Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,133 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
metrics:
|
| 6 |
+
- accuracy
|
| 7 |
+
base_model:
|
| 8 |
+
- google-bert/bert-base-uncased
|
| 9 |
+
pipeline_tag: zero-shot-classification
|
| 10 |
+
library_name: adapter-transformers
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# RigelClauseNet: BERT-Based Fraud Clause Detector
|
| 14 |
+
|
| 15 |
+
**RigelClauseNet** is a fine-tuned BERT-based binary classifier that detects **fraudulent, high-risk, or suspicious clauses** in legal and policy-related documents, including privacy policies, loan agreements, and terms of service.
|
| 16 |
+
|
| 17 |
+
It is designed to help:
|
| 18 |
+
- Legal analysts
|
| 19 |
+
- Fintech systems
|
| 20 |
+
- Regulatory auditors
|
| 21 |
+
- End users seeking clarity in digital contracts
|
| 22 |
+
|
| 23 |
+
---
|
| 24 |
+
|
| 25 |
+
## 🔍 Use Case
|
| 26 |
+
|
| 27 |
+
Given a clause or paragraph from a document, the model outputs:
|
| 28 |
+
- A binary risk label (`SAFE`, `RISKY`)
|
| 29 |
+
- A probability confidence score
|
| 30 |
+
- A breakdown of class probabilities
|
| 31 |
+
|
| 32 |
+
This enables organizations to **flag suspicious clauses early**, audit contracts, and build smarter compliance pipelines.
|
| 33 |
+
|
| 34 |
+
---
|
| 35 |
+
|
| 36 |
+
## 🧠 Model Details
|
| 37 |
+
|
| 38 |
+
- **Base Model**: `google-bert/bert-base-uncased`
|
| 39 |
+
- **Architecture**: BERT + Sequence Classification Head
|
| 40 |
+
- **Training Data**: 5,000 semi-synthetic and curated clauses (labeled as `SAFE` or `RISKY`)
|
| 41 |
+
- **Classes**:
|
| 42 |
+
- `0` → Safe clause
|
| 43 |
+
- `1` → Fraudulent/risky clause
|
| 44 |
+
- **Trained On**: Google Colab with Hugging Face Transformers
|
| 45 |
+
- **Performance**:
|
| 46 |
+
- Accuracy: **98.47%**
|
| 47 |
+
- Precision: **99.19%**
|
| 48 |
+
- Recall: **99.19%**
|
| 49 |
+
- F1 Score: **99.99%** *(on validation set)*
|
| 50 |
+
|
| 51 |
+
---
|
| 52 |
+
|
| 53 |
+
## 📌 Examples
|
| 54 |
+
|
| 55 |
+
```python
|
| 56 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 57 |
+
import torch.nn.functional as F
|
| 58 |
+
import torch
|
| 59 |
+
|
| 60 |
+
model = AutoModelForSequenceClassification.from_pretrained("nitinsri/RigelClauseNet")
|
| 61 |
+
tokenizer = AutoTokenizer.from_pretrained("nitinsri/RigelClauseNet")
|
| 62 |
+
|
| 63 |
+
def predict_clause(text):
|
| 64 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
|
| 65 |
+
with torch.no_grad():
|
| 66 |
+
logits = model(**inputs).logits
|
| 67 |
+
probs = F.softmax(logits, dim=1)
|
| 68 |
+
label = torch.argmax(probs).item()
|
| 69 |
+
return {
|
| 70 |
+
"label": "RISKY" if label == 1 else "SAFE",
|
| 71 |
+
"confidence": round(probs[0][label].item(), 4),
|
| 72 |
+
"probabilities": probs.tolist()
|
| 73 |
+
}
|
| 74 |
+
|
| 75 |
+
# Example
|
| 76 |
+
predict_clause("Late payments will incur a 25% monthly penalty.")
|
| 77 |
+
```
|
| 78 |
+
|
| 79 |
+
## 🧠 Intended Usage
|
| 80 |
+
|
| 81 |
+
You can use this model for:
|
| 82 |
+
|
| 83 |
+
- Scanning uploaded PDFs, contracts, or policies
|
| 84 |
+
- Highlighting or flagging suspicious legal language
|
| 85 |
+
- Powering backend systems in legal-tech and compliance
|
| 86 |
+
|
| 87 |
+
---
|
| 88 |
+
|
| 89 |
+
## 🚫 Limitations
|
| 90 |
+
|
| 91 |
+
- Trained on **semi-synthetic clauses**, not actual legal corporations.
|
| 92 |
+
- Binary classifier only — it does not explain why a clause is risky.
|
| 93 |
+
- Contextual or nested document logic is not supported (yet).
|
| 94 |
+
|
| 95 |
+
---
|
| 96 |
+
|
| 97 |
+
## 📂 Files
|
| 98 |
+
|
| 99 |
+
| File | Description |
|
| 100 |
+
|------|-------------|
|
| 101 |
+
| `model.safetensors` | Fine-tuned model weights |
|
| 102 |
+
| `config.json` | BERT classification head config |
|
| 103 |
+
| `tokenizer.json` | Tokenizer for preprocessing |
|
| 104 |
+
| `vocab.txt` | BERT vocabulary |
|
| 105 |
+
|
| 106 |
+
---
|
| 107 |
+
|
| 108 |
+
## 💡 Future Plans
|
| 109 |
+
|
| 110 |
+
- Multi-class classification (`safe`, `risky`, `ambiguous`)
|
| 111 |
+
- Explanation layer (highlight key tokens that trigger risk)
|
| 112 |
+
- Full document-level context scanning
|
| 113 |
+
- Integration with Hugging Face Spaces (with UI)
|
| 114 |
+
|
| 115 |
+
---
|
| 116 |
+
|
| 117 |
+
## 👨💻 Author
|
| 118 |
+
|
| 119 |
+
Built by [Nithin Sri]
|
| 120 |
+
🚀 Hugging Face: [https://huggingface.co/nitinsri](https://huggingface.co/nitinsri)
|
| 121 |
+
📧 Email: [email protected]
|
| 122 |
+
|
| 123 |
+
---
|
| 124 |
+
|
| 125 |
+
## 📜 License
|
| 126 |
+
|
| 127 |
+
MIT License
|
| 128 |
+
|
| 129 |
+
---
|
| 130 |
+
|
| 131 |
+
> “Clarity and transparency in digital contracts are not luxuries — they are rights. RigelGuard helps enforce that.”
|
| 132 |
+
|
| 133 |
+
---
|