
|
| 642 |
-
global_attn_indexes (list): Indexes for blocks using global attention.
|
| 643 |
-
"""
|
| 644 |
-
super().__init__()
|
| 645 |
-
self.img_size = img_size
|
| 646 |
-
|
| 647 |
-
self.patch_embed = PatchEmbed(
|
| 648 |
-
kernel_size=(patch_size, patch_size),
|
| 649 |
-
stride=(patch_size, patch_size),
|
| 650 |
-
in_chans=in_chans,
|
| 651 |
-
embed_dim=embed_dim,
|
| 652 |
-
)
|
| 653 |
-
|
| 654 |
-
self.pos_embed: Optional[nn.Parameter] = None
|
| 655 |
-
if use_abs_pos:
|
| 656 |
-
# Initialize absolute positional embedding with pretrain image size.
|
| 657 |
-
self.pos_embed = nn.Parameter(
|
| 658 |
-
torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim)
|
| 659 |
-
)
|
| 660 |
-
|
| 661 |
-
self.blocks = nn.ModuleList()
|
| 662 |
-
for i in range(depth):
|
| 663 |
-
block = Block(
|
| 664 |
-
dim=embed_dim,
|
| 665 |
-
num_heads=num_heads,
|
| 666 |
-
mlp_ratio=mlp_ratio,
|
| 667 |
-
qkv_bias=qkv_bias,
|
| 668 |
-
norm_layer=norm_layer,
|
| 669 |
-
act_layer=act_layer,
|
| 670 |
-
use_rel_pos=use_rel_pos,
|
| 671 |
-
rel_pos_zero_init=rel_pos_zero_init,
|
| 672 |
-
window_size=window_size if i not in global_attn_indexes else 0,
|
| 673 |
-
input_size=(img_size // patch_size, img_size // patch_size),
|
| 674 |
-
)
|
| 675 |
-
self.blocks.append(block)
|
| 676 |
-
|
| 677 |
-
self.neck = nn.Sequential(
|
| 678 |
-
nn.Conv2d(
|
| 679 |
-
embed_dim,
|
| 680 |
-
out_chans,
|
| 681 |
-
kernel_size=1,
|
| 682 |
-
bias=False,
|
| 683 |
-
),
|
| 684 |
-
LayerNorm2d(out_chans),
|
| 685 |
-
nn.Conv2d(
|
| 686 |
-
out_chans,
|
| 687 |
-
out_chans,
|
| 688 |
-
kernel_size=3,
|
| 689 |
-
padding=1,
|
| 690 |
-
bias=False,
|
| 691 |
-
),
|
| 692 |
-
LayerNorm2d(out_chans),
|
| 693 |
-
)
|
| 694 |
-
|
| 695 |
-
self.net_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False)
|
| 696 |
-
self.net_3 = nn.Conv2d(512, 1024, kernel_size=3, stride=2, padding=1, bias=False)
|
| 697 |
-
|
| 698 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 699 |
-
x = self.patch_embed(x)
|
| 700 |
-
if self.pos_embed is not None:
|
| 701 |
-
# x = x + self.pos_embed
|
| 702 |
-
x = x + get_abs_pos_sam(self.pos_embed, x.size(1))
|
| 703 |
-
|
| 704 |
-
for blk in self.blocks:
|
| 705 |
-
x = blk(x)
|
| 706 |
-
|
| 707 |
-
x = self.neck(x.permute(0, 3, 1, 2))
|
| 708 |
-
x2 = self.net_2(x)
|
| 709 |
-
x3 = self.net_3(x2.clone())
|
| 710 |
-
|
| 711 |
-
return x3
|
| 712 |
-
|
| 713 |
-
|
| 714 |
-
class Block(nn.Module):
|
| 715 |
-
"""Transformer blocks with support of window attention and residual propagation blocks"""
|
| 716 |
-
|
| 717 |
-
def __init__(
|
| 718 |
-
self,
|
| 719 |
-
dim: int,
|
| 720 |
-
num_heads: int,
|
| 721 |
-
mlp_ratio: float = 4.0,
|
| 722 |
-
qkv_bias: bool = True,
|
| 723 |
-
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
| 724 |
-
act_layer: Type[nn.Module] = nn.GELU,
|
| 725 |
-
use_rel_pos: bool = False,
|
| 726 |
-
rel_pos_zero_init: bool = True,
|
| 727 |
-
window_size: int = 0,
|
| 728 |
-
input_size: Optional[Tuple[int, int]] = None,
|
| 729 |
-
) -> None:
|
| 730 |
-
"""
|
| 731 |
-
Args:
|
| 732 |
-
dim (int): Number of input channels.
