Update README.md
Browse files
README.md
CHANGED
|
@@ -39,9 +39,62 @@ This is the model card of a 🤗 transformers model that has been pushed on the
|
|
| 39 |
|
| 40 |
### Direct Use
|
| 41 |
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
-
[More Information Needed]
|
| 45 |
|
| 46 |
### Downstream Use [optional]
|
| 47 |
|
|
@@ -128,74 +181,5 @@ Use the code below to get started with the model.
|
|
| 128 |
|
| 129 |
[More Information Needed]
|
| 130 |
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
| 200 |
|
| 201 |
|
|
|
|
| 39 |
|
| 40 |
### Direct Use
|
| 41 |
|
| 42 |
+
Please proceed the following example **that purely relies on tranformers and torch** on google colab or here:
|
| 43 |
+
|
| 44 |
+
1. Setup ask method for inferring FlanT5 as follows:
|
| 45 |
+
```python
|
| 46 |
+
def ask(prompt):
|
| 47 |
+
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
|
| 48 |
+
inputs.to(device)
|
| 49 |
+
output = model.generate(**inputs, max_length=320, temperature=1)
|
| 50 |
+
return tokenizer.batch_decode(output, skip_special_tokens=True)[0]
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
2. Setup chain and expected output labels:
|
| 54 |
+
```python
|
| 55 |
+
def emotion_extraction_chain(context, target):
|
| 56 |
+
# Setup labels.
|
| 57 |
+
labels_list = ["anger", "disgust", "fear", "joy", "sadness", "surprise", "neutral"]
|
| 58 |
+
# Setup Chain-of-Thought
|
| 59 |
+
step1 = f"Given the conversation {context}, which text spans are possibly causes emotion on {target}?"
|
| 60 |
+
span = ask(step1)
|
| 61 |
+
step2 = f"{step1}. The mentioned text spans are about {span}. Based on the common sense, what " + f"is the implicit opinion towards the mentioned text spans that causes emotion on {target}, and why?"
|
| 62 |
+
opinion = ask(step2)
|
| 63 |
+
step3 = f"{step2}. The opinion towards the text spans that causes emotion on {target} is {opinion}. " + f"Based on such opinion, what is the emotion state of {target}?"
|
| 64 |
+
emotion_state = ask(step3)
|
| 65 |
+
step4 = f"{step3}. The emotion state is {emotion_state}. Based on these contexts, summarize and return the emotion cause only." + "Choose from: {}.".format(", ".join(labels_list))
|
| 66 |
+
# Return the final response.
|
| 67 |
+
return ask(step4)
|
| 68 |
+
```
|
| 69 |
+
|
| 70 |
+
3. Initialize `device`, `model` and `tokenizer` as follows:
|
| 71 |
+
```python
|
| 72 |
+
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
| 73 |
+
|
| 74 |
+
model_path = "nicolay-r/flan-t5-emotion-cause-thor-base"
|
| 75 |
+
device = "cuda:0"
|
| 76 |
+
|
| 77 |
+
model = T5ForConditionalGeneration.from_pretrained(model_path)
|
| 78 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 79 |
+
model.to(device)
|
| 80 |
+
```
|
| 81 |
+
|
| 82 |
+
4. Apply it!
|
| 83 |
+
```python
|
| 84 |
+
# setup history context (conv_turn_1)
|
| 85 |
+
conv_turn_1 = "John: ohh you made up!"
|
| 86 |
+
# setup utterance.
|
| 87 |
+
conv_turn_2 = "Jake: yaeh, I could not be mad at him for too long!"
|
| 88 |
+
context = conv_turn_1 + conv_turn_2
|
| 89 |
+
# Target is considered as the whole conv-turn mentioned in context.
|
| 90 |
+
target = conv_turn_2
|
| 91 |
+
flant5_response = emotion_extraction_chain(context, target)
|
| 92 |
+
print(f"Emotion state of the speaker of `{target}` is: {flant5_response}")
|
| 93 |
+
```
|
| 94 |
+
|
| 95 |
+
The response is as follows:
|
| 96 |
+
>>> Emotion state of the speaker of `Jake: yaeh, I could not be mad at him for too long!` is: **anger**
|
| 97 |
|
|
|
|
| 98 |
|
| 99 |
### Downstream Use [optional]
|
| 100 |
|
|
|
|
| 181 |
|
| 182 |
[More Information Needed]
|
| 183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
|
| 185 |
|