|
| 733 |
-
num_heads (int): Number of attention heads in each ViT block.
|
| 734 |
-
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
| 735 |
-
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
| 736 |
-
norm_layer (nn.Module): Normalization layer.
|
| 737 |
-
act_layer (nn.Module): Activation layer.
|
| 738 |
-
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
| 739 |
-
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
| 740 |
-
window_size (int): Window size for window attention blocks. If it equals 0, then
|
| 741 |
-
use global attention.
|
| 742 |
-
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
| 743 |
-
positional parameter size.
|
| 744 |
-
"""
|
| 745 |
-
super().__init__()
|
| 746 |
-
self.norm1 = norm_layer(dim)
|
| 747 |
-
self.attn = Attention(
|
| 748 |
-
dim,
|
| 749 |
-
num_heads=num_heads,
|
| 750 |
-
qkv_bias=qkv_bias,
|
| 751 |
-
use_rel_pos=use_rel_pos,
|
| 752 |
-
rel_pos_zero_init=rel_pos_zero_init,
|
| 753 |
-
input_size=input_size if window_size == 0 else (window_size, window_size),
|
| 754 |
-
)
|
| 755 |
-
|
| 756 |
-
self.norm2 = norm_layer(dim)
|
| 757 |
-
self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
|
| 758 |
-
|
| 759 |
-
self.window_size = window_size
|
| 760 |
-
|
| 761 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 762 |
-
shortcut = x
|
| 763 |
-
x = self.norm1(x)
|
| 764 |
-
# Window partition
|
| 765 |
-
if self.window_size > 0:
|
| 766 |
-
H, W = x.shape[1], x.shape[2]
|
| 767 |
-
x, pad_hw = window_partition(x, self.window_size)
|
| 768 |
-
|
| 769 |
-
x = self.attn(x)
|
| 770 |
-
# Reverse window partition
|
| 771 |
-
if self.window_size > 0:
|
| 772 |
-
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
|
| 773 |
-
|
| 774 |
-
x = shortcut + x
|
| 775 |
-
x = x + self.mlp(self.norm2(x))
|
| 776 |
-
|
| 777 |
-
return x
|
| 778 |
-
|
| 779 |
-
|
| 780 |
-
class Attention(nn.Module):
|
| 781 |
-
"""Multi-head Attention block with relative position embeddings."""
|
| 782 |
-
|
| 783 |
-
def __init__(
|
| 784 |
-
self,
|
| 785 |
-
dim: int,
|
| 786 |
-
num_heads: int = 8,
|
| 787 |
-
qkv_bias: bool = True,
|
| 788 |
-
use_rel_pos: bool = False,
|
| 789 |
-
rel_pos_zero_init: bool = True,
|
| 790 |
-
input_size: Optional[Tuple[int, int]] = None,
|
| 791 |
-
) -> None:
|
| 792 |
-
"""
|
| 793 |
-
Args:
|
| 794 |
-
dim (int): Number of input channels.
|
| 795 |
-
num_heads (int): Number of attention heads.
|
| 796 |
-
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
| 797 |
-
rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
| 798 |
-
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
| 799 |
-
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
| 800 |
-
positional parameter size.
|
| 801 |
-
"""
|
| 802 |
-
super().__init__()
|
| 803 |
-
self.num_heads = num_heads
|
| 804 |
-
head_dim = dim // num_heads
|
| 805 |
-
self.scale = head_dim**-0.5
|
| 806 |
-
|
| 807 |
-
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 808 |
-
self.proj = nn.Linear(dim, dim)
|
| 809 |
-
|
| 810 |
-
self.use_rel_pos = use_rel_pos
|
| 811 |
-
if self.use_rel_pos:
|
| 812 |
-
assert (
|
| 813 |
-
input_size is not None
|
| 814 |
-
), "Input size must be provided if using relative positional encoding."
|
| 815 |
-
# initialize relative positional embeddings
|
| 816 |
-
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
|
| 817 |
-
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
|
| 818 |
-
|
| 819 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 820 |
-
B, H, W, _ = x.shape
|
| 821 |
-
# qkv with shape (3, B, nHead, H * W, C)
|
| 822 |
-
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
| 823 |
-
# q, k, v with shape (B * nHead, H * W, C)
|
| 824 |
-
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
|
| 825 |
-
|
| 826 |
-
rel_h, rel_w = None, None
|
| 827 |
-
if self.use_rel_pos:
|
| 828 |
-
rel_h, rel_w = add_decomposed_rel_pos(q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
|
| 829 |
-
|
| 830 |
-
q = q.view(B, self.num_heads, H * W, -1)
|
| 831 |
-
k = k.view(B, self.num_heads, H * W, -1)
|
| 832 |
-
v = v.view(B, self.num_heads, H * W, -1)
|
| 833 |
-
|
| 834 |
-
if self.use_rel_pos:
|
| 835 |
-
rel_h = rel_h.view(B, self.num_heads, rel_h.size(1), rel_h.size(2), rel_h.size(3))
|
| 836 |
-
rel_w = rel_w.view(B, self.num_heads, rel_w.size(1), rel_w.size(2), rel_w.size(3))
|
| 837 |
-
attn_bias = (rel_h + rel_w).view(B, self.num_heads, rel_h.size(2), rel_h.size(3) * rel_w.size(4))
|
| 838 |
-
x = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_bias)
|
| 839 |
-
# x = _attention_rel_h_rel_w(q, k, v, rel_h, rel_w)
|
| 840 |
-
else:
|
| 841 |
-
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
|
| 842 |
-
|
| 843 |
-
x = x.view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
|
| 844 |
-
|
| 845 |
-
x = self.proj(x)
|
| 846 |
-
|
| 847 |
-
return x
|
| 848 |
-
|
| 849 |
-
|
| 850 |
-
def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
|
| 851 |
-
"""
|
| 852 |
-
Partition into non-overlapping windows with padding if needed.
|
| 853 |
-
Args:
|
| 854 |
-
x (tensor): input tokens with [B, H, W, C].
|
| 855 |
-
window_size (int): window size.
|
| 856 |
-
|
| 857 |
-
Returns:
|
| 858 |
-
windows: windows after partition with [B * num_windows, window_size, window_size, C].
|
| 859 |
-
(Hp, Wp): padded height and width before partition
|
| 860 |
-
"""
|
| 861 |
-
B, H, W, C = x.shape
|
| 862 |
-
|
| 863 |
-
pad_h = (window_size - H % window_size) % window_size
|
| 864 |
-
pad_w = (window_size - W % window_size) % window_size
|
| 865 |
-
if pad_h > 0 or pad_w > 0:
|
| 866 |
-
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
| 867 |
-
Hp, Wp = H + pad_h, W + pad_w
|
| 868 |
-
|
| 869 |
-
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
|
| 870 |
-
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
| 871 |
-
return windows, (Hp, Wp)
|
| 872 |
-
|
| 873 |
-
|
| 874 |
-
def window_unpartition(
|
| 875 |
-
windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
|
| 876 |
-
) -> torch.Tensor:
|
| 877 |
-
"""
|
| 878 |
-
Window unpartition into original sequences and removing padding.
|
| 879 |
-
Args:
|
| 880 |
-
windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
|
| 881 |
-
window_size (int): window size.
|
| 882 |
-
pad_hw (Tuple): padded height and width (Hp, Wp).
|
| 883 |
-
hw (Tuple): original height and width (H, W) before padding.
|
| 884 |
-
|
| 885 |
-
Returns:
|
| 886 |
-
x: unpartitioned sequences with [B, H, W, C].
|
| 887 |
-
"""
|
| 888 |
-
Hp, Wp = pad_hw
|
| 889 |
-
H, W = hw
|
| 890 |
-
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
|
| 891 |
-
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
|
| 892 |
-
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
|
| 893 |
-
|
| 894 |
-
if Hp > H or Wp > W:
|
| 895 |
-
x = x[:, :H, :W, :].contiguous()
|
| 896 |
-
return x
|
| 897 |
-
|
| 898 |
-
|
| 899 |
-
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
|
| 900 |
-
"""
|
| 901 |
-
Get relative positional embeddings according to the relative positions of
|
| 902 |
-
query and key sizes.
|
| 903 |
-
Args:
|
| 904 |
-
q_size (int): size of query q.
|
| 905 |
-
k_size (int): size of key k.
|
| 906 |
-
rel_pos (Tensor): relative position embeddings (L, C).
|
| 907 |
-
|
| 908 |
-
Returns:
|
| 909 |
-
Extracted positional embeddings according to relative positions.
|
| 910 |
-
"""
|
| 911 |
-
max_rel_dist = int(2 * max(q_size, k_size) - 1)
|
| 912 |
-
# Interpolate rel pos if needed.
|
| 913 |
-
if rel_pos.shape[0] != max_rel_dist:
|
| 914 |
-
# Interpolate rel pos.
|
| 915 |
-
dtype = rel_pos.dtype
|
| 916 |
-
rel_pos = rel_pos.to(torch.float32)
|
| 917 |
-
rel_pos_resized = F.interpolate(
|
| 918 |
-
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
|
| 919 |
-
size=max_rel_dist,
|
| 920 |
-
mode="linear",
|
| 921 |
-
).to(dtype)
|
| 922 |
-
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
|
| 923 |
-
else:
|
| 924 |
-
rel_pos_resized = rel_pos
|
| 925 |
-
|
| 926 |
-
# Scale the coords with short length if shapes for q and k are different.
|
| 927 |
-
q_coords = torch.arange(q_size, device=rel_pos.device)[:, None] * max(k_size / q_size, 1.0)
|
| 928 |
-
k_coords = torch.arange(k_size, device=rel_pos.device)[None, :] * max(q_size / k_size, 1.0)
|
| 929 |
-
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
|
| 930 |
-
|
| 931 |
-
return rel_pos_resized[relative_coords.long()]
|
| 932 |
-
|
| 933 |
-
|
| 934 |
-
def add_decomposed_rel_pos(
|
| 935 |
-
q: torch.Tensor,
|
| 936 |
-
rel_pos_h: torch.Tensor,
|
| 937 |
-
rel_pos_w: torch.Tensor,
|
| 938 |
-
q_size: Tuple[int, int],
|
| 939 |
-
k_size: Tuple[int, int],
|
| 940 |
-
) -> torch.Tensor:
|
| 941 |
-
"""
|
| 942 |
-
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
|
| 943 |
-
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
|
| 944 |
-
Args:
|
| 945 |
-
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
|
| 946 |
-
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
|
| 947 |
-
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
|
| 948 |
-
q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
|
| 949 |
-
k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
|
| 950 |
-
|
| 951 |
-
Returns:
|
| 952 |
-
attn (Tensor): attention map with added relative positional embeddings.
|
| 953 |
-
"""
|
| 954 |
-
q_h, q_w = q_size
|
| 955 |
-
k_h, k_w = k_size
|
| 956 |
-
Rh = get_rel_pos(q_h, k_h, rel_pos_h)
|
| 957 |
-
Rw = get_rel_pos(q_w, k_w, rel_pos_w)
|
| 958 |
-
|
| 959 |
-
B, _, dim = q.shape
|
| 960 |
-
r_q = q.reshape(B, q_h, q_w, dim)
|
| 961 |
-
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
|
| 962 |
-
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
|
| 963 |
-
rel_h = rel_h.unsqueeze(-1)
|
| 964 |
-
rel_w = rel_w.unsqueeze(-2)
|
| 965 |
-
rel_h = rel_h.reshape(B, q_h * q_w, k_h, 1)
|
| 966 |
-
rel_w = rel_w.reshape(B, q_h * q_w, 1, k_w)
|
| 967 |
-
|
| 968 |
-
return rel_h, rel_w
|
| 969 |
-
|
| 970 |
-
|
| 971 |
-
class PatchEmbed(nn.Module):
|
| 972 |
-
"""
|
| 973 |
-
Image to Patch Embedding.
|
| 974 |
-
"""
|
| 975 |
-
|
| 976 |
-
def __init__(
|
| 977 |
-
self,
|
| 978 |
-
kernel_size: Tuple[int, int] = (16, 16),
|
| 979 |
-
stride: Tuple[int, int] = (16, 16),
|
| 980 |
-
padding: Tuple[int, int] = (0, 0),
|
| 981 |
-
in_chans: int = 3,
|
| 982 |
-
embed_dim: int = 768,
|
| 983 |
-
) -> None:
|
| 984 |
-
"""
|
| 985 |
-
Args:
|
| 986 |
-
kernel_size (Tuple): kernel size of the projection layer.
|
| 987 |
-
stride (Tuple): stride of the projection layer.
|
| 988 |
-
padding (Tuple): padding size of the projection layer.
|
| 989 |
-
in_chans (int): Number of input image channels.
|
| 990 |
-
embed_dim (int): Patch embedding dimension.
|
| 991 |
-
"""
|
| 992 |
-
super().__init__()
|
| 993 |
-
|
| 994 |
-
self.proj = nn.Conv2d(
|
| 995 |
-
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
|
| 996 |
-
)
|
| 997 |
-
|
| 998 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 999 |
-
x = self.proj(x)
|
| 1000 |
-
# B C H W -> B H W C
|
| 1001 |
-
x = x.permute(0, 2, 3, 1)
|
| 1002 |
-
return x
|
| 1003 |
-
|
| 1004 |
-
|
| 1005 |
-
def build_sam_vit_b(checkpoint=None):
|
| 1006 |
-
return _build_sam(
|
| 1007 |
-
encoder_embed_dim=768,
|
| 1008 |
-
encoder_depth=12,
|
| 1009 |
-
encoder_num_heads=12,
|
| 1010 |
-
encoder_global_attn_indexes=[2, 5, 8, 11],
|
| 1011 |
-
checkpoint=checkpoint,
|
| 1012 |
-
)
|
| 1013 |
-
|
| 1014 |
-
def build_sam_fast_vit_b(checkpoint=None, compile_mode='max-autotune', dtype=torch.bfloat16):
|
| 1015 |
-
image_encoder = build_sam_vit_b(checkpoint).eval().to(dtype)
|
| 1016 |
-
# sam = _apply_eval_dtype_sam(sam, dtype)
|
| 1017 |
-
image_encoder = torch.compile(image_encoder, mode=compile_mode)
|
| 1018 |
-
return image_encoder
|
| 1019 |
-
|
| 1020 |
-
|
| 1021 |
-
def _build_sam(
|
| 1022 |
-
encoder_embed_dim,
|
| 1023 |
-
encoder_depth,
|
| 1024 |
-
encoder_num_heads,
|
| 1025 |
-
encoder_global_attn_indexes,
|
| 1026 |
-
checkpoint=None,
|
| 1027 |
-
):
|
| 1028 |
-
prompt_embed_dim = 256
|
| 1029 |
-
image_size = 1024
|
| 1030 |
-
vit_patch_size = 16
|
| 1031 |
-
image_embedding_size = image_size // vit_patch_size
|
| 1032 |
-
image_encoder=ImageEncoderViT(
|
| 1033 |
-
depth=encoder_depth,
|
| 1034 |
-
embed_dim=encoder_embed_dim,
|
| 1035 |
-
img_size=image_size,
|
| 1036 |
-
mlp_ratio=4,
|
| 1037 |
-
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
|
| 1038 |
-
num_heads=encoder_num_heads,
|
| 1039 |
-
patch_size=vit_patch_size,
|
| 1040 |
-
qkv_bias=True,
|
| 1041 |
-
use_rel_pos=True,
|
| 1042 |
-
global_attn_indexes=encoder_global_attn_indexes,
|
| 1043 |
-
window_size=14,
|
| 1044 |
-
out_chans=prompt_embed_dim,
|
| 1045 |
-
)
|
| 1046 |
-
image_encoder.eval()
|
| 1047 |
-
if checkpoint is not None:
|
| 1048 |
-
# with open(checkpoint, "rb") as f:
|
| 1049 |
-
state_dict = torch.load(checkpoint)
|
| 1050 |
-
# print(state_dict.keys())
|
| 1051 |
-
# for key in state_dict:
|
| 1052 |
-
# image_encoder.load_state_dict({k[14:]: v for k, v in state_dict.items() if 'image_encoder' in k}, strict=False)
|
| 1053 |
-
# ocr-anyting
|
| 1054 |
-
# image_encoder.load_state_dict(state_dict, strict=True)
|
| 1055 |
-
# tob
|
| 1056 |
-
image_encoder.load_state_dict({k[30:]: v for k, v in state_dict.items() if 'vision_tower_high' in k}, strict=True)
|
| 1057 |
-
print(checkpoint)
|
| 1058 |
-
return image_encoder
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|